NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

THEATRE BALLISTIC MISSILE DEFENSE-
MULTISENSOR FUSION, TARGETING AND
TRACKING TECHNIQUES
by
Antonio P. San Jose

March 1998

Thesis Advisor: Robert G. Hutchins
Second Reader: Harold A. Titus

Approved for public release; distribution is unlimited.

790 11908661

REPORT DOCUMENTATION PAGE Form Apreved OV N, T0L 108

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1998 Master’s Thesis
4. TITLE AND SUBTITLE THEATER BALLISTIC MISSILE DEFENSE - 5. FUNDING NUMBERS

MULTISENSOR FUSION, TARGETING AND TRACKING TECHNIQUES

6. AUTHOR(S) Antonio P. San Jose

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
‘Monterey, CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The Gulf War illustrated how important ballistic missile defenses have become to the United
States. The study of intercepting Theatre Ballistic Missiles (TBMs) in their boost phase was prompted
by concerns about the widespread dissemination of submunitions and the differentiation of decoys
from actual warheads released early in the missile’s midcourse flight. Boost Phase Intercept (BPI)
would alleviate this problem by destroying the enemy’s ballistic missile in the missile’s launch phase,
thereby causing the lethal payload and debris from the engagement to fall back on the aggressor. This
thesis focuses on the development of missile tracking algorithms to be used in the boost phase of
TBMs. -A missile encounters significant changes in velocity, acceleration, and direction during the
boost phase, making it difficult to track. Extended Kalman filter (EKF), Alpha-Beta-Gamma filter,
and Interacting Multiple Model (IMM) filtering techniques are developed to determine the missile
tracking accuracy of TBMs during boost phase. Simulation results and actual TBM profiles from test
data are presented to verify the tracking accuracy utilizing different filtering techniques.

14. SUBJECT TERMS Kalman Filter, Alpha-Beta-Gamma Filter, Interacting Multiple Models, |15. NUMBER OF

TBMD PAGES 248
16. PRICE CODE
17. SECURITY CLASSIFICA- | 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- [20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited

THEATER BALLISTIC MISSILE DEFENSE -MULTISENSOR FUSION, TARGETING
AND TRACKING TECHNIQUES

Antonio P. San Jose
Lieutenant, United States Navy
B.S., United States Naval Academy, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN
ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Authér: L Zonis ,é/v\?«k,

Antonio P. S#n Jose

st Y ke

‘ Robert G. Hutchins, Thesis Advisor

4 Harold A. Titus, Second Reader

/f"‘/ Herschel H. Loéfnis, Jr., Chairman
Department of Electrical and Computer Engineering

iii

iv

ABSTRACT

The Gulf War illustrated how important ballistic missile defenses have become to

]

the United States. The study of intercepting Theatre Ballistic Missiles (TBMs) in their
boost phase was prompted by concerns about the widespread dissemination of
submunitions and the differentiation of decoys from actual warheads released early in the
missile’s midcourse flight. Boost Phase Intercept (BPI) would alleviate this problem by
destroying the enemy’s ballistic missile in the missile’s launch phase, thereby causing the
lethal payload and debris from the engagement to fall back on the aggressor. This thesis
focuses on the development of missile tracking algorithms to be used in the boost phase

of TBMs. A missile encounters significant changes in velocity, acceleration, and

direction during the boost phase, making it difficult to track. Extended Kalman filter

(EKF), Alpha-Beta-Gamma filter, and Interacting Multiple Model (IMM) filtering
techniques are developed to determine the missile tracking accuracy of TBMs during
boost phase. Simulation results and actual TBM profiles from test data are presented to

verify the tracking accuracy utilizing different filtering techniques.

vi

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTIONoitriutireriicrieintrtneseesssiesesessss e s s esesesesesssssesssssssesssesseseseseseens 1
A. BALLISTIC MISSILE DEFENSE.........cooeettereeeeeeeerereneteseee e sseseean 1
B. BOOST PHASE INTERCEPTccooomrrrreerererererererneee. e 1
C. THESIS ORGANIZATIONcccooemrrrrreererereresreerereessesseaenes e 2
BALLISTIC MISSILE TRAJECTORYcvvuriniiiininniisrnsrsssssss s 5
A. GENERATING THE BALLISTIC MISSILE BASE TRAJECTORY 5
B. RUNNING THE SIMULATIONccoriirimicnccieresicnseneesseessessesssesssssenes 9
C. ADDING MEASUREMENT NOISEccoovoemieirecteteeeetereee s 15
EXTENDED KALMAN FILTER........ccsvttrrirerrnneess e eeseresesesesesessssssssesssene 19
A. DISCRETE TIME KALMAN FILTERccocteviitrtreeeeeeereereeeesesrsessesens 19
B. EXTENDED KALMAN FILTERcccceetintetnreeetsteeeeneeeee s sse e 21
C. EKF IN TARGET TRACKINGccoceimurtrreirinrerennereseresesesessessesessesesessans 26
D. SIMULATION RESULTSoooiersitrennninrternanaeeeeesesene e sesesessassnsssssesassenns 30
FIXED-COEFFICIENT FILTERING........ccocsisueteieeerecereeescseseaeseeeseseneseeessees 39
A. ALPHA-BETA-GAMMA TRACKER ...ttt 39
B. SIMULATION RESULTScoietrirtrienirinserresesecsteeseesessseses s s secseesnes 43
INTERACTING MULTIPLE MODEL ALGORITHMcccovveeeirerenieeenrenennes 55
A. IMM ALOGRITHM.......cooiiiiiiiiiniccsierieestsssessesste s sses s esessssessenaes 55
B. SIMULATION RESULTS ..ottt ettt 70

vii

VI. ACTUAL TBM PROFILES.......c.octtmmmmtnrunrrneesieseeseeeesseeseeseeesessees e 87

A, TBM PROFILES ..ottt es e 87

B. TBM PROFILE 1 .ttt eeees e sesees e s 89

C. TBM PROFILE 4 ...ttt eeeeeeeee e eesees e 102

D. TBM PROFILE 5 ...ttt seessesoeeseseseeseeseseessessesses e sesses e 116

E. COMPARISON OF TBM PROFILES..........coovieeeeeeeeeeseesseeseesees e, 129

VII. CONCLUSIONcoovmrimrinennetrnsinnssensisssesess s esesesesseseesssssess s se s 133

APPENDIX A. SOURCE CODE FOR BALLISTIC MISSILE SIMULATION........ 135

APPENDIX B. SOURCE CODE FOR EKF TRACKING ALGORITHM ... 141
APPENDIX C. SOURCE CODE FOR ALPHA-BETA-GAMMA TRACKING

ALGORITHM.....ooimiiiiciceinteniese sttt e s s s st 149

APPENDIX D. SOURCE CODE FOR IMM TRACKING ALGORITHM.............. 157

APPENDIX E. TBM PROFILESccovummimimmrrareeeeseteeineeeeeeeeeseeeseseessee s sess oo, 169

APPENDIX F. MATLAB® INFORMATION..........oeeeeemeeeeesoeeeeeeooeeoeooeooooeooo 235

LIST OF REFERENCES..........coostueterierneneectesseseseeseerssesesessssesessss s eeeees oo 237

INITIAL DISTRIBUTION LISTouririniuiieeeeeeieeeeeeeeeeeseeeeses e esseee s 239

viii

I. INTRODUCTION

A. BALLISTIC MISSILE DEFENSE

The Gulf War illustrated how important ballistic missile defenses have become to
the United States. The Iraqi use of theater ballistic missiles (TBMs) focused the United
States defense on the danger posed by the widespread proliferation of TBMs. Today, over
thirty countries possess ballistic missiles and more than twenty-five are believed to be
developing nuclear, chemical, or biological weapons [Ref. 1]. Many of those same
countries may be converting these weapons of mass destruction into warheads that can be
delivered by ballistic missiles. Because of worldwide development efforts to increase the
exportable supply of TBMs, missiles of increased range and payload will find their way
into the weapons inventories of many nations during the next decade. Potential
aggressors will have a potent capability to deliver short notice or surprise attacks that
might threaten regional balances, U.S. allies, U.S. forces deployed overseas, and
potentially U.S. territory. The ability to put a nuclear, chemical or biological warilead on
a ballistic missile, along with the increasing ability to export such missiles, highlights the
necessity for the United States to develop effective theater missile defense (TMD)

systems. [Ref. 2, 3, 4]

B. BOOST PHASE INTERCEPT
The study of intercepting TBMs in the boost phase was prompted by concerns

about the widespread dissemination of submunitions and the differentiation of decoys

from actual warheads released early in the midcourse phase. Boost Phase Intercept (BPI)
would alleviate this problem by destroying the enemy's ballistic missile in the missile's
initial launch phase, causing the lethal payload and the debris from the engagement to fall
back on the aggressor. Because boost phase defenses intercept a missile prior to the
release of its payload, BPI appears to be the only way to defend against submunitions.
An advantage of the boost-phase defense is that during a launch, the missile's rocket
motors spew out hot gases that are easy to locate; unfortunately, the motors burn for only
a few minutes. The cha‘lllenge of BP1 lies in the ability to detect launch of the missile, to
track it long enough to get a fix on its trajectory, and then to intercept it. All of this must
be done in only a few minutes. The creation of a successful EPI would considerably ease

the burden of relying solely on existing terminal defenses to combat TBM:s. [Ref. 2]

C. THESIS ORGANIZATION

This thesis focuses on the development of missile tracking algoﬁthms to be used
in the boost phase of TBMs. Chapter II furnishes the reader with a basic. understanding
of generating a ballistic missile simulation. Chapter III provides background information
on the Extended Kalman Filter (EKF) and discusses its use in missile tracking. Chapter
IV provides background information on fixed-coefficient filtering, and discusses the
development of the Alpha-Beta-Gamma filter used in missile tracking. Chapter V
discusses the Interacting Multiple Model (IMM) algorithm in which multiple filter
models are used to produce a combined position estimate. Chapter VI studies the

implementation of the EKF, the Alpha-Beta-Gamma tracker, and the IMM algorithm on

actual TBM profiles. Chapter VII presents conclusions and recommendations for follow-

on studies.

II. BALLISTIC MISSILE TRAJECTORY

This chapter provides background information so the reader has an understanding
of the ballistic missile base trajectory used in the missile tracking algorithms presented in
Chapters III, IV and V. A base trajectory is developed using flat earth equations of
motion, which are modeled in SIMULINK . To simulate a sensor platform observing
the missile, measurement noise with uncertainties in range, bearing and elevation is
added to this base trajectory. The tracking algorithms are then implemented on these
position measurements and the resulting filtered trajectory is compared to the base

trajectory (used as true missile position) to determine the accuracy of our tracking

algorithms.

A. GENERATING THE BALLISTIC MISSILE BASE TRAJECTORY
The ballistic missile base trajectory is generated using SIMULINK . The
initialization file, PtMissilelnit.m, initializes the following variables in order to generate a
simulated ballistic missile trajectory:
® The missile is launched from the surface of the earth (0 km along the z axis),
30 km along the x axis, and 40 km along the y axis.

® The missile thrust (7) is approximately 6 gs.

e The missile’s booster cut-off (¢Toff) occurs 60 seconds after launch.

® The missile rolls approximately 40 degrees in elevation (wel) and 15 degrees

in azimuth (waz), 20 seconds after launch.
® The coefficient of friction (cfric) is 0.5.
¢ The simulation sampling interval (sinterval) is 0.1 seconds.
® The missile is assumed to have a constant mass.
® The force of gravity (g) is assumed to be constant throughout the simulation.
After initialization, the SIMULINK " model, FlatEPtMissileSim.m, is used to generate
the ballistic missile simulation. FlatEPtMissileSim.m is shown in Figure 2.1. The
SIMULINK " model uses the following simulation parameters:
L Runge-Kut'ta 5 integration algorithm
¢ Minimum step size = 10
e Maximum step size = 10!

e Relative error = 10

[. Thrust +
Ton i——:l - (O—

Toff Sum Clock
ggzz;:tii::in m ' ._‘“Lp
U missilevec
- 3 dot X -
welon ﬁ Ll Mux > %%% i To Workspace
weloli oum Integrator
x FlatEarthPtEqgns Mux1

Rotation in
azimuth

wazoff Sum2

Figure 2.1 SIMULINK"™ Model, FlatEPtMissileSim.m.

Within the SIMULINK ™ model, the MATLAB® function, FlatEarthPtEqns.m, generates
the missile dynamics using flat earth equations of motion, as outlined in Aircraft Control
and Simulation [Ref. 5]. In addition, the atmospheric derisity is modeled in accordance

with Tactical and Strategic Missile Guidance [Ref. 6], and is described as follows,

e ke

e Altitudes above 9144 meters: p = 1.75228763 x ¢ —67056 =
« m
: LIRS
e Altitudes below 9144 meters: p =122557 x e —9144 —%
m
e Altitudes below 0 meters (travel inside the earth’s surface): p =100 —]ng
m

In the SIMULINK ™ model, the inputs to the missile dynamics function are thrust,
rotati_on in elevation, rotation in azimuth, and the state vector, x. The missile state vector
gives the missile’s position, velocity, and acceleration data at each sampling interval of

time. The missile state vector x, at time t, is defined as,
X — position

x — velocity

X — acceleration

X, =|y-— velocity =|vy 2.1

X
v
a
y — position y
\
y —acceleration a
Z— position

z - velocity v

| z— acceleration |

with

<
»

o
< O f

«

2.2)

¢

~N

»a
I
NEONEONe o M P M-
Il
N
[
(]

S P4 O

L
[

The missile state vector is generated every 0.1 seconds, and the resulting data is stored in

the MATLAB® workspace under the variable missilevec.

B. RUNNING THE SIMULATION
The following steps are used to run the ballistic missile simulation:
e STEP 1. Inthe MATLAB® workspace, run the initialization file,

PtMissilelnit.m.

® STEP 2. In the SIMULINK™ workspace, open the SIMULINK " model,
FlatEPtMissileSim.m, and configure the simulation parameters as described
above.

e STEP 3. Start the simulation in SIMULINK .

e STEP 4. Graph the output by running the plotting program, FlatEPTPlots.m,
in the MATLAB® workspace.
The resulting plots of the simulation are shown in Figures 2.2(a) through (1). Figures
2.2(a) through (g) give the reader a visual representation of the ballistic missile base
trajectory. Figures 2.2(h) and (i) emphasize the missile in its boost phase. The
MATLAB® source codes for initialization, missile dynamics and plotting are provided in

Appendix A.

Z (km)

Missile Z vs. X Plot

300

200

100

=100

1 1 ! : 1 1 L :
100 200 300 400 500 600 700
' X (km)

Figure 2.2(a) Missile Z vs. X Plot.

10

Y (km)

Missile Y vs. X Plot
] T 1 T 'l T T
300-, ; _

200
100
0
100....”...; _
i I 1 i L 1 1
100 200 300 400 500 600 700
X (km)

Figure 2.2(b) Missile Y vs. X Plot.

Down Range Distance vs Time
800 ! ! ! ! !

700

600

Down Range Dist (km)
S [4,]
[=3 o
(= o

[
[=4
(=]

1] 1 i 1
0 100 200 300 400 500 600
Time (seconds)

Figure2.2(c) Missile Downrange Distance vs. Time.

11

Missile Altitude vs Time (kilometers)

200

—
4]
[=]

Missile Altitide (km)

300..e I -

250k o e RSO L

3000

2500

2000

1500

Missile Speed (m/s)

1000

500

1 !
100 200 300 400
Time (seconds)

Figure 2.2(d) Missile Altitude vs. Time.

Missile Speed vs Time

1 i)
100 200 300 400
Time (seconds)

Figure 2.2(e) Missile Speed vs. Time.

12

1
500 600

Three Dimensional Missile Trajectory in meters

x10 N

Z (m)

Figure 2.2(f) Three Dimensional Missile Trajectory in meters.

Three Dimensional Missile Trajectory in kilometers

250w
2004..
150

100

Z (km)

50

0 RS

504

400

Figure 2.2(g) Three Dimensional Missile Trajectory in kilometers.

13

Missile Trajectory - Initial 120 Seconds in meters

154 --

10,7

Z (m)

5.

0L
10

x 10

Y (m) X (m)

Figure 2.2(h) Missile Launch (close-up), Initial 120 Seconds (in meters).

Missile Trajectory — Initial 120 Seconds in kilometers

1501

100d.. T

Z (km)

50

100

50

Y (km) X (km)

Figure 2.2(i) Missile Launch (close-up), Initial 120 Seconds (in kilometers).

14

C. ADDING MEASUREMENT NOISE

A surface ship is selected as the sensor platform to observe the missile. The
location is chosen to be 100 km in the x direction, 100 km in the y direction, and 0 km in
the z direction. The sensor position is marked by an ‘x’, and its position relative to the
missile trajectory is shown.in Figures 2.3(a) and (b). The surface platform observes the
missile's position through measurements in range, bearing and elevation (i.e. radar
measurements). To account for the inaccuracjes of the sensor's measurements,
measurement noise with uncertainties in range, bearing, and elevation is added to the
base trajectory. During this study, the measurement noise in the tracking algorithms is

chosen to have the following standard deviations:
® Grange = 10 meters
® Gpearing = 1°
® Oelevation = 1°
Figure 2.3(a) shows the boost phase of the ballistic missile base trajectory. Figure 2.3(b)

shows the same trajectory with the addition of measurement noise.

15

Ballistic Missile Base Trajectory

200~ ...

150

2100y

5o

200 :
200

y—km

X - km

Figure 2.3(a) Ballistic Missile Base Trajectory.
Ballistic Missile Base Trajectory with Measurment Noise

200

y —km

X - km

Figure 2.3(b) Ballistic Missile Base Trajectory with Measurement Noise.

16

Chapter III begins the investigation on ballistic missile tracking during the boost
phase. The missile tracking algorithms focus on the boost phase, therefore only the initial
120 seconds of the simulated missile data are examined. Chépter IIT also provides
background information on the Extended Kalman Filter, and describes the tracking
algorithm in detail. Simulation results are presented and compared to the base trajectory

developed in this chapter to determine the accuracy of the tracking algorithms.

17

18

IIT. EXTENDED KALMAN FILTER

This chapter provides background information on the development of a tracking
algorithm utilizing the Extended Kalman Filter (EKF) equations. The discrete time
Kalman filter equations-are briefly discussed to familiarize the reader with the Kalman
filter before presenting the more advanced EKF equations in the following sections, and
before presenting the Interacting Multiple Model equations in Chapter V. In this chapter,
an EKF tracking algorithm is developed and implemented on the position measurements
of the ballistic missile base trajectory developed in Chapter II. Simulation results are

presented and the EKF tracking accuracy is analyzed.

A. DISCRETE TIME KALMAN FILTER

The purpose of the Kalman filter is to estimate a state vector at the time of the last
measurement based on the knowledge of all past measurements. When used in missile
tracking, the Kalman filter equations are used to estimate present and future target
kinematic quantifies such as: positions, velocities, and accelerations. First assume 'that
the missile dynamic process ié modeled in discrete for.m as follows,

Xp4 = B X + 0 _ 3.1)
where xy is the n dimensional missile state vector that includes quantities to be estimated,
Fx is the known state transition matrix, and o is the plant noise associated with the
target. The plant noise, ay is assumed to be zero mean (implies an unbiased sensor),

white and Gaussian with known covariance Q. The measurement process is as follows:

19

z, = Hyxp +v 3.2)
where the measurements are linear combinations of the state yariables, which are
corrupted by the addition of uncorrelated measurement noise, v. The variable Zx
designates the sensor measurement at time, t, The matrix Hy is a constant matrix related
to the number of dimensions being observed. As in the plant noise above, the
measurement noise,Vi, is assumed to be zero mean, white and Gaussian with known
covariance Ry. [Ref. 7]

To start the Kalman algorithm, the initial state estimate, X, and its associated

covariance, Py, are assumed to be known a priori. The algorithm starts a recursive
process, in which it loops sequentially over the measurement, and then updates the
measurement at each measurement time. The process of updating the state estimate when \
a new measurement is obtained can be broken down into two steps: prediction and
correction. Prediction refers to the estimation of the state vector to the next
measurement time. In this process, the state estimate and associated covariance are

predicted to the next measurement time using the following prediction equations,
K = Bexgge + o (3.3)
.
Bese = EPe + Qg (34)
where T denotes transpose. Correction refers to updating (or correcting) the state

estimate and associated covariance based on the new measurement, using the following

correction equations,

SRS T Kk+1[2k+1] (3.5)

20

where Ky, (Kalman Gain) and 7, (residual vector) are defined as
T - -1
Ky = Pk+1lka+l[Hk+1Pk+llka+l + Rk+l] (3.6

Ze1 = T — Hyp X 3.7

The covariance update equation is

Pt = (I - Kk+1Hk+l)Pk+1Ik (3.8)

where I is the identity matrix. An equivalent covariance update equation is

T
Peitksr = (I - Kk+1Hk+1)Pk+1lk (I - Kk+1Hk+1) + Ko Riar K (3.9

It is.referred to as the Joseph Form, and is used in throughout this study because it
behaves better numerically in computer calculations [Ref. 8]. The combined set of
prediction and correction equations constitutes the discrete time Kalman filter. The
preceding information is provided as a link to understand the development of the EKF

tracking algorithm. [Ref. 9, 10, 11]

B. EXTENDED KALMAN FILTER

In applications involving nonlinear dynamics or nonlinear measurement
relationships, the EKF, vice the traditional Kalman filter (as described in the previous
section), is generally used. In this study, the measurement relationships from the sensor
(radar measurements in range, bearing and elevation) are nonlinear; therefore, the EKF is
used in our ballistic missile tracking algorithm. Because the basic equations in the EKF
are similar to that of the traditional Kalman filter, an understanding of the traditional

Kalman filter is essential. The main difference between the EKF and the Kalman filter is

21

the evaluation of the Jacobians of the state transition and the measurement equations (the
partial derivatives of the F and H matrices) [Ref. 9]. This difference will be highlighted
again in the following derivation of the EKF equations.

In a system with nonlinearities in the dynamics or the measurement process, it is
desirable to have the same framework as in a linear system. Assume the following
nonlinear system equations,

X1 = f (X) + @y (3.10)

z; = h (X)+ Vv (3.11)
where fi(xy) is the nonlinear dynamics equation, and h(xy) is the nonlinear méasurement
equation. The noise processes vy and @y, are assumed to be white (uncorrelated)

Gaussian processes and mutually independent. Hence,

Ew]=0 (3.12)

E[VkV'l] =Q -4y (3.13)

where 4 is the Kronecker delta function,

Elo]=0 (3.14)
Eow) =R -& (3.15)

with no cross correlation such that
0=E[v,o;]=E[v,x,]=Elo,x,] vk, (3.16)

In order to determine the EKF prediction and correction equations, the nonlinear system
of equations (fi(xx) and hy(xx)) must first be linearized. The linearization is obtained by a

series expansion of the nonlinear dynamics and of the nonlinear measurement equations.

22

To obtain the predicted state X, ,,, , the nonlinear function is expanded in a Taylor series

around the latest estimate, iklk , with terms up to the first order to obtain a first order

)

EKF. The first order Taylor series expansions are required for the dynamic process and

for the measurement process, and thus the matrices Fy and Hy must be determined. We

define Fy as the gradient of fx evaluated at the most recent estimate, ’A‘klk s

_ afk(x)
ok

Fk x=X(klk)

and Hy as the gradient of hy evaluated at the most recent estimate, ’A‘klk ,

ahk(x)

=T

x=X(klk-1)

The Taylor series expansions about the estimates are as follows,

hk(xk) =hy (iklk-l) +Hy (xk — K1)‘*‘
Then, the approximate system equations, neglecting the higher order terms are,

X = B (X)) + @
- (fk(i,dk) +K (Xk - ’A‘klk))+ %

= BeXy + fi (Rygpe) — BeXygpe + @

23

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Zk = hk(xk) + Vk
= (hk (ik,k_l) + Hk(xk = Ryt)) +V

= Hex + by (R,) - Hidy +v% (3.22)

Hence, the approximate (linearized) system of equations are,

Xper = B Xy t o +uy (3.23)

z = Hiyxy +v, +y, (3.24)
with the deterministic terms

W = fi (R) - BRy (3.25)

Yk = hk(iklk—l) - Hkiklk—l (3.26)

The Kalman filter prediction and correction steps for these approximate equations are as

follows:
Prediction: In the state estimate, substitute % for x, include the deterministic
terms and drop the zero mean noise.
Kerte = Bl +
=EXyy +[fk Rypp) = Fkik]k]
= fi Ryg) (3.27)
The covariance prediction is a linear Gaussian update of the noise terms,

P = BPp B)T+Q, (3.28)

24

Correction:
Zyeor = HiRyges + ¥
=H Xy + [hk Ryg-1) = ka‘klk—l]
=hy (iklk—l)
Hence, the state update equation is,
Xk = Kygeor + Kk[zk]
with
L =z - 2k|k—1
and
K, = Pklk—lHE[HkPk]k—lHE + R]_l
The covariance update equation using the gradient matrices is,
B Kk = (I- K Hy)Pklk—l
with the equivalent Joseph form [Ref. 8],

Pok = (I - Kka)Pklk—l(I - Kka)T +K, R, Ky

These Kalman filter prediction and correction equations are exact for the set of |

approximate system equations. [Ref. 11]

25

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

C. EKF IN TARGET TRACKING
In this section, a ballistic missile tracking algorithm is developed utilizing the
Extended Kalman Filter equations. In this algorithm, the system equations are the
standard tracking equations,
X4 = X + Gy + @y (3.35)
7 = hyx, +v (3.36)

where Xy is the missile state vector,

X; X
X, Vi
X3 Ay
X4 y
X =|Xs |=| vy (3.37)
X6 ay
X7 z
Xg v,
[X0l |a,]
Fi, is the linear state transition matrix,
_ 2 -
1 A 5 00 0 00 O
01 A 00 0 0O O
00 1 00 0 00 O
A2
00 0 1A > 0 0 o
BE=00 001 400 o (3.38)
00 0 00 1 00 O |
A2
00 0 00 0 1 A >
00 0 00 0 01 A
00 0 00 0 0O 1]
26

Gy is the gravity matrix, which accounts for the force of gravity in the z direction with

g=9.8822,

0

0

0

0

G'=-g 0
0

A2

2

A

O

X is the plant noise with covariance Q,

20 8 6
A4A3A200

8 3 2

A A
_6_7A00
AN A
0 0 0 — —
2
9) A9A83
=q°%X{l0 0 0 — —
k=4 83 32
A A
0 0 0 — —
6 2
0 0 0 0 O
0 0 0 0 0
0 0 0 0 O

27

(3.39)

(3.40)

where A is the sampling interval and q° is a scaling factor used to account for unmodeled

target maneuver accelerations, and vy is measurement noise with covariance Ry

o,fmge 0 0
R=| 0 Opyng O (3.41)
0 0 c2

elevation

with standard deviations as defined in Chapter II.

Although the missile dynamics in this system are linear, the measurement process
is nonlinear. As discussed in Chapter II, the sensor observing the missile is assumed to
be a surface platform located 100 km in the x direction, 100 km in the y direction and
0 km in the z direction. The surface platform observes the missile positions through

measurements in range, bearing and elevation (radar measurements) relative to the sensor

as shown below,

. range
h, =| bearing : (3.42)
elevation
where
range = \/XZ +y?+22 = \/xf +X3 +x2 (3.43)
bearing = tan"l{—y-] = tan’l[x—“] (3.44) -
X Xy
r'= \/x2 +y? = \/xl2 +X3 (3.45)
. -1 Z
elevation = tan ;; (3.46)
28

These measurement equations are clearly nonlinear, and therefore the nonlinear

measurement equations must be linearized using a series expansion of the measurement

equation hy. Applying the definition of the Hy matrix, as stated in Equation 3.18, the

gradient of hy is determined to be,

(r(x) or(x) &(x) H(X) HEX) H(X) FX) K(X) &X)]|
Ix, ox, dxy Ok, Oxs Ixg I, Kz Ko
H = ob(x) b(x) b(x) b(x) ob(x) b(x) b(x) b(x) db(x) (3.47
STk ax, ok, ok, oxs ok O kg oK |)
de(x) de(x) de(x) de(x) de(x) de(x) de(x) de(x) de(x)
| K ox, Oxy Ok, s OKxg Ix; g OXg |
which simplifies to
A 00 S N— 0 0 . 0
x% +x2 +x3 ,/xf + X3+ X3 ,/xf+x§+x§
— X4 - Xy
H, = T 00 T 00 0 0
— X * Xy 0 o — X4 Xq 0 V2 +x2 0
\/xf-!-xi(xz +xi+x.2,) \/xf+x§(xf +x§+x3) X2+ x5 +%7
(3.48)
Therefore the approximate (linearized) system of equations are,
Xk = BXg + Gy + 0 (3.49)
Zk = Hkxk + Vk + yk (3.50)
with deterministic terms
Yi = bRy) — HiXygu (3.51)

0

0

0

The EKF tracking algorithm is implemented in MATLAB® by applying the matrices
developed in this section to the EKF prediction and correction equations as outlined in
Equations 3.27 through 3.34. Simulation results of the EKF algorithm are presented in

the following section. The source code for the EKF algorithm is presented in Appendix

B.

D. SIMULATION RESULTS

The EKF tracking algorithm is implemented on the ballistic missile base
trajectory with added measurement noise. The results of the EKF tracking algorithm are
obtained by running the EKF élgorithm in MATLAB® and by plotting the average
trajectories over 10 simulation runs, with q* = 10 and with the sampling interval (A) equal
to 0.1 seconds. In order to get an accurate representation of the mean distance error, a
graph of the mean distance error is obtained by running the EKF algorithm over 100
simulation runs. Figure 3.1(a) shows the ballistic missile base trajectory during boost
phase. As stated in Chapter II, standard deviations in range, bearing and elevation were
chosen as 10 meters, 1 degree, and 1 degree respectively, with the resulting measurement
noise shown in Figure 3.1(b). The results of the EKF tracking algorithm are shown in
Figures 3.2(a) through (c), which show a close up of the EKF trajectory at 40 secdnds, 60
seconds and 80 seconds respectively. Figure 3.3 shows the EKF mean distance error
throughout the boost phase. The top graph indicates the average distance error created by
the measurement noise that is added to the base trajectory. The bottom graph indicates

the distance error of the EKF tracking algorithm. When viewing this graph, it is evident

30

that the overall mean distance error is significantly reduced by approximately 75 percent;
however, the EKF algorithm has difficulty tracking the missile in two distinct areas.
During the first few seconds while the missile is accelerating and rolling over, the mean
distance error peaks to approximately 600 meters. Secondly, at time 60 seconds, after the
booster cut off, the missile changes from an accelerating model to a ballistic model -at
which the mean distance error peaks to a value of approximately 800 meters. The

MATLAB® source code for the EKF tracking algorithm is provided in Appendix B.

Ballistic Missile Base Trajectory

200~
150

200

200

y — km

Figure 3.1(a) Ballistic Missile Base Trajectory.

31

Ballistic Missile Base Trajectory with Measurment Noise

¢|‘100\..-~"

200

y - km

X —km

Figure 3.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

32

Z (km)

ZOOM - EKF Trajectory Initial 40 Seconds

60

50

45
40 20

0 e B
Y (km) X (km)

Figure 3.2(a) Close-up of the EKF Trajectory, Initial 40 seconds (10 Runs).

33

Z (km)

. 60

ZOOM - EKF Trajectory Initial 60 Seconds

60~

O>

60
'.. '._ 50

40 45

35

Y (km) . 30 30 X (km)

Figure 3.2(b) Close-up of the EKF Trajectory, Initial 60 seconds (10 Runs).

34

ZOOM - EKF Trajectory Initial 80 Seconds

60\---"".':'.'

Z (km)
W
o
/

0>
60

60

- 50
45

40
0 F
Y (km) X (k)

Figure 3.2(c) Close-up of the EKF Trajectory, Initial 80 seconds (10 Runs).

35

Mean Distance Error in Measurements vs Time

2500 T T ! T !
L i
2000 ! | U1 N RN R I I R S Ot MU -
R
2 1500 I O B 14 (/) T S -
©
E
S
Lo
f g
8 8 107070] R O O A _
=
500
0 ; ; ; ; i
0 20 40 60 80 100 120

Time (seconds)

Figure 3.3 EKF Mean Distance Error (100 Runs).

36

In an attempt to reduce the tracking distance error, two other tracking algorithms

are examined. Chapter IV investigates the constant gain, or fixed-coefficient, filter called
the Alpha—Beta—Gamma tracker and determines its missile tracking capability.

Simulation results are presented and compared to the EKF results in this section. Chapter
IV investigates the missile tracking accuracy of a multiple model syStem using the
Interacting Multiple Model (IMM) algorithm. Background information on the IMM

algorithm is discussed and the simulation results are analyzed.

37

38

IV. FIXED-COEFFICIENT FILTERING

This chapter provides information on the development of a tracking algorithm that
utilizes fixed-coefficient filtering. The advantage of this type of filter over the Kalman
filter is its simple implementation where fixed parameters are used for filter gains. One
of the most commonly used fixed-coefficient (constant gain) filters is the Alpha-Beta-
Gamma (o-f3-y) tracker. The o-f-y tracker is a constant gain filter used specifically in
tracking systems when position measurements are available and when the state vector
consists of positions, velocities, and accelerations. The actual nature of the noise
processes, including the covariance matrices, Q and R, are not required, thus simplifying
the filter design. The o-P-y filter equations are presented and the developed tracking
algorithm is implemented on the position measurements of the ballistic missi.le base
trajectory developed in Chapter II. The o-B-y filter simulation results are presented and

its tracking accuracy is analyzed.

A. ALPHA-BETA-GAMMA TRACKER
The system equations for the a-B-y tracker are the standard tracking equations as
presented previously in Chapter III,
Xpa = Bxg + 0 | 4.1)

zy = Hixg + v 4.2)

39

where Xy is the missile state vector,

(x—position 1 1x

x — velocity Vy

X — acceleration a,

y — position y

Xy, =|y— velocity =|v, 4.3)

y —acceleration a,

z — position 7

z— velocity v,

z— acceleration a

L. ol L ZJ

and Fy is the known state transition matrix,

- 0 _ -
1 A £} 00 0 00 O
01 A OO O 0O O
00 1 00 0 0O O

A2
00 0 1A > 0 0 O

E=loo o o1 A 00 o “4)

00 0 00 1 0O0 O
. A2
00 0 00 0 1 A >
00 0 00 0 01 A
00 0 00 0 00 1|

The noise processes ay and vy, are the plant noise and measurement noise respectively.
In the a-B-y tracker, the sensor observes the missile positions in nonlinear range, bearing
and elevation measurements. The covariance matrices are not used in this type of filter;

consequently, the matrix of partial derivatives (as used in the EKF) is not required. In the

40

o-B-y algorithm, the measurements observed by the sensor are simply converted from

radar measurements to cartesian coordinates using the following transformation,

X range X cos(bearing) X cos(elevation)
y | = | range X cos(elevation) X sin(bearing) 4.5)
z

range X sin(elevation)

and thus Hy, the observation matrix, is simply a constant matrix,

(4.6)

o o O
S O O
- o O
o o O
o o O

The a-B-y tracker, as presented in Multiple-Target Tracking with Radar Applications
[Ref. 7], is comprised of prediction and correction equations. These equationé are as
follows:

Prediction:

Xpar = Fexy 4.7)

41

Correction:

[« 0 0]
£ v 0
nA
'~ o o
(nA)
0 o 0
B,
Kiatiar = Rian + nA [Zs1] (4.8)
0 14
2
(na)
0 0 o
0 0 B
nA
0 Y
7}
i (na)
where the residual vector, ['z"k+1], is defined as,
Ze1 = Ziyy — Xy ' 4.9)

The variable 7 is normally defined to be unity, but in the case when missing observations
occur, its value may be taken as the number of scans since the last measurement [Ref. 7].
A large value for 1) indicates the measurement is discounted. The combined set of
prediction and correction equations along with the constant gain matrix comprises the o~
B-v filter.

The a-B-y tracker hypothesizes constant missile acceleration; therefore, the gain
matrix, as shown in Equation 4.8, is comprised of constant coefficient values for o, B,
and y. Decreasing the coefficient values leads to a less responsive filter. Conversely,

increasing the coefficient values leads to better performance for dynamic inputs such as

target maneuvers. The relationships between the coefficient values of the gain matrix, as

42

presented in Multiple-Target Tracking with Radar Applications [Ref. 7], are derived to

obtain a compromise between noise reduction and maneuver-following capability. The
first coefficient value, ., satisfies the relationship |

0<a<06 (4.10)
where a large value of o results in better tracking during target maneuvers. A large value
of o puts more emphasis on the measured position rather than the estimated target

position in the correction step of the filter. The relationships for B and 7y are defined as,

B=22-a)-4J1-o 4.11)
2
y:f—a | (4.12)

The choice of gains for a constant-coefficient filter must reflect an overall compromise

between noise and dynamic (maneuver) performance.

B. SIMULATION RESULTS

The o-B-y tracking algorithm is developed using the o-B-y equations and is then
implemented on the ballistic missile base trajectory with added measurement noise. The
results are obtained by running the algorithm in MATLAB® and by plotting the average
trajectories over 10 simulation runs with A= 0.1 seconds, with a=0.6, and with B andy
satisfying the o-B-y relationships as described in Equations 4.11 and 4.12. The value of

o is selected as a large value to see the effect of the filter if a maneuvering target is

expected.

43

Figure 4.1(a) shows the ballistic missile base trajectory during boost phase. As in
Chapters I and III, the sensor position is assumed to be a surface platform at coordinates
(100 km, 100 km, O km), with standard deviations in range, bearing and elevation of 10
meters, 1 degree, and 1 degree respectively. Figure 4.i(b) shows the ballistic missile
base trajectory with added measurement noise. The result of the o-B-y tracking algorithm
is shown in Figure 4.1(c), with the filtered trajectory superimposed on the ballistic
missile base trajectory. Figures 4.1(d) through (f) show a close-up of the Alpha-Beta-

Gamma trajectory at 40 seconds, 60 seconds and 80 seconds respectively.
Ballistic Missile Base Trajectory

1504

50

200

200

y — km

X — km

Figure 4.1(a) Ballistic Missile Base Trajectory.

44

Ballistic Missile Base Trajectory with Measurment Noise

150,

50

200

200

0
y-km 0 X — km

Figure 4.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

Balllistic Missile Base Trajectory and ABG Trajectory — 120 seconds

Z (km)

150

Y (km) 0 o X (km)

Figure 4.1(c) o-B-y Trajectory, Initial 120 Seconds (10 runs, c:=0.6).

45

ZOOM - ABG Trajectory Initial 40 Seconds

so

- 45
40

30 30 %

Figure 4.1(d) a-B-y, Trajectory, Initial 40 Seconds (10 runs, 0=0.6).

ZOOM - ABG Trajectory Initial 60 Seconds

60~

50

Z (km)
w
S
L

45

Y (km) 30 30 X (km)

Figure 4.1(e) a-B-y Trajectory, Initial 60 Seconds (10 runs, 0=0.6).

46

60\---"'“'"'

ZOOM - ABG Trajectory Initial 80 Seconds
50 .

Z (km)
@
S
/

45

Figure 4.1(f) o-B-y Trajectory, Initial 80 Seconds (10 runs, 0=0.6).
' The mean distance error in measurements is calculated over 100 simulation runs
aﬁd is shown in Figure 4.2(a). The upper plot is the mean measurement noise, and the
lower plot is the mean distance error using the o-B-y tracking algorithm. These results
indicate that the a-B-y tracker performs only slightly better than the mean measurement
noise observed by the sensor. Additionally, a large transient error is present in the first
few seconds of the filter. This is shown in Figure 4.2(a) as a large spike, peaking to

approximately 6700 meters. ' A close-up of the mean distance error, disregarding the

initial transient error, is shown in Figure 4.2(b).

47

Mean Distance Error in Measurements vs Time
7000 ! ! ! ! !

U SR A S T]
5000. 4 —
40000+ AU e S Y A 1

3000H oo L e SOOI e e 4

Mean Error (meters)

2000

1000

0 L 1 ! 1 i
0 20 40 60 80 100 120
Time (seconds)

Figure 4.2(a) 0-B-y Mean Distance Error (100 runs, 0=0.6).

48

ABG Mean Distance Error in Measurements vs Time

2500 ! f ! ! !
) : ‘ : : :
2000 ‘1Y i ‘I‘] 'l ”,j -
@ ‘ : :) : :
'91500 " | i M d--y--
e ' ‘ ‘ : : :
\E/ | Il
S
i : : . : .
=) : Yl M Al ,
81000_ RN e M T . i
s : : : ‘ .
B5OO e]
0 l l 1 l i
0 . 20 40 60 80 100 120

Time (seconds)

Figure 4.2(b) Close-up, o-B-y Mean Distance Error (100 runs, 0=0.6).

Figure 4.3 shows a comparison of the mean distance error plots of the a-B-y tracker and
of the EKF tracking algorithm. The EKF results are shown as a dotted line. Analysis of
this graph shows that the EKF tracking algorithm is superior to the o-3-y tracker

throughout the boost phase tracking.

49

Mean Distance Error in Measurements vs Time
25007 ! ! ! ! !

i i
1

i | [) . . v
2000 B ivlvll";\] 'fJI";-“I“': LN T

1500 ‘ LN ’ . ‘ | *‘ il .‘ . R :

Mean Error (meters)

1000F - o o-eeeee TRGE., ... T | b1 Iy,“ '}

a’ . . .] .
500_".1\:.:._ RRLRTETRREY B L EEERTRRRPRY ASS ALRECERIERRTERE R RRRTEr -
'V-"h'?l‘_ e .‘\IN" T N 1 \ : r\l.d'\,:'“wrr/'\'.

" . -, ':,.A 3
g g

ok i i i I ;
0 20 40 60 80 100 120
Time (seconds)

Figure 4.3 Mean Distance Error, o-B-y Tracker vs. EKF (100 Runs).

In order to see how a different value of o, affects the resulting trajectory, an
édditional simulation was conducted for a=0.2, with B and vy satisfying the o-B-y
relationships as described in Equations 4.11 and 4.12. As stated in the previous section, a
small value of o leads to a less responsive filter and improved measures of performance
for random noise input, whereas a large value of ., leads to better performance for
dynamic inputs. Therefore, in this simulation, we expect to see better performance of the

filter with 0=0.2 since random noise is added to the ballistic missile base trajectory. The

50

mean distance error in measurements was calculated over 100 simulation runs, and is
shown in Figure 4.4. As in the previous example, a large transient error is present and is
shown in Figure 4.4(a); however, it is noted that the transient error is larger for smaller
values of a. With 0=0.2, the error peaks to approximately 140 kilometers as compared to
a transient error of 6700 meters when 0=0.6. Figure 4.4(b) shows a close up of the mean
distance error disregarding the initial transient error. As expected, the mean distance
error (the lower plot) is approximately 50 percent of the mean measurement noise (the

upper plot). This is significantly lower than the mean distance error for 0=0.6, as shown

x 10* ABG Mean Distance Error in Measurements vs Time

15 ! ! ! ! !
A10_ .. -
Q
2
Q
E
S
L
c
[
Q
b=
5,. ... -
mw.
0 20 40 60 80 100 120

Time (seconds)

Figure 4.4(a) o-B-y Mean Distance Error (100 runs, a=0.2).

51

Mean Distance Error in Measurements vs Time
2500 ! ! ! ! !

1500

1000

Mean Error (meters)

500

1 !
0 20 40 60 80 100 120
Time (seconds)

Figure 4.4(b) Close-up, o-f~y Mean Distance Error (100 runs, 0=0.2).

in Figure 4.2(b), where the mean distance error is approximately 75 percent of the mean

measurement noise. Figure 4.4(b) also shows a comparison of the mean distance error
plots of the o-B-y tracker (with 0:=0.2) and the EKF tracking algorithm. The EKF results
are shown as a dotted line. Although the a-B-y tracker (with 0=0.2) .performs better than
the EKF in the areas between 62 and 78 seconds, the EKF is the better overall filter due
to the large transient error present in the o-B-y tracker. In missile tracking, a very large

initial transient error is not acceptable, and thus a large value of o (0=0.6) is used

52

throughout the remainder of this study. The MATLAB source code for the o--y tracker
is provided in Appendix C.

In the next chapter, the tracking accuracy of one final tracking algorithm is
analyzed. Chapter V investigates the missile tracking accuracy of a multiple model
system using the Interacting Multiple Model (IMM) algorithm. In this algorithm, an
accelerating model and a ballistic model are developed using the EKF equations as
presented in Chapter IIl. These two models are combined in the IMM filter to produce a
combined estimate. Simulation results of the IMM are presented, and the tracking

accuracy is analyzed.

53

54

V. INTERACTING MULTIPLE MODEL ALGORITHM

The Interacting Multiple Model (IMM) tracking algorithm, as outlined in
Multitarget-Multisensor Tracking: Principles and Techniques [Ref. 10], is a hybrid filter
system comprised of a finite number of system models. This multiple model approach
provides a versatile tool for adaptive state estimation i.n systems whose behavior pattern
changes with time [Ref. 10]. A ballistic missile encounters two distinct behavior patterns
along its trajectory. Initially, the missile experiences large accelerations while the
rocket’s motor burns. Then, after the motor burns out, the missile enters a purely ballistic
state for the remainder of its trajectory. Therefore, in this study, two system models are
developed for use in the IMM algorithm: an accelerating model and a ballistic model.
State and covariance estimates are calculated and maintained for each model (or mode)
and then mixed via a Markov state transition probability matrix. The end result is an
overall state and covariance matrix that provides a mode conditioned combination of the
latest state estimates and covariances. The details of the IMM algorithm are presented in
the following section. As in the previous chapters, the algorithm is implemente-d on the
ballistic missile base trajectory with added measurement noise. Simulation results are

presented and the tracking accuracy is analyzed.

A. IMM ALGORITHM
The theatre ballistic missile is assumed to be operating in one of two distinct

modes: accelerating (a third order, constant acceleration model) or ballistic (a second

55

order, constant velocity model). System (or plant) noise accounts for small variations

from these assumptions in each model. In the IMM algorithm, each model requires its

own EKF system equations. The algorithm consists of operating these two EKF models

in parallel, with an interaction between the two filters resulting in the mixing of the

estimates. The two models of target motion in this study are defined by the following

system and measurement equations. (Note that the superscript in these equations are for

notation purposes only, and it indicates the model number of the equation, not an

exponential factor.)

Model 1 - Accelerating model:

x'ks1 =F x% +G' + w'x

Zlk = H1 Xlk -i-Vlk

where x, is the missile state vector for the accelerating model,

X — position
X — velocity
X — acceleration
y — position
y — velocity
y —acceleration
Z — position

z — velocity

|z~ accelerationj

56

-

<

P < <« m

< N

6.1

5.2)

(5.3)

F' is the state transition matrix,

i .]
1A — 00000 0
01 A OO 0 00 O
00 1 00 0 0O O
AZ
000 14000
1
F=loo o o1 A 00 0 G4
00 0 00 1 0O O
_ A?
00000 0 14~
00 0 00 0 01 A
00 0 00 0 00 1

G! is the gravity matrix, which accounts for the force of gravity in the z direction

with g = 9.892-,
s

5.5)

o pv|Ro o o o 0o

T
1

57

H'is the matrix of partials in which the missile positions are observed in range,

bearing and elevation (nonlinear measurements),

\/X2+y2+Z2 "X2+y2+22 '\/X2+y2+22
H' = 2—y2 00 2" . 00 0
X +y X +y
- Xz 0 0 -yz ‘/x2+y2

m(x2+y2+zz) 0o X’ +y?+ 2

_\/x2 +y? (x2 +y2+ zz)

0

0

0

0

0

0

d

(5.6)

and @, and v are the plant noise (with covariance Q!) and measurement noise
Oy k p k

(with covariance R}) respectively.

Model 2 - Ballistic model:

x; =F x% +G? + 0’
Zi = H x4 +12,
where x; is the missile state vector for the ballistic model,

[x — position |

X
x — velocity Vy
2 y — position |y
£ 7|y~ velocity | | v
Z — position z
| z—velocity | |v,
58

(5.7

(5.8)

(5.9)

HZ

F? is the state transition matrix,

1 A0 O 0 O
01 0 0 0 O
, |0 01 A OO
F° =
0 001 0O
0 00 01 A
0 0 0 00 1]
G’ is the gravity matrix,
"0
ol
) 0
G~=—g 0
AZ
2
A

(5.10)

(5.11)

H? is the observation matrix in which range, bearing and elevation measurements

are observed,
___* 0 Yy 0 ——uZz -
VX2 +y?+22 VX2 +y?+22 VX +y*+2?
= 0 0 0
X2 +y? <y
—Xz -yz Jxi+y?
2, 2(.2, .2, 2 0 2, 2.2 ,.2,.2 0 2492452
_Jx +y (x +y +z) Jx +y (x +y +z) (X +y +Z)

0

0

0

(5.12)

and @ and v are the plant noise (with covariance Q?) and measurement noise

(with covariance Rf{) respectively.

EKF tracking algorithms (as presented in Chapter III) are developed using these two
system models. The two models are run in parallel, and EKF estimates are developed for
each model. The state and covariance estimates of each system model are then mixed
within the IMM filtering process.
The IMM filtering process for the above two model system is comprised of the
following series of computations [Ref. 9, 11]:
STEP 1. Model 1 - Accelerating model:
A. Calculate the mixing probabilities.
B. Mix conditions.
C. Perform the prediction.
D. Update the measurement.
E. Score the association.
STEP 2. Model 2 - Ballistic model:
A. Calculate the mixing probabilities.
B. Mix conditions.
C. Perform the prediction.
D. Update the measurement.
E. Score the association.
STEP 3. Update the modal likelihood vector.

STEP 4. Produce combined state and covariance estimates.

60

Each of these steps will be presented in detail; however, to begin our discussion, the
Markov transition matrix and the modal likelihood vector must first be presented.

The IMM algorithm utilizes the Markov transition matrix to specify the changes
between the two interacting models. This matrix determines the probabilities of changing

state between the measurement times and is represented by p, where

Py = Psj = Probxi,[xi] (5.13)
The assumption is that the system jumps between models, with the jumps following a
Markov chain transition model. The Markov chain transition probabilities are generally

chosen heuristically. In this study, the Markov transition matrix for the two model

system is defined as,

[]_ Pu Pl prob[accellaccel] prob|ball|accel] 514
Psl= Pu Pn] | problaccelball] prob[bali|ball] 19

® i is the probability that the missile is accelerating at time, #.;, if it was

accelerating at time, #.

® 12 is the probability that the missile is ballistic at time, #.,, if it was accelerating

at time, #;.

® py is the probability that the missile is accelerating at time, #,,,, if it was ballistic

at time, 7.

® p,, is the probability that the missile is ballistic at time, #,;, if it was ballistic at

time, t;.

61

Applying the above definition of the Markov transition matrix to missile tracking, this
matrix can be further simplified. For example, element p,; is the probability that the
missile is accelerating at the next measurement time, given that it is currently ballistic.
This certainly can never happen, as the missile enters a purely ballistic trajectory after the
rocket motor burns out. Therefore, this element has a .zero probability of occurring.
Furthermore, element po;, is the probability that the missile is ballistic at the next
measurement time, given that it is currently ballistic. Using the same explanation, this
should always be true. Therefore, in this study the Markov transition matrix is simplified

to

P P2 Pu P2
= = 5.15
[pu] [le Pzz] [0 1 :l : -1

It should be noted that according to the law of total probability, the rows of the Markov

transition matrix sum to one.

Elements p;; and p,, are important in the process of switching between models.
The element py; is the probability that the missile continués accelerating at the néxt
measurement time, and p;, is the probability that the missile switches from the
accelerating model to the ballistic model at the next measurement time. Since our first
measurement will occur during boost phase, the value of p; is initially set to one and P12
is initially set to zero. However, as we continue to track the missile, the value of p;, will

increase since there is an increasing probability that the missile will switch to the ballistic

model at the next measurement time. In this study, the switching process is modeled

using a sigmoid function to switch element p;; from a value of 1.0 to 0.5. This sigmoid

62

switching process is designed as a function of altitude.since we expect the tracking
algorithm to anticipate the switch between missile models after the missile reaches a
predetermined minimum altitude. In our ballistic missile base trajectory, it is known that
the booster cut off in the simulated missile occurs at an altitude of approximately 60
kilometers. Therefore, in this study the switching process in the IMM algorithm is set to
anticipate the change in models after the missile reaches an altitude of 50 kilometers.

The sigmoid switching function is designed as follows,

1
pui(z) = ~05 [1+ o005] —(1+10) (5.16)

The element p;; is then detemﬁned by p12= 1-p1;. Since the time interval between
measurements in our ballistic missile simulation is only 0.1 seconds, we assign a
minimum value of p;; = 0.5. In the case where the time interval between méasurements
is larger (i.e., 1 second, or 2 seconds), the sigmoid function should be designed to switch
p11 from 1.0 to a smaller value such as 0.1 or 0.2. Simply put, there would be a smaller
probability that the missile would continue to accelerate over the larger time interval
between measurements.

Along with the Markov transition matrix, the IMM algorithm utilizes the modal
likelihood vector in the mixing process. The modal likelihood vector, 4, , maintains the
current set of probabilities for each modal state and changes with each update cycle as the
missile maneuvers. After the measurement update steb in each system model, the modal

likelihoods are updated based on a scoring technique, which accounts for the latest

63

measurement. The modal likelihood of each state is defined as y; , which is the
likelihood of being in state i at time, #. For this algorithm, u'represents the probability

that the missile is currently accelerating, and u” represents the probability that the missile

is currently ballistic. The sum of the probabilities from each modal state is defined to
equal one. The modal likelihood vector for our two model system is defined as,

2 | =

I = [lili jl N [probability_ the_missile_is_accelerating_ at_ time_ ty
Hy

:| (5.17)

. probability_ the_ missile_is_ballistic_at_time_t,

The elements of the modal likelihood vector and the previously defined Markov state
transition matrix are used in the first steps of the IMM filtering process. [Ref. 11]
The filtering steps of the IMM algorithm can now be presented. As in the Kalman

Filter algorithm, the initial state and covariance estimates for each model are required,

where %; and P} are the initial state and covariance estimates for the accelerating model,

and X3 and Pj are the initial state and covariance estimates for the ballistic model.

Additionally, the initial modal likelihood vector is required. Applying the above
definition of the modal likelihood vector, the initial modal likelihood vector (evaluated at

time #y) is determined to be,

ué] -
= (5.18)
o [uo .

The initialization of the modal likelihood vector can be further simplified. In this study

we assume that the missile is observed initially during boost phase. Hence, y} is initially

64

set equal to one, and [.102 is set equal to zero. Thus the initial modal likelihood vector is

1 1
A

The first step of the filtering process utilizes the initial state, covariance and modal

simply,

likelihood estimates to determine a mixed state and covariance estimate for the
accelerating model. Similarly, the second step performs the same mixed state and
covariance estimates for the ballistic model. Step three updates the modal
probabilities /,Lll and [.Lk2 utilizing a scoring process. Finally, these updated modal

probabilities are used to produce a combined estimate in step four. One cycle of the

IMM algorithm consists of the following steps:

STEP 1A. (Model 1) - Calculate the mixing probabilities.

In this algorithm, the mixing is carried out at the beginning of the cycle. The
mixing probability, g4y, ,, is defined as the probability that mode M; was in

effect at time #.;, given that mode M; is in effect at time #. The mixing

probabilities for the accelerating model are defined as

1 P Ky

Pt = (5.20a)
21,.2
w =2 ;fk = (5.20b)

65

with the normalizing constant

-1 _ 1 2
C = PpMyy Pyl

STEP 1B. Mixing.

The mixed initial condition for the accelerating filter is defined as,

201 _ sl 1 o2 21
Ki-k-1 = Rt X gt F Koot X By

with the corresponding covariance,

T
01 _ . 1 <l +11
Pk = :uk—llk—llth—llk—l + xk—llk—l(xk—llk—l +
T
21 2 <21 <2l
'uk—llk—ll:Pk—llk—l + Xk-—llk—l(xk-llk—l) :l

where

il i _ 401
Xk—1lk-1 = Xgotlk-1 ~ Xg_qlk-1

STEP 1C. Perform the prediction.

(5.21)

(5.22)

(5.23)

(5.24)

The state and covariance predictions for the acéelcrating model are determined by

the following equations,

01

Al —rla
Xgk-1 = F X ey

1 1501 1\T
Pik-1 =F Pklk—l(F) +Q,

66

(5.25)

(5.26)

STEP 1D. Update the measurement.

o - 1 151
Rl = Rhyy + K (2 - H'RY,) (5.27)

Bl = (I- K{H')BY, (5.28)

where the Kalman gain is defined as,

Kll(= Pl:lk—l(H%()T[HiPilk_l(Hﬁ)T + Rk]_1 (5.29)

STEP 1E. Score the association. (Based on a likelihood of the observed

measurement).
(=) et)'%]
Ny= " (5.30)
(27r)7!8}(|5
where
z' =z, -Hi Ry, (5.31)
T
Sk =HiPy(HL) +Ry O (532)

and m is defined as the number of dimensions observed; thus m = 3 since range,

bearing and elevation positions are observed.

STEP 2A. (Model 2) - Calculate the mixing probabilities.

The mixing probabilities for the ballistic model are defined as

12,1
Py
“1?—21!1(—1 = -6/’2[k . (5.33a)

67

2,2
A2 _ P T
M jx1="=

with the normalizing constant

12,1 22,,2

c? Sl A o e ¥

STEP 2B. Mixing.

The mixed initial condition for the ballistic filter is defined as,

202 _ 2l 12 22 22
Hic-tlk-1 = Rt X Hicopient F Xieojeer X B Dy

with the corresponding covariance,

T
02] 1 <12 <12
Pk = l‘k—llk—l[Pk—llk—l + xk—llk—l(xk—llk—l)]"‘
T
22 2 =202 <22
luk—llk-ll:Pk—llk—l + xk—-llk—l(xk-—llk—l)]

where

~i2 i 202
Xie—tlk-1 = Xy_glk-1 ~ Xk_glk—1

STEP 2C. Perform the prediction.

(5.33b)

(5.34)

(5.35)

(5.36)

(5.37)

The state and covariance predictions for the ballistic model are determined by the

following equations,

02

A2 - 2 A
Xkt = F X ey

68

(5.38)

T
Pklk 1—F2P klk— 1(F2) +Q}

STEP 2D. Update the measurement.

22 _ o2 2 24

Xk = Xilk-1 +Kk(—-H xklk 1)
2

B = (I- KFH?)RS, ,

where the Kalman gain is defined as,

K = P K|k— 1(H2)T[Hkp klk— 1(H2)T + Rk]_l

STEP 2E. Score the association. (Based on a likelihood of the observed

measurement).
6%]
R =2 :
m
(27)2|s}|
where

Sk = HiPg,_ 1(H12<)T +Ry

STEP 3. Update the modal likelihoods.

61

Hy = Ay —

C

69

(5.39)

(5.40)

(541)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

g2
=N - (5.47)

where

c= Aje' + AZ¢c? (5.48)

STEP 4. Produce combined estimates (for display purposes only).

R = MRy + MR (5.49)

P = /‘ll(Pxilk +[illclk - ﬁklk][illclk = iklk]T) + (5.50)
/ukz(PlfIk +[’A<12c|k - ﬁklk][ﬁi!k - ’A‘klk]T)

An IMM ballistic missile tracking algorithm is developed in MATLAB using the
equations defined in steps one through four. The IMM algorithm is then implemented on
the position measurements of the ballistic missile base trajectory. Simulation results of
the accelerating model, the ballistic model, and the combined IMM algorithm are

presented in the following section. The source code for the IMM algorithm is provided in

Appendix C.

B. SIMULATION RESULTS
As in the previous chapters, the IMM algorithm is implemented on the noisy
position measurements of the ballistic missile simulation. For the purpose of comparison,

the IMM tracking algorithm is run in MATLAB, using the same sensor position,

70

sampling interval, and measurement uncertainties as in the EKF and the a-B-y tracker.
Figure 5.1(a) shows the ballistic missile base trajectory and Figure 5.1(b) shows the base
trajectory with added measurement noise. Figures 5.2(a) and (b) show the results of the
EKF algorithm on the accelerating model. As explained in Chapter I, the accelerating
model EKF tracks the missile well until the rocket motors cut off (at time 60 seconds),
and the missile changes from an accelerating state to a ballistic state. This discontinuity
can be seen in Figure 5.2(b), where the mean distance error at 60 seconds rises from 300
meters to a peak of 800 meters. At approximately 70 seconds, the EKF regains track and
the mean distance error decreases below _500 meters, and then remains at approximately
400 meters for the duration of the observation period. Figures 5.3(a) and (b) show the
results of the EKF algorithm on the ballistic model. Contrary to the accelerating model
EKTF, this algorithm has significant difficulty tracking the missile in the early stages of its
trajectory. The ballistic model EKF is only able to satisfactorily track the missile after it
changes to a ballistic state. Figure 5.3(b) shows that the tracking algorithm reaches a
peak mean distance error of approximately 10 kilometers; Once the missile isin a

ballistic state, the algorithm is able to regain track.

71

Ballistic Missile Base Trajectory

200w
£
21004

s0d...

0>
200

200

y-km

X — km

Figure 5.1(a) Ballistic Missile Base Trajectory.

Ballistic Missile Base Trajectory with Measurment Noise

200

y - km

X ~ km

Figure 5.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

72

ZOOM - EKF Trajectory Initial 80 Seconds

60.. T

50T

Z (km)
8
L

60

50
45

5

Figure 5.2(a) EKF (Accelerating Model) Trajectory (10 Runs).

Mean Distance Error in Measurements vs Time

2500 T ! ! ! !
‘ 3 il df |: : : :
2000 | y i ‘l i i ' P -~
‘ it : : :
A [
Q1500— ... l ... -
m
E
g
]
§
S 1000
=
500 -
, ; ; ; ; .
0 20 40 60 80 100 120

Time (seconds)

Figure 5.2(b) EKF (Accelerating Model) Mean Distance Error (100 Runs).

73

ZOOM - Missile Trajectory Initial 100 Seconds

1007

Z (km)

60 70
B 60
50

40

Y (km) % X (km)

Figure 5.3(a) EKF (Ballistic Model) Trajectory (10 Runs).

Mean Distance Error in Measurements vs Time
12000 ! : ! ! !

10000+ e b S .
8000k oo S S S O NSO S]

6000k oo b/ S SN R b]

Mean Error (meters)

4000_ : g..”...“.,.... : : -

2000 : L SR S N SR]

0 ; i ; i ;
0 20 40 60 80 100 120
Time (seconds)

Figure 5.3(b) EKF (Ballistic Model) Mean Distance Error (100 Runs).

74

The results of the IMM algorithm are shown in Figures 5.4 through 5.6. Figures
5.4(a) through (c) show a close-up of the IMM trajectory at 40 seconds, 60 seconds and
80 seconds respectively. Figure 5.4(d) shows the mean distance error of the IMM
algorithm. This graph shows that the IMM algorithm is able to track the missile
significantly better than both the accelerating model and the ballistic model. The
“problem area” for the accelerating model is the area in which the missile transitions
from an accelerating state to a ballistic state. The result, as shown in Figure 5.2(b), is a
large rise in the mean distance error that peaks to 800 meters. In the IMM algorithm, this
problem area is eliminated, and the IMM algorithm is able to track through the transition
area with a mean distance error of approximately 250 meters. The “problem area” for the
ballistic model is the initial tracking while the missile is accelerating. This is also
resolved, as the IMM algorithm is able to track the missile well in this area with a mean
distance error Qf approximately 500 meters. Figures 5.5(a) and (b) show a comparisdn of
the mean distance error plots for the EKF accelerating model, the EKF ballistic model
and the IMM algorithm. Figure 5.5(b) shows a close-up of the comparison. Figure 5.6
shows a comparison of the mean distance error plots for the IMM algoﬁthm and the o-By
tracker. Figures 5.5(b) and 5.6 reveal the overall improvement in the tracking capability

of the IMM algorithm.

75

ZOOM - IMM Trajectory Initial 40 Seconds

60\‘--""”7”

50..- T

60

45

40

35
Y (km) 80 30

X (km)

Figure 5.4(a) IMM Trajectory, Initial 40 Seconds (10 Runs).

ZOOM - IMM Trajectory Initial 60 Seconds

60~

50T

Z (km)
w
(o]
ya

60

45
40

35
Y (km) 30 30

X (km)

Figure 5.4(b) IMM Trajectory, Initial 60 Seconds (10 Runs).

76

Z (km)

ZOOM - IMM Trajectory Initial 80 Seconds

60 T

50\...'__,_.:...

60
50
45

40

30 30 35

Figure 5.4(c) IMM Trajectory, Initial 80 Seconds (10 Runs).

77

Mean Distance Error in Measurements vs Time

2500 ! ! ! ! !
2000 BRIt ,.fl AR R Il - -
w : : ‘ : : ;
Oi500F s T 1 e
o : : : :
£ ' 1
S
i ; :
c : z : :
m1000‘ P P : et il ol FLETOU _
= : : : : v
500
. ; ; ; ; 2
0 20 40 60 80 100 120
Time (seconds) .

Figure 5.4(d) IMM Mean Distance Error (100 Runs).

78

Mean Error (meters)

12000,_ , \
10000k~ e 0 TR SO S—

8000k T S T T

e I, ey L T VRS TR

Time (seconds)

Figure 5.5(a) Comparison of Mean Distance Error (100 Runs).

79

2000 §

1500

1000

Mean Error (meters)

500

. Mean Distance Error in Measurements vs Time

-~
T~ .
PR EAVITNS
AT et

20 40 60 80

100 120
Time (seconds)

Figure 5.5(b) Comparison (Zoom) of Mean Distance Error (100 Runs).

80

Mean Error (meters)

Mean Distance Error in Measurements vs Time

0 ? L i ' ! 1
0 20 © 40 60 80 100 120
Time (seconds)

Figure 5.6 Mean Distance Error - IMM vs. offy Tracker (100 Runs).

81

The final analysis of the IMM algorithm investigates the effect of using a constant
switching parameter to switch between the two models of the IMM algorithm. In the
previous examples, the process of switching between the two models is controlled by the
sigmoid function described in Equation 5.16. This sigmoid switchin g function changes
P11 from a value of 1.0 to 0.5 as the missile reaches a predetermined altitude at which
booster cut-off is likely to occur. The result is a switching process that anticipates a
change between models based on prior knowledge of the booster cut-off altitude. In the
event that the altitude at which the booster cut-off occurs is not known, a constant value
for p;; can be used. By setting P11 equal to a constant value of 0.97 (selected only for
illustration purposes), the probability that the missile continues to accelerate from one
measurement time to the next is 97 percent. The resulting mean distance error is
predicted to be larger than the mean distance error of the IMM algorithm that uses a
sigmoid switching process. This is due to the slight uncertainty early in the tracking
process, in which the tracking algorithm is unsure whether the missile is initially
operating in the accelerating or the ballistic model. As shown in the previous sections,
the IMM algorithm utilizing a sigmoid switching process is initially certain the missile is
accelerating (py; = 1); hence, it is predicted this algorithm will lead to lower initial values
of mean distance error.

The result of the IMM algorithm using a constant switching probability (p11 =
0.97) throughout the tracking process is shown in Figure 5.7. As expected, the mean
distance error is initially large, peaking at approximatqu 800 meters. A comparison of

the results of the IMM algorithm using a constant value for p11 and the results of the IMM

82

algorithm using a sigmoid switching process is shown in Figure 5.8. The plot of the
mean distance error of the IMM algorithm utilizing a constant switching probability is
shown as the dashed line. The plot of the mean distance error of the IMM algorithm
utilizing a sigmoid switching function is shown as the solid line. As expected, the mean
distance error of the IMM algorithm utilizing a constant switching probability is initially
larger than the IMM algorithm utilizing a sigmoid switching process. Because the mean
distance error of the IMM algorithm utilizing a sigmoid switching process is significantly
lower than the IMM algorithm with constant switchiné probability, it is considered to be
the better overall tracking algorithm.

In the next chapter, the EKF, the o--y and the IMM tracking algorithms are
implemented on actual TBM profiles. As in the simulated data, measurement noise is
added to the TBM profiles. The algorithms are then tested on the real data, and the

tracking accuracy of the algorithms is analyzed.

83

Mean Distance Error in Measurements vs Time

2500 ! ! ! ! !
2000 WSV R AR LIS | iy
i A ‘ . . .
r
w : z il : :
Q1500 T P -
Q : : 1 : ;
E
S .
= : : : ‘ ' ‘
031000_ P R REE R LR SRRREERR s YRR I 1 (AL R -
500
o ; R ; .
0 20 . 40 60 80 100 120

Time (seconds)

Figure 5.7 Mean Distance Error, IMM with Constant Switching Probablllty,
P11=0.97, (100 Runs).

84

2500

2000

1500

1000

Mean Error (meters)

500

Mean Distance Error in Measurements vs Time

40 60
Time (seconds)

80 100 - 120

Figure 5.8 IMM with Sigmoid Switching Process vs. IMM with Constant Switching
Probability, p;;=0.97 (100 Runs).

85

86

VI. ACTUAL TBM PROFILES

. In this chapter, the tracking algorithms developed in Chapters III, IV and V, are
implemented on actual TBM profiles. The TBM data was graciously given to us by Mr.
Thomas Jerardi from the Johns Hopkins Applied Physics Laboratory in Baltimore,
Maryland [Ref. 12]. The original source of this TBM data is the National Air
Intelligence Center (NAIC) located at Wright-Patterson Air Force Base, Ohio. For
security reasons, the specific TBM type is intentionally excluded from the TBM profile
data in order to keep this data unclassified. The TBM profile data is pfovided in

Appendix E.

A. TBM PROFILES

A TBM profile is a description of the nominal powered flight trajectory of a given
TBM, and an example of a TBM profile is shown in Table 1. A TBM profile consists of
an infrared (IR) intensity as a function of time, nominal vertical and horizontal ranges
from the launch point as functions of time, and maximum burn time, t,,;ax (62.5 seconds
for profile 1 as shown in Table 1)[Ref. 13]. Five TBM profiles are included in Appendix
E. Because some of the TBM profiles are very similar, the author has selected TBM
profiles 1, 4 and 5 for analysis and discussion in this section. The an.alysis of TBM

profiles 2 and 3 is provided in Appendix E.

87

Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
(sec) (km) (km) (sec) (km) (km)
0 36.0 0.000 0.000 32 60.6 7.023 3.195
1 36.3 0.006 0.000 33 62.4 7.469 3.491
2 36.6 0.026 0.000 34 64.2 7.928 3.803
3 36.9 0.058 0.000 35 .| 66.0 8.402 4.132
4 37.2 0.103 0.000 36 68.4 8.890 4.479
5 37.5 0.163 0.001 37 70.8 9.393 4.844
6 37.8 0.235 0.004 38 73.2 9.911 5.229
7 38.1 0.322 0.010 39 75.6 10.444 5.633
8 384 0.423 0.020 40 78.0 10.992 6.057
9 38.7 0.537 0.036 41 81.2 11.556 6.502
10 39.0 0.666 0.058 42 84.4 12.136 6.969
11 39.5 0.809 0.087 43 87.6 12.732 7.459
12 40.0 0.965 0.124 44 90.8 13.345 7.973
13 40.5 1.136 0.171 45 94.0 13.975 8.511
14 41.0 1.321 0.226 46 96.0 14.622 19.075
15 41.5 1.520 0.292 47 98.0 15.288 9.665
16 42.0 1.733 0.367 48 100.0 15.972 10.282
17 42.5 1.962 0.453 49 102.0 16.675 10.928
18 43.0 2.204 0.550 50 104.0 17.397 11.604
19 43.5 2.460 0.658 51 104.6 18.140 12.309
20 44.0 2.731 0.777 52 105.2 18.904 13.045
21 45.0 3.015 0.908 53 .| 105.8 19.690 13.813
22 46.0 3.312 1.050 54 106.4 20.499 14.613
23 47.0 3.623 1.205 55 107.0 21.332 15.446
24 48.0 3.948 1.372 56 106.4 22.190 16.314
25 49.0 4.286 1.551 57 105.8 23.075 17.217
26 50.6 4.637 1.744 58 105.2 23.986 18.155
27 52.2 5.001 1.950 59 104.6 24.925 19.131
28 53.8 5.378 2.170 60 104.0 25.894 20.145
29 554 5.769 2.404 61 98.0 26.894 21.199
30 57.0 6.174 2.652 62 80.0 27.925 22.293
31 58.8 6.591 2.916 62.5 20.0 28.450 22.850

Table 1. Sample TBM Profile (Profile 1) [Ref.12].

88

B. TBM PROFILE 1

In this section, measurement noise is added to the TBM profile 1 and the o-f3-y,
EKF and IMM tracking algorithms are implemented on this trajectory. The mean
distance error is calculated for each algorithm and the resulting plots are compared
amongst the three filters. To start the analysis, a plot of the actual TBM trajectory is

shown in Figure 6.1.
TBM Profile 1

o5 ...

20,

‘ 10

Y (km) 0 o

X (km)

‘ Figure 6.1 TBM Trajectory (Profile 1).

89

1. Alpha-Beta-Gamma Tracker Results

As in the simulated data, measurement noise is added to the TBM trajectory to
simulate a sensor platform observing the missile. In addition, the same sensor position
and measurement uncertainties are applied to the TBM profile. Figure 6.2(a) shows a

plot of the TBM profile 1 with added measurement noise.

TBM Profile 1 w/ Measurement Noise

10

Y (km) 0 o X (km)

Figure 6.2(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

90

The result of the a-B-y tracking algorithm is shown in Figure 6.2(b) with the
filtered trajectory superimposed on the TBM trajectory for profile 1. These results are

obtained over 100 simulation runs, with a=0.6.

TBM Profile 1 and ABG Trajectory

25 ...

20,

10

Y (km) 0 o X (k)

Figure 6.2(b) TBM Trajectory (Profile 1) and o-B-y Trajectory, 0=0.6, 100 Runs.

91

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.2(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot, shown with a large initial spike, is

the mean distance error using the o-B-y tracking algorithm. These results indicate that

the a-B-y tracker reduces the mean measurement noise by approximately 30 percent,
despite a large transient error which is present in the first 10 seconds of the filter. This is

shown in Figure 6.2(c) as a spike that peaks to approximately 9,900 meters.

ABG Mean Distance Error in Measurements vs Time - TBM Profile 1
10000 ! T ! ! ! !

9000

8000

7000

6000

5000

Mean Error (meters)

4000

3000

2000

! ! i
10 20 30 40 50 60 70
Time (seconds)

1000 i ‘ ‘
0
Figure 6.2(c) o-B-y Tracker (Profile 1) Mean Distance Error, 0=0.6, 500 Runs.

92

2. EKF (Accelerating Model) Results

Figure 6.3(a) shows the TBM trajectory for profile 1with added measurement
noise. The result of the EKF (accelerating model) algorithm ié shown in Figure 6.3(b)
with the filtered trajectory superimposed on the TBM trajectory for profile 1. These

results are obtained over 100 simulation runs, with q2=10.

TBM Profile 1 w/ Measurement Noise

o5 .

20\

10

Y (km) | 0 o X (km)

Figure 6.3(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

93

TBM Profile 1 and EKF(accel model)Trajectory

10

10

Figure 6.3(b) TBM Trajectory (Profile 1) and EKF Trajectory, 100 Runs.

94

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.3(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot is .the mean distance error using the
EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean
measurement noise by approximately 50 percent with an initial peak error of

approximately 1750 meters.

3500 .f T ! ! ! !

2500

2000

Mean Error (meters)
o
(=]
S
T

3000
i

|

|

\

| 1000}
|

|

500

0 i ; ; ; : i
0 10 20 30 40 50 60 70
Time (seconds)

Figure 6.3(c) EKF (Profile 1) Mean Distance Error, 500 Runs.

i
\

3. IMM Results

Figure 6.4(a) shows the TBM trajectory for profile 1with added measurement
noise. The result of the IMM algdrithm 1s shown in Figure 6.4(b) with the filtered
trajectory superimposed on the TBM trajectory for profile 1. These results are obtained
over 100 simulation runs, with q*=10. The switching process is modeled using a sigmoid
function (defined in Equation 5.16) that switches element py;, the probability that the
missile continues accelerating at the next measurement time, from a value of 1.0 to 0.3.
The altitude at the maximum burn time in this profile is approximately 28 km, and in this
model, the IMM algorithm is set to start anticipating a change from the accelerating to the
ballistic model after the missile reaches an altitude of 20 km.

TBM Profile 1 w/ Measurement Noise

o5

10

Y (km) 0 o X (km)

Figure 6.4(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

96

TBM Profile 1 w/ IMM Trajectory

30T

30

20

10 15

Y (km) 0 o X (k)

Figure 6.4(b) TBM Trajectory (Profile 1) and IMM Trajectory, 100 Runs.

97

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.4(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot is the mean distance error using the
IMM tracking algorithm. These results indicate that the IMM algorithm reduces the

mean measurement noise by approximately 50 percent with an initial peak error of

approximately 1700 meters.

Mean Distance Error in Measurements vs Time
3500 T T T

3000

2500

2000

Mean Error (meters)
o
o
o
!

1000+

500

1 1 I l
0 10 20 30 40 50 60 70
Time (seconds)

. ; ;

Figure 6.4(c) IMM (Profile 1) Mean Distance Error, 500 Runs.

98

4. Comparison of Mean Distance Error

Figure 6.5(a) shows a comparison of the mean distance error plots for the a-B-y
tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),
and the IMM algorithm (shown as a solid line). Figure 6.5(b) shows a close-up of the

comparison. Since the TBM profile contains missile positions only up to the maximum

Therefore, in the IMM algorithm a switch to the ballistic model does not occur, and thus,

the EKF and IMM algorithms have similar results except for a small deviation starting at

Mean Distance Error in Measurements vs Time
10000

9000

8000

7000

6000

5000

4000

Mean Efror (meters)

3000

2000

1000

burn time, the TBM profile does not contain missile data during the ballistic phase.
i

]
0 10 20 30 40 - 50 60 70
Time (seconds)

Figure 6.5(a) Comparison of o-f-y, EKF and IMM Mean Distance Error, 500 Runs.

99

approximately 50 seconds. This is due to the IMM algorithm anticipating the change
from the accelerating model to the ballistic model. The following close-up graph clearly

indicates the IMM algorithm anticipates the impending switch to the ballistic phase.

Mean Distance Error in Measurements vs Time
3500 N ! ! ! ! !

3000

2500

2000

1500

Mean Error (meters)

1000

500

0 10 20 30 40 50 60 70
Time (seconds) :

Figure 6.5(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

100

As discussed in Chapter V, the IMM algorithm switches between system models
by using either a sigmoid switching function or by using a constant value for the
switching probability, pi;. The previous example used a sigmoid switching function that
changed the value of p;; as the missile reached a predetermined altitude when booster
cut-off was likely to occur. In the event that this altitude is not known, a constant value
for p;; can be used. For comparison purposes, the IMM algorithm is implemented on the
actual TBM data using a constant switching probability, with p;; =0.75. Figure 6.5(c)
shows a comparison of the mean distance error for the IMM algorithm utilizing a sigmoid
switching function (shown as a solid line) and the IMM algorithm utilizing a constant
switching probability (shown as a dashed line). As in the simulated data in Chapter V,
the mean distance error of the IMM algorithm utilizing a constant switching probability is
slightly larger early in the tracking process (although r;ot as pronounced as iﬁ the
simulated data). This is due to the slight uncertainty in the tracking algorithm, in which
the tracking algorithm is unsure whether the missile is initially operating in the
accelerating or the ballistic model. Although the IMM algorithm utilizing a sigmoid
switching function performs better in the early part of the tracking process, the IMM
algorithm utilizing a constant switching probability performs better in the latter part of
the tracking process. This graph illustrates a trade-off in performance between the two

switching processes.

101

Mean Distance Error in Measurements vs Time
3500 ! ! ! ! ! !

3000

2500
2000.. _

1500

Mean Error (meters)

1000

500

0 . L ! i L i
0 10 20 30 40 50 60 70
Time (seconds)

Figure 6.5(c) IMM with Sigmoid Switching Process vs. IMM w1th Constant
watchmg Probability, p;;=0.75 (500 Runs).

C. TBM PROFILE 4
As in the previous section, measurement noise is added and the o-B-v, EKF and
IMM tracking algorithms are implemented on actual TBM data. In addition, the mean

distance error is computed for each algorithm, and the resulting plots are compared

102

amongst the three filters for a new set of data called TBM profile 4. The plot of the TBM

trajectory for profile 4 is shown in Figure 6.6.

TBM Profile 4

40«

Z (km)

20

Figure 6.6 TBM Trajectory (Profile 4).

103

1. Alpha-Beta-Gamma Tracker Results
Figure 6.7(a) shows a plot of the TBM profile 4 with added measurement noise.
The result of the a-B-y tracking algorithm is shown in-Figure 6.7(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 4. These results are obtained

over 100 simulation runs, with 0=0.6.

TBM Profile 4 w/ Measurement Noise

40« ..

Z (km)
o
o
L

104,

40

20

Y (km) 00 X (km)

Figure 6.7(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

104

TBM Profile 4 and ABG Trajectory

20

Y (km) ° 0. X (km)

Figure 6.7(b) TBM Trajectory (Profile 4) and a-B-y Trajectory, d,=0.6, 100 Runs.

105

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.7(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot, shown with a large initial spike, is
the mean distance error using the o-B-y tracking algorithm. These results indicate that
the o-B-y tracker reduces the mean measurement noise by approximately 30 percent
despite a large transient error which is present in the first 10 seconds of the filter. The

transient error is shown in Figure 6.7(c) as a spike that peaks to approximately 9,700

meters.

ABG Mean Distance Error in Measurements vs Time — TBM Profile 4
10000 T T T T T T

8000

8000

7000

6000

5000

4000

Mean Error (meters)

3000

2000

1000

{
0 10 20 30 40 50 60 70
Time (seconds)

Figure 6.7(c) o-B-y Tracker (Profile 4) Mean Distance Error, 0=0.6, 500 Runs.

106

2. EKF (Accelerating Model) Results

Figure 6.8(a) shows the TBM trajectory for profile 4 with added measurement
noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.8(b)
with the filtered trajectory superimposed on the TBM trajectory for profile 4. These

results are obtained over 100 simulation runs, with q2=10.

TBM Profile 4 w/ Measurement Noise

40

30

Z (km)
N
o
yi

104

20

Y (km) 0 o X (km)

Figure 6.8(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

107

TBM Profile 4 and EKF(accel model)Trajectory

40~

40

20

20
Y (km) ‘ 0o X (k)

Figure 6.8(b) TBM Trajectory (Profile 4) and EKF Trajectory, 100 Runs.

108

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.8(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

EKEF tracking algorithm. These results indicate that the EXF al gorithm reduces the mean

measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

3500

3000

2500

2000

1500

Mean Error (meters)

1000

500

i t !

1 |]
10 20 30 40 50 60 70 80 90 100
» Time (seconds)

Figure 6.8(c) EKF (Profile 4) Mean Distance Error, 500 Runs.

109

3. IMM Results

Figure 6.9(a) shows the TBM trajectory for profile 4 with added measurement
noise. The result of the IMM algorithm is shown in Figure 6.9(b) with the filtered
trajectory superimposed on the TBM trajectory for profile 4. These results are obtained
over 100 simulation runs, with q*=10. The switching process is modeled using a sigmoid
function that switches element py; from a value of 1.0 to 0.5. The altitude at the
maximum burn time in this profile is approximately 38 km, and in this model the IMM
algorithm is set to start anticipating a change from the accelerating to the ballistic model

after the missile reaches an altitude of 32 km.

TBM Profile 4 w/ Measurement Noise

40~

20

Y (km) 0 o X (km)

Figure 6.9(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

110

Z (km)

TBM Profile 4 w/ IMM Trajectory

40

20

Figure 6.9(b) TBM Trajectory (Profile 4) and IMM Trajectory, 100 Runs.

111

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.9(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot is the mean distance error using the
IMM tracking algorithm. These results indicate that the IMM algorithm reduces the
mean measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

" Mean Distance Error in Measurements vs Time
3500 ! ! ! ! ! ! ! !

3000

2500
@
9
Q
£ 2000
S
v
< 1500
[\
()]
—

1000

500

o ; ; ; i i é i i |
0 10 20 30 40 50 60 70 80 90
Time (seconds)

Figure 6.9(c) IMM (Profile 4) Mean Distance Error, 500 Runs.

112

4. Comparison of Mean Distance Error

Figure 6.10(a) shows a comparison of the mean distance error plots for the o-B-y
tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),
and the IMM algorithm (shown as a solid line). Figure 6.10(b) shows a close-up of the
comparison. As expected, the EKF algorithm and the IMM algorithm continue to show

similar results since the IMM algorithm does not switch to the ballistic model.

Mean Distance Error in Measurements vs Time

10000 @ ! , , . . , T .
no E : i z o : z
9000_’-\' ‘ ‘ -
e
8000_|.l -
P | | | | | | | 5
7ooo_i| o
? Lo ; : ; S s : !
o 6000F - b v S S e e e T -
o [: : : : : : : :
E P : z z : z : : :
§ 5000+ ------ ‘ -
0 b z : : : z : : ;
5 | : : : : : : : c
P 4000_ EEEEEEEERRE IREERERERE EERERERERE AR e EERERRRERE R EEREEEEEEE R -
E !E : B .
3000 o
2000 ?
1000 E
/4 :
O 1 1 | 1 1 1 | | i

0 10 20 30 40 50 60 70 80 20 100
Time (seconds)

Figure 6.10(a) Comparison of o-B-y, EKF and IMM Mean Dist. Error, 500 Runs.

113

Méan Distance Error in Measurements vs Time
3500 I ! ! ! ! ! ! ! !

3000

2500

2000

1500

Mean Error (meters)

1000

500

I I | ! L i
0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

M
Figure 6.10(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

As in the previous section, an analysis of the IMM switching processes utilizing a

constant switching probability is conducted with p;; =0.75. The results are compared to -

the previous example, where the IMM algorithm used a sigmoid switching function to
change the value of py;. Figure 6.10(c) shows a comparison of the mean distance error
for the IMM algorithm utilizing a sigmoid switching function (shown as a solid line) and

the IMM algorithm utilizing a constant switching probability (shown as a dashed line).

114

Contrary to the simulated data in Chapter V and the actual data in TBM profile 1, the
results of the IMM algorithm utilizing these two switching processes do not behave as
expected. In this example, the mean distance error for the IMM algorithm utilizing a
constant switching probability is smaller early in the tracking process and larger in the
latter part of the tracking process. Because of this unexpected response, the same
analysis for the IMM algorithm switching processes is also conducted on the actual data

in TBM profile 5.

Mean Distance Error in Measurements vs Time
3500 ! ! ! ! ! ? T !

3000

2500

2000

Mean Error (meters)
o
o)
o

1000

500

0 10 20 30 40 50 -~ 60 70 80 90
Time (seconds)

Figure 6.10(c) IMM with Sigmoid Switching Process vs. IMM with Constant
Switching Probability, p1;=0.75 (500 Runs).

115

D. TBM PROFILE 5
The final TBM data chosen to be highlighted in this study is the TBM trajectory
of profile 5. As in the two previous examples, the o-B-y, EKF and IMM tracking

algorithms are implemented on the TBM trajectory. Figure 6.11 shows a plot of the

TBM trajectory of profile 5.
TBM Profile 5

20

10

10

Y (km) ° 0 X (km)

Figure 6.11 TBM Trajectory (Profile 5).

116

1. Alpha-Beta-Gamma Tracker Results

Figure 6.12(a) shows a plot of the TBM profile 5 with added measurement noise.
The result of the o-B-y tracking algorithm is shown in Figure.6.12(b) with the filtered
trajectory superimposed on the TBM trajectory for profile 5. These results are obtained

over 100 simulation runs, with a=0.6.

TBM Profile 5 w/ Measurement Noise

Z (km)
n
o
/

104

20

Yoy 00 X (k)

Figure 6.12(51) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs.

117

TBM Profile 5 and ABG Trajectory

Z (km)

20

Figure 6.12(b) TBM Trajectory (Profile 5) and o-B-y Trajectory, 0=0.6, 100 Runs.

118

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.12(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot, shown with the large spike, is the
mean distance error using the a-B-y tracking algorithm. These results indicate that the o~
B-v tracker reduces the mean measurement noise by approximately 30 percent despite a

large transient error which is present in the first 10 seconds of the filter. This error is

shown in Figure 6.12(c) as a spike that peaks to approximately 9,500 meters.

ABG Mean Distance Error in Measurements vs Time — TBM Profile 5
10000 ! ! ! ! ! ! ! !

9000

8000

7000

6000

5000

Mean Error (meters)

4000
3000~

2000

I ; ! i i
10 20 30 40 50 60 70 80 90
Time (seconds)

1000 5 i :
0
Figure 6.12(c) o-B-~y Tracker (Profile 4) Mean Distance Error, 0=0.6, 500 Runs.

119

2. EKF (Accelerating Model) Results

Figure 6.13(a) shows the TBM trajectory for p.rofile 5 with added measurement
noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.13(b)
with the filtered trajectory superimposed on the TBM trajectory for profile 5. These

results are obtained over 100 simulation runs, with q°=10.

TBM Profile 5 w/ Measurement Noise

20

Y (km) 0 o0 X (k)

Figure 6.13(a) TBM Trajectory (Profile 5) with Measurement N oise, 100 Runs.

120

TBM Profile 5 and EKF(accel model)Trajectory

40~

Z (km)
N
o
L

10\“.__“,.,.. ;

20

Y (km) 0 o : X (km)

Figure 6.13(b) TBM Trajectory (Profile 5) and EKF Trajectory, 100 Runs.

121

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.13(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

EKF tracking algorithm. These results indicate that the EKF al gorithm reduces the mean

measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

3500

3000

2500

2000

Mean Error (meters)
&
o)
=]

1000

500

Mean Distance Error in Measurements vs Time — TBM Profile 5

T

L

20

30

i
40 50 60 70 80 90
Time (seconds)

Figure 6.13(c) EKF (Profile 5) Mean Distance Error, 500 Runs.

122

3. IMM Results

Figure 6.14(a) shows the TBM trajectory for profile 5 with added measurement
noise. The result of the IMM algorithm is shown in Figure 6.14(b) with the filtered
trajectory superimposed on the TBM trajectory for profile 5. These results are obtained
over 100 simulation runs, with q*=10. The switching process is modeled using a sigmoid
function that switches element p;; from a value of 1.0 to 0.5. The altitude at the
maximum burn time in this profile is approximately 44 km, and in this model the IMM
algorithm is set to start anticipating a change between models after the missile reaches an
altitude of 39 km.

TBM Profile 5 w/ Measurement Noise

20

Y (km) 0 o X (km)

Figure 6.14(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs.

123

TBM Profile 5 w/ IMM Trajectory

40w
Eo0d. -

~—

104

20

Y (km) 0 o X (km)

Figure 6.14(b) TBM Trajectory (Profile 5) and IMM Trajectory, 100 Runs.

124

\

The mean distance error in measurements is calculated over 500 simulation runs,
and is shown in Figure 6.14(c). The upper plot is the mean measurement noise that is
observed by the sensor platform, and the lower plot is the mean distance error using the
IMM tracking algorithm. These results indicate that the IMM algorithm reduces the
mean measurement noise by approximately 50 percent with an initial peak error of
approximately 1500 meters. The rise in the mean distance error in the last few seconds

indicates the IMM filter is anticipating the switch to the ballistic model.

Mean Distance Error in Measurements vs Time
8500 ! ! ! ! ™ ! T

3000

2500

2000

1500

Mean Error (meters)

1000

500

o ; i ; i i ;
0 10 20 30 40 50 60 70 80
Time (seconds)

Figure 6.14(c) IMM (Profile 5) Mean Distance Error, 500 Runs.

125

4. Comparison of Mean Distance Error

Figure 6.15(a) shows a comparison of the mean distance error plots for the o-B-y
tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),
and the IMM algorithm (shown as a solid line). Figure 6.15(b) shows a close-up of the

comparison. As expected, the results of the EKF and the IMM are similar, since the

IMM algorithm does not switch to the ballistic model.

Mean Distance Error in Measurements vs Time

10000 T T | T T T T T
noo § s 5 é § § E
9000_;‘ -
Py : : : : : : :
8000—-'-'4--‘;--% TEPTRTON O F P P NP SRR FPPpPS 4
Py : : i § i : :
7000_" -
0 o : : : : : : :
9 6000F - l e -
Q P : : : : : . :
E L : : s z s : :
"9— 5000F - l -
i L ' ' ' |
S -
$ 4000
=
3000 [eoa
2000
1000
O 1 1 I 1 1 t [} i
0 10 20 30 40 50 60 70 80 90

Time (seconds)

Figure 6.15(a) Comparison of 0-~8-y, EKF and IMM Mean Dist. Error, 500 Runs.

126

Mean Distance Error in Measurements vs Time
3500 r ! ! ! ! ! ! ! !

3000

2500

2000

Mean Error (meters)
o
[=]
o

1000

500k R T T T — S N -

! I I ! 0 I 1 1 L
0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Figure 6.15(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

An analysis of the IMM élgorithm switching process is conducted for TBM
profile 5 using a constant value for the switching probability, with p;;=0.75. The results
are compared to the previous example of the IMM algorithm, which uses a sigmoid
switching process. Figure 6.15(c) shows a comparison of the mean distance error for the
IMM algorithm utilizing a sigmoid switching functioﬂ (shown as a solid line) and the
IMM algorithm utilizing a constant switching probability (shown as a dashed line). The

plots of the mean distance error for each switching process behave as expected, with

127

results similar to the results obtained from both the simulated data and the actual data
from TBM profile 1. The familiar trade-off in performance is noted, with the IMM
algorithm utilizing the sigmoid switching function performing better in the early part of
the tracking process, and the IMM algorithm utilizing the constant switching probability

performing better in the latter part of the tracking process.

Mean Distance Error in Measurements vs Time
3500 ! J ! ! ! ! !

3000 fzs

2500

2000 -

—
(42}
o
o

Mean Error (meters)

1000

500

o ; ; ; ; ; ; ;
0 10 20 30 40 50 60 70 80
Time (seconds)

Figure 6.15(c) IMM with Sigmoid Switching Process vs. IMM with Constant
Switching Probability, p;;=0.75 (500 Runs).

128

\

E. COMPARISON OF TBM PROFILES

A comparison of the tracking quality of the different algorithms is shown in

Figures 6.16 through 6.20. TBM profiles 1, 4 and 5 were initially chosen for analysis in

this section because of their different burn times listed in the TBM profile data. It was

thought that the differences in burn times might identify some differences in the

performance of the algorithms. However, the graphs show near identical results with

only subtle differences in the performance of each individual missile characteristic; By

reducing the mean distance error by approximately 50 percent, the IMM algorithm

proved to be the most accurate tracker of the three filtering algorithms.

Mean Error (meters)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Mean Distance Error in Measurements vs Time

0 10 20 30 40 50 60 70

Time (seconds)

Figure 6.16 Profile 1, a--y, EKF and IMM Mean Dist. Error, 500 Runs.

129

Mean Distance Error in Measurements vs Time

10000 T T T T T T T
A : : : : : :
L : : : : : :
9000-,‘ R RERETES P B Peeenene e .
S - - -
;!
8000~~-'~ Prorrbo e _
P
7000_., !‘ .. -]
® \
B OO0 e L N
©
E \
‘2- 5000F - ---- |
] b
c Vo
S 4000 - e]
= ‘
0 ; ; ; i ; ;
0 10 20 30 40 50 60 70

Time (seconds)
Figure 6.17 Profile 2, o-B-y, EKF and IMM Mean Dist. Error, 500 Runs.

Mean Distance Error in Measurerhents vs Timé — TBM Profile 3

10000 - T T T T T T

Iy : : : : : :

Iy : : : : : :
9000_,\ P o
BO00F-- b b .

! \

o
7000F -+ R LT T PR PP ST PR P EEE ROt S SO N
7 ' 1
S 6000f------- L PP U ORRN i
2 1
E .
§ 5000 - - :
1o i
s : :
8 4000 B .
= e
0] 1]] |]
0 10 20 30 40 50 60 70

Time (seconds)

Figure 6.18 Profile 3, a-B-y, EKF and IMM Mean Dist. Error, 500 Runs.

130

Mean Distance Error in Measurements vs Time
10000 T T T

9000_...,4.....5. AAAAAAAAAA
8000k +--:--- AAAAAAAAAA

7000} -+

! i
—_ .] : : :

0 Ve : : : :

Q G000 it e RPN Heeeeiiens e T -
@ P . : : : :

E i : 5 : : : : : z

‘e" 5000F - [......... . AAAAAAAAA _ ~ -
1 1 :

c

(]

[}

=

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Figure 6.19 Profile 4, o-B-y, EKF and IMM Mean Dist. Error, 500 Runs.

Mean Distance Error in Measurements vs Time
10000 T T

9000_...,'."“..%
8000} -+ | °

7000_'!

g

Mean Error (meters)
[4)]
a3
(=)

F-3
(=]
Q
(=]
T
1

1]
0 10 20 30 40 50 60 70 80 90
Time (seconds)

Figure 6.20 Profile 5, o-B-y, EKF and IMM Mean Dist. Error, 500 Runs.

131

The tracking results of the actual TBM data in this chapter are consistent with the
tracking results of the simulated TBM data in Chapters II through V. In all of the TBM
profiles, the mean measurement noise observed by the sensof is reduced by
approximately 50 percent with a mean distance error of approximately 1500 meters.
Because the information provided in TBM profiles 1 through 5 only contains data up to
the maximum burn time, the missile’s transition area and post booster cut-off areas are
not studied. The next chapter provides a summary of the analysis of TBM tracking
nduring boost phase. Conclusions are made and recommendations for follow-on studies

are presented.

132

VII. CONCLUSION

The tracking of TBMs during their boost phase has been investigated, and a-B-y,
EKF and IMM ftracking algorithms have been developed. The IMM tracking algorithm
was shown to be the most effective algorithm for tracking TBMs during boost and
transition phases. As shown in Chapter IV, the a-B-y tracker performed only slightly
better than the mean measurement noise observed by the sensor. Additionally, large
transient errors were present in the initial few seconds of tracking. The EKF algorithm
(accelerating model), shown in Chapters III and V, encountered significant difficulty
tracking TBMs after booster cut-off. As a result, large peaks were present in the
transition area of the mean distance error plots for the EKF algorithm. In this study, the
IMM algorithm was shown to be the best overall tracking algorithm because of its ability
to track TBMs during the large initial accelerations encountered during boost phase, and
during the change in missile dynamics encountered in the_TBM’s transition to a ballistic
phase.

In the analysis of both the simulated and actual TBM data, the IMM algorithm
outperformed all other tracking algorithms. In the simulated data, the IMM tracking
algorithm significantly reduced the mean measurement noise observed by the sensor by
approximately 75 percent (with a mean distance error of approximately 400 meters). In
addition, the mean distance error during the missile’s transition phase (after booster cut-
off) was significantly reduced to approximately 200 meters. In the actual TBM data, the

IMM tracking algorithm consistently reduced the mean measurement noise observed by

133

the sensor by approximately 50 percent (with a mean distance error of approximately
1500 meters). The difference in IMM performance between the simulated data and the
actual data was attributed to two factors. First, in the simulated data, the TBM launch
point was intentionally offset from the origin and the resulting distance between the
sensor and the launch point was approximately 92 km. In the actual TBM data, the
downrange distance and altitude were referenced to the launch point, and for plotting
purposes, the TBM was launched from the origin. A larger distance of 141 km resulted
between the sensor and the launch point. Secondly, the sampling interval in the
simulated data was set at 0.1 seconds while in the actual data, the interval was 1 second.
This longer time interval between missile position measurements, combined with the
increased distance between the sensor and missile launch point led to larger distance
errors in the actual data.

Follow-on studies should concentrate on the analysis of additional TBM profile
data from actual missile launches to include data over the entire trajectory. This will
allow for further investigation of the IMM algorithm in the transition areas of actual

TBM data.

134

APPENDIX A. SOURCE CODE FOR BALLISTIC MISSILE

SIMULATION
A. MATLAB® CODE FOR INITIALIZATION
The following is the MATLAB® program used to initialize the ballistic missile
simulation.

o o0 oo

o°

o0 o0 o0 o oP

oe

Fhkdkdkdhhhkdhkhhkhhhhhhhkhhhhkhhhkhbhdhhhhhhhhhdhdhkhhbhkhkdhbdrhkhhkrhbhhhdhdhhhkhhkdkhhk

PtMissileInitS.m

LT Tony San Jose

Thesis Advisor: R.G Hutchins
0O3FEBR98 '

This script file initializes the flat earth point
missile simulation

hhkhhkdhhkdhddhhdhdhhhkhdrhhhddhhhhhkhhhhhhhdhdhhhhhhkhhhhrhkrhdbdhhdhhrhkkhd kb hhkhhkhkk

define globals
global g mass T tToff troll cfric xinit tmax sinterval;

o°

g = 9.8;

T = 6*g;

tToff = 60; %100;
troll = 20; %30;
cfric = 0.05;
sinterval = 0.1;

gravity, meters/sec”2

missile acceleration

time of thrust shut off (seconds)
time of missile rollover (seconds)
coefficient of friction

sampling interval (seconds)

o0 o o

oe o0

tmax = 520; % max simulation time (secohds)
wel = (40*(pi/180))/(tToff - troll);% rotation in elev (rads/sec)
waz = (15*(pi/180))/(tToff - troll);% rotation in azimuth (rads/sec)

minstep = le-5; % minimun step size
numsamp =tmax/minstep;% number of samples

Xinit = [

30 * 1000; % Initial Missile x position (m)

0; % Initial Missile x velocity (m/s)

0; % Initial Missile x acceleration (m/s”2);
40 * 1000; % Initial Missile y position (m)

0; % Initial Missile y velocity {(m/s)

0; % Initial Missile y acceleration (m/s”"2);
0; % Initial Missile z position (m)

0.001; % Initial Missile z velocity (m/s)

01; % Initial Missile z acceleration (m/s”"2)

135

B. MATLAB® CODE FOR MISSILE DYNAMICS FUNCTION

The following is the MATLAB® program used to generate missile dynamics using
flat earth equations of motion.

function xdot = FlatEarthPtEqns (u)
%**
This Function computes the Flat Earth, Point Mass Equations

for Missile Dynamics.

o0 o0 o°

oo

LT Tony San Jose
Thesis Advisor: R.G Hutchins
O3FEB98

oo

oe oo

oe

The input vector is defined as:

% u(ly =T, thrust along the missile velocity vector
$ u(2) = we, Velocity Vector Rotation Rate in elevation
% u(3) = waz, Velocity Vector Rotation Rate in azimuth

oe

The State Vector is defined as:
Position Variables
u(4) = Px, Position North of (0,0,0)
u(7) = Py Position East of (0,0,0)
u(1l0)= Pz, Height ’

o® o0 oP

o o0 o°

Position Velocities
u{5) = U, D(Px)/dt
u(8) =V, D(Py) /dt
u(ll)= W, D{(Pz)/dt

o0 o° oo

oo

oQ o°

Position Accelerations
u(6) = Ax, D(Px)/dt
u(9) = Ay, D(Py)/dt
u(l2)= Az, D(Pz)/dt

o0 oo

o\

o oe

Related Quantities

% g, Gravitational Force = 9.8 meters/sec”2
2 cfric coefficient of friction

% rho, air density with altitude

% mass, missile mass

o°

tToff, Time of Thrust Shutoff
troll, Time of Missile Rollover < tToff

o0 oo

oP

**

oo

Declare Global Variables
global g mass tToff troll cfric tmax;

oo

Define Control Variables from Inputs
T = u(l); % thrust along missile velocity
wel = u(2); % turn rate in elevation

136

waz = u{(3); % turn rate in azimuth

o

Define State Variables from Inputs

x = u(4:12);
% Location Variables
Px = x(1); % Position in Direction of North Pole
Py = x(4); % Position At Equator in y
Pz = x(7); % Position At Equator in z

o°

Body-Axes Velocities

U = x(2); % velocity in Px direction

Y x(5); % velocity in Py direction

W x(8); % velocity in Pz direction ("Up")

‘o]

oo

Speed, Atmospheric Density and Drag
Vxy2 = U”2 + V*2;
Vxy = sqrt (Vxy2);
Vxz2 = U2 + W"2;
Vt2 = Vxz2 + V*2;

Vt = sqrt (vt2):;
az = atan2(V,U);
el = atan2(W,Vxy);

=}

% Atmospheric Density in kg/meter”3

if Pz < 0 $ Travel inside the Earth is Viscous
rho = 1072;

elseif Pz < 9144 % Altitudes below 9144 meters
rho = 1.22557*exp (-Pz/9144);

else % Altitudes above 9144 meters
rho = 1.75228763*exp(~Pz/6705.6);

end :

beta = cfric*rho;

Tacc = T/Vt;

o

% Compute the Derivatives

dPx = U;
"dPy = V;
dPz = W;

o

¢ Azimuth and Elevation Rollover

dU = -waz*V + wel*W*cos(az) - beta*U + Tacc*U;
dV = waz*U + wel*W*sin(az) - beta*V + Tacc*V;
dW = -wel*Vxy - g - beta*W + Tacc*W;

xdot = {dPx;
du;

0;

dPy;

dv;

0:

dPz;

dw;

0]+

137

C. MATLAB® CODE FOR PLOTTING MISSILE SIMULATION

The following is the MATLAB® program used to plot the output of the

SIMULINK ™ model, FlatEPtMissileSim.m

* %

oe

**

FlatEPtPlotsS.m

oe oo

oe

This file plots the results of the SIMULINK missile simulation

**

o°

o°

Define Variables

t missilevec(:,1

X = missilevec(:,2
3
4

I

vX = missilevec/(:,
ax = missilevec(:,
y = missilevec(:,5);
vy = missilevec(:,6);
ay = missilevec(:,7);

z = missilevec(:,8);
vz = missilevec(:,9);
az = missilevec(:,10);
X km = x/1000;

y_km = y/1000;

z km = z/1000;

SXY = VX."2 + vy."2;

speed = sqrt(sxy + vz."2);

Sxy = sqgrt(sxy):;

dist = sqrt(x.”2 + yv."2);

az = atan2(vy,vx)*180/pi;

el atan2(vz, sxy)*180/pi;

xaccel = ax/9.8;

yaccel ay/9.8;

zaccel = az/9.8;

total accel = sqrt(xaccel.”2 + yaccel.”2 + zaccel.”2);

il

%**

Plot Data

%**

o

figure (1)
plot (x_km,z km, 'r-');
axis('equal'),grid;
xlabel ('X (km)'),ylabel('Z (km)');
title('Missile 2 vs. X Plot');

% print -deps ch2fg2a

figure (2)
plot (x_km,y km, 'r-');

138

axis('equal');
xlabel ('X (km)'), ylabel('Y (km)'), grid;
title('Missile Y vs. X Plot');

% print -deps ch2fg2b

o

figure (3)
plot (t, (dist/1000), 'r-");
ylabel ('Down Range Dist (km)'), xlabel('Time (seconds)'), grid;
title('Down Range Distance vs Time');

% print -deps ch2fg2c

figure (4)
plot(t,z km, 'r-");
axis('equal');
ylabel ('Missile Altitide (km)'), xlabel('Time (seconds)'), grid;
title('Missile Altitude vs Time (kilometers)');
% print -deps ch2fg2d

figure(5)
plot(t,speed, 'xr~");
ylabel('Missile Speed (m/s)'), xlabel('Time (seconds)'), grid;
title('Missile Speed vs Time');

% print -deps ch2fgle

figure (6)

plot(t,az, 'r-");

title('Missile Azimuth Heading vs Time');
2 print -deps ch2fg2f

figure (7)
plot(t,el, 'r-");
title('Missile Elevation Angle vs Time');
$print -deps ch2fg2g

figure(8)
plot(dist, z,'r-");
axis('equal');
title('Down Range Distance vs Height');
$print -deps ch2fg2h

figure(9)
plot3(x,y,z,'x-");
axis('equal');
ylabel ('Y (m)'), xlabel('X (m)'), zlabel('Z (m)'), grid;
title('Three Dimensional Missile Trajectory in meters');

Q

% print -deps ch2fg2i

figure (10)

plot3(x_km,y km,z km,'r-');

axis('equal');

ylabel ('Y (km)'), xlabel('X (km)'), zlabel('Z (km)'), grid;

title('Three Dimensional Missile Trajectory in kilometers');
% print -deps ch2fg2j

139

figure(11)
plot3(x(1:1200),y(1:1200),z(l:lZOO),'r-');
axis('equal');
ylabel ('Y (m)'), xlabel('X (m)'), zlabel ('Z (m)'), grid;
title('Missile Trajectory - Initial 120 Seconds in meters');
% print -deps ch2fg2k

figure(12)
plot3(x_km(l:1200),y_km(1:1200),z_km(l:lZOO),'r—');
axis('equal');
ylabel ('Y (km)'), xlabel('X (km)'), zlabel('Z (km) '), grid;
title(' Missile Trajectory - Initial 120 Seconds in kilometers'®);
% print -deps ch2fg2l

figure (13)
plot (t,xaccel, 'r-');
ylabel('gs'), xlabel('Time (seconds) '), grid;
title('Missile Acceleration in X vs Time');

$ print -deps ch2fg2m

figure(14)
plot (t,yaccel, 'r-");
ylabel('gs'), xlabel('Time (seconds) '), grid;

title('Missile Acceleration in Y vs Tlme)
% print -deps ch2fg2n

figure (15)
plot (t, zaccel, 'r-");
ylabel('gs'), xlabel('Time (seconds) '), grid;
title('Missile Acceleration in Z vs Time');
$print -deps ch2fg2o

figure (16)
plot(t,total_accel,’r—');
ylabel('gs'), xlabel('Time (seconds)'), grid;
title('Missile Acceleration vs Time');

$print -deps ch2fg2p

140

APPENDIX B. SOURCE CODE FOR EXTENDED KALMAN

FILTER TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory .

o0 o o do o°

oP o o

a0 O° d° O° J° O° dO o oP

oe

oo

[

oe

Fhkdkkhkhkhkkkhkkhhkkhkhkhkkhhhkhkhhkhkkhhhkkhhkkkkhdhk kb kh bk kkkhkkkkkdkkdkhkkokk ok k&

efk.m

LT Tony San Jose

Thesis Advisor: R. G. Hutchins
03FEB98

This program uses an EKF to filter the sensor measurement noise
from the ballistic missile base trajectory developed using
SIMULINK Random noise is added in the sensor

measurement process. Actual missile track is generated in
FlatEarthMissle SIMULINK model.

INPUT

missilevec: state vector = [x,Vx,Ax,y,Vy,Ay,z,Vz,Az]"
OUTPUT
mean K track Kdlman estimated positions

************************************;*********************************

Load simulation workspace
clear all

load datl;

missilevec = missilevec';

Define the number of simulation loops
nloops = 10;

Define the sampling interval
delta = .1;

Define the number of samples
nsamples = 1200;

Initialize sensor data
Sensor_posit =[100 * 1000;
100 * 1000;

sensor is 100 km in x
sensor is 100 km in y

oe o

0 * 10001; % sensor 1is 100 km in z
sigma_r = 10; % 10 meters std dev in range
sigma b = 1*pi/180; % 1 degree std dev in azimuth
sigma e = 1*pi/180; % 1 degree std dev in elevation
R = diag([sigma r"2, % covariance matrix for uncorrelated

141

sigma_b"2, % range and bearing measurements
sigma_e”"2]);

oe

Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+1) = F(k)*x(k) + G

f sub = [1, delta, (delta”2)/2;
0, 1, delta;
0, 0, 11;

F =[] £ sub, zeros(3), zeros(3);
zeros (3), f sub, zeros (3) ;
zeros (3), zeros(3), f sub 1;
% Define G matrix
G =-g * [0;
0;
0;
0;
0;
(delta~2)/2;
delta; '
0];

oo

Define the H matrix (MEASUREMENT MATRIX), assuming that the

oo

H=1{1, 0, 0, O
0, 0, 0, 1 ;
0, 0, 0, O , 0, 0};

Initialize Q, the covariance of the plant noise

g*2 = scale factor to system noise covariance matrix Q,

used to account for unmodeled target maneuver acceleration.

e oP o®

q _sgr = 10;

Q sub

[(delta”5)/20, (delta~4)/8, (delta3)/6;
(delta”4) /8, (delta”3)/3, (delta”2)/2;
(delta”~3) /o, (delta”2)/2, delta 1:

Q = g_sqr * [Q sub, zeros(3), zeros(3);
zeros(3), Q sub, zeros (3);

zeros(3), zeros(3), Q sub];

FraFkxkxkxkkr 'End of Initialization outside loops ****xkxsxkkxkx

oe

Loop over the target motion/measurement simulation

oo o

for kk = 1: nloops
tic
kk

142

X, ¥, an z missile positions are observed directly; z(k) = H (k) *x (k)

oe

define empty output matricies

o

% measurement positions (cartesian) w/error
zout_true n = [];

o°

distance error between measurement and true position
error_true = [];

ov

Kalman estimated trajectory
K track = [];
K accel = [];

oe

error between Kalman track and actual track
track _error = [];

hhkkhhkddhhkhkdkhhhkhkhkhdhkdhhhhkhdhhhdhhhhkhrbhhrhkhhhhhkhdkkkhkkkkdhhkkkkkkkdkkh

This block is used for the initialization process. Initialize
from a SWAG.

hhkkhkhhhkhkdkhhdkhhhhhdhhhdhhhhhhdhhhdhdhhhhhhhhhkkhkhkdhkkhhhhkhdddhhhhdx

oo

o o0 o

X _swag = missilevec(2:10,1);
X swag(9) = 6*g;
p_swag eye(9) * 1074;

X_COorr = X _swag;
P _corr = p_swag;

dhkhkhkhhkdkhkhhhhdhbhbhkhhdhkhhdhhhbhdhhdhhhkhdhdrbbrkdk bbb rhhh kb hhkhkkkhdhkkddd

Loop through the simulation, generating target motion between
sample times and taking measurements at each sample time,

using 1 sensor
%***

o o0 oe

o

for ii = 2:nsamples

[}

% Process the measurement from Sensor

% True missile position

ztrue = [missilevec(2,ii);
missilevec(5,ii);
missilevec(8,1ii)];

hkkdhhkhkhhhhdhhhhkdhhhhkdbkhkhddhkhhhbdhkdhhhkdbdhrhhkbdbhrhkdhhkhkhkdhdhhohkhhdkdhhdkhh

convert current position to polar coordinates and add
sensor noise to the position, generating a noisy measurement

from the sensor.
LR A SRR SRR SRR R R R R R R R R i R e R R R R

o®

oP

o% o0 oo

position relative to the sensor

zrel = ztrue - Sensor posit;
range from sensor

r = sqgrt(zrel(1)"2 + zrel(2)"2 + zrel(3)"2);
bearing from sensor

b = atan2(zrel(2), zrel(l));
range in x/y plane

r prime = sqrt(zrel(l)”2 + zrel(2)"2);

o

o

o

oP

143

oe

elevation from sensor

e = atan2(zrel(3), r prime);
add noise to the measurement
rn=1r + sigma_r * randn;
b_. b + sigma b * randn;

e e + sigma e * randn;

o°

i

n
n

oe

measurement in polar + noise
z_polar n = [r n;
b n;
e nl;

% measurement in cartesian coordinates + noise

z_cart_true n = [r prime*cos(b n);
r_prime*sin(b_n);
r n*sin(e n) 1 + Sensor posit;
z_cart_rel n = [r_prime*cos(b_n)

r

r_prime*sin(b n);
r n*sin(e n)]

compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true n;
disterror = sqrt(zdiff'*zdiff);

)

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true nl;

)

s measurement error (between true measurements)
error_true = [error_true, disterror];

Prediction

o0 oo

oe

[}

% Kalman Filter prediction equations
'x_predict = F * x corr + G;
P_predict F * P corr * F' + Q;

I

i

Correction

o o° o°

% Convert to relative position to compute RBE coordinates

x_1 = x predict(l) - Sensor posit(1);
X 4 = X predict(4) - Sensor posit(2);
x 7 = x predict(7) - Sensor posit(3);

o)

% Convert prediction to Range, Bearing, Elevation
coordinates
r_hat
b_hat

]

sqrt(x 172 + X 472 + x 1°2);
atan2(x_4, x 1);

i

144

e _hat = atan2(x 7, sqrt(x 172 + X 472));

o

Determine expected measurement
z_polar_hat = [r hat;

b_hat;

e hat];

Observed minus expected measurements
z_tilde = z polar n - z_polar hat;

oo

o

s The gradient of H evaluated at the most recent estimate

Hk_r2cl = -x_4/(x 12 + x_472);

Hk r2c4 = xnl/(x_lA2 + X 4°2);

Hk_r3cl = (-x 1*x 7)/((sqrt(x_1°2 + x_4°2))*(x_1°2 + x_4°2 + x_7°2));
fk_r3cd = (-x_4*x 7)/((sqrt(x_1°2 + x_472))*(x_1°2 + x 4°2 + x_7°2));
Hk r3c7 = (sqrt(x_172 + x_472))/(x_172 + X_4"2 + x 7"2);

Determine H matrix

= [x_1/r hat, 0, o0, x _4/r_hat, 0, 0, x_7/r hat, 0, 0;
Hk r2el, 0, 0, Hk r2c4, 0, 0, o, 0, O;
Hk r3ci, 0, 0, Hk r3c4, 0, O, Hk r3c7, 0, 0];

jas]
= oo

Compute Kalman Gain
K = P predict * Hk' * inv(Hk * P_predict * Hk' + R);

oe

oe

Correction equations
X_corr = x predict + K * z tilde;
P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)'
+ K*R*K';

oe

Kalman track positions and difference between Kalman
and actual track position and actual target position
zout_K track = H*x corr;

oe

track diff = ztrue - zout_K;track;
track error = [track_error, sqrt(track_diff'*
track diff)];

oo

Update KF track trajectory array
K_track = [K track, zout_K track];

o°

Estimated accelerations

accel out = [x_corr(3,:)
X_corr(6,:)
X _corr(9,:)

7
H
1;

o

% Update KF acceleration array
K accel = [K_accel, accel out];

end; % for ii = 2:nsamples

%***

if kk == 1, % create first output

145

zoutmean_ true = zout_true n;
mean K track = K_track;
mexrror track = track_error;
merror = error_true;

else $ create output after 1st run

zoutmean true = zoutmean true + zout true n;
mean_ K track = mean K track + K track;

merror track = merror_track + track error;
merror = merror + error_ true;

end; % if kk ==1, else
toc

end; % for kk = l:nloops

%****-k**
% Compute Means
%***

zoutmean_true = zoutmean_true/nloops;
mean K track = mean K track/nloops;
merror = merror/nloops; % mean error between

o°

measurement and true position

oe

merror track = merror_track/nloops; mean error between

EKF estimated position
and true position

oo oe

%*****-k***
% Plot results
%***
figure (1)
measurement zoutmean_ true/1000;
Kalman_track mean_ K_track/1000;

missile track = misszlgvec(:,1:nsamples)/1000;

convert to km
convert to km
convert to km

o of oP

plot3(missile track(2,:),missile track(5,:),missile track(8,:)'g-",...
Sensor posit(1)/1000, Sensor posit(2)/1000,..
Sensor_posit(3)/1000, 'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory - 120 seconds'); '’
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z

{km) ') ,grid;
$print -deps c3plsl
figure (2)
plot3(missile_track(2,:),missile_track(5,:),missile track(8,:),g-',...
measurement (1, :), measurement(2,:), measurement(3,:),'r-',...
Sensor posit(1)/1000,Sensor_posit(2) /1000, Sensor posit (3) /1000,
'rx');

axis([0,150,0,150,0,150]);

146

title('Ballistic Missile Base Trajectory with Measurement Noise - 120
seconds');

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;

$print -deps c3pls2

figure (3)
plot3(missile_track(2,1:nsamples),missile_track(S,l:nsamples),m
missile track(8,l:nsamples),'g-',...
Kalman_track(l,:), Kalman track(2,:), Kalman_track(3,:),'r=-",...
Sensor_posit (1) /1000,Sensor_posit(2)/1000, Sensor posit (3)/1000,
'rx');

axis([0,150,0,150,0,150]1);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;

title('Ballistic Missile Base Trajectory and EKF Trajectory - 120
seconds') ;

$print -deps c3pls3

figure(4)

start pt = 1;

stop _pt = 801;

zoom _missile = [(start pt + 1) : (stop_pt)1;

zoom_Kalman = [start_pt : stop_pt-1];

plot3(missile_track(2, zoom missile), missile track(5,zoom missile),
missile_track(8,zoom missile), 'g~',...
Kalman_track(l,zoom Kalman), Kalman track(2,zoom Kalman),
Kalman track(3,zoom Kalman),'r-');

axis([30,60,30,60,0,60]);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;

title(['Z00M - EKF Trajectory Initial ',num2str((stop_pt -
start_pt)/10),' Seconds']);

%print -deps c3pls4

figure (5)
time = missilevec(l,:);
diff_k_base = [Kalman track(l,:) - missile_track(2,2:1200);
Kalman_track(2,:) - missile_track(5,2:1200);
Kalman_ track(3,:) - missile_track(8,2:1200)];

plot(time(2:nsamples), merror, 'g-',...
time(2:nsamples), 1000*sqrt(diff k base(l,:).”2 +
diff k base(2,:).7”2 + diff k base(3,:).72),'r-");

xlabel ("Time (seconds)'), ylabel('Error (meters)'), grid;
title ('EKF Distance Error vs. Time');

legend('Mean Distance Error', 'EKF Distance Error');
gprint -deps c3plsh

147

148

APPENDIX C. SOURCE CODE FOR ALPHA-BETA-GAMMA
TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory .

o0 0P

o0 00 dC 0 o0 o oo

o oP o° o0 o° o

o

oo

o oo

o°

o°

oe

o

R R R o R R R R R R R R i i N e L T e e

abg.m

LT Tony San Jose

Thesis Advisor: R.G Hutchins
O3FEB98

This program uses an Alpha-Beta-Gamma tracker to filter the sensor
measurement noise from the ballistic missile base trajectory
developed using SIMULINK. Random noise is added to the measurement
process. Actual missile track is generated in FlatEarthMissile
SIMULINK model. '

delta = 0.1 sec
nloops = 100
alpha = 0.6

hhkhhkhkhkhhhkhhdhhkhkhhkhhhhhhdbdhhhhhhbhhdhbdhkhhbhhkhkhhkhkhhkhkhhhhbdkhkdkkhhhhkhdkhhdkkhkhk

Load base trajectory simulation workspace

clear all

load datl; % base trajectory developed in SIMULINK model
missilevec = missilevec';

Define the number of simulation loops
nloops = 100;

Define the sampling interval
-delta = .1;

Define the number of samples
[num_rows,num_cols] = size(missilevec);
nsamples = 1200;

Initialize sensor data

Sensor_posit =[100 * 1000; sensor is 100 km in x

oe

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 100 km in z
sigma_r = 10; % 10 meters std dev in range
sigma b = 1*pi/180; % 1 degree std dev in azimuth
sigma e = 1*pi/180; % 1 degree std dev in elevation

Define F matrix (TRANSITION MATRIX) for discrete time
target motion, x(k+1l) = F(k)*x(k) + G

149

f sub = [1, delta, (delta”2)/2;
0, 1, delta;
0, 0, 17];

F=11 f sub, zeros{3), zeros(3);
zeros(3), £ sub, zeros (3);
zeros(3), zeros(3), f sub];

% Define G matrix

G =-g * [0;

0;
0;
0;
0;
0;
(delta~2)/2;
delta; -
01;
% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% X, ¥, an z missile positions are observed directly; z(k) = H(k)*x(k)
H = [ll OI OI 0I OI OI OI O’ 0;
o, 0o, 0, 1, 0o, 0, O, O, O;
0, 0, o, 0O, Ol OI 1, 0, 0];

oe

Define alpha, beta, gamma tracker parameters

alpha = 0.6;
beta = 2*(2-alpha) - 4*sqgrt(l-alpha);
gamma = (beta”2)/(2*alpha);

na = 1;
K abg = [alpha, 0, 0;
beta/ (nu*delta), 0, 0;
gamma/ ((nu*delta)~2),0, 0;
0, alpha, 0;
0, beta/ (nu*delta), 0;
0, gamma/ ((nu*delta) ~2),0;
0, 0, alpha;
0, 0, beta/ (nu*delta);
0, 0, gamma/ ((nu*delta)~2)];
% Define initialization parameters
d sub = [1, O, 0, o, 0, 0, 0;
3/(2*delta), 0, 0, -2/delta, 0, 0, 1/(2*delta);
1/ (delta"2),0, 0, -2/(delta”2),0, 0, 1/delta”2];
D = [d _sub, zeros(3,2);

zeros(3,1), d_sub, zeros(3,1);
zeros(3,2), d_sub];

150

gruxxxskxxdddx End of Initialization outside loops ****kkkkskdkss*

oe

LEEE S SR RS SR SR R R R R R e R e L)

Loop over the target motion/measurement simulation
dhkhkhkhkhkhhhkhhhdhhhdhhhrdhhhhhhhkdrhbhrhkdh bk kb kb hhhhh kb kb bk kkhkkkrhk bk ki

o0 o°

for
tic
kk

[

o0 o0 oo

[]

kk = 1: nloops

% define empty output matricies

=}

% measurement positions (cartesian) w/error
zout_true n = [];

oe

distance error between measurement and true position
error_true = [];

oo

Kalman estimated trajectory
ABG_track = [];

oe

error between Kalman track and actual track
track error = [];

LR R R R R R R R g 0 0 S 0 T O S L S R D G R R . 3

Loop through the simulation, generating target motion between
sample times and taking measurements at each sample time,
using 1 sensor '
Fhkhkhkhkhhkdkhkhdhhkhhkhkhkhhdhhhhhhkkhkhkhbdhhkdkhhdhhhkbkhkhkhhdhhhhkhhhhhhhkdkdkdhddkki

for ii = l:nsamples

Q

% Process the measurement from Sensor

% True missile position

ztrue = [missilevec(2,ii);
missilevec(5,1i);
missilevec(8,1ii)];

Ghhkkhhhhdhkhdhhkhhkdhhkhhhhhkdhhkdhhkdhhhhhhkhkhkdhhkdhdkhhkhhhhdkhhkdhhdhhkkhhkhdkkh

convert current position to polar coordinates and add

sensor noise to the position, generating a noisy measurement
from the sensor.
hhkhkhkhkhhkkhkhhhkhkdhhkdhkhhkhkhkhhkhhhdhdkhhdkhkhkkkhkhkhdkhkdkkhkdkdkhhkdkkhdhdhhdkkdkkdhdkk

oe

oe

oo oe

% position relative to the sensor
© zrel = ztrue - Sensor_ posit;

r = sqrt(zrel(1l)"2 + zrel(2)"2 + zrel(3)"2);

% range from sensor

b = atan2(zrel(2), zrel(l)):

[+}

% bearing from sensor

151

r_prime = sqrt(zrel(l)"2 + zrel(2)"2);

% range in x/y plane

e = atan2(zrel(3), r_prime);

% elevation from sensor

oe

add noise to the measurement

rn=r+ sigma_r * randn;
b n =D>b + sigma b * randn;
en=e + sigma_e * randn;

oe

measurement in polar + noise
z_polar n = [r n;
b n;
e n];

oo

measurement in cartesian coordinates + noise

z_cart_true n = [r_prime*cos(b _n);
r_prime*sin(b_n);
r n*sin(e_n) 1 + Sensor_posit;
z_cart_rel n = [r_prime*cos(b n)

r_prime*sin(b_n);

r n*sin(e n)]

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true n;
disterror = sqrt(zdiff'*zdiff);

Q

% Update the measurement array

% true cartesian measurement + error
zout_true n = [zout_true_n, z_cart_true n];

measurement error (between true measurement & true
measurement w/noise)

error_true = [error_ true, disterror];

if ii > 2 % For intialization from the first 3 measurements

%***

Prediction

* o°

% Initialization using the first 3 measurements
if ii == 3
X corr =D * [zout_true_n(:,3);
zout_true n(:,2);
zout_true n(:,1)1;
end; %if ii==
% ABG Filter prediction equations
X_predict = F * x corr + G;

152

Correction

o0 oe

o°

o)

5 Convert to relative position to compute RBE

coordinates
®x_ 1 = x predict(1l) - Sensor posit(1);
X 4 = x predict(4) - Sensor posit (2);
x 7 = X _predict (7) -~ Sensor_posit(3);

% Convert prediction to Range, Bearing, Elevation
coordinates

r_hat = sqrt(x 172 + X 472 + x 772);

b _hat atan2(x 4, x 1);

e hat atan2 (x_7, sgrt(x_ 172 + X _472));

% Determine expected measurement
z_cart_exp rel = [r_hat*cos(b_hat)*cos(e~hat);
r_hat*cos(e_hat)*sin(b_hat);
r_hat*sin(e_hat)];

z_cart_exp true = z_cart_exp rel + Sensor posit;

o

Observed minus expected measurements
z_tilde ¢ = z_cart rel n - z_cart_exp rel;

Correction equations
X_corr = x predict + K abg * z_tilde c;

oe

% Alpha-Beta-Gamma track positions and difference
between ABG and

% actual track position and actual target position
zout_ABG track = H * X_corr;

track diff = ztrue - zout_ ABG_track;
track error = [track_error,
sqrt(track_diff'*track_diff)];

oo

Update ABG track trajectory array
ABG _track = [ABG_track, zout_ABG track];

if ii>2

o

end;

end; % for ii = l:nsamples

%**

if kk == 1, % create first output

zoutmean_true = zout_true n;
mean ABG_track = ABG_track;

153

merror_track = track_error;

merror = error_ true;
else % create output after 1lst run
zoutmean_true = zoutmean_true + zout_true n;

mean ABG_track = mean ABG_track + ABG_track;
merror track = merror_track + track error;
merror = merror + error_true;

end; % if kk ==1, else
toc
end; % for kk = 1l:nloops

o

*************************~k***

Compute Means
******************~k*********************-k******************************

o0

oe

zoutmean true = zoutmean_true/nloops;
mean_ ABG_ track = meanﬁABG_track/nloops;
merror = merror/nloops; $ mean error between

oo

measurement and true position
merror_track = merror_track/nloops; mean error between
EKF estimated position
and true position

o0 d° oP

%*********-k*******************-k**
: .

% Plot results
%***~k**************************

figure(l)
measurement = zoutmean_true/1000; % convert to km
ABG = mean_ ABG_track/1000; % convert to km

missile track = missilevgc(:,1:nsamples)/1000; convert to km

plot3(missile track(2,:), nissile_track(5,:), missile_track(S,:),'g—

7 e v

_ Sensor_posit(l)/lOOO, Sensor_ posit(2)/1000,
Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);

title('Ballistic Missile Base Trajectory - 120 seconds');
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km) '), grid;
print -deps c4flc

figure(2)
plot3(missile~track(2,:),missile_track(S,:),missile_track(S,:),'gw‘,...
measurement (1, :), measurement(2,:), measurement (3, :), 'r-"

Sensor_posit(l)/lOOO,Sensor_posit(Z)/lOOO,Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);

title('Ballistic Missile Base Trajectory with Measurement Noise - 120
seconds');
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km) '), grid;

154

print -deps c4f2c

figure (3)
plot3(missile_track(2,:),missile_track(S,:),missile_track(8,:),'g-
ABG(1l, l:nsamples-2), ABG(2,l:nsamples-2), ABG(3,1l:nsamples-2),'r-",
Sensor_posit(l)/lOOO,Sensor_posit(2)/1000,Sensor_posit(3)/lOOO,'rx');

axis([0,150,0,150,0,150]);

xlabel ("X (km)'), ylabel('Y (km)'), zlabel('Z (km) ") ,grid;

title('Ballistic Missile Base Trajectory and ABG Trajectory - 120
seconds');

print -deps c4f3c

figure (4)

start_pt = 1;

stop pt = 401;

zoom_missile = [(start pt + 1) : (stop_pt)1;

zoom_Kalman = [start_pt : stop_pt-1];

plot3(mlss1le _track(2, zoom m1551le), missile_ track(5, zoom missile),
missile track(8, zoom missile), 'g-'
ABG (1, zoom Kalman), ABG(2,zoom Kalman), ABG(3, zoom Kalman),'r-');

axis([30,60,30,60,0,60]);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
title(['Z00M - ABG Trajectory Initial ',num2str((stop_pt -
start pt)/10),' Seconds'});

print -deps c4fdc

figure (5)
start pt = 1;
stop _pt = 601;
zoom _missile = [(start_pt + 1) : (stop pt)1;
zoom_Kalman = [start_pt : stop pt-1];
plot3(m1551le _track(2, zoom m1551le), missile track(5 zoom missile),
missile _track(8,zoom missile), 'g-'
ABG(1l, zoom_ Kalman), ABG(2, zoom_Kalman), ABG (3, zoom Kalman), 'r-');

axis([30,60,30,60,0,60]);

xlabel('X (km)'), ylabel('Y (km)'), zlabel('Z (km) '), grid;
title(['Z200M - ABG Trajectory Initial ',num2str((stop_pt -
start_pt)/10),"' Seconds']);

print -deps c4f5c

figure (6)
start pt = 1;
stop_pt = 801;
zoom missile = [(start pt + 1) : (stop pt)1:
zoom_Kalman = [start_pt : stop pt-1];
plot3(missile_track(2,zoom missile), missile_track(5,zoom missile),
missile track(8,zoom missile),'g-"', ..
ABG (1, zoom_Kalman), ABG(2, zoom_Kalman), ABG (3, zoom Kalman), 'r-');

axis([30,60,30,60,0,60]);
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km) '), grid;

155

title(['ZOOM - ABG Trajectory Initial ',num2str((stop_pt -
start_pt)/10),' Seconds']);
print -deps cd4féc

figure(7)
time = missilevec(l,:);
diff ABG base = [ABG(l,:) - missile_track(2,3:nsamples);
ABG(2,:) - missile_track(S,3:nsamples);
ABG(3,:) = missile_track(8,3:nsamples)];

plot (time(l:nsamples), merror, 'g-',...
time (3:nsamples), lOOO*sqrt(diff_ABG_base(l,:).A2 +
diff ABG base(2,:).72 + diff ABG base(3,:).”2),'r-");

xlabel ('Time (seconds)'), ylabel ('Error (meters)'), grid;
title('ABG Distance Error vs. Time');

saxis([2 ,120, 0, 3000}1);)

legend('Mean Distance Error', '"ABG Distance Error');

print -deps c4f7c

figure(8)
plot(time(l:nsamples),merror,'g—’,time(3:nsamples),merror_track,'r-‘);
xlabel ('Time (seconds)'),ylabel ('Mean Error (meters)'),grid, title('Mean
Distance Error in Measurements vs Time');% (', numZstr(nloops), ' runs,
'ynum2str (nsamples), ' data points) ']),grid;

print -deps c4f8c

156

o0

APPENDIX D. SOURCE CODE FOR INTERACTING
MULTIPLE MODEL TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory .

hkdkhhkdhhkhhhhhhhhhdhhhkhdhkhbhkhbdbdhkh b bbb bk hkhdh bk hkdrhkhkhkhkdkhhkhhdh ok kkkdk ok dkk ki
imm.m

LT Tony San Jose

Thesis Advisor: R.G Hutchins

O3FEB98

This program generates a Kalman filter missile track using IMM with
2 models: an accelerating model and a ballistic model.
The filter is initialized is from the missile launch position.

Random noise is added in the sensor measurement process.
Actual missile track is generated in FlatEarthMissle SIMULINK model.

A0 o0 o0 00 o [] 00 [J o° o° 0¢ o0 o o° oo

*******************-k**9‘:******
% Load simulation workspace
clear all
load datl;
missilevec = missilevec';

Define the number of simulation loops
nloops = 100;

o

Define the sampling interval
delta =.1;.

% Define the number of samples
[num_rows,num_cols] = size(missilevec);
nsamples = 1200;

% Define g”2
g _sgr = 10;
% Initialize sensor data
Sensor posit =[100 * 1000; % sensor is 100 km in x
100 * 1000; % sensor is 100 km in y
0O * 1000]; % sensor is 0 km in z

oe

sigma_r = 10;
sigma b 1*pi/180;
sigma_e 1*pi/180;

10 meters std dev in range
1 degree std dev in azimuth
1 degree std dev in elevation

ft

oo oo

157

R = diag([sigma_r”Z, % covariance matrix for
uncorrelated

sigma b"2, % range and bearing measurements

sigma e”2]);

oo

Define the H matrix (MEASUREMENT MATRIX) for the accelerating
% model

H=1[1 0,0, 0, 0, O, O, O, 0;
0, o, 0, 1, 0, 0, 0, 0, O;
0, 0, O, 0, 0, 0, 1, 0, 01;

o

**
ACCELERATING MODEL
**
% Define G matrix
G_accel = -g * [

oo

oe

;

0
0;
0;
0;
0

0;
(delta~2)/2;

delta;

01:

% Initialize Q, the covariance of the plant noise

Q_sub_a = [(delta”5)/20, (delta”4)/8, (delta”3)/6;
(delta”4)/8, (delta”3)/3, (delta”2)/2;
(delta~3)/6, (delta~2)/2, delta 1;

Q_accel = q_sqr * [Q sub _a, zeros(3), zeros(3);

zeros(3), Q sub a, zeros(3});
zeros(3), zeros(3), Q sub a 1;

% Define F matrix (TRANSITION MATRIX) for discrete time
% accelerating model.

f sub a = [1, delta, (delta”2)/2;
0, 1, delta;
0, 0, 11;

F accel [f_sub_a, zeros(3), zeros(3

)
zeros(3), f_sub a, =zeros(3);
zeros (3), zeros(3), f sub a];

’

o°

**
BALLISTIC MODEL
**
Define G matrix
G _ball = -g * [0;
0;
0;

oo

o0 o°

158

0;

0;

0;
(delta”2)/2;

delta;

0];

3

% Detemine Q for the Ballistic model

Q sub b = [(delta”3)/3, (delta”2)/2, 0;
(deltar2)/2, delta, 0;
0, 0, 01;

Q ball = g sqr * [Q_sub b, zeros(3), zeros(3);
zeros(3), Q _sub b, zeros(3);
zeros (3), zeros(3), Q sub b];

% Define F matrix (TRANSITION MATRIX) for discrete time
% ballistic model.
f sub b = [1, delta, 0;
0, 1, 0;
o, - 0, 0 1;
F ball = [f _sub b, zeros(3), zeros(3);
zeros(3), f_sub b, =zeros(3);
zeros(3), zeros(3), f sub b 1;

grxEkxkkxxkdkx End of Initialization outside loops ****kkkkkkskks*

Fhhkkdkhkdhdhhhkhhhkhhhhhhhkdhhhhhhhhhhrhdhhdhdrrhkhkdrbhrbhb b hk b hrhkkhkdkk ki xk

Loop over the target motion/measurement simulation
LR A R S S S SRR LSRR R R E R R R R R R R N e L R R R Y

for kk = 1: nloops

o0 o°

o

tic
kk
% define empty output matricies

% measurement positions (cartesian) w/error
zout_true n = [];

o°

distance error between measurement and true position
error true = [];

o0

Kalman estimated trajectory
K track = [];
K accel (1;

% error between Kalman track and actual track
track error = [];

khkhkhkhhkhkhdhkdhdhdhhkrhhkhdhhkhhhhkdhhh kb hkhdrhhkhhdkd b hhhohh kb rkhrddk bk rrhkdhrd

%
% This block is used for the initialization process. Initialize
% from launch position.

159

%***

X_corr_ accel
P_corr_accel

missilevec(2:10,1);
eye(9) * 1074;

X_corr ball = missilevec(2:10,1);
P_corr_ball eye(9) * 1074;

% Initial likelihoods for states.
mu_init = [1;
0]:

mu = mu_init;
mu 1l = mu(l)
mu 2 = mu(2)

~e N

Loop through the simulation, generating target motion between
sample times and taking measurements at each sample time,
using 1 sensor

for ii = 2:nsamples

o° o0 d° o oo

[

% Process the measurement from Sensor

% True missile position

ztrue = [missilevec(2,ii);
missilevec(5,ii);
missilevec(8,ii)];

%***

% convert current position to polar coordinates and add

sensor noise to the position, generating a noisy measurement
from the sensor.

oe 0@ o°

[}

% position relative to the sensor
zrel = ztrue - Sensor posit;

r sqrt(zrel(1)"2 + zrel(2)72 + zrel(3)"2); % range

from sensor

b = atan2(zrel(2), zrel(l)); % bearing
from sensor
r_prime = sqgrt(zrel(l)~2 + zrel(2)"2); % range in
x/y plane
e = atan2(zrel(3), r_prime); % elevation

from sensor

Q

% add noise to the measurement

160

= r + sigma_r * randn;
= b + sigma b * randn;
= e + sigma_e * randn;

o U R
o lie R
I

[

% measurement in polar + noise
z_polar n = [r n;
b n;
e _nj;
% measurement in cartesian coordinates + noise
z_cart_rel n = [r_prime*cos(b_n);
r_prime*sin(b_n);
r n*sin(e n)];

z_cart_true_n = z_cart_rel n + Sensor posit;

% computé measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true n;
disterror = sqrt{zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error
zout_true n = [zout_true n, z_cart_true njl;
% measurement error (between true measurements)
error_true = [error true, disterror];

hhkhkhhkdhhdhkdhkhhdhhhdhhdhbdhhdhhh bbb hkhhkd bbb bk rdhdhd bk r kb r ke hkkhh

o° oP

Prediction
***‘**

oo

$ Probabilities of changing state, Markov chain

transition
pl = 1;

p2 = 0.5;
alt = 50e3;

h = z_cart_true n(3);
prob_accel = -p2*(1/(l4+exp(-.0005* (h-alt))) - (1l+pl));
prob_ball = 1 - prob accel;

rho = [prob_accel, prob ball;
0, 1 1:

% Accelerating Model
cbar = rho' * mu;

if cbar(l) < 107 (-8) % prevents cbar_ 1 from
blowing up

161

cbar 1 = 10~(-8);

else
cbar_1
end;

It
Q
o’
o)
R
=

cbar 2 = cbar(2);

rho 11 = rho(1,1);
rho 21 = rho(2,1);
rho 12 = rho(1,2);
rho_22 = rho(2,2);

x_hat_0l1 = x_corr accel * ((rho_11*mu_1) /cbar 1) +
x_corr_ball * ((rho_21*mu_2)/cbar 1);

xtilde_11 = x corr _accel - x_hat 01;
xtilde 21 x_corr_ball - X hat 01;

mu_1l1 = rho_11 * mu_1 / cbar_ 1;
mu_21 = rho_21 * mu 2 / cbar 1;

P_hat_01 = mu_11 * (P_corr accel +

xtilde_1ll*xtilde 11') +

mu 21 * (P corr ball +

xtilde 21*xtilde 21');

model

Q accel;

o0 o

oo

Kalman Filter Prediction Eguations for Accelerating

x_predict _accel F_accel * x hat_01 + G_accel;
P_predict_accel = F_accel * P_hat 01 * F _accel' +

oe

Ballistic Model
x_hat_02 = x_corr accel * ((rho_12*mu_1) /cbar _2) +
X corr“ball * ((rho_ 22%mu | 2)/cbar 2);

xtilde 12 = x_corr_accel - x_hat 02;
xtilde 22 = x_corr_ball - x_hat_ _02;

mu_12 = rho_12 * mu_1 / cbar_ 2;
mu_22 = rho_22 * mu_2 / cbar 2;

P_hat 02 = mu_12*%(P_corr accel + xtilde 12*xtilde 12')

mu_22*(P_corr_ball + xtilde_22*xtilde 22');

14

oe

Kalman Filter Prediction Equations for Ballistic model
X _predict ball = F _ball * x hat 02 + G _ball;
P predict_ball = F ball * P_hat_ _02 * F ball' + Q ball;

Correction

162

coordina

Hk r2cl
Hk_r2c4
Hk r3cl
Hk r3c4
Hk _r3c7

Hk

K_accel

3
%

tes

It

I

R RS R S SRR R SRR R R R R R R ER R R R R R g L R

Accelerating Model

o

°

[}

% Convert to relative position to compute polar

x_1 = x predict_accel(l) - Sensor posit(l);
x_4 = x predict_accel(4) - Sensor posit(2);
x_7 = x_predict_accel(7) - Sensor posit(3);

Convert prediction to polar coordinates

r_hat_a

sqgrt (x_172 + x 472 + X 1"2);

b hat a = atan2(x_4, x 1);

%

e _hat a

oo

atan2(x 7, sgrt(x_172 + x_472));

Determine expected measurement

z_polar _hat_a = [r_hat_a;

b _hat_a;
e _hat a]l;

% Observed minus expected measurements
z_tilde_a

o°

= z_polar n - z polar hat a;

The gradient of H evaluated at the most recent estimate
-x_4/(x_ 172 + x_4"°2);

x 1/(x_ 172 + x_472);

(=x_1*x_7)/((sqrt(x_172 + x_472))*(x_ 172 + x_4

(-x_4*x_7)/((sqrt(x_1"2 + X _472))*(x_ 172 + x 47
(sqrt(x_172 + x _472))/(x_1"2 + x 472 + x 77°2);

A

"2y)i

2 + x
2+ x 7°2));

Determine H matrix

a =[x 1/r_hat a,

%

Hk r2cl,
Hk_r3cl,

0, 0, x 4/r_hat_a, 0, O, x_7/r_hat a, 0, 0;

0
0

, 0, Hk r2c4, 0, 0, 0, 0, 0O;
, 0, Hk r3c4, 0, 0, Hk_r3c7, 0,01:;

% Compute Kalman Gain
= P_predict_accel * Hk a'*inv(Hk_a*P_predict_accel * Hk _a' + R);

% Kalman Filter

o

o

X_corr_accel
P_corr_accel

Correction equations for Acclerating Model
x_predict_accel + K_accel * z_tilde a;
(eye(9) - K accel*Hk a)* P_predict_accel;

Ballistic Model
% Convert to relative position to compute polar

coordinates
x_1 = x predict_ball(l) - Sensor posit(l);
x_3 = x predict_ball(4) - Sensor posit(2);
x_5 = x predict_ball(7) - Sensor posit(3);

Convert prediction to polar coordinates

r_hat b

b _hat b =

e_hat b

sqrt(x_1"2 + x_372 + x 5°2);
atan2(x 3, x 1);
atan2(x_5, sqrt(x 172 + x_372));

163

[

% Determine expected measurement
z_polar_hat_b = [r_hat b;
b_hat b;
e_hat_b];
% Observed minus expected measurements
z_tilde b = z polar_n - z_polar_hat b;

% The gradient of H evaluated at the most recent estimate

Hk r2cl = -x_3/(x_172 + X _372);

Hk r2cd4 = x 1/(x 172 + x _372);

Hk r3cl = (-x_1*x 5)/((sqrt(x 12 + x 3" 2))*(x_ 172 + X 372 + X 572));
Hk_r3c4 = (—x_3*x~5)/((Sqrt(x 172 + x 3A2))*(X 172 + X 372 + x 5“2));
Hk r3c7 = (sqrt(x_172 + X 37°2))/(x_ 172 + x 372 + x 5A2),

[+

% Detérmine H matrix

Hk b = [x 1/r hat b, 0, 0, x 3/r hat b, 0, 0, x_5/r_hat b, 0, 0;
Hk r2cl, 6, 0O, Hk r2c4, 0, O, 0, 0, 0;
Hk r3ci, 0, o, Hk r3c4, 0, 0, Hk_r3c7, 0,01;

% Compute Kalman Gain
K ball = P predict ball * Hk_b'*inv(Hk_b*P_predict_ball* Hk b' + R);
% Kalman Filter Correction equations for the Ballistic Model
X_corr ball = x_predict _ball + K _ball * z_tilde b;
P_corr_ball = (eye(9) - K_ball*Hk~b)* P_predlct_ball;

%**

Q

% Update mode probabilities

B3 **

m = 3;

S_1 = Hk a * P_predict accel * Hk a' + R;
lambda_1 = (exp(-(z_ tilde a)'*an(S _1)y*z tilde - a/2
))/(sqrt((2*pi) “m*det (S_1)));

S 2 =Hkb *P _predict ball * Hk b' + R;
lambda 2 = (exp(-(z_tilde b)'*an(S _2)*z _tilde b/2)) /
(sqrt{ (2*p1) m * det (S 2)))

¢ = lambda_1 * cbar_1 + lambda_2 * cbar 2;

I

mu_l = lambda 1 * cbar 1/c;

mu_2 = lambda_2 * cbar 2/c;
mu = [mu_1;
mu 2];

**

o

°

% Produce Combined Estimates
%**

X_corr = mu 1 * x _corr_accel + mu 2 * X_corr ball;
P COorr = mu l*(P corr accel+(x corr accel-

164

x_corr)*(x_corr_accel-x_corr)')+.
mu_2*(P_corr_ball +(x_corr ball-
x_corr)*(x_corr _ball- x corr)');

Ghhhhdkhhhdkhhkhdhhhhkdhhhdhkkhhdhhh ok kb hhhhhkkkkhkkkkkkhkhkhkkhdkhk ks hkhkokk ok ko

% Kalman track positions and difference between Kalman

and actual track position and actual target position
zout_K track = H*x corr;

[

track diff = ztrue - zout K track;
track error = [track error,
sgrt (track diff'*track diff)];
% Update KF track trajectory array
K track = [K_track, zout K track];

end; % for ii = 2:20:nsamples

Ghhkdhkdhdkkhkkdhdhhhhhkh bk hhhhdhhhhdhhkhhhhhhk kb kkkk bk kk bk hkdkhkkhkkhkhdkhkdkkkhkkk

if kk == 1, . % create first output

zoutmean true = zout_ true n;
mean_K_track = K_track;
merror_ track = t;ack_error;
merror = error_ true;

else % create output after 1lst run

zoutmean_true = zoutmean_ true + zout_true n;
mean_ K track = mean K track + K_track;
merror_ track = merror_ track + track_error;
merror = merror + error true;

]

end; % if kk ==1, else
toc

end; % for kk = l:nloops

oo

L R R 2 Rt e S L Pt S S S A N P P P S R PR A
Compute Means
hhkhkhkhhhhkhkhkhkhkhhhhkhkhhhbhdhhhrbhkhkhdhhdhhkhkdhdrrArhkhkd kb hhhhrhb kb hdkdkdkhhdktk
zoutmean true
mean K track
merror

o0 oe

zoutmean_true/nloops;
mean_K_track/nloops;
merror/nloops; % mean error between

Q

% measurement and true position

i

merror_track = merror_track/nloops; % mean error between

EKF estimated position
and true position

o o

165

%***

% Plot results
%***

figure (1)
measurement = zoutmean true/1000;
Kalman_track mean_K track/1000;
missile track missilevec(:,1l:nsamples)/1000;

oo

convert to km
convert to km
convert to km

o°

oe

plot3(missile_track(2,:),missile_track(S,:), missile_track(8,:)

7 oo

Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/lOOO,'rx‘);

axis([0,150,0,150,0,150]);

title('Ballistic Missile Base Trajectory - 120 seconds');

xlabel('x - km'), ylabel('y - km'), zlabel('z - km'),grid;
print ~deps ch5fla

figure(2)
plot3(missile_track(2,:),missile_track(S,:), missile_track(8,:),...
measurement(l,:),measurement(Z,:),measurement(3,:),...

Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory with Measurement Noise - 120
seconds') ; '
xXlabel('x - km'), ylabel ('y - km'), zlabel('z - km'),grid;
print -deps ch5f2a

figure (3)
plot3(missile_track(2,:),missile_track(S,:),missile_track(8,:),'g—

T
14

Kalman_track(l,:),Kalman_track(Z,:),Kalman_track(3,:), ‘r=');
axis([0,150,0,150,0,150]);
xlabel('x - km'), ylabel('y - km'), zlabel('z - km'),grid;
title('Ballistic Missile Base Trajectory and IMM Trajectory - 120

seconds');

print -deps ch5f3a

figure (4)

start_pt = 1;

stop_pt = 401;

zoom _missile = [(start_pt +1) : (stop pt)1:

zoom_Kalman = [start pt : stop_pt-1];

plot3(missile~track(2,zoom_missile),missile_track(S,zoom_missile),
missile_track(8,zoom_missile),'g—',...

Kalman_track(1l,zoom Kalman),

Kalman_track(Z,zoom_Kalman),Kalman_track(S,zoomuKalman),'r—');

axis([30,60,30,60,0,60]);

xlabel ('X (km)'), ylabel ('Y (km) '), zlabel('Z (km) "), grid;

166

title(['Z00OM - IMM Trajectory Initial ',num2str((stop pt -
start pt)/10),"' Seconds']);
print -deps ch5f4a

figure (5)

start pt = 1;

stop_pt = 601;

zoom missile = [(start_pt +1) : (stop pt)1;

zoom_Kalman = [start pt : stop pt-1];

plot3(missile_track(Z,zoom_missile),missile_track(S,zoom_missile),
missile track(8,zoom missile),'g-",...

Kalman track(l,zoom Kalman),

Kalman_track(Z,zoom_Kalman),Kalman_track(3,zoom_Kalman),'r—');

axis([30,60,30,60,0,601);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;

title(['Z00M - IMM Trajectory Initial 'ynum2str ((stop_pt -
-start_pt)/10),' Seconds']);
print -deps ch5f5a

figure (6)

start pt = 1;

stop_pt = 801;

zoom _missile = [(start_pt +1) : (stop pt)];

zoom_Kalman = [start_pt : stop_pt-1];

plot3(missile_track(2,zoom missile),missile track(5,zoom missile),
missile track(8,zoom missile),'g-",...

Kalman_track(1l,zoom Kalman),

Kalman_track(Z,zoom_Kalman),Kalman_track(B,zoom_Kalman),'r—');

axis([30,60,30,60,0,60]);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;

title(['ZOOM - IMM Trajectory Initial 'ynum2str ((stop_pt -
start pt)/10),' Seconds']);
print -deps ch5fé6a

figure(7)
time = missilevec(1,:);
diffﬁIMM_base = [Kalman_track(l,:) - missile track(2,2:nsamples);
Kalman_track(2,:) - missile track(5,2:nsamples);
Kalman_track(3,:) - missile track(8,2:nsamples)];

plot (time(2:nsamples), merror, 'g—',!..
time (2:nsamples), 1000*sqgrt (diff IMM base(l,:).”2 +
diff IMM base(2,:).72 + diff IMM base(3,:)."2),'r-");

xlabel ('Time (seconds)'), ylabel('Error (meters)'), grid;
title('IMM Distance Error vs. Time');

legend('Mean Distance Error','IMM Distance Error');
print -deps c5f7a

figure(8)

plot (time(2:nsamples), merror, 'g-', time (2:nsamples), merror_ track, 'r-

')

167

xlabel ('Time (seconds)'),ylabel ('Mean Error
(meters) '"),grid,title('Mean Distance Error in Measurements vs Time');$%

(", num2str(nloops),' runs, ',numZ2str (nsamples),' data points) ')),grid;
print -deps c5f8a

save imml00

168

APPENDIX E. TBM PROFILES

A. TBM PROFILE NUMBER 1

Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
| (sec) (km) (km) (sec) (km) (km)

0 36.0 0.000 0.000 33 60.6 7.023 3.195

1 36.3 0.006 0.000 34 62.4 7.469 3.491

2 36.6 0.026 0.000 35 64.2 7.928 3.803

3 36.9 0.058 0.000 36 66.0 8.402 4.132

4 37.2 0.103 0.000 37 68.4 8.890 4479

5 37.5 0.163 0.001 38 70.8 9.393 4.844

6 37.8 0.235 0.004 39 73.2 9.911 5.229

7 38.1 0.322 0.010 40 75.6 10.444 5.633

8 38.4 0.423 0.020 41 78.0 10.992 6.057

9 38.7 0.537 0.036 42 81.2 11.556 6.502

10 39.0 0.666 0.058 43 84.4 12.136 6.969

11 39.5 0.809 0.087 44 87.6 12.732 7.459

12 40.0 0.965 0.124 45 90.8 13.345 7.973

13 40.5 1.136 0.171 46 [94.0 13.975 8.511

14 41.0 1.321 0.226 47 96.0 14.622 9.075

15 41.5 1.520 0.292 48 98.0 15.288 9.665

16 42.0 1.733 0.367 49 100.0 15.972 10.282
17 42.5 1.962 0.453 50 102.0 16.675 10.928
18 43.0 2.204 0.550 51 104.0 17.397 11.604
19 43.5 2.460 0.658 52 104.6 18.140 12.309
20 44.0 2.731 0.777 53 105.2 18.904 13.045
21 45.0 3.015 0.908 54 105.8 19.690 13.813
22 46.0 3.312 1.050 55 106.4 20.499 14.613
23 47.0 3.623 | 1.205 56 107.0 21.332 15.446
24 48.0 3.948 1.372 57 1064 -~ |22.190 16.314
25 49.0 4.286 1.551 58 105.8 23.075 17.217
26 50.6 4.637 1.744 59 105.2 23.986 18.155
27 52.2 5.001 1.950 60 104.6 24.925 19.131
28 53.8 5.378 2.170 61 104.0 25.894 20.145
29 55.4 5.769 2.404 62 98.0 26.894 21.199
30 57.0 6.174 2.652 63 80.0 27.925 22.293
31 58.8 6.591 2.916 62.5 1200 28.450 22.850

169

B. TBM PROFILE NUMBER 2
Time Intensity | Altitude | Range | Time Intensity | Altitude | Range

| (sec) (km) (km) (sec) (km) (km)
0 136.26 0.0000 0.0000 |33 136.26 7.4687 3.4908
1 136.26 0.0064 0.0000 |34 136.26 7.9283 3.8028
2 136.26 0.0256 0.0001 |35 136.26 8.4021 4.1320
3 136.26 0.0579 0.0002 |36 136.26 8.8904 4.4790
4 136.26 0.1035 0.0001 |37 136.26 9.3933 4.8443
5 136.26 0.1626 0.0009 |38 136.26 99111 5.2287
6 136.26 0.2355 0.0039 |39 136.26 10.4440 5.6326
7 136.26 0.3222 0.0100 |40 136.26 10.9922 6.0569
8 136.26 0.4228 0.0203 |41 136.14 11.5560 6.5022
9 136.26 0.5374 0.0358 |42 136.00 12.1358 6.9694
10 136.26 0.6661 0.0576 |43 135.86 12.7319 7.4594
11 136.26 0.8087 0.0868 |44 135.72 13.3448 7.9729
12 136.26 0.9653 0.1243 | 45 135.58 13.9748 8.5110
13 136.26 1.1359 0.1707 | 46 135.44 14.6224 9.0746
14 136.26 1.3207 0.2264 |47 135.30 15.2879 9.6647
15 136.26 1.5199 0.2919 |48 135.16 15.9718 10.2823
16 136.26 1.7335 0.3675 |49 135.02 16.6746 10.9285
17 136.26 1.9615 04535 |50 134.88 17.3969 11.6039
18 136.26 2.2038 0.5503 |51 134.74 18.1396 12.3093
19 136.26 2.4602 0.6581 |52 134.60 18.9036 13.054
20 136.26 2.7305 0.7771 |53 134.46 19.6897 13.8131
21 136.26 3.0146 0.9078 | 54 134.32 20.4989 14.6132
22 136.26 3.3123 1.0502 |55 134.18 21.3321 15.4465
23 136.26 3.6234 1.2047 | 56 133.43 22.1903 16.3140
24 136.26 | 3.9479 1.3717 |57 130.50 23.0745 17.2166
25 136.26 42856 [1.5513 |58 127.00 23.9859 18.1553
26 136.26 4.6366 |1.7439 |59 121.00 24.9255 19.1312
27 136.26 5.0008 1.9499 |60 111.00 25.8944 20.1453
28 136.26 5.3784 2.1697 |61 86.00 26.8938 21.1987
29 136.26 5.7692 24037 |62 65.00 27.9250 22.2926
30 136.26 6.1736 2.6524 |63 20.00 28.9836 23.4225
31 136.26 6.5915 29161 |64 0.00 30.0367 24.5560
32 136.26 7.0231 3.1954

170

C. TBM PROFILE NUMBER 3
Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
| (sec) (km) (km) (sec) (km) (km)

0 36.40 0.8230 0.0025 |35 67.86 8.8360 4.5970
1 36.40 0.8291 0.0025 |36 70.20 9.3060 4.9690
2 36.66 0.8478 0.0026 |37 72.28 9.7900 5.3600
3 36.66 0.8791 0.0027 |38 74.62 10.2900 5.7700
4 36.66 0.9231 0.0049 |39 77.48 10.8000 6.2020
5 36.66 0.9796 0.0124 |40 80.08 11.3300 6.6540
6 36.66 1.0490 0.0254 |41 82.94 11.8800 7.1280
7 36.92 1.1310 0.0437 |42 85.80 12.4400 7.6250
8 37.18 1.2260 0.0675 |43 88.66 13.0100 8.1440
9 37.44 1.3350 0.0974 |44 91.78 13.6100 8.6880
10 37.44 1.4570 0.1338 |45 94.64 14.2200 9.2560
11 37.70 1.5920 0.1773 | 46 96.72 14.8500 9.8500
12 37.96 1.7400 0.2286 | 47 98.80 15.5000 10.4700
13 38.22 1.9020 0.2881 |48 100.88 16.600 11.1200
14 38.74 2.0780 0.3564 |49 102.18 16.8500 11.7900
15 39.52 2.2670 0.4339 |50 103.48 17.5600 12.5000
16 40.30 2.4690 0.5211 |51 104.52 18.2800 13.2300
17 41.34 2.6850 0.6186 |52 105.56 19.0300 14.0000
18 42.38 29140 0.7268 |53 106.60 19.8000 14.7900
19 43.42 3.1570 0.8462 | 54 107.38 20.5900 15.6200
20 44.46 3.4140 0.9771 |55 108.42 21.4100 16.4800
21 45.50 3.6840 1.1200 | 56 109.20 22.2500 17.3800
22 46.80 3.9660 1.2750 |57 109.72 23.1200 18.3100
23 48.10 4.2620 1.4430 |58 109.98 224.0200 | 19.2700
24 49.40 4.5710 1.6240 | 59 98.28 24.9400 20.2700
25 50.96 4.8930 1.8180 | 60 86.32 25.8900 21.3100
26 52.26 5.2280 2.0270 |6l 52.26 26.8700 22.3800
27 53.82 5.5760 22490 |62 14.12 27.8900 23.5000
28 55.38 5.9370 24860 |63 8.11 28.9300 24.6500
29 56.94 6.3110 2.7390 | 64 6.08 30.0100 25.8500
30 58.76 6.6980 3.0060 |65 5.93 31.1200 27.0900
31 60.32 7.0980 3.2900 |66 5.80 32.2700 28.3700
32 62.14 7.5120 3.5910 |67 5.80 33.4600 29.6900
33 63.96 7.9400 3.9080 |68 5.80 34.6800 31.0700
34 65.78 8.3810 4.2430 |69 5.80 35.9500 32.4900

171

D. TBM PROFILE NUMBER 4
Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
| (sec) (km) | (km) (sec) (km) (km)
0 36.66 0.0000 0.0000 |35 50.96 4.4014 1.0029
1 36.66 0.0030 0.0000 |36 52.26 4.6796 1.1067
2 36.66 0.0119 0.0000 |37 | 53.56 4.9373 1.2177
3 36.66 0.0270 0.0001 |38 54.86 5.2641 1.3360
4 36.66 0.0483 0.0003 |39 56.16 5.5698 1.4619
5 36.66 0.0760 0.0008 | 40 57.72 5.8846 1.5956
6 36.66 0.1101 0.0018 |41 59.28 6.2082 1.7373
7 36.66 0.1508 0.0032 |42 60.58 6.5409 1.8872
8 36.66 0.1981 0.0052 |43 62.14 608826 2.0457
9 36.66 0.2523 0.0080 |44 63.70 7.2335 2.2130
10 36.66 0.3133 0.0118 |45 65.26 7.5939 2.3895
11 36.66 0.3814 0.0166 | 46 66.82 7.9640 2.5756
12 36.92 0.4567 0.0226 |47 68.64 8.3440 27716
13 36.92 0.5391 0.0302 |48 70.46 8.7341 29779
14 36.92 0.6289 0.0393 |49 72.28 9.1344 3.1949
15 36.92 0.7262 0.0502 |50 74.36 9.5452 3.4228
16 37.18 0.8310 0.0632 |51 76.44 9.9667 3.6621
17 37.18 0.9435 0.0784 |52 78.78 10.3990 3.9121
18 37.44 1.0638 0.0961 |53 81.12 10.8430 4.1764
19 37.70 1.1919 0.1164 |54 83.72 11.2980 44521
20 37.96 1.3281 0.1396 |55 | 86.32 11.7640 4.7409
21 38.22 1.4723 0.1659 |56 88.92 12.2430 5.0430
22 38.74 1.6247 0.1956 |57 91.52 12.7330 5.3589
23 39.26 1.7854 0.2289 |58 94.12 13.2360 5.6891
24 39.78 1.9545 0.2660 |59 96.98 13.7520 6.0339
25 40.56 2.1322° {03073 |60 99.84 14.2800 603938
26 41.34 2.3185 0.3529 |61 101.92 14.8220 6.7693
27 42.38 2.5135 0.4031 |62 103.74 15.3760 7.1607
28 43.16 2.7174 04582 |63 105.30 15.9450 7.5686
29 44.20 2.9302 0.5184 |64 106.60 16.5270 7.9933
30 45.24 3.1522 0.5840 | 65 107.90 17.1240 8.4354
31 46.28 3.3833 0.6553 | 66 108.94 17.7350 8.8954
32 47.32 3.6237 0.7326 | 67 109.72 18.3600 9.3738
33 48.36 3.8734 0.8161 |68 110.76 19.0010 9.8710
34 49.66 4.1326 0.9061 |69 111.54 19.6570 10.3880

172

Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
(sec) (km) (km) (sec) (km) (km)

70 112.32 20.3290 | 10.9240 | 81 7.59 28.8550 18.2970
71 113.10 21.0170 | 11.4810 |82 6.45 29.7420 19.1160.
72 114.14 21.7220 | 12.0590 | 83 6.24 30.6500 19.9620
73 114.92 22.4430 | 12.6590 | 84 6.11 31.5780 20.8360
74 115.44 23.1810 | 13.2800 | 85 6.08 32.5280 21.7390
75 115.96 23.9370 | 13.9240 | 86 6.08 33.5000 22.6720
76 112.06 247100 | 14.5920 | 87 6.08 34.4930 23.6340
77 100.62 25.5010 | 15.2830 | 88 6.08 35.5100 24.6270
78 81.90 263110 | 15.9980 | 89 6.08 36.5510 25.6510
79 39.52 27.1390 | 16.7390 | 90 16.08 37.6160 26.7070
80 10.40 27.9870 | 17.5050 |91 6.08 38.7060 27.7950

173

E. TBM PROFILE NUMBER 5
Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
sec) (km) (km) (sec) (km) (km)
0 136.26 0.0000 0.0000 |35 136.26 7.2367 3.5962
1 136.26 0.0054 0.0000 |36 136.26 7.6546 3.9031
2 136.26 0.0217 0.0001 |37 136.26 8.0846 4.2263
3 136.26 0.0491 0.0002 |38 136.26 8.8257 4.5663
4 136.26 0.0879 0.0003 |39 136.26 8.9791 4.9237
5 136.26 0.1381 0.0012 |40 136.26 9.4446 5.2990
6 136.26 0.1997 0.0053 |41 136.14 9.9225 5.6926
7 136.26 0.2731 0.0130 |42 136.00 10.4127 6.1051
8 136.26 0.3582 0.0246 |43 135.86 10.9156 6.5370
9 136.26 0.4551 0.0409 |44 135.72 11.4315 6.9889
10 136.26 0.5640 0.0623 |45 135.58 11.9604 74615
11 136.26 0.6851 0.0894 | 46 135.44 12.0529 7.9554
12 136.26 0.8183 0.1225 |47 135.30 13.0591 8.4713
13 136.26 0.9638 0.1624 |48 135.16 13.6294 9.0098
14 136.26 1.1216 0.2094 |49 135.02 14.2143 9.5718
15 136.26 1.2920 02641 |50 134.88 14.8140 10.1580
16 136.26 1.4749 0.3269 |51 134.74 15.4290 10.7689
17 136.26 1.6705 0.3984 |52 134.60 16.0600 11.4053
18 136.26 1.8787 0.4790 |53 134.46 16.7076 12.0676
19 136.26 2.0996 0.5691 |54 134.32° 17.3724 12.7565
20 136.26 2.3330 0.6692 |55 134.18 18.0552 13.4725
21 136.26 2.5788 0.7796 | 56 133.43 18.7565 14.2162
22 136.26 2.8366 0.9006 |57 130.50 19.4772 14.9884
23 136.26 3.1065 1.0325 |58 127.00 20.2178 15.7896
24 136.26 3.3881 1.1758 | 59 121.00 20.9793 16.6207
25 136.26 3.6814 1.3308 |60 111.00 21.7624 17.4823
26 136.26 3.9862 1.4976 |61 "| 100.00 22.5678 18.3753 |
27 136.26 4.3024 1.6768 | 62 85.00 23.3965 19.3003
28 136.26 4.6298 1.8685 |63 62.00 24.2493 20.2583
29 136.26 4.9685 2.0733 | 64 42.00 25.1271 21.2500
30 136.26 5.3183 22914 | 65 30.00 26.0308 22.2765
31 136.26 5.6794 2.5232 | 66 22.00 26.9614 23.3385
32 136.26 6.0517 27692 | 67 16.00 27.9199 24.4370
33 136.26 6.4353 3.0297 |68 14.00 28.9074 25.5730
34 136.26 6.8303 33053 |69 12.50 29.9247 26.7476

174

Time Intensity | Altitude | Range | Time Intensity | Altitude | Range
(sec) (km) (km) (sec) (km) (km)
70 11.00 30.9732 | 27.9617 |76 7.10 37.9850 36.1414
71 10.00 32.0539 |29.2164 |77 6.80 39.2863 37.6656
72 9.30 33.1681 |[30.5130 |78 6.40 40.6296 39.2395
73 8.60 343169 |[31.8525 |79 6.10 42.0164 40.8921
74 8.10 35.5018 | 33.2362 | 80 5.80 43.4485 42.5725
75 7.60 36.7240 | 34.6653 | 81 0.00 449228 44.3028

175

F. TBM PROFILE 2 ANALYSIS

TBM Profile 2

30~

30

20

10 15

Y (km) 0 o X (km)

TBM Trajectory (Profile 2).

176

TBM Profile 2 w/ Measurement Noise

30~
25 T

20,

Z (km)
o
L

0>
30

15

Y (km) 0 0 X (km)

TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs.

177

Z (km)

TBM Profile 2 and ABG Trajectory

B0

104

30

0>

20

15

TBM Trajectory (Profile 2) and o-B-y Trajectory, 0=0.6, 100 Runs.

178

30

Mean Error (meters)

ABG Mean Distance Error in Measurements vs Time — TBM Profile 2

10000
9000
8000
7000
6000
5000
4000
3000

2000

1000
0

10 20 30 40 50 60 70
Time (seconds)

o-B-y Tracker (Profile 2) Mean Distance Error, 0=0.6, 500 Runs.

179

. TBM Profile 2 w/ Measurement Noise

30

Z (km)

15

Y (km) 0 o X (km)

TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs.

180

TBM Profile 2 and EKF(accel model)Trajectory

30T

Z (km)
o
Vi

20

10 15

Y (km) : 0 o X (km)

TBM Trajectory (Profile 2) and EKF Trajectory, 100 Runs.

181

3500

3000

2500

2000

1500

Mean Error (meters)

1000

500

Mean Distance Error in Measurements vs Time — TBM Profile 2

T

i

T T

10

EKF (Profile 2) Mean Distance Error, 500 Runs.

20

| 1
30 40
Time (seconds)

182

50

60

70

TBM Profile 2 w/ Measurement Noise

Z (km)
&
/

15

Y (km) 0 o0 . X (km)

TBM Trajectory. (Profile 2) with Measurement Noise, 100 Runs.

|
|
- 183

Z (km)

TBM Profile 2 w/ IMM Trajectory

307.»““"'

30

0>

30
20

10 15

Y (km) ' 0 o X.(km)

TBM Trajectory (Profile 2) and IMM Trajectory, 100 Runs.

184

Mean Distance Error in Measurements vs Time

3500 T ! ! ! ! !

3000

2500
m
ol s : : : : :
QO L e e e e e e e e e e e et e L S -
£20%0 | 5 | | | -
S
L0
c 1500 _
]
[
=
1000 i
500+ -
0 i i ; . ; ;
0 10 20 30 40 50 60 70

Time (seconds)

IMM (Profile 2) Mean Distance Error, 500 Runs.

185

Mean Error (meters)

Mean Distance Error in Measurements vs Time

10000 ! ! ! ! ! !

3000

2000

1000

90004 4 S S T T e
G000]- 1} S —— S — —
ool |t — _— — T -
T — | R — — o
5000 i - . T T

40005 ... e S e SR e R,

0 10 20 30 40 50 60
Time (seconds)

Comparison of o-B-y, EKF and IMM Mean Distance Error, 500 Runs.

186

70

Mean Distance Error in Measurements vs Time

3500

3000

2500

2000

Mean Error (meters)
o
(o]
o

1000

500

i]

| 1

1]
10 20 30 40 50 60
Time (seconds)

Comparison (Close-up) of Mean Distance Error, 500 Runs.

187

70

G. TBM PROFILE 3 ANALYSIS

TBM Profile 3

Y (km)

X (km)

TBM Trajectory (Profile 3).

188

TBM Profile 3 w/ Measurement Noise

20

10 15
0
Y (km) 0 X (km)

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

189

TBM Profile 3 and ABG Trajectory

35\ ‘

30\.-.”_,:...‘

20

10 15

Y (km) 0 o X (k)

TBM Trajectory (Profile 3) and o-B-y Trajectory, 0(:0.6, 100 Runs.

190

Mean Error (meters)

10000
9000
8000
7000
6000
5000
4000
3000

2000

1000
0

ABG Mean Distance Error in Measurements vs Time — TBM Profile 3

T T T T T 1

| 1
10 20 30 40 50 60 70
Time (seconds)

a-B-y Tracker (Profile 3) Mean Distance Error, a=0.6, 500 Runs.

191

TBM Profile 3 w/ Measurement Noise

20

10 15

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

192

TBM Profile 3 and EKF(accel model)Trajectory

20

10 15
| 0 o0 :
Y (km) X (km)

TBM Trajectory (Profile 3) and EKF Trajectory, 100 Runs.

193

3500

3000

2500

2000

1500

Mean Error (meters)

1000

500

Mean Distance Error in Measurements vs Time - TBM Profile 3

. L 1
10 20 30 40 50 60 70
Time (seconds)

EKF (Profile 3) Mean Distance Error, 500 Runs. |

194

TBM Profile 3 w/ Measurement Noise

30T

20

10 15
0

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

195

TBM Profile 3 w/ IMM Trajectory

35

20

10 15

TBM Trajectory (Profile 3) and IMM Trajectory, 100 Runs.

196

3500

3000

2500

2000

1500

Mean Error (meters)

1000

500

Mean Distance Error in Measurements vs Time

! 1

1 i

1
10 20 30 40 50
Time (seconds)

IMM (Profile 3) Mean Distance Error, 500 Runs.

197

60

70

Mean Error (meters)

10000 ! ! ,

3000+
2000

1000

Mean Distance Error in Measurements vs Time - TBM Profile 3

9000} — S S S— -
000} 14 S— S— S S S—
7000 { b S — S — e
6000k — | TR S — — J—
5000} A S S S

4000F .. b, SIS A e, NN T

0 10 20 30 40 50 60
Time (seconds)

Comparison of a-3-y, EKF and IMM Mean Distance Error, 500 Runs.

198

70

Mean Distance Error in Measurements vs Time —~ TBM Profile 3

3500 5 ! ! T ! !
3000
2500

2000

1500

Mean Error (meters)

1000

500

1 1
‘ 0 10 20 30 40 50 60
‘ ' Time (seconds)

Comparison (Close-up) of Mean Distance Error, 500 Runs.

199

70

H. SOURCE CODE FOR o-8-y, EKF AND IMM ALGORITHMS ON TBM

PROFILE DATA

%***

tbmdat.m

LT Tony San Jose

Thesis Advisor: R.G. Hutchins
21FEB98

This program stores TBM profiles 1-5 into missilevec data for use
in tracking algorithms.
%***

% TBM Profile Number 1

dC P P o° o d° oP

tbmdatl = [0.00 136.26 0.0000 0.0000;
1.00 136.26 0.006 0.0000;
2.00 136.26 0.026 0.000;
3.00 136.26 0.058 0.000;
4.00 136.26 0.103 0.000;
5.00 136.26 0.1636 0.001;
6.00 136.26 0.235 0.004;
7.00 136.26 0.322 0.0100;
8.00 136.26 0.423 0.020;
9.00 136.26 0.537 0.036;
10.00 136.26 0.666 0.058;
11.00 136.26 0.809 0.087;
12.00 136.26 0.965 0.124;
13.00 136.26 1.136 0.171;
14.00 136.26 1.3217 0.226;
15.00 136.26 1.52 0.292;
16.00 136.26 1.733 0.367;
17.00 136.26 1.962 0.453;
18.00 136.26 2.204 0.550;
19.00 136.26 2.460 0.658;
20.00 136.26 2.731 0.777;
21.00 136.26 3.015 0.908;
22.00 136.26 3.312 1.050;
23.00 136.26 3.623 1.205;
24.00 136.26 3.948 1.372;
25.00 136.26 4.286 1.551;
26.00 136.26 4.637 1.744;
27.00 136.26 5.001 1.950;
28.00 136.26 5.378 2.17;
29.00 136.26 5.769 2.404;
30.00 136.26 6.174 2.652;
31.00 136.26 6.591 2.916;
32.00 136.26 7.023 3.195;
33.00 136.26 7.469 3.491;
34.00 136.26 7.928 3.803;
35.00 136.26 8.402 4.1320;
36.00 136.26 8.890 4.4790;

200

37
38
39
40
41
42
43
44
45
46
47
48

49.
50.

51
52
53

54.

55
56
57
58
59
60
61
62

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
00
.00
.00
.00
00
.00
.00
.00
.00
.00
.00
.00
.00

136.
136.
136.
136.
136.
136.
135.
.72
135.
.44
135.
.16

135

135

135

135.
.88
134.
134.
134.
134.
134.

134

133
130
127

26
26
26
26
14
00
86

58
30
02
74
60
46

32
18

.43
.50
.00
121.
111.

00
00

86.00
65.00

% TBM Profile Number 2

tbmdat2=[0.00

.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

136.
136.
136.

136

136

136

136

136
136

136

26
26
26

.26
136.
136.
136.
136.
136.
.26
136.
136.
.26
136.
136.
.26
136.
.26
.26
136.
136.
136.
.26

26
26
26
26
26

26
26

26
26

26

26

26
26

136.26

9.
9.

10.
10.

11
12
12
13
13

14.

15
15
16
17
18
18

19.
20.
21.

22
23
23

24.
25.
26.

27

WWWNhDhOMNFRPREPEPODODODODODODODODODOOO

393

911

444
992
.556
.136
.732
.345
.975
622
.288
.972
.675
.397
.140
.904
690
499
332
.190
.075
.986
925
894
894
.925

.0064
.0256
.057%
.1035
.1626
.2355
.3222
.4228
.5374
.6661
.8087
.9653
.1359
.3207
.5199
.7335
.9615
.2038
.4602
.7305
.0146
.3123
.6234

WwOwoJdJdooonn vl id

0.0000

HFPOOOOOOOOOOO0ODOO0OO0O0ODO0ODOODOOO

201

.844;
.229;
.633;
.057;
.502;
.969;
.459;
.973;
.5110;
.075;
.665;

.282;
.928;
.604;
.309;
.045;
.813;
.613;
.446;
.3140;
.217;
.155;
.131;
.145;
.199;
.2931;

0.0000;

.0000;
.0001;
.0002;
.0001;
.0009;
.0039;
.0100;
.0203;
.0358;
.0576;
.0868;
.1243;
.1707;
.2264;
.2919;
.3675;
.4535;
.5503;
.6581;
L7771;
.9078; -
.0502;
.2047;

24
25

26.
27.
28.

29
30

31.
32.
33.
34.
35.
36.

37

38.

39

40.
41.
42.
43.

44
45

46.
47.

48

49.
50.
51.
52.

53

54.
55.
56.

57
58

59.

60

61.

62

63.
64.

.00
.00
00
00
00
.00
.00
00
00
00
00
00
00
.00
00
.00
00
00
00
00
.00
.00
00
00
.00
00
00
00
00
.00
00
00
00
.00
.00
00
.00
00
.00
00

136.

136

136.
136.
136.

136

136.
136.

136

136.

136
136

136.
136.

136
136
136

136.
136.
135.

135
135

135.
135.
135.
135.
134.
134.
134.
134.
134.
134.

133

130.

127

121.
111.

86.
65.
20.

26
.26
26
26
26
.26
26
26
.26
26
.26
.26
26
26
.26
.26

.26 °

14
00
86
.72
.58
44
30
16
02
88
74
60
46
32
18
.43
50
.00
00
00
00

00

00

00 0.00

% TBM Profile Number 3

tbmdat3=

(o) WS BT~ UV N g)

%6
7.
8.

{0.
.00
.00
.00
.00
.00
.00

.86
00
00

00
36
36.
36.
36.
36
36.
36
36
37.

.40

66
66
66

.66

92

.92
.92

18

gko\ooooo\l\l\lmc\mmmp;bw

NNRNNNNNDRE R R R R RR R R PR R R
VMIBWWNROWOVOPOIAUTU P WWNDN RO

26.

27
28

30.

.9479
.2856
.6366
.0008
.3784
.7692
.1736
.5915
.0231
.4687
.9283
.4021
.8904
.3933
L9111

.4440
.9922
.5560
.1358
.7319
.3448
.9748
.6224
.2879
.9718
.6746
.3969
.1396
.9036
.6897
. 4989
.3321
.1903
.0745
.9859
.9255
.8944
8938
.9250
.9836
0367

36.40 0.8230

PRPRRPOOOCOO

.8291
.8478
.8791
.9231
.9796
.0490
.1190
.1310
.2260

oo NeNolNoNeNo Nl

S\nww\rqmmmmmp’b»wwwmwwwl—'i—w—w—x

MNNNNONNHERPRRREBERRRRP R P
BWNROLVEOIAUdWWN RO

0.

.0025;
.0026;
.0027;
.0049;
.0124;
.0254;
.0408;
.0437;
.0675;

202

.3717;
.5513;
.7439;
.9499;
.1697;
.4037;
.6524;
.9161;
.1954;
.4908;
.8028;
.1320;
.4790;
.8443;
.2287;
.6326;
.0569; .
.5022;
.9694;
.4594;
.9729;
.5110;
.0746;
.6647;

.2823;
.9285;
.6039;
.3093;
.0454;
.8131;
.6132;
.4465;
.3140;
.2166;
.1553;
.1312;
.1453;
.1987;
.2926;
.4225;
.55601;

0025;

9.00

10
11
12
13

15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35

37
38
39
40

42
43
44
45

47
48
48

50
51
52
53
54
55
56
57

59
60
61

.00
.00
.00
.00
14.
.00
.00
.00
.00
.00
.00
.00
.00
.00
24.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
36.
.00
.00
.00
.00
41.
.00
.00
.00
.00
46.
.00
.00
.72
49.

00

00

00

00

00

00

.00
.00
.00
.00
.00
.00
.00
.00
58.
.00
.00
.00

00

37
37
37
37
38.
38
39
40.
41.
42
43
44
45
46
48
49
50
52
53
55
56
58
60
62
63
65
67
70
72
74.
77
80
82
85
88
91
94.
96.
98
100

101.
102.

103

104.
105.
106.

107

108.

109
109

1009.

.44
.44
.70
.96

22

.74
.52

30
34

.38
.42
.46
.50
.80
.10
.40
.96
.26
.82
.38
.94
.76
.32
.14
.96
.78
.86
.20
.28

62

.48
.08
.94
.80
.66
.78

64
72

.80

.88
922
18
.48
52
56
60
.38
42
.20
.72
98

LWOWOONIJIAAOANUUNUTEERBRDWWWWNONNMONMNMRERE R R R R

.3350
.4570
.5920
.7400
.9020
.0780
.2670
.4690
.6850
.9140
.1570
.4140
.6840
.9660
.2620
.5710
.8930
.2280
.5760
.9370
.3110
.6980
.0980
.5120
.9400
.3810
.8360
.3060
.7900

.290
.800
.330
.880
.440
.010
.610
.220
.850
.500

0
0
0
0
0
0
0
0
0
0
16

16
17
18
19

21
22
23

98.28 24.9400
86.32 25.8900
52.26 26.8700

LWOUOOIITOAUITUIE R PRWWWWNNMNMNNRPPRPPEPPOODODOODOOOODOOO

.0974;
.1338;
.1773;
.2286;
.2881;
.3564;
.4339;
.5211;
.6186;
.7268;
.8462;
.9771;
.1200;
.2750;
.4430;
.6240;
.8180;
.0270;
.2490;
.4860;
.7390;
.0060;
.2900;
.5910;
.9080;
.2430;
.5970;
.9690; -
.3600;
.7700;
.2020;
.6540;
.1280;
.6250;
.1440;
.6880;
.2560;
.8500;

10.4700;

.1600
16.
.8500
.5600
.2800
.0300
19.
20.
.4100
.2500
.1200
24.

6600

8000
5900

0200

11

11
12
13

14

16
17
18
19

20.2700;
21.3100;
22.3800;

203

.1200;
11.
.7900;
.5000;
.2300;
14.
.7900;
15.

6000;

0000;

6200;

.4800;
.3800;
.3100;
.2700;

62
63

64.
65.
66.
67.

68
69
% 69

.00
.00
00
00
00
00
.00
.00
.46

% TBM Profile

tbmdat4

O oo~ WP

=[0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

14.12 27.8900
8.11 28.9300
6.08 30.0100
5.93 31.1200
5.80 32.2700
5.80 33.4600
5.80 34.6800
5.80 35.9500
0.00 36.5500
Number 4

00 36.66 0.0000
36.66 0.0030
36.66 0.0119
36.66 0.0270
36.66 0.0483
36.66 0.0760
36.66 0.1101
36.66 0.1508
36.66 0.1981
36.66 0.2523
36.66 0.3133
36.66 0.3814
36.92 0.4567
36.92 0.5391
36.92 0.6289
36.92 0.7262
37.18 0.8310
37.18 0.9435
37.44 1.0638
37.70 1.1919
37.96 1.3281
38.22 1.4723
38.74 1.6247
39.26 1.7854
39.78 1.9545
40.56 2.1322
41.34 2.3185
42.38 2.5135
43.16 2.7174
44.20 2.9302
45.24 3.1522
46.28 3.3833
47 .32 3.6237
48.36 3.8734
49.66 4.1326
50.96 4.4014
52.26 4.6796
53.56 4.9673
54.86 5.2641
56.16 5.5698
57.72 5.8846
59.28 6.2082

23.
24.
25.
27.
28.
29.
31.
32.

33

eReelelelcRolcloNoRoloNoNoNoNeoNeoNoNoNoNoNoNoNoNoNoNol oo oo Ne)

5000;
6500;
8500;
0900;
3700;
6900;
0700;
49007 ;

.1600];

0.0000;

.0000;
.0000;
.0001;
.0003;
.0008;
.0018;
.0032;
.0052;
.0080;
.0118;
.0166;
.0226;
.0302;
.0393;
.0502;
.0632;
.0784;
.0961;
.1164;
.1396;
.1659;
.1956;
.2289;
.2660;
.3073;
.3529;
.4031;
.4582;
.5184;
.5840;
.6553;
.7326;

0.8161;
0.9061;
1.0029;
1.1067;
1.2177;
1.3360;
1.4619;
1.5956;
1.7373;

204

42
43

44.
45.
46.
.00
.00
.00
.00
.00
.00
.00
.00
.00

47
48
49
50
51
52
53
54
55

56.
.00
.00

57
58

59.
60.
61.
.00

62

63.
64.
.00
.00
.00

65
66
67

68.
.00
.00

69
70

71.
.00
.00
.00
.00
.00
.00
.00
.00
.00

72
73
74
75
76
77
78
79
80

81.
.00

82

83.
.00
.00
.00
.00

84
85
86
87

88.
.00
.00

89
90

91.
.50

91

.00
.00

00
00
00

00

00
00
00

00
00

00

00

00

00

00

00

60.5
62.1
63.7
65.2
66.8
68.6
70.4
72.2
74.3
76.4
78.7
81.1
83.7
86.3
88.9
91.5
94.1
96.9
95.8
101
103
105
106.
107.
108.
109.
110
111.
112
113.
114.
114.
115.
115.
112.
100.

8
4
0
6
2
4
6
8
6
4
8
2
2
2
2
2
2
8
4

.92
.74
.30

60
920
94
72

.76

54

.32

10
14
92
44
926
06
62

(Ve Ne oo Je o L E IESS B AW

81.90 26
39.52 27

10.40 27.
28.

.59
.45
.24
.11
.08
.08
.08
.08
.08
.08
.08
.08

A O OO OO

29

30.

31
32
33
34
35
36
37
38
39

.5409
.8826
.2335
.5939
.9640
.3440
.7341
.1344
.5452
.9667

.3990
.8430
.2980
.7640
.2430
.7330
.2360
.7520
.2800
14
15
15
16
17
17
18
19
19
20
21

22
23
23

25
.3110
.1390
9870
8550
.7420
6500
.5780
.5280
.5000
.4930
.5100
.5510
.6160
.7060
.2610

oUW WwWWwhDhNoDDDD DD,

.8220
.3760
.9450
.5270
.1240
.7350
.3600
.0010
.6570
.3290
.0170
21.
.4430
.1810
.9370
24.
.5010

7220

7100

15
16
17
18
19
19
20

21.

22
23
24
25
26
27
28

.8872;
.0457;
.2130;
.3895;
.5756;
.7716;
.9779;
.1949;
.4228;
.6621;
.9132;
.1764;
.4521;
.7409;
.0430;
.3589;
.6891;
.0339;
.3938;

.7693;
.1607;
.5686;
.9933;
.4354;
.8954;
.3738;
.8710;
.3880;
.9240;
.4810;
.0590;
.6590;
.2800;
.9240;
.5920;
.2830;

RFRRPRRPRRRPHEPBPROOV®OO0IIIN
N WWNDNNPE OO

.9980;
.7390;
.5050;
.2970;
.1160;
.9620;
.8360;
7390;
.6720;
.6340;
.6270;
.6510;
.7070;
.7950];
.3520

205

% TBM Profile Number 5

tbmdat5s

[

= [0.00

.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

136
136
136
136
136
136
136
136
136
136
136
136
136
136

136
136
136
136
136
136
136
136
136
136
136
136
136
136
136
136
136

136
136
136
136
136
136
136

135
135

135
135
135

.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
136.
.26
.26
.26
.26
.26 .
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
.26
136.
.26
.26
.26
.26
.26
.26
.26
136.
136.
.86
.72
135.
.44
.30
.16
135.
134.
134.

26

26

14
00

58

02
88
74

136.26

0.0000 0.0000;
0.0054 0.0000;
0.0217 0.0001;
0.0491 0.0002;
0.0879 0.0003;
0.1381 0.0012;
0.1997 0.0053;
0.2731 0.0130;
0.3582 0.0246;
0.4551 0.0409;
0.5640 0.0623;
0.6851 0.0894;
0.8183 0.1225;
0.9638 0.1624;
1.1216 0.2094;
1.2920 0.2641;
1.4749 0.3269;
1.6705 0.3984;
1.8787 0.4790;
2.0996 0.5691;
2.3330 0.6692;
2.5788 0.7796;
2.8366 0.9006;
3.1065 1.0325;
3.3881 1.1758;
3.6814 1.3308;
3.9862 1.4976;
4.3024 1.6768;
4.6298 1.8685;
4.9685 2.0733;
5.3183 2.2914;
5.6794 2.5232;
6.0517 2.7692;
6.4353 3.0297;
6.8303 3.3053;
7.2367 3.5962;
7.6546 3.9031;
8.0843 4.2263;
8.5257 4.5663;
8.9791 4.9237;
9.4446 5.2990;
9.9225 5.6926;
10.4127 6.1051;
10.9156 6.5370; .
11.4315 6.9889;
11.9604 7.4615;
12.5029 7.9554;
13.0591 8.4713;
13.6294 9.0098;
14.2143 9.5718;
14.8140 10.1580;
15.4290 10.7689;

206

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
.00
.00
73.
74.
.00
76.
77.
78.
79.
80.
81.

71
72

75

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00

00
00
00
00
00
00

save tbm_dat

134.
134.
134
134.
133
130.
127.
121.
111.
100.
.0
.0
.0
.0
.0
.0
.0
.5
.0
.0
.30
.60
.10
.60
.10
.80
.40
.10
.80
.00

WCERRPERENWDDOONO®
oORFRFNBOONMNONNDWD

[2R I e T o) W« TN E e o e o}

60
46

.32

18

.43

50
00
00
00
00
0
0
0
0
0
0
0
0
0
0

23

34

36
37
39
40

43
44

16.
16.
17.
18.
18.
19.
20.
20.
21.
22.
.3965
24.
25.
26.
26.
27.
28.
29.
30.
32.
33.
.3169
35.
.7240
.9850
.2863
.6296
42.
.4485
.9228

2493
1271
0308
9614
9199
9074
9247
9732
0539
1681

5018

0164

0600
7076
3724
0552
7565
4772
2178
9793
7624
5678
19
20

22
23

26
27
29

31
33

36
39

40
42

11
12
12
13
14.
14
15
16.
17.
18.

.3003;
.2583;
21.

2500;

.2765;
.3385;
24.
25.
.7476;
.9617;
.2164;
30.
.8525;
.2362;
34.

4370;
5730;

5130;

6653;

.1414;
37.

6656;

.2395;
.8921;
.5725;
44.

3028]1;

207

.4053;
.0676;
.7565;
.4725;

2162;

.9884;
.7896;

6207;
4823;
3753;

%***
% tbminit.m

%

LT Tony San Jose

Thesis Advisor: R.G. Hutchins

21FEB98

%
%
% This program stores the TBM profiles entered in tbmdat.m into the
% variable missilevec for use in our tracking algorithms. The TBM
% data was provided provided by JHUAPL.

%

load Tbm_dat;

timel =tbmdatl(:,1);

altl = 1000 * tbmdatl(:,3);
rngl = 1000 * tbmdati(:,4);

[rowsl, colsl] = size(timel);

for i = 1: rowsil

missilevecl(:,i) = [timel(i); 3t
rngl(i); $x
0; Fvx
0; %ax
10*1000; £
0; vy
0; %ay
altl(i); %z
0; vz
_ 0 1; %az
end; %#1

%**

time2 =tbmdat2(:,1);
alt2 = 1000 * tbmdat2(:,3);
rng2 = 1000 * tbmdat2(:,4);

[rows2,cols2] = size(time2);

for i = 1: rows2

missilevec2(:,1i) = [time2(i); %t
rng2 (i) ; $x

0; Fvx

0; %ax

10*1000; sy

0; vy

0; $ay

alt2(i); %z

0; vz

0 1; %az

end; %# 2

208

%**

time3 =tbmdat3(:,1);
alt3 = 1000 * tbmdat3(:,3);
rng3 = 1000 * tbmdat3(:,4);

[rows3,cols3] = size({time3);

for i = 1: rows3

missilevec3(:,1i) = [time3(i); $t
rng3 (i) ; %X
0; VX
0; %ax
10%1000; sy
0; SVy
0; say
alt3(i); %z
0; vz
0 1: %$az
end; %# 3

%**

time4 =tbmdat4(:,1);

altd = 1000 * tbmdat4d(:,3);
rng4 = 1000 * tbmdat4(:,4);
[rows4,colsd4] = size(timed);

for i = 1: rows4

missilevec4(:,1i) = [timed(i); 3t
rngd (i) ; Ex
0; VX
0; %ax
10*1000; 3y
0; vy
0; $ay
altd (i) ; %z
0; vz
o 1; %az
end; %# 4

Frhrkhkhkhhkhhdkhkhhkhhhhhkhkhhhkhkhkhdhhhhdhhdhhkdkkdhkdkhkhdhhkhhdhkhdhhhhkhdhhdhdhhrhhhhkkkk

time5 =tbmdatS5(:,1);
altbS = 1000 * tbmdat5(:,3);
rng5 = 1000 * tbmdat5(:,4);

[rows5,cols5] = size(timeb);
for i = 1: rows5

missilevec5(:,i) = [time5(i); st
rng5(i); %X

209

0; Fvx

0; %ax
10*1000; sy

0; vy
0; %ay
alts5(1); %z

0; $vz
0 1; %az

end; %# 5

clear altl alt2 alt3 alt4 alt5 colsl cols? cols3 cols4d colss;

clear i rngl rng2 rng3 rng4 rng5 rowsl rows2 rows3 rowsd rows5;
clear tbmdatl tbmdat2 tbmdat3 tbmdat4 tbmdat5;
clear timel time2 time3 timed time5;

210

Grxhkkkhkkhkhkdhhkkhkhhkhrdhhhdhdhdhdddbhdbdhdhrdhdhhhdhbdhhhhdbhrdhhrdhhdhhrhkdhhdkx

abg_tbm.m

LT Tony San Jose

Thesis Advisor: R.G Hutchins
O03FEB98

delta = 1 sec
nloops = 100/500
alpha = 0.6

hkhkhkhkhkkhkhhkkhhhkhhkhkhkhkkhhkhkhkhdhhkhhkhhhhkhhhkhkdhhrkhhhkhkhhdhkdhkhhkhkhhhkdhkhhddhhhhhikkhkihk

%

%

%

%

%

% This program tests the Alpha-Beta-Gamma tracker on real TBM profiles
% .
%

%

%

%

% Load simulation workspace
clear all
load tbminit;
missilevec = missilevec3;
prof_num = 3;

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta = 1;
g = 9.8;

% Define the number of samples
[num_rows,num_cols] = size{(missilevec3);

nsamples = num_cols;

% Initialize sensor data

Sensor_posit =[100 * 1000; % sensor is 100 km in x
100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 100 km in =z
sigma_r = 10; % 10 meters std dev in range
‘sigma_b = 1*pi/180; % 1 degree std dev in azimuth
sigma_e = 1*pi/180; % 1 degree std dev in elevation

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+1l) = F(k)*x(k) + G

f_sub = [1, delta, (delta"2)/2;
ol 11 delta;
0, 0, 11

F = [£f_sub, zeros(3), zeros(3);
zeros(3), f_sub, zeros (3);
zeros(3), zeros(3), f sub 1;

% Define G matrix

G =-g* [0;
0;

211

0;
0;
0

!

0;
(delta~2)/2;
delta;
0};
% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% X, ¥y, an z missile positions are observed directly; z(k) = H(k)*x(k)
H = [ll ol OI Ol O, 0, 0, O, 0;
o, 0, 0, 1, 0, 0, 0, O, O;
0, 0, 0, 0, O, O, 1, 0, 0];

% Define alpha, beta, gamma tracker parameters

alpha = 0.6;
beta = 2*(2-alpha) - 4*sqrt(l-alpha);
gamma = (beta”2)/(2*alpha);

nu = 1;
K_abg = [alpha, 0, 0;
beta/ (nu*delta), 0, 0;
gamma/ ((nu*delta)~2), O, 0;
0, alpha, 0;
0, beta/ (nu*delta), 0;
0, gamma/ ((nu*delta)~2),0;
0, 0, alpha;
0, 0, . beta/ (nu*delta) ;
0, 0, gamma/ ((nu*delta)~2)];
% Define initialization parameters
d_Sub = [1, 0, 01 0, 0: O/ 0;
3/(2*delta), o0, 0, -2/delta, 0, 0, 1/(2*delta);
1/ (delta”2),0, 0, -2/(delta~2),0, 0, 1/delta”2];
D = [d_sub, zeros(3,2);
zeros(3,1), d_sub, zeros(3,1);
zeros (3,2), d_subl;
% X_corr = missilevec(2:10,1); % Initialize from truth

Frixxxxxxxkrx End of Initialization outside loops *******xkkkkksx

%***

% Loop over the target motion/measurement simulation
%***

for kk = 1: nloops
tic
kk
% define empty output matricies

212

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = {];

% Kalman estimated trajectory
ABG_track = [];

% error between Kalman track and actual track
track_error = [];

%***

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,

% using 1 sensor
%***

for ii = 1l:nsamples
% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii)
missilevec(5,ii)
missilevec(8,1i1)];

’
’

%***

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement

% from the sensor.
%**

% position relative to the sensor
zrel = ztrue - Sensor_posit;

r = sqgrt(zrel(l)~2 + zrel(2)”2 + zrel(3)"2); % range
from sensor

b = atan2(zrel(2), zrel(l)): % bearing
from sensor

r_prime = sqgrt(zrel(l)*2 + zrel(2)"2); % range in
x/y plane

e = atan2(zrel(3), r_prime); % elevation

from sensor

% add noise to the measurement

rns=1r + sigma_r * randn;
b n =>b + sigma_b * randn;
en e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;
b_n;
e_nl;

213

% measurement in cartesian coordinates + noise
z_cart_true_ n = [r_prime*cos(b_n);
r_prime*sin(b_n);
r_n*sin(e_n)] + Sensor_posit;

z_cart_rel n = [r_prime*cos(b_n);
r_prime*sin(b_n);
r_n*sin(e_n) 1];

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error
zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurement & true
measurement w/noise)

error_true = [error_true, disterror];

if ii > 2 % For intialization from the first 3 measurements

%***

% Prediction
%***

% Initialization using the first 3 measurements
if ii == 3)

X _corr = D * [zout_true_n(:,3);
zout_true_n(:,2);
zout_true_n(:,1)];

end; %if ii==3 .

% ABG Filter prediction equations
x_predict = F * x_corr + G;

%***

% Correction

%***V

% Convert to relative position to compute RBE coord

x_1 = x_predict(l) - Sensor_posit(1);
X_4 = x predict(4) - Sensor_posit(2):;
X_7 = x predict(7) - Sensor_posit(3);

% Convert prediction to Range, Bearing, Elev coord

r_hat = sqrt(x_172 + x_4°2 + x_7"2);
b_hat = atan2(x_4, x_1);
e_hat = atan2(x_7, sqrt(x_1"2 + x_472));

214

between ABG and

track_error = [track_error, sqgrt(track_diff'*track_diff)];

end;

end; %

%***

% Determine expected measurement
z_cart_exp_rel = [r_hat*cos(b_hat)*cos(e_hat);
r_hat*cos{(e_hat) *sin(b_hat) ;
r_hat*sin(e_hat)];

z_cart_exp_true = z_cart_exp_rel + Sensor_posit;
% Observed minus expected measurements
% z_tilde_c = z_cart_true_n - z_cart_exp_true;

z_tilde_c¢ = z_cart_rel_ n - z_cart_exp_rel;

% Correction equations
x_corr = x_predict + K abg * z_tilde_c;

% Alpha-Beta-Gamma track positions and difference

% actual track position and actual target position
zout_ABG_track = H * x_corr;

track_diff = ztrue - zout_ABG_track;
% Update ABG track trajectory array
ABG_track = [ABG_track, zout_ABG_track];
% if ii>2

for ii = i:nsamples

if kk == 1, % create first output

zoutmean_true = zout_true_n;
mean_ABG_track = ABG_track;

merror_

merror

else

track = track_error;
= error_true;

% create output after lst run

zoutmean_true = zoutmean_true + zout_true_n;
mean_ABG_track = mean_ABRG_track + ABG_track;

i merror_

merroxr

end; % if
toc
end; % for kk =

track = merror_track + track_error;
= merror + error_true;

kk ==1, else

l:nloops

l Fhhhkdkhhdhhhhhhdhhkdhdhhkdhhkhhhhkhhkhhhhkhhhhhhdhdhdhhdhhhhdrdhhhrhkkkhkhk

% Compute Means

FGrhkhkkhhhhhkhhkhkhhkhkhkhkhdhdhhkhkkhkkhhhkhhkhdbhhhkhhhhkhdhhhrhdhhkhhkhkhrhhdkhhhx

zoutmean_true

= zoutmean_true/nloops;

215

mean_ABG_track = mean_ABG_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

%***

% Plot results

%***

figure (1)
measurement = zoutmean_ true/1000; % convert to km
ABG = mean_ABG_track/1000; % convert to km
missile_track = missilevec(:,1:nsamples)/1000; % convert to km
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:), 'g-

"1:%, ...

%Sensor_posit (1) /1000, Sensor_posit(2)/1000,
Sensor_posit(3) /1000, 'rx');

axis([0,35,0,35,0,35]); % profile 1,2,3

% axis('equal')

% axis([0,40,0,40,0,401); % profile 4,5
title(['TBM Profile ', num2str (prof_num)]);
xlabel ('X (km) '), ylabel ('Y (km)'), zlabel('Z (km) ') ,grid;
print -deps abg3a

figure (2)
plot3 (missile_track(2,:), missile_track(5,:), missile_track(8,:), 'g-

'
AR

measurement (1, :), measurement(2, :), measurement(3,:),'r-"');%, ...

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rk');

% axis([0,35,0,35,0,35]);
% axis([0,40,0,40,0,40]);
%axis('equal');
title(['TBM Profile ', num2str (prof_num), ' w/ Measurement Noise']);
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
print -deps abg3b

figure (3)
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:), 'g-

1
7 e e

ABG(l,1l:nsamples-2), ABG(2,1l:nsamples-2), ABG(3,1:nsamples-
2),'r=", ...

Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');
% axis([0,25,0,25,0,251);

% axis([0,40,0,40,0,401);
axiS([0,35,0:35,0,35])i

216

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
title(['TBM Profile ', num2str(prof_num),' and ABG Trajectory']);
print -deps abg3c

figure(4)

time = missilevec(l,:);

plot(time(l:nsamples), merror,'g-', time(3:nsamples), merror_track, 'r-
")

xlabel ('Time (seconds)'),ylabel('Mean Error (meters)'),grid;

title(['ABG Mean Distance Error in Measurements vs Time - TBM Profile
', num2str (prof_num)]);
% axis([0,70,0,100001])

$print -deps abg3d

save abgl003

217

%***

acl_tbm.m

LT Tony San Jose

Thesis Advisor: R.G. Hutchins

21FEB98

delta = 1.0 sec

nloops = 100/500

qg*2 = 10

This program stores the TBM profiles entered in tbmdat.m into the
variable missilevec. for use in our tracking algorithms. The TBM
data was provided provided by JHUAPL.

%***

00 0P d° dP O° O O° O° P o° of

% Load simulation workspace
clear all
load tbminit;
missilevec = missilevec3;
prof_num = 3;

% Define the number. of simulation loops
nloops = 500;

% Define the sampling interval
delta = 1;
g = 9.8;

% Define the number of samples
[num_rows,num _cols] = size(missilevec3);

nsamples = num_cols;

% Initialize sensor data

Sensor_posit =[100 * 1000; % sensor is 100 km in x
100 * 1000; % sensor is 100 km in y
0 * 1000]1; % sensor is 100 km in z
sigma_r = 10; % 10 meters std dev in range
sigma_b = 1*pi/180; % 1 degree std dev in azimuth
sigma_e = 1*pi/180; % 1 degree std dev in elevation
R = diag([sigma_r~2, % covariance matrix for uncorrelated
sigma_b"*2, % range and bearing measurements
sigma_e"2]);

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+l) = F(k)*x(k) + G

f_sub = [1, delta, (delta”2)/2;

0, 1, delta;
0, 0, 11;
F = [£ _sub, zeros(3), zeros(3);

218

zeros(3), £f_sub, zeros (3);
zeros(3), zeros(3), f_sub 1;

% Define G matrix

G = -g * [0;
0;
0;
0;
0;
0;
(delta~2)/2;
delta;
01;

% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% X, v, an z missile positions are observed directly;

H = [11 01 Ol ol 01 01 01 Ol O;
o, 0, 0, 1, 0, O, O, O, O;
o, 6, 0, 0, O, 0, 1, 0, O];

Initialize Q, the covariance of the plant noise
g*2 = scale factor to system noise covariance matrix Q,
used to account for unmodeled target maneuver acceleration.

0P d° dP

g _sgr = 10;

Q _sub = [(delta”~5)/20, (delta”4)/8, (delta”3)/6;
(delta~4) /8, (delta”3)/3, (delta"2)/2;

(delta”3) /6, (delta”2)/2, delta 1;
Q = gsgr * [Q_sub, zeros (3), zeros(3);
zeros (3), Q_sub, zeros(3);
zeros(3), =zeros(3), Q_sub 1;

grx*x*xxxxx*x% End of Initialization outside loops *****xxkkkkkxxx

%*******************************'********************************

% Loop over the target motion/measurement simulation
%***

for kk = 1: nloops
tic
kk)
% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kalman estimated trajectory

K_track = [];
K_accel = [];

219

% error between Kalman track and actual track
track_error = [];

%***

% This block is used for the initialization process. Initialize
% from a SWAG.
%*********’k***************‘k*************************************

X_swag = missilevec(2:10,1);

x_swag(9) = 6*g;

p_swag = eye(9) * 10"4;

X_COrr = X_swag;
P_corr = p_swag;

%***

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,

% using 1 sensor
%***

for ii = 2:nsamples
% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);
missilevec(5,1ii);
missilevec(8,1ii)];

%***

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement

% from the sensor.
%***

% position relative to the sensor
zrel = ztrue - Sensor_posit;

r = sqrt(zrel(l)~2 + zrel(2)"~2 + zrel(3)"2); % range
from sensor) .

b = atan2(zrel(2), zrel(1l)); % bearing
-from sensor

r_prime = sqgrt{zrel(l)"2 + zrel(2)"2); % range in
x/y plane ’ .

e = atan2(zrel(3), r_prime); % elevation

from sensor

% add noise to the measurement

rn=r + sigma_r * randn;
bn =Db + sigma_b * randn;
en e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

220

b_n;

e_nj;

% measurement in cartesian coordinates + noise
z_cart_true_n = [r_prime*cos(b_n);

r_prime*sin{b_n);
r_n*sin(e_n) 1 + Sensor_posit;

z_cart_rel_n = [r_prime*cos(b_n);
r_prime*sin(b_n);
r_n*sin(e_n) 1;

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error
zout_true_n = [zout_true_n, z_cart_true_n]j;

% measurement error (between true measurements)
error_true = [error_true, disterror];

%***

% Prediction .
%***

% Kalman Filter prediction equations
%x_predict = F * x_corr + G;
P_predict = F * P_corr * F' + Q;

%***

% Correction .
%***

% Convert to relative position to compute RBE

coordinates
x_1 = x_predict(l) - Sensor_posit(l);
x_4 = x_predict(4) - Sensor_posit(2);
x_7 = x_predict(7) - Sensor_posit(3);
% Convert prediction to Range, Bearing, Elevation
coordinates

r_hat = sqrt(x_1"2 + x 472 + x_772);
b_hat = atan2(x_4, x_1);
e_hat = atan2(x_7, sqgrt(x_1°2 + x_4"2));
% Determine expected measurement
z_polar_hat = [r_hat;
b_hat;
e_hat];

% Observed minus expected measurements

221

z_tilde = z_polar_n - z_polar_hat;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_1"2 + x_4"2);
Hk_r2cd4 = =x_1/(x_1"2 + x_472);
Hk_r3cl = (-x_1*x_7)/((sqgrt(x_1°2 + X_472))*(x_17°2 + x_4"2 + x_T7"2) };

Hk_r3cd = (-x_4*x_7)/((sgrt(x_1"2 + x_4°2))*(x_1°2 + X _ 472 + x_772));
Hk_r3c7 = (sqgrt(x_172 + x_472))/(x_1°2 + X_472 + x_7"2);
% Determine H matrix
Hk = [x_1/r_hat, 0, 0, x_4/r_hat, 0, O, x_7/r_hat, 0, 0;
Hk_r2cl, 0, 0, Hk_r2c4, 0, O, 0, 0, 0;
Hk_r3cil, 0, 0O, Hk_r3c4, 0, O, Hk_r3c7, 0, 01;
% Compute Kalman Gain
K = P _predict * Hk' * inv(Hk * P_predict * Hk' + R);
% Correction equations
X_corr = x_predict + K * z_tilde;
P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)' + K*R*K';
% Kalman track positions and difference between Kalman
and

% actual track position and actual target position
zout_K_track = H*x_corr;

track_diff = ztrue - zout_X_track;
track_error = [track error, sqrt (track _diff'*track_diff)];

% Update KF track trajectory array
K_track = [K_track, zout_K_track];

% Estimated accelerations
accel_out = [x_corr(3,:);
X_corr (6, :

)i
x_corr(9,:)]1;

% Update KF acceleration array
K_accel = [K_accel, accel_out];

end; % for ii = 2:nsamples

%**

if kk == 1, % create first output
zoutmean_true = zout_true_n;
mean_K_track = K_track;
merror_track = track_error;
merror = error_true;

else % create output after lst run

222

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track = mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else
toc
end; % for kk = l:nloops

%***

% Compute Means
%********‘k*********************’k******************************

zoutmean_true/nloops;
mean_X_track/nloops;

zoutmean_true
mean_K_track

merror = merror/nloops; % mean error between
% measurement and true position
merror_track = merror_track/nloops; % mean error between

% EKF estimated position
% and true position

%**‘*************

% Plot results

%***

figure(1)
measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile_track = missilevec(:,1l:nsamples)/1000; % convert to km

plot3 (missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-
Y%, '
%Sensor_posit (1) /1000, Sensor_posit(2)/1000,
Sensor_posit(3) /1000, 'xrx');

$axis([0,25,0,25,0,25]);

$axis('equal’)

axis([0,35,0,35,0,351)

%axis([0,40,0,40,0,401);

title(['TBM Profile ', num2str(prof_num)]);

xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
% print -deps ekf3a

figure(2)
rlot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-
measurement (1, :), measurement(2,:), measurement(3,:),'r-');
% axis([0,25,0,25,0,25}); % profile 1,2,3,5
% axis([0,40,0,40,0,40]); % profile 4
axis([0,35,0,35,0,351)
%axis('equal');
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']);
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
% print -deps ekf3b

223

figure(3)
plot3 (missile_track(2,1l:nsamples), missile_track(5,1:nsamples),
missile_track(8,1l:nsamples), 'g-',..

Kalman_track(1l, :), Kalman_track(2,:), Kalman track(3,:),'r-');

%axis([0,25,0,25,0,25]1);
%axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35]);
xlabel ('X (km)'}), ylabel ('Y (km)'}, zlabel('Z (km)'),grid;
title(['TBM Profile ', num2str (prof_num),' and EKF(accel
model) Trajectory']);
%print -deps ekf3c

figure(4)
time = missilevec(1l, :);

")
xlabel ('Time (seconds)'),ylabel('Mean Error (meters) ') ,grid;

title(['Mean Distance Error in Measurements vs Time - TBM Profile
num2str (prof_num)]);

%$axis([0,70,0,100001])
$print -deps ekf3d

% save ekf5003;
%save ekf1003

224

I

plot{time(2:nsamples), merror, 'g-', time(2:nsamples), merror_track, 'r-

’

%***

imm_tbm.m

%
%
% LT Tony San Jose
% Thesis Advisor: R.G. Hutchins
% 21FER98
% g*2 = 10
% nloops = 100/500
% This program stores the TBM profiles entered in tbmdat.m into the
% variable missilevec for use in our tracking algorithms. The TBM
% data was provided provided by JHUAPL.
%***
% Load simulation workspace

clear all

load tbminit;

missilevec = missilevecl;

prof_num = 1;

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta =1;
g = 9.8;

% Define the number of samples
[num_rows,num_cols] = size(missilevecl);
nsamples = num_cols;

% Define g2
g _sqgr_a = 10;
g _sqgr_b = 10;

% Initialize sensor data

Sensor_posit =[100 * 1000; % sensor is 100 km in x
100 * 1000; % sensor is 100 km in vy
0 * 1000]; % sensor is 0 km in z
sigma_r = 10; % 10 meters std dev in range
sigma_b = 1*pi/180; % 1 degree std dev in azimuth
sigma_e = 1*pi/180; % 1 degree std dev in elevation
R = diag([sigma_r"2, % covariance matrix for
uncorrelated
sigma_b"2, % range and bearing measurements
sigma_e”2]);

% Define the H matrix (MEASUREMENT MATRIX) for the accelerating
% model

H = [l, 0, 0, 0, 0, Ol 01 ol 0;
o, 0, 0, 1, 0, 0, O, O, O;
o, 0, 0, 0, 0, 0, 1, 0, 01;

225

%**

% ACCELERATING MODEL
%**
% Define G matrix

G_accel = -g * [0;
;
i

i

OO OO

0;
(delta™2)/2;

delta;

01;

% Initialize Q, the covariance of the plant noise
Q_sub_a = [(delta”5)/20, (delta”4)/8, (delta~3)/6;

(delta”4) /8, (delta”3)/3, (delta~2)/2;
(delta~3) /6, (delta~2)/2, delta 1;

Q_accel g sqr_a * [Q_sub_a, zeros(3), zeros(3);
zeros(3), OQ_sub_a, zeros(3);

zeros(3), zeros(3), Q_sub_a 1;

% Define F matrix (TRANSITION MATRIX) for discrete time
% accelerating model.

f_sub_a = [1, delta, (delta”~2)/2;

OI 11 delta;
0, 0, 11;
F_accel = [f_sub_a, zeros(3), zeros(3);

zeros(3), f_sub_a, =zeros(3);
zeros(3), zeros(3), f_sub_a];

%************************************;*********************’********
% BALLISTIC MODEL
%**'**
% Define G matrix

G_ball = -g * [0;
0;
0;
0;
0;
0;
(delta~2)/2;
delta;
01;

% Detemine Q for the Ballistic model
Q_sub_ b = [(delta~3)/3, (delta”2)/2, 0

(delta~2) /2, delta, 0;
0, 0, 01;

226

Q_ball = g_sqr_b * [Q_sub_b, zeros(3), zeros(3);
zeros(3), OQ_sub_b, zeros(3);
zeros(3), zeros(3), Q_sub_b]l;

% Define F matrix (TRANSITION MATRIX) for discrete time
% ballistic model.

f_ sub_b = [1, delta, 0;
0, 1, 0;
0, 0, 0 1;
F_ball = [f_sub_b,‘zeros(3), zeros(3);

zeros(3), f_sub_b, =zeros(3);
zeros(3), zeros(3), f_sub_b];

Frxrxxxxxkrx End of Initialization outside loops ****kkkkkkkkkkk

Frrhdhhhkhhhhhhkkhhhhhhhhhhhdhhhdhhhdhdbhhhhdhrhhhkdhhhdbhdbxkhkhdhhkkhkhhr

% Loop over the target motion/measurement simulation
%**‘*******************

for kk = 1: nlaops

tic
kk
% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kalman estimated trajectory
K_track = [}]; '
K_accel = [];

% error between Kalman track and actual track
track_error = [];

%***

% This block is used for the initialization process. Initialize
% from a SWAG. .
%***
x_corr_accel = missilevec(2:10,1);
P_corr_accel = eye(9) * 1074;

missilevec(2:10,1);
eve(9) * 1074;

X_corr_ball
P_corr_ball

$ Initial likelihoods for states.
mu_init = [1;

mu = mu_init;
mu_1

mu_2

i
8 3
(SIS
S

%***

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,

% using 1 sensor)
%***

for ii = 2:nsamples
% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);
missilevec(5,ii);
missilevec(8,ii)];

%***

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement

% from the sensor.
%***

% position relative to the sensor
zrel = ztrue - Sensor_posit;

r = sqgrt(zrel(l)"2 + zrel(2)"2 + zrel (3)72); % range
from sensor

b = atan2(zrel(2), zrel(l)):; % bearing
from sensor

r_prime = sqgrt(zrel(1l)"2 + zrel(2)+2); % range. in
x/y plane

e = atan2(zrel(3), r_prime); % elevation

from sensor

% add noise to the measurement

rn =r + sigma_r * randn;
b_n =b + sigma_b * randn;
en = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n; N
b_n;
e_n]j;

% measurement in cartesian coordinates + noise
z_cart_rel n = ([r_prime*cos(b_n);
r_prime*sin(b_n);
r_n*sin{(e_n) 1;

z_cart_true_n = z_cart_rel_n + Sensor_posit;

228

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error
zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurements)
error_true = [error_true, disterror];

%***

% Prediction
%***

% Probabilities of changing state, Markov chain

transition
pl = 1;
p2 = 0.3;
alt = 30e3;

h = z_cart_true_n(3);

prob_accel = -p2*(1/(l+exp(-.0005* (h-alt))) - (1+pl));
prob_ball = 1 - prob_accel;

rho = [prob_accel, prob_ball;
0, 1 1:

% Accelerating Model
cbar = rho' * mu;

if cbar(l) < 10"~(-8) % prevents cbar_1 from
blowing up
cbar_1 = 10~(-8);
else
cbar_1 = cbar(l);
end;
cbar_2 = .cbar(2);
rho_11 = rho(1,1);
rho_21 = rho(2,1);
rho_12 = rho(1,2);
rho_22 = rho(2,2);

x_hat_01 = x_corr_accel * ((rho_1l1*mu_1)/cbar_1) + ...
x_corr_ball * {(rho_21*mu_2)/cbar_1);

xtilde_11 = x_corr_accel - x_hat_01;
xtilde_21 = x_corr_ball - x_hat_01;
mu_11 = rho_11 * mu_1 / cbar_1;

mu_21 rho_21 * mu_2 / cbar_1;

229

P_hat_01 = mu_11 * (P_corr_accel + xtilde_l1*xtilde_11') +
mu_21 * (P_corr_ball + xtilde_21*xtilde_21');

% Kalman Filter Prediction Equations for Accelerating model
x_predict_accel = F_accel * x_hat_01 + G_accel;
P_predict_accel = F_accel * P_hat_01 * F_accel' + Q_accel;

% Ballistic Model
x_hat_02 = x_corr_accel * ((rho_12*mu_1)/cbar_2) +
Xx_corr_ball * ((rho_22*mu_2)/cbar_2);

xtilde_12 = x_corr_accel -.x_hat_02;
xtilde_22 = x_corr_ball - x_hat_02;
mu_12 = rho_12 * mu_1 / cbar_2;

mu_22 rho_22 * mu_2 / cbar_2;
P_hat_02 = mu_12*(P_corr_accel + xtilde_12*xtilde_12') +
mu_22*(P_corr_ball + xtilde_22*xtilde_22"');

% Kalman Filter Prediction Equations for Ballistic model
X_predict_ball = F_ball * x_hat_02 + G_ball;
P_predict_ball = F_ball * P_hat_02 * F_ball'’ + Q_ball;

%***

% Correction
%************************i:**************************.****

% Accelerating Model
% Convert to relative position to compute polar coordinates

x_1 = x_predict_accel(l) - Sensor_posit(l);
X_4 = x_predict_accel(4) - Sensor_posit(2);
x_7 = x_predict_accel(7) - Sensor_posit(3);

% Convert prediction to polar coordinates

r_hat_a = sqrt(x_172 + x_4°2 + x_7°2);
b_hat_a = atan2(x_4, x_1);
e_hat_a = atan2(x_7, sqrt(x_172 + x_4~2));

% Determine expected measurement
z_polar_hat_a = [r_hat_a;
b_hat_a;
e_hat_al;

% Observed minus expected measurements
z_tilde_a = z_polar_n - z_polar_hat_a;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_1"2 + x_4"2);
Hk_r2cd4 = x_1/(x_1°2 + x_4"2);
Hk_r3cl = (-x_1*x_7)/((sgrt(x_1"2 + X_472))*(x_172 + x_4"2 + x_7"2));
Hk_r3c4 (-x_4*x_7)/((sqrt(x_172 + x_472))*(x_172 + x_4"2 + x_772))
Hk_r3c7 (sqrt (x_172 + x_472))/(x_172 + x_4"2 + x_772);

I3

It

230

% Determine H matrix)
Hk_a = [x_1/r_hat_a, 0, 0, x_4/r_hat_a, 0, 0, x_7/r_hat_a, 0, 0;
Hk_r2cl, 0, 0, Hk_r2c4, 0, O, 0, 0, 0;
Hk_r3ecl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 6, 01;

% Compute Kélman Gain
K_accel = P_predict_accel*Hk a' * inv(Hk_a * P_predict_accel * Hk_a'+R);

% Kalman Filter Correction equations for Acclerating Model
X_corr_accel = X _predict_accel + K_accel * z_tilde_a;
P_corr_accel = (eye(9) - K_accel*Hk_a)* P_predict_accel;

% Ballistic Model

% Convert to relative position to compute polar coordinates
x_1 = x_predict_ball(l) - Sensor_posit(1l);
x_3 x_predict_ball(4) - Sensor_posit(2);
x_5 X_predict_ball(7) - Sensor_posit(3);

% Convert prediction to polar coordinates
r_hat_b = sqgrt(x_172 + x_3"2 + x_5"2);
b_hat_b atan2 (x_3, x_1);
e_hat_b atan2 (x_5, sqgrt(x_1"2 + x_3"2));

% Determine expected measurement
z_polar_hat_b = [r_hat_b;.
b_hat_b;
e_hat_bl;

% Observed minus expected measurements
z_tilde_b = z_polar_n - z_polar_hat_b;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_3/(x_1"2 + x_3"2);
Hk_r2c4 = x_1/(x_1"2 + x_3"2);

Hk_r3cl = (-x_1*x 5)/((sqgrt(x_172 + x_372))*(x_172 + x_372 + x_5"2));
Hk_r3cd = (-x_3*x_5)/((sqgrt(x_172 + x 372))*{x_172 + x_3"2 + x_5%2));
Hk_r3c7 = (sqgrt(x_1"2 + x_3"2))/(x_172 + x_3"2 + x_5"2);

$ Determine H matrix

Hk_ b = [x_1/r_hat b, 0, 0, x_3/r_hat_ b, 0, 0, =x_5/r_hat_b, 0, 0;
Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0O;
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0, 01;

$ Compute Kalman Gain
K_ball = P_predict_ball * Hk_b'*inv(Hk_b*P_predict_ball * Hk_b' + R);

% Kalman Filter Correction equations for the Ballistic Model
x_corr_ball = x_predict_ball + K ball * z_tilde_b;
P_corr_ball = (eye(9) - K.ball*Hk_b)* P_predict_ball;

FGrhkhkhkdhhkkkhhkhhhhhdhhdhhkhhhhhkhhhhhdhhhdhhhhhdhhdhhhkdhhhkhkhkhbhhhkkk

% Update mode probabilities
%**

m= 3;

231

S_.1 = Hk_a * P_predict_accel * Hk_a' + R;
lambda_1 = (exp(-(z_tilde_a)'*inv(S_1l)*z_tilde_a/2))/(sqrt((2*pi)~m *

det(S_1)));

lambda_2 = (exp
det(S_2)));

S_2 = Hk b * P_predict_ball * Hk_b' + R;
(-(z_tilde_b) '*inv(S_2)*z_tilde_b/2))/(sqgrt((2*pi)~ m *

¢ = lambda_1l * cbar_1 + lambda_2 * cbar_2;

mu_1 =
m_2 =

ma = [mu_1;
mu_27;

lambda_1 * cbar_1/c;
lambda_2 * cbar_2/c;

Grrhkhhkhkhhhhhkhhhhhhkdhhhkhhdhkhhkhkhhkhkhhhhhhkhhhdhhkhdhhk ok kkkokkk

% Produce Combined Estimates
%**

X_COrr =
P_corr =

mu_1 * x corr_accel + mu_2 * x _corr_ball;
mu_1* (P_corr_accel+(x_corr_accel-

X_corr) * (x_corx_accel-x_corr)')+...

mu_2* (P_corr_ball +(x_corr_ball-

X_corr) *(x_corr_ball- x_corr)');

%**

% Kalman track positions and difference between Kalman

and

o

% actual track position and actual target position

zout_K_track = H*x_corr;

track_diff = ztrue - zout_K_ track;
track_error = [track_error, sqrt(track diff'*track_diff)];

% Update KF track trajectory array
K_track =

end; % for ii

[K_track, zout_K_track];

= 2:20:nsamples

%**

if kk == 1,

zoutmean_true
mean_K_track

merror_track =
merror = error

else

% create first output

= zout_true_n;
K_track;
track_error;

_true;

% create output after 1lst run

232

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = mMerror + error_true;

end; % if kk ==1, else
toc

end; % for kk = 1l:nloops

%***

% Compute Means
%***
zoutmean_true zoutmean_true/nloops;
mean_K_track = mean_K_track/nloops;
merror merror/nloops; % mean error between
% measurement and true position

i

it

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

%***

% Plot results

%***

figure (1)
measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile_track = migsilevec(:,l:nsamples)/1000; % convert to km

plot3 (missile_track(2,:), missile_track(5,:), missile track(8,:),'g-
Y;%, ...
%$Sensor_posit(1l) /1000, Sensor_posit(2)/1000,

Sensor_posit(3) /1000, ‘rx');

%axis('equal');

%$axis([0,40,0,40,0,40]1);

axis([0,35,0,35,0,35])

title(['TBM Profile ', num2str(prof_num)]);
xlabel ('X (km)'), ylabel ('Y (km)'), zlabel('Z (km)'),grid;
% print -deps imm3a) :

figure(2)
plot3 (missile_track(2,:), missile_track(5,:), missile_track(8,:), 'g-

t
7 e e .

measurement (1, :), measurement(2,:), measurement(3,:),'r-');%,...

%$Sensor_posit (1) /1000, Sensor_posit(2) /1000, Sensor_posit(3)/1000, 'rx');
%axis('equal’)
%$axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35])
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']);

233

xlabel ('X (km) '), ylabel('Y (km)'), zlabel('Z (km)'),grid;
% print -deps imm3b

figure(3)
plot3 (missile_track(2,1l:nsamples), missile_track(5, l:nsamples),
missile_track(8,l:nsamples), 'g-',...
Kalman_track(l,:), Kalman_track(2,:), Kalman_track(3,:), 'r-
)%, ...

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx‘);
%axis('equal’)
%$axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35])
xlabel ('X (km)'), ylabel('Y (km)'), zlabel('z (km)'),grid;
title(['TBM Profile ', num2str(prof_num),' w/ IMM Trajectory'l);
% print -deps imm3c

figure(4)
time = missilevec(l, :);
plot(time(l:nsamples-1), merror, 'g-', time(l:nsamples-1),

merrox _track, 'r-');
xlabel ('Time (seconds)'),ylabel('Mean Error (meters)'),grid;
title('Mean Distance Error in Measurements vs Time');

$print -deps imm3d

%$save mm5003
$save imml003

234

APPENDIX F. MATLAB® INFORMATION

MATLAB® and SIMULINK ™ is a product of MathWorks, Inc., 24 Prime Way,
Natick, Mass. 01760. MATLAB® version 4.2b and SIMULINK " version 1.3a were used

throughout this study.

235

236

l

10.

11.

12.

13.

LIST OF REFERENCES

Senator Jesse Helms, speech on the Strategic Anti-Missile Revitalization Act of
1996, U.S. Senate, 104™ Cong., Congressional Record (6 February 1996), S 917.

Mosher, D., “The Grand Plans,” IEEE Spectrum, Vol.34, No. 9, September 1997.

Greenburg, J., “Theatre Ballistic Missile Defense: New United States Strategic
Requlrements and the ABM Treaty,” Master’s Thesis, Naval Postgraduate School,
California, 1995.

Isaacson, J., and Vaughan, D., Estimation and Prediction of Ballistic Missile
Trajectories, RAND, Santa Monica, California, 1996.

Stevens, B., and Lewis, F., dircraft Control and Simulation, John Wiley and Sons,
Inc., New York, 1992.

Zarchan, P., Tactical and Strategic Missile Guidance, Second Edition, Artech
House, Inc., Norwood, Massachusetts, 1986.‘

Blackman, S., Multiple-Target Tracking with Radar Application, American Institute
of Aeronautics and Astronautics, Inc., Washington, D.C., 1994.

Brown, R., and Hwang, P., Introduction to Random Signals and Applied Kalman
Filtering, Third Edition, John Wiley and Sons, New York, 1997.

Bar-Shalom, Y., and Li, X., Estimation and Tracking: Principles, Techniques, and
Software, Artech House, Inc., Norwood, Massachusetts, 1993.

Bar-Shalom, Y., and Li, X., Multitarget-Multisensor Tracking: Prihciples and
Techniques, Artech House, Inc., Norwood, Massachusetts, 1995.

Hutchins, R.G., EC3310 Class Notes, Naval Postgraduate School, 1997.

Jerardi, T., TBM Profile Data, Johns Hopkins University Applied Physics
Laboratory, 1998.

Beaulieu, M., “Launch Detection Satellite System Engineering Error Analysis,”
Master’s Thesis, Naval Postgraduate School, California, 1996.

237

238

INITIAL DISTRIBUTION LIST

Defense Technical Information CEnter..........oueveeeeeeeeeeeeeeeeeeeeeeee oo
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley KnoX LIDIATrYcccccvevemerinernrnieensseesssesseesesssessssssssssssssnsesesssssssnne
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Chairman, Code EC.............ccuuun........ ereterere et et et et tesersaebeseseemnennaenes
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Professor Robert G. Hutchins, Code EC/HU c....vueeeeeeeeeeeeeeeereeeeeeerere e, e
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Professor Harold A Titus, Code EC/TSouuivivmeeeietieeeeeeeeeeseeseesssaneessnenns
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

FTEA GIACSETceverieerieeeteteeetcee ettt cveetessesee st s neesessesseses e ss e sasesnnns
Department of the Navy, CNO

N632, Room 5P773

Pentagon

Washington, DC 20350-2000

Dr. Verle N. SCHIOQtoceeeveeeeeeeeeeeeeee et eeeseeteesere s e e see s eseas
Associate Dean for Administration

College of Engineering

University of Alabama

Box 870200

Tuscaloosa, AL 35487-0200

LT Antonio P. SQI JOSEcvevuieeieeeereieeeeeseeeseeesesesssenseesssssesseessssssssssssssssnesensns

7901 Allentown Rd.
Fort Washington, MD 20744

239

