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ABSTRACT 

The Gulf War illustrated how important ballistic missile defenses have become to 

the United States. The study of intercepting Theatre Ballistic Missiles (TBMs) in their 

boost phase was prompted by concerns about the widespread dissemination of 

submunitions and the differentiation of decoys from actual warheads released early in the 

missile's midcourse flight. Boost Phase Intercept (BPI) would alleviate this problem by 

destroying the enemy's ballistic missile in the missile's launch phase, thereby causing the 

lethal payload and debris from the engagement to fall back on the aggressor. This thesis 

focuses on the development of missile tracking algorithms to be used in the boost phase 

of TBMs. A missile encounters significant changes in velocity, acceleration, and 

direction during the boost phase, making it difficult to track. Extended Kaiman filter 

(EKF), Alpha-Beta-Gamma filter, and Interacting Multiple Model (IMM) filtering 

techniques are developed to determine the missile tracking accuracy of TBMs during 

boost phase. Simulation results and actual TBM profiles from test data are presented to 

verify the tracking accuracy utilizing different filtering techniques. 
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I. INTRODUCTION 

A. BALLISTIC MISSILE DEFENSE 

The Gulf War illustrated how important ballistic missile defenses have become to 

the United States. The Iraqi use of theater ballistic missiles (TBMs) focused the United 

States defense on the danger posed by the widespread proliferation of TBMs. Today, over 

thirty countries possess ballistic missiles and more than twenty-five are believed to be 

developing nuclear, chemical, or biological weapons [Ref. 1]. Many of those same 

countries may be converting these weapons of mass destruction into warheads that can be 

delivered by ballistic missiles. Because of worldwide development efforts to increase the 

exportable supply of TBMs, missiles of increased range and pay load will find their way 

into the weapons inventories of many nations during the next decade. Potential 

aggressors will have a potent capability to deliver short notice or surprise attacks that 

might threaten regional balances, U.S. allies, U.S. forces deployed overseas, and 

potentially U.S. territory. The ability to put a nuclear, chemical or biological warhead on 

a ballistic missile, along with the increasing ability to export such missiles, highlights the 

necessity for the United States to develop effective theater missile defense (TMD) 

systems. [Ref. 2, 3,4] 

B. BOOST PHASE INTERCEPT 

The study of intercepting TBMs in the boost phase was prompted by concerns 

about the widespread dissemination of submunitions and the differentiation of decoys 



from actual warheads released early in the midcourse phase. Boost Phase Intercept (BPI) 

would alleviate this problem by destroying the enemy's ballistic missile in the missile's 

initial launch phase, causing the lethal payload and the debris from the engagement to fall 

back on the aggressor. Because boost phase defenses intercept a missile prior to the 

release of its payload, BPI appears to be the only way to defend against submunitions. 

An advantage of the boost-phase defense is that during a launch, the missile's rocket 

motors spew out hot gases that are easy to locate; unfortunately, the motors burn for only 

a few minutes. The challenge of BPI lies in the ability to detect launch of the missile, to 

track it long enough to get a fix on its trajectory, and then to intercept it. All of this must 

be done in only a few minutes. The creation of a successful BPI would considerably ease 

the burden of relying solely on existing terminal defenses to combat TBMs. [Ref. 2] 

C.        THESIS ORGANIZATION 

This thesis focuses on the development of missile tracking algorithms to be used 

in the boost phase of TBMs. Chapter II furnishes the reader with a basic understanding 

of generating a ballistic missile simulation. Chapter III provides background information 

on the Extended Kaiman Filter (EKF) and discusses its use in missile tracking. Chapter 

IV provides background information on fixed-coefficient filtering, and discusses the 

development of the Alpha-Beta-Gamma filter used in missile tracking. Chapter V 

discusses the Interacting Multiple Model (IMM) algorithm in which multiple filter 

models are used to produce a combined position estimate. Chapter VI studies the 

implementation of the EKF, the Alpha-Beta-Gamma tracker, and the IMM algorithm on 
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actual TBM profiles. Chapter VII presents conclusions and recommendations for follow- 

on studies. 





II. BALLISTIC MISSILE TRAJECTORY 

This chapter provides background information so the reader has an understanding 

of the ballistic missile base trajectory used in the missile tracking algorithms presented in 

Chapters III, IV and V. A base trajectory is developed using flat earth equations of 

motion, which are modeled in SIMULINK™. To simulate a sensor platform observing 

the missile, measurement noise with uncertainties in range, bearing and elevation is 

added to this base trajectory. The tracking algorithms are then implemented on these 

position measurements and the resulting filtered trajectory is compared to the base 

trajectory (used as true missile position) to determine the accuracy of our tracking 

algorithms. 

A.        GENERATING THE BALLISTIC MISSILE BASE TRAJECTORY 

The ballistic missile base trajectory is generated using SIMULINK™.   The 

initialization file, PtMissilelnit.m, initializes the following variables in order to generate a 

simulated ballistic missile trajectory: 

• The missile is launched from the surface of the earth (0 km along the z axis), 

30 km along the x axis, and 40 km along the y axis. 

• The missile thrust (T) is approximately 6 gs. 

• The missile's booster cut-off itToff) occurs 60 seconds after launch. 



• The missile rolls approximately 40 degrees in elevation (wel) and 15 degrees 

in azimuth (waz), 20 seconds after launch. 

• The coefficient of friction (cfric) is 0.5. 

• The simulation sampling interval (sinterval) is 0.1 seconds. 

• The missile is assumed to have a constant mass. 

• The force of gravity (g) is assumed to be constant throughout the simulation. 

After initialization, the SIMULINK™ model, FlatEPtMissileSim.m, is used to generate 

the ballistic missile simulation. FlatEPtMissileSim.m is shown in Figure 2.1. The 

SIMULINK   model uses the following simulation parameters: 

• Runge-Kutta 5 integration algorithm 

• Minimum step size = 10"5 

• Maximum step size =10"' 

• Relative error = 10"3 
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Figure 2.1 SIMULINK   Model, FlatEPtMissiIeSim.m. 
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Within the SIMULINK   model, the MATLAB® function, FlatEarthPtEqns.m, generates 

the missile dynamics using flat earth equations of motion, as outlined in Aircraft Control 

and Simulation [Ref. 5].   In addition, the atmospheric density is modeled in accordance 

with Tactical and Strategic Missile Guidance [Ref. 6], and is described as follows, 

kg •   Altitudes above 9144 meters:       p = 1.75228763xe-6705-6    -£- 
m 

•   Altitudes below 9144 meters:       p = 1.22557 x e -9144 kg 
m 

kg 
•   Altitudes below 0 meters (travel inside the earth's surface):       p = 100 -% 

m 



In the SIMULINK™ model, the inputs to the missile dynamics function are thrust, 

rotation in elevation, rotation in azimuth, and the state vector, x. The missile state vector 

gives the missile's position, velocity, and acceleration data at each sampling interval of 

time. The missile state vector x, at time tk, is defined as, 

x - position 

x - velocity 

x - acceleration 

y - position 

y - velocity 

y - acceleration 

z - position 

z - velocity 

z - acceleration 

with 

~ 
X 

vx 

ax 

y 
= vy 

ay 

z 

vz 

_az_ 

x = 

X Vx 

X ax 

X 0 

y vy 

y = ay 

y 0 
z vz 
z az-g 
z 0 

(2.1) 

(2.2) 

The missile state vector is generated every 0.1 seconds, and the resulting data is stored in 

the MATLAB® workspace under the variable missilevec. 
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B.        RUNNING THE SIMULATION 

The following steps are used to run the ballistic missile simulation: 

• STEP 1. In the MATLAB® workspace, run the initialization file, 

PtMissilelnit. m. 

• STEP 2. In the SIMULINK™ workspace, open the SIMULINK™ model, 

FlatEPtMissileSim.m, and configure the simulation parameters as described 

above. 

• STEP 3. Start the simulation in SIMULINK™. 

• STEP 4. Graph the output by running the plotting program, FlatEPTPlots.m, 

in the MATLAB® workspace. 

The resulting plots of the simulation are shown in Figures 2.2(a) through (i). Figures 

2.2(a) through (g) give the reader a visual representation of the ballistic missile base 

trajectory. Figures 2.2(h) and (i) emphasize the missile in its boost phase. The 

MATLAB® source codes for initialization, missile dynamics and plotting are provided in 

Appendix A. 
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Missile Y vs. X Plot 
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Figure 2.2(b) Missile Y vs. X Plot. 

Down Range Distance vs Time 
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Figure2.2(c) Missile Downrange Distance vs. Time. 
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Missile Altitude vs Time (kilometers) 
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Figure 2.2(d) Missile Altitude vs. Time. 
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Figure 2.2(e) Missile Speed vs. Time. 
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Three Dimensional Missile Trajectory in meters 
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Figure 2.2(f) Three Dimensional Missile Trajectory in meters. 

Three Dimensional Missile Trajectory in kilometers 
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Figure 2.2(g) Three Dimensional Missile Trajectory in kilometers. 
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Missile Trajectory - Initial 120 Seconds in meters 
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Figure 2.2(h) Missile Launch (close-up), Initial 120 Seconds (in meters). 

Missile Trajectory - Initial 120 Seconds in kilometers 
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Figure 2.2(i) Missile Launch (close-up), Initial 120 Seconds (in kilometers). 
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C.       ADDING MEASUREMENT NOISE 

A surface ship is selected as the sensor platform to observe the missile. The 

location is chosen to be 100 km in the x direction, 100 km in the y direction, and 0 km in 

the z direction. The sensor position is marked by an 'x', and its position relative to the 

missile trajectory is shown in Figures 2.3(a) and (b). The surface platform observes the 

missile's position through measurements in range, bearing and elevation (i.e. radar 

measurements). To account for the inaccuracies of the sensor's measurements, 

measurement noise with uncertainties in range, bearing, and elevation is added to the 

base trajectory. During this study, the measurement noise in the tracking algorithms is 

chosen to have the following standard deviations: 

•    Grange =10 meters 

^bearing = A 

(Jelevation = A 

Figure 2.3(a) shows the boost phase of the ballistic missile base trajectory. Figure 2.3(b) 

shows the same trajectory with the addition of measurement noise. 

15 



Ballistic Missile Base Trajectory 
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Figure 2.3(a) Ballistic Missile Base Trajectory. 
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y-km 0     0 
x-km 

200 

200 

Figure 2.3(b) Ballistic Missile Base Trajectory with Measurement Noise. 
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Chapter III begins the investigation on ballistic missile tracking during the boost 

phase. The missile tracking algorithms focus on the boost phase, therefore only the initial 

120 seconds of the simulated missile data are examined. Chapter III also provides 

background information on the Extended Kaiman Filter, and describes the tracking 

algorithm in detail. Simulation results are presented and compared to the base trajectory 

developed in this chapter to determine the accuracy of the tracking algorithms. 

17 
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in. EXTENDED KALMAN FILTER 

This chapter provides background information on the development of a tracking 

algorithm utilizing the Extended Kaiman Filter (EKF) equations. The discrete time 

Kaiman filter equations are briefly discussed to familiarize the reader with the Kaiman 

filter before presenting the more advanced EKF equations in the following sections, and 

before presenting the Interacting Multiple Model equations in Chapter V. In this chapter, 

an EKF tracking algorithm is developed and implemented on the position measurements 

of the ballistic missile base trajectory developed in Chapter H Simulation results are 

presented and the EKF tracking accuracy is analyzed. 

A.       DISCRETE TIME KALMAN FILTER 

The purpose of the Kaiman filter is to estimate a state vector at the time of the last 

measurement based on the knowledge of all past measurements. When used in missile 

tracking, the Kaiman filter equations are used to estimate present and future target 

kinematic quantities such as: positions, velocities, and accelerations. First assume that 

the missile dynamic process is modeled in discrete form as follows, 

xk+i=
Fkxk+«k (3-1) 

where Xk is the n dimensional missile state vector that includes quantities to be estimated, 

Fjc is the known state transition matrix, and cük is the plant noise associated with the 

target. The plant noise, co^ is assumed to be zero mean (implies an unbiased sensor), 

white and Gaussian with known covariance Qk. The measurement process is as follows: 

19 



zk=HkXk+vk (3.2) 

where the measurements are linear combinations of the state variables, which are 

corrupted by the addition of uncorrelated measurement noise, v. The variable zk 

designates the sensor measurement at time, tk. The matrix Hk is a constant matrix related 

to the number of dimensions being observed. As in the plant noise above, the 

measurement noise,vk, is assumed to be zero mean, white and Gaussian with known 

covariance Rk. [Ref. 7] 

To start the Kaiman algorithm, the initial state estimate, x0, and its associated 

covariance, P0, are assumed to be known a priori. The algorithm starts a recursive 

process, in which it loops sequentially over the measurement, and then updates the 

measurement at each measurement time. The process of updating the state estimate when 

a new measurement is obtained can be broken down into two steps: prediction and 

correction. Prediction refers to the estimation of the state vector to the next 

measurement time. In this process, the state estimate and associated covariance are 

predicted to the next measurement time using the following prediction equations, 

x^i^FfcX^+o),, (3.3) 

Pk+nk=FkPk|kFkT + Qk (3.4) 

where T denotes transpose. Correction refers to updating (or correcting) the state 

estimate and associated covariance based on the new measurement, using the following 

correction equations, 

x
k+iik+i = xk+iik + Kk+1jzk+1 J (3.5) 

20 



where Kk+i (Kaiman Gain) and \+x (residual vector) are defined as 

K.tj.1 — xta.iiirtiirj.il-ri1,a.1rVx1|lrrlirj.1 + K.V4.] I V^-Ö,) Sc+1 - ^k+lk^k+l -"k+l'lc+llk-^k+l T ^k+1 

\+\ — zk+i    Hk+1xk+1|k (3.7) 

The covariance update equation is 

Pk+llk+l = V~ Kk+l^k+l jPk+llk (3.8) 

where I is the identity matrix. An equivalent covariance update equation is 

Pk+iik+i = v ~ Kk+iHk+i jPk+iik v- ~ Kk+iHk+1 j + Kk+1Rk+1Kk+1 (3.9) 

It is.referred to as the Joseph Form, and is used in throughout this study because it 

behaves better numerically in computer calculations [Ref. 8]. The combined set of 

prediction and correction equations constitutes the discrete time Kaiman filter. The 

preceding information is provided as a link to understand the development of the EKF 

tracking algorithm. [Ref. 9, 10, 11] 

B.        EXTENDED KALMAN FILTER 

In applications involving nonlinear dynamics or nonlinear measurement 

relationships, the EKF, vice the traditional Kaiman filter (as described in the previous 

section), is generally used. In this study, the measurement relationships from the sensor 

(radar measurements in range, bearing and elevation) are nonlinear; therefore, the EKF is 

used in our ballistic missile tracking algorithm. Because the basic equations in the EKF 

are similar to that of the traditional Kaiman filter, an understanding of the traditional 

Kaiman filter is essential. The main difference between the EKF and the Kaiman filter is 

21 



the evaluation of the Jacobians of the state transition and the measurement equations (the 

partial derivatives of the F and H matrices) [Ref. 9]. This difference will be highlighted 

again in the following derivation of the EKF equations. 

In a system with nonlinearities in the dynamics or the measurement process, it is 

desirable to have the same framework as in a linear system. Assume the following 

nonlinear system equations, 

xk+i=fk(xk) + G)k (3.10) 

zk = hk(xk) + vk (3.11) 

where fk(xk) is the nonlinear dynamics equation, and hk(xk) is the nonlinear measurement 

equation. The noise processes Vk and (ok, are assumed to be white (uncorrelated) 

Gaussian processes and mutually independent. Hence, 

E[vk] = 0 (3.12) 

E[vkV1] = Qk-4, (3.13) 

where 4i is the Kronecker delta function, 

Ek] = 0 (3.14) 

Ehcö>'i] = Rk-4i (3.15) 

with no cross correlation such that 

0=E[vkwi] = E[vkxJ=E[(Dkx;)]    Vk,l (3.16) 

In order to determine the EKF prediction and correction equations, the nonlinear system 

of equations (fk(xk) and hk(xk)) must first be linearized. The linearization is obtained by a 

series expansion of the nonlinear dynamics and of the nonlinear measurement equations. 

22 



To obtain the predicted state xk+1ik, the nonlinear function is expanded in a Taylor series 

around the latest estimate, xk|k, with terms up to the first order to obtain a first order 

EKF.   The first order Taylor series expansions are required for the dynamic process and 

for the measurement process, and thus the matrices Fk and Hk must be determined. We 

define Fk as the gradient of fk evaluated at the most recent estimate, xk|k, 

#k(x) 
k       ck x=x(klk) 

and Hk as the gradient of hk evaluated at the most recent estimate, xk|k, 

dhk(x) 
H„ = x=x(klk-l) 

(3.17) 

(3.18) 

The Taylor series expansions about the estimates are as follows, 

fk(xk) = fkK|k) + Fk(xk-xk|k)+- (3-19) 

hk(xk) = h^J + H^x, -xk\*-i)+- (3-20) 

Then, the approximate system equations, neglecting the higher order terms are, 

Xk+l = fk(Xk) + ö)k 

= (fk(Xk|k) + Fk(Xk-Xk|k)) + <°k 

= Fkxk+fk(xk|k)-Fkxk|k+ü)k (3.21) 
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zk = hk(xk) + vk 

= (hk(xk|k_1) + Hk(xk-xk|k_1)) + vk 

= HkXk + hk(xk|k)-Hkxk|k + vk (3.22) 

Hence, the approximate (linearized) system of equations are, 

xk+i=Fkxk+<»k+uk (3.23) 

zk = Hkxk+vk+yk (3.24) 

with the deterministic terms 

Uk=fk(£k|k)-Fkxk|k (3.25) 

yk=Mxk|k-i)-HkxkM (3.26) 

The Kaiman filter prediction and correction steps for these approximate equations are as 

follows: 

Prediction: In the state estimate, substitute x for x, include the deterministic 

terms and drop the zero mean noise. 

Xk+l|k =FkXk|k+Uk 

= Fkxk|k+[fk(xk|k)-Fkxklk 

= fk(xk|k) (3.27) 

The covariance prediction is a linear Gaussian update of the noise terms, 

Pk+i|k = FkPk|k(Fk)
T + Qk (3.28) 

24 



Correction: 

^klk-i - HÄ|k_i + Yk 

- Hk*k|k-1 +[hk(^k|k-l)""HkX
k|k_i 

hk(xk|k_x) 

Hence, the state update equation is, 

*k|k =*k|k-l+KkL2kJ 

with 

\ ~Zk     zk|k-l 

and 

Ku — Pi.i,, ,Hi He - jrk|k-lnk[HkPk|k-lHk +R 

The covariance update equation using the gradient matrices is, 

pk|k = (I_KkHk)Pk|k-i 

with the equivalent Joseph form [Ref. 8], 

pkik = I1 _ KA/Pkik-iV1 ~ KkHk)  + KkRkK 

These Kaiman filter prediction and correction equations are exact for the set of 

approximate system equations. [Ref. 11] 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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C.       EKF IN TARGET TRACKING 

In this section, a ballistic missile tracking algorithm is developed utilizing the 

Extended Kaiman Filter equations. In this algorithm, the system equations are the 

standard tracking equations, 

xk+i = Fkxk+Gk+«k (3.35) 

zk=hkxk+vk (3.36) 

where xk is the missile state vector, 

r-    -, 
_    _ 

Xl X 

x2 Vx 

x3 ax 
x4 y 
X5 = vy 
X6 ay 
x7 z 
X8 Vz 

LX9j _az_ 

Fk) is the linear state transition matrix, 

K = 

1 A 
0 

0 0 0 0 0 0 

0 1 A 0 0 0 0 0 0 
0 

0 

0 

0 

1 

0 

0 

1 

0 

A 

0 

2 
A 

0 

0 

0 

0 

0 

0 

0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 

,2 

0 0 0 0 0 0 1 A 
A" 

A 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 

(3.37) 

(3.38) 
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Gk is the gravity matrix, which accounts for the force of gravity in the . z direction with 

8=9.8-,, 

"o" 
0 

0 

0 

G'=-g 0 

0 
A2 

2 
A 

0 

(3.39) 

C0k is the plant noise with covariance Qk, 

A5    A4    A3 
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—   —    A      0      0      0      0 
6      2 

A5    A4    A3 
0    °    o   — — —   0 

20     8      6 
A4    A3    A2 

0    °    o   — — —   0 
8      3      2 

A3    A2 

0     0      0    —   —    A     0 
6     2 

A5 
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20 
A4 
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A3 
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0 

0 

0 
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Qk = q2x 

0 

0 

0 

0 

0 

0 

(3.40) 
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where A is the sampling interval and q2 is a scaling factor used to account for unmodeled 

target maneuver accelerations, and vk is measurement noise with covariance Rk; 

R 
range 

0 

0 

0 0 
2 Q 

° bearing ^ 

0 elevation 

(3.41) 

with standard deviations as defined in Chapter II. 

Although the missile dynamics in this system are linear, the measurement process 

is nonlinear. As discussed in Chapter II, the sensor observing the missile is assumed to 

be a surface platform located 100 km in the x direction, 100 km in the y direction and 

0 km in the z direction. The surface platform observes the missile positions through 

measurements in range, bearing and elevation (radar measurements) relative to the sensor 

as shown below, 

hk = 

range 

bearing 

elevation 
(3.42) 

where 

range = yjx2 + y2 + z2 = ^/x2 + x4 + x7 

bearing = tan l = tan" 

r'= V*2 + y2 = V*2 + x 

elevation = tan -l 

(3.43) 

(3.44) 

(3.45) 

(3.46) 
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These measurement equations are clearly nonlinear, and therefore the nonlinear 

measurement equations must be linearized using a series expansion of the measurement 

equation hk. Applying the definition of the Hk matrix, as stated in Equation 3.18, the 

gradient of hk is determined to be, 

H, = 

<2r(x) dr(x) *(x) <2r(x) *(x) *(x) *(x) <*(x) *(x) 

<2xj (9x2 dx3 dx-4 dx5 dx6 dx.7 <2x8 <2x9 

<9b(x) A(x) *(x) A(x) *(x) A(x) *(x) *(x) *(x) 

<2xj dx2 dx3 <2x4 <2x5 <&6 <9x7 (3x8 <3x9 

<3b(x) ob(x) <5e(x) *(x) <3b(x) *(x) <3b(x) *(x) <3b(x) 

<2Xj (3x2 <&3 ^4 ^5 ^6 ^7 ^8 ^9 

(3.47) 

which simplifies to 

Hk = 

Xl 

V» 2          2          2 
+ X4 + X7 

-x4 
2          2 

Xi  +X4 

- Xj • x7 

_M + X^(xJ +X4+X7) 

0   0 

0   0 

0   0 

yJx*    +  X4  •+ X7 

Xj +x4 

x4 • x7 

-y/xf +X^(x^ +X4+X7) 

0   0 

0   0 

0   0 

4 222 
X \ + X4 + X7 

0 

V*T + X4 

222 X    + X4 + X7 

0   0 

0   0 

0   0 

(3.48) 

Therefore the approximate (linearized) system of equations are, 

Xk+l=
FkXk+Gk+<«k 

with deterministic terms 

Zk = Hkxk+vk+yk 

yk = hk(xk|k_j) - Hkxk|k_! 

(3.49) 

(3.50) 

(3.51) 
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The EKF tracking algorithm is implemented in MATLAB® by applying the matrices 

developed in this section to the EKF prediction and correction equations as outlined in 

Equations 3.27 through 3.34. Simulation results of the EKF algorithm are presented in 

the following section. The source code for the EKF algorithm is presented in Appendix 

B. 

D.       SIMULATION RESULTS 

The EKF tracking algorithm is implemented on the ballistic missile base 

trajectory with added measurement noise. The results of the EKF tracking algorithm are 

obtained by running the EKF algorithm in MATLAB® and by plotting the average 

trajectories over 10 simulation runs, with q2 = 10 and with the sampling interval (A) equal 

to 0.1 seconds. In order to get an accurate representation of the mean distance error, a 

graph of the mean distance error is obtained by running the EKF algorithm over 100 

simulation runs. Figure 3.1(a) shows the ballistic missile base trajectory during boost 

phase. As stated in Chapter II, standard deviations in range, bearing and elevation were 

chosen as 10 meters, 1 degree, and 1 degree respectively, with the resulting measurement 

noise shown in Figure 3.1(b). The results of the EKF tracking algorithm are shown in 

Figures 3.2(a) through (c), which show a close up of the EKF trajectory at 40 seconds, 60 

seconds and 80 seconds respectively. Figure 3.3 shows the EKF mean distance error 

throughout the boost phase. The top graph indicates the average distance error created by 

the measurement noise that is added to the base trajectory. The bottom graph indicates 

the distance error of the EKF tracking algorithm. When viewing this graph, it is evident 
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that the overall mean distance error is significantly reduced by approximately 75 percent; 

however, the EKF algorithm has difficulty tracking the missile in two distinct areas. 

During the first few seconds while the missile is accelerating and rolling over, the mean 

distance error peaks to approximately 600 meters. Secondly, at time 60 seconds, after the 

booster cut off, the missile changes from an accelerating model to a ballistic model at 

which the mean distance error peaks to a value of approximately 800 meters. The 

MATLAB® source code for the EKF tracking algorithm is provided in Appendix B. 

Ballistic Missile Base Trajectory 

200 

y- km 0     o 
x-km 

Figure 3.1(a) Ballistic Missile Base Trajectory. 
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Ballistic Missile Base Trajectory with Measurment Noise 

20CK. 

y-km 0     0 

200 

x-km 

Figure 3.1(b) Ballistic Missile Base Trajectory with Measurement Noise. 
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ZOOM - EKF Trajectory Initial 40 Seconds 

Y(km) 30     30 
X(km) 

Figure 3.2(a) Close-up of the EKF Trajectory, Initial 40 seconds (10 Runs). 
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ZOOM - EKF Trajectory Initial 60 Seconds 
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X(km) 

Figure 3.2(b) Close-up of the EKF Trajectory, Initial 60 seconds (10 Runs). 
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ZOOM - EKF Trajectory Initial 80 Seconds 
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Figure 3.2(c) Close-up of the EKF Trajectory, Initial 80 seconds (10 Runs). 
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Figure 3.3 EKF Mean Distance Error (100 Runs). 
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In an attempt to reduce the tracking distance error, two other tracking algorithms 

are examined. Chapter IV investigates the constant gain, or fixed-coefficient, filter called 

the Alpha-Beta-Gamma tracker and determines its missile tracking capability. 

Simulation results are presented and compared to the EKF results in this section. Chapter 

IV investigates the missile tracking accuracy of a multiple model system using the 

Interacting Multiple Model (MM) algorithm. Background information on the IMM 

algorithm is discussed and the simulation results are analyzed. 
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IV. FIXED-COEFFICIENT FILTERING 

This chapter provides information on the development of a tracking algorithm that 

utilizes fixed-coefficient filtering. The advantage of this type of filter over the Kaiman 

filter is its simple implementation where fixed parameters are used for filter gains. One 

of the most commonly used fixed-coefficient (constant gain) filters is the Alpha-Beta- 

Gamma (oc-ß-y) tracker. The cc-ß-y tracker is a constant gain filter used specifically in 

tracking systems when position measurements are available and when the state vector 

consists of positions, velocities, and accelerations. The actual nature of the noise 

processes, including the covariance matrices, Q and R, are not required, thus simplifying 

the filter design. The oc-ß-y filter equations are presented and the developed tracking 

algorithm is implemented on the position measurements of the ballistic missile base 

trajectory developed in Chapter n. The oc-ß-y filter simulation results are presented and 

its tracking accuracy is analyzed. 

A.       ALPHA-BETA-GAMMA TRACKER 

The system equations for the cc-ß-y tracker are the standard tracking equations as 

presented previously in Chapter HI, 

xk+1 = Fkxk+tok (4.1) 

zk=Hkxk+vk (4.2) 
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where Xk is the missile state vector, 

x - position 

x - velocity 

x - acceleration 

y - position 

xt = y-velocity 

y - acceleration 

z - position 

z - velocity 

z - acceleration 

and Fk is the known state transition matrix, 

Ft = 

1 A 
1 

0 0 0 0 0 0 

0 1 A 0 0 0 0 0 0 
0 

0 

0 

0 

1 

0 

0 

1 

0 

A 

0 
A^ 

2 
A 

0 

0 

0 

0 

0 

0 

0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 

»2 

0 0 0 0 0 0 1 A 
A' 

~2 
A 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 1 

(4.3) 

(4.4) 

The noise processes 0% and vk, are the plant noise and measurement noise respectively. 

In the oc-ß-y tracker, the sensor observes the missile positions in nonlinear range, bearing 

and elevation measurements. The covariance matrices are not used in this type of filter; 

consequently, the matrix of partial derivatives (as used in the EKF) is not required. In the 
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a-ß-y algorithm, the measurements observed by the sensor are simply converted from 

radar measurements to cartesian coordinates using the following transformation, 

range x cos(bearing) x cos(elevation) 

range x cos(elevation) x sin(bearing) 

range x sin(elevation) 

(4.5) 

and thus Hk, the observation matrix, is simply a constant matrix, 

Hk = 

100000000 
000 100000 
000000100 

(4.6) 

The a-ß-y tracker, as presented in Multiple-Target Tracking with Radar Applications 

[Ref. 7], is comprised of prediction and correction equations. These equations are as 

follows: 

Prediction: 

xk+l - Fkxk (4.7) 
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Correction: 

Xk+llk+l — xk+llk + 

a 0 
A       o 
77A 

(ryA)2 

0 

0 -£- 

0 

0 

0 

0 

0 

0 

0 

a 0 
_ß_ 0 
77A 
r 0 

fotf 
0 a 
0 J_ 

77A 

0 7 

W 

Pk+i] (4.8) 

where the residual vector, [zk+1], is defined as, 

3k+l = Zk+1 - Hk+1Xk+1[k (4.9) 

The variable r\ is normally defined to be unity, but in the case when missing observations 

occur, its value may be taken as the number of scans since the last measurement [Ref. 7]. 

A large value for t| indicates the measurement is discounted. The combined set of 

prediction and correction equations along with the constant gain matrix comprises the a- 

ß-y filter. 

The a-ß-y tracker hypothesizes constant missile acceleration; therefore, the gain 

matrix, as shown in Equation 4.8, is comprised of constant coefficient values for a, ß, 

and y. Decreasing the coefficient values leads to a less responsive filter. Conversely, 

increasing the coefficient values leads to better performance for dynamic inputs such as 

target maneuvers. The relationships between the coefficient values of the gain matrix, as 
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presented in Multiple-Target Tracking with Radar Applications [Ref. 7], are derived to 

obtain a compromise between noise reduction and maneuver-following capability. The 

first coefficient value, a, satisfies the relationship 

0<a<0.6 (4.10) 

where a large value of a results in better tracking during target maneuvers. A large value 

of a puts more emphasis on the measured position rather than the estimated target 

position in the correction step of the filter. The relationships for ß and y are defined as, 

jß = 2(2-a)-4Vl-a (4.11) 

ß2 

7 = - (4.12) 

The choice of gains for a constant-coefficient filter must reflect an overall compromise 

between noise and dynamic (maneuver) performance. 

B.       SIMULATION RESULTS 

The a-ß-y tracking algorithm is developed using the a-ß-y equations and is then 

implemented on the ballistic missile base trajectory with added measurement noise. The 

results are obtained by running the algorithm in MATLAB® and by plotting the average 

trajectories over 10 simulation runs with A= 0.1 seconds, with a=0.6, and with ß and y 

satisfying the a-ß-y relationships as described in Equations 4.11 and 4.12. The value of 

a is selected as a large value to see the effect of the filter if a maneuvering target is 

expected. 
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Figure 4.1(a) shows the ballistic missile base trajectory during boost phase. As in 

Chapters II and m, the sensor position is assumed to be a surface platform at coordinates 

(100 km, 100 km, 0 km), with standard deviations in range, bearing and elevation of 10 

meters, 1 degree, and 1 degree respectively. Figure 4.1(b) shows the ballistic missile 

base trajectory with added measurement noise. The result of the oc-ß-y tracking algorithm 

is shown in Figure 4.1(c), with the filtered trajectory superimposed on the ballistic 

missile base trajectory. Figures 4.1(d) through (f) show a close-up of the Alpha-Beta- 

Gamma trajectory at 40 seconds, 60 seconds and 80 seconds respectively. 

Ballistic Missile Base Trajectory 

y- km 0     0 
x- km 

200 

Figure 4.1(a) Ballistic Missile Base Trajectory. 
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Ballistic Missile Base Trajectory with Measurment Noise 
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Figure 4.1(b) Ballistic Missile Base Trajectory with Measurement Noise. 

Ballistic Missile Base Trajectory and ABG Trajectory -120 seconds 

150 

0    0 Y<km> - X(km) 

Figure 4.1(c) a-ß-y Trajectory, Initial 120 Seconds (10 runs, cc=0.6). 
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ZOOM - ABG Trajectory Initial 40 Seconds 
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Figure 4.1(d) cc-ß-y, Trajectory, Initial 40 Seconds (10 runs, oc=0.6). 

ZOOM - ABG Trajectory Initial 60 Seconds 
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Figure 4.1(e) cc-ß-y Trajectory, Initial 60 Seconds (10 runs, a=0.6). 
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ZOOM - ABG Trajectory Initial 80 Seconds 
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Figure 4.1(f)   a-ß-y Trajectory, Initial 80 Seconds (10 runs, a=0.6). 

The mean distance error in measurements is calculated over 100 simulation runs 

and is shown in Figure 4.2(a). The upper plot is the mean measurement noise, and the 

lower plot is the mean distance error using the a-ß-y tracking algorithm. These results 

indicate that the a-ß-y tracker performs only slightly better than the mean measurement 

noise observed by the sensor. Additionally, a large transient error is present in the first 

few seconds of the filter. This is shown in Figure 4.2(a) as a large spike, peaking to 

approximately 6700 meters. A close-up of the mean distance error, disregarding the 

initial transient error, is shown in Figure 4.2(b). 
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Mean Distance Error in Measurements vs Time 
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Figure 4.2(a) a-ß-yMean Distance Error (100 runs, a=0.6). 
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ABG Mean Distance Error in Measurements vs Time 
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Figure 4.2(b) Close-up, oc-ß-y Mean Distance Error (100 runs, oc=0.6). 

Figure 4.3 shows a comparison of the mean distance error plots of the cc-ß-y tracker and 

of the EKF tracking algorithm. The EKF results are shown as a dotted line. Analysis of 

this graph shows that the EKF tracking algorithm is superior to the ot-ß-y tracker 

throughout the boost phase tracking. 
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Mean Distance Error in Measurements vs Time 
2500 
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Figure 4.3 Mean Distance Error, a-ß-y Tracker vs. EKF (100 Runs). 

In order to see how a different value of a affects the resulting trajectory, an 

additional simulation was conducted for a=0.2, with ß and y satisfying the a-ß-y 

relationships as described in Equations 4.11 and 4.12. As stated in the previous section, a 

small value of a leads to a less responsive filter and improved measures of performance 

for random noise input, whereas a large value of a, leads to better performance for 

dynamic inputs. Therefore, in this simulation, we expect to see better performance of the 

filter with a=0.2 since random noise is added to the ballistic missile base trajectory. The 
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mean distance error in measurements was calculated over 100 simulation runs, and is 

shown in Figure 4.4. As in the previous example, a large transient error is present and is 

shown in Figure 4.4(a); however, it is noted that the transient error is larger for smaller 

values of a. With a=0.2, the error peaks to approximately 140 kilometers as compared to 

a transient error of 6700 meters when a=0.6. Figure 4.4(b) shows a close up of the mean 

distance error disregarding the initial transient error. As expected, the mean distance 

error (the lower plot) is approximately 50 percent of the mean measurement noise (the 

upper plot). This is significantly lower than the mean distance error for cx=0.6, as shown 

15 
x10 ABG Mean Distance Error in Measurements vs Time 

10 
22 
<D 

a 
E 

LU 
C 
CO 
d> 

5- 

I 

I   b__  

20 40 60 80 
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100 120 

Figure 4.4(a) a-ß-yMean Distance Error (100 runs, cc=0.2). 

51 



2500 
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Figure 4.4(b) Close-up, a-ß-y Mean Distance Error (100 runs, a=0.2). 

in Figure 4.2(b), where the mean distance error is approximately 75 percent of the mean 

measurement noise. Figure 4.4(b) also shows a comparison of the mean distance error 

plots of the a-ß-y tracker (with oc=0.2) and the EKF tracking algorithm. The EKF results 

are shown as a dotted line. Although the a-ß-y tracker (with o=0.2) performs better than 

the EKF in the areas between 62 and 78 seconds, the EKF is the better overall filter due 

to the large transient error present in the a-ß-y tracker. In missile tracking, a very large 

initial transient error is not acceptable, and thus a large value of a (a=0.6) is used 
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throughout the remainder of this study. The MATLAB source code for the a-ß-y tracker 

is provided in Appendix C. 

In the next chapter, the tracking accuracy of one final tracking algorithm is 

analyzed. Chapter V investigates the missile tracking accuracy of a multiple model 

system using the Interacting Multiple Model (IMM) algorithm. In this algorithm, an 

accelerating model and a ballistic model are developed using the EKF equations as 

presented in Chapter HI. These two models are combined in the IMM filter to produce a 

combined estimate. Simulation results of the IMM are presented, and the tracking 

accuracy is analyzed. 
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V. INTERACTING MULTIPLE MODEL ALGORITHM 

The Interacting Multiple Model (IMM) tracking algorithm, as outlined in 

Multitarget-Multisensor Tracking: Principles and Techniques [Ref. 10], is a hybrid filter 

system comprised of a finite number of system models. This multiple model approach 

provides a versatile tool for adaptive state estimation in systems whose behavior pattern 

changes with time [Ref. 10]. A ballistic missile encounters two distinct behavior patterns 

along its trajectory. Initially, the missile experiences large accelerations while the 

rocket's motor burns. Then, after the motor burns out, the missile enters a purely ballistic 

state for the remainder of its trajectory. Therefore, in this study, two system models are 

developed for use in the IMM algorithm: an accelerating model and a ballistic model. 

State and covariance estimates are calculated and maintained for each model (or mode) 

and then mixed via a Markov state transition probability matrix. The end result is an 

overall state and covariance matrix that provides a mode conditioned combination of the 

latest state estimates and covariances. The details of the IMM algorithm are presented in 

the following section. As in the previous chapters, the algorithm is implemented on the 

ballistic missile base trajectory with added measurement noise. Simulation results are 

presented and the tracking accuracy is analyzed. 

A.       IMM ALGORITHM 

The theatre ballistic missile is assumed to be operating in one of two distinct 

modes: accelerating (a third order, constant acceleration model) or ballistic (a second 
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order, constant velocity model). System (or plant) noise accounts for small variations 

from these assumptions in each model. In the MM algorithm, each model requires its 

own EKF system equations. The algorithm consists of operating these two EKF models 

in parallel, with an interaction between the two filters resulting in the mixing of the 

estimates. The two models of target motion in this study are defined by the following 

system and measurement equations. (Note that the superscript in these equations are for 

notation purposes only, and it indicates the model number of the equation, not an 

exponential factor.) 

Model 1 - Accelerating model: 

x*w=P XWG'+üA 

z\ =H' x'k+V^e 

where xj, is the missile state vector for the accelerating model, 

(5.1) 

(5.2) 

xt = 

x - position 
x - velocity 

x - acceleration 
y - position 
y - velocity 
y - acceleration 
z - position 
z - velocity 

z - acceleration 

(5.3) 
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F1 is the state transition matrix, 

F1 

1 A 
2 
A 

0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 A 
2 
A 

0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 A 
2 
A 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 1 

(5.4) 

G1 is the gravity matrix, which accounts for the force of gravity in the z direction 

m 
with g = 9.8—, 

Gl = -g 

0 

0 

0 

0 

0 

0 

2 
A 

0 

(5.5) 
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H is the matrix of partials in which the missile positions are observed in range, 

bearing and elevation (nonlinear measurements), 

H' = 

X 

v» :2+y2+z2 

-y 
x2+y2 

-xz u !+ y2(x2 + y2+z2 

0 0 

0 0 

0   0 

f* 2 2 2 + y  + z^ 

x2+y2 

-yz 

0   0 

0   0 

i x2 + y2 + z2 

Vx2 + y2(x2 + y2+z2 
0   0     j x

2+y2 

x2
+y2+z2 

0   0 

0   0 

0   0 

(5.6) 

and a\ and vj, are the plant noise (with covariance Qj,) and measurement noise 

(with covariance RJ,) respectively. 

Model 2 - Ballistic model: 

x2=F2x2
k+G2+ö)2k 

z\ = H2 x2
k + V^L 

where x^ is the missile state vector for the ballistic model, 

xt 

x - position X 

x - velocity Vx 

y - position y 
y - velocity vy 

z - position z 
z - velocity yz. 

(5.7) 

(5.8) 

(5.9) 
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F is the state transition matrix, 

F2 = 

1 A   0 0   0 0 
0 10 0   0 0 
0 0    1 A   0 0 
0 0   0 10 0 

0 0   0 0    1 A 
0 0   0 0   0 1 

(5.10) 

G is the gravity matrix, 

G2 = -g 

0 

0 

0 

0 

2 
A 

(5.11) 

H2 is the observation matrix in which range, bearing and elevation measurements 

are observed, 

H2 = 

Vx2 + y2 + z2 

-y 
2 2 x  +y 

0 

0 

V2   ,      2,2 x  +y + z 

2 2 x  +y 

0 

0 

Vx2 + y2+z2 

^7 ~xz  0 -yz    '       0 

Vx2 + y2(x2 + y2+z2) V^2 + y2(x2 + y2 + z2) (x2+y2 + z2j 

(5.12) 
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and G£ and v^ are the plant noise (with covariance Qj;) and measurement noise 

(with covariance R.£) respectively. 

EKF tracking algorithms (as presented in Chapter HI) are developed using these two 

system models. The two models are run in parallel, and EKF estimates are developed for 

each model. The state and covariance estimates of each system model are then mixed 

within the MM filtering process. 

The MM filtering process for the above two model system is comprised of the 

following series of computations [Ref. 9, 11]: 

STEP 1. Model 1 - Accelerating model: 

A. Calculate the mixing probabilities. 

B. Mix conditions. 

C. Perform the prediction. 

D. Update the measurement. 

E. Score the association. 

STEP 2. Model 2 - Ballistic model: 

A. Calculate the mixing probabilities. 

B. Mix conditions. 

C. Perform the prediction. 

D. Update the measurement. 

E. Score the association. 

STEP 3. Update the modal likelihood vector. 

STEP 4. Produce combined state and covariance estimates. 
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Each of these steps will be presented in detail; however, to begin our discussion, the 

Markov transition matrix and the modal likelihood vector must first be presented. 

The IMM algorithm utilizes the Markov transition matrix to specify the changes 

between the two interacting models. This matrix determines the probabilities of changing 

state between the measurement times and is represented by p, where 

Aj = A-»j = Prob[xi+1|xl] (5.13) 

The assumption is that the system jumps between models, with the jumps following a 

Markov chain transition model. The Markov chain transition probabilities are generally 

chosen heuristically. In this study, the Markov transition matrix for the two model 

system is defined as, 

w- Ai    Pn 

Pi\   Pn. 

prob[accel|accel]   prob[ball|accel] 

prob[accel|ball]     prob[ball|ball] 
(5.14) 

where 

• pn is the probability that the missile is accelerating at time, tk+i, if it was 

accelerating at time, &. 

• P12 is the probability that the missile is ballistic at time, tk+1, if it was accelerating 

at time, &. 

• p2i is the probability that the missile is accelerating at time, tk+i, if it was ballistic 

at time, ft. 

• P22 is the probability that the missile is ballistic at time, tk+1, if it was ballistic at 

time, tk. 
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Applying the above definition of the Markov transition matrix to missile tracking, this 

matrix can be further simplified. For example, element p2\ is the probability that the 

missile is accelerating at the next measurement time, given that it is currently ballistic. 

This certainly can never happen, as the missile enters a purely ballistic trajectory after the 

rocket motor burns out. Therefore, this element has a zero probability of occurring. 

Furthermore, element p22 is the probability that the missile is ballistic at the next 

measurement time, given that it is currently ballistic. Using the same explanation, this 

should always be true. Therefore, in this study the Markov transition matrix is simplified 

to 

w= Al      Pl2 

P21   P22 

Pn   A2 
0      1 (5.15) 

It should be noted that according to the law of total probability, the rows of the Markov 

transition matrix sum to one. 

Elements pn and p12 are important in the process of switching between models. 

The element pn is the probability that the missile continues accelerating at the next 

measurement time, and pn is the probability that the missile switches from the 

accelerating model to the ballistic model at the next measurement time. Since our first 

measurement will occur during boost phase, the value of pn is initially set to one and pn 

is initially set to zero. However, as we continue to track the missile, the value of pn will 

increase since there is an increasing probability that the missile will switch to the ballistic 

model at the next measurement time. In this study, the switching process is modeled 

using a sigmoid function to switch element pn from a value of 1.0 to 0.5. This sigmoid 
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switching process is designed as a function of altitude since we expect the tracking 

algorithm to anticipate the switch between missile models after the missile reaches a 

predetermined minimum altitude. In our ballistic missile base trajectory, it is known that 

the booster cut off in the simulated missile occurs at an altitude of approximately 60 

kilometers. Therefore, in this study the switching process in the MM algorithm is set to 

anticipate the change in models after the missile reaches an altitude of 50 kilometers. 

The sigmoid switching function is designed as follows, 

( 1 A 

(5.16) 

The element pn is then determined by pi2 = 1-pn- Since the time interval between 

measurements in our ballistic missile simulation is only 0.1 seconds, we assign a 

minimum value of pn = 0.5. In the case where the time interval between measurements 

is larger (i.e., 1 second, or 2 seconds), the sigmoid function should be designed to switch 

pn from 1.0 to a smaller value such as 0.1 or 0.2. Simply put, there would be a smaller 

probability that the missile would continue to accelerate over the larger time interval 

between measurements. 

Along with the Markov transition matrix, the IMM algorithm utilizes the modal 

likelihood vector in the mixing process. The modal likelihood vector, ßk, maintains the 

current set of probabilities for each modal state and changes with each update cycle as the 

missile maneuvers. After the measurement update step in each system model, the modal 

likelihoods are updated based on a scoring technique, which accounts for the latest 
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measurement. The modal likelihood of each state is defined as ^. which is the 

likelihood of being in state i at time, tk. For this algorithm, pl represents the probability 

that the missile is currently accelerating, and p2 represents the probability that the missile 

is currently ballistic. The sum of the probabilities from each modal state is defined to 

equal one. The modal likelihood vector for our two model system is defined as, 

Ac 
Mt probability. the_ missile_ is_ accelerating_ at_ time_ tk 

.  probability_ the_ missile_ is_ ballistic_ at_ time_ tk 
(5.17) 

The elements of the modal likelihood vector and the previously defined Markov state 

transition matrix are used in the first steps of the BvIM filtering process. [Ref. 11] 

The filtering steps of the MM algorithm can now be presented. As in the Kaiman 

Filter algorithm, the initial state and covariance estimates for each model are required, 

where x0 and PQ are the initial state and covariance estimates for the accelerating model, 

and x0 and P0 are the initial state and covariance estimates for the ballistic model. 

Additionally, the initial modal likelihood vector is required. Applying the above 

definition of the modal likelihood vector, the initial modal likelihood vector (evaluated at 

time to) is determined to be, 

ßo 
M5 

(5.18) 

The initialization of the modal likelihood vector can be further simplified. In this study 

we assume that the missile is observed initially during boost phase. Hence, $ is initially 
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set equal to one, and /^ is set equal to zero. Thus the initial modal likelihood vector is 

simply, 

Mo 
Ml 
Mo2 

(5.19) 

The first step of the filtering process utilizes the initial state, covariance and modal 

likelihood estimates to determine a mixed state and covariance estimate for the 

accelerating model. Similarly, the second step performs the same mixed state and 

covariance estimates for the ballistic model. Step three updates the modal 

probabilities^ and /^utilizing a scoring process. Finally, these updated modal 

probabilities are used to produce a combined estimate in step four. One cycle of the 

IMM algorithm consists of the following steps: 

STEP 1A. (Model 1) - Calculate the mixing probabilities. 

In this algorithm, the mixing is carried out at the beginning of the cycle. The 

mixing probability, /4-i|k-i' *s defined as the probability that mode Mt was in 

effect at time tt-i, given that mode M, is in effect at time tk- The mixing 

probabilities for the accelerating model are defined as 

,,l|l P     Mk-1 /C OAo\ 
Mk_i|k-i = "~=i— (5-20a) 

21    2 

Aä|k->=£-=H- (5-20b) 
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with the normalizing constant 

c^PiX-.+P^L (5.21) 

STEP IB. Mixing. 

The mixed initial condition for the accelerating filter is defined as, 

x01 ,     = x1   ,     x/y1!1       4-Y
2
        v u2\x Ak-i|k-i    *k-i|k-i x A*k-i|k-i + xk-i|k-i x i"k-i|k-i 

with the corresponding covariance, 

poi _ „111 
rk-l|k-l _ A*k_i|k-l 

,2|1 
Mc-l|k-1 

Pk-l|k-l + Xk-l|k-l(Xk-l|k-l)      + 

,     +x211,     (x211      Vl -llk-1+ Ak-llk-l^xk-llk-l/ J 

(5.22) 

(5.23) 

where 

xü 
—   ^lr_llt_1 X 

01 
k-l|k-l - Ak-l|k-l     Ak-l|k-l (5.24) 

STEP 1C. Perform the prediction. 

The state and covariance predictions for the accelerating model are determined by 

the following equations, 

r1. -PIOOI 
Ak|k-1  ~ r  Xk-l|k-l (5.25) 

(5.26) 

66 



STEP ID. Update the measurement. 

*k|k = *k|k-l + KUzk ~ Hl*k|k-i) (5.27) 

Pk|k-i = (I_KkHl)Pk|k-i (5.28) 

where the Kaiman gain is defined as, 

Kk = Pk|k-llHk) HkPk|k-l(Hk)   +Rk 

-1 

(5.29) 

STEP IE. Score the association. (Based on a likelihood of the observed 

measurement). 

>)TW"f 
A1 -6 (5.30) Ak - 

m-    1 

(2^)2 s1 
2 

where 

~1 _ _        xjlo1 
z  = zk - nkxk|k (5.31) 

Sk = HkPk|k-l(Hk)   +Rk (5.32) 

and m is defined as the number of dimensions observed; thus m = 3 since range, 

bearing and elevation positions are observed. 

STEP 2A. (Model 2) - Calculate the mixing probabilities. 

The mixing probabilities for the ballistic model are defined as 

~12, ,1 
„1I2          P tk-i 
A*k-l|k-l _       ^2 (5.33a) 
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,|2|2 P    Ae-1 
nc-l|k-l _       -2 (5.33b) 

with the normalizing constant 

c^P^VW-, (5.34) 

STEP2B. Mixing. 

The mixed initial condition for the ballistic filter is defined as, 

~02 .22 Xk-l|k-l - Xk-l|k-l X^-l|k-l + Xk-l|k-l X^kT1|k_1 

with the corresponding covariance, 

,,2|2 
i"k-l|k-l 

,        +«2|2        /~2|2        fl 
-l|k-l + xk-l|k-l\Xk-l|k-lj  J 

(5.35) 

Mk-i - AiVi[pMk-i + ^VifcVif] +        .     (5-36) 

where 

x'2 ,      = v1 Y02 
Ak-i|k-i ~ *k-i|k-i ~ xk-i|k-i (5.37) 

STEP2C. Perform the prediction. 

The state and covariance predictions for the ballistic model are determined by the 

following equations, 

Y2 _ F2-02 
Xk|k-1 - r Xk-llk-l (5.38) 
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^-.^«-iK+ö (5.39) 

STEP 2D. Update the measurement. 

*k|k ~ *k|k-l + Kk(zk - H K\k-lj 

Pklk-^fl-^H^Pl, 

where the Kaiman gain is defined as, 

Kk = Pk|k-i(H2)   HkPklk-i(H2) +Ri 

,-i 

(5.40) 

(5.41) 

(5.42) 

STEP 2E. Score the association. (Based on a likelihood of the observed 

measurement). 

where 

eL 

iT/„2\-> z ■FYW 

(2JC)~: 

s2_7        W202 
L    — zk      nkxk|k 

Sk = HkPk2|k-l(Hk)   +Rk 

(5.43) 

(5.44) 

(5.45) 

STEP 3. Update the modal likelihoods 

/4=A]
k 

i_.i* (5.46) 
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fi = K- (5.47) 

where 

c = Akc' + AfcC 2^2 
(5.48) 

STEP 4. Produce combined estimates (for display purposes only). 

xk|k ->"kxk|k+>"kxk|k 

Pk|k - /"k[Pk|k + Xk|k ~ xk|k Xk|k     xk|k + 

(5.49) 

(5.50) 

/4c2(Pk|k + Xk|k     Xk|kJ|xk|k_xk|k 

An IMM ballistic missile tracking algorithm is developed in MATLAB using the 

equations defined in steps one through four. The IMM algorithm is then implemented on 

the position measurements of the ballistic missile base trajectory. Simulation results of 

the accelerating model, the ballistic model, and the combined IMM algorithm are 

presented in the following section. The source code for the IMM algorithm is provided in 

Appendix C. 

B.        SIMULATION RESULTS 

As in the previous chapters, the IMM algorithm is implemented on the noisy 

position measurements of the ballistic missile simulation. For the purpose of comparison, 

the IMM tracking algorithm is run in MATLAB, using the same sensor position, 

70 



sampling interval, and measurement uncertainties as in the EKF and the a-ß-y tracker. 

Figure 5.1(a) shows the ballistic missile base trajectory and Figure 5.1(b) shows the base 

trajectory with added measurement noise. Figures 5.2(a) and (b) show the results of the 

EKF algorithm on the accelerating model. As explained in Chapter III, the accelerating 

model EKF tracks the missile well until the rocket motors cut off (at time 60 seconds), 

and the missile changes from an accelerating state to a ballistic state. This discontinuity 

can be seen in Figure 5.2(b), where the mean distance error at 60 seconds rises from 300 

meters to a peak of 800 meters. At approximately 70 seconds, the EKF regains track and 

the mean distance error decreases below 500 meters, and then remains at approximately 

400 meters for the duration of the observation period. Figures 5.3(a) and (b) show the 

results of the EKF algorithm on the ballistic model. Contrary to the accelerating model 

EKF, this algorithm has significant difficulty tracking the missile in the early stages of its 

trajectory. The ballistic model EKF is only able to satisfactorily track the missile after it 

changes to a ballistic state. Figure 5.3(b) shows that the tracking algorithm reaches a 

peak mean distance error of approximately 10 kilometers. Once the missile is in a 

ballistic state, the algorithm is able to regain track. 
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Ballistic Missile Base Trajectory 
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Figure 5.1(a) Ballistic Missile Base Trajectory. 

Ballistic Missile Base Trajectory with Measurment Noise 
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Figure 5.1(b) Ballistic Missile Base Trajectory with Measurement Noise. 
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ZOOM - EKF Trajectory Initial 80 Seconds 

N 

60 

60- 

50- 

40- 

30- 

20- 

10- 

o> 

Y(km) 30     30 
X(km) 

Figure 5.2(a) EKF (Accelerating Model) Trajectory (10 Runs). 

Mean Distance Error in Measurements vs Time 
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Figure 5.2(b) EKF (Accelerating Model) Mean Distance Error (100 Runs). 
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ZOOM - Missile Trajectory Initial 100 Seconds 
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Figure 5.3(a) EKF (Ballistic Model) Trajectory (10 Runs). 
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Figure 5.3(b) EKF (Ballistic Model) Mean Distance Error (100 Runs). 
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The results of the IMM algorithm are shown in Figures 5.4 through 5.6. Figures 

5.4(a) through (c) show a close-up of the IMM trajectory at 40 seconds, 60 seconds and 

80 seconds respectively. Figure 5.4(d) shows the mean distance error of the IMM 

algorithm. This graph shows that the EvIM algorithm is able to track the missile 

significantly better than both the accelerating model and the ballistic model. The 

"problem area" for the accelerating model is the area in which the missile transitions 

from an accelerating state to a ballistic state. The result, as shown in Figure 5.2(b), is a 

large rise in the mean distance error that peaks to 800 meters. In the IMM algorithm, this 

problem area is eliminated, and the IMM algorithm is able to track through the transition 

area with a mean distance error of approximately 250 meters. The "problem area" for the 

ballistic model is the initial tracking while the missile is accelerating. This is also 

resolved, as the IMM algorithm is able to track the missile well in this area with a mean 

distance error of approximately 500 meters. Figures 5.5(a) and (b) show a comparison of 

the mean distance error plots for the EKF accelerating model, the EKF ballistic model 

and the IMM algorithm. Figure 5.5(b) shows a close-up of the comparison. Figure 5.6 

shows a comparison of the mean distance error plots for the IMM algorithm and the ot-ßy 

tracker. Figures 5.5(b) and 5.6 reveal the overall improvement in the tracking capability 

of the IMM algorithm. 
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Figure 5.4(a) IMM Trajectory, Initial 40 Seconds (10 Runs). 

ZOOM - IMM Trajectory Initial 60 Seconds 
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Figure 5.4(b) IMM Trajectory, Initial 60 Seconds (10 Runs). 
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ZOOM - IMM Trajectory Initial 80 Seconds 
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Figure 5.4(c) IMM Trajectory, Initial 80 Seconds (10 Runs). 
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Figure 5.4(d) IMM Mean Distance Error (100 Runs). 
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Figure 5.5(a) Comparison of Mean Distance Error (100 Runs). 
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Figure 5.5(b) Comparison (Zoom) of Mean Distance Error (100 Runs). 
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Figure 5.6 Mean Distance Error - IMM vs. otßy Tracker (100 Runs). 
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The final analysis of the IMM algorithm investigates the effect of using a constant 

switching parameter to switch between the two models of the IMM algorithm. In the 

previous examples, the process of switching between the two models is controlled by the 

sigmoid function described in Equation 5.16. This sigmoid switching function changes 

Pn from a value of 1.0 to 0.5 as the missile reaches a predetermined altitude at which 

booster cut-off is likely to occur. The result is a switching process that anticipates a 

change between models based on prior knowledge of the booster cut-off altitude. In the 

event that the altitude at which the booster cut-off occurs is not known, a constant value 

for pn can be used. By setting pn equal to a constant value of 0.97 (selected only for 

illustration purposes), the probability that the missile continues to accelerate from one 

measurement time to the next is 97 percent. The resulting mean distance error is 

predicted to be larger than the mean distance error of the IMM algorithm that uses a 

sigmoid switching process. This is due to the slight uncertainty early in the tracking 

process, in which the tracking algorithm is unsure whether the missile is initially 

operating in the accelerating or the ballistic model. As shown in the previous sections, 

the MM algorithm utilizing a sigmoid switching process is initially certain the missile is 

accelerating (pn = 1); hence, it is predicted this algorithm will lead to lower initial values 

of mean distance error. 

The result of the IMM algorithm using a constant switching probability (pn = 

0.97) throughout the tracking process is shown in Figure 5.7. As expected, the mean 

distance error is initially large, peaking at approximately 800 meters. A comparison of 

the results of the IMM algorithm using a constant value for pn and the results of the IMM 
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algorithm using a sigmoid switching process is shown in Figure 5.8. The plot of the 

mean distance error of the IMM algorithm utilizing a constant switching probability is 

shown as the dashed line. The plot of the mean distance error of the IMM algorithm 

utilizing a sigmoid switching function is shown as the solid line. As expected, the mean 

distance error of the IMM algorithm utilizing a constant switching probability is initially 

larger than the IMM algorithm utilizing a sigmoid switching process. Because the mean 

distance error of the IMM algorithm utilizing a sigmoid switching process is significantly 

lower than the IMM algorithm with constant switching probability, it is considered to be 

the better overall tracking algorithm. 

In the next chapter, the EKF, the oc-ß-y and the IMM tracking algorithms are 

implemented on actual TBM profiles. As in the simulated data, measurement noise is 

added to the TBM profiles. The algorithms are then tested on the real data, and the 

tracking accuracy of the algorithms is analyzed. 
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Figure 5.7 Mean Distance Error, IMM with Constant Switching Probability, 
pn=0.97, (100 Runs). 
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Figure 5.8 IMM with Sigmoid Switching Process vs. IMM with Constant Switching 
Probability, pn=0.97 (100 Runs). 
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VI. ACTUAL TBM PROFILES 

In this chapter, the tracking algorithms developed in Chapters HI, IV and V, are 

implemented on actual TBM profiles. The TBM data was graciously given to us by Mr. 

Thomas Jerardi from the Johns Hopkins Applied Physics Laboratory in Baltimore, 

Maryland [Ref. 12]. The original source of this TBM data is the National Air 

Intelligence Center (NAIC) located at Wright-Patterson Air Force Base, Ohio. For 

security reasons, the specific TBM type is intentionally excluded from the TBM profile 

data in order to keep this data unclassified. The TBM profile data is provided in 

Appendix E. 

A.       TBM PROFILES 

A TBM profile is a description of the nominal powered flight trajectory of a given 

TBM, and an example of a TBM profile is shown in Table 1. A TBM profile consists of 

an infrared (IR) intensity as a function of time," nominal vertical and horizontal ranges 

from the launch point as functions of time, and maximum burn time, tmax (62.5 seconds 

for profile 1 as shown in Table l)[Ref. 13]. Five TBM profiles are included in Appendix 

E. Because some of the TBM profiles are very similar, the author has selected TBM 

profiles 1, 4 and 5 for analysis and discussion in this section. The analysis of TBM 

profiles 2 and 3 is provided in Appendix E. 
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Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 36.0 0.000 0.000 32 60.6 7.023 3.195 
1 36.3 0.006 0.000 33 62.4 7.469 3.491 
2 36.6 0.026 0.000 34 64.2 7.928 3.803 
3 36.9 0.058 0.000 35 66.0 8.402 4.132 
4 37.2 0.103 0.000 36 68.4 8.890 4.479 
5 37.5 0.163 0.001 37 70.8 9.393 4.844 
6 37.8 0.235 0.004 38 73.2 9.911 5.229 
7 38.1 0.322 0.010 39 75.6 10.444 5.633 
8 38.4 0.423 0.020 40 78.0 10.992 6.057 
9 38.7 0.537 0.036 41 81.2 11.556 6.502 
10 39.0 0.666 0.058 42 84.4 12.136 6.969 
11 39.5 0.809 0.087 43 87.6 12.732 7.459 
12 40.0 0.965 0.124 44 90.8 13.345 7.973 
13 40.5 1.136 0.171 45 94.0 13.975 8.511 
14 41.0 1.321 0.226 46 96.0 14.622 9.075 
15 41.5 1.520 0.292 47 98.0 15.288 9.665 
16 42.0 1.733 0.367 48 100.0 15.972 10.282 
17 42.5 1.962 0.453 49 102.0 16.675 10.928 
18 43.0 2.204 0.550 50 104.0 17.397 11.604 
19 43.5 2.460 0.658 51 104.6 18.140 12.309 
20 44.0 2.731 0.777 52 105.2 18.904 13.045 
21 45.0 3.015 0.908 53 105.8 19.690 13.813 
22 46.0 3.312 1.050 54 106.4 20.499 14.613 
23 47.0 3.623 1.205 55 107.0 21.332 15.446 
24 48.0 3.948 1.372 56 106.4 22.190 16.314 
25 49.0 4.286 1.551 57 105.8 23.075 17.217 
26 50.6 4.637 1.744 58 105.2 23.986 18.155 
27 52.2 5.001 1.950 59 104.6 24.925 19.131 
28 53.8 5.378 2.170 60 104.0 25.894 20.145 
29 55.4 5.769 2.404 61 98.0 26.894 21.199 
30 57.0 6.174 2.652 62 80.0 27.925 22.293 
31 58.8 6.591 2.916 62.5 20.0 28.450 22.850 

Table 1. Sample TBM Profile (Profile 1) [Ref.12]. 
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B.        TBM PROFILE 1 

In this section, measurement noise is added to the TBM profile 1 and the cx-ß-y, 

EKF and IMM tracking algorithms are implemented on this trajectory. The mean 

distance error is calculated for each algorithm and the resulting plots are compared 

amongst the three filters. To start the analysis, a plot of the actual TBM trajectory is 

shown in Figure 6.1. 

TBM Profile 1 

Y(km) 0     0 
X(km) 

Figure 6.1 TBM Trajectory (Profile 1). 
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1.        Alpha-Beta-Gamma Tracker Results 

As in the simulated data, measurement noise is added to the TBM trajectory to 

simulate a sensor platform observing the missile. In addition, the same sensor position 

and measurement uncertainties are applied to the TBM profile. Figure 6.2(a) shows a 

plot of the TBM profile 1 with added measurement noise. 

TBM Profile 1 w/ Measurement Noise 

Y(km) 0     0 
X(km) 

Figure 6.2(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs. 

90 



The result of the oc-ß-y tracking algorithm is shown in Figure 6.2(b) with the 

filtered trajectory superimposed on the TBM trajectory for profile 1. These results are 

obtained over 100 simulation runs, with oc=0.6. 

TBM Profile 1 and ABG Trajectory 
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25 

10 

X(km) 

Figure 6.2(b) TBM Trajectory (Profile 1) and ct-ß-y Trajectory, <x=0.6,100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.2(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot, shown with a large initial spike, is 

the mean distance error using the oc-ß-y tracking algorithm. These results indicate that 

the cc-ß-y tracker reduces the mean measurement noise by approximately 30 percent, 

despite a large transient error which is present in the first 10 seconds of the filter. This is 

shown in Figure 6.2(c) as a spike that peaks to approximately 9,900 meters. 

10000 
ABG Mean Distance Error in Measurements vs Time - TBM Profile 1 
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Figure 6.2(c) a-ß-y Tracker (Profile 1) Mean Distance Error, cc=0.6,500 Runs. 
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2.        EKF (Accelerating Model) Results 

Figure 6.3(a) shows the TBM trajectory for profile lwith added measurement 

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.3(b) 

with the filtered trajectory superimposed on the TBM trajectory for profile 1. These 

results are obtained over 100 simulation runs, with q2=10. 

TBM Profile 1 w/ Measurement Noise 

Y(km) 0     0 
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Figure 6.3(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs. 
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TBM Profile 1 and EKF(accel model)Trajectory 
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Figure 6.3(b) TBM Trajectory (Profile 1) and EKF Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.3(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean 

measurement noise by approximately 50 percent with an initial peak error of 

approximately 1750 meters. 
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Figure 6.3(c) EKF (Profile 1) Mean Distance Error, 500 Runs. 
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3.        IMM Results 

Figure 6.4(a) shows the TBM trajectory for profile lwith added measurement 

noise. The result of the IMM algorithm is shown in Figure 6.4(b) with the filtered 

trajectory superimposed on the TBM trajectory for profile 1. These results are obtained 

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid 

function (defined in Equation 5.16) that switches element pii, the probability that the 

missile continues accelerating at the next measurement time, from a value of 1.0 to 0.3. 

The altitude at the maximum burn time in this profile is approximately 28 km, and in this 

model, the MM algorithm is set to start anticipating a change from the accelerating to the 

ballistic model after the missile reaches an altitude of 20 km. 

TBM Profile 1 w/ Measurement Noise 
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Figure 6.4(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs. 
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TBM Profile 1 w/ IMM Trajectory 
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Figure 6.4(b) TBM Trajectory (Profile 1) and IMM Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.4(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

MM tracking algorithm. These results indicate that the MM algorithm reduces the 

mean measurement noise by approximately 50 percent with an initial peak error of 

approximately 1700 meters. 
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Figure 6.4(c) IMM (Profile 1) Mean Distance Error, 500 Runs. 
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4.        Comparison of Mean Distance Error 

Figure 6.5(a) shows a comparison of the mean distance error plots for the cc-ß-y 

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line), 

and the IMM algorithm (shown as a solid line). Figure 6.5(b) shows a close-up of the 

comparison. Since the TBM profile contains missile positions only up to the maximum 

burn time, the TBM profile does not contain missile data during the ballistic phase. 

Therefore, in the IMM algorithm a switch to the ballistic model does not occur, and thus, 

the EKF and IMM algorithms have similar results except for a small deviation starting at 
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Figure 6.5(a) Comparison of a-ß-y, EKF and IMM Mean Distance Error, 500 Runs. 
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approximately 50 seconds. This is due to the MM algorithm anticipating the change 

from the accelerating model to the ballistic model. The following close-up graph clearly 

indicates the MM algorithm anticipates the impending switch to the ballistic phase. 
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Figure 6.5(b) Comparison (Close-up) of Mean Distance Error, 500 Runs. 
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As discussed in Chapter V, the 1MM algorithm switches between system models 

by using either a sigmoid switching function or by using a constant value for the 

switching probability, p\\. The previous example used a sigmoid switching function that 

changed the value of pn as the missile reached a predetermined altitude when booster 

cut-off was likely to occur. In the event that this altitude is not known, a constant value 

for pn can be used. For comparison purposes, the IMM algorithm is implemented on the 

actual TBM data using a constant switching probability, with pn =0.75. Figure 6.5(c) 

shows a comparison of the mean distance error for the IMM algorithm utilizing a sigmoid 

switching function (shown as a solid line) and the IMM algorithm utilizing a constant 

switching probability (shown as a dashed line). As in the simulated data in Chapter V, 

the mean distance error of the MM algorithm utilizing a constant switching probability is 

slightly larger early in the tracking process (although not as pronounced as in the 

simulated data). This is due to the slight uncertainty in the tracking algorithm, in which 

the tracking algorithm is unsure whether the missile is initially operating in the 

accelerating or the ballistic model. Although the IMM algorithm utilizing a sigmoid 

switching function performs better in the early part of the tracking process, the IMM 

algorithm utilizing a constant switching probability performs better in the latter part of 

the tracking process. This graph illustrates a trade-off in performance between the two 

switching processes. 
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Figure 6.5(c) IMM with Sigmoid Switching Process vs. IMM with Constant 
Switching Probability, pu=0.75 (500 Runs). 

C.        TBM PROFILE 4 

As in the previous section, measurement noise is added and the a-ß-y, EKF and 

IMM tracking algorithms are implemented on actual TBM data. In addition, the mean 

distance error is computed for each algorithm, and the resulting plots are compared 
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amongst the three filters for a new set of data called TBM profile 4. The plot of the TBM 

trajectory for profile 4 is shown in Figure 6.6. 

30 

20 

TBM Profile 4 

40- 

30- 

|20- 
N 

10- ■ ■•/'"" ~ ""■- 

-.^ 

o> ' ■ •.                 .■■''/'•.                          .-'■■'■". 

40    \                                           /                                                                          "--,, 

10 
20 

10 
0     0 Y(km) " X(km) 

Figure 6.6 TBM Trajectory (Profile 4). 

30 

103 



1.        Alpha-Beta-Gamma Tracker Results 

Figure 6.7(a) shows a plot of the TBM profile 4 with added measurement noise. 

The result of the oc-ß-y tracking algorithm is shown in Figure 6.7(b) with the filtered 

trajectory superimposed on the TBM trajectory for profile 4. These results are obtained 

over 100 simulation runs, with a=0.6. 
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Figure 6.7(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs. 
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TBM Profile 4 and ABG Trajectory 
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Figure 6.7(b) TBM Trajectory (Profile 4) and oc-ß-y Trajectory, a=0.6,100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.7(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot, shown with a large initial spike, is 

the mean distance error using the a-ß-y tracking algorithm. These results indicate that 

the a-ß-y tracker reduces the mean measurement noise by approximately 30 percent 

despite a large transient error which is present in the first 10 seconds of the filter. The 

transient error is shown in Figure 6.7(c) as a spike that peaks to approximately 9,700 

meters. 
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Figure 6.7(c) a-ß-y Tracker (Profile 4) Mean Distance Error, o=0.6,500 Runs. 
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2.        EKF (Accelerating Model) Results 

Figure 6.8(a) shows the TBM trajectory for profile 4 with added measurement 

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.8(b) 

with the filtered trajectory superimposed on the TBM trajectory for profile 4. These 

results are obtained over 100 simulation runs, with q2=10. 
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Figure 6.8(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs. 
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TBM Profile 4 and EKF(accel model)Trajectory 
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Figure 6.8(b) TBM Trajectory (Profile 4) and EKF Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.8(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean 

measurement noise by approximately 50 percent with an initial peak error of 

approximately 1900 meters. 
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Figure 6.8(c) EKF (Profile 4) Mean Distance Error, 500 Runs. 
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3.        IMM Results 

Figure 6.9(a) shows the TBM trajectory for profile 4 with added measurement 

noise. The result of the IMM algorithm is shown in Figure 6.9(b) with the filtered 

trajectory superimposed on the TBM trajectory for profile 4. These results are obtained 

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid 

function that switches element pn from a value of 1.0 .to 0.5. The altitude at the 

maximum burn time in this profile is approximately 38 km, and in this model the MM 

algorithm is set to start anticipating a change from the accelerating to the ballistic model 

after the missile reaches an altitude of 32 km. 

TBM Profile 4 w/ Measurement Noise 
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Figure 6.9(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs. 

110 



TBM Profile 4 w/ IMM Trajectory 
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Figure 6.9(b) TBM Trajectory (Profile 4) and IMM Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.9(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

MM tracking algorithm. These results indicate that the IMM algorithm reduces the 

mean measurement noise by approximately 50 percent with an initial peak error of 

approximately 1900 meters. 
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Figure 6.9(c) IMM (Profile 4) Mean Distance Error, 500 Runs. 
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4.        Comparison of Mean Distance Error 

Figure 6.10(a) shows a comparison of the mean distance error plots for the a-ß-y 

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line), 

and the EMM algorithm (shown as a solid line). Figure 6.10(b) shows a close-up of the 

comparison. As expected, the EKF algorithm and the IMM algorithm continue to show 

similar results since the IMM algorithm does not switch to the ballistic model. 
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Figure 6.10(a) Comparison of a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 
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Figure 6.10(b) Comparison (Close-up) of Mean Distance Error, 500 Runs. 

As in the previous section, an analysis of the MM switching processes utilizing a 

constant switching probability is conducted with pn =0.75. The results are compared to 

the previous example, where the MM algorithm used a sigmoid switching function to 

change the value of pn. Figure 6.10(c) shows a comparison of the mean distance error 

for the MM algorithm utilizing a sigmoid switching function (shown as a solid line) and 

the MM algorithm utilizing a constant switching probability (shown as a dashed line). 
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Contrary to the simulated data in Chapter V and the actual data in TBM profile 1, the 

results of the IMM algorithm utilizing these two switching processes do not behave as 

expected. In this example, the mean distance error for the IMM algorithm utilizing a 

constant switching probability is smaller early in the tracking process and larger in the 

latter part of the tracking process. Because of this unexpected response, the same 

analysis for the IMM algorithm switching processes is also conducted on the actual data 

in TBM profile 5. 
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Figure 6.10(c) IMM with Sigmoid Switching Process vs. IMM with Constant 
Switching Probability, pn=0.75 (500 Runs). 
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D.       TBM PROFILE 5 

The final TBM data chosen to be highlighted in this study is the TBM trajectory 

of profile 5. As in the two previous examples, the a-ß-y, EKF and IMM tracking 

algorithms are implemented on the TBM trajectory. Figure 6.11 shows a plot of the 

TBM trajectory of profile 5. 

TBM Profile 5 

Y(km) 0    o 
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Figure 6.11 TBM Trajectory (Profile 5). 
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1.        Alpha-Beta-Gamma Tracker Results 

Figure 6.12(a) shows a plot of the TBM profile 5 with added measurement noise. 

The result of the cc-ß-y tracking algorithm is shown in Figure 6.12(b) with the filtered 

trajectory superimposed on the TBM trajectory for profile 5. These results are obtained 

over 100 simulation runs, with a=0.6. 
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Figure 6.12(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs. 
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TBM Profile 5 and ABG Trajectory 
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Figure 6.12(b) TBM Trajectory (Profile 5) and cc-ß-y Trajectory, a=0.6,100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.12(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot, shown with the large spike, is the 

mean distance error using the a-ß-y tracking algorithm. These results indicate that the a- 

ß-y tracker reduces the mean measurement noise by approximately 30 percent despite a 

large transient error which is present in the first 10 seconds of the filter. This error is 

shown in Figure 6.12(c) as a spike that peaks to approximately 9,500 meters. 
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Figure 6.12(c) a-ß-y Tracker (Profile 4) Mean Distance Error, a=0.6,500 Runs. 
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2.        EKF (Accelerating Model) Results 

Figure 6.13(a) shows the TBM trajectory for profile 5 with added measurement 

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.13(b) 

with the filtered trajectory superimposed on the TBM trajectory for profile 5. These 

results are obtained over 100 simulation runs, with q2=10. 

TBM Profile 5 w/ Measurement Noise 
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Figure 6.13(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs. 
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TBM Profile 5 and EKF(accel model)Trajectory 
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Figure 6.13(b) TBM Trajectory (Profile 5) and EKF Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.13(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean 

measurement noise by approximately 50 percent with an initial peak error of 

approximately 1900 meters. 
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Figure 6.13(c) EKF (Profile 5) Mean Distance Error, 500 Runs. 
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3.        IMM Results 

Figure 6.14(a) shows the TBM trajectory for profile 5 with added measurement 

noise. The result of the IMM algorithm is shown in Figure 6.14(b) with the filtered 

trajectory superimposed on the TBM trajectory for profile 5. These results are obtained 

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid 

function that switches element pn from a value of 1.0 to 0.5. The altitude at the 

maximum burn time in this profile is approximately 44 km, and in this model the IMM 

algorithm is set to start anticipating a change between models after the missile reaches an 

altitude of 39 km. 
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Figure 6.14(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs. 
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TBM Profile 5 w/ IMM Trajectory 
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Figure 6.14(b) TBM Trajectory (Profile 5) and IMM Trajectory, 100 Runs. 
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The mean distance error in measurements is calculated over 500 simulation runs, 

and is shown in Figure 6.14(c). The upper plot is the mean measurement noise that is 

observed by the sensor platform, and the lower plot is the mean distance error using the 

IMM tracking algorithm. These results indicate that the MM algorithm reduces the 

mean measurement noise by approximately 50 percent with an initial peak error of 

approximately 1500 meters. The rise in the mean distance error in the last few seconds 

indicates the IMM filter is anticipating the switch to the ballistic model. 
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Figure 6.14(c) IMM (Profile 5) Mean Distance Error, 500 Runs. 
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4.        Comparison of Mean Distance Error 

Figure 6.15(a) shows a comparison of the mean distance error plots for the oc-ß-y 

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line), 

and the IMM algorithm (shown as a solid line). Figure 6.15(b) shows a close-up of the 

comparison. As expected, the results of the EKF and the IMM are similar, since the 

IMM algorithm does not switch to the ballistic model. 
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Figure 6.15(a) Comparison of cc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 
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Mean Distance Error in Measurements vs Time 
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Figure 6.15(b) Comparison (Close-up) of Mean Distance Error, 500 Runs. 

An analysis of the IMM algorithm switching process is conducted for TBM 

profile 5 using a constant value for the switching probability, with pn=0.75. The results 

are compared to the previous example of the IMM algorithm, which uses a sigmoid 

switching process. Figure 6.15(c) shows a comparison of the mean distance error for the 

IMM algorithm utilizing a sigmoid switching function (shown as a solid line) and the 

IMM algorithm utilizing a constant switching probability (shown as a dashed line). The 

plots of the mean distance error for each switching process behave as expected, with 
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results similar to the results obtained from both the simulated data and the actual data 

from TBM profile 1. The familiar trade-off in performance is noted, with the MM 

algorithm utilizing the sigmoid switching function performing better in the early part of 

the tracking process, and the IMM algorithm utilizing the constant switching probability 

performing better in the latter part of the tracking process. 
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Figure 6.15(c) IMM with Sigmoid Switching Process vs. IMM with Constant 
Switching Probability, pu=0.75 (500 Runs). 
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E. COMPARISON OF TBM PROFILES 

A comparison of the tracking quality of the different algorithms is shown in 

Figures 6.16 through 6.20. TBM profiles 1,4 and 5 were initially chosen for analysis in 

this section because of their different burn times listed in the TBM profile data. It was 

thought that the differences in burn times might identify some differences in the 

performance of the algorithms. However, the graphs show near identical results with 

only subtle differences in the performance of each individual missile characteristic. By 

reducing the mean distance error by approximately 50 percent, the EVIM algorithm 

proved to be the most accurate tracker of the three filtering algorithms. 
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Figure 6.16 Profile 1, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 

129 



10000 

9000 

8000 

7000 

B   6000 
E. 

g   5000 
LU 

|   4000 

Mean Distance Error in Measurements vs Time 

30 40 
Time (seconds) 

Figure 6.17 Profile 2, oc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 
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Figure 6.18 Profile 3, cc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 

130 



Mean Distance Error in Measurements vs Time 
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Figure 6.19 Profile 4, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 
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Figure 6.20 Profile 5, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs. 
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The tracking results of the actual TBM data in this chapter are consistent with the 

tracking results of the simulated TBM data in Chapters II through V. In all of the TBM 

profiles, the mean measurement noise observed by the sensor is reduced by 

approximately 50 percent with a mean distance error of approximately 1500 meters. 

Because the information provided in TBM profiles 1 through 5 only contains data up to 

the maximum burn time, the missile's transition area and post booster cut-off areas are 

not studied. The next chapter provides a summary of the analysis of TBM tracking 

during boost phase. Conclusions are made and recommendations for follow-on studies 

are presented. 
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VII. CONCLUSION 

The tracking of TBMs during their boost phase has been investigated, and a-ß-y, 

EKF and IMM tracking algorithms have been developed. The IMM tracking algorithm 

was shown to be the most effective algorithm for tracking TBMs during boost and 

transition phases. As shown in Chapter IV, the a-ß-y tracker performed only slightly 

better than the mean measurement noise observed by the sensor. Additionally, large 

transient errors were present in the initial few seconds of tracking. The EKF algorithm 

(accelerating model), shown in Chapters III and V, encountered significant difficulty 

tracking TBMs after booster cut-off. As a result, large peaks were present in the 

transition area of the mean distance error plots for the EKF algorithm. In this study, the 

IMM algorithm was shown to be the best overall tracking algorithm because of its ability 

to track TBMs during the large initial accelerations encountered during boost phase, and 

during the change in missile dynamics encountered in the TBM's transition to a ballistic 

phase. 

In the analysis of both the simulated and actual TBM data, the IMM algorithm 

outperformed all other tracking algorithms. In the simulated data, the IMM tracking 

algorithm significantly reduced the mean measurement noise observed by the sensor by 

approximately 75 percent (with a mean distance error of approximately 400 meters). In 

addition, the mean distance error during the missile's transition phase (after booster cut- 

off) was significantly reduced to approximately 200 meters. In the actual TBM data, the 

IMM tracking algorithm consistently reduced the mean measurement noise observed by 
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the sensor by approximately 50 percent (with a mean distance error of approximately 

1500 meters). The difference in IMM performance between the simulated data and the 

actual data was attributed to two factors. First, in the simulated data, the TBM launch 

point was intentionally offset from the origin and the resulting distance between the 

sensor and the launch point was approximately 92 km. In the actual TBM data, the 

downrange distance and altitude were referenced to the launch point, and for plotting 

purposes, the TBM was launched from the origin. A larger distance of 141 km resulted 

between the sensor and the launch point. Secondly, the sampling interval in the 

simulated data was set at 0.1 seconds while in the actual data, the interval was 1 second. 

This longer time interval between missile position measurements, combined with the 

increased distance between the sensor and missile launch point led to larger distance 

errors in the actual data. 

Follow-on studies should concentrate on the analysis of additional TBM profile 

data from actual missile launches to include data over the entire trajectory. This will 

allow for further investigation of the IMM algorithm in the transition areas of actual 

TBM data. 
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APPENDIX A. SOURCE CODE FOR BALLISTIC MISSILE 

SIMULATION 

A.       MATLAB® CODE FOR INITIALIZATION 

The following is the MATLAB® program used to initialize the ballistic missile 

simulation. 

% PtMissilelnitS.m 
% LT Tony San Jose 
% Thesis Advisor: R.G Hutchins 
% 03FEB98 
o, 
o 

% This script file initializes the flat earth point 
% missile simulation 

% define globals 
global g mass T tToff troll cfric xinit tmax sinterval; 

g = 9.8; 
T = 6*g; 
tToff = 60; %100; 
troll = 20; %30; 
cfric = 0.05; 
sinterval = 0.1; 

tmax 520; 

% gravity, meters/secA2 
% missile acceleration 
% time of thrust shut off (seconds) 
% time of missile rollover(seconds) 
% coefficient of friction 
% sampling interval (seconds) 

% max simulation time (seconds) 

wel = (40*(pi/180))/(tToff 
waz = (15* (pi/180))/(tToff 

troll);% rotation in elev    (rads/sec) 
troll);% rotation in azimuth (rads/sec) 

minstep = le-5;      % minimun step size 
numsamp =tmax/minstep;% number of samples 

xinit = [30 * 1000; 
0; 
0; 
40 * 1000; 
0; 
0; 
0; 
0.001; 
0]; 

Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 
Initial Missile 

x position (m) 
x velocity (m/s) 
x acceleration (m/sA2); 
y position (m) 
y velocity (m/s) 
y acceleration (m/sA2); 
z position (m) 
z velocity (m/s) 
z acceleration (m/sA2) 
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B.        MATLAB® CODE FOR MISSILE DYNAMICS FUNCTION 

The following is the MATLAB® program used to generate missile dynamics using 

flat earth equations of motion. 

function xdot = FlatEarthPtEqns(u) 
%*************************************************** + ***i + + + + * + ^^^ + + 
% This Function computes the Flat Earth, Point Mass Equations 
% for Missile Dynamics. 
O 

% LT Tony San Jose 
% Thesis Advisor: R.G Hutchins 
% 03FEB98 
Q. 

% The input vector is defined as: 
%      u(l) = T,      thrust along the missile velocity vector 
%      u(2) = we,      Velocity Vector Rotation Rate in elevation 
%      u(3) = waz,     Velocity Vector Rotation Rate in azimuth 
a 
o 

% The State Vector is defined as: 
% Position Variables 
%       u(4) = Px,  Position North of (0,0,0) 
%       u(7) = Py   Position East of (0,0,0) 
%       u(10)= Pz,  Height 
o 
o 

% Position Velocities 
% u(5) = U,  D(Px)/dt 
% u(8) = V,  D(Py)/dt 
% u(ll)= W,  D(Pz)/dt 
Q. 
O 

% Position Accelerations 
% u(6) = Ax,  D(Px)/dt 
% u(9) = Ay,  D(Py)/dt 
% u(12)= Az,  D(Pz)/dt 
Q. 
'S 

% Related Quantities 
% g, Gravitational Force =9.8 meters/secA2 
% cfric coefficient of friction 
% rho, air density with altitude 
% mass, missile mass 
% tToff, Time of Thrust Shutoff 
% troll, Time of Missile Rollover < tToff 

% Declare Global Variables 
global g mass tToff  troll cfric tmax; 

% Define Control Variables from Inputs 
T   = u(l); % thrust along missile velocity 
wel = u(2); % turn rate in elevation 
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waz = u(3); % turn rate in azimuth 

Define State Variables from Inputs 
x = u(4:12); 

Location Variables 
Px = x(l) 
Py = x(4) 
Pz = x(7) 

% Position in Direction of North Pole 
% Position At Equator in y 
% Position At Equator in z 

% Body-Axes Velocities 
U = x(2); % velocity in Px direction 
V = x(5); % velocity in Py direction 
W = x(8);  % velocity in Pz direction ("Up") 

% Speed, Atmospheric Density and Drag 
Vxy2 = UA2 + VA2j 
Vxy = sqrt(Vxy2) 
Vxz2 = UA2 + WA2; 
Vt2 = Vxz2 + VA2; 
Vt = sqrt(Vt2); 
az = atan2(V,U); 
el = atan2(W,Vxy); 

% Atmospheric Density in kg/meterA3 
if Pz < 0 % Travel inside the Earth is Viscous 

rho = 10A2; 
elseif Pz < 9144       % Altitudes below 9144 meters 

rho = 1.22557*exp(-Pz/9144); 
else % Altitudes above 9144 meters 

rho = 1.75228763*exp(-Pz/6705.6); 
end 

beta = cfric*rho; 
Tacc = T/Vt; 

% Compute the Derivatives 
dPx = U; 
dPy = V 
dPz = W 

% Azimuth and Elevation Rollover 
dU = -waz*V + wel*W*cos(az) - beta*U + Tacc*U; 
dV = waz*U  + wel*W*sin(az) - beta*V + Tacc*V; 
dW = -wel*Vxy - g  - beta*W + Tacc*W; 

xdot [dPx 
dU 
0 

dPy 
dV 
0 

dPz 
dW 
0 
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C. MATLAB® CODE FOR PLOTTING MISSILE SIMULATION 

The following is the MATLAB® program used to plot the output of the 

SIMULINK™ model, FlatEPtMissileSim.m 

%   FlatEPtPlotsS.m 
Q. 
O 

% This file plots the results of the SIMULINK missile simulation 
%************************* + ** + ********it**** + + + + + ** + * + + + + + + + + + + + + itiijritiririr 

% Define Variables 
t = missilevec(:,1) 
x = missilevec(:,2) 
vx = missilevec (.:, 3) 
ax = missilevec(:,4) 
y = missilevec(:,5) 
vy = missilevec(:,6) 
ay = missilevec(:,7) 
z = missilevec(:,8) 
vz = missilevec(:,9) 
az = missilevec(:,10); 

x_km = x/1000 
y_km = y/1000 
z_km = z/1000 

sxy = vx.A2 + vy.A2; 
speed = sqrt(sxy + vz.A2); 
sxy = sqrt(sxy); 
dist = sqrt(x.A2 + y.A2); 
az = atan2(vy,vx)*180/pi; 
el = atan2(vz,sxy)*180/pi; 
xaccel = ax/9. 
yaccel = ay/9.8, 
zaccel = az/9.8, 
total_accel = sqrt(xaccel.A2 + yaccel.A2 + zaccel.A2); 

% Plot Data 
%****************±*****±********** + ****±***± + + + + + * + * + + + + + + + + icir + + ^^ + ^^ 

fiqure(1) 
plot(x_km,z_km,'r-'); 
axis('equal') , grid; 
xlabelCX (km) ' ) , ylabel ( ' Z (km)1); 
title('Missile Z vs. X Plot'); 

%   print -deps ch2fg2a 

figure(2) 
plot(x_km,y km,'r-'); 
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axis('equal'); 
xlabeK'X (km)'), ylabel('Y (km)'), grid; 
title('Missile Y vs. X Plot'); 

%  print -deps ch2fg2b 

figure(3) 
plot(t,(dist/1000),'r-'); 
ylabel('Down Range Dist (km)1), xlabel('Time (seconds)'), grid; 
title('Down Range Distance vs Time'); 

%  print -deps ch2fg2c 

figure(4) 
plot(t,z_km,'r-'); 
axis('equal'); 
ylabel('Missile Altitide (km)'), xlabel("Time (seconds)'), grid; 
title('Missile Altitude vs Time (kilometers)1); 

%  print -deps ch2fg2d 

figure(5) 
plot(t,speed,'r-'); 
ylabel('Missile Speed (m/s)'), xlabel('Time (seconds)'), grid; 
title('Missile Speed vs Time'); 

%  print -deps ch2fg2e 

figure(6) 
plot(t,az,'r-'); 
title('Missile Azimuth Heading vs Time'); 

%   print -deps ch2fg2f 

figure(7) 
plot(t,el,'r-'); 
title('Missile Elevation Angle vs Time'); 
%print -deps ch2fg2g 

figure(8) 
plot(dist,z,'r-'); 
axis('equal'); 
title('Down Range Distance vs Height'); 
%print -deps ch2fg2h 

figure(9) 
plot3(x,y,z,'r-') ; 
axis('equal' ) ; 
ylabel('Y (m)'), xlabel('X (m)'), zlabel('Z (m)'), grid; 
title('Three Dimensional Missile Trajectory in meters'); 

% print -deps ch2fg2i 

figure(10) 
plot3(x_km,y_km,z_km,'r-') ; 
axis('equal'); 
ylabeK'Y (km)'), xlabel ('X (km)'), zlabel ('Z (km)'), grid; 
title('Three Dimensional Missile Trajectory in kilometers'); 

%  print -deps ch2fg2j 
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figure (11) 
plot3(x(1:1200),y(l:1200),z(1:1200), 'r-'); 
axis('equal'); 
ylabelCY (m) ') , xlabel('X (m) ') , zlabel (' Z (m) ') , grid; 
title('Missile Trajectory - Initial 120 Seconds in meters'); 

%  print -deps ch2fg2k 

figure (12) 
plot3(x_km(l:1200),y_km(1:1200) , z_km (1:1200) ,'r-'); 
axis('equal'); 
ylabel('Y (km)'), xlabel('X (km)'), zlabel('Z (km)'), grid; 
title (' Missile Trajectory - Initial 120 Seconds in kilometers' 

%  print -deps ch2fg21 

figure(13) 
plot(t,xaccel,'r-'); 
ylabel('gs'), xlabel('Time (seconds)'), grid; 
title('Missile Acceleration in X vs Time'); 

%  print -deps ch2fg2m 

figure (14) 
plot(t,yaccel,'r-'); 
ylabel('gs'), xlabel('Time (seconds)'), grid; 
title('Missile Acceleration in Y vs Time'); 

%   print -deps ch2fg2n 

figure(15) 
plot(t,zaccel,'r-'); 
ylabel('gs'), xlabel('Time (seconds)'), grid; 
title('Missile Acceleration in Z vs Time'); 
%print -deps ch2fg2o 

figure(16) 
plot(t,total_accel,'r-'); 
ylabeK'gs*), xlabel ('Time (seconds)'), grid; 
title('Missile Acceleration vs Time'); 
%print -deps ch2fg2p 
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APPENDIX B. SOURCE CODE FOR EXTENDED KALMAN 

FILTER TRACKING ALGORITHM 

The following is the MATLAB® program used in the tracking of the ballistic 

missile base trajectory. 

% efk.m 
% LT Tony San Jose 
% Thesis Advisor: R. G. Hutchins 
% 03FEB98 
Q. 
O 

% This program uses an EKF to filter the sensor measurement noise 
% from the ballistic missile base trajectory developed using 
% SIMULINK Random noise is added in the sensor 
% measurement process. Actual missile track is generated in 
% FlatEarthMissle SIMULINK model. 

% INPUT 
%  missilevec: state  vector  =   [x,Vx,Ax,y,Vy,Ay,z,Vz,Az]' 

%   OUTPUT 
% mean_K_track Kaiman estimated positions 
% + + *** + ****************** + ****************** + ■), + + + + + + + + + ******** + + + + + +.+ 

% Load simulation workspace 
clear all 
load datl; 
missilevec = missilevec'; 

% Define the number of simulation loops 
nloops =10; 

% Define the sampling interval 
delta = .1; 

% Define the number of samples 
nsamples = 1200; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; 

100  * 1000; 
0  * 1000]; 

% sensor is 100 km in x 
% sensor is 100 km in y 
% sensor is 100 km in z 

sigma_r = 10; 
sigma_b = l*pi/180; 
sigma_e = l*pi/180; 

R diag([sigma_rA2, 

% 10 meters std dev in range 
% 1 degree std dev in azimuth 
% 1 degree std dev in elevation 

% covariance matrix for uncorrelated 
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sigma_bA2,      % range and bearing measurements 
sigma_eA2]); 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% target motion, x(k+l) = F(k)*x(k) + G 

f_sub = [1, delta, (deltaA2)/2; 
0,   1,     delta; 
0,   0,        1 ]; 

F = [ f_sub, zeros(3), zeros(3); 
zeros(3), f_sub, zeros(3); 
zeros(3), zeros(3),  f_sub  ]; 

% Define G matrix 
G = -g * [0; 

0; 
0; 
0; 
0; 
0; 
(deltaA2)/2; 
delta; 
0]; 

% Define the H matrix (MEASUREMENT MATRIX) , assuming that the 
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k) 

H = [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0, 0, 0, 0, 0, 0, 1, 0, 0]; 

% Initialize Q, the covariance of the plant noise 
% qA2 = scale factor to system noise covariance matrix Q, 
% used to account for unmodeled target maneuver acceleration. 

q_sqr = 10; 

Q_sub = [ (deltaA5)/20, (deltaA4)/8, (deltaA3)/6; 
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2; 
(deltaA3)/6,  (deltaA2)/2,    delta   ]; 

Q = q_sqr * [ Q_sub, zeros(3), zeros(3); 
zeros(3), Q_sub, zeros(3); 
zeros(3),  zeros(3),  Q sub  ]; 

a*********** End of Initialization outside loops *************** 

%************************* + ******->c**-k-k.k*.k± + ±* + + + 1, + ±±i, + * + + + + + + + + + 

% Loop over the target motion/measurement simulation 
%*************+**********************+++****+**+++++++++++++++++ 

for  kk = 1: nloops 
tic 
kk 
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% define empty output matricies 

% measurement positions (cartesian) w/error 
zout_true_n = []; 

% distance error between measurement and true position 
error_true = []; 

% Kaiman estimated trajectory 
K_track = []; 
K_accel = []; 

% error between Kaiman track and actual track 
track_error = []; 

%*************************************************************** 

% This block is used for the initialization process. Initialize 
% from a SWAG. 
%*************************************************************** 

x_swag = missilevec(2:10,1); 
x_swag(9) = 6*g; 
p_swag = eye(9) * 10A4; 

x_corr = x_swag; 
P_corr = p_swag; 

%************************************************************* 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 
%************************************************************* 

for ii = 2:nsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

%****.********************************************************* 

% convert current position to polar coordinates and add 
% sensor noise to the position, generating a noisy measurement 
% from the sensor. 
%************************************************************* 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

% range from sensor 
r = sqrt(zreld) A2 + zrel (2) "2 + zrel(3)A2); 

% bearing from sensor 
b = atan2(zrel(2), zrel(l)); 

% range in x/y plane 
r_prime = sqrt(zrel(1)A2 + zrel(2)A2); 
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% elevation from sensor 
e = atan2(zrel(3) , r_prime); 

% add noise to the measurement 
r_n = r + sigma_r * randn; 
b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; 

b_n; 
e_n] ; 

% measurement in cartesian coordinates + noise 
z_cart_true_n = [r_prime*cos(b_n); 

r_prime*sin(b_n); 
r_n*sin(e_n)  ] + Sensor_posit; 

z_cart_rel_n =  [r_prime*cos(b_n); 
r_prime*sin(b_n); 

r_n*sin(e_n)  ]; 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff*zdiff); 

% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurements) 
error_true = [error_true, disterror]; 

% Prediction 

% Kaiman Filter prediction equations 
' xjpredlct = F * x_corr + G; 
P_predict = F * P_corr * F' + Q; 

%****************************** + * + + * + ^ + + + + + + Jr:A.J. + vl. + ^^ + <.vlr + 
% Correction 
%****************************** + * + * + ** + * + + + + Jr:A. + + + + + + + + + <. 

% Convert to relative position to compute RBE coordinates 
x_l = x_predict(l) - Sensor_posit(1); 
x_4 = x_predict(4) - Sensor_posit(2); 
x_7 = x_predict(7) - Sensor_posit(3); 

% Convert prediction to Range, Bearing, Elevation 
coordinates 

r_hat = sqrt(x_lA2 + x_4A2 + x_7A2); 
b_hat = atan2(x 4, x 1); 
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e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2)); 

% Determine expected measurement 
z_polar_hat = [r_hat; 

b_hat; 
e_hat]; 

% Observed minus expected measurements 
z_tilde = z_polar_n - z_polar_hat; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_4/(x_lA2 + x_4A2); 
Hk_r2c4 =  x_l/(x_lA2 + x_4A2); 

Hk_r3cl = (-x_l*x_7)/( (sqrt(x_lA2 + x_4A2))*(x 1A2 + x 4A2 + x 7A2) )• 
Hk_r3c4 = (-x_4*x_7)/( (sqrt(x_lA2 + x_4A2))*(x 1A2 + x~4A2 + x~7A2) )'• 
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2)J 

% Determine H matrix 

Hk = [x_l/r_hat,  0, 0, x_4/r_hat, 0, 0, x_7/r hat, 0, 0; 
Hk_r2cl,   0, 0,   Hk_r2c4, 0, 0,     0, 0, 0- 
Hk_r3cl,   0,0,   Hk_r3c4, 0, 0, Hk_r3c7, o' 0]; 

% Compute Kaiman Gain 
K = P_predict * Hk' * inv(Hk * P_predict * Hk' + R) ; 

% Correction equations 
x_corr = x_predict + K * z_tilde; 
P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)■ 

+ K*R*K'; 

% Kaiman track positions and difference between Kaiman 
% and actual track position and actual target position 

zout_K_track = H*x_corr; 

track_diff = ztrue - zout_K_track; 
track_error = [track_error, sqrt(track_diff'* 

track_diff)]; ~ 

% Update KF track trajectory array 
K_track =  [K_track, zout_K_track]; 

% Estimated accelerations 
accel_out = [x_corr(3,:); 

x_corr(6,:); 
x_corr(9,:)]; 

% Update KF acceleration array 
K_accel = [K_accel, accel_out]; 

end; % for ii = 2:nsamples 

if kk == 1, % create first output 

%*****************************************************iti###Jtit + ##vlr#A + + #A# 
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zoutmean_true = zout_true_n; 
mean_K_track = K_track; 
merror_track = track_error; 
merror = error_true; 

else % create output after 1st run 

zoutmean_true = zoutmean_true + zout_true_n; 
mean_K_track = mean_K_track + K_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 
toe 
end; % for kk = lrnloops 

o 

% Compute Means 
a************************************************************* o 

zoutmean_true  = zoutmean_true/nloops; 
mean_K_track  = mean_K_track/nloops; 
merror        = merror/nloops;   % mean error between 

% measurement and true position 

merror_track = merror_track/nloops;   % mean error between 
% EKF estimated position 
% and true position 

o 

% Plot results 
o 

figure(1) 
measurement  = zoutmean_true/1000; % convert to km 
Kalman_track = mean_K_track/1000; % convert to km 
missile track = missilevec(:,1:nsamples)/1000; % convert to km 

plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:)'g-', ... 
Sensor_posit (1) /1000, Sensor_posit (2) /1000,... 
Sensor_posit(3)/1000,'rx'); 

axis([0,150,0,150,0,150]); 
title('Ballistic Missile Base Trajectory - 120 seconds'); 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid; 
%print -deps c3plsl 

figure(2) 
plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:),g-',... 

measurement(1,:), measurement(2,:), measurement(3,:),'r-',... 
Sensor_posit(1)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000, 
'rx'); 

axis([0,150,0,150,0,150]); 
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title('Ballistic Missile Base Trajectory with Measurement Noise - 120 
seconds'); 

xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km) ') , grid; 
%print -deps c3pls2 

figure(3) 
plot3 (missile_track(2, l:nsamples) ,missile_track (5, lrnsamples),... 

missile_track(8,1:nsamples),'g-',... 
Kalman_track(1,:), Kalman_track(2,:), Kalman_track(3,:),'r-',... 
Sensor_posit(1)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000, 
■rx'); 

axis([0,150,0,150,0,150]); 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid; 
title('Ballistic Missile Base Trajectory and EKF Trajectory - 120 

seconds'); 
%print -deps c3pls3 

figure(4) 
start_pt = 1; 
stop_pt = 801; 
zoom_missile = [(start_pt + 1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile), missile_track(5,zoom_missile), 

missile_track(8,zoom_missile),'g-',... 
Kalman_track(l,zoom_Kalman), Kalman_track{2,zoom_Kalman) , 
Kalman_track(3,zoom_Kalman),'r-') ; 

axis ( [30, 60, 30, 60, 0, 60] ) ; 
xlabeK'X (km)'), ylabelf'Y (km)'), zlabel ('Z (km)'),grid; 
title(['ZOOM - EKF Trajectory Initial ',num2str((stop_pt - 

start_pt)/10),' Seconds']); 
%print -deps c3pls4 

figure(5) 
time = missilevec(1,:); 
diff_k_base = [Kalman_track(1, :) - missile_track(2,2:1200) ; 

Kalman_track(2, :) - missile_track(5,2:1200); 
Kalman_track(3,:) - missile_track(8,2:1200)]; 

plot(time(2:nsamples), merror, 'g-',... 
time(2:nsamples), 1000*sqrt(diff_k_base(1, :).A2 + 
diff_k_base(2,:).A2 + diff_k_base(3,:)."2),'r-'); 

xlabeK'Time (seconds)'), ylabel ('Error (meters)'), grid; 
title('EKF Distance Error vs. Time'); 
legend('Mean Distance Error','EKF Distance Error'); 
%print -deps c3pls5 
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APPENDIX C. SOURCE CODE FOR ALPHA-BETA-GAMMA 

TRACKING ALGORITHM 

The following is the MATLAB® program used in the tracking of the ballistic 

missile base trajectory. 

% abg.m 
% LT Tony San Jose 
% Thesis Advisor: R.G Hutchins 
% 03FEB98 
o 
■o * 

% This program uses an Alpha-Beta-Gamma tracker to filter the sensor 
% measurement noise from the ballistic missile base trajectory 
% developed using SIMULINK.  Random noise is added to the measurement 
% process.  Actual missile track is generated in FlatEarthMissile 
% SIMULINK model. 
Q. 
O 

% delta =0.1 sec 
% nloops = 100 
% alpha =0.6 

% Load base trajectory simulation workspace 
clear all 
load datl;     % base trajectory developed in SIMULINK model 
missilevec = missilevec'; 

% Define the number of simulation loops 
nloops = 100; 

% Define the sampling interval 
delta = .1; 

% Define the number of samples 
[num__rows,num_cols] = size (missilevec) ; 
nsamples = 1200; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; % sensor is 100 km'in x 

100  * 1000; % sensor is 100 km in y 
0  * 1000]; % sensor is 100 km in z 

sigma_r =10; % 10 meters std dev in range 
sigma_b = l*pi/180;        % 1 degree std dev in azimuth 
sigma_e = l*pi/180;       % 1 degree std dev in elevation 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% target motion, x(k+l) = F(k)*x(k) + G 
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f_sub = [1, delta, (deltaA2)/2; 
0,   1,      delta; 
0,   0,       1 ]; 

F = [  f_sub, 
zeros(3), 

zeros(3), zeros(3); 
f sub,   zeros(3); 

zeros(3), zeros(3),  f_sub  ] ; 

% Define G matrix 
G = -g * [0; 

0, 
0j 

0; 
0; 
0; 
(deltaA2)/2; 
delta; ■ 
0]; 

% Define the H matrix (MEASUREMENT MATRIX), assuming that the 
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k) 

H = [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0, 0, 0, 0, 0, 0, 1, 0, 0]; 

% Define alpha, beta, gamma tracker parameters 

alpha = 0.6; 
beta = 2*(2-alpha) - 4*sqrt(1-alpha); 
gamma = (betaA2)/(2*alpha); 
nu = 1; 

K_abg = [alpha, 0, 0 
beta/(nu*delta), 0, 0 
gamma/((nu*delta)A2),0, 0 
0, alpha, 0 
°/ beta/(nu*delta) ,     0 
°' gamma/((nu*delta)A2),0; 
°' 0, alpha; 
°' 0, beta/(nu*delta); 
°' 0, gamma/((nu*delta)A2)]; 

% Define initialization parameters 

d sub = [ [    1, 0,    0, 
3/(2*delta),0, 
l/(deltaA2),0, 

0,    0, 0, 0; 
0, -2/delta,      0, 0, l/(2*delta); 
0, -2/(deltaA2),0, 0, l/deltaA2]; 

D = [d_sub, zeros(3,2); 
zeros(3,1), d_sub, zeros (3,1); 
zeros (3, 2) , d sub] ; 
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%*********** End of initialization outside loops *************** 

% Loop over the target motion/measurement simulation 

for  kk = 1: nloops 
tic 
kk 

% define empty output matricies 

% measurement positions (cartesian) w/error 
zout_true_n = [] ; 

% distance error between measurement and true position 
error_true = []; 

% Kaiman estimated trajectory 
ABG_track = []; 

% error between Kaiman track and actual track 
track_error = []; 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 

for ii = linsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

% convert current position to polar coordinates and add 
% sensor noise to the position, generating a noisy measurement 
% from the sensor. 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

r = sqrt(zrel(l)A2 + zrel(2)A2 + zrel(3)A2); 
% range from sensor 

D 
b = atan2(zrel(2), zrel(l)); 

% bearing from sensor 
D 
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r_prime = sqrt(zrel(1)A2 + zrel(2)A2); 
% range in x/y plane 

D 
e = atan2(zrel(3), r_prime) ; 

% elevation from sensor 

% add noise to the measurement 
r_n = r + sigma_r * randn; 
b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; 

b_n; 
e_n] ; 

% measurement in cartesian coordinates + noise 
z_cart_true_n = [r_prime*cos(b_n); 

r_prime*sin(b_n); 
r_n*sin(e_n)  ] + Sensor_posit; 

z_cart_rel_n =  [r_prime*cos(b_n); 
r_prime*sin(b_n); 

r_n*sin(e_n)  ]; 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff'*zdiff); 

.% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurement & true 
measurement w/noise) 
error_true = [error_true, disterror];' 

if ii > 2 % For intialization from the first 3 measurements 

%   Prediction 
********************************** + + *^ + + + + + + + + + J. + + + ^ + 

% Initialization using the first 3 measurements 
if ii == 3 

x_corr = D * [zout_true_n(:,3); 
zout_true_n(:,2); 
zout_true_n(:,1)]; 

end;  %if ii==3 

% ABG Filter prediction equations 
x_predict = F * x corr + G; 
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% Correction 
%***********************************^^^^^^ 

% Convert to relative position to compute RBE 
coordinates 

x_l = x_predict(l) - Sensor_posit (1) 
x_4 = x_predict(4) - Sensor_posit(2) 

■x_7 = x_predict(7) - Sensor_posit(3) 

% Convert prediction to Range, Bearing, Elevation 
coordinates 

r_hat = sqrt(x_lA2 + x_4A2 + x 7A2); 
b_hat = atan2(x_4, x_l); 
e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2)); 

% Determine expected measurement 
z_cart_exp_rel  = [r_hat*cos(b_hat)*cos(e_hat); 

r_hat*cos(e_hat)*sin(b_hat); 
r_hat*sin(e_hat)]; 

z_cart_exp_true = z_cart_exp_rel + Sensor_posit; 

% Observed minus expected measurements 
z_tilde_c = z_cart_rel_n - z_cart_exp_rel; 

% Correction equations 
x_corr = x_predict + K_abg * z_tilde_c; 

% Alpha-Beta-Gamma track positions and difference 
between ABG and 

% actual track position and actual target position 
zout_ABG_track = H * x corr; 

track_diff = ztrue - zout_ABG_track; 
track_error = [track_error, 
sqrt(track_diff'*track_diff)]; 

% Update ABG track trajectory array 
ABG_track =  [ABG_track, zout_ABG_track]; 

end;   % if ü>2 

end; % for ii = lrnsamples 

%********** 

if kk == 1, % create first output 

zoutmean_true = zout true n; 
mean_ABG_track = ABG~track;' 
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merror_track = track_error; 
merror = error_true; 

else % create output after 1st run 

zoutmean_true = zoutmean_true + zout_true_n; 
mean_ABG_track = mean_ABG_track + ABG_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 
toe 
end; % for kk = l:nloops 

o 

% Compute Means 
o 

zoutmean_true = zoutmean_true/nloops; 
mean_ABG_track  = mean_ABG_track/nloops; 
merror        = merror/nloops;      % mean error between 

% measurement and true position 

merror_track = merror_track/nloops;     % mean error between 
% EKF estimated position 
% and true position 

o 

^   PI o1~   rssults 
l±********************************************************************* 
o 

figure(1) 
measurement  = zoutmean_true/1000; % convert to km 
ABG = mean_ABG_track/1000; % convert to km 
missile_track = missilevec(:,l:nsamples)/1000; % convert to km 

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),*g- 
t 

Sensor_posit(l)/1000, Sensor_posit(2)/1000, 
Sensor_posit(3)/1000,'rx'); 

axis([0,150,0,150,0,150]); 
title('Ballistic Missile  Base  Trajectory -  120   seconds'); 
xlabeK'X   (km)*),   ylabeK'Y   (km)'),   zlabeK'Z   (km)'),grid; 
print  -deps  c4flc 

figure(2) 
plot3(missile_track(2,:),missile_track(5,:) ,missile_track(8,:),'g-',... 

measurement(1,:), measurement(2,:), measurement(3,:),'r-', . . . 
Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx'); 

axis([0,150,0,150, 0,150]) ; 
title('Ballistic Missile  Base  Trajectory with Measurement Noise  -  120 

seconds'); 
xlabeK'X   (km)'),   ylabeK'Y   (km)'),   zlabeK'Z   (km) ') , grid; 
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_ I 

print -deps c4f2c 

figure(3) 
plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:),'g 
ABG(l,l:nsamples-2 ), ABG(2,1:nsamples-2), ABG(3,l:nsamples-2),'r 
Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx'); 

axis([0,150,0,150,0,150]); 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km) ') , grid; 
title('Ballistic Missile Base Trajectory and ABG Trajectory - 120 

seconds'); 
print -deps c4f3c 

figure(4) 
start_pt = 1; 
stop_pt = 401; 
zoom_missile = [(start_pt + 1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile), missile_track(5,zoom_missile), 

missile_track(8,zoom_missile) , 'g-', . . . 
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3,zoom_Kalman),'r-'); 

axis([30,60,30,60,0,60]); 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel ('Z (km)'),grid; 
title(['ZOOM - ABG Trajectory Initial ',num2str((stop_pt - 
start_pt)/10) , ' Seconds']); 
print -deps c4f4c 

figure(5) 
start_pt = 1; 
stop_pt = 601; 
zoom_missile = [(start_pt + 1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile) , missile_track(5,zoom_missile), 
missile_track(8,zoom_missile) , 'g-', .. . 
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3, zoom_Kalman), 'r-'); 

axis([30,60,30,60,0,60]); 
xlabeK'X   (km)'),   ylabeK'Y   (km)'),   zlabel(' Z   (km)'),grid; 
title(['ZOOM - ABG Trajectory Initial   ',num2str((stop_pt  - 
start_pt)/10),'   Seconds']); 
print -deps c4f5c 

figure(6) 
start_pt = 1; 
stop_pt = 801; 
zoom_missile = [(start_pt + 1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile) , missile_track(5,zoom_missile), 
missile_track(8,zoom_missile) , 'g-', . . . 
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3,zoom_Kalman),'r-'); 

axis([30,60,30,60,0,60]); 
xlabeK'X   (km)'),   ylabeK'Y   (km)'),   zlabel(' Z   (km)*),grid; 
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title(['ZOOM - ABG Trajectory Initial ',num2str((stop pt - 
start_pt)/10),' Seconds']); 
print -deps c4f6c 

figure(7) 
time = missilevec(1,:); 
diff_ABG_base = [ABG(1,:) - missile_track(2,3:nsamples); 

ABG(2,:) - missile_track(5,3:nsamples); 
ABG(3,:) - missile_track(8,3:nsamples)]; 

plot(time(l:nsamples), merror, 'g-',... 
time(3:nsamples), 1000*sqrt(diff_ABG_base(1, : ) . A2 + 
diff_ABG_base(2, :) .A2 + diff_ABG_base(3, :) .A2), 'r-'); 

xlabelCTime (seconds)'), ylabel ('Error (meters)'), grid; 
title('ABG Distance Error vs. Time'); 
%axis([2 ,120, 0, 3000]); 
legendCMean Distance Error','ABG Distance Error'); 
print -deps c4f7c 

figure(8) 

plot(time(lrnsamples),merror,'g-',time(3:nsamples) ,merror_track,'r-'); 
xlabelCTime (seconds)'), ylabel ('Mean Error (meters)'), grid, title ('Mean 
Distance Error in Measurements vs Time');% (', num2str(nloops),' runs, 
',num2str(nsamples),' data points)'] ),grid; 
print -deps c4f8c 
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APPENDIX D. SOURCE CODE FOR INTERACTING 

MULTIPLE MODEL TRACKING ALGORITHM 

The following is the MATLAB® program used in the tracking of the ballistic 

missile base trajectory. 

%*********************************************************************, 

%   imm.m 
% LT Tony San Jose 
% Thesis Advisor: R.G Hutchins 
% 03FEB98 
o, 
o 

% This program generates a Kaiman filter missile track using IMM with 
D 
% 2 models: an accelerating model and a ballistic model. 
D 
% The filter is initialized is from the missile launch position. 
% Random noise is added in the sensor measurement process. 
% Actual missile track is generated in FlatEarthMissle SIMULINK model. 
o 
o 

%*********** ********************************************************** 

% Load simulation workspace 
clear all 
load datl; 
missilevec = missilevec' ; 

% Define the number of simulation loops 
nloops = 100; 

% Define the sampling interval 
delta =.1;. 

% Define the number of samples 
[num_rows,num_cols] = size(missilevec); 
nsamples = 1,200; 

% Define q^2 
q_sqr =10; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; % sensor is 100 km in x 

100  * 1000; % sensor is 100 km in y 
0  * 1000]; % sensor is   0 km in z 

sigma_r =10; % 10 meters std dev in range 
sigma_b = l*pi/180; % 1 degree std dev in azimuth 
sigma_e = l*pi/180; % 1 degree std dev in elevation 
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R = diag([sigma_rA2,        % covariance matrix for 
uncorrelated 

sigma_bA2,        % range and bearing measurements 
sigma_eA2]); 

% Define the H matrix (MEASUREMENT MATRIX) for the accelerating 
% model 

H = [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0, 0, 0, 0, 0, 0, 1, 0, 0]; 

% ACCELERATING MODEL 

% Define G matrix 
G_accel = -g * [0; 

0; 
0; 
0; 
0; 
0; 
(deltaA2)/2; 
delta; 
0]; 

% Initialize Q, the covariance of the plant noise 

Q_sub_a = [(deltaA5)/20, (deltaA4)/8, (deltaA3)/6; 
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2; 
(deltaA3)/6,  (deltaA2)/2,    delta   ]; 

Q_accel = q_sqr * [Q_sub_a,  zeros(3), zeros(3); 
zeros(3),  Q_sub_a, zeros(3); 
zeros(3), zeros(3), Q_sub_a ]; 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% accelerating model. 

f_sub_a = [1, delta, (deltaA2)/2; 
0,   1,     delta; 
0,   0,        1 ]; 

F_accel = [f_sub_a, zeros(3), zeros(3); 
zeros(3), f_sub_a, zeros(3); 
zeros(3), zeros(3), f_sub_a ]; 

% BALLISTIC MODEL 

%   Define G matrix 
G_ball = -g * [0; 

0 
0 
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0; 
0; 
0; 
(deltaA2)/2; 
delta; 
0]; 

% Detemine Q for the Ballistic model 

Q_sub_b = [(deltaA3)/3, (deltaA2)/2, 0; 
(deltaA2)/2,    delta,    0; 

0, 0,     0]; 

Q_ball = q_sqr * [ Q_sub_b, zeros (3), zeros(3); 
zeros(3),  Q_sub_b, zeros(3); 
zeros(3), zeros(3),  Q_sub_b]; 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% ballistic model. 

f_sub_b = [1, delta, 0; 
0,   1,   0; 
0,0,   0 ]; 

F_ball = [f_sub_b, zeros(3), zeros(3); 
zeros(3), f_sub_b,  zeros (3); 
zeros(3), zeros(3), f sub b ]; 

g.*********** End of Initialization outside loops *************** 

% Loop over the target motion/measurement simulation 

for  kk = 1: nloops 

tic 
kk 

% define empty output matricies 

% measurement positions (cartesian) w/error 
zout_true_n = []; 

% distance error between measurement and true position 
error_true = []; 

% Kaiman estimated trajectory 
K_track = []; 
K_accel = []; 

% error between Kaiman track and actual track 
track_error = []; 

% This block is used for the initialization process. Initialize 
% from launch position. 
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x_corr_accel = missilevec(2:10,1); 
P_corr_accel = eye(9) * 10A4; 

x__corr_ball = missilevec(2:10,1); 
P_corr_ball = eye(9) * 10A4; 

% Initial likelihoods for states. 
mu_init = [1; 

0]; 

mu = mu_init 
mu_l = mu(1) 
mu 2 = mu(2) 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 
%******************** + ********* + + * + + + + + + JtJr + + + + Jt^^.^ + il.^ + + + + + vtVrii + 

for ii = 2:nsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

D 

D 

D 

% convert current position to polar.coordinates and add 

% sensor noise to the position, generating a noisy measurement 
% from the sensor. 
%*********************±**-k-k±* + *-k-k* + + .k.tc** + ie*i,* + i< + + irir + ir + + ie + jcir + + + 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

r = sqrt(zrel(1)~2 + zrel(2)A2 + zrel(3)A2); % range 
from sensor 

b = atan2(zrel(2) , zrel(l)); 

r_prime = sqrt(zrel(1)A2 + zrel(2)A2); 

e = atan2(zrel(3) , r_prime); 

% add noise to the measurement 

% bearing 
from sensor 

% range in 
x/y plane 

% elevation 
from sensor 
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D 

a 

a 

D 

G 

r_n = r + sigma_r * randn; 
b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; 

b_n; 
e_n] ; 

% measurement in cartesian coordinates + noise 
z_cart_rel_n =  [r_prime*cos(b_n); 

r_prime*sin(b_n); 
r_n*sin(e_n)  ]; 

z_cart_true_n = z_cart_rel_n + Sensor_posit; 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff'*zdiff); 

% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurements) 
error_true = [error_true, disterror]; 

% Prediction 
%**************************************■*•■*■******* + *■*.**** * + * 

% Probabilities of changing state, Markov chain 
transition 

pl = 1; 

p2 = 0.5; 

alt = 50e3; 

h = z cart true n(3); 

prob_accel = -p2*( 1/(1+exp(-.0005*(h-alt))) - (1+pl) );' 
prob_ball = 1 - prob_accel; 

rho = [prob_accel,  prob_ball; 
0, 1   ]; 

% Accelerating Model 
cbar = rho' * mu; 

if cbar(l) < 10A(-8) % prevents cbar_l from 
blowing up 
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cbar 1 = 10A(-8); 
D 

else 
cbar_l = cbar(1); 

end; 

cbar_2 = cbar(2) ; 

rho_ll = rho(l,l) 
rho_21 = rho(2,l) 
rho_12 = rho(l,2) 
rho_22 = rho(2,2) 

x_hat_01 = x_corr_accel * ( (rho_l1*mu_l) /cbar_l) + 
x_corr_ball  * ((rho_21*mu_2)/cbar_l); 

xtilde_ll = x_corr_accel - x_hat_01; 
xtilde_21 = x_corr_ball  - x_hat_01; 

mu_ll = rho_ll * mu_l / cbar_l; 
mu_21 = rho_21 * mu_2 / cbar_l; 

P_hat_01 = mu_ll * (P_corr accel + 
xtilde_ll*xtilde_ll') + .. 

mu_21 * (P_corr ball + 
xtilde 21*xtilde 21'); 

model 

Q accel; 

% Kaiman Filter Prediction Equations for Accelerating 

x_predict_accel = F_accel * x_hat_01 + G_accel; 
P_predict_accel = F_accel * P_hat_01 * F accel' + 

% Ballistic Model 
x_hat_02 = x_corr_accel * ((rho_12*mu_l)/cbar_2) + ... 

x_corr_ball  * ((rho_22*mu_2)/cbar_2); 

xtilde_12 = x_corr_accel - x_hat_02; 
xtilde_22 = x_corr_ball  - x_hat_02; 

mu_12 = rho_12 * mu_l / cbar_2; 
mu_22 = rho_22 * mu_2 / cbar_2; 

P_hat_02 = mu_12*(P_corr_accel + xtilde_12*xtilde 12') 

mu_22*(P_corr_ball + xtilde_22*xtilde_22'); 

% Kaiman Filter Prediction Equations for Ballistic model 
x_predict_ball = F_ball * x_hat_02 + G_ball; 
P_predict_ball = F_ball * P_hat_02 * F_ball' + Q ball; 

% Correction 
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% Accelerating Model 
% Convert to relative position to compute polar 

coordinates 
x_l = x_predict_accel(1) - Sensor_posit(1); 
x_4 = x_predict_accel(4) - Sensor_posit(2); 
x_7 = x_predict_accel(7) - Sensor_posit(3); 

% Convert prediction to polar coordinates 
r_hat_a = sqrt(x_lA2 + x_4A2 + x_7A2); 

b_hat_a = atan2(x_4, x_l); 
e_hat_a = atan2(x_7, sqrt(x_lA2 + x_4A2)); 

% Determine expected measurement 
z_polar_hat_a = [r_hat_a; 

b_hat_a; 
e_hat_a]; 

% Observed minus expected measurements 
z_tilde_a = z_polar_n - z_polar hat a; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_4/(x_lA2 + x_4A2); 
Hk_r2c4 =  x_l/(x_lA2 + x_4A2); 
Hk_r3cl = (-x_l*x_7)/( (sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2) ); 
Hk_r3c4 = (-x_4*x_7)/( (sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2) ); 
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2); 

% Determine H matrix 
Hk_a = [x_l/r_hat_a, 0, 0,  x_4/r_hat_a, 0, 0, x_7/r_hat_a, 0, 0 

Hk_r2cl, 0, 0,   Hk_r2c4, 0, 0,     0, 0, 0 
Hk_r3cl, 0, 0,   Hk_r3c4, 0, 0, Hk_r3c7, 0,0] 

% Compute Kaiman Gain 
K_accel = P_predict_accel * Hk_a'*inv(Hk_a*P_predict_accel * Hk_a' + R); 

% Kaiman Filter Correction equations for Acclerating Model 
x_corr_accel = x_predict_accel + K_accel * z_tilde_a; 
P_corr_accel = (eye(9) - K_accel*Hk_a)* P_predict_accel; 

% Ballistic Model 
% Convert to relative position to compute polar 

D 

D 

D 

coordinates 

x_l = x_predict_ball(1) - Sensor_posit(1); 

x_3 = x_predict_ball(4) - Sensor_posit(2); 

x_5 = x_predict_ball(7) - Sensor_posit(3); 

% Convert prediction to polar coordinates 
r_hat_b = sqrt(x_lA2 + x_3A2 + x_5A2); 
b_hat_b = atan2(x_3, x_l); 
e_hat_b = atan2(x_5, sqrt(x 1A2 + x 3A2)); 
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% Determine expected measurement 
z_polar_hat_b = [r_hat_b; 

b_hat_b; 
e_hat_b]; 

% Observed minus expected measurements 
z_tilde_b = z_polar_n - z_polar_hat_b; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_3/(x_lA2 + x_3A2); 
Hk_r2c4 = x_l/(x_lA2 + x_3A2); 
Hk_r3cl = (-x_l*x_5)/( (sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2) ); 
Hk_r3c4 = (-x_3*x_5)/( (sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x 5A2) ); 
Hk_r3c7 = (sqrt(x_lA2 + x_3A2))/(x_lA2 + x_3A2 + x_5A2); 

% Determine H matrix 
Hk_b = [x_l/r_hat_b,  0, 0, x_3/r_hat_b, 0, 0, x_5/r_hat_b, 0, 0 

Hk_r2cl,   0, 0,   Hk_r2c4, 0, 0,     0, 0, 0 
Hk_r3cl,   0, 0,   Hk_r3c4, 0, 0, Hk_r3c7, 0,0] 

% Compute Kaiman Gain 
K_ball = P_predict_ball * Hk_b'*inv(Hk_b*P_predict_ball* Hk_b' + R); 

% Kaiman Filter Correction equations for the Ballistic Model 
x_corr_ball = x_predict_ball + K_ball * z_tilde_b; 
P_corr_ball = (eye(9) - K_ball*Hk_b)* P_predict_ball; 

% + ******** + *********■*:******* + ******** + * + + + + + + *** + + + + + + + + + + + 

% Update mode probabilities 
%******************** + ******-k-k-k*±±* + ± + + ± + + ± + :k± + *± + + + + + it + + ^ + 

m = 3; 

S_l = Hk_a * P_predict_accel * Hk_a' + R; 
lambda_l = (exp( -(z_tilde_a)'*inv(S_l)*z_tilde_a/2 

))/(sqrt((2*pi)Am*det(Sjl))); 

S_2 = Hk_b * P_predict_ball * Hk_b' + R; 
lambda_2 = ( exp( -(z_tilde_b)'*inv(S_2)*z_tilde_b/2)) / 

( sqrt( (2*pi)Am * det(S_2)) ); 

c = lambda_l * cbar_l + lambda_2 * cbar_2; 

mu_l = lambda_l * cbar_l/c; 
mu_2 = lambda_2 * cbar_2/c; 

mu = [mu_l; 
mu_2]; 

%********* + ********-k**-k* + + *******±*±±*± + + + + + + + ± + + + ie + + i, + + + + + 

% Produce Combined Estimates 

x_corr = mu_l * x_corr_accel + mu_2 * x_corr_ball; 
P_corr = mu_l*(P_corr_accel+(x_corr accel- 
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x_corr)*(x_corr_accel-x_corr)')+... 
mu_2*(P_corr_ball +(x_corr_ball- 

x_corr)*(x_corr_ball- x_corr)'); 

% Kaiman track positions and difference between Kaiman 
% and actual track position and actual target position 

zout_K_track = H*x_corr; 

track_diff = ztrue - zout_K_track; 
track_error = [track_error, 

sqrt(track_diff'*track_diff)]; 

% Update KF track trajectory array 
K_track =  [K_track, zout K track]; 

end; % for ii = 2:20:nsamples 

if kk == 1, % create first output 

zoutmean_true = zout_true_n; 
mean_K_track = K track; 
merror_track = track_error; . 
merror = error_true; 

else % create output after 1st run 

zoutmean_true = zoutmean_true + zout_true_n; 
mean_K_track = mean_K_track + K_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 

toe 

end; % for kk = l:nloops 

% Compute Means 

zoutmean_true  = zoutmean_true/nloops; 
mean_K_track  = mean_K_track/nloops; 
merror        = merror/nloops;   % mean error between 

% measurement and true position 

merror_track = merror_track/nloops;     % mean error between 
% EKF estimated position 
% and true position 
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% Plot results 
%*****************±**** + **±*±±*-k**** + + + ±±*± + * + ***i:ir + + ir + ±ttirir^^ 

figure(1) 

measurement  = zoutmean_true/1000; % convert to km 
Kalman_track = mean_K_track/1000; % convert to km 
missile_track = missilevec(:,1:nsamples)/1000; % convert to km 

plot3(missile_track(2,:),missile_track(5,:), missile_track(8,:),... 

Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx'); 

axis([0,150,0,150,0,150]); 
title('Ballistic Missile Base Trajectory - 120 seconds'); 
xlabeK'x - km'), ylabel('y -km'), zlabel (' z - km'),grid; 

print -deps ch5fla 

figure(2) 

plot3(missile_track(2, :) ,missile_track (5, :), mis.sile_track(8, :),... 
measurement(1,:),measurement(2,:),measurement(3,:),... 

Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000, 'rx'); 

axis([0,150,0,150,0,150]); 
title('Ballistic Missile Base Trajectory with Measurement Noise - 120 

seconds'); 
xlabelt'x -km'), ylabelfy - km'), zlabel ('z - km'),grid; 

print -deps ch5f2a 

figure(3) 

plot3(missile_track(2, :),missile_track(5,:),missile_track(8, :), 'g- 
r  • • • 

Kalman_track(1,:),Kalman_track(2,:),Kalman_track(3,:) , 'r-'); 

axis([0,150,0,150,0,150]); 
xlabelCx - km'), ylabel('y - km'), zlabel ('z - km'), grid; 
title('Ballistic Missile Base Trajectory and IMM Trajectory - 120 

seconds'); 
print -deps ch5f3a 

figure(4) 
start_pt = 1; 
stop_pt = 401; 
zoom_missile = [(start_pt +1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile),missile_track(5, zoom missile), 

missile_track(8,zoom_missile),'g-', . . . - 

Kalman_track(1,zoom_Kalman) , 
Kalman_track(2, zoom_Kalman),Kalman_track(3,zoom Kaiman),* r-') ; 

axis([30,60,30,60,0,60]); 
xlabelfX   (km)'),   ylabel('Y   (km)'),   zlabel ('Z   (km)'),grid; 
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title(['ZOOM -   IMM Trajectory  Initial   ',num2str((stop_pt  - 
startjpt)/10),'   Seconds']   ); 
print  -deps   ch5f4a 

figure (5) 
start_pt  =   1; 
stop_pt  =   601; 
zoom_missile =   [(start_pt  +1   )    :    (stop_pt   ) ]; 
zoom_Kalman =   [start_pt   :   stop_pt-l]; 
plot3 (missile_track(2,zoom_missile),missile_track(5,zoom_missile), 

missile_track(8,zoom_missile),'g-',... 
Kalman_track(l,zoom_Kalman) , 

Kalman_track(2, zoom_Kalman) ,Kalman_track(3, zoom_Kalman) , 'r-'); 
axis ( [30, 60, 30, 60, 0, 60] ) ; 
xlabelfX (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid; 
title(['ZOOM - IMM Trajectory Initial ',num2str((stop_pt - 

start_pt)/10),' Seconds'] ); 
print -deps ch5f5a 

figure(6) 
start_pt = 1; 
stop_pt = 801; 
zoom_missile = [(start_pt +1 ) : (stop_pt )]; 
zoom_Kalman = [start_pt : stop_pt-l]; 
plot3(missile_track(2,zoom_missile),missile_track(5,zoom_missile), 

missile_track(8,zoom_missile),'g-',... 
Kalman_track(1,zoom_Kalman) , 

Kalman_track (2, zoom_Kalman) , Kalman_track (3, zoom_Kalman) , ' r-' ) ; 
axis([30, 60,30, 60,0,60]); 
xlabelCX (km)'), ylabel('Y (km)'), zlabel ('Z (km)'),grid; 
title(['ZOOM - IMM Trajectory Initial ',num2str((stop_pt - 

start_pt)/10), ' Seconds'] ); 
print -deps ch5f6a 

figure(7) 
time = missilevec(1,:); 
diff_IMM_base = [Kalman_track(1, 

Kalman_track(2, 
Kaiman track(3, 

) - missile_track(2,2:nsamples); 
) - missile_track(5,2:nsamples); 
) - missile_track(8,2:nsamples)]; 

plot(time(2:nsamples), merror, 'g-',... 
time(2:nsamples), 1000*sqrt(diff_IMM_base(1, :) . A2 + 

diff_IMM_base(2,:).~2 + diff_IMM_base(3, :).A2),'r-') ; 

xlabel('Time (seconds)'), ylabel('Error (meters)'), grid; 
title('IMM Distance Error vs. Time'); 
legend('Mean Distance Error','IMM Distance Error'); 
print -deps c5f7a 

figure(8) 
plot(time(2:nsamples), merror,'g-', time(2:nsamples), merror track,'r- 
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xlabel( "Time (seconds)'),ylabel('Mean Error 
(meters)'),grid,title('Mean Distance Error in Measurements vs Time');% 
(', num2str(nloops),' runs, ',num2str(nsamples), ' data points)'] ) , grid; 
print -deps c5f8a 

save immlOO 
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APPENDIX E. TBM PROFILES 

A.       TBM PROFILE NUMBER 1 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 36.0 0.000 0.000 33 60.6 7.023 3.195 

1 36.3 0.006 0.000 34 62.4 7.469 3.491 

2 36.6 0.026 0.000 35 64.2 7.928 3.803 

3 36.9 0.058 0.000 36 66.0 8.402 4.132 

4 37.2 0.103 0.000 37 68.4 8.890 4.479 

5 37.5 0.163 0.001 38 70.8 9.393 4.844 

6 37.8 0.235 0.004 39 73.2 9.911 5.229 

7 38.1 0.322 0.010 40 75.6 10.444 5.633 

8 38.4 0.423 0.020 41 78.0 10.992 6.057 

9 38.7 0.537 0.036 42 81.2 11.556 6.502 

10 39.0 0.666 0.058 43 84.4 12.136 6.969 

11 39.5 0.809 0.087 44 87.6 12.732 7.459 

12 40.0 0.965 0.124 45 90.8 13.345 7.973 

13 40.5 1.136 0.171 46 94.0 13.975 8.511 

14 41.0 1.321 0.226 47 96.0 14.622 9.075 

15 41.5 1.520 0.292 48 98.0 15.288 9.665 

16 42.0 1.733 0.367 49 100.0 15.972 10.282 

17 42.5 1.962 0.453 50 102.0 16.675 10.928 

18 43.0 2.204 0.550 51 104.0 17.397 11.604 

19 43.5 2.460 0.658 52 104.6 18.140 12.309 

20 44.0 2.731 0.777 53 105.2 18.904 13.045 

21 45.0 3.015 0.908 54 105.8 19.690 13.813 

22 46.0 3.312 1.050 55 106.4 20.499 14.613 

23 47.0 3.623 1.205 56 107.0 21.332 15.446 

24 48.0 3.948 1.372 57 106.4 22.190 16.314 

25 49.0 4.286 1.551 58 105.8 23.075 17.217 

26 50.6 4.637 1.744 59 105.2 23.986 18.155 
27 52.2 5.001 1.950 60 104.6 24.925 19.131 
28 53.8 5.378 2.170 61 104.0 25.894 20.145 
29 55.4 5.769 2.404 62 98.0 26.894 21.199 
30 57.0 6.174 2.652 63 80.0 27.925 22.293 
31 58.8 6.591 2.916 62.5 20.0 28.450 22.850 
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B. TBM PROFILE NUMBER 2 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 136.26 0.0000 0.0000 33 136.26 7.4687 3.4908 
1 136.26 0.0064 0.0000 34 136.26 7.9283 3.8028 
2 136.26 0.0256 0.0001 35 136.26 8.4021 4.1320 
3 136.26 0.0579 0.0002 36 136.26 8.8904 4.4790 
4 136.26 0.1035 0.0001 37 136.26 9.3933 4.8443 
5 136.26 0.1626 0.0009 38 136.26 9.9111 5.2287 
6 136.26 0.2355 0.0039 39 136.26 10.4440 5.6326 
7 136.26 0.3222 0.0100 40 136.26 10.9922 6.0569 
8 136.26 0.4228 0.0203 41 136.14 11.5560 6.5022 
9 136.26 0.5374 0.0358 42 136.00 12.1358 6.9694 
10 136.26 0.6661 0.0576 43 135.86 12.7319 7.4594 
11 136.26 0.8087 0.0868 44 135.72 13.3448 7.9729 
12 136.26 0.9653 0.1243 45 135.58 13.9748 8.5110 
13 136.26 1.1359 0.1707 46 135.44 14.6224 9.0746 
14 136.26 1.3207 0.2264 47 135.30 15.2879 9.6647 
15 136.26 1.5199 0.2919 48 135.16 15.9718 10.2823 
16 136.26 1.7335 0.3675 49 135.02 16.6746 10.9285 
17 136.26 1.9615 0.4535 50 134.88 17.3969 11.6039 
18 136.26 2.2038 0.5503 51 134.74 18.1396 12.3093 
19 136.26 2.4602 0.6581 52 134.60 18.9036 13.054 
20 136.26 2.7305 0.7771 53 134.46 19.6897 13.8131 
21 136.26 3.0146 0.9078 54 134.32 20.4989 14.6132 
22 136.26 3.3123 1.0502 55 134.18 21.3321 15.4465 
23 136.26 3.6234 1.2047 56 133.43 22.1903 16.3140 
24 136.26 3.9479 1.3717 57 130.50 23.0745 17.2166 
25 136.26 4.2856 1.5513 58 127.00 23.9859 18.1553 
26 136.26 4.6366 1.7439 59 121.00 24.9255 19.1312 
27 136.26 5.0008 1.9499 60 111.00 25.8944 20.1453 
28 136.26 5.3784 2.1697 61 86.00 26.8938 21.1987 
29 136.26 5.7692 2.4037 62 65.00 27.9250 22.2926 
30 136.26 6.1736 2.6524 63 20.00 28.9836 23.4225 
31 136.26 6.5915 2.9161 64 0.00 30.0367 24.5560 
32 136.26 7.0231 3.1954 
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TBM PROFILE NUMBER 3 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 36.40 0.8230 0.0025 35 67.86 8.8360 4.5970 

1 36.40 0.8291 0.0025 36 70.20 9.3060 4.9690 

2 36.66 0.8478 0.0026 37 72.28 9.7900 5.3600 

3 36.66 0.8791 0.0027 38 74.62 10.2900 5.7700 

4 36.66 0.9231 0.0049 39 77.48 10.8000 6.2020 

5 36.66 0.9796 0.0124 40 80.08 11.3300 6.6540 

6 36.66 1.0490 0.0254 41 82.94 11.8800 7.1280 

7 36.92 1.1310 0.0437 42 85.80 12.4400 7.6250 

8 37.18 1.2260 0.0675 43 88.66 13.0100 8.1440 

9 37.44 1.3350 0.0974 44 91.78 13.6100 8.6880 

10 37.44 1.4570 0.1338 45 94.64 14.2200 9.2560 

11 37.70 1.5920 0.1773 46 96.72 14.8500 9.8500 
12 37.96 1.7400 0.2286 47 98.80 15.5000 10.4700 
13 38.22 1.9020 0.2881 48 100.88 16.600 11.1200 
14 38.74 2.0780 0.3564 49 102.18 16.8500 11.7900 
15 39.52 2.2670 0.4339 50 103.48 17.5600 12.5000 

16 40.30 2.4690 0.5211 51 104.52 18.2800 13.2300 

17 41.34 2.6850 0.6186 52 105.56 19.0300 14.0000 

18 42.38 2.9140 0.7268 53 106.60 19.8000 14.7900 
19 43.42 3.1570 0.8462 54 107.38 20.5900 15.6200 

20 44.46 3.4140 0.9771 55 108.42 21.4100 16.4800 
21 45.50 3.6840 1.1200 56 109.20 22.2500 17.3800 
22 46.80 3.9660 1.2750 57 109.72 23.1200 18.3100 
23 48.10 4.2620 1.4430 58 109.98 224.0200 19.2700 
24 49.40 4.5710 1.6240 59 98.28 24.9400 20.2700 
25 50.96 4.8930 1.8180 60 86.32 25.8900 21.3100 
26 52.26 5.2280 2.0270 61 52.26 26.8700 22.3800 
27 53.82 5.5760 2.2490 62 14.12 27.8900 23.5000 
28 55.38 5.9370 2.4860 63 8.11 28.9300 24.6500 
29 56.94 6.3110 2.7390 64 6.08 30.0100 25.8500 
30 58.76 6.6980 3.0060 65 5.93 31.1200 27.0900 
31 60.32 7.0980 3.2900 66 5.80 32.2700 28.3700 
32 62.14 7.5120 3.5910 67 5.80 33.4600 29.6900 
33 63.96 7.9400 3.9080 68 5.80 34.6800 31.0700 
34 65.78 8.3810 4.2430 69 5.80 35.9500 32.4900 
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D.       TBM PROFILE NUMBER 4 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 36.66 0.0000 0.0000 35 50.96 4.4014 1.0029 
1 36.66 0.0030 0.0000 36 52.26 4.6796 1.1067 
2 36.66 0.0119 0.0000 37 53.56 4.9373 1.2177 
3 36.66 0.0270 0.0001 38 54.86 5.2641 1.3360 
4 36.66 0.0483 0.0003 39 56.16 5.5698 1.4619 
5 36.66 0.0760 0.0008 40 57.72 5.8846 1.5956 
6 36.66 0.1101 0.0018 41 59.28 6.2082 1.7373 
7 36.66 0.1508 0.0032 42 60.58 6.5409 1.8872 
8 36.66 0.1981 0.0052 43 62.14 608826 2.0457 
9 36.66 0.2523 0.0080 44 63.70 7.2335 2.2130 
10 36.66 0.3133 0.0118 45 65.26 7.5939 2.3895 
11 36.66 0.3814 0.0166 46 66.82 7.9640 2.5756 
12 36.92 0.4567 0.0226 47 68.64 8.3440 2.7716 
13 36.92 0.5391 0.0302 48 70.46 8.7341 2.9779 
14 36.92 0.6289 0.0393 49 72.28 9.1344 3.1949 
15 36.92 0.7262 0.0502 50 74.36 9.5452 3.4228 
16 37.18 0.8310 0.0632 51 76.44 9.9667 3.6621 
17 37.18 0.9435 0.0784 52 78.78 10.3990 3.9121 
18 37.44 1.0638 0.0961 53 81.12 10.8430 4.1764 
19 37.70 1.1919 0.1164 54 83.72 11.2980 4.4521 
20 37.96 1.3281 0.1396 55 86.32 11.7640 4.7409 
21 38.22 1.4723 0.1659 56 88.92 12.2430 5.0430 
22 38.74 1.6247 0.1956 57 91.52 12.7330 5.3589 
23 39.26 1.7854 0.2289 58 94.12 13.2360 5.6891 
24 39.78 1.9545 0.2660 59 96.98 13.7520 6.0339 
25 40.56 2.1322 0.3073 60 99.84 14.2800 603938 
26 41.34 2.3185 0.3529 61 101.92 14.8220 6.7693 
27 42.38 2.5135 0.4031 62 103.74 15.3760 7.1607 
28 43.16 2.7174 0.4582 63 105.30 15.9450 7.5686 
29 44.20 2.9302 0.5184 64 106.60 16.5270 7.9933 
30 45.24 3.1522 0.5840 65 107.90 17.1240 8.4354 
31 46.28 3.3833 0.6553 66 108.94 17.7350 8.8954 
32 47.32 3.6237 0.7326 67 109.72 18.3600 9.3738 
33 48.36 3.8734 0.8161 68 110.76 19.0010 9.8710 
34 49.66 4.1326 0.9061 69 111.54 19.6570 10.3880 
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Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
70 112.32 20.3290 10.9240 81 7.59 28.8550 18.2970 

71 113.10 21.0170 11.4810 82 6.45 29.7420 19.1160 

72 114.14 21.7220 12.0590 83 6.24 30.6500 19.9620 

73 114.92 22.4430 12.6590 84 6.11 31.5780 20.8360 

74 115.44 23.1810 13.2800 85 6.08 32.5280 21.7390 

75 115.96 23.9370 13.9240 86 6.08 33.5000 22.6720 

76 112.06 24.7100 14.5920 87 6.08 34.4930 23.6340 

77 100.62 25.5010 15.2830 88 6.08 35.5100 24.6270 

78 81.90 26.3110 15.9980 89 6.08 36.5510 25.6510 

79 39.52 27.1390 16.7390 90 6.08 37.6160 26.7070 

80 10.40 27.9870 17.5050 91 6.08 38.7060 27.7950 
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E.        TBM PROFILE NUMBER 5 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
0 136.26 0.0000 0.0000 35 136.26 7.2367 3.5962 
1 136.26 0.0054 0.0000 36 136.26 7.6546 3.9031 
2 136.26 0.0217 0.0001 37 136.26 8.0846 4.2263 
3 136.26 0.0491 0.0002 38 136.26 8.8257 4.5663 
4 136.26 0.0879 0.0003 39 136.26 8.9791 4.9237 
5 136.26 0.1381 0.0012 40 136.26 9.4446 5.2990 
6 136.26 0.1997 0.0053 41 136.14 9.9225 5.6926 
7 136.26 0.2731 0.0130 42 136.00 10.4127 6.1051 
8 136.26 0.3582 0.0246 43 135.86 10.9156 6.5370 
9 136.26 0.4551 0.0409 44 135.72 11.4315 6.9889 
10 136.26 0.5640 0.0623 45 135.58 11.9604 7.4615 
11 136.26 0.6851 0.0894 46 135.44 12.0529 7.9554 
12 136.26 0.8183 0.1225 47 135.30 13.0591 8.4713 
13 136.26 0.9638 0.1624 48 135.16 13.6294 9.0098 
14 136.26 1.1216 0.2094 49 135.02 14.2143 9.5718 
15 136.26 1.2920 0.2641 50 134.88 14.8140 10.1580 
16 136.26 1.4749 0.3269 51 134.74 15.4290 10.7689 
17 136.26 1.6705 0.3984 52 134.60 16.0600 11.4053 
18 136.26 1.8787 0.4790 53 134.46 16.7076 12.0676 
19 136.26 2.0996 0.5691 54 134.32 17.3724 12.7565 
20 136.26 2.3330 0.6692 55 134.18 18.0552 13.4725 
21 136.26 2.5788 0.7796 56 133.43 18.7565 14.2162 
22 136.26 2.8366 0.9006 57 130.50 19.4772 14.9884 
23 136.26 3.1065 1.0325 58 127.00 20.2178 15.7896 
24 136.26 3.3881 1.1758 59 121.00 20.9793 16.6207 
25 136.26 3.6814 1.3308 60 111.00 21.7624 17.4823 
26 136.26 3.9862 1.4976 61 100.00 22.5678 18.3753 
27 136.26 4.3024 1.6768 62 85.00 23.3965 19.3003 
28 136.26 4.6298 1.8685 63 62.00 24.2493 20.2583 
29 136.26 4.9685 2.0733 64 42.00 25.1271 21.2500 
30 136.26 5.3183 2.2914 65 30.00 26.0308 22.2765 
31 136.26 5.6794 2.5232 66 22.00 26.9614 23.3385 
32 136.26 6.0517 2.7692 67 16.00 27.9199 24.4370 
33 136.26 6.4353 3.0297 68 14.00 28.9074 25.5730 
34 136.26 6.8303 3.3053 69 12.50 29.9247   26.7476 
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Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 

Time 

(sec) 

Intensity Altitude 

(km) 

Range 

(km) 
70 11.00 30.9732 27.9617 76 7.10 37.9850 36.1414 
71 10.00 32.0539 29.2164 77 6.80 39.2863 37.6656 
72 9.30 33.1681 30.5130 78 6.40 40.6296 39.2395 
73 8.60 34.3169 31.8525 79 6.10 42.0164 40.8921 
74 8.10 35.5018 33.2362 80 5.80 43.4485 42.5725 
75 7.60 36.7240 34.6653 81 0.00 44.9228 44.3028 
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F.        TBM PROFILE 2 ANALYSIS 
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TBM Trajectory (Profile 2). 
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TBM Profile 2 w/ Measurement Noise 
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177 



TBM Profile 2 and ABG Trajectory 
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178 



ABG Mean Distance Error in Measurements vs Time - TBM Profile 2 
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oc-ß-y Tracker (Profile 2) Mean Distance Error, a=0.6,500 Runs. 
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TBM Profile 2 w/ Measurement Noise 
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TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs. 

180 



TBM Profile 2 and EKF(accel model)Trajectory 
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TBM Trajectory (Profile 2) and EKF Trajectory, 100 Runs. 
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EKF (Profile 2) Mean Distance Error, 500 Runs. 
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TBM Profile 2 w/ Measurement Noise 
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TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs. 
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TBM Profile 2 w/ IMM Trajectory 
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Mean Distance Error in Measurements vs Time 
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G.       TBM PROFILE 3 ANALYSIS 

TBM Profile 3 
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TBM Trajectory (Profile 3). 
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TBM Profile 3 w/ Measurement Noise 
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TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs. 
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TBM Profile 3 and ABG Trajectory 
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TBM Trajectory (Profile 3) and a-ß-y Trajectory, a=0.6,100 Runs. 
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ABG Mean Distance Error in Measurements vs Time - TBM Profile 3 
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oc-ß-Y Tracker (Profile 3) Mean Distance Error, a=0.6,500 Runs. 
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TBM Profile 3 w/ Measurement Noise 
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TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs. 
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TBM Profile 3 and EKF(accel model)Trajectory 
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TBM Trajectory (Profile 3) and EKF Trajectory, 100 Runs. 
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EKF (Profile 3) Mean Distance Error, 500 Runs. 
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TBM Profile 3 w/ Measurement Noise 
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TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs. 
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TBM Profile 3 w/ IMM Trajectory 
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Mean Distance Error in Measurements vs Time 
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Mean Distance Error in Measurements vs Time - TBM Profile 3 
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H.  SOURCE CODE FOR a-ß-y, EKF AND IMM ALGORITHMS ON TBM 

PROFILE DATA 

% tbmdat.m 
% LT Tony San Jose 
% Thesis Advisor: R.G. Hutchins 
% 21FEB98 
% 
% This program stores TBM profiles 1-5 into missilevec data for use 
% in tracking algorithms. 

% TBM Profile Number 1 

tbmdatl  =   [0.00       13 6 .26               0 0000 0.0000; 
1.00 136.26 0.006 0.0000; 
2.00 136.26 0.026 0.000; 
3.00 136.26 0.058 0.000 
4.00 136.26 0.103 0.000 
5.00 136.26 0.1636 0.001 
6.00 136.26 0.235 0.004 
7.00 136.26 0.322 0.0100; 
8.00 136.26 0.423 0.020 
9.00 136.26 0.537 0.036 
10.00 136.26 0.666 0.058 
11.00 136.26 0.809 0.087 
12.00 136.26 0.965 0.124 
13.00 136.26 1.136 0.171 
14.00 136.26 1.3217 0.226 
15.00 136.26 1.52 0.292 
16.00 136.26 1.733 0.367 
17.00 136.26 1.962 0.453 
18.00 136.26 2.204 0.550 
19.00 136.26 2.460 0.658 
20.00 136.26 2.731 0.777 
21.00 136.26 3.015 0.908 
22.00 136.26 3.312 1.050 
23.00 136.26 3.623 1.205 
24.00 136.26 3.948 1.372 
25.00 136.26 4.286 1.551 
26.00 136.26 4.637 1.744 
27.00 136.26 5.001 1.950, 
28.00 136.26 5.378 2.17; 
29.00 136.26 5.769 2.404; 
30.00 136.26 6.174 2.652, 
31.00 136.26 6.591 2.916, 
32.00 136.26 7.023 3.195, 
33.00 136.26 7.469 3.491, 
34.00 136.26 7.928 3.803; 
35.00 136.26 8.402 4.1320; 
36.00 136.26 8.890 4.479C ); 
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37 .00 136.26 9.393 4.844; 
38 .00 136.26 9.911 5.229; 
39 .00 136.26 10.444 5.633; 
40 .00 136.26 10.992 6.057; 
41 .00 136.14 11.556 6.502; 
42 .00 136.00 12.136 6.969; 
43 .00 135.86 12.732 7.459; 
44 .00 135.72 13.345 7.973; 
45 .00 135.58 13.975 8.5110; 
46 .00 135.44 14.622 9.075; 
47 00 135.30 15.288 9.665; 
48 00 135.16 15.972 10.282 
49 00 135.02 16.675 10.928 
50 00 134.88 17.397 11.604 
51 00 134.74 18.140 12.309 
52 00 134.60 18.904 13.045 
53 00 134.46 19.690 13.813 
54 00 134.32 20.499 14.613 
55 00 134.18 21.332 15.446 
56 00 133.43 22.190 16.3140; 
57 00 130.50 23.075 17.217 
58 00 127.00 23.986 18.155 
59 00 121.00 24.925 19.131 
60 00 111.00 25.894 20.145 
61 00 86.00 26.894 21.199 
62 00 65.00 27.925 22.293 ]; 

% TBM Profile Number 2 

tbmdat2=[0.00 
1.00 
2.00 

00 
00 
00 
00 
00 

8.00 
9.00 

136 
13 6 
136 
136 
136 
136 
13 6 
136 
136 

10.00 136 
11.00 136 
12.00 136 
13.00 136 
14.00 136 
15.00 136 
16.00 13 6 
17.00 136 
18.00 136 
19.00 136 
20.00 136 
21.00 136 
22.00 136 
23.00 136 

136.26     0.0000 
.26 0.0064 
.26 0.0256 
.26 0.0579 
.26 0.1035 
.26 0.1626 
.26 0.2355 
.26 0.3222 
.26 0.4228 
.26 0.5374 
.26 0.6661 
.26 0.8087 
.26 0.9653 
.26 1.1359 
.26 1.3207 
.26 1.5199 
.26 1.7335 
.26 1.9615 
.26 2.2038 
.26 2.4602 
.26 2.7305 
.26 3.0146 
.26 3.3123 
.26 3.6234 

0.0000; 
0.0000 
0.0001 
0.0002 
0.0001 
0.0009 
0.0039 
0.0100 
0.0203 
0.0358 
0.0576 
0.0868 
0.1243 
0.1707 
0.2264 
0.2919 
0.3675 
0.4535 
0.5503 
0.6581 
0.7771 
0.9078 
1.0502 
1.2047 
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24 .00 136.26 3.9479 1.3717; 
25 .00 136.26 4.2856 1.5513; 
26 .00 136.26 4.6366 1.7439; 
27 .00 136.26 5.0008 1.9499; 
28 .00 136.26 5.3784 2.1697; 
29 .00 136.26 5.7692 2.4037; 
30 .00 136.26 6.1736 2.6524; 
31 .00 136.26 6.5915 2.9161; 
32 .00 136.26 7.0231 3.1954; 
33 .00 136.26 7.4687 3.4908; 
34 .00 136.26 7.9283 3.8028; 
35 .00 136.26 8.4021 4.1320; 
36 .00 136.26 8.8904 4.4790; 
37 .00 136.26 9.3933 4.8443; 
38 00 136.26 9.9111 5.2287; 
39 00 136.26 10.4440 5.6326; 
40 00 136.26 ' 10.9922 6.0569; 
41 00 136.14 11.5560 6.5022; 
42 00 136.00 12.1358 6.9694; 
43 00 135.86 12.7319 7.4594; 
44 00 135.72 13.3448 7.9729; 
45 00 135.58 13.9748 8.5110; 
46 00 135.44 14.6224 9.0746; 
47 00 135.30 15.2879 9.6647; 
48 00 135.16 15.9718 10.2823; 
49 00 135.02 16.6746 10.9285 
50 00 134.88 17.3969 11.6039 
51 00 134.74 18.1396 12.3093 
52 00 134.60 18.9036 13.0454 
53 00 134.46 19.6897 13.8131 
54 00 134.32 20.4989 14.6132 
55 00 134.18 21.3321 15.4465 
56 00 133.43 22.1903 16.3140 
57 00 130.50 23.0745 17.2166 
58 00 127.00 23.9859 18.1553 
59 00 121.00 24.9255 19.1312 
60 00 111.00 25.8944 20.1453 
61 00 86.00 26.8938 21.1987 
62 00 65.00 27.9250 22.2926 
63 00 20.00 28.9836 23.4225 
64 00 0.00 30.0367 24.5560 ]; 

% TBM Profile Number 3 

tbmdat3= [0.00 36.40 0.8230 0.0025; 
1.00 36 .40 0 .8291 0 .0025 
2.00 36 .66 0 8478 0 0026 
3.00 36 66 0 8791 0 0027 
4.00 36 66 0 9231 0 0049 
5.00 36 66 0 9796 0 0124 
6.00 36 92 1 0490 0 0254 
%6.86 36 92 1 1190 0 0408 
7.00 36 92 1 1310 0 0437 
8.00 37 18 1 2260 0 0675 

202 



9. 30 37.44 1.3350 0.0974 
10 .00 37.44 1.4570 0.1338 
11 .00 37.70 1.5920 0.1773 
12 .00 37.96 1.7400 0.2286 
13 .00 38.22 1.9020 0.2881 
14 .00 38.74 2.0780 0.3564 
15 .00 39.52 2.2670 0.4339 
16 .00 40.30 2.4690 0.5211 
17 .00 41.34 2.6850 0.6186 
18 .00 42.38 2.9140 0.7268 
19 .00 43.42 3.15.70 0.8462 
20 .00 44.46 3.4140 0.9771 
21 .00 45.50 3.6840 1.1200 
22 .00 46.80 3.9660 1.2750 
23 .00 48.10 4.2620 1.4430 
24 .00 49.40 4.5710 1.6240 
25 .00 50.96 4.8930 1.8180 
26 .00 52.26 5.2280 2.0270 
27 .00 53.82 5.5760 2.2490 
28 .00 55.38 5.9370 2.4860 
29 00 56.94 6.3110 2.7390 
30 00 58.76 6.6980 3.0060 
31 00 60.32 7.0980 3.2900, 
32 00 62.14 7.5120 3.5910, 
33 00 63.96 7.9400 3.9080, 
34 00 65.78 8.3810 4.2430, 
35 00 67.86 8.8360 4.5970, 
36 00 70.20 9.3060 4.9690, 
37 00 72.28 9.7900 5.3600, 
38 00 74.62 10.2900 5.7700, 
39 00 77.48 10.8000 6.2020, 
40 00 80.08 11.3300 6.6540, 
41 00 82.94 11.8800 7.1280, 
42 00 85.80 12.4400 7.6250, 
43 00 88.66 13.0100 8.1440, 
44 00 91.78 13.6100 8.6880, 
45 00 94.64 14.2200 9.2560, 
46 00 96.72 14.8500 9.8500, 
47 00 98.80 15.5000 10.4700; 
48 00 100.8E 16 1600     11 1200 
48 72 101.92 16 6600     11 6000 
49 00 102.18 16 8500     11 7900 
50 00 103.48 17 5600     12 5000 
51 00 104.52 18 2800     13 2300 
52 00 105.56 19 0300     14 0000 
53 00 106.6C 19 8000     14 7900 
54 00 107.38 20 5900     15 6200 
55 00 108.42 21 4100     16 4800 
56 00 109.2C 22 2500     17 3800 
57 00 109.72 23 1200     18 3100 
58 00 109.98 24 0200     19 2700 
59 00 98.28 24.9400 20.2700; 
60 00 86.32 25.8900 21.3100; 
61 00 52.26 26.8700 22.380C ); 
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62 .00 1' 1.12 27 .8900 23 .5000 
63 00 8 .11 28 .9300 24 .6500 
64 00 6 08 30 .0100 25 .8500 
65 00 5 93 31 .1200 27 0900 
66 00 5 80 32 2700 28 3700 
67 00 5 80 33 4600 29 6900 
68 00 5 80 34 6800 31 0700 
69 00 5 80 35 9500 32 4900]; 
69 46 0 00 36 5500 33 1600] ; 

%  TBM Profile Number  4 

tbmdat4 =[0 .00 36.66 0 0000 
1.00 36 .66 0.0030 0.0000 
2.00 36 .66 0.0119 0.0000 
3.00 36 .66 0.0270 0.0001 
4.00 36 .66 0.0483 0.0003 
5.00 36 .66 0.0760 0.0008 
6.00 36 .66 0.1101 0.0018 
7.00 36 .66 0.1508 0.0032 
8.00 36 .66 0.1981 0.0052 
9.00 36 .66 0.2523 0.0080 
10.00 36 .66 0.3133 0.0118 
11.00 36 .66 0.3814 0.0166 
12.00 36 .92 0.4567 0.0226 
13.00 36 .92 0.5391 0.0302 
14.00 36 .92 0.6289 0.0393 
15.00 36 .92 0.7262 0.0502 
16.00 37 .18 0.8310 0.0632 
17.00 37 .18 0.9435 0.0784 
18.00 37 .44 1.0638 0.0961 
19.00 37 70 1.1919 0.1164 
20.00 37 96 1.3281 0.1396 
21.00 38 22 1.4723 0.1659 
22.00 38 74 1.6247 0.1956 
23.00 39 26 1.7854 0.2289 
24.00 39 78 1.9545 0.2660 
25.00 40 56 2.1322 0.3073 
26.00 41 34 2.3185 0.3529 
27.00 42 38 2.5135 0.4031 
28.00 43 16 2.7174 0.4582 
29.00 44 20 2.9302 0.5184 
30.00 45 24 3.1522 0.5840 
31.00 46 28 3.3833 0.6553 
32.00 47 32 3.6237 0.7326 
33.00 48 36 3.8734 0.8161 
34.00 49. 66 4.1326 0.9061 
35.00 50. 96 4.4014 1.0029 
36.00 52. 26 4.6796 1.1067 
37.00 53. 56 4.9673 1.2177 
38.00 54. 86 5.2641 1.3360 
39.00 56. 16 5.5698 1.4619 
40.00 57. 72 5.8846 1.5956 
41.00 59. 28 6.2082 1.7373 

0.0000; 

204 



42 .00 60.58 6.5409 1.8872 
43 .00 62.14 6.8826 2.0457 
44 .00 63.70 7.2335 2.2130 
45 .00 65.26 7.5939 2.3895 
46 00 66.82 7.9640 2.5756 
47 .00 68.64 8.3440 2.7716 
48 00 70.46 8.7341 2.9779 
49 00 72.28 9.1344 3.1949 
50 00 74.36 9.5452 3.4228 
51 00 76.44 9.9667 3.6621 
52 00 78.78 10.3990 3.9132 
53 00 81.12 10.8430 4.1764 
54 00 83.72 11.2980 4.4521 
55 00 86.32 11.7640 4.7409 
56 00 88.92 12.2430 5.0430 
57 00 91.52 12.7330 5.3589 
58 00 94.12 13.2360 5.6891 
59 00 96.98 13.7520 6.0339 
60 00 99.84 14.2800 6.3938 
61 00 101.92 14 8220     6.7693; 
62 00 103.74 15 3760     7.1607; 
63 00 105.3C 15 9450     7.5686; 
64 00 106.6C 16 5270     7.9933; 
65 00 107.9C 17 1240     8.4354; 
66 00 108.94 17 7350     8.8954; 
67 00 109.72 18 3600     9.3738; 
68 00 110.76 19 0010     9.8710; 
69 00 111.54 19 6570     10.3880 
70 00 112.32 20 3290     10.9240 
71 00 113.1C 21 0170     11.4810 
72 00 114.14 21 7220     12.0590 
73 00 114.92 22 4430     12.6590 
74 00 115.44 23 1810     13.2800 
75 00 115.96 23 9370     13.9240 
76 00 112.06 24 7100     14.5920 
77 00 100.62 25 5010     15.2830 
78 00 81.90 26.3110 15.998C ); 
79 00 39.52 27.1390 16.739C ); 
80 00 10.40 27.9870 17.505C ); 
81 00 7.59 28.8550 18.297C ); 
82 00 6.45 29.7420 19.116C ); 
83 00 6.24 30.6500 19.962C ); 
84 00 6.11 31.5780 20.836C ); 
85 00 6.08 32.5280 21.739C ); 
86 00 6.08 33.5000 22.672C ); 
87 00 6.08 34.4930 23.634C ); 
88 00 6.08 35.5100 24.627C ); 
89 00 6.08 36.5510 25.65K ); 
90 00 6.08 37.6160 26.707C ); 
91 00 6.08 38.7060 27.795C )]; 
91 50 6.08 39.2610 28.352C ) 

205 



%  TBM Profile Number  5 

tbmdat5 = [0.00   136 26      0 0000 0.0000; 
1.00 136.26 0.0054 0.0000; 
2.00 136.26 0.0217 0.0001 
3.00 136.26 0.0491 0.0002 
4.00 136.26 0.0879 0.0003 
5.00 136.26 0.1381 0.0012 
6.00 136.26 0.1997 0.0053 
7.00 136.26 0.2731 0.0130 
8.00 136.26 0.3582 0.0246 
9.00 136.26 0.4551 0.0409 
10.00 136.26 0.5640 0.0623 
11.00 136.26 0.6851 0.0894 
12.00 136.26 0.8183 0.1225 
13.00 136.26 0.9638 0.1624 
14.00 136.26 1.1216 0.2094 
15.00 136.26 1.2920 0.2641 
16.00 136.26 1.4749 0.3269 
17.00 136.26 1.6705 0.3984 
18.00 136.26 1.8787 0.4790 
19.00 136.26 2.0996 0.5691 
20.00 136.26 . 2.3330 0.6692 
21.00 136.26 2.5788 0.7796 
22.00 136.26 2.8366 0.9006 
23.00 136.26 3.1065 1.0325 
24.00 136.26 3.3881 1.1758 
25.00 136.26 3.6814 1.3308 
26.00 136.26 3.9862 1.4976 
27.00 136.26 4.3024 1.6768 
28.00 136.26 4.6298 1.8685 
29.00 136.26 4.9685 2.0733 
30.00 136.26 5.3183 2.2914 
31.00 136.26 5.6794 2.5232 
32.00 136.26 6.0517 2.7692, 
33.00 136.26 6.4353 3.0297, 
34.00 136.26 6.8303 3.3053, 
35.00 136.26 7.2367 3.5962, 
36.00 136.26 7.6546 3.9031, 
37.00 136.26 8.0843 4.2263, 
38.00 136.26 8.5257 4.5663, 
39.00 136.26 8.9791 4.9237; 
40.00 136.26 9.4446 5.2990; 
41.00 136.14 9.9225 5.6926; 
42.00 136.00 10.4127 6.1051; 
43.00 135.86 10.9156 6.5370; 
44.00 135.72 11.4315 6.9889; 
45.00 135.58 11.9604 7.4615; 
46.00 135.44 12.5029 7.9554; 
47.00 135.30 13.0591 8.4713; 
48.00 135.16 13.6294 9.0098; 
49.00 135.02 14.2143 9.5718; 
50.00 134.88 14.8140 10.1580; 
51.00 134.74 15.4290 10.7689 ; 
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52 .00 134.60 16 0600 11.4053 
53 .00 134.46 16 7076 12.0676 
54 .00 134.32 17 3724 12.7565 
55 00 134.18 18 0552 13.4725 
56 00 133.41 i 18 7565 14.2162 
57 00 130.50 19 4772 14.9884 
58 00 127.00 20 2178 15.7896 
59 00 121.00 20 9793 16.6207 
60 00 111.00 21 7624 17.4823 
61 00 100.00 22 5678 18.3753 
62 00 85.00 23 .3965 19 .3003 
63 00 62.00 24 .2493 20 .2583 
64 00 42.00 25 .1271 21 .2500 
65 00 30.00 26 .0308 22 2765 
66 00 22.00 26 .9614 23 3385 
67 00 16.00 27 .9199 24 4370 
68 00 14.00 28 .9074 25 5730 
69 00 12.50 29 9247 26 7476 
70 00 11.00 30 .9732 27 9617 
71 00 10.00 32 0539 29 2164 
72 00 9.30 33 1681 30 5130 
73 00 8.60 34 3169 31 8525 
74 00 8.10 35 5018 33 2362 
75 00 7.60 36 7240 34 6653 
76 00 7.10 37 9850 36 1414 
77 00 6.80 39 2863 37 • 6656 
78 00 6.40 40 6296 39 2395 
79 00 6.10 42 0164 40 8921 
80 00 5.80 43 4485 42 5725 
81 00 0.00 44 9228 44 3028] ; 

save  tbm dat 
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% tbminit.m 
% 
% LT Tony San Jose 
% Thesis Advisor: R.G. Hutchins 
% 21FEB98 
% 

% This program stores the TBM profiles entered in tbmdat.m into the 
% variable missilevec for use in our tracking algorithms.  The TBM 
% data was provided provided by JHUAPL. 

load Tbm_dat; 

timel =tbmdatl(: , 1) ; 
altl = 1000 * tbmdatl(:,3); 
rngl = 1000 * tbmdatl(: ,4) ; 

[rowsl, colsl] = size(timel); 

for i = 1: rowsl 
missilevecl(:,i) = [  timel(i);   %t 

rngl(i);    %x 
0; %vx 
0; %ax 
10*1000;    %y 
0; %vy 
0; %ay 
altl(i);    %z 
0; %vz 
0  ];       %az 

end; %#1 

time2 =tbmdat2(:,1) ; 
alt2 = 1000 * tbmdat2(:,3); 
rng2 = 1000 * tbmdat2(:,4) ; 

[rows2,cols2] = size(time2); 

for i = 1: rows2 
missilevec2(:,i) = [  time2(i);   %t 

rng2(i);    %x 
0; %vx 
0; %ax 
10*1000;    %y 
0; %vy 
0; %ay 
alt2(i);    %z 
0; %vz 
0  ];      %az 

end; %# 2 
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%******************************************************************** 

time3 = =tbmdat3(:,1); 
alt3 = 1000 * tbmdat3(: ,3); 
rng3 = 1000 * tbmdat3(: ,4); 

[rows3, cols3] = size(time3); 

for i = = 1: rows3 
missilevec3(:,i) = [ time3(i); %t 

rng3 ( i); %x 
0; %vx 
0; %ax 
10*1000; %y 
0; %vy 
0; %ay 
alt3( i); %z 
0; %vz 
0  ]; %az 

end; %# 3 

%******************************************************************** 

time4 = =tbmdat4(:,1); 
alt4 = 1000 * tbmdat4(: ,3); 
rng4 = 1000 * tbmdat4(: ,4) ; 

[rows4, cols4] = size(time4); 

for i = = 1: rows4 
missi levec4(:,i) = [ time4(i); %t 

rng4 ( i); %x 
0; %vx 
0; %ax 
10*1000; %y 
0; %vy 
0; %ay 
alt4( i); %z 
0; %vz 
0  ]; %az 

end; %* 4 

%******************************************************************** 

time5 =tbmdat5(:,1) ; 
alt5 = 1000 * tbmdat5(:,3); 
mg5 = 1000 * tbmdat5 (: , 4) ; 

[rows5,cols5] = size(time5); 

for i = 1: rows5 
missilevec5(:,i) = [  time5(i);   %t 

rng5(i);    %x 
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0; %vx 
0; %ax 
10*1000; %y 
0; %vy 
0; %ay 
alt5(i); %z 
0; %vz 
0  ]; %az 

end; %# 5 

clear altl alt2 alt3 alt4 alt5 colsl cols2 cols3 cols4 cols5; 
clear i rngl rng2 rng3 rng4 rng5 rowsl rows2 rows3 rows4 rows5; 
clear tbmdatl tbmdat2 tbmdat3 tbmdat4 tbmdat5; 
clear timel time2 time3 time4 time5; 
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%******************************************************************* 

% abg_tbm.m 
% LT Tony San Jose 
% Thesis Advisor: R.G Hutchins 
% 03FEB98 
% 
% This program tests the Alpha-Beta-Gamma tracker on real TBM profiles 
% 
% delta = 1 sec 
% nloops = 100/500 
% alpha =0.6 
^************ ******************************************************** 

% Load simulation workspace 
clear all 
load tbminit; 
missilevec = missilevec3; 
prof_num = 3; 

% Define the number of simulation loops 
nloops = 100; 

% Define the sampling interval 
delta = 1; 
g = 9.8; 

% Define the number of samples 
[num_rows,num_cols] = size(missilevec3) ; 
nsamples = num_cols; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; % sensor is 100 km in x 

100  * 1000; % sensor is 100 km in y 
0  * 1000]; % sensor is 100 km in z 

sigma_r =10; % 10 meters std dev in range 
sigma_b = l*pi/180;       % 1 degree std dev in azimuth 
sigma_e = l*pi/180;       % 1 degree std dev in elevation 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% target motion, x(k+l) = F(k)*x(k) + G 

f_sub = [1, delta, (delta^2)/2; 
0,   1,      delta; 
0,   0,        1 ]; 

F = [ f_sub, zeros(3), zeros(3); 
zeros(3), f_sub, zeros(3); 
zeros(3), zeros(3),  f_sub  ]; 

% Define G matrix 
G = -g * [0; 

0; 

211 



0: 
0; 
0; 
0; 
(deltaA2)/2; 
delta; 
0]; 

% Define the H matrix (MEASUREMENT MATRIX), assuming that the 
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k) 

H = [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0, 0, 0, 0, 0, 0, 1, 0, 0]; 

% Define alpha, beta, gamma tracker parameters 

alpha =0.6; 
beta = 2*(2-alpha) - 4*sgrt(1-alpha); 
gamma = (betaA2)/(2*alpha); 
nu = 1; 

K_abg = [alpha, 0, 0 
beta/(nu*delta), 0, 0 
gamma/((nu*delta)A2),  0, 0 
0, alpha, 0 
0, beta/(nu*delta),     0 
0/ gamma/((nu*delta)A2),0; 
0, 0, alpha; 
°' 0, beta/(nu*delta); 
°< 0, gamma/((nu*delta)A2)]; 

% Define initialization parameters 

d sub [    1, 0,    0, 
3/(2*delta),0, 
l/(deltaA2),0, 

0,    0, 0, 0; 
0, -2/delta,     0, 0, 1/(2*delta); 
0, -2/(deltaA2),0, 0, l/deltaA2]; 

D = [d_sub, zeros(3,2); 
zeros(3,1), d_sub, zeros(3,l); 
zeros(3,2), d_sub] ; 

x_corr = missilevec(2:10,1) ;    % Initialize from truth 

************ End of Initialization outside loops *************** 

%***************************************i<*******±***i!i.i!icicirir:lricicic + 

% Loop over the target motion/measurement simulation 
%*********************************ic*i<**ic*iciri!ir**it*i,iric*iciciti,iricicicicirir 

for kk = 1: nloops 
tic 
kk 

% define empty output matricies 
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% measurement positions (cartesian) w/error 
zout_true_n = []; 

% distance error between measurement and true position 
error_true = [] ; 

% Kaiman estimated trajectory 
ABG_track = []; 

% error between Kaiman track and actual track 
track_error = []; 

%**************•********************************************** 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 

for ii = l:nsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

% convert current position to polar coordinates and add 
% sensor noise to the position, generating a noisy measurement 
% from the sensor. 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

from sensor 

from sensor 

x/y plane 

from sensor 

r = sqrt(zrel(l)~2 + zrel(2)A2 + zrel(3)A2);  % range 

b = atan2(zrel(2), zrel(l)); % bearing 

r_prime = sqrt(zrel(1)Ä2 + zrel(2)A2);     % range in 

e = atan2(zrel(3), r_prime); % elevation 

% add noise to the measurement 
r_n = r + sigma_r * randn; 
b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; 

b_n; 
e_n] ; 
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% measurement in cartesian coordinates + noise 
z_cart_true_n = [r_prime*cos(b_n); 

r_prime*sin(b_n); 
r_n*sin(e_n)  ] + Sensor_posit; 

z_cart_rel_n =  [r_prime*cos(b_n); 
r_prime*sin(b_n); 

r_n*sin(e_n)  ]; 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff'*zdiff) ; 

% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurement & true 
measurement w/noise) 

error_true = [error_true, disterror]; 

if ii > 2 % For intialization from the first 3 measurements 

% Prediction 

% Initialization using the first 3 measurements 
if ii'== 3 

x_corr = D * [zout_true_n(:,3); 
zout_true_n ( : , 2) ,- 
zout_true_n(:,1)]; 

end;  %if ii==3 . 

% ABG Filter prediction equations 
x_predict = F * x_corr + G; 

fy***************************************************.),* 
% Correction 

% Convert to relative position to compute RBE coord 
x_l = x_predict(l) - Sensor_posit(1); 
x_4 = x_predict(4) - Sensor_posit(2); 
x_7 = x__predict(7) - Sensor_posit (3) ; 

% Convert prediction to Range, Bearing, Elev coord 
r_hat = sqrt(x_l/v2 + x_4~2 + x_7^2) ; 
b_hat = atan2(x_4, x_l); 
e_hat = atan2(x_7, sqrt(x_1^2 + x_4A2)); 
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% Determine expected measurement 
z_cart_exp_rel  = [r_hat*cos(b_hat)*cos(e_hat); 

r_hat*cos(e_hat)*sin(b_hat); 
r_hat*sin(e_hat)]; 

z_cart_exp_true  = z_cart_exp_rel + Sensor_posit; 

% Observed minus expected measurements 
% z_tilde_c = z_cart_true_n - z_cart_exp_true; 

z_tilde_c = z_cart_rel_n - z_cart_exp_rel; 

% Correction equations 
x_corr = x_predict + K_abg * z_tilde_c; 

% Alpha-Beta-Gamma track positions and difference 
between ABG and 

% actual track position and actual target position 
zout_ABG_track  = H * x_corr; 

track_diff = ztrue - zout_ABG_track; 
track_error = [track_error, sqrt(track_diff'*track_diff)]; 

%. Update ABG track trajectory array 
ABG_track =  [ABG_track, zout_ABG_track]; 

end;   % if ii>2 

end; % for ii = l:nsamples 

^*********************************************************************** 

if kk == 1, % create first output 

zoutmean_true = zout_true_n; 
mean_ABG_track = ABG_track; 
merror_track = track_error; 
merror = error_true; 

else % create output after 1st run 

zoutmean_true = zoutmean_true + zout_true_n; 
mean_ABG_track = mean_ABG_track + ABG_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 
toe 
end; % for kk = l:nloops 

%************************************************************* 

% Compute Means 
^* **************************** * ******************************* 

zoutmean_true  = zoutmean_true/nloops; 
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mean_ABG_track  = mean_ABG_track/nloops; 
merror        = merror/nloops;   % mean error between 

% measurement and true position 

merror_track = merror_track/nloops;    % mean error between 
% EKF estimated position 
% and true position 

%*************************************i.***vfc.iVtjt^*vtvk.jti.i^itAi.A<.vtvt:t. 

% Plot results 

figure(1) 
measurement   = zoutmean_true/1000; % convert to km 
AB(3 = mean_ABG_track/1000; % convert to km 
missile_track = missilevec(:,1:nsamples)/1000; % convert to km 

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g- 
)  i  * / • • - 

%Sensor_posit(l)/1000, Sensor_posit(2)/1000, 
Sensor_posit(3)/1000,'rx'); 

axis( [0,35,0,35,0,35]); % profile 1,2,3 
% axis('equal') 
%  axis([0,40,0,40,0,40]); % profile 4,5 

title(['TBM Profile ', num2str(prof_num)]); 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel ( ' Z (km) ' ) ,grid; 
print -deps abg3a 

figure(2) 

plot3(missile_track(2,:),   missile_track(5,:),   missile_track(8,:),'g- 
/ . ■ ■ 

measurement(1,:), measurement(2,:), measurement(3,:),'r-');%,.. . 

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx'); 

% axis([0,35,0,35,0,35]); 
%  axis([0,40,0,40,0,40]) ; 

%axis('equal'); 
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']); 
xlabelCX (km)'), ylabel('Y (km)'), zlabel ('Z (km) ' ) ,grid; 
print -deps abg3b 

figure(3) 
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g- 

/ • - • 
ABG(1,l:nsamples-2 ), ABG(2,1:nsamples-2), ABG(3,1:nsamples- 

2),'r-'  

Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx'); 

% axis([0,25,0,25,0,25]) 
% axis([0,40,0,40,0,40]) 

axis([0,35,0,35,0,35] ) 
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xlabeM'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid; 
title(['TBM Profile ', num2str(prof_num),' and ABG Trajectory']); 

print -deps abg3c 

figure(4) 
time = missilevec(1,:); 
plot(timed:nsamples), merror,'g-', time(3:nsamples), merror_track,'r- 

'); 
xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid; 
title(['ABG Mean Distance Error in Measurements vs Time - TBM Profile 

', num2str(prof_num)]); 
%  axis([0,70,0,10000]) 

%print -deps abg3d 

save abgl003 
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% acl_tbm.m 
% 
% LT Tony San Jose 
% Thesis Advisor: R.G. Hutchins 
% 21FEB98 
% delta =1.0 sec 
% nloops = 100/500 
% qA2 = 10 
% This program stores the TBM profiles entered in tbmdat.m into the 
% variable missilevee.for use in our tracking algorithms.  The TBM 
% data was provided provided by JHUAPL. 

% Load simulation workspace 
clear all 
load tbminit; 
missilevec = missilevec3; 
prof_num = 3; 

% Define the number, of simulation loops 
nloops = 500; 

% Define the sampling interval 
delta = 1; 
g = 9.8; 

% Define the number of samples 
[num_rows,num_cols] = size(missilevec3); 
nsamples = num_cols; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; % sensor is 100 km in x 

100  * 1000; % sensor is 100 km in y 
0  * 1000]; % sensor is 100 km in z 

sigma_r =10; % 10 meters std dev in range 
sigma_b = l*pi/180;       % 1 degree std dev in azimuth 
sigma_e = l*pi/180;       % 1 degree std dev in elevation 

R = diag([sigma_rÄ2,       % covariance matrix for uncorrelated 
sigma_bA2,      % range and bearing measurements 
sigma_eA2]); 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% target motion, x(k+l) = F(k)*x(k) + G 

f_sub = [1, delta, (deltaA2)/2; 
0,   1,      delta; 
0,   0,        1 ] ; 

F = [  f_sub,   zeros(3), zeros(3); 
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zeros(3),  f_sub,   zeros(3); 
zeros(3), zeros(3),  f_sub  ]; 

% Define G matrix 
G = -g * [0; 

0; 
0; 
0; 
0; 
0; 
(deltaA2)/2; 
delta; 
0]; 

% Define the H matrix (MEASUREMENT MATRIX), assuming that the 
% x, y, an z missile positions are observed directly; 

H = [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0,0,0,0,0,0,1,0,0]; 

% Initialize Q, the covariance of the plant noise 
% qA2 = scale factor to system noise covariance matrix Q, 
% used to account for unmodeled target maneuver acceleration. 

q_sqr = 10; 

Q_sub = [ (deltaÄ5)/20, (deltaA4)/8, (delta~3)/6; 
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2; 
(deltaA3)/6,  (deltaA2)/2,    delta   ]; 

Q = q_sqr * [ Q_sub, zeros(3), zeros{3); 
zeros(3), Q_sub, zeros(3); 
zeros(3),  zeros(3),  Q_sub  ] ; 

%*********** gncj 0f initialization outside loops *************** 

%****************************** * * ******************************* 

% Loop over the target motion/measurement simulation 
%*************************************************************** 

for kk = 1: nloops 
tic 
kk 

% define empty output matricies 

% measurement positions (cartesian) w/error 
zout_true_n = []; 

% distance error between measurement and true position 
error_true = []; 

% Kaiman estimated trajectory 
K_track = [] ; 
K_accel = [ ]; 
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% error between Kaiman track and actual track 
track_error = []; 

% This block is used for the initialization process. Initialize 
% from a SWAG. 

x_swag = missilevec(2:10,1); 
x_swag(9) = 6*g; 
p_swag = eye(9) * 10A4; 

x_corr = x_swag; 
P_corr = p_swag; 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 
%**********************i,i<-kiCiriC*±ic**iciciric±i.ici<i,ici,j.iCi!i!iCi!icicit*******-ir 

for ii = 2:nsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

% convert current position to polar coordinates and add 
% sensor noise to the position, generating a noisy measurement 
% from the sensor. 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

from sensor 

from sensor 

x/y plane 

from sensor 

r = sqrt(zrel(l)A2 + zrel(2)A2 + zrel(3)A2);  % range 

b = atan2(zrel(2), zrel(l)); 

r_prime = sqrt(zrel(1)A2 + zrel(2)A2); 

e = atan2(zrel(3), r_prime); 

% bearing 

% range in 

% elevation 

% add noise to the measurement 
r_n = r + sigma_r * randn; 
b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; 
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b_n; 
e_n] ; 

measurement in cartesian coordinates + noise 
z_cart_true_n = [r_prime*cos(b_n); 

r_prime*sin(b_n); 
r_n*sin(e_n)  ] + Sensor_posit; 

z_cart_rel_n =  [r_prime*cos(b_n),- 
r_prime*sin(b_n); 

r_n*sin(e_n)  ]; 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff'*zdiff); 

% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurements) 
error_true = [error_true, disterror]; 

^************** ******************************************* 

% Prediction 
%********************************************************* 

% Kaiman Filter prediction equations 
x_predict = F * x_corr + G; 
P_predict = F * P_corr * F' + Q; 

^******************************************************* 

% Correction 
%******************************************************* 

coordinates 

coordinates 

% Convert to relative position to compute RBE 

x_l = x_predict(l) - Sensor_posit(1); 
x_4 = x_predict(4) - Sensor_posit(2); 
x_7 = x_predict(7) - Sensor_posit(3); 

% Convert prediction to Range, Bearing, Elevation 

r_hat = sqrt(x_lA2 + x_4~2 + x_7A2); 
b_hat = atan2(x_4, x_l); 

e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2)); 

% Determine expected measurement 
z_polar_hat = [r_hat; 

b_hat; 
e_hat]; 

% Observed minus expected measurements 
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z_tilde = z_polar_n - z_polar_hat; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_4/(x_lA2 + x_4A2); 
Hk_r2c4 =  x_l/(x_lA2 + x_4A2); 

Hk_r3cl = (-x_l*x_7)/( (sqrt(x_lA2 + x_4"2))*(x_l~2 + x_4A2 + x_7A2) ); 
Hk_r3c4 = (-x_4*x_7)/( (sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4"2 + x_7A2) ); 
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2); 

% Determine H matrix 
Hk = [x_l/r_hat,  0, 0, x_4/r_hat, 0, 0, x_7/r_hat, 0, 0; 

Hk_r2cl,   0, 0, Hk_r2c4,  0, 0, 0,      0,0; 
Hk_r3cl,   0, 0,   Hk_r3c4,  0, 0, Hk_r3c7,  0, 0]; 

% Compute Kaiman Gain 
K = P_predict * Hk' * inv(Hk * P_predict * Hk' + R); 

% Correction equations 
x_corr = x_predict + K * z_tilde; 

P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)' + K*R*K'; 

and 
% Kaiman track positions and difference between Kaiman 

% actual track position and actual target position 
zout_K_track  = H*x_corr; 

track_diff = ztrue - zout_K_track; 
track_error = [track_error, sqrt(track_diff'*track_diff)]; 

% Update KF track trajectory array 
K_track =  [K_track, zout_K_track]; 

% Estimated accelerations 
accel_out = [x_corr(3,:); 

x_corr(6,:); 
x_corr(9,:)]; 

% Update KF acceleration array 
K_accel = [K_accel, accel_out]; 

end; % for ii = 2:nsamples 

if kk == 1, % create first output 

zoutmean_true = zout_true_n; 
mean_K_track = K_track; 
merror_track = track_error; 
merror = error_true; 

else % create output after 1st run 

222 



zoutmean_true = zoutmean_true + zout_true_n; 
mean_K_track = mean_K_track + K_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 
toe 
end; % for kk = l:nloops 

^******************************************************* ****** 

% Compute Means 
^************************************************************* 

zoutmean_true = zoutmean_true/nloops; 
mean_K_track  = mean_K_track/nloops; 
merror        = merror/nloops;   % mean error between 

% measurement and true position 

merror_track = merror_track/nloops;    % mean error between 
% EKF estimated position 
% and true position 

^********************************************* **************** 

% Plot results 
%************************************************************* 

figured) 
measurement  = zoutmean_true/1000; % convert to km 
Kalman_track = mean_K_track/1000; % convert to km 
missile_track■= missilevec(:,l:nsamples)/1000; % convert to km 

plot3(missile_track(2,:), missile_track(5,:), missile_track(8, :), ' g- 
■);%,-.- 

%Sensor_posit(l)/1000, Sensor_posit{2)/1000, 
Sensor_posit(3)/1000,'rx'); 

%axis([0,25,0,25,0,25]); 
%axis('equal') 
axis([0,35,0,35,0,35]) 

%axis([0,40,0,40,0,40]); 
title(['TBM Profile ', num2str(prof_num)]) ; 
xlabeK'X (km)'), ylabel('Y (km)'), zlabel ( ' Z (km)'), grid; 

% print -deps ekf3a 

figure(2) 
plot3(missile_track(2,:), missile_track(5,:) , missile_track(8,:),'g- 

i 
i • • • 

measurement(1,:), measurement(2,:), measurement(3,:),'r-'); 
% axis([0,25,0,25,0,25]); % profile 1,2,3,5 
% axis([0,40,0,40,0,40]); % profile 4 

axis([0,35,0,35,0,35]) 
%axis('equal'); 
title(['TBM Profile   ',   num2str(prof_num),'   w/  Measurement Noise']); 
xlabeK'X   (km)'),   ylabel('Y   (km)'),   zlabel ('Z   (km) ') ,grid; 

% print  -deps  ekf3b 
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figure(3) 

plot3(missile_track(2,l:nsamples), missile_track(5,l:nsamples), 
missile_track(8,1:nsamples),'g-',... 
Kalman_track(1, :), Kalman_track(2,:), Kalman_track(3, :), ■r-') ; 

%axis([0,25,0,25,0,25]); 
%axis([0,40,0,40,0,40]); 
axis([0,35,0,35,0,35]) ; 
xlabeM'X   (km)'),   ylabel('Y   (km)1),   zlabel ( ' Z   (km)'),grid; 
title(['TBM Profile   ',   num2str(prof_num),'   andEKF(accel 

model)Trajectory"]); 
%print  -deps  ekf3c 

figure(4) 
time = missilevec(1,:); 

plot(time(2:nsamples), merror,'g-', time(2:nsamples), merror_track,'r- 
)   I 

xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid; 
title(['Mean Distance Error in Measurements vs Time - TBM Profile ', 

num2str(prof_num)]); 
%axis([0,70,0,10000]) 

%print -deps ekf3d 

% save ekf5003; 
%save ekfl003 
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a********************************************************************* 

% imm_tbm.m 
% 
% LT Tony San Jose 
% Thesis Advisor: R.G. Hutchins 
% 21FEB98 
% q"2 = 10 
% nloops = 100/500 
% This program stores the TBM profiles entered in tbmdat.m into the 
% variable missilevec for use in our tracking algorithms.  The TBM 
% data was provided provided by JHUAPL. 

% Load simulation workspace 
clear all 
load tbminit; 
missilevec = missilevecl; 
prof_num = 1; 

% Define the number of simulation loops 
nloops = 100; 

% Define the sampling interval 
delta =1; 
g = 9-8; 

% Define the number of samples 
[num_rows,num_cols] = size(missilevecl); 
nsamples = num_cols; 

% Define q^2 
q_sqr_a = 10; 
q_sqr_b = 10; 

% Initialize sensor data 
Sensor_posit =[ 100  * 1000; % sensor is 100 km in x 

100  * 1000; % sensor is 100 km in y 
0  * 1000]; % sensor is 0 km in z 

sigma_r =10; % 10 meters std dev in range 
sigma_b = l*pi/180;        % 1 degree std dev in azimuth 
sigma_e = l*pi/180;       % 1 degree std dev in elevation 

R = diag([sigma_r"2/ % covariance matrix for 
uncorrelated 

sigma_b"2,        % range and bearing measurements 
sigma_e/v2] ) ; 

% Define the H matrix (MEASUREMENT MATRIX) for the accelerating 
% model 

H= [1, 0, 0, 0, 0, 0, 0, 0, 0; 
0, 0, 0, 1, 0, 0, 0, 0, 0; 
0, 0, 0, 0, 0, 0, 1, 0, 0] ; 
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% ACCELERATING MODEL 

% Define G matrix 
G_accel = -g * [0; 

0 
0 
0 
0 
0 
(deltaA2)/2; 
delta; 
0]; 

% Initialize Q, the covariance of the plant noise 

Q_sub_a = [ (delt'aA5)/20, (deltaA4)/8, (deltaA3)/6; 
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2; 
(deltaA3)/6,  (deltaA2)/2,    delta   ]; 

Q_accel = q_sqr_a * [Q_sub_a,  zeros(3), zeros(3); 
zeros(3),  Q_sub_a, zeros(3); 
zeros(3), zeros(3), Q_sub_a ]; 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% accelerating model. 

f_sub_a = [1, delta, (deltaA2)/2; 
0,   1,      delta; 
0,   0,        1 ] ; 

F_accel = [f_sub_a, zeros(3), zeros(3); 
zeros (3) , f_sub_a, zeros(3); 
zeros(3), zeros(3), f_sub_a ]; 

% BALLISTIC MODEL 

% Define G matrix 
G_ball = -g * [0; 

0 
0 
0 
0 
0 
(deltaA2)/2; 
delta; 
0]; 

% Detemine Q for the Ballistic model 

Q_sub_b = [(deltaA3)/3, (deltaA2)/2, 0; 
(deltaA2)/2,    delta,    0; 

0, 0,     0]; 
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0 ball = q_sqr_b * [ 0 sub b, zeros(3), zeros(3); 
zeros(3),  Q_sub_b, zeros{3); 
zeros(3), zeros(3),  Q_sub_b]; 

% Define F matrix (TRANSITION MATRIX) for discrete time 
% ballistic model. 

f_sub_b = [1, delta, 0; 
0,   1,   0 ; 
0,   0,   0 ]; 

F_ball = [f_sub_b, zeros(3), zeros(3); 
zeros(3), f_sub_b,  zeros(3);r 
zeros(3), zeros(3), f_sub_b ]; 

%*********** End 0f initialization outside loops ** ************* 

%*************************************************************** 

% Loop over the target motion/measurement simulation 
%******************************************* * * ****************** 

for kk = 1: nloops 

tic 
kk 

% define empty output matricies 

% measurement positions (cartesian) w/error 
zout_true_n = []; 

% distance error between measurement and true position 
error_true = []; 

% Kaiman estimated trajectory 
K_track = []; 
K_accel = []; 

% error between Kaiman track and actual track 
track_error = []; 

%*************************************************************** 

% This block is used for the initialization process. Initialize 
% from a SWAG. 
%*************************************************************** 

x_corr_accel = missilevec(2:10,1); 
P_corr_accel = eye(9) * 10A4; 

x_corr_ball = missilevec(2:10,1) ; 
P_corr_ball = eye(9) * 10^4; 

% Initial likelihoods for states. 
mu_init = [1; 
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0]; 

mu = mu_init 
mu_l = mu(1) 
mu_2 = mu(2) 

% Loop through the simulation, generating target motion between 
% sample times and taking measurements at each sample time, 
% using 1 sensor 

for ii = 2:nsamples 

% Process the measurement from Sensor 

% True missile position 
ztrue = [missilevec(2,ii); 

missilevec(5,ii); 
missilevec(8,ii)]; 

% convert current position to polar coordinates and add 
% sensor noise to the position, generating a noisy measurement 
% from the sensor. 

% position relative to the sensor 
zrel = ztrue - Sensor_posit; 

from sensor 

from sensor 

x/y plane 

from sensor 

r = sqrt(zrel(1)^2 + zrel(2)A2 + zrel(3)"2);  % range 

b = atan2(zrel(2), zrel(l)); 

r_prime = sqrt(zrel(1)~2 + zrel(2)^2) 

e = atan2(zrel(3), r_prime); 

% bearing 

% range, in 

% elevation 

% add noise to the measurement 
r_n = r + sigma_r * randn; 

b_n = b + sigma_b * randn; 
e_n = e + sigma_e * randn; 

% measurement in polar + noise 
z_polar_n = [r_n; \ 

b_n; 
e_n] ; 

% measurement in cartesian coordinates + noise 
z_cart_rel_n =  [r_prime*cos(b_n); 

r_pr ime * s in(b_n); 
r_n*sin(e_n)  ]; 

z_cart_true_n = z_cart_rel_n + Sensor_posit; 
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transition 

% compute measurement error in cartesian coordinates 
zdiff = ztrue - z_cart_true_n; 
disterror = sqrt(zdiff'*zdiff); 

% Update the measurement array 
% true cartesian measurement + error 

zout_true_n = [zout_true_n, z_cart_true_n]; 

% measurement error (between true measurements) 
error_true = [error_true, disterror]; 

%** **************************************** *************** 

% Prediction 
%********************************************************* 

% Probabilities of changing state, Markov chain 

pl = 1; 
p2 = 0.3; 
alt = 3 0e3; 
h = z_cart_true_n(3); 

prob_accel = -p2*( 1/(l+exp(-.0005*(h-alt))) 
prob_ball = 1 - prob_accel; 

(1+pl) ); 

rho = [prob_accel,  prob_ball; 
0, 1   ]; 

% Accelerating Model 
cbar = rho' * mu; 

blowing up 
if cbar(l) < 10"(-8) 

cbar_l = 10A(-8); 
else 

cbar_l = cbar(1); 
end; 

cbar_2 = cbar(2); 

% prevents cbar_l from 

rho_ll = rho(1,1) 
rho_21 = rho(2,1) 
rho_12 = rho(1,2) 
rho_22 =■ rho(2,2) 

x_hat_01 = x_corr_accel * ((rho_ll*mu_l)/cbar_l) + 
x_corr_ball  * ((rho_21*mu_2)/cbar_l); 

xtilde_ll = x_corr_accel - x_hat_01; 
xtilde_21 = x_corr_ball  - x_hat_01; 

mu_ll = rho_ll * mu_l / cbar_l; 
mu_21 = rho_21 * mu_2 / cbar_l; 
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P_hat_01 = mu_ll * (P_corr_accel + xtilde_ll*xtilde_ll") + ... 
mu_21 * (P_corr_ball + xtilde_21*xtilde_21'); 

% Kaiman Filter Prediction Equations for Accelerating model 
x_predict_accel = F_accel * x_hat_01 + G_accel; 

Pjpredict_accel = F_accel * P_hat_01 * F_accel' + Q_accel; 

% Ballistic Model 
x_hat_02 = x_corr_accel * ((rho_12*mu_l)/cbar_2) + ... 

x_corr_ball  * ((rho_22*mu_2)/cbar_2); 

xtilde_12 = x_corr_accel -.x_hat_02; 
xtilde_22 = x_corr_ball  - x_hat_02; 

mu_12 = rho_12 * mu_l / cbar_2; 
mu_22 = rho_22 * mu_2 / cbar_2; 

P_hat_02 = mu_12*(P_corr_accel + xtilde_12*xtilde_12') + ... 
mu_22*(P_corr_ball + xtilde_22*xtilde_22'); 

% Kaiman Filter Prediction Equations for Ballistic model 
x_predict_ball = F_ball * x_hat_02 + G_ball; 
P_predict_ball = F_ball * P_hat_02 * F_ball' +'Q_ball; 

% Correction 

% Accelerating Model 
% Convert to relative position to compute polar coordinates 

x_l = x_predict_accel(l) - Sensor_posit(1) 
x_4 = x_predict_accel(4) - Sensor_posit(2) 
x_7 = x_predict_accel(7) - Sensor_posit(3) 

% Convert prediction to polar coordinates 
r_hat_a = sqrt(x_lA2 + x_4A2 + x_7~2); 
b_hat_a = atan2(x_4, x_l); 
e_hat_a = atan2(x_7, sqrt(x_lA2 + x_4A2)); 

% Determine expected measurement 
z_polar_hat_a = [r_hat_a; 

b_hat_a; 
e_hat_a]; 

% Observed minus expected measurements 
z_tilde_a = z_polar_n - z_polar_hat_a; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_4/(x_lA2 + x_4A2); 
Hk_r2c4 =  x_l/(x_lA2 + x_4A2); 

Hk_r3cl = (-x_l*x_7)/( (sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2) ); 
Hk_r3c4 = (-x_4*x_7)/( (sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2) ); 
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2); 
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% Determine H matrix 
Hk_a = [x_l/r_hat_a,  0, 0,  x_4/r_hat_a, 0, 0, x_7/r_hat_a, 0, 0 

Hk_r2cl,   0, 0,   Hk_r2c4,    0, 0, 0,       0, 0 
Hk_r3cl,   0, 0,   Hk_r3c4,    0, 0, Hk_r3c7,     0, 0] 

% Compute Kaiman Gain 
K_accel = P_predict_accel*Hk_a' * inv(Hk_a * P_predict_accel * Hk_a'+R); 

% Kaiman Filter Correction equations for Acclerating Model 
x_corr_accel = x_predict_accel + K_accel * z_tilde_a; 

P_corr_accel = (eye(9) - K_accel*Hk_a)* P_predict_accel; 

% Ballistic Model 
% Convert to relative position to compute polar coordinates 

x_l = x_predict_ball(1) - Sensor_posit(1); 
x_3 = x_predict_ball(4) - Sensor_posit(2); 
x_5 = x_predict_ball(7) - Sensor_posit(3); 

% Convert prediction to polar coordinates 
r_hat_b = sqrt(x_lA2 + x_3A2 + x_5A2); 
b_hat_b = atan2(x_3, x_l); 
e_hat_b = atan2(x_5, sqrt(x_lA2 + x_3A2)); 

% Determine expected measurement 
z_polar_hat_b = [r_hat_b;. 

b_hat_b; 
e_hat_b]; 

% Observed minus expected measurements 
z_tilde_b = z_polar_n - z_polar_hat_b; 

% The gradient of H evaluated at the most recent estimate 
Hk_r2cl = -x_3/(x_lA2 + x_3A2); 
Hk_r2c4 = x_l/(x_lA2 + x_3A2); 

Hk_r3cl = (-x_l*x_5)/( (sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2) ); 
Hk_r3c4 = (-x_3*x_5)/( (sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2) ); 
Hk_r3c7 = (sqrt(x_lA2 + x_3A2))/(x_lA2 + x_3A2 + x_5^2); 

% Determine H matrix 
Hk_b = [x_l/r_hat_b,  0, 0,  x_3/r_hat_b, 0, 0, x_5/r_hat_b, 0, 0 

Hk_r2cl,   0, 0,   Hk_r2c4,    0, 0, 0,        0, 0 
Hk_r3cl,   0, 0,   Hk_r3c4,    0, 0, Hk_r3c7,     0, 0] 

% Compute Kaiman Gain 
K_ball = P_predict_ball * Hk_b'*inv(Hk_b*P_predict_ball * Hk_b' + R) ; 

% Kaiman Filter Correction equations for the Ballistic Model 
x_corr_ball = x_predict_ball + K_ball * z_tilde_b; 
P_corr_ball = (eye(9) - KJ_ball*Hk_b) * P_predict_ball; 

% Update mode probabilities 
%********************************************************** 

m = 3 ; 
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S_l  = Hk_a  *  P_jpredict_accel  *  Hk_a'   + R; 
lambda_l  =   (exp(-(z_tilde_a)'*inv(S_l)*z_tilde_a/2))/(sgrt((2*pi)Am * 
det(S_l))); 

S_2  = Hk_b  *   P_predict_ball   *  Hk_b'   +  R; 
lambda_2  =   (exp(-(z_tilde_b)'*inv(S_2)*z_tilde_b/2))/(sqrt((2*pi)*m * 
det(S_2))); 

c  =  lambda_l   *  cbar_l  +  lambda_2   *  cbar_2; 

mu_l  =  lambda_l   *  cbar_l/c; 
mu_2   =  lambda_2   *   cbar_2/c; 

mu  =   [mu_l; 
mu_2]; 

%******************************ic*ieiciCiCi!±ici,i,it*iciriei,*iciridicir + iCicit 

% Produce Combined Estimates 

x_corr = mu_l * x_corr_accel + mu_2 * x_corr_ball; 
P_corr = mu_l*(P_corr_accel+(x_corr_accel- 

x_corr)*(x_corr_accel-x_corr)')+... 
mu_2 *{P_corr_ball +(x_corr_ball- 

x_corr) * (x_corr_ball- x_corr) ' ) ,- 

% Kaiman track positions and difference between Kaiman 
and 

% actual track position and actual target position 
zout_K_track = H*x_corr; 

track_diff = ztrue - zout_K_track; 
track_error = [track_error, sgrt(track_diff'*track_diff)]; 

% Update KF track trajectory array 
K_track =  [K_track, zout_K_track]; 

end; % for ii = 2:20:nsamples 

i*********************************************************** *********** 

if kk == 1, % create first output 

zoutmean_true = zout_true_n; 
mean_K_track = K_track; 
merror_track = track_error; 
merror = error_true; 

else % create output after 1st run 
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zoutmean_true = zoutmean_true + zout_true_n; 
mean_K_track = mean_K_track + K_track; 
merror_track = merror_track + track_error; 
merror = merror + error_true; 

end; % if kk ==1, else 

toe 

end; % for kk = l:nloops 

%* ********************************************* *************** 

% Compute Means 
^************************************************************* 

zoutmean_true  = zoutmean_true/nloops; 
mean_K_track   = mean_K_track/nloops; 
merror        = merror/nloops;   % mean error between 

% measurement and true position 

merror_track = merror_track/nlopps;    % mean error between 
% EKF estimated position 
% and true position 

^************************************************* ************ 

% Plot results 
%******* ************************************** **************** 

figure(1) 
measurement  = zoutmean_true/1000; % convert to km 
Kalman_track = mean_K_track/1000; % convert to km 
missile_track = missilevec(:,l:nsamples)/1000; % convert to km 

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g- 
');%  

%Sensor_posit(l)/1000, Sensor_posit(2)/1000, 
Sensor_posit(3)/1000,'rx'); 
%axis('equal') ; 
%axis([0,40,0,40,0,40]); 
axis([0,35,0,35,0,35]) 
title(['TBM Profile ', num2str(prof_num)]); 
xlabelCX (km)"), ylabeM'Y (km)'), zlabel (' Z (km)'), grid; 

%  print -deps imm3a 

figure(2) 
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g- 

I 
f    • • • 

measurement(1,:), measurement(2,:), measurement(3,:),'r-');%,.. 

%Sensor_posit(l)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000, 'rx'); 
%axis('equal') 
%axis([0,40,0,40,0,40]) ; 
axis([0,35,0,35,0,35]) 
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']); 
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xlabelCX (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid; 
% print -deps imm3b 

figure(3) 
plot3(missile_track(2,l:nsamples) , missile_track(5, lmsamples) , 

missile_track(8, lmsamples) , 'g- ' , . . . 
Kalman_track (1, :), Kalman_track(2,:), Kalman_track(3,:), 'r- 

');%  

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx"); 
%axis('equal') 
%axis([0,40,0,40,0,40]); 
axis([0,35,0,35,0,35]) 
xlabelCX (km)'), ylabel('Y (km)'), zlabeK'Z (km)'),grid; 
title(['TBM Profile ', num2str(prof_num),' w/ IMM Trajectory']); 

% print -deps imm3c 

figure(4) 
time = missilevec(1, :); 
plot(time(1:nsamples-l), merror,'g-', time(l:nsamples-l), 

merror_track, 'r-') ; 
xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid; 
title ('Mean Distance Error in Measurements vs Time'),- 

%print -deps imm3d 

%save mm5003 
%save imml003 
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APPENDIX F. MATLAB® INFORMATION 

MATLAB® and SIMULINK™ is a product of MathWorks, Inc., 24 Prime Way, 

Natick, Mass. 01760. MATLAB® version 4.2b and SIMULINK™ version 1.3a were used 

throughout this study. 
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