
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THEATRE BALLISTIC MISSILE DEFENSE-
MULTISENSOR FUSION, TARGETING AND

TRACKING TECHNIQUES

by

Antonio P. San Jose

March 1998

Thesis Advisor:
Second Reader:

Robert G. Hutchins
Harold A. Titus

Approved for public release; distribution is unlimited.

imo<iW^INS?EonjI>e

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE THEATER BALLISTIC MISSILE DEFENSE -
MULTISENSOR FUSION, TARGETING AND TRACKING TECHNIQUES

6. AUTHOR(S) Antonio P. San Jose

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13

12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)

The Gulf War illustrated how important ballistic missile defenses have become to the United
States. The study of intercepting Theatre Ballistic Missiles (TBMs) in their boost phase was prompted
by concerns about the widespread dissemination of submunitions and the differentiation of decoys
from actual warheads released early in the missile's midcourse flight. Boost Phase Intercept (BPI)
would alleviate this problem by destroying the enemy's ballistic missile in the missile's launch phase,
thereby causing the lethal payload and debris from the engagement to fall back on the aggressor. This
thesis focuses on the development of missile tracking algorithms to be used in the boost phase of
TBMs. A missile encounters significant changes in velocity, acceleration, and direction during the
boost phase, making it difficult to track. Extended Kaiman filter (EKF), Alpha-Beta-Gamma filter,
and Interacting Multiple Model (IMM) filtering techniques are developed to determine the missile
tracking accuracy of TBMs during boost phase. Simulation results and actual TBM profiles from test
data are presented to verify the tracking accuracy utilizing different filtering techniques.

14. SUBJECT TERMS Kaiman Filter, Alpha-Beta-Gamma Filter, Interacting Multiple Models,
TBMD

17. SECURITY CLASSIFICA-
TION OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT

Unclassified

15. NUMBER OF
PAGES 248

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited

THEATER BALLISTIC MISSILE DEFENSE -MULTISENSOR FUSION, TARGETING
AND TRACKING TECHNIQUES

Antonio P. San Jose
Lieutenant, United States Navy

B.S., United States Naval Academy, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN

ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author:

Approved by:

6h<~Z&»~*-£> f^s&tsÄ

Antonio P. Sail Jose an Jose

Harold A. Titus, Second Reader

^^"Herschel H. Lo6mis, Jr., Chair
Department of Electrical and Computer Engineering

irman

m

IV

ABSTRACT

The Gulf War illustrated how important ballistic missile defenses have become to

the United States. The study of intercepting Theatre Ballistic Missiles (TBMs) in their

boost phase was prompted by concerns about the widespread dissemination of

submunitions and the differentiation of decoys from actual warheads released early in the

missile's midcourse flight. Boost Phase Intercept (BPI) would alleviate this problem by

destroying the enemy's ballistic missile in the missile's launch phase, thereby causing the

lethal payload and debris from the engagement to fall back on the aggressor. This thesis

focuses on the development of missile tracking algorithms to be used in the boost phase

of TBMs. A missile encounters significant changes in velocity, acceleration, and

direction during the boost phase, making it difficult to track. Extended Kaiman filter

(EKF), Alpha-Beta-Gamma filter, and Interacting Multiple Model (IMM) filtering

techniques are developed to determine the missile tracking accuracy of TBMs during

boost phase. Simulation results and actual TBM profiles from test data are presented to

verify the tracking accuracy utilizing different filtering techniques.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BALLISTIC MISSILE DEFENSE 1

B. BOOST PHASE INTERCEPT 1

C. THESIS ORGANIZATION . 2

II. BALLISTIC MISSILE TRAJECTORY 5

A. GENERATING THE BALLISTIC MISSILE BASE TRAJECTORY 5

B. RUNNING THE SIMULATION 9

C. ADDING MEASUREMENT NOISE 15

III. EXTENDED KALMAN FILTER 19

A. DISCRETE TIME KALMAN FILTER 19

B. EXTENDED KALMAN FILTER 21

C. EKF IN TARGET TRACKING 26

D. SIMULATION RESULTS •. 30

IV. FIXED-COEFFICIENT FILTERING 39

A ALPHA-BETA-GAMMA TRACKER 39

B. SIMULATION RESULTS 43

V. INTERACTING MULTIPLE MODEL ALGORITHM 55

A. IMMALOGRITHM 55

B. SIMULATION RESULTS 70

Vll

VI. ACTUAL TBM PROFILES 87

A. TBM PROFILES 87

B. TBM PROFILE 1 89

C. TBM PROFILE 4 102

D. TBM PROFILE 5 116

E. COMPARISON OF TBM PROFILES 129

VII. CONCLUSION 133

APPENDIX A. SOURCE CODE FOR BALLISTIC MISSILE SIMULATION 135

APPENDIX B. SOURCE CODE FOR EKF TRACKING ALGORITHM 141

APPENDIX C. SOURCE CODE FOR ALPHA-BETA-GAMMA TRACKING
ALGORITHM 149

APPENDIX D. SOURCE CODE FOR IMM TRACKING ALGORITHM 157

APPENDIX E. TBM PROFILES 169

APPENDIX F. MATLAB® INFORMATION 235

LIST OF REFERENCES 237

INITIAL DISTRIBUTION LIST 239

Vlll

I. INTRODUCTION

A. BALLISTIC MISSILE DEFENSE

The Gulf War illustrated how important ballistic missile defenses have become to

the United States. The Iraqi use of theater ballistic missiles (TBMs) focused the United

States defense on the danger posed by the widespread proliferation of TBMs. Today, over

thirty countries possess ballistic missiles and more than twenty-five are believed to be

developing nuclear, chemical, or biological weapons [Ref. 1]. Many of those same

countries may be converting these weapons of mass destruction into warheads that can be

delivered by ballistic missiles. Because of worldwide development efforts to increase the

exportable supply of TBMs, missiles of increased range and pay load will find their way

into the weapons inventories of many nations during the next decade. Potential

aggressors will have a potent capability to deliver short notice or surprise attacks that

might threaten regional balances, U.S. allies, U.S. forces deployed overseas, and

potentially U.S. territory. The ability to put a nuclear, chemical or biological warhead on

a ballistic missile, along with the increasing ability to export such missiles, highlights the

necessity for the United States to develop effective theater missile defense (TMD)

systems. [Ref. 2, 3,4]

B. BOOST PHASE INTERCEPT

The study of intercepting TBMs in the boost phase was prompted by concerns

about the widespread dissemination of submunitions and the differentiation of decoys

from actual warheads released early in the midcourse phase. Boost Phase Intercept (BPI)

would alleviate this problem by destroying the enemy's ballistic missile in the missile's

initial launch phase, causing the lethal payload and the debris from the engagement to fall

back on the aggressor. Because boost phase defenses intercept a missile prior to the

release of its payload, BPI appears to be the only way to defend against submunitions.

An advantage of the boost-phase defense is that during a launch, the missile's rocket

motors spew out hot gases that are easy to locate; unfortunately, the motors burn for only

a few minutes. The challenge of BPI lies in the ability to detect launch of the missile, to

track it long enough to get a fix on its trajectory, and then to intercept it. All of this must

be done in only a few minutes. The creation of a successful BPI would considerably ease

the burden of relying solely on existing terminal defenses to combat TBMs. [Ref. 2]

C. THESIS ORGANIZATION

This thesis focuses on the development of missile tracking algorithms to be used

in the boost phase of TBMs. Chapter II furnishes the reader with a basic understanding

of generating a ballistic missile simulation. Chapter III provides background information

on the Extended Kaiman Filter (EKF) and discusses its use in missile tracking. Chapter

IV provides background information on fixed-coefficient filtering, and discusses the

development of the Alpha-Beta-Gamma filter used in missile tracking. Chapter V

discusses the Interacting Multiple Model (IMM) algorithm in which multiple filter

models are used to produce a combined position estimate. Chapter VI studies the

implementation of the EKF, the Alpha-Beta-Gamma tracker, and the IMM algorithm on

1

actual TBM profiles. Chapter VII presents conclusions and recommendations for follow-

on studies.

II. BALLISTIC MISSILE TRAJECTORY

This chapter provides background information so the reader has an understanding

of the ballistic missile base trajectory used in the missile tracking algorithms presented in

Chapters III, IV and V. A base trajectory is developed using flat earth equations of

motion, which are modeled in SIMULINK™. To simulate a sensor platform observing

the missile, measurement noise with uncertainties in range, bearing and elevation is

added to this base trajectory. The tracking algorithms are then implemented on these

position measurements and the resulting filtered trajectory is compared to the base

trajectory (used as true missile position) to determine the accuracy of our tracking

algorithms.

A. GENERATING THE BALLISTIC MISSILE BASE TRAJECTORY

The ballistic missile base trajectory is generated using SIMULINK™. The

initialization file, PtMissilelnit.m, initializes the following variables in order to generate a

simulated ballistic missile trajectory:

• The missile is launched from the surface of the earth (0 km along the z axis),

30 km along the x axis, and 40 km along the y axis.

• The missile thrust (T) is approximately 6 gs.

• The missile's booster cut-off itToff) occurs 60 seconds after launch.

• The missile rolls approximately 40 degrees in elevation (wel) and 15 degrees

in azimuth (waz), 20 seconds after launch.

• The coefficient of friction (cfric) is 0.5.

• The simulation sampling interval (sinterval) is 0.1 seconds.

• The missile is assumed to have a constant mass.

• The force of gravity (g) is assumed to be constant throughout the simulation.

After initialization, the SIMULINK™ model, FlatEPtMissileSim.m, is used to generate

the ballistic missile simulation. FlatEPtMissileSim.m is shown in Figure 2.1. The

SIMULINK model uses the following simulation parameters:

• Runge-Kutta 5 integration algorithm

• Minimum step size = 10"5

• Maximum step size =10"'

• Relative error = 10"3

Thrust

Ton
Toff Sum

Rotation in
^ elevation

welon

weloff Sum1

Rotation in
~ azimuth

wazon

e-
Clock

thrust
 ►
wel,

x

time

VJux-ÜL> MATLAB
Function

xdot
-Hi/sh

FlatEarthPtEqns lnte9rator

Vlux

vlux

Mux

missilevec

To Workspace

wazoff Sum2

Figure 2.1 SIMULINK Model, FlatEPtMissiIeSim.m.

H

Within the SIMULINK model, the MATLAB® function, FlatEarthPtEqns.m, generates

the missile dynamics using flat earth equations of motion, as outlined in Aircraft Control

and Simulation [Ref. 5]. In addition, the atmospheric density is modeled in accordance

with Tactical and Strategic Missile Guidance [Ref. 6], and is described as follows,

kg • Altitudes above 9144 meters: p = 1.75228763xe-6705-6 -£-
m

• Altitudes below 9144 meters: p = 1.22557 x e -9144 kg
m

kg
• Altitudes below 0 meters (travel inside the earth's surface): p = 100 -%

m

In the SIMULINK™ model, the inputs to the missile dynamics function are thrust,

rotation in elevation, rotation in azimuth, and the state vector, x. The missile state vector

gives the missile's position, velocity, and acceleration data at each sampling interval of

time. The missile state vector x, at time tk, is defined as,

x - position

x - velocity

x - acceleration

y - position

y - velocity

y - acceleration

z - position

z - velocity

z - acceleration

with

~
X

vx

ax

y
= vy

ay

z

vz

az

x =

X Vx

X ax

X 0

y vy

y = ay

y 0
z vz
z az-g
z 0

(2.1)

(2.2)

The missile state vector is generated every 0.1 seconds, and the resulting data is stored in

the MATLAB® workspace under the variable missilevec.

n

B. RUNNING THE SIMULATION

The following steps are used to run the ballistic missile simulation:

• STEP 1. In the MATLAB® workspace, run the initialization file,

PtMissilelnit. m.

• STEP 2. In the SIMULINK™ workspace, open the SIMULINK™ model,

FlatEPtMissileSim.m, and configure the simulation parameters as described

above.

• STEP 3. Start the simulation in SIMULINK™.

• STEP 4. Graph the output by running the plotting program, FlatEPTPlots.m,

in the MATLAB® workspace.

The resulting plots of the simulation are shown in Figures 2.2(a) through (i). Figures

2.2(a) through (g) give the reader a visual representation of the ballistic missile base

trajectory. Figures 2.2(h) and (i) emphasize the missile in its boost phase. The

MATLAB® source codes for initialization, missile dynamics and plotting are provided in

Appendix A.

Missile Z vs. XPIot

300

i ! !

200

E*
^ 100
N

0

-100

100 200 300 400
X (km)

500 600 700

Figure 2.2(a) Missile Z vs. X Plot.

10

Missile Y vs. X Plot

300

200

E

100

-100

100 200 300 400
X(km)

500 600 700

800

700-

600-

I.5001-
*^
in
5
8>40(
CO
cc
c
|300F
Q

200

100

Figure 2.2(b) Missile Y vs. X Plot.

Down Range Distance vs Time

100 200 300 400 500 600
Time (seconds)

Figure2.2(c) Missile Downrange Distance vs. Time.

11

Missile Altitude vs Time (kilometers)

100 200 300
Time (seconds)

400 500

Figure 2.2(d) Missile Altitude vs. Time.

3000
Missile Speed vs Time

2500

2000
/^

5T
E ^_^^

■D
CD

2.1500
CO
a>

"55
v>

2
1000

500

0 — 1 i 1 i i

100 200 300 400
Time (seconds)

500 600

Figure 2.2(e) Missile Speed vs. Time.

12

Three Dimensional Missile Trajectory in meters

x10

Y(m) X(m)

Figure 2.2(f) Three Dimensional Missile Trajectory in meters.

Three Dimensional Missile Trajectory in kilometers

250 v

200-

150-

100-

50-

0-

-50-

200 600

400

200

Y<km> X(km)

Figure 2.2(g) Three Dimensional Missile Trajectory in kilometers.

13

Missile Trajectory - Initial 120 Seconds in meters

Y(m) X(m)

Figure 2.2(h) Missile Launch (close-up), Initial 120 Seconds (in meters).

Missile Trajectory - Initial 120 Seconds in kilometers

150-^.

100

150

Y(km)
X(km)

Figure 2.2(i) Missile Launch (close-up), Initial 120 Seconds (in kilometers).

14

C. ADDING MEASUREMENT NOISE

A surface ship is selected as the sensor platform to observe the missile. The

location is chosen to be 100 km in the x direction, 100 km in the y direction, and 0 km in

the z direction. The sensor position is marked by an 'x', and its position relative to the

missile trajectory is shown in Figures 2.3(a) and (b). The surface platform observes the

missile's position through measurements in range, bearing and elevation (i.e. radar

measurements). To account for the inaccuracies of the sensor's measurements,

measurement noise with uncertainties in range, bearing, and elevation is added to the

base trajectory. During this study, the measurement noise in the tracking algorithms is

chosen to have the following standard deviations:

• Grange =10 meters

^bearing = A

(Jelevation = A

Figure 2.3(a) shows the boost phase of the ballistic missile base trajectory. Figure 2.3(b)

shows the same trajectory with the addition of measurement noise.

15

Ballistic Missile Base Trajectory

y-km 0 0
x-km

Figure 2.3(a) Ballistic Missile Base Trajectory.

Ballistic Missile Base Trajectory with Measurment Noise

y-km 0 0
x-km

200

200

Figure 2.3(b) Ballistic Missile Base Trajectory with Measurement Noise.

16

n

Chapter III begins the investigation on ballistic missile tracking during the boost

phase. The missile tracking algorithms focus on the boost phase, therefore only the initial

120 seconds of the simulated missile data are examined. Chapter III also provides

background information on the Extended Kaiman Filter, and describes the tracking

algorithm in detail. Simulation results are presented and compared to the base trajectory

developed in this chapter to determine the accuracy of the tracking algorithms.

17

18

in. EXTENDED KALMAN FILTER

This chapter provides background information on the development of a tracking

algorithm utilizing the Extended Kaiman Filter (EKF) equations. The discrete time

Kaiman filter equations are briefly discussed to familiarize the reader with the Kaiman

filter before presenting the more advanced EKF equations in the following sections, and

before presenting the Interacting Multiple Model equations in Chapter V. In this chapter,

an EKF tracking algorithm is developed and implemented on the position measurements

of the ballistic missile base trajectory developed in Chapter H Simulation results are

presented and the EKF tracking accuracy is analyzed.

A. DISCRETE TIME KALMAN FILTER

The purpose of the Kaiman filter is to estimate a state vector at the time of the last

measurement based on the knowledge of all past measurements. When used in missile

tracking, the Kaiman filter equations are used to estimate present and future target

kinematic quantities such as: positions, velocities, and accelerations. First assume that

the missile dynamic process is modeled in discrete form as follows,

xk+i=
Fkxk+«k (3-1)

where Xk is the n dimensional missile state vector that includes quantities to be estimated,

Fjc is the known state transition matrix, and cük is the plant noise associated with the

target. The plant noise, co^ is assumed to be zero mean (implies an unbiased sensor),

white and Gaussian with known covariance Qk. The measurement process is as follows:

19

zk=HkXk+vk (3.2)

where the measurements are linear combinations of the state variables, which are

corrupted by the addition of uncorrelated measurement noise, v. The variable zk

designates the sensor measurement at time, tk. The matrix Hk is a constant matrix related

to the number of dimensions being observed. As in the plant noise above, the

measurement noise,vk, is assumed to be zero mean, white and Gaussian with known

covariance Rk. [Ref. 7]

To start the Kaiman algorithm, the initial state estimate, x0, and its associated

covariance, P0, are assumed to be known a priori. The algorithm starts a recursive

process, in which it loops sequentially over the measurement, and then updates the

measurement at each measurement time. The process of updating the state estimate when

a new measurement is obtained can be broken down into two steps: prediction and

correction. Prediction refers to the estimation of the state vector to the next

measurement time. In this process, the state estimate and associated covariance are

predicted to the next measurement time using the following prediction equations,

x^i^FfcX^+o),, (3.3)

Pk+nk=FkPk|kFkT + Qk (3.4)

where T denotes transpose. Correction refers to updating (or correcting) the state

estimate and associated covariance based on the new measurement, using the following

correction equations,

x
k+iik+i = xk+iik + Kk+1jzk+1 J (3.5)

20

where Kk+i (Kaiman Gain) and \+x (residual vector) are defined as

K.tj.1 — xta.iiirtiirj.il-ri1,a.1rVx1|lrrlirj.1 + K.V4.] I V^-Ö,) Sc+1 - ^k+lk^k+l -"k+l'lc+llk-^k+l T ^k+1

\+\ — zk+i Hk+1xk+1|k (3.7)

The covariance update equation is

Pk+llk+l = V~ Kk+l^k+l jPk+llk (3.8)

where I is the identity matrix. An equivalent covariance update equation is

Pk+iik+i = v ~ Kk+iHk+i jPk+iik v- ~ Kk+iHk+1 j + Kk+1Rk+1Kk+1 (3.9)

It is.referred to as the Joseph Form, and is used in throughout this study because it

behaves better numerically in computer calculations [Ref. 8]. The combined set of

prediction and correction equations constitutes the discrete time Kaiman filter. The

preceding information is provided as a link to understand the development of the EKF

tracking algorithm. [Ref. 9, 10, 11]

B. EXTENDED KALMAN FILTER

In applications involving nonlinear dynamics or nonlinear measurement

relationships, the EKF, vice the traditional Kaiman filter (as described in the previous

section), is generally used. In this study, the measurement relationships from the sensor

(radar measurements in range, bearing and elevation) are nonlinear; therefore, the EKF is

used in our ballistic missile tracking algorithm. Because the basic equations in the EKF

are similar to that of the traditional Kaiman filter, an understanding of the traditional

Kaiman filter is essential. The main difference between the EKF and the Kaiman filter is

21

the evaluation of the Jacobians of the state transition and the measurement equations (the

partial derivatives of the F and H matrices) [Ref. 9]. This difference will be highlighted

again in the following derivation of the EKF equations.

In a system with nonlinearities in the dynamics or the measurement process, it is

desirable to have the same framework as in a linear system. Assume the following

nonlinear system equations,

xk+i=fk(xk) + G)k (3.10)

zk = hk(xk) + vk (3.11)

where fk(xk) is the nonlinear dynamics equation, and hk(xk) is the nonlinear measurement

equation. The noise processes Vk and (ok, are assumed to be white (uncorrelated)

Gaussian processes and mutually independent. Hence,

E[vk] = 0 (3.12)

E[vkV1] = Qk-4, (3.13)

where 4i is the Kronecker delta function,

Ek] = 0 (3.14)

Ehcö>'i] = Rk-4i (3.15)

with no cross correlation such that

0=E[vkwi] = E[vkxJ=E[(Dkx;)] Vk,l (3.16)

In order to determine the EKF prediction and correction equations, the nonlinear system

of equations (fk(xk) and hk(xk)) must first be linearized. The linearization is obtained by a

series expansion of the nonlinear dynamics and of the nonlinear measurement equations.

22

To obtain the predicted state xk+1ik, the nonlinear function is expanded in a Taylor series

around the latest estimate, xk|k, with terms up to the first order to obtain a first order

EKF. The first order Taylor series expansions are required for the dynamic process and

for the measurement process, and thus the matrices Fk and Hk must be determined. We

define Fk as the gradient of fk evaluated at the most recent estimate, xk|k,

#k(x)
k ck x=x(klk)

and Hk as the gradient of hk evaluated at the most recent estimate, xk|k,

dhk(x)
H„ = x=x(klk-l)

(3.17)

(3.18)

The Taylor series expansions about the estimates are as follows,

fk(xk) = fkK|k) + Fk(xk-xk|k)+- (3-19)

hk(xk) = h^J + H^x, -xk*-i)+- (3-20)

Then, the approximate system equations, neglecting the higher order terms are,

Xk+l = fk(Xk) + ö)k

= (fk(Xk|k) + Fk(Xk-Xk|k)) + <°k

= Fkxk+fk(xk|k)-Fkxk|k+ü)k (3.21)

23

zk = hk(xk) + vk

= (hk(xk|k_1) + Hk(xk-xk|k_1)) + vk

= HkXk + hk(xk|k)-Hkxk|k + vk (3.22)

Hence, the approximate (linearized) system of equations are,

xk+i=Fkxk+<»k+uk (3.23)

zk = Hkxk+vk+yk (3.24)

with the deterministic terms

Uk=fk(£k|k)-Fkxk|k (3.25)

yk=Mxk|k-i)-HkxkM (3.26)

The Kaiman filter prediction and correction steps for these approximate equations are as

follows:

Prediction: In the state estimate, substitute x for x, include the deterministic

terms and drop the zero mean noise.

Xk+l|k =FkXk|k+Uk

= Fkxk|k+[fk(xk|k)-Fkxklk

= fk(xk|k) (3.27)

The covariance prediction is a linear Gaussian update of the noise terms,

Pk+i|k = FkPk|k(Fk)
T + Qk (3.28)

24

Correction:

^klk-i - HÄ|k_i + Yk

- Hk*k|k-1 +[hk(^k|k-l)""HkX
k|k_i

hk(xk|k_x)

Hence, the state update equation is,

*k|k =*k|k-l+KkL2kJ

with

\ ~Zk zk|k-l

and

Ku — Pi.i,, ,Hi He - jrk|k-lnk[HkPk|k-lHk +R

The covariance update equation using the gradient matrices is,

pk|k = (I_KkHk)Pk|k-i

with the equivalent Joseph form [Ref. 8],

pkik = I1 _ KA/Pkik-iV1 ~ KkHk) + KkRkK

These Kaiman filter prediction and correction equations are exact for the set of

approximate system equations. [Ref. 11]

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

25

C. EKF IN TARGET TRACKING

In this section, a ballistic missile tracking algorithm is developed utilizing the

Extended Kaiman Filter equations. In this algorithm, the system equations are the

standard tracking equations,

xk+i = Fkxk+Gk+«k (3.35)

zk=hkxk+vk (3.36)

where xk is the missile state vector,

r- -,
_ _

Xl X

x2 Vx

x3 ax
x4 y
X5 = vy
X6 ay
x7 z
X8 Vz

LX9j _az_

Fk) is the linear state transition matrix,

K =

1 A
0

0 0 0 0 0 0

0 1 A 0 0 0 0 0 0
0

0

0

0

1

0

0

1

0

A

0

2
A

0

0

0

0

0

0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

,2

0 0 0 0 0 0 1 A
A"

A 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

(3.37)

(3.38)

26

Gk is the gravity matrix, which accounts for the force of gravity in the . z direction with

8=9.8-,,

"o"
0

0

0

G'=-g 0

0
A2

2
A

0

(3.39)

C0k is the plant noise with covariance Qk,

A5 A4 A3

™ -r T ° ° ° ° 20 8 6
A4 A3 A2

T T ^T 0 0 0 0 8 3 2
A3 A2

— — A 0 0 0 0
6 2

A5 A4 A3
0 ° o — — — 0

20 8 6
A4 A3 A2

0 ° o — — — 0
8 3 2

A3 A2

0 0 0 — — A 0
6 2

A5

oooooo —
20
A4

oooooo —
8

A3

oooooo —
6

0

0

0

0

0 0

Qk = q2x

0

0

0

0

0

0

(3.40)

A^_

8

3

2

6

2

A

27

where A is the sampling interval and q2 is a scaling factor used to account for unmodeled

target maneuver accelerations, and vk is measurement noise with covariance Rk;

R
range

0

0

0 0
2 Q

° bearing ^

0 elevation

(3.41)

with standard deviations as defined in Chapter II.

Although the missile dynamics in this system are linear, the measurement process

is nonlinear. As discussed in Chapter II, the sensor observing the missile is assumed to

be a surface platform located 100 km in the x direction, 100 km in the y direction and

0 km in the z direction. The surface platform observes the missile positions through

measurements in range, bearing and elevation (radar measurements) relative to the sensor

as shown below,

hk =

range

bearing

elevation
(3.42)

where

range = yjx2 + y2 + z2 = ^/x2 + x4 + x7

bearing = tan l = tan"

r'= V*2 + y2 = V*2 + x

elevation = tan -l

(3.43)

(3.44)

(3.45)

(3.46)

28

These measurement equations are clearly nonlinear, and therefore the nonlinear

measurement equations must be linearized using a series expansion of the measurement

equation hk. Applying the definition of the Hk matrix, as stated in Equation 3.18, the

gradient of hk is determined to be,

H, =

<2r(x) dr(x) *(x) <2r(x) *(x) *(x) *(x) <*(x) *(x)

<2xj (9x2 dx3 dx-4 dx5 dx6 dx.7 <2x8 <2x9

<9b(x) A(x) *(x) A(x) *(x) A(x) *(x) *(x) *(x)

<2xj dx2 dx3 <2x4 <2x5 <&6 <9x7 (3x8 <3x9

<3b(x) ob(x) <5e(x) *(x) <3b(x) *(x) <3b(x) *(x) <3b(x)

<2Xj (3x2 <&3 ^4 ^5 ^6 ^7 ^8 ^9

(3.47)

which simplifies to

Hk =

Xl

V» 2 2 2
+ X4 + X7

-x4
2 2

Xi +X4

- Xj • x7

_M + X^(xJ +X4+X7)

0 0

0 0

0 0

yJx* + X4 •+ X7

Xj +x4

x4 • x7

-y/xf +X^(x^ +X4+X7)

0 0

0 0

0 0

4 222
X \ + X4 + X7

0

V*T + X4

222 X + X4 + X7

0 0

0 0

0 0

(3.48)

Therefore the approximate (linearized) system of equations are,

Xk+l=
FkXk+Gk+<«k

with deterministic terms

Zk = Hkxk+vk+yk

yk = hk(xk|k_j) - Hkxk|k_!

(3.49)

(3.50)

(3.51)

29

The EKF tracking algorithm is implemented in MATLAB® by applying the matrices

developed in this section to the EKF prediction and correction equations as outlined in

Equations 3.27 through 3.34. Simulation results of the EKF algorithm are presented in

the following section. The source code for the EKF algorithm is presented in Appendix

B.

D. SIMULATION RESULTS

The EKF tracking algorithm is implemented on the ballistic missile base

trajectory with added measurement noise. The results of the EKF tracking algorithm are

obtained by running the EKF algorithm in MATLAB® and by plotting the average

trajectories over 10 simulation runs, with q2 = 10 and with the sampling interval (A) equal

to 0.1 seconds. In order to get an accurate representation of the mean distance error, a

graph of the mean distance error is obtained by running the EKF algorithm over 100

simulation runs. Figure 3.1(a) shows the ballistic missile base trajectory during boost

phase. As stated in Chapter II, standard deviations in range, bearing and elevation were

chosen as 10 meters, 1 degree, and 1 degree respectively, with the resulting measurement

noise shown in Figure 3.1(b). The results of the EKF tracking algorithm are shown in

Figures 3.2(a) through (c), which show a close up of the EKF trajectory at 40 seconds, 60

seconds and 80 seconds respectively. Figure 3.3 shows the EKF mean distance error

throughout the boost phase. The top graph indicates the average distance error created by

the measurement noise that is added to the base trajectory. The bottom graph indicates

the distance error of the EKF tracking algorithm. When viewing this graph, it is evident

30

that the overall mean distance error is significantly reduced by approximately 75 percent;

however, the EKF algorithm has difficulty tracking the missile in two distinct areas.

During the first few seconds while the missile is accelerating and rolling over, the mean

distance error peaks to approximately 600 meters. Secondly, at time 60 seconds, after the

booster cut off, the missile changes from an accelerating model to a ballistic model at

which the mean distance error peaks to a value of approximately 800 meters. The

MATLAB® source code for the EKF tracking algorithm is provided in Appendix B.

Ballistic Missile Base Trajectory

200

y- km 0 o
x-km

Figure 3.1(a) Ballistic Missile Base Trajectory.

31

Ballistic Missile Base Trajectory with Measurment Noise

20CK.

y-km 0 0

200

x-km

Figure 3.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

32

ZOOM - EKF Trajectory Initial 40 Seconds

Y(km) 30 30
X(km)

Figure 3.2(a) Close-up of the EKF Trajectory, Initial 40 seconds (10 Runs).

33

ZOOM - EKF Trajectory Initial 60 Seconds

Y(km) 30 30
X(km)

Figure 3.2(b) Close-up of the EKF Trajectory, Initial 60 seconds (10 Runs).

34

ZOOM - EKF Trajectory Initial 80 Seconds

60

40 \ —^ 45

Y<km> °U aU X(km)

Figure 3.2(c) Close-up of the EKF Trajectory, Initial 80 seconds (10 Runs).

35

2500
Mean Distance Error in Measurements vs Time

60
Time (seconds)

100 120

Figure 3.3 EKF Mean Distance Error (100 Runs).

36

In an attempt to reduce the tracking distance error, two other tracking algorithms

are examined. Chapter IV investigates the constant gain, or fixed-coefficient, filter called

the Alpha-Beta-Gamma tracker and determines its missile tracking capability.

Simulation results are presented and compared to the EKF results in this section. Chapter

IV investigates the missile tracking accuracy of a multiple model system using the

Interacting Multiple Model (MM) algorithm. Background information on the IMM

algorithm is discussed and the simulation results are analyzed.

37

38

IV. FIXED-COEFFICIENT FILTERING

This chapter provides information on the development of a tracking algorithm that

utilizes fixed-coefficient filtering. The advantage of this type of filter over the Kaiman

filter is its simple implementation where fixed parameters are used for filter gains. One

of the most commonly used fixed-coefficient (constant gain) filters is the Alpha-Beta-

Gamma (oc-ß-y) tracker. The cc-ß-y tracker is a constant gain filter used specifically in

tracking systems when position measurements are available and when the state vector

consists of positions, velocities, and accelerations. The actual nature of the noise

processes, including the covariance matrices, Q and R, are not required, thus simplifying

the filter design. The oc-ß-y filter equations are presented and the developed tracking

algorithm is implemented on the position measurements of the ballistic missile base

trajectory developed in Chapter n. The oc-ß-y filter simulation results are presented and

its tracking accuracy is analyzed.

A. ALPHA-BETA-GAMMA TRACKER

The system equations for the cc-ß-y tracker are the standard tracking equations as

presented previously in Chapter HI,

xk+1 = Fkxk+tok (4.1)

zk=Hkxk+vk (4.2)

39

where Xk is the missile state vector,

x - position

x - velocity

x - acceleration

y - position

xt = y-velocity

y - acceleration

z - position

z - velocity

z - acceleration

and Fk is the known state transition matrix,

Ft =

1 A
1

0 0 0 0 0 0

0 1 A 0 0 0 0 0 0
0

0

0

0

1

0

0

1

0

A

0
A^

2
A

0

0

0

0

0

0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

»2

0 0 0 0 0 0 1 A
A'

~2
A 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

(4.3)

(4.4)

The noise processes 0% and vk, are the plant noise and measurement noise respectively.

In the oc-ß-y tracker, the sensor observes the missile positions in nonlinear range, bearing

and elevation measurements. The covariance matrices are not used in this type of filter;

consequently, the matrix of partial derivatives (as used in the EKF) is not required. In the

40

a-ß-y algorithm, the measurements observed by the sensor are simply converted from

radar measurements to cartesian coordinates using the following transformation,

range x cos(bearing) x cos(elevation)

range x cos(elevation) x sin(bearing)

range x sin(elevation)

(4.5)

and thus Hk, the observation matrix, is simply a constant matrix,

Hk =

100000000
000 100000
000000100

(4.6)

The a-ß-y tracker, as presented in Multiple-Target Tracking with Radar Applications

[Ref. 7], is comprised of prediction and correction equations. These equations are as

follows:

Prediction:

xk+l - Fkxk (4.7)

41

Correction:

Xk+llk+l — xk+llk +

a 0
A o
77A

(ryA)2

0

0 -£-

0

0

0

0

0

0

0

a 0
ß 0
77A
r 0

fotf
0 a
0 J_

77A

0 7

W

Pk+i] (4.8)

where the residual vector, [zk+1], is defined as,

3k+l = Zk+1 - Hk+1Xk+1[k (4.9)

The variable r\ is normally defined to be unity, but in the case when missing observations

occur, its value may be taken as the number of scans since the last measurement [Ref. 7].

A large value for t| indicates the measurement is discounted. The combined set of

prediction and correction equations along with the constant gain matrix comprises the a-

ß-y filter.

The a-ß-y tracker hypothesizes constant missile acceleration; therefore, the gain

matrix, as shown in Equation 4.8, is comprised of constant coefficient values for a, ß,

and y. Decreasing the coefficient values leads to a less responsive filter. Conversely,

increasing the coefficient values leads to better performance for dynamic inputs such as

target maneuvers. The relationships between the coefficient values of the gain matrix, as

42

presented in Multiple-Target Tracking with Radar Applications [Ref. 7], are derived to

obtain a compromise between noise reduction and maneuver-following capability. The

first coefficient value, a, satisfies the relationship

0<a<0.6 (4.10)

where a large value of a results in better tracking during target maneuvers. A large value

of a puts more emphasis on the measured position rather than the estimated target

position in the correction step of the filter. The relationships for ß and y are defined as,

jß = 2(2-a)-4Vl-a (4.11)

ß2

7 = - (4.12)

The choice of gains for a constant-coefficient filter must reflect an overall compromise

between noise and dynamic (maneuver) performance.

B. SIMULATION RESULTS

The a-ß-y tracking algorithm is developed using the a-ß-y equations and is then

implemented on the ballistic missile base trajectory with added measurement noise. The

results are obtained by running the algorithm in MATLAB® and by plotting the average

trajectories over 10 simulation runs with A= 0.1 seconds, with a=0.6, and with ß and y

satisfying the a-ß-y relationships as described in Equations 4.11 and 4.12. The value of

a is selected as a large value to see the effect of the filter if a maneuvering target is

expected.

43

Figure 4.1(a) shows the ballistic missile base trajectory during boost phase. As in

Chapters II and m, the sensor position is assumed to be a surface platform at coordinates

(100 km, 100 km, 0 km), with standard deviations in range, bearing and elevation of 10

meters, 1 degree, and 1 degree respectively. Figure 4.1(b) shows the ballistic missile

base trajectory with added measurement noise. The result of the oc-ß-y tracking algorithm

is shown in Figure 4.1(c), with the filtered trajectory superimposed on the ballistic

missile base trajectory. Figures 4.1(d) through (f) show a close-up of the Alpha-Beta-

Gamma trajectory at 40 seconds, 60 seconds and 80 seconds respectively.

Ballistic Missile Base Trajectory

y- km 0 0
x- km

200

Figure 4.1(a) Ballistic Missile Base Trajectory.

44

Ballistic Missile Base Trajectory with Measurment Noise

200 -,

150-

100-

50-

0>
200

150

100

y-km

200

50 50
0 0

100

x-km

Figure 4.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

Ballistic Missile Base Trajectory and ABG Trajectory -120 seconds

150

0 0 Y<km> - X(km)

Figure 4.1(c) a-ß-y Trajectory, Initial 120 Seconds (10 runs, cc=0.6).

45

ZOOM - ABG Trajectory Initial 40 Seconds

60 v

50 v

40 -

Z
(k

m
)

CO

o

20-

10-

o>

30 30
X(km)

Figure 4.1(d) cc-ß-y, Trajectory, Initial 40 Seconds (10 runs, oc=0.6).

ZOOM - ABG Trajectory Initial 60 Seconds

Y(km) 30 30
X(km)

Figure 4.1(e) cc-ß-y Trajectory, Initial 60 Seconds (10 runs, a=0.6).

46

ZOOM - ABG Trajectory Initial 80 Seconds

60

60-

50-

40-

J30-
N

20-

10-

o> ■ .■;""

30 30 Y(km) - X(km)

Figure 4.1(f) a-ß-y Trajectory, Initial 80 Seconds (10 runs, a=0.6).

The mean distance error in measurements is calculated over 100 simulation runs

and is shown in Figure 4.2(a). The upper plot is the mean measurement noise, and the

lower plot is the mean distance error using the a-ß-y tracking algorithm. These results

indicate that the a-ß-y tracker performs only slightly better than the mean measurement

noise observed by the sensor. Additionally, a large transient error is present in the first

few seconds of the filter. This is shown in Figure 4.2(a) as a large spike, peaking to

approximately 6700 meters. A close-up of the mean distance error, disregarding the

initial transient error, is shown in Figure 4.2(b).

47

Mean Distance Error in Measurements vs Time
7000

6000 •

5000 •

(0
0

| 4000

LU
c3000
to

2000

1000

20 40 60 80
Time (seconds)

100 120

Figure 4.2(a) a-ß-yMean Distance Error (100 runs, a=0.6).

48

ABG Mean Distance Error in Measurements vs Time
2500

40 60 80
Time (seconds)

100 120

Figure 4.2(b) Close-up, oc-ß-y Mean Distance Error (100 runs, oc=0.6).

Figure 4.3 shows a comparison of the mean distance error plots of the cc-ß-y tracker and

of the EKF tracking algorithm. The EKF results are shown as a dotted line. Analysis of

this graph shows that the EKF tracking algorithm is superior to the ot-ß-y tracker

throughout the boost phase tracking.

49

Mean Distance Error in Measurements vs Time
2500

20 40 60 80
Time (seconds)

100 120

Figure 4.3 Mean Distance Error, a-ß-y Tracker vs. EKF (100 Runs).

In order to see how a different value of a affects the resulting trajectory, an

additional simulation was conducted for a=0.2, with ß and y satisfying the a-ß-y

relationships as described in Equations 4.11 and 4.12. As stated in the previous section, a

small value of a leads to a less responsive filter and improved measures of performance

for random noise input, whereas a large value of a, leads to better performance for

dynamic inputs. Therefore, in this simulation, we expect to see better performance of the

filter with a=0.2 since random noise is added to the ballistic missile base trajectory. The

50

mean distance error in measurements was calculated over 100 simulation runs, and is

shown in Figure 4.4. As in the previous example, a large transient error is present and is

shown in Figure 4.4(a); however, it is noted that the transient error is larger for smaller

values of a. With a=0.2, the error peaks to approximately 140 kilometers as compared to

a transient error of 6700 meters when a=0.6. Figure 4.4(b) shows a close up of the mean

distance error disregarding the initial transient error. As expected, the mean distance

error (the lower plot) is approximately 50 percent of the mean measurement noise (the

upper plot). This is significantly lower than the mean distance error for cx=0.6, as shown

15
x10 ABG Mean Distance Error in Measurements vs Time

10
22
<D

a
E

LU
C
CO
d>

5-

I

I b__

20 40 60 80
Time (seconds)

100 120

Figure 4.4(a) a-ß-yMean Distance Error (100 runs, cc=0.2).

51

2500
Mean Distance Error in Measurements vs Time

20 40 60 80
Time (seconds)

100 120

Figure 4.4(b) Close-up, a-ß-y Mean Distance Error (100 runs, a=0.2).

in Figure 4.2(b), where the mean distance error is approximately 75 percent of the mean

measurement noise. Figure 4.4(b) also shows a comparison of the mean distance error

plots of the a-ß-y tracker (with oc=0.2) and the EKF tracking algorithm. The EKF results

are shown as a dotted line. Although the a-ß-y tracker (with o=0.2) performs better than

the EKF in the areas between 62 and 78 seconds, the EKF is the better overall filter due

to the large transient error present in the a-ß-y tracker. In missile tracking, a very large

initial transient error is not acceptable, and thus a large value of a (a=0.6) is used

52

throughout the remainder of this study. The MATLAB source code for the a-ß-y tracker

is provided in Appendix C.

In the next chapter, the tracking accuracy of one final tracking algorithm is

analyzed. Chapter V investigates the missile tracking accuracy of a multiple model

system using the Interacting Multiple Model (IMM) algorithm. In this algorithm, an

accelerating model and a ballistic model are developed using the EKF equations as

presented in Chapter HI. These two models are combined in the IMM filter to produce a

combined estimate. Simulation results of the IMM are presented, and the tracking

accuracy is analyzed.

53

54

V. INTERACTING MULTIPLE MODEL ALGORITHM

The Interacting Multiple Model (IMM) tracking algorithm, as outlined in

Multitarget-Multisensor Tracking: Principles and Techniques [Ref. 10], is a hybrid filter

system comprised of a finite number of system models. This multiple model approach

provides a versatile tool for adaptive state estimation in systems whose behavior pattern

changes with time [Ref. 10]. A ballistic missile encounters two distinct behavior patterns

along its trajectory. Initially, the missile experiences large accelerations while the

rocket's motor burns. Then, after the motor burns out, the missile enters a purely ballistic

state for the remainder of its trajectory. Therefore, in this study, two system models are

developed for use in the IMM algorithm: an accelerating model and a ballistic model.

State and covariance estimates are calculated and maintained for each model (or mode)

and then mixed via a Markov state transition probability matrix. The end result is an

overall state and covariance matrix that provides a mode conditioned combination of the

latest state estimates and covariances. The details of the IMM algorithm are presented in

the following section. As in the previous chapters, the algorithm is implemented on the

ballistic missile base trajectory with added measurement noise. Simulation results are

presented and the tracking accuracy is analyzed.

A. IMM ALGORITHM

The theatre ballistic missile is assumed to be operating in one of two distinct

modes: accelerating (a third order, constant acceleration model) or ballistic (a second

55

order, constant velocity model). System (or plant) noise accounts for small variations

from these assumptions in each model. In the MM algorithm, each model requires its

own EKF system equations. The algorithm consists of operating these two EKF models

in parallel, with an interaction between the two filters resulting in the mixing of the

estimates. The two models of target motion in this study are defined by the following

system and measurement equations. (Note that the superscript in these equations are for

notation purposes only, and it indicates the model number of the equation, not an

exponential factor.)

Model 1 - Accelerating model:

x*w=P XWG'+üA

z\ =H' x'k+V^e

where xj, is the missile state vector for the accelerating model,

(5.1)

(5.2)

xt =

x - position
x - velocity

x - acceleration
y - position
y - velocity
y - acceleration
z - position
z - velocity

z - acceleration

(5.3)

56

F1 is the state transition matrix,

F1

1 A
2
A

0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 A
2
A

0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 A
2
A 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

(5.4)

G1 is the gravity matrix, which accounts for the force of gravity in the z direction

m
with g = 9.8—,

Gl = -g

0

0

0

0

0

0

2
A

0

(5.5)

57

H is the matrix of partials in which the missile positions are observed in range,

bearing and elevation (nonlinear measurements),

H' =

X

v» :2+y2+z2

-y
x2+y2

-xz u !+ y2(x2 + y2+z2

0 0

0 0

0 0

f* 2 2 2 + y + z^

x2+y2

-yz

0 0

0 0

i x2 + y2 + z2

Vx2 + y2(x2 + y2+z2
0 0 j x

2+y2

x2
+y2+z2

0 0

0 0

0 0

(5.6)

and a\ and vj, are the plant noise (with covariance Qj,) and measurement noise

(with covariance RJ,) respectively.

Model 2 - Ballistic model:

x2=F2x2
k+G2+ö)2k

z\ = H2 x2
k + V^L

where x^ is the missile state vector for the ballistic model,

xt

x - position X

x - velocity Vx

y - position y
y - velocity vy

z - position z
z - velocity yz.

(5.7)

(5.8)

(5.9)

58

F is the state transition matrix,

F2 =

1 A 0 0 0 0
0 10 0 0 0
0 0 1 A 0 0
0 0 0 10 0

0 0 0 0 1 A
0 0 0 0 0 1

(5.10)

G is the gravity matrix,

G2 = -g

0

0

0

0

2
A

(5.11)

H2 is the observation matrix in which range, bearing and elevation measurements

are observed,

H2 =

Vx2 + y2 + z2

-y
2 2 x +y

0

0

V2 , 2,2 x +y + z

2 2 x +y

0

0

Vx2 + y2+z2

^7 ~xz 0 -yz ' 0

Vx2 + y2(x2 + y2+z2) V^2 + y2(x2 + y2 + z2) (x2+y2 + z2j

(5.12)

59

and G£ and v^ are the plant noise (with covariance Qj;) and measurement noise

(with covariance R.£) respectively.

EKF tracking algorithms (as presented in Chapter HI) are developed using these two

system models. The two models are run in parallel, and EKF estimates are developed for

each model. The state and covariance estimates of each system model are then mixed

within the MM filtering process.

The MM filtering process for the above two model system is comprised of the

following series of computations [Ref. 9, 11]:

STEP 1. Model 1 - Accelerating model:

A. Calculate the mixing probabilities.

B. Mix conditions.

C. Perform the prediction.

D. Update the measurement.

E. Score the association.

STEP 2. Model 2 - Ballistic model:

A. Calculate the mixing probabilities.

B. Mix conditions.

C. Perform the prediction.

D. Update the measurement.

E. Score the association.

STEP 3. Update the modal likelihood vector.

STEP 4. Produce combined state and covariance estimates.

60

Each of these steps will be presented in detail; however, to begin our discussion, the

Markov transition matrix and the modal likelihood vector must first be presented.

The IMM algorithm utilizes the Markov transition matrix to specify the changes

between the two interacting models. This matrix determines the probabilities of changing

state between the measurement times and is represented by p, where

Aj = A-»j = Prob[xi+1|xl] (5.13)

The assumption is that the system jumps between models, with the jumps following a

Markov chain transition model. The Markov chain transition probabilities are generally

chosen heuristically. In this study, the Markov transition matrix for the two model

system is defined as,

w- Ai Pn

Pi\ Pn.

prob[accel|accel] prob[ball|accel]

prob[accel|ball] prob[ball|ball]
(5.14)

where

• pn is the probability that the missile is accelerating at time, tk+i, if it was

accelerating at time, &.

• P12 is the probability that the missile is ballistic at time, tk+1, if it was accelerating

at time, &.

• p2i is the probability that the missile is accelerating at time, tk+i, if it was ballistic

at time, ft.

• P22 is the probability that the missile is ballistic at time, tk+1, if it was ballistic at

time, tk.

61

Applying the above definition of the Markov transition matrix to missile tracking, this

matrix can be further simplified. For example, element p2\ is the probability that the

missile is accelerating at the next measurement time, given that it is currently ballistic.

This certainly can never happen, as the missile enters a purely ballistic trajectory after the

rocket motor burns out. Therefore, this element has a zero probability of occurring.

Furthermore, element p22 is the probability that the missile is ballistic at the next

measurement time, given that it is currently ballistic. Using the same explanation, this

should always be true. Therefore, in this study the Markov transition matrix is simplified

to

w= Al Pl2

P21 P22

Pn A2
0 1 (5.15)

It should be noted that according to the law of total probability, the rows of the Markov

transition matrix sum to one.

Elements pn and p12 are important in the process of switching between models.

The element pn is the probability that the missile continues accelerating at the next

measurement time, and pn is the probability that the missile switches from the

accelerating model to the ballistic model at the next measurement time. Since our first

measurement will occur during boost phase, the value of pn is initially set to one and pn

is initially set to zero. However, as we continue to track the missile, the value of pn will

increase since there is an increasing probability that the missile will switch to the ballistic

model at the next measurement time. In this study, the switching process is modeled

using a sigmoid function to switch element pn from a value of 1.0 to 0.5. This sigmoid

62

switching process is designed as a function of altitude since we expect the tracking

algorithm to anticipate the switch between missile models after the missile reaches a

predetermined minimum altitude. In our ballistic missile base trajectory, it is known that

the booster cut off in the simulated missile occurs at an altitude of approximately 60

kilometers. Therefore, in this study the switching process in the MM algorithm is set to

anticipate the change in models after the missile reaches an altitude of 50 kilometers.

The sigmoid switching function is designed as follows,

(1 A

(5.16)

The element pn is then determined by pi2 = 1-pn- Since the time interval between

measurements in our ballistic missile simulation is only 0.1 seconds, we assign a

minimum value of pn = 0.5. In the case where the time interval between measurements

is larger (i.e., 1 second, or 2 seconds), the sigmoid function should be designed to switch

pn from 1.0 to a smaller value such as 0.1 or 0.2. Simply put, there would be a smaller

probability that the missile would continue to accelerate over the larger time interval

between measurements.

Along with the Markov transition matrix, the IMM algorithm utilizes the modal

likelihood vector in the mixing process. The modal likelihood vector, ßk, maintains the

current set of probabilities for each modal state and changes with each update cycle as the

missile maneuvers. After the measurement update step in each system model, the modal

likelihoods are updated based on a scoring technique, which accounts for the latest

63

measurement. The modal likelihood of each state is defined as ^. which is the

likelihood of being in state i at time, tk. For this algorithm, pl represents the probability

that the missile is currently accelerating, and p2 represents the probability that the missile

is currently ballistic. The sum of the probabilities from each modal state is defined to

equal one. The modal likelihood vector for our two model system is defined as,

Ac
Mt probability. the_ missile_ is_ accelerating_ at_ time_ tk

. probability_ the_ missile_ is_ ballistic_ at_ time_ tk
(5.17)

The elements of the modal likelihood vector and the previously defined Markov state

transition matrix are used in the first steps of the BvIM filtering process. [Ref. 11]

The filtering steps of the MM algorithm can now be presented. As in the Kaiman

Filter algorithm, the initial state and covariance estimates for each model are required,

where x0 and PQ are the initial state and covariance estimates for the accelerating model,

and x0 and P0 are the initial state and covariance estimates for the ballistic model.

Additionally, the initial modal likelihood vector is required. Applying the above

definition of the modal likelihood vector, the initial modal likelihood vector (evaluated at

time to) is determined to be,

ßo
M5

(5.18)

The initialization of the modal likelihood vector can be further simplified. In this study

we assume that the missile is observed initially during boost phase. Hence, $ is initially

64

set equal to one, and /^ is set equal to zero. Thus the initial modal likelihood vector is

simply,

Mo
Ml
Mo2

(5.19)

The first step of the filtering process utilizes the initial state, covariance and modal

likelihood estimates to determine a mixed state and covariance estimate for the

accelerating model. Similarly, the second step performs the same mixed state and

covariance estimates for the ballistic model. Step three updates the modal

probabilities^ and /^utilizing a scoring process. Finally, these updated modal

probabilities are used to produce a combined estimate in step four. One cycle of the

IMM algorithm consists of the following steps:

STEP 1A. (Model 1) - Calculate the mixing probabilities.

In this algorithm, the mixing is carried out at the beginning of the cycle. The

mixing probability, /4-i|k-i' *s defined as the probability that mode Mt was in

effect at time tt-i, given that mode M, is in effect at time tk- The mixing

probabilities for the accelerating model are defined as

,,l|l P Mk-1 /C OAo\
Mk_i|k-i = "~=i— (5-20a)

21 2

Aä|k->=£-=H- (5-20b)

65

with the normalizing constant

c^PiX-.+P^L (5.21)

STEP IB. Mixing.

The mixed initial condition for the accelerating filter is defined as,

x01 , = x1 , x/y1!1 4-Y
2
 v u2\x Ak-i|k-i *k-i|k-i x A*k-i|k-i + xk-i|k-i x i"k-i|k-i

with the corresponding covariance,

poi _ „111
rk-l|k-l _ A*k_i|k-l

,2|1
Mc-l|k-1

Pk-l|k-l + Xk-l|k-l(Xk-l|k-l) +

, +x211, (x211 Vl -llk-1+ Ak-llk-l^xk-llk-l/ J

(5.22)

(5.23)

where

xü
— ^lr_llt_1 X

01
k-l|k-l - Ak-l|k-l Ak-l|k-l (5.24)

STEP 1C. Perform the prediction.

The state and covariance predictions for the accelerating model are determined by

the following equations,

r1. -PIOOI
Ak|k-1 ~ r Xk-l|k-l (5.25)

(5.26)

66

STEP ID. Update the measurement.

*k|k = *k|k-l + KUzk ~ Hl*k|k-i) (5.27)

Pk|k-i = (I_KkHl)Pk|k-i (5.28)

where the Kaiman gain is defined as,

Kk = Pk|k-llHk) HkPk|k-l(Hk) +Rk

-1

(5.29)

STEP IE. Score the association. (Based on a likelihood of the observed

measurement).

>)TW"f
A1 -6 (5.30) Ak -

m- 1

(2^)2 s1
2

where

~1 _ _ xjlo1
z = zk - nkxk|k (5.31)

Sk = HkPk|k-l(Hk) +Rk (5.32)

and m is defined as the number of dimensions observed; thus m = 3 since range,

bearing and elevation positions are observed.

STEP 2A. (Model 2) - Calculate the mixing probabilities.

The mixing probabilities for the ballistic model are defined as

~12, ,1
„1I2 P tk-i
A*k-l|k-l _ ^2 (5.33a)

67

,|2|2 P Ae-1
nc-l|k-l _ -2 (5.33b)

with the normalizing constant

c^P^VW-, (5.34)

STEP2B. Mixing.

The mixed initial condition for the ballistic filter is defined as,

~02 .22 Xk-l|k-l - Xk-l|k-l X^-l|k-l + Xk-l|k-l X^kT1|k_1

with the corresponding covariance,

,,2|2
i"k-l|k-l

, +«2|2 /~2|2 fl
-l|k-l + xk-l|k-l\Xk-l|k-lj J

(5.35)

Mk-i - AiVi[pMk-i + ^VifcVif] + . (5-36)

where

x'2 , = v1 Y02
Ak-i|k-i ~ *k-i|k-i ~ xk-i|k-i (5.37)

STEP2C. Perform the prediction.

The state and covariance predictions for the ballistic model are determined by the

following equations,

Y2 _ F2-02
Xk|k-1 - r Xk-llk-l (5.38)

68

^-.^«-iK+ö (5.39)

STEP 2D. Update the measurement.

*k|k ~ *k|k-l + Kk(zk - H K\k-lj

Pklk-^fl-^H^Pl,

where the Kaiman gain is defined as,

Kk = Pk|k-i(H2) HkPklk-i(H2) +Ri

,-i

(5.40)

(5.41)

(5.42)

STEP 2E. Score the association. (Based on a likelihood of the observed

measurement).

where

eL

iT/„2\-> z ■FYW

(2JC)~:

s2_7 W202
L — zk nkxk|k

Sk = HkPk2|k-l(Hk) +Rk

(5.43)

(5.44)

(5.45)

STEP 3. Update the modal likelihoods

/4=A]
k

i_.i* (5.46)

69

fi = K- (5.47)

where

c = Akc' + AfcC 2^2
(5.48)

STEP 4. Produce combined estimates (for display purposes only).

xk|k ->"kxk|k+>"kxk|k

Pk|k - /"k[Pk|k + Xk|k ~ xk|k Xk|k xk|k +

(5.49)

(5.50)

/4c2(Pk|k + Xk|k Xk|kJ|xk|k_xk|k

An IMM ballistic missile tracking algorithm is developed in MATLAB using the

equations defined in steps one through four. The IMM algorithm is then implemented on

the position measurements of the ballistic missile base trajectory. Simulation results of

the accelerating model, the ballistic model, and the combined IMM algorithm are

presented in the following section. The source code for the IMM algorithm is provided in

Appendix C.

B. SIMULATION RESULTS

As in the previous chapters, the IMM algorithm is implemented on the noisy

position measurements of the ballistic missile simulation. For the purpose of comparison,

the IMM tracking algorithm is run in MATLAB, using the same sensor position,

70

sampling interval, and measurement uncertainties as in the EKF and the a-ß-y tracker.

Figure 5.1(a) shows the ballistic missile base trajectory and Figure 5.1(b) shows the base

trajectory with added measurement noise. Figures 5.2(a) and (b) show the results of the

EKF algorithm on the accelerating model. As explained in Chapter III, the accelerating

model EKF tracks the missile well until the rocket motors cut off (at time 60 seconds),

and the missile changes from an accelerating state to a ballistic state. This discontinuity

can be seen in Figure 5.2(b), where the mean distance error at 60 seconds rises from 300

meters to a peak of 800 meters. At approximately 70 seconds, the EKF regains track and

the mean distance error decreases below 500 meters, and then remains at approximately

400 meters for the duration of the observation period. Figures 5.3(a) and (b) show the

results of the EKF algorithm on the ballistic model. Contrary to the accelerating model

EKF, this algorithm has significant difficulty tracking the missile in the early stages of its

trajectory. The ballistic model EKF is only able to satisfactorily track the missile after it

changes to a ballistic state. Figure 5.3(b) shows that the tracking algorithm reaches a

peak mean distance error of approximately 10 kilometers. Once the missile is in a

ballistic state, the algorithm is able to regain track.

71

Ballistic Missile Base Trajectory

200

200-

150-

100-

50-

0i
...■'■'

0 0
y~km - x-km

Figure 5.1(a) Ballistic Missile Base Trajectory.

Ballistic Missile Base Trajectory with Measurment Noise

y-km ' 0 o
x-km

200

200

Figure 5.1(b) Ballistic Missile Base Trajectory with Measurement Noise.

72

ZOOM - EKF Trajectory Initial 80 Seconds

N

60

60-

50-

40-

30-

20-

10-

o>

Y(km) 30 30
X(km)

Figure 5.2(a) EKF (Accelerating Model) Trajectory (10 Runs).

Mean Distance Error in Measurements vs Time
2500

40 60 80
Time (seconds)

100 120

Figure 5.2(b) EKF (Accelerating Model) Mean Distance Error (100 Runs).

73

ZOOM - Missile Trajectory Initial 100 Seconds

Y(km)
X(km)

Figure 5.3(a) EKF (Ballistic Model) Trajectory (10 Runs).

12000
Mean Distance Error in Measurements vs Time

20 40 60 80
Time (seconds)

100 120

Figure 5.3(b) EKF (Ballistic Model) Mean Distance Error (100 Runs).

74

The results of the IMM algorithm are shown in Figures 5.4 through 5.6. Figures

5.4(a) through (c) show a close-up of the IMM trajectory at 40 seconds, 60 seconds and

80 seconds respectively. Figure 5.4(d) shows the mean distance error of the IMM

algorithm. This graph shows that the EvIM algorithm is able to track the missile

significantly better than both the accelerating model and the ballistic model. The

"problem area" for the accelerating model is the area in which the missile transitions

from an accelerating state to a ballistic state. The result, as shown in Figure 5.2(b), is a

large rise in the mean distance error that peaks to 800 meters. In the IMM algorithm, this

problem area is eliminated, and the IMM algorithm is able to track through the transition

area with a mean distance error of approximately 250 meters. The "problem area" for the

ballistic model is the initial tracking while the missile is accelerating. This is also

resolved, as the IMM algorithm is able to track the missile well in this area with a mean

distance error of approximately 500 meters. Figures 5.5(a) and (b) show a comparison of

the mean distance error plots for the EKF accelerating model, the EKF ballistic model

and the IMM algorithm. Figure 5.5(b) shows a close-up of the comparison. Figure 5.6

shows a comparison of the mean distance error plots for the IMM algorithm and the ot-ßy

tracker. Figures 5.5(b) and 5.6 reveal the overall improvement in the tracking capability

of the IMM algorithm.

75

ZOOM - IMM Trajectory Initial 40 Seconds

N

60

50-

40-

30-

20-

10-

X(km)
Y (km) 30 30

Figure 5.4(a) IMM Trajectory, Initial 40 Seconds (10 Runs).

ZOOM - IMM Trajectory Initial 60 Seconds

60 v

50-

40 v

|30-
N

20-

10-

0>
....■■'

60

Y(km) 30 30
X(km)

Figure 5.4(b) IMM Trajectory, Initial 60 Seconds (10 Runs).

76

ZOOM - IMM Trajectory Initial 80 Seconds

60-

50-

40-

|30-
N

20-

10-

0>

Y(km) 30 30
X(km)

Figure 5.4(c) IMM Trajectory, Initial 80 Seconds (10 Runs).

77

2500
Mean Distance Error in Measurements vs Time

20 40 60
Time (seconds)

80 100 120

Figure 5.4(d) IMM Mean Distance Error (100 Runs).

78

12000

10000

Ä 8000

© 4-*
<D
E,

g 6000
UJ
c
CO
0)

4000

2000

Mean Distance Error in Measurements vs Time

r\
V

/
/

/
/

/

\
\
\
\
\

/
/

/
1

1

\
\
\
\
\

/
/

/
/

/

 \
\
\
\
\
 \

/
/ /

 7
/

/
/

. /

\
\
\
\
\

\
u,.. \

nTT"'s.

Jr - ^~- • — . _ . ^ -_ . — --'^ — . — .—.- . -.— .
S i i

20 40 60 80
Time (seconds)

100 120

Figure 5.5(a) Comparison of Mean Distance Error (100 Runs).

79

2500
Mean Distance Error in Measurements vs Time

20 40 60 80
Time (seconds)

100 120

Figure 5.5(b) Comparison (Zoom) of Mean Distance Error (100 Runs).

80

Mean Distance Error in Measurements vs Time
2500

40 60 80
Time (seconds)

120

Figure 5.6 Mean Distance Error - IMM vs. otßy Tracker (100 Runs).

81

The final analysis of the IMM algorithm investigates the effect of using a constant

switching parameter to switch between the two models of the IMM algorithm. In the

previous examples, the process of switching between the two models is controlled by the

sigmoid function described in Equation 5.16. This sigmoid switching function changes

Pn from a value of 1.0 to 0.5 as the missile reaches a predetermined altitude at which

booster cut-off is likely to occur. The result is a switching process that anticipates a

change between models based on prior knowledge of the booster cut-off altitude. In the

event that the altitude at which the booster cut-off occurs is not known, a constant value

for pn can be used. By setting pn equal to a constant value of 0.97 (selected only for

illustration purposes), the probability that the missile continues to accelerate from one

measurement time to the next is 97 percent. The resulting mean distance error is

predicted to be larger than the mean distance error of the IMM algorithm that uses a

sigmoid switching process. This is due to the slight uncertainty early in the tracking

process, in which the tracking algorithm is unsure whether the missile is initially

operating in the accelerating or the ballistic model. As shown in the previous sections,

the MM algorithm utilizing a sigmoid switching process is initially certain the missile is

accelerating (pn = 1); hence, it is predicted this algorithm will lead to lower initial values

of mean distance error.

The result of the IMM algorithm using a constant switching probability (pn =

0.97) throughout the tracking process is shown in Figure 5.7. As expected, the mean

distance error is initially large, peaking at approximately 800 meters. A comparison of

the results of the IMM algorithm using a constant value for pn and the results of the IMM

82

algorithm using a sigmoid switching process is shown in Figure 5.8. The plot of the

mean distance error of the IMM algorithm utilizing a constant switching probability is

shown as the dashed line. The plot of the mean distance error of the IMM algorithm

utilizing a sigmoid switching function is shown as the solid line. As expected, the mean

distance error of the IMM algorithm utilizing a constant switching probability is initially

larger than the IMM algorithm utilizing a sigmoid switching process. Because the mean

distance error of the IMM algorithm utilizing a sigmoid switching process is significantly

lower than the IMM algorithm with constant switching probability, it is considered to be

the better overall tracking algorithm.

In the next chapter, the EKF, the oc-ß-y and the IMM tracking algorithms are

implemented on actual TBM profiles. As in the simulated data, measurement noise is

added to the TBM profiles. The algorithms are then tested on the real data, and the

tracking accuracy of the algorithms is analyzed.

83

2500
Mean Distance Error in Measurements vs Time

20 40 60 80
Time (seconds)

100 120

Figure 5.7 Mean Distance Error, IMM with Constant Switching Probability,
pn=0.97, (100 Runs).

84

Mean Distance Error in Measurements vs Time
2500

2000

£ 1500
0)
E

HI

§ 1000

500

20

i

|i|Nf 1 -

A'" l
...i\

40 60
Time (seconds)

80 100 120

Figure 5.8 IMM with Sigmoid Switching Process vs. IMM with Constant Switching
Probability, pn=0.97 (100 Runs).

85

86

VI. ACTUAL TBM PROFILES

In this chapter, the tracking algorithms developed in Chapters HI, IV and V, are

implemented on actual TBM profiles. The TBM data was graciously given to us by Mr.

Thomas Jerardi from the Johns Hopkins Applied Physics Laboratory in Baltimore,

Maryland [Ref. 12]. The original source of this TBM data is the National Air

Intelligence Center (NAIC) located at Wright-Patterson Air Force Base, Ohio. For

security reasons, the specific TBM type is intentionally excluded from the TBM profile

data in order to keep this data unclassified. The TBM profile data is provided in

Appendix E.

A. TBM PROFILES

A TBM profile is a description of the nominal powered flight trajectory of a given

TBM, and an example of a TBM profile is shown in Table 1. A TBM profile consists of

an infrared (IR) intensity as a function of time," nominal vertical and horizontal ranges

from the launch point as functions of time, and maximum burn time, tmax (62.5 seconds

for profile 1 as shown in Table l)[Ref. 13]. Five TBM profiles are included in Appendix

E. Because some of the TBM profiles are very similar, the author has selected TBM

profiles 1, 4 and 5 for analysis and discussion in this section. The analysis of TBM

profiles 2 and 3 is provided in Appendix E.

87

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 36.0 0.000 0.000 32 60.6 7.023 3.195
1 36.3 0.006 0.000 33 62.4 7.469 3.491
2 36.6 0.026 0.000 34 64.2 7.928 3.803
3 36.9 0.058 0.000 35 66.0 8.402 4.132
4 37.2 0.103 0.000 36 68.4 8.890 4.479
5 37.5 0.163 0.001 37 70.8 9.393 4.844
6 37.8 0.235 0.004 38 73.2 9.911 5.229
7 38.1 0.322 0.010 39 75.6 10.444 5.633
8 38.4 0.423 0.020 40 78.0 10.992 6.057
9 38.7 0.537 0.036 41 81.2 11.556 6.502
10 39.0 0.666 0.058 42 84.4 12.136 6.969
11 39.5 0.809 0.087 43 87.6 12.732 7.459
12 40.0 0.965 0.124 44 90.8 13.345 7.973
13 40.5 1.136 0.171 45 94.0 13.975 8.511
14 41.0 1.321 0.226 46 96.0 14.622 9.075
15 41.5 1.520 0.292 47 98.0 15.288 9.665
16 42.0 1.733 0.367 48 100.0 15.972 10.282
17 42.5 1.962 0.453 49 102.0 16.675 10.928
18 43.0 2.204 0.550 50 104.0 17.397 11.604
19 43.5 2.460 0.658 51 104.6 18.140 12.309
20 44.0 2.731 0.777 52 105.2 18.904 13.045
21 45.0 3.015 0.908 53 105.8 19.690 13.813
22 46.0 3.312 1.050 54 106.4 20.499 14.613
23 47.0 3.623 1.205 55 107.0 21.332 15.446
24 48.0 3.948 1.372 56 106.4 22.190 16.314
25 49.0 4.286 1.551 57 105.8 23.075 17.217
26 50.6 4.637 1.744 58 105.2 23.986 18.155
27 52.2 5.001 1.950 59 104.6 24.925 19.131
28 53.8 5.378 2.170 60 104.0 25.894 20.145
29 55.4 5.769 2.404 61 98.0 26.894 21.199
30 57.0 6.174 2.652 62 80.0 27.925 22.293
31 58.8 6.591 2.916 62.5 20.0 28.450 22.850

Table 1. Sample TBM Profile (Profile 1) [Ref.12].

88

B. TBM PROFILE 1

In this section, measurement noise is added to the TBM profile 1 and the cx-ß-y,

EKF and IMM tracking algorithms are implemented on this trajectory. The mean

distance error is calculated for each algorithm and the resulting plots are compared

amongst the three filters. To start the analysis, a plot of the actual TBM trajectory is

shown in Figure 6.1.

TBM Profile 1

Y(km) 0 0
X(km)

Figure 6.1 TBM Trajectory (Profile 1).

89

1. Alpha-Beta-Gamma Tracker Results

As in the simulated data, measurement noise is added to the TBM trajectory to

simulate a sensor platform observing the missile. In addition, the same sensor position

and measurement uncertainties are applied to the TBM profile. Figure 6.2(a) shows a

plot of the TBM profile 1 with added measurement noise.

TBM Profile 1 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.2(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

90

The result of the oc-ß-y tracking algorithm is shown in Figure 6.2(b) with the

filtered trajectory superimposed on the TBM trajectory for profile 1. These results are

obtained over 100 simulation runs, with oc=0.6.

TBM Profile 1 and ABG Trajectory

Y(km) 0 0

25

10

X(km)

Figure 6.2(b) TBM Trajectory (Profile 1) and ct-ß-y Trajectory, <x=0.6,100 Runs.

91

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.2(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot, shown with a large initial spike, is

the mean distance error using the oc-ß-y tracking algorithm. These results indicate that

the cc-ß-y tracker reduces the mean measurement noise by approximately 30 percent,

despite a large transient error which is present in the first 10 seconds of the filter. This is

shown in Figure 6.2(c) as a spike that peaks to approximately 9,900 meters.

10000
ABG Mean Distance Error in Measurements vs Time - TBM Profile 1

10 20 30 40
Time (seconds)

50 60 70

Figure 6.2(c) a-ß-y Tracker (Profile 1) Mean Distance Error, cc=0.6,500 Runs.

92

2. EKF (Accelerating Model) Results

Figure 6.3(a) shows the TBM trajectory for profile lwith added measurement

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.3(b)

with the filtered trajectory superimposed on the TBM trajectory for profile 1. These

results are obtained over 100 simulation runs, with q2=10.

TBM Profile 1 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.3(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

93

TBM Profile 1 and EKF(accel model)Trajectory

25

25^

2(K

15-
"E

N-|(K

5-
■•"" : : ...■■1'

o>

Y(km) 0 0
X(km)

Figure 6.3(b) TBM Trajectory (Profile 1) and EKF Trajectory, 100 Runs.

94

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.3(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean

measurement noise by approximately 50 percent with an initial peak error of

approximately 1750 meters.

3500

3000 -/

2500 -

J2
CD

| 2000

LU
c1500
CO
CD

1000

500-

0
10 20 30 40

Time (seconds)
50 60 70

Figure 6.3(c) EKF (Profile 1) Mean Distance Error, 500 Runs.

95

3. IMM Results

Figure 6.4(a) shows the TBM trajectory for profile lwith added measurement

noise. The result of the IMM algorithm is shown in Figure 6.4(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 1. These results are obtained

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid

function (defined in Equation 5.16) that switches element pii, the probability that the

missile continues accelerating at the next measurement time, from a value of 1.0 to 0.3.

The altitude at the maximum burn time in this profile is approximately 28 km, and in this

model, the MM algorithm is set to start anticipating a change from the accelerating to the

ballistic model after the missile reaches an altitude of 20 km.

TBM Profile 1 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.4(a) TBM Trajectory (Profile 1) with Measurement Noise, 100 Runs.

96

TBM Profile 1 w/ IMM Trajectory

3(K

25 >.

2(K

Il5-
N

1(K Y •■••"■--.

5-v ■ ■■" // ' ■ > -\ '"";•■■■■.... "1
o> .■■'■'• ''•■ '//'■• •••'"''■. '■ .^'>-.^ ''':

30 ■"" '"•.. ""---.^ :

20
20

25
30

10 \ ^^ 15

Y<km) U U X(km)

Figure 6.4(b) TBM Trajectory (Profile 1) and IMM Trajectory, 100 Runs.

97

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.4(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

MM tracking algorithm. These results indicate that the MM algorithm reduces the

mean measurement noise by approximately 50 percent with an initial peak error of

approximately 1700 meters.

3500
Mean Distance Error in Measurements vs Time

10 20 30 40
Time (seconds)

50 60

Figure 6.4(c) IMM (Profile 1) Mean Distance Error, 500 Runs.

70

98

4. Comparison of Mean Distance Error

Figure 6.5(a) shows a comparison of the mean distance error plots for the cc-ß-y

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),

and the IMM algorithm (shown as a solid line). Figure 6.5(b) shows a close-up of the

comparison. Since the TBM profile contains missile positions only up to the maximum

burn time, the TBM profile does not contain missile data during the ballistic phase.

Therefore, in the IMM algorithm a switch to the ballistic model does not occur, and thus,

the EKF and IMM algorithms have similar results except for a small deviation starting at

Mean Distance Error in Measurements vs Time
10000

9000-

8000-

7000-

£ 6000 a>
E,

g 5000h
iii

§ 4000

3000

2000

1000

0

I

.' 1

1 1 1

.' 1
! i

•■'■•■•■ v ■••• •

.' i :

! i
1

i
i
\ :
\ :
\ •
\ \

\:

1 ^y'

-. ^._;~- ._ ^-rr:.^.^ .^ _

- — — : -;-
1 /^

1 i i

10 20 30 40
Time (seconds)

50 60 70

Figure 6.5(a) Comparison of a-ß-y, EKF and IMM Mean Distance Error, 500 Runs.

99

approximately 50 seconds. This is due to the MM algorithm anticipating the change

from the accelerating model to the ballistic model. The following close-up graph clearly

indicates the MM algorithm anticipates the impending switch to the ballistic phase.

3500

3000

2500

| 2000

Mean Distance Error in Measurements vs Time

o . ^_
LL1

(0
1500

1000

500

20 30 40
Time (seconds)

50 60 70

Figure 6.5(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

100

As discussed in Chapter V, the 1MM algorithm switches between system models

by using either a sigmoid switching function or by using a constant value for the

switching probability, p\\. The previous example used a sigmoid switching function that

changed the value of pn as the missile reached a predetermined altitude when booster

cut-off was likely to occur. In the event that this altitude is not known, a constant value

for pn can be used. For comparison purposes, the IMM algorithm is implemented on the

actual TBM data using a constant switching probability, with pn =0.75. Figure 6.5(c)

shows a comparison of the mean distance error for the IMM algorithm utilizing a sigmoid

switching function (shown as a solid line) and the IMM algorithm utilizing a constant

switching probability (shown as a dashed line). As in the simulated data in Chapter V,

the mean distance error of the MM algorithm utilizing a constant switching probability is

slightly larger early in the tracking process (although not as pronounced as in the

simulated data). This is due to the slight uncertainty in the tracking algorithm, in which

the tracking algorithm is unsure whether the missile is initially operating in the

accelerating or the ballistic model. Although the IMM algorithm utilizing a sigmoid

switching function performs better in the early part of the tracking process, the IMM

algorithm utilizing a constant switching probability performs better in the latter part of

the tracking process. This graph illustrates a trade-off in performance between the two

switching processes.

101

3500
Mean Distance Error in Measurements vs Time

20 30 40
Time (seconds)

50 60 70

Figure 6.5(c) IMM with Sigmoid Switching Process vs. IMM with Constant
Switching Probability, pu=0.75 (500 Runs).

C. TBM PROFILE 4

As in the previous section, measurement noise is added and the a-ß-y, EKF and

IMM tracking algorithms are implemented on actual TBM data. In addition, the mean

distance error is computed for each algorithm, and the resulting plots are compared

102

amongst the three filters for a new set of data called TBM profile 4. The plot of the TBM

trajectory for profile 4 is shown in Figure 6.6.

30

20

TBM Profile 4

40-

30-

|20-
N

10- ■ ■•/'"" ~ ""■-

-.^

o> ' ■ •. .■■''/'•. .-'■■'■".

40 \ / "--,,

10
20

10
0 0 Y(km) " X(km)

Figure 6.6 TBM Trajectory (Profile 4).

30

103

1. Alpha-Beta-Gamma Tracker Results

Figure 6.7(a) shows a plot of the TBM profile 4 with added measurement noise.

The result of the oc-ß-y tracking algorithm is shown in Figure 6.7(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 4. These results are obtained

over 100 simulation runs, with a=0.6.

TBM Profile 4 w/ Measurement Noise

4(K

30 v

J2(K
N

1(K

o>
40

X(km)

Figure 6.7(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

104

TBM Profile 4 and ABG Trajectory

40^

30 v

J20v -•—*
N

10-
..•■•■"""'"•/ ..-"■■'"■--.

o>
' * • /. ■ " * ' "" -

40 ^- / *■■-..,_

30

20

10
20

10
0 0

30

Y(km) - x(km)

Figure 6.7(b) TBM Trajectory (Profile 4) and oc-ß-y Trajectory, a=0.6,100 Runs.

105

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.7(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot, shown with a large initial spike, is

the mean distance error using the a-ß-y tracking algorithm. These results indicate that

the a-ß-y tracker reduces the mean measurement noise by approximately 30 percent

despite a large transient error which is present in the first 10 seconds of the filter. The

transient error is shown in Figure 6.7(c) as a spike that peaks to approximately 9,700

meters.

10000
ABG Mean Distance Error in Measurements vs Time - TBM Profile 4

10 20 30 40
Time (seconds)

50 60 70

Figure 6.7(c) a-ß-y Tracker (Profile 4) Mean Distance Error, o=0.6,500 Runs.

106

2. EKF (Accelerating Model) Results

Figure 6.8(a) shows the TBM trajectory for profile 4 with added measurement

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.8(b)

with the filtered trajectory superimposed on the TBM trajectory for profile 4. These

results are obtained over 100 simulation runs, with q2=10.

TBM Profile 4 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.8(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

107

TBM Profile 4 and EKF(accel model)Trajectory

Y(km) 0 0
X(km)

Figure 6.8(b) TBM Trajectory (Profile 4) and EKF Trajectory, 100 Runs.

108

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.8(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean

measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

3500

3000

2500 -

| 2000

HI
c 1500
CO
CD
2

1000-

500

0
10 20 30 40 50 60

Time (seconds)
70 80 90 100

Figure 6.8(c) EKF (Profile 4) Mean Distance Error, 500 Runs.

109

3. IMM Results

Figure 6.9(a) shows the TBM trajectory for profile 4 with added measurement

noise. The result of the IMM algorithm is shown in Figure 6.9(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 4. These results are obtained

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid

function that switches element pn from a value of 1.0 .to 0.5. The altitude at the

maximum burn time in this profile is approximately 38 km, and in this model the MM

algorithm is set to start anticipating a change from the accelerating to the ballistic model

after the missile reaches an altitude of 32 km.

TBM Profile 4 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.9(a) TBM Trajectory (Profile 4) with Measurement Noise, 100 Runs.

110

TBM Profile 4 w/ IMM Trajectory

0 0 Y(km) ' X(km)

Figure 6.9(b) TBM Trajectory (Profile 4) and IMM Trajectory, 100 Runs.

ill

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.9(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

MM tracking algorithm. These results indicate that the IMM algorithm reduces the

mean measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

3500
Mean Distance Error in Measurements vs Time

20 30 40 50 60
Time (seconds)

70 80 90

Figure 6.9(c) IMM (Profile 4) Mean Distance Error, 500 Runs.

112

4. Comparison of Mean Distance Error

Figure 6.10(a) shows a comparison of the mean distance error plots for the a-ß-y

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),

and the EMM algorithm (shown as a solid line). Figure 6.10(b) shows a close-up of the

comparison. As expected, the EKF algorithm and the IMM algorithm continue to show

similar results since the IMM algorithm does not switch to the ballistic model.

Mean Distance Error in Measurements vs Time
10000

9000 -

8000

7000

to

S 6000h
E.
o 5000
HI
c
(0 4000

3000

2000 -

1000-

0

/•
• \
I ■ ■

_ 1.... ■. ■.

I i

1 . .
• I : :
I • •
■ l

■ l •
l ■ :

l
l • ■

I
l :

l :

l :
l :

' r: :
1 :

1 :

l :

I:

t .
_ '/.r'.r.-.TV.-'.V.-r.

// ■" "*" "

s;-:r.\±: --.r.'.T. • "^. ^_. ^ .\..->-...^..A..^.-.-r\..
'"—"'^-'-'•-v'^ ; -

"■ -— ^,

J i i i i

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

Figure 6.10(a) Comparison of a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

113

3500
Mean Distance Error in Measurements vs Time

10 20 30 40 50 60 70 80 90 100
Time (seconds)

Figure 6.10(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

As in the previous section, an analysis of the MM switching processes utilizing a

constant switching probability is conducted with pn =0.75. The results are compared to

the previous example, where the MM algorithm used a sigmoid switching function to

change the value of pn. Figure 6.10(c) shows a comparison of the mean distance error

for the MM algorithm utilizing a sigmoid switching function (shown as a solid line) and

the MM algorithm utilizing a constant switching probability (shown as a dashed line).

114

Contrary to the simulated data in Chapter V and the actual data in TBM profile 1, the

results of the IMM algorithm utilizing these two switching processes do not behave as

expected. In this example, the mean distance error for the IMM algorithm utilizing a

constant switching probability is smaller early in the tracking process and larger in the

latter part of the tracking process. Because of this unexpected response, the same

analysis for the IMM algorithm switching processes is also conducted on the actual data

in TBM profile 5.

Mean Distance Error in Measurements vs Time
3500

3000

2500

CO
I—

CD

| 2000

LU
c 1500
CO
CD

1000-

500-

0

I 1 1 1

/ y

1 y

I /

1 y

_.../.../.:

/A.J s —

 '■ y ■ • ' ■.

• **

/ ' '

1 ' 1 '
1

' 1 i i i

10 20 30 40 50 60
Time (seconds)

70 80 90

Figure 6.10(c) IMM with Sigmoid Switching Process vs. IMM with Constant
Switching Probability, pn=0.75 (500 Runs).

115

D. TBM PROFILE 5

The final TBM data chosen to be highlighted in this study is the TBM trajectory

of profile 5. As in the two previous examples, the a-ß-y, EKF and IMM tracking

algorithms are implemented on the TBM trajectory. Figure 6.11 shows a plot of the

TBM trajectory of profile 5.

TBM Profile 5

Y(km) 0 o
X(km)

Figure 6.11 TBM Trajectory (Profile 5).

116

1. Alpha-Beta-Gamma Tracker Results

Figure 6.12(a) shows a plot of the TBM profile 5 with added measurement noise.

The result of the cc-ß-y tracking algorithm is shown in Figure 6.12(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 5. These results are obtained

over 100 simulation runs, with a=0.6.

40

30

20

TBM Profile 5 w/ Measurement Noise

40-

30-

|.2(K

N

10-

o>

30

10
20

10
0 0 Y<km> ' X(km)

Figure 6.12(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs.

117

TBM Profile 5 and ABG Trajectory

Y(km) 0 0
X(km)

Figure 6.12(b) TBM Trajectory (Profile 5) and cc-ß-y Trajectory, a=0.6,100 Runs.

118

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.12(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot, shown with the large spike, is the

mean distance error using the a-ß-y tracking algorithm. These results indicate that the a-

ß-y tracker reduces the mean measurement noise by approximately 30 percent despite a

large transient error which is present in the first 10 seconds of the filter. This error is

shown in Figure 6.12(c) as a spike that peaks to approximately 9,500 meters.

10000

9000

8000 -

7000
CO

(Ü

0
E 6000

W 5000- c
«3
CD

4000 -

3000

2000

1000
0

ABG Mean Distance Error in Measurements vs Time - TBM Profile 5

10 20 30 40 50 60 70 80 90
Time (seconds)

Figure 6.12(c) a-ß-y Tracker (Profile 4) Mean Distance Error, a=0.6,500 Runs.

119

2. EKF (Accelerating Model) Results

Figure 6.13(a) shows the TBM trajectory for profile 5 with added measurement

noise. The result of the EKF (accelerating model) algorithm is shown in Figure 6.13(b)

with the filtered trajectory superimposed on the TBM trajectory for profile 5. These

results are obtained over 100 simulation runs, with q2=10.

TBM Profile 5 w/ Measurement Noise

Y(km) 0 0
X(km)

Figure 6.13(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs.

120

TBM Profile 5 and EKF(accel model)Trajectory

40-

30-

J2O-
«—■•

N

10- ':.,■■■■"""/ ""-■••...

7. .■■■•'" ~ "■•■■•..

0>
" - - ^ ;

40 \ / ..'.'■-■.■;"' " - - ^

30

20

10
20

10
0 0

30

Y(km) - X(km)

Figure 6.13(b) TBM Trajectory (Profile 5) and EKF Trajectory, 100 Runs.

121

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.13(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

EKF tracking algorithm. These results indicate that the EKF algorithm reduces the mean

measurement noise by approximately 50 percent with an initial peak error of

approximately 1900 meters.

3500

3000-

Mean Distance Error in Measurements vs Time - TBM Profile 5

10 20 30 40 50 60
Time (seconds)

70 80 90

Figure 6.13(c) EKF (Profile 5) Mean Distance Error, 500 Runs.

122

3. IMM Results

Figure 6.14(a) shows the TBM trajectory for profile 5 with added measurement

noise. The result of the IMM algorithm is shown in Figure 6.14(b) with the filtered

trajectory superimposed on the TBM trajectory for profile 5. These results are obtained

over 100 simulation runs, with q2=10. The switching process is modeled using a sigmoid

function that switches element pn from a value of 1.0 to 0.5. The altitude at the

maximum burn time in this profile is approximately 44 km, and in this model the IMM

algorithm is set to start anticipating a change between models after the missile reaches an

altitude of 39 km.

TBM Profile 5 w/ Measurement Noise

4CK-

Y(km) 0 0
X(km)

Figure 6.14(a) TBM Trajectory (Profile 5) with Measurement Noise, 100 Runs.

123

TBM Profile 5 w/ IMM Trajectory

X(km)

Figure 6.14(b) TBM Trajectory (Profile 5) and IMM Trajectory, 100 Runs.

124

The mean distance error in measurements is calculated over 500 simulation runs,

and is shown in Figure 6.14(c). The upper plot is the mean measurement noise that is

observed by the sensor platform, and the lower plot is the mean distance error using the

IMM tracking algorithm. These results indicate that the MM algorithm reduces the

mean measurement noise by approximately 50 percent with an initial peak error of

approximately 1500 meters. The rise in the mean distance error in the last few seconds

indicates the IMM filter is anticipating the switch to the ballistic model.

3500

3000

2500

to v.
CD

®2000

LU
c 1500
CO

2

1000-

500-

Mean Distance Error in Measurements vs Time

<- 1 1 1 i i i i

10 20 30 40 50
Time (seconds)

60 70 80

Figure 6.14(c) IMM (Profile 5) Mean Distance Error, 500 Runs.

125

4. Comparison of Mean Distance Error

Figure 6.15(a) shows a comparison of the mean distance error plots for the oc-ß-y

tracker (shown as a dash-dot line), the EKF accelerating model (shown as a dashed line),

and the IMM algorithm (shown as a solid line). Figure 6.15(b) shows a close-up of the

comparison. As expected, the results of the EKF and the IMM are similar, since the

IMM algorithm does not switch to the ballistic model.

10000

9000

8000

7000

£ 6000
CD
E,

o 5000
LU

Mean Distance Error in Measurements vs Time

_.,.

c
CO
CD
2

4000

3000

2000

1000

i. i
' i

' i
i

i

30 40 50 60
Time (seconds)

70 80 90

Figure 6.15(a) Comparison of cc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

126

Mean Distance Error in Measurements vs Time
3500

3000

2500

w
CD

| 2000

LU
c1500
CO
CD

1000-

500-

11

I:

I 1 1 1

" t ■/

^d^'iys.U^ l-\
; ; ; \ ' y'v.

1 : /
^\-" v^

-~ ■ . S ;-

' /
1 / '■
If
'/

_ .. j/ :

/
1 1 ' 1 1 I

10 20 30 40 50 60
Time (seconds)

70 80 90 100

Figure 6.15(b) Comparison (Close-up) of Mean Distance Error, 500 Runs.

An analysis of the IMM algorithm switching process is conducted for TBM

profile 5 using a constant value for the switching probability, with pn=0.75. The results

are compared to the previous example of the IMM algorithm, which uses a sigmoid

switching process. Figure 6.15(c) shows a comparison of the mean distance error for the

IMM algorithm utilizing a sigmoid switching function (shown as a solid line) and the

IMM algorithm utilizing a constant switching probability (shown as a dashed line). The

plots of the mean distance error for each switching process behave as expected, with

127

results similar to the results obtained from both the simulated data and the actual data

from TBM profile 1. The familiar trade-off in performance is noted, with the MM

algorithm utilizing the sigmoid switching function performing better in the early part of

the tracking process, and the IMM algorithm utilizing the constant switching probability

performing better in the latter part of the tracking process.

3500
Mean Distance Error in Measurements vs Time

20 30 40 50
Time (seconds)

60 70 80

Figure 6.15(c) IMM with Sigmoid Switching Process vs. IMM with Constant
Switching Probability, pu=0.75 (500 Runs).

128

E. COMPARISON OF TBM PROFILES

A comparison of the tracking quality of the different algorithms is shown in

Figures 6.16 through 6.20. TBM profiles 1,4 and 5 were initially chosen for analysis in

this section because of their different burn times listed in the TBM profile data. It was

thought that the differences in burn times might identify some differences in the

performance of the algorithms. However, the graphs show near identical results with

only subtle differences in the performance of each individual missile characteristic. By

reducing the mean distance error by approximately 50 percent, the EVIM algorithm

proved to be the most accurate tracker of the three filtering algorithms.

Mean Distance Error in Measurements vs Time

LU
c a

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

I i
|_..t....v.

I i

. I :
\ :

0 10 20 30 40
Time (seconds)

50 60 70

Figure 6.16 Profile 1, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

129

10000

9000

8000

7000

B 6000
E.

g 5000
LU

| 4000

Mean Distance Error in Measurements vs Time

30 40
Time (seconds)

Figure 6.17 Profile 2, oc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

Mean Distance Error in Measurements vs Time - TBM Profile 3
10000

9000

8000

7000

Ä 6000
E.

g 5000
UJ
c

i \
■■■/■••(•••

j i

j \
i i

'f i"
i

30 40
Time (seconds)

Figure 6.18 Profile 3, cc-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

130

Mean Distance Error in Measurements vs Time
10000

9000

8000

7000

$ 6000

g 5000
Ill

40 50 60
Time (seconds)

90 100

Figure 6.19 Profile 4, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

Mean Distance Error in Measurements vs Time
10000r

9000

8000-

7000

S 6000-
B

Q 5000
LD

| 4000 r

3000'

2000-

1000-

0'-

> \
..!..x...\

' i :
! i :

■ ! :

i i
1 :

1 :

1 :

• ; —

•?. .N.\"?.' ~ - ' - K^.r.:^-... ~* * v--.^,--^..
" "*■ - V ~:-ry>

— ■ _»——

7

10 20 30 40 50 60
Time (seconds)

70 80 90

Figure 6.20 Profile 5, a-ß-y, EKF and IMM Mean Dist. Error, 500 Runs.

131

The tracking results of the actual TBM data in this chapter are consistent with the

tracking results of the simulated TBM data in Chapters II through V. In all of the TBM

profiles, the mean measurement noise observed by the sensor is reduced by

approximately 50 percent with a mean distance error of approximately 1500 meters.

Because the information provided in TBM profiles 1 through 5 only contains data up to

the maximum burn time, the missile's transition area and post booster cut-off areas are

not studied. The next chapter provides a summary of the analysis of TBM tracking

during boost phase. Conclusions are made and recommendations for follow-on studies

are presented.

132

VII. CONCLUSION

The tracking of TBMs during their boost phase has been investigated, and a-ß-y,

EKF and IMM tracking algorithms have been developed. The IMM tracking algorithm

was shown to be the most effective algorithm for tracking TBMs during boost and

transition phases. As shown in Chapter IV, the a-ß-y tracker performed only slightly

better than the mean measurement noise observed by the sensor. Additionally, large

transient errors were present in the initial few seconds of tracking. The EKF algorithm

(accelerating model), shown in Chapters III and V, encountered significant difficulty

tracking TBMs after booster cut-off. As a result, large peaks were present in the

transition area of the mean distance error plots for the EKF algorithm. In this study, the

IMM algorithm was shown to be the best overall tracking algorithm because of its ability

to track TBMs during the large initial accelerations encountered during boost phase, and

during the change in missile dynamics encountered in the TBM's transition to a ballistic

phase.

In the analysis of both the simulated and actual TBM data, the IMM algorithm

outperformed all other tracking algorithms. In the simulated data, the IMM tracking

algorithm significantly reduced the mean measurement noise observed by the sensor by

approximately 75 percent (with a mean distance error of approximately 400 meters). In

addition, the mean distance error during the missile's transition phase (after booster cut-

off) was significantly reduced to approximately 200 meters. In the actual TBM data, the

IMM tracking algorithm consistently reduced the mean measurement noise observed by

133

the sensor by approximately 50 percent (with a mean distance error of approximately

1500 meters). The difference in IMM performance between the simulated data and the

actual data was attributed to two factors. First, in the simulated data, the TBM launch

point was intentionally offset from the origin and the resulting distance between the

sensor and the launch point was approximately 92 km. In the actual TBM data, the

downrange distance and altitude were referenced to the launch point, and for plotting

purposes, the TBM was launched from the origin. A larger distance of 141 km resulted

between the sensor and the launch point. Secondly, the sampling interval in the

simulated data was set at 0.1 seconds while in the actual data, the interval was 1 second.

This longer time interval between missile position measurements, combined with the

increased distance between the sensor and missile launch point led to larger distance

errors in the actual data.

Follow-on studies should concentrate on the analysis of additional TBM profile

data from actual missile launches to include data over the entire trajectory. This will

allow for further investigation of the IMM algorithm in the transition areas of actual

TBM data.

134

APPENDIX A. SOURCE CODE FOR BALLISTIC MISSILE

SIMULATION

A. MATLAB® CODE FOR INITIALIZATION

The following is the MATLAB® program used to initialize the ballistic missile

simulation.

% PtMissilelnitS.m
% LT Tony San Jose
% Thesis Advisor: R.G Hutchins
% 03FEB98
o,
o

% This script file initializes the flat earth point
% missile simulation

% define globals
global g mass T tToff troll cfric xinit tmax sinterval;

g = 9.8;
T = 6*g;
tToff = 60; %100;
troll = 20; %30;
cfric = 0.05;
sinterval = 0.1;

tmax 520;

% gravity, meters/secA2
% missile acceleration
% time of thrust shut off (seconds)
% time of missile rollover(seconds)
% coefficient of friction
% sampling interval (seconds)

% max simulation time (seconds)

wel = (40*(pi/180))/(tToff
waz = (15* (pi/180))/(tToff

troll);% rotation in elev (rads/sec)
troll);% rotation in azimuth (rads/sec)

minstep = le-5; % minimun step size
numsamp =tmax/minstep;% number of samples

xinit = [30 * 1000;
0;
0;
40 * 1000;
0;
0;
0;
0.001;
0];

Initial Missile
Initial Missile
Initial Missile
Initial Missile
Initial Missile
Initial Missile
Initial Missile
Initial Missile
Initial Missile

x position (m)
x velocity (m/s)
x acceleration (m/sA2);
y position (m)
y velocity (m/s)
y acceleration (m/sA2);
z position (m)
z velocity (m/s)
z acceleration (m/sA2)

135

B. MATLAB® CODE FOR MISSILE DYNAMICS FUNCTION

The following is the MATLAB® program used to generate missile dynamics using

flat earth equations of motion.

function xdot = FlatEarthPtEqns(u)
%*** + ***i + + + + * + ^^^ + +
% This Function computes the Flat Earth, Point Mass Equations
% for Missile Dynamics.
O

% LT Tony San Jose
% Thesis Advisor: R.G Hutchins
% 03FEB98
Q.

% The input vector is defined as:
% u(l) = T, thrust along the missile velocity vector
% u(2) = we, Velocity Vector Rotation Rate in elevation
% u(3) = waz, Velocity Vector Rotation Rate in azimuth
a
o

% The State Vector is defined as:
% Position Variables
% u(4) = Px, Position North of (0,0,0)
% u(7) = Py Position East of (0,0,0)
% u(10)= Pz, Height
o
o

% Position Velocities
% u(5) = U, D(Px)/dt
% u(8) = V, D(Py)/dt
% u(ll)= W, D(Pz)/dt
Q.
O

% Position Accelerations
% u(6) = Ax, D(Px)/dt
% u(9) = Ay, D(Py)/dt
% u(12)= Az, D(Pz)/dt
Q.
'S

% Related Quantities
% g, Gravitational Force =9.8 meters/secA2
% cfric coefficient of friction
% rho, air density with altitude
% mass, missile mass
% tToff, Time of Thrust Shutoff
% troll, Time of Missile Rollover < tToff

% Declare Global Variables
global g mass tToff troll cfric tmax;

% Define Control Variables from Inputs
T = u(l); % thrust along missile velocity
wel = u(2); % turn rate in elevation

136

waz = u(3); % turn rate in azimuth

Define State Variables from Inputs
x = u(4:12);

Location Variables
Px = x(l)
Py = x(4)
Pz = x(7)

% Position in Direction of North Pole
% Position At Equator in y
% Position At Equator in z

% Body-Axes Velocities
U = x(2); % velocity in Px direction
V = x(5); % velocity in Py direction
W = x(8); % velocity in Pz direction ("Up")

% Speed, Atmospheric Density and Drag
Vxy2 = UA2 + VA2j
Vxy = sqrt(Vxy2)
Vxz2 = UA2 + WA2;
Vt2 = Vxz2 + VA2;
Vt = sqrt(Vt2);
az = atan2(V,U);
el = atan2(W,Vxy);

% Atmospheric Density in kg/meterA3
if Pz < 0 % Travel inside the Earth is Viscous

rho = 10A2;
elseif Pz < 9144 % Altitudes below 9144 meters

rho = 1.22557*exp(-Pz/9144);
else % Altitudes above 9144 meters

rho = 1.75228763*exp(-Pz/6705.6);
end

beta = cfric*rho;
Tacc = T/Vt;

% Compute the Derivatives
dPx = U;
dPy = V
dPz = W

% Azimuth and Elevation Rollover
dU = -waz*V + wel*W*cos(az) - beta*U + Tacc*U;
dV = waz*U + wel*W*sin(az) - beta*V + Tacc*V;
dW = -wel*Vxy - g - beta*W + Tacc*W;

xdot [dPx
dU
0

dPy
dV
0

dPz
dW
0

137

C. MATLAB® CODE FOR PLOTTING MISSILE SIMULATION

The following is the MATLAB® program used to plot the output of the

SIMULINK™ model, FlatEPtMissileSim.m

% FlatEPtPlotsS.m
Q.
O

% This file plots the results of the SIMULINK missile simulation
%************************* + ** + ********it**** + + + + + ** + * + + + + + + + + + + + + itiijritiririr

% Define Variables
t = missilevec(:,1)
x = missilevec(:,2)
vx = missilevec (.:, 3)
ax = missilevec(:,4)
y = missilevec(:,5)
vy = missilevec(:,6)
ay = missilevec(:,7)
z = missilevec(:,8)
vz = missilevec(:,9)
az = missilevec(:,10);

x_km = x/1000
y_km = y/1000
z_km = z/1000

sxy = vx.A2 + vy.A2;
speed = sqrt(sxy + vz.A2);
sxy = sqrt(sxy);
dist = sqrt(x.A2 + y.A2);
az = atan2(vy,vx)*180/pi;
el = atan2(vz,sxy)*180/pi;
xaccel = ax/9.
yaccel = ay/9.8,
zaccel = az/9.8,
total_accel = sqrt(xaccel.A2 + yaccel.A2 + zaccel.A2);

% Plot Data
%****************±*****±********** + ****±***± + + + + + * + * + + + + + + + + icir + + ^^ + ^^

fiqure(1)
plot(x_km,z_km,'r-');
axis('equal') , grid;
xlabelCX (km) ') , ylabel (' Z (km)1);
title('Missile Z vs. X Plot');

% print -deps ch2fg2a

figure(2)
plot(x_km,y km,'r-');

138

axis('equal');
xlabeK'X (km)'), ylabel('Y (km)'), grid;
title('Missile Y vs. X Plot');

% print -deps ch2fg2b

figure(3)
plot(t,(dist/1000),'r-');
ylabel('Down Range Dist (km)1), xlabel('Time (seconds)'), grid;
title('Down Range Distance vs Time');

% print -deps ch2fg2c

figure(4)
plot(t,z_km,'r-');
axis('equal');
ylabel('Missile Altitide (km)'), xlabel("Time (seconds)'), grid;
title('Missile Altitude vs Time (kilometers)1);

% print -deps ch2fg2d

figure(5)
plot(t,speed,'r-');
ylabel('Missile Speed (m/s)'), xlabel('Time (seconds)'), grid;
title('Missile Speed vs Time');

% print -deps ch2fg2e

figure(6)
plot(t,az,'r-');
title('Missile Azimuth Heading vs Time');

% print -deps ch2fg2f

figure(7)
plot(t,el,'r-');
title('Missile Elevation Angle vs Time');
%print -deps ch2fg2g

figure(8)
plot(dist,z,'r-');
axis('equal');
title('Down Range Distance vs Height');
%print -deps ch2fg2h

figure(9)
plot3(x,y,z,'r-') ;
axis('equal') ;
ylabel('Y (m)'), xlabel('X (m)'), zlabel('Z (m)'), grid;
title('Three Dimensional Missile Trajectory in meters');

% print -deps ch2fg2i

figure(10)
plot3(x_km,y_km,z_km,'r-') ;
axis('equal');
ylabeK'Y (km)'), xlabel ('X (km)'), zlabel ('Z (km)'), grid;
title('Three Dimensional Missile Trajectory in kilometers');

% print -deps ch2fg2j

139

figure (11)
plot3(x(1:1200),y(l:1200),z(1:1200), 'r-');
axis('equal');
ylabelCY (m) ') , xlabel('X (m) ') , zlabel (' Z (m) ') , grid;
title('Missile Trajectory - Initial 120 Seconds in meters');

% print -deps ch2fg2k

figure (12)
plot3(x_km(l:1200),y_km(1:1200) , z_km (1:1200) ,'r-');
axis('equal');
ylabel('Y (km)'), xlabel('X (km)'), zlabel('Z (km)'), grid;
title (' Missile Trajectory - Initial 120 Seconds in kilometers'

% print -deps ch2fg21

figure(13)
plot(t,xaccel,'r-');
ylabel('gs'), xlabel('Time (seconds)'), grid;
title('Missile Acceleration in X vs Time');

% print -deps ch2fg2m

figure (14)
plot(t,yaccel,'r-');
ylabel('gs'), xlabel('Time (seconds)'), grid;
title('Missile Acceleration in Y vs Time');

% print -deps ch2fg2n

figure(15)
plot(t,zaccel,'r-');
ylabel('gs'), xlabel('Time (seconds)'), grid;
title('Missile Acceleration in Z vs Time');
%print -deps ch2fg2o

figure(16)
plot(t,total_accel,'r-');
ylabeK'gs*), xlabel ('Time (seconds)'), grid;
title('Missile Acceleration vs Time');
%print -deps ch2fg2p

140

APPENDIX B. SOURCE CODE FOR EXTENDED KALMAN

FILTER TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory.

% efk.m
% LT Tony San Jose
% Thesis Advisor: R. G. Hutchins
% 03FEB98
Q.
O

% This program uses an EKF to filter the sensor measurement noise
% from the ballistic missile base trajectory developed using
% SIMULINK Random noise is added in the sensor
% measurement process. Actual missile track is generated in
% FlatEarthMissle SIMULINK model.

% INPUT
% missilevec: state vector = [x,Vx,Ax,y,Vy,Ay,z,Vz,Az]'

% OUTPUT
% mean_K_track Kaiman estimated positions
% + + *** + ****************** + ****************** + ■), + + + + + + + + + ******** + + + + + +.+

% Load simulation workspace
clear all
load datl;
missilevec = missilevec';

% Define the number of simulation loops
nloops =10;

% Define the sampling interval
delta = .1;

% Define the number of samples
nsamples = 1200;

% Initialize sensor data
Sensor_posit =[100 * 1000;

100 * 1000;
0 * 1000];

% sensor is 100 km in x
% sensor is 100 km in y
% sensor is 100 km in z

sigma_r = 10;
sigma_b = l*pi/180;
sigma_e = l*pi/180;

R diag([sigma_rA2,

% 10 meters std dev in range
% 1 degree std dev in azimuth
% 1 degree std dev in elevation

% covariance matrix for uncorrelated

141

sigma_bA2, % range and bearing measurements
sigma_eA2]);

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+l) = F(k)*x(k) + G

f_sub = [1, delta, (deltaA2)/2;
0, 1, delta;
0, 0, 1];

F = [f_sub, zeros(3), zeros(3);
zeros(3), f_sub, zeros(3);
zeros(3), zeros(3), f_sub];

% Define G matrix
G = -g * [0;

0;
0;
0;
0;
0;
(deltaA2)/2;
delta;
0];

% Define the H matrix (MEASUREMENT MATRIX) , assuming that the
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k)

H = [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0];

% Initialize Q, the covariance of the plant noise
% qA2 = scale factor to system noise covariance matrix Q,
% used to account for unmodeled target maneuver acceleration.

q_sqr = 10;

Q_sub = [(deltaA5)/20, (deltaA4)/8, (deltaA3)/6;
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2;
(deltaA3)/6, (deltaA2)/2, delta];

Q = q_sqr * [Q_sub, zeros(3), zeros(3);
zeros(3), Q_sub, zeros(3);
zeros(3), zeros(3), Q sub];

a*********** End of Initialization outside loops ***************

%************************* + ******->c**-k-k.k*.k± + ±* + + + 1, + ±±i, + * + + + + + + + + +

% Loop over the target motion/measurement simulation
%*************+**********************+++****+**+++++++++++++++++

for kk = 1: nloops
tic
kk

142

% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kaiman estimated trajectory
K_track = [];
K_accel = [];

% error between Kaiman track and actual track
track_error = [];

%***

% This block is used for the initialization process. Initialize
% from a SWAG.
%***

x_swag = missilevec(2:10,1);
x_swag(9) = 6*g;
p_swag = eye(9) * 10A4;

x_corr = x_swag;
P_corr = p_swag;

%***

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor
%***

for ii = 2:nsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

%****.***

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement
% from the sensor.
%***

% position relative to the sensor
zrel = ztrue - Sensor_posit;

% range from sensor
r = sqrt(zreld) A2 + zrel (2) "2 + zrel(3)A2);

% bearing from sensor
b = atan2(zrel(2), zrel(l));

% range in x/y plane
r_prime = sqrt(zrel(1)A2 + zrel(2)A2);

143

% elevation from sensor
e = atan2(zrel(3) , r_prime);

% add noise to the measurement
r_n = r + sigma_r * randn;
b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

b_n;
e_n] ;

% measurement in cartesian coordinates + noise
z_cart_true_n = [r_prime*cos(b_n);

r_prime*sin(b_n);
r_n*sin(e_n)] + Sensor_posit;

z_cart_rel_n = [r_prime*cos(b_n);
r_prime*sin(b_n);

r_n*sin(e_n)];

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff*zdiff);

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurements)
error_true = [error_true, disterror];

% Prediction

% Kaiman Filter prediction equations
' xjpredlct = F * x_corr + G;
P_predict = F * P_corr * F' + Q;

%****************************** + * + + * + ^ + + + + + + Jr:A.J. + vl. + ^^ + <.vlr +
% Correction
%****************************** + * + * + ** + * + + + + Jr:A. + + + + + + + + + <.

% Convert to relative position to compute RBE coordinates
x_l = x_predict(l) - Sensor_posit(1);
x_4 = x_predict(4) - Sensor_posit(2);
x_7 = x_predict(7) - Sensor_posit(3);

% Convert prediction to Range, Bearing, Elevation
coordinates

r_hat = sqrt(x_lA2 + x_4A2 + x_7A2);
b_hat = atan2(x 4, x 1);

144

e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2));

% Determine expected measurement
z_polar_hat = [r_hat;

b_hat;
e_hat];

% Observed minus expected measurements
z_tilde = z_polar_n - z_polar_hat;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_lA2 + x_4A2);
Hk_r2c4 = x_l/(x_lA2 + x_4A2);

Hk_r3cl = (-x_l*x_7)/((sqrt(x_lA2 + x_4A2))*(x 1A2 + x 4A2 + x 7A2))•
Hk_r3c4 = (-x_4*x_7)/((sqrt(x_lA2 + x_4A2))*(x 1A2 + x~4A2 + x~7A2))'•
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2)J

% Determine H matrix

Hk = [x_l/r_hat, 0, 0, x_4/r_hat, 0, 0, x_7/r hat, 0, 0;
Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0-
Hk_r3cl, 0,0, Hk_r3c4, 0, 0, Hk_r3c7, o' 0];

% Compute Kaiman Gain
K = P_predict * Hk' * inv(Hk * P_predict * Hk' + R) ;

% Correction equations
x_corr = x_predict + K * z_tilde;
P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)■

+ K*R*K';

% Kaiman track positions and difference between Kaiman
% and actual track position and actual target position

zout_K_track = H*x_corr;

track_diff = ztrue - zout_K_track;
track_error = [track_error, sqrt(track_diff'*

track_diff)]; ~

% Update KF track trajectory array
K_track = [K_track, zout_K_track];

% Estimated accelerations
accel_out = [x_corr(3,:);

x_corr(6,:);
x_corr(9,:)];

% Update KF acceleration array
K_accel = [K_accel, accel_out];

end; % for ii = 2:nsamples

if kk == 1, % create first output

%***iti###Jtit + ##vlr#A + + #A#

145

zoutmean_true = zout_true_n;
mean_K_track = K_track;
merror_track = track_error;
merror = error_true;

else % create output after 1st run

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track = mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else
toe
end; % for kk = lrnloops

o

% Compute Means
a*** o

zoutmean_true = zoutmean_true/nloops;
mean_K_track = mean_K_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

o

% Plot results
o

figure(1)
measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile track = missilevec(:,1:nsamples)/1000; % convert to km

plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:)'g-', ...
Sensor_posit (1) /1000, Sensor_posit (2) /1000,...
Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory - 120 seconds');
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid;
%print -deps c3plsl

figure(2)
plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:),g-',...

measurement(1,:), measurement(2,:), measurement(3,:),'r-',...
Sensor_posit(1)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000,
'rx');

axis([0,150,0,150,0,150]);

146

title('Ballistic Missile Base Trajectory with Measurement Noise - 120
seconds');

xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km) ') , grid;
%print -deps c3pls2

figure(3)
plot3 (missile_track(2, l:nsamples) ,missile_track (5, lrnsamples),...

missile_track(8,1:nsamples),'g-',...
Kalman_track(1,:), Kalman_track(2,:), Kalman_track(3,:),'r-',...
Sensor_posit(1)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000,
■rx');

axis([0,150,0,150,0,150]);
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid;
title('Ballistic Missile Base Trajectory and EKF Trajectory - 120

seconds');
%print -deps c3pls3

figure(4)
start_pt = 1;
stop_pt = 801;
zoom_missile = [(start_pt + 1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile), missile_track(5,zoom_missile),

missile_track(8,zoom_missile),'g-',...
Kalman_track(l,zoom_Kalman), Kalman_track{2,zoom_Kalman) ,
Kalman_track(3,zoom_Kalman),'r-') ;

axis ([30, 60, 30, 60, 0, 60]) ;
xlabeK'X (km)'), ylabelf'Y (km)'), zlabel ('Z (km)'),grid;
title(['ZOOM - EKF Trajectory Initial ',num2str((stop_pt -

start_pt)/10),' Seconds']);
%print -deps c3pls4

figure(5)
time = missilevec(1,:);
diff_k_base = [Kalman_track(1, :) - missile_track(2,2:1200) ;

Kalman_track(2, :) - missile_track(5,2:1200);
Kalman_track(3,:) - missile_track(8,2:1200)];

plot(time(2:nsamples), merror, 'g-',...
time(2:nsamples), 1000*sqrt(diff_k_base(1, :).A2 +
diff_k_base(2,:).A2 + diff_k_base(3,:)."2),'r-');

xlabeK'Time (seconds)'), ylabel ('Error (meters)'), grid;
title('EKF Distance Error vs. Time');
legend('Mean Distance Error','EKF Distance Error');
%print -deps c3pls5

147

148

APPENDIX C. SOURCE CODE FOR ALPHA-BETA-GAMMA

TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory.

% abg.m
% LT Tony San Jose
% Thesis Advisor: R.G Hutchins
% 03FEB98
o
■o *

% This program uses an Alpha-Beta-Gamma tracker to filter the sensor
% measurement noise from the ballistic missile base trajectory
% developed using SIMULINK. Random noise is added to the measurement
% process. Actual missile track is generated in FlatEarthMissile
% SIMULINK model.
Q.
O

% delta =0.1 sec
% nloops = 100
% alpha =0.6

% Load base trajectory simulation workspace
clear all
load datl; % base trajectory developed in SIMULINK model
missilevec = missilevec';

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta = .1;

% Define the number of samples
[num__rows,num_cols] = size (missilevec) ;
nsamples = 1200;

% Initialize sensor data
Sensor_posit =[100 * 1000; % sensor is 100 km'in x

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 100 km in z

sigma_r =10; % 10 meters std dev in range
sigma_b = l*pi/180; % 1 degree std dev in azimuth
sigma_e = l*pi/180; % 1 degree std dev in elevation

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+l) = F(k)*x(k) + G

149

f_sub = [1, delta, (deltaA2)/2;
0, 1, delta;
0, 0, 1];

F = [f_sub,
zeros(3),

zeros(3), zeros(3);
f sub, zeros(3);

zeros(3), zeros(3), f_sub] ;

% Define G matrix
G = -g * [0;

0,
0j

0;
0;
0;
(deltaA2)/2;
delta; ■
0];

% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k)

H = [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0];

% Define alpha, beta, gamma tracker parameters

alpha = 0.6;
beta = 2*(2-alpha) - 4*sqrt(1-alpha);
gamma = (betaA2)/(2*alpha);
nu = 1;

K_abg = [alpha, 0, 0
beta/(nu*delta), 0, 0
gamma/((nu*delta)A2),0, 0
0, alpha, 0
°/ beta/(nu*delta) , 0
°' gamma/((nu*delta)A2),0;
°' 0, alpha;
°' 0, beta/(nu*delta);
°' 0, gamma/((nu*delta)A2)];

% Define initialization parameters

d sub = [[1, 0, 0,
3/(2*delta),0,
l/(deltaA2),0,

0, 0, 0, 0;
0, -2/delta, 0, 0, l/(2*delta);
0, -2/(deltaA2),0, 0, l/deltaA2];

D = [d_sub, zeros(3,2);
zeros(3,1), d_sub, zeros (3,1);
zeros (3, 2) , d sub] ;

150

%*********** End of initialization outside loops ***************

% Loop over the target motion/measurement simulation

for kk = 1: nloops
tic
kk

% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [] ;

% distance error between measurement and true position
error_true = [];

% Kaiman estimated trajectory
ABG_track = [];

% error between Kaiman track and actual track
track_error = [];

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor

for ii = linsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement
% from the sensor.

% position relative to the sensor
zrel = ztrue - Sensor_posit;

r = sqrt(zrel(l)A2 + zrel(2)A2 + zrel(3)A2);
% range from sensor

D
b = atan2(zrel(2), zrel(l));

% bearing from sensor
D

151

r_prime = sqrt(zrel(1)A2 + zrel(2)A2);
% range in x/y plane

D
e = atan2(zrel(3), r_prime) ;

% elevation from sensor

% add noise to the measurement
r_n = r + sigma_r * randn;
b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

b_n;
e_n] ;

% measurement in cartesian coordinates + noise
z_cart_true_n = [r_prime*cos(b_n);

r_prime*sin(b_n);
r_n*sin(e_n)] + Sensor_posit;

z_cart_rel_n = [r_prime*cos(b_n);
r_prime*sin(b_n);

r_n*sin(e_n)];

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

.% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurement & true
measurement w/noise)
error_true = [error_true, disterror];'

if ii > 2 % For intialization from the first 3 measurements

% Prediction
********************************** + + *^ + + + + + + + + + J. + + + ^ +

% Initialization using the first 3 measurements
if ii == 3

x_corr = D * [zout_true_n(:,3);
zout_true_n(:,2);
zout_true_n(:,1)];

end; %if ii==3

% ABG Filter prediction equations
x_predict = F * x corr + G;

152

% Correction
%***********************************^^^^^^

% Convert to relative position to compute RBE
coordinates

x_l = x_predict(l) - Sensor_posit (1)
x_4 = x_predict(4) - Sensor_posit(2)

■x_7 = x_predict(7) - Sensor_posit(3)

% Convert prediction to Range, Bearing, Elevation
coordinates

r_hat = sqrt(x_lA2 + x_4A2 + x 7A2);
b_hat = atan2(x_4, x_l);
e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2));

% Determine expected measurement
z_cart_exp_rel = [r_hat*cos(b_hat)*cos(e_hat);

r_hat*cos(e_hat)*sin(b_hat);
r_hat*sin(e_hat)];

z_cart_exp_true = z_cart_exp_rel + Sensor_posit;

% Observed minus expected measurements
z_tilde_c = z_cart_rel_n - z_cart_exp_rel;

% Correction equations
x_corr = x_predict + K_abg * z_tilde_c;

% Alpha-Beta-Gamma track positions and difference
between ABG and

% actual track position and actual target position
zout_ABG_track = H * x corr;

track_diff = ztrue - zout_ABG_track;
track_error = [track_error,
sqrt(track_diff'*track_diff)];

% Update ABG track trajectory array
ABG_track = [ABG_track, zout_ABG_track];

end; % if ü>2

end; % for ii = lrnsamples

%**********

if kk == 1, % create first output

zoutmean_true = zout true n;
mean_ABG_track = ABG~track;'

153

merror_track = track_error;
merror = error_true;

else % create output after 1st run

zoutmean_true = zoutmean_true + zout_true_n;
mean_ABG_track = mean_ABG_track + ABG_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else
toe
end; % for kk = l:nloops

o

% Compute Means
o

zoutmean_true = zoutmean_true/nloops;
mean_ABG_track = mean_ABG_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

o

^ PI o1~ rssults
l±***
o

figure(1)
measurement = zoutmean_true/1000; % convert to km
ABG = mean_ABG_track/1000; % convert to km
missile_track = missilevec(:,l:nsamples)/1000; % convert to km

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),*g-
t

Sensor_posit(l)/1000, Sensor_posit(2)/1000,
Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory - 120 seconds');
xlabeK'X (km)*), ylabeK'Y (km)'), zlabeK'Z (km)'),grid;
print -deps c4flc

figure(2)
plot3(missile_track(2,:),missile_track(5,:) ,missile_track(8,:),'g-',...

measurement(1,:), measurement(2,:), measurement(3,:),'r-', . . .
Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

axis([0,150,0,150, 0,150]) ;
title('Ballistic Missile Base Trajectory with Measurement Noise - 120

seconds');
xlabeK'X (km)'), ylabeK'Y (km)'), zlabeK'Z (km) ') , grid;

154

_ I

print -deps c4f2c

figure(3)
plot3(missile_track(2,:),missile_track(5,:),missile_track(8,:),'g
ABG(l,l:nsamples-2), ABG(2,1:nsamples-2), ABG(3,l:nsamples-2),'r
Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km) ') , grid;
title('Ballistic Missile Base Trajectory and ABG Trajectory - 120

seconds');
print -deps c4f3c

figure(4)
start_pt = 1;
stop_pt = 401;
zoom_missile = [(start_pt + 1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile), missile_track(5,zoom_missile),

missile_track(8,zoom_missile) , 'g-', . . .
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3,zoom_Kalman),'r-');

axis([30,60,30,60,0,60]);
xlabeK'X (km)'), ylabel('Y (km)'), zlabel ('Z (km)'),grid;
title(['ZOOM - ABG Trajectory Initial ',num2str((stop_pt -
start_pt)/10) , ' Seconds']);
print -deps c4f4c

figure(5)
start_pt = 1;
stop_pt = 601;
zoom_missile = [(start_pt + 1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile) , missile_track(5,zoom_missile),
missile_track(8,zoom_missile) , 'g-', .. .
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3, zoom_Kalman), 'r-');

axis([30,60,30,60,0,60]);
xlabeK'X (km)'), ylabeK'Y (km)'), zlabel(' Z (km)'),grid;
title(['ZOOM - ABG Trajectory Initial ',num2str((stop_pt -
start_pt)/10),' Seconds']);
print -deps c4f5c

figure(6)
start_pt = 1;
stop_pt = 801;
zoom_missile = [(start_pt + 1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile) , missile_track(5,zoom_missile),
missile_track(8,zoom_missile) , 'g-', . . .
ABG(1,zoom_Kalman), ABG(2,zoom_Kalman), ABG(3,zoom_Kalman),'r-');

axis([30,60,30,60,0,60]);
xlabeK'X (km)'), ylabeK'Y (km)'), zlabel(' Z (km)*),grid;

155

title(['ZOOM - ABG Trajectory Initial ',num2str((stop pt -
start_pt)/10),' Seconds']);
print -deps c4f6c

figure(7)
time = missilevec(1,:);
diff_ABG_base = [ABG(1,:) - missile_track(2,3:nsamples);

ABG(2,:) - missile_track(5,3:nsamples);
ABG(3,:) - missile_track(8,3:nsamples)];

plot(time(l:nsamples), merror, 'g-',...
time(3:nsamples), 1000*sqrt(diff_ABG_base(1, :) . A2 +
diff_ABG_base(2, :) .A2 + diff_ABG_base(3, :) .A2), 'r-');

xlabelCTime (seconds)'), ylabel ('Error (meters)'), grid;
title('ABG Distance Error vs. Time');
%axis([2 ,120, 0, 3000]);
legendCMean Distance Error','ABG Distance Error');
print -deps c4f7c

figure(8)

plot(time(lrnsamples),merror,'g-',time(3:nsamples) ,merror_track,'r-');
xlabelCTime (seconds)'), ylabel ('Mean Error (meters)'), grid, title ('Mean
Distance Error in Measurements vs Time');% (', num2str(nloops),' runs,
',num2str(nsamples),' data points)']),grid;
print -deps c4f8c

156

APPENDIX D. SOURCE CODE FOR INTERACTING

MULTIPLE MODEL TRACKING ALGORITHM

The following is the MATLAB® program used in the tracking of the ballistic

missile base trajectory.

%***,

% imm.m
% LT Tony San Jose
% Thesis Advisor: R.G Hutchins
% 03FEB98
o,
o

% This program generates a Kaiman filter missile track using IMM with
D
% 2 models: an accelerating model and a ballistic model.
D
% The filter is initialized is from the missile launch position.
% Random noise is added in the sensor measurement process.
% Actual missile track is generated in FlatEarthMissle SIMULINK model.
o
o

%*********** **

% Load simulation workspace
clear all
load datl;
missilevec = missilevec' ;

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta =.1;.

% Define the number of samples
[num_rows,num_cols] = size(missilevec);
nsamples = 1,200;

% Define q^2
q_sqr =10;

% Initialize sensor data
Sensor_posit =[100 * 1000; % sensor is 100 km in x

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 0 km in z

sigma_r =10; % 10 meters std dev in range
sigma_b = l*pi/180; % 1 degree std dev in azimuth
sigma_e = l*pi/180; % 1 degree std dev in elevation

157

R = diag([sigma_rA2, % covariance matrix for
uncorrelated

sigma_bA2, % range and bearing measurements
sigma_eA2]);

% Define the H matrix (MEASUREMENT MATRIX) for the accelerating
% model

H = [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0];

% ACCELERATING MODEL

% Define G matrix
G_accel = -g * [0;

0;
0;
0;
0;
0;
(deltaA2)/2;
delta;
0];

% Initialize Q, the covariance of the plant noise

Q_sub_a = [(deltaA5)/20, (deltaA4)/8, (deltaA3)/6;
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2;
(deltaA3)/6, (deltaA2)/2, delta];

Q_accel = q_sqr * [Q_sub_a, zeros(3), zeros(3);
zeros(3), Q_sub_a, zeros(3);
zeros(3), zeros(3), Q_sub_a];

% Define F matrix (TRANSITION MATRIX) for discrete time
% accelerating model.

f_sub_a = [1, delta, (deltaA2)/2;
0, 1, delta;
0, 0, 1];

F_accel = [f_sub_a, zeros(3), zeros(3);
zeros(3), f_sub_a, zeros(3);
zeros(3), zeros(3), f_sub_a];

% BALLISTIC MODEL

% Define G matrix
G_ball = -g * [0;

0
0

158

0;
0;
0;
(deltaA2)/2;
delta;
0];

% Detemine Q for the Ballistic model

Q_sub_b = [(deltaA3)/3, (deltaA2)/2, 0;
(deltaA2)/2, delta, 0;

0, 0, 0];

Q_ball = q_sqr * [Q_sub_b, zeros (3), zeros(3);
zeros(3), Q_sub_b, zeros(3);
zeros(3), zeros(3), Q_sub_b];

% Define F matrix (TRANSITION MATRIX) for discrete time
% ballistic model.

f_sub_b = [1, delta, 0;
0, 1, 0;
0,0, 0];

F_ball = [f_sub_b, zeros(3), zeros(3);
zeros(3), f_sub_b, zeros (3);
zeros(3), zeros(3), f sub b];

g.*********** End of Initialization outside loops ***************

% Loop over the target motion/measurement simulation

for kk = 1: nloops

tic
kk

% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kaiman estimated trajectory
K_track = [];
K_accel = [];

% error between Kaiman track and actual track
track_error = [];

% This block is used for the initialization process. Initialize
% from launch position.

159

x_corr_accel = missilevec(2:10,1);
P_corr_accel = eye(9) * 10A4;

x__corr_ball = missilevec(2:10,1);
P_corr_ball = eye(9) * 10A4;

% Initial likelihoods for states.
mu_init = [1;

0];

mu = mu_init
mu_l = mu(1)
mu 2 = mu(2)

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor
%******************** + ********* + + * + + + + + + JtJr + + + + Jt^^.^ + il.^ + + + + + vtVrii +

for ii = 2:nsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

D

D

D

% convert current position to polar.coordinates and add

% sensor noise to the position, generating a noisy measurement
% from the sensor.
%*********************±**-k-k±* + *-k-k* + + .k.tc** + ie*i,* + i< + + irir + ir + + ie + jcir + + +

% position relative to the sensor
zrel = ztrue - Sensor_posit;

r = sqrt(zrel(1)~2 + zrel(2)A2 + zrel(3)A2); % range
from sensor

b = atan2(zrel(2) , zrel(l));

r_prime = sqrt(zrel(1)A2 + zrel(2)A2);

e = atan2(zrel(3) , r_prime);

% add noise to the measurement

% bearing
from sensor

% range in
x/y plane

% elevation
from sensor

160

D

a

a

D

G

r_n = r + sigma_r * randn;
b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

b_n;
e_n] ;

% measurement in cartesian coordinates + noise
z_cart_rel_n = [r_prime*cos(b_n);

r_prime*sin(b_n);
r_n*sin(e_n)];

z_cart_true_n = z_cart_rel_n + Sensor_posit;

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurements)
error_true = [error_true, disterror];

% Prediction
%**************************************■*•■*■******* + *■*.**** * + *

% Probabilities of changing state, Markov chain
transition

pl = 1;

p2 = 0.5;

alt = 50e3;

h = z cart true n(3);

prob_accel = -p2*(1/(1+exp(-.0005*(h-alt))) - (1+pl));'
prob_ball = 1 - prob_accel;

rho = [prob_accel, prob_ball;
0, 1];

% Accelerating Model
cbar = rho' * mu;

if cbar(l) < 10A(-8) % prevents cbar_l from
blowing up

161

cbar 1 = 10A(-8);
D

else
cbar_l = cbar(1);

end;

cbar_2 = cbar(2) ;

rho_ll = rho(l,l)
rho_21 = rho(2,l)
rho_12 = rho(l,2)
rho_22 = rho(2,2)

x_hat_01 = x_corr_accel * ((rho_l1*mu_l) /cbar_l) +
x_corr_ball * ((rho_21*mu_2)/cbar_l);

xtilde_ll = x_corr_accel - x_hat_01;
xtilde_21 = x_corr_ball - x_hat_01;

mu_ll = rho_ll * mu_l / cbar_l;
mu_21 = rho_21 * mu_2 / cbar_l;

P_hat_01 = mu_ll * (P_corr accel +
xtilde_ll*xtilde_ll') + ..

mu_21 * (P_corr ball +
xtilde 21*xtilde 21');

model

Q accel;

% Kaiman Filter Prediction Equations for Accelerating

x_predict_accel = F_accel * x_hat_01 + G_accel;
P_predict_accel = F_accel * P_hat_01 * F accel' +

% Ballistic Model
x_hat_02 = x_corr_accel * ((rho_12*mu_l)/cbar_2) + ...

x_corr_ball * ((rho_22*mu_2)/cbar_2);

xtilde_12 = x_corr_accel - x_hat_02;
xtilde_22 = x_corr_ball - x_hat_02;

mu_12 = rho_12 * mu_l / cbar_2;
mu_22 = rho_22 * mu_2 / cbar_2;

P_hat_02 = mu_12*(P_corr_accel + xtilde_12*xtilde 12')

mu_22*(P_corr_ball + xtilde_22*xtilde_22');

% Kaiman Filter Prediction Equations for Ballistic model
x_predict_ball = F_ball * x_hat_02 + G_ball;
P_predict_ball = F_ball * P_hat_02 * F_ball' + Q ball;

% Correction

162

% Accelerating Model
% Convert to relative position to compute polar

coordinates
x_l = x_predict_accel(1) - Sensor_posit(1);
x_4 = x_predict_accel(4) - Sensor_posit(2);
x_7 = x_predict_accel(7) - Sensor_posit(3);

% Convert prediction to polar coordinates
r_hat_a = sqrt(x_lA2 + x_4A2 + x_7A2);

b_hat_a = atan2(x_4, x_l);
e_hat_a = atan2(x_7, sqrt(x_lA2 + x_4A2));

% Determine expected measurement
z_polar_hat_a = [r_hat_a;

b_hat_a;
e_hat_a];

% Observed minus expected measurements
z_tilde_a = z_polar_n - z_polar hat a;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_lA2 + x_4A2);
Hk_r2c4 = x_l/(x_lA2 + x_4A2);
Hk_r3cl = (-x_l*x_7)/((sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2));
Hk_r3c4 = (-x_4*x_7)/((sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2));
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2);

% Determine H matrix
Hk_a = [x_l/r_hat_a, 0, 0, x_4/r_hat_a, 0, 0, x_7/r_hat_a, 0, 0

Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0,0]

% Compute Kaiman Gain
K_accel = P_predict_accel * Hk_a'*inv(Hk_a*P_predict_accel * Hk_a' + R);

% Kaiman Filter Correction equations for Acclerating Model
x_corr_accel = x_predict_accel + K_accel * z_tilde_a;
P_corr_accel = (eye(9) - K_accel*Hk_a)* P_predict_accel;

% Ballistic Model
% Convert to relative position to compute polar

D

D

D

coordinates

x_l = x_predict_ball(1) - Sensor_posit(1);

x_3 = x_predict_ball(4) - Sensor_posit(2);

x_5 = x_predict_ball(7) - Sensor_posit(3);

% Convert prediction to polar coordinates
r_hat_b = sqrt(x_lA2 + x_3A2 + x_5A2);
b_hat_b = atan2(x_3, x_l);
e_hat_b = atan2(x_5, sqrt(x 1A2 + x 3A2));

163

% Determine expected measurement
z_polar_hat_b = [r_hat_b;

b_hat_b;
e_hat_b];

% Observed minus expected measurements
z_tilde_b = z_polar_n - z_polar_hat_b;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_3/(x_lA2 + x_3A2);
Hk_r2c4 = x_l/(x_lA2 + x_3A2);
Hk_r3cl = (-x_l*x_5)/((sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2));
Hk_r3c4 = (-x_3*x_5)/((sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x 5A2));
Hk_r3c7 = (sqrt(x_lA2 + x_3A2))/(x_lA2 + x_3A2 + x_5A2);

% Determine H matrix
Hk_b = [x_l/r_hat_b, 0, 0, x_3/r_hat_b, 0, 0, x_5/r_hat_b, 0, 0

Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0,0]

% Compute Kaiman Gain
K_ball = P_predict_ball * Hk_b'*inv(Hk_b*P_predict_ball* Hk_b' + R);

% Kaiman Filter Correction equations for the Ballistic Model
x_corr_ball = x_predict_ball + K_ball * z_tilde_b;
P_corr_ball = (eye(9) - K_ball*Hk_b)* P_predict_ball;

% + ******** + *********■*:******* + ******** + * + + + + + + *** + + + + + + + + + + +

% Update mode probabilities
%******************** + ******-k-k-k*±±* + ± + + ± + + ± + :k± + *± + + + + + it + + ^ +

m = 3;

S_l = Hk_a * P_predict_accel * Hk_a' + R;
lambda_l = (exp(-(z_tilde_a)'*inv(S_l)*z_tilde_a/2

))/(sqrt((2*pi)Am*det(Sjl)));

S_2 = Hk_b * P_predict_ball * Hk_b' + R;
lambda_2 = (exp(-(z_tilde_b)'*inv(S_2)*z_tilde_b/2)) /

(sqrt((2*pi)Am * det(S_2)));

c = lambda_l * cbar_l + lambda_2 * cbar_2;

mu_l = lambda_l * cbar_l/c;
mu_2 = lambda_2 * cbar_2/c;

mu = [mu_l;
mu_2];

%********* + ********-k**-k* + + *******±*±±*± + + + + + + + ± + + + ie + + i, + + + + +

% Produce Combined Estimates

x_corr = mu_l * x_corr_accel + mu_2 * x_corr_ball;
P_corr = mu_l*(P_corr_accel+(x_corr accel-

164

x_corr)*(x_corr_accel-x_corr)')+...
mu_2*(P_corr_ball +(x_corr_ball-

x_corr)*(x_corr_ball- x_corr)');

% Kaiman track positions and difference between Kaiman
% and actual track position and actual target position

zout_K_track = H*x_corr;

track_diff = ztrue - zout_K_track;
track_error = [track_error,

sqrt(track_diff'*track_diff)];

% Update KF track trajectory array
K_track = [K_track, zout K track];

end; % for ii = 2:20:nsamples

if kk == 1, % create first output

zoutmean_true = zout_true_n;
mean_K_track = K track;
merror_track = track_error; .
merror = error_true;

else % create output after 1st run

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track = mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else

toe

end; % for kk = l:nloops

% Compute Means

zoutmean_true = zoutmean_true/nloops;
mean_K_track = mean_K_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

165

% Plot results
%*****************±**** + **±*±±*-k**** + + + ±±*± + * + ***i:ir + + ir + ±ttirir^^

figure(1)

measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile_track = missilevec(:,1:nsamples)/1000; % convert to km

plot3(missile_track(2,:),missile_track(5,:), missile_track(8,:),...

Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory - 120 seconds');
xlabeK'x - km'), ylabel('y -km'), zlabel (' z - km'),grid;

print -deps ch5fla

figure(2)

plot3(missile_track(2, :) ,missile_track (5, :), mis.sile_track(8, :),...
measurement(1,:),measurement(2,:),measurement(3,:),...

Sensor_posit(1)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000, 'rx');

axis([0,150,0,150,0,150]);
title('Ballistic Missile Base Trajectory with Measurement Noise - 120

seconds');
xlabelt'x -km'), ylabelfy - km'), zlabel ('z - km'),grid;

print -deps ch5f2a

figure(3)

plot3(missile_track(2, :),missile_track(5,:),missile_track(8, :), 'g-
r • • •

Kalman_track(1,:),Kalman_track(2,:),Kalman_track(3,:) , 'r-');

axis([0,150,0,150,0,150]);
xlabelCx - km'), ylabel('y - km'), zlabel ('z - km'), grid;
title('Ballistic Missile Base Trajectory and IMM Trajectory - 120

seconds');
print -deps ch5f3a

figure(4)
start_pt = 1;
stop_pt = 401;
zoom_missile = [(start_pt +1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile),missile_track(5, zoom missile),

missile_track(8,zoom_missile),'g-', . . . -

Kalman_track(1,zoom_Kalman) ,
Kalman_track(2, zoom_Kalman),Kalman_track(3,zoom Kaiman),* r-') ;

axis([30,60,30,60,0,60]);
xlabelfX (km)'), ylabel('Y (km)'), zlabel ('Z (km)'),grid;

166

title(['ZOOM - IMM Trajectory Initial ',num2str((stop_pt -
startjpt)/10),' Seconds']);
print -deps ch5f4a

figure (5)
start_pt = 1;
stop_pt = 601;
zoom_missile = [(start_pt +1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3 (missile_track(2,zoom_missile),missile_track(5,zoom_missile),

missile_track(8,zoom_missile),'g-',...
Kalman_track(l,zoom_Kalman) ,

Kalman_track(2, zoom_Kalman) ,Kalman_track(3, zoom_Kalman) , 'r-');
axis ([30, 60, 30, 60, 0, 60]) ;
xlabelfX (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid;
title(['ZOOM - IMM Trajectory Initial ',num2str((stop_pt -

start_pt)/10),' Seconds']);
print -deps ch5f5a

figure(6)
start_pt = 1;
stop_pt = 801;
zoom_missile = [(start_pt +1) : (stop_pt)];
zoom_Kalman = [start_pt : stop_pt-l];
plot3(missile_track(2,zoom_missile),missile_track(5,zoom_missile),

missile_track(8,zoom_missile),'g-',...
Kalman_track(1,zoom_Kalman) ,

Kalman_track (2, zoom_Kalman) , Kalman_track (3, zoom_Kalman) , ' r-') ;
axis([30, 60,30, 60,0,60]);
xlabelCX (km)'), ylabel('Y (km)'), zlabel ('Z (km)'),grid;
title(['ZOOM - IMM Trajectory Initial ',num2str((stop_pt -

start_pt)/10), ' Seconds']);
print -deps ch5f6a

figure(7)
time = missilevec(1,:);
diff_IMM_base = [Kalman_track(1,

Kalman_track(2,
Kaiman track(3,

) - missile_track(2,2:nsamples);
) - missile_track(5,2:nsamples);
) - missile_track(8,2:nsamples)];

plot(time(2:nsamples), merror, 'g-',...
time(2:nsamples), 1000*sqrt(diff_IMM_base(1, :) . A2 +

diff_IMM_base(2,:).~2 + diff_IMM_base(3, :).A2),'r-') ;

xlabel('Time (seconds)'), ylabel('Error (meters)'), grid;
title('IMM Distance Error vs. Time');
legend('Mean Distance Error','IMM Distance Error');
print -deps c5f7a

figure(8)
plot(time(2:nsamples), merror,'g-', time(2:nsamples), merror track,'r-

167

xlabel("Time (seconds)'),ylabel('Mean Error
(meters)'),grid,title('Mean Distance Error in Measurements vs Time');%
(', num2str(nloops),' runs, ',num2str(nsamples), ' data points)']) , grid;
print -deps c5f8a

save immlOO

168

APPENDIX E. TBM PROFILES

A. TBM PROFILE NUMBER 1

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 36.0 0.000 0.000 33 60.6 7.023 3.195

1 36.3 0.006 0.000 34 62.4 7.469 3.491

2 36.6 0.026 0.000 35 64.2 7.928 3.803

3 36.9 0.058 0.000 36 66.0 8.402 4.132

4 37.2 0.103 0.000 37 68.4 8.890 4.479

5 37.5 0.163 0.001 38 70.8 9.393 4.844

6 37.8 0.235 0.004 39 73.2 9.911 5.229

7 38.1 0.322 0.010 40 75.6 10.444 5.633

8 38.4 0.423 0.020 41 78.0 10.992 6.057

9 38.7 0.537 0.036 42 81.2 11.556 6.502

10 39.0 0.666 0.058 43 84.4 12.136 6.969

11 39.5 0.809 0.087 44 87.6 12.732 7.459

12 40.0 0.965 0.124 45 90.8 13.345 7.973

13 40.5 1.136 0.171 46 94.0 13.975 8.511

14 41.0 1.321 0.226 47 96.0 14.622 9.075

15 41.5 1.520 0.292 48 98.0 15.288 9.665

16 42.0 1.733 0.367 49 100.0 15.972 10.282

17 42.5 1.962 0.453 50 102.0 16.675 10.928

18 43.0 2.204 0.550 51 104.0 17.397 11.604

19 43.5 2.460 0.658 52 104.6 18.140 12.309

20 44.0 2.731 0.777 53 105.2 18.904 13.045

21 45.0 3.015 0.908 54 105.8 19.690 13.813

22 46.0 3.312 1.050 55 106.4 20.499 14.613

23 47.0 3.623 1.205 56 107.0 21.332 15.446

24 48.0 3.948 1.372 57 106.4 22.190 16.314

25 49.0 4.286 1.551 58 105.8 23.075 17.217

26 50.6 4.637 1.744 59 105.2 23.986 18.155
27 52.2 5.001 1.950 60 104.6 24.925 19.131
28 53.8 5.378 2.170 61 104.0 25.894 20.145
29 55.4 5.769 2.404 62 98.0 26.894 21.199
30 57.0 6.174 2.652 63 80.0 27.925 22.293
31 58.8 6.591 2.916 62.5 20.0 28.450 22.850

169

B. TBM PROFILE NUMBER 2

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 136.26 0.0000 0.0000 33 136.26 7.4687 3.4908
1 136.26 0.0064 0.0000 34 136.26 7.9283 3.8028
2 136.26 0.0256 0.0001 35 136.26 8.4021 4.1320
3 136.26 0.0579 0.0002 36 136.26 8.8904 4.4790
4 136.26 0.1035 0.0001 37 136.26 9.3933 4.8443
5 136.26 0.1626 0.0009 38 136.26 9.9111 5.2287
6 136.26 0.2355 0.0039 39 136.26 10.4440 5.6326
7 136.26 0.3222 0.0100 40 136.26 10.9922 6.0569
8 136.26 0.4228 0.0203 41 136.14 11.5560 6.5022
9 136.26 0.5374 0.0358 42 136.00 12.1358 6.9694
10 136.26 0.6661 0.0576 43 135.86 12.7319 7.4594
11 136.26 0.8087 0.0868 44 135.72 13.3448 7.9729
12 136.26 0.9653 0.1243 45 135.58 13.9748 8.5110
13 136.26 1.1359 0.1707 46 135.44 14.6224 9.0746
14 136.26 1.3207 0.2264 47 135.30 15.2879 9.6647
15 136.26 1.5199 0.2919 48 135.16 15.9718 10.2823
16 136.26 1.7335 0.3675 49 135.02 16.6746 10.9285
17 136.26 1.9615 0.4535 50 134.88 17.3969 11.6039
18 136.26 2.2038 0.5503 51 134.74 18.1396 12.3093
19 136.26 2.4602 0.6581 52 134.60 18.9036 13.054
20 136.26 2.7305 0.7771 53 134.46 19.6897 13.8131
21 136.26 3.0146 0.9078 54 134.32 20.4989 14.6132
22 136.26 3.3123 1.0502 55 134.18 21.3321 15.4465
23 136.26 3.6234 1.2047 56 133.43 22.1903 16.3140
24 136.26 3.9479 1.3717 57 130.50 23.0745 17.2166
25 136.26 4.2856 1.5513 58 127.00 23.9859 18.1553
26 136.26 4.6366 1.7439 59 121.00 24.9255 19.1312
27 136.26 5.0008 1.9499 60 111.00 25.8944 20.1453
28 136.26 5.3784 2.1697 61 86.00 26.8938 21.1987
29 136.26 5.7692 2.4037 62 65.00 27.9250 22.2926
30 136.26 6.1736 2.6524 63 20.00 28.9836 23.4225
31 136.26 6.5915 2.9161 64 0.00 30.0367 24.5560
32 136.26 7.0231 3.1954

170

TBM PROFILE NUMBER 3

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 36.40 0.8230 0.0025 35 67.86 8.8360 4.5970

1 36.40 0.8291 0.0025 36 70.20 9.3060 4.9690

2 36.66 0.8478 0.0026 37 72.28 9.7900 5.3600

3 36.66 0.8791 0.0027 38 74.62 10.2900 5.7700

4 36.66 0.9231 0.0049 39 77.48 10.8000 6.2020

5 36.66 0.9796 0.0124 40 80.08 11.3300 6.6540

6 36.66 1.0490 0.0254 41 82.94 11.8800 7.1280

7 36.92 1.1310 0.0437 42 85.80 12.4400 7.6250

8 37.18 1.2260 0.0675 43 88.66 13.0100 8.1440

9 37.44 1.3350 0.0974 44 91.78 13.6100 8.6880

10 37.44 1.4570 0.1338 45 94.64 14.2200 9.2560

11 37.70 1.5920 0.1773 46 96.72 14.8500 9.8500
12 37.96 1.7400 0.2286 47 98.80 15.5000 10.4700
13 38.22 1.9020 0.2881 48 100.88 16.600 11.1200
14 38.74 2.0780 0.3564 49 102.18 16.8500 11.7900
15 39.52 2.2670 0.4339 50 103.48 17.5600 12.5000

16 40.30 2.4690 0.5211 51 104.52 18.2800 13.2300

17 41.34 2.6850 0.6186 52 105.56 19.0300 14.0000

18 42.38 2.9140 0.7268 53 106.60 19.8000 14.7900
19 43.42 3.1570 0.8462 54 107.38 20.5900 15.6200

20 44.46 3.4140 0.9771 55 108.42 21.4100 16.4800
21 45.50 3.6840 1.1200 56 109.20 22.2500 17.3800
22 46.80 3.9660 1.2750 57 109.72 23.1200 18.3100
23 48.10 4.2620 1.4430 58 109.98 224.0200 19.2700
24 49.40 4.5710 1.6240 59 98.28 24.9400 20.2700
25 50.96 4.8930 1.8180 60 86.32 25.8900 21.3100
26 52.26 5.2280 2.0270 61 52.26 26.8700 22.3800
27 53.82 5.5760 2.2490 62 14.12 27.8900 23.5000
28 55.38 5.9370 2.4860 63 8.11 28.9300 24.6500
29 56.94 6.3110 2.7390 64 6.08 30.0100 25.8500
30 58.76 6.6980 3.0060 65 5.93 31.1200 27.0900
31 60.32 7.0980 3.2900 66 5.80 32.2700 28.3700
32 62.14 7.5120 3.5910 67 5.80 33.4600 29.6900
33 63.96 7.9400 3.9080 68 5.80 34.6800 31.0700
34 65.78 8.3810 4.2430 69 5.80 35.9500 32.4900

171

D. TBM PROFILE NUMBER 4

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 36.66 0.0000 0.0000 35 50.96 4.4014 1.0029
1 36.66 0.0030 0.0000 36 52.26 4.6796 1.1067
2 36.66 0.0119 0.0000 37 53.56 4.9373 1.2177
3 36.66 0.0270 0.0001 38 54.86 5.2641 1.3360
4 36.66 0.0483 0.0003 39 56.16 5.5698 1.4619
5 36.66 0.0760 0.0008 40 57.72 5.8846 1.5956
6 36.66 0.1101 0.0018 41 59.28 6.2082 1.7373
7 36.66 0.1508 0.0032 42 60.58 6.5409 1.8872
8 36.66 0.1981 0.0052 43 62.14 608826 2.0457
9 36.66 0.2523 0.0080 44 63.70 7.2335 2.2130
10 36.66 0.3133 0.0118 45 65.26 7.5939 2.3895
11 36.66 0.3814 0.0166 46 66.82 7.9640 2.5756
12 36.92 0.4567 0.0226 47 68.64 8.3440 2.7716
13 36.92 0.5391 0.0302 48 70.46 8.7341 2.9779
14 36.92 0.6289 0.0393 49 72.28 9.1344 3.1949
15 36.92 0.7262 0.0502 50 74.36 9.5452 3.4228
16 37.18 0.8310 0.0632 51 76.44 9.9667 3.6621
17 37.18 0.9435 0.0784 52 78.78 10.3990 3.9121
18 37.44 1.0638 0.0961 53 81.12 10.8430 4.1764
19 37.70 1.1919 0.1164 54 83.72 11.2980 4.4521
20 37.96 1.3281 0.1396 55 86.32 11.7640 4.7409
21 38.22 1.4723 0.1659 56 88.92 12.2430 5.0430
22 38.74 1.6247 0.1956 57 91.52 12.7330 5.3589
23 39.26 1.7854 0.2289 58 94.12 13.2360 5.6891
24 39.78 1.9545 0.2660 59 96.98 13.7520 6.0339
25 40.56 2.1322 0.3073 60 99.84 14.2800 603938
26 41.34 2.3185 0.3529 61 101.92 14.8220 6.7693
27 42.38 2.5135 0.4031 62 103.74 15.3760 7.1607
28 43.16 2.7174 0.4582 63 105.30 15.9450 7.5686
29 44.20 2.9302 0.5184 64 106.60 16.5270 7.9933
30 45.24 3.1522 0.5840 65 107.90 17.1240 8.4354
31 46.28 3.3833 0.6553 66 108.94 17.7350 8.8954
32 47.32 3.6237 0.7326 67 109.72 18.3600 9.3738
33 48.36 3.8734 0.8161 68 110.76 19.0010 9.8710
34 49.66 4.1326 0.9061 69 111.54 19.6570 10.3880

172

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
70 112.32 20.3290 10.9240 81 7.59 28.8550 18.2970

71 113.10 21.0170 11.4810 82 6.45 29.7420 19.1160

72 114.14 21.7220 12.0590 83 6.24 30.6500 19.9620

73 114.92 22.4430 12.6590 84 6.11 31.5780 20.8360

74 115.44 23.1810 13.2800 85 6.08 32.5280 21.7390

75 115.96 23.9370 13.9240 86 6.08 33.5000 22.6720

76 112.06 24.7100 14.5920 87 6.08 34.4930 23.6340

77 100.62 25.5010 15.2830 88 6.08 35.5100 24.6270

78 81.90 26.3110 15.9980 89 6.08 36.5510 25.6510

79 39.52 27.1390 16.7390 90 6.08 37.6160 26.7070

80 10.40 27.9870 17.5050 91 6.08 38.7060 27.7950

173

E. TBM PROFILE NUMBER 5

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
0 136.26 0.0000 0.0000 35 136.26 7.2367 3.5962
1 136.26 0.0054 0.0000 36 136.26 7.6546 3.9031
2 136.26 0.0217 0.0001 37 136.26 8.0846 4.2263
3 136.26 0.0491 0.0002 38 136.26 8.8257 4.5663
4 136.26 0.0879 0.0003 39 136.26 8.9791 4.9237
5 136.26 0.1381 0.0012 40 136.26 9.4446 5.2990
6 136.26 0.1997 0.0053 41 136.14 9.9225 5.6926
7 136.26 0.2731 0.0130 42 136.00 10.4127 6.1051
8 136.26 0.3582 0.0246 43 135.86 10.9156 6.5370
9 136.26 0.4551 0.0409 44 135.72 11.4315 6.9889
10 136.26 0.5640 0.0623 45 135.58 11.9604 7.4615
11 136.26 0.6851 0.0894 46 135.44 12.0529 7.9554
12 136.26 0.8183 0.1225 47 135.30 13.0591 8.4713
13 136.26 0.9638 0.1624 48 135.16 13.6294 9.0098
14 136.26 1.1216 0.2094 49 135.02 14.2143 9.5718
15 136.26 1.2920 0.2641 50 134.88 14.8140 10.1580
16 136.26 1.4749 0.3269 51 134.74 15.4290 10.7689
17 136.26 1.6705 0.3984 52 134.60 16.0600 11.4053
18 136.26 1.8787 0.4790 53 134.46 16.7076 12.0676
19 136.26 2.0996 0.5691 54 134.32 17.3724 12.7565
20 136.26 2.3330 0.6692 55 134.18 18.0552 13.4725
21 136.26 2.5788 0.7796 56 133.43 18.7565 14.2162
22 136.26 2.8366 0.9006 57 130.50 19.4772 14.9884
23 136.26 3.1065 1.0325 58 127.00 20.2178 15.7896
24 136.26 3.3881 1.1758 59 121.00 20.9793 16.6207
25 136.26 3.6814 1.3308 60 111.00 21.7624 17.4823
26 136.26 3.9862 1.4976 61 100.00 22.5678 18.3753
27 136.26 4.3024 1.6768 62 85.00 23.3965 19.3003
28 136.26 4.6298 1.8685 63 62.00 24.2493 20.2583
29 136.26 4.9685 2.0733 64 42.00 25.1271 21.2500
30 136.26 5.3183 2.2914 65 30.00 26.0308 22.2765
31 136.26 5.6794 2.5232 66 22.00 26.9614 23.3385
32 136.26 6.0517 2.7692 67 16.00 27.9199 24.4370
33 136.26 6.4353 3.0297 68 14.00 28.9074 25.5730
34 136.26 6.8303 3.3053 69 12.50 29.9247 26.7476

174

Time

(sec)

Intensity Altitude

(km)

Range

(km)

Time

(sec)

Intensity Altitude

(km)

Range

(km)
70 11.00 30.9732 27.9617 76 7.10 37.9850 36.1414
71 10.00 32.0539 29.2164 77 6.80 39.2863 37.6656
72 9.30 33.1681 30.5130 78 6.40 40.6296 39.2395
73 8.60 34.3169 31.8525 79 6.10 42.0164 40.8921
74 8.10 35.5018 33.2362 80 5.80 43.4485 42.5725
75 7.60 36.7240 34.6653 81 0.00 44.9228 44.3028

175

F. TBM PROFILE 2 ANALYSIS

TBM Profile 2

3(K

25-

2(K ■

|l5-
K. 1 INI

10-
^'""■■■-

5- ...'■/ '■■. ""■> --^

o> '■".""" ''• / ■ ••'"'■• ' •■ "~-- ...
30 ~ ~ -...

20

10

Y(km) 0 0

10
15

X(km)

20
25

30

TBM Trajectory (Profile 2).

176

TBM Profile 2 w/ Measurement Noise

30

30-v

25-

20-

Jl5-
N

10-

5-

o>

Y(km) 0 0
X(km)

TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs.

177

TBM Profile 2 and ABG Trajectory

-.._

30-

25-

20 v

| 15-
N

10- / ...--..

5- • ■■■''"■'•• jy '"'•-. ~ - ■■ -
■-...

o> ••. '••.. /■■■■'" ''""■• '•■ -~>
'':

30 --..^ •

20

10

Y(km) 0 0

10
15

X(km)

20
25

TBM Trajectory (Profile 2) and ot-ß-y Trajectory, <x=0.6,100 Runs.

178

ABG Mean Distance Error in Measurements vs Time - TBM Profile 2
10000

30 40
Time (seconds)

50 60 70

oc-ß-y Tracker (Profile 2) Mean Distance Error, a=0.6,500 Runs.

179

TBM Profile 2 w/ Measurement Noise

Y(km) 0 0
X(km)

TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs.

180

TBM Profile 2 and EKF(accel model)Trajectory

Y(km) 0 0
X(km)

TBM Trajectory (Profile 2) and EKF Trajectory, 100 Runs.

181

3500
Mean Distance Error in Measurements vs Time - TBM Profile 2

30 40
Time (seconds)

50 60 70

EKF (Profile 2) Mean Distance Error, 500 Runs.

182

TBM Profile 2 w/ Measurement Noise

30

10 \ ^^ 15

Y(km) ü U X(km)

TBM Trajectory (Profile 2) with Measurement Noise, 100 Runs.

183

TBM Profile 2 w/ IMM Trajectory

30-

25-

20-

|l5-
N

10-
.-••■''' ~""-

5-
■ ■ ' ' ■ y " - -

"---..^

o> '''■• '•■ J/' ''■'■-■•""'" ''■ '■ •~~> -^
30 ~~--.^ ;

20

10

Y(km) 0 0

10
15

X(km)

20
25

TBM Trajectory (Profile 2) and IMM Trajectory, 100 Runs.

184

Mean Distance Error in Measurements vs Time
3500

3000

2500 -

CO

| 2000

LU
c 1500
CO
CD

1000

500

0 10 20 30 40
Time (seconds)

50 60 70

IMM (Profile 2) Mean Distance Error, 500 Runs.

185

10000

9000

8000

7000

Mean Distance Error in Measurements vs Time

-i

& 6000

E.

p 5000
LU
c
CO 4000

3000

2000

1000

20 30 40
Time (seconds)

50 60

Comparison of oc-ß-y, EKF and IMM Mean Distance Error, 500 Runs.

70

186

3500

3000

2500

In
CO

|2000

a—
O
i_
i—

LU
c 1500
CO

Mean Distance Error in Measurements vs Time
i i i i i i

t

_ /..: /....>£_

~"' — • ^ ^ .'

1 ' / '■ ^T>——<__-_~^_^
CO

1000

500

0

I : /
l '/

l /

- - - .!_ _^ "x

I /
1 / :
' / :
1/ ■

1/

/' ■

" i ii i i

10 20 30 40
Time (seconds)

50 60 70

Comparison (Close-up) of Mean Distance Error, 500 Runs.

187

G. TBM PROFILE 3 ANALYSIS

TBM Profile 3

35 v.

..■•:'" :

30 -

25-
..-•■.

~2<K

N 15v

10v

5-
..■••■''■'.'" ':•./•''/'■. "'''••. '.'■'■-

(K
<"'"' '''••,.■••"""''••. / ';.•-;•'"'■•. '"''■-. ...'•'•"'■. ""':

30

20

Y(km)

10
10

15
20

25
30

0 0
X(km)

TBM Trajectory (Profile 3).

188

TBM Profile 3 w/ Measurement Noise

Y(km) 0 0
X(km)

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

189

TBM Profile 3 and ABG Trajectory

Y(km) 0 0
X(km)

TBM Trajectory (Profile 3) and a-ß-y Trajectory, a=0.6,100 Runs.

190

ABG Mean Distance Error in Measurements vs Time - TBM Profile 3
10000

9000

8000 -

7000
en
<i)

F 6000
i_ o
i—
i»

ill 5000 c
CO
03

4000

3000

2000

1000
10 20 30 40

Time (seconds)
50 60 70

oc-ß-Y Tracker (Profile 3) Mean Distance Error, a=0.6,500 Runs.

191

TBM Profile 3 w/ Measurement Noise

Y(km) 0 0
X(km)

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

192

TBM Profile 3 and EKF(accel model)Trajectory

Y(km) 0 0
X(km)

TBM Trajectory (Profile 3) and EKF Trajectory, 100 Runs.

193

3500
Mean Distance Error in Measurements vs Time - TBM Profile 3

30 40
Time (seconds)

EKF (Profile 3) Mean Distance Error, 500 Runs.

194

TBM Profile 3 w/ Measurement Noise

Y(km) 0 0
X(km)

TBM Trajectory (Profile 3) with Measurement Noise, 100 Runs.

195

TBM Profile 3 w/ IMM Trajectory

35-.

...;•'"

3CK

25 -

~2<K

N 15>.

'•:.

10-

5-
.•■• ■''••"" '. yy • • ••'•'•'

0- ~C '"••., ••"""""'''■•. yy .'.'•-:'"''•■. '"'••. ..•••'-•. '"':

30

20

Y(km)

10

0 0
10

15
20

25

X(km)

30

TBM Trajectory (Profile 3) and IMM Trajectory, 100 Runs.

196

Mean Distance Error in Measurements vs Time
3500

3000

2500 -

CO

a>
I 2000

£
LU
c 1500
CO
CD

1000-

500-

0
10 20 30 40

Time (seconds)
50 60 70

IMM (Profile 3) Mean Distance Error, 500 Runs.

197

10000

9000

8000

7000

£ 6000
E,

o 5000
HI

| 4000

3000

2000

1000

Mean Distance Error in Measurements vs Time - TBM Profile 3

........

i \
.(....I.

/

20 30 40
Time (seconds)

50 60

Comparison of a-ß-y, EKF and IMM Mean Distance Error, 500 Runs.

70

198

Mean Distance Error in Measurements vs Time - TBM Profile 3
3500

3000

2500

| 2000

o
UJ
c
CO
0)

1500-

1000-

500-

20 30 40 50
Time (seconds)

60 70

Comparison (Close-up) of Mean Distance Error, 500 Runs.

199

H. SOURCE CODE FOR a-ß-y, EKF AND IMM ALGORITHMS ON TBM

PROFILE DATA

% tbmdat.m
% LT Tony San Jose
% Thesis Advisor: R.G. Hutchins
% 21FEB98
%
% This program stores TBM profiles 1-5 into missilevec data for use
% in tracking algorithms.

% TBM Profile Number 1

tbmdatl = [0.00 13 6 .26 0 0000 0.0000;
1.00 136.26 0.006 0.0000;
2.00 136.26 0.026 0.000;
3.00 136.26 0.058 0.000
4.00 136.26 0.103 0.000
5.00 136.26 0.1636 0.001
6.00 136.26 0.235 0.004
7.00 136.26 0.322 0.0100;
8.00 136.26 0.423 0.020
9.00 136.26 0.537 0.036
10.00 136.26 0.666 0.058
11.00 136.26 0.809 0.087
12.00 136.26 0.965 0.124
13.00 136.26 1.136 0.171
14.00 136.26 1.3217 0.226
15.00 136.26 1.52 0.292
16.00 136.26 1.733 0.367
17.00 136.26 1.962 0.453
18.00 136.26 2.204 0.550
19.00 136.26 2.460 0.658
20.00 136.26 2.731 0.777
21.00 136.26 3.015 0.908
22.00 136.26 3.312 1.050
23.00 136.26 3.623 1.205
24.00 136.26 3.948 1.372
25.00 136.26 4.286 1.551
26.00 136.26 4.637 1.744
27.00 136.26 5.001 1.950,
28.00 136.26 5.378 2.17;
29.00 136.26 5.769 2.404;
30.00 136.26 6.174 2.652,
31.00 136.26 6.591 2.916,
32.00 136.26 7.023 3.195,
33.00 136.26 7.469 3.491,
34.00 136.26 7.928 3.803;
35.00 136.26 8.402 4.1320;
36.00 136.26 8.890 4.479C);

200

37 .00 136.26 9.393 4.844;
38 .00 136.26 9.911 5.229;
39 .00 136.26 10.444 5.633;
40 .00 136.26 10.992 6.057;
41 .00 136.14 11.556 6.502;
42 .00 136.00 12.136 6.969;
43 .00 135.86 12.732 7.459;
44 .00 135.72 13.345 7.973;
45 .00 135.58 13.975 8.5110;
46 .00 135.44 14.622 9.075;
47 00 135.30 15.288 9.665;
48 00 135.16 15.972 10.282
49 00 135.02 16.675 10.928
50 00 134.88 17.397 11.604
51 00 134.74 18.140 12.309
52 00 134.60 18.904 13.045
53 00 134.46 19.690 13.813
54 00 134.32 20.499 14.613
55 00 134.18 21.332 15.446
56 00 133.43 22.190 16.3140;
57 00 130.50 23.075 17.217
58 00 127.00 23.986 18.155
59 00 121.00 24.925 19.131
60 00 111.00 25.894 20.145
61 00 86.00 26.894 21.199
62 00 65.00 27.925 22.293];

% TBM Profile Number 2

tbmdat2=[0.00
1.00
2.00

00
00
00
00
00

8.00
9.00

136
13 6
136
136
136
136
13 6
136
136

10.00 136
11.00 136
12.00 136
13.00 136
14.00 136
15.00 136
16.00 13 6
17.00 136
18.00 136
19.00 136
20.00 136
21.00 136
22.00 136
23.00 136

136.26 0.0000
.26 0.0064
.26 0.0256
.26 0.0579
.26 0.1035
.26 0.1626
.26 0.2355
.26 0.3222
.26 0.4228
.26 0.5374
.26 0.6661
.26 0.8087
.26 0.9653
.26 1.1359
.26 1.3207
.26 1.5199
.26 1.7335
.26 1.9615
.26 2.2038
.26 2.4602
.26 2.7305
.26 3.0146
.26 3.3123
.26 3.6234

0.0000;
0.0000
0.0001
0.0002
0.0001
0.0009
0.0039
0.0100
0.0203
0.0358
0.0576
0.0868
0.1243
0.1707
0.2264
0.2919
0.3675
0.4535
0.5503
0.6581
0.7771
0.9078
1.0502
1.2047

201

24 .00 136.26 3.9479 1.3717;
25 .00 136.26 4.2856 1.5513;
26 .00 136.26 4.6366 1.7439;
27 .00 136.26 5.0008 1.9499;
28 .00 136.26 5.3784 2.1697;
29 .00 136.26 5.7692 2.4037;
30 .00 136.26 6.1736 2.6524;
31 .00 136.26 6.5915 2.9161;
32 .00 136.26 7.0231 3.1954;
33 .00 136.26 7.4687 3.4908;
34 .00 136.26 7.9283 3.8028;
35 .00 136.26 8.4021 4.1320;
36 .00 136.26 8.8904 4.4790;
37 .00 136.26 9.3933 4.8443;
38 00 136.26 9.9111 5.2287;
39 00 136.26 10.4440 5.6326;
40 00 136.26 ' 10.9922 6.0569;
41 00 136.14 11.5560 6.5022;
42 00 136.00 12.1358 6.9694;
43 00 135.86 12.7319 7.4594;
44 00 135.72 13.3448 7.9729;
45 00 135.58 13.9748 8.5110;
46 00 135.44 14.6224 9.0746;
47 00 135.30 15.2879 9.6647;
48 00 135.16 15.9718 10.2823;
49 00 135.02 16.6746 10.9285
50 00 134.88 17.3969 11.6039
51 00 134.74 18.1396 12.3093
52 00 134.60 18.9036 13.0454
53 00 134.46 19.6897 13.8131
54 00 134.32 20.4989 14.6132
55 00 134.18 21.3321 15.4465
56 00 133.43 22.1903 16.3140
57 00 130.50 23.0745 17.2166
58 00 127.00 23.9859 18.1553
59 00 121.00 24.9255 19.1312
60 00 111.00 25.8944 20.1453
61 00 86.00 26.8938 21.1987
62 00 65.00 27.9250 22.2926
63 00 20.00 28.9836 23.4225
64 00 0.00 30.0367 24.5560];

% TBM Profile Number 3

tbmdat3= [0.00 36.40 0.8230 0.0025;
1.00 36 .40 0 .8291 0 .0025
2.00 36 .66 0 8478 0 0026
3.00 36 66 0 8791 0 0027
4.00 36 66 0 9231 0 0049
5.00 36 66 0 9796 0 0124
6.00 36 92 1 0490 0 0254
%6.86 36 92 1 1190 0 0408
7.00 36 92 1 1310 0 0437
8.00 37 18 1 2260 0 0675

202

9. 30 37.44 1.3350 0.0974
10 .00 37.44 1.4570 0.1338
11 .00 37.70 1.5920 0.1773
12 .00 37.96 1.7400 0.2286
13 .00 38.22 1.9020 0.2881
14 .00 38.74 2.0780 0.3564
15 .00 39.52 2.2670 0.4339
16 .00 40.30 2.4690 0.5211
17 .00 41.34 2.6850 0.6186
18 .00 42.38 2.9140 0.7268
19 .00 43.42 3.15.70 0.8462
20 .00 44.46 3.4140 0.9771
21 .00 45.50 3.6840 1.1200
22 .00 46.80 3.9660 1.2750
23 .00 48.10 4.2620 1.4430
24 .00 49.40 4.5710 1.6240
25 .00 50.96 4.8930 1.8180
26 .00 52.26 5.2280 2.0270
27 .00 53.82 5.5760 2.2490
28 .00 55.38 5.9370 2.4860
29 00 56.94 6.3110 2.7390
30 00 58.76 6.6980 3.0060
31 00 60.32 7.0980 3.2900,
32 00 62.14 7.5120 3.5910,
33 00 63.96 7.9400 3.9080,
34 00 65.78 8.3810 4.2430,
35 00 67.86 8.8360 4.5970,
36 00 70.20 9.3060 4.9690,
37 00 72.28 9.7900 5.3600,
38 00 74.62 10.2900 5.7700,
39 00 77.48 10.8000 6.2020,
40 00 80.08 11.3300 6.6540,
41 00 82.94 11.8800 7.1280,
42 00 85.80 12.4400 7.6250,
43 00 88.66 13.0100 8.1440,
44 00 91.78 13.6100 8.6880,
45 00 94.64 14.2200 9.2560,
46 00 96.72 14.8500 9.8500,
47 00 98.80 15.5000 10.4700;
48 00 100.8E 16 1600 11 1200
48 72 101.92 16 6600 11 6000
49 00 102.18 16 8500 11 7900
50 00 103.48 17 5600 12 5000
51 00 104.52 18 2800 13 2300
52 00 105.56 19 0300 14 0000
53 00 106.6C 19 8000 14 7900
54 00 107.38 20 5900 15 6200
55 00 108.42 21 4100 16 4800
56 00 109.2C 22 2500 17 3800
57 00 109.72 23 1200 18 3100
58 00 109.98 24 0200 19 2700
59 00 98.28 24.9400 20.2700;
60 00 86.32 25.8900 21.3100;
61 00 52.26 26.8700 22.380C);

203

62 .00 1' 1.12 27 .8900 23 .5000
63 00 8 .11 28 .9300 24 .6500
64 00 6 08 30 .0100 25 .8500
65 00 5 93 31 .1200 27 0900
66 00 5 80 32 2700 28 3700
67 00 5 80 33 4600 29 6900
68 00 5 80 34 6800 31 0700
69 00 5 80 35 9500 32 4900];
69 46 0 00 36 5500 33 1600] ;

% TBM Profile Number 4

tbmdat4 =[0 .00 36.66 0 0000
1.00 36 .66 0.0030 0.0000
2.00 36 .66 0.0119 0.0000
3.00 36 .66 0.0270 0.0001
4.00 36 .66 0.0483 0.0003
5.00 36 .66 0.0760 0.0008
6.00 36 .66 0.1101 0.0018
7.00 36 .66 0.1508 0.0032
8.00 36 .66 0.1981 0.0052
9.00 36 .66 0.2523 0.0080
10.00 36 .66 0.3133 0.0118
11.00 36 .66 0.3814 0.0166
12.00 36 .92 0.4567 0.0226
13.00 36 .92 0.5391 0.0302
14.00 36 .92 0.6289 0.0393
15.00 36 .92 0.7262 0.0502
16.00 37 .18 0.8310 0.0632
17.00 37 .18 0.9435 0.0784
18.00 37 .44 1.0638 0.0961
19.00 37 70 1.1919 0.1164
20.00 37 96 1.3281 0.1396
21.00 38 22 1.4723 0.1659
22.00 38 74 1.6247 0.1956
23.00 39 26 1.7854 0.2289
24.00 39 78 1.9545 0.2660
25.00 40 56 2.1322 0.3073
26.00 41 34 2.3185 0.3529
27.00 42 38 2.5135 0.4031
28.00 43 16 2.7174 0.4582
29.00 44 20 2.9302 0.5184
30.00 45 24 3.1522 0.5840
31.00 46 28 3.3833 0.6553
32.00 47 32 3.6237 0.7326
33.00 48 36 3.8734 0.8161
34.00 49. 66 4.1326 0.9061
35.00 50. 96 4.4014 1.0029
36.00 52. 26 4.6796 1.1067
37.00 53. 56 4.9673 1.2177
38.00 54. 86 5.2641 1.3360
39.00 56. 16 5.5698 1.4619
40.00 57. 72 5.8846 1.5956
41.00 59. 28 6.2082 1.7373

0.0000;

204

42 .00 60.58 6.5409 1.8872
43 .00 62.14 6.8826 2.0457
44 .00 63.70 7.2335 2.2130
45 .00 65.26 7.5939 2.3895
46 00 66.82 7.9640 2.5756
47 .00 68.64 8.3440 2.7716
48 00 70.46 8.7341 2.9779
49 00 72.28 9.1344 3.1949
50 00 74.36 9.5452 3.4228
51 00 76.44 9.9667 3.6621
52 00 78.78 10.3990 3.9132
53 00 81.12 10.8430 4.1764
54 00 83.72 11.2980 4.4521
55 00 86.32 11.7640 4.7409
56 00 88.92 12.2430 5.0430
57 00 91.52 12.7330 5.3589
58 00 94.12 13.2360 5.6891
59 00 96.98 13.7520 6.0339
60 00 99.84 14.2800 6.3938
61 00 101.92 14 8220 6.7693;
62 00 103.74 15 3760 7.1607;
63 00 105.3C 15 9450 7.5686;
64 00 106.6C 16 5270 7.9933;
65 00 107.9C 17 1240 8.4354;
66 00 108.94 17 7350 8.8954;
67 00 109.72 18 3600 9.3738;
68 00 110.76 19 0010 9.8710;
69 00 111.54 19 6570 10.3880
70 00 112.32 20 3290 10.9240
71 00 113.1C 21 0170 11.4810
72 00 114.14 21 7220 12.0590
73 00 114.92 22 4430 12.6590
74 00 115.44 23 1810 13.2800
75 00 115.96 23 9370 13.9240
76 00 112.06 24 7100 14.5920
77 00 100.62 25 5010 15.2830
78 00 81.90 26.3110 15.998C);
79 00 39.52 27.1390 16.739C);
80 00 10.40 27.9870 17.505C);
81 00 7.59 28.8550 18.297C);
82 00 6.45 29.7420 19.116C);
83 00 6.24 30.6500 19.962C);
84 00 6.11 31.5780 20.836C);
85 00 6.08 32.5280 21.739C);
86 00 6.08 33.5000 22.672C);
87 00 6.08 34.4930 23.634C);
88 00 6.08 35.5100 24.627C);
89 00 6.08 36.5510 25.65K);
90 00 6.08 37.6160 26.707C);
91 00 6.08 38.7060 27.795C)];
91 50 6.08 39.2610 28.352C)

205

% TBM Profile Number 5

tbmdat5 = [0.00 136 26 0 0000 0.0000;
1.00 136.26 0.0054 0.0000;
2.00 136.26 0.0217 0.0001
3.00 136.26 0.0491 0.0002
4.00 136.26 0.0879 0.0003
5.00 136.26 0.1381 0.0012
6.00 136.26 0.1997 0.0053
7.00 136.26 0.2731 0.0130
8.00 136.26 0.3582 0.0246
9.00 136.26 0.4551 0.0409
10.00 136.26 0.5640 0.0623
11.00 136.26 0.6851 0.0894
12.00 136.26 0.8183 0.1225
13.00 136.26 0.9638 0.1624
14.00 136.26 1.1216 0.2094
15.00 136.26 1.2920 0.2641
16.00 136.26 1.4749 0.3269
17.00 136.26 1.6705 0.3984
18.00 136.26 1.8787 0.4790
19.00 136.26 2.0996 0.5691
20.00 136.26 . 2.3330 0.6692
21.00 136.26 2.5788 0.7796
22.00 136.26 2.8366 0.9006
23.00 136.26 3.1065 1.0325
24.00 136.26 3.3881 1.1758
25.00 136.26 3.6814 1.3308
26.00 136.26 3.9862 1.4976
27.00 136.26 4.3024 1.6768
28.00 136.26 4.6298 1.8685
29.00 136.26 4.9685 2.0733
30.00 136.26 5.3183 2.2914
31.00 136.26 5.6794 2.5232
32.00 136.26 6.0517 2.7692,
33.00 136.26 6.4353 3.0297,
34.00 136.26 6.8303 3.3053,
35.00 136.26 7.2367 3.5962,
36.00 136.26 7.6546 3.9031,
37.00 136.26 8.0843 4.2263,
38.00 136.26 8.5257 4.5663,
39.00 136.26 8.9791 4.9237;
40.00 136.26 9.4446 5.2990;
41.00 136.14 9.9225 5.6926;
42.00 136.00 10.4127 6.1051;
43.00 135.86 10.9156 6.5370;
44.00 135.72 11.4315 6.9889;
45.00 135.58 11.9604 7.4615;
46.00 135.44 12.5029 7.9554;
47.00 135.30 13.0591 8.4713;
48.00 135.16 13.6294 9.0098;
49.00 135.02 14.2143 9.5718;
50.00 134.88 14.8140 10.1580;
51.00 134.74 15.4290 10.7689 ;

206

52 .00 134.60 16 0600 11.4053
53 .00 134.46 16 7076 12.0676
54 .00 134.32 17 3724 12.7565
55 00 134.18 18 0552 13.4725
56 00 133.41 i 18 7565 14.2162
57 00 130.50 19 4772 14.9884
58 00 127.00 20 2178 15.7896
59 00 121.00 20 9793 16.6207
60 00 111.00 21 7624 17.4823
61 00 100.00 22 5678 18.3753
62 00 85.00 23 .3965 19 .3003
63 00 62.00 24 .2493 20 .2583
64 00 42.00 25 .1271 21 .2500
65 00 30.00 26 .0308 22 2765
66 00 22.00 26 .9614 23 3385
67 00 16.00 27 .9199 24 4370
68 00 14.00 28 .9074 25 5730
69 00 12.50 29 9247 26 7476
70 00 11.00 30 .9732 27 9617
71 00 10.00 32 0539 29 2164
72 00 9.30 33 1681 30 5130
73 00 8.60 34 3169 31 8525
74 00 8.10 35 5018 33 2362
75 00 7.60 36 7240 34 6653
76 00 7.10 37 9850 36 1414
77 00 6.80 39 2863 37 • 6656
78 00 6.40 40 6296 39 2395
79 00 6.10 42 0164 40 8921
80 00 5.80 43 4485 42 5725
81 00 0.00 44 9228 44 3028] ;

save tbm dat

207

% tbminit.m
%
% LT Tony San Jose
% Thesis Advisor: R.G. Hutchins
% 21FEB98
%

% This program stores the TBM profiles entered in tbmdat.m into the
% variable missilevec for use in our tracking algorithms. The TBM
% data was provided provided by JHUAPL.

load Tbm_dat;

timel =tbmdatl(: , 1) ;
altl = 1000 * tbmdatl(:,3);
rngl = 1000 * tbmdatl(: ,4) ;

[rowsl, colsl] = size(timel);

for i = 1: rowsl
missilevecl(:,i) = [timel(i); %t

rngl(i); %x
0; %vx
0; %ax
10*1000; %y
0; %vy
0; %ay
altl(i); %z
0; %vz
0]; %az

end; %#1

time2 =tbmdat2(:,1) ;
alt2 = 1000 * tbmdat2(:,3);
rng2 = 1000 * tbmdat2(:,4) ;

[rows2,cols2] = size(time2);

for i = 1: rows2
missilevec2(:,i) = [time2(i); %t

rng2(i); %x
0; %vx
0; %ax
10*1000; %y
0; %vy
0; %ay
alt2(i); %z
0; %vz
0]; %az

end; %# 2

208

%**

time3 = =tbmdat3(:,1);
alt3 = 1000 * tbmdat3(: ,3);
rng3 = 1000 * tbmdat3(: ,4);

[rows3, cols3] = size(time3);

for i = = 1: rows3
missilevec3(:,i) = [time3(i); %t

rng3 (i); %x
0; %vx
0; %ax
10*1000; %y
0; %vy
0; %ay
alt3(i); %z
0; %vz
0]; %az

end; %# 3

%**

time4 = =tbmdat4(:,1);
alt4 = 1000 * tbmdat4(: ,3);
rng4 = 1000 * tbmdat4(: ,4) ;

[rows4, cols4] = size(time4);

for i = = 1: rows4
missi levec4(:,i) = [time4(i); %t

rng4 (i); %x
0; %vx
0; %ax
10*1000; %y
0; %vy
0; %ay
alt4(i); %z
0; %vz
0]; %az

end; %* 4

%**

time5 =tbmdat5(:,1) ;
alt5 = 1000 * tbmdat5(:,3);
mg5 = 1000 * tbmdat5 (: , 4) ;

[rows5,cols5] = size(time5);

for i = 1: rows5
missilevec5(:,i) = [time5(i); %t

rng5(i); %x

209

0; %vx
0; %ax
10*1000; %y
0; %vy
0; %ay
alt5(i); %z
0; %vz
0]; %az

end; %# 5

clear altl alt2 alt3 alt4 alt5 colsl cols2 cols3 cols4 cols5;
clear i rngl rng2 rng3 rng4 rng5 rowsl rows2 rows3 rows4 rows5;
clear tbmdatl tbmdat2 tbmdat3 tbmdat4 tbmdat5;
clear timel time2 time3 time4 time5;

210

%***

% abg_tbm.m
% LT Tony San Jose
% Thesis Advisor: R.G Hutchins
% 03FEB98
%
% This program tests the Alpha-Beta-Gamma tracker on real TBM profiles
%
% delta = 1 sec
% nloops = 100/500
% alpha =0.6
^************ **

% Load simulation workspace
clear all
load tbminit;
missilevec = missilevec3;
prof_num = 3;

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta = 1;
g = 9.8;

% Define the number of samples
[num_rows,num_cols] = size(missilevec3) ;
nsamples = num_cols;

% Initialize sensor data
Sensor_posit =[100 * 1000; % sensor is 100 km in x

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 100 km in z

sigma_r =10; % 10 meters std dev in range
sigma_b = l*pi/180; % 1 degree std dev in azimuth
sigma_e = l*pi/180; % 1 degree std dev in elevation

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+l) = F(k)*x(k) + G

f_sub = [1, delta, (delta^2)/2;
0, 1, delta;
0, 0, 1];

F = [f_sub, zeros(3), zeros(3);
zeros(3), f_sub, zeros(3);
zeros(3), zeros(3), f_sub];

% Define G matrix
G = -g * [0;

0;

211

0:
0;
0;
0;
(deltaA2)/2;
delta;
0];

% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% x, y, an z missile positions are observed directly; z(k) = H(k)*x(k)

H = [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0];

% Define alpha, beta, gamma tracker parameters

alpha =0.6;
beta = 2*(2-alpha) - 4*sgrt(1-alpha);
gamma = (betaA2)/(2*alpha);
nu = 1;

K_abg = [alpha, 0, 0
beta/(nu*delta), 0, 0
gamma/((nu*delta)A2), 0, 0
0, alpha, 0
0, beta/(nu*delta), 0
0/ gamma/((nu*delta)A2),0;
0, 0, alpha;
°' 0, beta/(nu*delta);
°< 0, gamma/((nu*delta)A2)];

% Define initialization parameters

d sub [1, 0, 0,
3/(2*delta),0,
l/(deltaA2),0,

0, 0, 0, 0;
0, -2/delta, 0, 0, 1/(2*delta);
0, -2/(deltaA2),0, 0, l/deltaA2];

D = [d_sub, zeros(3,2);
zeros(3,1), d_sub, zeros(3,l);
zeros(3,2), d_sub] ;

x_corr = missilevec(2:10,1) ; % Initialize from truth

************ End of Initialization outside loops ***************

%***************************************i<*******±***i!i.i!icicirir:lricicic +

% Loop over the target motion/measurement simulation
%*********************************ic*i<**ic*iciri!ir**it*i,iric*iciciti,iricicicicirir

for kk = 1: nloops
tic
kk

% define empty output matricies

212

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [] ;

% Kaiman estimated trajectory
ABG_track = [];

% error between Kaiman track and actual track
track_error = [];

%**************•**

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor

for ii = l:nsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement
% from the sensor.

% position relative to the sensor
zrel = ztrue - Sensor_posit;

from sensor

from sensor

x/y plane

from sensor

r = sqrt(zrel(l)~2 + zrel(2)A2 + zrel(3)A2); % range

b = atan2(zrel(2), zrel(l)); % bearing

r_prime = sqrt(zrel(1)Ä2 + zrel(2)A2); % range in

e = atan2(zrel(3), r_prime); % elevation

% add noise to the measurement
r_n = r + sigma_r * randn;
b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

b_n;
e_n] ;

213

% measurement in cartesian coordinates + noise
z_cart_true_n = [r_prime*cos(b_n);

r_prime*sin(b_n);
r_n*sin(e_n)] + Sensor_posit;

z_cart_rel_n = [r_prime*cos(b_n);
r_prime*sin(b_n);

r_n*sin(e_n)];

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff) ;

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurement & true
measurement w/noise)

error_true = [error_true, disterror];

if ii > 2 % For intialization from the first 3 measurements

% Prediction

% Initialization using the first 3 measurements
if ii'== 3

x_corr = D * [zout_true_n(:,3);
zout_true_n (: , 2) ,-
zout_true_n(:,1)];

end; %if ii==3 .

% ABG Filter prediction equations
x_predict = F * x_corr + G;

fy***.),*
% Correction

% Convert to relative position to compute RBE coord
x_l = x_predict(l) - Sensor_posit(1);
x_4 = x_predict(4) - Sensor_posit(2);
x_7 = x__predict(7) - Sensor_posit (3) ;

% Convert prediction to Range, Bearing, Elev coord
r_hat = sqrt(x_l/v2 + x_4~2 + x_7^2) ;
b_hat = atan2(x_4, x_l);
e_hat = atan2(x_7, sqrt(x_1^2 + x_4A2));

214

% Determine expected measurement
z_cart_exp_rel = [r_hat*cos(b_hat)*cos(e_hat);

r_hat*cos(e_hat)*sin(b_hat);
r_hat*sin(e_hat)];

z_cart_exp_true = z_cart_exp_rel + Sensor_posit;

% Observed minus expected measurements
% z_tilde_c = z_cart_true_n - z_cart_exp_true;

z_tilde_c = z_cart_rel_n - z_cart_exp_rel;

% Correction equations
x_corr = x_predict + K_abg * z_tilde_c;

% Alpha-Beta-Gamma track positions and difference
between ABG and

% actual track position and actual target position
zout_ABG_track = H * x_corr;

track_diff = ztrue - zout_ABG_track;
track_error = [track_error, sqrt(track_diff'*track_diff)];

%. Update ABG track trajectory array
ABG_track = [ABG_track, zout_ABG_track];

end; % if ii>2

end; % for ii = l:nsamples

^***

if kk == 1, % create first output

zoutmean_true = zout_true_n;
mean_ABG_track = ABG_track;
merror_track = track_error;
merror = error_true;

else % create output after 1st run

zoutmean_true = zoutmean_true + zout_true_n;
mean_ABG_track = mean_ABG_track + ABG_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else
toe
end; % for kk = l:nloops

%***

% Compute Means
^* **************************** * *******************************

zoutmean_true = zoutmean_true/nloops;

215

mean_ABG_track = mean_ABG_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

%*************************************i.***vfc.iVtjt^*vtvk.jti.i^itAi.A<.vtvt:t.

% Plot results

figure(1)
measurement = zoutmean_true/1000; % convert to km
AB(3 = mean_ABG_track/1000; % convert to km
missile_track = missilevec(:,1:nsamples)/1000; % convert to km

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-
) i * / • • -

%Sensor_posit(l)/1000, Sensor_posit(2)/1000,
Sensor_posit(3)/1000,'rx');

axis([0,35,0,35,0,35]); % profile 1,2,3
% axis('equal')
% axis([0,40,0,40,0,40]); % profile 4,5

title(['TBM Profile ', num2str(prof_num)]);
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km) ') ,grid;
print -deps abg3a

figure(2)

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-
/ . ■ ■

measurement(1,:), measurement(2,:), measurement(3,:),'r-');%,.. .

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

% axis([0,35,0,35,0,35]);
% axis([0,40,0,40,0,40]) ;

%axis('equal');
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']);
xlabelCX (km)'), ylabel('Y (km)'), zlabel ('Z (km) ') ,grid;
print -deps abg3b

figure(3)
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-

/ • - •
ABG(1,l:nsamples-2), ABG(2,1:nsamples-2), ABG(3,1:nsamples-

2),'r-'

Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx');

% axis([0,25,0,25,0,25])
% axis([0,40,0,40,0,40])

axis([0,35,0,35,0,35])

216

xlabeM'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'),grid;
title(['TBM Profile ', num2str(prof_num),' and ABG Trajectory']);

print -deps abg3c

figure(4)
time = missilevec(1,:);
plot(timed:nsamples), merror,'g-', time(3:nsamples), merror_track,'r-

');
xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid;
title(['ABG Mean Distance Error in Measurements vs Time - TBM Profile

', num2str(prof_num)]);
% axis([0,70,0,10000])

%print -deps abg3d

save abgl003

217

% acl_tbm.m
%
% LT Tony San Jose
% Thesis Advisor: R.G. Hutchins
% 21FEB98
% delta =1.0 sec
% nloops = 100/500
% qA2 = 10
% This program stores the TBM profiles entered in tbmdat.m into the
% variable missilevee.for use in our tracking algorithms. The TBM
% data was provided provided by JHUAPL.

% Load simulation workspace
clear all
load tbminit;
missilevec = missilevec3;
prof_num = 3;

% Define the number, of simulation loops
nloops = 500;

% Define the sampling interval
delta = 1;
g = 9.8;

% Define the number of samples
[num_rows,num_cols] = size(missilevec3);
nsamples = num_cols;

% Initialize sensor data
Sensor_posit =[100 * 1000; % sensor is 100 km in x

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 100 km in z

sigma_r =10; % 10 meters std dev in range
sigma_b = l*pi/180; % 1 degree std dev in azimuth
sigma_e = l*pi/180; % 1 degree std dev in elevation

R = diag([sigma_rÄ2, % covariance matrix for uncorrelated
sigma_bA2, % range and bearing measurements
sigma_eA2]);

% Define F matrix (TRANSITION MATRIX) for discrete time
% target motion, x(k+l) = F(k)*x(k) + G

f_sub = [1, delta, (deltaA2)/2;
0, 1, delta;
0, 0, 1] ;

F = [f_sub, zeros(3), zeros(3);

218

zeros(3), f_sub, zeros(3);
zeros(3), zeros(3), f_sub];

% Define G matrix
G = -g * [0;

0;
0;
0;
0;
0;
(deltaA2)/2;
delta;
0];

% Define the H matrix (MEASUREMENT MATRIX), assuming that the
% x, y, an z missile positions are observed directly;

H = [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0,0,0,0,0,0,1,0,0];

% Initialize Q, the covariance of the plant noise
% qA2 = scale factor to system noise covariance matrix Q,
% used to account for unmodeled target maneuver acceleration.

q_sqr = 10;

Q_sub = [(deltaÄ5)/20, (deltaA4)/8, (delta~3)/6;
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2;
(deltaA3)/6, (deltaA2)/2, delta];

Q = q_sqr * [Q_sub, zeros(3), zeros{3);
zeros(3), Q_sub, zeros(3);
zeros(3), zeros(3), Q_sub] ;

%*********** gncj 0f initialization outside loops ***************

%****************************** * * *******************************

% Loop over the target motion/measurement simulation
%***

for kk = 1: nloops
tic
kk

% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kaiman estimated trajectory
K_track = [] ;
K_accel = [];

219

% error between Kaiman track and actual track
track_error = [];

% This block is used for the initialization process. Initialize
% from a SWAG.

x_swag = missilevec(2:10,1);
x_swag(9) = 6*g;
p_swag = eye(9) * 10A4;

x_corr = x_swag;
P_corr = p_swag;

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor
%**********************i,i<-kiCiriC*±ic**iciciric±i.ici<i,ici,j.iCi!i!iCi!icicit*******-ir

for ii = 2:nsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement
% from the sensor.

% position relative to the sensor
zrel = ztrue - Sensor_posit;

from sensor

from sensor

x/y plane

from sensor

r = sqrt(zrel(l)A2 + zrel(2)A2 + zrel(3)A2); % range

b = atan2(zrel(2), zrel(l));

r_prime = sqrt(zrel(1)A2 + zrel(2)A2);

e = atan2(zrel(3), r_prime);

% bearing

% range in

% elevation

% add noise to the measurement
r_n = r + sigma_r * randn;
b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n;

220

b_n;
e_n] ;

measurement in cartesian coordinates + noise
z_cart_true_n = [r_prime*cos(b_n);

r_prime*sin(b_n);
r_n*sin(e_n)] + Sensor_posit;

z_cart_rel_n = [r_prime*cos(b_n),-
r_prime*sin(b_n);

r_n*sin(e_n)];

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurements)
error_true = [error_true, disterror];

^************** ***

% Prediction
%***

% Kaiman Filter prediction equations
x_predict = F * x_corr + G;
P_predict = F * P_corr * F' + Q;

^***

% Correction
%***

coordinates

coordinates

% Convert to relative position to compute RBE

x_l = x_predict(l) - Sensor_posit(1);
x_4 = x_predict(4) - Sensor_posit(2);
x_7 = x_predict(7) - Sensor_posit(3);

% Convert prediction to Range, Bearing, Elevation

r_hat = sqrt(x_lA2 + x_4~2 + x_7A2);
b_hat = atan2(x_4, x_l);

e_hat = atan2(x_7, sqrt(x_lA2 + x_4A2));

% Determine expected measurement
z_polar_hat = [r_hat;

b_hat;
e_hat];

% Observed minus expected measurements

221

z_tilde = z_polar_n - z_polar_hat;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_lA2 + x_4A2);
Hk_r2c4 = x_l/(x_lA2 + x_4A2);

Hk_r3cl = (-x_l*x_7)/((sqrt(x_lA2 + x_4"2))*(x_l~2 + x_4A2 + x_7A2));
Hk_r3c4 = (-x_4*x_7)/((sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4"2 + x_7A2));
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2);

% Determine H matrix
Hk = [x_l/r_hat, 0, 0, x_4/r_hat, 0, 0, x_7/r_hat, 0, 0;

Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0,0;
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0, 0];

% Compute Kaiman Gain
K = P_predict * Hk' * inv(Hk * P_predict * Hk' + R);

% Correction equations
x_corr = x_predict + K * z_tilde;

P_corr = (eye(9) - K*Hk)* P_predict * (eye(9) - K*Hk)' + K*R*K';

and
% Kaiman track positions and difference between Kaiman

% actual track position and actual target position
zout_K_track = H*x_corr;

track_diff = ztrue - zout_K_track;
track_error = [track_error, sqrt(track_diff'*track_diff)];

% Update KF track trajectory array
K_track = [K_track, zout_K_track];

% Estimated accelerations
accel_out = [x_corr(3,:);

x_corr(6,:);
x_corr(9,:)];

% Update KF acceleration array
K_accel = [K_accel, accel_out];

end; % for ii = 2:nsamples

if kk == 1, % create first output

zoutmean_true = zout_true_n;
mean_K_track = K_track;
merror_track = track_error;
merror = error_true;

else % create output after 1st run

222

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track = mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else
toe
end; % for kk = l:nloops

^*** ******

% Compute Means
^***

zoutmean_true = zoutmean_true/nloops;
mean_K_track = mean_K_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nloops; % mean error between
% EKF estimated position
% and true position

^*** ****************

% Plot results
%***

figured)
measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile_track■= missilevec(:,l:nsamples)/1000; % convert to km

plot3(missile_track(2,:), missile_track(5,:), missile_track(8, :), ' g-
■);%,-.-

%Sensor_posit(l)/1000, Sensor_posit{2)/1000,
Sensor_posit(3)/1000,'rx');

%axis([0,25,0,25,0,25]);
%axis('equal')
axis([0,35,0,35,0,35])

%axis([0,40,0,40,0,40]);
title(['TBM Profile ', num2str(prof_num)]) ;
xlabeK'X (km)'), ylabel('Y (km)'), zlabel (' Z (km)'), grid;

% print -deps ekf3a

figure(2)
plot3(missile_track(2,:), missile_track(5,:) , missile_track(8,:),'g-

i
i • • •

measurement(1,:), measurement(2,:), measurement(3,:),'r-');
% axis([0,25,0,25,0,25]); % profile 1,2,3,5
% axis([0,40,0,40,0,40]); % profile 4

axis([0,35,0,35,0,35])
%axis('equal');
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']);
xlabeK'X (km)'), ylabel('Y (km)'), zlabel ('Z (km) ') ,grid;

% print -deps ekf3b

223

figure(3)

plot3(missile_track(2,l:nsamples), missile_track(5,l:nsamples),
missile_track(8,1:nsamples),'g-',...
Kalman_track(1, :), Kalman_track(2,:), Kalman_track(3, :), ■r-') ;

%axis([0,25,0,25,0,25]);
%axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35]) ;
xlabeM'X (km)'), ylabel('Y (km)1), zlabel (' Z (km)'),grid;
title(['TBM Profile ', num2str(prof_num),' andEKF(accel

model)Trajectory"]);
%print -deps ekf3c

figure(4)
time = missilevec(1,:);

plot(time(2:nsamples), merror,'g-', time(2:nsamples), merror_track,'r-
) I

xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid;
title(['Mean Distance Error in Measurements vs Time - TBM Profile ',

num2str(prof_num)]);
%axis([0,70,0,10000])

%print -deps ekf3d

% save ekf5003;
%save ekfl003

224

a***

% imm_tbm.m
%
% LT Tony San Jose
% Thesis Advisor: R.G. Hutchins
% 21FEB98
% q"2 = 10
% nloops = 100/500
% This program stores the TBM profiles entered in tbmdat.m into the
% variable missilevec for use in our tracking algorithms. The TBM
% data was provided provided by JHUAPL.

% Load simulation workspace
clear all
load tbminit;
missilevec = missilevecl;
prof_num = 1;

% Define the number of simulation loops
nloops = 100;

% Define the sampling interval
delta =1;
g = 9-8;

% Define the number of samples
[num_rows,num_cols] = size(missilevecl);
nsamples = num_cols;

% Define q^2
q_sqr_a = 10;
q_sqr_b = 10;

% Initialize sensor data
Sensor_posit =[100 * 1000; % sensor is 100 km in x

100 * 1000; % sensor is 100 km in y
0 * 1000]; % sensor is 0 km in z

sigma_r =10; % 10 meters std dev in range
sigma_b = l*pi/180; % 1 degree std dev in azimuth
sigma_e = l*pi/180; % 1 degree std dev in elevation

R = diag([sigma_r"2/ % covariance matrix for
uncorrelated

sigma_b"2, % range and bearing measurements
sigma_e/v2]) ;

% Define the H matrix (MEASUREMENT MATRIX) for the accelerating
% model

H= [1, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 1, 0, 0] ;

225

% ACCELERATING MODEL

% Define G matrix
G_accel = -g * [0;

0
0
0
0
0
(deltaA2)/2;
delta;
0];

% Initialize Q, the covariance of the plant noise

Q_sub_a = [(delt'aA5)/20, (deltaA4)/8, (deltaA3)/6;
(deltaA4)/8, (deltaA3)/3, (deltaA2)/2;
(deltaA3)/6, (deltaA2)/2, delta];

Q_accel = q_sqr_a * [Q_sub_a, zeros(3), zeros(3);
zeros(3), Q_sub_a, zeros(3);
zeros(3), zeros(3), Q_sub_a];

% Define F matrix (TRANSITION MATRIX) for discrete time
% accelerating model.

f_sub_a = [1, delta, (deltaA2)/2;
0, 1, delta;
0, 0, 1] ;

F_accel = [f_sub_a, zeros(3), zeros(3);
zeros (3) , f_sub_a, zeros(3);
zeros(3), zeros(3), f_sub_a];

% BALLISTIC MODEL

% Define G matrix
G_ball = -g * [0;

0
0
0
0
0
(deltaA2)/2;
delta;
0];

% Detemine Q for the Ballistic model

Q_sub_b = [(deltaA3)/3, (deltaA2)/2, 0;
(deltaA2)/2, delta, 0;

0, 0, 0];

226

0 ball = q_sqr_b * [0 sub b, zeros(3), zeros(3);
zeros(3), Q_sub_b, zeros{3);
zeros(3), zeros(3), Q_sub_b];

% Define F matrix (TRANSITION MATRIX) for discrete time
% ballistic model.

f_sub_b = [1, delta, 0;
0, 1, 0 ;
0, 0, 0];

F_ball = [f_sub_b, zeros(3), zeros(3);
zeros(3), f_sub_b, zeros(3);r
zeros(3), zeros(3), f_sub_b];

%*********** End 0f initialization outside loops ** *************

%***

% Loop over the target motion/measurement simulation
%*** * * ******************

for kk = 1: nloops

tic
kk

% define empty output matricies

% measurement positions (cartesian) w/error
zout_true_n = [];

% distance error between measurement and true position
error_true = [];

% Kaiman estimated trajectory
K_track = [];
K_accel = [];

% error between Kaiman track and actual track
track_error = [];

%***

% This block is used for the initialization process. Initialize
% from a SWAG.
%***

x_corr_accel = missilevec(2:10,1);
P_corr_accel = eye(9) * 10A4;

x_corr_ball = missilevec(2:10,1) ;
P_corr_ball = eye(9) * 10^4;

% Initial likelihoods for states.
mu_init = [1;

227

0];

mu = mu_init
mu_l = mu(1)
mu_2 = mu(2)

% Loop through the simulation, generating target motion between
% sample times and taking measurements at each sample time,
% using 1 sensor

for ii = 2:nsamples

% Process the measurement from Sensor

% True missile position
ztrue = [missilevec(2,ii);

missilevec(5,ii);
missilevec(8,ii)];

% convert current position to polar coordinates and add
% sensor noise to the position, generating a noisy measurement
% from the sensor.

% position relative to the sensor
zrel = ztrue - Sensor_posit;

from sensor

from sensor

x/y plane

from sensor

r = sqrt(zrel(1)^2 + zrel(2)A2 + zrel(3)"2); % range

b = atan2(zrel(2), zrel(l));

r_prime = sqrt(zrel(1)~2 + zrel(2)^2)

e = atan2(zrel(3), r_prime);

% bearing

% range, in

% elevation

% add noise to the measurement
r_n = r + sigma_r * randn;

b_n = b + sigma_b * randn;
e_n = e + sigma_e * randn;

% measurement in polar + noise
z_polar_n = [r_n; \

b_n;
e_n] ;

% measurement in cartesian coordinates + noise
z_cart_rel_n = [r_prime*cos(b_n);

r_pr ime * s in(b_n);
r_n*sin(e_n)];

z_cart_true_n = z_cart_rel_n + Sensor_posit;

228

transition

% compute measurement error in cartesian coordinates
zdiff = ztrue - z_cart_true_n;
disterror = sqrt(zdiff'*zdiff);

% Update the measurement array
% true cartesian measurement + error

zout_true_n = [zout_true_n, z_cart_true_n];

% measurement error (between true measurements)
error_true = [error_true, disterror];

%** ** ***************

% Prediction
%***

% Probabilities of changing state, Markov chain

pl = 1;
p2 = 0.3;
alt = 3 0e3;
h = z_cart_true_n(3);

prob_accel = -p2*(1/(l+exp(-.0005*(h-alt)))
prob_ball = 1 - prob_accel;

(1+pl));

rho = [prob_accel, prob_ball;
0, 1];

% Accelerating Model
cbar = rho' * mu;

blowing up
if cbar(l) < 10"(-8)

cbar_l = 10A(-8);
else

cbar_l = cbar(1);
end;

cbar_2 = cbar(2);

% prevents cbar_l from

rho_ll = rho(1,1)
rho_21 = rho(2,1)
rho_12 = rho(1,2)
rho_22 =■ rho(2,2)

x_hat_01 = x_corr_accel * ((rho_ll*mu_l)/cbar_l) +
x_corr_ball * ((rho_21*mu_2)/cbar_l);

xtilde_ll = x_corr_accel - x_hat_01;
xtilde_21 = x_corr_ball - x_hat_01;

mu_ll = rho_ll * mu_l / cbar_l;
mu_21 = rho_21 * mu_2 / cbar_l;

229

P_hat_01 = mu_ll * (P_corr_accel + xtilde_ll*xtilde_ll") + ...
mu_21 * (P_corr_ball + xtilde_21*xtilde_21');

% Kaiman Filter Prediction Equations for Accelerating model
x_predict_accel = F_accel * x_hat_01 + G_accel;

Pjpredict_accel = F_accel * P_hat_01 * F_accel' + Q_accel;

% Ballistic Model
x_hat_02 = x_corr_accel * ((rho_12*mu_l)/cbar_2) + ...

x_corr_ball * ((rho_22*mu_2)/cbar_2);

xtilde_12 = x_corr_accel -.x_hat_02;
xtilde_22 = x_corr_ball - x_hat_02;

mu_12 = rho_12 * mu_l / cbar_2;
mu_22 = rho_22 * mu_2 / cbar_2;

P_hat_02 = mu_12*(P_corr_accel + xtilde_12*xtilde_12') + ...
mu_22*(P_corr_ball + xtilde_22*xtilde_22');

% Kaiman Filter Prediction Equations for Ballistic model
x_predict_ball = F_ball * x_hat_02 + G_ball;
P_predict_ball = F_ball * P_hat_02 * F_ball' +'Q_ball;

% Correction

% Accelerating Model
% Convert to relative position to compute polar coordinates

x_l = x_predict_accel(l) - Sensor_posit(1)
x_4 = x_predict_accel(4) - Sensor_posit(2)
x_7 = x_predict_accel(7) - Sensor_posit(3)

% Convert prediction to polar coordinates
r_hat_a = sqrt(x_lA2 + x_4A2 + x_7~2);
b_hat_a = atan2(x_4, x_l);
e_hat_a = atan2(x_7, sqrt(x_lA2 + x_4A2));

% Determine expected measurement
z_polar_hat_a = [r_hat_a;

b_hat_a;
e_hat_a];

% Observed minus expected measurements
z_tilde_a = z_polar_n - z_polar_hat_a;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_4/(x_lA2 + x_4A2);
Hk_r2c4 = x_l/(x_lA2 + x_4A2);

Hk_r3cl = (-x_l*x_7)/((sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2));
Hk_r3c4 = (-x_4*x_7)/((sqrt(x_lA2 + x_4A2))*(x_lA2 + x_4A2 + x_7A2));
Hk_r3c7 = (sqrt(x_lA2 + x_4A2))/(x_lA2 + x_4A2 + x_7A2);

230

% Determine H matrix
Hk_a = [x_l/r_hat_a, 0, 0, x_4/r_hat_a, 0, 0, x_7/r_hat_a, 0, 0

Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0, 0]

% Compute Kaiman Gain
K_accel = P_predict_accel*Hk_a' * inv(Hk_a * P_predict_accel * Hk_a'+R);

% Kaiman Filter Correction equations for Acclerating Model
x_corr_accel = x_predict_accel + K_accel * z_tilde_a;

P_corr_accel = (eye(9) - K_accel*Hk_a)* P_predict_accel;

% Ballistic Model
% Convert to relative position to compute polar coordinates

x_l = x_predict_ball(1) - Sensor_posit(1);
x_3 = x_predict_ball(4) - Sensor_posit(2);
x_5 = x_predict_ball(7) - Sensor_posit(3);

% Convert prediction to polar coordinates
r_hat_b = sqrt(x_lA2 + x_3A2 + x_5A2);
b_hat_b = atan2(x_3, x_l);
e_hat_b = atan2(x_5, sqrt(x_lA2 + x_3A2));

% Determine expected measurement
z_polar_hat_b = [r_hat_b;.

b_hat_b;
e_hat_b];

% Observed minus expected measurements
z_tilde_b = z_polar_n - z_polar_hat_b;

% The gradient of H evaluated at the most recent estimate
Hk_r2cl = -x_3/(x_lA2 + x_3A2);
Hk_r2c4 = x_l/(x_lA2 + x_3A2);

Hk_r3cl = (-x_l*x_5)/((sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2));
Hk_r3c4 = (-x_3*x_5)/((sqrt(x_lA2 + x_3A2))*(x_lA2 + x_3A2 + x_5A2));
Hk_r3c7 = (sqrt(x_lA2 + x_3A2))/(x_lA2 + x_3A2 + x_5^2);

% Determine H matrix
Hk_b = [x_l/r_hat_b, 0, 0, x_3/r_hat_b, 0, 0, x_5/r_hat_b, 0, 0

Hk_r2cl, 0, 0, Hk_r2c4, 0, 0, 0, 0, 0
Hk_r3cl, 0, 0, Hk_r3c4, 0, 0, Hk_r3c7, 0, 0]

% Compute Kaiman Gain
K_ball = P_predict_ball * Hk_b'*inv(Hk_b*P_predict_ball * Hk_b' + R) ;

% Kaiman Filter Correction equations for the Ballistic Model
x_corr_ball = x_predict_ball + K_ball * z_tilde_b;
P_corr_ball = (eye(9) - KJ_ball*Hk_b) * P_predict_ball;

% Update mode probabilities
%**

m = 3 ;

231

S_l = Hk_a * P_jpredict_accel * Hk_a' + R;
lambda_l = (exp(-(z_tilde_a)'*inv(S_l)*z_tilde_a/2))/(sgrt((2*pi)Am *
det(S_l)));

S_2 = Hk_b * P_predict_ball * Hk_b' + R;
lambda_2 = (exp(-(z_tilde_b)'*inv(S_2)*z_tilde_b/2))/(sqrt((2*pi)*m *
det(S_2)));

c = lambda_l * cbar_l + lambda_2 * cbar_2;

mu_l = lambda_l * cbar_l/c;
mu_2 = lambda_2 * cbar_2/c;

mu = [mu_l;
mu_2];

%******************************ic*ieiciCiCi!±ici,i,it*iciriei,*iciridicir + iCicit

% Produce Combined Estimates

x_corr = mu_l * x_corr_accel + mu_2 * x_corr_ball;
P_corr = mu_l*(P_corr_accel+(x_corr_accel-

x_corr)*(x_corr_accel-x_corr)')+...
mu_2 *{P_corr_ball +(x_corr_ball-

x_corr) * (x_corr_ball- x_corr) ') ,-

% Kaiman track positions and difference between Kaiman
and

% actual track position and actual target position
zout_K_track = H*x_corr;

track_diff = ztrue - zout_K_track;
track_error = [track_error, sgrt(track_diff'*track_diff)];

% Update KF track trajectory array
K_track = [K_track, zout_K_track];

end; % for ii = 2:20:nsamples

i*** ***********

if kk == 1, % create first output

zoutmean_true = zout_true_n;
mean_K_track = K_track;
merror_track = track_error;
merror = error_true;

else % create output after 1st run

232

zoutmean_true = zoutmean_true + zout_true_n;
mean_K_track = mean_K_track + K_track;
merror_track = merror_track + track_error;
merror = merror + error_true;

end; % if kk ==1, else

toe

end; % for kk = l:nloops

%* *** ***************

% Compute Means
^***

zoutmean_true = zoutmean_true/nloops;
mean_K_track = mean_K_track/nloops;
merror = merror/nloops; % mean error between

% measurement and true position

merror_track = merror_track/nlopps; % mean error between
% EKF estimated position
% and true position

^*** ************

% Plot results
%******* ************************************** ****************

figure(1)
measurement = zoutmean_true/1000; % convert to km
Kalman_track = mean_K_track/1000; % convert to km
missile_track = missilevec(:,l:nsamples)/1000; % convert to km

plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-
');%

%Sensor_posit(l)/1000, Sensor_posit(2)/1000,
Sensor_posit(3)/1000,'rx');
%axis('equal') ;
%axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35])
title(['TBM Profile ', num2str(prof_num)]);
xlabelCX (km)"), ylabeM'Y (km)'), zlabel (' Z (km)'), grid;

% print -deps imm3a

figure(2)
plot3(missile_track(2,:), missile_track(5,:), missile_track(8,:),'g-

I
f • • •

measurement(1,:), measurement(2,:), measurement(3,:),'r-');%,..

%Sensor_posit(l)/1000,Sensor_posit(2)/1000, Sensor_posit(3)/1000, 'rx');
%axis('equal')
%axis([0,40,0,40,0,40]) ;
axis([0,35,0,35,0,35])
title(['TBM Profile ', num2str(prof_num),' w/ Measurement Noise']);

233

xlabelCX (km)'), ylabel('Y (km)'), zlabel('Z (km)'),grid;
% print -deps imm3b

figure(3)
plot3(missile_track(2,l:nsamples) , missile_track(5, lmsamples) ,

missile_track(8, lmsamples) , 'g- ' , . . .
Kalman_track (1, :), Kalman_track(2,:), Kalman_track(3,:), 'r-

');%

%Sensor_posit(l)/1000,Sensor_posit(2)/1000,Sensor_posit(3)/1000,'rx");
%axis('equal')
%axis([0,40,0,40,0,40]);
axis([0,35,0,35,0,35])
xlabelCX (km)'), ylabel('Y (km)'), zlabeK'Z (km)'),grid;
title(['TBM Profile ', num2str(prof_num),' w/ IMM Trajectory']);

% print -deps imm3c

figure(4)
time = missilevec(1, :);
plot(time(1:nsamples-l), merror,'g-', time(l:nsamples-l),

merror_track, 'r-') ;
xlabel('Time (seconds)'),ylabel('Mean Error (meters)'),grid;
title ('Mean Distance Error in Measurements vs Time'),-

%print -deps imm3d

%save mm5003
%save imml003

234

APPENDIX F. MATLAB® INFORMATION

MATLAB® and SIMULINK™ is a product of MathWorks, Inc., 24 Prime Way,

Natick, Mass. 01760. MATLAB® version 4.2b and SIMULINK™ version 1.3a were used

throughout this study.

235

236

LIST OF REFERENCES

1. Senator Jesse Helms, speech on the Strategic Anti-Missile Revitalization Act of
1996, U.S. Senate, 104* Cong., Congressional Record (6 February 1996), S 917.

2. Mosher, D., "The Grand Plans," IEEE Spectrum, Vol.34, No. 9, September 1997.

3. Greenburg, J., "Theatre Ballistic Missile Defense: New United States Strategic
Requirements and the ABM Treaty," Master's Thesis, Naval Postgraduate School,
California, 1995.

4. Isaacson, J., and Vaughan, D., Estimation and Prediction of Ballistic Missile
Trajectories, RAND, Santa Monica, California, 1996.

5. Stevens, B., and Lewis, F., Aircraft Control and Simulation, John Wiley and Sons,
Inc., New York, 1992.

6. Zarchan, P., Tactical and Strategic Missile Guidance, Second Edition, Artech
House, Inc., Norwood, Massachusetts, 1986.

7. Blackman, S., Multiple-Target Tracking with Radar Application, American Institute
of Aeronautics and Astronautics, Inc., Washington, D.C., 1994.

8. Brown, R., and Hwang, P., Introduction to Random Signals and Applied Kaiman
Filtering, Third Edition, John Wiley and Sons, New York, 1997.

9. Bar-Shalom, Y, and Li, X., Estimation and Tracking: Principles, Techniques, and
Software, Artech House, Inc., Norwood, Massachusetts, 1993.

10. Bar-Shalom, Y., and Li, X., Multitarget-Multisensor Tracking: Principles and
Techniques, Artech House, Inc., Norwood, Massachusetts, 1995.

11. Hutchins, R.G., EC3310 Class Notes, Naval Postgraduate School, 1997.

12. Jerardi, T., TBM Profile Data, Johns Hopkins University Applied Physics
Laboratory, 1998.

13. Beaulieu, M., "Launch Detection Satellite System Engineering Error Analysis,"
Master's Thesis, Naval Postgraduate School, California, 1996.

237

238

INITIAL DISTRIBUTION LIST

No. Copies
Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Robert G. Hutchins, Code EC/Hu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Harold A Titus, Code EC/Ts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Fred Glaeser
Department of the Navy, CNO
N632, Room 5P773
Pentagon
Washington, DC 20350-2000

Dr. VerleN. Schrodt
Associate Dean for Administration
College of Engineering
University of Alabama
Box 870200
Tuscaloosa, AL 35487-0200

8. LT Antonio P. San Jose
7901 AllentownRd.
Fort Washington, MD 20744

239

