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1   Introduction 

Background 

The United States Army is responsible for managing over 12 million acres of 
land. The Army's land management objective is to maintain realistic military 
training and testing environments while promoting land stewardship. To accom- 
plish this objective, the U.S. Army Land Condition Trend Analysis (LCTA) 
program was developed at the U.S. Army Construction Engineering Research 
Laboratories (USACERL) under the sponsorship of the U.S. Army Engineering 
and Housing Support Center (USAEHSC) as a means to inventory and monitor 
natural resources on military installations. LCTA uses standard methods to 
collect, analyze, and report natural resources data (Diersing, Shaw, and Tazik 
1992) and is the Army's standard for land inventory and monitoring (Technical 
Note [TN] 420-74-3). Over 50 military installations and training areas in the 
United States and Germany have begun or plan to implement the LCTA 
program. LCTA data sets currently exist for more than 40 installations and 
contain from 1 to 10 years of monitoring data. Lands inventoried as part of the 
LCTA program include Army Materiel Command (AMC), Forces Command 
(FORSCOM), Training and Doctrine Command (TRADOC), and National Guard 
Bureau installations. More than 75% of the Army's land base is represented by 
LCTA data (Shaw and Kowalski 1996). 

A central objective of the LCTA program is assessing how various site 
characteristics, both biotic and abiotic, respond to varying levels of disturbance. 
This project addresses part of this objective by estimating vegetation cover 
probabilities based on past disturbance history and site characteristics. 
Estimating vegetation cover is of primary interest since cover affects soil erosion 
and is the principal erosion factor that can be influenced by land managers. In 
fact, many of the carrying capacity models developed for the Army are erosion- 
based models (Diersing et al 1988, Shaw and Diersing 1989, U.S. Army Concepts 
Analysis Agency 1996, Anderson et al 1996, Warren and Bagley 1992). For land 
managers, cover and erosion levels are important in the decisionmaking process 
for scheduling military training on an installation or deciding when to begin 
reclamation procedures at a given site. As an example, if after prolonged distur- 
bance a site has a higher probability of having adequate vegetation cover, then 
one may conclude that such a site can be used with relatively higher intensity. 
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Also, if a site has a higher likelihood of recovering quickly by itself when 
compared to other sites, its recovery may not require reclamation efforts as 
intensive as other sites. 

Objectives 

Currently, there are two constraints to using LCTA data for estimating 
vegetation cover probabilities. First, only short time series data are frequently 
available for analysis. Second, except in some special cases, most installations 
do not have data that distinguish the exact cause of ground disturbance or 
distinguish the extent of each type of disturbance. Given these two constraints, 
it is not clear which procedures are most appropriate for estimating vegetation 
cover probabilities. The successful application of artificial neural networks 
(ANN) in pattern recognition and function approximation has prompted this test 
to determine whether feed-forward ANN can provide accurate probability 
estimates under these circumstances. 

The specific objective of this project is to test and verify that feed-forward ANN 
are a valid approach when using LCTA data to predict vegetation cover 
probabilities. The question is: Can next years' vegetative coverage probability be 
adequately estimated by inputting historic vegetative cover and disturbance 
information along with next years' expected disturbance? If the proposed 
approach is indeed appropriate, careful modeling design will allow managers to 
predict the probability of future training site vegetation coverage based on past 
coverage. 

Approach 

A literature survey was conducted to identify artificial neural network analysis 
techniques applicable for processing LCTA data. Information from the survey 
was then used to process a selected installation's LCTA data. Logistic models 
were also developed to compare the performance of the neural network models 
with more traditional analysis techniques. Finally, results from the LCTA data 
processing were summarized and recommendations made. 



USACERLTR-98/83 

Mode of Technology Transfer 

Information from this study is intended to be incorporated into evolving Army 
land-based carrying capacity models such as the Army Training and Testing 
Area Carrying Capacity (ATTACC) model. 
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2   Data 

Data used in this project was obtained from Fort Sill, Oklahoma, and was 
collected during the peak of the vegetation growing seasons in 1989, 1990, 1991, 
and 1992. Standard LCTA core plot data collection methodology was used (Tazik 
et al 1992). Core plots were allocated across an installation using a stratified 
random sampling design based on unique combinations of satellite imagery 
landcover (reflectance) categories and soil series (Warren et al 1990). Each 
unique landcover/soil combination is recognized as a separate category, with the 
number of plots assigned to each category proportional to the land area included 
in each. For example, a landcover/soil category covering 10 percent of the 
installation would receive approximately 10 percent of the plots. This procedure 
was intended to ensure that the data collected are representative of the 
installation as a whole. 

Once a plot is located in the field, a 100-meter (m) long line transect is set on 
each plot. Along this transect, 100 points are sampled at 1-m intervals starting 
at the 0.5-m point. At each sample point, information is collected regarding the 
presence and type of surface disturbance, ground cover, and canopy cover. A 
point is considered disturbed if there is physical evidence of disruption of the soil 
surface or if the vegetation has been obviously crushed. Although LCTA 
recognizes five types of surface disturbance (NONE, PASS, TRAIL, ROAD and 
OTHER), only two are considered in this project: no disturbance (NONE) and 
disturbance due to a random vehicle pass (PASS). If vegetation is present at a 
sample point, the species is recorded and the point is considered to have a 
ground cover. If other soü-mamtaining material (i.e., rock) is present, the soil- 
maintaining material is recorded and the point is also considered to have cover. 
If a sample point has any aerial vegetation cover above the point, the plant 
species and height are recorded and the point is considered to have canopy cover. 
Aerial vegetation cover is recorded at 0.1-m intervals from 0.1-m to 2.0 m, and at 
0.5-m intervals from 2.0-m to 8.5 m. The top-most aerial recordings at each 
point were summed together to classify the transect's plant community. The 
plant community is a hierarchical classification scheme based on the transect's 
vegetation physiognomic structure, and categorizes a transect by overall life 
form (grass, forb, shrub, or tree), life form type (annual or perennial species), and 
general aerial cover density (sparse, open, dense, closed) (Anderson et al 1995). 
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It was assumed in this project that sampled points along a line transect are 
spatially independent; that is, whether a previous sampled point has vegetation 
cover has no effect in deciding whether the next point has cover. A total of 
15,158 data points were included in the data set. Combinations of the data 
include (1) ground cover points with NONE or PASS disturbance, (2) canopy 
cover points with NONE or PASS disturbance, (3) no ground cover points with 
NONE or PASS disturbance, and (4) no canopy cover points with NONE or PASS 
disturbance. 

Preliminary data analysis identified the seven most relevant variables in 
determining vegetation cover probability for the year 1991. These seven 
variables include: disturbance history (NONE or PASS) in 1989 and 1990, 
vegetation cover (covered or not covered) in 1989 and 1990, disturbance in year 
1991, the transect plot's plant community classification, and the vegetation 
cover's life form. Thus, each training pattern consisted of seven input variables 
and one target output variable. In this project, ground and canopy vegetation 
cover were modeled separately, with the training based on transect point data. 
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3  Training Algorithm and Network 

Structure 

Due to the unbalanced representation of the training data, widely used gradient- 
based methods (i.e., back-propagation and its variants) failed to produce useful 
results. All the gradient-based training methods actually settled down at a local 
minimum that corresponds to classifying all noncovered points as covered points; 
that is, all the noncovered were filtered out as data noise. An adaptive and 
directional random optimization method (ADRO) was developed for this project 
as an alternative training method. The algorithm can be regarded as a hybrid 
between gradient-based and random search optimization methods. It has a self- 
adjusting variance term, a directional component, and can conduct backward 
searches. In this project, fixed structure, single hidden layer feed-forward 
networks with one or two hidden units were employed. 

The ADRO algorithm adopted was first developed as a random optimization 
procedure (Matyas 1965). The algorithm was then modified by adding a 
backward search process and an adaptive variance component (Solis and Wets 
1981). The algorithm was then introduced as a training algorithm for finding 
the global error minimum for feed-forward neural networks (Baba 1989). This 
algorithm not only has the capability to locate the global error minimum, but it 
is also fast. 

Like simulated annealing, the ADRO procedure also uses a variance term to 
determine the size of weight changes (delta-weights). However, the ADRO 
procedure differs from simulated annealing in one significant way; the ADRO 
algorithm conducts searches not only in a forward manner (i.e., adding delta- 
weights to the current weight vector), it can also conduct backward searches (i.e., 
subtracting delta-weights from the current weight vector) if the forward search 
is unable to lower the training error. If both forward and backward searches are 
unable to improve the training error, the weight vector remains unchanged and a 
new set of delta-weights will be generated. 

The second unique feature of the ADRO algorithm is its variance term. The 
variance of this algorithm is controlled by the results of the search process, and 
depending on the progress, it can go either up or down. In this implementation, 
the original rule for variance adjustment was adopted (Solis and Wets 1981).  If 
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each of the five successive forward search steps (or three backward search steps) 
is able to lower the training error, the variance for the next step will be doubled 
from its current value. If, however, each of the five consecutive forward steps (or 
three backward search steps) fails to lower the training error, the current 
variance will be halved. The variance remains unchanged otherwise. This 
practice encourages larger steps to be taken when the search is going well, and 
forces smaller steps to be taken if the search is not going well. An added 
advantage of this self-adjusting process is that the variance term will approach 
zero rapidly if there is no improvement in training. This feature allows 
unnecessary training to be avoided, especially at the beginning of a training 

session. 

The third unique feature of the ADRO algorithm is its directional component. 
This component is similar to a memory or momentum term. It allows the 
algorithm to search along the directions where it has been successful, and 
accelerates the search process. In this application, the rules for adjusting the 
directional component reported in Baba (1989) were adopted. Since the ADRO 
algorithm is still a random optimization procedure, it can escape local minima 
and locate the global minima. The backward search, the self-adjusting variance, 
and the directional component together make the ADRO a fast random search 

procedure. 

In the original algorithm, the delta-weights are generated by either a Gaussian 
or a uniform distribution. For speed enhancement in this implementation, the 
new steps are generated by a Cauchy distribution similar to the fast simulated 
annealing (Szu and Hartley 1987). Since the variance of a Cauchy distribution is 
unbounded, occasionally large steps in the right directions will be taken, which 
will improve the training speed. Using some benchmark test data sets in an 
artificial neural network (e.g., multi-bits parity problem), we concluded that the 
modified algorithm is at least as fast as the original algorithm. 

Because of the inherent parallelism of the algorithm and because the problems of 
interest typically involve a large number of observations, a parallel version of the 
algorithm was implemented on a Connection Machine CM-2 computer using CM 
FORTRAN under field-wise (or PARIS) mode. The implementation is a training 
set parallel implementation where each training point occupies a processor, and 
the weights are broadcast to each processor when needed (Singer 1990). Under 
this implementation, the majority of the computationally intensive tasks will be 
done on CM-2. Because inter-processor communication is kept to a minimum, 
this implementation is probably the fastest one for this algorithm on a 
Connection Machine. 
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All the networks used in this project were standard 3-layer feed forward 
networks. The input layer consisted of seven units; the output layer had only 
one unit, and the outputs from this unit were regarded as the conditional 
vegetation coverage probabilities for the current year estimated by the trained 
networks. For each training set, two networks were trained, one with one 
hidden unit and the other with two hidden units. The purpose was to investigate 
whether a more complex network would provide better probability estimation. 
Thus, there were 10 weights (including the weights for the bias unit) in each of 
the one-hidden-unit networks (referred to as ADRO-1 networks hereafter) and 19 
weights for the two-hidden-unit networks (ADRO-2 hereafter). The error 
function for both networks was a squared-error function, and the activation 
function for all process units was a logistic function. The best initial variances 
were determined through trial and error. 

The training procedure had three stopping rules: 

1. The maximum training cycle was set at 10,000. Training stopped if 
this limit was exceeded. 

2. Training stopped if the error improvement for 10 consecutive cycles 
was smaller than 1.0E-3. 

3. Training stopped and the network was considered to have accom- 
plished the approximation if the training produced an error smaller than 
the pre-defined error criterion. 
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4   Performance Comparison 

Logistic models were developed to compare to the performances of the ANN 
models. The logistics model used the same input and output variables as the 
neural network models. The logistic regression procedure of the SAS statistical 
software (PROC LOGIST) was used to obtain the parameter estimates of the 

logistic models. 

The main goodness-of-fit statistic used in this project is the % statistic (Snedecor 
and Cochran 1980). In order to use this statistic, validation data (i.e., data for 
predicting the coverage probability for 1992) were cross-classified according to 
the seven input variables. Then, for each combination, an average coverage ratio 
was estimated and treated as the long-term coverage probability for that 
combination. For % to be effective, each combination has to have at least five 
observations in it. Therefore, in this project, combinations with less than five 
observations were removed from the validation data sets. Thus, the validating 
data set for ground coverage has 86 combinations, and the validation data set for 
aerial coverage has 74 combinations. 

The % goodness-of-fit statistic is denned as: 

2 _f(Ei-Oi)
t 

where 0; and E; are the observed and estimated, respectively, number of covered 
transect points in combination i; and E; = Oj x P. where Pj is the estimated 
probability of vegetation coverage from the ANN or the logistic models for 
combination i. 
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5  Conclusions and Recommendations 

For both types of vegetation covers, training stopped for ANN models after 
roughly 5,000 iterations once good initial variances were located. In all 
instances, network training stopped due to a lack of significant improvement in 
lowering the training error. It should be noted that for ANN models, the best 
initial variances were in the order of 10"5, which corresponded to a set of weights 
with small values. This set of small initial weights produced outputs around 0.5 
for each input pattern. In a certain respect, one can regard that initially the 
ANN models treated every pattern as having a coverage probability of 0.5 (i.e., a 
form of noninformative prior). Through repeated training, the ANN models 
gradually adjusted the weights to reflect the probability of coverage until the 
systems settled to some solutions. The residue errors as well as the validation 
results for the ANN models are given in Table 1. 

Both logistic models were able to converge. Most of the asymptotic 95% 
confidence intervals for the parameter estimates for logistic models did not 
contain 0, which indicates that the logistic models were statistically valid. The 
residue errors as well as the validation results for the logistic model are given in 
Table 1. 

As shown in Table 1, ANN models had a better fit to the training data than the 
corresponding logistic models for both types of vegetation covers. The 
improvement of ANN models over the corresponding logistic model was 
substantial. The ANN models were particularly effective in predicting the 
canopy cover. This result is likely due to the fact that most of the training data 
had canopy cover in 1991. As expected, ADRO-2 models fit the training data 
better than the ADRO-1 models, though the improvement was less significant 
than anticipated. 

Table 1. Performances of various models for predicting vegetation coverage probability. 

Ground Vegetation Coverage Canopy Vegetation Coverage 

Logistic ADRO-1 ADRO-2 Logistic ADRO-1 ADRO-2 
Residue error 1756.7 1474.5 1471.6 266.4 221.1 281.0 

2 
X 739.7 57.3 54.9 89.5 6.3 2.5 
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The main reason that the ADRO algorithm worked with these data sets, while 
back-propagation failed, is attributed to the way network weights were adjusted. 
For the ADRO algorithm, the overall training error is lowered through random 
weight adjustments regardless of the errors of individual patterns. Thus, if a set 
of weight changes can lower the overall training error, the weight changes are 
adopted; otherwise the algorithm retains the current weights and generates 
another set of weight changes. In contrast, gradient-based methods reduce the 
overall training error through the minimization of each individual pattern error. 
For training sets with roughly balanced representation, this strategy works well. 
For imbalanced training sets, the main contribution of each weight change will 
be due to the corrections of the dominant pattern. The weight adjustments will 
continue until the dominant pattern is correctly classified for all cases. 
Consequently, the rare patterns will be filtered out as data noises. This result 
will occur regardless of what the initial weights are. 

The main purpose of this project was to test whether a random optimization 
procedure can be used to model vegetation cover probabilities on military 
installations given manmade impacts and natural variability in vegetation cover. 
In general, ANN models had a better fit to the training data than the 
corresponding logistic models. However, since the data in this project have a 
short time sequence, results from the project should be interpreted cautiously. It 
should be noted that traditional statistical methods might be more suitable for 
this problem as further data accumulate. It will be of great interest to determine 
whether the ADRO algorithm will continue to perform better than the logistic 
model as long-term time sequence data becomes available. Ultimately though, 
data consistency through time is imperative for any type of time-dependent 
modeling. Even short to mid-term data is crucial given our lack of knowledge on 
the relationships between manmade impacts and the natural resources. 
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ATTN: AFZG-DE-EM 

Fort Lewis 98433   . 
ATTN: AFZH-DE-Q 

Fort Carson 80913 
ATTN: AFZC-ECM-NR 

Fort Bragg 28307 
ATTN: AFZA-PW-DW 

Fort Campbell 42223 
ATTN: AFZB-DPW-E 

Fort McCoy 54656 
ATTN: AFZR-DE-E 

Fort Pickett 23824 
ATTN: AFZA-FP-E 

Fort Stewart 31314 
ATTN: AFZP-DEV 

Fort Buchanan 00934 
ATTN: AFZK-B-EHE 

Fort Devens 01433 
ATTN: AFZD-DEM 

Fort Drum 13602 
ATTN: AFZS-EH-E 

Fort Irwin 92310 
ATTN: AFZJ-EHE-EN 

Fort Hood 76544 
ATTN: AFZF-DE-ENV 

Fort Hunter Liggett 93928 
ATTN: AFZW-HE-DE 

Yakima Tng Center 98901-5000 
ATTN: AFZH-Y-ENR 

Fort Dix 08640 
ATTN:ATZD-EH 

TRADOC 
Fort Monroe 23651 

ATTN: ATBO-FE 
Installations: 

Fort Lee 23801 
ATTN: ATZM-PTS-T 

Fort Jackson 29207 
ATTN: ATZJ-PWN 

Fort Gordon 30905 
ATTN: ATZH-DIE 

Fort Benning 31905 
ATTN: ATZB-PWN 

Fort McClellan 36205 
ATTN:ATZN-EM 

Fort Rucker 36362 
ATTN: ATZQ-DPW-EN 

Fort Leonard Wood 64573 
ATTN: ATZT-DPW-EE 

Fort Leavenworth 66027 
ATTN: ATZL-GCE 

Fort Bliss 79916 
ATTN: ATZC-DOE 

Carlisle Barracks 17013 
ATTN: ATZE-DPW-E 

Fort Eustis 23604 
ATTN: ATZF-PWE 

Fort Chaffee 72905 
ATTN: ATZR-ZF 

Fort Sill 73503 
ATTN:ATZR-B 

Fort Huachuca 85613 
ATTN: ATZS-EHB 

Fort Knox 40121 
ATTN: ATZK-PWE 

USAMC Instal & Srvc Activity 
ATTN: AMXEN-M 61299 

Rock Island Arsenal 
ATTN: AMSMC-EHR 
ATTN: SMCRI-PWB 

White Sands Missile Range 
ATTN: STEWS-ES-E 

US Army Dugway Proving Ground 
ATTN: STEDP-EPO-CP 

US Army Yuma Proving Ground 
ATTN: STEYP-ES-E 

Aberdeen Proving Ground 
ATTN: STEAP-SH-ER 

National Guard Bureau 20310 
ATTN: NGB-ARE 
ATTN: NGB-ARI 
ATTN: NGB-ARO-TS 

Army National Guard 
Ft. Richardson, AK 99505-5800 
Phoenix, AZ 85008-3495 
Sacramento, CA 95826-9101 
Boise, ID 83705-8095 
Jackson, MS 39209 
Camp Shelby, MS 39407-5500 
Oklahoma City, OK 73111-4389 
Draper, UT 84020-1776 
Braggs, OK 74423 
Reading, MA 01867-1999 
Camp Edwards, MA 02542-5003 
Richmond, VA 23219 
Columbia, SC 29201 
Eastover, SC 29244 
St. Augustine, FL 32085 
Starke, FL 32091 
Indianapolis, IN 46241 
Lansing, Ml 48913 
Little Falls, MN 56345 
Jefferson City, MO 65101 
Camp Roberts, CA 93451 
Camp Robinson, AR 72118-2200 

US Military Academy 10996 
ATTN: MAEN-EV 
ATTN: DOPS 

US Army Research Laboratory 
ATTN: AMSRL-OP-SDFE 

US Govt Printing Office 20401 
ATTN: Rec Sec/Deposit Sec 

Defense Technical Info Ctr 22304 
ATTN: DTIC-FAB 
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