AD

GRANT NUMBER DAMD17-95-1-5017

TITLE: Role of Tumor Collagenase Stimulating Factor in Breast Cancer Invasion and Metastasis

PRINCIPAL INVESTIGATOR: Stanley Zucker, M.D.

CONTRACTING ORGANIZATION: The Research Foundation of State University of New York Stony Brook, New York 11794-3366

REPORT DATE: December 1997

TYPE OF REPORT: Annual

PREPARED FOR: Commander U.S. Army Medical Research and Materiel Command Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

9980611 08

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of in gathering and maintaining the data needed, an collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 22	formation is estimated to average 1 hour per r d completing and reviewing the collection of in s for reducing this burden, to Washington Hea 202-4302, and to the Office of Management a	response, including the time for re nformation. Send comments regaind adquarters Services, Directorate for and Budget, Paperwork Reduction	viewing instructions, searching existing data sour ording this burden estimate or any other aspect o r Information Operations and Reports, 1215 Jeff Project (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave bland	k) 2. REPORT DATE December 1997	3. REPORT TYPE AND Annual (1 Dec	PATES COVERED	
 TITLE AND SUBTITLE Role of Tumor Collager Cancer Invasion and Me 	nase Stimulating Facto etastasis	r in Breast	5. FUNDING NUMBERS DAMD17-95-1-5017	
6. AUTHOR(S) Stanley Zucker, M.D.		· · · · ·		
7. PERFORMING ORGANIZATION N The Research Foundatic State University of Stony Brook, New York	AAME(S) AND ADDRESS(ES) on of New York 11794-3366		8. PERFORMING ORGANIZATION REPORT NUMBER	
(1) Some and the second secon second second sec	a ta 1900 martin da cara da car	Sec. 1. A sec. 1. A sec. 1.		
Commander U.S. Army Medical Rese Fort Detrick, Frederic	earch and Materiel Com ck, Maryland 21702-50	mand 12	10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
	na in 1975 an san Stan Stan Stan Stan Stan Stan Stan St	n a garan san ang ang ang ang ang ang ang ang ang a	e da compositiones de la composition de La composition de la c	
12a. DISTRIBUTION / AVAILABILIT	Y STATEMENT		12b. DISTRIBUTION CODE	
Approved for public re	Y STATEMENT	nlimited	12b. DISTRIBUTION CODE	
12a. DISTRIBUTION / AVAILABILIT Approved for public re 13. ABSTRACT (Maximum 200	Y STATEMENT	Inlimited	12b. DISTRIBUTION CODE	
 12a. DISTRIBUTION / AVAILABILIT Approved for public re 13. ABSTRACT (Maximum 200 Extracellular matrix met glycoprotein identified of fibroblasts to produce mi and metastasis. Recently normal tissue functions. cancer cells. New monoof further define their immut the human EMMPRIN ggene. In the 5' flanking r region. The effect of trar explored. Expression of malignant phenotype aft EMMPRIN on endothelial cell producti a role for EMMPRIN in EMMPRIN in EMMPRIN in EMMPRIN in 	alloproteinase inhibitor (EN originally in carcinoma cells atrix metalloproteinases (M y, it has become apparent the Using in situ hybridization, clonal antibodies to EMMP unohistochemical localization ene and have noted a high of region, three SP1 and two A nsfecting human breast can EMMPRIN cDNA by MDA er intramammary injection ial secretion of MMPs was on of stromelysin-1, collage cancer dissemination. The	MMPRIN), a plasma s, is responsible for i IMPs), thereby enhan at EMMPRIN is also , we have identified RIN and MT1-MMF on in breast cancer. degree of conservation P2 sites were identific cer cells with EMMF A-MB-536 cancer ce of tumor cells in nuc explored in vitro; EN enase, and gelatinase mechanism of actior	12b. DISTRIBUTION CODE membrane nducing peritumoral ncing cancer invasion o involved in selective EMMPRIN in breast are being employed to We have characterized on with the mouse fied in the promoter PRIN cDNA was ells resulted in a more de mice. The effect of MMPRIN enhanced e A. These data support and regulation of	
 12a. DISTRIBUTION / AVAILABILIT Approved for public re 13. ABSTRACT (Maximum 200 Extracellular matrix met glycoprotein identified of fibroblasts to produce mand metastasis. Recently normal tissue functions. cancer cells. New monoof further define their immuthe human EMMPRIN ggene. In the 5' flanking r region. The effect of trar explored. Expression of malignant phenotype aft EMMPRIN on endothelial cell productia a role for EMMPRIN in EMMPRIN in malignant 14. SUBJECT TERMS 	alloproteinase inhibitor (EN originally in carcinoma cells atrix metalloproteinases (M y, it has become apparent the Using in situ hybridization, clonal antibodies to EMMP unohistochemical localization ene and have noted a high of region, three SP1 and two A nsfecting human breast can EMMPRIN cDNA by MDA er intramammary injection ial secretion of MMPs was on of stromelysin-1, collage cancer dissemination. The t tissue remain to be examine t Cancer	MMPRIN), a plasma s, is responsible for i IMPs), thereby enhan at EMMPRIN is also we have identified RIN and MT1-MMF on in breast cancer. degree of conservation P2 sites were identificer cells with EMMF A-MB-536 cancer ce of tumor cells in nuclear explored in vitro; EN enase, and gelatinase mechanism of actior ned.	12b. DISTRIBUTION CODE membrane nducing peritumoral ncing cancer invasion o involved in selective EMMPRIN in breast are being employed to We have characterized on with the mouse fied in the promoter PRIN cDNA was ells resulted in a more de mice. The effect of MMPRIN enhanced e A. These data support and regulation of	
 12a. DISTRIBUTION / AVAILABILIT Approved for public re 13. ABSTRACT (Maximum 200 Extracellular matrix met glycoprotein identified of fibroblasts to produce matrix and metastasis. Recently normal tissue functions. cancer cells. New monoor further define their immut the human EMMPRIN ggene. In the 5' flanking region. The effect of tran explored. Expression of malignant phenotype aft EMMPRIN on endothelia cell productia a role for EMMPRIN in malignam 14. SUBJECT TERMS Breast Metastasis, Metalloprote Mutations, Humans, Anatomica and support of the support o	alloproteinase inhibitor (EN originally in carcinoma cells atrix metalloproteinases (M y, it has become apparent the Using in situ hybridization, clonal antibodies to EMMP unchistochemical localization gene and have noted a high of egion, three SP1 and two A insfecting human breast can EMMPRIN cDNA by MDA er intramammary injection ial secretion of MMPs was on of stromelysin-1, collage cancer dissemination. The t tissue remain to be examinated t Cancer inases, Cytokines;-Collagen tomic Samples	MMPRIN), a plasma s, is responsible for i IMPs), thereby enhan at EMMPRIN is also , we have identified RIN and MT1-MMF on in breast cancer. degree of conservation P2 sites were identific cer cells with EMMF A-MB-536 cancer ce of tumor cells in nuc explored in vitro; EN enase, and gelatinase mechanism of actior ned.	12b. DISTRIBUTION CODE membrane nducing peritumoral ncing cancer invasion b involved in selective EMMPRIN in breast P are being employed to We have characterized on with the mouse Fied in the promoter PRIN cDNA was ells resulted in a more de mice. The effect of MMPRIN enhanced e A. These data support n and regulation of 15. NUMBER OF PAGES 48 16. PRICE CODE	
 12a. DISTRIBUTION / AVAILABILIT Approved for public re 13. ABSTRACT (Maximum 200 Extracellular matrix met glycoprotein identified of fibroblasts to produce ma and metastasis. Recently normal tissue functions. cancer cells. New monoof further define their immuthe human EMMPRIN g gene. In the 5' flanking r region. The effect of tran explored. Expression of malignant phenotype aft EMMPRIN on endotheli endothelial cell producti a role for EMMPRIN in EMMPRIN in malignam 14. SUBJECT TERMS Breast Metastasis, Metalloprote Mutations, Humans, Anat 17. SECURITY CLASSIFICATION OF REPORT 	alloproteinase inhibitor (EM alloproteinase inhibitor (EM originally in carcinoma cells atrix metalloproteinases (M y, it has become apparent the Using in situ hybridization, clonal antibodies to EMMP unohistochemical localization egene and have noted a high of egion, three SP1 and two A insfecting human breast can EMMPRIN cDNA by MDA er intramammary injection ial secretion of MMPs was on of stromelysin-1, collage cancer dissemination. The t tissue remain to be examinent t Cancer sinases, Cytokines;-Collagen tomic Samples 18. SECURITY CLASSIFICATION OF THIS PAGE	MMPRIN), a plasma s, is responsible for i IMPs), thereby enhan at EMMPRIN is also , we have identified RIN and MT1-MMF on in breast cancer. degree of conservation P2 sites were identific cer cells with EMMF A-MB-536 cancer ce of tumor cells in nuc explored in vitro; EN enase, and gelatinase mechanism of action ned. ase; Fibroblasts, 19. SECURITY CLASSIF OF ABSTRACT	12b. DISTRIBUTION CODE membrane nducing peritumoral ncing cancer invasion b involved in selective EMMPRIN in breast P are being employed to We have characterized on with the mouse Fied in the promoter PRIN cDNA was ells resulted in a more de mice. The effect of MMPRIN enhanced e A. These data support n and regulation of 15. NUMBER OF PAGES 48 16. PRICE CODE ICATION 20. LIMITATION OF ABST	

. -

-

FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

 $\sqrt{2}$ Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

 \sqrt{S} In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

 $\sqrt{\times}$ In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

 \sqrt{S} In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

VS7In the conduct of research involving hazardous organisms, the investigator (s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Signature 12/24/97

TABLE OF CONTENTS

Page 1- Front cover

Page 2- SF 298 Report Documentation Page

Page 3- Foreword

Page 4- Table of Contents

Page 5- Introduction

Page 6 to 7- Summary of important publications since 1996

Page 8 to 15- Body of Annual Report

Experimental Results

Task 1. Identify the cellular localization of EMMPRIN (TCSF) and MMPs in human breast cancer tissue

- 1a) Obtain tissue samples from patients with various forms of breast cancer
- 1b) Immunolocalization of EMMPRIN and MMPs in human breast cancer tissue using specific antibodies to EMMPRIN to determine epithelial:mesenchymal contributions
- 1c) Develop an ELISA for EMMPRIN (TCSF) for use in quantifying antigen in breast tissue
- 1d) Quantify the EMMPRIN, gelatinase A, gelatinase B, and stromelysin-1 content of fresh tissue samples from patients with breast cancer
- 1e) Identify EMMPRIN (TCSF) in breast cancer tissue using in situ hybridization

Task 2. Identify important structural: functional relationships in the EMMPRIN (TCSF) molecule

2a) Determine whether post-translational processing is required for biological activity

2b) Alter EMMPRIN by deletional mutation and site directed mutagenesis2c) design peptide antagonists and produce anti-functional monoclonal antibodies to EMMPRIN

Task 3. Explore the role of EMMPRIN in cancer dissemination

3a) Transfection of breast cancer cells with EMMPRIN cDNA

3b) Analyze peritumoral fibroblast response to EMMPRIN in vitro

3c) Effect of EMMPRIN on production of MMPs by endothelial cells

Task 4. Human keratinocyte EMMPRIN

Page 16- Conclusions

Page 17 to 27 - Figures and Legends

Page 28 to 30- References

Page 31- Appendix (Reprints of our publications)

INTRODUCTION

The focus of this grant is on the role of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) in breast cancer invasion and metastasis. EMMPRIN is a glycoprotein identified on the plasma membrane of cancer cells which induces fibroblasts to produce Matrix Metalloproteinases (MMPs) (1).Originally known as Tumor Collagenase Stimulating Factor (TCSF) because it was described as a stimulator of interstitial collagenase (MMP-1) production by fibroblasts, TCSF was subsequently demonstrated to also induce cells to synthesize gelatinase A and stromelysin-1, hence the name change to EMMPRIN to reflect induction of synthesis of other MMPs.

EMMPRIN (TCSF), was initially purified from the plasma membranes of cancer cells by Biswas et al. and identified as a 58 kDa glycoprotein. EMMPRIN had no mitogenic activity

and therefore differs from most well characterized cytokines, such as IL-1, TNF, and TGF- β . Monoclonal antibodies raised against EMMPRIN from human lung carcinoma cells were used to purify and characterize this membrane glycoprotein (2). The E11F4 monoclonal antibody also inhibited the biological activity of EMMPRIN, thereby proving that EMMPRIN was the effector molecule. Following development of specific monoclonal antibodies, EMMPRIN was identified by immunohistochemistry in the cell membranes of malignant epithelial cells from tumor specimens of human lung cancer and bladder cancer (3). Recent reports from other laboratories have confirmed the stimulatory effect of human breast and bladder cancer cells on production of MMPs by host fibroblasts (3, 4).

The central hypothesis of this grant is that breast cancer cells produce EMMPRIN which then induces peri-tumoral fibroblasts to produce the MMPs (collagenase, gelatinase A, and stromelysin-1) required for cancer dissemination. The biologic role of EMMPRIN in cancer was not initially appreciated because tumor cell lines grown in vitro generally produce high levels of MMPs, thereby suggesting that tumor cell production of MMPs was responsible for cancer invasion and metastasis. Fibroblast production of MMPs was relegated to a secondary role. In retrospect, this confusion seems to have been brought about because cancer cells that develop into immortalized cells in tissue culture generally produce high levels of MMPs. Cancer cells incapable of producing MMPs in vitro seem to be at a disadvantage in terms of developing into immortalized cell lines. Based on these observations, we postulate that high MMP production is a selection factor for enhanced cell growth in vitro. Hence, although the vast majority of cancer cells within a tumor do not produce MMPs in high levels, the few cells that produce MMPs have a growth advantage in tissue culture. These data may explain the lack of enthusiasm for a role for EMMPRIN in cancer dissemination until it was demonstrated that the MMP producing cells within a tumor are primarily host fibroblasts rather than cancer cells.

Considerable evidence has been presented in the past 3 years to support the Biswas concept that cancer cells signal fibroblast to produce MMPs (1). In situ hybridization studies of human breast cancer tissues have shown that the cDNA for matrix metalloproteinases (stromelysin-3, gelatinase A, interstitial collagenase, MT-MMP) is localized to fibroblasts surrounding the tumor rather than to the tumor cells themselves (5, 6). Immunohistochemical studies using monoclonal and polyclonal antibodies, however, have identified gelatinase A in breast cancer cells suggesting that the tumor cells may bind this MMP to their cell surface (7-9). Interpretation of these data has led to the conclusion that normal host fibroblasts produce much of the MMPs that the cancer cells utilizes during invasion (10). The presence of gelatinase A in the cytosol of breast cancer cells, however, suggested to Hoythtya et al. (9) that membrane-bound gelatinase A may be internalized or that breast cancer cells, indeed, synthesize gelatinase A in vivo.

Using immunohistochemistry, we have demonstrated the selective localization of EMMPRIN on the surface of malignant cells in human breast cancer tissue (11), further suggesting that this factor may provide the missing link to explain the observation that peritumoral fibroblasts are the major producers of MMPs.

Based of the potential importance of EMMPRIN in regulation of MMP activity during tumor cell invasion, we have studied EMMPRIN at the molecular and physiologic level.

Following determination of the nucleotide sequence of the cDNA for human EMMPRIN (1), it was recognized that EMMPRIN is homologous to proteins of the Ig superfamily (basigin, neurothelin, OX-47, M-6) (12, 13) which have been identified in arthritis and embryonic epithelial/stromal interactions; the function of these proteins was not explored in these latter studies, but a function similar to EMMPRIN would be appropriate in these situations.

Summary of important publications since 1996 that are relevant to this grant

Scientific interest in EMMPRIN/basigin as a fascinating plasma membrane protein is of recent onset and emanates from laboratories studying diverse topics in cell biology. These studies are primarily descriptive and did not pursue the biologic function of EMMPRIN. Early studies used monoclonal antibodies to identify EMMPRIN/basigin as a plasma membrane antigen on endothelial cells localized at the blood brain barrier, hence the designation, "neurothelin". Subsequently. EMMPRIN/basigin was identified in cells in the blood, skin, and kidney (13). Although these investigators have acknowledged our demonstration of the biologic function of EMMPRIN in tissue remodeling, other investigators have not initiated studies of the MMP-inducing activity of EMMPRIN.

The studies described in this Section have led us to reassess some of the goals and priorities that were listed in our initial Army grant application. These modifications are described in the Body of the Annual Report.

1) Expression of EMMPRIN by non malignant cells

A novel monoclonal antibody that has been generated against a human leukemic T cell line (Molt 13) was found to recognize neurothelin/EMMPRIN (antigen recently termed CD 147). This antibody precipitated an antigen of 35-40 kDa in T cells, especially in thymocytes rather than peripheral blood T cells indicating that EMMPRIN is highly regulated during T-cell differentiation (14). The fact that Jurkat tumor cell EMMPRIN yielded a broad band in the range of 50-60 kDa suggests that extensive glycosylation may be more prominent in malignant cells as compared to normal cells. Based on our studies demonstrating non glycosylated EMMPRIN is ineffective in inducing MMP expression, we propose that EMMPRIN must be extensively glycosylated for functional activity as an inducer of MMPs. Therefore, it needs to be determined whether the 35-40 kDa EMMPRIN molecule has functional activity in T cells.

In another study a mouse monoclonal antibody directed against rabbit erythrocyte ghosts identified basigin/EMMPRIN (56-63% homology) in normal rabbit kidney tubule cells; the glycosylated EMMPRIN was expressed at the plasma membrane (15). Expression was regulated by interferon and serum. Erythrocyte and heart EMMPRIN appeared less glycosylated than kidney EMMPRIN. The presence of EMMPRIN in erythrocytes raises questions about modifications (i.e. glycosylation) of EMMPRIN required for function as an inducer of MMPs.

2) <u>EMMPRIN knock-out mouse</u>

In order to understand the in vivo function of EMMPRIN, Igakura et al. (16) produced knock-out mice lacking the EMMPRIN gene. The null mutant embryos mainly died around the time of implantation. A small number of surviving mice were sterile, indicating that the EMMPRIN gene is important in development and reproduction. These investigators then investigated the function of the EMMPRIN gene in the few surviving adult knock-out mice. The mitogenic response of lymphocytes from EMMPRIN knock-out mice was greater than normal in mixed lymphocyte culture. EMMPRIN knock-out mice had an abnormality in reception or response to odors.

3) Association of EMMPRIN with integrins at the cell surface

Recent studies examining the formation of complexes between integrins and other cell surface proteins using monoclonal antibody and cross-linking approaches have demonstrated that EMMPRIN/basigin is associated with $\alpha\beta\beta1$ and $\alpha6\beta1$, but not $\alpha2\beta1$ or $\alpha5\beta1$ integrins.

Immunofluorescent studies showed that EMMPRIN co-localizes with $\alpha 3\beta 1$ in cell-cell contacts and may interact with one another in a receptor-ligand fashion or in a lateral fashion (17). Using another approach involving the isolation of protruding plasma membrane structures from tumor cells, W.T. Chen (personal communication) has demonstrated that EMMPRIN is a major protein in invadopodia and is associated with integrins and MT-MMP in that location.

Other studies have shown that direct cell contact with cancer cells can induce fibroblasts to

produce gelatinase B. MMP induction was blocked by anti- $\beta 1$ integrin monoclonal antibodies suggesting that integrins and an organized actin cytoskeleton is required. An EMMPRIN-like mechanism was proposed, but no attempt to isolate the factor was described (18).

4) Expression of EMMPRIN in malignant skin lesions

Examining biopsy specimens from patients with skin cancers, it has been recently demonstrated that early invasion of malignant melanoma is associated with de novo expression of EMMPRIN and gelatinase B in malignant cells. It was suggested that the EMMPRIN stimulation of dermal fibroblasts to secrete various types of MMPs is among the factors involved in changes in matrix in the papillary dermis that are the earliest characteristic of tumor progression. EMMPRIN positive fusiform cells were also noted in cellular blue nevi. The authors proposed that EMMPRIN and gelatinase B may be partly responsible for the stromal changes observed in malignant melanoma; the absence of these proteins in the vertical growth phase and in metastatic lesions suggests that other factors are involved in tissue degradation during later stages of melanoma tumor progression (19).

5) Structure of the mouse EMMPRIN/basigin gene

The mouse EMMPRIN gene was reported to consist of 7 exons and 6 introns spanning 7.5 kb. The 5' upstream sequence of the mouse EMMPRIN gene contains no TATA box or CAAT box. Potential binding sites for NF1 and AP2 were observed (20). This study is quite relevant to our study of the human EMMPRIN gene (see below).

6) Cell surface localization of chicken EMMPRIN

Neurothelin, the homologue of human EMMPRIN on chicken endothelial cells at the bloodbrain barrier, was studied in embryogenesis. The polarized cell surface distribution of neurothelin was shown to be influenced intracellularly by F-actin and extracellularly by cell-cell interactions. The possibility that glycosylation may provide a means to modulate protein function was raised. This statement is relevant to our work with human EMMPRIN (21).

7) Distribution of MMPs (focusing on membrane type 1- MMP) in breast cancer tissues

As described by our collaborators, Polette and Birembaut, numerous papers have recently confirmed the theory that we proposed in our original Army grant, indicating that in breast cancer, the peritumoral stromal cells (fibroblasts) produce and secrete gelatinase A, which could then be bound by tumor cells on their plasma membranes and used to degrade basement membrane and extracellular matrix (22). This data is consistent with our finding that EMMPRIN produced by breast cancer cells stimulates fibroblast production of MMPs. Polette and Birembaut further demonstrated that MT1-MMP, which is responsible for pericellular activation of progelatinase A, is also produced by stromal cells in parallel with gelatinase A. These authors (22) further demonstrated that EMMPRIN is primarily expressed in breast cancer cells located in the same area as the peritumoral fibroblasts that express gelatinase A. In relation to our Aim 1b (see below), this concept seems well proven and does not need further corroboration.

Polette et al. also demonstrated that conditioned media of invasive breast cancer cells (MDA-MB-231) induced MT1-MMP mRNA in human fibroblasts and a parallel activation of progelatinase A, whereas non invasive breast cancer cells (MCF-7) did not have any effect (23). This observation leads us to wonder whether the secreted form of EMMPRIN (lacking the transmembrane and cytoplasmic domains) retain biologic activity. Specifically, is secreted EMPIRE the inducer of MT1-MMP?

BODY OF ANNUAL REPORT

Experimental Results (the original timetable for these tasks is listed in parentheses) Accomplishments achieved in years 1-2 (12/94 to 11/96) and year 3 (12/96 to 11/97) are identified separately.

Task (1). <u>Identify the cellular localization of EMMPRIN (TCSF) and MMPs in human breast</u> cancer tissue.

(1a) Obtain tissue samples from patients with various forms of breast cancer (24 months):

12/94 to 11/96- Breast tissue samples were obtained from 57 women with various forms of breast cancer and women with benign breast disease.

12/96 to 11/97-30 additional breast tissue samples are now available for study which completes our original goal.

(1b) <u>Immunolocalization of EMMPRIN and MMPs in human breast cancer tissue using</u> <u>specific antibodies to EMMPRIN to determine epithelial:mesenchymal contributions</u> (36 months):

12/94 to 11/96- Using immunohistochemical techniques and our original E11F4 monoclonal antibody to EMMPRIN, we characterized the cellular localization of EMMPRIN as compared to the localization of gelatinase A in breast cancer. Tumor sections obtained from 28 women with breast cancer were examined. In all cases of invasive ductal cancer, antibodies to EMMPRIN reacted strongly with invasive cancer cells with intense staining of the plasma membrane and less intense staining of cytoplasm. In comparison with cancer cells, normal ducts within the tumor specimen demonstrated similar staining with anti-EMMPRIN antibody. EMMPRIN immunostaining was intense in both early and advanced stages of invasive breast cancer, as well as in situ breast carcinomas. Moderate EMMPRIN staining of breast ducts and acini was noted in breast tissue obtained from biopsies of patients with benign breast disease and normal breast tissue (obtained from mammary reduction surgery). Colored photos were displayed in the 1996 report.

Limitations in quantifying EMMPRIN antigen concentrations in human tissue using the E11F4 monoclonal antibody could not be ruled out. These data suggested that EMMPRIN may have a function in embryonic development or maintenance of normal breast tissue, as well as the malignant process. We propose that in physiologic processes, the presence of an intact basement membrane separating the normal/benign epithelium from underlying stromal fibroblasts limits access of epithelial cell EMMPRIN for induction of MMP production by stromal fibroblasts through a cell-cell contact related mechanism. In contrast, in carcinomas the epithelial basement membrane is fragmented, thereby permitting epithelial cancer cells to migrate into the stroma, make direct cell contact with fibroblasts, and stimulate fibroblast sto degradation of the stroma (including the basement membrane), thereby enhancing the invasive/metastatic process of cancer cells.

12/96 to 11/97- The discrepancy between our results on immunohistochemistry and in situ hybridization (see below) have led us to plan to repeat the immunohistochemical studies using a different monoclonal antibody to EMMPRIN. These studies will be done in 1998 using one of the new monoclonal antibodies described below. If studies using the new antibody to EMMPRIN confirm the results with E11F4, we will need to design other experiments to clarify the dilemma. The possibility that the E11F4 monoclonal antibody recognizes another member of the IG superfamily besides EMMPRIN may need to be considered and tested for appropriately. One would hope that the new monoclonal antibodies to EMMPRIN that we have recently isolated may not be subject to the same cross reactivity; therefore, if the data with E11F4 is confirmed, this will strengthen the conclusion that EMMPRIN protein is present in high concentration in normal breast ducts.

(1.b.1) Production of new monoclonal antibodies to EMMPRIN

12/94 to 11/96 - Production of monoclonal and polyclonal antibodies to recombinant EMMPRIN for use in ELISAs. Eight BALB/c mice were immunized by the intraperitoneal injection of recombinant EMMPRIN (purified from CHO cell homogenates transfected with EMMPRIN cDNA). In spite of the development of high serum titers of antibodies against the immunogen in mice, antibodies adequate for ELISA were not produced. The problem with the initial 20 mouse myeloma clones developed was that all of the antibodies were of the IgM type and reacted nonspecifically with other proteins as demonstrated by Western blotting.

12/96 to 11/97 - To circumvent these problems, we used EMMPRIN purified from human lung cancer cells (LX-1) rather than recombinant EMMPRIN as the immunogen. EMMPRIN antigen injections (100 ug) in mice were performed on a 2 week schedule and mice were sacrificed after 8 weeks. This work was done in collaboration with Chemicon Corp. (Drs. Dale Dembro and Alex Strongin, San Diego, CA). Antibodies to EMMPRIN in mouse serum were present at a titer of 1:10,000 using native antigen rather than recombinant antigen. Spleen myeloma cells fusions growing in splenocyte conditioned media resulted in the production of 63 positive IgG producing wells. The 15 clones with the highest antibody titers as detected by EIA (20 ng EMMPRIN per well) were subcloned with 8 active clones identified after two subcloning procedures. All 8 clones produced distinct, broad bands (a result of extensive glycosylation) at ~53 kDa on Western blotting with EMMPRIN (Figure 1); weaker bands presumably representing degradation products of EMMPRIN were also noted (additional studies required). Non-specific cross reactivity with other proteins was not a problem.

(1.b.2) New Aim: Production of monoclonal antibodies to Membrane Type (MT1)-MMP

Since the description of MT1-MMP in 1994 (24, 25), it has become apparent that this membrane bound MMP is important in cancer because it functions to activate progelatinase A in the pericellular environment. We propose that following the induction of progelatinase A synthesis by EMMPRIN, MT1-MMP is required for activation of progelatinase A. As with most MMPs, MT1-MMP has been described by in situ hybridization as being expressed in tumoral fibroblasts rather than epithelial cancer cells (26). Since our previous study demonstrated that EMMPRIN treated fibroblast secreted activated as well as latent gelatinase A (27), this data suggested that EMMPRIN may also be responsible for inducing the synthesis of MT1-MMP. Based on these observations we have developed high titer monoclonal antibodies that react with MT1-MMP by injecting recombinant human MT1-MMP (fusion protein with GST) lacking the transmembrane domain (protein produced in bacteria) into Balb/c mice. Following fusion of mouse spleen cells with immortalized myeloma cells, antibody producing clones were selected. These antibodies will be employed in the immunohistochemistry studies of breast cancer described below. Two of the 30 monoclonal antibodies that we developed are excellent capture antibodies for biotinylated MT1-MMP. Six of these monoclonal antibodies demonstrate high titer efficiency as detecting antibodies for immobilized MT1-MMP. We are currently in the process of pairing the optimal capture and detecting antibodies for use in a MT1-MMP ELISA which will be performed on breast cancer tissue homogenates.

(1c) <u>Develop an ELISA for EMMPRIN (TCSF) for use in quantifying antigen in breast</u> <u>tissue (6 months)</u>:

12/96 to 11/97- The development of an ELISA for EMMPRIN has been delayed until now because of the absence of antibodies of sufficiently high titer and affinity for EMMPRIN. Purified EMMPRIN (100 ug) has recently been biotinylated and is being used to determine which of the monoclonal antibodies described in Section 1.b. 1 functions best as a capture antibody in an ELISA. Each of the monoclonal antibodies has been immobilized in 96 well plates and after washing and blocking steps, biotinylated EMMPRIN was added for 1 hour. Streptavidin- alkaline phosphatase and substrate were used for color development. The results of these experiments is currently being analyzed. The monoclonal antibody with the highest anti-EMMPRIN titer against immobilized EMMPRIN will be biotinylated for use as the detecting antibody in the ELISA (studies ongoing). Checkerboard analysis of optimal antibody concentrations will be performed. Breast cancer tissue stored in liquid nitrogen will then be tested by ELISA for EMMPRIN content as initially planned.

(1d) <u>Quantify the EMMPRIN</u>, gelatinase A, gelatinase B, and stromelysin-1 content of fresh tissue samples obtained from patients with breast cancer (36 months):

Studies in progress- In addition to testing for gelatinase A and gelatinase B as initially proposed, tissue samples will also be tested for MT1-MMP (see above for antibody development). Tissue samples will be thawed in batches and tested for each of the MMPs as initially planned. Based on several recent studies demonstrating that stromelysin-1 is not expressed in high concentrations in breast cancer (26), this ELISA will not be performed.

An anticipated limitation to these studies will be the sensitivity of our ELISAs for detection of small amounts of MMPs in stored tissue samples.

(1e) <u>Identify mRNA for EMMPRIN (TCSF) in breast cancer tissue using in situ</u> <u>hybridization</u> (48 months):

12/94 to 11/96- This task was completed ahead of schedule (publication enclosed). To characterize and distinguish the cells producing EMMPRIN and gelatinase A in breast cancer, we employed in situ hybridization using radiolabeled RNA probes for EMMPRIN and gelatinase A (28). Surgical specimens were obtained from 22 women with breast cancer and from 7 women with benign breast disease (fibrocystic disease and fibroadenoma). The result of these studies was that EMMPRIN mRNA was detected by in situ hybridization in all carcinomas in both non invasive and invasive cancer cells and in pre malignant areas such as atypical hyperplasia of the breast. EMMPRIN mRNA and gelatinase A mRNA were both visualized in the same areas in serial sections in breast cancer, but were expressed by different cells with tumor cells expressing EMMPRIN mRNA and fibroblasts expressing gelatinase A mRNA. There was no correlation between EMMPRIN mRNA and the tumor size, grade of the tumors, the number of lymph node metastases, and the hormonal receptor status of the tumors. Normal mammary glands adjacent to cancer areas showed no EMMPRIN hybridization grains. By Northern blot analysis of tissue extracts, higher expression of EMMPRIN mRNAs in breast cancers was noted as compared to benign and normal breast tissue; however, the normal tissue expression was not negative as noted by in situ hybridization (see enclosed manuscript for figures). The discrepancy noted between normal breast ducts staining positively for EMMPRIN by immunohistochemistry but negatively by in situ hybridization suggested differences in sensitivity of these techniques for EMMPRIN detection or differences in the rates of EMMPRIN turnover in normal versus malignant tissue (29).

Task (2). <u>Identify important structural: functional relationships in the EMMPRIN (TCSF)</u> molecule.

(2a) <u>Determine whether post-translational processing is required for biological activity</u> (12 months): **This task has been completed.**

12/96 to 11/97 (publication enclosed) - To circumvent problems related to the requirement for glycosylation of EMMPRIN for function of the protein, we stably transfected mammalian cells (CHO) with EMMPRIN cDNA. Posttranslational processing resulted in the production of EMMPRIN of molecular weight identical to native EMMPRIN from tumor cells i.e. ~58 kDa. We immunopurified the recombinant EMMPRIN after extraction from CHO cell membranes using monoclonal antibodies raised against native tumor cell EMMPRIN. When added to human fibroblasts in culture, the purified recombinant EMMPRIN was found to be active in stimulating production (2-5 fold) of fibroblast interstitial collagenase, gelatinase A, and stromelysin-1, but not TIMP-1 (30). Since non-glycosylated and partially glycosylated recombinant EMMPRIN were unable to stimulate MMP production, we conclude that posttranslational processing is required for EMMPRIN activity.

New Task- Since we know that post-translational processing is essential for EMMPRIN activity, we plan to prepare mutant EMMPRIN protein with altered glycosylation sites to learn more about the specific glycosylation requirements for EMMPRIN bioactivity in inducing

MMP synthesis. This work will begin in 1998.

(2b) <u>Alter EMMPRIN (TCSF) by deletional mutation and site directed mutagenesis of cDNA and then analyze mutant proteins to determine the minimum amino acid sequences necessary for functional activity (36 months):</u>

(2.b.1) We reconfirmed the identity of the EMMPRIN cDNA by showing that recombinant protein is recognized by the activity blocking monoclonal antibody (E11F4). Two immunoreactive bands were obtained corresponding to the forms previously noted (1). The bacterial recombinant proteins was also used to determine the approximate location of the epitope for E11F4, taking advantage of the lack of posttranslational modification that would interfere with such studies on the native, immunoaffinity-purified protein. Modified EMMPRIN expression plasmids were made containing deletion in four locations. XL-1 blue cells were transformed with the deletions expression pBluescript plasmids, and the expressed proteins were analyzed by SDS-PAGE and Western blotting with monoclonal antibody E11F4. All of the plasmids produced protein that is immunoreactive, except for the plasmid lacking immunoglobulin domain I (see enclosed manuscript). These results demonstrate that our cDNA encodes the protein which is reactive with our activity-blocking monoclonal antibody and that the antibody epitope exists in the extracellular immunoglobulin domain I. This, in turn, implies that the functional site of the metalloproteinase stimulatory activity of EMMPRIN is likely to be localized to sequences contained in the immunoglobulin domain I region.

The next step is to express the polypeptides that lack either domain I or domain II of the extracellular region of EMMPRIN in plasmid pCM for transfection in COS 7 cells. As we previously demonstrated, EMMPRIN produced in bacteria will not be useful for examining bioactivity since the non glycosylated protein does not induce MMP production. The biologic function of these COS 7 proteins in inducing MMP synthesis in fibroblasts will be assessed. More restrictive mutations by the same approach will be produced to narrow down the peptide regions responsible for bioactivity as originally described.

(2.b.2) <u>Characterization of the human EMMPRIN gene</u> (previously identified as new task 5 in 1996 Annual Report)

As a result of our sequencing of keratinocyte cDNA for EMMPRIN and its strong homology with cancer cell EMMPRIN, and the identification of EMMPRIN in normal rabbit kidney cells, T lymphocytes, and erythrocytes, we considered the strong possibility that the difference between the high level of synthesis of EMMPRIN in cancer cells and the apparent low level synthesis in non malignant cells may be due to differences in the promoter region for EMMPRIN, specifically in the mixed response element category. This led us to undertake the sequencing of the entire human EMMPRIN gene as a priority goal.

cDNA hybridization have been used to determine the chromosomal location of both mouse and human EMMPRIN/basigin genes, mapping the mouse to chromosome 10 and human to 19p13.3.

12/96 to 11/97- We herein present the first isolation and characterization of the human EMMPRIN gene (Figure 2). The probes used for S1 nuclease analysis are listed in Figure 3A. the S1 nuclease analysis to determine the transcription start site is listed in Figure 3B. While a high degree of conservation is seen between the human and mouse gene structures, a notable difference is that the human protein is encoded by 8 exons (Figure 4), while that of the mouse is encoded by 7. The sum of the exon and intron sizes is 10.8 kb in the human, and 7.5 kb in the mouse. Using EMMPRIN cDNA, we have isolated a cosmid clone that contained the EMMPRIN gene. S1 analysis with a fragment of the gene was performed to determine the transcription start site. PCR and sequence analysis has defined the exon/intron organization of the gene and shows that it is highly conserved with the mouse EMMPRIN/basigin gene. Figure 5 is a schematic diagram of the mRNA, showing exon orders and domain structures. Starting from left to right is the 5' UTR and the signal peptide encoded by Exon 1. The two half circles indicate the Ig domains of the extracellular portion of the molecule. About 950 bases of the 5'

flanking region were examined for transcription factor consensus binding sites, locating three SP1 sites and two AP2 sites. AP2 and SP1 sites overlap in the EMMPRIN gene. Of interest, in SV-40 the AP2 and SP1 sites also overlap and turn on the early genes. The early genes make T antigen which binds to the AP2 site and appears to turn off the early genes and remove AP2 from continued interaction with SP1.

The transcriptional start site for EMMPRIN was found to be located in a CpG island. In housekeeping genes, these multiple CG dinucleotides are unmethylated and are thought to play a role in their constitutive expression. No consensus TATA or CAAT boxes were observed in either the human or mouse gene.

Elements in the proximal promoter region were conserved in human and mouse genes. Figure 6 is a schematic of the 5' flanking regions of the human and mouse EMMPRIN genes. The human and mouse genes have the unusual property that each Ig domain is not encoded by one exon, but by two. Also unusual in the EMMPRIN gene as compared to other Ig family members is the fact that the downstream exon of the second Ig domain is a junctional exon encoding the transmembrane domain and part of the cytoplasmic domain as well. Most members of the Ig superfamily encode the Ig domain in a single, unshared exon.

These data lead us to postulate that when cells become transformed they might produce more SP1 and AP2 and those are the factors which bind to the EMMPRIN promoter, thereby enhancing the transcription and subsequent translation of EMMPRIN.

(2c) <u>Design peptide antagonists and produce anti-functional monoclonal antibodies to</u> <u>further characterize the structure:functional relationship of the EMMPRIN molecule</u> (48 months):

This task will be initiated in 1998 as planned.

Task 3. Explore the role of EMMPRIN (TCSF) in cancer dissemination using experimental models.

(3a) <u>Compare the effect of transfecting breast cancer cells with cDNA for native versus</u> <u>mutant EMMPRIN in regards to altering cancer invasion and metastasis in an experimental</u> <u>model</u> (48 months):

12/94 to 11/96- The open reading frame for EMMPRIN cDNA was transfected into human breast cancer cell lines (MDA-MB-436 and MCF-7). Transfected cell lines were then injected into the mammary fat pad of 6-8 week old nude female mice at a cell concentration of 1 X 10⁶ per animal. Palpable tumors (1-4 cm in diameter) were detected after 3 months in 2/4 mice injected with EMMPRIN cDNA- transfected MDA-MB-436 cells and in 3/4 mice with mock transfected MDA-MB-436 cells. Metastases were noted in the local lymph nodes of 1/4 mock transfected cells, but not in EMMPRIN-transfected cells. Tumor size between EMMPRIN and mock transfected tumor injected animals were comparable. Histology of the breast cancers was as anticipated indicating that the morphologic phenotype had not changed. This experiment was subsequently refined in 1997 as described below.

12/96 to 11/97- To ascertain that transfected tumor cells are expressing EMMPRIN protein in high concentration, we took advantage of the recent observation that the green fluorescent protein (GFP) of the jelly fish Aequoria victora retains its fluorescent properties when recombinantly expressed in eukaryotic cells (31). This 29 kDa protein can then be used as a powerful marker for gene expression in vivo (32). To this end, we expressed EMMPRIN cDNA along with the GFP reporter cDNA as a fusion gene controlled by a CMV promoter in pcDNA3 expression vector. The GFP-EMMPRIN fusion protein was expressed in the plasma membrane of transfected COS-1 cells as documented using fluorescent microscopy, thus indicating that GFP is transported to the plasma membrane along with the EMMPRIN protein. A second plasmid was produced in which GFP and EMMPRIN are controlled individually by separate CMV promoters. A control plasmid containing GFP alone was also produced. We documented EMMPRIN expression in transfected cells by fluorescent microscopy and immunoblotting of cell lysates. MDA-MB-436 human breast cancer cells were transfected with GFP cDNA and EMMPRIN/GFP fusion cDNA. Stable cell lines were selected using G-418. After 5 weeks, stably transfected cells were examined by Northern blotting. The expression of EMMPRIN mRNA in EMMPRIN transfected MDA-MB 436 cells was approximately 4 fold higher than in vector transfected cells (Figure 7). 1 x 10⁷ tumor cells derived from these transfected cell lines were then injected into mammary tissue of 4 month old nude female mice. Mice were examined weekly thereafter for tumor size measurements.

<u>Results</u>: EMMPRIN/GFP transfected mice (7/10) developed breast tumors at the site of mammary injections that grew to 1.4-2.3 cm diameter within 7-12 weeks (Figure 8); intraabdominal metastases were extensive in most mice (retroperitoneal, perigastric, sub diaphragm, kidney, etc.). These tumors were highly vascularized with numerous grossly visible vessels entering the tumor mass from normal tissue. GFP expressing tumors were green in color when examined by fluorescent light. Lung metastases were not observed in any of the groups. By comparison, the GFP (only) transfected tumor cells produced small, slow growing, poorly vascularized tumors (3/4 mice) that reached a diameter of $\sim 2-3$ mm in 12 weeks (not visible until autopsy). A complicated aspect of this experiment design was that mice injected with non-transfected MDA-MB 436 cells developed local breast tumors at approximately the same rate (3/4 mice) as mice injected with EMMPRIN/GFP fusion cells; the non-transfected cancer cells, however did not display extensive intra-abdominal metastases and were not highly vascularized. Further study of transfected cells (either GFP or EMMPRIN/GFP fusion cDNA) indicated that both sets of transfected cells propagated in vitro at a somewhat slower rate than non-transfected MDA cells and did not form foci to the same extent as non-transfected MDA-MB-436 breast cancer cells. This experiment suggests that: 1) transfection of the pcDNA expression vector into MDA-MB-436 cells resulted in partial loss of tumorigenic properties of these breast cancer cells; 2) transfection with EMMPRIN restored the malignant phenotype to MDA-MB-436 cells and resulted in intra-abdominal metastases and extensive tumor neovascularization; and 3) in the background of this less malignant transfected phenotype, expression of EMMPRIN cDNA resulted in more invasive and locally metastatic cancer cells. The fact that only 70-75% of the injected mice developed tumors suggests that technical problems may have limited the percentage of successful tumor engraftment.

These experiment are in the process of being repeated in order to determine the reproducibility of these observations. Groups of 12 nude female mice (5 weeks of age) have been injected with 10⁷ transfected MDA-MB-436 cells into mammary tissue as described above. Tumor formation and metastases are in the process of being recorded.

<u>Plan for 1998</u>- A second breast cancer cell line will be examined to determine whether the EMMPRIN transfection effect is reproducible in other cell lines. Transfection with EMMPRIN cDNA into MDA-MB-435 cells and HS-578T (widely metastatic cell lines supplied from Georgetown University) has been performed as described above for MDA-MB-436. To simplify the interpretation of results, the GFP cDNA will not be included in this experiment. Tumor growth and metastasis of these cells as compared to non-transfected and vector-transfected cells will be examined.

(3b) <u>Analyze human peritumoral fibroblast response to EMMPRIN (TCSF) in vitro</u> (36 months):

The experiments described in the original grant will be initiated in 1998.

12/96 to 11/97- Based on additional information available about EMMPRIN since 1994, it would appear that identifying the receptor for EMMPRIN on fibroblast target cells is a priority in understanding the mechanism of action of EMMPRIN and in determining whether tumor derived fibroblasts are more responsive to EMMPRIN's stimulatory effect than non activated fibroblasts. Based on these considerations, we have performed receptor binding studies with EMMPRIN.

Human HFL (lung fibroblasts) were metabolically labeled with ³⁵S methionine (200

uCi/ml) for 5 hours. Cells were washed thoroughly to remove unincorporated isotope. Purified human EMMPRIN from LX-1 cells (100 nM) was added to cells for 1.5 hours. The cross-linking reagent, 0.5 mM DTSSP (Pierce Co.) was added for 30 minutes at 23° C. The cells were then washed thoroughly and cells were lysed in PBS buffer with 0.1% triton X-100 detergent. The cell lysate was incubated with anti-EMMPRIN antibody (E11F4) overnight and then added to protein A agarose beads for 1 hour. The beads were then washed six times with PBS and boiled with 1x sample buffer for 5 minutes. The samples were loaded on a 10% SDS-PAGE and exposed to XRay film. The results demonstrate the binding of EMMPRIN to a 58 kDa and 42 kDa proteins on fibroblasts (Figure 9).

We next examined the binding of EMMPRIN to fibroblast membranes. Membrane extracts from human fibroblasts were loaded on an EMMPRIN (0.5 mg) affinity column (Carbolink or Aminolink column, Pierce) for 30 min. After washing the column with PBS, the protein was eluted from the affinity column with elution buffer and the samples were analyzed by SDS-PAGE followed by silver staining. As shown in Figure 10, a single protein of 58 kDa was identified. These results support the concept that fibroblasts contain a binding protein (receptor) for EMMPRIN that has a mass of ~58 kDa. Based on this data, we will now be able to compare quiescent fibroblasts versus tumor derived fibroblasts for their ability to bind to EMMPRIN. These results should coincide with the comparison of the biologic inducing effect on MMP synthesis of EMMPRIN on tumor fibroblasts as planned in the initial grant.

We are also in the process of isolating a sufficient amount of the affinity bound protein to determine the N-terminal amino acid sequence of this proposed EMMPRIN receptor on fibroblasts. These experiments will be done in 1998.

(3.c) <u>New Task</u>: <u>Effect of EMMPRIN on production of MMPs by endothelial cells</u>:

In the four years since this grant was written, it has become apparent that tumor angiogenesis plays an important role in the progression of cancer. An obvious question to be addressed is whether the tumor cells produce additional factors besides VEGF that would enhance tumor angiogenesis. Based on our demonstration that EMMPRIN produced by cancer cells stimulates fibroblasts to produce MMPs, we reckoned that EMMPRIN may have a similar effect on endothelial cells.

12/96 to 11/97 - To address this question we have incubated EMMPRIN with endothelial cells to determine the effect on MMP production. EMMPRIN purified from stably transfected CHO cells also stimulates production of stromelysin-1, interstitial collagenase, and gelatinase A (demonstrated by ELISA) by human umbilical vein endothelial cells cultivated in vitro. EMMPRIN did not significantly enhance TIMP-1 secretion (Figure 11). By comparison, VEGF had a greater stimulatory effect than EMMPRIN on HUVEC synthesis of interstitial collagenase and TIMP-1, but not gelatinase A or stromelysin-1 (33). We concluded that EMMPRIN plays a role in the early phase of tumor angiogenesis by inducing the degradation of endothelial basement membrane. We propose that in vivo, direct contact between circulating tumor cells and endothelial cells lining blood vessels at organs distant from the primary tumor may facilitate tumor cell penetration of the subendothelial basement membrane during metastasis. In this scenario, tumor cell EMMPRIN induces endothelial cells to secrete MMPs that subsequently facilitate subendothelial basement membrane degradation; tumor cells then are able to migrate through the rents in the blood vessel wall (34). Additional studies are underway to examine whether the effects of EMMPRIN and VEGF are additive which would suggest that their mechanisms of action are independent of one another.

Our hypothesis that EMMPRIN is a positive factor in tumor angiogenesis is supported by our recent studies demonstrating more vascularized tumors produced by EMMPRIN-transfected breast cancer cells (see Task 3).

<u>Task 4 (completed) added to original grant application</u> (see 1996 annual report) <u>Human Keratinocyte EMMPRIN</u>.

12/95 to 11/96- Although initial studies suggested that EMMPRIN is not present in significant amounts on many types of normal adult human cells (2, 3), it subsequently became

apparent that EMMPRIN is identical to human basigin and M6 antigen, (12, 13) and is expressed in some physiologically active epithelia during embryonic development, as well as tumor cells. Since keratinocytes have previously been shown to stimulate MMP production by fibroblasts (35) and since epithelial-dermal interactions are important in preserving and repairing skin structures, we sought evidence for the presence of EMMPRIN in keratinocytes. We found that human keratinocytes express EMMPRIN at their cell surface in vivo and in vitro and synthesize EMMPRIN in culture, albeit at a lower level than tumor cells. On characterization of EMMPRIN cDNA obtained from a keratinocyte cDNA library, we found that the deduced amino acid sequence was identical to that of tumor cell EMMPRIN (36). These cDNAs share a common region of 1459 nucleotide residues that differ in only 7 of these residues, only two of which are in the open reading frame and which result in no differences in the amino acid sequence of EMMPRIN. The significance, if any, of the polymorphism in the cDNA sequence of the two clones is unclear. We concluded that human keratinocytes produce EMMPRIN. A role for EMMPRIN at epithelial dermal junctions in tissue repair during wound healing seems highly plausible. Taken together, these data suggest that the function of EMMPRIN is under strict regulation in normal tissues, but this control mechanism may go awry in cancer.

CONCLUSIONS

EMMPRIN (TCSF) is a plasma membrane glycoprotein that is present on the surface of breast cancer cells, and is responsible, in part, for the elevated levels of MMPs in peritumoral fibroblasts and endothelial cells. EMMPRIN requires post-translational processing (glycosylation) for its ability to stimulate production of MMPs by target fibroblasts. Transfection of EMMPRIN cDNA into CHO cells resulted in the production of a glycosylated functional protein of similar molecular weight to native EMMPRIN (58 kDa) that was localized to the plasma membrane. EMMPRIN mRNA is expressed in benign and malignant human mammary ducts and acini to a much greater degree than in normal breast ducts. Immunohistochemical approaches, however, have indicated that EMMPRIN is also present in normal breast ducts and some other epithelial structures (i.e. T-cells, kidney tubules, endothelial cells, keratinocytes). The role of EMMPRIN in normal cells remains to be determined. The discrepancy between in situ hybridization and immunohistochemistry may be clarified by development of an immunoassay for tissue EMMPRIN. We have developed 8 IgG monoclonal antibodies to human EMMPRIN which will be employed in immunohistochemistry and immunoassay. We have characterized the human EMMPRIN gene. The sum of the exon and intron sizes is 10.8 kb. Transcriptional factor consensus binding sequences have been identified. We have transfected EMMPRIN cDNA into human MDA-MB-436 breast cancer cells and have demonstrated that these cells are more tumorigenic and invasive than plasmid transfected cancer cells. Dual transfection with EMMPRIN/GFP cDNA is described; cancer cells exhibit green fluorescence which makes it easier to detect metastatic foci. Studies were performed to identify a binding site for EMMPRIN on fibroblasts; a putative binding protein of 58 kDa was identified using 2 different experimental approaches. An inducing effect of EMMPRIN on endothelial cell synthesis of MMPs was identified. Based on studies to date, we propose that inhibition of EMMPRIN function may provide a potential mechanism to alter the invasive process in breast cancer.

FIGURES

Figure 1: <u>Western blot demonstrating the detection of EMMPRIN by mouse monoclonal</u> <u>antibodies</u>. Lanes were loaded with 25 ng human EMMPRIN purified from the membranes of LX-1 lung cancer cells, run on SDS-PAGE and transferred to nitrocellulose paper. After blocking and washing steps, mouse monoclonal antibodies from hybridoma supernatants were incubated with nitrocellulose strips and antibody was identified using the chemiluminescent method (Amersham).

Anti Emmprin Western Blot Results

16 December 1997

Anti mouse IgG(r) alkaline phosphatease KPL TJo36 (1/1500)

Sample designation:

Figure 2: <u>Sequence of the EMMPRIN gene and 5' flanking region</u>. The transcriptional start site is indicated by a +1. The sequence includes 940 bp 5' of the transcriptional start site, all the exonic sequences, and the borders of introns. The 5' primer used in S1 nuclease analysis are indicated by double underlines. Primers used to determine the exon/intron organization are single underlines. Exonic sequences are in upper case letters; intronic are in lower case.

ggtcccgcaa agagaaacct gcacttagaa aatttctcag cgagaccact ttacttgtac -940 ggaagggggc tgcctgcgtg ggatgcaatc tccagagcac acgggacaaa ggaagggagc -680 ttotqttoot ctgtcottto cotgttggot ggggttggac gocacaatot aagotgatoo -820 contrageta asacttasas ctttttasas tagggtasac cggcaceteg gaggaaagaa -760 gaagggggta aggttgattg acaactttag acctggaagt tgagtttctg aagaggaact -700 tacttgtccc aaccaaatgg tgcacaggac gtttatacta agaaattatt cattttctga -640 ggatccagat tcaagtgccc tttaagtatt tttatttggg cggaggaggt cacttcctcc -580 cacctaattt attaataccc atatatatat atatatgtac attittaaag gcagagatgt -520 gegtetegea tgtgeegegt etggtetega geteeeggge teaagegate tteeegeete -460 gaccteceaa ggetetggga etacagaegt gagecaeage geeggeeegt gtttaaetea -400 gataaaatct gggtaacaca ctttcaacgc ttcaaccccc tcggcgcacc gctctgcgct -340 cattecaact ttgaaagcag_gaaggaagaa_atgegeagge tecageegeg teccegeagg -260 coccactoce gttoctage aacgoogggt cacgtgegee geogeoogga ttoogtageg -220 tgagcetgee ggageeggeg egtacatgeg agegtgtgeg egegtgegea ggegggegae -160 cggcgtcccc gcgctcgccc cgcccccgag atgacgccgt gcgtgcgcgc gcccggtccg -100 cgcctccgcc gctttttata gcgccgcggg cggcggcggc agcggttgga ggttgtagga -40 21 14 COC ACC CAC CGA GOC TOC GGG GCT GOC Ggt gaggageg 45 Kb—ctt cag ccag GC ACA GTC G T H G A S G A A here 1 G T V TTC ACT ACC GTA GAA GAC CTT GOC TOC AAG ATA CTC CTC ACC TGC TTC AAT GAC AGC P T T V B 2D L G S K I L L T C S L N D S 82 CCCACA GAGGTCACA GOGCAC COC TOGCTCG AAG GOGGCGTG GTG GTG CTG AAG GAG GAC GAC A T E V T G H R W L K G G V V L K E D A CTG CCC CGC CAG AAA ACG GAG TTC AA gtgsgtgcct—8.7 Kb—tgttgcsgCGTG GAC TCC L P G Q K T E F K hearn 2 V D S 71 GACGACCAG TOS GGAGAGTAC TCC TCC GTC TTC CTC CCCGAG CTC ATG GOC AGG GOC CAG D D Q W G E Y 35 C V E L P E P M G T A N -0.3 Kb -ccctcotgtcagGG CCT CCC AGA GTG AAG GCT G P P R V K A CTC AAC ATC CACGgtgagtetge 110 AAG TOC TCAGAA CAC ATC AAC CAG GOOGGAG ACC CCC ATG CTG GAC AAG TCA GAG TCC K S S E H I N E G E T A M L V C K S E4 S 130 GIG CCA CCT GIC ACT GAC TOG GCC TOG TAC AAG ATC ACT GAC TCT GAG GAC AAG Ggtgagaa V-PPVIDWAWYKITDSBDK 148 -ttggcccctagCCCTCATGAACGCCTCCCAGAGACCACGTT<u>CTTCGTGAGTTCC</u> A L M N G S E S ... P F V 5 S S 0.65 Kb-162 182 TAC COG TOC AAC COC AOC TOC AAC COC TOC CAC CAG COC ATC ATC AOG CTC COC CTG Y R C N G T S S K G S D Q A I I T L R V 207 223 A<u>CCATCATCTTCATCTACG</u>AG AAG COCCOG AAG COCCAAG GACGTCCTG GAT Gglootlotlos TII6FIYEK R R K P E D V L D 240 --Q.SS Kb---ggtccttcttcagAT GAC GAC GCC GCC TCT GCA CCC CTgtaagttcca--balaan 5 D D D A G S A P L -0.25 Kb-lcat 249 geccagGAAGAGCAGCAGCAGCAGCAGAATG<u>ACAAGGCAAGAACGTCG</u>CCAGAGG K S S G Q H Q N D K G K 7 N V R Q R AAC TCT TCC TCA GGCAGgtgcggogtgg----Q3Kb----ccctgtccacagGTGGCCCGAG GACGCTCCCT N 5 5 * Inition 7 GCTCCCCCOTC TGCGCCGCCC CCGGAGTCCA CTCCCAGTGC TTGCAAGATT CCAAGTTCTC ACCTCITAAA GAAAACCCAC CCCGTAGATT CCCATCATAC ACTTCCTTCT TTTTTAAAAA AGITGGGITT TCTCCATTCA GGATTCTOTT CCTTAGGITT TTTTCCTTCT GAAGIGTTTC ACGAGAGECC GGGAGETGET GECETGEGGE CCCGTETGTG GETTTEAGEC TETGEGTETG AGTCATCGCC GGGTGGGCGG CACAGCCTTC TCCACTGGCC GGAGTCAGTG CCAGGTCCTT GCCCTTTGTG GAAAGTCACA GGTCACACGA GGGGCCCCGT GTCCTGCCTG TCTGAAGCCA ATGCTOTOTO OTTOCOCCAT TITTOTOCIT TEATOTITAA TITTATGAGG CCACGGOTOT GTGTTCGACT CAGCCTCAGG GACGACTCTG ACCTCTTGGC CACAGAGGAC TCACTTGCCC ACACCGAGGG CGACCCCATC ACAGCCTCAA GTCACTCCCA AGCCCCCTCC TTGTCTATGC ATCCGGGGGGC AGCTCTGGAG GGGGTTTGCT GGGGAACTGG CGCCATCGCC GGGACTCCAG AACCGCAGAA GCCTCCCCCAG CTCACCCCCG GAGGACGGCC GGCTCTCTAT AGCACCAGGG CTCACGTGGG AACCCCCCTC CCACCACCG CCACAATAAA GATCGCCCCC ACCTCCA

18

Figure 3: <u>Panel A. Probes used for S1 nuclease analysis</u>. Solid black lines indicate vector portions of the probes. Numbering refers to Figure 2. <u>Panel B. S1 nuclease analysis to determine</u> the transcriptional start site. Lane 1, size marker--100 bp ladder; lane 2, size marker-- ϕ X 174 digested with Hae III; lane 3, the 331 bp EMMPRIN probe with some vector attached; lane 4, the vector /331 bp probe hybridized to mRNA, then digested with S1 nuclease; lane 5, the 492 bp probe with some vector attached; lane 6, the vector/492 bp probe hybridized to mRNA, then digested with S1 nuclease; lane 7, the negative control probe; lane 8 the negative control probe hybridized to mRNA, then digested with S1 nuclease; lane 7, the negative control probe; lane 8 the negative control probe hybridized to mRNA, then digested with S1 nuclease; lane 7, the negative control probe; lane 8 the negative control probe hybridized to mRNA, then digested with S1 nuclease; lane 7, the negative control probe; lane 8 the negative control probe hybridized to mRNA, then digested with S1 nuclease; lane 7, the negative control probe; lane 8 the negative control probe hybridized to mRNA, then digested with S1 nuclease; lane 9, the positive control probe derived from an internal region of the EMMPRIN cDNA; lane 10, the positive control probe hybridized

to mRNA, then digested with S1 nuclease; lane 11, 100 bp ladder; lane 12, ϕ X 174 digested with Hae III. Lanes 4 and 6 show that a 68 bp fragment of probes 1 and 2 is protected. Lane 8 shows that the negative control probe is not protected at all by the mRNA. Lane 10 shows that the 297 bp fragment from the interior of the cDNA is protected as expected.

Figure 4: <u>The EMMPRIN gene organization</u>, <u>outlining the exons and introns</u>. The sum of the exon and intron sizes is 10.8 kb.

Transcription start site (-38 bp) Exon 8 Exon I Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7 a a a a a a a a a a a a a a 1-23 24-75 76-102 103-148 149-240 241-249 250-269 ~0.7Kb ~6.5 Kb ~0.3Kb ~ 0.65Kb $\sim 0.55 \mathrm{Kb}$ ~0.25Kb ~0.3Kb Start codon Stop codon

EMMPRIN Gene Organization

Total gene size (10.8 Kb)

Figure 5: Schematic diagram of the mRNA, showing exon borders and domain structures. Starting from the left is the 5' UTR and the signal peptide encoded by Exon 1. The two half circles indicate the Ig domains of the extracellular portion of the molecule, showing that each is encoded by two exons. The transmembrane domain is above the cross-hatched gray structure labeled "membrane". To the right of the transmembrane domain are the 2 exons encoding the cytoplasmic domain and the 1 exon (exon 8) encoding the 3' UTR.

Figure 6: <u>Schematic of the 5' flanking regions of the human and mouse EMMPRIN genes. +1</u> indicates the transcription start site. The dashed line symbolizes the CpG island. Filled in circles denote SP1 binding sites and filled in boxes denote AP2 binding sites. The small A/T regions that may facilitate RNA polymerase binding are indicated by unfilled triangles. The ATG start codes are marked.

— — — CpG island

Figure 7: <u>Northern blot analysis of total RNA extracted from MDA-MB-436 human breast</u> cancer cells transfected with EMMPRIN cDNA. Ten ug of total RNA was loaded and probed with nick-translated, radiolabeled cDNA(TALT5j). Total radioactivity used was 1 X 10⁶ cpm/ml, and the duration of film exposure was 18 hours (1). Lane 1, cells transfected with EMMPRIN cDNA.; lane 2, cells transfected with vector cDNA only; lane 3, EMMPRIN mRNA isolated from transfected CHO cells. EMMPRIN mRNA is identified at 1.4 kb. Total RNA content of each lane was comparable (data not shown).

Figure 8: <u>Nude mice injected with MDA-MB-436 breast cancer cells transfected with</u> <u>EMMPRIN/GFP cDNA develop tumors more rapidly than mice transfected with GFP cDNA</u> <u>alone</u>. Figure A: The mouse on the left was injected with GFP transfected MDA-MB-436 cells and the mouse on the mouse right was transfected with EMMPRIN/GFP transfected cells. Nude mice were sacrificed 12 weeks after injection with 1 X 10⁷ cells into the inferior mammary fat pad. Figure B depicts the growth rate of these tumors in mice as measured with a caliper at weekly intervals.

24

Figure 9- <u>Demonstration of a receptor for EMMPRIN on the surface of intact fibroblasts using a cross-linking reagent</u>. Lanes 1 and 2 contain EMMPRIN protein cross linked (DTSSP) with ³⁵S-labeled fibroblasts; lane 3 shows the result in the absence of the cross linking reagent (DTSSP); lane 4 shows the cross linking reaction with EMMPRIN omitted.

Figure 10-<u>Binding of solubilized fibroblast membrane proteins to immobilized EMMPRIN</u>. Confirmation of an EMMPRIN receptor on fibroblasts. Lane 1 contains the first elution from the Carbolink column; lane 2 contains the second elution from the Carbolink column; lane 3 contains the elution from the Aminolink column.

Figure 11: EMMPRIN induces endothelial cells to produce stromelysin-1, gelatinase A, and interstitial collagenase; vascular endothelial growth factor (VEGF) induces synthesis of interstitial collagenase and TIMP-1. Human umbilical vein endothelial cells were incubated with EMMPRIN, VEGF, or vehicle for 18 hours in serum-free media. Conditioned media was collected and tested for stromelysin-1, gelatinase A, and TIMP-1 employing specific ELISAs as we previously demonstrated (27). Synthesis of all three proteins was demonstrated.

REFERENCES

- 1. Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, T., Kataoka, H. and Nabeshima, K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res., *55*: 434-439, 1995.
- 2. Ellis, S. M., Nabishima, K. and Biswas, C. Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulating factor. Cancer Res., 49: 3385-3391, 1989.
- 3. Muraoka, K., Nabeshima, K., Murayama, L., Biswas, C. and Koono, M. Enhanced expression of a tumor cell-derived collagenase stimulating factor in urothelial carcinoma: its usefulness as a tumor marker for bladder cancers. Int. J. Cancer, 55: 19-26, 1993.
- 4. Ito, A., Nakajima, S., Sasaguri, Y., Nagase, H. and Mori, Y. Co-culture of human breast adenocarcinoma MCF-7 cells and human dermal fibroblasts enhances the production of matrix metalloproteinases 1, 2 and 3 in fibroblasts. Brit. J. Cancer, *71*: 1039-1045, 1995.
- 5. Basset, P., Bellocq, J. P., Wolf, C., Stoll, I., Hutin, P., Limacher, J. M., Podhajcer, O. L., Chenard, M. P., Rio, M. C. and Chambon, P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature, *348*: 699-704, 1990.
- Polette, M., Nawrocki, B., Gilles, C., Sato, H., Seiki, M., Tournier, J.-M. and Birembaut, P. MT-MMP expression and localization in human lung and breast cancers. Virchows Arch., 428: 29-35, 1996.
- 7. Poulsom, R., Hanby, A. M., Pignatelli, M., Jeffrey, R. E., Longcroft, J. M., Rogers, L. and Stamp, G. W. Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J. Clin. Path., *46*: 429-436, 1993.
- 8. Monteagudo, C., Merino, M. J., San-Juan, J., Liotta, L. A. and Stetler-Stevenson, W. G. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Amer. J. Pathol., *136*: 585-592, 1990.
- Hoyhtya, M., Fridman, R., Komarek, D., Porter, J., K., Stetler-Stevenson, W. G., Liotta, L. A. and Liang. Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int. J. Cancer, 56: 500-505, 1994.
- Poulsom, R., Hanby, A. M., Pignatelli, M., Jeffrey, R. E., Longcroft, J. M., Rogers, L. and Stamp, G. W. Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J. Clin. Path., 46: 429-436, 1993.
- 11. Zucker, S. and Biswas, C. Tumor collagenase stimulating factor (TCSF): A paracrine stimulating factor of fibroblast production of matrix metalloproteinases in cancer. Bulletin de l'Institut Pasteur, *92*: 282-290, 1994.
- 12. Kasinrerk, W., Fiebiger, E., Steffanova, I., Baumruker, T., Knapp, W. and Stockinger, H. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J. Immunol., *149*: 847-854, 1992.
- 13. Seulberger, H., Unger, C. M. and Risau, W. HT7, neurothelin, basigin, gp42 and OX-47 -many names for one developmentally regulated immmuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers, and neurons. Neuroscience Letters, *140*: 93-97, 1992.
- 14. Kirsch, A. H., Diaz, L. A., Bonish, B., ANthony, P. A. and Fox, D. A. The pattern of expression of CD147/neurothelin during human T-cell ontogeny as defined by the monoclonal antibody 8D6. Tissue Antigens, 50: 147-152, 1997.
- Schuster, V. L., Lu, R., Kanai, N., Bao, Y., Rosenberg, S., Prie, D., Ronco, P. and Jennings, M. L. Cloning of the rabbit homologue of mouse basigin and rat OX-47: kidney cell typespecific expression, and regulation in collecting duct cells. Biochim. Biophys. Acta, 1311: 13-19, 1996.
- 16. Igakura, T., Kadomatsu, K., Taguchi, O., Muramatsu, H., Kaname, T., Miyauchi, T., Yamamura, K.-i., Arimura, K. and Muamatsu, T. Role of basigin, a member of the

immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem. Biophys. Res. Commun., 224: 33-36, 1996.

17. Berdichevski, F., Chang, S., Bodorova, J. and Hemler, M. E. Generation of monoclonal antibodies to integrin -associated proteins. Evidence that α3β1 complexes with EMMPRIN/basigen/OX47/M6. J. Biol. Chem., 272: (in press), 1997.

.

- Segain, J. P., Harb, J., Meflah, K. and Menanteau, J. Induction of fibroblast gelatinase B expression by direct contact with cell lines derived from primary tumors but not from metastases. Cancer Res., 56: 5506-5512, 1996.
- 19. van den Oorg, J. J., Paemen, L., Opdenakker, G. and De Wolf-Peeters, C. Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Amer. J. Pathol., *151*: 665-670, 1997.
- Miyauchi, T., Jimma, F., Igakura, T., Yu, S., Ozawa, M. and Muramatsu, T. Structure of the mouse basigen gene, a unique member of the immunoglobulin superfamily. J. Biochem., 118: 717-724, 1995.
- 21. Schlosshauer, B., Bauch, H. and Frank, R. Neurothelin: amino acid sequence, cell surface dynamics and actin colocalization. Europ. J. Cell Biol., 68: 159-166, 1995.
- 22. Polette, M. and Birembaut, P. Matrix metalloproteinases in breast cancer. The Breast Journal, 2: 209-220, 1996.
- 23. Polette, M., Giles, C., Marchand, V., Seiki, M., Tournier, J. M. and Birembaut, P. Induction of membrane type matrix metalloproteinase 1 (MT1-MMP) expression in human fibroblasts by breast adenocarcinoma cells. Clin. Exper. Metastasis, *15*: 157-163, 1997.
- 24. Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E. and Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature, *370*: 61-65, 1994.
- 25. Sato, H. and Seiki, M. Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J. Biochem., 119: 209-215, 1996.
- 26. Heppner, K. J., Matrisian, L. M., Jensen, R. A. and Rodgers, W. H. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am. J. Pathol., *149*: 273-282, 1996.
- 27. Kataoka, H., DeCastro, R., Zucker, S. and Biswas, C. The tumor cell-derived Collagenase Stimulating Factor, TCSP, increases expression of interstitial collagenase, stromelysin and 72 kDa gelatinase. Cancer Res., *53*: 3155-3158, 1993.
- 28. Bendeck, M. P., Irvin, C. and Reidy, M. A. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after aterial injury. Circ. Res., 78: 38-43, 1996.
- 29. Polette, M., Toole, B., Tournier, J.-M., Zucker, S. and Birembaut, P. TCSF expression and localization in human lung and breast cancer. J. Histochem. Cytochem., 45: 703-709, 1997.
- Guo, H., Zucker, S., Gordon, M., Toole, B. P. and Biswas, C. Stimulation of metalloproteinase production by recombinant EMMPRIN from transfected CHO cells. J. Biol. Chem., 272: 24-27, 1996.
- 31. Altin, J. G. and Pagler, E. B. A one-step procedure for biotinylation and chemical crosslinking of lymphocyte surface and intracellular membrane-associated molecules. Anal. Biochem., 224: 382-389, 1995.
- 32. Freemark, B. D., Feeser, W. S. and Rosenfeld, S. A. Multiple sites of the propeptide region of stromelysin 1 are required for maintaining a latent form of the enzyme. J. Biol. Chem., 269: 16766-16773, 1994.
- 33. Zucker, S., Mirza, H., Conner, C., Lorenz, A., Drews, M., Bahou, W. F. and Jesty, J. Vascular endothelial growth factor induces a tissue factor cascade in endothelial cells: Conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int. J. Cancer, (*in press*): 1998.
- 34. Zucker, S., Drews, M., Conner, C., Cao, J., Lee, H.-M., Guo, H. and Toole, B. Extracellular matrix metalloproteinase inducer (EMMPRIN) facilitates angiogenesis. Proceedings AACR Annual Meeting in New Orleans, 1998.

Johnson-Wint, B. and Bauer, E. A. Stimulation of collagenase synthesis by a 20,000-dalton epithelial cytokine. J. Biol. Chem., 260: 2080-2085, 1985.
 DeCastro, R., Zhang, Y., Kataoka, H., Coon, J. and Biswas, C. Human keratinocytes

.

.

 DeCastro, R., Zhang, Y., Kataoka, H., Coon, J. and Biswas, C. Human keratinocytes express EMMPRIN: An extracellular matrix metalloproteinase inducer. J. Invest. Dermatol., 106: 1260-1265, 1996.

This work was supported by the U.S. Army Medical Research and Materiel Command under DAMD 17-95-1-5017.

Publications included with this report

.

1. Biswas, C., Zhang, Y., DeCastro, R., Guuo, H., Nakamura, T., Kataoka, H. and Nabeshima, K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res., *55*: 434-439, 1995. 2. Polette, M., Gilles, C., Marshand, V., Toole, B., Tournier, J.-M., Lorenzato, M., Zucker, S.

and Birembaut, P.: TCSF expression and localization in human lung and breast cancer. J. Histochem. Cytochem. 45: 703-709, 1997.

3. Guo, H., Zucker, S., Gordon, M., Toole, B. P. and Biswas, C.: Stimulation of metalloproteinase production by recombinant EMMPRIN from transfected CHO cells. J. Biol. Chem. 272: 24-27, 1997.

The Human Tumor Cell-derived Collagenase Stimulatory Factor (Renamed EMMPRIN) Is a Member of the Immunoglobulin Superfamily¹

Chitra Biswas,² Ying Zhang, Rosana DeCastro,³ Huiming Guo, Toshiya Nakamura,⁴ Hiroaki Kataoka,⁵ and Kazuki Nabeshima⁵

Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111

ABSTRACT

Tumor cell-derived collagenase stimulatory factor, renamed extracellular matrix metalloproteinase inducer (EMMPRIN), is a $M_r \sim 58,000$ glycoprotein which is located on the outer surface of human tumor cells and which interacts with fibroblasts to stimulate expression of several matrix metalloproteinases in the fibroblasts. In this study, we have used several approaches to isolate a complementary DNA encoding EMMPRIN. Several peptide sequences obtained from the isolated M_r 58,000 glycoprotein are found in the translated complementary DNA clone, verifying its identity. Computer database searches indicate that EMMPRIN is a member of the immunoglobulin superfamily and that the deduced amino acid sequence of EMMPRIN is identical to that recently reported for human basigin and M6 antigen, molecules of previously undetermined biological function.

INTRODUCTION

Degradation of extracellular matrix components of the basement membrane and interstitial matrix by MMPs⁶ is a crucial step in tumor cell invasion and metastasis (1–3). The role of tumor cell-fibroblast interactions in regulation of MMP levels in neoplasms has been demonstrated by several investigators, including ourselves (4–7). The recent finding (8–11) that, *in vivo*, some tumor-associated MMPs are mainly synthesized in peritumoral fibroblasts, rather than in tumor cells themselves, is consistent with a major role for these interactions in tumorigenesis *in vivo*.

We have shown that tumor cells in culture stimulate fibroblasts to produce high levels of collagenase and that a factor (previously termed TCSF) that is associated with tumor cell membranes, but also released into medium conditioned by tumor cells, is responsible for this stimulation (6, 12, 13). We have immunoaffinity purified the M_r ~58,000 TCSF from a human lung carcinoma cell line, LX-1 (13, 14), and demonstrated that addition of this purified factor to cultured fibroblasts stimulates expression, not only of interstitial collagenase (MMP-1), but also of fibroblast-derived stromelysin-1 (MMP-3) and M_r 72,000 gelatinase (MMP-2) (15, 16). While immunohistochemical studies have shown that TCSF is highly enriched around the outer surface of tumor cells and absent from most normal cells *in vivo* (17), recent studies from our laboratory⁷ have shown that TCSF is also present on the surface of normal human keratinocytes, where it presumably plays a role in regulating stromal MMPs (18). For these reasons, we have now renamed this factor EMMPRIN to indicate its role in extracellular matrix metalloproteinase induction via normal, as well as pathological, cellular interactions.

To help understand the chemical and biological nature of EMMPRIN and its relationship to other proteins, we have attempted to isolate cDNA clones for the protein. Oligonucleotide primers derived from peptide sequences were used to isolate EMMPRIN cDNAs by RT-PCR. Analysis of the cDNA-derived amino acid sequence of EMMPRIN indicates that it is a member of the immuno-globulin superfamily. Interestingly, the sequence is identical to two recently reported human cDNAs of unknown function, *i.e.*, human basigin (19) and M6 antigen (20). Thus, our studies provide one important function for these proteins, namely intercellular stimulation of MMP synthesis.

MATERIALS AND METHODS

Amino Acid Sequencing. Previously, we have reported the amino acid sequences for the NH_2 -terminus of EMMPRIN and four peptides derived from EMMPRIN after trypsin digestion (14). We have now sequenced two more peptides derived from EMMPRIN in the same manner as described previously (14). Briefly, immunopurified EMMPRIN was subjected to SDS-PAGE and blotted to a nitrocellulose membrane. The EMMPRIN band was revealed by staining with Ponceau S. After destaining, the protein band was cut from the membrane and digested with trypsin at a ratio of 1:20 (w/w). The peptides were separated by reverse phase HPLC, and the samples were subjected to automated Edman degradation.

cDNA Synthesis. RNA was prepared from LX-1 cells by a routine procedure using guanidinium thiocyanate (21), and poly(A)⁺RNA was isolated using the Mini Ribosep mRNA isolation kit according to the manufacturer's instructions (Collaborative Biomedical Products, Bedford, MA). First-strand cDNA was synthesized by reverse transcription of 1 μ g of poly(A)⁺ RNA using Moloney murine leukemia virus reverse transcriptase, according to the manufacturer's instructions (GIBCO-BRL, Gaithersburg, MD) in the presence of random hexamers or specific primers, depending on the desired reaction product. The resulting reaction mixture was digested with RNase H and used as a template for PCR.

DNA Amplification. PCR-amplified DNA fragments were generated with a Perkin-Elmer Cetus DNA thermal cycler (Norwalk, CT) using a gene amplification kit (Perkin Elmer) according to the manufacturer's instructions. Briefly, 100 μ l of reaction mixture contained 100 ng of cDNA pool, 10 μ l of 10X PCR buffer (provided in the kit), 16 μ l of each deoxynucleotide triphosphate at 1.25 mM, 5 μ l each of 20 μ M primers, and 0.5 μ l of Taq-DNA polymerase (2.5 units per assay). Samples were subjected to 30 cycles at the following conditions: 1 min at 94°C for denaturation; 1 min at 48°C for annealing; and 1.5 min at 72°C for elongation. A final elongation step consisted of a 72°C incubation for 10 min. Amplified products were separated by agarose gel electrophoresis and were identified by ethidium bromide staining. Where reamplification of a PCR product was necessary, samples were applied to low-melting point agarose gels (FMC, Rockland, ME); bands were excised, melted, and purified on Spin Bind extraction cartridges (FMC).

Received 8/26/94; accepted 11/9/94.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ This work was supported by Grant CA 38817 (to C. B.) from the NIH.

² This article is dedicated to the memory of Dr. Chitra Biswas, who passed away August 26, 1993. Requests for reprints should be addressed to Dr. Bryan Toole at Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111.

³ Present address: Instituto de Investigaciones Biologicas, FCE y N, Universidad Nacional de Mar del Plata, Mar del Plata (7600), Argentina.

⁴ Present address: Department of Biochemistry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036, Japan.

⁵ Present address: Department of Pathology, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki, Japan.

⁶ The abbreviations used are: MMP, matrix metalloproteinase; EMMPRIN, extracellular matrix metalloproteinase inducer; PCR, polymerase chain reaction, RT-PCR, reverse transcriptase-PCR; TCSF, tumor cell-derived collagenase stimulatory factor; bp, base pair(s); kb, kilobase.

⁷ R. DeCastro, Y. Zhang, H. Guo, H. Kataoka, and C. Biswas. Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer, manuscript in preparation.

Generation of an Authentic cDNA for EMMPRIN Peptide #51. Two 17-mer, degenerate, oligonucleotide mixtures, based on the previously obtained amino acid sequence of EMMPRIN peptide #51 (14), were synthesized. One of these, termed A, was synthesized in the sense direction corresponding to amino acids 2-7; the other, termed C', was synthesized in the antisense direction corresponding to amino acids 13-18. The sequences of the oligonucleotide mixtures are shown in Table 1. These mixtures were used as primers in RT-PCR to generate an authentic EMMPRIN cDNA corresponding to amino acid residues 2-18 of peptide #51, using LX-1 cell mRNA as the initial template. The primers had 8-bp adapters with restriction site sequences (EcoRI for the 5'-end of A and PstI for the 5'-end of C'; not shown in Table 1), allowing subsequent cloning of the product in the event that difficulty was encountered in directly ligating the product into the pCRII vector. The resulting PCR products were sized by electrophoresis against known DNA markers in 6% agarose (NuSieve GTG low melting point agarose; FMC). Several products of different intensities were identified, including the expected 66-bp product corresponding to #51 (50-bp fragment plus 2×8 bp adapters at 5' and 3' ends). The band corresponding to this size was cut out from the agarose gel and reamplified using the same primers A and C' as described above. After checking the size of the reamplified product, all of which was 66 bp, the reaction mixture was used directly for ligating into the pCRII vector system (Invitrogen). Recombinants were selected as white colonies on plates containing 5-bromo-4-chloro-3-indolyl-b-D-galactoside. Plasmid DNA was isolated from seven of these colonies, and the sizes of the inserts were analyzed by PCR amplification using M13 primers (forward and reverse), followed by agarose gel electrophoresis.

All seven recombinants had inserts of the expected sizes. DNA from two of these clones was sequenced by the dideoxy-mediated chain termination method (22) using a double-stranded DNA cycle sequencing kit (GIBCO-BRL). The nucleotide sequence of the inserts from both clones exactly matched the amino acid sequence of peptide #51 (Fig. 1). However, the nucleotide sequence varied at three positions, all within the primer sequences, as shown in *bold* in Fig. 1. This suggests that several of the degenerate primers were used by the template cDNA during amplification. The use of degenerate oligonucleotide mixtures as primers often leads to variations of this kind in the regions of the cDNA that correspond to the primers (23). To avoid these regions of variation, we designed primers (B/B') based on the sequence of the central part of the cDNA (Fig. 1) for use in the overlap extension reactions described below.

Generation of cDNAs Corresponding to the 5' and 3' Regions of EMMPRIN. To obtain a cDNA that includes the region of EMMPRIN that is 5' to peptide #51, primer B' (designed as described above) was used in the PCR in combination with primer D, a degenerate mixture corresponding to part of the previously sequenced NH_2 -terminal peptide #59, derived from EMMPRIN (Ref. 14, see Table 1). The PCR products were directly ligated into pCRII (Invitrogen) and used to transform *Escherichia coli*. Insert-containing white colonies were selected, and the plasmid DNAs were isolated, sized, and sequenced. One of these cDNAs, TALT5j, was used for further study.

Table 1 EMMPRIN peptide sequences and derived oligonucleotide primers

The amino acid sequences of the peptides for which corresponding oligonucleotide primers were synthesized are underlined. Oligonucleotide sequences A, B, and D are shown in the sense orientation, whereas B' and C' are in the antisense orientation. Primers A, C', and D are degenerate mixtures; primers B and B' are specific sequences derived as described in the text and Fig. 1. The nucleotide sequence, GARGA, highlighted in bold print at the 3' end of primer D fortuitously matches a portion of the 5' untranslated region of EMMPRIN (with the sequence, GAGGA) and thus amplified a cDNA beginning at this position (see Fig. 2).

#51 SELHIENLNMEADPGQYR A: 5'-GAR-YTN-CAY-ATM-GAR-AA-3' SELHIENLNMEADPGQYR B: 5'-AAC-CTG-AAC-ATG-GAG-GCC-GZ	Peptide sequence		Oligonucleotide primer ^a
SELHIENLNMEADPGQYR B: 5'-AAC-CTG-AAC-ATG-GAG-GCC-GA	#51 SELHIENLNMEADPGQYR	A:	5'-GAR-YTN-CAY-ATM-GAR-AA-3'
	SELHIENLNMEADPGQYR	B:	5'-AAC-CTG-AAC-ATG-GAG-GCC-GA-3'
SELHIE <u>NLNMEAD</u> PGQYR B': 5'-TC-GGC-CTC-CAT-GTT-CAG-GT'	SELHIE <u>NLNMEAD</u> PGQYR	B':	5'-TC-GGC-CTC-CAT-GTT-CAG-GTT-3'
SELHIENLNMEADPGOYR C': 5'-CZ-RTA-YTG-NCC-NGG-RTC-3'	SELHIENLNMEADPGOYR	C':	5'-CZ-RTA-YTG-NCC-NGG-RTC-3'
#59 AAGTVFTTVEDLGSK D: 5'-TTY-ACN-ACN-GTN-GAR-GA-3'	#59 AAGTVFTTVEDLGSK	D:	5'-TTY-ACN-ACN-GTN-GAR-GA-3'

^a M = A, C, or T; N = A, C, G, or T; Y = T or C; R = A or G; Z = G or T.

-----Primer A---->

GAA-CTT-CAC-ATT-GAG-AAC-CTG-AAC-ATG-GAG-GCC-GAT-CCC-GGC-CAA-TAC-CG

-E---L---H---I---E---N---L---N---M---E---A---D---P---G---Q---Y----R-

Fig. 1. Sequence of authentic cDNA for EMMPRIN peptide #51. The positions of primers A and C' used to obtain the authentic cDNA for peptide #51 are shown on the top line; the nucleotide sequence of one of the cDNAs obtained from PCR is given on the second line; the amino acid sequence of peptide #51 (residues #2–18) is on the *third line*. The amino acid sequence deduced from the nucleotide sequence is identical to that obtained by amino acid sequencing. A second clone was sequenced, and differences were found in the positions highlighted in *bold print* at the third, sixth and forty-fifth positions of the nucleotide sequence; all of these lie within regions corresponding to the primers, and this variation was presumably due to the use of degenerate oligonucleotides as primers. Primers B (*underlined*) and B' were designed from the central part of this cDNA.

in PCR using the dT_{17} adapter primer E and primer B, derived from peptide #51 (Table 1). After ligating the PCR products into the pCRII vector, transforming *E. coli*, and selecting white colonies, the plasmid DNA was isolated, and the inserts were sized and sequenced. One of these cDNAs, TALT3g, was used for further study.

Construction of a cDNA Encoding the Complete EMMPRIN Sequence. The inserts of the 5' and 3' cDNA clones for EMMPRIN (TALT5j and TALT3g) overlapped by 20 nucleotides and thus were used in the PCR-based, overlap extension technique (25) to yield a single cDNA with the complete open reading frame for EMMPRIN.

In the third and final reaction, the gel-purified products from both the above reactions were used as templates for fusion by overlap extension (25). For this reaction, the 30-mer primer F (5'-most primer), used above for amplification of TALT5j, was used with the dT_{17} adapter primer E (3'-most primer). The 1.6-kb DNA product that was generated in this PCR was ethanol precipitated, agarose gel-purified, and subcloned into pBluescript. Sequencing of this cDNA confirmed its identity with the combined sequence of the two separate cDNAs. The complete sequence is shown in Fig. 2.

Northern Blot Analysis. Northern blot analysis was performed as described previously (16). Ten μ g of total RNA was electrophoresed on a 1% agarose gel and transferred to nitrocellulose membrane. The blot was then hybridized overnight with EMMPRIN cDNA, which had been radiolabeled by nick-translation with ³²P-labeled dCTP. After washing, the filter was exposed to Kodak XR-5 film at -80°C for 48 h.

Deletion Analyses. The strategy used for making deletion constructs was adapted from that used to create the full-length EMMPRIN cDNA, *i.e.*, overlap extension (25). The primers used for the following reactions were primer F, 5'-<u>CGCGGATCCCGGCGAGGAATAGGAATCATG-3'</u>; primer G, 5'-ACG-GAGCCTCCGGGGGTGAAGGCTGTGAAGTCG-3'; primer H, 5'-ACGGG-CCTCCCAGAAGCCACCTGGCCGCCACC-3'; primer I, 5'-GCGTGCGC-AGCCACGAGAAGCCCCGGAAGCCC-3'; and primer J, 5'-TTCATCT-ACTAGTAGCGCCGGAA-3'.

The extracellular immunoglobulin domain I deletion construct was made as follows: (a) two PCRs, using EMMPRIN cDNA as template, were used to synthesize DNA fragments on each side of the desired deletion, one with the primers F (a BamHI adapter plus the 5' end of the EMMPRIN cDNA sequence) and reverse complement of G, and the other with primer G and the dT_{17} adapter primer E. Primer G is composed of sequences from each side of the desired deletion, *i.e.*, nucleotides 50–63 linked directly to 319–336 (Fig. 2). PCR products were analyzed and purified on 1% low-melting point agarose. DNA of expected sizes, 108 bp from the first reaction and 1306 bp from the second reaction, were cut from the gels and incubated in 300 μ l H₂O at

Fig. 2. Sequence of human EMMPRIN cDNA. ⁸ Nucleotide sequence and derived amino acid se- quence for human EMMPRIN; nucleotides are numbered on the <i>left</i> and amino acids on the <i>vicht</i>	
municered on the rejt and annue deles on the regim	
The putative signal and transmembrane amino acid	
sequences and the polyadenylation signal are un-	
derlined. The shaded regions indicate the deduced	
amino acid sequences that match the six peptides	
derived from EMMPRIN. The 20-nucleotide over-	
lapping region of the 5' and 3' cDNAs, TALT5j	
and TALT3g, is indicated by a line above nucleo-	
tide positions #517-536. The stop codon is marked	
by on astarisk	
by all usierisk.	

GAGGAATAGGAATC ATG GCG GCT GCG CTG TTC GTG CTG CTG GGA TTC GCG CTG CTG GGC ACC CAC GGA GCC TCC GGG GCT GCC GGC 24 <u>GTHGASG</u>AAG A L L ACA GTC TTC ACT ACC GTA GAA GAC CTT GGC TCC AAG ATA CTC CTC ACC TGC TCC TTG AAT GAC AGC GCC ACA GAG GTC ACA 73 TVFTVEDLCSKILLTCSLN Peptide 59 51 D s 154 GGG CAC CGC TGG CTG AAG GGG GGC GTG GTG CTG AAG GAG GAC GCG CTG CCC GGC CAG AAA ACG GAG TTC AAG GTG GAC TCC G H B W L K G G V V L K E D A L P G Q K T E F K V D S 78 GAC GAC CAG TGG GGA GAG TAC TCC TGC GTC TTC CTC CCC GAG CCC ATG GGC ACG GCC AAC ATC CAG GTC CAC GGG CCT CCC 235 D D G W G E Y S C V F L P E Peptide 74 316 AGA GTG AAG GCT GTG AAG TCG TCA GAA CAC ATC AAC GAG GGG Ρ G T A GTG AAG TCG TCA GAA CAC ATC AAC GAG GGG GAG ACG GCC ATG CTG GTC TGC AAG TCA GAG TCC GTG CCA 132 HINEGETAMLVC K S E A V K s S Ε Peptide 61 CCT GTC ACT GAC TGG GCC TGG TAC AAG ATC ACT GAC TCT GAG GAC AAG GCC CTC ATG AAC GGC TCC GAG AGC AGG TTC TTC 397 159 T D S E D K A L M N G s E S R F F V T D W I GTG AGT TCC TCG CAG GGC CGG TCA GAG CTA CAC ATT GAG AAC CTG AAC ATG GAG GCC GAT CCC GGC CAG TAC CGG TGC AAC A D С N 186 ŧ..... P GQYR V S S S Q G R S E L H I E N L N M Pentide 26 Peptide 51 Peptide 26 GCC ACC AGC TCC AAG GCC TCC GAC CAG GCC ATC ATC ACG CTC CGC GTC CGC AGC CAC CTG GCC GCC CTC TGG CCC TTC CTG G T S S K G S D Q A I I T L R V R S H <u>L A A L W P F L</u> 559 213 GGC ATC GTG GCT GAG GTG CTG GTG CTG GTC ACC ATC TTC ATC TAC GAG AAG CGC CGG AAG CCC GAG GAC GTC CTG GAT G I V A E V L V L V T I I F I Y E K R R K P E P V L 0 640 240 GAT GAC GAC GCC GGC TCT GCA CCC CTG AAG AGC AGC GGG CAG CAC CAG AAT GAC AAA GGC AAG AAC GTC CGC CAG AGG AAC 721 D D A G S A Peptide 38 Q Q N D G Q N 267 G H κ S Ρ ٤ κ s TCC TGA GGCAGGTGGC CCGAGGACGC TCCCTGCTCC GCGTCTGCGC CGCCGCGGA GTCCACTCCC AGTGCTTGCA AGATTCCAAG 802 TCT s TTCTCACCTC ITAAAGAAAA CCCACCCCGT AGATTCCCAT CATACACTTC CTTCTITTT AAAAAAGTTG GGTITTCTCC ATTCAGGATT 891 CTGTTCCTTA GGTTTTTTC CTTCTGAAGT GTTTCACGAG AGCCCGGGAG CTGCTGCCCT GCGGCCCCGT CTGTGGCTTT CAGCCTCTGG 981 CCTTCTCCAC TGGCCGGAGT CAGTGCCAGG TCCTTGCCCT TTGTGGAAAG TCACAGGTCA GTCTGAGTCA TGGCCGGGTG GGCGGCACAG 1071 AGCCAATGCT GTCTGGTTGC GCCATTTTTG TGCTTITATG TTTAATTTTA TGAGGGCCAC 1161 CACGAGGGGC CCCGTGTCCT GCCTGTCTGA CGAGGGCGAC CCCATCACAG CTCAGGGACG ACTCTGACCT CTTGGCCACA GAGGACTCAC TTGCCCACAC 1251 GGGTCTGTGT TCGACTCAGC GGGGGGCAGCT CTGGAGGGGG TTTGCTGGGG AACTGGCGCC ATCGCCGGGA 1341 CCTCAAGTCA CTCCCAAGCC CCCTCCTTGT CTATGCATCC 1431 CTCCAGAACC GCAGAAGCCT CCCCAGCTCA CTCTATAGCA CCAGGGCTCA CGTGGGAACC CCCCTCCCAC CCCCTGGAGG ACGGCCGGCT

65°C for 10 min; (b) a PCR was performed with 10 ng each of these two fragments, plus primer F and the dT17 adapter. The PCR product was precipitated with 0.3 M ammonium acetate and 2 volumes of ethanol, EcoRI, and electrophoresed on 1% low-melting point agarose. DNA with the expected size, 1382 bp, was cut from the gel and purified on Spin bind extraction cartridge; and (c) the purified DNA was ligated into pBluescript, and used to transform XL-1 blue cells. Plasmid DNA was isolated from positive (white colony) transformants and confirmed by sequencing.

To create constructs with deletions in the extracellular immunoglobulin domain II, the transmembrane domain, and the cytoplasmic domain, the same approach was used with appropriate primer pairs. For deleting the extracellular immunoglobulin domain II, primers F and the reverse complement of H, and primer H and the dT17 adapter, were used to make fragments on each side of the desired deletion. Primer H contains sequences from both sides of the region we wished to delete, bases 305-318 linked directly to 610-627 (Fig. 2). To delete the transmembrane domain, the two fragments were made with primers F and the reverse complement of I, and primer I with the dT17 adaptor. Primer I consists of bases 602-615 linked to 688-705 (Fig. 2), sequences on each side of the desired deletion. Primer F and the dT_{17} adapter were used in the final PCR to make the fused deletion product from the two fragments. To delete the cytoplasmic domain, two premature stop codons were inserted into the EMMPRIN cDNA. PCR fragments were made from template cDNA using primers F and the reverse complement of J, and J with the dT₁₇ adapter. Primer J corresponds to nucleotides 679-701 with T residues substituted for G and A at positions 688 and 691, respectively (Fig. 2) to create new termination codons. The two fragments were fused by overlap extension with primer F and the dT₁₇ adapter. These deletion constructs were also subcloned into pBluescript and used to transform XL-1 blue cells.

To express each deletion construct, 20 μ l of overnight cultures of each bacterial stock were added to 2 ml of Luria broth containing 0.2% glucose and 50 µg/ml ampicillin. After incubating at 37°C for 2 h, the cells were further incubated in the absence or presence of 0.5 mM isopropylthio-b-D-galactoside at 37°C for 3 h. The cells were collected by centrifugation and extracted by 30 μ l of 2 × SDS-PAGE sample buffer. The cell extracts were separated on 15% SDS-PAGE and then analyzed for cross-reactivity with the monoclonal antibody E11F4 by Western blotting (26).

RESULTS

Amino Acid Sequences of Peptides Derived from EMMPRIN. Previously, we have reported the amino acid sequence of four peptides termed #26, #51, #59, and #61, obtained by HPLC fractionation of tryptic peptide digests of EMMPRIN (14). Subsequently, we have sequenced two additional peptides, #38 and #74, from EMMPRIN. The sequences of the six peptides are shown in Table 2.

Isolation of EMMPRIN cDNAs. Several attempts to obtain EMMPRIN cDNA clones by screening an LX-1 library with degenerate or best-guess oligonucleotide probes, derived from the peptide sequences, were unsuccessful. Therefore, the following steps were taken to obtain a cDNA for EMMPRIN. First, a small EMMPRINspecific cDNA corresponding to a single peptide-derived sequence, peptide #51, was generated by RT-PCR with degenerate primers. Isolation of this cDNA confirmed the presence of an mRNA contain-

Table 2 Amino acid sequences of peptides derived from EMMPRIN Peptides #38 and #74 (marked with an asterisk) are reported here for the first time; peptides #26, #51, #59, and #61 were reported previously (14).

Peptide #26:	Phe-Phe-Val-Ser-Ser-Ser-Gln-Gly-Arg	
--------------	-------------------------------------	--

- Peptide #38*: Pro-Glu-Asp-Val-Leu-Asp-Asp-Asp-Asp-Ala-Gly-Ser-Peptide #51: Ser-Glu-Leu-His-Ile-Glu-Asn-Leu-Asn-Met-Glu-Ala-
- Asp-Pro-Gly-Gln-Tyr-Arg Ala-Ala-Gly-Thr-Val-Phe-Thr-Thr-Val-Glu-Asp-Leu-Peptide #59:
- Gly-Ser-Lys Ser-Glu-Ser-Val-Pro-Pro-Val-Thr-Asp Peptide #61:
- Val-Asp-Ser-Asp-Asp-Gln-Trp-Gly-Glu-Tyr-Ser-X-
- Peptide #74*: Val-Phe-Leu-Pro-Glu-

⁸ The sequence reported in this publication has been deposited in the GenBank data base (accession no. L10240).

ing the EMMPRIN-derived sequence in LX-1 cells and provided us with a correct cDNA probe to be used for generation of larger EMMPRIN cDNAs.

After sequencing the small cDNA corresponding to peptide #51, a unique reverse complement primer derived from it was used in RT-PCR, together with a degenerate primer made from the amino terminal peptide #59, to obtain a longer cDNA. Sequencing of one of the isolated cDNAs (TALT5j; insert size, 0.6 kb) revealed the following characteristics: (a) as expected, the sequences at the 5' and 3' ends corresponded to the two primers, D and B', which were based on portions of peptides #59 and #51, respectively; and (b) the complete sequences encoding peptides #26, #61, and #74 (Table 2) were present within the cDNA, demonstrating that the cDNA encodes an authentic EMMPRIN sequence.

An unexpected result from the above approach was that although the sequence of primer D was present at the 5' end of the cDNA, the complete sequence corresponding to peptide #59, from which D is derived, was found to begin 72 nucleotide residues downstream from the primer sequence. Thus, it appears that primer D annealed with a region of the 5' untranslated sequence of EMMPRIN and amplified a cDNA that begins in the 5' untranslated region. A possible explanation of this event comes from comparison of the sequence of this cDNA with sequences recently obtained from an EMMPRIN cDNA derived from a human keratinocyte cDNA library.⁷ The sequence at the 3' end of primer D (Table 1) corresponds exactly with a sequence within the 5' untranslated region, namely GAGGA, for the keratinocyte-derived as well as LX-1-derived EMMPRIN cDNAs. Therefore, this unexpected circumstance led to additional information about the 5' untranslated end of our cDNA.

Thus, in summary, the 5' cDNA (TALT5j) corresponds to nucleotide residues -14 to 536, defining +1 as A in the ATG start codon (Fig. 2). It begins with a portion of 5' untranslated sequence, then contains a methionyl initiation codon at the start of a sequence encoding a region with the properties of a signal peptide (amino acid residues #1-21 in Fig. 2). This is followed by the sequence encoding peptide #59 (residues #22-36), corresponding to the NH₂-terminus of the mature protein. The cDNA continues through to the 3' end primer, B', encoding part of the amino acid sequence corresponding to peptide #51 (residues #173-178).

The rapid amplification of cDNA ends technique (24) was applied to obtain the 3' cDNA, once more using a primer based on part of the authentic nucleotide sequence from the peptide #51 cDNA, together with a universal 3' oligo dT_{17} adapter primer. Sequence analysis of the PCR products indicated that one of the inserts (TALT3g), 1.1 kb in size, begins at the 5'-terminus with the sequence corresponding to primer B, continues with the sequence of the COOH-terminus of peptide #51 (Table 1), and includes a perfect match with the amino acid sequence of peptide #38 (Table 2). The sequence of TALT3g corresponds to nucleotides 517–1592 in Fig. 2. This sequence also contains a stop codon at nucleotide positions #808–810 and a 3' untranslated region containing a poly-adenylation signal and a poly(A) tail (Fig. 2).

Finally, the 5' and 3' cDNAs generated above were fused by the overlap extension method (25) to yield a single 1.6-kb cDNA. The full sequence of this cDNA, its deduced translation product, and the tryptic peptide sequences are shown in Fig. 2.

Northern Blot of mRNA for EMMPRIN. To ascertain the size of mRNA for EMMPRIN, total RNA derived from LX-1 cells was analyzed by Northern blotting using the 5' cDNA (TALT5j) as a probe. A single band of \sim 1.7 kb was observed (Fig. 3). This mRNA size is close to the size of cDNA obtained after fusion of the TALT5j and TALT3g cDNAs, *i.e.*, 1.6 kb.

Fig. 3. Northern blot of LX-1 RNA probed with EMMPRIN cDNA. Ten μ g of total RNA was loaded and probed with nick-translated, radiolabeled cDNA (TALT5j). Total radioactivity used was 1 \times 10⁶ cpm/ml, and the duration of film exposure was 18 h.

Analysis of EMMPRIN cDNA Sequences. The Northern blots indicate that the EMMPRIN composite cDNA corresponds to all but about 100 nucleotides of the mRNA. Since the clone contains a poly(A) tail, this means that the 100 bases are probably located at the 5'-end of the 5' untranslated region, making the total untranslated region about 115 nucleotides in length.

The cDNA encodes a 269-amino acid residue polypeptide that contains a putative signal peptide of 21 amino acid residues, an extracellular domain of 185 amino acid residues, a putative transmembrane region (residues 206–229), and a carboxy-terminal cytoplasmic domain of 39 amino acid residues (230–269). The transmembrane region includes three leucines (residues 206, 213, and 220) and a phenylalanine (residue 227), occurring every seventh residue, a characteristic feature of the leucine zipper motif (Fig. 2). The extracellular region contains four cysteinyl residues spaced in a manner that gives rise to two distinct domains with the characteristics of proteins in the immunoglobulin superfamily. These residues in EMMPRIN are located at amino acid residue positions 41, 87, 126, and 185.

Expression of Recombinant EMMPRIN Protein and Deletion Constructs. Although the EMMPRIN cDNA encodes amino acid sequences identical to those of peptides directly isolated from immunoaffinity-purified EMMPRIN protein, we reconfirmed the identity of the EMMPRIN cDNA by showing that the recombinant protein is recognized by activity-blocking monoclonal antibody. To accomplish this, the recombinant protein was expressed in pBluescript and then assayed by Western blotting with EIIF4, a monoclonal antibody that blocks the activity of EMMPRIN protein from LX-1 cells (13, 14). As shown in Fig. 4B, *Lane* 2, EIIF4 reacts with the recombinant EMMPRIN protein. Two immunoreactive bands were obtained; these correspond in size to the two forms of EMMPRIN noted previously (14) and most likely arise by proteolysis.

The bacterial recombinant protein was also used to determine the approximate location of the epitope for E11F4, taking advantage of the lack of posttranslational modifications that would interfere with such studies on the native, immunoaffinity-purified protein. Modified EMMPRIN expression plasmids were made containing deletions in four locations. As seen in Fig. 4A, these deletions were: (a) deletion of the extracellular immunoglobulin domain I (Δ ECI); (b) deletion of the extracellular immunoglobulin domain II (Δ ECI); (c) deletion of the transmembrane domain (Δ TM); and (d) deletion of the cytoplasmic domain (Δ CYT). XL-1 blue cells were transformed with the deletion expression pBluescript plasmids, and the expressed proteins were analyzed by SDS-PAGE and Western blotting with the monoclonal antibody E11F4. As seen in Fig. 4B, all the plasmids produce protein that is immunoreactive, except for the plasmid lacking immunoglobulin domain I.

TUMOR CELL-DERIVED COLLAGENASE STIMULATORY FACTOR

Fig. 4. Localization of EIIF4 epitope in recombinant EMMPRIN. A, strategy for deleting the four major domains of the EMMPRIN cDNA. ΔECI and ΔECII, deletion of one of two immunoglobulin-like domains within the extracellular region; ΔTM , deletion of transmembrane domain; ΔCYT , deletion of cytoplasmic domain; SP, signal peptide; B, Western blot. The transformed XL-1 blue cells were incubated in the absence (Lanes 1, 3, 5, 7, and 9) or presence (Lanes 2, 4, 6, 8, and 10) of 0.5 mm isopropyl-B-D-thiogalactopyranoside and processed for Western blotting. Lanes 1 and 2, recombinant EMMPRIN without deletion; Lanes 3 and 4, ΔECI ; Lanes 5 and 6, ΔECII; Lanes 7 and 8, ΔTM; Lanes 9 and 10, Δ CYT. Molecular weight marker positions in kilodaltons are shown

These results demonstrate that our cDNA encodes the protein which is reactive with our activity-blocking monoclonal antibody and that the antibody epitope exists in the extracellular immunoglobulin domain I. This, in turn, implies that the functional site of the metalloproteinase stimulatory activity of EMMPRIN is likely to be localized to sequences contained in the immunoglobulin domain I region.

DISCUSSION

We have isolated and fused two overlapping cDNA clones, using the polymerase chain reaction, which together encode the complete, 269-amino acid open reading frame for EMMPRIN. The identity of the clones was confirmed by comparison to several peptide sequences derived from immunoaffinity-purified EMMPRIN. Recognition of the translation product by the activity-blocking monoclonal antibody EIIF4 further confirms the identity of the cDNAs as the desired EMMPRIN clones. In addition, we have recently isolated an EMMPRIN cDNA from a human keratinocyte cDNA library. The open reading frame of the latter cDNA has an identical sequence to the cDNA obtained in the present study by PCR-based techniques, except for two nucleotide residues; however, the deduced amino acid sequences are identical for the two cDNAs.7 Finally, we have recently demonstrated that recombinant EMMPRIN isolated from CHO cells transfected with EMMPRIN cDNA stimulates metalloproteinase production in fibroblasts.9

The composite cDNA obtained in the present study has a small 5' untranslated region, followed by an initiation codon and sequences that have the properties of a signal peptide sequence, when using the

rules of von Heijne (27). The subsequent codons agree perfectly with our amino terminal peptide sequence for the mature protein, demonstrating that the signal peptide sequence is genuine. The 248 codons after the signal sequence encode a 185-amino acid extracellular domain consisting of two regions characteristic of the immunoglobulin superfamily, followed by 24-amino acid residues comprising the transmembrane domain and a 39-amino acid cytoplasmic domain. The 248-amino acid residues of the mature protein correspond to an approximate molecular weight of 27,000. However, the purified protein has a larger molecular weight of \sim 58,000 (13). This difference is mainly due to glycosylation of the protein⁷ (20).

We have shown previously that EMMPRIN is present at the surface of tumor cells (13) and has the properties of a membraneintercalated protein (12). On the basis of these findings, we proposed previously that EMMPRIN is attached to the plasma membrane via a transmembrane domain and interacts with a receptor on fibroblasts via an extracellular domain (1). The presence in the cDNA of sequences typical of a signal peptide and a transmembrane region is consistent with EMMPRIN being an integral plasma membrane protein.

After the termination codon, the cDNA contains a 3' untranslated region ending in a poly(A) tail. Northern blot analysis indicates that the mRNA for EMMPRIN is \sim 1.7 kb in size, which is approximately the same as that of the fused EMMPRIN cDNA. It is evident, however, that a portion of the 5' untranslated region is lacking from this cDNA.

The EMMPRIN cDNA sequences were used in computer searches of the EMBL and GenBank data bases to detect homology with other known proteins. These searches revealed that the EMMPRIN cDNA is identical to two other human cDNAs, encoding proteins of un-

⁹ H. Guo, M. Gordon, B. P. Toole, and C. Biswas, Recombinant human tumor cell EMMPRIN stimulates fibroblast metalloproteinase production, manuscript in preparation.

known function, basigin (19) and the M6 antigen (20). Therefore, our studies, which have been performed from a functional standpoint over the course of many years (4, 6, 12–16), have elucidated at least one biological function of these molecules. We are changing our former designation of the molecule from TCSF to EMMPRIN and would suggest that all the above proteins now be designated EMMPRIN, because the acronym more accurately implies at least one definitive function of the glycoprotein, *i.e.*, stimulation of MMP synthesis via cell-cell interaction.

The fact that EMMPRIN is a member of the immunoglobulin superfamily is also compatible with the idea that, in similar fashion to the N-CAM, I-CAM, and other related subgroups of the immunoglobulin superfamily (28), it acts via cell-cell interactions (1). We are currently attempting to identify the molecule on the surface of fibroblasts that interacts with tumor cell-derived EMMPRIN, causing increased fibroblast MMP production. Our recent finding that EMMPRIN is expressed in keratinocytes and localized in the basal layers of the epidermis⁷ suggests the possibility that EMMPRIN may have a natural function in embryonic development or wound healing by causing dermal fibroblasts to increase their MMP production, thus facilitating tissue remodeling (18). The antibody to M6 antigen localizes EMMPRIN to granulocytes in patients with rheumatoid arthritis (20), possibly indicating a role for EMMPRIN in stromal MMP production and the consequent matrix degradation that occurs in the arthritic joint. Thus, we propose that EMMPRIN and related molecules are important mediators of matrix remodeling in normal and pathological tissues.

With respect to tumorigenesis, it has become clear that: (a) MMPs are crucial to the process of tumor cell invasion through basement membranes and interstitial matrices (1–3); and (b) in the case of interstitial collagenase, stromelysin, and M_r 72,000 gelatinase (type IV collagenase), the MMPs involved are produced mainly by peritumoral fibroblasts rather than by the tumor cells themselves (8–11). Since tumor cell-derived EMMPRIN causes a significant increase in the levels of these three enzymes in human fibroblasts (6, 13–16) and since EMMPRIN is associated with the surface of many types of tumor cells *in vivo* and *in vitro* (13, 17),¹⁰ it is very likely that EMMPRIN is a central factor in the stimulation of MMPs required for tumor invasion and metastasis.

ACKNOWLEDGMENTS

We thank Drs. Marion Gordon and Bryan Toole for their helpful suggestions and encouragement during various parts of the project and preparation of the manuscript; Dr. Nicholas Grammatikakis for suggesting the name EMMPRIN; Dr. William S. Lane for performing the amino acid sequencing; Frank Igoe for preparation of primer E; and Diane H. Silva for her technical help and assistance during preparation of the manuscript.

REFERENCES

- Biswas, C., and Toole, B. P. Modulation of the extracellular matrix by tumor cellfibroblast interactions. *In:* E. Elson, W. Frazier, and L. Glaser (eds.), Cell Membranes: Methods and Reviews, pp. 341–363. New York: Plenum Publishing Corp., 1987.
- Matrisian, L. M., and Bowden, G. T. Stromelysin/transin and tumor progression. Semin. Cancer Biol., 1: 107–115, 1990.

- Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64: 327–336: 1991.
- Biswas, C. Tumor cell stimulation of collagenase production by fibroblasts. Biochem. Biophys. Res. Commun., 109: 1026–1034, 1982.
- Dabbous, M. K., El-Torky, M., Haney, L., Brinkley, B., and Sobhy, N. Collagenase activity in rabbit carcinoma: cell source and cell interactions. Int. J. Cancer, 31: 357–364, 1983.
- Biswas, C. Collagenase stimulation in cocultures of human fibroblasts and human tumor cells. Cancer Lett., 24: 201–207, 1984.
- Goslen, J. B., Eisen, A. Z., and Bauer, E. A. Stimulation of skin fibroblast collagenase production by a cytokine derived from basal cell carcinomas. J. Invest. Dermatol., 85: 161–164, 1985.
- Gray, S. T., Wilkins, R. J., and Yun, K. Interstitial collagenase gene expression in oral squamous cell carcinoma. Am. J. Pathol., 141: 301–306, 1992.
- Paulsom, R., Pignatelli, M., Stetler-Stevenson, W. G., Liotta, L. A., Wright, P. A., Jeffrey, R. E., Longcroft, J. M., Rogers, L., and Stamp, G. W. H. Stromal expression of 72 kDa type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am. J. Pathol., *141*: 389–396, 1992.
- Sasaguri, Y., Komiya, S., Sugama, K., Suzuki, K., Inouc, A., Morimatsu, M., and Nagase, H. Production of matrix metalloproteinases 2 and 3 (stromelysin) by stromal cells of giant cell tumor of bone. Am. J. Pathol., 141: 611-619, 1992.
- Pyke, C., Ralfkiaer, E., Huhtala, P., Hurskainen, T., Dano, K., and Tryggvason, K. Localization of messenger RNA for M_r 72,000 and 92,000 type IV collagenases in human skin cancers by *in situ* hybridization. Cancer Res., 52: 1336–1341, 1992.
- Biswas, C., and Nugent, M. A. Membrane association of collagenase stimulatory factor(s) from B-16 melanoma cells. J. Cell. Biochem., 35: 247–258, 1987.
- Ellis, S. M., Nabeshima, K., and Biswas, C. Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res., 49: 3385–3391, 1989.
- Nabeshima, K., Lane, W. S., and Biswas, C. Partial sequencing and characterization of the tumor cell-derived collagenase stimulatory factor. Arch. Biochem. Biophys., 285: 90-96, 1991.
- Prescott, J., Troccoli, N., and Biswas, C. Coordinate increase in collagenase mRNA and enzyme levels in human fibroblasts treated with the tumor cell factor, TCSF. Biochem. Int., 19: 257–266, 1989.
- Kataoka, H., DeCastro, R., Zucker, S., and Biswas, C. Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin and 72-kDa gelatinase. Cancer Res., 53: 3154-3158, 1993.
- Muraoka, K., Nabeshima, K., Murayama, T., Biswas, C. and Koono, M. Enhanced expression of a tumor cell-derived collagenase stimulatory factor in urothelial carcinoma: its usefulness as a tumor marker for bladder cancers. Int. J. Cancer, 55: 19-26, 1993.
- Bauer, E. A., Pentland, A. P., Kronberger, A., Wilhelm, S. M., Goldberg, G. I., Welgus, H. G., and Eisen, A. Z. Kerotinocyte-and tumor-derived inducer of collagenase. Ann. NY Acad. Sci., 548: 174–179, 1986.
- Miyauchi, T., Masuzawa, Y., and Muramatsu, T. The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J. Biochem., *110:* 770–774, 1991.
- Kasinrerk, W., Fiebiger, E., Stefanova, I., Baumruker, T., Knapp, W., and Stockinger, H. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J. Immunol., 149: 847–854, 1992.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18: 5294-5299, 1979.
- Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74: 5463–5465, 1977.
- Lee, C. C., Wu, X., Gibbs, R. A., Cook, R. G., Muzny, D. M., and Caskey, C. T. Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science (Washington DC), 239: 1288–1291, 1988.
- Frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA, 85: 8998–9002, 1988.
- Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene (Amst.), 77: 51–59, 1989.
- Towbin, H., Staehelin, T., and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76: 4350-4354, 1979.
- von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res., 14: 4683-4690, 1986.
- Edelman, G. M., and Crossin, K. L. Cell adhesion molecules: implications for a molecular histology. Annu. Rev. Biochem., 60: 155–190, 1991.

¹⁰ S. Ellis, S. Zucker, and C. Biswas, unpublished data.

Communication

Stimulation of Matrix Metalloproteinase Production by Recombinant Extracellular Matrix Metalloproteinase Inducer from Transfected Chinese Hamster Ovary Cells*

(Received for publication, August 13, 1996, and in revised form, October 16, 1996)

> Huiming Guo[‡], Stanley Zucker[§], Marion K. Gordon[‡], Bryan P. Toole[‡]1, and Chitra Biswas[‡][†]

From the ‡Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and the §Departments of Research and Medicine, Veterans Affairs Medical Center, Northport, New York 11768

Many of the tumor-associated matrix metalloproteinases that are implicated in metastasis are produced by stromal fibroblasts within or surrounding the tumor in response to stimulation by factors produced by tumor cells. In this study we transfected Chinese hamster ovary cells with putative cDNA for human extracellular matrix metalloproteinase inducer (EMMPRIN), a transmembrane glycoprotein that is attached to the surface of many types of malignant human tumor cells and that has previously been implicated in stimulation of matrix metalloproteinase production in fibroblasts. We show that these transfected cells synthesize EMMPRIN that is extensively post-translationally processed; this recombinant EMMPRIN stimulates human fibroblast production of interstitial collagenase, stromelysin-1, and gelatinase A (72-kDa type IV collagenase). We propose that **EMMPRIN** regulates matrix metalloproteinase production during tumor invasion and other processes involving tissue remodeling.

Successful tumor metastasis requires many steps, one of which is local proteolytic destruction of extracellular matrix at sites of tumor invasion. A major class of proteinases associated with tumor invasion is the matrix metalloproteinases $(MMPs)^1$ (1, 2). Although it was initially thought that these enzymes were mainly produced by malignant tumor cells themselves, it is now clear that interstitial collagenase (MMP-1), gelatinase A (MMP-2, a 72-kDa type IV collagenase), and stromelysin-1 (MMP-3) are produced in vivo by stromal fibroblasts associated with several types of tumors (2-7). MMP-2 synthesized and secreted by these fibroblasts has been shown to adhere to the surface of tumor cells, facilitating tissue invasion (8-10). Because quiescent fibroblasts generally produce relatively low amounts of MMPs (11, 12), tumor-associated fibroblasts must be influenced in some way to give rise to the elevated levels of MMPs usually present in malignant tumors. One possibility that we have investigated is that tumor cells interact with fibroblasts via soluble or cell-bound factors, stimulating fibroblast MMP production (11-15). Our studies have led to characterization of a tumor cell surface protein, extracellular matrix metalloproteinase inducer (EMMPRIN; previously termed tumor cell-derived collagenase stimulatory factor or TCSF), that stimulates fibroblast production of MMP-1, MMP-2, and MMP-3 (12-14). We recently obtained cDNAs for human EMMPRIN and verified their identity by recognition of recombinant EMMPRIN by activity-blocking monoclonal antibody and by sequence identity with amino acid sequences of peptides isolated from EMMPRIN (15). However, recombinant EMMPRIN produced by bacteria is much smaller than native EMMPRIN isolated from tumor cells because it is not post-translationally processed. This form of recombinant EMMPRIN is inactive, thus leaving some doubt regarding the identity of the cDNAs. In this study, we use the cDNAs to transfect CHO cells and show that EMMPRIN produced by these transfected cells is post-translationally processed and stimulates fibroblasts to produce elevated levels of MMP-1, MMP-2, and MMP-3.

EXPERIMENTAL PROCEDURES

Stable Transfection of CHO Cells with EMMPRIN cDNA-EMMPRIN cDNA (15) was subcloned into an expression vector, pcDNA/Neo (Invitrogen, San Diego, CA), and purified by CsCl gradient centrifugation and phenol/chloroform extraction. CHO cells (American Type Culture Collection Bethesda MD) were seeded at 10^6 cells/ 100-mm tissue culture dish and incubated overnight, at which stage they were 50-70% confluent. The cells then were transfected in 5 ml of serum-free Ham's F-12 medium containing lipofectamine-DNA complex (10 μ l of lipofectamine (Life Technologies, Inc.) mixed with 10 μ g of DNA with or without the EMMPRIN insert). After 6 h of incubation at 37 °C, 5 ml of medium containing 20% fetal bovine serum was added to the transfection mixture, which was then cultured at 37 °C for a further 72 h. The cells then were treated with trypsin-EDTA (Life Technologies, Inc.) and subcultured in medium containing 400 mg/liter of Geneticin (Life Technologies, Inc.) for 2-3 weeks. Successful transfection was assessed by immunocytochemistry using monoclonal antibody E11F4 raised against EMMPRIN, as described previously (13).

Purification of EMMPRIN-EMMPRIN was purified from detergent extracts of cell membranes from LX-1 cells or stably transfected CHO cells by immunoaffinity chromatography using monoclonal antibody E11F4 against EMMPRIN as described previously (13). Briefly, the cell membranes were extracted with 10 mM Tris-HCl buffer (pH 8.2), containing 0.5% Nonidet P-40, 2 mM phenylmethylsulfonyl fluoride, and 1 mM EDTA. The supernatant of the extract was then applied to a 5-ml anti-EMMPRIN affinity column and recirculated through the column for 12 h at 4 °C. The column was washed with buffer several times, and EMMPRIN was then eluted from the column with 50 mM diethylamine, 30 mM octylglucoside (pH 11.5). The eluted protein was neutralized with 0.5 M NaH₂PO₄, dialyzed against 0.1 M acetic acid, concentrated, and dissolved in 0.1 M acetic acid.

Assays for EMMPRIN Activity-Human fibroblasts (isolated from

^{*} This work was supported by National Institutes of Health Grants CA 38817 (to C. B.) and EY 09056 (to M. K. G.), U. S. Army Medical Research Grant DAMD 17-95-1-5017 (to S. Z. and B. P. T.), and a Merit Review Grant from the Department of Veterans Affairs (to S. Z.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[†] This article is dedicated to the memory of our friend and colleague, Chitra, in whose laboratory much of this work was done but who died in August, 1993.

 $[\]P$ To whom correspondence should be addressed. Tel.: 617-636-6659; Fax: 617-636-0380.

¹ The abbreviations used are: MMP, matrix metalloproteinase; EMMPRIN, extracellular matrix metalloproteinase inducer; TPA, 12-O-tetradecanoyl-phorbol-13-acetate ester; CHO, Chinese hamster ovary; ELISA, enzyme-linked immunosorbent assay; PAGE, polyacrylamide gel electrophoresis.

FIG. 1. Immunofluorescent staining of CHO cells transfected with EMMPRIN cDNA. Staining was carried out using monoclonal antibody, E11F4, against EMMPRIN as described previously (13). A, CHO cells transfected with EMMPRIN cDNA, fixed under normal culture conditions. B, similar cells to those in A, but fixed 4 h after plating. C, CHO cells mock-transfected with vector. Untransfected CHO cells also show no reactivity with E11F4 (not shown).

human skin in our laboratory) were cultured for 24 h in 24-well plates in 1 ml of DMEM medium supplemented with 10% fetal bovine serum, after which the medium was replaced with 0.5 ml of DMEM containing 2% fetal bovine serum in the presence or the absence of EMMPRIN or TPA, and the cultures were further incubated at 37 °C for 3 days. Media from these cultures were used for zymographic assay of MMP-3 (16) and ELISA of MMP-1, MMP-2, and MMP-3 (12, 17).

RESULTS

In initial attempts to demonstrate recombinant EMMPRIN activity we tested purified, pGEX bacterial expression protein. However, EMMPRIN produced in the pGEX system had a molecular mass of only ~29 kDa (equivalent to that expected from the cDNA open reading frame (15)), compared with native EMMPRIN from tumor cells, which is ~58 kDa (12–14). This bacterially produced recombinant EMMPRIN protein was inactive in stimulating MMP production by human fibroblasts. Next, COS and CHO cells were transfected with EMMPRIN cDNA under a variety of conditions, but in most cases the EMMPRIN produced was either of similar molecular mass to bacterial recombinant protein, *i.e.* ~29 kDa, or was partially post-translationally processed with molecular masses ranging from 30-45 kDa. EMMPRIN isolated from these cells was also inactive.

However we found that after stable transfection (see "Experimental Procedures"), CHO cells could be selected that synthesize high levels of EMMPRIN of similar molecular mass to that of native EMMPRIN isolated directly from LX-1 human carci-

FIG. 2. SDS-PAGE and Western blotting of purified recombinant EMMPRIN. A, silver-stained SDS-PAGE gel of EMMPRIN purified from CHO cells transfected with EMMPRIN CDNA. EMMPRIN was purified from cell membranes as described under "Experimental Procedures," dissolved in SDS sample buffer containing 0.1 M dithiothreitol, heated at 95 °C for 10 min, and subjected to 10% SDS-PAGE; the gel was deliberately overloaded to reveal potential contaminants. Lane 1, molecular mass standards (45, 66, 97, and 116 kDa); lane 2, purified recombinant EMMPRIN. B, Western blot of recombinant EMMPRIN purified from CHO cells transfected with EMMPRIN cDNA (lane 1) and of native EMMPRIN purified from LX-1 cells (lane 2). A 10% SDS-PAGE gel was electroblotted to a nitrocellulose membrane followed by blocking with 5% nonfat milk in Tris-buffered saline containing 0.1% Tween 20. The blot was incubated with E11F4 hybridoma supernatant (13) for 1 h at room temperature and then with horseradish peroxidaseconjugated anti-mouse IgG. The EMMPRIN protein bands were detected with ECL Western blotting detection reagents (Amersham Corp.). In both cases the anti-EMMPRIN antibody recognized a protein with a molecular mass of ~58 kDa. Some immunoreactive, aggregated protein was also present in LX-1 cells, as previously noted (14).

noma cells. Fig. 1A shows detection of this recombinant EMMPRIN in the transfected CHO cells by immunocytochemistry using monoclonal antibody raised against native EMMPRIN from LX-1 cells (13). Because the transfected cells are very flat, it is difficult to discern the precise cellular distribution of EMMPRIN. However, if the cells are fixed shortly after plating (~ 4 h), *i.e.* before they have flattened, it is clear that EMMPRIN is located at the surface of the transfected cells (Fig. 1*B*). Untransfected cells or cells that are mock-transfected with vector only show no reactivity with the antibody (Fig. 1*C*).

Fig. 2A shows a silver-stained SDS-PAGE gel of recombinant EMMPRIN purified by immunoaffinity chromatography from membrane extracts of the stably transfected CHO cells; this gel was deliberately overloaded to reveal potential contaminants in the preparation. A single broad band at \sim 58 kDa was detected, as previously obtained for tumor cell-derived EMMPRIN (13, 14). Direct comparison of purified recombinant and LX-1 carcinoma cell-derived EMMPRIN by Western blotting showed that they were identical in size (Fig. 2B), indicating that the recombinant EMMPRIN was fully or almost fully post-translationally processed. Untransfected CHO cells or cells transfected with vector only did not produce any EMMPRIN detectable by immunoaffinity chromatography and Western blotting (not shown).

We then tested purified recombinant EMMPRIN from transfected CHO cells for its ability to stimulate MMP production by human fibroblasts in culture. We first measured the effect of recombinant EMMPRIN on MMP-3 production by zymography,

FIG. 3. Stimulation of stromelysin-1 (MMP-3) production in human fibroblasts incubated with recombinant EMMPRIN isolated from transfected CHO cells. Media (15 µl each) from fibroblasts cultured in the presence or the absence of EMMPRIN or TPA were subjected to electrophoresis without reduction in 10% SDS-polyacrylamide impregnated with 0.5 mg/ml β -casein (A) or 0.5 mg/ml carboxymethylated transferrin (B). After electrophoresis, the SDS was eluted from the gels in 2.5% Triton X-100 for 30 min at 25 °C, and the gels were then incubated 20 h in substrate buffer containing 50 mM Tris-HCl and 5 mM CaCl₂. The gels were stained with Coomassie Blue, and the presence of proteolytic enzymes was identified by the appearance of clear zones where the casein or transferrin substrate had been digested. Lane 1, fibroblasts incubated with recombinant EMMPRIN (100 µg/ml); lane 2, fibroblasts incubated without added protein; lane 3, fibroblasts incubated with TPA (0.1 μ g/ml). The clear band at ~45 kDa present in lanes 1 and 3, but in much lower amount in lane 2, represents MMP-3. The other clear zones are due to other proteolytic enzymes constitutive to the fibroblasts.

using two separate substrates, casein (Fig. 3A) and carboxymethylated transferrin (Fig. 3B). A clear-cut increase in active MMP-3 was observed in fibroblasts treated with the recombinant EMMPRIN (Fig. 3, A and B, lane 1 versus 2). The amount of MMP-3 was similar to that induced by TPA treatment (Fig. 3, A and B, lane 3).

To ensure that stimulation of MMP-3 production was not due to minor contaminants in the recombinant EMMPRIN preparation, we tested the effect of blocking antibody raised against native EMMPRIN (13) on the stimulation by recombinant EMMPRIN, using two different approaches. In the first approach, antibody was included in the culture medium together with EMMPRIN throughout the 3-day incubation period (Fig. 4, *lane 7*). In the second approach, the antibody was mixed with EMMPRIN and then removed by binding to protein A; the supernatant from this reaction, depleted of antigen, was then added to the culture for the 3-day incubation (Fig. 4, *lane 6*). As shown in Fig. 4, the stimulation of stromelysin production in cells treated with EMMPRIN (*lanes 4* and 5 versus lanes 3 and 8) was completely reversed by either of the two different treatments with antibody to EMMPRIN (*lanes 6* and 7).

Finally, we measured the effect of recombinant EMMPRIN on MMP-1, MMP-2, and MMP-3 production by ELISA. In two separate experiments, treatment of fibroblasts with the EMMPRIN gave rise to significant increments in production of MMP-1 (\sim 6- and \sim 11-fold), MMP-2 (\sim 1.5- and \sim 16-fold), and MMP-3 (\sim 2- and \sim 4-fold) (Table I). In most cases the degree of stimulation of MMP by recombinant EMMPRIN was similar to that caused by TPA (Table I).

FIG. 4. Effect of antibody against native EMMPRIN on stimulation of MMP-3 production by recombinant EMMPRIN. MMP-3 was detected in the same fashion as described in the legend to Fig. 3B using 0.5 mg/ml of carboxymethylated transferrin as substrate. The top panel shows the zymogram; the bottom panel shows quantitation of the ~45-kDa band (or doublet) in each lane by densitometry using a Bio Image Whole Band Analysis package. Lane 1, plus 100 ng/ml TPA; lane 2, plus 50 ng/ml TPA; lane 3, no addition; lanes 4 and 5, plus 100 µg/ml recombinant EMMPRIN; lane 6, plus supernatant derived after protein A treatment of medium containing 100 µg/ml recombinant EMMPRIN and EIIF4 monoclonal antibody against EMMPRIN, as described previously (13); lane 7, plus 100 µg/ml recombinant EMMPRIN and antibody EIIF4; lane 8, no addition.

DISCUSSION

The results presented here constitute final proof that the cDNAs that we have obtained genuinely encode EMMPRIN, as defined by its MMP stimulatory activity. The degree of stimulation of MMP-1, MMP-2, and MMP-3 by recombinant EMMPRIN obtained herein is similar to that obtained previously with native EMMPRIN purified from LX-1 carcinoma cells (12). It should be pointed out, however, that the degree of stimulation by either native or recombinant EMMPRIN varies in different fibroblast preparations. First, some fibroblast preparations are not significantly responsive to EMMPRIN stimulation, whereas others are very responsive (e.g. see Ref. 12). Second, among populations of fibroblasts that are responsive to EMMPRIN, an important variable is the extent to which a batch of fibroblasts already produces a given MMP without addition of stimulatory agents. This can be readily appreciated for MMP-3 production in Fig. 3B, lane 2, versus Fig. 4, lanes 3 and 8, and for MMP-2 production in Table I, experiment 1 versus experiment 2. Our overall experience has been that EMMPRIN stimulation of MMP-1 and MMP-3 production is usually in the range of 3-10-fold. Stimulation of MMP-2, however, is even more variable (e.g. see Table I, experiment 1 versus 2) but is usually rather modest, e.g. 1.5-2-fold. One reason for this variability is clearly the significant amounts of MMP-2 that many fibroblast preparations produce without treatment with exogenous agents, e.g. experiment 1 in Table I. Also, however, the mechanism of stimulation of MMP-2 may be more complex than for MMP-1 and MMP-3. As well as stimulating overall MMP-2 production, EMMPRIN apparently enhances activation of MMP-2, and this sometimes leads to underestimation of MMP-2 stimulation in ELISA assays (12).

The experiments described here indicate that EMMPRIN activity is dependent on post-translational processing. How-

Stimulation of MMP production by recombinant EMMPRIN

Recombinant EMMPRIN was purified from membranes of transfected CHO cells and, in two separate experiments, added at 100 μ g/ml to cultures of human fibroblasts. Cultures were also incubated with TPA (0.1 µg/ml) or with no added reagent. After incubation, aliquots of culture medium were used for ELISA of MMP-1, MMP-2, and MMP-3. Amounts of MMP are expressed as μ g/ml ± S.E.

Agent added	MMP-1	MMP-2	MMP-3
Experiment 1			
None	0.03 ± 0.00	1.40 ± 0.01	0.21 ± 0.01
rEMMPRIN	0.33 ± 0.02^{a}	2.12 ± 0.13^{a}	0.93 ± 0.13^{a}
TPA	0.32 ± 0.02^{a}	2.33 ± 0.29^{a}	0.42 ± 0.02^{a}
Experiment 2			
None	0.03 ± 0.00	0.13 ± 0.01	0.35 ± 0.04
rEMMPRIN	0.17 ± 0.02^{a}	2.10 ± 0.37^a	0.63 ± 0.03^{lpha}
TPA	0.25 ± 0.02^a	0.46 ± 0.06^{a}	0.56 ± 0.07^{a}

^a Significantly greater than control (none added), p < 0.05.

ever, it is not yet clear whether processing is required to attain the appropriate conformation for activity or whether specific side groups, e.g. carbohydrate or phosphate, are involved in EMMPRIN receptor recognition.

We have shown by immunocytochemistry that EMMPRIN is present on the surface of tumor cells but not fibroblasts and several other normal adult cell types (13, 18, 19). Prior studies have also shown that tumor cells shed EMMPRIN (13) and that EMMPRIN appears in the urine of bladder carcinoma patients (18, 20). Thus tumor cell EMMPRIN, in soluble or membranebound form, is likely to be responsible for at least part of the stimulation of fibroblast MMP production observed in vivo in association with a variety of malignant tumors (3-7). In preliminary experiments, we have found that production of the tissue inhibitor of matrix metalloproteinases, TIMP-1, is not stimulated by EMMPRIN; if this proves to be true in vivo, an imbalance of active versus inactive MMP production may result from EMMPRIN action on stromal fibroblasts.

The amino acid sequence of EMMPRIN is identical to that of human M6 antigen (21) and basigin (22), for which no function had previously been ascribed until EMMPRIN was cloned (15). Several proteins with high levels of homology to EMMPRIN, i.e. neurothelin, HT7, OX47, and gp42, have also been characterized in other species (21-23), but again their function has not been determined. These proteins may be species homologues of one another or closely related members of a protein family; it remains to be seen whether all of these proteins have EMMPRIN activity.

The ability of EMMPRIN to stimulate MMP production has led us to propose that it may be involved in a wide range of physiological and pathological processes where tissue remodeling takes place (24). For example, its presence in the epidermis

(25) and in several embryonic epithelia² suggests that EMMPRIN may participate in epithelial-mesenchymal interactions leading to changes in tissue architecture during development and wound healing. Also, EMMPRIN on the surface of activated lymphocytes and monocytes (21) may contribute to elevated MMP levels found in arthritis. However, association of EMMPRIN-like material with endothelium during formation of the blood-brain barrier and with highly organized epithelia such as retina and kidney tubules (23) suggests that it may have additional functions involving cell-cell interactions.

Acknowledgments-We thank Diane Silva and Michelle Drews for technical help.

REFERENCES

- 1. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cell 64, 327-336 2. MacDougall, J. R., and Matrisian, L. M. (1995) Cancer Metastasis Rev. 14,
- 351 3623. Gray, S. T., Wilkins, R. J., and Yun, K. (1992) Am. J. Pathol. 141, 301-306
- Poulsom, R., Pignatelli, M., Stetler-Stevenson, W. G., Liotta, L. A., Wright, P.
- A., Jeffrey, R. E., Longcroft, J. M., Rogers, L., and Stamp, G. W. H. (1992) Am. J. Pathol. 141, 389-396
- 5. Sasaguri, Y., Komiya, S., Sugama, K., Suzuki, K., Inoue, A., Morimatsu, M., and Nagase, H. (1992) Am. J. Pathol. 141, 611-621 6
- Pyke, C., Ralfkiaer, E., Huhtala, P., Hurskainen, T., Dano, K., and Tryggvason, K. (1992) Cancer Res. 52, 1336-1341
- 7. Polette, M., Clavel, C., Cockett, M., deBentzman, S. G., Murphy, G., and Birembaut, P. (1992) Invasion Metastasis 13, 31-37
- 8. Zucker, S., Wieman, J. M., Lysik, R. M., Wilkie, D., Ramamurthy, N. S., Golub,
- 10. Ward, R. V., Atkinson, S. J., Reynolds, J. J., and Murphy, G. (1994) Biochem. J. 304, 263-269
- 11. Biswas, C. (1984) Cancer Lett. 24, 201-207
- 12. Kataoka, H., DeCastro, R., Zucker, S., and Biswas, C. (1993) Cancer Res. 53, 3154-3158
- 13. Ellis, S. M., Nabeshima, K., and Biswas, C. (1989) Cancer Res. 49, 3385-3391 Nabeshima, K., Lane, W. S., and Biswas, C. (1991) Arch. Biochem. Biophys. 14.
- 285, 90-96 15. Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, Y., Kataoka, H., and Nabeshima, K. (1995) Cancer Res. 55, 434-439
- 16. Zucker, S., Lysik, R. M., Zarrabi, H. M., Moll, U., Tickle, S. P., Stetler-Stevenson, W., Baker, P. S., and Docherty, A. J. P. (1994) Ann. N. Y. Acad. Sci. 732. 248-262
- 17. Cooksley, S., Hipkiss, J. B., Tickle, S. P., Holmes-Levers, E., Docherty, A. J. P., Murphy, G., and Lawson, A. D. G. (1990) Matrix 10, 285-291
- 18. Muraoka, K., Nabeshima, K., Murayama, T., Biswas, C., and Koono, M. (1993) Int. J. Cancer 55, 19-26
- 19. Zucker, S., and Biswas, C. (1994) Bull. Inst. Pasteur 92, 284-290
- 20. Guirguis, R., Javadpour, N., Sharareh, S., Biswas, C., El-Amin, W., Mansur, I., and Kim, J. S. (1990) J. Occup. Med. 32, 846-853
- 21. Kasinrerk, W., Fiebiger, E., Stefanova, I., Baumruker, T., Knapp, W., and Stockinger, H. (1992) J. Immunol. 149, 847-854
- 22. Miyauchi, T., Masuzawa, Y., and Muramatsu, T. (1991) J. Biochem. (Tokyo) 110.770-774
- 23. Seulberger, H., Unger, C. M., and Risau, W. (1992) Neurosci. Lett. 140, 93-97
- 24. Biswas, C., and Toole B. P. (1987) in Cell Membranes: Methods and Reviews (Elson, E., Frazier, W., and Glaser, L., eds) pp. 341-363, Plenum Press, New York
- 25. DeCastro, R., Zhang, Y., Guo, H., Kataoka, H., Gordon, M., Toole, B. P., and Biswas, C. (1996) J. Invest. Dermatol. 106, 1260-1265

² T. Nakamura and C. Biswas, unpublished data.

Tumor Collagenase Stimulatory Factor (TCSF) Expression and Localization in Human Lung and Breast Cancers

Myriam Polette, Christine Gilles, Veronique Marchand, Marianne Lorenzato, Bryan Toole, Jean-Marie Tournier, Stanley Zucker, Philippe Birembaut

INSERM U 314, IFR 53, CHU Maison Blanche, Reims, France (MP,VM,J-MT,PB); Vincent T. Lombardi Cancer Research Center, University Medical Center, Washington, DC (CG); Laboratoire Pol Bouin, CHU Maison Blanche, Reims, France (MP,ML,PB); Department of Anatomy and Cellular Biology, Tufts University Health Science School, Boston, Massachusetts (BT); and Departments of Research and Medicine, Veterans Affairs Medical Center, Northport, Massachusetts (SZ)

SUMMARY Tumor cell-derived collagenase stimulatory factor (TCSF) stimulates in vitro the biosynthesis of various matrix metalloproteinases involved in tumor invasion, such as interstitial collagenase, gelatinase A, and stromelysin 1. The expression of TCSF mRNAs was studied in vivo, using in situ hybridization and Northern blotting analysis, in seven normal tissues and in 22 squamous cell carcinomas of the lung, and in seven benign proliferations and in 22 ductal carcinomas of the mammary gland. By in situ hybridization, TCSF mRNAs were detected in 40 of 44 carcinomas, in pre-invasive and invasive cancer cells of both lung and breast cancers. TCSF mRNAs and gelatinase A mRNAs were both visualized in the same areas in serial sections in breast cancers, and were expressed by different cells, tumor cells, and fibroblasts. The histological results were confirmed by Northern blot analysis, which showed a higher expression of TCSF mRNAs in cancers than in benign and normal tissues. These observations support the hypothesis that TCSF is an important factor in lung and breast tumor progression. (J Histochem Cytochem 45:703–709, 1997)

TUMOR INVASION is a multistep process that involves the degradation of basement membrane and interstitial matrix components by proteolytic enzymes. Many data actually support an important role for the matrix metalloproteinases (MMPs) in this proteolytic event. High levels of MMPs have been described in many cancer cell lines that display high invasive capacity (Gilles et al. 1994; Monsky et al. 1994; Taniguchi et al. 1992,1994; Bernhard et al. 1990; Bonfil et al. 1989). Such an observation has been recently extended to a newly discovered member of the MMPs, membrane type matrix metalloproteinase 1 (MT-MMP-1), which has also been shown to be correlated with in vitro invasiveness (Sato et al. 1994; Okada et al. 1995; Gilles et al. 1996). In vivo, MMPs have also been associated with the metastatic progression of many human cancers (Davies et al. 1993; Clavel et al. 1992; Levy et al. 1991; Monteagudo et al. 1990). However, recent in

TCSF
 metalloproteinases
 tumor invasion

KEY WORDS

vivo data obtained by in situ hybridization (ISH) have shown that interstitial collagenase, gelatinase A, stromelysins, and MT-MMP-1 are mostly synthesized by fibroblasts localized near tumor cell clusters (Okada et al. 1995; Pyke et al. 1993; Poulsom et al. 1992,1993; Polette et al. 1991,1993,1996; Basset et al. 1990).

The specific detection of MMPs in peritumoral fibroblasts has led to the hypothesis that tumor cells might induce the synthesis of these enzymes implicated in cancer dissemination. In agreement with such an idea, several investigators have demonstrated cooperation between tumor cells and fibroblasts in vitro in the regulation of several MMPs, such as interstitial collagenase (Noël et al. 1993; Hernandez et al. 1985; Biswas 1984,1985; Bauer et al. 1979) and gelatinase A (Ito et al. 1995; Noël et al. 1994). Furthermore, a tumor cell-derived collagenase stimulatory factor (TCSF) also present in tumor cell-conditioned media, was isolated and purified from the plasma membranes of a human lung carcinoma cell line (Ellis et al. 1989). This factor is a glycoprotein of 58 kD and was recently

Correspondence to: M. Polette, Unité INSERM 314, 45, rue Cognacq-Jay, 51 100 Reims, France.

Received for publication June 4, 1996; accepted October 23, 1996 (6A3991).

identified as a member of the immunoglobulin superfamily (Biswas et al. 1995). In addition to enhancing interstitial collagenase synthesis (Nabeshima et al. 1991), purified TCSF stimulates gelatinase A and stromelysin 1 expression by fibroblasts (Kataoka et al. 1993). Immunohistochemical studies employing a monoclonal antibody directed against TCSF have shown that TCSF is localized to the outer surface of cultured lung cancer cell lines (Ellis et al. 1989). The same distribution was seen in tumors of urinary bladder, in which TCSF was detected at the periphery of cancer cells but not in surrounding stromal cells (Muraoka et al. 1993). Furthermore, TCSF was also localized in tumor cells by immunohistochemistry in invasive and in situ ductal breast cancers (Zucker and Biswas 1994).

On the basis of limited information concerning TCSF localization in cancer tissue, the role of TCSF in tumor progression remains unclear. In the present study, to clarify the cell origin of TCSF and to study its role in cancer invasion, we performed in situ hybridization and Northern blot analysis on human lung and breast carcinomas as well as on normal tissues.

Materials and Methods

Source of Tissue

The tissue was obtained from 22 lungs resected for squamous cell carcinomas of Stages I (10 cases), II (eight cases), and III (four cases) according to the TMN classification, from seven normal lung samples, from 22 ductal breast cancers of Grade 1 (four cases), Grade 2 (14 cases), and Grade 3 (four cases) according to the Scarf and Bloom classification, and from seven benign breast proliferations (two fibrocystic disease and five fibroadenoma).

Tissue Preparation

Part of the samples were frozen in liquid nitrogen for Northern blot analysis and the remainder were fixed in formalin and embedded in paraffin for in situ hybridization.

In Situ Hybridization Localization

Tissue sections (5 μ m) were deparaffinized, rehydrated, and treated with 0.2 M HCl for 20 min at room temperature, followed by 15 min in 1 μ g/ml proteinase K (Sigma Chemical; St Louis, MO) in Tris–EDTA–NaCl, 37C, to remove basic proteins. The sections were washed in 2 × SSC (sodium saline citrate), acetylated in 0.25% acetic anhydride in 0.1 M triethanolamine for 10 min, and hybridized overnight with ³⁵S-labeled (50C) anti-sense RNA transcripts. TCSF cDNA (1700 BP) and gelatinase A (1500 BP) (a gift from G. Murphy; Cambridge, UK) were subcloned into pBluescript II SK+/– plasmid and pSP64, respectively, and used to prepare ³⁵S-labeled RNA probes. Hybridizations were followed by RNAse treatment (20 μ g/ml, 1 h, 37C) to remove unhybridized probe and two stringent washes (50% formamide–2 × SSC, 2 hr at 60C) before autoradiography using D 19 emul-

sion (Kodak; Rochester, NY). Slides were exposed for 15 days before development. The controls were performed under the same conditions, using ³⁵S-labeled sense RNA probes. All slides were counterstained with HPS (hematoxy-lin-phloxin-safran), mounted, and examined under a Zeiss Axiophot microscope.

٩

1

In Situ Hybridization Quantitation by Image Cytometry

Quantitation of the number of hybridization grains/ μ m² was performed with the help of an automated image analyzer, the DISCOVERY system (Becton–Dickinson; Mountain View, CA). After thresholding, the number of grains are counted automatically on at least six fields at high magnification (× 500). At this magnification, one field measures 12,688 μ m². We performed these measurements on six different samples (three lung and three breast carcinomas) in which we found normal, in situ, and invasive areas on the same tissue section. Statistical analyses of TCSF mRNA expression levels were compared using the non-parametric Mann–Whitney U-test. Data were expressed as mean of dots/ μ m² ± SEM. p values equal to or less than 0.05 were considered significant.

Northern Blot Analysis

Extraction of total RNA from tissues was performed by RNAzol treatment (Biogenesis; Bournemouth, UK). Ten µg of each RNA was analyzed by electrophoresis in 1% agarose gels containing 10% formaldehyde and transferred onto nylon membranes (Hybond-N; Amersham, Poole, UK). The membrane was hybridized with the cDNA probe encoding TCSF (1700 BP) labeled with ³²P using random priming synthesis (5 \times 108 cpm/µg) (Dupont de Nemours; Bruxelles, Belgium). The filters were exposed for 1 day. Membranes were rehybridized to a ubiquitous 36B4 gene probe, which served as a control. Signal intensities were recorded using a CD 60 Desaga (Heidelberg, Germany) laser-scanning densitometer and TCSF levels (in arbitrary units) were standardized with their corresponding 36B4 levels to obtain values independent of RNA quantities deposed onto gels. Statistical analyses of TCSF expression levels were compared using the non-parametric Mann-Whitney U-test. Data were expressed as mean \pm SEM. Differences or similarities between two populations were considered significant when confidence intervals were <95% (*p*<0.05).

Results

Lung Lesions

By Northern blotting, TCSF transcripts were detected in 18 of 22 carcinomas. Quantitative analysis showed significantly higher (p<0.05) TCSF mRNA expression in lung carcinomas than in peritumoral lung tissues (Figures 1 and 2A). However, no significant differences between the TCSF mRNA levels were found in accordance with the TNM stage (Figure 2A).

With in situ hybridization, pre-invasive and invasive cancer cells were labeled in 18 of 22 tumors examined (the same positive samples as those found by

TCSF in Human Cancers

Figure 1 Northern blotting analysis of total RNA extracted from 22 lung carcinomas (A,B), 22 breast carcinomas (C,D), seven peritumoral normal lung tissue samples (E), and seven benign breast proliferations (F). A TCSF transcript of 1.7 κ B is detected in tumor samples (40/44), whereas it is very weak or undetectable in normal tissue or benign proliferations.

Northern blot analysis). Stromal cells surrounding labeled invasive cancer cells, were always negative (Figure 3A). Normal (Figure 3C) or squamous metaplastic epithelium and bronchial glands did not express any TCSF transcripts. Moreover, in the normal or emphysematous adjacent lung, pulmonary alveolar macro-

phages identified by the CD68 monoclonal antibody (Dako; Carpinteria, CA) on serial sections (not shown) were particularly rich in TCSF mRNAs (Figure 3D). In the three cases analyzed by image cytometry, TCSF mRNAs were significantly expressed in tu-

grading in lung (A) and breast (B) samples. (A) Lung tumor samples

(T) expressed significant higher TCSF mRNA levels than non-tumor

samples (N). However, no significant differences were found ac-

cording to the TNM stage of lung carcinomas. (B) Breast tumor

samples (T) expressed high TCSF mRNA levels whereas no signal

was detected in benign breast tissues (N). Statistical analysis did not find any significant differences according to the Scarf and

Bloom grade of breast carcinomas.

705

Figure 3 Localization of TCSF in lung cancers and breast cancers. (A) TCSF mRNAs are detected in invasive cancer cells (T) in lung carcinoma using an anti-sense probe, whereas stromal cells (arrowheads) are negative. Bar = $70 \,\mu$ m. (B) Same area treated with TCSF sense RNA probe. Bar = $70 \,\mu$ m. (C) Epithelial cells (E) of normal lung tissue do not express TCSF mRNA. (Bar = $70 \,\mu$ m). (D) TCSF mRNA is also present in many alveolar macrophages (arrow). Bar = $70 \,\mu$ m). (E) Intraductal breast tumor cells (T) express TCSF mRNAs, whereas epithelial adjacent cells (E) and stromal cells (arrowheads) do not show any hybridization grains. Bar = $70 \,\mu$ m. (F) Invasive tumor cells (T) express TCSF mRNAs, whereas stromal cells are negative. Bar = $70 \,\mu$ m. (G) Same area treated with TCSF sense RNA probe. Bar = $70 \,\mu$ m. (H) Gelatinase A mRNAs are localized in fibroblasts (arrow) in close contact to tumor clusters (T) in serial sections of breast carcinoma. Bar = $70 \,\mu$ m.

mor cell nests of both pre-invasive $(1.68 \pm 0.22 / \mu m^2)$ and invasive areas $(2.14 \pm 0.35 / \mu m^2)$ compared to the extracellular control compartment $(0.19 \pm 0.02 / \mu m^2)$ and normal tissue $(0.23 \pm 0.04 / \mu m^2) (p < 0.05)$.

Breast Lesions

By Northern blotting, TCSF mRNAs were detected in the 22 breast carcinomas. Quantitative analysis showed significantly higher (p < 0.05) expression of TCSF mRNAs in breast carcinomas than in benign breast lesions (Figures 1 and 2B). No significant differences between the TCSF mRNA levels were found in accordance with the Scarf and Bloom staging (Figure 2B).

With in situ hybridization, benign proliferations and normal mammary areas mixed with cancer cells or adjacent to cancer areas did not show any hybridization grains (Figure 3E), whereas the TCSF mRNAs were detected in cancer cells in pre-invasive and invasive areas (Figure 3F) of all 22 tumors examined. Stromal cells did not contain any hybridization grains. In the three cases studied by quantification, the density of markers in both pre-invasive $(2.14 \pm 0.48/\mu m^2)$ and invasive $(2.95 \pm 0.92/\mu m^2)$ areas was significantly higher than in the extracellular control compartment $(0.23 \pm 0.12/\mu m^2)$ and the normal areas $(0.28 \pm 0.10/\mu m^2)$ (p<0.05). On serial sections, TCSF mRNAs were localized in cancer cells, whereas fibroblasts close to tumor clusters expressed mRNAs encoding gelatinase A (Figures 3F and 3H) in the same areas.

Discussion

In this study we clearly showed the presence of mRNA encoding TCSF in epithelial tumor cells of lung and breast carcinomas. In agreement with our observations, previous immunohistochemical studies detected TCSF in cancer cells in breast (Zucker and Biswas 1994) and in bladder carcinoma (Muraoka et al. 1993). In the latter study, no staining was found in epithelial cells in non-neoplastic urothelium, except in superficial umbrella cells. However, Zucker and Biswas (1994) reported that TCSF is also present in normal breast ductules and lobules near in situ carcinoma areas, describing a more extensive distribution of TCSF compared with our data obtained by in situ hybridization (ISH). No TCSF transcripts were detected in normal epithelial cells in both non-neoplastic breast and lung lesions. It is therefore likely that normal epithelial cells express low levels of the TCSF mRNAs that we could not detect by ISH but that could produce amounts of the TCSF proteins detectable by immunohistochemistry. The presence of TCSF mRNAs in benign and normal tissues was confirmed by our Northern blot analysis, identifying weak expression of TCSF mRNAs in those samples. Furthermore, our Northern blot analysis strengthened our ISH data because a higher significant abundance of TCSF transcripts was found in both breast and lung carcinomas than in benign and normal samples. The detection of TCSF mRNAs in intraepithelial cancer areas of the lung and mammary gland indicates that TCSF mRNA overexpression is an early event in carcinogenesis. These data, taken together, suggest that the expression of TCSF mRNA can be correlated with tumor progression. However, despite its implication in cancer progression, TCSF might play a role in some other pathological processes, such as inflammation and emphysema, because it has also been detected in alveolar macrophages in our study and it has been proposed as a factor in arthritis (Karinrerk et al. 1992).

Even though the precise function of TCSF is not known, some recent in vitro studies have shown that TCSF is able to stimulate the production of several MMPs by fibroblasts. Recent experimental data have demonstrated that TCSF stimulates the production of interstitial collagenase, stromelysin 1 and gelatinase A but not stromelysin 3 in fibroblasts (Kataoka et al. 1993). However, stromelysin 3 is known to have a poor proteolytic activity against collagen-like substrates (Murphy et al. 1994). Moreover, these authors have also demonstrated that TCSF increases activation of gelatinase A. These results are of particular interest regarding the implication of TCSF in cancer progression, because in many carcinomas in vivo the stromal cells have been demonstrated to be the principal source of several MMPs. A variety of studies have indicated that fibroblasts adjacent to the malignant tumors clusters produce interstitial collagenase (Urbanski et al. 1992; Hewitt et al. 1991; Polette et al. 1991), stromelysins 1, 2, 3 (Polette et al. 1991; Basset et al. 1990), and MT-MMP1 (Polette et al. 1996; Okada et al. 1995). More precisely, in both lung and breast carcinomas, mRNAs encoding gelatinase A, which degrades basement membrane collagens (Tryggvason et al. 1993), have also been localized by ISH in the stromal cells surrounding invasive carcinomas (Polette et al. 1993,1994; Poulsom et al. 1992,1993; Soini et al. 1993). In addition to their specific localization at the tumor-stromal interface, MMPs were not or were only weakly found in normal tissues and benign lesions. These studies have therefore demonstrated an association between MMP expression and the invasive process in cancers. Using serial sections in breast carcinomas, we showed that there is an obvious expression of TCSF mRNAs by tumor cells and gelatinase A mRNAs by fibroblasts in the same areas.

It therefore appears that some MMPs, as well as TCSF, are expressed selectively in both pre-invasive and invasive carcinoma but by different cell types, peritumoral fibroblasts and tumor cells, respectively. Relating our in vivo data to the observation that TCSF enhances the production of some particular MMPs in fibroblasts in vitro, it can be postulated that the TCSF produced by tumor cells in vivo stimulates the expression of some MMPs by peritumoral fibroblasts. However, in vivo, interstitial collagenase and stromelysin 1, which are induced by TCSF in fibroblasts in vitro, are infrequently observed in stromal cells in breast carcinomas (Polette et al. 1991), whereas they are present at high levels in lung cancers (Muller et al. 1991), despite the presence of TCSF in both types of carcinoma. Moreover, in four of 22 of our lung carcinomas, we failed to detect any TCSF transcripts. These findings are consistent with the involvement of other factors in the regulation of those MMPs, such as the origin of the tissue, the extracellular matrix environment, and genetic rearrangements.

In conclusion, our observations on lung and breast cancers strongly support the hypothesis that TCSF is an important factor in tumor progression. More precisely, TCSF produced by tumor cells could play a role in the degradation of extracellular matrix associated with tumor invasion by stimulating the synthesis of some MMPs by peritumoral fibroblasts.

Acknowledgments

We gratefully thank Dr Gillian Murphy for the generous gift of gelatinase A probe.

This material is based on work supported by the US Army Medical Research administration under award no. DAMD 17-95-5017, the ARC no. 1096, and the Lyons Club of Soissons.

Literature Cited

- Basset P, Bellocq JP, Wolf C, Stoll I, Limacher JM, Podjahcer OL, Chenard MP, Rio MC, Chambon P (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704
- Bauer EA, Uitto J, Walters RC, Eisen AZ (1979) Enhanced collagenase production by fibroblasts derived from human basal cell carcinoma. J Invest Dermatol 39:4594–4599
- Bernhard EJ, Muschel RJ, Hughes EN (1990) Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res 50:3872–3877
- Biswas C (1985) Matrix influence on the tumor cell stimulation of fibroblast collagenase production. J Cell Biochem 28:39-45
- Biswas C (1984) Collagenase stimulation in cocultures of human fibroblasts and human tumor cells. Cancer Lett 24:201–207
- Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobin superfamily. Cancer Res 55:434–439
- Bonfil RD, Reddel RR, Ura H, Reich R, Fridman R, Harris CC, Klein–Szanto AJP (1989) Invasive and metastatic potential of a v-Ha-ras-transformed human bronchial epithelial cell line. J Natl Cancer Inst 81:587–594
- Clavel C, Polette M, Doco M, Binninger I, Birembaut P (1992) Immunolocalization of matrix metalloproteinases and their tissue inhibitor in human mammary pathology. Bull Cancer (Paris) 79:261–270
- Davies B, Miles DW, Happerfiled LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1993) Activity of type IV collagenases

in benign and malignant breast disease. Br J Cancer 67:1126-1131

- Ellis SM, Nabeshima K, Biswas C (1989) Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res 49:3385–3391
- Gilles C, Polette M, Piette J, Birembaut P, Foidart JM (1994) Epithelial-to-mesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 59:661–666
- Gilles C, Polette M, Piette J, Munaut C, Thompson EW, Birembaut P, Foidart JM (1996) High level of MT-MMP expression is associated with invasiveness of cervical cancer cells. Int J Cancer 65:209–213

٤

- Hernandez AD, Hibbs MS, Postlethwaite AE (1985) Establishment of basal cell carcinomas in culture: evidence for a basal cell carcinoma-derived factor(s) which stimulates fibroblasts to proliferate and release collagenase. J Invest Dermatol 85:470–475
- Hewitt RE, Leach IH, Powe DG, Clark IM, Cawston TE, Turner DR (1991) Distribution of collagenase and tissue inhibitor of metalloproteinases (TIMP) in colorectal tumors. Int J Cancer 49:666-672
- Ito A, Nakajima S, Sasaguri Y, Nagase H, Morri Y (1995) Co-culture of human breast adenocarcinoma MCF7 cells and human dermal fibroblasts enhances the production of matrix metalloproteinases 1, 2, and 3 in fibroblasts. Br J Cancer 71:1039–1045
- Karinrerk W, Fieberger E, Steffanova I, Baumruker T, Knapp W, Stockinger H (1992) Human leucocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, more basigin, and chicken HT7 molecule. J Immunol 149:847–854
- Kataoka H, DeCasto R, Zucker S, Biswas C (1993) Tumor cellderived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res 53:3154–3158
- Levy AT, Cioce V, Sobel ME, Garbisa S, Grigioni WF, Liotta LA, Stetler-Stevenson WG (1991) Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res 51:439-444
- Monsky WL, Lin CYL, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen WT (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54:5702–5710
- Monteagudo C, Merino M, San-Juan J, Liotta L, Stetler-Stevenson WG (1990) Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 136:585–592
- Muller D, Breathnach R, Engelmann A, Mill R, Bronner G, Flesch H, Dumont P, Eber M, Abecassis J (1991) Expression of collagenase-related metalloproteinase genes in human lung or neck tumors. Int J Cancer 48:550–556
- Muraoka K, Nabeshima K, Murayama T, Biswas C, Koono M (1993) Enhanced expression of a tumor-cell-derived collagenasestimulatory factor in urothelium carcinoma: its usefulness as a tumor marker for bladder cancers. Int J Cancer 55:19–26
- Murphy G, Segain JP, O'Shea M, Cockett M, Ionnou C, Lefebvre O, Chambon P, Basset P (1994) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem 268:15435–15441
- Nabeshima K, Lane WS, Biswas C (1991) Partial sequencing and characterization of the tumor cell-derived collagenase stimulatory factor. Arch Biochem Biophys 285:90–96
- Noël A, Munaut C, Nusgens B, Lapière CM, Foidart JM (1993) Different mechanisms of extracellular matrix remodelling by fibroblasts in response to human mammary neoplastic cells. Invasion Metastasis 13:72–81
- Noël A, Polette M, Lewalle JM, Munaut C, Emonard H, Birembaut P, Foidart JM (1994) Coordinate enhancement of gelatinase A mRNA and activity levels in human fibroblasts in response to breast-adenocarcinoma cells. Int J Cancer 56:331–336
- Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P (1995) Membrane-type matrix metalloproteinase

TCSF in Human Cancers

(MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92:2730-2734

- Polette M, Clavel C, Cockett M, Girod de Bentzmann S, Murphy G, Birembaut P (1993) Detection and localization of mRNAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metastasis 13:31–37
- Polette M, Clavel C, Muller D, Abecassis J, Binninger I, Birembaut P (1991) Detection of mRNAs encoding collagenase I and stromelysin 2 in carcinomas of the head and neck by in situ hybridization. Invasion Metastasis 11:76-83
- Polette M, Gilbert N, Stas I, Nawrocki B, Noël A, Remacle A, Stetler-Stevenson WG, Birembaut P, Foidart JM (1994) Gelatinase A expression and localization in human breast cancers. An *in situ* hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 424:641–645
- Polette M, Nawrocki B, Gilles C, Sato H, Seiki M, Tournier JM, Birembaut P (1996) MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 428:29–35
- Poulsom R, Hanby AM, Pignatelli M, Jeffrey RE, Longcroft JM, Rogers L (1993) Expression of gelatinase A and TIMP2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol 46:429–436
- Poulsom R, Pignatelli M, Stetler-Stevenson WG, Liotta LA, Wright PA, Jeffrey RE, Longcroft JM, Rogers L, Stamp GWH (1992) Stromal expression of 72 kDa type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141:389– 396

- Pyke C, Ralfkiaer K, Dano K (1993) Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am J Pathol 142:359–365
- Sato H, Takino T, Okada Y, Cao J, Shinigawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370:61–65
- Soini Y, Pääkkö P, Autio-Harmainen H (1993) Genes of laminin B1 chain, a1 (IV) chain of type IV collagen, and 72-kd type IV collagenase are mainly expressed by the stromal cells of lung carcinomas. Am J Pathol 142:1622–1630
- Taniguchi S, Iwamura T, Kitamura N (1992) Correlation between spontaneous metastatic potential and type I collagenolytic activity in a human pancreatic cancer cell line (SUIT-2) and sublines. Clin Exp Metastasis 10:259–266
- Taniguchi S, Iwamura T, Kitamura N, Yamanari H, Setoguchi T (1994) Heterogeneities of attachment, chemotaxis, and protease production among clones with different metastatic potentials from a human pancreatic cancer cell line. Clin Exp Metastasis 12:238–244
- Tryggvason K, Hoyhtya M, Pyke C (1993) Type IV collagenase in invasive tumors. Breast Cancer Res Treat 24:209–218
- Urbanski SJ, Edwards DR, Maitland A, Leco KJ, Watson A, Kossakowska AE (1992) Expression of metalloproteinases and their inhibitors in primary pulmonary carcinomas. Br J Cancer 66: 1188–1194
- Zucker S, Biswas C (1994) Tumor collagenase-stimulating factor: a paracrine stimulator of fibroblast production of matrix metalloproteinases in cancer. Bull Inst Pasteur 92:284–290