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Preface 

The development and the production of high-quality, reliable, complex computer software have 
become critical issues in the enormous worldwide computer technology market. The capability to 
efficiently engineer computer software development and production processes is central to the 
future economic strength, competitiveness, and national security of the United States. However, 
problems related to software quality, reliability, and safety persist, a prominent example being the 
failure on several occasions of major local and national telecommunications networks. It is now 
acknowledged that the costs of producing and maintaining software greatly exceed the costs of 
developing, producing, and maintaining hardware. Thus the development and application of cost- 
saving tools, along with techniques for ensuring quality and reliability in software engineering, are 
primary goals in today's software industry. The enormity of this software production and 
maintenance activity is such that any tools contributing to serious cost savings will yield a 
tremendous payoff in absolute terms. 

At a meeting of the Committee on Applied and Theoretical Statistics (CATS) of the National 
Research Council (NRC), participants identified software engineering as an area presenting 
numerous opportunities for fruitful contributions from statistics and offering excellent potential for 
beneficial interactions between statisticians and software engineers that might promote improved 
software engineering practice and cost savings. To delineate these opportunities and focus attention 
on contexts promising useful interactions, CATS convened a study panel to gather information and 
produce a report that would (1) exhibit improved methods for assessing software productivity, 
quality, reliability, associated risk, and safety and for managing software development processes, (2) 
outline a program of research in the statistical sciences and their applications to software 
engineering with the aim of motivating and attracting new researchers from the mathematical 
sciences, statistics, and software engineering fields to tackle these important and pressing problem 
areas, and (3) emphasize the relevance of using rigorous statistical and probabilistic techniques in 
software engineering contexts and suggest opportunities for further research in this direction. 

To help identify important issues and obtain a broad range of perspectives on them, the panel 
organized an information-gathering forum on October 11-12, 1993, at which 12 invited speakers 
addressed how statistical methods impinge on the software development process, software metrics, 
software dependability and testing, and software visualization. The forum also included 
consideration of nonstandard methods and select case studies (see the forum program in the 
appendix). The panel hopes that its report, which is based on the panel's expertise as well as 
information presented at the forum, will contribute to positive advances in software engineering 
and, as a subsidiary benefit, be a stimulus for other closely related disciplines, e.g., applied 
mathematics, operations research, computer science, and systems and industrial engineering. The 
panel is, in fact, very enthusiastic about the opportunities facing the statistical community and hopes 
to convey this enthusiasm in this report. 

The panel gratefully acknowledges the assistance and information provided by a number of 
individuals, including the 12 forum speakers—T.W. Keller, D. Card, V.R. Basili, J.C. Munson, J.C. 
Knight, R. Lipton, T. Yamaura, S. Zweben, M.S. Phadke, E.E. Sumner, Jr., W. Hill, and J. Stasko— 
four anonymous reviewers, the NRC staff of the Board on Mathematical Sciences who supported 
the various facets of this project, and Susan Maurizi for her work in editing the manuscript. 
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Executive Summary 

Software, a critical core industry that is essential to U.S. interests in science, technology, and 
defense, is ubiquitous in today's society. Software coexists with hardware in our transportation, 
communication, financial, and medical systems. As these systems grow in size and complexity 
and our dependence on them increases, the need to ensure software reliability and safety, fault 
tolerance, and dependability becomes paramount. Building software is now viewed as an 
engineering discipline, software engineering, which aims to develop methodologies and 
procedures to control the whole software development process. Besides the issue of controlling 
and improving software quality, the issue of improving the productivity of the software 
development process is also becoming important from the industrial perspective. 

PURPOSE AND SCOPE OF THIS STUDY 

Although statistical methods have a long history of contributing to improved practices in 
manufacturing and in traditional areas of science, technology, and medicine, they have up to now 
had little impact on software development processes. This report attempts to bridge the islands of 
knowledge and experience between statistics and software engineering by enunciating a new 
interdisciplinary field: statistical software engineering. It is hoped that the report will help seed 
the field of statistical software engineering by indicating opportunities for statistical thinking to 
contribute to increased understanding of software and software production, and thereby enhance 
the quality and productivity of both. 

This report is the result of a study by a panel convened by the Committee on Applied and 
Theoretical Statistics (CATS), a standing committee of the Board on Mathematical Sciences of 
the National Research Council, to identify challenges and opportunities in the development and 
implementation of software involving significant statistical content. In addition to pointing out 
the relevance of rigorous statistical and probabilistic techniques to pressing software engineering 
concerns, the panel outlines opportunities for further research in the statistical sciences and their 
applications to software engineering. The aim is to motivate new researchers from statistics and 
the mathematical sciences to tackle problems with relevance for software development, as well 
as to suggest a statistical approach to software engineering concerns that the panel hopes 
software engineers will find refreshing and stimulating. This report also touches on important 
issues in training and education for software engineers in the statistical sciences and for 
statisticians with an interest in software engineering. 

Central to this report's theme, and essential to statistical software engineering, is the role of 
data: wherever data are used or can be generated in the software life cycle, statistical methods 
can be brought to bear for description, estimation, and prediction. Nevertheless, the major 
obstacle to applying statistical methods to software engineering is the lack of consistent, high- 
quality data in the resource-allocation, design, review, implementation, and test stages of 
software development. Statisticians interested in conducting research in software engineering 



must play a leadership role in justifying that resources are needed to acquire and maintain high- 
quality and relevant data. 

The panel conjectures that the use of adequate metrics and data of good quality is the 
primary differentiator between successful, productive software development organizations and 
those that are struggling. Although the single largest area of overlap between statistics and 
software engineering currently concerns software development and production, it is the panel's 
view that the largest contributions of statistics to software engineering will be those affecting the 
quality and productivity of front-end processes, that is, processes that precede code generation. 
One of the biggest impacts that the statistical community can make in software engineering is to 
combine information across software engineering projects as a means of evaluating effects of 
technology, language, organization, and process. 

CONTENTS OF THIS REPORT 

Following an introductory opening chapter intended to familiarize readers with basic 
statistical software engineering concepts and concerns, a case study of the National Aeronautics 
and Space Administration (NASA) space shuttle flight control software is presented in Chapter 2 
to illustrate some of the statistical issues in software engineering. Chapter 3 describes a well- 
known general software production model and associated statistical issues and approaches. A 
critique of some current applications of statistics and software engineering is presented in 
Chapter 4. Chapter 5 discusses a number of statistical challenges arising in software engineering, 
and the panel's closing summary and conclusions appear in Chapter 6. 

STATISTICAL CHALLENGES 

In comparison with other engineering disciplines, software engineering is still in the 
definition stage. Characteristics of established disciplines include having defined, tested, credible 
methodologies for practice, assessment, and predictability. Software engineering combines 
application domain knowledge, computer science, statistics, behavioral science, and human 
factors issues. Statistical challenges in software engineering discussed in this report include the 
following: 

• Generalizing particular statistical software engineering experimental results to other 
settings and projects, 

• Scaling up results obtained in academic studies to industrial settings, 
• Combining information across software engineering projects and studies, 
• Adopting exploratory data analysis and visualization techniques, 
• Educating the software engineering community regarding statistical approaches and data 

issues, 
• Developing methods of analysis to cope with qualitative variables, 



Providing models with the appropriate error distributions for software engineering 
applications, and 
Enhancing accelerated life testing. 

SUMMARY AND CONCLUSIONS 

In the 1990s, complex hardware-based functionality is being replaced by more flexible, 
software-based functionality, and massive software systems containing millions of lines of code 
are being created by many programmers with different backgrounds, training, and skills. The 
challenge is to build huge, high-quality systems in a cost-effective manner. The panel expects 
this challenge to preoccupy the field of software engineering for the rest of the decade. Any set 
of methodologies that can help in this task will be invaluable. More importantly, the use of such 
methodologies will likely determine the competitive positions of organizations and nations 
involved in software production. What is needed is a detailed understanding by statisticians 
of the software engineering process, as well as an appreciation by software engineers of 
what statisticians can and cannot do. 

Catalysts essential for this productive interaction between statisticians and software 
engineers, and some of the interdisciplinary research opportunities for software engineers and 
statisticians, include the following: 

• A model for statistical research in software engineering that is collaborative in 
nature. The ideal collaboration partners statisticians, software engineers, and a real 
software process or product. Barriers to academic reward and recognition barriers, as 
well as obstacles to the funding of cross-disciplinary research, can be expected to 
decrease over time; in the interim, industry can play a leadership role in nurturing 
collaborations between software engineers and statisticians and can reduce its own 
set of barriers (for instance, those related to proprietary and intellectual property 
interests). 

• A model for data collection and analysis that ensures the availability of high- 
quality data for statistical approaches to issues in software engineering. Careful 
attention to data issues ranging from definition of metrics to feed-back/-forward loops, 
including exploratory data analysis, statistical modeling, defect analysis, and so on, is 
essential if statistical methods are to have any appreciable impact on a given software 
project under study. For this reason it is crucial that the software industry take a lead 
position in research on statistical software engineering. 

• Attention to relevant issues in education. Enormous opportunities and many potential 
benefits are possible if the software engineering community learns about relevant 
statistical methods and if statisticians contribute to and cooperate in the education of 
future software engineers. Some relevant areas include: 



-Designed experiments. Software engineering is inherently experimental, yet 
relatively few designed experiments have been conducted. Software engineering 
education programs must stress the desirability, where feasible, of validating new 
techniques using statistically valid designed experiments. 

-Exploratory data analysis. Exploratory data analysis methods are essentially 
"model free," whereby the investigator hopes to be surprised by unexpected behavior 
rather than having thinking constrained to what is expected. 

-Modeling. Recent advances in the statistical community in the past decade have 
effectively relaxed the linearity assumptions of nearly all classical techniques. There 
should be an emphasis on educational information exchange leading to more and 
wider use of these recently developed techniques. 

-Risk analysis. A paradigm for managing risk for the space shuttle program, discussed 
in Chapter 2 of this report, and the corresponding statistical methods can play a 
crucial role in identifying risk-prone parts of software systems and of combined 
hardware and software systems. 

-Attitude toward assumptions. Software engineers should be aware that violating 
assumptions is not as important as thoroughly understanding the violation's effects on 
conclusions. Statistics textbooks, courses, and consulting activities should convey the 
statistician's level of understanding about and perspective on the importance and 
implications of assumptions for statistical inference methods. 

-Visualization. Graphics is important in exploratory stages in helping to ascertain how 
complex a model the data ought to support; in the analysis stage, by which residuals 
are displayed to examine what the currently entertained model has failed to account 
for; and in the presentation stage, in which graphics can provide succinct and 
convincing summaries of the statistical analysis and the associated uncertainty. 
Visualization can help software engineers cope with, and understand, the huge 
quantities of data collected as part of the software development process. 

-Tools. It is important to identify good statistical computing tools for software 
engineers. An overview of statistical computing, languages, systems, and packages 
should be done that is focused specifically for the benefit of software engineers. 



1 
Introduction 

statistics. The mathematics of the collection, organization, and interpretation of 
numerical data, especially the analysis of population characteristics by inference 
from sampling.1 

software engineering. (1) The application of a systematic, disciplined, 
quantifiable approach to the development, operation, and maintenance of 
software; that is, the application of engineering to software. (2) The study of 
approaches as in (l).2 

statistical software engineering. The interdisciplinary field of statistics and 
software engineering specializing in the use of statistical methods for controlling 
and improving the quality and productivity of the practices used in creating 
software. 

The above definitions describe the islands of knowledge and experience that this report 
attempts to bridge. Software is a critical core industry that is essential to U.S. national interests in 
science, technology, and defense. It is ubiquitous in today's society, coexisting with hardware 
(micro-electronic circuitry) in our transportation, communication, financial, and medical 
systems. The software in a modern cardiac pacemaker, for example, consists of approximately 
one-half megabyte of code that helps control the pulse rate of patients with heart disorders. In 
this and other applications, issues such as reliability and safety, fault tolerance, and dependability 
are obviously important. From the industrial perspective, so also are issues concerned with 
improving the quality and productivity of the software development process. Yet statistical 
methods, despite the long history of their impact in manufacturing as well as in traditional areas 
of science, technology, and medicine, have as yet had little impact on either hardware or software 
development. 

This report is the product of a panel convened by the Board on Mathematical Sciences' 
Committee on Applied and Theoretical Statistics (CATS) to identify challenges and 
opportunities in software development and implementation that have a significant statistical 
component. In attempting to identify interrelated aspects of statistics and software engineering, it 
enunciates a new interdisciplinary field: statistical software engineering. While emphasizing the 
relevance of applying rigorous statistical and probabilistic techniques to problems in software 
engineering, the panel also points out opportunities for further research in the statistical sciences 
and their applications to software engineering. Its hope is that new researchers from statistics and 
the mathematical sciences will thus be motivated to address relevant and pressing problems of 

1 See The American Heritage Dictionary of the English Language (1981). 
2 See Institute of Electrical and Electronics Engineers (1990). 



software development and also that software engineers will find the statistical emphasis 
refreshing and stimulating. This report also addresses the important issues of training and 
education of software engineers in the statistical sciences and of statisticians with an interest in 
software engineering. 

At the panel's information-gathering forum in October 1993, 12 invited speakers described 
their views on topics that are considered in detail in Chapters 2 through 6 of this report. One of 
the speakers, John Knight, pointed out that the date of the forum coincided nearly to the day with 
the 25th anniversary of the Garmisch Conference (Randell and Naur, 1968), a NATO-sponsored 
workshop at which the term "software engineering" is generally accepted to have originated. The 
particular irony of this coincidence is that it is also generally accepted that although much more 
ambitious software systems are now being built, little has changed in the relative ability to 
produce software with predictable quality, costs, and dependability. One of the original Garmisch 
participants, A.G. Fräser, now associate vice president in the Information Sciences Research 
Division at AT&T Bell Laboratories, defends the apparent lack of progress by the reminder that 
prior to Garmisch, there was no "collective realization" that the problems individual 
organizations were facing were shared across the industry—thus Garmisch was a critical first 
step toward addressing issues in software production. It is hoped that this report will play a 
similar role in seeding the field of statistical software engineering by indicating opportunities for 
statistical thinking to help increase understanding, as well as the productivity and quality, of 
software and software production. 

In preparing this report, the panel struggled with the problem of providing the "big picture" 
of the software production process, while simultaneously attempting to highlight opportunities 
for related research on statistical methods. The problems facing the software engineering field 
are indeed broad, and nonstatistical approaches (e.g., formal methods for verifying program 
specifications) are at least as relevant as statistical ones. Thus this report tends to emphasize the 
larger context in which statistical methods must be developed, based on the understanding that 
recognition of the scope and the boundaries of problems is essential to characterizing the 
problems and contributing to their solution. It must be noted at the outset, for example, that 
software engineering is concerned with more than the end product, namely, code. The production 
process that results in code is a central concern and thus is described in detail in the report. To a 
large extent, the presentation of material mirrors the steps in the software development process. 
Although currently the single largest area of overlap between statistics and software engineering 
concerns software testing (which implies that the code exists), it is the panel's view that the 
largest contributions to the software engineering field will be those affecting the quality and 
productivity of the processes that precede code generation. 

The panel also emphasizes that the process and methods described in this report pertain to 
the case of new software projects, as well as to the more ordinary circumstance of evolving 
software projects or "legacy systems." For instance, the software that controls the space shuttle 
flight systems or that runs modern telecommunication networks has been evolving for several 
decades. These two cases are referred to frequently to illustrate software development concepts 
and current practice, and although the software systems may be uncharacteristically large, they 
are arguably forerunners of what lies ahead in many applications. For example, laser printer 
software is witnessing an order-of-magnitude (base-10) increase in size with each new release. 



Similar increases in size and complexity are expected in all consumer electronic products as 
increased functionality is introduced. 

Central to this report's theme, and essential to statistical software engineering, is the role of 
data, the realm where opportunities lie and difficulties begin. The opportunities are clear: 
whenever data are used or can be generated in the software life cycle, statistical methods can be 
brought to bear for description, estimation, and prediction. This report highlights such areas and 
gives examples of how statistical methods have been and can be used. 

Nevertheless, the major obstacle to applying statistical methods to software engineering is 
the lack of consistent, high-quality data in the resource-allocation, design, review, 
implementation, and test stages of software development. Statisticians interested in conducting 
research in software engineering must acknowledge this fact and play a leadership role in 
providing adequate grounds for the resources needed to acquire and maintain high-quality, 
relevant data. A statement by one of the forum participants, David Card, captures the serious 
problem that statisticians face in demonstrating the value of good data and good data analysis: "It 
may not be that effective to be able to rigorously demonstrate a 10% or 15% or 20% 
improvement (in quality or productivity) when with no data and no analysis, you can claim 50% 
or even 100%." 

The cost of collecting and maintaining high-quality information to support software 
development is unfortunately high, but arguably essential—as the NASA case study presented in 
Chapter 2 makes clear. The panel conjectures that use of adequate metrics and data of good 
quality is, in general, the primary differentiator between successful, productive software 
development organizations and those that are struggling. Traditional manufacturers have learned 
the value of investing in an information system to support product development; software 
development organizations must take heed. All too often, as a release date approaches, all 
available resources are dedicated to moving a software product out the door, with the result that 
few or no resources are expended on collecting data during these crucial periods. Subsequent 
attempts at retrospective analysis—to help forecast costs for a new product or identify root 
causes of faults found during product testing—are inconclusive when speculation rather than 
hard data is all that is available to work with. But even software development organizations that 
realize the importance of historical data can get caught in a downward spiral: effort is expended 
on collection of data that initially are insufficient to support inferences. When data are not being 
used, efforts to maintain their quality decrease. But then when the data are needed, their quality 
is insufficient to allow drawing conclusions. The spiral has begun. 

As one means of capturing valuable historical data, efforts are under way to create 
repositories of data on software development experiments and projects. There is much 
apprehension in the software engineering community that such data will not be helpful because 
the relevant metadata (data about the data) are not likely to be included. The panel shares this 
concern because the exclusion of metadata not only encourages sometimes thoughtless analyses, 
but also makes it too easy for statisticians to conduct isolated research in software engineering. 
The panel believes that truly collaborative research must be undertaken and that it must be done 
with a keen eye to solving the particular problems faced by the software industry. Nevertheless, 
the panel recognizes benefits to collecting data or experimentation in software development. As 
is pointed out in more detail in Chapter 5, one of the largest impacts the statistical community 



can have in software engineering concerns efforts to combine information (NRC, 1992) across 
software engineering projects as a means of evaluating the effects of technology, language, 
organization, and the development process itself. Although difficult issues are posed by the need 
to adjust appropriately for differences in projects, the inconsistency of metrics, and varying 
degrees of data quality, the availability of a data repository at least allows for such research to 
begin. 

Although this report serves as a review of the software production process and related 
research to date, it is necessarily incomplete. Limitations on the scope of the panel's efforts 
precluded a fuller treatment of some material and topics as well as inclusion of case studies from 
a wider variety of business and commercial sectors. The panel resisted the temptation to draw on 
analogies between software development and the converging area of computer hardware 
development (which for the most part is initially represented in software). The one approach it is 
confident of not reflecting is over-simplification of the problem domain itself. 



2 
Case Study: NASA Space Shuttle Flight Control Software 

The National Aeronautics and Space Administration leads the world in research in 
aeronautics and space-related activities. The space shuttle program, begun in the late 1970s, was 
designed to support exploration of Earth's atmosphere and to lead the nation back into human 
exploration of space. 

IBM's Federal Systems Division (now Loral), which was contracted to support NASA's 
shuttle program by developing and maintaining the safety-critical software that controls flight 
activities, has gained much experience and insight in the development and safe operation of 
critical software. Throughout the program, the prevailing management philosophy has been that 
quality must be built into software by using software reliability engineering methodologies. 
These methodologies are necessarily dependent on the ability to manage, control, measure, and 
analyze the software using descriptive data collected specifically for tracking and statistical 
analysis. Based on a presentation by Keller (1993) at the panel's information-gathering forum, 
the following case study describes space shuttle flight software functionality as well as the 
software development process that has evolved for the space shuttle program over the past 15 
years. 

OVERVIEW OF REQUIREMENTS 

The primary avionics software system (PASS) is the mission-critical on-board data 
processing system for NASA's space shuttle fleet. In flight, all shuttle control activities— 
including main engine throttling, directing control jets to turn the vehicle in a different 
orientation, firing the engines, or providing guidance commands for landing—are performed 
manually or automatically with this software. In the event of a PASS failure, there is a backup 
system. As indicated in the space shuttle flight log history, the backup system has never been 
invoked. 

To ensure high reliability and safety, IBM has designed the space shuttle computer system to 
have four redundant, synchronized computers, each of which is loaded with an identical version 
of the PASS. Every 3 to 4 milliseconds, the four computers check with one another to assure that 
they are in lock step and are doing the same thing, seeing the same input, sending the same 
output, and so forth. The operating system is designed to instantaneously deselect a failed 
computer. 

The PASS is safety-critical software that must be designed for quality and safety at the 
outset. It consists of approximately 420,000 lines of source code developed in HAL, an 
engineering language for real-time systems, and is hosted on flight computers with very limited 
memory. Software is integrated within the flight control system in the form of overlays—only 
the small amount of code necessary for a particular phase of the flight (e.g., ascent, on-orbit, or 
entry activities) is loaded in computer memory at any one time. At quiescent points in the 



mission, the memory contents are "swapped out" for program applications that are needed for the 
next phase of the mission. 

In support of the development of this safety-critical flight code, there are another 1.4 million 
lines of code. This additional software is used to build, develop, and test the system as well as to 
provide simulation capability and perform configuration control. This support software must 
have the same high quality as the on-board software, given that flawed ground software can mask 
errors, introduce errors into the flight software, or provide an incorrect configuration of software 
to be loaded aboard the shuttle. 

In short, IBM/Loral maintains approximately 2 million lines of code for NASA's space 
shuttle flight control system. The continually evolving requirements of NASA's spaceflight 
program result in an evolving software system: the software for each shuttle mission flown is a 
composite of code that has been implemented incrementally over 15 years. At any given time, 
there is a subset of the original code that has never been changed, code that was sequentially 
added in each update, and new code pertaining to the current release. Approximately 275 people 
support the space shuttle software development effort. 

THE OPERATIONAL LIFE CYCLE 

Originally the PASS was developed to provide a basic flight capability of the space shuttle. 
The first flown version was developed and supported for flights in 1981 through 1982. However, 
the requirements of the flight missions evolved to include increased operational capability and 
maintenance flexibility. Among the shuttle program enhancements that changed the flight control 
system requirements were changes in payload manifest capabilities and main engine control 
design, crew enhancements, addition of an experimental autopilot for orbiting, system 
improvements, abort enhancements, provisions for extended landing sites, and hardware platform 
changes. Following the Challenger accident, which was not related to software, many new safety 
features were added and the software was changed accordingly. 

For each release of flight software (called an operational increment), a nominal 6- to 9- 
month period elapses between delivery to NASA and actual flight. During this time, NASA 
performs system verification (to assure that the delivered system correctly performs as required) 
and validation (to assure that the operation is correct for the intended domain). This phase of the 
software life cycle is critical to assuring safety before a safety-critical operation occurs. It is a 
time for a complete integrated system test (flight software with flight hardware in operational 
domain scenarios). Crew training for mission practices is also performed at this time. 

A STATISTICAL APPROACH TO MANAGING THE 
SOFTWARE PRODUCTION PROCESS 

To manage the software production process for space shuttle flight control, descriptive data 
are systematically collected, maintained, and analyzed. At the beginning of the space shuttle 
program, global measurements were taken to track schedules and costs. But as software 
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development commenced, it became necessary to retain much more product-specific information, 
owing to the critical nature of space shuttle flight as well as the need for complete accountability 
for the shuttle's operation. The detail and granularity of data dictate not only the type but also the 
level of analysis that can be done. Data related to failures have been specifically accumulated in a 
database along with all the other corollary information available, and a procedure has been 
established for reliability modeling, statistical analysis, and process improvement based on this 
information. 

A composite description of all space shuttle software of various ages is maintained through a 
configuration management (CM) system. The CM data include not only a change itself, but also 
the lines of code affected, reasons for the change, and the date and time of change. In addition, 
the CM system includes data detailing scenarios for possible failures and the probability of their 
occurrence, user response procedures, the severity of the failures, the explicit software version 
and specific lines of code involved, the reasons for no previous detection, how long the fault had 
existed, and the repair or resolution. Although these data seem abundant, it is important to 
acknowledge their time dependence, because the software system they describe is subject to 
constant "churn." 

Over the years, the CM system for the space shuttle program has evolved into a common, 
minimum set of data that must be retained regarding every fault that is recognized anywhere in 
the life cycle, including faults found by inspections before software is actually built. This 
evolutionary development is amenable to evaluation by statistical methods. Trend analysis and 
predictions regarding testing, allocation of resources, and estimation of probabilities of failure 
are examples of the many activities that draw on the database. This database also continues to be 
the basis for defining and developing sophisticated, insightful estimation techniques such as 
those described by Munson (1993). 

Fault Detection 

Management philosophy prescribes that process improvement is part of the process. Such 
proactive process improvement includes inspection at every step of the process, detailed 
documentation of the process, and analysis of the process itself. 

The critical implications of an ill-timed failure in space shuttle flight control software 
require that remedies be decisive and aggressive. When a fault is identified, a feedback process 
involving detailed information on the fault enforces a search for similar faults in the existing 
system and changes the process to guard actively against such faults in flight control software 
development. The characteristics of a single fault are actively documented in the following four- 
step reactive process-improvement protocol: 

1. Remove the fault, 
2. Identify the root cause of the fault, 
3. Eliminate the process deficiency that let the fault escape earlier detection, and 
4. Analyze the product for other, similar faults. 
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Further scrutiny of what occurred in the process between introduction and detection of a 
fault is aimed at determining why downstream process elements failed to detect and remove the 
fault. Such introspective analysis is designed to improve the process and specific process 
elements so that if a similar fault is introduced again, these process elements will detect it before 
it gets too far along in the product life cycle. This four-step process improvement is achievable 
because of the maturity of the overall IBM/Loral software management process. The complete 
recording of project events in the CM system (phase of the process, change history of involved 
line(s) of code, the line of code that included an error, the individuals involved, and so on) allows 
hindsight so that the development team can approach the occurrence of an error not as a failure 
but rather as an opportunity to improve the process and to find other, similar errors. 

Safety Certification 

The dependability of safety-critical software cannot be based merely on testing the software, 
counting and repairing the faults, and conducting "live tests" on shuttle missions. Testing of 
software for many, many years, much longer than its life cycle, would be required in order to 
demonstrate software failure probability levels of 10~7 or 10~9 per operational hour. A process 
must be established, and it must be demonstrated statistically that if that process is followed and 
maintained under statistical control, then software of known quality will result. One result is the 
ability to predict a particular level of fault density, in the sense that fault density is proportional 
to failure intensity, and so provide a confidence level regarding software quality. This approach 
is designed to ensure that quality is built into the software at a measurable level. IBM's historical 
data demonstrate a constantly improving process for comfort of space shuttle flight. The use of 
software engineering methodologies that incorporate statistical analysis methods generally 
allows the establishment of a benchmark for obtaining a valid measure of how well a product 
meets a specified level of quality. 
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A Software Production Model 

The software development process spans the life cycle of a given project, from the first idea, 
to implementation, through completion. Many process models found in the literature describe 
what is basically a problem-solving effort. The one discussed in detail below, as a convenient 
way to organize the presentation, is often described as the waterfall model. It is the basis for 
nearly all the major software products in use today. But as with all great workhorses, it is 
beginning to show its age. New models in current use include those with design and 
implementation occurring in parallel (e.g., rapid prototyping environments) and those adopting a 
more integrated, less linear, view of a process (e.g., the spiral model referred to in Chapter 6). 
Although the discussion in this chapter is specific to a particular model, that in subsequent 
chapters cuts across all models and emphasizes the need to incorporate statistical insight into the 
measurement, data collection, and analysis aspects of software production. 

The first step of the software life cycle (Boehm, 1981) is the generation of system 
requirements whereby functionality, interactions, and performance of the software product are 
specified in (usually) numerous documents. In the design step, system requirements are refined 
into a complete product design, an overall hardware and software architecture, and detailed 
descriptions of the system control, data, and interfaces. The result of the design step is (usually) a 
set of documents laying out the system's structure in sufficient detail to ensure that the software 
will meet system requirements. Most often, both requirements and design documents are 
formally reviewed prior to coding in order to avoid errors caused by incorrectly stated 
requirements or poor design. The coding stage commences once these reviews are successfully 
completed. Sometimes scheduling considerations lead to parallel review and coding activities. 
Normally individuals or small teams are assigned specific modules to code. Code inspections 
help ensure that module quality, functionality, and schedule are maintained. 

Once modules are coded, the testing step begins. (This topic is discussed in some detail in 
Chapter 3.) Testing is done incrementally on individual modules (unit testing), on sets of 
modules (integration testing), and finally on all modules (system testing). Inevitably, faults are 
uncovered in testing and are formally documented as modification requests (MRs). Once all MRs 
are resolved, or more usually as schedules dictate, the software is released. Field experience is 
relayed back to the developer as the software is "burned in" in a production environment. Patches 
or rereleases follow based on customer response. Backward compatibility tests (regression 
testing) are conducted to ensure that correct functionality is maintained when new versions of the 
software are produced. 

The above overview is noticeably nonquantitative. Indeed, this nonquantitative 
characteristic is the most striking difference between software engineering and more traditional 
(hardware) engineering disciplines. Measurement of software is critical for characterizing both 
the process and the product, and yet such measurement has proven to be elusive and 
controversial. As argued in Chapter 1, the application of statistical methods is predicated on the 
existence of relevant data, and the issue of software measurements and metrics is discussed 
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prominently throughout the report. This is not to imply that measurements have never been made 
or that data are totally lacking. Unfortunately metrics tend to describe properties and conditions 
for which it is easy to gather data rather than those that are useful for characterizing software 
content, complexity, and form. 

PROBLEM FORMULATION AND SPECIFICATION OF REQUIREMENTS 

Within the context of system development, specifications for required software functions are 
derived from the larger system requirements, which are the primary source for determining what 
the delivered software product will do and how it will do it. These requirements are translated by 
the designer or design team into a finished product that delivers all that is explicitly stated and 
does not include anything explicitly forbidden. Some common references regarding requirements 
specification are mentioned in IEEE Standard for Software Productivity Metrics (IEEE, 1993). 

Requirements—4he first formal tangible product obtained in the development of a 
system—are subjective statements specifying the system's various desired operational 
characteristics. Errors in requirements arise for a number of reasons, including ambiguous 
statements, inconsistent information, unclear user requirements, and incomplete requests. 
Projects that have ill-defined or unstated requirements are subject to constant iteration, and a lack 
of precise requirements is a key source of subsequent software faults. In general, the longer a 
fault resides in a system before it is detected, the greater is the cost of removing it or recovering 
from related failures. This condition is a primary driver of the review process throughout 
software development. 

The formulation requirements start with customers requesting a new functionality. Systems 
engineers collect information describing the new functionality and develop a customer 
specification description (CSD) describing the customer's view of the feature. The CSD is used 
internally by software development organizations to formulate cost estimates for bidding. After 
the feature is committed (sold), systems engineers write a feature specification description (FSD) 
describing the internal view of the feature. The FSD is commonly referred to as "requirements." 
Both the CSD and FSD are carefully reviewed and must meet formal criteria for approval. 

DESIGN 

The heart of the software development cycle is the translation and refinement of the 
requirements into code. Software architects transform the requirements for each specified feature 
into a high-level design. As part of this process, they determine which subsystems (e.g., 
databases) and modules are required and how they interact or communicate. The broad, high- 
level design is then refined into a detailed low-level design. This transformation involves much 
information gathering and detective work. The software architects are often the most experienced 
and knowledgeable of the software engineers. 

The sequence of continual refinements ultimately results in a mapping of high-level 
functions into modules and code. Part of this design process is selecting an appropriate 
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representation, which in most cases is a specific programming language. Selection of a 
representation involves factors such as operational domain, system performance, and function, 
among others. When completed, the high-level design is reviewed by all, including those 
concerned with the affected subsystems and the organization responsible for development. 

The human element is a critical issue in the early stages of a software project. Quantitative 
data are potentially available following document reviews. Specifically, early in the development 
cycle of software systems, (paper) documents are prepared describing feature requirements or 
feature design. Prior to a formal document review, the reviewers individually read the document, 
noting issues that they believe should be resolved before the document is approved and feature 
development is begun. At the review meeting, a single list of issues is prepared that includes the 
issues noted by the reviewers as well as the ones discovered during the meeting itself. This 
process thus generates data consisting of a tabulation of issues found by each reviewer. The 
degree of overlap provides information regarding the number of remaining issues, that is, those 
yet to be identified. If this number is acceptably small, the process can proceed to the next step; if 
not, further document refinement is necessary in order to avoid costly fixes later in the process. 
The problem as stated bears a certain resemblance to capture-recapture models in wildlife 
studies, and so appropriate statistical methods can be devised for analyzing the review data, as 
illustrated in the following example. 

Example. Table 1 contains data on issues identified for a particular feature for the AT&T 5ESS 
switch (Eick et al., 1992a). Six reviewers found a total of 47 distinct issues. A common capture- 
recapture model assumes that each issue has the same probability of being captured (detected) 
and that reviewers work independently with their own chance of capturing an issue, or detection 
probability. Under such a model, likelihood methods yield an estimate of N = 65, implying that 
approximately 20 issues remain to be identified in the document. An upper 95% confidence 
bound for N under this model is 94 issues. 

Such a model is natural but simplistic. The software development environment is not 
conducive to independence among reviewers (so that some degree of collusion is unavoidable), 
and reviewers also are selected to cover certain areas of specialization. In either case, the 
cornerstone of capture-recapture models, the binomial distribution, is no longer appropriate for 
the total number of issues. It is possible to develop a likelihood-based test for pairwise collusion 
of reviewers and reviewer-specific tests of specialization. In the example above, there is no 
evidence of collusion among reviewers, but reviewer C exhibits a significantly greater degree of 
specialization than do the other reviewers. When this reviewer is treated as a specialist, the 
maximum likelihood estimate (MLE) of the number of issues is reduced to 53, implying that 
only a half dozen issues remain to be discovered in the document. ■ 

Other mismatches between the data arising in software review and those in capture-recapture 
wildlife population studies induce bias in the MLE. Another possible estimator for this problem 
is the jackknife estimator (Burnham and Overton, 1978). But this estimator seems in fact to be 
more biased than the MLE (Vander Wiel and Votta, 1993). Both are rescued to a large extent by 
their categorization of faults into classes (e.g., "easy to find" versus "hard to find"). In any given 
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Table 1. Issue discovery. The rows of the table represent 47 issues noted by six reviewers prior 
to review meetings. An entry in cell ij of the table indicates that issue i (i = 1 ,...,47) was noted by 
reviewer j (j = A,...,F). Rows with no entries (i.e., column sums of zero) correspond to issues 
discovered at the meeting. 

Issue A B C D E F Sum 

1 1 1 
2 1 1 2 
3 1 1 
4 1 1 
5 0 
6 1 1 
7 1 1 
8 1 1 
9 0 
10 1 1 
11 1 1 
12 1 1 
13 0 
14 1 1 2 
15 1 1 
16 0 
17 1 1 2 
18 1 1 
19 1 1 2 
20 1 1 2 
21 1 1 1 1 1 5 
22 1 1 2 
23 1 1 
24 1 1 

Issue A B C D E F Sum 

25 1 1 2 
26 1 1 2 
27 1 
28 1 
29 1 1 2 
30 1 
31 1 
32 1 
33 1 
34 1 1 1 
35 1 1 2 
36 1 
37 1 
38 1 
39 1 
40 1 
41 1 
42 1 1 2 
43 1 
44 1 
45 1 
46 1 
47 1 
SUM 25 3 4 13 9 6 60 

application, it is necessary to verify that the "easy to find" and "hard to find" classification is 
meaningful, or to determine that it is merely partitioning the distribution of difficulty in an 
arbitrary manner. A relevant point in this and other applications of statistical methods in software 
engineering is that addressing aspects of the problem that induce study bias is important and 
valued—theoretical work addressing aspects of statistical bias is not likely to be as highly 
valued. 

IMPLEMENTATION 

The phase in the software development process that is often referred to interchangeably as 
coding, development, or implementation is the actual transformation of the requirements into 
executable form. "Implementation in the small" refers to coding, and "implementation in the 
large" refers to designing an entire system in a top-down fashion while maintaining a perspective 
on the final integrated system. 
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Low-level designs, or coding units, are created from the high-level design for each 
subsystem and module that needs to be changed. Each coding unit specifies the changes to be 
made to the existing files, new or modified entry points, and any file that must be added, as well 
as other changes. After document reviews and approvals, the coding may begin. Using private 
copies of the code, developers make the changes and add the files specified in the coding unit. 
Coding is delicate work, and great care is taken so that unwanted side effects do not break any of 
the existing code. After completion, the code is tested by the developer and carefully reviewed by 
other experts. The changes are submitted to a public load (code from all programmers that is 
merged and loaded simultaneously) using an MR number. The MR is tied back to the feature to 
establish a correspondence between the code and the functionality that it provides. 

MRs are associated with the system version management system, which maintains a 
complete history of every change to the software and can recreate the code as it existed at any 
point in time. For production software systems, version management systems are required to 
ensure code integrity, to support multiple simultaneous releases, and to facilitate maintenance. If 
there is a problem, it may be necessary to back out changes. Besides a record of the affected 
lines, other information is kept, such as the name of the programmer making the changes, the 
associated feature number, whether a change fixes a fault or adds new functionality, the date of a 
change, and so on. 

The configuration management database contains the record of code changes, or change 
history of the code. Eick et al. (1992b) describe a visualization technique for displaying the 
change history of source code. The graphical technique represents each file as a vertical column 
and each line of code as a color-coded row within the column. The row indentation and length 
track the corresponding text, and the row color is tied to a statistic. If the row tracking is literal as 
with computer source code, the display looks as if the text had been printed in color and then 
photo-reduced for viewing as a single figure. The spatial pattern of color shows the distribution 
of the statistic within the text. 

Example. Developing large software systems is a problem of scale. In multimillion-line systems 
there may be hundreds of thousands of files and tens of thousands of modules, worked on by 
thousands of programmers for multiyear periods. Just discovering what the existing code does is 
a major technical problem consuming significant amounts of time. A continuing and significant 
problem is that of code discovery, whereby programmers try to understand how unfamiliar code 
works. It may take several weeks of detailed study to change a few lines of code without causing 
unwanted side effects. Indeed, much of the effort in maintenance involves changing code written 
by another programmer. Because of variation in programmer staff sizes and inevitable turnover, 
training new programmers is important. Visualization techniques, described further in Chapter 5, 
can improve productivity dramatically. 

Figure 1 displays a module composed of 20 source code files containing 9,365 lines of code. 
The height of each column indicates the size of the file. Files longer than one column are 
continued over to the next. The row color indicates the age of each line of code using a rainbow 
color scale with the newest lines in red and the oldest in blue. On the left is an interactive color 
scale showing a color for each of the 324 changes by the 126 programmers modifying this code 

17 



over the last 10 years. The visual impression is that of a miniature picture of all of the source 
code, with the indentation showing the usual C language control structure. 

The perception of colors is blurred, but there are clear patterns. Files in approximately the 
same hue were written at about the same time and are related. Rainbow files with many different 
hues are unstable and are likely to be trouble spots because of all the changes. The biggest file 
has about 1,300 lines of code and takes a column and a half. ■ 

Changes from many coding units are periodically combined together into a so-called 
common load of the software system. The load is compiled, made available to developers for 
testing, and installed in the laboratory machines. Bringing the changes together is necessary so 
that developers working on different coding units of a common feature can ensure that their code 
works together properly and does not break any other functionality. Developers also use the 
public load to test their code on laboratory machines. 

After all coding units associated with a feature are complete and it has been tested by the 
developers in the laboratory, the feature is turned over to the integration group for independent 
testing. The integration group runs tests of the feature according to a feature test plan that was 
prepared in parallel with the FSD. Eventually the new code is released as part of an upgrade or 
sent out directly if it fixes a critical fault. At this stage, maintenance on the code begins. If 
customers have problems, developers will need to submit fault modification requests. 

TESTING 

Many software systems in use today are very large. For example, the software that supports 
modern telecommunications networks, or processes banking transactions, or checks individual 
tax returns for the Internal Revenue Service has millions of lines of code. The development of 
such large-scale software systems is a complex and expensive process. Because a single simple 
fault in a system may cripple the whole system and result in a significant loss (e.g., loss of 
telephone service in an entire city), great care is needed to assure that the system is flawlessly 
constructed. Because a fault can occur in only a small part of a system, it is necessary to assure 
that even small programs are working as intended. Such checking for conformance is 
accomplished by testing the software. 

Specifically, the purpose of software testing is to detect errors in a program and, in the 
absence of errors, gain confidence in the correctness of the program or the system under test. 
Although testing is no substitute for improving a process, it does play a crucial role in the overall 
software development process. Testing is important because it is effective, if costly. It is 
variously estimated that the total cost of testing is approximately 20 to 33% of the total software 
budget for software development (Humphrey, 1989). This fraction amounts to billions of dollars 
in the U.S. software industry alone. Further, software testing is very time consuming, because the 
time for testing is typically greater than that for coding. Thus, efforts to reduce the costs and 
improve the effectiveness of testing can yield substantial gains in software quality and 
productivity. 
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Figure 1. A SeeSoft™ display showing a module with 20 files and 9,365 lines of code. 
Each file is represented as a column and each line of code as a colored row. The newest rows 
are in red and the oldest in blue, with a color spectrum in between. This overview highlights 
the largest files and program control structures, while the color shows relationships between 
files, as well as unstable, frequently changed code. Source: Eick et al. (1992b). 



Much of the difficulty of software testing is in the management of the testing process 
(producing reports, entering MRs, documenting MRs cleared, and so on), the management of the 
objects of the testing process (test cases, test drivers, scripts, and so on), and the management of 
the costs and time of testing. 

Typically, software testing refers to the phase of testing carried out after parts of code are 
written so that individual programs or modules can be compiled. This phase includes unit, 
integration, system, product, customer, and regression testing. Unit testing occurs when 
programmers test their own programs, and integration testing is the testing of previously separate 
parts of the software when they are put together. System testing is the testing of a functional part 
of the software to determine whether it performs its expected function. Product testing is meant 
to test the functionality of the final system. Customer testing is often product testing performed 
by the intended user of the system. Regression testing is meant to assure that a new version of a 
system faithfully reproduces the desirable behavior of the previous system. 

Besides the stages of testing, there are many different testing methods. In white box testing, 
tests are designed on the basis of detailed architectural knowledge of the software under test. In 
black box testing, only knowledge of the functionality of the software is used for testing; 
knowledge of the detailed architectural structure or of the procedures used in coding is not used. 
White box testing is typically used during unit testing, in which the tester (who is usually the 
developer who created the code) knows the internal structure and tries to exercise it based on 
detailed knowledge of the code. Black box testing is used during integration and system testing, 
which emphasizes the user perspective more than the internal workings of the software. Thus, 
black box testing tries to test the functionality of software by subjecting the system under test to 
various user-controlled inputs and by assessing its resulting performance and behavior. 

Since the number of possible inputs or test cases is almost limitless, testers need to select a 
sample, a suite of test cases, based on their effectiveness and adequacy. Herein lie significant 
opportunities for statistical approaches, especially as applied to black box testing. Ad hoc black 
box testing can be done when testers, perhaps based on their knowledge of the system under test 
and its users, decide specific inputs. Another approach, based on statistical sampling ideas, is to 
generate test cases randomly. The results of this testing can be analyzed by using various types of 
reliability growth curve models (see "Assessment and Reliability" in Chapter 4). Random 
generation requires a statistical distribution. Since the purpose of black box testing is to simulate 
actual usage, a highly recommended technique is to generate test cases randomly from the 
statistical distribution needed by users, often referred to as the operational profile of a system. 

There are several advantages and disadvantages to statistical operational profile testing. A 
key advantage is that if one takes a large enough sample, then the system under test will be tested 
in all the ways that a user may need it and thus should experience fewer field faults. Another 
advantage of this method is the possibility of bringing the full force of statistical techniques to 
bear on inferential problems; that is, the results obtained during testing can be generalized to 
make inferences about the field behavior of the system under test, including inferences about the 
number of faults remaining, the failure rate in the field, and so on. 

In spite of all these advantages, statistical operational profile testing in its purest form is 
rarely used. There are many difficulties; some are operational and others are more basic. For 
example, one can never be certain about the operational profile in terms of inputs, and especially 
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in terms of their probabilities of occurrence. Also, for large systems, the input space is high- 
dimensional. Thus, another problem is how to sample from this high-dimensional space. Further, 
the distribution is not static; it will, in all likelihood, change over time as new users exercise the 
system in unanticipated ways. Even if this possibility can be discounted, questions remain about 
the efficiency of statistical operational profile testing, which can be very inefficient, because 
most often the system under test will be used in routine ways, and thus a randomly drawn sample 
will be highly weighted by routine operations. This high weighting may be fine if the number of 
test cases is very large. But then testing would be very expensive, perhaps even prohibitively so. 
Therefore, testers often adopt some variant of drawing a random sample; for example, testers 
give more weight to boundary values—those values around which the system is expected to 
change its behavior and therefore where faults are likely to be found. This and other clever 
strategies adopted by testers typically result in a testing distribution that is quite different from 
the operational profile. Of course, in such a case the results of the testing laboratory will not be 
generalizable unless the relationships between the two distributions are taken into account. 

Thus, to take advantage of the attractiveness of operational profile testing, some key 
problems have to be solved: 

1. How to obtain the operational profile, 
2. How to sample according to a statistical distribution in high-dimensional space, and 
3. How to generalize results obtained in the testing laboratory to the field when the testing 

distribution is a variant of the operational profile distribution. 

All of these questions can be dealt with conceptually using statistical approaches. 
For (1), a Bayesian elicitation procedure can be envisioned to derive the operational profile. 

This elicitation is done routinely in Bayesian applications, but because the space is very high 
dimensional, techniques are needed for Bayesian elicitation in very high dimensional spaces. 

Concerning (2), if the joint distribution corresponding to the operational profile is known, 
schemes can be used that are more efficient than simple random sampling schemes. Simple 
random sampling is inefficient because it typically gives higher probability to the middle of a 
distribution than to its tails, especially in high dimensions. A more efficient scheme would 
sample the tails quickly. This can be accomplished by stratifying the support of the distribution. 

McKay et al. (1979) formalized this idea using Latin hyper cube sampling. Suppose we have 
a AT-dimensional random vector X = (XU...,XK) and we want to get a sample of size N from the 
joint distribution of X. If the components of X are independent, then the scheme is simple, 
namely: 

• Divide the range of each component random variable in N intervals of equal probability, 
• Randomly sample one observation for each component random variable in each of the 

corresponding N intervals, and finally 
• Randomly combine the components to create X. 

Stein (1987) showed that this sampling scheme can be substantially better than simple random 
sampling.   Iman  and  Conover  (1982)  and  Stein  (1987)  both  discussed  extensions  for 
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nonindependent component variables. Of course, if specifying homogenous strata is possible, it 
should be done prior to applying the Latin hyper cube sampling method to increase the overall 
effectiveness of the sampling scheme. 

Example: Consider a software system controlling the state of an air-to-ground missile. The key 
inputs for the software are altitude, attack and bank angles, speed, pitch, roll, and yaw. Typically, 
these variables are independently controlled. To test this software system, combinations of all 
these inputs must be provided and the output from the software system checked against the 
corresponding physics. One would like to generate test cases that include inputs over a broad 
range of permissible values. To test all the valid possibilities, it would be reasonable to try 
uniform distributions for each input. Suppose we decide upon a sample of size 6. The 
corresponding Latin hyper cube design is easily constructed by dividing each variable into six 
equal probability intervals and sampling randomly from each interval. Because we have 
independent random variables here, the final step consists of randomly coupling these samples. 
The design is difficult to visualize in more than two dimensions, but one such sample for attack 
and bank angles is depicted in Figure 2. Note that there is exactly one observation in each 
column and in each row, thus the name "Latin hyper cube." ■ 
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Figure 2. Latin hyper cube. N = 6 and K = 2. 
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Finally, concerning (3), to make inferences about field performance, the issue of the 
discrepancy between the statistical operational profile and the testing distribution must be 
addressed. At this point, a distinction can be made between two types of extrapolation to field 
performance of the system under test. It is clear that even if the true operational profile 
distribution is not available, to the extent that the testing distribution has the same support as the 
operational profile distribution, statistical inferences can be made about the number of remaining 
faults. On the other hand, to extrapolate the failure intensity from the testing laboratory to the 
field, it is not enough to have the same support; rather, identical distributions are needed. Of 
course, it is unlikely that after spending much time and money on testing, one would again test 
with the statistical operational profile. What is needed is a way of reusing the information 
generated in the testing laboratory, perhaps by a transformation in which some statistical 
techniques based on reweighting can help. There are two basic ideas, both relying heavily on the 
assumption that the testing and the field-use distributions have the same support. One idea is to 
use all the data from the testing laboratory, but with added weights to change the sample to 
resemble a random sample from the operational profile. The approach is similar to reweighting in 
importance sampling. Another idea is to accept or reject the inputs used in testing with a 
probability distribution based on the operational profile. For a description of both of these 
techniques, see Beckman and McKay (1987). 

In his presentation at the panel's forum, Phadke (1993) suggested another set of statistical 
techniques, based on orthogonal arrays, for parsimonious testing of software. The example 
described above proves useful in an elaboration. 

Example. For the software system that determines the state of an attack plane, let us assume that 
interest centers on testing only two conditions for each input variable. This situation arises, for 
example, when the primary interest lies in boundary value testing. Let the lower value be input 
state 0 and the upper value be input state 1 for each of the variables. Then in the language of 
statistical experimental design, we have seven factors, A,...,G (altitude, attack angle, bank angle, 
speed, pitch, roll, and yaw), each at two levels (0,1). To test all of the possible combinations, one 
would need a complete factorial experiment, which would have 27 = 128 test cases consisting of 
all possible sequences of 0's and 1 's. For a statistical experiment intended to address only main 
effects, a highly fractionated factorial design would be sufficient. However, in the case of 
software testing, there is no statistical variability and little or no interest in estimating various 
effects. Rather, the interest is in covering the test space as much as possible and checking 
whether the test cases pass or fail. Even in this case, it is still possible to use statistical design 
ideas. For example, consider the sequence of test cases given in Table 2. This design requires 8 
test cases instead of 128. In this case, since there is no statistical variation, main effects do not 
have any practical meaning. However, looking at the pattern in the table, it is clear that all 
possible combinations of any two pairs are covered in a balanced way. Thus, testing according to 
this design will protect against any incorrect implementation of the code involving a pairwise 
interaction. ■ 
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AB CD E F G 
1 0 0 0 0 0 0 0 
2 0 0 0 11 1 1 
3 0 110 0 1 1 
4 0 1111 0 0 
5 1 0 10 1 0 1 
6 1 0 110 1 0 
7 1 10 0 1 1 0 
8 1 10 10 0 1 

Table 2a. Orthogonal array. 
Test cases in rows. Test 
factors in columns. 

1 
2 
3 
4 
5 
6 

A 
0 
1 
0 
1 
1 
0 

BC DE FG 
0 0 0 0 0 0 

1  0 
0 1 
1 1 
0 1 
1 1 

Table 2b. Combinatorial 
design. Test cases in rows. 
Test factors in columns. 

In general, following Taguchi, Phadke (1993) suggests orthogonal array designs of strength 
two. These designs (a specific instance of which is given in the above example) guarantee that all 
possible pairwise combinations will be tried out in a balanced way. Another approach based on 
combinatorial designs was proposed by Cohen et al. (1994). Their designs do not consider 
balance to be an overriding design criterion, and accordingly they produce designs with smaller 
numbers of required test cases. For example, Table 2b contains a combinatorial design with 
complete pairwise coverage in six runs instead of the eight required by orthogonal arrays (Table 
2a). This notion has been extended to notions of higher-order coverage as well. The efficacy of 
these and other types of designs has to be evaluated in the testing context. 

Besides the types of testing discussed above, there are other statistical strategies that can be 
used. For example, DeMillo et al. (1988) have suggested the use of fault insertion techniques. 
The basic idea is akin to capture-recapture sampling in which sampled units of a population 
(usually wildlife) are released and inverse sampling is done to estimate the unknown population 
size. The MOTHRA system built by DeMillo and his colleagues implements such a scheme. 
While there are many possible sampling schemes (Nayak, 1988), the difficulty with fault 
insertion is that the faults inserted ought to be subtle enough so that the system can be compiled 
and tested; no two inserted faults should interact with each other; and while it may be possible at 
the unit testing level, it is prohibitively expensive for integration testing. It should be pointed out 
that the use of capture-recapture sampling, outlined in this chapter's subsection titled "Design," 
for quantifying document reviews does not require fault seeding and, accordingly, is not subject 
to the above difficulties. 

Another key problem in testing is determining when there has been enough testing. For unit 
testing where much of the testing is white box and the modules are small, one can attempt to 
check whether all the paths have been covered by the test cases, an idea extended substantially by 
Horgan and London (1992). However, for integration and system testing, this particular 
approach, coverage testing, is not possible because of the size and the number of possible paths 
through the system. Here is another opportunity for using statistical approaches to develop a 
theory of statistical coverage. Coverage testing relates to deriving methods and algorithms for 
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generating test cases so that one can state, with a very high probability, that one has checked 
most of the important paths of the software. This kind of methodology has been used with 
probabilistic algorithms in protocol testing, where the structure of the program can be described 
in great detail. (A protocol is a very precise description of the interface between two diverse 
systems.) Lee and Yanakakis (1992) have proposed algorithms whereby one is guaranteed, with a 
high degree of probability, that all the states of the protocols are checked. The difficulty with this 
approach is that the number of states becomes large very quickly, and except for a small part of 
the system under test, it is not clear that such a technique would be practical (under current 
computing technology). These ideas have been mathematically formalized in the vibrant area of 
theorem checking and proving (Blum et al., 1990). The key idea is to take transforms of 
programs such that the results are invariant under these transforms if the software is correct. 
Thus, any variation in the results suggests possible faults in the software. Blum et al. (1989) and 
Lipton (1989), among others, have developed a number of algorithms to give probabilistic 
bounds on the correctness of software based on the number of different transformations. 

In all of the several approaches to testing discussed above, the number of test cases can be 
extraordinarily large. Because of the cost of testing and the need to supply software in a 
reasonable period of time, it is necessary to formulate rules about when to stop testing. Herein 
lies another set of interesting problems in sequential analysis and statistical decision theory. As 
pointed out by Dalai and Mallows (1988, 1990, 1992), Singpurwalla (1991), and others, the key 
issue is to explicitly incorporate the economic trade-off between the decision to stop testing (and 
absorb the cost of fixing subsequent field faults) and the decision to continue testing (and incur 
ongoing costs to find and fix faults before release of a software product). Since the testing 
process is not deterministic, the fault-finding process is modeled by a stochastic reliability model 
(see Chapter 4 for further discussion). The opportune moment for release is decided using 
sequential decision theory. The rules are simple to implement and have been used in a number of 
projects. This framework has been extended to the problem of buying software with some sort of 
probabilistic guarantee on the number of faults remaining (Dalai and Mallows, 1992). Another 
extension with practical importance (Dalai and Mclntosh, 1994) deals with the issue of a system 
under test not having been completely delivered at the start of testing. This situation is a common 
occurrence for large systems, where in order to meet scheduling milestones, testing begins 
immediately on modules and sets of modules as they are completed. 
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4 
Critique of Some Current Applications of Statistics in 

Software Engineering 

COST ESTIMATION 

One of software engineering's long-standing problems is the considerable inaccuracy of the 
cost, resource, and schedule estimates developed for projects. These estimates often differ from 
the final costs by a factor of two or more. Such inaccuracies have a severe impact on process 
integrity and ultimately on final software quality. Five factors contribute to this continuing 
problem: 

1. Most cost estimates have little statistical basis and have not been validated; 

2. The value of historical data in developing predictive models is limited, since no 
consistent software development process has been adopted by an organization; 

3. The maturity of an organization's process changes the granularity of the data that can be 
used effectively in project cost estimation; 

4. The reliability of inputs to cost estimation models varies widely; and 

5. Managers attempt to manage to the estimates, reducing the validity of historical data as a 
basis for validation. 

Certain of the above issues center on the so-called maturity of an organization (Humphrey, 
1988). From a purely statistical research perspective, (5) may be the most interesting area, but the 
major challenge facing the software community is finding the right metrics to measure in the first 
place. 

Example. The data plotted in Figure 3 pertain to the productivity of a conventional COBOL 
development environment (Kitchenham, 1992). For each of 46 different products, size (number 
of entities and transactions) and effort (in person-hours) were measured. From Figure 3, it is 
apparent that despite substantial variability, a strong (log-log) linear relationship exists between 
program size and program effort. 

A simple model relating effort to size is 

log10 {effort) = a + ß log10 (size) + noise. 
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Figure 3. Data on the relationship between development effort and product size in a COBOL 
development organization. 

A least squares fit to these data yields 

Coeff. SE t 

Intercept 1.120    0.3024   3.702 

log10(size)        1.049    0.1250    8.397 

RMS 0.194 

These fitted coefficients suggest that development effort is proportional to product size; a formal 
test of the hypothesis, H: ß = 1, gives a t value at the .65 significance level. 

The estimated intercept after fixing ß = 1 is 1.24; the resulting fit and a 95% prediction 
interval are overlaid on the data in Figure 3. This model predicts that it requires approximately 
17 hours (= 10124) to implement each unit of size. 

Such models are used for prediction and tool validation. Consider an additional observation 
made of a product developed using a fourth-generation language and relational databases. Under 
the experimental development process, it took 710 hours to implement the product of size 183 
(this point is denoted by X in Figure 3). The fitted model predicts that this product would have 
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taken approximately 3,000 hours to complete using the conventional development environment. 
The 95% prediction interval at X = 183 ranges from approximately 1,000 to 9,000 hours; thus, 
assuming that other factors are not contributing to the apparent short development cycle of this 
product, the use of those new fourth-generation tools has demonstrably decreased the 
development effort (and hence the cost). ■ 

Statistical Inadequacies in Estimating 

Most cost estimation methods develop an initial relationship between the estimated size of a 
system (in lines of code, for instance) and the resources required to develop it. Such equations 
are often of the form illustrated in the above example: effort is proportional to size raised to the ß 
power. This initial estimate is then adjusted by a number of factors that are thought to affect the 
productivity of the specific project, such as the experience of the assigned staff, the available 
tools, the requirements for reliability, and the complexity of the interaction with the customer. 
Thus the estimating equation assumes the log linear form: 

effort ~a size^ x aiajakalam---az, 

where the a's are the coefficients for the adjustment factors. Unfortunately, these adjustment 
factors are not treated as variables in a' regression equation; rather, each has a set of fixed 
coefficients (termed "weighting factors") associated with each level of the variable. These are 
independently applied as if the variables were uncorrelated (an assumption known to be 
incorrect). These weighting schemes have been developed based on intuition about each 
variable's potential impact rather than on a statistical model fitting using historical data. Thus, 
although the relationship between effort and size is often recalibrated for different organizations, 
the weighting factors are not. 

Exacerbating the problems with existing cost estimation models is the lack of rigorous 
validation of the equations. For instance, Boehm (1981) has acknowledged that his well-known 
COCOMO estimating model was not developed using statistical methods. Many individuals 
marketing cost estimation modeling tools denigrate the value of statistical approaches compared 
to clever intuition. To the extent that analytical methods are used in the development or 
validation of these models, they are often performed on data sets that contain as many predictor 
variables (productivity factors) as projects. Thus determination of the separate or individual 
contributions of the variables almost certainly depends too much on chance and can be distorted 
by collinear relationships. These models are rarely subjected to independent validation studies. 
Further, little research has been done that attempts to restrict these models to including only 
those productivity factors that really matter (i.e., subset selection). 

Because of the lack of statistical rigor in most cost estimation models, software development 
organizations usually handcraft weighting schemes to fit their historical results. Thus, the 
specific instantiation of most cost estimation models differs across organizations. Under these 
conditions, cross-validation of the weighting schemes is very difficult, if not impossible. A new 
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approach to developing cost estimation models would be beneficial, one that invokes sound 
statistical principles in fitting such equations to historical data and to validating their 
applicability across organizations. If the instantiation of such models is found to be domain- 
specific, statistically valid methods should be sought for regenerating accurate models in 
different domains. 

Process Volatility 

In immature software development organizations, the processes used differ across projects 
because they are based on the experiences and preferences of the individuals assigned to each 
project, rather than on common organizational practice. Thus, in such organizations cost 
estimation models must attempt to predict the results of a process that varies widely across 
projects. In poorly run projects the signal-to-noise ratio is low, in that there is little consistent 
practice that can be used as the basis for dependable prediction. In such projects, neither the size 
nor the productivity factors provide any consistent insight into the resources required, since they 
are not systematically related to the processes that will be used. 

The historical data collected from projects in immature software development organizations 
are difficult to interpret because they reflect widely divergent practices. Such data sets do not 
provide an adequate basis for validation, since process variation can mask underlying 
relationships. In fact, because the relationships among independent variables may change with 
variations in the process, different projects may require different values of the parameters in the 
cost estimation models. As organizations mature and stabilize their processes, the accuracy of the 
estimating models they use usually increases. 

Maturity and Data Granularity 

In mature organizations the software development process is well defined and is applied 
consistently across projects. The more carefully defined the process, the finer the granularity of 
the processes that can be measured. Thus, as software organizations mature, the entire basis for 
their cost estimation models can change. Immature organizations have data only at the level of 
overall project size, number of person-years required, and overall cost. With increasing 
organizational maturity, it becomes possible to obtain data on process details such as how many 
reviews must be conducted at each life cycle stage based on the size of the system, how many 
test cases must be run, and how many defects must be fixed based on the defect removal 
efficiency of each stage of the verification process. Thus, estimation in fully developed 
organizations can be based on a bottom-up analysis in which the historical data can be more 
accurate because the objects of estimation, and the effort they require, are more easily 
characterized. 

As organizations mature, the structure of relevant cost estimation models can change. When 
process models are not defined in detail, models must take the form of regression equations 
based on variables that describe the total impact of a predictor variable on a project's 
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development cycle. There is little notion in these models of the detailed practices that make up 
the totality. In mature organizations such practices are defined and can be analyzed individually 
and built up into a total estimate. Normally the errors in estimating these smaller components are 
smaller than the corresponding error at the total project level, and it is assumed that the summary 
effect of aggregating these smaller errors is still smaller than the error in the estimate at the total 
project level. 

Reliability of Model Inputs 

Even if a cost estimation model is statistically sound, the data on which it is based can have 
low validity. Often, managers do not have sufficient knowledge of crucial variables that must be 
entered into a model, such as the estimated size of various individual components of a system. In 
such instances, processes exist for increasing the accuracy of these data. For instance, Delphi 
techniques can be used by software engineers who have previous experience in developing 
various system components. The less experience an organization has with a particular component 
of a system, the less reliable is the size estimate for that component. Typically, component sizes 
are underestimated, with ruinous effects on the resources and schedule estimated for a project. 
Sometimes historical "fudge factors" are applied to account for underestimation, although a more 
rigorous data-based approach is recommended. To aid in identifying the potential risks in a 
software development project, it would also be beneficial to have reliable confidence bounds for 
different components of the estimated size or effort. 

Statistical methods can be applied to develop prior probabilities (e.g., for Bayesian 
estimation models) from knowledgeable software engineers and to adjust these using historical 
data. These methods should be used not only to suggest the confidence that can be placed in an 
estimate, but also to indicate the components within a system that contribute most to inaccuracies 
in an estimate. 

As projects progress during their life cycle from specifications of requirements to design to 
generation of code, the information on which estimates can be based grows more reliable: there 
is thus greater certainty in estimating from the architectural design of a system or the detailed 
design of each module than in estimating from textual statements. In short, the sources from 
which estimates can be developed change as the project continues through its development cycle. 
Each succeeding level of input is a more reliable indicator of the ultimate system size than are 
the inputs available in earlier stages of development. Thus the overall estimate of size, resources, 
and schedule potentially becomes more accurate in succeeding phases of a project. Yet it is 
important to determine the most accurate indicators of crucial parameters such as size, effort, and 
schedule very early in a project, when the least reliable data are available. As such, there is a 
need for statistically valid ways of developing model inputs from less reliable forms of data 
(these inputs must reliably estimate later measures that will be more valid inputs) and of 
estimating how much error is introduced into an estimate based on the reliability of the inputs. 
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Managing to Estimates 

Complicating the ability to validate cost estimation models from historical data is the fact 
that project managers try to manage their projects to meet received estimates for cost, effort, 
schedule, and other such variables. Thus, an estimate affects the subsequent process, and 
historical data are made artificially more accurate by management decisions and other factors 
that are often masked in project data. For instance, projects whose required level of effort has 
been underestimated often survive on large amounts of unreported overtime put in by the 
development staff. Moreover, many managers are quite skilled at cutting functionality from a 
system in order to meet a delivery date. In the worst cases, engineers short-cut their ordinary 
engineering processes to meet an unrealistic schedule, usually with disastrous results. Techniques 
for modeling systems dynamics provide one way to characterize some of the interactions that 
occur between an estimate and the subsequent process that is generated by the estimate (Abdel- 
Hamid, 1991). 

The validation of cost estimation models must be conducted with an understanding of such 
interactions between estimates and a project manager's decisions. Some of these dynamics may 
be usefully described by statistical models or by techniques developed in psychological decision 
theory (Kahneman et al., 1982). Thus, it may be possible to develop a statistical dynamic model 
(e.g., a multistage linear model) that characterizes the reliability of inputs to an estimate, the 
estimate itself, decisions made based on the estimate, the resulting performance of the project, 
measures that emerge later in the project, subsequent decision making based on these later 
measures, and the ultimate performance of the project. Such models would be valuable in helping 
project managers to understand the ramifications of decisions based on an initial estimate and 
also on subsequent periodic updates. 

ASSESSMENT AND RELIABILITY 

Reliability Growth Modeling 

Many reliability models of varying degrees of plausibility are available to software 
engineers. These models are applied at either the testing stage or the field-monitoring stage. Most 
of the models take as input either failure time or failure count data and fit a stochastic process 
model to reflect reliability growth. The differences among the models lie principally in 
assumptions made based on the underlying stochastic process generating the data. A brief survey 
of some of the well-known models and their assumptions and efficacy is given in Abdel-Ghaly et 
al. (1986). 

Although many software reliability growth models are described in the literature, the 
evidence suggests that they cannot be trusted to give accurate predictions in all cases and also 
that it is not possible to identify a priori which model (if any) will be trustworthy in a particular 
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context. No doubt work will continue in refining these models and introducing "improved" ones. 
Although such work is of some interest, the panel does not believe that it merits extensive 
research by the statistical community, but thinks rather that statistical research could be directed 
more fruitfully to providing insight to the users of the models that currently exist. 

The problem is validation of such models with respect to a particular data source, to allow 
users to decide which, if any, prediction scheme is producing accurate results for the actual 
software failure process under examination. Some work has been done on this problem (Abdel- 
Ghaly et al., 1986; Brocklehurst and Littlewood, 1992), using a combination of probability 
forecasting and sequential prediction, the so-called prequential approach developed by Dawid 
(1984), but this work has so far been rather informal. It would be helpful to have more 
procedures for assessing the accuracy of competing prediction systems that could then be used 
routinely by industrial software engineers without advanced statistical training. 

Statistical inference in the area of reliability tends almost invariably to be of a classical 
frequentist kind, even though many of the models originate from a subjective Bayesian 
probability viewpoint. This unsatisfactory state of affairs arises from the sheer difficulty of 
performing the computations necessary for a proper Bayesian analysis. It seems likely that there 
would be profit in trying to overcome these problems, perhaps via the Gibbs sampling approach 
(see, e.g., Smith and Roberts, 1993). 

Another fruitful avenue for research concerns the introduction of explanatory variables, so- 
called covariates, into software reliability growth models. Most existing models assume that no 
explanatory variables are available. This assumption is assuredly simplistic concerning testing 
for all but small systems involving short development and life cycles. For large systems (i.e., 
those with more than 100,000 lines of code) there are variables, other than time, that are very 
relevant. For example, it is typically assumed that the number of faults (found and unfound) in a 
system under test remains stable—i.e., that the code remains frozen—during testing. However, 
this is rarely the case for large systems, since aggressive delivery cycles force the final phases of 
development to overlap with the initial stages of system testing. Thus, the size of code and, 
consequently, the number of faults in a large system can vary widely during testing. If these 
changes in code size are not considered, the result, at best, is likely to be an increase in 
variability and a loss in predictive performance, and at worst, a poorly fitting model with 
unstable parameter estimates. Taking this logic one step further suggests the need to distinguish 
between new lines of code (new faults) and code coming from previous releases (old faults), and 
possibly the age of different parts of code. Of course, one can carry this logic to an extreme and 
have unwieldy models with many covariates. In practice, what is required is a compromise 
between the two extremes of having no covariates and having hundreds of them. This is where 
opportunities abound for applying state-of-the-art statistical modeling techniques. Described 
briefly below is a case study reported by Dalai and Mclntosh (1994) dealing with reliability 
modeling when code is changing. 
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Example. Consider a new release of a large telecommunications system with approximately 7 
million noncommentary source lines (NCSLs) and 400,000 lines of noncommentary new or 
changed source lines (NCNCSLs). For a faster delivery cycle, the source code used for system 
test was updated every night throughout the test period. At the end of each of 198 calendar days 
in the test cycle, the number of faults found, NCNCSLs, and the staff time spent on testing were 
collected. Figure 4 (top) portrays growth of the system as a function of staff time. The data are 
provided in Table 3. 
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Figure 4. Plots of module size (NCNCSLs) versus staff time (days) for a large 
telecommunications software system (top). Observed and fitted cumulative faults versus staff 
time (bottom). The dotted line (barely visible) represents the fitted model, the solid line 
represents the observed data, and the dashed line (also difficult to see) is the extrapolation of the 
fitted model. 
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Table  3.  Data  on  cumulative  size  (NCNCSLs),  cumulative  staff time  (days),   and  cumulative  faults   for  a  large 
telecommunications system on 198 consecutive calendar days (with duplicate lines representing weekends or holidays). 

Cum. Cum. Cum. Cum. Cum. Cum. Cum. Cum. Cum. 
Staff Faults NCNCSLs Staff Faults NCNCSLs Staff Faults NCNCSLs 
Days Days Days 
0 0 0 334.8 231 261669 776.5 612 318476 
4.8 0 16012 342.7 243 262889 793.5 621 320125 
6 0 16012 350.5 252 263629 807.2 636 321774 
6 0 16012 356.3 259 264367 811.8 639 321774 
14.3 7 32027 360.6 271 265107 812.5 639 321774 
22.8 7 48042 365.7 277 265845 829 648 323423 
32.1 7 58854 365.7 277 265845 844.4 658 325072 
41.4 7 69669 365.7 277 265845 860.5 666 326179 
51.2 11 80483 374.9 282 266585 876.7 674 327286 
51.2 11 80483 386.5 290 267325 892 679 328393 
51.2 11 80483 396.5 300 268607 895.5 686 328393 
60.6 12 91295 408 310 269891 895.5 686 328393 
70 13 102110 417.3 312 271175 910.8 690 329500 
79.9 15 112925 417.3 312 271175 925.1 701 330608 
91.3 20 120367 417.3 312 271175 938.3 710 330435 
97 21 127812 424.9 321 272457 952 720 330263 
97 21 127812 434.2 326 273741 965 729 330091 
97 21 127812 442.7 339 275025 967.7 729 330091 
97 21 127812 451.4 346 276556 968.6 731 330091 
107.7 22 135257 456.1 347 278087 981.3 740 329919 
119.1 28 142702 456.1 347 278087 997 749 329747 
127.6 40 150147 456.1 347 278087 1013.9 759 330036 
135.1 44 152806 460.8 351 279618 1030.1 776 330326 
135.1 44 152806 466 356 281149 1044 781 330616 
135.1 44 152806 472.3 359 283592 1047 782 330616 
142.8 46 155464 476.4 362 286036 1047 782 330616 
148.9 48 158123 480.9 367 288480 1059.7 783 330906 
156.6 52 160781 480.9 367 288480 1072.6 787 331196 
163.9 52 167704 480.9 367 288480 1085.7 793 331486 
169.7 59 174626 486.8 374 290923 1098.4 796 331577 
170.1 59 174626 495.8 376 293367 1112.4 797 331669 
170.6 59 174626 505.7 380 295811 1113.5 798 331669 
174.7 63 181548 516 392 298254 1114.1 798 331669 
179.6 68 188473 526.2 399 300698 1128 802 331760 
185.5 71 194626 527.3 401 300698 1139.1 805 331852 
194 88 200782 527.3 401 300698 1151.4 811 331944 
200.3 93 206937 535.8 405 303142 1163.2 823 332167 
200.3 93 206937 546.3 415 304063 1174.3 827 332391 
200.3 93 206937 556.1 425 305009 1174.3 827 332391 
207.2 97 213093 568.1 440 305956 1174.3 827 332391 
211.9 98 219248 577.2 457 306902 1184.6 832 332615 
217 105 221355 578.3 457 306902 1198.3 834 332839 
223.5 113 223462 578.3 457 306902 1210.3 836 333053 
227 113 225568 587.2 467 307849 1221.1 839 333267 
227 113 225568 595.5 473 308795 1230.5 842 333481 
227 113 225568 605.6 480 309742 1231.6 842 333481 
234.1 122 227675 613.9 491 310688 1231.6 842 333481 
241.6 129 229784 621.6 496 311635 1240.9 844 333695 
250.7 141 233557 621.6 496 311635 1249.5 845 333909 
259.8 155 237330 621.6 496 311635 1262.2 849 335920 
268.3 166 241103 623.4 496 311635 1271.3 851 337932 
268.3 166 241103 636.3 502 311750 1279.8 854 339943 
268.3 166 241103 649.7 517 311866 1281 854 339943 
277.2 178 244879 663.9 527 312467 1281 854 339943 
285.5 186 247946 675.1 540 313069 1287.4 855 341955 
294.2 190 251016 677.4 543 313069 1295.1 859 341967 
295.7 190 251016 677.9 544 313069 1304.8 860 341979 
298 190 254086 688.4 553 313671 1305.8 865 342073 
298 190 254086 698.1 561 314273 1313.3 867 342168 
298 190 254086 710.5 573 314783 1314.4 867 342168 
305.2 195 257155 720.9 581 315294 1314.4 867 342168 
312.3 201 260225 731.6 584 315805 1320 867 342262 
318.2 209 260705 732.7 585 315805 1325.3 867 342357 
328.9 224 261188 733.6 585 315805 1330.6 870 342357 
334.8 231 261669 746.7 586 316316 1334.2 870 342358 
334.8 231 261669 761 598 316827 1336.7 870 342358 

SOURCE: Dalai and Mclntosh (1994). 
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Assume that the testing process is observed at time tj,i = 0,...,h, and at any given time, the 

amount of time it takes to find a specific "bug" is exponential with rate m. At time tt, the total 

number of faults remaining in the system is Poisson with mean //+,, and NCNCSL is increased 

by an amount C,. This change adds a Poisson number of faults with mean proportional to C, say 

qCt. These assumptions lead to the mass balance equation, namely, that the expected number of 

faults in the system at tt (after possible modification) is the expected number of faults in the 

system at tt_x adjusted by the expected number found in the interval (>,_,,*,) plus the faults 
introduced by the changes made at t,-: 

for i = \,...h. Note that q represents the number of new faults entering the system per additional 

NCNCSL, and /, represents the number of faults in the code at the start of system test. Both of 
these parameters make it possible to differentiate between the new code added in the current 
release and the older code. For the data at hand, the estimated parameters are q = 0.025, 

m = 0.002, and /a =41. The fitted and the observed data are plotted against staff time in Figure 4 
(bottom). The fit is evidently very good. Of course assessing the model on independent or new 
data is required for proper validation. 

The efficacy of creating a statistical model is now examined. The estimate of q is highly 
significant, both statistically and practically, showing the need for incorporating changes in 
NCNCSLs as a covariate. Its numerical value implies that for every additional 10,000 NCNCSLs 
added to the system, 25 faults are being added as well. For these data, the predicted number of 
faults at the end of the test period is Poisson distributed with mean 145. Dividing this quantity by 
the total NCNCSLs gives 4.2 per 10,000 NCNCSLs as an estimated field fault density. These 
estimates of the incoming and outgoing quality are very valuable in judging the efficacy of 
system testing and for deciding where resources should be allocated to improve the quality. Here, 
for example, system testing was effective in that it removed 21 of every 25 faults. However, it 
raises another issue: 25 faults per 10,000 NCNCSLs entering system test may be too high and a 
plan ought to be considered to improve the incoming quality. ■ 

None of the above conclusions could have been made without using a statistical model. 
These conclusions are valuable for controlling and improving the reliability testing process. 
Further, for this analysis it was essential to have a covariate other than time. 

Influence of the Development Process on Software Dependability 

As noted above, surprisingly little use has been made of explanatory variable models, such 
as proportional hazards regression, in the modeling of software dependability. A major reason, 
the panel believes, is the difficulty that software engineers have in identifying variables that can 
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play a genuinely explanatory role. Another difficulty is the comparative paucity of data owing to 
the difficulties of replication. Thus, for example, for purposes of identifying those attributes of 
the software development process that are drivers of the final product's dependability, it is very 
difficult to obtain something akin to a "random sample" of "similar" subject programs. Those 
issues are not unlike the ones faced in other contexts where these techniques are used, for 
example, in medical trials, but they seem particularly acute for evaluation of software 
dependability. 

A further problem is that the observable in this software development application is a 
realization of a stochastic process, and not merely of a lifetime random variable. Thus there 
seems to be an opportunity for research into models that, on the one hand, capture current 
understanding of the nature of the growth in reliability that takes place as a result of debugging 
and, on the other hand, allow input about the nature of the development process or the 
architecture of the product. 

Influence of the Operational Environment on Software Dependability 

It can be misleading to talk of the reliability of a program: as is the case for the reliability of 
hardware, the reliability of a program depends on the nature of its use. For software, however, 
one does not have the simple notions of stress that are sometimes plausible in the hardware 
context. It is thus not possible to infer the reliability of a program in one environment from 
evidence of the program's failure behavior in another. This is a serious difficulty for several 
reasons. 

First, one would like to be able to predict the operational reliability of a program from test 
data. The simplest approach at present is to ensure that the test environment, that is, the type of 
usage, is exactly similar to, or differs in known proportions for specified strata from, the 
operational environment. Real software testing regimes are often deliberately made to be 
different from operational ones, since it is claimed that in this way reliability can be achieved 
more efficiently: this argument is similar to that for hardware stress testing but is much less 
convincing in the software context. 

A further reason to be interested in this problem of inferring program reliability is that most 
software gets broadly distributed to diverse locations and is used very differently by different 
users: there is great disparity in the population of user environments. Vendors would like to be 
able to predict different users' perceptions of a product's reliability, but it is clearly impractical 
to replicate in a test every different possible operational environment. Vendors would also like 
to be able to predict the characteristics of a population of users. Thus it might be expected that a 
less disparate population of users would be preferable to a more disparate one: in the former case, 
for example, problems reported at different sites might be similar and thus be less expensive to 
fix. 

Explanatory variable modeling may play a useful role if suitably informative, measurable 
attributes of operational usage can be identified. There may be other ways of forming stochastic 
characterizations of operational environments. Markov models of the successive activation of 
modules, or of functions, have been proposed (Littlewood, 1979; Siegrist, 1988a,b) but have not 
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been widely used. Further work on such approaches, and on the problems of statistical inference 
associated with them, could be promising. 

Safety-Critical Software and the Problem of Assuring Ultrahigh Dependability 

It seems clear that computers will play increasingly critical roles in systems upon which 
human lives depend. Already, systems are being built that require extremely high 
dependability—a figure of 10"9 probability of failure per hour of flight has been stated as the 
requirement for recent fly-by-wire systems in civil aircraft. There are clear limitations to the 
levels of dependability that can be achieved when we are building systems of a complexity that 
precludes claims that they are free of design faults. More importantly, even if we were able to 
build a system to meet a requirement for ultrahigh dependability, we could have only low 
confidence that we had achieved that goal, because the problem of assessing these levels is such 
that it would be impractical to acquire sufficient supporting evidence (Littlewood and Strigini, 
1993). 

Although a complete solution to the problem of assessing ultrahigh dependability is not 
anticipated, there is certainly room for improving on what can be done currently. Probabilistic 
and statistical problems abound in this area, and it is necessary to squeeze as much as possible 
from relatively small amounts of often disparate evidence. The following are some of the areas 
that could benefit from investigation. 

Design Diversity, Fault Tolerance, and General Issues of Dependence 

One promising approach to the problem of achieving high dependability (here reliability 
and/or safety) is design diversity: building two or more versions of the required program and 
allowing an adjudication mechanism (e.g., a voter) to operate at run-time. Although such systems 
have been built and are in operation in safety-critical contexts, there is little theoretical 
understanding of their behavior in operation. In particular, the reliability and safety models are 
quite poor. 

For example, there is ample evidence (Knight and Leveson, 1986) that, in the presence of 
design faults, one cannot simply assume that different versions will fail independently of one 
another. Thus the simple hardware reliability models that involve mere redundancy, and assume 
independence of component failures, cannot be used. It is only quite recently that probability 
modeling has started to address this problem seriously (Eckhardt and Lee, 1985; Littlewood and 
Miller, 1989). These models provide a formal conceptual framework within which it is possible 
to reason about the subtle issues of conditional independence involved in the failure processes of 
design-diverse systems. However, they provide little quantitative practical assistance to a 
software designer or evaluator. 

Further probabilistic modeling is needed to elucidate some of the complex issues. For 
example, little attention has been paid to modeling the full fault tolerant system, involving 
diversity and adjudication. In particular, the properties of the stochastic process of failures of 
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such systems are not understood. If, as seems likely, individual versions of a program in a real- 
time control system exhibit clusters of failures in time, how does the cluster process of the 
system relate to the cluster processes of the individual versions? Although such issues seem 
narrowly technical, they are vitally important in the design of real systems, whose physical 
integrity may be sufficient to survive one or two failed input cycles, but not many. 

Another area that has had little work is probabilistic modeling of different possible 
adjudication mechanisms and their failure processes. 

Judgment and Decision-making Framework 

Although probability seems to be the most appropriate mechanism for representing 
uncertainty about system dependability, other candidates such as Shafer-Dempster and 
possibility theories might be plausible alternatives in safety-critical contexts where quantitative 
measures are required in the absence of data—for example, when one is forced to rely on the 
engineering judgment of an expert. Further work is needed to elucidate the relative advantages 
and disadvantages of the different approaches applicable in the software engineering domain. 

There is evidence that human judgment, even in "hard" sciences such as physics, can be 
seriously in error (Henrion and Fischhoff, 1986): people seem to make consistent errors and tend 
to be optimistic in their own judgment regarding their likely error. It is likely that software 
engineering judgments are similarly fallible, and so this area calls for some statistical 
experimentation. In addition, it would be beneficial to have formal mechanisms for assessing 
whether judgments are well calibrated and for recalibrating judgment and prediction schemes (of 
humans or models) that have been shown to be inaccurate. This problem has some similarity to 
the problems of validating software reliability models, already mentioned, in which prequential 
likelihood plays a vital role. It also bears on more general applications of Bayesian modeling 
where elicitation of a priori probability values is required. 

It seems inevitable that reasoning and judgment about the fitness of safety-critical systems 
will depend on evidence that is disparate in nature. Such evidence could include data on failures, 
as in reliability growth models; human expert judgment; results regarding the efficacy of 
development processes; information about the architecture of a system; or evidence from formal 
verification. If the required judgment depends on a numerical assessment of a system's 
dependability, there are clearly important issues concerning the composition of very different 
kinds of evidence from different sources. These issues may, indeed, be overriding when it comes 
to choosing among the different ways of representing uncertainty. The Bayes theorem, for 
example, may provide an easier way than does possibility theory to combine information from 
different sources of uncertainty. 

A particularly important problem concerns the way in which deterministic reasoning can be 
incorporated into the final assessment of a system. Formal methods of achieving dependability 
are becoming increasingly important. Such methods range from formal notations, which assist in 
the elicitation and expression of requirements, to full mathematical verification of the 
correspondence between a formal specification and an implementation. One view is that these 
approaches incorporating deterministic reasoning to system development remove a particular 
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type of uncertainty, leaving others untouched (uncertainty about the completeness of a formal 
specification, the possibility of incorrect proof, and so on). One should factor into the final 
assessment of a system's dependability the contribution from such deterministic, logical 
evidence, nevertheless keeping in mind that there is an irreducible uncertainty in one's possible 
knowledge of the failure behavior of a system. 

Structural Modeling Issues 

Concerns about the safety and reliability of software-based systems necessarily arise from 
their inherent complexity and novelty. Systems now being built are so complex that they cannot 
be guaranteed to be free from design faults. The extent to which confidence can be carried over 
from the building of previous systems is much more limited in software engineering than in 
"real" engineering, because software-based systems tend to be characterized by a great deal of 
novelty. 

Designers need help in making decisions throughout the design process, especially at the 
very highest level. Real systems are often difficult to assess because of early decisions regarding 
how much system control will depend on computers, hardware, and humans. For the Airbus 
A320, for example, the early decision to place a high level of trust in the computerized fly-by- 
wire system meant that this system (and thus its software) needed to have a better than 
10-9 probability of failure in a typical flight. Stochastic modeling might aid in such high-level 
design decisions so that designers can make "what if calculations at an early stage. 

Experimentation, Data Collection, and General Statistical Techniques 

A dearth of data has been a problem in much of safety-critical software engineering since its 
inception. Only a handful of published data sets exists even for the software reliability growth 
problem, which is by far the most extensively developed aspect of software dependability 
assessment. When the lack of data arises from the need for confidentiality—industrial companies 
are often reluctant to allow access to data on software failures because of the possibility that 
people may think less highly of their products—little can be done beyond making efforts to 
resolve confidentiality problems. However, in some cases the available data are sparse because 
there is no statistical expertise on hand to advise on ways in which data can be collected cost- 
effectively. It may be worthwhile to attempt to produce general guidelines for data collection that 
address the specific difficulties of the software engineering problem domain. 

With notable exceptions (Eckhardt et al., 1991; Knight and Leveson, 1986), experimentation 
has so far played a low-key role in software engineering research. Somewhat surprisingly, in 
view of its difficulty and cost, the most extensive experimentation has investigated the efficacy 
of design diversity. Other areas where experimental approaches seem feasible and should be 
encouraged include the obvious and general question of which software development methods 
are most cost-effective in producing software products with desirable attributes such as 
dependability. Statistical advice on the design of such experiments would be essential; it might 
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also be the case that innovation in the design of experiments could make feasible some 
investigations that currently seem too expensive to contemplate: the main problem arises from 
the need for replication over many software products. 

On the other hand, areas where experiments can be conducted without the replication 
problem being overwhelming involve the investigation of quite restricted hypotheses about the 
effectiveness of specific techniques. For example, experimentation could address whether the 
techniques that are claimed to be effective for achieving reliability (i.e., effectiveness of 
debugging) are significantly better than those, such as operational testing, that will allow 
reliability to be measured. 

SOFTWARE MEASUREMENT AND METRICS 

Measurement is at the foundation of science and engineering. An important goal shared by 
software engineers and statisticians is to derive reliable, reproducible, and accurate measures of 
software products and processes. Measurements are important for assessing the effects of 
proposed "improvements" in software production, whether they be technological or process 
oriented. Measurements serve an equally important role in scheduling, planning, resource 
allocation, and cost estimation (see the first section in this chapter). 

Early pioneering work by McCabe (1976) and Halstead (1977) seeded the field of software 
metrics; an overview is provided by Zuse (1991). Much of the attention in this area has focused 
on static measurements of code. Less attention has been paid to dynamic measurements of 
software (e.g., measuring the connectivity of software modules under operating conditions) and 
aspects of the software production process such as software reuse, especially in systems 
employing object-oriented languages. 

The most widely used code metric, the NCSL (noncommentary source line), is often used as 
a surrogate for functionality. Surprisingly, since software is now nearly 50 years old, standards 
for counting NCSLs remain elusive in practice. For example, should a single, two-line statement 
in C language count as one NCSL or two? 

Counts of tokens (operators or operands), delimiters, and branching statements are used as 
other static metrics. Although some of these are clearly measures of software size, others purport 
to measure more subtle notions of software complexity and structure. It has been observed that 
all such metrics are highly correlated with size. At the panel's information-gathering forum, 
Munson (1993) concluded that current software metrics capture approximately three 
"independent" features of a software module: program control, program size, and data structure. 
A statistical (principal-components) analysis of 13 metrics on HAL programs in the space shuttle 
program was the key to this finding. While one might argue that performing a common statistical 
decomposition of multivariate data is hardly novel, it most certainly is in software engineering. 
The important implication of that finding is that there are features of software that are not being 
captured by the existing battery of software metrics (e.g., cohesion and coupling)—and if these 
are key differentiators of potentially high- and low-fault programs, there is no way that an 
analysis of the available metrics will highlight this condition. On the other side of the ledger, the 
statistical costs of including "noisy" versions of the same (latent) variable in models and analysis 
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methods that are based on these metrics, such as cost estimation, seem not to have been 
appreciated. Subset selection methods (e.g., Mallows, 1973) provide one way to assess variable 
redundancy and the effect on fitted models, but other approaches that use judgment composites, 
or composites based on other bodies of data (Tukey, 1991), will often be more effective than 
discarding metrics. 

Metrics typically involve processes or products, are subjective or objective, and involve 
different types of measurement scales, for example, nominal, ordinal, interval, or ratio. An 
objective metric is a measurement taken on a product or process, usually on an interval or ratio 
scale. Some examples include the number of lines of code, development time, number of 
software faults, or number of changes. A subjective metric may involve a classification or 
qualification based on experience. Examples include the quality of use of a method or the 
experience of the programmers in the application or process. 

One standard for software measurement is the Basili and Weiss (1984) Goal/Question/ 
Metric paradigm, which has five parameters: 

1. An object of the study—a process, product, or any other experience model; 
2. A focus—what information is of interest; 
3. A point of view—the perspective of the person needing the information; 
4. A purpose—how the information will be used; and 
5. A determination of what measurements will provide the information that is needed. 

The results are studied relative to a particular environment. 
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5 
Statistical Challenges 

In comparison with other engineering disciplines, software engineering is still in the 
definition stage. Characteristics of established disciplines include having defined, time-tested, 
credible methodologies for disciplinary practice, assessment, and predictability. Software 
engineering combines application domain knowledge, computer science, statistics, behavioral 
science, and human factors issues. Statistical research and education challenges in software 
engineering involve the following: 

• Generalizing particular experimental results to other settings and projects, 
• Scaling up results obtained in academic studies to industrial settings, 
• Combining information across software engineering projects and studies, 
• Adopting exploratory data analysis and visualization techniques, 
• Educating the software engineering community as to statistical approaches and data 

issues, 
• Developing analysis methods to cope with qualitative variables, 
• Providing models with the appropriate error distributions for software engineering 

applications, and 
• Improving accelerated life testing. 

The following sections elaborate on certain of these challenges. 

SOFTWARE ENGINEERING EXPERIMENTAL ISSUES 

Software engineering is an evolutionary and experimental discipline. As argued forcefully 
by Basili (1993), it is a laboratory or experimental science. The term "experimental science" has 
different meanings for engineers and statisticians. For engineers, software is experimental 
because systems are built, studied, and evaluated based on theory. Each system investigates new 
ideas and advances the state of the art. For statisticians, the purpose of experiments is to gather 
statistically valid evidence about the effects of some factor, perhaps involving the process, 
methodology, or code in a system. 

There are three classes of experiments in software engineering: 

• Case studies, 
• Academic experiments, and 
• Industrial experiments. 

Case studies are perhaps the most common and involve an "experiment" on a single large-scale 
project. Academic experiments usually involve a small-scale experiment, often on a program or 

43 



methodology, typically using students as the experimental subjects. Industrial experiments fall 
somewhere between case studies and academic experiments. Because of the expense and 
difficulty of performing extensive controlled experiments on software, case studies are often 
resorted to. The ideal situation is to be able to take advantage of real-world industrial operations 
while having as much control as is feasible. Much of the present work in this area is at best 
anecdotal and would benefit greatly from more rigorous statistical advice and control. The panel 
foresees an opportunity for innovative work on combining information (see below) from 
relatively disparate experiences. 

Conducting statistically valid software experiments is challenging for several reasons: 

• The software production process is often chaotic and uncontrolled (i.e., immature); 
• Human variability is a complicating factor; and 
• Industrial experiments are very costly and therefore must produce something useful. 

Many variables in the software production process are not well understood and are difficult 
to control for. For software engineering experiments, the factors of interest include the following: 

• "People" factors: number, level, organization, process experience; 
• Problem factors: application domain, constraints, susceptibility to change; 
• Process factors: life cycle model, methods, tools, programming language; 
• Product factors: deliverables, system size, system reliability, portability; and 
• Resource factors: target and development machines, calendar time, budget, existing 

software, and so on. 

Each of these characteristics must be modeled or controls done for the experiment to be valid. 
Human variability is particularly challenging, given that the difference in quality and 

productivity between the best and worst programmers may be 20 to 1. For example, in an 
experiment comparing batch versus interactive computing, Sackman (1970) observed differences 
in ability of up to 28 to 1 in programmers performing the same task. This variation can 
overwhelm the effects of a change in methodology that may account for a 10% to 15% difference 
in quality or productivity. 

The human factor is so strongly integrated with every aspect of the subjective discipline of 
software engineering that it alone is the prime driver of issues to be addressed. The human factor 
creates issues in the process, the product, and the user environment. Measurements of the objects 
(the product and the process) are obscured when qualified by the attributes (ambiguous 
requirements and productivity issues are key examples). Recognizing and characterizing the 
human attributes within the context of the software process are key to understanding how to 
include them in system and statistical models. 

The capabilities of individuals strongly influence the metrics collected throughout the 
software production process. Capabilities include experience, intelligence, familiarity with the 
application domain, ability to communicate with others, ability to envision the problem spatially, 
and ability to verbally describe that spatial understanding. Although not scientifically founded, 
anecdotal information supports the incidence of these capabilities (Curtis, 1988). 
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For software engineering experiments, the key problems involve small sample sizes, high 
variability, many uncontrolled factors, and extreme difficulty in collecting experimental data. 
Traditional statistical experimental designs, originally developed for agricultural experiments, 
are not well suited for software engineering. At the panel's forum, Zweben (1993) discussed an 
interesting example of an experiment from object-oriented programming, involving a fairly 
complex design and analysis. Object-oriented programming is an approach that is sweeping the 
software industry, but for which much of the supporting evidence is anecdotal. 

Example. The purpose of the software design and analysis experiment was to gather statistically 
valid evidence about the effect—on effort and quality—of using the principles of abstraction, 
encapsulation, and layering to enhance components of software systems. The experiment was 
divided into two types of tasks: 

1. Enhancing an existing component to provide additional functionality, and 
2. Modifying a component to provide different functionality. 

The experimental subjects were students in graduate classes on software component design and 
development. The two approaches for this maintenance problem are "white box," which involves 
modifying the old code to get the new functionality, and "black box," which involves layering on 
the new functionality. The experiments were designed to detect, for each task, differences 
between the two approaches in the time required to make the modification and in the number of 
associated faults uncovered. Three experiments were conducted. Experiment A involved an 
unbounded queue component. The subjects were given a basic Ada package implementing 
enque, deque, and is empty, and the task was to implement the operators add, copy, clear, 
append, and reverse. The subject was instructed to keep track of the time spent in designing, 
coding, testing, and debugging each operator, and also the associated number of bugs uncovered 
in each task. The tasks were completed in two ways: by directly implementing new operations 
using the representation of the queue, and by layering on the new operators as capabilities. 
Experiment B involved a partial map component, and experiment C involved an almost constant 
map component. Given that in experiments involving students, the results may be invalidated by 
problems with data integrity, for this experiment the student participants were told that the results 
of the experiment would have no effect on course grades. The code was validated by an 
instructor to ensure that there were no lingering defects. The experimental plan was conducted 
using a crossover design. Each subject implemented the enhancements twice, using both the 
white box and the black box methods. This particular experimental design could test for the 
treatment (layering or not) effect and treatment by sequence interaction. The subject differences 
were nested within the sequences, and the sequences were counterbalanced based on experience 
level. The carryover effect of the first treatment influences the choice regarding the correct way 
of testing for treatment effects. 

The statistical model used to represent the behavior in the number of bugs was sophisticated 
as well, an overdispersed log linear model. The use of this model allowed for an analysis of 
nonnormal response data while also preventing invalid inferences that would have occurred had 
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overdispersion not been taken into account. Indeed, only experiment B displayed a significant 
treatment effect after adjustment for overdispersion. ■ 

COMBINING INFORMATION 

The results of many diverse software projects and studies tend to lead to more confusion 
than insight. The software engineering community would benefit if more value were gained from 
the work that is being done. To the extent that projects and studies focus on the same end point, 
statistics can help to fuse the independent results into a consistent and analytically justifiable 
story. 

The statistical methodology that addresses the topic of how to fuse such independent results 
is relatively new and is termed "combining information"; a related set of tools is provided by 
meta-analysis. An excellent overview of this methodology was produced by a CATS panel and 
documented in an NRC report (NRC, 1992) that is now available as an American Statistical 
Association publication (ASA, 1993). The report documents various approaches to the problem 
of how to combine information and describes numerous specific applications. One of the 
recommendations made in it (p. 182) is crucial to achieving advances in software engineering: 

The panel urges that authors and journal editors attempt to raise the level of 
quantitative explicitness in the reporting of research findings, by publishing 
summaries of appropriate quantitative measures on which the research 
conclusions are based (e.g., at a minimum: sample sizes, means, and standard 
deviations for all variables, and relevant correlation matrices). 

It is not sensible to merely combine p-values from independent studies. It is clearly better to take 
weighted averages of effects when the weights account for differences in size and sensitivity 
across the studies to be combined. 

Example. Kitchenham (1991) discusses an issue in cost estimation that involves looking across 
10 different sources consisting of 17 different software projects. The issue is whether the 
exponent ß in the basic cost estimation model, effort <* size^, is significantly different from 1. 
The usual interpretation of ß is the "overhead introduced by product size," so that a value greater 
than 1 implies that relatively more effort is required to produce large software systems than to 
produce smaller ones. Many cite such "diseconomies of scale" in software production as 
evidence in support of their models and tools. 

The 17 software projects are listed in Table 4. Fortunately, the cited sources contain both 
point estimates (b) of the exponent and its estimated standard error. These summary statistics can 
be used to estimate a common exponent and ultimately test the hypothesis that it is different from 
1. 
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Table 4. Reported and derived data on 17 projects concerned with cost estimation. 

Study b SE(b) Var (b) w 

Bai-Bas 0.951 0.068 0.004624 21.240 
Bel-Leh 1.062 0.101 0.010200 18.990 
Your 0.716 0.230 0.052900 10.490 
Wing 1.059 0.294 0.086440 7.758 
Kemr 0.856 0.177 0.031330 13.550 
Boehm.Org 0.833 0.184 0.033860 13.100 
Boehm.semi 0.976 0.133 0.017690 16.630 
Boehm.Emb 1.070 0.104 0.010820 18.770 
Kit-Tay.ICL 0.472 0.323 0.104300 6.813 
Kit-Tay.BTSX 1.202 0.300 0.090000 7.550 
Kit-Tay.BTSW 0.495 0.185 0.034220 13.040 
DS1.1 1.049 0.125 0.015630 17.220 
DS1.2 1.078 0.105 0.011020 18.700 
DS1.3 1.086 0.289 0.083520 7.938 
DS2.New 0.178 0.134 0.017960 16.550 
DS2.Ext 1.025 0.158 0.024960 14.830 
DS3 1.141 0.077 0.005929 20.670 

SOURCE: Reprinted, with permission, from Kitchenham (1992). © 1992 by National 
Computing Centre, Ltd. 

Following the NRC recommendations on combining information across studies (NRC, 
1992), the appropriate model (the so-called random effects model in meta-analysis) allows for a 
systematic difference between projects (e.g., bias in data reporting, management style, and so on) 
that averages to zero. Under this model, the overall exponent is estimated as a weighted average 
of the individual exponents where the weights have the form w, = var(&,) + T2 and the common 
between-project component of variance is estimated by 

t   = max • 
Q-{k-\) 

liWj - (Swf / Ew,- J 

where Q = Ew,(6, - b)z. The statistic Q is itself a test of the homogeneity of projects and under 

a normality assumption is distributed as xl-\- F°r these data one obtains Q = 55.19, which 
strongly indicates heterogeneity across projects. Although the random effects model anticipates 
such heterogeneity,  other approaches that model the differences between projects  (e.g., 
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regression models) may be more informative. Since no explanatory variables are available, this 
discussion proceeds using the simpler model. 

The estimated between-project component of variance is t2 = 0.0425, which is surprisingly 
large and is perhaps highly influenced by two projects with b's less than 0.5. Combining this 
estimate with the individual within-project variances leads to the weights given in the final 

column of Table 4. Thus the overall estimated exponent is b= 0.911 with estimated standard 

error s = 0.0640 (= ^/l / Zw,- ). Combining these two estimates leads readily to a 95% confidence 

interval for ß of (0.78, 1.04). Thus the data in these studies do not support the diseconomies-of- 
scale argument. ■ 

Even better than published summaries would be a central repository of the data arising from 
a study. This information would allow assessment of various determinations of similarities 
between studies, as well as potential biases. The panel is aware of several initiatives to build such 
data repositories. The proposed National Software Council has as one of its primary 
responsibilities the construction and maintenance of a national software measurements database. 
At the panel's forum, a specialized database on software projects in the aeronautics industry was 
also discussed (Keller, 1993). 

An issue related to combining information from diverse sources concerns the translation to 
industry of small experimental studies and/or published case studies done in an academic 
environment. Serious doubts exist in industry as to the upward scalability of most of these 
studies because populations, project sizes, and environments are all different. Expectations differ 
regarding quality, and it is unclear whether variables measured in a small study are the variables 
in which industry has an interest. The statistical community should develop stochastic models to 
propagate uncertainty (including variability assessment) on different control factors so that 
adjustments and predictions applicable to industry-level environments can be made. 

VISUALIZATION IN SOFTWARE ENGINEERING 

Scientific visualization is an emerging technology that is driven by ever-decreasing 
hardware prices and the associated increasing sophistication of visualization software. 
Visualization involves the interactive pictorial display of data using graphics, animation, and 
sound. Much of the recent progress in visualization has come from the application of computer 
graphics to three-dimensional image analysis and rendering. Data visualization, a subset of 
scientific visualization, focuses on the display and analysis of abstract data. Some of the earliest 
and best-known examples of data visualization involve statistical data displays. 

The motivation for applying visualization to software engineering is to understand the 
complexity, multidimensionality, and structure embodied in software systems. Much of the 
original research in software visualization—the use of typography, graphic design, animation, 
and cinematography to facilitate the understanding and enhancement of software systems—was 
performed by computer scientists interested in understanding algorithms, particularly in the 
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context of education. Applying the quantitative focus of statistical graphics methods to currently 
popular scientific visualization techniques is a fertile area for research. 

Visualizing software engineering data is challenging because of the diversity of data sets 
associated with software projects. For data sets involving software faults, times to failure, cost 
and effort predictions, and so on, there is a clear statistical relationship of interest. Software fault 
density may be related to code complexity and to other software metrics. Traditional techniques 
for visualizing statistical data are designed to extract quantitative relationships between variables. 
Other software engineering data sets such as the execution trace of a program (the sequence of 
statements executed during a test run) or the change history of a file are not easily visualized 
using conventional data visualization techniques. The need for relevant techniques has led to the 
development of specialized domain-specific visualization capabilities peculiar to software 
systems. Applications include the following: 

Configuration management data (Eick et al., 1992b), 
Function call graphs (Ganser et al., 1993), 
Code coverage, 
Code metrics, 
Algorithm animation (Brown and Hershberger, 1992; Stasko, 1993), 
Sophisticated typesetting of computer programs (Baecker and Marcus, 1988), 
Software development process, 
Software metrics (Ebert, 1992), and 
Software reliability models and data. 

Some of these applications are discussed below. 

Configuration Management Data 

A rich software database suitable for visualization involves the code itself. In production 
systems, the source code is stored in configuration management databases. These databases 
contain a complete history of the code with every source code change recorded as a modification 
request. Along with the affected lines, the source code database usually contains other 
information such as the identity of the programmer making the changes, date the changes were 
submitted, reason for the change, and whether the change was meant to add functionality or fix a 
bug. The variables associated with source code may be continuous, categorical, or binary. For a 
line in a computer program, when it was written is (essentially) continuous, who wrote it is 
categorical, and whether or not the line was executed during a regression test is binary. 

Example. Figure 1 (see "Implementation" in Chapter 3) shows production code written in C 
language from a module in AT&T's 5ESS switch (Eick, 1994). In the display, row color is tied 
to the code's age: the most recently added lines are in red and the oldest in blue, with a color 
spectrum in between. Dynamic graphics techniques are employed for increasing the effectiveness 
of the display. There are five interactive views of data in Figure 1: 

49 



1. The rows corresponding to the text lines, 
2. The values on the color scale, 
3. The file names above the columns, 
4. The browser windows, and 
5. The bar chart beneath the color scale. 

Each of the views is linked, united through the use of color, and activated by using a mouse 
pointer. This mode of manipulating the display, called brushing by Becker and Cleveland (1987) 
and by Becker et al. (1987), is particularly effective for exploring software development data. ■ 

Function Call Graphs 

Perhaps the most common visualization of software is a function call graph as shown in 
Figure 5. Function call graphs are a widely used, visual, tree-like display of the function calls in a 
piece of code. They show calling relationships between modules in a system and are one 
representation of software structure. A problem with function call graphs is that they become 
overloaded with too much information for all but the smallest systems. One approach to 
improving the usefulness of function call graphs might involve the use of dynamic graphics 
techniques to focus the display on the visually informative regions. 

Test Code Coverage 

Another interesting example of source code visualization involves showing test suite code 
coverage. Figure 6 shows the statement coverage and execution "hot spots" for a program that 
has been run through its regression test. The row indentation and line length have been turned off 
so that each line receives the same amount of visual space. The most frequently executed lines 
are shown in red and the least frequently in blue, with a color spectrum in between. There are 
two special colors: the black lines correspond to nonexecutable lines of C code such as 
comments, variable declarations, and functions, and the gray lines correspond to the executable 
lines of code that were not executed. These are the lines that the regression test missed. 

Code Metrics 

As discussed in Chapter 4 (in the section "Software Measurement and Metrics"), static code 
metrics attempt to quantify and measure the complexity of code. These metrics are used to 
identify portions of programs that are particularly difficult and are likely to be subject to defects. 
One visualization method for displaying code complexity metrics uses a space-filling 
representation (Baker and Eick, 1995). Taking advantage of the hierarchical structure of code, 
each subsystem, module, and file is tiled on the display, which shows them as nested, space- 
filling rectangles with area, color, and fill encoding software metrics. This technique can display 
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the relative sizes of a system's components, the relative stability of the components, the location 
of new functionality, the location of error-prone code with many fixes to identified faults, and, 
using animation, the historical evolution of the code. 

Example. Figure 7 displays the AT&T 5ESS switching code using the SeeSys™ system, a 
dynamic graphics metrics visualization system. Interactive controls enable the user to manipulate 
the display, reset the colors, and zoom in on particular modules and files, providing an interactive 
software data analysis environment. The space-filling representation: 

• Shows modules, files, and subsystems in context; 
• Provides an overview of a complete software system; and 
• Applies statistical dynamic graphics techniques to the problem of visualizing metrics. ■ 

A major difference in the use of graphics in scientific visualization and statistics is that for 
the former, graphs are the end, whereas for the latter, they are more often the means to an end. 
Thus visualizations of software are crucial to statistical software engineering to the extent that 
they facilitate description and modeling of software engineering data. Discussed below are some 
possibilities related to the examples described in this chapter. 

The rainbow files in Figure 1 suggest that certain code is changed frequently. Frequently 
changed code is often error-prone, difficult to maintain, and problematic. Software engineers 
often claim that code, or people's understanding of it, decays with age. Eventually the code 
becomes unmaintainable and must be rewritten (re-engineered). Statistical models are needed to 
characterize the normal rate of change and therefore determine whether the current files are 
unusual. Such models need to take account of the number of changes, locations of faults, type of 
functionality, past development patterns, and future trends. For example, a common software 
design involves having a simple main routine that calls on several other procedures to invoke 
needed functionality. The main routine may be changed frequently as programmers modify small 
snippets of code to access large chunks of new code that is put into other files. For this code, 
many simple, small changes are normal and do not indicate maintenance problems. If models 
existed, then it would be possible to make quantitative comparisons between files rather than the 
qualitative comparisons that are currently made. 

Figure 5 suggests some natural covariates and models for improving the efficiency of 
software testing. Current compiler technology can easily analyze code to obtain the functions, 
lines, and even the paths executed by code in test suites. For certain classes of programming 
errors such as typographical errors, the incremental code coverage is an ideal covariate for 
estimating the probability of detecting an error. The execution frequency of blocks of code or 
functions is clearly related to the probability of error detection. Figure 5 shows clearly that small 
portions of the program are heavily exercised but that most of the code is not touched. In an 
indirect way operational profile testing attempts to capture this idea by testing the features, and 
therefore the code, in relation to how often they will be used. This notion suggests that statistical 
techniques involving covariates can improve the efficiency of software testing. 

Figure 7 suggests novel ways of displaying software metrics. The current practice is to 
identify overly complex files for special care and management attention. The procedures for 
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identifying complex code are often based on very clever and sophisticated arguments, but not on 
data. A statistical approach might attempt to correlate the complexity of code with the locations 
of past faults and investigate their predictive power. Statistical models that can relate complexity 
metrics to actual faults will increase the models' practical efficiency for real-life systems. These 
models should not be developed in the absence of data about the code. Simple ways of presenting 
such data, such as an ordered list of fault density, file by file, can be very effective in guiding the 
selection of an appropriate model. In other cases, microanalysis, often driven by graphical 
browsers, might suggest a richer class of models that the data could support. For example, 
software fault rates are often quoted in terms of the number of faults per 1,000 lines of NCSL. 
The lines in Figure 1 can be color-coded to show the historical locations of past faults. In other 
representations (not shown), clear spatial patterns with faults are concentrated in particular files 
and in particular regions of the files, suggesting that spatial models of fault density might work 
very well in helping to identify fault-prone code. 

Challenges for Visualization 

The research opportunities and challenges in visualizing software data are similar to those 
for visualizing other large abstract databases: 

1. Software data are abstract; there is no natural two-dimensional or three-dimensional 
representation of the data. A research challenge is to discover meaningful 
representations of the data that enable an analyst to understand the data in context. 

2. Much software data are nontraditional statistical data such as the change history of 
source code, duplication in manuals, or the structure of a relational database. New 
metaphors must be discovered for harmonious transfer information. 

3. The database associated with large software systems may be huge, potentially containing 
millions of observations. Effective statistical graphics techniques must be able to cope 
with the volume of data found in modern software systems. 

4. The lack of easy-to-use software tools makes the development of high-quality custom 
visualizations particularly difficult. Currently, visualizations must be hand-coded in low- 
level languages such as C or C++. This is a time-consuming task that can be carried out 
only by the most sophisticated programmers. 

Opportunities for Visualization 

Visualizations associated with software involve the code itself, data associated with the 
system, the execution of the program, and the process for creating the system. Opportunities 
include the following: 

1.   Objects/Patterns.  Object-oriented programming  is  rapidly becoming  standard  for 
development of new systems and is being retrofitted into existing systems. Effective 
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Figure 5. Function call graphs showing the calling pattern between procedures. The 
top panel shows an interpretable, easy-to-comprehend display, whereas the bottom 
panel is overly busy and visually confusing. 



Figure 6. A SeeSoft™ display showing code coverage for a program executing its regres- 
sion test. The color of each line is determined by the number of times that it executed. 
The colors range from red (the "hot spots") to deep blue (for code executed only once) 
using a red-green-blue color spectrum. There are two special colors: the black lines are 
non-executable lines of code such as variable declarations and comments, and the gray lines 
are the non-executed (not covered) lines. The figure shows that generating regression tests 
with high coverage is quite difficult. Source: Eick (1994). 



Figure 7. A display of software metrics for a million-line system. The rectangle forming 
the outermost boundary represents the entire system. The rectangles contained within the 
boundary represent the size (in NCSLs) of individual subsystems (each labeled with a single 
character A-Z, a-t), and modules within the subsystems. Color is used here to redundantly 
encode size according to the color scheme in the slider at the bottom of the screen. 



displays need to be developed for understanding the inheritance (or dependency) 
structure, semantic relationships among objects, and the run-time life cycle of objects. 
Performance. Software systems inevitably run too slowly, making run-time performance 
an important consideration. Host systems often collect large volumes of fine-grain (that 
is, low-level) performance data including function calling patterns, line execution counts, 
operating system page faults, heap usage, and stack space, as well as disk usage. Novel 
techniques to understand and digest dynamic program execution data would be 
immediately useful. 
Parallelism. Recently, massively parallel computers with tens to thousands of 
cooperating processors have started to become widely available. Programming these 
computers involves developing new distributed algorithms that divide important 
computations among the processors. Most often an essential aspect of the computation 
involves communicating interim results between processors and synchronizing the 
computations. Visualization techniques are a crucial tool for enabling programmers to 
model and debug subtle computations. 
Three-dimensional. Workstations capable of rendering realistic three-dimensional 
displays are rapidly becoming widely available at reasonable prices. New visualization 
techniques leveraging three-dimensional capabilities should be developed to enable 
software engineers to cope with the ever-increasing complexity of modern software 
systems. 

ORTHOGONAL DEFECT CLASSIFICATION 

The primary focus of software engineering is to monitor a software development process 
with a view toward improving quality and productivity. For improving quality, there have been 
two distinct approaches. The first considers each defect as unique and tries to identify a cause. 
The second considers a defect as a sample from an ensemble to which a formal statistical 
reliability model is fitted. Chillarege et al. (1992) proposed a new methodology that strikes a 
balance between these two ends of spectrum. This method, called orthogonal defect 
classification, is based on exploratory data analysis techniques and has been found to be quite 
useful at IBM. It recognizes that the key to improving a process is to quantify various cause-and- 
effect relationships involving defects. 

The basic approach is as follows. First, classify defects into various types. Then, obtain a 
distribution of the types across different development phases. Finally, having created these 
reference distributions and the relationships among them, compare them with the distributions 
observed in a new product or release. If there are discrepancies, take corrective action. 

Operationally, the defects are classified according to eight "orthogonal" (mutually exclusive) 
defect types: functional, assignment, interface, checking, timing, build/package/merge, data 
structures and algorithms, and documentation. Further, development phases are divided into four 
basic stages (where defects can be observed): design, unit test, function test, and system test. For 
each stage and each defect type, a range of acceptable baseline defect rates is defined by 
experience. This information is used to improve the quality of a new product or release. Toward 
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this end, for a given defect type, defect distributions across development stages are compared 
with the baseline rates. For each chain of results—say, too high early on, lower later, and high at 
the end—an implication is derived. For example, the implication may be that function testing 
should be revamped. 

This methodology has been extended to a study of the distribution of triggers, that is, the 
conditions that allow a defect to surface. First, it is implicit in this approach that there is no 
substitute for a good data analysis. Second, assumptions clearly are being made about the 
stationarity of reference distributions, an approach that may be appropriate for a stable 
environment with similar projects. Thus, it may be necessary to create classes of reference 
distributions and classes of similar projects. Perhaps some clustering techniques may be valuable 
in this context. Third, although the defect types are mutually exclusive, it is possible that a fault 
may result in many defects, and vice versa. This multiple-spawning may cause serious 
implementation difficulties. Proper measurement protocols may diminish such multipropagation. 
Finally, given good-quality data, it may be possible to extend orthogonal defect classification to 
efforts to identify risks in the production of software, perhaps using data to provide early 
indicators of product quality and potential problems concerning scheduling. The potential of this 
line of inquiry should be carefully investigated, since it could open up an exciting new area in 
software engineering. 
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6 
Summary and Conclusions 

In the 1950s, as the production line was becoming the standard for hardware manufacturing, 
Deming showed that statistical process control techniques, invented originally by Shewhart, were 
essential to controlling and improving the production process. Deming's crusade has had a 
lasting impact in Japan and has changed its worldwide competitive position. It has also had a 
global impact on the use of statistical methods, the training of statisticians, and so forth. 

In the 1990s the emphasis is on software, as complex hardware-based functionality is being 
replaced by more flexible, software-based functionality. Small programs created by a few 
programmers are being superseded by massive software systems containing millions of lines of 
code created by many programmers with different backgrounds, training, and skills. This is the 
world of so-called software factories. These factories at present do not fit the traditional model of 
(hardware) factories and more closely resemble the development effort that goes into designing 
new products. However, with the spread of software reuse, the increasing availability of tools for 
automatically capturing requirements, generating code and test cases, and providing user 
documentation, and the growing reliance on standardized tuning and installation processes and 
standardized procedures for analysis, the model is moving closer to that of a traditional factory. 
The economy of scale that is achievable by considering software development as a 
manufacturing process, a factory, rather than a handcrafting process, is essential for preserving 
U.S. competitive leadership. The challenge is to build these huge systems in a cost-effective 
manner. The panel expects this challenge to concern the field of software engineering for the 
rest of the decade. Hence, any set of methodologies that can help in meeting this challenge 
will be invaluable. More importantly, the use of such methodologies will likely determine 
the competitive positions of organizations and nations involved in software production. 

With the amount of variability involved in the software production process and its many 
subprocesses, as well as the diversity of developers, users, and uses, it is unlikely that a 
deterministic control system will help improve the software production process. As in statistical 
physics, only a technology based on statistical modeling, something akin to statistical control, 
will work. The panel believes that the juncture at hand is not very different from the one reached 
by Deming in the 1950s when he began to popularize the concept of statistical process control. 
What is needed now is a detailed understanding by statisticians of the software engineering 
process, as well as an appreciation by software engineers of what statisticians can and 
cannot do. If collaborative interactions and the building of this mutual understanding can be 
cultivated, then there likely will occur a major impact of the same order of magnitude as 
Deming's introduction of statistical process control techniques in hardware manufacturing. 

Of course, this is not to say that all software problems are going to be solved by statistical 
means, just as not all automobile manufacturing problems can be solved by statistical means. On 
the contrary, the software industry has been technology driven, and the bulk of future gains in 
productivity will come from new, creative ideas. For example, much of the gain in productivity 

61 



between 1950 and 1970 occurred because of the replacement of assembler coding by high-level 
languages. 

Nevertheless, as the panel attempts to point out in this report, increased collaboration 
between software engineers and statisticians holds much promise for resolving problems in 
software development. Some of the catalysts that are essential for this interaction to be 
productive, as well as some of the related research opportunities for software engineers and 
statisticians, are discussed below. 

INSTITUTIONAL MODEL FOR RESEARCH 

The panel strongly believes that the right model for statistical research in software 
development is collaborative in nature. It is essential to avoid solving the "wrong" problems. It 
is equally important that the problems identified in this report not be "solved" by statisticians in 
isolation. Statisticians need to attain a degree of credibility in software engineering, and such 
credibility will not be achieved by developing N new reliability models with high-power 
asymptotics. The ideal collaboration partners statisticians and software engineers in work 
aimed at improving a real software process or product. 

This conclusion assumes not only that statisticians and software engineers have a mutual 
desire to work together to solve software engineering problems, but also that funding and reward 
mechanisms are in place to stimulate the technical collaboration. Up to now, such incentives 
have not been the norm in academic institutions, given that, for example, coauthored papers have 
been generally discounted by promotion evaluation committees. Moreover, at funding agencies, 
proposals for collaborative work have tended to "fall through the cracks" because of a lack of 
interdisciplinary expertise to evaluate their merits. The panel expects such barriers to be reduced 
in the coming years, but in the interim, industry can play a leadership role in nurturing 
collaborations between software engineers and statisticians and can reduce its own set of 
barriers (for instance, those related to proprietary and intellectual property interests). 

MODEL FOR DATA COLLECTION AND ANALYSIS 

As discussed above in this report, for statistical approaches to be useful, it is essential that 
high-quality data be available. Quality includes measuring the right things at the right time— 
specifically, adopted software metrics must be relevant for each of the important stages of the 
development life cycle, and the protocol of metrics for collecting data must be well defined and 
well executed. Without careful preparation that takes account of all of these data issues, it is 
unlikely that statistical methods will have any impact on a given software project under 
study. For this reason, it is crucial to have the software industry take a lead position in 
research on statistical software engineering. 

Figure 8, a model for the interaction between researchers and the software development 
process, displays a high-level spiral view of the software development process offered by Dalai 
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et al. (1994). Figure 9 gives a more detailed view of the statistical software engineering module 
(SSEM) at the center of Figure 8. 

The SSEM has several components. One of its major functions is to act as the central 
repository for all relevant project data (statistical or nonstatistical). Thus this module serves as a 
resource for the entire project, interfacing with every stage, typically at its review or conclusion. 
For example, the SSEM would be used at the requirement review stage, when data on inspection, 
faults, times, effort, and coverage are available. For testing, information would be gathered at the 
end of each stage of testing (unit, integration, system, alpha, beta,...) about the number of open 
faults, closed faults, types of problems, severity, changes, and effort. Such data would come from 
test case management systems, change management systems, and configuration management 
systems. 
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Additional elements of the SSEM include collection protocols, metrics, exploratory data 
analysis (EDA), modeling, confirmatory analysis, and conclusions. A critical part of the SSEM 
would be related to root-cause analysis. Analysis could be as simple as Ishikawa's fish bone 
diagram (Ishikawa, 1976), or more complex, such as orthogonal defect classification (described 
in Chapter 5). This capability accords with the belief that a careful analysis of root cause is 
essential to improving the software development process. Central placement of the SSEM 
ensures that the results of various analyses will be communicated at all relevant stages. For 
example, at the code review stage, the SSEM can suggest ways of improving the requirement 
process as well as point out potentially error-prone parts of the software for testing. 

ISSUES IN EDUCATION 

Enormous opportunities and many potential benefits are possible if the software 
engineering community learns about relevant statistical methods and if statisticians 
contribute to and cooperate in the education of future software engineers. The areas outlined 
below are those that are relevant today. As the community matures in its statistical 
sophistication, the areas themselves should evolve to reflect the maturation process. 

• Designed experiments. Software engineering is inherently experimental, yet relatively 
few designed experiments have been conducted. Software engineering education 
programs must stress the desirability, wherever feasible, of validating new techniques 
through the use of statistically valid, designed experiments. Part of the reason for the 
lack of experimentation in software engineering may involve the large variability in 
human programming capabilities. As pointed out in Chapter 5, the most talented 
programmer may be 20 times more productive than the least talented. This disparity 
makes it difficult to conduct experiments because the between-subject variability tends 
to overwhelm the treatment effects. Experimental designs that address broad variability 
in subjects should be emphasized in the software engineering curriculum. A similar 
emphasis should be given to random- and fixed-effects models with hierarchical 
structure and to distinguishing within- and between-experiment variability. 

There is also a role for the statistics profession in the development of guidelines for 
experiments in software engineering akin to those mandated by the Food and Drug 
Administration for clinical trials. These guidelines will require reformulation in the 
software engineering context with the possible involvement of various industry and 
academic forums, including the Institute of Electrical and Electronics Engineers, the 
American Statistical Association, and the Software Engineering Institute. 

• Exploratory data analysis. It is important to appreciate the strengths and the limitations 
of available data by challenging the data with a battery of numerical, tabular, and 
graphical methods. Exploratory data analysis methods (e.g., Tukey, 1977; Mosteller and 
Tukey, 1977) are essentially "model free," so that investigators can be surprised by 
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unexpected behavior rather than have their thinking constrained by what is expected. 
One of the attitudes toward statistical analysis that is important to convey is that of 

data = fit + residual. 

The iterative nature of improving the model fit by removing structure from the residuals 
must be stressed in discussions of statistical modeling. 

Modeling. The models used by statisticians differ dramatically from those used by 
nonstatisticians. The differences stem from advances in the statistical community in the 
past decade that effectively relax assumptions of linearity for nearly all classical 
techniques. This relaxation is obtained by assuming only local linearity and using 
smoothing techniques (e.g., splines) to regularize the solutions (Hastie and Tibshirani, 
1990). The result is quite flexible but interpretable models that are relatively unknown 
outside the statistics community. Arguably these more recent methods lack the well- 
studied inferential properties of classical techniques, but that drawback is expected to be 
remedied in coming years. Educational information exchanges should be conducted to 
stimulate more frequent and wider use of such comparatively recent techniques. 

Risk analysis. Software systems are often used in conjunction with other software and 
hardware systems. For example, in telecommunications, an originating call is connected 
by switching software; however, the actual connection is made by physical cables, 
transmission cells, and other components. The mega systems thus created run our 
nation's telephone systems, stock markets, and nuclear power plants. Failures can be 
very expensive, if not catastrophic. Thus, it is essential to have software and hardware 
systems built in such a way that they can tolerate faults and provide minimal 
functionality, while precluding a catastrophic failure. This type of system robustness is 
related to so-called fault-tolerant design of software (Leveson, 1986). 

Risk analysis has played a key role in identifying fault-prone components of 
hardware systems and has helped in managing the risks associated with very complex 
hardware-software systems. A paradigm suggested by Dalai et al. (1989) for risk 
management for the space shuttle program and corresponding statistical methods are 
important in this context. For software systems, risk analysis typically begins with 
identifying programming styles, characteristics of the modules responsible for most 
software faults, and so on. Statistical analysis of root-cause data leads to a risk profile for 
a system and can be useful in risk reduction. Risk management also involves 
consideration of the probability of occurrence of various failure scenarios. Such 
probabilities are obtained either by using the Delphi method (e.g., Dalkey, 1972; Pill, 
1971) or by analyzing historical data. One of the key requirements in failure-scenario 
analysis is to dynamically update information about the scenarios as new data on system 
behavior become available, such as a changing user profile. 
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• 

Attitude toward assumptions. As software engineers are aware, a major difference 
between statistics and mathematics is that for the latter, it matters only that assumptions 
be correctly stated, whereas for the former, it is essential that the prevailing assumptions 
be supported by the data. This distinction is important, but unfortunately it is often taken 
too literally by many who use statistical techniques. Tukey has long argued that what is 
important is not so much that assumptions are violated but rather that their effect on 
conclusions is well understood. Thus for a linear model, where the standard assumptions 
include normality, homoscedasticity, and independence, their importance to statements 
of inference is exactly in the opposite order. Statistics textbooks, courses, and consulting 
activities should convey the statistician's level of understanding of and perspective on 
the importance of assumptions for statistical inference methods. 

Visualization. The importance of plotting data in all aspects of statistical work cannot 
be overemphasized. Graphics is important in exploratory stages to ascertain how 
complex a model the data can support; in the analysis stage for display of residuals to 
examine what a currently entertained model has failed to account for; and in the 
presentation stage where graphics can provide succinct and convincing summaries of the 
statistical analysis and associated uncertainty. Visualization can also help software 
engineers cope with, and understand, the huge quantities of data collected in the software 
development process. 

Tools. Software engineers tend to think of statisticians as people who know how to run a 
regression software package. Although statisticians prefer to think of themselves more as 
problem solvers, it is still important that they point out good statistical computing 
tools—for instance, S, SAS, GLIM, RSI, and so on—to software engineers. A CATS 
report (NRC, 1991) attempts to provide an overview of statistical computing languages, 
systems, and packages, but for such material to be useful to software engineers, a more 
focused overview will be required. 
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Appendix: Forum Program 

MONDAY, OCTOBER 11,1993 

8:00 AM    Welcome and Introductions 

8:05 AM    Session on Software Process 

Session Chair: Gloria J. Davis (NASA-Ames Research Center) 

Invited Speakers: Ted W. Keller (IBM Corporation) 
David Card (Computer Sciences Corporation) 

9:45 AM    Break 

10:15 AM  Session on Software Metrics 

Session Chair: Bill Curtis (Carnegie Mellon University) 

Invited Speakers: Victor R. Basili (University of Maryland) 
John C. Munson (University of Florida) 

NOON       Break 

1:00 PM     Session on Software Dependability and Testing 

Session Chair: Richard A. DeMillo (Purdue University) 

Invited Speakers: John C. Knight (University of Virginia) 
Richard Lipton (Princeton University) 

2:25 PM     Break 

3:15 PM     Session on Case Studies 

Session Chair: Daryl Pregibon (AT&T Bell Laboratories, Murray Hill) 

Invited Speakers: Tsuneo Yamaura (Hitachi Computer Products-America, Inc.) 
Stuart Zweben (Ohio State University) 

5:00 PM     Adjourn 
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TUESDAY, OCTOBER 12,1993 

8:00 AM    Session on Nonstandard Methods 

Session Chair: Siddhartha R. Dalai (Bellcore) 

Invited Speakers: Madhav S. Phadke (Phadke Associates) 
Eric E. Sumner, Jr. (AT&T Bell Laboratories-Naperville) 

9:45 AM    Break 

10:15 AM   Session on Soßware Visualization 

Session Chair: Stephen G. Eick (AT&T Bell Laboratories-Naperville) 

Invited Speakers: William Hill (Bellcore) 
John Stasko (Georgia Institute of Technology) 

NOON       Adjourn 
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