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Abstract

With the development of faster memory and graphics hardware, there has been increased
interest in the development of virtual environments. Researchers have been investigating the
representation of mathematically defined objects and more recently the subsequent recon-
struction of a view of the scene. The result has led to virtual worlds consisting of mainly
geometric objects. :

Our interest is to extend this idea to real 3-D objects and scenes without resorting to
modeling. While modeling uses little storage, the resulting images depend on the number
of model parameters and require heavy computation. An alternative approach would be to
use a very large number of views of the scene. This solution provides high quality images,
but it also requires a large amount of memory. Hence, there is a tradeoff between storage
requirements and accuracy of the reconstructed views.

In this thesis, we propose an approach which offers high quality reconstructions with
relatively low storage requirements. Our approach consists of a camcorder scanning the de- .
sired stationary object along several pre-specified trajectories. Neither the camera’s exact
motion nor its internal parameters are assumed to be known @ priori. For certain loca-
tions in each trajectory, depth information is recovered using an adaptive region matching
algorithm. The depth and corresponding intensity information are then used to generate ac-
curate reconstructions. Results for intermediate views are excellent and preliminary results
are promising for views not originally scanned by the camcorder.

- The eventual goal is to devise an environment consisting of more realistic and complicated
objects. One possible system includes special hardware such as a stereoscopic display and a
head tracking device. The viewer is able to gain the sense of 3-D by controlling the view of a
scene by the movement of her head. We expect such a system with real-time reconstruction
to become realizable in the near future.
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Abstract

With the development of faster memory and graphics hardware, there has been increased
interest in the development of virtual environments. Researchers have been investigating the
representation of mathematically defined objects and more recently the subsequent recon-
struction of a view of the scene. The result has led to virtual worlds consisting of mainly
geometric objects.

Our interest is to extend this idea to real 3-D objects and scenes without resorting to
modeling. While modeling uses little storage, the resulting images depend on the number
of model parameters and require heavy computation. An alternative approach would be to
use a very large number of views of the scene. This solution provides high quality images,
but it also requires a large amount of memory. Hence, there is a tradeoff between storage
requirements and accuracy of the reconstructed views.

In this thesis, we propose an approach which offers high quality reconstructions with
relatively low storage requirements. Our approach consists of a camcorder scanning the de-
sired stationary object along several pre-specified trajectories. Neither the camera’s exact
motion nor its internal parameters are assumed to be known a priori. For certain loca-
tions in each trajectory, depth information is recovered using an adaptive region matching
algorithm. The depth and corresponding intensity information are then used to generate ac-
curate reconstructions. Results for intermediate views are excellent and preliminary results
are promising for views not originally scanned by the camcorder.

The eventual goal is to devise an environment consisting of more realistic and complicated
objects. One possible system includes special hardware such as a stereoscopic display and a
head tracking device. The viewer is able to gain the sense of 3-D by controlling the view of a
scene by the movement of her head. We expect such a system with real-time reconstruction
to become realizable in the near future.
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Chapter 1

Introduction

In light of recent advances in technology, there has been increased interest in the development
of virtual environments. Several applications immediately come to mind especially in the
area of modeling and prototyping. With a virtual system, one can easily design and run sim-
ulations without having to produce a sometimes costly physical prototype. Other situations
may be possible like the real-estate agent who displays houses by having interested parties
“walk-through” a simulation or the surgeon who studies a 3-D simulation before attempting
the real surgery. These virtual environments are also useful in transmitting hard-to-visualize
information to a remote location. For instance, a designer may want to show some prospec-
tive clients on the other coast her design and the consumer may wish to purchase items at
a virtual shopping mall without leaving his home.

In the past, most of the attention fell on synthetic 3-D scenes attempting to model real
3-D ones. The representation for these scenes consists of a set of geometric models for every
3-D object in the scene [33, 15]. The realism of such scenes improves with the complexity of
the models and with the use of intricate models for shading, illumination and reflectance.

More recently, the focus has turned more toward developing different approaches to
generate realistic scenes for virtual environments. Especially important to the development
of this growing field is the problem of generating novel views of a 3-D scene, what we shall
refer to as Arbitrary View Generation (AVG). The goal of AVG is to devise a compact
representation for realistic 3-D scenes in order to achieve high quality reconstructions of an
arbitrary view of the scene. If AVG is capable of performing in real time, then this leads to
simulations of realistic 3-D scenes and thus convincing virtual environments.

There are three major approaches to AVG of real world scenes. The first approach
involves forming a 3-D model of the scene, applying the appropriate transformation to the
model, and then reprojecting the model to obtain the desired 2-D view. Many researchers
have adopted approaches which “backproject” given 2-D information to estimate the 3-D
structure of the scene by volumetric intersection. Chien and Aggarwal [9] and Adrizzone
et. al. [1] proposed techniques for representing the 3-D scene as the volumetric intersection
applied to pseudo-octrees from silhouettes of the scene. Braccini et. al. [5] presented work
on refining a 3-D volumetric model from calibrated multiple views and mapping the texture
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information on to the model. Higuchi et. al. [16] discussed a method for building 3-D models
from range data using a deformable mesh and registering multiple views. The main difficulty
with creating a 3-D model of the scene, and hence the backprojection-reprojection approach
to AVG, is that of registering and combining the 2-D information to generate a 3-D model.

Since the end goal of AVG is to generate a particular 2-D view, it is not clear whether
a full 3-D representation is needed. As such, many researchers have investigated a more
direct approach to AVG in which new views are generated by exploiting certain invariants in
the geometry of the problem. Ullman and Basri [44] presented an approach whereby a 3-D
object may be represented as a linear combination of 2-D images. They showed that under
orthographic projection, an object with smooth boundaries undergoing rotation, translation
and scaling is simply the linear combination of a set of 2-D views. An alternative approach
proposed by Shashua [36] estimates projective structure of the 3-D scene from the epipolar
geometry of two uncalibrated images and then reprojects the points to generate the desired
view. Notice that in this case, a projective model instead of a full 3-D Euclidean model is
determined. Similarly, Laveau and Faugeras [24] described a method in which a set of weakly
or fully calibrated views of an object are used directly to predict the new view. The epipolar
geometry of the views is again exploited. Although these approaches lead to reasonable
results, the only points that can be reconstructed are the points that lie in the intersection
of the views. Hence, points that do not appear in every view cannot be reconstructed directly.
This poses a problem for regions that become deoccluded in the scene, typically present in
more complicated 3-D scenes.

The third class of AVG algorithms attempts to deal with occluded/deoccluded regions in
the scene better than the direct method while not resorting to a full 3-D representation. Gen-
erally, a set of 2%—D surfaces is first estimated and then combined to generate the desired view.
In [8], Chen and Williams provided an approach to generate intermediate views between two
or more given views by establishing correspondence and interpolating correspondence infor-
mation when necessary. They assumed however that relative camera transformation and
depth information are both known a priori. Skerjanc and Liu discussed a trinocular system
in [37, 26] which estimates disparities and synthesizes intermediate pictures. The disparities
of edge segments are tracked through time with known camera geometry. Szeliski [38] has
developed interesting techniques for registering multiple images together to achieve very high
resolution scenes to create a so-called image mosaics.

In comparing the three classes, the 3-D scene reconstruction-reprojection approach results
in a much more complete representation of the scene, requiring less storage than the other
two techniques. However, it requires a large amount of computations and the quality of
the resulting images depends on the number of model parameters. Also, a high degree of
accuracy for registration is necessary. On the other hand, the direct approach is perhaps more
accurate than the other two, but it cannot handle more complicated scenes where occlusion
and deocclusion occurs. This problem may be overcome by having a very large number of
views of the scene, though storage requirements would then become troublesome. Hence
there is a tradeoff between storage requirements and accuracy of the reconstructed views.
The hybrid approach seems to be a good balance offering reasonable quality reconstructions
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with relatively low storage requirements.

Our work falls in this third category of AVG algorithms: We wish to develop an approach
for representing 3-D objects and scenes without resorting to full 3-D modeling. In our pre-
vious work [7, 48], it was shown that good reconstructed images are obtainable by using
an uncalibrated camera following a translational motion. In this paper, we again consider
an uncalibrated set up where a camcorder scans the 3-D scene along a linear trajectory so
that the optical axis of the camcorder is oriented in the same direction every time. While
the geometry is similar to that discussed in [8] and [26], our work differs in that the exact
camera position or the precise camera transformation between reference frames is unknown.
Known camera position simplifies the estimation problem considerably and reduces the am-
biguities associated with the correspondence problem discussed in Chapter 2. We consider
the unknown camera location case since in practice one cannot ensure a specific camera
trajectory with a hand-held camcorder. The approach designates certain locations along the
trajectory as reference locations. The representation for the scene consists of intensity and
depth information at these reference locations. Notice that we have chosen not to combine
these depth estimates and backproject them to form a complete 3-D model of the scene since
we believe that more errors would be introduced by doing so.

The paper focuses only on a 3-D object situated in real 3-D scenes, referred to as the
“outside-in” problem. The images in this case capture different views around the object
with surrounding background information. The opposite “inside-out” problem consists of
representing a particular location, such as a room or a cubicle, without an object of focus;
this case of AVG is beyond the scope of this paper. Notice that for the outside-in case, our
algorithms do not make any distinction between the object in the foreground and the rest of
the scene, i.e. no explicit segmentation stage is considered. The depth estimation stage will
implicitly separate regions according to depth by finding points associated with the object to
be closer to the camera than points associated with the background. Most of the previously
mentioned works e.g. [26, 24, 44] consider a single object alone in 3-D space without any
textured background, thereby isolating the object and making the reconstruction problem
much simpler.

This paper is outlined as follows. Chapter 2 discusses the proposed representation al-
gorithm consisting of intensity and depth maps at prespecified locations. With the repre-
sentation, a desired view may be generated using the reconstruction algorithm presented in
Chapter 3. Experimental results for a real world scene are examined in Chapter 4. They
suggest that the representation/reconstruction algorithms produce excellent reconstructed
views along horizontal trajectories and promising ones along vertical trajectories. Finally,
Chapter 5 consists of a conclusion on this work and directions of future research.



Chapter 2

Compact Representation of Scenes

In the problem of arbitrary view generation, we are interested in characterizing a three-
dimensional (3-D) scene by a compact representation and then reconstructing an arbitrary
view of the scene. The class of scenes to be considered shall be restricted to “outside-in”
scenes, those containing a primary object in the foreground with other objects defining the
background. One may consider extensions of the proposed algorithms to inside-out scenes
but it is outside the scope of this paper.

C

Figure 2.1: An ezample of scanning geometry along four linear trajectories A, B, C, and D.

To derive a compact representation for a given outside-in scene, a method must be devised
for acquiring the necessary information. We propose the following scheme. Image sequences
of an object are generated by translating a camcorder along a prespecified trajectory, e.g. a
rectangular scanning pattern as shown in Figure 2.1. Translational motion is chosen to
simplify the depth estimation stage as described in Section 2.1. Trajectories at different
elevations or depths may also be scanned to add information about the scene. The image
sequences typically consist of hundreds of frames. Note that no assumptions are made
about the exact location of the camcorder or about the camcorder’s internal parameters,
i.e. the camcorder is uncalibrated. The motion is only approximately translational since the
camcorder is moved by hand.

Given this framework, one possible representation consists of depth and intensity' infor-

1The images consist of luminance or intensity only. The chroma component of the images are discarded.

4
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mation at specified viewpoints around the object called reference locations, e.g. locations 1,
2, and 3 for trajectory A in Figure 2.1. Assume that the reference locations are among the
viewpoints originally scanned by the camcorder. Thus, only the depth information at these
locations needs to be estimated to construct the representation.

Since the representation relies on depth information at the reference locations, we desire a
depth estimation algorithm that results in dense information while ensuring fairly accurate
estimates. Moreover, the algorithm should perform reasonably well for a general class of
outside-in 3-D scenes. It would be beneficial for the algorithm to take advantage of the
entire image sequence and somehow combine the useful information into a unified depth
map.

There are many approaches to solving for the depth. Some approaches fall under the
classification of optical flow (e.g. [18, 23]). Most optical flow algorithms rely on the so-called
optical flow constraint equation [17] given by

0FE OE OFE
P ri (2.1)
where E(z,y,t) is the irradiance at time t at image point (z,y) and (u,v) is the optical
flow vector. Since Equation (2.1) provides only one relation for two unknowns, a second
constraint is necessary to solve for the flow vectors. The results provide a dense flow field
and are generally acceptable. The algorithms however work for only small motions and do
not perform well across discontinuities without assuming local similarity.

A second class of approaches consist of stereo matching algorithms. With stereo algo-
rithms, it is generally assumed that either camera positions or camera motion is known
a priori. Typically, some additional information is furnished to aid in matching such as
uniqueness and disparity constraints for random dot stereograms [28], a third view [20] or
even more views [34], shading information [12], or different filtered outputs [22]. For a more
complete review of stereo algorithms, see [11].

Other approaches are classified as solving the structure-from-motion (SFM) problem like
[30, 39, 46, 40, 41]. For these algorithms, a set of features, e.g. edges in [40] and corners
in [46], are identified and tracked. The motion of the camera and the structure of these
features are then computed simultaneously. Despite the complexity of solving this nonlinear
optimization problem under perspective projection, the SFM algorithms perform reasonably
well given two or more arbitrary views. However, many times they are practical for only a
small number of points in the scene. Moreover, many of these algorithms require point or
feature correspondences in advance.

Our approach is similar to the above approaches for estimating depth at a selected ref-
erence frame. We take advantage of the information captured in an image sequence by first
estimating depth between the reference frame and each neighboring frame and then com-
bining several depth maps together to form a single accurate depth estimate. To solve for
the local estimates of depth, we consider three different algorithms in Section 2.1. In each
case, the correspondence problem is not assumed to have been solved. The geometry of the
problem allows us to generate depth estimates directly from correspondence matches.
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Traj 2

Combined

Intensity Depth

Depth

Normalized
Depth

Figure 2.2: A diagram of the complete representation process.

The complete representation process is shown in Figure 2.2. To create an accurate depth
map for a particular reference frame, local depth maps are estimated between neighboring
frames and the reference frame as described in Section 2.1. The set of local depth estimates
are then normalized to a common scale factor using the procedure outlined in Section 2.2.
The normalized depth maps are combined in the manner presented in Section 2.3 to generate
a reasonably accurate map consisting of some low confidence regions. These regions are filled
in using cubic B-splines as discussed in Section 2.4. The end result is a dense depth map
which, along with the corresponding intensity information, serves as the representation for
the reference frame.

It is worth emphasizing that the entire representation process is really a preprocessing
step. For a given 3-D scene, the representation may be determined off-line and stored in
a database for later reconstruction. As such, computation time is not a crucial factor for
this process. It would be desirable however to have a process which requires a reasonable
amount of time. We shall see that the algorithms discussed in the following sections are
fairly intensive but are still within reason.

2.1 Depth Estimation

For every reference frame, a set of local depth estimates is generated between the reference
frame and each neighboring frame as shown in Figure 2.3. The depth estimation algorithm
ideally should produce high quality results for each pair of frames, but because of difficulties
in matching and artifacts in the routine, the reality may be far from the ideal. Lower quality
depth estimates will suffice as long as the final depth map for the reference frame is of high
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quality. This may be ensured if each of the local estimates are fairly dense and generally
accurate.

Ref Frame

L7 1 L] i I

Trajectory W

Figure 2.3: Estimating local depth between reference frame and neighboring frames.

Before depth estimation is possible, the correspondence between points in the two given
views must be established. The general motion case is very difficult to treat since the corre-
spondences, the motion, and the depth are all unknowns and thus the problem is nonlinear.
It is possible to estimate depth iteratively in this case, but the results usually apply to only
a small set of points in the scene. Instead, we shall consider a much simpler case: Suppose
the two views are along the same linear trajectory, either horizontal along the z axis or
vertical along the y axis, i.e. the optical axes of the camera at the two views are parallel.
Then the motion is limited to one degree of freedom along the trajectory and the search for
correspondences reduces to a 1-D search. Note that the problem becomes akin to the stereo
problem with a fronto-parallel object and unknown baseline b. The epipolar lines associated
with the two views are then parallel to the scan lines.

There is an interesting result [17] when two images are related by a horizontal motion.?
Let P = (X,Y, Z) be a point on the object in the 3-D scene shown in Figure 2.4. Suppose
the world coordinate system is centered at the first image I; itself and the second view I is
+b units away along the x axis from the origin. Assume the perspective projection model
for the camera at the two views, that is, P corresponds to a point (u1,v1) in Iy given by

(ug,v1) = (fg- %) , (2.2)

where f is the focal length of the camera. Similarly for I,

(ug,v2) = (f(LZﬂ’leK) = (ul + %,m). (2.3)

The disparity Au shall be defined by

Au 2 uy—uy, (2.4)

2A similar analysis may be made for the vertical case. Here, the disparity Av will be defined as the
difference between the vertical components.
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direction of motion

Figure 2.4: Geometry of depth estimation problem from two fronto-parallel images under
perspective projection. ’

the apparent horizontal shift of the point P in the two images. Combining Equations (2.2),
(2.3), and (2.4), the result becomes

fb
-

Recall that Z is the distance along the optical axis to the object or in other words, the depth
from the point to the camera. We may conclude that in the fronto-parallel case, if correspon-
dence between image points in the two images is solved, then the difference in the horizontal
components is an estimate of disparity for the point. The disparity, in turn, is inversely
related to the depth of the point. Notice that both f and b are unknown; for simplicity, we
assume f equals 1. From this result, it may be observed that solving correspondence leads
directly to an estimate of relative depth. We shall assume local perfect translation between
every pair of images to reduce the depth estimation problem to a correspondence matching
problem.

After examining various matching algorithms, we consider intensity-based matching ap-
proaches to be the most suitable for our purposes. Each of these approaches attempts to
minimize some cost function in order to find the best match. The sum of squared differences
(SSD) cost function appears to work well; Fua [12] and Hannah [14] both describe the perfor-
mance of other cost functions and correlation measures for matching. The remainder of this
section will focus on three correspondence matching algorithms: block matching algorithm,
adaptive block matching algorithm, and fast adaptive block matching algorithm.

Au = ug—uy =

(2.5)
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2.1.1 Block Matching Algorithm (BMA)

To solve the correspondence problem between two images, one may consider matching regions
of intensities in the two images to generate a motion vector field [25]. The motion vector
field provides the correspondence between points in the first image and those in the second.
For every point (z,7) in the first image, the algorithm attempts to find the motion vector
(m,n) which minimizes a cost function between points in neighborhoods around (z, ) in the
first image and (i + m,j + n) in the second. The cost function we shall use will be the
squared difference of intensities. Let I1(:,-) and I3(:,-) be the intensities of the first and
second images, respectively. Suppose B is the neighborhood centered around the given pixel
and W consists of all possible motion vectors. Then the motion vector (u(s,j),v(z,7)) for
point (¢,7) is given by

(u(i,5),0(0,)) =  min,_ { [, o @ 0) = Do oy £ )P d dy} SCY)

Solving the above equation for the best motion vector (u(z,7),v(%,J)) = (m,n) is a nonlinear
problem. Many attempts to address this nonlinear problem exist with varying degrees of
success [25]. We shall focus on one well-known approach, the block matching algorithm
(BMA) [32].

In BMA, it is assumed the region B consists of only a finite number of points; let B be
a square of size b x b pixels. Moreover, the search window W of candidate vectors is also
finite; W is restricted to a rectangle of w x [ pixels.®> With these in mind, Equation (2.6)
reduces to a double summation known as the sum of squared differences (SSD), whereby the
motion vector (u(z,7),v(z, 7)) for point (z,5) may be obtained by

b2 j+b/2
(u(z,]),v(z,j)) = ( min { Z Z |Il(m> y) - 12(55 +m,y+ n)|2} . (27)

mn)EW | o2 b/2 y=j—b/2

The search is clearly two-dimensional. However, for strictly translational motion, the search
reduces further to a one-dimensional search. The motion vector (u(:,-),v(:,+)) then becomes
an estimate of disparity d(-,-), and hence, an estimate of the reciprocal of depth. In the case
of horizontal translation along the z axis, the equation becomes

i+b/2  j+b/2
d(i,j)=r,geig{ >, X IIl(w,y)—Iz(erm,y)IZ}

z=1—b[2 y=j—b/2

(2.8)

where L is the appropriate epipolar line as drawn in Figure 2.5.
Despite the above simplifications, the search for a given disparity remains exhaustive for
every pixel location along L, resulting in a computationally intensive algorithm on the order

3We have limited the motion vectors to be integer valued. Since the intensities themselves are specified
only for pixel locations and since each depth map will later be combined, it is reasonable to consider only
integral-valued vectors. The extension to subpixel motion vector estimation is straightforward by interpola-
tion [32].
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Image 1 Image 2

(1.j)

— b f— —s M e—

Figure 2.5: Ezample of BMA for horizontal motion case.

of O(rclB?), where r and c are the dimensions of the image, ! is the length of the epipolar
line, and B is the block size. While less computationally intensive matching algorithms exist,
BMA produces a dense disparity map with reasonable results.

One primary assumption of BMA—and many region matching algorithms, for that
matter—is that objects in the 3-D scene are rigid and move accordingly. Alternatively,
the scene may be assumed to be stationary while only the camera is moving. Another as-
sumption is that the intensities in corresponding neighborhoods of two images are roughly
similar; imaging distortion of the camera is negligible.

For a pair of images that satisfy both assumptions, BMA generates adequate disparities
for most points. However, there are some artifacts inherent in the algorithm and the problem
itself that induce incorrect disparities for certain regions. One of these artifacts is called
aperture ambiguity. Our definition of aperture ambiguity is the difficulty associated with
matching horizontal lines in images related by a horizontal displacement. It arises because
the block B used for matching is too small and does not include enough distinct features
when matching.

A second artifact related to aperture ambiguity occurs in low texture regions; we refer to
this condition as the constant intensity ambiguity. When few distinguishing features exist
in the block B, it is difficult to estimate precise motion. Note that with both aperture
ambiguity and constant intensity ambiguity, the SSD equation (2.7) is a shallow function
over all possible disparities; the disparities are almost all equally good. The minimization
depends largely on the actual intensity values, which may be noisy due to the imaging
process and different lighting conditions. Despite the lack of distinct features, the matching
algorithm may still lead to the correct disparity for horizontal edges and low texture regions.

In contrast, there are other artifacts of BMA which almost always produce the wrong
disparity—these occur in occluded regions and near depth discontinuities. An occluded
region is an area that appears in one image but not in the other. For instance, a moving
object in the scene generally occludes some points and deoccludes other points from view.
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In such regions, BMA blindly attempts to find the best match but fails miserably because
only one image has information about the region. This artifact is referred to as occlusion
ambiguity.

BMA also generates incorrect disparity information near depth discontinuities, an ar-
tifact known as depth discontinuity localization ambiguity. It is difficult to identify depth
discontinuities of a scene beforehand, since the goal of BMA is to estimate depth. Intensity
discontinuities are instead considered because it is not uncommon for depth discontinuities
in the scene to be related to intensity discontinuities in the image. For points near object
boundaries but not part of the object, the search block B is large enough to include some
features of the object. In minimizing the intensity error for such a point, the matching al-
gorithm yields a motion vector similar to the motion of the object itself. The end result is
poor localization of the object boundary in the disparity domain by b/2 pixels, i.e. the object
seems to have expanded in all dimensions. Clearly, the localization of depth discontinuities
depends on the size of the block used for matching—the smaller the block, the better the
localization. However, it is widely known that using blocks that are too small produces many
false matches, since intensity patterns will be less distinctive [17].

) L

Figure 2.6: Ezample of regions where BMA fails due to (a) aperture ambiguity, (b) constant
intensity ambiguity, (c) occlusion, and (d) depth discontinuity localization ambiguity.

An example of all four artifacts is shown in Figure 2.6. The two images shown are related
by horizontal translational motion, i.e. the two optical axes are parallel to each other and
perpendicular to the direction of motion. The object is a rectangle of constant grey while
the background is entirely white. If BMA is used to match points in Image 1 with those in
Image 2, the aforementioned problems will lead to incorrect disparity estimates. Mismatches
at horizontal line segments identified as (a) are due to aperture ambiguity. Constant intensity
ambiguity occurs in both the foreground and background as with the point indicated by (b).
Little information may be obtained in occluded regions like (c). Problems with localizing
the depth discontinuities is shown with (d).

One may observe that the size of block B affects the effectiveness of BMA immensely.
If B is small, e.g. 5 x 5, the regions near depth discontinuities in the scene will possess
correct disparities while most of the horizontal edges and untextured regions will have faulty
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disparity estimates. On the other hand, if B is large, e.g. 16 x 16, the disparities along
edges and in constant intensity regions will be improved at the expense of poor boundary
localization and larger computation time needed. A choice in between, e.g. 9 x 9, yields
fair results. It is clear that BMA alone cannot adequately estimate disparities and that
modifications to the algorithm are necessary to produce the desired goal of a dense and
reasonably accurate disparity map.

2.1.2 Adaptive Block Matching Algorithm (ABMA)

If regions where the discussed artifacts occur may be located, the matching algorithm would
be able to disregard the disparity information associated with them. The resulting dispar-
ity map would consist of regions of varying confidence levels, high confidence regions with
reasonable estimates of disparities and lower confidence regions with potentially incorrect es-
timates. Furthermore, if the matching algorithm is modified so that it is capable of correcting
the discussed artifacts, most disparities will become much more accurate. These confidence
levels are a simple labeling of the different disparity estimates. Anandan proposed a different
notion of confidence levels based on the curvature of the SSD surface; see [2] for details.

Identifying Confidence Regions

It is straightforward to identify most of these artifacts and subsequently assign confidence
levels. For aperture ambiguity, detecting horizontal edges in images related by horizontal
motion is the first step.* A gradient-based edge detector is used to generate the desired edge

information [21, 25]. The convolution of the image and two edge operators Gyert(+,) and
Ghoriz(+ +) defined by

T _a?4y?
Gyert(2,y) = _27r0'46 20 _ (2.9)
y 224
Ghoriz(:y) = —5——3¢ (2.10)

the first partials of a 2-D Gaussian filter, gives horizontal and vertical gradient information,
respectively. Thresholding these two convolved outputs results in the location of edge pixels.
Since aperture ambiguity occurs only for line segments longer than the block size, edge pixels
are discarded if they do not span an entire block length b. Furthermore, blocks which contain
both horizontal and vertical edge pixels are not marked since the vertical edge resolves the
ambiguity of horizontal motion. Once all suitable line segments have been found, the final
step involves declaring points within +b/2 of any horizontal line segment as an aperture
ambiguous point (AP).

Identifying constant intensity regions is a much simpler task. For every point, if the
neighborhood around the point has an intensity variance lower than a prespecified threshold,

4For the remainder of this subsection, we shall assume that the images we wish to match are generated
by horizontal motion. In the case of vertically related images, the described approach may be modified to
locate vertical segments.
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the point is considered a constant intensity ambiguous point (CONST). This technique is
called Local Variance Thresholding or LVT. A low variance suggests that the block consists
of low texture and nearly constant intensity. As the variance threshold decreases, the block
associated with CONST becomes more uniform in intensity.

To detect occluded regions (OCCL) in the scene, an interesting observation can be made.
When matching one image to another, BMA produces a mapping from all points in the
first image to points in the second image. The regions in the second image that do not
correspond to any points in the first image are precisely the occluded regions in the second
image. Hence, to find the occluded regions in the first image, the matching should also occur
in the reverse direction, from the second image to the first [45]. Because of possibly noisy
matches, an additional filtering step may be necessary.

Another advantage of performing the match in both directions is that invalid matches
due to other reasons may be found and discarded. If a point (¢,7) in one image has been
found to map to a point (¢ + m,j + n) in the second, i.e. I1(z,7) = I2(i + m,j + n), then
it is expected that the reverse will also be true, I1(: + m,j + n) => I1(4,5). If, however,
the reverse mapping is not true, then the match is said to be inconsistent. Matching in both
directions helps validate matches and identify inconsistent matches marked as INCONS to
be pruned [12]. To compensate for noise in the matches, a match is said to be valid if its
reverse mapping lies within a £+2 pixel window around the match.

An example of the block matching algorithm is shown in Figures 2.7 and 2.8. Figure 2.7
(a) and (b) are Frames #37 and #34, respectively from the so-called “Mug2” sequence; see
Chapter 4 for more details. The disparity map of Frame #37 is estimated by matching from
Frame #37 to Frame #34; the apparent object motion is to the left. A 9 x9 block is used for
finding the best match at every point. The disparity maps are shown in Figure 2.8. There
are sixteen levels of possible horizontal disparity, and thus sixteen levels of grey scale. White
signifies the largest disparity; black indicates zero disparity. In (a), the mug and stool are
clearly identified. However regions near the front of the stool and the far wall consist of many
incorrect disparities. The top of the mug and other horizontal edges are mismatched as are
regions near the mug boundary. The second disparity map (b) shows the disparities along
with four types of problem areas marked in different colors: blue, CONST; red, AP; yellow,
INCONS; green, OCCL. Most of the incorrect disparities have been identified, leaving a
much more accurate, albeit sparse, disparity map.

Correcting for Each Confidence Region

The goal is to produce a set of disparity estimates between a reference frame and each neigh-
boring image, ultimately to generate a single accurate and dense depth map. It is possible
then to use information from other disparity maps to “fill in” regions of low confidence. For
instance, an OCCL point in one map may be unoccluded in another map. Disparity esti-
mates from a vertically related pair of images will have vertical aperture ambiguity, but not
horizontal aperture ambiguity, so it may be used to replace the lower confidence AP points;
this fact will be considered in the combination algorithm of Section 2.3. Inconsistencies in
one map may not exist in another and can replace the INCONS points. It is impossible to
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Figure 2.7: Two images from “Mug2” sequence: (a) Frame

s
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#8387, (b) Frame #384.
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Figure 2.8: Ezample of disparity estimate from matching Frame #37 with Frame #34 (a)
without confidence regions, (b) with confidence regions. Legend: blue, CONST; red, AP;
yellow, INCONS; green, OCCL.



CHAPTER 2. COMPACT REPRESENTATION OF SCENES 16

force each individual disparity map to be perfect, however we may not require each one to
be so as long as the final depth map is accurate and dense.

There are two artifacts which are seemingly uncorrectable: the constant intensity ambi-
guity and depth discontinuity localization ambiguity. In the former, a larger search block is
needed to properly match the CONST regions. Unfortunately, a larger block may contribute
to the second problem of poor localization of depth discontinuities. It is difficult to precisely
locate depth discontinuities in the scene since the object is not known a priori. Alternatively,
a smaller block could be used from the start to help improve localization. However this will
introduce more problems in CONST regions. Hence, a fixed block size for the entire image
is incapable of reducing both artifacts.

We propose a modification to BMA which adapts to the confidence regions and provides
more accurate information in CONST regions, near many depth discontinuities, and even
along AP edges. The approach consists of dividing the image into CONST and non- CONST
regions and finding the best matches for both regions. To identify CONST regions, the
image undergoes low-variance thresholding with a 3 x 3 block. Generally, a small block
size is preferred since textured regions near or along intensity discontinuities will be better
localized.® This tends to improve the localization of depth discontinuities since many times
intensity edges are related to depth ones. Once found, the non-CONST points are then
matched using Equation (2.8).

With the non-CONST points matched, the next step is to find the best match for each
CONST point (,7).5 Since the main ambiguity stems from using a block that is too small, we
consider instead using the largest rectangular block containing the point (7, ) that consists
entirely of CONST points. Note that the block does not have to be centered at (i, 7).
One way to find such a block is by growing a 3 x 3 block around (¢, ) and then extending
each side evenly until the extension encounters at least one non-CONST point or until
some prespecified dimension maximum, i.e. block size limit, has been reached. In this way,
the algorithm utilizes the shape and relative size of the CONST region without including
too many features which may mislead the algorithm. Figure 2.9 shows an example of the
image in Figure 2.6. Point P is a CONST point near the rectangular object but part of
the background. With BMA, P would be assigned the same motion vector as that of the
object. On the other hand, if LVT is performed and the block shown in the figure is used
for matching, then the correct motion vector would be estimated.

5Notice that LVT with a small block size is similar to detecting coarse intensity edges. It is possible to
perform edge detection directly instead of LVT to identify the CONST regions. A point is declared CONST
if it is not an edge pixel since only textured points are captured in the edge information. This approach,
however, results in fewer non- CONST points to be matched than with LVT, thereby increasing computation
costs. In addition, many textured regions that are not edge points will be classified as CONST by an edge
detection procedure. With LVT, these points will be marked as non-CONST and may be subsequently
matched in this first step.

60ne may consider using the same approach to find disparity information for AP regions by choosing
blocks consisting of only AP points. However the disparities are not guaranteed to be accurate in these
regions and thus may lead to lower quality reconstructed images. A much better approach would be to use
vertical information to replace the incorrect AP points.
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Intensity Confidence Regions

(

Figure 2.9: Ezample of intensity image and its corresponding confidence regions after LVT
with a 3 X 3 block has been performed. Notice that other regions have not been identified for
clarity.

Adaptive Block Matching Algorithm

The matching algorithm may be improved from standard BMA if it is able to locate and
correct for the different artifacts inherent with BMA. The methods described above together
form the so-called adaptive block matching algorithm (ABMA). The steps to match two
images I; and I using ABMA are as follows:

Algorithm (ABMA):

1.
2.

Perform LVT using 3 X 3 blocks on I; to identify CONST points.

Apply 1-D median filter to I3 in both horizontal and vertical directions to binary image
composed of CONST and non-CONST points (see below).

Locate AP points in I; using standard block size, e.g. 9 x 9.

Evaluate matches from I; to I, using 9 x 9 blocks for all non-CONST and non-AP
points.

For every CONST point in I, find the largest rectangular block that consists strictly
of CONST points and use this for matching. If the block size does not exceed a given
threshold, assign match and mark the CONST point as corrected.

Repeat steps 1 to 5 for I,.
Mark the unmapped regions from matching I; and I, as OCCL.

Validate each point by ensuring its match in one direction lies within a £+2 pixel window
around its reverse match; invalid points are marked as INCONS.
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The final result consists of fairly dense and reasonably accurate disparities. Further, there
will be regions of low confidence marked as OCCL, INCONS, corrected AP, and corrected
CONSTin the depth map.

ABMA improves disparity estimates in CONST regions and localizes many depth dis-
continuities to within one pixel. However, as with every algorithm, there are a couple of
problems with the approach. One problem pertains to the increased computation time to
match two images. Since very large blocks may be used for matching, the required computa-
tion time increases severalfold. Let N, yns; be the number of CONST points in a given image
and let N,, be the number of AP points. Suppose the image has dimensions r X ¢. Then,
ignoring time for locating the confidence regions, the computation time is on the order of
O((rc = Neonst — Ngp)!B? + Neonst!W), where [ and B are defined as before, and W is the
average area of all the rectangular blocks. A faster alternative is proposed in Section 2.1.3.

Figure 2.10: Ezample of a single-impulse image used with ABMA. The image can be di-
vided into four regions, each associated with the blocks shown. If disparities for each of the
four regions are different, the resulting disparity map will exhibit a diagonal nature of the
algorithm.

A more significant problem involves a diagonal artifact for constant intensity points
inherent to ABMA. Consider an image of a single point in the center drawn in Figure 2.10.
Applying LVT to this image will result in identifying every point except the central point as
CONST, since they all possess the same intensity. To match each CONST point, the largest
block is found by growing every side initially at the same rate until a non- CONST point is
encountered. Assume for now that the dimension maximum does not affect the size of the
block. It should be obvious that the image will be separated into four regions, labeled 1
through 4 in the figure. Because of the growing nature of ABMA, all points in a given region
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correspond to the same block drawn in grey consisting of one half of the image. Hence, the
disparity is the same for all points in the same region. If the disparities of adjoining regions
are different, then the disparity map will exhibit a peculiar diagonal artifact. We believe
the artifact can be avoided by using a less restrictive shape, in contrast to the rectangular
blocks, for matching; we are currently investigating this problem.

To reduce the impact of the diagonal nature of ABMA it is necessary to remove all
isolated CONST and non-CONST points in the image. If we consider the binary image
of CONST and non-CONST points, then the problem can be treated as the removal of
salt-and-pepper noise. A common technique to resolve this problem is to apply a median
filter. The binary image is filtered by a three-point 1-D median filter in both horizontal and
vertical directions; the 2-D median filter was not used because it does not preserve corners
[25].

An example of using ABMA is given in Figure 2.11(a). The disparity estimate shown
was created from matching Frame #37 with Frame #34. Note that this corresponds to the
BMA disparity map in Figure 2.8(a). The color legend is similar to that of Figure 2.8(b),
i.e. blue for uncorrected CONST points, red for uncorrected AP points, yellow for INCONS,
and green for OCCL. The mug and stool have been identified and their boundaries are better
localized. The front of the stool corresponds to a more uniform and accurate disparity value.
The far wall is found to be farther away from the camera than the mug/stool, as expected.
While these regions look quite good, the diagonal artifacts and low confidence regions are

very striking. However the disparity values are not unreasonable. Comparing Figure 2.8(a)
with Figure 2.11(a), ABMA clearly exceeds the performance of BMA.

2.1.3 Fast Adaptive Block Matching Algorithm (FABMA)

As mentioned, one problem with ABMA is the amount of time needed to compute the
matches for every point. This problem is especially severe for images with a large percentage
of CONST points, where the corresponding block sizes are big. We propose a modification to
ABMA which speeds up processing and attempts to retain all of the advantages of ABMA,;
we refer to the modified algorithm as the fast adaptive block matching algorithm or FABMA.

To reduce computation time, one may observe the redundancy of ABMA in assigning the
same disparities for CONST points in the same general area (recall Figure 2.10). FABMA
exploits this redundancy by assigning the same disparity to every CONST point in a given
block. Suppose (4,7) is a CONST point with the corresponding block defined by B(z,j) =
[ —z1,7 — y1] X [z + 22,7 + y2], where z1,y1, 22, y2 represent the distance from the point
(4,7) to each one of the four block boundaries. Notice that the block dimensions are (z1 +
22) x (y1 + y2). Let d be the resulting disparity estimate for (¢,5). Then every point in
B(i,7) is assigned the same disparity d and no matching occurs for any of these points—they
are unmatched. Let the set of CONST points be given by Sionst- Suppose Seonst 18 the sum
of S,uatched aNd Synmatched Where Spasched is the set of CONST points matched by FABMA
and Synmatched 15 the set of unmatched CONST points. If N with the appropriate subscript
denotes the number of elements in the given set, then clearly, Neonst = Nmatched + Nunmatched-
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Furthermore, let Wiqatched be the average area of the rectangular blocks corresponding to the
points in Spaiched, 1-€-

- 1
Wmatched = N

> B,d) (2.11)

atched (7".7) esmatched

Then the computation time for FABMA may be expressed as O((rc¢ — Neonst — Nap)!B? +

Natchedl Wmatched). Recall that B is the block size used to match the non- CONST points and

[ is the length of the search line. This complexity is considerably lower than that obtained

for ABMA. With FABMA, we sacrifice accuracy for computation time. However, as we shall

see, the depth estimates do not have to be exact for our ultimate goal of reconstruction.
With this modification in mind, the steps for FABMA are outlined as follows:

Algorithm (FABMA):

1. Perform LVT using 3 x 3 blocks on I; to identify CONST points.

2. Apply 1-D median filter to I; in both horizontal and vertical directions to binary image
composed of CONST and non-CONST points.

3. Locate AP points in I; using standard block size, e.g. 9 x 9.

4. Evaluate matches from I to I, using 9 x 9 blocks for all non-CONST and non-AP
points.

5. For every unmarked CONST point in I, find the largest rectangular block that consists
strictly of CONST points and use this for matching. If block size does not exceed a
given threshold, assign match and mark every CONST point in the block as corrected.

6. Repeat steps 1 to 5 for I5.
7. Mark the unmapped regions from matching I; and I, as OCCL.

8. Validate each point by ensuring its match in one direction lies within a +2 pixel window
around its reverse match; invalid points are marked as INCONS.

Notice that only step 5 differs from ABMA.

It may be easy to see that FABMA does not suffer from the diagonal artifacts produced
by ABMA. The reason is that not every CONST point is explicitly matched. However,
FABMA does introduce horizontal and vertical artifacts because every point in a given block
is given the same disparity. It is not clear whether horizontal/vertical artifacts are more
acceptable than diagonal ones, however the author believes that the former appears to be
more pleasing to the eye.

An example will illustrate the effectiveness of FABMA. In Figure 2.11(b), FABMA was
used to match Frame #37 with Frame #34 of the “Mug2” sequence. Note the color legend
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is the same as before. As with ABMA, FABMA produces a depth map that estimates the
true 3-D scene quite well. The depth of the stool and mug have been recovered very well as
well as the walls in the background. There are prominent vertical artifacts but they do not
pose a significant problem at this stage.

We observe that with both ABMA and FABMA, the resulting depth map appears to be
more accurate than that obtained by BMA. It should be clear that not every point has a
correct depth estimate and that there are large areas of low confidence in the depth map.
However, low confidence regions in themselves do not introduce any problems since other
depth maps may be used to fill in these regions. In fact, it is preferred to have low confidence
point than an incorrect one.

2.2 Normalization of Initial Estimates

After solving correspondence for every pair of frames, we obtain a set of depth maps with
regions of varying confidence levels. Each of these depth maps differ in scaling factor because
of the difference in disparity. Therefore each depth map should be adjusted so that they are
all related by the same factor.

Au Au
e o

ul (u2,v

Figure 2.12: Ezploiting geometry of camera set up to normalize depth maps.

There are a couple of possibilities for this task. The first one is a linear regression of
points from different depth maps corresponding to the same physical 3-D points [7]. Another
approach is to estimate the translation parameter between maps and scale by the reciprocal.
As described before, a point (u;,v;) in one image and (ul;,vl;) in a second horizontally
translated image are related by the disparity equation

Auy; = ul;—u; = ib1 (2.12)
23
where b, is the translation parameter relating the two images. If a third image is introduced,
one yields a similar equation

Auz’,‘ = u2,- - U; = -f'bg (2.13)

1
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with b, the translation parameter linking the first and third images; Figure 2.12 shows this
relationship. Note that the depth z; is the same in both cases since all three image points
correspond to the same physical point. Combining Equations (2.12) and (2.13) leads to the
following relation

A’ul’i _ bl
A = %, (2.14)
or
by
Aul,ib— = A’U,glz' (215)
1

Suppose now we consider k high confidence disparity points common to the two depth maps.
For each point ¢, Equation (2.15) holds, thus leading to the matrix equation

A’U,l’l Aum
A"fl,2 by _ A?fz,z (2.16)
: by
A’ul,k A’UQJC
A v
By linear least squares, we may solve Equation (2.16) for the ratio b2/b; to get
b
EZ = (ATA) 14Ty (2.17)
1
or, in terms of sums,
% _ E?:l(Aulﬂ.)(Au%i) (2.18)

b1 - Z?=1(Au1,i)2

The scaling factor of the depth maps is arbitrary since each map is an estimate of relative
depth. However, it is important that they are scaled to the same scaling factor. Without
loss of generality, we may set by = 1. Then b, is precisely the scaling factor a by which we
need to adjust the second depth map.

An iterative process may be used to reduce the error | Ao — y||2 to some desired amount.
During every pass, outlier points greater than a given error percentage are disregarded when
computing o. The procedure converges when the number of points does not change between
iterations. This modification helps to further improve the accuracy of the scaling factor.
In our experiments, we use a generous error of 30% since the vector y consists of possibly
erroneous data. The algorithm typically converges in only three iterations.

The above least squares problem is a very stable one since A is a one-dimensional vector.
As such, it is straightforward to compute the scale factor o by keeping a running sum of
numerator and denominator. In the absence of noise, this formulation is exceptionally robust
since k is very large, typically in the tens of thousands.
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This normalization process is repeated to compute the translation parameter between the
reference frame and its n neighboring frames to find the corresponding scale factors. One
may consider a multidimensional extension in which the scaling factor o for multiple depth
maps are considered simultaneously. However, this problem will be less well-conditioned
than the one-dimensional counterpart and will require much more computation time. It is
possible to simplify computations using a recursive least squares technique that updates the
QR factorization of the matrix A as more data points are considered [13].

2.3 Combination of Multiple Depth Maps

Once all the depth maps have been normalized to a common scaling factor, they may be
combined to form a single depth map for a particular reference frame. Since each local depth
map may consist of areas of low confidence areas and incorrect depth data, the combination
process should retain only the information which seems consistent, otherwise it should regard
the information as invalid.

Let D;(-,+) for ¢ = 1,2,...n denote the n normalized depth maps and let D(-,-) represent
the combined result. For every point (z,y), we may regard the problem as an estimation
problem, i.e. given n votes for D(:,-), determine the most accurate value. One possibility is
to implement an iterative procedure which analyzes the statistics of the given data, throws
out outliers, and reduces the data set to a more consistent one. It is common to compute
the mean m and standard deviation o of the points and discard points that lie outside an
“interior” range around the mean, e.g. m + ko. This type of approach works well for large
sets of data. However, since n is rather small in our case, the effect of outlier depths on
m and o is much greater, raising the interior range too high to include some outlier points.
Also, the depth information exhibits a predominantly bimodal distribution, i.e. many of the
depths may be classified as foreground or as background. Generally, the depth associated
with the cluster consisting of the majority of points is reasonably correct. To take advantage
of this fact, we consider using the median instead of the mean to define the interior range as
med + ko. The effect is that one cluster of the bimodal distribution of depths is discarded;
the underlying majority in depths value wins. For our purposes, k is set to 1.

An example is drawn in Figure 2.13. Here, six depth maps contribute estimates for the
depth at some point (z,7). It would be reasonable to choose a smaller depth for this point
since four of the six depth “votes” indicate a small depth. If the mean is used to determine
the center of the interior range, one of the outlier depths is included and may throw off the
estimation. On the other hand, if the median is used, the center of the range corresponds to
point 4 and both outliers are subsequently removed.

As discussed before, depth information from horizontal matches contain artifacts along
horizontal edges due to horizontal aperture ambiguity AP. If only these depth maps are used
in combination, then there will be considerable problems in AP regions. To circumvent the
problems, we propose including information derived by matching a vertically related pair of
images, that is, using corresponding images from two linear trajectories at different elevations
(see Figure 2.2). If the second image with respect to the reference frame is a perfect vertical
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Figure 2.13: Ezamples of using mean and median to throw out outliers.

translation, then solving correspondence leads directly to an estimate of depth. Observe
that the depth map will have vertical aperture ambiguity and will contain occluded regions
generally not coincident with those found in the horizontal matches. Hence this information
may be incorporated in the combining stage to improve the accuracy of the depth map in
AP regions.

The algorithm may be further refined by introducing the notion of weights to the depth
data. At every stage in the representation process, confidence levels are assigned based on
the validity of the data. It is thus quite intuitive to weigh points in the combination stage
based on these confidence levels. As shown in Table 2.1, more weight is placed on the vertical
information since it is more reliable in certain regions. The reader may observe that lower
confidence AP, OCCL and INCONS points are not included during combination whereas
CONST points are considered since they are seemingly correctable.

| Confidence Level | Horizontal | Vertical |

FINE 1.0 1.0
CONST 0.3 1.0
otherwise 0.0 0.0

Table 2.1: Weights used in combining together depth information of different confidence levels
from both horizontal and vertical matches.

The weight may also be taken into account during the statistical analysis. For depth
maps D;, 1 = 1,...,n, the mean m and standard deviation o are both easily extendible to
their weighted counterparts as follows:

mo= S (2.19)
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where w(z) is the weight of the depth D; given by Table 2.1. The weighted median can
be interpreted in two ways. First, let w denote half of the sum of the n weights i.e. w =
¥ w(i). Let s(j) be the partial sums of the first j weights, that is, s(j) = i, w(i).
Suppose the list of depth data D; for ¢ = 1,2,...n are sorted in ascending order and D; is
the first depth whose corresponding partial sum s(z) is greater than or equal to w. Then the
weighted median is simply
D; if w < s(7)

med = { Di+2Dii1 if w= 3(2) (221)

Alternatively, the weighted median can be thought of as the median of an augmented se-

quence D of depth data whereby every depth point D; is replicated proportional to its weight,
i.e.
med = median{f)i, i=1,2,. m} (2.22)
Notice that both views of the weighted median lead to the same result.
Incorporating the local depth estimates including the vertical estimate from a higher

trajectory, the following algorithm may be used to determine the depth D(:,-) for a given
point (z,y) from depth maps D;(-,-) for ¢ = 1,2,.

Algorithm (Combination):

1. Examine D;(z,y) for 1 = 1,2,...n. If more than half are infinite depth (FMAX),
assign D(z,y) = FMAX.

2. If not, then compute the weighted median med, mean m and standard deviation o of
the K depths that are finite and are of high confidence. In other words, if g(-) is the
indexing function representing the subset of the original n depth maps, then

med(z,y) = median{bg(i)(w,y), i=1,2,... K} (2.23)
_ E'{.{—_l w(i)Dg(i)(w’ y) 994
() iy w(i) 229

N

K w(1)D? . (z
o(z,y) = (Zm e ,y)‘m(w,y)Z) (2.25)

Klw()
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where w(z) are weights shown in Table 2.1.

3. Throw out depth outliers outside the range med(z,y) £ o(z,y) leaving only L depth
maps indexed by h(:). Set K = L and g(-) = h(:).

4. Repeat Steps 2 and 3 until standard deviation o(z,y) is less than some threshold or
until the number of considered points K does not decrease.

5. Take weighted average of remaining K points to find depth D(z,y):

K w( NE
D(x,y) — Z'Z:l gi)ng((;))( ’y)

6. If K = 2, then mark D(z,y) as an invalid depth point if the standard deviation o(z,y)
of the two points is too high.

If K <1, then mark D(z,y) as an invalid depth point.

| (2.26)

The two special cases in Step 6 ensure that potentially inaccurate depth information will
not be used as the final value. For K = 2, it is quite possible for the two points D,(z,y) and
Dy(z,y) to be quite different. Clearly, if one point is in the foreground while the other is part
of the background, taking their weighted average will result in a depth point somewhere in
between. Furthermore, even if both points are both in the foreground, we still may wish to
disregard these points because the reconstruction algorithm is sensitive to small differences in
depth. To determine whether to assign a depth to point (z,y) given only two depth estimates
D,(z,y) and Dy(z,y), consider the following. Suppose the two contributions D,(z,y) and
Dy(z,y) have equal weight. Then there is a reduced expression for their mean and standard
deviation given by

m(z,y) = De(2,9) ; Difz.9) (2.27)
Da(z,y) — Do(2,y)

o(z,y) = 5 . (2.28)

In other words, the standard deviation is simply half the difference between the data points.
Using this fact, an appropriate threshold may be set to differentiate between valid and invalid
data sets.

An example of a combined depth map is given in Figure 2.14 (a) and (b), where ABMA
was used for solving correspondence. Both the image and depth information, respectively,
are shown for a prespecified reference frame. Note that the depth map has been quantized
heavily for visualization purposes; lighter colors represent shorter distance to the camera.
The regions marked in yellow are low confidence points after combination. For the most
part, the depth estimate looks excellent: The mug is clearly recovered as well as most of
the stool. Also notice how the walls along either side gradually decay in depth. However
problems occur above the mug and along the cabinets on the right. Furthermore, parts of the
stool tend to drop out. Many of these artifacts can be attributed to problems with constant
intensity.
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Figure 2.14: Fzample of a reference frame intensity-depth pair: Frame #37 of the “Mug2”
sequence.
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2.4 Cubic B-Spline Approximation

The depth map after the combination stage is fairly accurate in many regions. There are
however a considerable number of low confidence regions. While no depth information is
preferred over incorrect data, we would like some reasonable estimates for depth in the areas
of low confidence. Generally, an interpolation scheme is used to “fill in” these regions and to
make the map much denser while not sacrificing too much accuracy. For this purpose, cubic
B-splines are employed to carry out this task.

Cubic B-splines are a class of piecewise continuous polynomials which serve to fit curves or
surfaces. They exhibit several desirable properties including locality and piecewise continuity
[4, 19]. For real world scenes, it is not unreasonable to assume local continuity of the surfaces.
Furthermore, if the surface is treated as a tensor product, i.e. the product of 1-D functions,
then the data may be processed first along one direction and then along the other which helps
to simplify computations. Hence, we need only discuss techniques for the one-dimensional
case; the two-dimensional case is a straightforward extension.

Suppose we would like to approximate a given number of vertices V; by cubic B-splines.
Let @ be a global parametrization of the curve and let @; be an array of knots over which the
spline is defined. Then each curve segment ();(%) may be represented as a linear combination
of vertices by certain basis functions, i.e.

0
Q@) = Y VierBise(0). (2.29)
r=-3
These basis functions are generated using a recurrence relation [10] given by
_ u — u; _ Uipr — U _
B, = —Bi,- ———Biy1,-1(1), 2.
o0) = B () + S B (8) (230)
the basis function of order k at level r with base step
e 1 u; U< Uiy
Bia (@) { 0 otherwise (2.31)

Note that these basis functions have finite support; B-spline curve segments depend only on
a local set of vertices.

Equation (2.30) applies to the general case where the knot array ; consists of arbitrarily
spaced points, i.e. nonuniform knot spacing, Note that in general, the basis functions B;,
differ from one parameter range to the next. If the knots happen to be spaced equally, then
the basis functions B;y, = b, turn out to be the same for every segment:

by = %(1 — 3u + 3u? — u?) (2.32)
by = %(4 — 6u® + 3u®) (2.33)
by = %(1 + 3u + 3u® — 3u®) (2.34)
by = L (2.35)

6
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where u is the local parameterization ranging from 0 to 1.

There are a few ways of implementing splines in our application. Each depth estimate
could be processed by B-splines before combining to yield a denser map. Combining each of
these maps may produce a more accurate depth estimate, however overall the approach is
very computationally intensive and requires a large amount of storage. At the other extreme,
one could attempt to locate the regions in the reference depth maps which correspond to
holes in the final reconstructed image and use the splines accordingly in these regions. How-
ever, it is very difficult to locate these regions and we generally would like the reconstruction
algorithm to be as fast as possible. We propose to insert the spline processing stage after
combining the depth maps and before reconstructing. Here, the intensity and depth” infor-
mation are used with splines to produce denser maps. Both the intensity and depths are
processed independently. In each case, the data to be processed are treated as the vertices V;
as well as the knots corresponding to the grid point (u,v). Notice there is a knot line in the
u direction for every column v and a knot line in the v direction for every row u. Applying
Equation (2.30) to every knot line fills in the low confidence depth regions and produces the
desired 2-D surface. Using a denser map helps to improve the reconstruction and increase
the quality of the final images.

Following this technique, one obtains vertices for every point in the grid array. A much
denser map may be produced by subdividing the grid array into many more points, thereby
producing additional estimates for these new points. Note for a given subdividing factor,
we need only compute these so-called extended maps once. In this way the reconstruction
process can be much faster. However, as the subdividing factor increases, the amount of
information used to represent the scene also increases significantly, thus slowing down the
reconstruction algorithm considerably. Also, by experimentation, it turns out that increasing
the subdividing factor over one generates only marginally better results. For this reason,
we shall fix the subdividing factor to one and hence need only to process the sparse depth
maps, not the intensity maps.

To fill in a combined depth map, every row is processed first, followed by every column.
The vertices V; come from the high confidence inverse depth points and the knots %; are the
location of the points in the grid array. In the presence of low confidence regions, the spacing
of the knots, i.e. the distance between pairs of confident vertices, may be nonuniform.

An example is shown in Figure 2.15. The shaded areas are the regions of low confidence.
If we attempt to assign knots and vertices as described above, i.e. at the intersections of
each of the dotted lines, then we encounter problems in specifying surface patches—this is
clearly one of the main problems with the rectangular topology. The knot lines of v are in
fact functions of the u value. One alternative is the following: for every row, create a knot
line as before, where nonuniformity occurs if the line intersects a low confidence region. Next
we find the vertices corresponding to the “missing” knots by generating the splines passing
through the vertices and determining the value on the curve corresponding to the knots.
Then with respect to the other direction, we perform the same type of 1-D processing.

“Technically, we use the disparity instead of depth. The reason is that the depth maps consist of many
spikes where disparity equals zero and considering the disparity results in better behaved surfaces.
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Figure 2.15: Ezample of an itmage with confidence regions.

As an example, suppose we are given a 4 X 7 array as shown in Figure 2.16 where again
the shaded regions are low confidence regions. Assume that there are data points (vertices)
corresponding to each knot. Then, we examine each row and compute the spline along each
row. For instance, the second row corresponds to a spline with vertices {Vo1, Va1, Va1, Ver}
and knots {Co1, Cs1, C41, Ce1} plus additional knots and zero vertices on either end. We
use this curve to determine the vertices corresponding to the knots at Cy;, Cs1, and Cs;. In
this way, we have the appropriate vertices to interpolate uniformly in the other direction.

Figure 2.16: Ezample of processing combined depth map with splines.

For every point in the depth map, there is a preferred direction of processing, either along
the row or the column. It is possible that approximating every row first, finding the missing
vertices, and then processing every column will result in strange artifacts in one direction.
An additional step is introduced to overcome this problem. For every low confidence point,
we consider the nearest vertices along the horizontal direction and vertical direction. If
the variance of the vertices in the horizontal direction is smaller than that in the vertical
direction, the point is processed along the horizontal direction first; otherwise, the point will
be approximated in the vertical direction. The purpose is to ensure that regions of similar
depths are processed first and that depth discontinuities are not interpolated over incorrectly.
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Once the depth map for each reference frame has undergone spline approximation, we
are left with 21-D surface estimates at different locations around the scene. It is possible to
further process these depth maps to generate a full 3-D model of the scene by volumetric
intersection. However, we believe that registering the maps together is a nontrivial task and
that accuracy would be degraded.

The final step in the representation process is to estimate the relative camera motion
between reference frames. Estimating camera motion under perspective projection is a non-
linear problem; possible least squares solutions include [45, 39, 30]. For our purposes, we
have used the motion estimation scheme proposed by Szeliski [39]. Once the relative motion
between all reference frames is known, a geometric relationship may be constructed among
the different reference frames. This enables us to better select which reference frames to use
in the reconstruction stage.

In the end, the representation of the object consists of the intensity-depth pair at each
reference location along with the relative motion among reference frames. Once these data
have been derived, they may be stored in a database for later reconstruction. The repre-
sentation may be compacted even more by compressing both the intensity and depth maps
using traditional compression schemes as described in [21, 32].




Chapter 3

Reconstruction of Intermediate
Views

Once we have generated the representation for a particular 3-D object, we may choose to
‘reconstruct the view of the object at some specified viewpoint. Assume that the center of
one reference frame coincides with the origin of the coordinate system and that the desired
viewpoint is known with respect to this origin. The reconstruction algorithm consists of
the following: First the appropriate reference frame(s) are chosen. Initial estimates of the
desired view are constructed by applying motion parameters to each reference frame. Finally,
the estimates are combined into a single image, interpolating when necessary. The entire
reconstruction process is diagrammed in Figure 3.1.
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Figure 3.1: A diagram of the complete reconstruction process.
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3.1 Selection of Appropriate Reference Frame(s)

Given the relative position and orientation of the desired view, it should be a straightforward
task to determine which reference frames to use. One way of deciding is to include those
frames with the smallest motion in norm relative to the view. It is also possible to consider
all reference frames but weigh each according to its reliability for the desired view.

Another consideration is the number of reference frames. If the specified view is very close
to one of the reference frames, then we may choose to use only that single frame. However, in
most cases, at least two reference frames are needed to properly reconstruct the desired view.
Aside from reducing the effect of noisy data, using multiple reference frames is important
in recovering occluded regions. If the view lies on a linear trajectory between two reference
locations, then two reference frames may be sufficient. If more views are introduced, the
reconstructed image should be improved. However, this slows down the process considerably.
Our current implementation consists of using two reference frames only.

o
@ Ref Frame 2

Ref Frame 1

Figure 3.2: Ezample of using two reference frames to handle occlusions.

Figure 3.2 shows an example where two reference frames lie along the same horizontal
trajectory, similar to the set up in Figure 3.1. If only one reference frame, say Reference
Frame 1, is used to generate the desired view, then there are regions of points where the
algorithm lacks information; these are precisely the locations in the scene which were pre-
viously occluded and become deoccluded, drawn in black in Figure 3.2. The view from a
second reference frame also contains occluded regions. However, the regions do not generally
intersect. Therefore, using both reference frames and combining their view estimates results
in an improved reconstruction.

3.2 Generation of View Estimates

For every reference frame, we generate an estimate of the desired view by applying the
appropriate rigid transformation to the intensities according to the corresponding depth.
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Transformation of Reference Frame

The notion of applying motion parameters to a frame has been addressed in conventional
computer vision and robotics literature [17, 47, 31]. Let p = (X, Y, Z) be a point in the scene
and suppose its projection onto the image plane is ¢ = (u1,v1) = (fX/Z, fY/Z). Suppose
the frame of reference undergoes a rigid transformation (R, T') given by

Ty T9 T3 Az
R = T4 Ts Te T = Ay 5 (3 N )
T Ts To Az

where both rotation R and translation 7" are in terms of the world coordinates. Then the
point p' = (X', Y’, Z’) in terms of the new frame of reference is given by

p=Rp+T (3.2)

or, if we consider homogeneous coordinates, the affine equation becomes the matrix equation

7] [0

The projection of p’ onto the image plane is simply ¢’ = (uq,v2) = (fX'/Z', fY'/Z') or, after
some algebra,

(riug + rov1 +13)Z + Az
(rui +rgvr +19)Z + Az
(raus + r5v1 +16)Z + Ay
(r7ur + rsvy +19)Z + Az

U2

V2

where the focal length f is assumed to be 1.

Reference Frame: Discrete Points vs. Deformable Mesh

It is clear that if (R,T') is the relative motion from a given reference frame to the desired
view, Equations (3.4) and (3.5) determine the new coordinates of the points in the reference
frame. In this framework, the points (z,y) in the reference frame are regarded as discrete
independent points since neither the image nor the depth map is a continuous surface. The
view estimate generated by this method does not exploit the connectedness of the scene and
it may exhibit inconsistencies in the ordering of foreground and background points. Figure
3.3 provides some insight to this problem. Consider a simple one-dimensional sequence,
say a portion of one row in the reference frame. Both the depth and the intensities are
shown; for simplicity, the intensity values increase from one to seven. Points b and c are
considered part of the foreground since their depth is very small. The remaining points form
the background of this signal. Suppose the desired view is translated to the right. Then
the points are mapped according to Equations (3.4) and (3.5) to the configuration shown on
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the right. Since points d through f have a large depth, the transformed points move very
little if at all. In contrast, points b and ¢ are displaced the most since they have the smallest
depth. The transformed sequence indicates that some erroneous background point (point f)
appears within the object.

23
Intensity 1 2 3 4 5 6 17 Intensity 1 4 56 7
b
Depth ve) Depth
'l l
Te & Tle
abcdef g x a d ebfcg_?(

Figure 3.3: 1-D example of reference frame regarded as discrete set of points. Motion is to
the right.

A better approach is to consider the points of the reference frame arrays as vertices of a
deformable wire mesh. Neighboring points in the reference frame are viewed as connected to
one another. A view estimate is generated by applying the appropriate transformation to the
collection of points and examining not only the new coordinates of every point, but also the
ordering in the mesh. In the event that points with large depth, i.e. part of the background,
appear in between points with small depth, i.e. part of the foreground, the ordering may be
used to discard such points. In this manner, the ordering of points may be better preserved
and inconsistencies in the transformed data are not as prevalent. If we apply this mesh
approach to the previous example, the result is shown in Figure 3.4. Here, the ordering of
the points contributes to improve the view estimates. By examining the sequence of the
transformed points, it is straightforward to determine occluded point f in the background
and subsequently discard it. Since the reference frames are 2-D arrays, the deformation must
occur in both directions. A simplification may be made where one direction is considered
first, followed by the other one.

The problem of occluding surfaces has been examined in traditional computer graphics
[33, 15] and is referred to as the hidden surface removal problem. With a representation
of the surfaces of the scene in memory, it is possible to determine which surface precedes
the rest according to different tests, e.g. using the surface with smaller depth in z-buffering
technique [15]. In our case, we have not segmented the scene into explicit surfaces, so the
hidden surface removal problem is not as easy to solve. Using a connected mesh approach
helps connect surfaces in the scene and resolves some of the occlusion ambiguities.
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Figure 3.4: 1-D example of reference frame regarded as part of a deformable mesh. Motion
is to the right.

Refining the Deformed Mesh

To make the view estimates more robust, interpolation between consecutive points according
to the mesh may be included. In the previous example it is clear that there is no information
to replace the original location of points b and ¢. This “hole” may be filled by linearly
interpolating between successive points in the array, e.g. points are added in between points
a and d and also between b and ¢. Such an interpolation scheme serves to give local estimates
of intensity information. These interpolated points are marked as low confidence since there is
no information about the deoccluded region and hence there is no guarantee the interpolated
values are correct.

3.3 Combination of Reconstructed Data

Once we compute the estimates of the desired view with respect to each of the chosen
reference frames, we must decide how to combine this data to generate the appropriate
reconstruction. Furthermore, it is quite possible after the previous step that the estimates
do not coincide with the sampling grid, so we must also ensure that the data are interpolated
to the grid points.

Interpolation by Distances

One possibility is to use the following technique for interpolation [7, 48]. Suppose there are
N reference frames for reconstruction and suppose that there exists at least one data point
near the given pixel (z,7). Then, the intensity value of the pixel on the sampling grid is
given by

(3.6)

1(3,5) = i:lwn (

anEA,‘j dkn Ikn)
anEA,'j dkn
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where A;; is a 2L X 2L region centered around pixel (4,7), L is the spacing on the sampling
grid, dy,, is the distance of the k,th point in frame n with intensity I, from the (z, j) pixel,
and w, is the weight for the data from reference frame n. Generally, these weights depend
on the location with respect to the reference frames.

2L

grid point

Figure 3.5: Ezample of interpolating data from two reference frames for pizel (i,5).

We consider an example of data from two (N=2) reference frames in Figure 3.5. The
desired viewpoint is assumed to lie along a linear trajectory between a left and right reference
frame. The translation parameter of the intermediate view is Az, while that of the right
frame is d. Notice both parameters are with respect to the left frame. If we use the weighting
function wy = (1—Az/d) for the left frame, w; = Az/d for the right frame, then the previous
equation reduces to

Az

i = 0= (G )+ 7 (B7) 0

EleAij di 7 ErGAij dT

the interpolation formula for bilinear reconstruction.

It was shown in [7] that the interpolation scheme works reasonably well for reference
frames regarded as discrete point arrays. This approach relies on the accuracy of the depth
estimates to perform reliably since the distance to the nearest grid point is implicitly deter-
mined by the depth values. Moreover, points in a given 2L x 2L region may be inconsistent
in both depth and intensity with one another, and no provisions are made to analyze them.

Interpolation with Outlier Removal

Based on the above discussion, we may propose a second improved algorithm. Suppose
there are again N reference frames for reconstruction. To find the intensity for pixel (3, ),
we examine points in a smaller L x L region A;; centered around pixel (z,7). Outliers in




CHAPTER 3. RECONSTRUCTION OF INTERMEDIATE VIEWS 39

the depth domain are thrown out until the intensities of the points are consistent using an
approach similar to the approach described in Section 2.3. Once these points have been
reduced, the intensity I(¢,j) is simply the weighted average of the remaining points.

More specifically, let us suppose there are n; data points Ii(z,7) and Dg(¢, ), intensity
and depth respectively, from reference frame & in a L x L region centered around pixel (z, j).
All points in this region from reference frame ¢ which were generated by the interpolation
step after mesh deformation are removed as long as there exist some valid points from other
reference frames. To find (3, 5), we follow the following steps:

Algorithm (Reconstruction):

1. Examine Di(i,j) for k=1,2,... N.
2. If more than half are infinite depth (FMAX), then
(a) Compute mean m(,) and variance (3, ) of Iy (%, 7), where g(k) is the appro-
priate indexing function.
(b) Throw out intensity outliers outside the range of m(¢,5) & o(, 7).

(c) Repeat Steps 2a through 2b until o is less than some threshold or until the number
of points does not decrease.

(d) Take the average of the intensities of the remaining points.
3. Otherwise
(a) Compute mean mi(z,j) and variance 04%(%,j) of Iy)(2,4), where g(k) is the ap-
propriate indexing function.
(b) Compute mean md(¢, ;) and variance od?(i, j) of Dy)(t, 7).
(c) Throw out depth outliers outside the range of md(s, j) & od(%, j).

(d) Repeat Steps 3a and 3c until o7 is less than some threshold or until the number
of points does not decrease.

(e) If o4 is still larger than some threshold, then remove outliers in the intensity
domain; follow approach taken in Steps 2a and 2b.

(f) Take the average of the intensities of the remaining points.
4. If o1 is too large, mark the intensity I(z, ) as an invalid point.

The goal of the algorithm is to determine which data are consistent. Depth outliers are
removed until the intensity values of the points in a given region are similar.

One refinement is to place more weight on points with smaller depths when interpolating.
When an object moves in a frame, we would like the pixels of the foreground to have more
~ weight than those from the background occupying the same region. One possible solution
is to multiply the closer points by a large factor and to weigh less the points further away.
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The result is that pixels that are displaced more will dominate over those that tend to be
stationary. The regions near depth discontinuities of the reconstructed image are improved
with this technique. We note that such a refinement places a strong dependence on the
accuracy of the depths. This approach is akin to the z-buffering technique discussed before
[15].

It is possible that there exists no points in a given L X L region, creating “holes.” This
condition arises because of uncovered regions in the scene, i.e. deoccluded regions, and be-
cause of sparse depth information. Generally, introducing more reference frames or using
spline-processed depth maps with a larger subdividing factor helps to reduce the size of these
holes. For the remaining holes, some sort of interpolation is necessary to fill-in the holes.
An approach is to grow the area A;; out to a mL X mL region, where m is the smallest value
for which a point falls within the area A;;, i.e. the region is no longer a hole. Once we find
such an area, we then use either interpolation scheme to find the intensity value at the grid

point (z, 7).

A comparison of the two interpolation schemes shows that the interpolation-with-outlier-
removal algorithm performs much better than the interpolation-by-distances algorithm. It
is however considerably slower since statistical analysis is performed for every point. For the
eventual goal of real-time reconstruction, one may consider simplifying the outlier removal
process to speed up the overall algorithm. Nevertheless, we believe the second interpolation
scheme produces much more reliable results; we shall consider only this algorithm for the
next chapter.
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Results

D
q

View 1

o

Camcorder View 2

Figure 4.1: Ezperimental set up used to generate results.

We shall now examine some results using the techniques described above. The outside-in
scene employed is one hallway in our office consisting of several objects at different depths.
The object of interest is a mug placed atop a stool. A CCD camcorder is moved on a rolling
tripod without rotation along two trajectories about two feet in length in front of the mug
three feet away at two different elevations to generate a 100-frame sequence per trajectory,
similar to the set up drawn in Figure 4.1. The sequences, named “Mugl” and “Mug2,”
respectively, are subsampled to produce shorter-length sequences and then processed by the
representation algorithms. Each frame is 640 x 480 pixels large and consists of intensity only.
When creating the sequences, we attempted to make the motion strictly translational along
the z axis. However the camcorder was moved by hand without a track, we cannot ensure
this to be true. Moreover, no special lighting was used to film the scene; specularities of the
stool and the lid of the mug are very apparent in the images.

For the results, two frames, both on the same trajectory (Section 4.1) or one on either
trajectory (Section 4.2), are chosen as reference frames. To generate these depth maps, ten
neighboring frames from the same trajectory and one vertically-related frame from the other
trajectory are matched to yield local depth estimates. The effect of using fewer neighbor-
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ing frames is also described. These depth estimates are normalized and then combined as
described in Chapter 2.

The low confidence regions are then filled in using a cubic B-spline approximation tech-
nique to produce a dense depth map. The subdivision factor is one in both directions.
A larger subdivision factor would result in a much finer depth map but did not seem to
improve the reconstructed image overall. Negative intensity and depth values are possible
after approximation due to the sharp variation in disparities and are disregarded during
reconstruction.

4.1 Reconstructing Horizontal View

For the first set of results, the three matching algorithms described in Chapter 2 are used to
reconstruct the view roughly halfway between two reference frames along the same horizontal
trajectory. Frames #35 and #65 from the first trajectory “Mugl” sequence are selected as
the reference frames; they are shown in Figure 4.2 (a) and (b). This desired view is perhaps
the one most prone to errors due to the large occluded regions. Note that there is roughly a
maximum of 120 pixel disparity between the two reference frames. The closest image to the
desired view is Frame #49 of “Mugl,” shown in Figure 4.3. Since the exact camera motion
is not known, the image is only an approximation and serves only to aid in comparison.

Block Matching Algorithm

The reference depth maps for #35 and #65 using BMA with 9 x 9 blocks in the representation
algorithm are shown in Figure 4.4 (a) and (b). The general shape of the mug and stool have
been recovered in both depth maps, however it is evident that the matching algorithm fails in
many regions. The front of the stool, the drawers to the right, and the wall in the background
have spurious depths due to low texture (CONST) in those regions. Problems on the top
of the stool occur due to the reflections from the light. Most of the horizontal edges have
incorrect depth estimates because of the aperture ambiguity (AP).

The bilaterally reconstructed view is shown in Figure 4.5 (a). Despite the problems with
the depth maps, the image quality of the reconstruction is surprisingly good. The main
reason is that the reconstruction algorithm discards inconsistent depth estimates and their
corresponding intensities after mesh deformation. These regions become empty and are then
replaced by more accurate intensities to fill up the image. Notice that occluded regions have
been recovered for the most part, although there are some problems to the right of the mug
and near the mug handle. There are also some artifacts along the various horizontal lines in
the image e.g. the reflections in the front of the stool, the drawer to the right of the mug,
and the door in the background.

The error between the two images is shown in Figure 4.8 (b). The output has been
offset so that gray level 128 corresponds to zero error; brighter levels indicate positive error
and darker levels reflect negative error. It is clear that most of the errors occur along the
intensity discontinuities and especially near the occlusion regions, as mentioned above. The
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(b)
Figure 4.2: Reference Frames (a) #85 and (b) #65 of “Mugl” (intensity).
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Figure 4.3: Closest image to desired view from “Mugl” sequence: Frame #49.
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(b)

Figure 4.5: Results from BMA: (a) Reconstructed view along horizontal trajectory; (b) Error
obtained by subtracting reconstructed view and Frame #49.
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mean squared error (MSE) of the reconstructed view with the closest image from “Mugl” is
42.30, implying that on average the error is 6.5 levels of gray per point.

Adaptive Block Matching Algorithm

To improve the previous results, we consider using a different matching algorithm, ABMA.
Figure 4.6 (a) and (b) show the depth maps obtained by using ABMA. The regions of low
confidence depths are marked in yellow. They may be filled in using the spline approximation
described in Section 2.4; Figure 4.7 (a) and (b) have the results after spline processing. It is
clear that the result is much a better estimate of depth than the one obtained by BMA: the
mug and stool are estimated much better and do not contain as many spurious depths. There
is a gradual change in depth as expected for a hallway scene. Artifacts are still prevalent
in the top left portion of the stool; this is primarily due to the specularities of the surface.
Also, there are problems in recovering the handle of the mug accurately mainly because
intensity-based matching schemes perform poorly for regions in the background that can be
seen through regions in the foreground.

Figure 4.8 (a) shows the reconstructed view. Again, the image quality is good for the
most part. The horizontal edges, e.g. top of the door, top of the mug, specularities in front of
the stool, and the drawers, have been improved. ABMA takes care of problems in occluded
regions: There are fewer errors to the right of the mug and near the mug handle.

The error between the two images is found in Figure 4.8 (b). As with BMA, most of
the errors occur around intensity discontinuities and near occluded regions. It is interesting
to note that the reflections from the stool top and front were reconstructed quite well with
ABMA and result in close to zero error. The MSE for the view compared with Frame #49
is 57.2. This is roughly an error of 7.6 levels'per point, one pixel/point higher than the error
associated with BMA.

Fast Adaptive Block Matching Algorithm

The results may be further improved and generated faster using the FABMA. In Figure 4.9
(a) and (b), the reference depth maps for Frames #35 and #65, respectively, are shown. The
regions of low confidence are marked in yellow in the figures. Using spline approximation to
attempt to improve the depth estimates leads to the depth maps shown in Figure 4.10 (a)
and (b). The depths have been estimated quite well for the mug and the stool. The main
problem in both maps occurs inside the handle of the mug. Since the matching algorithm
cannot adequately estimate the depth for this region, the region is marked as low confidence.
This implies a stronger dependence on the spline approximation stage, which incorrectly
tends to fill in the entire region.

FABMA generates the view shown in Figure 4.11 (a). The reconstructed image appears to
be very similar to that of Frame #49 as desired. However, as with the previous two matching
approaches, most of the errors occur near occluded regions. These errors are evident in the
difference image in Figure 4.11 (b). The largest errors occur in the bottom half of the handle
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Figure 4.6: Reference Frames (a) #35 and (b) #65 (depth) using ABMA with confidence

measures.
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(b)

Figure 4.8: Results from ABMA: (a) Reconstructed view along horizontal trajectory; (b)
Error obtained by subtracting reconstructed view and Frame #49.
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(b)

Figure 4.11: Results from FABMA: (a) Reconstructed view along horizontal trajectory; (b)
Error obtained by subtracting reconstructed view and Frame #49.
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and some points to the right of the mug. Also, artifacts occur near horizontal edges in the
image due to problems with depth due to AP. The MSE for FABMA is 50.4 or about 7.1
pixel error per point, slightly lower than ABMA but still higher than BMA.

Analysis of Results

MSE
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Figure 4.12: Graph of mean squared error for the three matching algorithms as a function of
number of neighboring frames used.

For the previous results, ten neighboring frames, along with one frame translated vertically,
were used to estimate the depth for a given reference frame. An interesting experiment is
to determine the trend of the error of the reconstructed image as a function of neighboring
frames. We perform such an experiment for one, two, four, six, eight, and ten neighbors
on the same horizontal trajectory. As seen in Figure 4.12, the mean squared error of BMA
tends to about ten pixels/point lower than either ABMA and FABMA. This is a rather
unexpected result especially since ABMA and FABMA produce more accurate depth maps.
One explanation is that the regions where BMA yields incorrect depths, namely CONST and
AP, do not affect the overall quality of the reconstructed image. Accurate depth values are
not necessary for CONST and AP points since the view transformation will confine these
points to remain in the same general neighborhood, thereby obscuring the error. Also, there
are a large number of low confidence regions in both ABMA and FABMA which does not
provide the spline processing stage enough vertices with which to interpolate.

From the graph and results shown in Table 4.1, we can also conclude that as more
neighboring frames are included, the better is the resulting reconstructed view. While there
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is clearly some sort of limit, one must consider the tradeoff between the quality of the desired
view and the amount of processing required for the increased number of neighboring frames.!

| # of Frames | BMA | ABMA | FABMA |

1 135.84 | 115.80 | 113.11
2 83.63 | 98.03 101.48
4 60.37 | 74.86 70.54
6 49.23 | 59.46 63.94
8 44.62 | 55.40 55.08
10 42.30 | 57.20 50.38

Table 4.1: MSE of horizontal view for three matching algorithms as a function of number of
neighboring frames.

4.2 Reconstructing Vertical View

In this section, we consider generating a view not originally scanned by the camcorder. Two
frames from different elevations, namely Frame #35 of “Mugl” and Frame #37 of “Mug2”
in Figure 4.13, are chosen as reference frames. The desired view is roughly the midpoint
on the vertical trajectory relating the two views. Unlike in the horizontal case, there is
no corresponding frame for this view. Consequently, we cannot provide any quantitative
measure of the performance of these algorithms.

Block Matching Algorithm

Using BMA, the depth map corresponding to Frame #37 is shown in Figure 4.14 (a). While
the mug and stool are identifiable in the depth map, there are still many incorrect estimates of
depth throughout the map. The reconstructed view in Figure 4.14 (b) looks quite degraded.
The bottom of the stool appears to be completely disintegrated. Even part of the top of the
stool seems to have disappeared completely. Almost all of the errors occur near horizontal
edges. The reason is that the depth associated with horizontal edges are inconsistent due to
aperture ambiguity (AP). It is interesting to note that this problem is not manifested in the
horizontal case; despite horizontal edges having inconsistent depth, the reconstructed edges
still look good since points on horizontal lines remain on the line. However, in the vertical
case, the error associated with horizontal edges is the greatest since the reconstructed edges
are shifted vertically.

1The reader is warned not to weigh the MSE results too heavily. There is no ground truth with which
the reconstructed images can be compared; the view we have chosen is the best approximation to the desired
view. Also, good MSE results do not necessarily reflect good visual results and vice versa.
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Figure 4.13: Reference Frame #37 of “Mug2” (intensity).

Adaptive Block Matching Algorithm

To improve the results near horizontal AP, we need to introduce more information from
the vertical match; matches between vertically translated images result in AP along vertical
edges and not along horizontal ones. If AP regions are identified during combination, then
more weight can be placed on the vertical match information.

Figure 4.15 (a) is the depth map from using ABMA during matching. The estimate is
significantly better than that generated by BMA. The mug and stool are again recovered
very clearly and there are fewer regions of spurious depths. Even the shape of the handle has
been recovered adequately. The reconstructed view is given in Figure 4.15 (b). While the
image appears to be an improvement over the one produced by BMA, the overall quality is
still not that high. The top of the mug is jagged as are parts of the stool. As described above,
the primary reason for this artifact is that the depth along horizontal edges is inconsistent
so that after transformation, the reconstructed edges are no longer aligned.

Fast Adaptive Block Matching Algorithm

The depth corresponding to the reference Frame #37 is shown in Figure 4.16 (a). For the
most part, the depth estimates are reasonable. The reconstructed view generated using this
reference frame and Frame #35 is found in Figure 4.16 (b). Similar to the results from
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Figure 4.14: Results from BMA: (a) Reference Frame #37 (depth); (b) Reconstructed view
along vertical trajectory.
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(b)
Figure 4.16: Results from FABMA: (a) Reference Frame #37 (depth); (b) Reconstructed

view along vertical trajectory.
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ABMA, many of the horizontal edges appear jagged. The stool is marginally improved,
however there are still errors near the reflections.

Figure 4.17: Reconstructed view along vertical trajectory using only vertical match informa-
tion.

Analysis of Results

It is clear that the desired view could be improved significantly if the depths of the refer-
ence frames were more consistent along the horizontal edges. Since frames from the same
horizontal trajectory all exhibit problems with horizontal AP points, one should rely more
on information from a vertical match. In our current system, only one vertical match is
used. If more matches from different trajectories are included, we believe the depth map
would be much more consistent and hence the reconstructed image would be improved; we
are currently investigating this issue.

An interesting observation is that if only the vertical match information is used and depth
estimates from neighboring horizontal frames are discarded, the resulting reconstructed im-
age looks quite good. As shown in Figure 4.17, many of the previous artifacts around
horizontal edges are not as apparent. This is because there is no horizontal aperture ambi-
guity with the vertical matches and the depth information is much more consistent in these
regions.




Chapter 5

Conclusion

We have proposed an approach for representing and reconstructing stationary 3-D objects.
The reconstructions in the previous chapter seem to indicate that this approach is very
worthwhile. For views along a horizontal trajectory, the algorithm produces decent recon-
structed images where most of the error is concentrated near the occlusion boundaries. The
reconstruction algorithm performs well especially when given very noisy depth information
as in the case of BMA. The views along a vertical trajectory were also promising. It is clear
that while ABMA and FABMA give slightly lower quality horizontal reconstructions, they
lead to a much better estimate of depth than BMA.

Figure 5.1: Ezample of an interactive virtual environment.

The main bottleneck in the accuracy of the views is the initial depth estimation stage.
Replacing the current matching algorithm by a more sophisticated one may improve the
accuracy of the reference frame depth maps. The three matching algorithms presented all
consider matching at only one scale. While for small motions a single scale should be sufficient
[43, 14], a more general multiresolution/multiscale may improve the results by resolving many
of the ambiguities in our correspondences. Hierarchical matching methods like [3, 35, 6] and
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Kalman-filtering based methods such as [29] might lead to better results. Also, we have
assumed a translational camera motion model which allowed us to solve correspondence and
estimate depth simultaneously. A more general camera motion model might lead to better
results. The camera motion and depth could be iteratively estimated using a linear motion
estimation algorithm like [27, 42] or a nonlinear structure-from-motion technique like [39, 46]
to improve correspondence results. If such improvements are made, we believe the framework
presented may be used to produce a good method for generating arbitrary views.

Future work in this area includes examining the optimum number of reference frames to
fully capture an object. A more complete analysis must be performed in order to determine
what the scope of a single reference frame is, or conversely, what the optimum set and
locations of reference frames to compactly represent a given object is. In addition, a real-
time implementation of the reconstruction algorithm would expedite the development of a
virtual environment. Using a stereoscopic display and head tracking device, we will be able
to simulate such a system by reconstructing an arbitrary view of an object in real time as
the user moves his/her head; an example is drawn in Figure 5.1. Another problem is to
extend this work for inside-out scenes, i.e. representing a location such as a room rather
than an object. In this case, it is unclear what is the proper representation and what are
the necessary views to capture it sufficiently. The area of arbitrary view generation and
its application to virtual environments seems very fertile and this research serves as a good
starting point.
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ABSTRACT

This paper focuses on the representation and arbitrary view
generation of three dimensional (3-D) scenes. In contrast to
existing methods that construct a full 3-D model or those
that exploit geometric invariants, our representation con-
sists of dense depth maps at several preselected viewpoints
from an image sequence. Furthermore, instead of using mul-
tiple calibrated stationary cameras or range data, we derive
our depth maps from image sequences captured by an un-
calibrated camera. We propose an adaptive matching algo-
rithm which assigns various confidence levels to different re-
gions. Nonuniform bicubic sphne interpolation is then used
to fill in low confidence regions in the depth maps. Once the
depth maps are computed at preselected viewpoints, the in-
tensity and depth at these locations are used to reconstruct
arbitrary views of the 3-D scene. Experimental results are
presented to verify our approach.

1. INTRODUCTION

In light of recent advances in technology, virtual environ-
ments have become an important tool in engineering, de-
sign, manufacturing and many other areas. Especially im-
portant to the development of this growing field is the prob-
lem of Arbitrary View Generation (AVG) in which an in-
termediate view of a three dimensional (3-D) scene is inter-
polated from its neighboring views. Existing work in this
area can be classified into three classes: in the first class,
a full 3-D model of the scene is constructed by volumetric
intersection and then reprojected in order to generate the
desired view [1]. The main difficulty with this approach is
that of registering and combining the 2-D information to
generate a full 3-D model. In the second class, views are
generated by exploiting certain invariants in the geometry
of the problem [2]. This approach however does not cor-
rectly reconstruct points that become deoccluded.

The third class of AVG algorithms attempts to deal with
occluded /deoccluded regions in the scene better than the
second class while not resorting to a full 3-D representa-
tion of the first class. Generally, a set of 2—-D surfaces
is first estimated and then combined to genera.te the de-
sired view. For example, Chen and Williams [3] measure
range and camera transformation to establish pixel corre-
spondence and then apply morphing to interpolate interme-
diate views. Similarly, Skerjanc and Liu [4] compute depth
with known camera positions in order to synthesize inter-
mediate pictures.

This work was supported by an Air Force Laboratory Grad-
uate Fellowship, PYI-NSF grant MIP-9057466, ONR young in-
vestigator award N00014-92-J-1732, and Sun Microsystems.

Our approach to AVG falls into this third category [5).
However, unlike existing techniques, we use a sequence of
images captured by a hand held, uncalibrated camcorder.
Uncalibrated cameras with unknown position are used to
avoid the difficult and time-consuming step of calibration
and therefore increase the ﬂe)abxhty of the image acquisi-
tion process. Our motivation for using a sequence of video
images rather than a few still images is to improve the ro-
bustness of the depth estimation step. Wide availability of
video cameras in today’s research and commercial environ-
ment justifies their use in place of still cameras in many
applications.

Our proposed approach consists of scanning a camcorder
across several trajectories of the scene in order to generate
image sequences to be used in constructing the depth maps.
The idea is to estimate depth only at several prespecified
locations, called “reference frames,” by using their neigh-
boring captured frames. Once the depth has been com-
puted at reference frames, the neighboring intensity frames
are discarded, and only the depth and intensity at reference
frames are kept as a compact representation of the scene.
This representation is then used to reconstruct arbitrary
views located on or off the scanning trajectories.

/ )

View 1

Camcorder View 2
Figure 1: Experimental set up used to generate results.

In this paper, we consider a simple imaging geometry in
which a camcorder is translated across the object on a line
at multiple elevations, shown in Figure 1. The motivation
for not choosing rotation, or a combination of rotation and
translation motion, is the sensitivity of depth reconstruc-
tion to these classes of motion, especially when the motion
parameters are unknown. In addition, it is well known that
depth reconstruction can be more accurate when the camera
translates across an object, rather than when it translates
toward or away from it.

The outline of the paper is as follows. In Section 2, we
discuss an adaptive approach to dense depth estimation.
Section 3 describes the reconstruction algorithm. Results
are presented in Section 4. The paper concludes with a
discussion in Section 5.




2. COMPACT REPRESENTATION

Our overall approach in deriving the depth information at
reference locations is to establish correspondence between
the reference frame and each of its neighboring frames. The-
oretically speaking, it is sufficient to establish correspon-
dence with only one of the neighbors. In practice, however,
it is advantageous to do so with a large number of neighbor-
ing frames in order to improve the accuracy of the resulting
depth map. Note that once these neighboring frames are
used in computing the depth at the reference frames, they
are discarded in the reconstruction process; therefore, their
use only affects the quality of the representation and not its
compactness.

After correspondence between the reference frame and
each of its neighbors has been achieved, the resulting depth
maps at the reference frames are normalized and combined
in order to form a depth map for the reference frame. In
the remainder of this section, each step will be discussed in
detail.

2.1. Depth Estimation

In the first step of the representation process, local dense
depth maps are generated by matching the reference frame
and each neighboring frame. Existing stereo matching tech-
niques [6] cannot be used because they assume correspon-
dence or known camera positions. Similarly, structure-from-
motion algorithms [7] estimate the structure of only a small
set of feature points in the scene.

We shall assume local perfect translation between every
pair of images to reduce the depth estimation problem to a
1-D correspondence matching problem [8]. In this case, the
epipolar lines of the two images are parallel with the scan
lines of the image. For every point (2, 7), the depth may be
estimated as the inverse of disparity d(z,j) given by

i+b/2  j+b/2

dif)=minq S > @) -RErmPp 1)

meL
r=i—bf2 y=5—b/2

where L is the appropriate epipolar line.

There are some artifacts inherent both in the algorithm
and the problem itself that induce incorrect disparities for
certain regions. If the relative motion between two images
is translational along the z axis, then an artifact known
as aperture ambiguity occurs for horizontal lines. It arises
because the block B used for matching is too small and
does not include enough distinct features when matching. A
second artifact occurs in regions of constant intensity where
disparities are incorrectly matched because the block size is
again too small. Other artifacts occur in occluded regions
and near depth discontinuities; see [5] for more details.

It is straightforward to identify most of these artifacts
and subsequently assign confidence levels to different re-
gions in the scene. These confidence levels are important
for locating the regions to ignore when combining multi-
ple depth maps together. To detect aperture ambiguity, a
gradient-based edge detector is used to locate the horizon-
tal edges [5]. Points in the image near these edge pixels are
marked as possibly spurious. To identify constant intensity
regions, a small window is used to find regions where the
intensity variance is lower than a prespecified threshold. A
low variance suggests that the block consists of low texture
and nearly constant intensity. Occluded regions consist of
the unmapped points from matching two images in both
directions. Performing the match in both directions also

helps to validate the matches [5]. In the end, the scene will
consist of low confidence regions marked according to the
different artifacts: constant intensity, aperture ambiguity,
occlusion, and inconsistencies in matching.

Since many real world scenes consist largely of low tex-
tured regions, the matching algorithm will produce a high
percentage of low confidence regions due to constant in-
tensity. To avoid too sparse a depth map, we attempt to
improve estimates in these regions. We propose an adap-
tive matching approach whereby a small block size is used
to match regions near boundaries and a larger block size
is used to match constant intensity regions [5]. This over-
comes the well-known tradeoff between good boundary lo-
calization with a small window and improved matching in
low textured regions with a large window. The final result
consists of fairly dense and reasonably accurate disparities.

2.2. Normalization of Initial Estimates

The depth maps from the previous stage need to be normal-
ized so that they are all related by the same scaling factor.
For this task, we propose to estimate the translation pa-
rameter between maps and scale by the reciprocal. The
relationship between disparities Aunm,; and relative motion
b may be derived [5] to get the linear least squares solution

b ot (Au1)(Aum,i)

b Ef=1(Au1:i)2

where b; is assumed to be one. Then b, is precisely the
scaling factor am by which we need to adjust the m-th
depth map. An iterative process is used to reduce the error
||[Acm — y||2 to some desired amount where outlier points
greater than a given error percentage are disregarded when
computing om. :

(2)

2.3. Combination of Multiple Depth Maps

Once all the depth maps have been normalized to a com-
mon scaling factor, they are combined to form a single depth
map for a particular reference frame. For every point, an
iterative procedure is used to analyze the statistics of the
given data, throw out outliers, and reduce the data set to a
more consistent one. Points outside the range median =+ ko
are discarded. The remaining points are combined in a
weighted average based on confidence levels [5]. Depth in-
formation from matching a vertically-related pair of images
is also included in combination to overcome spurious esti-
mates due to horizontal aperture ambiguity.

2.4. Cubic B-Spline Approximation

The depth map after the combination stage is fairly accu-
rate in many regions. There are however a considerable
number of low confidence regions. To fill in these regions
and to make the map much denser while not sacrificing too
much accuracy, nonuniform cubic B-splines are used. Every
depth point in low confidence regions is interpolated by its
neighboring high confidence depth vertices along the same
row or column, depending on the variance of these vertices.
The depth surface is treated as a tensor product, i.e. the
product of 1-D functions, so the data may be processed
first along one direction and then along the other which
helps to simplify computations.

Once the depth map for each reference frame has un-
dergone spline approximation, we are left with 2%-D sur-
face estimates at different locations around the scene. The
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final step in the representation process is to estimate the
relative camera motion between reference frames using an
approach like [7]. Once the relative motion between all ref-
erence frames is known, a geometric relationship may be
constructed among the different reference frames. This en-
ables us to select the reference frames needed to use in the
reconstruction stage.

In the end, the representation of the object consists of
the intensity-depth pair at each reference location along
with the relative motion among reference frames. Once
these data have been derived, they may be stored in a
database for later reconstruction.

3. RECONSTRUCTION OF VIEWS

Once we have generated the representation for a particular
3-D object, we may choose to reconstruct the view of the
object at some specified viewpoint. Assume that the cen-
ter of one reference frame coincides with the origin of the
coordinate system and that the desired viewpoint is known
with respect to this origin. The reconstruction algorithm
consists of the following: First the appropriate reference
frame(s) are chosen. Then initial estimates of the desired
view are constructed by applying motion parameters to each
reference frame. Finally, the estimates are combined into a
single image, interpolating when necessary.

3.1. Selection of Appropriate Reference Frame(s)

Given the relative position and orientation of the desired
view, it should be a straightforward task to determine which
reference frames to use. One way of deciding is to include
those frames with the smallest motion in norm relative to
the view.

Another consideration is the number of reference frames.
If the specified view is very close to one of the reference
frames, then we may choose to use only that single frame.
However, at least two reference frames are needed to prop-
erly reconstruct the desired view to reduce noise and to
recover occluded regions in the scene.

3.2. Generation of View Estimates

The notion of applying motion parameters to a frame has
been addressed in conventional computer vision literature
[8]. Let (u1,v1) be the projection of a point in the scene onto
the image plane. Suppose the frame of reference undergoes
a rigid transformation (R,T) given by R = [r;;] and T =
(Az, Ay, Az)' where both rotation R and translation T are
in terms of the world coordinates. Then the new image
coordinates are given by

(rigw 4+ ri2v1 +7113)Z + Az
(73,1 w1 + r3,2v1 + 7‘3,3)Z + Az
(rzau1 +r22v1 +123)Z + Ay
(r3aua + 13201 +133)Z + Az

3)
(4)

U2 =

v2

where the focal length f is assumed to be 1.

The points of the reference frame arrays are considered
not as discrete independent points, but rather as vertices
of a deformable wire mesh [5] to overcome possible incon-
sistencies after transformation. Neighboring points in the
reference frame are viewed as connected to one another. A
view estimate is generated by applying equations (3) and
(4) to the collection of points and examining not only the
new coordinates of every point, but also the ordering in the

mesh. In this manner, the ordering of points may be better
preserved and inconsistencies of spurious background points
appearing among foreground points in the transformed data
are not as prevalent. Regions behind moving objects may
become uncovered after view transformation. In this case,
interpolation between consecutive points according to the
mesh may be included.

3.3. Combination of Reconstructed Data

For each point, a small region around the point is consid-
ered. Outliers in the depth domain are thrown out until
the variance in the intensity of the points in the region is
approximately uniform. The motivation is that the points
are expected to possess similar depth and intensity in the
same neighborhood. This step further rules out discrepan-
cies among the data.

During reconstruction, “holes” may be created when no
points fall within a region. This condition arises because of
uncovered regions in the scene, i.e. deoccluded regions, and
because of sparse depth information. Generally, introducing
more reference frames helps to reduce the size of these holes.
For the remaining holes, the region around each point is
grown until a sufficient number of points exists within the
region [5].

4. RESULTS

We shall now examine some results using the techniques
described above. The object of interest is a mug placed
atop a stool. A CCD camcorder is mioved by hand to follow
trajectories at two different elevations to generate an image
sequence for each trajectory, similar to the set up drawn in
Figure 1. Each frame is 640 x 480 pixels large and consists of
intensity only. We attempted to make the motion roughly
translational along the z axis to demonstrate that neither
a calibrated set up mor a track is needed. Moreover, no
special lighting was used to film the scene; specularities of
the stool and the lid of the mug are very apparent in the
images.

Figure 2: Example of reference frame (intensity).

For the first set of results, the desired view is roughly
halfway between two reference frames along the same hor-
izontal trajectory; one reference frame is shown in Figure
2. This desired view is perhaps the one most prone to er-
rors due to the large occluded regions. Note that there is
roughly a maximum of 120 pixel disparity between the two
reference frames.




Figure 3: Example of reference frame (depth) filled in by splines.

Figure 4: Reconstructed view along horizontal trajectory.

Figure 3 shows the corresponding depth map obtained
by using the proposed matching algorithm. The mug and
stool are estimated well and do not contain many spurious
depths. There is a gradual change in depth as expected for
a hallway scene. Artifacts are prevalent in the top left por-
tion of the stool; this is primarily due to the specularities of
the surface. Also, there are problems in recovering the han-
dle of the mug accurately mainly because intensity-based
matching schemes perform poorly for background regions
that can be seen through foreground regions.

The reconstructed view is shown in Figure 4. The image
quality is good for the most part. The horizontal edges,
e.g. top of the door, top of the mug, specularities in front of
the stool, and the drawers, have been reconstructed quite
well. The proposed algorithms take care of problems in
occluded regions: There are only a few errors to the right
of the mug and near the mug handle.

To generate a view not originally scanned by the cam-
corder, two frames from different elevations are chosen as
reference frames. The desired view is roughly the midpoint
on the vertical trajectory relating the two views.

The reconstructed view in Figure 5 is a reasonable es-
timate of the desired view. The most noticeable artifact
occurs around the upper left portion of the stool caused by
specularities that result in spurious depths. This problem
may be overcome by using a larger number of frames to
form the combined depth map; we are currently investigat-
ing this issue.

Figure 5: Reconstructed viéw along \_'ertita.l trajectory.

5. DISCUSSION

We have proposed an approach for representing and recon-
structing stationary 3-D objects. The results in the pre-
vious section seem to indicate that this approach is very
worthwhile. Future work in this area includes consider-
ing more general imaging geometry and examining the op-
timum positions of reference frames required for a given
scene. The area of arbitrary view generation and its appli-
cation to virtual environments seems very fertile and this
research serves as a good starting point.
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