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OVERVIEW 

This report summarizes our study of the interaction of a shock wave with turbulent 

flows for the period 1995-1997. One post-doctoral fellow and one graduate student were 

supported by this program: Dr. Krishnan Mahesh obtained his degree in 1996 (his thesis 

was published as Report TF-69, a copy was sent to Dr. Sakell) and Mr. Albert Honein is 

continuing his doctoral studies in the Department of Mechanical Engineering at Stanford. 

The salient achievements of this program are presented below. Details are provided in the 

attached enclosures of relevant reports. 

A combination of linear analysis and direct simulation was used by Mahesh, Moin 

and Lele*1-3) to study the interaction of turbulent shear flow with a normal shock wave. 

Subsequent to graduation, Dr. Mahesh continued his work as a post-doctoral fellow at the 

Center for Turbulence Research. His principal accomplishments are as follows: 

1. Direct numerical simulation was used to study the interaction of a normal shock 

wave with an isotropic turbulent field of vorticity and entropy fluctuations. The 

upstream correlation between the vorticity and entropy fluctuations was shown to 

strongly influence the evolution of the turbulence across the shock. The validity of 

Morkovin's hypothesis behind a shock was also examined; shock-front oscillations were 

found to invalidate the part of the hypothesis relating urTns and Trms. For further 

details, refer to Part 4 of the report. 

2. A new numerical method providing excellent high wavenumber resolution while reduc- 

ing the computational cost was developed*4*. This method is now being incorporated 

in the shock/boundary layer codes. Refer to Part 3 for details. 

3. The vortex breakdown resulting from the interaction of canard or forbody vortices 

with the shock waves in a supersonic inlet flow was studied. A model with no ad- 

justable constants was developed*5) and very good agreement with both experiment 

and computation was obtained. Refer to part 2 for details. 

The project was extended by Mr. Honein to develop the technology of large-eddy 

simulation (LES) for turbulent flows with shock waves. His principal achievements are 

summarized below: 

1. A numerical method to compute shock/turbulence interaction using LES has been 

developed. The important feature of this method is that the energy equation is written 



in a conservative form, which is essential in computing flows with shock waves. The 

method has been validated by computing spatially decaying compressible turbulence. 

2. The interaction of isotropic turbulence with a normal shock was computed. For low 

values of Re\, comparisons with direct numerical simulation (DNS) results were favor- 

able. The trends found with DNS at low Re\ were also observed with LES at higher 

Rex. 

3. A new code has been developed for the computation of shock/turbulence interaction. 

The code is an improved version of codes used previously in shock/turbulence inter- 

action simulations. It is currently being used to study the interaction of a flat plate 

boundary layer with a normal shock wave. 

This report is organized as follows. The development of LES for shock/turbulence 

interaction is described in Part 1. Part 2 deals with the model used to predict the onset 

of shock-induced vortex-breakdoWn. The new numerical method is described in Part 3. 

Part 4 concludes the report with the influence of entropy fluctuations on the interaction 

of turbulence with shock waves. 

REFERENCES 

1. Mahesh, K., Lee, S., Moin, P. & Lele, S.K. (1995) 'The interaction of an isotropic field 

of acoustic waves with a shock wave', J. Fluid Mech. 300, 383-407. 

2. Mahesh, K., Moin, P. & Lele, S.K. (1996) 'The interaction of a shock wave with a 

turbulent shear flow', Report No. TF-69, Dept. of Mechanical Engineering, Stanford 

University, Stanford, California. 

3. Mahesh, K., Lele, S.K. & Moin, P. (1997) 'The influence of entropy fluctuations on 

the interaction of turbulence with a shock wave', J. Fluid Mech. 334, 353-379. 

4. Mahesh, K. (1996) 'A family of finite difference schemes with good spectral resolution', 

CTR Manuscript 162, submitted to J. Comp. Phys. 

5. Mahesh, K. (1996) 'A model for the onset of breakdown in an axisymmetric compress- 

ible vortex', Phys. Fluids, 8, 3338-3345. 



PART 1 



Large eddy simulation of 
shock turbulence interaction 

1. Motivation and objectives 

The presence of shock waves is an essential characteristic of high speed flows. Under- 

standing the mechanisms of turbulence interacting with a shock wave is of fundamental 

importance in predicting the interaction of turbulent boundary layers with shock waves 

which occur in many engineering applications. The high Reynolds number in practical 

flows makes direct numerical simulation (DNS) unfeasible. Large eddy simulation (LES), 

where the large scales of turbulence are resolved and small scale effects are modeled, is 

thus required for detailed analysis. 
The goal of this work is to study shock/wave boundary layer interactions using LES. 

Toward this goal a simpler problem of the spatial evolution of compressible isotropic tur- 

bulence and its interaction with a shock wave were studied first. The developed numerical 

method for LES was then incorporated in a new code for the simulation of shock/boundary 

layer interaction. The simulations conducted to test and develop the numerical method 

for LES are described below. A description of the new code is also provided. 

2. Accomplishments 

A nonconservative formulation of the energy equation (internal energy) was used to 

perform large eddy simulations of compressible turbulence in Moin et al. (1991). A 

conservative form of the energy equation is highly desirable for computing flows containing 

shocks. A conservative set of equations for LES were derived from the nonconservative 

equations derived by Moin et al. (1991). The validation of the formulation for spatially 

decaying turbulence is described in §2.1. Performance of the formulation was compared 

with a DNS of isotropic turbulence/shock wave interaction, which is reported in §2.2. The 

new code for shock/turbulence interaction is described in §2.3. 

2.1 Spatially evolving compressible turbulence 

A separate temporal simulation is advanced in time until realistic turbulent condi- 

tions are realized. The resulting field is used to generate inflow turbulence for the spatial 

calculation. The simulations are advanced in time until statistical convergence is reached. 



Taylor's hypothesis is then invoked to compare the spatial simulation to the corresponding 

temporal one. Comparisons between the two simulations are shown in Figures 1, 2, and 

3. The computation corresponds to a microscale Reynolds number Re\ = 24.4 and a tur- 

bulent Mach number Mt = 0.39, specified at the inflow of the spatial simulation. A mesh 

with 333 grid points was used. As seen in Figures 1, 2, and 3, good agreement is obtained. 

For higher values of Re\, it was noted that a build-up of aliasing errors and insuf- 

ficient model dissipation prevented the simulations from being advanced for long times. 

Increasing the streamwise number of points, and using the skew symmetric form in dis- 

cretizing the continuity equation helped in stabilizing the simulations. Similar agreement 

with the corresponding temporal simulation was found except for the evolution of the 

density fluctuations. 

2.2 Isotropie turbulence/shock wave interaction 

The LES formulation was next applied to the interaction of isotropic turbulence with 

a shock wave. The parameters used were chosen to reproduce a DNS of isotropic turbu- 

lence/shock wave interaction performed by Mahesh et al. (1997). The mean Mach number 

was 1.29 and the inflow turbulence had a Re\ of 19.1 and a turbulent Mach number Mt 

of 0.14. 

A summary of the numerical method used follows. A uniform mesh is used in the two 

homogeneous directions and a stretched mesh is used in the non-homogeneous direction. 

In computing spatial derivatives, a sixth order essentially non-oscillatory (ENO) shock 

capturing scheme is used for the shock region while a sixth order Pade scheme is used 

outside of this region. A third order Runge-Kutta method is used for time advancement. 

Finally, a sponge layer where the flow is forced towards the laminar solution is used for 

the outflow boundary condition. 

Results shown in Figures 4 and 5 indicate that shock/turbulence interaction at this 

Re\ is well predicted by LES, with moderate savings in computation time and in memory 

usage. Simulations at a higher inflow Re\ of 49, where DNS cannot be used, were also 

performed (Figures 6 and 7). It is observed that the trends found at low Rex are also 

obtained at higher Re\. 

2.3 New code for shock/turbulence interaction 

A spectral, finite-difference hybrid code was developed and is currently being applied 

to the normal shock wave/flate plate boundary layer interaction calculations. The nu- 

merical methodology used in our previous computations of shock/turbulence interaction 

was implemented. In addition, a spectral Fourier collocation scheme was employed in the 



homogeneous spanwise direction. This code is written in Fortran 90 and is an optimized 

version of our previous codes used in the shock/turbulence calculations. It runs four times 

faster and requires only half the memory. Finally, it is highly structured and will be easily 

ported and optimized for use on parallel machines. 
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FIGURE 1.      Comparison of the temporal ( ) and spatial (• ) evolution of 
the turbulent kinetic energy. Conditions at the inflow correspond to Re\=24A and 
Mt=0.39 (rt is the turbulence time scale). 
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FIGURE 2.   Comparison of the temporal ( ) and spatial (• ) evolution of the 
density fluctuations. Conditions at the inflow correspond to Re\=24A and Mt=0.39 
(n is the turbulence time scale). 



a u a, 

0.125 

0.100 ■ 

0.075 

0.050 

t/Tt 

FIGURE 3.      Comparison of the temporal ( ) and spatial (• ) evolution of 
the pressure fluctuations.   Conditions at the inflow correspond to Re\=2AA and 
Mt=0.39 (rt is the turbulence time scale). 
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FIGURE 4.   Streamwise evolution of the turbulent kinetic energy components across 
a Mach 1.29 shock wave with inflow Re\ = 19.1. All the curves are normalized by 
their value immediately upstream of the shock. DNS : • u'2, * v'2\ LES : ••  u12, 
 v'2 = w12. 
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FIGURE 5. Streamwise evolution of vorticity fluctuations across a Mach 1.29 
shock wave with inflow Re\ = 19.1. All the curves are normalized by their value 
immediately upstream of the shock. DNS : • w'2, * w'2
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FIGURE 6. Streamwise evolution of the turbulent kinetic energy components from 
LES of a Mach 1.29 shock wave with inflow Re\ = 49. All the curves are normalized 
by their value immediately upstream of the shock.  w'2, —— v'2 = w'2. 
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A model for the onset of breakdown in an axisymmetric 
compressible vortex 

Krishnan Mahesha) 

Center for Turbulence Research, Stanford University, Stanford, California 94305 

(Received 28 May 1996; accepted 5 September 1996) 

A simple inviscid model to predict the onset of breakdown in an axisymmetric vortex is proposed. 
Three problems are considered: the shock-induced breakdown of a compressible vortex, the 
breakdown of a free compressible vortex, and the breakdown of a free incompressible vortex. The 
same physical reasoning is used in all three problems to predict the onset of breakdown. It is 
hypothesized that breakdown is the result of the competing effects of adverse pressure rise and 
streamwise momentum flux at the vortex centerline. Breakdown is assumed to occur if the pressure 
rise exceeds the axial momentum flux. A formula with no adjustable constants is derived for the 
critical swirl number in all three problems. The dependence of the critical swirl number on 
parameters such as upstream Mach number, excess/deficit in centerline axial velocity, and shock 
oblique angle is explored. The predictions for the onset of shock-induced breakdown and free 
incompressible breakdown are compared to experiment and computation, and good agreement is 
observed. Finally, a new breakdown map is proposed. It is suggested that the adverse pressure rise 
at the vortex axis be plotted against the axial momentum flux to determine the onset of breakdown. 
The proposed map allows the simultaneous comparison of data from flows ranging from 
incompressible breakdown to breakdown induced by a shock wave. © 7996 American Institute of 
Physics. [S1070-6631(96)02112-5] 

!. INTRODUCTION 

A large body of information exists (e.g. see the review 
articles by Hall,1 Leibovich,2 Wedemeyer,3 Escudier,4 

Stuart,s and Delery6) on the breakdown of incompressible 
streamwise vortices. Less is known about vortex breakdown 
at high speeds. An interesting example of supersonic vortex 
breakdown is the breakdown induced by the interaction of 
the vortex with a shock wave. The flow in supersonic engine 
inlets and over high-speed delta wings constitute technologi- 
cally important examples of this phenomenon, which is 
termed "shock-induced vortex breakdown." 

Gustintsev etal? and Zatoloka etal} appear to have 
conducted the earliest investigations into shock-induced vor- 
tex breakdown. The qualitative similarity of the flow to that 
of a separated boundary layer was noted in these experi- 
ments. Subsequently, Horowitz,9 Delery et al.,w Metwally 
etal,11 and Cattafesta and Settles12 have experimentally 
studied vortex breakdown induced by a normal shock. The 
interaction between streamwise vortices and wedge-attached 
oblique shock waves was experimentally investigated by 
Kalkhoran and Sforza.13 

Horowitz9 and Delery et a/.10 were the first to quantita- 
tively characterize the nature of the breakdown. Their experi- 
ments studied normal shocks of strength equal to Mach 1.6, 
1.75,2 and 2.28. At each Mach number, they varied the swirl 
in the incident vortex and identified a critical swirl number 
above which the vortex would break down. The results were 
plotted on a "breakdown map" of swirl number against 
Mach number, where it was observed that the critical swirl 
number decreased as the Mach number of the shock in- 
creased. A companion numerical study using the Euler equa- 

*>Phone:   (415)   723-9599;   Fax: 
krishnan@leland.stanford.edu 

(415)   723-9617;   Electronic   mail: 

tions supported the experimentally observed trends. The ex- 
periments by Metwally etal.11 and Cattafesta and Settles12 

extended the range of available data to Mach 4. Based on 
their visualization of the flow, Metwally et al.n proposed a 
qualitative picture of the flow-field resulting from the break- 
down of the vortex. 

Rizzetta14 obtained numerical solutions to the Reynolds 
averaged Euler and Navier-Stokes equations, with the objec- 
tive of predicting Kalkhoran and Sforza's13 experimental 
measurements of pressure distribution on the wedge. The 
swirling supersonic flow in a circular duct was computed by 
Kandil etal.15,16 who provided qualitative flow-field infor- 
mation on the breakdown. The most extensive computations 
of shock-induced vortex breakdown are the recent calcula- 
tions by Erlebacher et alP. These workers studied the inter- 
action between a streamwise vortex and a normal shock 
wave using the unsteady, axisymmetric, compressible 
Navier-Stokes equations. Mach numbers from 1.3 to 10 
were computed. In the same spirit as Delery et al.,l° a critical 
swirl number was numerically identified at each Mach num- 
ber, and a breakdown map of swirl number against Mach 
number made. The trend observed by Delery etal.10 was 
seen to extend to Mach 10; i.e., the critical swirl number 
decreased with increasing Mach number. Some interesting 
features of the flow field were also highlighted. 

The only attempt to quantitatively predict some aspect of 
shock-induced breakdown appears to have been made by 
Cattafesta18 who equated the ratio of swirl number (down- 
stream to upstream) across the shock wave to the velocity 
ratio (upstream to downstream) across the shock. By com- 
paring to experimental data, he obtained a value of 0.6 for 
the swirl number behind the shock wave. More recently, Er- 
lebacher et a/.17 have proposed an empirical correlation be- 
tween the critical swirl number and the Mach number of the 
shock wave, based on a curve fit to their data. 

3338       Phys. Fluids 8 (12), December 1996 1070-6631/96/8(12)/3338/8/$10.00 © 1996 American Institute of Physics 
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FIG. I. Schematic of the interaction between a streamwise vortex and a 
normal shock wave. 

In this paper, we propose a model to predict the onset of 
shock-induced vortex breakdown. The proposed model has 
no adjustable constants, and is compared to both experiment 
and computation. Also, the dependence of the critical swirl 
number on parameters such as the upstream Mach number, 
excess/deficit in centerline axial velocity, and shock oblique 
angle is explored. Two other problems are then considered: 
the breakdown of a free compressible vortex, and free in- 
compressible vortex breakdown. The same breakdown crite- 
rion is used in all three problems to predict the onset of 
breakdown. Finally, a new breakdown map is proposed, that 
allows the simultaneous comparison of data from flows rang- 
ing from incompressible breakdown to breakdown induced 
by a shock wave. 

This paper is organized as follows. A description of the 
upstream vortex is first provided in Section II A. This is 
followed in Section IIB by a description of the proposed 
breakdown criterion and expressions for the critical swirl 
number. Section III compares the model predictions to com- 
putation and experiment. The influence of centerline excess/ 
deficit in axial velocity, and obliquity of the shock wave is 
also discussed. The onset of breakdown in a free compress- 
ible vortex is discussed in Section IV. Incompressible vortex 
breakdown is briefly considered in Section V. A new break- 
down map is then proposed in Section VI. The paper is con- 
cluded with a brief summary in Section VII. 

II. STATEMENT OF PROBLEM 

Figure 1 shows a schematic of the interaction between a 
streamwise vortex and a normal shock wave. The axial flow 
is from left to right. The variables x and r are used to denote 
the axial and radial coordinate respectively. The axial and 
swirl components of velocity are denoted by U and v e re- 
spectively, and p, p and T represent the pressure, density and 
temperature. The subscripts "<»" and "c" correspond to 
values in the free-stream and the centerline of the vortex, and 
the states upstream and downstream of the shock wave are 
respectively denoted by the subscripts "1" and "2" (e.g., 
Pa-2 denotes the free-stream pressure downstream of the 
shock wave). 

A description of the incident vortex is first provided in 
Section II A. This is followed in Section IIB by an outline of 
the model. 

A. The upstream vortex 

Studies of incompressible vortex breakdown (e.g. 
Darmofal19) suggest that the onset of breakdown is generally 
independent of viscosity for vortex Reynolds number (based 
on free-stream axial velocity and core radius) greater than 
about 300. As a result, viscosity is neglected in this paper. 
The upstream vortex is therefore governed by the axisym- 
metric, compressible Euler equations. It is readily seen that 
the profiles, 

ve=ve(r),    U=U(r),    p=p(r),    p=p(r) (1) 

trivially satisfy the continuity, axial momentum and energy 
equations. The radial momentum equation, 

dp    pve 

dr~   r (2) 

remains to be satisfied. Experiments10,12 show that the swirl 
profile of the Burgers vortex is a good fit to experimental 
data. However, the Burgers profile makes analytical solution 
difficult. As a result, this paper uses the Rankine vortex as an 
approximation for the upstream vortex. Non- 
dimensionalizing the radial coordinate by the core radius (lo- 
cation where v e is maximum) and velocity by nie peak value 
of the swirl velocity (denoted by u^,), the swirl velocity 
profile of the upstream vortex is given by, 

ve=r. 

1 
'r   r =i, (3) 

where the tilde is used to denote non-dimensional variables. 
The density varies with radius for a compressible vortex. 

This paper considers two different idealizations of the ther- 
modynamic field in the upstream vortex: spatially uniform 
stagnation temperature and spatially uniform entropy. The 
assumption of uniform stagnation temperature is prompted 
by experimental data. Delery et a/.10 note that the total tem- 
perature in the upstream vortex in their experiments is ap- 
proximately uniform. Measurements in a Mach 3 vortex by 
Metwally et al.n and Cattafesta and Settles12 seem to sup- 
port this approximation. Cattafesta and Settles' data (Fig. 7 
of their paper) show a deficit of about 4% of free-stream in 
total temperature at the centerline. The idealization of uni- 
form entropy is prompted by past theoretical and computa- 
tional studies on compressible vortices (e.g. Colonius 
etal.™). 

Expressions for the centerline pressure and density for 
the uniform stagnation temperature vortex and uniform en- 
tropy vortex are obtained below. Defining the non- 
dimensional variables, 

_   P       -    P 
p = —,    p= 

_    T 
T= — 

Too Poo P<x 

the radial momentum equation becomes, 

dp nJFß2 

(4) 

(5) 
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The variable y denotes the ratio of specific heats and is taken 
as 1.4 in this paper. T is the swirl number of the vortex, and 
is defined s&T=v6mIUx. Mx is the free-stream Mach num- 
ber, defined as Mx= Ux/cx. TMX will be recognized as the 
swirl Mach number, uSm/cx. 

Uniform entropy vortex: If the entropy is spatially uni- 

form, 

p=p> (6) 

Expressing the density in terms of the pressure in the radial 
momentum equation and integrating yields the following ex- 
pressions for the centerline pressure and density: 

pc=[i-(7-i)T2Mly'^y 

£-[i-<r-i)r2*iJ,Ar-|). 
Uniform stagnation temperature vortex: The spatial uni- 

formity of stegnation temperature requires that 

U2+vl 
T+- 2C„ ■=r„+ 2C„ 

(8) 

Delery etaL's experiments show that the axial velocity in 
the upstream vortex was nearly uniform; i.e., U=UX. Cat- 
tafesta and Settles12 on the other hand, observe a wake-like 
profile. This paper assumes uniform axial velocity for the 
uniform stagnation temperature vortex. This yields the fol- 
lowing expression for the non-dimensional temperature in 
the vortex: 

f=l-l^-(rM„)2ve
2. (9) 

The equation of state implies that p~=pT. Substituting for 

p and T in the radial momentum equation and integrating 
yields the following expressions for the density and pressure 
at the centerline of the uniform stagnation temperature vor- 
tex: 

Pc= 1 ■£±W 
27/(7-1) 

Tf=l,      Pc=Pc- 

B. A criterion for shock-induced breakdown 

(10) 

A simple criterion for breakdown of the upstream vortex 
is first proposed. The properties of the upstream vortex (Sec- 
tion II A) are then used to obtain an expression for the criti- 
cal swirl number above which the vortex would break down. 
The breakdown criterion is based upon an approximation to 
the axial momentum equation at the centerline of the vortex. 
Note that as a result of axisymmetry, the radial velocity at 
the centerline would be zero. When combined with the swirl 
velocity being zero at the centerline, this suggests that the 
flow near the vortex centerline would largely be in the 
streamwise direction. The one-dimensional momentum equa- 
tions may therefore be used to model the flow around the 
vortex centerline. p + pU2 would therefore be constant 
across a region of rapid streamwise variation. 

Consider the vortex impinging upon the shock wave. On 
account of the rotation, the pressure at the center of the vor- 

tex is less than the free-stream value; i.e., pcl <p«i • Pressure 
rises across a shock wave; i.e., Pmi>p*>\. The vortex there- 
fore experiences an adverse streamwise pressure rise, which 
may be quantified by the pressure difference, Pwt~pc\- The 
fluid in the vortex has a certain inertia in the streamwise 
direction, which may be quantified by the streamwise mo- 
mentum flux, PciE/fi- Breakdown is assumed to occur if the 
axial pressure rise exceeds the upstream streamwise momen- 
tum flux, thereby stagnating the flow; i.e., if 

At/ 
P«i-Pci*Pc\V'ei*Pc\Utx\ 1 + 7T- U »i 

(11) 

where At/ denotes the upstream excess in axial velocity at 
the centerline. If the axial velocity is uniform, then 
Al/=0. The threshold for breakdown is therefore given by 
the relation, 

P<»2-Pcl=PclU°ol\ 1 + 
At/ 

«l 
(12) 

The axial velocity is assumed to be uniform through most of 
this paper. The effect of non-uniform axial velocity is sepa- 
rately discussed in Section HI B. Equation (12) may be re- 
written in non-dimensional form for uniform axial velocity 
as, 

Po,2~Pcl = 7PclMml. (13) 

We have already obtained expressions for pcl and pcl in 
terms of T and MmX. The Rankine-Hugoniot equations for a 
normal shock express pmi in terms of the upstream Mach 
number, Mxl. Substituting for pcX, pc\ and p~„2 into the 
above breakdown criterion will therefore yield an expression 
for the critical swirl number r^t in terms of Mach number of 
the shock wave for a vortex with uniform axial velocity. This 
expression is derived below. 

Uniform stagnation temperature vortex: For a uniform 
stagnation temperature vortex, we have pc\~Pc\- Substitu- 
tion into the criterion for breakdown [Eq. (13)] yields, 

Pci=: 
P=°2 

(14) 
l + yUTi' 

where px2 is given by the Rankine-Hugoniot equations as, 

^2=1 + ^7(^,-1). (15) 

Substituting for/?cl from Eq. (10) andp"„2 from Eq. (15) into 
Eq. (14), we get, 

1- 
7— 1   2     2 

1 + yMii 

2y/(y-i) 

2r ,.,2 
1 + 7M(Mi«_1) (16) 

which upon rearrangement yields the following expression 
for the critical swirl number as a function of the Mach num- 
ber of the shock: 
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^f„i V y-1 i + y^iil     r+i 
i + 

2r     ■> 
(17) 

Uniform entropy vortex: Expressions for the centerline 
density and temperature for a uniform entropy vortex are 
given by Eq. (7). Substitution into Eq. (13) yields the follow- 
ing implicit equation for the critical swirl number as a func- 
tion of the Mach number: 

(18) 

i + ^n-«-D-[i-(r-i)r^X,]r/(r-1) 

The Newton-Raphson method was used to solve the above 
equation for T^, as a function of the Mach number of the 
shock wave. 

III. RESULTS: SHOCK-INDUCED VORTEX 
BREAKDOWN 

A. Uniform axial velocity 

Results for the critical swirl number are presented for the 
case where the axial velocity is uniform. Figure 2 shows the 
predicted values of the critical swirl number as a function of 
the Mach number of the shock. The predicted values are 
compared to the experimental values reported by Delery 
et al.10 (the data were obtained from Fig. 35 of their paper) 
for Mach numbers of 1.75, 2 and 2.28. Also shown are re- 
sults from the computations by Erlebacher etal.17 (the data 
were obtained from Table 3 of their report). Note that the 
computational data at Mach 1.7 were very close to the ex- 
perimental value at Mach 1.75 (0.331 as compared to 0.33). 
This made the experimental data hard to discern when both 
experimental and computational results were plotted. As a 

result, the computational value at Mach 1.7 is not plotted in 
Fig. 2. 

The predicted values are seen to be in good agreement 
with both experiment and computation. The critical swirl 
number is predicted to decrease with increasing Mach num- 
ber as observed. According to the proposed criterion [Eqs. 
(7), (10) and (13)], this decrease in T^, is due to a combi- 
nation of two factors: increase in the adverse pressure rise 
(due to pm2 increasing while pcl decreases) and decrease in 
streamwise momentum flux (due to pc, decreasing) with in- 
creasing Mach number. 

The ability of the model to predict the onset of shock- 
induced breakdown is further evaluated in Fig. 3, where data 
from Metwally etal" are plotted (obtained from Fig. 6 of 
their paper). The "strong interactions" observed experimen- 
tally are seen to lie in the region where the model predicts 
breakdown, while the "weak interaction" regions lie in the 
predicted region of non-breakdown. Note that the curve of 
Ten, in Fig. 3 assumes uniform axial velocity. Metwally 
et al.n point out that the Mach 3 and Mach 3.5 vortices had 
noticeable deficit in centerline velocity for the breakdown 
cases. As will be seen in Section ÜIB, the critical swirl 
number is predicted to decrease as the centerline velocity 
decreases; i.e., the filled symbols for the Mach 3 and Mach 
3.5 cases would move further into the breakdown region if 
the deficit in centerline velocity were accounted for in Fig. 3. 

B. Non-uniform axial velocity 

The influence of an excess/deficit in the centerline axial 
velocity on the critical swirl number is next considered. For 

1.0 | I I I I | I  I I   I  | I  I I  I |  I   I  I  I | |  |  |  | |  |   |  |  |  |  |  |   |  |  | |  ,  |   |  |  ,   |  | 
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0.4 

No breakdown 
1 ■ ■ I ■ ' ' ' I ■ ■ ' ' I ■ ■ ■ ■ I ■ ■ ■ ■ ' mnrr, 
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0.4 • - 

0.2 o~—-^_ • - 
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FIG. 2. Comparison of predicted critical swirl number to experiment and FIG. 3. Evaluation of model in predicting the onset of shock-induced vortex 
computation of shock-induced vortex breakdown. - (Prediction: uniform breakdown. - (Predicted T^ [Eq. (17)]: uniform stagnation temperature) 
stagnation    temperature),    —     (prediction:    uniform    entropy),    •        "' - -  - 
(computation—Ref. 17), X (experiment—Ref. 10). 

• (experiment—Ref. 11: breakdown), O (experiment—Ref. 11: no break- 
down). 
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FIG. 4. Influence of axial velocity on the onset of vortex breakdown in- 
duced by a shock. — (A£//l/„, = -0.5), — (AtWtf„,= -0.25), — 
(A£//(/„,=0), — (A£//£/«,,=0.5), - (Al//l/„ = l). 

convenience, results are shown only for the uniform entropy 
vortex. The breakdown criterion [Eq. (12)] may be divided 
through by pxl to yield the following non-dimensional cri- 
terion: 

AC/ 

Substituting for pcl and pcI from Eqs. 7, we get the 
following equation for r^t as a function of Mmi and 
AUfUxl: 

p-2-[i-<y-i)0'£ir'(r~I) 

=yM2
1(i+^)\i-(y-i)r2^j''<*-1\   (20) 

The Newton-Raphson method was used to solve the 
above equation for 1^,, after expressing plo2 in terms of 
Afoo,. Figure 4 shows the variation of the critical swirl num- 
ber with Mach number for different values of A Ul Ua t. Note 
that AC/>0 corresponds to a jet-like axial velocity profile of 
the upstream vortex while AC/<0 corresponds to a wake- 
like profile. The predicted results show a strong sensitivity to 
the excess/deficit in centerline axial velocity. Jet-like profiles 
of the axial velocity are observed to delay breakdown, while 
a wake-like profile makes the vortex more susceptible to 
breakdown. The same trend is known to apply in the break- 
down of an incompressible vortex, where axial blowing is 
often used to alleviate the breakdown.6 

Figure 4 shows that for vortices with a wake-like axial 
velocity, the critical swirl number becomes zero at a finite 
Mach number; i.e., breakdown is predicted at and beyond 
this cut-off Mach number, even in the absence of swirl. This 
result may be explained as follows. In the absence of swirl, 
the "vortex" reduces to an axisymmetric wake (or jet). This 
wake (or jet) can undergo reverse flow accompanied by ra- 
dial outflow upon experiencing a strong enough adverse 
pressure gradient. We have assumed that breakdown occurs 
when the adverse pressure rise at the vortex centerline ex- 

ceeds the centerline axial momentum flux. We noted that on 
account of its rotation, the centerline pressure rise, 
P<»2—Pc\ is greater than the free-stream rise, p<x>2—p<c\- 
Also, rotation results in the centerline density (pcl) being 
lower than the free-stream density. As a result, the centerline 
momentum flux, pciUcl is less than its value computed us- 
ing the free-stream density. Thus, swirl "amplifies" (in the 
terminology of Hall1) the adverse pressure rise experienced 
by the vortex while suppressing the axial momentum flux. 
Both factors make the vortex more susceptible to breakdown. 
This implies that if the free-stream pressure rise exceeds the 
axial momentum flux computed using the free-stream den- 
sity, then the presence of swirl is not needed for "break- 
down." The flow at and above the cut-off Mach number 
corresponds to this scenario. The cut-off Mach number (de- 
noted by Afcut) can therefore be predicted by the following 
criterion: 

p«,2~P°°\-P*\Uc\ 

which yields, 

(21) 

,/      AC/\2 

/>x2-i = yMcut|1 +—I . (22) 

Substituting for pa2 from Eq. (15), we get the following 
equation for the cut-off Mach number in terms of the veloc- 
ity excess/deficit: 

-(M2
ut-l)=yM2

ut 1 + 
At/1 

(23) 

which may be rearranged to obtain the following expression 
for the cut-off Mach number: 

Mc 
[W 

*     Vy+1 
2y        /       At/ 

(24) 

C. Breakdown induced by an oblique shock wave 

If the shock wave were oblique, the onset of breakdown 
would be expected to depend on the oblique angle. Although 
the interaction of an oblique shock with an axisymmetric 
vortex is not axisymmetric, it is envisioned that the onset of 
breakdown can be predicted by extending the arguments of 
the previous section. Reiterating the criterion for breakdown 
for uniform axial velocity, we require that 
Poo2~Pc\ —yp~c\M\,i- The influence of shock obliquity is 
modeled as follows. The properties of the upstream vortex 
(pci,Pci) depend solely upon the free-stream Mach number 
and swirl number. However the pressure behind the shock 
(p~°°2) is determined by the normal Mach number, M^sina 
(a denotes the angle the shock makes with the streamwise 
direction). Replacing M-x) in Eq. (15) by MX|Sma to obtain 
px2 and substituting as before for pcl and p~f, yields the 
following expressions for the critical swirl number. 

3342       Phys. Fluids, Vol. 8, No. 12, December 1996 Krishnan Mahesh 



Uniform Stagnation temperature vortex: 

7TjOy 

Uniform entropy vortex: 

1 + ^([w==isin«]2-i)-[i-(r-or^tM2i]r/(y-.)=yM2i[1_(y_1)r2.tM21] 2   Tl/(y-l) 

(25) 

(26) 

It is readily seen that for the same upstream Mach num- 
ber, Ten, is predicted to increase as the shock becomes in- 
creasingly oblique. This prediction may be explained by not- 
ing that the pressure rise across an oblique shock is lower 
than that for a normal shock at the same Mach number. As a 
result, the adverse pressure rise that the vortex experiences is 
smaller, thereby delaying the onset of breakdown. 

IV. SHOCK-FREE BREAKDOWN OF A 
COMPRESSIBLE VORTEX 

Section in discussed vortex breakdown induced by a 
shock wave. The breakdown of a free axisymmetric vortex, 
i.e. breakdown in the absence of an externally imposed pres- 
sure gradient, is considered in this section. Incompressible 
streamwise vortices at sufficiently high swirl number are 
known to break down, even in the absence of an externally 
applied adverse pressure gradient. It is to be expected that 
their high-speed counterparts would exhibit similar behavior. 
The critical swirl number in high-speed flow would be a 
function of the Mach number. This section derives an ex- 
pression for the critical swirl number in terms of the free- 
stream Mach number; i.e., we consider the influence of com- 
pressibility on the breakdown of a free vortex. The 
arguments used are identical to those in breakdown induced 
by a shock. The only difference is that while the adverse 
pressure rise was set equal to p^—pc\ for shock-induced 
breakdown, it is set equal to Pm\—pc\ for die shock-free 
breakdown. The rationale for this assumption is that in the 
absence of the shock, the vortex discharges into the atmo- 
sphere. As a result, the vortex sees a pressure equal to pxi 

ahead of it, as well as in the free-stream. The difference 
between atmospheric pressure (/?ocj), and the pressure at the 
vortex centerline (pci) provides the adverse pressure rise 
that causes breakdown. Breakdown of the vortex is therefore 
assumed to occur when 

P*i-Pci^PdU2
cl. (27) 

The criterion for shock-free breakdown is therefore given by, 

l-Pci = rPci^, (28) 

which is identical to the expression obtained when px2 is set 
to 1 in Eq. (13). The corresponding expressions for the criti- 
cal swirl number are given below. 

Uniform stagnation temperature vortex: 

r, l- 
l 

1 + yM »l 

(r-i)/2r 
(29) 

Uniform entropy vortex: 

i-[i-(r-i)rL^.]y/(r_,) 

= yM2
1[l-(y-l)r2

ritM
2
1]

1'<''-,>. (30) 

Figure 5 shows the predicted values of the critical swirl 
number as a function of the free-stream Mach number. Also 
shown (for supersonic flow) are the values obtained for 
breakdown induced by a shock wave at the same Mach num- 
ber. Compressibility is seen to make the vortex more suscep- 
tible to breakdown. A similar trend was noted by Keller.21 

This trend may be explained by noting [Eqs. (7) and (10)] 
that increase in the free-stream Mach number decreases the 
centerline pressure and density, thereby increasing the ad- 
verse pressure rise while decreasing the axial momentum 
flux. The predicted values of r^ in the absence of the shock 
are seen to be greater than those predicted for shock-induced 
breakdown. This trend can be explained by noting that the 
pressure rise across the shock wave produces a larger ad- 
verse pressure rise for the same upstream momentum flux. 
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FIG. 5. Predicted critical swirl number for shock-free vortex breakdown 
compared to the prediction for shock-induced breakdown. — (Shock-free: 
uniform stagnation temperature), — (shock-free: uniform entropy), "*> 
(shock-induced: uniform stagnation temperature), — - (shock-induced: uni- 
form entropy). 
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TABLE L. Prediction of critical swirl number for incompressible vortex 
breakdown compared to other approaches. All data other than the present 
reproduced from review article by Delery (Ref. 6). 

1.0 r—i—i—i—i—|—I—I—i—i—|—■—i—i—i—|—i—'—i—■"-]—i—i—i—r; 

Quasi-cylindrical 
Axisymmetric N-S 

Squire 
Benjamin 
Num. simulation 
Spall et al. 
Present 

1.41 
1.35 
1.12 
1.4 
1.4 
1.28 
1.37 
1.4 

V. INCOMPRESSIBLE VORTEX BREAKDOWN 

Figure 5 shows that as MMl tends towards 0, r^, tends 
towards 1. An incompressible vortex in the absence of exter- 
nally imposed adverse pressure gradients, is therefore pre- 
dicted to undergo breakdown at a critical swirl number of 
one. The same result can of course be derived, by setting 
p=Poo in the radial momentum equation and integrating to 
obtain the centerline pressure (pci

=P^i~ P^v2^), which is 
then substituted into the breakdown criterion [Eq. (27)]. In a 
recent review article, Delery6 documents (Section 3.4.5 of 
bis paper) critical swirl numbers for incompressible vortex 
breakdown as predicted by different theories. He considers a 
Burgers vortex, and defines a swirl parameter S as 

S= rcU* 
(31) 

where the variables C and rc denote the circulation and core 
radius respectively. For a Burgers vortex, the swirl velocity 
is given by (Eq. 1 in Delery's6 paper) 

vt-jll-e-i*«'*'n- (32) 

This implies that the swirl parameter S is related to the swirl 
number T by, 

S-t_e-LM»-l-398r. (33) 

Thus Tci^l corresponds to 5^= 1.398« 1.4. We repro- 
duce in Table I, from Delery's6 paper, the critical swirl num- 
bers predicted by different approaches. Most approaches are 
seen to predict values very close to that predicted by our 
simple criterion. 

VI. A "UNIVERSAL" BREAKDOWN MAP 

The preceding sections presented results for the onset of 
vortex breakdown by plotting the critical swirl number as a 
function of Mach number. The curve Tait—T'cnJLM0!,i) de- 
fined the boundary between the regimes of breakdown and 
non-breakdown. However, it is clear that the critical swirl 
number is not universal (as also observed by Delery6). For 
example, Section m B (Fig. 4) showed that r^t depended on 
the velocity excess/deficit at the centerline. If the breakdown 
were precipitated by an oblique shock wave as opposed to a 
normal shock, then f^, was noted to depend on the inclina- 

0 0.2 0.4 0.6 

{Pcl/PoolWcl/Ucol? 

HG. 6. Evaluation of the proposed breakdown map in predicting me onset 
of vortex breakdown. • (Experiment: breakdown), O (experiment: no 
breakdown). 

tion angle of the shock. Similarly, if the breakdown were that 
of a free vortex instead of being shock induced, yet another 
curve for the critical swirl number was obtained. 

In this section, we propose a breakdown map that allows 
a common breakdown boundary to be defined for all of the 
above mentioned problems. The proposed map is based on 
the breakdown criterion that was proposed in Section IIB; 
i.e., 

P<*l~PcY 'PciU2
cV (34) 

Recall that the same criterion with pm-i appropriately defined, 
was applied to all the breakdown problems discussed in this 
paper. This suggests that a plot ofpm2~Pci against pc\U

2
x 

could be used to map the onset of vortex breakdown. The 
proposed map could even be used for incompressible vortex 
breakdown, and would be expected to adequately represent 
the onset of breakdown induced by pressure gradients acting 
over distances that are small as compared to a characteristic 
length scale of the vortex. The curve p*>2~Pci~PciV2-\ (die 
45° line) would act as the boundary between the breakdown 
and non-breakdown regimes. Note that the proposed map 
does not require any additional data to be measured. Experi- 
mental information on parameters such as T.HJIU^yM^ 
and shock angle could be used to obtain both the pressure 
rise and the axial momentum flux using the equations in 
Section H A. The proposed map is illustrated in Fig. 6. Note 
that the pressure rise and momentum flux are non- 
dimensionalized by p«,i£/£, to allow incompressible data to 
be plotted. Data from Metwally n (the same data shown in 
Fig. 3) are also shown. The data from Fig. 3 are combined 
with Eq. 10 to determine the pressure rise and axial momen- 
tum flux. The breakdown and non-breakdown cases are seen 
to be appropriately delineated. 

VII. SUMMARY 

A simple inviscid model was proposed to predict the 
onset of breakdown in an axisymmetric vortex. Three prob- 
lems were considered: the shock-induced breakdown of a 
compressible vortex, the breakdown of a free compressible 
vortex, and the breakdown of a free incompressible vortex. 
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The same physical reasoning was used to predict the onset of 
breakdown in all three problems. It was hypothesized that 
breakdown is the result of the competing effects of adverse 
pressure rise and streamwise momentum flux at the vortex 
centerline. Breakdown was assumed to occur if the pressure 
rise exceeded the axial momentum flux. A formula with no 
adjustable constants was derived for the critical swirl number 
in all three problems. The dependence of the critical swirl 
number on parameters such as upstream Mach number, 
excess/deficit in centerline axial velocity, and shock oblique 
angle was explored. The predictions for the onset of shock- 
induced breakdown and free incompressible breakdown were 
compared to experiment and computation, and good agree- 
ment was observed. Finally, a new breakdown map was pro- 
posed as an alternative to the map of critical swirl number 
against free-stream Mach number. The new map was based 
on the observation that the same breakdown criterion was 
used in all the problems considered in this paper. To deter- 
mine the onset of breakdown, it was suggested that the ad- 
verse pressure rise at the vortex centerline, be plotted against 
the axial momentum flux. The proposed map allows the si- 
multaneous comparison of data from flows ranging from in- 
compressible breakdown to breakdown induced by a shock 
wave. 
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ABSTRACT 

This paper presents a family of finite difference schemes for the first and second 
derivatives of smooth functions. The schemes are Hermitian and symmetric, and may be 
considered a more general version of the standard compact (Pade) schemes discussed by 
Lele [1]. They are different from the standard Pade schemes, in that the first and sec- 
ond derivatives are evaluated simultaneously. For the same stencil width, the proposed 
schemes are two orders higher in accuracy, and have significantly better spectral represen- 
tation. Eigenvalue analysis, and numerical solutions of the one-dimensional wave equation 
are used to demonstrate the numerical stability of the schemes. The computational cost 
of computing both derivatives is assessed, and shown to be essentially the same as the 
standard Pade schemes. The proposed schemes appear to be attractive alternatives to the 
standard Pade schemes for computations of the Navier Stokes equations. 

1. INTRODUCTION 

Fluid flows in the transitional and turbulent regimes possess a wide range of length 
and time scales. The numerical computation of these flows therefore requires numerical 
methods that can accurately represent the entire, or at least a significant portion, of this 
range of scales. The length scales that are resolved by a computation are determined by the 
resolution; the accuracy with which these scales are represented depends upon the numer- 
ical scheme. Fourier analysis (see e.g. [2]) describes both, the range of scales present, and 
the accuracy with which they are computed (exactly for problems with periodic boundary 
conditions, and in a WKB sense for more general problems). Such analysis of finite differ- 
ence schemes (see e.g. Fig. 1 in [1]) shows that the error in computing the first and second 
derivatives can be quite large for the smaller scales. This small scale inaccuracy becomes 
increasingly important as the energy in the small scales becomes increasingly comparable 
to that of the large scales; i.e., as the spectrum becomes increasingly 'flat'. This situ- 
ation is commonly encountered in computations, particularly large-eddy simulations, of 
high Reynolds number turbulence. As shown by Kravchenko and Moin [3] the inaccurate 
numerical representation of the small scales in these large-eddy simulations can result in 
the numerical error overwhelming the contribution of the subgrid-scale model. 

Finite difference schemes may be classified as 'explicit' or 'implicit'. Explicit schemes 
express the nodal derivatives as an explicit weighted sum of the nodal values of the function, 
e-9-, f'i = (fi+i ~ /i-i)/2J>, and ft' = (fi+1 - 2/,-' + fi-i)/h2. Throughout this paper, fr 
and /* denote the values of the function and its kth derivative respectively, at the node 
x = Xi, and h denotes the uniform mesh spacing.   By comparison, implicit (compact) 
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equate a weighted sum of the nodal derivatives to a weighted sum of the function e g 
fl-i +4fi+f'i+i = 3(fi+i-fi-x)/h, and f'U +10/? + /^ = 12(/i+1 -2/,- + fi-1)/h*. It 
is well known [1,4,5] that implicit schemes have better small scale accuracy, than explicit 
schemes with the same stencil width. This increase in accuracy is achieved at the cost 
of inverting a banded (usually tridiagonal) matrix to obtain the nodal derivatives. Since 
tridiagonal matrices can be inverted quite efficiently [6], the implicit schemes are extremely 
attractive when explicit time advancement schemes are used. The most popular of the 
implicit schemes (also called Pade schemes due to their derivation from Pade approximants) 
appear to be the symmetric fourth and sixth order versions (see e.g. [1]). There have been 
several recent computations of transitional boundary layers [7-10], turbulent flows [11-13] 
and flow-generated noise [14-15] that have used the Pade schemes to evaluate the spatial 
derivatives. The standard Pade schemes are symmetric and therefore non-dissipative; a 
non-symmetric compact scheme was recently developed by Adams and Shariff [16]. 

This paper presents a related family of finite difference schemes for the spatial deriva- 
tives in the Navier Stokes equations. The proposed schemes are more accurate than the 
standard Pade schemes, while incurring essentially the same computational cost. They are 
based on Hermite interpolation, and may be considered a more general version of the stan- 
dard Pade schemes described in [1]. For the same stencil width as the Pade schemes, the 
proposed schemes have higher order of accuracy and better spectral representation. This 
is achieved by simultaneously solving for the first and second derivatives. When defined 
on a uniform mesh' , the schemes are of the form, 

aifl-i+aofi+^f'i^+Hh fi-1+bofi,+b2fi+1) = ^(ci/,-2+C2/i-i+co/i+c3/,+1+c4/J+2) 

(1) 
Note that the above expression differs from the standard Pade schemes, in that the 

left-hand side contains a linear combination of the first and second derivatives. The stencil 
and the coefficients are restricted to be symmetric in this paper. The resulting schemes 
are therefore non-dissipative. The width of the stencil is taken to be three on the left-hand 
side and five on the right. This corresponds to the stencil width of the popular sixth-order 
Pade scheme. 

The motivation to formulate schemes that simultaneously evaluate both derivatives is 
provided by the Navier Stokes equations requiring both derivatives of most variables. Con- 
sider for example the one-dimensional compressible equations in primitive form (extension 
to multiple dimensions is straightforward). We have: 

dp       dp du 

t This paper develops the schemes on uniform meshes. It is assumed that computations with 
non-uniform grids can define analytical mappings between the non-uniform grid and a corresponding 
uniform grid. The metrics of the mapping may then be used to relate the derivatives on the uniform 
grid to those on the non-uniform grid. 
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du       du\        nrndp     n dT     4   d2u     AdudfidT . 

\dt       dx) dx dx     3   dx2     SdxdTdx^ 

3  (* .. a» "\ 

/ar    dry      nrndu   4 /a«V , ,a2r'   dk (öTV 
^{m+u^) = -pRTd-x + r[d-x) +fcä^ + ärUj •      (2c) 

a* V* 8* ./ 

The variables p, w and T denote the density, velocity and temperature respectively, while 
R,H,k and Cv denote the specific gas constant, dynamic viscosity, thermal conductivity 
and specific heat at constant volume. Note that the viscous terms are expanded prior to 
their evaluation. This is because direct evaluation of the second derivatives is significantly 
more accurate than two applications of a first derivative operator. Equation 2 shows that 
the following spatial derivatives need to be evaluated: 

8u     &u     dT     &T_ dp_ 
dx     dx2' .dx1    ox2'   ^     dx' 

Thus, a scheme that simultaneously evaluates both derivatives would only be performing 
one unnecessary evaluation (d2p/dx2). 

Next, consider the conservative form of the equations.   The viscous terms are still 
evaluated in their non-conservative form, for the reasons given above. We have: 

| + J^(P«) = 0. (3«) 

9,    ,,   3,    2,,3p      4   d2u     AdudndT 

dEt      d_ 
dt      dx 

d /' /4   d2u     4dudfjidT\     4   (du\' 
(Etu) + Yx (pu) =u {-^ + 3^-[r^J + ^ [^) 

a2T    dk (dry ,., 
+ kdx? + dT{dx) ■ (3c) 

Equation 3 requires the following spatial derivatives to be obtained: 

d ,\    ' d t  -2\     dP     du     d*u     dT    d2T     d ,        d ' ■ 
fc<"0. ä*"^)' &• > w> ■%>  w> &(*">» and &W\ 

As one might expect, the conservative formulation requires fewer simultaneous derivative 
evaluations. However, if the chain rule is invoked as follows, then a formulation that 
evaluates both derivatives is still attractive. First evaluate (simultaneously) 

d-,   \      d2 ,    N     d ,    2N      d2  ,    2,     dp     d2p     d ' & 

d~x{pu)l ^W' &<?>' ä^(/,u)' &• d*> d~x{E^ a*}**}' 
^(pu),   and  A_(pu). 
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The chain rule may then be used to obtain du/dx, d2u/dx2, dp/dx and d2p/dx2. The 
equation of state and the chain rule then yield dT/dx and d2T/dx2. In this manner, a total 
of only ten derivative evaluations are performed for the nine derivatives that are needed. 
The increase in accuracy that is obtained by the simultaneous evaluation of derivatives 
will be seen to make this additional derivative evaluation worthwhile. 

For the same stencil width, the standard Pade schemes are two orders higher in accu- 
racy and have better spectral representation than the corresponding symmetric, explicit 
schemes. The implicit relation between the derivatives in the Pade schemes yields addi- 
tional degrees of freedom that allow higher accuracy to be achieved. It is therefore to 
be expected that including the second derivatives in the implicit expression would further 
increase the degrees of freedom, and thereby the accuracy that can be obtained. Hermitian 
expressions involving functions and their first, and higher derivatives have been suggested 
in the literature {e.g. [4], sections 2.4, 2.5). Peyret and Taylor ([17], section 2.5.1) and 
Hirsch ([18], section 4.3) discuss a symmetric version of equation 1 on a three point stencil. 
However, the development was not completed to a point where the resulting schemes could 
be used for solving partial differential equations. 

The objective of this paper is to develop this family of schemes, and assess their 
potential for computations of the Navier Stokes equations. The schemes will be referred to 
as the 'coupled-derivative', or 'C-D' schemes to distinguish them from the standard Pade 
schemes. The paper is organized as follows. Section 2 describes the interior schemes that 
may be obtained from equation 1. Fourier analysis is then used in section 3 to perform 
a detailed comparison between the proposed schemes and the standard Pade schemes. 
The restrictions imposed by numerical (Cauchy) stability are then discussed in section 4. 
Section 5 presents appropriate boundary closures for the interior scheme, and evaluates 
the stability of the complete scheme. The computational cost of the proposed schemes is 
evaluated in section 6, and compared to that of the standard Pade schemes. The paper is 
concluded with a brief summary in section 7. 

2. THE INTERIOR SCHEME 

The interior scheme is of the form given by equation 1. Simultaneous solving for f[ 
and /", implies that the number of unknowns is equal to 2iV. A total of 2N equations 
are therefore needed to close the system. Equation 1 may be used to derive two linearly 
independent equations at each node. This is done as follows. Both sides of equation 1 
are first expanded in a Taylor series. The resulting coefficients are then matched, such 
that equation 1 maintains a certain order of accuracy. Note that equation 1 has eleven 
coefficients, of which one is arbitrary, i.e., equation 1 may be divided through by one of 
the constants, without loss of generality. A convenient choice of the normalizing constant, 
is either of ao or &o- It will be seen that the equation obtained by setting ao equal to 1, is 
linearly independent of the equation obtained when &o is set equal to 1. The two equations 
may therefore be applied at each node, and the resulting system of 2JV equations solved 
for the nodal values of the first and second derivative. The process of obtaining the two 
equations is outlined in sections 2.1 and 2.2. 
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LHS RHS 

/* 0 Co 

n 1 + 2ai 2(2c4 + c3) 

f? 6o 0 

fr 2ft2 (ai/21 + 62) 2ft2 (23 c4 + c3)/3! 

ft 0 0 

f? 2^4(a1/4! + 62/3!) 2ft4 (25 c4 + c3) /5! 

ir 0 0 

fvii 2ft6 (ai/6! + 62/5!) 2ft6 (27 c4 + c3)/7! 

jviii 0 0 

fix 2ft8 (ai/8! +62/7!) 2ft8 (29 c4 + c3) /9! 

TABLE 1: Taylor table for a0 = 1. 

2.1: First equation (ao = 1) 

Consider first the case where ao = 1.   The symmetry of the schemes requires that 
aj = a.2, 61 = — 62> c\ = —C4 and C2 = —c3. Equation 1 therefore reduces to the form: 

«i/f-i+//+«i/H-i+M-&2 yf-i+ftoyr+fe/S-i) = £ Co/.+C3(/i+i -/,-l)+C4(/i+2-/i-2) 

(4) 
Expanding both sides of equation 4 in a Taylor series and collecting terms of the same 
order yields Table 1. Note that 'LHS' and 'RHS' denote the coefficients of/* on the left 
and right-hand sides respectively of equation 4. 

The Taylor table shows that 60 = Co = 0. This leaves four undetermined constants 
{a\, 62 j c3 and c4). Expressions for these constants may be obtained by matching the terms 
in the Taylor table. Schemes of order ranging from two through eight may be obtained by 
solving the resulting set of equations. The coefficients and the resulting orders are listed 
below. 

Second order 

Matching terms up to /,-' yields, 

ax = —- + c3 + 2c4,       62   arbitrary. 

The resulting leading order error is equal to (3 — 12&2 — 4c3 + 4c4)ft2/t'"/6. 

(5a) 
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Fourth order 

Matching terms up to f\v yields, 

«i=-2+C3 + 2c4,       &2 = —[3 - 4(c3 - c4)]. (56) 

The resulting leading order error is given by(—15 + 16c3 + 92c4)/i
4/"/360.   Note that 

c4 =0,   cz = 3/4 yields the standard fourth order Pade scheme for the first derivative. 

Sixth order 

Matching terms up to /?' yields, 

7      15 L        ! /   ,     o.   N 15     23 ai = — - —c4,       62 = —(-1 + 36c4),       c3 = — - —c4. (5c) 

The resulting leading order error is equal to (l/5040+3c4/140)/i6/?'". Note that c4 = 1/36 
yields the standard sixth order Pade scheme for the first derivative. 

Eighth order 

Matching terms up to /""' yields, 

17 A-        ■      l 107 r tKA\ 
ai = 36'       h = _I2'       C3 = IÖ8'       C4 = "IÖ8- (5d) 

The error to leading order is equal to — /i8/t?x/90720. 

Table 1 shows that &o is equal to zero when oto is set equal to one. The above expres- 
sions may therefore be considered expressions for the nodal values of the first derivative. 
It also implies that if instead of setting ao equal to one, we set &o equal to one, we would 
obtain an equation that would be linearly independent. The equation thus derived could 
be considered an expression for the second derivative. This equation is obtained below. 

2.2:       Second equation (bo = 1) 

Consider the case where &o = 1. Note that a tilde is used above the constants to 
indicate their difference from thejxoistants obtained when ao = 1; e.g., b\ is replaced by 
&i- Symmetry requires that b\ =&2,ci = c4, c% = c$ and a\ = —aV Equation 1 therefore 
becomes: 

<tofi+a2(f'i+i-fU) + h(bi /£-!+/"+&i/£i) = I Cl (fi-2 + fi+2 ) + C2 (fi-1 +/.+1) + Cofi 

r . (6) 
Expanding both sides of the above equation in a Taylor series and collecting terms of the 
same order yields the Taylor table 2. 

Table 2 shows that ao is required to be zero if &o is equal to one. The resulting equation 
may therefore be considered an expression for the second derivative. We have five unknown 
constants (co, c~\, c-j, a,2 and b\). These constants may be obtained by matching the terms in 
the above Taylor table, and solving the resulting equations. Expressions of varying order 
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LHS RHS 

fi 0 co + 2ci + 2c2 

n So 0 

rr h(2a2 + 2&1 + 1) 2h(22 ci+c2)/2! 

fi" 0 0 

fiv 2/i3(a2/3! + 6i/2!) 

0 

2/i3(24 C!+c2)/4! 

0 

ff 2fc5(a2/5! + &i/4!) 2h5(26 Ci+^/ft 

ff 0 0 

ff* 2/i7(a2/7! + &i/6!) 2/i7(28 cx+c2)/8! 

fix 0 0 

ff 2/i9(52/9! + 6!/8!) 2^9(210 ?!+c2)/10! 

TABLE 2: Taylor table obtained for 60 = 1- 

are obtained, depending upon the number of equations matched. At first glance, it appears 
that the order of accuracy obtained, ranges from three through nine. By comparison, the 
expressions obtained when a0 was equal to 1 ranged from second through eighth order. 
However, note that the nodal second derivatives in equation 1 are premultiplied by h. 
Equation 1 (and therefore the terms in the Taylor table) needs to be divided through by h, 
to consider it an expression for the second derivatives. This process will yield expressions 
for the second derivative, ranging in order from two through eight. The values for the 
constants and the corresponding orders are given below. 

Second order 

Matching terms up to /" yields, 

c0 = -2(c1 + c'2),       a2 = -(-l-26i+4ci+c2). 

The resulting leading order error is (2 — 861 + 8c"i —c2)h
2flv/l2. 

Fourth order 

Matching terms up to f\v yields, 

(7a) 

■   ~,    ■  ~ 3  ■ _     5„       r      1 , ~     c2 co = -2(ca + c2),       a2 = -- + ci + -c2,       61 = - + ci - —. 
8 

(76) 
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The error to leading order, is given by (-3 + 28ci + c2)ft4/?'i/360. Note that cx = 0,   c2 = 
6/5 yields the standard fourth order Pade scheme for the second derivative. 

Sixth order 

Matching terms up to /** yields, 

9     33 ~ 19 
CQ = -6 + 54ci,       c2 = 3 - 28ci,       a2 - - - —cu       &! = -- + -cx.       (7c) 

o       z o      2 

The resulting error to leading order is (1/20160 + Zci/yW^hPf?1". Note that ci = 3/44 
yields the standard sixth order Pade scheme for the second derivative. 

Eighth order 

Matching terms up to /""* yields, 

13 1 _      88       _      23       r        1 
c0 = -T,       cx = -—,       c2 = -,       a2 = -,       61=--. (7d) 

The resulting leading order error is — h8ff /453600. 

2.3:        The scheme 

The interior scheme involves applying the equations derived in sections 2.1 and 2.2 at 
each node. The resulting system of 2N equations is then solved to obtain // and f". Of 
the various schemes obtained, two schemes are discussed in detail below. These are the 
sixth order scheme with c\ =c\ =0, and the eighth order schemes. These schemes have 
the same stencil width as the standard fourth and sixth order Pade schemes. A detailed 
comparison between these schemes and the standard Pade schemes is therefore performed. 
The appendix presents the schemes in matrix form, for completeness. 

Sixth order C-D scheme (c-i = ci = 0) 

7//-1 + Iß// + 7f'i+1 + h(f^ -/£.!) = ^(/i+1 - /<_!). (8a) 

HfUi - fU) - M/T-i - 8/r + &,) = ~(/«-i - Vi + Mi)- (86) 

h 

h 

Eighth order C-D scheme 

51fU + 108/; + 5l£+1 + 9Mtf-i ~ Al) = ^(/.+i " fi-i) ~ fi+2 h
fi~2.      (9a) 

(96) 
Standard fourth order Pade 

/;-i+4/;+/^fl = ^(/i+i-/i-1). (ioa) 

8 
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fi-i + IQ/T + f?+1 = ^(/..j - 2fi + /i+1). (106) 

Standard sixth order Pade 

//-i + 3// + £+1 = ^(A+i - /i-i) + /,+2
12/'"2 • <Ua) 

Zyf-i + 11/-' + 2/&J = §(/i-i - 2Ü + /,+i) + -^(fi-2 - 2fi + /t+2). (116). 

The expressions for the first and second derivative are seen to be independent in the 
standard Pade schemes (equations 10 and 11). Obtaining the first and second deriva- 
tives using the standard Pade schemes therefore involves separately inverting two tridi- 
agonal matrices with band length of N. By comparison, the first and second deriva- 
tives are coupled in the C-D schemes. The vector of unknowns is therefore of length 
2iV; [..-/•_!, f"-1,fi,fi',fi+i,fi+1-]T- Note that for the same stencil width as the Pade 
schemes, the C-D schemes are two orders higher in accuracy. This is achieved at the 
cost of inverting a matrix that has seven bands instead of three. However, although the 
band width is increased from three to seven, the inversion yields both the first and second 
derivatives. A more systematic cost comparison with the Pade schemes is performed in 
section 6. 

3. FOURIER ANALYSIS OF THE DIFFERENCING ERROR 

Fourier analysis, and the notion of the 'modified wavenumber' provides a convenient 
means of quantifying the error associated with differencing schemes [2]. Consider the test 
function fj = e***' on a periodic domain. Discretize the function on a domain of length 
27T, using a uniform mesh of N points. The mesh spacing is therefore given by h = 2n/N. 
The exact values of the first and second derivative of/ are iketkx> and — k?etkx>. However, 
the numerically computed derivatives will be of the form, ik'etkx> and —k"2etkx>. The 
variables k' and k"2 are functions of k and h, and are called the modified wavenumber 
for the first and second derivative operator respectively. The difference between k' and 
k, and k"2 and k2, provides the differencing error. The modified wavenumbers for the 
coupled-derivative schemes are derived and compared to the standard Pade schemes, in 
sections 3.1 and 3.2. 

3.1:       Modified wavenumber for the standard Pade schemes 

The modified wavenumbers for the standard Pade schemes are given by Lele [1] as 
follows: 

First derivative 

,,'     asmkh + b/2sm2kh .,. . 
k'h =    (12a) 

l + 2a cos kh 

where a = 1/4, a = 3/2, and 6 = 0 for the fourth order Pade scheme. For the sixth order 
Pade scheme, a = l/3,a = 14/9 and 6 = 1/9. 
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Second derivative 

,„2,2 _ 2a(l — coskh) + 6/2(1 — cos2kh) 
~ l + 2acoskh ~ *     ' 

where a = l/10,a = 6/5 and 6 = 0 for the fourth order Pade scheme. For the sixth order 
Pade scheme, a = 2/11, a = 12/11, and 6 = 3/11. 

3.2:       Modified wavenumber for the C-D schemes 

The modified wavenumbers for the C-D schemes are given below. As seen in sections 
2.1 and 2.2, the sixth and eighth order schemes are members of the following two-equation 
family of schemes: 

fi + «ittf+i + fi-i) + Matö+i - f'U) = °f(fi+i ~ fi-i) + jUw ~ fi-2).      (13a) 

a2(/^1-/;_1)+M6i/;u+/;,+6^ (130) 

The constants in the above equations are as follows: 

Sixth order scheme 

c4 =0,      ai = 7/16,      62 = -1/16,     c3 = 15/16 

Ci = 0,      c2 =3,      c0 = -6,      a2 = 9/8,      bx = -1/8. (14) 

Eighth order scheme 

c4 =-1/108,     a1= 17/36,     h = -1/12,     c3 = 107/108 

£i = -1/108,     c2 = 88/27,     c0 = -13/2,     a2 = 23/18,     6i = -1/6.      (15) 

Equations 13a and 136 are used to obtain the modified wavenumbers as follows. Con- 
sider the function, fi = etkxi on a periodic domain. Using the relations, f-±1 = f-e±ikh 

an<i fi'±i — fi'e±tkh, equations 13a and 136 become, 

f'i(l + 2ai coskh) + f"(i2hb2 sinkh) = i~r-(c3 sinkh + c4 sin2kh). (16a) 

~ f- 
fi(i2a2 sin kh) + f?(h + 2hbt cos kh) = i±(co + 2c2 cos kh + 2cx cos 2kh). (166) 

ft 

Equations 16a and 166 may be solved for /' and f". The resulting expressions are of the 
form ik'fi and — k" fi where the modified wavenumbers (after some rearrangement) are 
given by the following expressions: 

10 
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kh 

FIGURE 1 : The modified wavenumber for the first derivative. The C-D schemes are compared to 
the standard Pade schemes.  (Exact), (C-D: eighth order), - (C-D: sixth order), 
 (Sixth order Pade), (Fourth order Pade). 

.   ,, c3 + 2c46i - C0&2 + 2(c36i + c4 - b2c2) cos kh + 2(c46i -62Ci)cos2fcfe 
kh = 2sinfcn ~ — ~~~ _ , *.     T77 

1 + 2aih + 2a2b2 + 2(&i + ai) cos kh + 2(ai6x - a2&2) cos 2kh 

k"\2 = - 
 CQ + 2aic2 + 2a2c3 + 2(c2 + aic0 + 2a2c4) cos kh  

l + 2a16i +2a262 + 2(6i + ai)coskh + 2(0^1 - a262)cos2A;Ä 
2(ci + aic2 — q2c3) cos 2kh + 4(aiCi — ajC^) cos kh cos 2kh 

1 + 2ai61 + 2a262 + 2(6i + ai) cos kh + 2(ai6i - a^) cos 2fch 

(17a) 

(176) 

5.5;       Evaluation of first derivative 

The modified wavenumbers for the first derivative are shown in figure 1. The C-D 
schemes are seen to follow the exact solution more closely than the standard Pade schemes. 
Recall that the sixth order C-D scheme has the same stencil width as the fourth order Pade, 
while the eighth order C-D scheme has the same stencil width as the sixth order Pade. In 
spite of its smaller stencil, the sixth order C-D scheme is seen to have lower error than the 
sixth order Pade. A more quantitative comparison of the schemes is provided in table 3. 
The fractional error in the first derivative may be defined as 

e = 
\k'h - kh\ 

kh 
(18) 

11 
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FIGURE 2: The percentage error in the first derivative as a function of the resolution.  The C-D 
schemes are compared to the standard Pade schemes.  (C-D: eighth order), (C-D: sixth 
order),  (Sixth order Pade), — (Fourth order Pade). 
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FIGURE 3: The ratio of the error in the first derivative between the C-D schemes and the standard 
Pade schemes as a function of the resolution.   (C-D 8 / Pade 6), (C-D 6 / Pade 4), 
  (C-D 6 / Pade 6). 
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e = 0.1 c = 0.01 e = 0.001 

Pade 4 0.59 0.35 0.20 

Pade 6 0.70 0.50 0.35 

C-D6 0.75 0.58 0.42 

C-D8 0.81 0.66 0.53 

TABLE 3: A comparison of the resolving efficiency of the C-D schemes to the Pade schemes. 

iV = 4 N = 8 

Pade 4 4.51 % 2.3 x 10_1 % 

Pade 6 0.97 % 1.2 xlO"2 % 

C-D 6 0.36 % 3.1 x 10-3 % 

C-D 8 0.06 % 1.1 x 10~4 % 

TABLE 4: The percentage error in the first derivative, as a function of the number of points per 
wave (iV). The C-D schemes are compared to the standard Pade schemes. 

Figure 1 shows that the error increases as kh increases. A measure of the accuracy or 
'resolving ability' of the schemes is therefore provided, by specifying a maximum value for e, 
and estimating the fraction of the entire range of wavenumbers for which this requirement 
is met. This quantity is termed 'resolving efficiency' by Lele [1], and is a function of the 
specified tolerance on the error. Table 3 compares the resolving efficiency of the C-D 
schemes to the standard Pade schemes. The C-D schemes are seen to be noticeably more 
accurate. In fact, of the different compact schemes considered by Lele, the only scheme 
that outperforms the eighth order C-D scheme is the pentadiagonal tenth order scheme 
(designated 'i' by Lele). The pentadiagonal scheme, however, has a stencil of five points 
on the left hand side, and 7 on the right. 

The modified wavenumber may be used to determine the error as a function of the 
resolution. Consider the case where k = 1; i.e., we have one wave of wavelength A = 2n. 
The mesh spacing, h is given by h = 2ir/N = X/N. kh is therefore equal to X/N, the 
reciprocal of the number of points per wavelength. The percentage error in the first 
derivative may be computed as a function of the resolution, using kh = 2%/N, and error= 
100\k'h — kh\/kh. Figure 2 compares the C-D schemes to the standard Pade schemes. 
Note that all the schemes show 100% error for the two-delta waves (two points per wave). 
This is because the symmetry of the schemes forces k'h to zero for two-delta waves. The 
C-D schemes are seen to have noticeably smaller error than the standard Pade schemes. 
Further indication of this is provided in figure 3, where the ratio of the error between the 
C-D schemes and the Pade schemes is shown. Table 4 documents the percentage error in 
the first derivative, for resolutions of 4 and 8 points per wave. The C-D schemes are seen 

13 
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• 

kh 

FIGURE 4: The modified wavenumber for the second derivative. The C-D schemes are compared to 
the standard Pade schemes.  (Exact), (C-D: eighth order),  (C-D: sixth order), 
 (Sixth order Pade), (Fourth order Pade). 

to represent even four delta waves with an accuracy of 0.4% and 0.06%, respectively. 

3-4:       Evaluation of second derivative 

Modified wavenumbers for the second derivative are shown in figure 4. The C-D 
schemes are seen to be noticeably more accurate at the higher wavenumbers. Interestingly, 
k" h2 for the C-D schemes is greater than the exact solution for certain wavenumbers. 
This is in contrast to the standard Pade schemes, whose modified wavenumber is always 
less than the exact solution. However, this aspect of the C-D schemes does not impact the 
accuracy. As shown in figures 5 and 6, the C-D schemes are more accurate than the Pade 
schemes with the same stencil width. 

Similar to the first derivative, a resolving efficiency may be defined for the second 
derivative, as the fraction of the wavenumber range for which the error, 

\k"2h2-k2h2\ 
* = '        k2h2       ■ (19) 

is less than a specified tolerance. The resolving efficiency is tabulated in table 5. Note that 
the requirement that e be less than 0.1, is met over the entire range of wavenumbers. The 
second derivative computed using the sixth order C-D scheme is slightly more accurate 
than the sixth order Pade scheme, while the eighth order C-D scheme is noticeably more 
accurate than the standard Pade schemes. Table 6 shows the percentage error in the 
second derivative, as a function of the resolution. As was observed for the first derivative, 
the sixth and eighth order C-D schemes represent even four-delta waves, to an accuracy of 
about 0.4% and 0.1% respectively. 

• 
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Section 3: Fourier analysis 
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FIGURE 5: The percentage error in the second derivative as a function of the resolution. The C-D 
schemes are compared to the standard Pade schemes.  (C-D: eighth order), (C-D: sixth 
order),  (Sixth order Pade), — (Fourth order Pade). 
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FIGURE 6: The ratio of the error in the second derivative between the C-D schemes and the standard 
Pade schemes as a function of the resolution.  (C-D 8 / Pade 6), (C-D 6 / Pade 6), 

  (C-D 6 / Pade 4). 
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Section 4: Stability of interior scheme 

e = 0.1 e = 0.01 e = 0.001 

Pade 4 0.68 0.39 0.22 

Pade 6 0.80 0.55 0.38 

C-D6 1.00 0.57 0.39 

C-D 8 1.00 0.67 0.50 

TABLE 5: Comparison of resolving efficiency of the C-D schemes to the Pade schemes. 

N = 4 JV = 8 

Pade 4 2.73 % 1.6 xlO"1 % 

Pade 6 0.52 % 7.41 x 10-3 % 

CD 6 0.44 % 6.16 x lO"3 % 

C-D 8 0.09 % 2.84 x 10~4 % 

TABLE 6: The percentage error in the second derivative, as a function of the number of points per 
wave (AT). The C-D schemes are compared to the standard Pade schemes. 

4. STABILITY LIMITS OF INTERIOR SCHEME 

This section outlines the restrictions imposed by Cauchy stability on the time step, 
when the C-D schemes are used with Runge-Kutta time advancement.  The model wave 
and diffusion equations are solved, 
periodic domain: 

Consider the one-dimensional wave equation on a 

du       du 

dt       dx 
(20) 

The above equation is solved by the method of lines. Let u = uelkx. Spatial discretization 
leads to a set of ODEs of the form: 

—- = —i— k'hu. 
at h 

(21) 

The above equation is of the form dy/di = Xy. It is easily shown that numerical stability 
requires that 

cAt < (AiAi)r 

(k'h) 
(22) 

max 

where (fc'/i)max denotes the maximum value of the modified wavenumber for the first 
derivative, and (AjA<)max denotes the upper bound imposed by numerical stability, when 
the ODE dy/dt = iXiy is numerically integrated. (AjAi)max has values of 0, y/Z and 
2.85 when the standard second, third and fourth order Runge-Kutta schemes [19] are 

16 



Section 4: Stability of interior scheme 

RK2 RKZ RK4 

Pade4 0 1.0 1.645 

Pade6 0 0.871 1.433 

C-D 6 0 0.815 1.341 

C-D8 0 0.759 1.249 

Fourier 0 0.551 0.907 

TABLE 7: The maximum CFL number allowed by numerical stability. 

RK2 RKZ RKA 

Pade4 0.333 0.417 0.483 

Pade6 0.292 0.365 0.423 

C-D 6 0.208 0.260 0.302 

C-D8 0.205 0.256 0.297 

Fourier 0.203 0.253 0.294 

TABLE 8: The maximum uAt/h? allowed by numerical stability. 

used for time advancement. Table 7 lists the corresponding bounds on the CFL number. 
As expected, the improved accuracy at the higher wavenumbers, reduces the maximum 
allowable CFL number. 

Similarly, upper bounds on uAt/h2 can be obtained when the one-dimensional diffu- 
sion equation, 

*L=u^ (23) 
dt        dx2 V    ' 

is numerically solved on a periodic spatial domain. Table 8 lists the obtained bounds, 
when the C-D schemes are used with Runge-Kutta time advancement. The accuracy of 
the C-D schemes for the two-delta waves (kh = ir) results in the viscous restriction on the 
time step being nearly the same as that for a Fourier spectral method. 

5. BOUNDARY SCHEMES 

Consider a spatial domain that is discretized by using N points (including those at 
the boundaries). Equations 8 and 9 show that the sixth order scheme can be applied from 
j = 2 to JV - 1, while the eighth order scheme can be applied from j = 3 to JV - 2. 
For problems with periodic boundary conditions, the periodicity of the solution may be 
used to apply the same equations at the boundary nodes (see the appendix). However, for 
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Section 5: Boundary schemes 

LHS RHS 

h 0 Ci + c2 + c3 + c4 

fi ao + ai c2 + 2c3 + 3c4 

ft h(ai +&o + &i) fr(c2+22 C3+32 c4)/2! 

f[" tf(ai/2! + &i) fc2(c2 + 23 C3 + 33 c4)/3! 

fiv Ä3(oi/3! + 6i/2!) h3(c2+24 C3 + 34 c4)/4! 

n ^4(ai/4! + 6i/3!) /i4 (c2 + 25 c3 + 35 c4) /5! 

ff Ä5(fll/5! + 6i/4!) fc5(c2+26 C3 + 36 c4)/6! 

TABLE 9: Taylor table obtained for the boundary schemes. 

non-periodic problems, additional expressions are needed at the boundary nodes to close 
the system. 

Consider j = 1. The following general expression may be written for f[ and f": 

aQf[ + axf2 + h{b0ft + &!.#) = ^(Clf! + c2f2 + c3/3 + c4/4). (24) 

The corresponding equation at j' = iV would be given by: 

Q
O/AT + OI/N-I 

— Hbofpf + 6i//^_i) = —r(cifN + C2/N-I + C3/N-2 + C4/N-3)-    (25) 

The width of the stencil on the left hand side of the above equation is restricted to 
two. This ensures that the number of bands in the left-hand side matrix is still seven. 
As was done for the interior scheme, the constants in equation 24 may be obtained by 
expanding the terms in a Taylor's series, and matching expressions of the same order. 
Recall that we need two independent equations at each node. For the interior schemes, 
we saw that 60 was equal to 0 if ao was equal to 1, and vice-versa. This yielded the two 
independent equations. As seen from tables 1 and 2, this relationship between a0 and 
60 for the interior schemes is a natural consequence of their symmetry. However for the 
boundary schemes, it turns out that setting ao to 1 does not imply that 60 is zero, and 
vice-versa. The equation obtained when ao = 1, is the same as that obtained when 60 = 1. 
The following procedure is therefore used to obtain two independent equations. When 
matching the terms in the Taylor table, (ao,&o) is first set equal to (1,0). This yields the 
first equation. Next, (ao,&o) is set equal to (0,1). This yields the second equation. These 
expressions are derived below. 

Taylor's series expansion of equation 24 yields table 9. There are eight undetermined 
constants in equation 1. Note that if either of the constraints (ao,&o) = (1,0) or (0,1) 
is imposed, and the terms in the Taylor table matched, the maximum order that can be 
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Section 5: Boundary schemes 

obtained is five. The following family of schemes is obtained by matching the terms in 
Table 9 to different orders. Consider first the case where a0 = 1, and bo = 0. The resulting 
expressions may be considered expressions for the first derivative. 

5.1:      First equation (ao = l,bo = 0) 

Expressions for the coefficients and the corresponding orders are given below. 

Third order 

Matching terms up to /•" yields, 

Cl = _3 + c3 + 8c4,      c2 = 3 - 2c3 - 9c4,      ax = 2 - 6c4,      h =-- + c3 + 6c4. (26a) 

The leading order error is then (1/24 + c3/12 + c4)h
3 f{v'. Note that c3 = 1/2, c4 = 0 yields 

the standard one-sided, third order compact scheme for the first derivative. 

Fourth order 

Matching terms up to //" yields, 

7 1 
Cl = —--4c4,     c2 = 4+15c4,     c3 = ---12c4,     ax = 2-6c4,     hx = -l-6c4. (266) 

2 ^ 

The error to leading order is given by (-1/60 + c4/5)fc4/iv- Note that c4 = -1/6 yields 
the standard one-sided, fourth order compact scheme for the first derivative. 

Fifth order 

Matching terms up to /? yields, 

23 21 3 1 3 _    3 
y,       c2 = -,       c3 = --,       c4 = -,       ax = -,       h - --. 

The error to leading order is equal to ft5/"7120- 

5.2:      Second equation (ao = 0,bo = 1) 

Similar expressions are obtained when ao = 0, and &o = 1- These expressions may 
be considered relations for the second derivative. The order of the expressions will again 
range from three to five. However, due to the second derivatives being multiplied by h, 
the corresponding order of the second derivatives ranges from two to four. The values of 
the constants are given below. 

Second order 

Matching terms up to /■" yields, 

Cl = 6 + c3 + 8c4,      c2 = -6-2c3-9c4,      ai=-6-6c4,       6i = 2 + c3 + 6c4. (27a) 

The error to leading order is given by (-1/4 + c3/12 + c±)h2 f[v. 
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Section 5.3: Stability 

Third order 

Matching terms up to f\v yields, 

d = 9-4c4,     c2 = -12 + 15c4,     c3 = 3-12c4,     ax = -6-6c4,     61 = 5-6c4. (276) 

The error to leading order is equal to (7/60 + ct/5)h3ff.  Note that c4 = -1 yields the 
standard one-sided third order compact scheme for the second derivative. 

Fourth order 

Matching terms up to /? yields, 

Cl = 34/3,     c2 = -83/4,      c3 = 10,      c4 = -7/12,      ax = -5/2,      bx = 17/2. (27c) 

The resulting leading order error is given by —23h4fx
l/60. 

5.3:        Numerical stability 

The interior schemes outlined in section 2.3 are combined with the boundary schemes 
of sections 4.1 and 4.2, to close the system of equations for the first and second derivatives. 
Note that the sixth order interior scheme may be applied from j = 2 to j = N — 1 and 
therefore only needs the boundary expressions at j = 1 and N. The eighth order interior 
scheme uses a five point stencil on the right-hand side. It therefore can only be applied 
from j = 3 to N — 2. In this paper, if the eighth order scheme is used in the interior, the 
system of equations is closed by applying the sixth order scheme at j = 2 and N — 1, and 
the boundary expressions at j = 1 and N. These expressions axe derived below. 

Note that the formal order of accuracy of the boundary schemes is less than the 
interior. This is due to the negative influence of high order (wide stencil) boundary closures 
on the stability of the overall scheme. Past work has shown that high order boundary 
closures can result in numerical instability in hyperbolic problems. For example, Carpenter 
et al. [20] compute solutions to the one-dimensional wave equation, and show that the 
standard fourth order Pade scheme (equation 10a) is asymptotically unstable when the 
one-sided fourth order expression, 

A +3/2 = -^(-17/i +9/2+9/3-/4) (28) 

is used at the boundary nodes. The third order boundary expression, 

/1'+2/2 = ^(-5/1+4/2 + /3) (29) 

is shown to be stable. 

The combination of the boundary and interior schemes is numerically tested for hy- 
perbolic stability in this section. The standard fourth order Runge-Kutta method is used 
for time advancement. The one-dimensional wave equation is numerically integrated to 
long times, and the solution is examined for boundedness (asymptotic stability). Also, the 
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FIGURE 7: Illustration of the asymptotic instability of the sixth order C-D scheme with (4,3) closure 
at the boundaries. The lines correspond to a CFL number of 1.33 while the symbols correspond to 
a CFL number of 0.1.  , • {N = 26), —- , * (N = 51), , + {N = 101). 

computational grid is refined while keeping the CFL number fixed, and convergence of the 
solution established (Lax stability). Details of this evaluation are provided below. 

Consider the one-dimensional wave equation, 

du     du _ (30) 

Equation 30 is numerically solved over the domain -1 < x < 1, subject to the following 
initial and boundary conditions, 

u(x,0) = sin2?rx,        u(-l,t) = sin27r(-l -<). 

Note that the exact solution to the above equation is given by 

wexact(a:,*) = sin27r(x - *). 

(31) 

(32) 

A uniform mesh is used for spatial discretization. The number of grid points (including 
the boundaries) is set equal to 26, 51 or 101. The solution is then integrated to a time 
t = 100. Note that the solution travels one wavelength in one time unit, and travels the 
length of the domain in two time units. The L2 error defined as, 

L2   error = —, (33) 
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FIGURE 8: Illustration of the asymptotic stability of the sixth order C-D scheme with third order 
closure at the boundaries.    The lines correspond to a CFL number of 1.33 while the symbols 
correspond to a CFL number of 0.1. , • (N — 26), , * (N = 51), , + (N = 
101). 

is then examined for boundedness. 

Several combinations of the boundary closures, and the interior scheme were examined. 
In the following discussion, the notation [a, b—c—a, b] is used to denote these combinations, 
c denotes the order of the interior scheme, while a and b denote the order of the expressions 
for the first and second derivative at j = 1 and N. For example, the notation [3,3—6—3,3] 
implies that the sixth order scheme (equation 8) is used in the interior, and the third order 
equations 26a and 276 are used at the boundary nodes. Note that if c = 8, it is implied 
that the eighth order scheme is applied from j = 3 to N — 2, and the sixth order scheme 
is applied at j = 2 and N — 1. 

The numerical evaluations show that the stability is essentially dictated by the first 
derivative expression at the boundary. Schemes involving fourth and fifth order expressions 
for the first derivative, i.e., the schemes [4,4 - 6 - 4,4], [4,3 - 6 - 4,3], [4,2 - 6 - 4,2], [5,4 - 
6 — 5,4], [5,3 — 6 — 5,3], [5,2 — 6 — 5,2] were found to be asymptotically unstable. Figure 
7 illustrates the observed instability when the [4,4 — 6 — 4,4] scheme i. e, fourth order 
boundary closure along with a sixth order interior scheme is used. Note that the Li error 
is bounded at a CFL number of 1.33 (the upper limit for stability of the interior scheme; 
see Table 7). However, the error is seen to grow exponentially at a smaller CFL number of 
0.1. This behavior is similar to that observed by Carpenter et al. [20] when the standard 
fourth order Pade scheme (equation 10a) is used along with a fourth order boundary closure 
(equation 28). It is a result of the spatial discretization yielding a positive eigenvalue that 
lies within the stability envelope of the Runge-Kutta scheme at a CFL number of 1.33. 

Similar tests showed that combinations of the third order expression for the first 
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Section 5.4: Eigenvalue analysis 

derivative (equation 26a) with second, third and fourth order expressions for the second 
derivative it i.e., the schemes [3,2 - c - 3,2],[3,3 - c - 3,3],[3,4 - c - 3,4] were stable, 
for the sixth and eighth order interior schemes. Figure 8 illustrates the stability of the 

[3,3 - 6 - 3,3] scheme. 

5.4:     Eigenvalue analysis 

Section 5.3 used numerical solutions of the wave equation to identify the boundary 
closures that yielded stable solutions at long times. An eigenvalue analysis is conducted in 
this section to confirm that these boundary closures do indeed yield asymptotically stable 
solutions. Consider the wave equation, 

£+£- (34) 

subject to the inflow boundary condition, t*(0, t) = ot . Discretize u on a uniform grid of N 
points (including the boundaries). The inflow condition implies that «i(t) = 0. Equation 
34 is therefore solved for UJ, where j varies from 2 to iV. Spatial discretization yields a set 
of ODEsoftheform: 

^ = >;*/* (35) 
dt       h 

where j and k vary from 2 to N. M is a N - 1 by N - 1 matrix, and is defined such that 
u'- = -Mjkuk. The eigenvalues of M determine the asymptotic stability of the system 
of ODEs. The requirement that the eigenvalues of M have negative real parts ensures 
asymptotic stability. The matrix M is obtained as follows. First, the condition ui =0, 
the boundary expressions, and the interior scheme are used to eliminate «^ and u" from 
the system of equations for the nodal derivatives. The resulting system of equations is then 
rearranged as follows. Recall that we use two independent equations relating u$ and u'j 
at each node. It is easily seen that these two equations may be expressed in the following 

form: - 
Au' + fcBu" = iRiU, (36a) 

h 

Cu' + /*Du" = rR<2 u. (366) 

Note that the above system of equations is applied at the nodes j = 2 to N. u" may 
be eliminated from the above system of equations to obtain an expression relating u' to 
u. Premultiplying equations 36a and 36& by B"1 and D-1 respectively, and subtracting 

yields: 

rB^A-D^C^u^^B^Rx-D^Rzju, (37) 

f This simple inflow condition is adequate to determine the inherent stability of the system. A 
more general inflow condition, u{0,t) = g(t) would simply yield a forcing term on the right-hand 
side of equation 35. The stability of the system would still be governed by the eigenvalues of M. 
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Section 5.4: Eigenvalue analysis 

implying that 

{
,
 = -UB-

1
A-B-

1
C\     ^B^Ri-D^RaJf. (38) 

Comparison to the relation, u': = —MjkUk yields the following expression for M: 

M = MB-1 A - D_1C J     (B_1
RI - D-*R2Y (39) 

The stability of the (3,2), (3,3) and (3,4) boundary closures (section 5.2) was tested for 
both sixth and eighth order interior schemes. The number of points N was set equal to 26, 
51 or 101. The matrices A,B,C,D,Ri and R2 were specified, and equation 39 was used 
to (numerically) obtain M. An eigenvalue solver from the IMSL library was then used to 
obtain the eigenvalues of M. All three boundary closures were found to yield eigenvalues 
with negative real parts. Figures 9 and 10 illustrate the eigenvalues obtained when the 
(3,3) closure was used with the sixth and eighth order interior schemes respectively. 

5.5:        The stable boundary closures 

The stable boundary closures are summarized below. The following expressions are 
used at j = 1. Equation 25 may be used to obtain the corresponding expressions at j = N. 

(3.4) boundary closure 
The third order expression for the first derivative is combined with a fourth order expression 
for the second derivative. 

fx+*f2-\f2=\U*-h) (40«) 

-\r*+M/r+y#) = \(Y h - f h+10/a - ^/4)        (406) 

(3,3) boundary closure 

The third order expression for the first derivative is combined with a third order expression 
for the second derivative. 

/i+2/^-^' = f(/2-/i) (41a) 

-6£ + M/1" + 5#) = f(3/i-4/2 + /3) (416) 

(3.2) boundary closure 

The third order expression for the first derivative is combined with a second order expres- 
sion for the second derivative. 

/i'+2/^-|/^ = |(/2-/i) (42a) 

-6/2 + h{f» + 2%) = £(/! - /2) (426) 

The matrix form of the schemes obtained with the (3,3) closure is provided in the 
appendix for completeness. The corresponding matrices for the (3,2) and (3,4) closures 
are easily obtained from equations 40 and 42. 
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Section 6: Cost comparison 

RHS LU solve Total 

Pade 4: first der. 1+1+0=2 2+2+1=5 3+3+1=7 

Pade 4: second der. 2+2+0=4 2+2+1=5 4+4+1=9 

Pade 6: first der. 2+3+0=5 2+2+1=5 4 + 5 + 1 = 10 

Pade 6: second der. 4+5+0=9 2+2+1=5 6 + 7+1 = 14 

Pade 4: both ders. 3+3+0=6 4 + 4 + 2 = 10 7 + 7 + 2 = 16 

Pade 6: both ders. 6 + 8 + 0 = 14 4 + 4 + 2 = 10 10 + 12 + 2 = 24 

C-D6 3+3+0=6 12 + 4 + 2 = 18 15 + 7 + 2 = 24 

C-D8 3 + 7 + 0 = 10 12 + 4 + 2 = 18 15 + 11 + 2 = 28 

TABLE 10: The operation count per node to compute the first and second derivative. The entries 
are of the form, 'number of multiplies + adds/subtracts + divides = total'. The overall cost is 
obtained by multiplying the entries by the total number of points, N. 

6. COST COMPARISON 

The computational cost of the C-D schemes is compared to that of the standard Pade 
schemes, in this section. The standard Pade schemes and the C-D schemes are both of the 
form, 

Af = Bf (43) 

where f = [.. ./j_i,/j,/;+i,.. .]T, and A and B are constant matrices that depend on 
the scheme. For the standard Pade schemes, the vector f is of length N, and is either 
equal to [... //_1, //, f'i+l.. .]

T, or [... f^, f",f"+1.. .]
T. Also, the matrix A is tridiag- 

onal with a band-length of N. For the C-D schemes, f is of length 2N, and is equal 
to [... /[_!, //Ij, /•, //', f'i+1, f"+1,.. .]

T. The matrix A now has seven bands (see the ap- 
pendix), each of length equal to 2JV. 

At first glance, it might appear as if the C-D schemes would be significantly more 
expensive. However, this is not the case. Although the matrix bandwidth, and the solution 
vector length of the C-D schemes is twice that of the standard schemes, a single evaluation 
yields both first and second derivatives. When the cost of computing both derivatives is 
estimated, the C-D schemes are seen to incur essentially the same cost as the standard 
Pade schemes. This is illustrated below. 

In using schemes of the form given by equation 43, the common practice is to perform 
LU decomposition of the matrix A only once, and store the L and U matrices. Compu- 
tation of the derivatives therefore involves computing the right-hand side (B f), followed 
by forward and back substitution. The operation count associated with computing the 
right-hand side, and solving the resulting system of equations is tabulated in Table 10. 
When the cost of computing both derivatives is estimated, the C-D schemes are seen to 
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LU decomposition RHS LU solve RHS + LU solve 

Pade 4 2490 305 468 773 

Pade 6 2480 328 470 798 

C-D6 3590 251 412 653 

C-D 8 3830 264 424 688 

TABLE 11: The time in microseconds to compute both first and second derivatives, on a mesh of 
128 points. All computations use LAPACK routines for banded matrices on a CRAY C90 in scalar 
mode. 

involve the same number of divides,* and add/subtracts as the standard Pade schemes 
with the same stencil width. The only increase in the number of operations involves the 
number of multiplies: the eighth order scheme has 1.5 times the number of multiplies as 
the sixth order Pade, while the sixth order scheme has twice the number of multiplies as 
the fourth order Pade. As shown below, this increase in the number of multiplies is not 
very significant. A cost evaluation was performed on a CRAY C90 in scalar mode, using 
LAPACK routines for the LU decomposition, and the solution of the LU decomposed 
system. The LAPACK routines took advantage of the banded structure of the coefficient 
matrix. The function / = sin(x) was discretized using a uniform mesh of 128 points on a 
domain of length equal to 27T. Individual routines computed the right-hand side, generated 
and LU decomposed the matrix A, and solved the system of equations. Each of these pro- 
cedures was performed 1000 times, and the result was averaged to determine the cost per 
evaluation. The cost in microseconds is listed in Table 11. The C-D schemes are seen to 
incur essentially the same cost as the standard Pade schemes when the cost of computing 
both derivatives is considered. 

7. CONCLUSION 

A family of finite difference schemes for the first and second derivatives of smooth 
functions were derived. The schemes are Hermitian and symmetric, and may be consid- 
ered an extension of the standard Pade schemes described in [1]. They are different from 
the standard Pade schemes, in that the first and second derivatives are simultaneously 
evaluated. Fourier analysis was used to compare the proposed schemes to the standard 
Pade schemes. For the same stencil width, the proposed schemes were shown to be two 
orders higher in accuracy, and have significantly better spectral representation. Numeri- 
cal solutions to the one-dimensional wave equation, and eigenvalue analysis were used to 
demonstrate the numerical stability of the schemes. The computational cost of the pro- 
posed schemes was assessed, and the cost of computing both derivatives was shown to be 
essentially the same as the standard Pade schemes. 

f The divides in the LU solve may be replaced by multiplies if desired, by storing the inverse of 
the coefficients of the L and U matrices. 
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Appendix: Summary of schemes 

Considering that the Navier Stokes equations require both first and second derivatives 
of most flow variables, the proposed schemes appear to be attractive alternatives to the 
standard Pade schemes for computations of the Navier Stokes equations. 
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APPENDIX 

The schemes are presented in matrix form below. Both periodic and non-periodic 
boundaries are considered. 

Sixth order scheme: periodic 

The sixth order scheme on a periodic domain is given by: 

16 0 7 -ft 0 7 

0 8ft 9 -ft 0 -9 

'• 
■  # " m "-. * m •   m 

0 7 ft 16 0 7 -ft 

-9 -ft 0 8fc 9 -h 0 

'• 
" 

' • 
*   # '-. '• 

7 -ft 0 7 h 16 

9 -ft 0 -9 -h 0 

h r/n 
-h /;' 

i 

h 

'•. 1 

0 fs 
8fc . L/^J 

15(/2-/JV) 

24(fN-2f1+f2) 

15(/iH.i-/i-i) 
24(/,_1-2/,+/i+1) 

15(/I-/JV-I) 

24(/JV_1-2/W+/1) 

Eighth order scheme: periodic 

The eighth order scheme on a periodic domain is given by: 
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107(/2-/JV)-(/3-/JV-I) 

-(/S+/JV-I)+352(/2+/W)-702/1 

107(/i+1-/,_i)-(/,+2-/.-2) 
-(/.+2+/.-2)+352(/,+i+/,_i)-702/,- 

107(/1-/jV_i)-(/2-/jv_2) 
-(/2+/JV-2)+352(/1+/N_I)-702/JV 

Sixth order scheme: (3.3) boundary closure 

The domain is non-periodic. The sixth order interior scheme is used at the nodes 
j = 2 to N - 1, and the third order boundary expressions (equation 41) are used at j = 1 
and N. The resulting scheme is given by: 

1 0 2 -h/2 

0 h -6 5h 0 

■-. '•. * B 
'• ''• 

0 7 h 16 0 7 -h 

-9 -h 0 8fc 9 -h 0 

' • "• 

0 2 h/2 1 

-6 -5h 0 

-fi- 

fl l 

0 

-h. L/Ä- 

3(/2-/l) 
9/1-12/2+3/3 

15(/i+i-/i-i) 
24(/,_i-2/,+/,+i) 

3(/AT-/JV-I) 

-9/jv+12/Ar_i-3/jv_2 

■gjqfe^fe order scheme: (3.3) boundary closure 

The domain is non-periodic. The eighth order interior scheme is used at the nodes 
j = 3 to JV - 2. The sixth order interior scheme is used at j = 2 and JV - 1, and third 
order boundary expressions (equation 41) are used at j = 1 and JV. The resulting scheme 

is given by: 
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108        0 

0        108ft 
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fi 

fi 

fi' 

-ft fN-1 
-ft f" JN-l 

0 I'N 

-AJ L  IN  J 

3(/2-/l) 

9/1-12/2+3/3 
15(/3-/0 

24(/!-2/2+/3) 

1 107(/,+1-/,_1)-(/I+2-/,_2) 
A      -(/,+2+/,-2)+352(/,+1+/,_1)-702/i 

15(/JV-/AT-2) 

24(/^-2-2/iv_i+/Ar) 

3(/jv—/JV-I) 

-9/w+12/iv-i-3/iv-2 

The expressions provided in section 5.5 may be used to obtain the matrices corre- 
sponding to the (3,2) and (3,4) boundary closures. 
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Direct numerical simulation and inviscid linear analysis are used to study the in- 
teraction of a normal shock waye with an isotropic turbulent field of vorticity and 
entropy fluctuations. The role of the upstream entropy fluctuations is emphasized. 
The upstream correlation between the vorticity and entropy fluctuations is shown 
to strongly influence the evolution of the turbulence across the shock. Negative 
upstream correlation between 1/ and 7" is seen to enhance the amplification of the 
turbulence kinetic energy, vorticity and thermodynamic fluctuations across the shock 
wave. Positive upstream correlation has a suppressing effect An explanation based 
on the relative effects of bulk compression and baroclinic torque is proposed, and a 
scaling law is derived for the evolution of vorticity fluctuations across the shock. The 
validity of Morkovin's hypothesis across a shock wave is examined. Linear analysis 
is used to suggest that shock-front oscillation would invalidate the relation between 
Una and Tr„s, as expressed by the hypothesis. 

1. Introduction 
The.interaction of shock waves with turbulent boundary layers has received con- 

siderable attention over the past five decades. There have been several experimental 
studies (Green 1970; Femholz & Finley 1981; Settles & Dodson 1994; Dolling 1993) 
of the flow in a compression corner, normal shock/boundary layer interaction and 
more recently, the interaction of shock waves with three-dimensional boundary layers. 
These experiments testify to the complex flow field associated with the interaction. 
Incidence of the shock wave is shown to strongly effect both the mean flow, and 
the turbulent fluctuations. The Reynolds stresses and temperature fluctuations in the 
boundary layer are seen to amplify across the shock wave. Significant unsteadiness 
of the shock wave is observed when the boundary layer separates. The motion of 
the shock wave seems to be correlated with the upstream pressure fluctuations. Also, 
high levels of wall- pressure fluctuations are observed in the vicinity of the shock. 

The importance of bulk compression in the evolution of the turbulence across the 
shock was noted by Bradshaw (1974), Dussauge & Gaviglio (1981) and Debieve, 
Gouin & Gaviglio (1982). Anisotropy of the upstream turbulence was identified as 
a significant factor by Jacquin, Blin & Geffroy (1991) and Mahesh, Lele & Moin 
(1993). The role of upstream acoustic waves was studied by Mahesh et al. (1995). By 
comparison, the role of entropy fluctuations in shock wave/boundary layer interaction 
seems to be under-appreciated. For example, Smits & Muck (1987) suggest that the 
primary mechanism of turbulence amplification in compression-corner flow is inviscid 
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bulk compression. The adverse pressure gradient, concave streamline curvature, and 
mean compression downstream of the corner are found to further enhance turbulence 
levels. Also, unsteadiness of the shock front is identified as becoming important 
across strong shocks. 

No mention is made of the likely influence that upstream entropy fluctuations 
would have on the evolution of the turbulence. Morkovin's (1961) hypothesis, 

-=-= = (y-l)M--, (U) 

suggests that in addition to being correlated, the intensity of the vortical field and en- 
tropy fluctuations in a constant-pressure boundary layer are of comparable magnitude 
Experimental data (Bradshaw 1977) support the above hypothesis. Also, measure- 
ments (Fernholz & Finley 1981) show that p^/p in a constant-pressure boundary 
layer can have values as high as 5% - 10%. This suggests that entropy fluctuations 
might play an important role in the shock wave/boundary layer interaction. 

Past analytical work (Morkovin I960; Chang 1957; Cuadra 1968) has examined 
the mteraction of plane entropy waves with a shock. These studies emphasize the 
pressure field that is produced through the interaction. Morkovin's one-dimensional 
analysis shows that the pressure fluctuations generated behind a detached shock 
are quite intense, and may affect the transition of the boundary layer on the body 
Cuadra's parametric study demonstrates that entropy fluctuations in shear flows can 
generate noise levels comparable to those generated by vortical fluctuations Rapid 
distortion theory was used by Goldstein (1979) to examine the influence of upstream 
entropy fluctuations on turbulence passing through a wind-tunnel contractioa His 
analysis showed that the entropy fluctuations produced turbulence, whose magnitude 
increased more rapidly with contraction ratio than that of the upstream imposed 
turbulence. With the exception of Hesselink & Sturtevant's (1988) experiments, it 
appears that the interaction of a turbulent field of entropy fluctuations with a shock 
wave has not been examined. Also, Hesselink & Sturtevant were interested in the 
some boom problem. As a result, their study emphasized the evolution of the shock 
front, and restricted the shock strength to Mach 1.1. 

This paper studies the interaction of a normal shock with a turbulent field of 
vorticity and entropy fluctuations. Direct numerical simulation (DNS) and inviscid 
hnear analysis are used for this purpose. The focus is on the influence of the upstream 
entropy fluctuations. Shock waves of strength Mach L29 and Mach 1.8 are computed 
using DNS, while the linear analysis considers a range of Mach numbers from 1 to 
3. The paper is organized as follows. A description of the problem is prdvided in §2 
Some details of the DNS and linear analysis are also summarized. Section 3 discusses 
the results and provides an explanation for the role of entropy fluctuations. Also a 
scaling law for the evolution of vorticity fluctuations across the shock is derived. The 
paper is then concluded with a brief summary in §4. 

2. Description of the problem 
Direct numerical simulation and linear analysis are used to study the interaction 

of a normal shock wave with turbulence. The turbulent velocity field upstream of the 
shock wave is isotropic, and the mean flow is uniform. Also, the upstream turbulence 
essentially comprises a vortical velocity field and entropic thermodynamic field. This 
composition is exactly enforced within the linear analysis, and is only approximately 
satisfied m the DNS. The upstream thermodynamic field in the DNS approximately 
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FIGURE 1. Schematic of the numerical simulation. 

satisfies the weak form of Morkovin's hypothesis. The analysis considers two different 
spectra for the upstream thermodynamic field: one that satisfies the strong form 
of Morkovin's hypothesis (axisymmetric), and the other that is isotropic. Note that 
vlT is negative if Morkovin's hypothesis holds upstream of the shock wave. For the 
isotropic upstream thermodynamic field, the analysis considers two possibilities: one 
where vlT is negative, and the other where it is positive. 

Section 2.1 outlines the relevant details of the DNS. The inflow and outflow 
boundary conditions are emphasized. A brief description of the linear analysis is then 
provided in §2.2 

2.1. Details of the direct numerical simulation 
A schematic of the computed flow is shown in figure 1. Note that the shock wave is 
stationary in the mean. The governing equations are the unsteady three-dimensional 
compressible Navier-Stokes equations in the following conservative, non-dimensional 
form: 

dt 

dp 
dt 

(p«i) = - 

di     ^ 

dEt 

dt 

^+*>+!*. 

.-^K+iW-f**^ 
The viscous stress tensor and heat flux vector are given by 

_jt_fduiduj     2duk    \ 

?.= 
H   8T 

(2.1a) 

(2.1b) 

(2.1c) 

(22a) 

(22b) RePrdXi' 

The variable Et denotes the total energy, defined as Et - p/(y-i)+pu(Ui/Z Note that 
the mean sound speed, density and dynamic viscosity at the inflow of the domain are 
used to non-dimensionalize velocity, density and viscosity respectively. The reference 
lengthscale Lr is related to the other reference variables by Re = pr^U/fr. The fluid 
is assumed to be an ideal gas with 1.4 as the ratio of specific heats. The dynamic 
viscosity is related to the temperature by a power law with 0.76 being the exponent, 
and the Prandtl number is assigned a constant value of 0.7. 

The computational mesh is uniform in the directions transverse to the shock wave. 
A non-uniform mesh is used in the streamwise direction, such that points are clustered 
in the vicinity of the shock. The following analytical mapping is used for this purpose. 
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Using the variable s to denote a uniform mesh from 0 to lx, the non-uniform mesh 
is given by 

'cosh b{s - 3c/2) cosh bc/2' 
cosh b(s — c/2) cosh 3bc/2 

■^x . r — d. (2.3) cosh b(l - 3c/2) cosh bc/2 
cosh 6(1 - c/2) cosh 3fcc/2_ 

Values of b,r,d and c used in the Mach 1.29 simulations are 12, 1.95, 0.04 and 
0.281 respectively. The Mach 1.8 computation uses values of 12,1.95, 0.02 and 0.283 
respectively. 

A combination of the sixth-order Pade scheme (Lele 1992) and the sixth-order ENO 
scheme (Shu & Osher 1988,1989) is used to compute spatial derivatives. The shock- 
capturing scheme (ENO) uses the global Lax-Friedrichs flux splitting. The degeneracy 
in the base form of the ENO scheme is removed (Shu 1990) by biasing the adaptive 
choice of stencil towards central differences. Also, the shock-capturing scheme is 
applied only in the streamwise (shock-normal) direction in the vicinity of the shock 
wave. The sixth-order Pade scheme is therefore used to compute all spatial derivatives 
except the streamwise inviscid fluxes around the shock: the ENO scheme is used to 
compute those terms. Time advancement is performed using the compact-storage 
third-order Runge-Kutta scheme (Wray 1986). Since the turbulence is statistically 
homogeneous transverse to the shock wave, periodic boundary conditions are imposed 
in those directions. Turbulent fluctuations are superposed onto the mean field at the 
inflow boundary while non-reflecting boundary conditions are specified at the exit 
through use of a 'sponge' zone. Details of the inflow and outflow boundary conditions 
are provided below. The Mach 1.29 simulations are used for illustration; the same 
procedure was followed for the Mach 1.8 computation. 

2.1.1. Inflow turbulence 

Since the flow upstream of the shock wave is supersonic, all the flow variables 
are specified at the inflow boundary. Turbulent fluctuations in velocity, density 
and pressure are superposed on the uniform mean flow. The turbulence upstream 
of the shock wave is required to have an isotropic velocity field. When entropy 
fluctuations are present, the upstream velocity-temperature correlation is required to 
be similar to that found in adiabatic boundary layers, i.e. J^r is required to be nearly 
—1. The correlation between the velocity and temperature (entropy) fluctuations in 
turbulent boundary layers is a consequence of the turbulent velocity field»stirring the 
mean temperature (entropy) gradients to produce temperature (entropy) .fluctuations. 
However, due to the absence of a mean temperature gradient upstream of the 
shock in the computation, there is no mechanism to sustain a negative velocity- 
temperature correlation. This may be anticipated from the independence of the 
velocity and entropy fluctuations in the linear inviscid limit for uniform mean flow. 
The following procedure is therefore used to generate the desired upstream turbulence 
in the computations. 

The turbulent fluctuations are obtained from a separate temporal simulation of 
isotropic, decaying turbulence. The temporal simulation (which'has periodic boundary 
conditions in all three directions) is advanced in time until the flow field is well- 
developed, i.e. the velocity derivative skewness Sa = {dWx/dxay/[(du,

a/dxap]3'2 attains 
(Tavoularis, Bennett & Corrsin 1978; Erlebacher et al. 1992) a value between -0.4 
and -0.6. Typically, this happens after a time t ~ A/iw Taylor's hypothesis is 
then invoked, and a single realization of the developed field is converted through 
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the inflow plane of the spatial simulation. Details of this procedure are described 
by Mahesh, Lele & Moin (1996). Note that Lee, Lele & Moin (1992) have shown 
the validity of Taylor's hypothesis in isotropic compressible turbulence for fluctuation 
Mach number Mt = {q2)m/c, and turbulence intensity u^/U as high as 0.5 and 0.15 
respectively. As shown in table 1, the turbulence at the inflow is within these limits. 

The simulations with the shock wave compare two different cases at each Mach 
number. The two cases differ in the nature of the turbulence upstream of the shock 
wave. While the upstream turbulence in one case (case A) is composed of vortical 
fluctuations, a combination of voracity and entropy fluctuations is present in the 
other (case B). The upstream entropy field in case B is required to approximately 
satisfy the weak form of Morkovin's hypothesis, i.e. (1.1) is satisfied in the r.ms. sense. 
Also, the inflow spectra and r.m.s. levels of velocity in both cases are required to 
essentially be the same. The same temporal simulation is therefore used to generate 
the inflow turbulence in the two cases. 

This is done as follows. A temporal simulation of isotropic turbulence is first 
conducted. The initial velocity field is solenoidal with energy spectrum E(k) ~ 
fc4e-2fc2/*o, and the initial thermodynamic fluctuations are set to zero. The simulation 
is advanced in time until the velocity derivative skewness attains its developed value. 
An instantaneous flow field is then taken. The thermodynamic fluctuations in this 
field are nearly isentropic. To generate a realistic turbulent field of vorticity and 
entropy fluctuations, the following procedure is carried out The pressure fluctuations 
in the stored flow field are set to zero while density fluctuations that satisfy p'/p = 
(y — l)Af^atM

,/üjpat are specified! (the subscript spat denotes spatial). This modified 
field is then advanced in time. Statistics from the simulation are compared to a 
parallel simulation, where the same field without the above modifications is advanced 
for the same length of time. 

As expected from Kovasznay's (1955) modal decomposition, the entropy fluctua- 
tions that are introduced do not significantly influence the evolution of the velocity 
fluctuations. After a brief acoustic transient (r ~ hltX/u^), the decay rate of 
turbulence kinetic energy, and the velocity derivative skewness match those in the 
simulation without entropy fluctuations. However as expected, the solution deviates 
from Morkovin's hypothesis as it evolves in time. To ensure that the weak formulation 
of the hypothesis is approximately satisfied by the turbulence upstream of the shock, 
an instantaneous realization is taken immediately after the acoustic transient, and 
used to specify inflow turbulence in case B. A realization at exactly the same instant 
of time is taken from the temporal simulation without entropy fluctuations and used 
to specify inflow turbulence in case A. •*;.; 

Figures 2 and 3 present results from the temporal simulation used to generate 
inflow turbulence in the Mach 129 simulations. Note that the solution at the end 
of the temporal simulation is used to generate the turbulence upstream of the shock 
wave. The initial temporal velocity field is chosen to have fluctuation Mach number 
M = (q2)l/2/c - 0.22 and microscale Reynolds number Rx = iwl/v = 39.5. A 
uniform mesh of 813 points is used on a domain of length 2n in all three directions. 
The solution is advanced for time t — \.5Zxt, where tt is a turbulence time scale 
defined as the ratio of A to «„„ at t = 0. As shown in figure 2, the velocity derivative 
skewness has attained a value of-0.48 by this time. Also, Mt and Rx have dropped to 
0.16 and 22.8 respectively. Entropy fluctuations are then introduced, and the solution 

t If these entropy fluctuations were specified at t — 0, R*r would drop to very small levels by 
the time the turbulence is well-developed. 
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FIGURE 2. Temporal evolution of the velocity derivative skewness in the temporal decay of 
isotropic turbulence: , without entropy fluctuations; , with entropy fluctuations. 
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FIGURE 3. Temporal evolution of r.m.s values of terms in Morkovin's hypothesis in the temporal 
decay of «otropic turbulence: , Pm/p., —- , Trms/T; , [y - 1]M* «w/C 

is advanced in time. At the end of the simulation, the skewness has reattained its 
developed value (figure 2), and the weak form of the hypothesis is approximately 
satisfied; p^ftT^/T and (y - W^u^/U^ have values of 0.043, 0.043 and 
0.044 respectively. By comparison, Prms/yp is 0.01. Also, M„ Rx and'C/üW have 
values of 0.14, 20.6 and 0.085 respectively «U and^ denote the r.ml dültati^n 
and vortiaty respectively). The solution is therefore considered to be dominated 
by vorücity and entropy fluctuations that approximately satisfy the weak form of 
Morkovin's hypothesis. 

The solution at the end of the calculations shown in figures 2 and 3 is used 
to specify inflow turbulence in the Mach 1.29 spatial simulations. The relevant 
parameters of the inflow turbulence are listed in table 1. The fidelity of the temporal 
simulations was checked by examining the energy spectra and two-point correlations 
ol the fluctuations. One-dimensional spectra of the velocity field show very good 
agreement between the two cases, A and B. The spectra show about five decades of 
drop-off, indicating adequate resolution. Also, two-point correlations of the velocity 
and density field drop off to zero, indicating adequate size of computational domain 
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2.1.2. Outflow boundary conditions 
Approximately non-reflecting boundary conditions are specified at the subsonic 

outflow boundary. The boundary conditions comprise a 'sponge layer' in the stream- 
wise direction, followed by a characteristics-based boundary condition (Poinsot & Lele 
1992) at the outflow plane. Boundary conditions involving a sponge layer have been 
used in the past in a variety of problems: e.g. Israeli & Orszag (1981), Givoli (1991), 
Colonius, Moin & Lele (1995). The boundary conditions with a sponge were shown to 
yield significantly better results than boundary conditions without the sponge layer. 

The governing equations in the 'sponge layer' are modified, such that the solution in 
the layer is gently damped to a reference solution. A term of the form —a(U— U„f) is 
added to the right-hand side of governing equations over the sponge layer alone. U„f 
denotes the vector of reference variables towards which the solution in the sponge 
layer is forced. It is obtained from the Rankine-Hugoniot equations for a laminar 
shock. The coefficient a(x) is a polynomial function; i.e. 

**-*£=& (14) 

where x* and Lx denote the start of the sponge and the length of the domain 
respectively. Values of As, n and (Lx — xs)/Lx used in our simulations are 5, 3 and 
0.14 respectively. 

The outflow boundary conditions are evaluated below. The interaction of the Mach 
1.29 shock with a plane vorticity-entropy wave (45° incidence angle) is computed. Lin- 
ear analysis predicts that the incident wave would generate downstream-propagating 
acoustic, vorticity and entropy waves behind the shock. The ability of the boundary 
conditions to allow these waves to smoothly exit the domain is thus tested. The 
mean flow parameters, domain length in the x-direction, and grid in the x-direction 
are matched to those in the turbulent simulation. The wavenumber of the upstream 
disturbance is set equal to the wavenumber at which the energy spectrum of the 
upstream turbulence peaks. The rjn.s. level of the upstream disturbance is matched 
to that of the upstream turbulence. The extent of the domain in y is set equal to one 
wavelength of the upstream disturbance, and a grid of 231 by 16 points is used to 
discretize the flow. The disturbance at the inflow boundary is given by the real part of 
(A lc-e) (see the Appendix) where the variables k, ipi,Av and Ae are set equal to 5,45°, 
0.05 and 0.05 respectively. The computation is initialized by a numerically computed,, 
steady laminar shock. The disturbance is then introduced at the inflow boundary. 
Statistics are gathered over each period of the inflow disturbance, after one'domain 
flow-through time has passed. The statistics from successive periods are compared to 
check if initial transients persist After a time U\t/Lx = 3.5, the transient effects are 
found negligible and the statistics have converged. 

To evaluate the outflow boundary conditions, the same flow is computed on a 
domain twice as long behind the shock wave. 1100 points are used in the streamwise 
direction. The resulting resolution is greater than that in the shorter domain. Statistics 
from the two simulations are then compared to each other and'to linear analysis. 
Figure 4 shows the streamwise evolution of the averaged kinetic energy, vorticity and 
density in the two computations. Only the *useful region' (Lx — xs) of the shorter 
domain is shown. Good agreement between the two computations is observed, 
indicating that the non-reflecting nature of the sponge region is acceptable. Some 
influence of the sponge region (maximum value about 3.5%) on the statistics of vf1 

and pf1 is observed immediately upstream of the sponge. 
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FIGURE 4. Spatial evolution of statistics from a computation of the interaction of a Mach 1.29 
shock wave with a plane vortidty-entropy wave. Results from short and long domains are both 
mdicated as follows: —   «*/«£; , v'2/qi;  , «*/«L2; , (^/piVtö/ü2). 
The subscript m denotes inflow. 

The spatial evolution of the statistics is not compared to inviscid linear analysis 
owing to significant viscous decay in the computation. However, the amplification of 
statistics immediately across the shock wave is compared to analyskThe comparison 
shows that the error (computed with respect to analysis) in i/2,v*,a?* and p^ is 
0.8%, 1.6%, 0.8% and 0.5% respectively. Linear analysis shows that only waves 
whose incidence angle is less than a critical incidence angle generate downstream- 
propagating disturbances behind the shock. Evanescent waves are generated at 
higher angles of incidence. In computing shock/turbulence interaction, the fraction 
of incident waves that generate these downstream-propagating disturbances poses the 
primary challenge to outflow boundary conditions. The performance of the outflow 
boundary for the incidence angle of 45° suggests that the boundary conditions are 
quite adequate for the turbulent simulations. 

In evaluating the outflow boundary conditions, it was mentioned that the stream- 
wise grid was the same as that used in the turbulent simulation. This streamwise 
grid is chosen as follows. The shock-capturing scheme is used to compute the cor- 
responding steady laminar shock, and the solution is evaluated. The ENO schemes 
are known (Meadows, Caughy & Casper 1993; Woodward & Collela 1984;" Roberts 
1990; Lindquist & Giles 1991) to produce spurious entropy oscillations when applied 
to slowly moving shock waves. In contrast to'*standard central differences, these 
oscillations are bounded; they do not cause instability. The spurious oscillations in 
density and temperature are typically the largest, those in velocity and pressure are 
much smaller. To compute shock/turbulence interaction, we require that the ampli- 
tude of these spurious oscillations be small compared to the physical fluctuations. 
The amplitude of these spurious oscillations can be reduced by increasing the shock 
speed relative to the mesh (Meadows et al. 1993), or by refining the mesh (for a 
viscous computation). The shock is stationary in the mean in our computations. 
The shock speed with respect to the grid is therefore determined entirely by the 
upstream disturbances. We therefore use the shock-capturing scheme to compute the 
corresponding laminar shock, and refine the mesh until the spurious oscillations are 
acceptably smalL For example, the mesh used in our Mach 1.29 computations yields 
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spurious density oscillations that are 0.03% of the mean density behind the Mach 129 
shock (the spurious oscillations in temperature, velocity and pressure are smaller). 
Table 1 shows that the upstream intensity of density fluctuations in the turbulent 
simulations is greater than 1.2%. The above level of spurious oscillations generated 
by the shock-capturing scheme is therefore considered acceptable. This streamwise 
grid is then used to perform the computations. 

2.1.3. Simulations performed 
The relevant parameters of the numerical simulations are given in table 1. Note 

that the values at the inflow are quoted. Essentially, the simulations consider the 
interaction of low-Reynolds-number turbulence with shock waves of strengths equal 
to Mach 1.29 and Mach 1.8. Note that one of the cases (free-stream Mach number 
2.9, wedge angle 8°) in the compression-corner experiments of Smits & Muck (1987) 
yields a normal Mach number of 1.29 if one assumes that the entire flow is turned 
across a single shock. Also, only one simulation (with upstream entropy fluctuations) 
is performed for the Mach 1.8 shock. In §2.1 it was noted that the shock-capturing 
scheme was only applied in the streamwise direction for the Mach 1.29 shock wave. 
However, applying the shock-capturing scheme in only the streamwise direction set 
up unstable oscillations for the Mach 1.8 shock. As a result, the shock-capturing 
scheme was applied in all three directions in the immediate vicinity of the shock for 
the Mach 1.8 shock wave. 

2.2. Linear analysis 
Details of the linear analysis are provided in the Appendix. Essentially, the lin- 
earized Euler equations are used to study the interaction between the upstream 
turbulence and the shock wave, which is modelled as a discontinuity. The up- 
stream turbulence (being homogeneous) is represented as a superposition of Fourier 
modes (plane waves), each of which independently interacts with the shock. The 
analysis is therefore initiated by considering the interaction of a single plane wave 
with the shock. Workers such as Ribner (1953, 1954) and Chang (1957) have 
developed the procedure to obtain the disturbance field behind the shock and 
the distortion of the shock front Other references to work using linear analy- 
sis are provided by Mahesh et al. (1995). This solution is then integrated over 
all the incident waves to obtain a statistical description of the turbulence behind 
the shock wave. The turbulence statistics thus obtained are functions of*the "dis- 
tance-behind the shock wave, the Mach number of the shock, and Jhe incident 
velocity and density spectra. In presenting results ^rpm the linear analysis, this 
paper will occasionally refer to the variables Ar and <f>r. Essentially, Ar repre- 
sents the amplitude of the upstream density field, and <pr represents the sign of 
the upstream velocity-temperature correlation. If <j>r ■= 0, «T is negative up- 
stream of the shock wave; <f>r = 180° implies that utT is positive upstream of the 
shock. 

3. Results 
Turbulence statistics in the simulation are computed by averaging over time and 

the y- and z-directions. The ratios of mean velocity, temperature and pressure 
across the shock wave are very nearly equal to their corresponding laminar values 
(Mahesh et al. 1996). A small overshoot in pressure and temperature is observed 
immediately downstream of the shock. The mean velocity exhibits a corresponding 
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Case 1.29A Case 1.29B Case 1.8 
Mi               1.29 1.29 1.8 
R>.             19.1 19.1 19.5 
Mt _         0.14 0.14 0.18 

(?2)1/2/I/i          0.11 0.11 0.10 
/W/£T           0.012 0.042 0.076 
Trn/Tx           0.0042 0.041 0.076 
Prms/ypi           0.011 0.010 0.018 

rfT'/u^Tn,    -0.06 -0.84 -0.85 
(NX,N„N:)   (231,81,81) (231,81,81) (231,81,81) 

TABLE 1. Parameters in the simulations performed. 

undershoot, following which it remains practically constant. However, mean pressure 
and temperature exhibit a small positive gradient behind the shock wave. The 
presence of upstream entropy fluctuations has no noticeable effect on the mean flow 
behind the shock. Entropy fluctuations do however influence the thickness of the 
shock wave as inferred from the mean flow profiles. The 'mean shock thickness' is 
larger in the presence of entropy fluctuations; Le. the mean gradients in the vicinity 
of the shock are smaller. Given that the 'mean shock thickness' reflects the amplitude 
of shock oscillation, this indicates an increase in shock motion when the upstream 
fluctuations satisfy Morkovin's hypothesis. 

The following sections present results for the evolution of the turbulence across 
the shock. The results from the DNS and linear analysis are compared. In §3.1 the 
evolution of the turbulence kinetic energy across the shock are discussed. The influence 
of the shock on the vorticity fluctuations is considered in §3.2. This is followed in 
§3.3 by a physical argument for the role of the upstream entropy fluctuations. In §3.4 
a scaling for the amount of vorticity produced by the upstream entropy fluctuations 
is derived. Then in §3.5 the evolution of the thermodynamic fluctuations and the 
validity of Morkovin's hypothesis across the shock are discussed. 

3.1. Turbulence kinetic energy 
The presence of upstream entropy fluctuations has a noticeable effect on the evolution 
of turbulence kinetic energy across the shock wave. Figures 5 and 6 show the 
stteamwise evolution of turbulence kinetic energy in cases 129 A and 1.29B. Note that 
v'2 = w'2 behind the shock. The intermittency associated with shock oscillation is 
seen to cause high fluctuation levels in the vicinity of the shock (Debieve & Lacharme 
1986; Lee et al 1992). The width of this intermittent region (denoted by 5^) nearly 
equals the 'mean shock thickness'. Using the mean velocity profile to determine its 
value, kosher is approximately 0.3 and 0.4 in cases 1.29A and U9B respectivelyf . 
We focus our attention on the evolution of kinetic energy outside this intermittent 
region in the following paragraphs. 

As shown in figure 6, kinetic energy levels behind the shock wave are noticeably 
higher m case 1.29B. The streamwise component is affected_more than the transverse 
components. Comparison of the peak in the profile of vt2 (at Jfcox = 14) reveals 
20% higher levels in case 1.29B. Comparison of v'2 at the same location shows 

t The smallest mesh spacing is in the vicinity of the shock, and is equal to 0.02/fco in both 
simulations. Also, the shock-capturing scheme is applied over a width equal to 1.8/fc, on either side 
of the mean shock. . 
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FIGURE 5. Turbulence kinetic energy from DNS of the Mach 1.29 shock wave. All the curves are 
normalized by their value immediately upstream of the shock (kox = 8.97): , vt1, case 1.29A; 
 , xf1, case 1.29A; •, W2, case 1.29B; *, t/z, case 129B. 
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FIGURE 6. Evolution of turbulence kinetic energy behind a Mach 129 shock wave as predicted by 
linear analysis. All the curves are normalized by their value immediately upstream of the shock: 
 , a*2, without entropy fluctuations; , tfz, without entropy fluctuations; •«.oi'-.-with 
entropy fluctuations; * , rfz, with entropy fluctuations. 

the level of enhancement to be a modest 7%. This enhancement in the presence 
of entropy fluctuations is predicted by linear analysis. Note that quantitative com- 
parison of turbulence kinetic energy between analysis and DNS is made difficult 
by the viscous decay in the simulations. If the peak levels of kinetic energy be- 
hind the shock wave are compared, the linear analysis predictions are seen to be 
higher. As seen from figure 6, the amplification of u?2 as predicted by linear analysis 
is 1.47 and 1.95 in the absence and presence of entropy fluctuations (that satisfy 
Morkovin's hypothesis) respectively. Corresponding values for v/1 are predicted to 
be 1.22 and 1.32 respectively. Thus linear analysis predicts that the upstream en- 
tropy fluctuations would enhance the amplification of u!1 by 33%, and that of v'2 by 
about 8%. 
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FIGURE 7. Turbulence kinetic energy from DNS of the Mach 1.8 shock wave. Both the curves are 
normalized by their value immediately upstream of the shock. • ,tt*;* ,v*. 
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FIGURE 8. Evolution of turbulence kinetic energy behind a Mach 1.8 shock wave as predicted by 
linear analysis. All the curves are normalized by their value immediately upstream of the shock: 

, if2, without entropy fluctuations; , vf1, without entropy fluctuations; • , a* with 
entropy fluctuations; * , tfz, with entropy fluctuations. 
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Figures 7 and 8 show the evolution of turbulence kinetic energy across the Mach 
1.8 shock wave. The amplification levels are noticeably higher than those across the 
Mach L29 shock. Using values measured at k>x = 13.4 (the location behind the shock 
where i/2 is maximum) uf2 and o'2 are seen to amplify by 2.25 and 1.61 respectively. 
These levels are lower than predicted by linear analysis, where Morkovin's hypothesis 
is assumed to exactly hold upstream of the shock. The predicted (far-field) values 
of kinetic energy amplification are 3.44 and 2.2 respectively. Linear analysispredicts 
that the upstream entropy fluctuations would enhance the amplification of i/z and ö3 

by 110% and 40% respectively across a Mach 1.8 shock. 
Note that MT' is negative if Morkovin's hypothesis is valid. Linear analysis 

shows that the sign of the correlation between the upstream velocity and entropy 
fields is of considerable importance.  If the upstream correlation between vt and 
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FIGURE 9. (a) i/2 and {b) xf1 in the far field of the shock wave as predicted by linear analysis. All 
the curves are normalized by their upstream values. —— , pure voracity; — , Morkovin's 
hypothesis satisfied upstream;  , Ar = 0.54,tf>r = 0"; , AT = 0.54,<f>r = 180". 

7" is negative, then the upstream entropy fluctuations are seen to enhance kinetic 
energy amplification. This is the trend seen in the DNS. However, if ÜT7 is positive 
upstream of the shock, the amplification of kinetic energy is strongly suppressed. 
Practical situations where this might occur include strongly cooled boundary layers, 
and mixing layers where the mean velocity and density gradients are of opposite sign. 
This influence of entropy fluctuations increases with increasing Mach number. Figures 
9(ö) and 9(&) show linear analysis predictions of kinetic energy amplification in the 
far field of the shock wave. If Morkovin's hypothesis is assumed to hold upstream, 
the amplification of u'2 is predicted to be enhanced by more than 100% for Mach 
numbers exceeding about 1.8. The primary reason for this increase in enhancement 
with increasing Mach number is that iPrms/p)/(9rms/U) increases with Mach number 
if Morkovin's hypothesis is satisfied upstream of the shock wave. 

3.2. Vorticity fluctuations 
All components of vorticity are affected by the upstream entropy fluctuations. As 
shown in figure 10(a), the levels of vorticity fluctuations behind the shock wave are 
higher in case 1.29B. The amplification of <a'^ is seen to increase by 8.7% when 
entropy fluctuations are present upstream of the shock. This increase is qualitatively 
predicted by linear analysis. The increase in amplification predicted by analysis is 
much higher - about 19.4%. The primary reason for this difference between«aaalysis,. 
and DNS is believed to be the strict imposition of Morkovin's hypothesis upstream 
of the shock in the analysis. Owing to the absence of mean temperature gradients, 
the upstream fluctuations in the simulation only approximately satisfy Morkovin's 
hypothesis (table 1). Support for this reasoning is provided by the fact that the 
vorticity amplification in case 1.29A is within 6.3% of analysis while the deviation in 
case L29B is about 16.2%. 

Linear analysis predicts the transverse vorticity components to amplify across the 
shock wave, and remain constant downstream. The streamwise vorticity component 
is predicted to remain constant across and downstream of the shodk. DNS shows that 
the streamwise vorticity component does indeed remain constant across the shock. 
However, it increases immediately downstream of the shock wave. In fact, the peak 
level of <o'j2 behind the shock wave in case 129B is about 7.1% greater than its 
upstream value. Lee et al. (1992) noted for vortical upstream turbulence that this 
behaviour is nonlinear in nature; it is caused by the stretching of vorticity fluctuations 
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FIGURE 10. Streamwise evolution of voracity fluctuations from DNS of (a) the Mach 129 shock 
wave and {b) the Mach 1.8 shock wave. All the curves are normalized by their value immediately 
upstream of thejhock fox = 8.97). (a)j- -^uf, case 1.29A; , «Ja, case 1.29A; • , Sj1, 
case U9B; * , w'z
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by the fluctuating strain rate. In the presence of upstream entropy fluctuations, it 
is likely that nonlinear baroclinic effects might provide an additional contribution. 
This downstream rise in co[2 is noticeably higher behind the Mach 1.8 shock. As 
shown in figure 10(6), the peak level of co\2 behind the Mach 1.8 shock is about twice 
its upstream value. By comparison, Lee et al.'s results (in the absence of upstream 
entropy fluctuations) show that co[2 behind a Mach 2 shock is about 1.5 times its 
upstream value. The inability to predict this rise in cöp behind the shock wave is 
probably the most serious limitation of the linear analysis. Also, it is interesting to 
note (figures 7 and 10(b)) that the vorticity fluctuations in the DNS approach isotropy 
more rapidly than the velocity fluctuations. This is consistent with the notion that 
the small scales would return to isotropy more rapidly than the larger scales. Linear 
analysis is used to determine the influence of mean Mach number on the amplification 
of the transverse vorticity fluctuations in figure 11. As observed with the turbulence 
kinetic energy, negative upstream vtT is seen to enhance the amplification of vorticity 
fluctuations, while positive correlation is seen to suppress it 

3.3. A simple explanation 

An explanation is provided here for the influence of entropy fluctuations on the 
evolution of a turbulent flow across a shock wave. Note that HayesMi9S7) results 
(equation (30) in his paper) for the jump in vorticity across an unsteady shock wave 
require the unsteady evolution of the shock frontsto be known accurately enough that 
derivatives normal and tangent to the front may be obtained This is quite difficult to 
obtain from a computation where the shock wave is 'captured' in the Navier-Stokes 
equations. It is therefore not possible to use Hayes' results to interpret the DNS. 
Consider the following idealization of the mean field associated with the shock: 

U = U(x),    p = p(x),     p=p(x). (3.1) 

Linearizing the Euler equations about the above mean flow yields the following 
governing equations for the vorticity fluctuations (denoted by co'): 

M+Uco'x^-co'Ux-^px + ^px. (3-2) 
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FIGURE 11. Amplification of wf
2
z = a>'* across the shock wave as predicted by linear analysis. 

Pure voracity; , Morkovin's hypothesis satisfied upstream; ,Ar = 0.54,0,. = 0°; 
4-= 0.54,6-=180°. 

Note that although irrotational acoustic fluctuations are generated at the shock, 
their contribution to the downstream kinetic energy is not significant; linear analysis 
(Mahesh et al. 1996) shows that vortical fluctuations account for about 99% of 
the turbulence kinetic energy behind the shock wave. Equation (3.2) represents the 
effects of bulk change on the evolution of vorticity fluctuations across the shock. 
Linear effects due to shock distortion are absent Also, the effects of shock curvature 
(Hayes 1957) are ignored. As a result of these assumptions, the relations obtained are 
expected to function more as scaling laws than predictive formulae. 

If the incident disturbance comprises vorticity and entropy fluctuations, then p1 = 0 
in the incident field and hence 

a>'t + Ua>'x = -co'Ux-^px. (33) 

The term —co'Ux represents the effect of bulk compression. The drop in mean velocity 
across the shock wave indicates that this term would enhance the incident vorticity 
fluctuations. The incident entropy fluctuations produce vorticity at the shock wave 
through the baroclinic term. The baroclinic contribution can enhance or oppose the 
effect of bulk compression. The phase difference between the upstream vorticity and 
entropy waves determines whether enhancement or opposition is observed. 

Consider for example the plane vortidty-entropywave represented by (A lc-e). It 
is easily shown that 

m'Ux -zßpx~A, „UUt-Atfe. (3.4) 

Since Ux is negative and p~x is positive across a shock wave, the two sources of 
vorticity are of the same sign if At and Av are of the same sign. They oppose each 
other if At and A„ are of opposite sign. Thus if i/ and T' are negatively correlated, the 
entropy field enhances the amplification of fluctuating vorticity. On the other hand, a 
positive correlation between t/ and V suppresses the amplification of vorticity across 
the shock wave. 

Further insight is gained from a schematic illustration of this effect Figure 12 shows 
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FIGURE 12 A spherical element of fluid passing through a shock wave. The effects of bulk 
compression and baroclinic vorticity production are shown, xi and T are negatively correlated 
upstream of the shock wave. 

a fluid element of circular cross-section passing through a shock wave. The geometric 
centre of this element is denoted by CF, while CM denotes the centre of mass. The 
disturbance field associated with the fluid element is that of a voracity-entropy wave. 
The element therefore exhibits solid-body rotation (with associated vorticity co') which 
is assumed positive in the direction shown. Also, the density gradient associated with 
the entropy wave causes the centre of mass to differ from the centre of force (the 
geometric centre). Note that CM is below CF if the correlation between t/ and V 
is negative. Bulk compression compresses the element in the streamwise direction 
thereby enhancing the rotation. In addition, the shock wave exerts a pressure force 
(associated with the adverse pressure gradient) that passes through CF. This pressure 
force would exert a torque about the centre of mass. This torque manifests itself as 
the baroclinic source of vorticity. Note that if C„ is below CF the baroclinic rotation 
is in the same direction as the rotation due to bulk compression. It is in the opposite 
direction if CM is above CF (positive correlation between ti and 7"). The upstream 
correlation between v£ and T thus determines the location of C„ with respect to 
CF, and thereby the relative sense of rotation that the baroclinic torque produces. 

3.4. Scaling of the evolution of vorticity across a shock wave" 

Equation (3.3) is used to derive approximate expressions for the evolution of vorticity 
fluctuations across the shock. The expressions are evaluated by comparing to the 
linear analysis predictions. Equation (3.3) is rewritten as 

Dt(Uco') = -&Upx 
Pz (3.5) 

where Df denotes the material derivative d/dt + Ud/dx. Using the relation px = 
—pUUx in the above equation yields 

Dt(Uco>)=^U2Ux = ^(U3)x P 3p (3.6) 
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FIGURE 13. (a) Unsealed and (b) scaled IUILS. voracity produced in the interaction of an entropy 
wave with a shock wave. (M, = 1.25), (Aft = 1.5), (AT, = 2), (Mi = 2.5). 

The shock wave is approximated as a discontinuity. (U3)x is expressed as A(lf3)5(x), 
where A(l/3) represents the difference in f/3 across the shock wave, and 8(x) denotes 
the Dirac delta function. An approximate solution to the above equation is obtained 
by setting p'y equal to its upstream value (see (A lc-e)). Transforming coordinates to 
xf — x — Ut,x = t and integrating yields the following expression for the change in 
vorticity across the shock wave: •»» - -   .... 

which yields 

„   ,    „   ,     ft/, Ul-Uj 
U2(o'2 - IWi ~ YA

<     'v     » 

, ^M      Tr  1-r3 

ca\ ~ ra>\ + — AtVi 

(3.7) 

(3.8) 3 r* 
where r = Ui/U2 is obtained from the Rankine-Hugoniot equations. Equation (3.8) 
suggests that incident vorticity fluctuations amplify by an amount equal to the mean 
density ratio. The vorticity produced by the incident entropy fluctuations is predicted 
to scale as L4eSinvi(l — r3)/^. 

These expressions are next compared to linear analysis. Figures 13(a) and 13(&) 
show the levels of vorticity produced when an entropy wave interacts with a shock. 
Mean Mach numbers from 1.25 to 2.5 are considered. Both unsealed and scaled 
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FIGURE 14. The intensities of thermodynamic fluctuations (a) from DNS and (b) as predicted 
by linear analysis, for case 1.29B. All variables are non- dimensionalized by the value of Pms/p 
immediately upstream of the shock wave (k„x = 8.97).     omt/ö-     T   IT   

values of rjn.s. vorticity behind the shock wave are plotted as a function of incidence 
angle. The proposed scaling seems to yield reasonable collapse of the curves in the 
propagating regime. The validity of the scaling for a turbulent field would depend 
upon the fraction of incident waves in the propagating regime. 

The interaction of a vorticity wave with a shock has been considered, and the 
scaling compared to linear analysis (Mahesh et cd. 1996). The scaling was less 
satisfactory: unsealed values ranging from 1 to 6 were collapsed to vary from 0.5 to 
1.4. The amplification of incident vorticity was very nearly equal to the mean density 
ratio for incidence angles near zero; however, a systematic deviation was seen with 
increasing incidence angle. This evolution of the vorticity waves is in agreement with 
Jacqum, Cambon & Blin (1993) who observe large discrepancies at the higher Mach 
numbers when the effect of shock distortion is not represented in the linear limit 

3.5. Thermodynamic fluctuations and Morkovin's hypothesis 
The thermodynamic fluctuations behind weak shock waves were noted by Lee, Lele 
& Moin (1994) to be nearly isentropic. The thermodynamic field in case 1.29A 
follows this trend, Le. Prmj/yp, Prms/p and Wfo - l)T are nearly equal over the 
entire domain: However, upstream entropy fluctuations were not present in Lee et 
al's computations. As might be expected, the downstream thennodynainic" field is 
not isentropic when upstream entropy fluctuations are present Figure- 14(a) shows 
the streamwise evolution of the pressure, density and temperature fluctuations in 
case 1.29B. The quantity (y - l)M2urms/U is also shown. This allows the weak 
form of Morkovin's hypothesis to be evaluated across the shock. The corresponding 
predictions made by linear analysis are shown in figure 14(&). 

Good qualitative agreement is observed between analysis and simulation. The 
intensity of pressure fluctuations in the near field is seen to be comparable to that 
of the density and temperature. However, the pressure fluctuations decay behind the 
shock wave, causing their far-field intensity to be smaller. Considerable deviation 
from Morkovin's hypothesis is observed in the near field behind the shock. The extent 
of deviation in the far field is seen to be smaller. The linear analysis predicts a larger 
deviation from the hypothesis in the far field than the DNS. Owing to viscous decay, 
the notion of far field is not as precise in the DNS as it is in the analysis. Linear 
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FIGURE IS. Theimodynamic fluctuations (a) from DNS and (b) as predicted by linear analysis, for 
case 1.8. All variables are non-dimensionalized by the value ofp„„/p immediately upstream of the 
shock wave. , pm/p; , T^/T,  , (y - l)M2urm/U; , pm/yp. 

analysis suggests (figure 14(b)) that the far-field values are attained at approximately 
kox = 17. If the weak form of Morkovin's hypothesis is evaluated at this location in 
the computation, it shows behaviour comparable to analysis. Interestingly however, 
the validity of the hypothesis in the DNS is seen to increase with distance downstream 
of this location. The exact cause of this trend is not known. Also, although the r.m.s 
values of the terms in the hypothesis approach each other behind the shock in the 
DNS, WV/unoTrna does not approach —1. It drops in magnitude across the shock, 
and decreases further in magnitude downstream, e.g. the correlation coefficient at 
kox - 20 is -0.54. 

A similar trend is observed in the Mach 1.8 computation. Morkovin's hypothesis 
is evaluated across the Mach 1.8 shock wave in figures 15(a) and 15(6) respectively. 
The far-field values in the analysis are attained at about kox = 15. Both analysis 
and DNS show considerable deviation from the hypothesis at this location. However, 
the intensities of the density and temperature fluctuations decay behind the shock 
wave in the DNS, resulting in increased validity of the hypothesis behind the shock. 
Interestingly, although p^/p, T^/T and (y - l)M2urm/U approach each other 
behind the shock, the intensity of the pressure fluctuations is not negligible. As seen 
in figure 15(a), prm/yf is nearly of the same magnitude as Tm/T at about^x = 40. 
Also, WT'/urnsTms does not approach —1. Its value at k^x = 20 is -^022, 

Linear analysis is used to examine the influence of mean Mach number on the 
validity of Morkovin's hypothesis across the shock wave. The incident fluctuations 
are constrained to satisfy the strict form of the hypothesis. The fluctuations in the far 
field are then examined to see if the hypothesis holds in the rjns. sense. The results 
(figure 16) show that the first part of the hypothesis, i.e. p^/p = T„„/T, is still a 
good approximation behind the shock wave (especially if Mi is less than about 2). 
However, the part of the hypothesis that relates T to vi exhibits large deviation with 
Mach number. This behaviour is explained below. 

The equation p'/p = —T'/T is obtained by setting // to zero in the linearized 
equation of state. It amounts to neglecting the acoustic mode in comparison to 
the entropy mode. As seen from (Aid), it holds exactly for the upstream turbu- 
lence. Upon interaction with the shock, the incident fields of voracity and entropy 
fluctuations generate acoustic waves. The generation of acoustic waves is however 
accompanied by amplification of the incident entropy fluctuations. Also, a fraction of 
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FIGURE 16  Evaluation of Morkovin's hypothesis in the far field of the shock wave using linear 
analysis. All the curves are non-dimensionalized by the upstream value of «™./U     a    In- 
 ,rTO/T;  ,(7-l)MWtf. ' 

the acoustic waves decays behind the shock. As a result, the acoustic contribution to 
the thermodynamic fluctuations in the far field is significant only at the larger Mach 
numbers. The first part of the weak form of Morkovin's hypothesis is therefore a 
good approximation behind shock waves of moderate strength. 

The relation 

y = -(y-l)M2£ (3-9) 

is obtained by assuming that stagnation temperature fluctuations are small in the 
linear limit. Denote the stagnation temperature by T0, 

To = T + T' ■+ (U + uff + v^ + w^ 
2C„ (3.10) 

where Cp denotes the specific heat at constant pressure. Linearizing the above 
equation yields the following expression for fluctuations in stagnation temperature: 
T0 = 7" + Uvl/Cp. Setting TQ to zero and rearranging yields (3.9). 

In the linear limit, fluctuations in stagnation temperature obey the relation, 
DT0/Dt = dpf/dt behind the shock wave (D/Dr denotes the material derivative based 
on the mean velocity). Decomposing the temperature field into acoustic and entropic 
components, and the velocity into acoustic and vortical components allows decompo- 
S"? ?! "V*?. V*"9** T<wsuch ** DT^/Dt - 0 and DT^/Dt - df/dt. 
Next, tue Rankme-Hugomot equations may be used to show that (3.9) cannot be 
valid behind a shock wave if it is assumed to hold upstream of the shock. The energy 
equation requires the stagnation temperature to be constant across the shock in a 
frame of reference that moves at the instantaneous speed of the shock wave, Le. 

T, + T(+ (Ui+^-^f + v'U^2    ^[r,|(t72 + t4-^)2 + »/2
2 + < 

2C„ *\ 2CP 
(3.11) 

Linearizing the above equation and constraining the incident fluctuations to satisfy 
(3.9) yields J 

V 4.E& -     & (TT      TT \ 
CP 

(3.12) 

i.e. the fluctuations of stagnation temperature are not zero immediately behind the 
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FIGURE 17. Decomposition of stagnation temperature fluctuations using linear analysis. All the 
curves are non-dimensionalized by the upstream value of Urm/U. , Far-field value; , 
contribution due to vorticity and entropy fluctuations; , near-field value. 

shock wave. Dividing through by T2 and rearranging, we get 

^+(7-l)Af|^-=-(y-l)M2 
l{%-1)*- (3.13) 

Thus, applicability of Morkovin's hypothesis immediately behind the shock wave 
requires that 

(?-l)M2 \U2      )a2 
0. (3.14) 

The r.ms. values of the near-field fax = 10) stagnation temperature are plotted 
in figure 17 as a function of the mean Mach number. The plotted values are 
seen to be comparable to the terms in Morkovin's hypothesis (figure 16). The 
hypothesis is therefore invalid immediately behind the shock wave. The above 
argument is next extended to show why the hypothesis does not hold in the far field. 
Decomposition of the stagnation temperature fluctuations into vorticity-entropy and 
acoustic components shows that both near- and far-field values of the stagnation 
temperature fluctuations are dominated by the vorticity-entropy component As 
shown in figure 17, the vorticity-entropy component is nearly equal to the total level 
in the far field, while its contribution to the near-field level is greater than 80% 
over the range of Mach numbers shown. Figure 17 and (3.13) therefore'show that 
appreciable levels of stagnation temperature fluctuations are generated immediately 
behind the shock wave due to oscillation of the shock front Most of these fluctuations 
arise from vorticity-entropy fluctuations, which convect downstream to generate an 
appreciable level of stagnation temperature fluctuations in the far field of the shock 
wave. This leads to inapplicability of Morkovin's hypothesis in the far field. 

4. Summary 
Direct numerical simulation and inviscid linear analysis were used to study the 

interaction of a normal shock wave with an isotropic turbulent field of vorticity 
and entropy fluctuations. Shock waves of strength Mach 129 and Mach 1.8 were 
computed using DNS, while the linear analysis considered a range of Mach numbers 
from 1 to 3. Our objective was to study the role of the upstream entropy fluctuations 
in the evolution of the turbulent flow across the shock. 
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The upstream entropy fluctuations were shown to significantly affect shock/turbu- 
lence interaction. The magnitude of the entropy fluctuations, and the sign of the 
upstream velocity-temperature correlation were both seen to be important. Higher 
levels of kinetic energy and vorticity amplification were observed across the shock 
when 1/ and V were negatively correlated upstream of the shock. Positive correlation 
had the opposite effect. An explanation was provided to explain these trends. The 
evolution of fluctuating vorticity across the shock wave was noted to have two impor- 
tant contributions: bulk compression of incident vorticity and baroclinic production 
of vorticity through the incident entropy fluctuations. The upstream correlation be- 
tween vorticity and entropy fluctuations was shown to determine whether these two 
sources of vorticity enhance or oppose each other, thereby determining kinetic energy 
levels behind the shock wave. A scaling was then proposed for the evolution of 
vorticity across the shock wave. Since Morkovin's hypothesis is known to apply in 
adiabatic turbulent boundary layers, the results suggest that the entropy fluctuations 
in the boundary layer would play a very significant role in the interaction between 
the boundary layer and a shock wave. 

The validity of Morkovin's hypothesis behind a shock was examined Linear 
analysis indicates that neglecting the acoustic mode is a good approximation in 
the far field of shock waves of moderate strength (Mi < 2). The part of the 
hypothesis relating 1/ and T was predicted to be invalid. Non-negligible osculation 
of the shock front was shown to be responsible. The thermodynamic fluctuations in 
the simulations followed linear analysis predictions immediately behind the shock 
Interestingly however, the terms in the weak form of the hypothesis approached each 
other as the solution decayed behind the shock. Despite this trend, the pressure 
fluctuations m the DNS were not negligible in the far field. Also, TFT did not 
approach -1. Its value in the far field was about -0.54 and -0.22 for the Mach 129 
and Mach 1.8 shock waves. 

This study was supported by the Air Force Office of Scientific Research under 
Grant 88-NA-322 and Contract F49620-92-J-0128 with Dr Leonidas Sakell as the 
technical monitor. The authors would also like to express their gratitude to NAS and 
NASA-Ames Research Center for the use of their computer facilities. 

Appendix ,►%... 

The linear analysis is summarized below. The interaction of a single vorticity- 
entropy wave with a shock is first considered in §Atf. The analysis is then extended 
m §A2 to describe the evolution of the turbulent field across the shock. 

Al. Interaction of a shock with a plane vorticity-entropy wave 
The two-dimensional interaction of a shock wave with a plane vorticity-entropy wave 
is schematically illustrated in figure 18. Note that the shock wave is stationary in 
the mean. The variables U,p,p, T and M denote the mean velocity, pressure, density 
temperature and Mach number respectively and subscripts 1 and 2 denote the 
upstream and downstream states. The flow upstream of the shock wave is perturbed 
by the weak disturbance field of the incident vorticity-entropy wave which is assumed 
to-be a plane wave that makes angle Vi with the x-axis. The variables «>',//,/>' 
and T represent the fluctuating velocities, pressure, density and temperature. The 



Entropy fluctuations in shock/turbulence interaction 375 

V, ■U, 

Lfi_~ 

-x=s(y,t) 

Shockwave 

FIGURE 18. Schematic of the interaction of a vorticity-entropy wave with a shock wave. 

incident field has the following form: 

..       n'. ........ 
(Alö^) 

Ui Ui 

p\ T[ ZL — A   (Mnx+ly-Uintt)        11  _     Pi        _' _ n 
P\ T\ Pi 

(Alc-e) 

where m = cosipi and I = sin ^i. The shock wave deforms in response to the incident 
disturbance; the displacement is denoted by x = £(y,t). 

Details of the analysis may be found in Mahesh et al. (1996). . The solution 
obtained is summarized below. The solution behind the shock wave is a superposition 
of vortical, acoustic and entropic components. It has the following dimensionless 
form: 

iis. — F JkxeMly-'»Ult)   ,  j-j   Ut(mrx+ly-mUit) 
AvUi       r C    C ^Ue 

1    1/ ~ 
___L — jj eifcxeifc(/y-mU,t) _j_ 7 gk{mrx+ly-mU,t) 

Avp$ 

— El — _ JkxgWy-tVxt) _j_ Q ^.mrxMy-mUit) 
Avp2      y 

Av Tz       y . 

(A2a) 

'   (A2b) 

(A 2c) 

(A2d) 

(A2e) 

The boundary conditions across the shock wave yield the following expressions for 
the velocity and slope of the shock front: 

_iL-7pft Cy-muit)        J_e   _ _ ' 7 Jfc (ly-mV\t) 
A   TT »       ^'y —        ** c (A3) 
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Shock wave 

RGURE 19. Coordinate system used in the interaction of isotropic turbulence with a shock wave. 

The variable r denotes the mean density ratio p,/p, across the shock wave; k(Mum) 
represents the streamwise wavenumber of the acoustic component behind the shock 
wave. It is realjn the propagating regime and complex in the decaying regime. The 
coefficients F,H and K are associated with the acoustic component The vortical 
component is represented by G and 7 while Q represents the entropy component The 
coefficients F,H, K,G, I and Q are functions of Mu wi and the amplitude ratio (Ar) 
and phase difference (<f>r) between the vorticity and entropy waves, i.e. A^ = A,)A 
Expressions for the coefficients are given in Mahesh et dl. (1996). 

A.2. Interaction of a shock wave with an isotropic turbulent field 
As suggested by Morkovin's hypothesis, the upstream turbulence is represented as 
a random three-dimensional field of vorticity-entropy waves. The turbulent velocity 
field is assumed to be isotropic. The incident turbulent field is represented as a 
superposition of plane vorticity-entropy waves (Fourier modes) in three dimensions 
Each of these waves would interact independently with the shock wave under linear 
analysis. For a given upstream spectrum, the interaction of each wave with the 
shock wave is predicted. The solution is integrated over all incident waves to obtain 
turbulence statistics behind the shock. 

The three-dimensional problem is related to the two-dimensional analysis of the 
preceding section as follows. Consider an incident plane wave in three dimensions. 
As shown in figure 19, the wavenumber vector of the wave lies in a plane that makes 
angle <f> with the y-axis. In this plane, which we call the (x,xr)-plane, the wave 
makes angle Vl with the x-axis. It is readily seen that the (x,xr)-plane is identical 
to fte plane of interaction in the two-dimensional problem. The solenoidal nature 
of the incident velocity field requires the velocity vector of the wave to be normal 
to the wavenumber vector. The velocity field may therefore be expressed as a sum 
of two components: one normal to the wavenumber vector in the (x,xr)-plane and 
the other normal to the (x,xr)-plane (the ^-direction). It is intuitively clear that the 
0-component of velocity would pass unchanged through the shock wave. As a result 
toe three-dimensional problem may be solved using results of the two-dimensional 
analysis m the (x,xr)-plane. 
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Results from §A.l are used to obtain expressions for the energy spectra behind 
the shock wave. The spectra depend upon the upstream three-dimensional energy 
spectrum, E(k). This paper assumes the following form for E(k): 

(Ö 
4 

m~[il>) (A4) 

The results also depend upon the upstream density spectrum. The quantity Ae/A0 
may be represented as Ard*', where AT and <f>r are both functions of the wavenum- 
ber vector. Appropriate functional dependencies may be assumed depending upon 
the flow being considered. This paper presents results for <f>r = 0 and it, i.e. the 
density field is either perfectly correlated or perfectly anti-conelated with the ve- 
locity field, Also, two forms of the upstream density spectrum are considered. One 
case assumes the density field to be isotropic with the same three-dimensional spec- 
trum as the velocity field, i.e. Ar is assumed constant For this case it is easily 
shown that 

A -J2&HJR ,A5> 

The second case assumes that the density field satisfies Morkovin's hypothesis at 
every wavenumber. If the velocity fluctuations are isotropic, it is easily seen that the 
resulting density field is axisymmetric, ie. 

^r = (7-l)M2sinVl. (A 6) 

The spectra are then numerically integrated to obtain the turbulence statistics behind 
the shock. Further details are provided by Mahesh et al. (1996). 
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