
ARMY RESEARCH LABORATORY

MPI and HPF Performance
in a DEC Alpha Cluster

by Dale Shires

joiyy W&^!^mMm^MM^. ;#?:;£?^ ^^^^^p^^^B
, *,A,iSz& *'s#ß, -i~:,'

\RL-TI M668 May 1998

19980514 042
DTIC QUALITY INSPECTED 3

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy mis report when it is no longer needed. Do not return
it to the originator. „

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1668 May 1998

MPI and HPF Performance in a DEC
Alpha Cluster

Dale Shires
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

There are several different types of parallel computer architectures in use today. Some of
these are large machines that house hundreds of processors with low- to mid-range computing
capabilities. A different type of parallel computer architecture becoming increasingly popular
is that of the cluster. Clusters are basically networked workstations: each containing 1 to ~30
processors with mid- to high-range computing capabilities. While arguments can be made for
both paradigms, clusters seem to be gaining in popularity. They provide fast computation
through multiplicity and fast processor throughput. Furthermore, code reuse on different cluster
environments is now possible with the adoption of standard interprocessor communication tools
like the message-passing interface (MPI) and high-performance FORTRAN (HPF). This report
compares and contrasts the performance of MPI and HPF on a currently available computer
cluster.

11

Contents
List of Figures. v

List of Tables. vii

Conventions. ix

1 Introduction. 1

2 Experimental Hypotheses. 2

3 Case Study: Image Matching. 4
3.1 The Image-Matching Algorithm 4
3.2 Testing MPI and HPF for Correctness 6

4 Implementation Details. 8
4.1 MPI 8
4.2 HPF. . . . : 9

5 Experimental Results and Interpretation. 11
5.1 MPI 11
5.2 HPF 12

6 Conclusion. 14

References. 17

A Tables 19
A.l C Sequential Results. Times Are Listed in Seconds . 19
A.2 MPI Row Decomposition Results. Times Are Listed in Seconds 19
A.3 MPI Column Decomposition Results. Times Are Listed in Seconds 19
A.4 FORTRAN Sequential Results. Times Are Listed in Seconds 20
A.5 HPF (BLOCK, *) Distribution (Rows). Times Are Listed in Seconds. ... 20
A.6 HPF (*, BLOCK) Distribution (Columns). Times Are Listed in Seconds. . 20
A.7 Single Processor HPF Profiling Results 21

B C sequential code. 23

C MPI 1-D row decomposition. 29

D MPI 1-D column decomposition. 37

E FORTRAN and HPF code. 45

Distribution List. 49

Report Documentation Page. 51

in

INTENTIONALLY LEFT BLANK.

IV

List of Figures

1 " A 2-D Array Decomposed by Rows and Columns ■ ■ • 3
2 Depth Determined by Disparity in Images (ruler bars are not to scale). 5
3 Simulated Annealing Algorithm in Pseudocode 6
4 3-D Wedding Cake Structure 7
5 Random Dot Stereogram. The Left Image Is Formed by Displacing

Points in the Right Image 7
6 From Left to Right, Results From the Sequential C Program, MPI

Row Decomposition, and MPI Column Decomposition. The Results
Are Slightly Different for Each Case Given the Random Nature of the
Simulations 9

7 MPI 1-D Row Decomposition Speedup 12
8 MPI 1-D Column Decomposition Speedup 13
9 MPI 1-D Row Decomposition Efficiency. 13
10 MPI 1-D Column Decomposition Efficiency. 14

INTENTIONALLY LEFT BLANK.

VI

List of Tables

1 C Sequential Results. Times Are Listed in Seconds 19
2 MPI Row Decomposition Results. Times Are Listed in Seconds. ... 19
3 MPI Column Decomposition Results. Times Are Listed in Seconds. . 19
4 FORTRAN Sequential Results. Times Are Listed in Seconds 20
5 HPF (BLOCK, *) Distribution (Rows). Times Are Listed in Seconds. 20
6 HPF (*, BLOCK) Distribution (Columns). Times Are Listed in Seconds. 20
7 Single Processor HPF Profiling Results 21

Vll

INTENTIONALLY LEFT BLANK.

vui

Conventions.

Typewriter font is used for:

• any output directly produced by the computer (this includes program results
and operating system messages), and

• program source code listings.

IX

INTENTIONALLY LEFT BLANK.

1 Introduction.

The message-passing interface (MPI) and high-performance FORTRAN (HPF) are
two sets of extensions to programming languages that seek to provide architecture-
independent parallelism. MPI extensions exist for both the C and FORTRAN pro-
gramming languages. HPF is specifically tailored to augment the FORTRAN 90
language. Both MPI and HPF have adopted published standards. HPF was adopted
in 1993 [1], and MPI was standardized in 1994 [2]. These standards have allowed
codes to be easily ported between different computer architectures with a minimum
of code rewriting.

These two systems offer quite different parallel computational models. A compu-
tation in MPI usually consists of one or more processes that communicate messages
(sends and receives) through calls to library routines. These libraries are ideally cus-
tomized and optimized for the specific hardware system on which the computations
are being performed. As long as the programs contain standard MPI directives, they
should be able to be ported, recompiled, and executed on different architectures using
the MPI system. MPI is sometimes referred to as the "assembly language" of parallel
programming, since the programmer is required to specify the parallelism explicitly
through calls to the message-passing library. This is often classified as an advantage
rather than a hindrance. Effective cache use and memory management are becoming
extremely important to achieving good parallel performance. Message passing can
help in this regard by providing more programmer control of data locality in the
memory hierarchy [3]. MPI appears to be surpassing the Parallel Virtual Machine
(PVM) interface as the defacto standard in message passing parallelism.

In contrast, HPF is more closely associated with the data-parallel programming
model. Data parallelism attempts to exploit the concurrency of the same operation
to multiple data elements [4]. For example, one may wish to add the value 10 to each
element of an array. This operation is inherently parallel, since there are no data
dependencies inside this atomic operation. FORTRAN 90 supports such notations
as A = A + 10 to perform this operation, where A can be a multidimensional array.
HPF augments FORTRAN 90 with directives that inform the compiler that there are
no data dependencies and the code region is data-parallel safe. It is up to the HPF
compiler to optimally insert communication directives between processors and ensure
synchronization between parallel regions. HPF is therefore slightly more abstract
than MPI. It expresses parallelism at a relatively high level and is intended to remove
the programmer from the more mundane tasks of specifying communication behavior
between processors [5].

Of particular interest is how well these systems perform, both in general and com-
pared to each other, in current computer architectures. The two basic performance
metrics of parallel computing systems, speedup and efficiency, were studied in this
experiment. Scalability is an interesting topic in this domain, but, as it relates to
this problem, only provides useful data for algorithms with similar floating-point and

interprocessor communication requirements. The actual speedup achieved is defined
as

SP = ^, (1)

in which Ti is the linear (one processor) completion time for the algorithm, and Tp is
the parallel completion time using p processors. The second metric used is efficiency.
Efficiency is defined as

E>=A- (2)
This number indicates the overall efficiency of the p processors working on the prob-
lem. Ideally, this number should be as close to 100% as possible, but will suffer
because of conditions of load imbalancing, communication costs, and various other
parallelization overheads.

The cluster architecture used in this experiment is quite relevant in today's com-
puting environments. These coarse-grained architectures and clusters of workstations
are becoming extremely popular for parallel computations. They can appear in many
manifestations. Indeed, a cluster can be as little as two machines networked together.
This alone, theoretically, boosts performance by a factor of 2. At the other end of
the spectrum are very powerful hosts connected together over fast data channels,
such as the Silicon Graphics Power Challenge Array (96 nodes) at the U.S. Army
Research Laboratory. Three factors have played into clusters becoming viable par-
allel programming platforms. These factors are workstation-level high-performance
microprocessors, standardized high-speed communication, and reliable standardized
tools for distributed computing [6]. Today's workstations have processors that are
quite robust. Very few of them need to be coupled to deliver impressive parallel
performance. High-performance networks, such as ATM, HiPPI, and FDDI are now
capable of delivering bandwidths of around 100 MB/s. Standard tools for synchro-
nization and communication, such as MPI and HPF, continue to grow and mature
into trusted systems.

2 Experimental Hypotheses.

Computer algorithms usually work on sets of data structures. Attacking these struc-
tures with multiple processors is what provides parallelism. Theoretically, if the data
structures used are of size n, then n processors could be used to perform atomic oper-
ations in parallel. Breaking the problem down to find this lowest level of parallelism
is known as decomposition. However, seldom do such large numbers of processors
exist. For example, say we have an integer array B that is two-dimensional (2-D) and
of size 1,000 x 1,000. While an operation B = B + 1 is possible in parallel, rarely
do machines have one million processors. Therefore, the data must be agglomerated
and distributed among the number of processors available. Several strategies and
mechanisms are available for this task. HPF provides some standard decompositions,

while MPI requires the programmer to instrument the code to achieve the desired
result. While a discussion of the numerous decompositions is not the purpose of
this paper,* a quick example is helpful. Two agglomerations are quite popular in
coarse-grained architectures where a minimum of communications is desired. These
are one-dimensional (1-D) row and 1-D column decompositions and are are pictured
in Figure 1. This figure shows the case of a 2-D array on a four-processor computer.

PI

P2

P3

P4

PI P2 P3 P4

1-D Row Decomposition 1-D Column Decomposition

Figure 1: A 2-D Array Decomposed by Rows and Columns.

The 2-D array is blocked by rows in the row decomposition and by columns in the
column decomposition. Processor 1 (PI) gets the first block of data, processor 2
(P2) the next, and so on. Data distribution is usually done to try and limit costly
interprocessor communication. Other decompositions are available, but these two are
quite prevalent in coarse-grained architectures. All of this depends, however, on the
algorithm's action inside the data matrix.

Several decompositions and agglomerations were studied in this experiment. MPI
requires data to be distributed to the individual processors explicitly by the program-
mer. HPF contains directives that specify how the data should be distributed by the
compiler. These computations and tests were performed on a Digital Equipment
Corporation (DEC) Alpha network with individual machines being connected by an
FDDI network. The following hypotheses were investigated.

(1) One-dimensional row decomposition using MPI and 1-D column decomposition
using HPF will result in the fastest speedups for this algorithm in the two dif-
ferent parallel programming environments. Row decomposition in C has shown
to be slightly faster in studies of finite difference algorithms. This seems to be
because the memory is laid out in row major order. In FORTRAN, one can
expect column major order accessed by columns to be faster.

(2) There should be little difference between the fastest decomposition and agglom-
eration with MPI and the fastest similar decomposition with HPF. The main

"Complete examples can be found in [4] and [5].

limiting factor of both should be the speed of the interconnection network. Ide-
ally, both should make the same optimal use of this system. FORTRAN code
has shown itself to be faster in some algorithms, but the difference in the par-
allel codes using MPI and HPF should be no more than that noticed in the
sequential algorithms.

(3) Based on studies of finite difference codes and the author's prior experience with
other distributed memory, message-passing environments, an overall efficiency
of about 85% is all that can be expected from the MPI and HPF codes.

3 Case Study: Image Matching.

3.1 The Image-Matching Algorithm.

The eye-brain system achieves three-dimensional (3-D) depth perception by taking
advantage of two separate and distinct images captured by each eye. The image
captured by the left eye is slightly different than the one captured by the right eye.
This difference is called retinal disparity, and the brain is able to quickly use this
information and other binocular cues to compute depth of objects in what the eyes
are seeing.

Computers and machines can also determine depth of objects in their environ-
ments, but not quite as easily. One method involves using active sensors, or lasers, to
determine range information. This method is limited in that lasers can usually only be
directed at certain distinct points, thus limiting the machine's ability at determining
range information in the entire scene.

A more interesting approach is to have the computer mimic the brain's behavior.
This approach is known as computational stereo vision. A stereo camera pair is used
to take pictures of a scene where range information is required. Because of binocular
parallax, these cameras will acquire slightly different images of the scene, since they
are at different locations. Points very distant from the cameras will appear to be
at almost the same vertical and horizontal positions on digitized images from the
cameras. Objects closer to the cameras will be more displaced. This phenomenon
can be seen in Figure 2. Notice that points distant in the picture are at roughly the
same location in both left and right images. However, points close to the camera,
such as the measured white spot on the highway, have a much greater disparity in
the two images.

By having the computer determine which points match in the two images, and then
computing the amount the points shift, the computer is mimicing the retinal disparity
computations performed by the brain. The mathematics involve only trigonometry;
however, the number of transformations for high-resolution images becomes stagger-
ing. Every point is matched, thus giving a fine grid of range information that dwarfs
the capabilities of active sensors. The main drawback of this approach, however, is

5.33 cm 4.87 cm

Figure 2: Depth Determined by Disparity in Images (ruler bars are not to scale).

the time it takes to match the points in the two images.
The algorithm to perform computational stereo is stochastic; therefore, it does

require some time to complete. It is an undirected Monte Carlo search through the
image space that produces a very fine, globally optimized disparity map where every
pixel in one image is matched with its corresponding pixel in the stereo pair. As
with other Monte Carlo algorithms, this approach requires a significant number of
floating-point operations. However, the process of matching pixels typically requires
only local interactions. On the computer, this translates into local references to
memory by applying a nine-point stencil to the 2-D digitized images. Furthermore,
besides certain boundary conditions, the amount of processing for each pixel remains
uniform. These properties make the algorithm ideal for parallel processing.

Stereo matching requires global optimization. Since the digital image data maps
pixel intensities to a relatively low resolution (typically 8 bits, implying 256 discrete
levels), there are many possible matches in the local sense. Swatches in one image
may appear to map other portions of the stereo image pair. To perform this operation
accurately, the entire image must be taken into account.

One of the most popular optimization techniques to locate a global optimum is
called simulated annealing. This approach can be applied directly to the image-
matching problem [7]. As the name implies, the approach imitates a natural process.
Annealing involves heating a solid to the extent that the molecules may randomly
rearrange themselves and then cool gradually. Slowly lowering the temperature allows
the molecules to settle into the lowest energy state, commonly described as thermal
equilibrium. If the temperature rate declines too fast, defects may become frozen into
the end state. If thermal equilibrium is maintained throughout the cooling cycle, the
final system should be a globally optimized structure. For example, perfect crystals
are grown in this manner.

The simulated annealing technique is outlined in Figure 3. The system is taken to

read IRJL
D(row, col) = random number in [0... DM AX]

T = TMAX
I* loop according to fixed annealing schedule */
while T > TMIN

S' <= random state change 5
AE = E(S') - E(S)
I* accept lower energy states */
if AE < 0 then S = S'
else

j = random number in [0... 1]
/* accept higher energy only with Boltzman probability */
if j < P then S = S'

reduce T by predefined percentage
end while

Figure 3: Simulated Annealing Algorithm in Pseudocode.

equilibrium by the Metropolis algorithm by considering random, local state transitions
on the basis of the change in energy that they imply. Since the system is stochastic,
these local state changes can take the system away from convergence as well as toward
it. This helps to prevent the system from sinking into local minima. The processing
is complete when the system is in equilibrium at the lowest energy state achievable.
A more detailed discussion of this technique and its Army applications may be found
in [8].

The final result of the algorithm is a 2-D disparity map. The values in the dis-
parity map are integer values ranging from 0 (no disparity) to D-MAX (maximum
disparity). To better interpret the map, these values are coded with gray scale values
and written to binary data files. Examples of these encoded disparity maps appear
later in this paper.

3.2 Testing MPI and HPF for Correctness.

The stereo-matching algorithm was tested with several computer-generated random
dot stereograms. These stereograms represent synthetic 3-D objects. In this case
we simulate a camera system looking down on a "wedding cake" structure. Figure 4
shows the 3-D representation of this four-tiered structure. The stereogram is created
by starting with a solid black background. It is then speckled with randomly placed
white pixels. The number of white pixels is limited to 10% of the total image to test
the robustness of the algorithm. The hypothetical right camera of the two-camera
system is assigned this random dot image. Since the object is tiered, a stereo camera
system above and facing the object would consist of two cameras (a right and left
camera) that would perceive the dots to be at different locations in the two cameras.

Figure 4: 3-D Wedding Cake Structure.

This effect is simulated by creating the left image of the stereo pair by shifting pixels
in the right image to the right. Pixels around the outer edge were not offset, the next
level in was offset by two pixels, the next level four pixels, and the center was offset
by six pixels. Pixels with high movement represent areas that would be close to a
camera looking down from above the wedding cake whereas pixels with no disparity
would be distant from the camera. Figure 5 shows the random dot stereo pair.

Figure 5: Random Dot Stereogram. The Left Image Is Formed by Displacing Points
in the Right Image.

Because of the well-defined disparity maps, these random dot images represent
ideal cases for evaluating stereo-matching algorithms. That is, we know how the
result should look, whereas in a real-world image, there would be some doubt as to
what an exact map should look like. There are still some areas of ambiguity, usually
a result of sections that are devoid of white pixels; however, the overall structure of
the map remains clear. The algorithm was checked for correctness and validated in
all test cases. As an example, Figure 6 shows a gray scale encoded disparity map
representing a solution to the matching problem from sequential C code and parallel

code using the MPI system. The actual 2-D result disparity map contains values
in the range 0,.,., 6. To better interprete the results, the final disparity maps were
gray-scale encoded. Lighter areas in the image represent areas close to the camera;
darker areas are further away.

4 Implementation Details.

4.1 MPI.

Implementation of the MPI version of the code was straightforward. The mpicc
compiler on the DEC Alpha was used with linkage to the MPI libraries for access to
the communication directives. The default optimization (-0) was used to correspond
with the optimization used for the sequential code version. This ensures similar code
generation and allows for meaningful comparisons between the sequential and parallel
code versions.

One dimensional decompositions by rows and columns were used. The master
process is in charge of opening and reading the left and right image data files. Since the
disparity map is randomized at the start of the simulation, each processor initializes its
own section of the disparity map. Image data never change during the program, so this
static data is distributed once to each processor at the start of the program. Boundary
conditions exist since a nine-point stencil is being passed over the 2-D arrays. For
example, with the row decomposition shown in Figure 1, processor 1 requires the
image data from the first row governed by processor 2. Also, processor 2 requires the
last row of the image data owned by processor 1. Therefore, a processor also gets
some of the image data that belongs to its neighboring processor at the beginning.
However, since disparity data is dynamic, it must be distributed between processors at
each loop iteration. A nine-point stencil is used in this algorithm because each point
needs to know the disparity value of its eight neighboring points. This causes the
creation of boundary conditions, or shadow points, along the processor boundaries.
These shadow points define the interprocessor communication requirements for the
computation.

Boundary conditions for the column decomposition are slightly more involved in
terms of image data. Since the algorithm assumes a perfect image in the vertical ori-
entation (no disparity up or down), we are only concerned with finding the horizontal
disparity. The photometric component in the energy function uses the difference be-
tween the intensities of the proposed matched points in the left and right images.
The point in the left image, however, can match a point in the right image up to
DM AX pixels to the right. For example, assume an image of size 256 x 256 with
four processors working on the problem. Processor 1, with a column decomposition,
will have image data from rows 0,..., 255 and columns 64,..., 127 of the left and
right images. It could be possible that the point in the left image (row = 100, column
= 127) matches with the point in the right image (100, 132). In this case, processor 1

8

does not have all of the data about the right image that it requires. To compensate for
this in the column decompositions, each processor receives DM. AX extra columns
of the right image from the master at the start of the algorithm.

The code was tested on random dot stereograms of sizes 200 x 200, 400 x 400,
600 x 600, and 800 x 800 with two, four, six, and eight processors. All combinations
which were tested completed successfully. Figure 6 shows the 200 x 200 gray scale
result maps for the sequential case, the MPI row decomposition, and the MPI column
decomposition. The MPI results were generated in each case using four processors.

Figure 6: From Left to Right, Results From the Sequential C Program, MPI Row
Decomposition, and MPI Column Decomposition. The Results Are Slightly Different
for Each Case Given the Random Nature of the Simulations.

4.2 HPF.
Many difficulties were experienced while trying to move this code into FORTRAN
90 and into HPF. The HPF compiler on the DEC Alpha computers has not yet
evolved to the stage of being a fully-functional HPF compiler. To begin with, sev-
eral important FORTRAN 90 constructs, as well as critical HPF constructs are
not supported. The compiler currently does not generate code tailored to the
!HPF$ INDEPENDENT directive. Here is the compiler error message:

f90: Warning: rows.f90, line 148: The INDEPENDENT directive is checked for
syntactic and semantic correctness, but it is then ignored by the current
HPF compiler.
!HPF$ INDEPENDENT

This directive should be used around areas that are data-parallel safe (contains no
dependencies) to assist the compiler in parallelizing the section. These directives were
removed from the code to reduce the number of warning messages produced by the
compiler. With a compiler that does support them, these directives should precede all
of the FORALL statements in the simulated annealing code. Furthermore, WHERE
statements may not be located inside of FORALL loops. This lack of functionality
requires two FORALL constructs where often only one with a WHERE statement
should be needed.

Data distribution directives in HPF are used to specify array data distribution to
the processors available in the processor pool. As in MPI, two distribu-
tions were used, 1-D row and 1-D column. The first distribution used was
!HPF$ DISTRIBUTE(BLOCK, *) :: dMap. This distributes the "dMap" array data
in a row-blocked format, similar to the one used in MPI. The other distribution tested
was (*, BLOCK) which corresponds to column decomposition. The rest of the book-
keeping and computational storage arrays (there were several) were aligned with the
dMap array. There were several problems in getting HPF to work with this code.
Several times, the executables would get hung up and then exit with:

TCP.MsgReadMsg: read error 54ows: ERROR Peer[0] (38) _TCP_Send: send length
error - errno 9 (msgsend.c Line:377)
ows: ERROR Peer[2] (38) _TCP_Send: send length error - errno 9 (msgsend.c

Line:377)
ows: ERROR Peer[3] (38) _TCP_Send: send length error - errno 9 (msgsend.c

Line:377).

The (BLOCK, *) distribution produced the following error during runtime.

forrtl: error (72): floating overflow
TCP.MsgReadMsg: read error 54ows: ERROR Peer[0] (29) _TCP_RecvAvail: Unexpected
EOF from peer 0 (msgrecva.c Line:189).

There appear to be no situations in the code that could cause such an error. Indeed,
the type for the real array used in comparison to the exponential function was changed
to double precision with the same results. Furthermore, the code performs fine with
identical typing in the sequential version and in the HPF version in -single mode.
Compiling the (*, BLOCK) distribution produced the following warnings:

f90: Warning: compute_loop_carried_sets: do_tree construct dt_group_forall
not handled

f90: Warning: compute_loop_carried_sets: do_tree construct dt_group_forall
not handled

f90: Warning: make_edges: do_tree construct dt_group_forall not handled
f90: Warning: make_edges: do_tree construct dt_group_forall not handled.

The initial belief was that having multiple statements inside a FORALL loop was the
cause for these cryptic messages. However, the code does work properly when imple-
mented on one processor. Also, HPF documentation states that multiple statements
are allowed in FORALL loops and that they are performed in order. This should
preclude any data dependencies.

Currently, there does not appear to be a good explanation for most of these warn-
ings nor a good understanding of their intended meanings. Other distributions were
attempted (e.g., CYCLIC), and each experienced some problem like those previously
listed.

10

5 Experimental Results and Interpretation.

5.1 MPI.
Originally, the sequential code for the algorithm was written in C and compiled using
the mpicc compiler. However, this produced executables that were slower than the
MPI version with one processor. This resulted in dubious occurrences of superlinear
speedup. A possible explanation resides in the compile sequence generated by the
makefile that was used. The makefile performed the following operations:

mpicc -DFORTRANUNDERSCORE -DMPE_USE_EXTENSI0NS=1 -DHAS_XDR=1 -DSTDC_HEADERS=1
-DHAVE_STDLIB_H=1 -DMALL0C_RET_V0ID=1 -DHAVE_SYSTEM=1 -DHAVE_NICE=1
-DP0INTER_64_BITS=1 -DINT_LT_P0INTER=1 -DHAVE_L0NG_D0UBLE=1
-DHAVE_L0NG_L0NG_INT=1 -0 -DMPI_alpha -c mpirows.c
mpicc -0 -o mpirows mpirows.o -L/usr/local/mpi-vl.0.12/lib/alpha/ch_p4 -lmpi

-lm.

Undoubtedly, one of these options caused the production of more efficient code.
Therefore, to make the process more homogeneous, the sequential version used in
these comparisons is actually augmented with the MPI initializations and ran through
MPI with one processor. Furthermore, to ensure a true reflection of speedup and ef-
ficiency, porsche, the faster processor of the group of DEC Alphas, was not used for
these sequential timings. The sequential execution times for the different problem
sizes are given in Table A.l. The code for this version of the algorithm is given in
Appendix B. This is not a production code; therefore, comments and documentation
within the code listings are sparse. The same caveat goes for all code listed in the
appendices. The code for the row decomposition in MPI is given in Appendix C and
the code for the column decomposition is given in Appendix D. The execution times
for the row decompositions and column decompositions are given in Tables A.2 and
A.3, respectively.

The speedup achieved by the MPI row decomposition is shown in Figure 7, and
the speedup achieved by the MPI column decomposition is shown in Figure 8. To dis-
tribute the noncontiguous C data that results from column decompositions, a derived
data type had to be created in MPI. MPI sends data based on addresses, which are row
major in C. Trying to send data in column major order is undoubtedly simply adding
more buffering behind the scenes. The speedups achieved by row decomposition are
faster than the speedups for the column decomposition in every case.

The efficiencies corresponding to row and column decompositions are shown in
Figures 9 and 10, respectively. The efficiencies are very good. The average row
decomposition efficiency is around 94%. As more processors are invoked, one can see
the efficiencies start to decline slightly. This is a standard phenomena. The code will
only run as fast as the slowest processor in the pool. When using more processors,
the individual load averages of the processors has a direct effect on efficiency. Still,
when 94 out of every 100 instructions is working on the problem, the system has been
well tuned.

11

"8
8.

2,-.

MPI Speedup 1-D Row Decomposition

2 -»-

6 -B--
8 -*-

Image size
800

Figure 7: MPI 1-D Row Decomposition Speedup.

5.2 HPF.

The sequential timings were generated by compiling the HPF code using the standard
f90 compiler. The HPF directives are ignored by the compiler, and sequential, one
processor code is generated. There was a problem when trying to perform tests on
the 800 x 800 image size. Dynamic array allocation was used for each array other
than "dMap" since this array size must be known at compile time so the other arrays
may be aligned to it. The reason for the runtime problems could not be determined,
and this test case was omitted from the trials.

The code to perform the sequential, as well as the row and column decompositions
in HPF, is given in Appendix E. The code listed performs row decomposition by
distributing data in row block format. The column distribution was done by altering
the HPF directive (BLOCK, *) to (*, BLOCK). Sequential code was generated by
invoking the f90 compiler without HPF enabled. Table A.4 lists the sequential timing
results.

Getting good results from HPF was almost impossible. Data distribution direc-
tives should affect only communication costs, not correctness. However, the directives
did determine if the code would even execute or not. Each distribution performed
properly when using one processor (executed with -single). Therefore, the following
tables do list the times for one processor as well. Table A.5 lists the results for the
row decomposition. Errors are noted in the table. Overflow means a floating-point
overflow occurred. Exit means the program terminated prematurely with no warning
or error message posted. EOF reflects a processor that received an unexpected end-
of-file from another processor. Read errors indicate an error occurred while trying to

12

MPI Speedup 1-D Column Decomposition

7 -

i i

4 -+--
6 -a-
8 •*-- -

6
^^

■

5 -
I

4 -

3 -

2 -

1 1 1 .

Image size
800

Figure 8: MPI 1-D Column Decomposition Speedup.

MPI Efficiency 1-D Row Decomposition

t 4-+~

0.95
» 8 -*—

 ,...-'**' yS 3

0.9 .--" y
['" s^

0.85
■ /

0.8
■

0.75

07 1 1—

Image size

Figure 9: MPI 1-D Row Decomposition Efficiency.

read from a processor. Host indicates one of the hosts timed-out or died. Table A.6
lists the results for the column decomposition.

Why exactly there were so many problems with HPF remains a mystery. In cases
where the code did perform, it did not perform well. There are several possible ex-
planations. There could be too much overhead. This could be because of the way
the single-program, multiple-data (SPMD) programs are created. Also, it might be

13

MPI Efficiency 1-D Column Decomposition

0.85

0.8

 1 ■ 1—

2 -»—
4 -)--■
6 -B-
8 ■■«-

- -

-
,n .j^^.

•-'"■—B— -,rr--.--v-:.v.::""."""IL"H
^"■^>. £~~ ^s** _—.—■*•--

 ■■

:-;;/^

F s^ -

/
1

200 400
Image size

Figure 10: MPI 1-D Column Decomposition Efficiency.

that there is not enough work in the parallel regions. The cost of repeatedly calling
the FORALL directive may be too high for the runtime system. Another possible
reason is poor communication; possibly due to a poor communication library or un-
optimized communication code. Unfortunately, in many cases it seemed that the
compiler simply gave up and did not generate any communications upon reaching
unsupported directives. The single processor code with parallel HPF directives ac-
tivated was profiled. The results are given in Table A.7. While tracing down exact
problems was difficult, it is evident from the overhead time that this was the major
cause of degraded parallel performance.

6 Conclusion.

The experiments and testing did not entirely support the hypotheses. Indeed, 1-D
row decomposition in MPI was faster than its column decomposition counterpart.
This is probably because of the way MPI performs the derived data type. Copies to
buffers to implement the strided column send will easily account for this difference.
There is not enough good experimental data to comment on the HPF distributions.
During implementation of the algorithm in HPF, it was realized that the hypothesis
that column decomposition would be faster than row decomposition may be incorrect.
Just as with MPI, the decomposition by columns does pose complications for HPF.
When the data is decomposed by rows, each processor has all of the image data that is
required of it. By columns, however, boundary conditions will have a greater impact,
since the image data held by one processor might be required by its neighbor.

As far as there being little difference between the fastest MPI implementation

14

and the fastest HPF implementation, the results very clearly show that this is not
the case. Comparisons between MPI and HPF prove almost impossible given the
very poor performance of HPF. It is interesting to note, however, the much faster
processing times achieved sequentially by FORTRAN 90 compared to C.

The efficiencies achieved by MPI were quite good. Prior experience with message-
passing environments, such as C-Linda, and indeed some shared memory parallel
systems such as the SGI, seemed to indicate a threshold of about 80-85% efficiency
that could be expected of this type of code with multiple messages being passed
at boundary conditions. While not tightly synchronized, the processors do have to
operate in a lock-step type fashion, since updated boundary data must be computed
and communicated at each iteration. Efficiencies around 94% in these cases indicate
that MPI has been well thought out and implemented on this architecture.

The HPF system cannot currently compare to the MPI system for robustness
and speed when operating on the DEC Alpha system. This seems to be the case, in
general, as MPI is more quickly gaining acceptance as the message-passing system
to use in cluster environments. MPI is a very good performer and should only get
better as incremental changes and enhancements are made in the communication
library. HPF will undoubtedly do better on stable, large array computations. This
is usually the case with data parallel languages. HPF can improve dramatically by
simply issuing better warnings and errors at both compile and run time. The HPF
compiler will have to undergo major enhancements in its code generation section to
be considered useful.

15

INTENTIONALLY LEFT BLANK.

16

References

[1] Center for Research on Parallel Computation, Houston, TX. High Performance
Fortran Language Specification, Version 1.0, 1993.

[2] Computer Science Department, University of Tennessee, Knoxville, TN. MPI: A
Message-Passing Interface Standard, 1994.

[3] GROPP, W., LUSK, E., AND SKJELLUM, A. Using MPI: Portable Parallel
Programming With the Message-Passing Interface. The MIT Press, Cambridge,
MA, 1994.

[4] FOSTER, I. Designing and Building Parallel Programs. Addison-Wesley Publish-
ing Company, Sebastopol, CA, 1995.

[5] KOELBEL, C, LOVEMAN, D., AND SCHREIBER, R. The High Performance
Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

[6] PFISTER, G. F. In Search of Clusters; The Coming Battle in Lowly Parallel
Computing. Prentice Hall, Upper Saddle River, NJ, 1995.

[7] BARNARD, S. T. A stochastic approach to stereovision. In Readings in Computer
Vision. Addison-Wesley, New York, NY, 1987.

[8] SHIRES, D. R. Exploiting parallelism in a monte carlo image-matching algorithm.
Technical Report ARL-TR-667, U.S. Army Research Laboratory, Aberdeen Prov-
ing Ground, MD, January 1995.

17

INTENTIONALLY LEFT BLANK.

18

A Tables

A.l C Sequential Results. Times Are Listed in Seconds.

Image Size Time

200 x 200 81.87
400 x 400 339.48
600 x 600 765.22
800 x 800 1365.54

A.2 MPI Row Decomposition Results. Times Are Listed in
Seconds.

Image Size Number Processors
2 4 6 8

200 x 200
400 x 400
600 x 600
800 x 800

42.67
175.44
397.79
711.12

22.56
90.65

202.45
361.91

15.38
60.24

136.77
242.29

12.31
45.77

101.83
185.77

A.3 MPI Column Decomposition Results. Times Are Listed
in Seconds.

Image Size Number Processors
2 4 6 8

200 x 200
400 x 400
600 x 600
800 x 800

48.39
212.68
446.54
792.14

26.18
102.88
232.01
409.80

18.19
68.55

155.99
276.43

14.38
52.77

118.43
208.44

19

A.4 FORTRAN Sequential Results.
Seconds.

Times Are Listed in

Image Size Time

200 x 200
400 x 400
600 x 600

33.03
167.56
392.93

A.5 HPF (BLOCK, *) Distribution (Rows). Times Are Listed
in Seconds.

Image Size
Number Processors

1 2 4 6 8

200 x 200
400 x 400
600 x 600

75.59
317.98
734.99

overflow
exit
exit

overflow
EOF
EOF

overflow
overflow

EOF

overflow
read
EOF

A.6 HPF (*, BLOCK) Distribution (Columns). Times Are
Listed in Seconds.

Image Size
Number Processors

1 2 4 6 8

200 x 200
400 x 400
600 x 600

77.70
317.98
734.99

416.89
exit
exit

304.78
exit
EOF

528.35
exit
EOF

host
host
EOF

20

A.7 Single Processor HPF Profiling Results.

run-time statistics peer 0 minimum maximum

(value) (value '/.skew peer) (value '/.skew peer)

Timing Info, (sec)

elapsed time 1008.23 1008.23 0.0 0 1008.23 0.0 0
profiling time 251.50 251.50 0.0 0 251.50 0.0 0

compute time 251.50 251.50 0.0 0 251.50 0.0 0
comm. time 0.00 0.00 0.0 0 0.00 0.0 0
active time 0.00 0.00 0.0 0 0.00 0.0 0
idle time 0.00 0.00 0.0 0 0.00 0.0 0

overhead time 779.34 779.34 0.0 0 779.34 0.0 0
user time 705.32 705.32 0.0 0 705.32 0.0 0
system time 298.34 298.34 0.0 0 298.34 0.0 o.

21

INTENTIONALLY LEFT BLANK.

22

B C sequential code.

♦include <math.h>
•include <stdio.h>
•include <sys/time.h>
•include <mpi.h>

•define MAX.ROWS 1050
•define MAX_C0LS 1050
•define D.MIN 0
•define D_MAX 6
•define LAMBDA 5
•define STARTING.TEMP 100.0
•define ENDING.TEMP 1.0
•define TEMP.REDUCTION 0.1
•define LATTICE.SCANS 10

/* Define various macros and functions to inline code. */

•define RANDOM.DISPARITY (randO % D.MAX)
•define RANDOM.PROBABILITY (randO 7. 32767 / 32767.0)
•define min(x,y) ((x) < (y)) ? (x) : (y)
•define max(x.y) ((x) > (y)) ? (x) : (y)

typedef unsigned char Pixel;
enum -(LEFT = 0, RIGHT};

/* Global variables: */

Pixel leftlmage[MAX.ROWS][MAX.COLS];
Pixel rightImage[MAX_ROWS][MAX.COLS];
int disparityMap[MAX_ROWS][MAX.COLS];
int tempDisparityMap[MAX.ROWS][MAX.COLS];

/* Function prototypes: */

/* Basic file I/O routines. */

static int ReadLeftImage(int n);
static int ReadRightImage(int n);
static void WriteResultGrayScaleMap(int n);

/* Simulated annealing functions. */

static int RandomNevState(int oldState);
static void AnneaKint n);

void main (int arge, char *argv[]);

File 1/0 routines follow.
***/

static int ReadLeftImage(int n) {
FILE »theFile;
char fileName[80];
int i, j;

/* Attempt to read the left image. */

printf("Reading left image.\n");

23

sprintf (fileName, "LeftDot'/.d.c", n) ;

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorC'ReadLeftImage: fopen") ;
return(FALSE);
>

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf (theFile, '"/.c", fc(leftImage[i] [j]));

fclose(theFile);

return(TRUE);

} /* end ReadLeftlmage */

static int ReadRightImage(int n) {
FILE *theFile;
char fileName[100];
int i, j;

/* Attempt to read the right image. */

printf("Reading right image.\n");

sprintf (fileName, "RightDoty.d.c", n) ;

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorC'ReadRightlmage: fopen");
return(FALSE);
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf (theFile, '"/.c", ft(rightlmage[i] [j])) ;

fclose(theFile);

return(TRUE);

} /* end ReadRightlmage */

static void WriteResultGrayScaleMap(int n) ■(
FILE »theFile;
char fileName[80];
int i, j;

sprintf(fileName, "C_SEQ_RESULTS_%d", n) ;

theFile = fopen(fileName, "w");

if (theFile == NULL) {
perror("WriteResult: fopen");
exit(l);
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

24

fprintf(theFile, "Xc", (Pixel)(disparityHap[i] [j] * (255 / D.MAX)));

if (fclose(theFile) != 0)
perror("WriteResult: fclose");

> /* end WriteResultGrayScaleMap */

Stereo matching routines follow.

static int RandomNewState(int oldState)
■C
int randomNumber;

if (RANDOM.DISPARITY > ((D.MAX / 2) - 1))
randomNumber = -1;

else
randomNumber = 1;

oldState = oldState + randomNumber;

if (oldState < D.MIN)
oldState = D.MIN;

else if (oldState > D.MAX)
oldState = D.MAX;

return(oldState)';

} /* end RandomNewState */

static void RandomizeSystem(int n) {
int i, j;

/* Assign a random disparity to each disparity grid point. Edges get
the value 0. */

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

if ((i ==0) || (i == (n - 1)) || (j ==0) 11 (j >= (n - D.MAX)))
disparityMap[i][j] =0;

else
disparityMap[i][j] = RANDOM.DISPARITY;

}

> /* end RandomizeSystem */

static int Energy(int row, int col, int disparity) {
int delta;
int photometric;

delta = abs(disparity - disparityMap[row-i][col-1]) +
abs(disparity - disparityMap[row-1][col]) +
abs(disparity - disparityMap[row-1][col+1]) +
abs(disparity - disparityMap[row][col-1]) +
abs(disparity - disparityMap[row][col+1]) +
abs(disparity - disparityMap[row+1][col-1]) +
abs(disparity - disparityMap[row+1][col]) +
abs(disparity - disparityMap[row+1][col+1]);

photometric = abs(leftImage[row][col+disparity] - rightImage[row][col]);

25

retum(photometric + (LAMBDA * delta));

} /* end Energy */

static void AnneaHint n) {
int newState, nevEnergy, oldEnergy, i, j;
double currentTemp;
int scanCounter;
int deltaEnergy;

RandomizeSystem(n);

currentTemp = STARTING.TEMP;

while (currentTemp >= ENDING.TEMP) {

printfC'Temp = '/.f\n", currentTemp);

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) i
for (i = 1; i < (n - 1); i++)

for (j = 1; j < (n - D_MAX); j++) ■[
newState = RandomNewState(disparityMap[i][j]);
oldEnergy = Energy(i, j, disparityMapCi][j]);
newEnergy = Energy(i, j, newState);
deltaEnergy = newEnergy - oldEnergy;
if (deltaEnergy < 0)

tempDisparityMapCi] [j] = newState;
else if (RANDOM.PROBABILITY <

exp((double)-deltaEnergy/currentTemp))
tempDisparityMapCi] [j] = newState;

else
tempDisparityMapCi] [j] = disparityMapCi] [j] ;

}

for (i = 1; i < (n - 1); i++)
for (j = 1; j < (n - D.MAX); j++)

disparityMapCi] Cj] = tempDisparityMapCi] Cj] ;

>
currentTemp -= (currentTemp * TEMP .REDUCTION);

>

> /* end Anneal */

void main(int arge, char *argvC]) ■(
int n, i;
struct timespec tl, t2;
double startTime, endTime;

MPI_Init(fcargc, ftargv);
n = atoi(argvCl]);

if (ReadLeftImage(n) fcfe ReadRightlmage(n)) <
getclock(TIMEOFDAY, ttl);
startTime = (tl.tv.sec * 100.0) + (tl.tv.nsec * 10e-7);
startTime = MPI.WtimeO;
Anneal(n);
getclock(TIME0FDAY, tt2);
endTime = (t2.tv_sec * 100.0) + (t2.tv_nsec * 10e-7);
printfC'mpi ,/.f\n", MPI.WtimeO - startTime);

26

printf ("Elapsed time = */..2f seconds\n", (endTime - startTime) / 100.0);
WriteResultGrayScaleMap(n);

HPI.FinalizeO;

} /* end main */

27

INTENTIONALLY LEFT BLANK.

28

C MPI 1-D row decomposition.

•include <stdio.h>
»include <mpi.h>
•include <math.h>
•include <sys/time.h>

»define MAX.ROWS 1000
«define MAX.COLS 1000
«define D.MIN 0
«define D.MAX 6
«define LAMBDA 5
«define STARTING.TEMP 100.0
«define ENDING.TEMP 1.0
»define TEMP.REDUCTION 0.1
«define LATTICE.SCANS 10

/* Define various macros and functions to inline code. */

«define RANDOM.DISPARITY (randO */. D_MAX)
«define RAND0M.PR0BABILITY (randO */. 32767 / 32767.0)
«define min(x.y) ((x) < (y)) ? (x) : (y)
«define max(x.y) ((x) > (y)) ? (x) : (y)

typedef unsigned char Pixel;
enum {LEFT = 0, RIGHT};

/* Global variables: */

Pixel leftImage[MAX_R0WS][MAX.COLS];
Pixel rightImage[MAX.ROWS][MAX.COLS];
int disparityMap[MAX_ROWS][MAX.COLS];
int tempDisparityMap[MAX.ROWS][MAX.COLS];

/* Function prototypes: */

/* Basic file I/O routines. */

static int ReadLeftImage(int n);
static int ReadRightlmageCint n);
static void WriteResultGrayScaleMap(int n);

/* MPI communication routines. */

static void GetlmageDataFromMasterCint n, int mylD, int startRow, int stopRow);
static void SendResultsToMaster(int n, int mylD, int startRow, int stopRow);
static void CollectResults(int n, int numProcs, int chunkSize);

/* Simulated annealing functions. */

static int RandomNewState(int oldState);
static void Anneal(int n, int mylD, int startRow, int stopRow, int numProcs);

void main(int arge, char *argv[]);

/***♦*******

File I/O routines follow.

static int ReadLeftImage(int n) {
FILE »theFile;
char fileName[80];

29

int i, j;

/* Attempt to read the left image. */

sprintf(fileName, "LeftDof/.d.c", n);

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorC'ReadLeftImage: fopen");
return(FALSE);
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf (theFile, "7.c", fe(leftlmage[i] [j]));

fclose(theFile);

return(TRUE);

y /* end ReadLeftlmage */

static int ReadRightImage(int n) {
FILE »theFile;
char fileName [100] ;
int i, j;

/* Attempt to read the right image. */

sprintf(fileName, "RightDoty.d.c", n);

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorC'ReadRightlmage: fopen");
return(FALSE);
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf(theFile, "%c", fc(rightlmage[i][j]));

fclose(theFile);

return(TRUE);

> /* end ReadRightlmage */

static void WriteResultGrayScaleMap(int n) {
FILE »theFile;
char fileName[80];
int i, j;

sprintf«ileName, "MPI.ROWS.RESULTS.JCd", n) ;

theFile = fopen(fileName, "v");

if (theFile == NULL) {
perrorC'WriteResult: fopen");
exit(l);
>

30

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fprintf(theFile, '7.cn, (Pixel) (disparityMap[i] [j] * (255 /D.MAX)));

fclose(theFile);

> /* end WriteResultGrayScaleMap */

HPI communication routines follow.
***/

static void CollectResults(int n, int numProcs, int chunkSize) ■[
int i, source;
MPI.Status status;

for (i = chunkSize; i < n; i++) {
source = min(i / chunkSize, numProcs - 1);
MPI_Recv(disparityMap[i], n, MPI.INT, source, source, MPI.COMM.WORLD,

festatus);
>

} /* end CollectResults */

static void GetImageDataFromMaster(int n, int mylD, int startRow, int stopRow) ■(
MPI_Status status;
int i;

for (i = startRov; i <= stopRow; i++) {
MPI_Recv(leftImage[i], n, MPI.UNSIGNED.CHAR, 0, LEFT, MPI.COMM.WORLD,

festatus);
MPI_Recv(rightImage[i], n, MPI.UNSIGNED.CHAR, 0, RIGHT, MPI.COMM.HORLD,

festatus);
>

} /* end GetlmageDataFromMaster */

static void SendResultsToMaster(int n, int mylD, int startRow, int stopRow) {
int i;

for (i = startRov; i <= stopRov; i++)
MPI_Send(disparityMap[i], n, MPI.INT, 0, mylD, MPI.COMM.WORLD);

} /* end SendResultsToMaster */

/***
Stereo matching routines follow.

******************************#*»**************♦**»******#*******»*********/

static int RandomNewState(int oldState)
■c
int randomNumber;

if (RANDDM.DISPARITY > ((D.MAX / 2) - 1))
randomNumber = -1;

else
randomNumber = 1;

oldState = oldState + randomNumber;

if (oldState < D.MIN)

31

oldState = D.MIN;
else if (oldState > D.MAX)

oldState = D.MAX;

return(oldState);

> /* end RandomNewState */

static void RandomizeSystem(int startRow, int stopRov, int n) {
int i, j;

/* Assign a random disparity to each disparity grid point. Edges get
the value 0. */

for (i = startRow; i <= stopRow; i++)
for (j = 0; j < n; j++) {

if ((i ==0) II (i == (n - 1)) II (j ==0) II (j >= (n - D.MAX)))
disparityMap[i] [j] = 0;

else
disparityMap[i][j] = RANDOM.DISPARITY;

}

} /* end RandomizeSystem */

static int Energy(int row, int col, int disparity) {
int delta;
int photometric;

delta = abs(disparity - disparityMap[row-1][col-1]) +
abs(disparity - disparityMap[row-1][col]) +
abs(disparity - disparityMap[row-l][col+1]) +
abs(disparity - disparityMap[row][col-1]) +
abs(disparity - disparityMap[row][col+1]) +
abs(disparity - disparityMap[row+1][col-1]) +
abs(disparity - disparityMap[row+1][col]) +
abs(disparity - disparityMap[row+1][col+1]);

photometric = abs(leftImage[row][col+disparity] - rightlmage[row] [col]);

return(photometric + (LAMBDA * delta));

} /* end Energy */

static void Anneal(int n, int mylD, int startRow, int stopRow, int numProcs) {
int newState, newEnergy, oldEnergy, i, j, start, stop;
double currentTemp;
int scanCounter;
int deltaEnergy;
MPI.Status status;
struct timespec tl, t2;
double startTime, endTime;

start = startRow;
stop = stopRow;

if (mylD == 0)
start = startRow + 1;

else if (myID == (numProcs - 1))
stop = stopRow - 1;

RandomizeSystem(startRow, stopRow, n);

32

currentTemp = STARTING.TEMP;

vhile (currentTemp >= ENDING.TEMP) ■[

if (mylD == 0)
printfO'Temp = 7.f\n", currentTemp);

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) <
/* Send my disparity values to my neighbors and get values in. */

if (mylD == 0) {
MPI_Send(disparityMap[stopRov], n, MPI.INT, mylD + 1, mylD,

MPI.C0MM.W0RLD);
MPI_Recv(disparityMap[stopRow+l] , n, MPI.INT, mylD + 1, mylD + 1,

MPI.C0MM.W0RLD, ftstatus);
}

else if (mylD == numProcs - 1) {
MPI_Send(disparityMap[startRov], n, MPI.INT, mylD - 1, mylD,

MPI.C0MM.W0RLD);
MPI_Recv(disparityMap[startRov-l], n, MPI.INT, mylD - 1, mylD - 1,

MPI_C0MM_W0RLD, ftstatus);
}

else ■[
MPI_Send(disparityMap[startRov], n, MPI.INT, mylD - 1, mylD,

MPI^COMM.WORLD);
MPI_Send(disparityMap[stopRov], n, MPI.INT, mylD + i, mylD,

MPI.C0MM.W0RLD);
MPI_Recv(disparityMap[startRow-l], n, MPI.INT, mylD - 1, mylD - 1,

MPI.COMM.WORLD, ftstatus);
MPI_Recv(disparityMap[stopRow+l], n, MPI.INT, mylD + 1, mylD + 1,

MPI.C0MM.WORLD, ftstatus);
}

/* getclock(TIMEOFDAY, fttl);
startTime = (tl.tv.sec * 100.0) + (tl.tv.nsec * 10e-7); */

for (i = start; i <= stop; i++)
for (j = 1; j < (n - D.MAX); j++) {

nevState = RandomNewState(disparityMap[i][j]);
oldEnergy = Energy(i, j, disparityMap[i][j]);
newEnergy = Energy(i, j, nevState);
deltaEnergy = newEnergy - oldEnergy;
if (deltaEnergy < 0)

tempDisparityMap[i][j] = nevState;
else if (RANDOM.PROBABILITY <

exp((double)-deltaEnergy/currentTemp))
tempDisparityMap[i][j] = nevState;

else
tempDisparityMap[i] [j] = disparityMap[i] [j] ;

>

for (i = start; i <= stop; i++)
for (j = 1; j < (n - D.MAX); j++)

disparityMap[i][j] = tempDisparityMap[i][j];
/*
getclock(TIME0FDAY, ftt2);
endTime = (t2.tv_sec * 100.0) + (t2.tv_nsec * 10e-7);

if (myID == 1)
printf("Elapsed time = */,.2f seconds\n", (endTime - startTime) / 100.0);

*/

}
currentTemp -= (currentTemp * TEMP REDUCTION);
}

/* If I am not the boss, send my results back to the boss. */

33

if (myID != 0)
SendResultsToMaster(n, mylD, startRov, stopRow);

> /*" end Anneal */

void main(int arge, char *argv[]) {
int numProcs, myID, n;
int startRov, stopRov;
int chunkSize, destination;
int i;
double tl;

MPI_Init(feargc, ftargv);

MPI.Comm.size(MPI.COMM.WORLD, fenumProcs);
MPI_Comm_rank(MPI_COMM_WORLD, fanylD);

n = atoi(argv[l]);

/* Determine the start and stop rovs. */

chunkSize = (n / numProcs);
startRov = (chunkSize * myID);
stopRov = (startRov + chunkSize) - 1;
if (mylD == numProcs - 1)

stopRov = max(stopRov, n-1);

if (mylD == 0) <
/* Read in the left and right image files. */

if (ReadLeftlmage(n) ftft ReadRightlmage(n)) {

/* Send the image data to the different processors. Processor 0
gets the first part of the image. •/

for (i = chunkSize; i < n; i++) •£
destination = min(i / chunkSize, numProcs - 1);
MPI_Send(leftImage[i], n, MPI.UNSIGNED.CHAR, destination, LEFT,

MPI.COMM.WORLD);
MPI_Send(rightImage[i], n, MPI.UNSIGNED.CHAR, destination,

RIGHT, MPI.COMM.WORLD);
}

>

tl = MPI.WtimeO;

Anneal(n, myID, startRov, stopRov, numProcs);

printf("Total time for rov decomposition %d = V,.2f seconds\n", n,
MPI.WtimeO - tl);

/* Collect results from the vorkers. */
CollectResults(n, numProcs, chunkSize);

WriteResultGrayScaleMap(n);

>
else {

/* Gather information from the boss. */

GetImageDataFromMaster(n, myID, startRov, stopRov);
Anneal(n, mylD, startRov, stopRov, numProcs);

34

}

MPI.FinalizeO;

} /* end main */

35

INTENTIONALLY LEFT BLANK.

36

D MPI 1-D column decomposition.

•include <stdio.h>
«include <mpi.h>
•include <math.h>

»define MAX.ROWS 1000
♦define MAX.COLS 1000
«define D.MIN 0
«define D.MAX 6
«define LAMBDA 5
«define STARTING.TEMP 100.0
»define ENDING.TEMP 1.0
«define TEMP.REDUCTION 0.1
«define LATTICE.SCANS 10

/* Define various macros and functions to inline code. */

«define RANDOM.DISPARITY (randO '/. D.MAX)
«define RANDOM.PROBABILITY (randO 7. 32767 / 32767.0)
«define min(x.y) ((x) < (y)) ? (x) : (y)
«define max(x.y) ((x) > (y)) ? (x) : (y)

typedef unsigned char Pixel;
enum -CLEFT = 0, RIGHT};

/* Global variables: */

Pixel leftImage[MAX_ROWS][MAX_COLS];
Pixel rightlmage[MAX.ROWS][MAX.COLS];
int disparityMap[MAX.ROWS][MAX.COLS];
int tempDisparityMap[MAX.ROWS][MAX.COLS];

/* Function prototypes: */

/* Basic file I/O routines. */

static int ReadLeftImage(int n);
static int ReadRightImage(int n);
static void WriteResultGrayScaleMap(int n);

/* MPI communication routines. */

static void GetImageDataFromMaster(int n, int mylD, int numProcs, int startCol, int stopCol);
static void SendResultsToMaster(int n, int mylD, int startCol, int stopCol);
static void CollectResults(int n, int numProcs, int chunkSize);

/* Simulated annealing functions. */

static int RandomNewState(int oldState);
static void AnneaKint n, int mylD, int startCol, int stopCol, int numProcs);

void main (int arge, char *argv[]);

File I/O routines follow.
I**«****************************/

static int ReadLeftImage(int n) {
FILE »theFile;
char fileName[80];
int i, j;

37

/* Attempt to read the left image. */

spring (fileName, "LeftDof/.d.c", n);

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorO'ReadLeftlmage: fopen");
return(FALSE);

}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf (theFile, "#/.c", ft(leftlmage[i] [j]));

fclose(theFile);

return(TRUE);

} /* end ReadLeftImage */

static int ReadRightImage(int n) {
FILE »theFile;
char fileName[100] ;
int i, j;

/* Attempt to read the right image. */

sprintf(fileName, "RightDotJCd.c", n);

theFile = fopen(fileName, "r");

if (theFile == NULL) {
perrorC'ReadRightlmage: fopen");
return(FALSE);
}

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

fscanf (theFile, '7.c\ 6(rightlmage[i] [j]));

fclose(theFile);

return(TRUE);

} /* end ReadRightImage */

static void WriteResultGrayScaleMap(int n) <
FILE »theFile;
char fileName [80];
int i, j;

sprintf(fileName, "MPI.COLS.RESULTS.Xd", n) ;

theFile = fopen(fileName, "w");

if (theFile == NULL) {
perrorC'WriteResult: fopen");
exit(l);
}

for (i = 0; i < n; i++)

38

for (j = 0; j < n; j++)
fprintf(theFile, '"/.c", (Pixel) (disparityMap[i] [j] * (255 / D.MAX)));

fclose(theFile);

} /* end WriteResultGrayScaleMap */

MPI communication routines follov.

static void CollectResults(int n, int numProcs, int chunkSize) {
int i, source;
MPI_Status status;
MPI.Datatype column;

HPI.Type.vector(n, 1, MAX.COLS, MPI.INT, fccolumn);
MPI.Type.commit(fccolumn);

for (i = chunkSize; i < n; i++) {
source = min(i / chunkSize, numProcs - 1);
MPI_Recv(ft(disparityMap[0] [i]), 1, column, source, source,

MPI_C0MM_W0RLD, fcstatus);
}

} /* end CollectResults */

static void GetImageDataFromMaster(int n, int myID, int numProcs, int startCol, int stopCol) {
MPI.Status status;
int i;
MPI.Datatype column;

HPI_Type_vector(n, 1, MAX.COLS, MPI.ÜHSIGNED.CHAR, fccolumn);
MPI.Type.commit(fccolumn);

for (i = startCol; i <= stopCol; i++) •[
MPI.Recv(ft(leftImage[0][i]), 1, column, 0, LEFT, MPI.CDMM.WORLD,

fcstatus);
MPI_Recv(ft(rightImage[0][i]). 1, column, 0, RIGHT, MPI.COMM.WORLD,

fcstatus);
>

/* We have to receive more of the left image since the disparity is
by columns and we haven't received all the possible matched points. */

if (myID != (numProcs - 1))
for (i = stopCol +1; i <= stopCol + D_MAX; i++)

MPI.Recv(fc(leftImage[0][i]), 1, column, 0, LEFT, MPI.COMM.WORLD,
festatus);

} /* end GetlmageDataFromMaster */

static void SendResultsToMaster(int n, int mylD, int startCol, int stopCol) {
int i;
MPI.Datatype column;

MPI.Type_vector(n, 1, MAX.COLS, MPI.INT, tcolumn);
MPI.Type.commit(ftcolumn);

for (i = startCol; i <= stopCol; i++)
MPI_Send(ft(disparityMap[0][i]). 1, column, 0, myID, MPI.COMM.WORLD);

39

} /* end SendResultsToMaster */

/***♦*******************************

Stereo matching routines follow.
#***■*****/

static int RandomNewState(int oldState)
{
int randomNumber;

if (RANDOM.DISPARITY > ((D.MAX / 2) - 1))
randomNumber = -1;

else
randomNumber = 1;

oldState = oldState + randomNumber;

if (oldState < D_MIN)
oldState = D.MIN;

else if (oldState > D.MAX)
oldState = D.MAX;

return(oldState);

} /* end RandomNewState */

static void RandomizeSystem(int startCol, int stopCol, int n) {
int i, j;

/* Assign a random disparity to each disparity grid point. Edges get
the value 0. */

for (i = 0; i < n; i++)
for (j = startCol; j <= stopCol; j++) {

if ((i ==0) II (i == (n - 1)) II (j = 0) II (j >= (n - D.MAX)))
disparityMap[i] [j] = 0;

else
disparityMap[i][j] = RANDOM.DISPARITY;

}

} /* end RandomizeSystem */

static int Energy(int row, int col, int disparity) {
int delta;
int photometric;

delta = abs(disparity - disparityMap[row-l] [col-1]) +
abs(disparity - disparityMap [row-1] [col]) +
abs(disparity - disparityMap[row-l][col+1]) +
abs(disparity - disparityMap[row][col-1]) +
abs(disparity - disparityMap[row][col+1]) +
abs(disparity - disparityMap[row+1][col-1]) +
abs(disparity - disparityMap[row+1][col]) +
abs(disparity - disparityMap[row+1][col+1]);

photometric = abs(leftImage[row][col+disparity] - rightImage[row] [col]);

return(photometric + (LAMBDA * delta));

} /* end Energy */

40

static void AnneaHint n, int mylD, int startCol, int stopCol, int numProcs) {
int newState, nevEnergy, oldEnergy, i, j, start, stop;
double currentTemp;

■int scanCounter;
int deltaEnergy;
MPI_Status status;
MPI.Datatype column;

start = startCol;
stop = stopCol;
if (mylD == 0)

start = startCol + 1;
else if (myID == (numProcs - 1))

stop = (n - D.MAX) - 1;

MPI_Type.vector(n, 1, MAX.COLS, MPI.INT, fccolumn);
MPI_Type_commit(fccolumn);

RandomizeSystem(startCol, stopCol, n) ;

currentTemp = STARTING.TEMP;

while (currentTemp >= ENDING.TEMP) ■[

if (mylD == 0)
printfC'Temp = 7,f\n", currentTemp);

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) {
/* Send my disparity values to my neighbors and get values in. */

if (mylD == 0) {
MPI.Send(ft(disparityMap[0][stopCol]), 1, column, mylD +1, mylD,

MPI.C0MM.WORLD);
MPI_Recv(fc(disparityMap[0][stopCol+1]), 1, column, mylD + 1,

myID + 1, MPI_C0MM_W0RLD, fcstatus);
>

else if (mylD == numProcs - 1) {
MPI_Send(fc(disparityMap[0] [startCol]), 1, column, mylD - 1, mylD,

MPI.C0HM.W0RLD);
MPI_Recv(fc(disparityMap[0] [startCol-1]), 1, column, mylD - 1,

mylD - 1, MPI_C0MM_W0RLD, fcstatus);
}

else {
MPI_Send(ft(disparityMap[0] [startCol]), 1, column, mylD - 1, mylD,

MPI_C0MM_W0RLD);
MPI_Send(ft(disparityMap[0][stopCol]), 1, column, mylD + 1, mylD,

MPI_C0MM_W0RLD);
MPI_Recv(ft(disparityMap[0][startCol-1]), 1, column, mylD - 1,

mylD - 1, MPI_C0MM_WORLD, fcstatus);
MPI_Recv(fc(dispaxityMap[0][stopCol+1]), 1, column, mylD + 1,
mylD + 1, MPI_C0MM_W0RLD, fcstatus);
}

for (i = 1; i < (n - 1); i++)
for (j = start; j <= stop; j++) {

newState = RandomNewState(disparityMap[i][j]);
oldEnergy = Energy(i, j, disparityMap[i][j]);
nevEnergy = Energy(i, j, newState);
deltaEnergy = newEnergy - oldEnergy;
if (deltaEnergy < 0)

tempDisparityMap[i][j] = newState;
else if (RAND0M.PR0BABILITY <

exp((double)-deltaEnergy/currentTemp))
tempDisparityMap[i] [j] = newState;

else
tempDisparityMap[i] [j] = disparityMap[i] [j] ;

41

for (i = 1; i < (n - 1); i++)
for (j = start; j <= stop; j++)

disparityMap[i] [j] = tempDisparityMap[i] [j] ;

}
currentTemp -= (currentTemp * TEMP.REDUCTION);
}

/* If I am not the boss, send my results back to the boss. */

if (myID != 0)
SendResultsToMaster(n, mylD, startCol, stopCol);

} /* end Anneal */

void main(int arge, char *argv[]) {
int numProcs, myID, n;
int startCol, stopCol;
int chunkSize, destination;
int i, j, oldDestination;
double tl;
MPI.Datatype column;

MPI_Init(feargc, feargv);

MPI_Comm_size(MPI_COMM_WORLD, fenumProcs);
HPI_Comm_rank(HPI_COMM_WORLD, fcmylD);

n = atoi(argv[l]);

/* Determine the start and stop columns. */

chunkSize = (n / numProcs);
startCol = (chunkSize * myID);
stopCol = (startCol + chunkSize) - 1;
if (myID == numProcs - 1)

stopCol = max(stopCol, n-1);

if (mylD == 0) {
/* Read in the left and right image files. */

if (ReadLeftlmage(n) ftft ReadRightlmage(n)) {

/* Send the image data to the different processors. Processor 0
gets the first part of the image. */

MPI_Type.vector(n, 1, MAX.COLS, MPI.UNSIGNED.CHAR, ftcolumn);
MPI_Type_commit(ftcolumn);

oldDestination = 1;
for (i = chunkSize; i < n; i++) ■[

destination = min(i / chunkSize, numProcs - 1);
if (destination != oldDestination) {

for (j = i - 1; j <= (i - 1) + D.MAX; j++)
MPI.Send(ft(leftImage[0][i]), 1, column, oldDestination,

LEFT, MPI.COMM.WORLD);
oldDestination = destination;

}
MPI.Send(fc(leftImage[0][i]), 1, column, destination, LEFT,

MPI.C0MM.W0RLD);
MPI.Send(ft(rightImage[0] [i]), 1, column, destination, RIGHT,

HPI.C0MM.W0RLD);

42

}
}

tl = MPI.WtimeC);

AnneaKn, mylD, startCol, stopCol, numProcs);

printf("Total time for column decomposition %d = JC.2f seconds\n", n,
MPI.WtimeC) - tl);

./* Collect results from the workers. */
CollectResultsCn, numProcs, chunkSize);

WriteResultGrayScaleMap(n);

}
else {

/* Gather information from the boss. */

GetImageDataFromMaster(n, mylD, numProcs, startCol, stopCol);
AnneaKn, mylD, startCol, stopCol, numProcs);

}

MPI.FinalizeO;

} /* end main */

43

INTENTIONALLY LEFT BLANK.

44

E FORTRAN and HPF code.

module timer

contains

subroutine print.time

character*8 :: date ! ccyymmdd

character*10 :: time ! hhmmss.sss

call date.and.time(date,time)

print *, date(5.-6)//'/'//date(7:8)//'/'//date(3:4)

print *, time(l:2)//':'//time(3:4)//,:'//time(5:10)

return

end subroutine print.time

real function cputimeQ

cputime = secnds(O.O)

return

end function cputime

end module timer

program rows

use timer

implicit none

integer MAX.ROWS, MAX.COLS

parameter (MAX.ROWS = 600, MAX.COLS = 600)

integer D.MIN, D.MAX

parameter (D.MIN = 0, D.MAX = 6)

integer LAMBDA

parameter (LAMBDA = 5)

integer SCANS

parameter (SCANS = 10)

real STARTING.TEMP, ENDING.TEMP, TEMP.REDUCTION

parameter (STARTING.TEMP = 100.0, ENDING.TEMP =1.0)

parameter (TEMP.REDUCTION =0.1)

double precision start, stop

integer dMap(MAX_R0WS, MAX.COLS)

integer, dimension(:,

integer, dimension(:,

integer, dimension(:,

integer, dimension(:,

integer, dimensionO,

) , allocatable :: leftlmage

) , allocatable :: rightlmage

), allocatable :: nevDMap

), allocatable :: oldEnergies

:), allocatable :: newEnergies

real, dimension(:,:), allocatable :: randoms

!hpf$ distribute(block, *) :: dMap

!hpf$ align with dMap :: randoms

!hpf$ align with dMap :: newEnergies, oldEnergies, nevDMap

!hpf$ align with dMap :: leftlmage, rightlmage

real currentTemp

integer i, j, n, scanCounter, k, 1

real dMaxReal

interface

pure integer function NewState(oldState, D.MIN, D.MAX)

integer, intent(in) :: oldState, D.MIN, D.MAX

end function NewState

end interface

interface

pure real function randO

end function rand

end interface

45

interface
pure integer function irandO
end function irand

end 'interface
interface

pure integer function GetDisparity(current, proposed,nevE.oldE, t)
integer, intent(in) :: current, proposed, nevE, oldE
real, intent(in) :: t
end function GetDisparity

end interface

allocate (leftImage(MAX_ROWS, MAX.COLS))
allocate (rightImage(MAX.ROWS, MAX.COLS))
allocate (newDMap(MAX.ROWS, MAX.COLS))
allocate (randoms(MAX.ROWS, MAX.COLS))
allocate (oldEnergies(MAX.ROWS, MAX.COLS))
allocate (nevEnergies(MAX.ROWS, MAX.COLS))

n = 600
dMaxReal = D.MAX

call ReadLeftImage(n, leftlmage)
call ReadRightImage(n, rightlmage)

start = secnds(O.O)

! Initialize the disparity map

call random.number(randoms)

dMap(l,:) = 0
dMap(n,:) = 0
dMapO.l) = 0
dMap(:,(n-D_MAX)+l:n) = 0
forall (i=2:n-l, j=2:n-D_MAX)

dMap(i.j) = mod(randoms(i,j) * 10000, dMaxReal)
end forall

currentTemp = STARTING.TEMP

! Start the annealing process

do while (currentTemp >= ENDING.TEMP)
print *, 'Temp = ', currentTemp
do scanCounter = 1,SCANS

forall (i=2:n-l, j=2:n-D_MAX)
newDMap(i.j) = NewState(dMap(i,j), D.MIN, D.MAX)

oldEnergies(i,j) = ((abs(dMap(i-l,j-l) - dMap(i.j)) + ft
ft abs(dMap(i-l,j) - dMap(i.j)) + ft
ft abs(dMap(i-l,j+l) - dMap(i,j)) + ft
ft abs(dMap(i,j-l) - dMap(i.j)) + ft
ft abs(dMap(i,j+l) - dMap(i.j)) + ft
ft abs(dMap(i+l,j-l) - <JMap(i,j)) + ft
ft abs(dMap(i+l,j) - dMap(i.j)) + ft
ft abs(dmap(i+l,j+l) - dMap(i,j))) * ft
ft LAMBDA) + abs(leftImage(i,j+dMap(i,j)) - ft
ft right Imaged,j))

newEnergies(i.j) = ((abs(dMap(i-l,j-1) - newDMap(i,j)) + ft
ft abs(dMap(i-l,j) - newDMap(i.j)) + ft
ft abs(dMap(i-l,j+l) - newDMap(i,j)) + ft
ft abs(dMap(i,j-l) - newDMap(i.j)) + ft
ft abs(dMap(i,j+l) - newDMap(i,j)) + ft

46

ft abs(dMap(i+l,j-D - newDMap(i,j)) + &
ft abs(dMap(i+l,j) - newDMap(i.j)) + ft
ft abs(dmap(i+l,j+l) - nevDMap(i,j))) * ft
ft " LAMBDA) + abs(leftImage(i,j+newDMap(i,j)) - ft
ft rightImage(i,j))

randoms(i.j) = rand()

end forall

forall (i=2:n-i, j=2:n-D_MAX, (newEnergies(i,j) - ft
ft oldEnergies(i,j) < 0) .or.. (randomsCi, j) < exp(ft
ft (nevEnergies(i.j) - oldEnergies(i,j)) / -currentTemp)))

dMap(i.j) = nevDMap(i,j)
end forall

enddo

currentTemp = currentTemp - (currentTemp * TEMP.REDUCTION)

enddo

stop = secnds(O.O)

print *, 'Total time parallel = ', stop - start

call WriteResults(n, dMap)

end

subroutine ReadLeftImage(n, leftlmage)
implicit none
integer n
integer leftlmage(n, n)
integer i, j

open (unit=10, file='LeftDot600.f', status='old')
read (10,*) ((leftlmage(i,j), j=l,n),i=l,n)
close (10)

return
end

subroutine ReadRightImage(n, rightlmage)
implicit none
integer n
integer rightImage(n, n)
integer i, j

open (unit=10, file='RightDot600.f', status='old')
read (10,*) ((rightImaged, j) , j=l,n) ,i=l,n)
close (10)

return
end

subroutine WriteResults(n, disparityMap)
implicit none
integer n
integer disparityMap(n, n)
integer i, j

47

open (unit=10, file='HPF_ROW_RESULTS', status='nev')
write (10,*) (((disparityMap(i,j) * (255 / 6)), j=l,n) ,i=l,n)
close (10)

end subroutine WriteResults

pure integer function NevState(oldState, D_HIN,, D_MAX)
implicit none
intent(in) :: oldState, D.MIN, D.MAX
integer oldState
integer D.MIN, D.MAX
integer randomNumber
real x
interface

pure integer function irandO
end function irand

end interface

if (mod(irand(), D.MAX) > ((D.MAX / 2) - 1)) then
randomNumber = -1

else
randomNumber = 1

end if

NevState = oldState + randomNumber

if (NevState < D.MIN) then
NevState = D.MIN

else if (NewState > D.MAX) then
NevState = D.MAX

end if

return
end function

pure integer function GetDisparity(current, proposed, nevE, oldE, t)
implicit none
intent(in) :: current, proposed, nevE, oldE
intent(in) :: t
integer current, proposed, newE, oldE
real t
interface

pure real function randO
end function rand

end interface

if ((newE - oldE) < 0) then
GetDisparity = proposed

else if (randO < exp((-(nevE-oldE)) / t)) then
GetDisparity = proposed

else
GetDisparity = current

end if

return
end function

48

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTICDDA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

HQDA
DAMOFDQ
DENNIS SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

DPTY ASSIST SCY FOR R&T
SARDTT F MILTON
RM 3EA79 THE PENTAGON
WASHINGTON DC 20310-0103

OSD
OUSD(A&T)/ODDDR&E(R)
JLUPO
THE PENTAGON
WASHINGTON DC 20301-7100

1 GPS JOINT PROG OFC DIR
COLJCLAY
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

1 ELECTRONIC SYS DIV DIR
CECOMRDEC
JNIEMELA
FT MONMOUTH NJ 07703

3 DARPA
L STOTTS
JPENNELLA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDN A MAJ DON ENGEN
THAYERHALL
WEST POINT NY 10996-1786

CECOM
SP & TRRSTRL COMMCTN DIV
AMSEL RD ST MC M
H SOICHER
FT MONMOUTH NJ 07703-5203

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCSALTP
2800 POWDER MILL RD
ADELPHI MD 20783-1145

PRIN DPTY FOR TCHNLGY HQ
USARMYMATCOM
AMCDCGT
MFISETTE
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTYCGFORRDEHQ
USARMYMATCOM
AMCRD
BGBEAUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCSALTA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCILL
2800 POWDER MULL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DIRUSARL
AMSRLCILP(305)

49

INTENTIONALLY LEFT BLANK.

50

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public repotting burden lor this collection ot intomutlon Is estimated to average 1 Hour peTrespönse, Including th7Üm?törr»vl«wlng Instructions, searching easting dam SOUR«;

gathering »nd malnttlning «is dm needed, and completing and reviewing ths collection of Information. Sand comments regarding this burden estimate or any other aspaet of this
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate lor Information Operations and Reports, 4216 Jefferson
Devi« Hlohw,. Sun« 1204. Arllnoton. VA nx>l**t. .nd to th. OfHe. of M.n.o^, -nd Bud-I. fWwprt Refaction ProlectlOTO^Ifffl). Weshlnolon. DC 20603.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED

May 1998 Final, October 1997 - December 1997
4. TITLE AND SUBTITLE

MPI and HPF Performance in a DEC Alpha Cluster

6. AUTHOR(S)

Dale Shires

5. FUNDING NUMBERS

78M841

7. PERFORMING ORGANIZATION NAME'S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-WM-MD
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-1668

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

There are several different types of parallel computer architectures in use today. Some of these are large machines
that house hundreds of processors with low- to mid-range computing capabilities. A different type of parallel computer
architecture becoming increasingly popular is that of the cluster. Clusters are basically networked workstations: each
containing 1 to ~30 processors with mid- to high-range computing capabilities. While arguments can be made for both
paradigms, clusters seem to be gaining in popularity. They provide fast computation through multiplicity and fast
processor throughput Furthermore, code reuse on different cluster environments is now possible with the adoption of
standard interprocessor communication tools like the message-passing interface (MPI) and high-performance
FORTRAN (HPF). This report compares and contrasts the performance of MPI and HPF on a currently available
computer cluster.

14. SUBJECT TERMS

clusters, parallel computing, high-performance FORTRAN, message-passing interface

15. NUMBER OF PAGES

50
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

51
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

52

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-1668 (Shires') Date of Report Mav 1998

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

