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Abstract  

There are several different types of parallel computer architectures in use today. Some of 
these are large machines that house hundreds of processors with low- to mid-range computing 
capabilities. A different type of parallel computer architecture becoming increasingly popular 
is that of the cluster. Clusters are basically networked workstations: each containing 1 to ~30 
processors with mid- to high-range computing capabilities. While arguments can be made for 
both paradigms, clusters seem to be gaining in popularity. They provide fast computation 
through multiplicity and fast processor throughput. Furthermore, code reuse on different cluster 
environments is now possible with the adoption of standard interprocessor communication tools 
like the message-passing interface (MPI) and high-performance FORTRAN (HPF). This report 
compares and contrasts the performance of MPI and HPF on a currently available computer 
cluster. 
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1    Introduction. 

The message-passing interface (MPI) and high-performance FORTRAN (HPF) are 
two sets of extensions to programming languages that seek to provide architecture- 
independent parallelism. MPI extensions exist for both the C and FORTRAN pro- 
gramming languages. HPF is specifically tailored to augment the FORTRAN 90 
language. Both MPI and HPF have adopted published standards. HPF was adopted 
in 1993 [1], and MPI was standardized in 1994 [2]. These standards have allowed 
codes to be easily ported between different computer architectures with a minimum 
of code rewriting. 

These two systems offer quite different parallel computational models. A compu- 
tation in MPI usually consists of one or more processes that communicate messages 
(sends and receives) through calls to library routines. These libraries are ideally cus- 
tomized and optimized for the specific hardware system on which the computations 
are being performed. As long as the programs contain standard MPI directives, they 
should be able to be ported, recompiled, and executed on different architectures using 
the MPI system. MPI is sometimes referred to as the "assembly language" of parallel 
programming, since the programmer is required to specify the parallelism explicitly 
through calls to the message-passing library. This is often classified as an advantage 
rather than a hindrance. Effective cache use and memory management are becoming 
extremely important to achieving good parallel performance. Message passing can 
help in this regard by providing more programmer control of data locality in the 
memory hierarchy [3]. MPI appears to be surpassing the Parallel Virtual Machine 
(PVM) interface as the defacto standard in message passing parallelism. 

In contrast, HPF is more closely associated with the data-parallel programming 
model. Data parallelism attempts to exploit the concurrency of the same operation 
to multiple data elements [4]. For example, one may wish to add the value 10 to each 
element of an array. This operation is inherently parallel, since there are no data 
dependencies inside this atomic operation. FORTRAN 90 supports such notations 
as A = A + 10 to perform this operation, where A can be a multidimensional array. 
HPF augments FORTRAN 90 with directives that inform the compiler that there are 
no data dependencies and the code region is data-parallel safe. It is up to the HPF 
compiler to optimally insert communication directives between processors and ensure 
synchronization between parallel regions. HPF is therefore slightly more abstract 
than MPI. It expresses parallelism at a relatively high level and is intended to remove 
the programmer from the more mundane tasks of specifying communication behavior 
between processors [5]. 

Of particular interest is how well these systems perform, both in general and com- 
pared to each other, in current computer architectures. The two basic performance 
metrics of parallel computing systems, speedup and efficiency, were studied in this 
experiment. Scalability is an interesting topic in this domain, but, as it relates to 
this problem, only provides useful data for algorithms with similar floating-point and 



interprocessor communication requirements. The actual speedup achieved is defined 
as 

SP = ^, (1) 

in which Ti is the linear (one processor) completion time for the algorithm, and Tp is 
the parallel completion time using p processors. The second metric used is efficiency. 
Efficiency is defined as 

E>=A- (2) 
This number indicates the overall efficiency of the p processors working on the prob- 
lem. Ideally, this number should be as close to 100% as possible, but will suffer 
because of conditions of load imbalancing, communication costs, and various other 
parallelization overheads. 

The cluster architecture used in this experiment is quite relevant in today's com- 
puting environments. These coarse-grained architectures and clusters of workstations 
are becoming extremely popular for parallel computations. They can appear in many 
manifestations. Indeed, a cluster can be as little as two machines networked together. 
This alone, theoretically, boosts performance by a factor of 2. At the other end of 
the spectrum are very powerful hosts connected together over fast data channels, 
such as the Silicon Graphics Power Challenge Array (96 nodes) at the U.S. Army 
Research Laboratory. Three factors have played into clusters becoming viable par- 
allel programming platforms. These factors are workstation-level high-performance 
microprocessors, standardized high-speed communication, and reliable standardized 
tools for distributed computing [6]. Today's workstations have processors that are 
quite robust. Very few of them need to be coupled to deliver impressive parallel 
performance. High-performance networks, such as ATM, HiPPI, and FDDI are now 
capable of delivering bandwidths of around 100 MB/s. Standard tools for synchro- 
nization and communication, such as MPI and HPF, continue to grow and mature 
into trusted systems. 

2    Experimental Hypotheses. 

Computer algorithms usually work on sets of data structures. Attacking these struc- 
tures with multiple processors is what provides parallelism. Theoretically, if the data 
structures used are of size n, then n processors could be used to perform atomic oper- 
ations in parallel. Breaking the problem down to find this lowest level of parallelism 
is known as decomposition. However, seldom do such large numbers of processors 
exist. For example, say we have an integer array B that is two-dimensional (2-D) and 
of size 1,000 x 1,000. While an operation B = B + 1 is possible in parallel, rarely 
do machines have one million processors. Therefore, the data must be agglomerated 
and distributed among the number of processors available. Several strategies and 
mechanisms are available for this task. HPF provides some standard decompositions, 



while MPI requires the programmer to instrument the code to achieve the desired 
result. While a discussion of the numerous decompositions is not the purpose of 
this paper,* a quick example is helpful. Two agglomerations are quite popular in 
coarse-grained architectures where a minimum of communications is desired. These 
are one-dimensional (1-D) row and 1-D column decompositions and are are pictured 
in Figure 1. This figure shows the case of a 2-D array on a four-processor computer. 

PI 

P2 

P3 

P4 

PI P2 P3 P4 

1-D Row Decomposition 1-D Column Decomposition 

Figure 1: A 2-D Array Decomposed by Rows and Columns. 

The 2-D array is blocked by rows in the row decomposition and by columns in the 
column decomposition. Processor 1 (PI) gets the first block of data, processor 2 
(P2) the next, and so on. Data distribution is usually done to try and limit costly 
interprocessor communication. Other decompositions are available, but these two are 
quite prevalent in coarse-grained architectures. All of this depends, however, on the 
algorithm's action inside the data matrix. 

Several decompositions and agglomerations were studied in this experiment. MPI 
requires data to be distributed to the individual processors explicitly by the program- 
mer. HPF contains directives that specify how the data should be distributed by the 
compiler. These computations and tests were performed on a Digital Equipment 
Corporation (DEC) Alpha network with individual machines being connected by an 
FDDI network. The following hypotheses were investigated. 

(1) One-dimensional row decomposition using MPI and 1-D column decomposition 
using HPF will result in the fastest speedups for this algorithm in the two dif- 
ferent parallel programming environments. Row decomposition in C has shown 
to be slightly faster in studies of finite difference algorithms. This seems to be 
because the memory is laid out in row major order. In FORTRAN, one can 
expect column major order accessed by columns to be faster. 

(2) There should be little difference between the fastest decomposition and agglom- 
eration with MPI and the fastest similar decomposition with HPF. The main 

"Complete examples can be found in [4] and [5]. 



limiting factor of both should be the speed of the interconnection network. Ide- 
ally, both should make the same optimal use of this system. FORTRAN code 
has shown itself to be faster in some algorithms, but the difference in the par- 
allel codes using MPI and HPF should be no more than that noticed in the 
sequential algorithms. 

(3) Based on studies of finite difference codes and the author's prior experience with 
other distributed memory, message-passing environments, an overall efficiency 
of about 85% is all that can be expected from the MPI and HPF codes. 

3    Case Study: Image Matching. 

3.1    The Image-Matching Algorithm. 

The eye-brain system achieves three-dimensional (3-D) depth perception by taking 
advantage of two separate and distinct images captured by each eye. The image 
captured by the left eye is slightly different than the one captured by the right eye. 
This difference is called retinal disparity, and the brain is able to quickly use this 
information and other binocular cues to compute depth of objects in what the eyes 
are seeing. 

Computers and machines can also determine depth of objects in their environ- 
ments, but not quite as easily. One method involves using active sensors, or lasers, to 
determine range information. This method is limited in that lasers can usually only be 
directed at certain distinct points, thus limiting the machine's ability at determining 
range information in the entire scene. 

A more interesting approach is to have the computer mimic the brain's behavior. 
This approach is known as computational stereo vision. A stereo camera pair is used 
to take pictures of a scene where range information is required. Because of binocular 
parallax, these cameras will acquire slightly different images of the scene, since they 
are at different locations. Points very distant from the cameras will appear to be 
at almost the same vertical and horizontal positions on digitized images from the 
cameras. Objects closer to the cameras will be more displaced. This phenomenon 
can be seen in Figure 2. Notice that points distant in the picture are at roughly the 
same location in both left and right images. However, points close to the camera, 
such as the measured white spot on the highway, have a much greater disparity in 
the two images. 

By having the computer determine which points match in the two images, and then 
computing the amount the points shift, the computer is mimicing the retinal disparity 
computations performed by the brain. The mathematics involve only trigonometry; 
however, the number of transformations for high-resolution images becomes stagger- 
ing. Every point is matched, thus giving a fine grid of range information that dwarfs 
the capabilities of active sensors. The main drawback of this approach, however, is 
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Figure 2: Depth Determined by Disparity in Images (ruler bars are not to scale). 

the time it takes to match the points in the two images. 
The algorithm to perform computational stereo is stochastic; therefore, it does 

require some time to complete. It is an undirected Monte Carlo search through the 
image space that produces a very fine, globally optimized disparity map where every 
pixel in one image is matched with its corresponding pixel in the stereo pair. As 
with other Monte Carlo algorithms, this approach requires a significant number of 
floating-point operations. However, the process of matching pixels typically requires 
only local interactions. On the computer, this translates into local references to 
memory by applying a nine-point stencil to the 2-D digitized images. Furthermore, 
besides certain boundary conditions, the amount of processing for each pixel remains 
uniform. These properties make the algorithm ideal for parallel processing. 

Stereo matching requires global optimization. Since the digital image data maps 
pixel intensities to a relatively low resolution (typically 8 bits, implying 256 discrete 
levels), there are many possible matches in the local sense. Swatches in one image 
may appear to map other portions of the stereo image pair. To perform this operation 
accurately, the entire image must be taken into account. 

One of the most popular optimization techniques to locate a global optimum is 
called simulated annealing. This approach can be applied directly to the image- 
matching problem [7]. As the name implies, the approach imitates a natural process. 
Annealing involves heating a solid to the extent that the molecules may randomly 
rearrange themselves and then cool gradually. Slowly lowering the temperature allows 
the molecules to settle into the lowest energy state, commonly described as thermal 
equilibrium. If the temperature rate declines too fast, defects may become frozen into 
the end state. If thermal equilibrium is maintained throughout the cooling cycle, the 
final system should be a globally optimized structure. For example, perfect crystals 
are grown in this manner. 

The simulated annealing technique is outlined in Figure 3. The system is taken to 



read IRJL 
D(row, col) = random number in [0... DM AX] 

T = TMAX 
I* loop according to fixed annealing schedule */ 
while T > TMIN 

S' <= random state change 5 
AE = E(S') - E(S) 
I* accept lower energy states */ 
if AE < 0 then S = S' 
else 

j = random number in [0... 1] 
/* accept higher energy only with Boltzman probability */ 
if j < P then S = S' 

reduce T by predefined percentage 
end while 

Figure 3: Simulated Annealing Algorithm in Pseudocode. 

equilibrium by the Metropolis algorithm by considering random, local state transitions 
on the basis of the change in energy that they imply. Since the system is stochastic, 
these local state changes can take the system away from convergence as well as toward 
it. This helps to prevent the system from sinking into local minima. The processing 
is complete when the system is in equilibrium at the lowest energy state achievable. 
A more detailed discussion of this technique and its Army applications may be found 
in [8]. 

The final result of the algorithm is a 2-D disparity map. The values in the dis- 
parity map are integer values ranging from 0 (no disparity) to D-MAX (maximum 
disparity). To better interpret the map, these values are coded with gray scale values 
and written to binary data files. Examples of these encoded disparity maps appear 
later in this paper. 

3.2    Testing MPI and HPF for Correctness. 

The stereo-matching algorithm was tested with several computer-generated random 
dot stereograms. These stereograms represent synthetic 3-D objects. In this case 
we simulate a camera system looking down on a "wedding cake" structure. Figure 4 
shows the 3-D representation of this four-tiered structure. The stereogram is created 
by starting with a solid black background. It is then speckled with randomly placed 
white pixels. The number of white pixels is limited to 10% of the total image to test 
the robustness of the algorithm. The hypothetical right camera of the two-camera 
system is assigned this random dot image. Since the object is tiered, a stereo camera 
system above and facing the object would consist of two cameras (a right and left 
camera) that would perceive the dots to be at different locations in the two cameras. 



Figure 4: 3-D Wedding Cake Structure. 

This effect is simulated by creating the left image of the stereo pair by shifting pixels 
in the right image to the right. Pixels around the outer edge were not offset, the next 
level in was offset by two pixels, the next level four pixels, and the center was offset 
by six pixels. Pixels with high movement represent areas that would be close to a 
camera looking down from above the wedding cake whereas pixels with no disparity 
would be distant from the camera. Figure 5 shows the random dot stereo pair. 

Figure 5: Random Dot Stereogram. The Left Image Is Formed by Displacing Points 
in the Right Image. 

Because of the well-defined disparity maps, these random dot images represent 
ideal cases for evaluating stereo-matching algorithms. That is, we know how the 
result should look, whereas in a real-world image, there would be some doubt as to 
what an exact map should look like. There are still some areas of ambiguity, usually 
a result of sections that are devoid of white pixels; however, the overall structure of 
the map remains clear. The algorithm was checked for correctness and validated in 
all test cases. As an example, Figure 6 shows a gray scale encoded disparity map 
representing a solution to the matching problem from sequential C code and parallel 



code using the MPI system. The actual 2-D result disparity map contains values 
in the range 0,.,., 6. To better interprete the results, the final disparity maps were 
gray-scale encoded. Lighter areas in the image represent areas close to the camera; 
darker areas are further away. 

4    Implementation Details. 

4.1   MPI. 

Implementation of the MPI version of the code was straightforward. The mpicc 
compiler on the DEC Alpha was used with linkage to the MPI libraries for access to 
the communication directives. The default optimization (-0) was used to correspond 
with the optimization used for the sequential code version. This ensures similar code 
generation and allows for meaningful comparisons between the sequential and parallel 
code versions. 

One dimensional decompositions by rows and columns were used. The master 
process is in charge of opening and reading the left and right image data files. Since the 
disparity map is randomized at the start of the simulation, each processor initializes its 
own section of the disparity map. Image data never change during the program, so this 
static data is distributed once to each processor at the start of the program. Boundary 
conditions exist since a nine-point stencil is being passed over the 2-D arrays. For 
example, with the row decomposition shown in Figure 1, processor 1 requires the 
image data from the first row governed by processor 2. Also, processor 2 requires the 
last row of the image data owned by processor 1. Therefore, a processor also gets 
some of the image data that belongs to its neighboring processor at the beginning. 
However, since disparity data is dynamic, it must be distributed between processors at 
each loop iteration. A nine-point stencil is used in this algorithm because each point 
needs to know the disparity value of its eight neighboring points. This causes the 
creation of boundary conditions, or shadow points, along the processor boundaries. 
These shadow points define the interprocessor communication requirements for the 
computation. 

Boundary conditions for the column decomposition are slightly more involved in 
terms of image data. Since the algorithm assumes a perfect image in the vertical ori- 
entation (no disparity up or down), we are only concerned with finding the horizontal 
disparity. The photometric component in the energy function uses the difference be- 
tween the intensities of the proposed matched points in the left and right images. 
The point in the left image, however, can match a point in the right image up to 
DM AX pixels to the right. For example, assume an image of size 256 x 256 with 
four processors working on the problem. Processor 1, with a column decomposition, 
will have image data from rows 0,..., 255 and columns 64,..., 127 of the left and 
right images. It could be possible that the point in the left image (row = 100, column 
= 127) matches with the point in the right image (100, 132). In this case, processor 1 
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does not have all of the data about the right image that it requires. To compensate for 
this in the column decompositions, each processor receives DM. AX extra columns 
of the right image from the master at the start of the algorithm. 

The code was tested on random dot stereograms of sizes 200 x 200, 400 x 400, 
600 x 600, and 800 x 800 with two, four, six, and eight processors. All combinations 
which were tested completed successfully. Figure 6 shows the 200 x 200 gray scale 
result maps for the sequential case, the MPI row decomposition, and the MPI column 
decomposition. The MPI results were generated in each case using four processors. 

Figure 6: From Left to Right, Results From the Sequential C Program, MPI Row 
Decomposition, and MPI Column Decomposition. The Results Are Slightly Different 
for Each Case Given the Random Nature of the Simulations. 

4.2    HPF. 
Many difficulties were experienced while trying to move this code into FORTRAN 
90 and into HPF. The HPF compiler on the DEC Alpha computers has not yet 
evolved to the stage of being a fully-functional HPF compiler. To begin with, sev- 
eral important FORTRAN 90 constructs, as well as critical HPF constructs are 
not supported. The compiler currently does not generate code tailored to the 
!HPF$ INDEPENDENT directive. Here is the compiler error message: 

f90: Warning: rows.f90, line 148: The INDEPENDENT directive is checked for 
syntactic and semantic correctness, but it is then ignored by the current 
HPF compiler. 
!HPF$ INDEPENDENT 

This directive should be used around areas that are data-parallel safe (contains no 
dependencies) to assist the compiler in parallelizing the section. These directives were 
removed from the code to reduce the number of warning messages produced by the 
compiler. With a compiler that does support them, these directives should precede all 
of the FORALL statements in the simulated annealing code. Furthermore, WHERE 
statements may not be located inside of FORALL loops. This lack of functionality 
requires two FORALL constructs where often only one with a WHERE statement 
should be needed. 



Data distribution directives in HPF are used to specify array data distribution to 
the processors available in the processor pool. As in MPI, two distribu- 
tions were used, 1-D row and 1-D column. The first distribution used was 
!HPF$ DISTRIBUTE(BLOCK, *) :: dMap. This distributes the "dMap" array data 
in a row-blocked format, similar to the one used in MPI. The other distribution tested 
was (*, BLOCK) which corresponds to column decomposition. The rest of the book- 
keeping and computational storage arrays (there were several) were aligned with the 
dMap array. There were several problems in getting HPF to work with this code. 
Several times, the executables would get hung up and then exit with: 

TCP.MsgReadMsg: read error 54ows: ERROR Peer[0] (38) _TCP_Send: send length 
error - errno 9   (msgsend.c Line:377) 
ows: ERROR Peer[2] (38) _TCP_Send: send length error - errno 9 (msgsend.c 

Line:377) 
ows: ERROR Peer[3] (38) _TCP_Send: send length error - errno 9 (msgsend.c 

Line:377). 

The (BLOCK, *) distribution produced the following error during runtime. 

forrtl: error (72): floating overflow 
TCP.MsgReadMsg: read error 54ows: ERROR Peer[0] (29) _TCP_RecvAvail: Unexpected 
EOF from peer 0      (msgrecva.c Line:189). 

There appear to be no situations in the code that could cause such an error. Indeed, 
the type for the real array used in comparison to the exponential function was changed 
to double precision with the same results. Furthermore, the code performs fine with 
identical typing in the sequential version and in the HPF version in -single mode. 
Compiling the (*, BLOCK) distribution produced the following warnings: 

f90: Warning: compute_loop_carried_sets: do_tree construct dt_group_forall 
not handled 

f90: Warning: compute_loop_carried_sets: do_tree construct dt_group_forall 
not handled 

f90: Warning: make_edges: do_tree construct dt_group_forall not handled 
f90: Warning: make_edges: do_tree construct dt_group_forall not handled. 

The initial belief was that having multiple statements inside a FORALL loop was the 
cause for these cryptic messages. However, the code does work properly when imple- 
mented on one processor. Also, HPF documentation states that multiple statements 
are allowed in FORALL loops and that they are performed in order. This should 
preclude any data dependencies. 

Currently, there does not appear to be a good explanation for most of these warn- 
ings nor a good understanding of their intended meanings. Other distributions were 
attempted (e.g., CYCLIC), and each experienced some problem like those previously 
listed. 
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5    Experimental Results and Interpretation. 

5.1   MPI. 
Originally, the sequential code for the algorithm was written in C and compiled using 
the mpicc compiler. However, this produced executables that were slower than the 
MPI version with one processor. This resulted in dubious occurrences of superlinear 
speedup. A possible explanation resides in the compile sequence generated by the 
makefile that was used. The makefile performed the following operations: 

mpicc -DFORTRANUNDERSCORE -DMPE_USE_EXTENSI0NS=1 -DHAS_XDR=1 -DSTDC_HEADERS=1 
-DHAVE_STDLIB_H=1 -DMALL0C_RET_V0ID=1 -DHAVE_SYSTEM=1 -DHAVE_NICE=1 
-DP0INTER_64_BITS=1 -DINT_LT_P0INTER=1 -DHAVE_L0NG_D0UBLE=1 
-DHAVE_L0NG_L0NG_INT=1 -0 -DMPI_alpha -c mpirows.c 
mpicc -0 -o mpirows mpirows.o -L/usr/local/mpi-vl.0.12/lib/alpha/ch_p4 -lmpi 

-lm. 

Undoubtedly, one of these options caused the production of more efficient code. 
Therefore, to make the process more homogeneous, the sequential version used in 
these comparisons is actually augmented with the MPI initializations and ran through 
MPI with one processor. Furthermore, to ensure a true reflection of speedup and ef- 
ficiency, porsche, the faster processor of the group of DEC Alphas, was not used for 
these sequential timings. The sequential execution times for the different problem 
sizes are given in Table A.l. The code for this version of the algorithm is given in 
Appendix B. This is not a production code; therefore, comments and documentation 
within the code listings are sparse. The same caveat goes for all code listed in the 
appendices. The code for the row decomposition in MPI is given in Appendix C and 
the code for the column decomposition is given in Appendix D. The execution times 
for the row decompositions and column decompositions are given in Tables A.2 and 
A.3, respectively. 

The speedup achieved by the MPI row decomposition is shown in Figure 7, and 
the speedup achieved by the MPI column decomposition is shown in Figure 8. To dis- 
tribute the noncontiguous C data that results from column decompositions, a derived 
data type had to be created in MPI. MPI sends data based on addresses, which are row 
major in C. Trying to send data in column major order is undoubtedly simply adding 
more buffering behind the scenes. The speedups achieved by row decomposition are 
faster than the speedups for the column decomposition in every case. 

The efficiencies corresponding to row and column decompositions are shown in 
Figures 9 and 10, respectively. The efficiencies are very good. The average row 
decomposition efficiency is around 94%. As more processors are invoked, one can see 
the efficiencies start to decline slightly. This is a standard phenomena. The code will 
only run as fast as the slowest processor in the pool. When using more processors, 
the individual load averages of the processors has a direct effect on efficiency. Still, 
when 94 out of every 100 instructions is working on the problem, the system has been 
well tuned. 
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Figure 7: MPI 1-D Row Decomposition Speedup. 

5.2    HPF. 

The sequential timings were generated by compiling the HPF code using the standard 
f90 compiler. The HPF directives are ignored by the compiler, and sequential, one 
processor code is generated. There was a problem when trying to perform tests on 
the 800 x 800 image size. Dynamic array allocation was used for each array other 
than "dMap" since this array size must be known at compile time so the other arrays 
may be aligned to it. The reason for the runtime problems could not be determined, 
and this test case was omitted from the trials. 

The code to perform the sequential, as well as the row and column decompositions 
in HPF, is given in Appendix E. The code listed performs row decomposition by 
distributing data in row block format. The column distribution was done by altering 
the HPF directive (BLOCK, *) to (*, BLOCK). Sequential code was generated by 
invoking the f90 compiler without HPF enabled. Table A.4 lists the sequential timing 
results. 

Getting good results from HPF was almost impossible. Data distribution direc- 
tives should affect only communication costs, not correctness. However, the directives 
did determine if the code would even execute or not. Each distribution performed 
properly when using one processor (executed with -single). Therefore, the following 
tables do list the times for one processor as well. Table A.5 lists the results for the 
row decomposition. Errors are noted in the table. Overflow means a floating-point 
overflow occurred. Exit means the program terminated prematurely with no warning 
or error message posted. EOF reflects a processor that received an unexpected end- 
of-file from another processor. Read errors indicate an error occurred while trying to 
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read from a processor. Host indicates one of the hosts timed-out or died. Table A.6 
lists the results for the column decomposition. 

Why exactly there were so many problems with HPF remains a mystery. In cases 
where the code did perform, it did not perform well. There are several possible ex- 
planations. There could be too much overhead. This could be because of the way 
the single-program, multiple-data (SPMD) programs are created. Also, it might be 
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Figure 10: MPI 1-D Column Decomposition Efficiency. 

that there is not enough work in the parallel regions. The cost of repeatedly calling 
the FORALL directive may be too high for the runtime system. Another possible 
reason is poor communication; possibly due to a poor communication library or un- 
optimized communication code. Unfortunately, in many cases it seemed that the 
compiler simply gave up and did not generate any communications upon reaching 
unsupported directives. The single processor code with parallel HPF directives ac- 
tivated was profiled. The results are given in Table A.7. While tracing down exact 
problems was difficult, it is evident from the overhead time that this was the major 
cause of degraded parallel performance. 

6    Conclusion. 

The experiments and testing did not entirely support the hypotheses. Indeed, 1-D 
row decomposition in MPI was faster than its column decomposition counterpart. 
This is probably because of the way MPI performs the derived data type. Copies to 
buffers to implement the strided column send will easily account for this difference. 
There is not enough good experimental data to comment on the HPF distributions. 
During implementation of the algorithm in HPF, it was realized that the hypothesis 
that column decomposition would be faster than row decomposition may be incorrect. 
Just as with MPI, the decomposition by columns does pose complications for HPF. 
When the data is decomposed by rows, each processor has all of the image data that is 
required of it. By columns, however, boundary conditions will have a greater impact, 
since the image data held by one processor might be required by its neighbor. 

As far as there being little difference between the fastest MPI implementation 
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and the fastest HPF implementation, the results very clearly show that this is not 
the case. Comparisons between MPI and HPF prove almost impossible given the 
very poor performance of HPF. It is interesting to note, however, the much faster 
processing times achieved sequentially by FORTRAN 90 compared to C. 

The efficiencies achieved by MPI were quite good. Prior experience with message- 
passing environments, such as C-Linda, and indeed some shared memory parallel 
systems such as the SGI, seemed to indicate a threshold of about 80-85% efficiency 
that could be expected of this type of code with multiple messages being passed 
at boundary conditions. While not tightly synchronized, the processors do have to 
operate in a lock-step type fashion, since updated boundary data must be computed 
and communicated at each iteration. Efficiencies around 94% in these cases indicate 
that MPI has been well thought out and implemented on this architecture. 

The HPF system cannot currently compare to the MPI system for robustness 
and speed when operating on the DEC Alpha system. This seems to be the case, in 
general, as MPI is more quickly gaining acceptance as the message-passing system 
to use in cluster environments. MPI is a very good performer and should only get 
better as incremental changes and enhancements are made in the communication 
library. HPF will undoubtedly do better on stable, large array computations. This 
is usually the case with data parallel languages. HPF can improve dramatically by 
simply issuing better warnings and errors at both compile and run time. The HPF 
compiler will have to undergo major enhancements in its code generation section to 
be considered useful. 
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A    Tables 

A.l    C Sequential Results. Times Are Listed in Seconds. 

Image Size Time 

200 x 200 81.87 
400 x 400 339.48 
600 x 600 765.22 
800 x 800 1365.54 

A.2    MPI Row Decomposition Results. Times Are Listed in 
Seconds. 

Image Size Number Processors 
2 4 6 8 

200 x 200 
400 x 400 
600 x 600 
800 x 800 

42.67 
175.44 
397.79 
711.12 

22.56 
90.65 

202.45 
361.91 

15.38 
60.24 

136.77 
242.29 

12.31 
45.77 

101.83 
185.77 

A.3    MPI Column Decomposition Results. Times Are Listed 
in Seconds. 

Image Size Number Processors 
2 4 6 8 

200 x 200 
400 x 400 
600 x 600 
800 x 800 

48.39 
212.68 
446.54 
792.14 

26.18 
102.88 
232.01 
409.80 

18.19 
68.55 

155.99 
276.43 

14.38 
52.77 

118.43 
208.44 
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A.4    FORTRAN Sequential Results. 
Seconds. 

Times Are Listed in 

Image Size Time 

200 x 200 
400 x 400 
600 x 600 

33.03 
167.56 
392.93 

A.5    HPF (BLOCK, *) Distribution (Rows). Times Are Listed 
in Seconds. 

Image Size 
Number Processors 

1 2 4 6 8 

200 x 200 
400 x 400 
600 x 600 

75.59 
317.98 
734.99 

overflow 
exit 
exit 

overflow 
EOF 
EOF 

overflow 
overflow 

EOF 

overflow 
read 
EOF 

A.6    HPF (*, BLOCK) Distribution (Columns).  Times Are 
Listed in Seconds. 

Image Size 
Number Processors 

1 2 4 6 8 

200 x 200 
400 x 400 
600 x 600 

77.70 
317.98 
734.99 

416.89 
exit 
exit 

304.78 
exit 
EOF 

528.35 
exit 
EOF 

host 
host 
EOF 
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A.7    Single Processor HPF Profiling Results. 

run-time statistics peer 0 minimum maximum 

( value  ) (value '/.skew peer) (value '/.skew peer) 

Timing Info, (sec) 

elapsed time 1008.23 1008.23 0.0 0 1008.23 0.0 0 
profiling time 251.50 251.50 0.0 0 251.50 0.0 0 

compute time 251.50 251.50 0.0 0 251.50 0.0 0 
comm. time 0.00 0.00 0.0 0 0.00 0.0 0 
active time 0.00 0.00 0.0 0 0.00 0.0 0 
idle time 0.00 0.00 0.0 0 0.00 0.0 0 

overhead time 779.34 779.34 0.0 0 779.34 0.0 0 
user time 705.32 705.32 0.0 0 705.32 0.0 0 
system time 298.34 298.34 0.0 0 298.34 0.0 o. 
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B    C sequential code. 

♦include <math.h> 
•include <stdio.h> 
•include <sys/time.h> 
•include <mpi.h> 

•define MAX.ROWS 1050 
•define MAX_C0LS 1050 
•define D.MIN 0 
•define D_MAX 6 
•define LAMBDA 5 
•define STARTING.TEMP 100.0 
•define ENDING.TEMP 1.0 
•define TEMP.REDUCTION 0.1 
•define LATTICE.SCANS 10 

/* Define various macros and functions to inline code. */ 

•define RANDOM.DISPARITY (randO %  D.MAX) 
•define RANDOM.PROBABILITY (randO 7. 32767 / 32767.0) 
•define min(x,y) ((x) < (y)) ? (x) : (y) 
•define max(x.y) ((x) > (y)) ? (x) : (y) 

typedef unsigned char Pixel; 
enum -(LEFT = 0, RIGHT}; 

/* Global variables: */ 

Pixel leftlmage[MAX.ROWS][MAX.COLS]; 
Pixel rightImage[MAX_ROWS][MAX.COLS]; 
int disparityMap[MAX_ROWS][MAX.COLS]; 
int tempDisparityMap[MAX.ROWS][MAX.COLS]; 

/* Function prototypes: */ 

/* Basic file I/O routines. */ 

static int ReadLeftImage(int n); 
static int ReadRightImage(int n); 
static void WriteResultGrayScaleMap(int n); 

/* Simulated annealing functions. */ 

static int RandomNevState(int oldState); 
static void AnneaKint n); 

void main (int arge, char *argv[]); 

File 1/0 routines follow. 
***************************************************************************/ 

static int ReadLeftImage(int n) { 
FILE »theFile; 
char fileName[80]; 
int i, j; 

/* Attempt to read the left image. */ 

printf("Reading left image.\n"); 
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sprintf (fileName, "LeftDot'/.d.c", n) ; 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorC'ReadLeftImage: fopen") ; 
return(FALSE); 
> 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf (theFile, '"/.c", fc(leftImage[i] [j])); 

fclose(theFile); 

return(TRUE); 

} /* end ReadLeftlmage */ 

static int ReadRightImage(int n) { 
FILE *theFile; 
char fileName[100]; 
int i, j; 

/* Attempt to read the right image. */ 

printf("Reading right image.\n"); 

sprintf (fileName, "RightDoty.d.c", n) ; 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorC'ReadRightlmage: fopen"); 
return(FALSE); 
} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf (theFile,   '"/.c",  ft(rightlmage[i] [j])) ; 

fclose(theFile); 

return(TRUE); 

} /* end ReadRightlmage */ 

static void WriteResultGrayScaleMap(int n) ■( 
FILE »theFile; 
char fileName[80]; 
int i, j; 

sprintf(fileName, "C_SEQ_RESULTS_%d", n) ; 

theFile = fopen(fileName, "w"); 

if (theFile == NULL) { 
perror("WriteResult: fopen"); 
exit(l); 
} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

24 



fprintf(theFile, "Xc", (Pixel)(disparityHap[i] [j] * (255 / D.MAX))); 

if (fclose(theFile) != 0) 
perror("WriteResult: fclose"); 

> /* end WriteResultGrayScaleMap */ 

Stereo matching routines follow. 

static int RandomNewState(int oldState) 
■C 
int randomNumber; 

if (RANDOM.DISPARITY > ((D.MAX / 2) - 1)) 
randomNumber = -1; 

else 
randomNumber = 1; 

oldState = oldState + randomNumber; 

if (oldState < D.MIN) 
oldState = D.MIN; 

else if (oldState > D.MAX) 
oldState = D.MAX; 

return(oldState)'; 

} /* end RandomNewState */ 

static void RandomizeSystem(int n) { 
int i, j; 

/* Assign a random disparity to each disparity grid point. Edges get 
the value 0. */ 

for  (i = 0;  i < n;   i++) 
for  (j = 0;  j  < n;  j++)  { 

if  ((i ==0)   ||   (i ==  (n - 1))   ||   (j ==0)   11   (j  >=  (n - D.MAX))) 
disparityMap[i][j]   =0; 

else 
disparityMap[i][j]   = RANDOM.DISPARITY; 

} 

> /* end RandomizeSystem */ 

static  int Energy(int row,   int col,  int disparity)  { 
int delta; 
int photometric; 

delta = abs(disparity - disparityMap[row-i][col-1])   + 
abs(disparity - disparityMap[row-1][col])   + 
abs(disparity - disparityMap[row-1][col+1])   + 
abs(disparity - disparityMap[row][col-1])  + 
abs(disparity - disparityMap[row][col+1])  + 
abs(disparity - disparityMap[row+1][col-1])  + 
abs(disparity - disparityMap[row+1][col])  + 
abs(disparity - disparityMap[row+1][col+1]); 

photometric = abs(leftImage[row][col+disparity]   - rightImage[row][col]); 
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retum(photometric + (LAMBDA * delta)); 

} /* end Energy */ 

static void AnneaHint n) { 
int newState, nevEnergy, oldEnergy, i, j; 
double currentTemp; 
int scanCounter; 
int deltaEnergy; 

RandomizeSystem(n); 

currentTemp = STARTING.TEMP; 

while (currentTemp >= ENDING.TEMP) { 

printfC'Temp = '/.f\n", currentTemp); 

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) i 
for (i = 1; i < (n - 1); i++) 

for (j = 1; j < (n - D_MAX); j++) ■[ 
newState = RandomNewState(disparityMap[i][j]); 
oldEnergy = Energy(i,  j, disparityMapCi][j]); 
newEnergy = Energy(i,  j, newState); 
deltaEnergy = newEnergy - oldEnergy; 
if  (deltaEnergy < 0) 

tempDisparityMapCi] [j]   = newState; 
else  if  (RANDOM.PROBABILITY < 

exp((double)-deltaEnergy/currentTemp)) 
tempDisparityMapCi] [j]   = newState; 

else 
tempDisparityMapCi] [j]   = disparityMapCi] [j] ; 

} 

for (i = 1; i < (n - 1); i++) 
for (j = 1; j < (n - D.MAX); j++) 

disparityMapCi] Cj] = tempDisparityMapCi] Cj] ; 

> 
currentTemp -= (currentTemp * TEMP .REDUCTION); 

> 

> /* end Anneal */ 

void main(int arge, char *argvC]) ■( 
int n, i; 
struct timespec tl, t2; 
double startTime, endTime; 

MPI_Init(fcargc, ftargv); 
n = atoi(argvCl]); 

if (ReadLeftImage(n) fcfe ReadRightlmage(n)) < 
getclock(TIMEOFDAY, ttl); 
startTime = (tl.tv.sec * 100.0) + (tl.tv.nsec * 10e-7); 
startTime = MPI.WtimeO; 
Anneal(n); 
getclock(TIME0FDAY, tt2); 
endTime =  (t2.tv_sec * 100.0)  +  (t2.tv_nsec  *  10e-7); 
printfC'mpi ,/.f\n",  MPI.WtimeO  - startTime); 
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printf ("Elapsed time = */..2f seconds\n", (endTime - startTime) / 100.0); 
WriteResultGrayScaleMap(n); 

HPI.FinalizeO; 

} /* end main */ 
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C    MPI 1-D row decomposition. 

•include <stdio.h> 
»include <mpi.h> 
•include <math.h> 
•include <sys/time.h> 

»define MAX.ROWS 1000 
«define MAX.COLS 1000 
«define D.MIN 0 
«define D.MAX 6 
«define LAMBDA 5 
«define STARTING.TEMP 100.0 
«define ENDING.TEMP 1.0 
»define TEMP.REDUCTION 0.1 
«define LATTICE.SCANS 10 

/* Define various macros and functions to inline code. */ 

«define RANDOM.DISPARITY (randO */. D_MAX) 
«define RAND0M.PR0BABILITY (randO */. 32767 / 32767.0) 
«define min(x.y) ((x) < (y)) ? (x) : (y) 
«define max(x.y) ((x) > (y)) ? (x) : (y) 

typedef unsigned char Pixel; 
enum {LEFT = 0, RIGHT}; 

/* Global variables: */ 

Pixel leftImage[MAX_R0WS][MAX.COLS]; 
Pixel rightImage[MAX.ROWS][MAX.COLS]; 
int disparityMap[MAX_ROWS][MAX.COLS]; 
int tempDisparityMap[MAX.ROWS][MAX.COLS]; 

/* Function prototypes: */ 

/* Basic file I/O routines. */ 

static int ReadLeftImage(int n); 
static int ReadRightlmageCint n); 
static void WriteResultGrayScaleMap(int n); 

/* MPI communication routines. */ 

static void GetlmageDataFromMasterCint n, int mylD, int startRow, int stopRow); 
static void SendResultsToMaster(int n, int mylD, int startRow, int stopRow); 
static void CollectResults(int n, int numProcs, int chunkSize); 

/* Simulated annealing functions. */ 

static int RandomNewState(int oldState); 
static void Anneal(int n, int mylD, int startRow, int stopRow, int numProcs); 

void main(int arge, char *argv[]); 

/*******************************************************************♦******* 

File I/O routines follow. 

static int ReadLeftImage(int n) { 
FILE »theFile; 
char fileName[80]; 
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int i, j; 

/* Attempt to read the left image. */ 

sprintf(fileName, "LeftDof/.d.c", n); 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorC'ReadLeftImage: fopen"); 
return(FALSE); 
} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf (theFile, "7.c", fe(leftlmage[i] [j])); 

fclose(theFile); 

return(TRUE); 

y /*  end ReadLeftlmage */ 

static int ReadRightImage(int n) { 
FILE »theFile; 
char fileName [100] ; 
int i, j; 

/* Attempt to read the right image. */ 

sprintf(fileName, "RightDoty.d.c", n); 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorC'ReadRightlmage: fopen"); 
return(FALSE); 
} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf(theFile, "%c", fc(rightlmage[i][j])); 

fclose(theFile); 

return(TRUE); 

> /* end ReadRightlmage */ 

static void WriteResultGrayScaleMap(int n) { 
FILE »theFile; 
char fileName[80]; 
int i, j; 

sprintf«ileName, "MPI.ROWS.RESULTS.JCd", n) ; 

theFile = fopen(fileName, "v"); 

if (theFile == NULL) { 
perrorC'WriteResult: fopen"); 
exit(l); 
> 
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for  (i = 0;  i < n;  i++) 
for (j = 0; j < n;  j++) 

fprintf(theFile,   '7.cn,   (Pixel) (disparityMap[i] [j]   *  (255 /D.MAX))); 

fclose(theFile); 

> /* end WriteResultGrayScaleMap */ 

HPI communication routines follow. 
***************************************************************************/ 

static void CollectResults(int n, int numProcs, int chunkSize) ■[ 
int i, source; 
MPI.Status status; 

for (i = chunkSize; i < n; i++) { 
source = min(i / chunkSize, numProcs - 1); 
MPI_Recv(disparityMap[i], n, MPI.INT, source, source, MPI.COMM.WORLD, 

festatus); 
> 

} /* end CollectResults */ 

static void GetImageDataFromMaster(int n, int mylD, int startRow, int stopRow) ■( 
MPI_Status status; 
int i; 

for (i = startRov; i <= stopRow; i++) { 
MPI_Recv(leftImage[i], n, MPI.UNSIGNED.CHAR, 0, LEFT, MPI.COMM.WORLD, 

festatus); 
MPI_Recv(rightImage[i], n, MPI.UNSIGNED.CHAR, 0, RIGHT, MPI.COMM.HORLD, 

festatus); 
> 

} /* end GetlmageDataFromMaster */ 

static void SendResultsToMaster(int n, int mylD, int startRow, int stopRow) { 
int i; 

for (i = startRov; i <= stopRov; i++) 
MPI_Send(disparityMap[i], n, MPI.INT, 0, mylD, MPI.COMM.WORLD); 

} /* end SendResultsToMaster */ 

/*************************************************************************** 
Stereo matching routines follow. 

******************************#*»**************♦**»******#*******»*********/ 

static int RandomNewState(int oldState) 
■c 
int randomNumber; 

if (RANDDM.DISPARITY > ((D.MAX / 2) - 1)) 
randomNumber = -1; 

else 
randomNumber = 1; 

oldState = oldState + randomNumber; 

if (oldState < D.MIN) 
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oldState = D.MIN; 
else if (oldState > D.MAX) 

oldState = D.MAX; 

return(oldState); 

> /* end RandomNewState */ 

static void RandomizeSystem(int startRow, int stopRov, int n) { 
int i, j; 

/* Assign a random disparity to each disparity grid point. Edges get 
the value 0. */ 

for (i = startRow; i <= stopRow; i++) 
for (j = 0; j < n; j++) { 

if ((i ==0) II (i == (n - 1)) II (j ==0) II  (j >= (n - D.MAX))) 
disparityMap[i] [j]  = 0; 

else 
disparityMap[i][j]  = RANDOM.DISPARITY; 

} 

} /* end RandomizeSystem */ 

static  int Energy(int row, int col,   int disparity)  { 
int delta; 
int photometric; 

delta = abs(disparity - disparityMap[row-1][col-1])   + 
abs(disparity - disparityMap[row-1][col])  + 
abs(disparity - disparityMap[row-l][col+1])   + 
abs(disparity - disparityMap[row][col-1])  + 
abs(disparity - disparityMap[row][col+1])  + 
abs(disparity - disparityMap[row+1][col-1])   + 
abs(disparity - disparityMap[row+1][col])  + 
abs(disparity - disparityMap[row+1][col+1]); 

photometric = abs(leftImage[row][col+disparity]   - rightlmage[row] [col] ); 

return(photometric +  (LAMBDA * delta)); 

} /* end Energy */ 

static void Anneal(int n, int mylD, int startRow, int stopRow, int numProcs) { 
int newState, newEnergy, oldEnergy, i, j, start, stop; 
double currentTemp; 
int scanCounter; 
int deltaEnergy; 
MPI.Status status; 
struct timespec tl, t2; 
double startTime, endTime; 

start = startRow; 
stop = stopRow; 

if (mylD == 0) 
start = startRow + 1; 

else if (myID == (numProcs - 1)) 
stop = stopRow - 1; 

RandomizeSystem(startRow, stopRow, n); 
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currentTemp = STARTING.TEMP; 

vhile (currentTemp >= ENDING.TEMP) ■[ 

if (mylD == 0) 
printfO'Temp = 7.f\n", currentTemp); 

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) < 
/* Send my disparity values to my neighbors and get values in. */ 

if (mylD == 0) { 
MPI_Send(disparityMap[stopRov],  n, MPI.INT, mylD + 1, mylD, 

MPI.C0MM.W0RLD); 
MPI_Recv(disparityMap[stopRow+l] ,  n,  MPI.INT,  mylD + 1, mylD + 1, 

MPI.C0MM.W0RLD,  ftstatus); 
} 

else if  (mylD == numProcs - 1) { 
MPI_Send(disparityMap[startRov],   n, MPI.INT, mylD - 1, mylD, 

MPI.C0MM.W0RLD); 
MPI_Recv(disparityMap[startRov-l],  n,  MPI.INT,  mylD - 1, mylD - 1, 

MPI_C0MM_W0RLD,   ftstatus); 
} 

else ■[ 
MPI_Send(disparityMap[startRov],  n, MPI.INT, mylD - 1, mylD, 

MPI^COMM.WORLD); 
MPI_Send(disparityMap[stopRov],  n,  MPI.INT,  mylD + i, mylD, 

MPI.C0MM.W0RLD); 
MPI_Recv(disparityMap[startRow-l],  n,  MPI.INT,  mylD - 1, mylD - 1, 

MPI.COMM.WORLD,   ftstatus); 
MPI_Recv(disparityMap[stopRow+l],  n, MPI.INT,  mylD + 1, mylD + 1, 

MPI.C0MM.WORLD,  ftstatus); 
} 

/* getclock(TIMEOFDAY,   fttl); 
startTime =  (tl.tv.sec * 100.0)  + (tl.tv.nsec  * 10e-7);  */ 

for (i = start;  i <= stop;  i++) 
for  (j = 1;  j  <  (n - D.MAX);  j++)  { 

nevState = RandomNewState(disparityMap[i][j]); 
oldEnergy = Energy(i, j, disparityMap[i][j]); 
newEnergy = Energy(i, j, nevState); 
deltaEnergy = newEnergy - oldEnergy; 
if (deltaEnergy < 0) 

tempDisparityMap[i][j] = nevState; 
else if (RANDOM.PROBABILITY < 

exp((double)-deltaEnergy/currentTemp)) 
tempDisparityMap[i][j] = nevState; 

else 
tempDisparityMap[i] [j] = disparityMap[i] [j] ; 

> 

for (i = start; i <= stop; i++) 
for (j = 1; j < (n - D.MAX); j++) 

disparityMap[i][j]   = tempDisparityMap[i][j]; 
/* 
getclock(TIME0FDAY,  ftt2); 
endTime =  (t2.tv_sec * 100.0)  +  (t2.tv_nsec *  10e-7); 

if  (myID == 1) 
printf("Elapsed time = */,.2f seconds\n", (endTime - startTime) / 100.0); 

*/ 

} 
currentTemp -= (currentTemp * TEMP REDUCTION); 
} 

/* If I am not the boss, send my results back to the boss. */ 
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if (myID != 0) 
SendResultsToMaster(n, mylD, startRov, stopRow); 

> /*" end Anneal */ 

void main(int arge, char *argv[]) { 
int numProcs, myID, n; 
int startRov, stopRov; 
int chunkSize, destination; 
int i; 
double tl; 

MPI_Init(feargc, ftargv); 

MPI.Comm.size(MPI.COMM.WORLD, fenumProcs); 
MPI_Comm_rank(MPI_COMM_WORLD, fanylD); 

n = atoi(argv[l]); 

/* Determine the start and stop rovs. */ 

chunkSize = (n / numProcs); 
startRov = (chunkSize * myID); 
stopRov = (startRov + chunkSize) - 1; 
if (mylD == numProcs - 1) 

stopRov = max(stopRov, n-1); 

if (mylD == 0) < 
/* Read in the left and right image files. */ 

if (ReadLeftlmage(n) ftft ReadRightlmage(n)) { 

/* Send the image data to the different processors.  Processor 0 
gets the first part of the image. •/ 

for (i = chunkSize; i < n; i++) •£ 
destination = min(i / chunkSize, numProcs - 1); 
MPI_Send(leftImage[i], n, MPI.UNSIGNED.CHAR, destination, LEFT, 

MPI.COMM.WORLD); 
MPI_Send(rightImage[i], n, MPI.UNSIGNED.CHAR, destination, 

RIGHT, MPI.COMM.WORLD); 
} 

> 

tl = MPI.WtimeO; 

Anneal(n, myID, startRov, stopRov, numProcs); 

printf("Total time for rov decomposition %d = V,.2f seconds\n", n, 
MPI.WtimeO - tl); 

/* Collect results from the vorkers. */ 
CollectResults(n, numProcs, chunkSize); 

WriteResultGrayScaleMap(n); 

> 
else { 

/* Gather information from the boss. */ 

GetImageDataFromMaster(n, myID, startRov, stopRov); 
Anneal(n, mylD, startRov, stopRov, numProcs); 
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} 

MPI.FinalizeO; 

} /* end main */ 
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D    MPI 1-D column decomposition. 

•include <stdio.h> 
«include <mpi.h> 
•include <math.h> 

»define MAX.ROWS 1000 
♦define MAX.COLS 1000 
«define D.MIN 0 
«define D.MAX 6 
«define LAMBDA 5 
«define STARTING.TEMP 100.0 
»define ENDING.TEMP 1.0 
«define TEMP.REDUCTION 0.1 
«define LATTICE.SCANS 10 

/* Define various macros and functions to inline code. */ 

«define RANDOM.DISPARITY (randO '/. D.MAX) 
«define RANDOM.PROBABILITY (randO 7. 32767 / 32767.0) 
«define min(x.y) ((x) < (y)) ? (x) : (y) 
«define max(x.y) ((x) > (y)) ? (x) : (y) 

typedef unsigned char Pixel; 
enum -CLEFT = 0, RIGHT}; 

/* Global variables: */ 

Pixel leftImage[MAX_ROWS][MAX_COLS]; 
Pixel rightlmage[MAX.ROWS][MAX.COLS]; 
int disparityMap[MAX.ROWS][MAX.COLS]; 
int tempDisparityMap[MAX.ROWS][MAX.COLS]; 

/* Function prototypes: */ 

/* Basic file I/O routines. */ 

static int ReadLeftImage(int n); 
static int ReadRightImage(int n); 
static void WriteResultGrayScaleMap(int n); 

/* MPI communication routines. */ 

static void GetImageDataFromMaster(int n, int mylD, int numProcs, int startCol, int stopCol); 
static void SendResultsToMaster(int n, int mylD, int startCol, int stopCol); 
static void CollectResults(int n, int numProcs, int chunkSize); 

/* Simulated annealing functions. */ 

static int RandomNewState(int oldState); 
static void AnneaKint n, int mylD, int startCol, int stopCol, int numProcs); 

void main (int arge, char *argv[]); 

File I/O routines follow. 
I**********************************************«****************************/ 

static int ReadLeftImage(int n) { 
FILE »theFile; 
char fileName[80]; 
int i, j; 
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/* Attempt to read the left image. */ 

spring (fileName, "LeftDof/.d.c", n); 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorO'ReadLeftlmage: fopen"); 
return(FALSE); 

} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf (theFile,   "#/.c",  ft(leftlmage[i] [j])); 

fclose(theFile); 

return(TRUE); 

} /* end ReadLeftImage */ 

static int ReadRightImage(int n) { 
FILE »theFile; 
char fileName[100] ; 
int i, j; 

/* Attempt to read the right image. */ 

sprintf(fileName, "RightDotJCd.c", n); 

theFile = fopen(fileName, "r"); 

if (theFile == NULL) { 
perrorC'ReadRightlmage: fopen"); 
return(FALSE); 
} 

for (i = 0; i < n; i++) 
for (j = 0; j < n; j++) 

fscanf (theFile,   '7.c\  6(rightlmage[i] [j])); 

fclose(theFile); 

return(TRUE); 

} /* end ReadRightImage */ 

static void WriteResultGrayScaleMap(int n) < 
FILE »theFile; 
char fileName [80]; 
int i, j; 

sprintf(fileName, "MPI.COLS.RESULTS.Xd", n) ; 

theFile = fopen(fileName, "w"); 

if (theFile == NULL) { 
perrorC'WriteResult: fopen"); 
exit(l); 
} 

for (i = 0; i < n; i++) 
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for (j = 0; j < n;  j++) 
fprintf(theFile,   '"/.c",   (Pixel) (disparityMap[i] [j]   *  (255 / D.MAX))); 

fclose(theFile); 

} /* end WriteResultGrayScaleMap  */ 

MPI communication routines follov. 

static void CollectResults(int n,  int numProcs,   int  chunkSize)  { 
int i,  source; 
MPI_Status  status; 
MPI.Datatype  column; 

HPI.Type.vector(n,   1,  MAX.COLS,  MPI.INT,  fccolumn); 
MPI.Type.commit(fccolumn); 

for (i = chunkSize;  i < n;  i++) { 
source = min(i / chunkSize,  numProcs - 1); 
MPI_Recv(ft(disparityMap[0] [i]),   1,   column,  source,  source, 

MPI_C0MM_W0RLD,   fcstatus); 
} 

} /* end CollectResults  */ 

static void GetImageDataFromMaster(int  n,   int myID,   int numProcs,   int startCol,   int stopCol)  { 
MPI.Status  status; 
int i; 
MPI.Datatype column; 

HPI_Type_vector(n,   1,  MAX.COLS,  MPI.ÜHSIGNED.CHAR,   fccolumn); 
MPI.Type.commit(fccolumn); 

for (i = startCol;   i <= stopCol;   i++)  •[ 
MPI.Recv(ft(leftImage[0][i]),   1,  column,  0,  LEFT,  MPI.CDMM.WORLD, 

fcstatus); 
MPI_Recv(ft(rightImage[0][i]).   1,  column,  0, RIGHT,  MPI.COMM.WORLD, 

fcstatus); 
> 

/* We have to receive more of the left image since the disparity is 
by columns and we haven't received all the possible matched points. */ 

if (myID != (numProcs - 1)) 
for (i = stopCol +1; i <= stopCol + D_MAX; i++) 

MPI.Recv(fc(leftImage[0][i]), 1, column, 0, LEFT, MPI.COMM.WORLD, 
festatus); 

} /* end GetlmageDataFromMaster */ 

static void SendResultsToMaster(int n, int mylD, int startCol, int stopCol) { 
int i; 
MPI.Datatype column; 

MPI.Type_vector(n, 1, MAX.COLS, MPI.INT, tcolumn); 
MPI.Type.commit(ftcolumn); 

for (i = startCol; i <= stopCol; i++) 
MPI_Send(ft(disparityMap[0][i]). 1, column, 0, myID, MPI.COMM.WORLD); 
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} /* end SendResultsToMaster */ 

/*******************************************♦******************************* 

Stereo matching routines follow. 
#*********************************************************************■*****/ 

static int RandomNewState(int oldState) 
{ 
int randomNumber; 

if (RANDOM.DISPARITY > ((D.MAX / 2) - 1)) 
randomNumber = -1; 

else 
randomNumber = 1; 

oldState = oldState + randomNumber; 

if (oldState < D_MIN) 
oldState = D.MIN; 

else if (oldState > D.MAX) 
oldState = D.MAX; 

return(oldState); 

} /* end RandomNewState */ 

static void RandomizeSystem(int startCol, int stopCol, int n) { 
int i, j; 

/* Assign a random disparity to each disparity grid point. Edges get 
the value 0. */ 

for (i = 0; i < n; i++) 
for (j = startCol; j <= stopCol; j++) { 

if ((i ==0) II (i == (n - 1)) II (j = 0) II (j >= (n - D.MAX))) 
disparityMap[i] [j]   = 0; 

else 
disparityMap[i][j]   = RANDOM.DISPARITY; 

} 

} /* end RandomizeSystem */ 

static int Energy(int row,   int col,  int disparity)  { 
int delta; 
int photometric; 

delta = abs(disparity - disparityMap[row-l] [col-1])   + 
abs(disparity - disparityMap [row-1] [col])   + 
abs(disparity - disparityMap[row-l][col+1])   + 
abs(disparity - disparityMap[row][col-1])  + 
abs(disparity - disparityMap[row][col+1])   + 
abs(disparity - disparityMap[row+1][col-1])   + 
abs(disparity - disparityMap[row+1][col])   + 
abs(disparity - disparityMap[row+1][col+1]); 

photometric = abs(leftImage[row][col+disparity]   - rightImage[row] [col]); 

return(photometric +  (LAMBDA * delta)); 

} /* end Energy */ 
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static void AnneaHint n, int mylD, int startCol, int stopCol, int numProcs) { 
int newState, nevEnergy, oldEnergy, i, j, start, stop; 
double currentTemp; 

■int scanCounter; 
int deltaEnergy; 
MPI_Status status; 
MPI.Datatype column; 

start = startCol; 
stop = stopCol; 
if (mylD == 0) 

start = startCol + 1; 
else if (myID == (numProcs - 1)) 

stop = (n - D.MAX) - 1; 

MPI_Type.vector(n, 1, MAX.COLS, MPI.INT, fccolumn); 
MPI_Type_commit(fccolumn); 

RandomizeSystem(startCol, stopCol, n) ; 

currentTemp = STARTING.TEMP; 

while (currentTemp >= ENDING.TEMP) ■[ 

if (mylD == 0) 
printfC'Temp = 7,f\n", currentTemp); 

for (scanCounter = 0; scanCounter < LATTICE.SCANS; scanCounter++) { 
/* Send my disparity values to my neighbors and get values in. */ 

if (mylD == 0) { 
MPI.Send(ft(disparityMap[0][stopCol]),   1,  column,  mylD +1, mylD, 

MPI.C0MM.WORLD); 
MPI_Recv(fc(disparityMap[0][stopCol+1]),   1,  column,  mylD + 1, 

myID + 1, MPI_C0MM_W0RLD, fcstatus); 
> 

else if (mylD == numProcs - 1) { 
MPI_Send(fc(disparityMap[0] [startCol]),   1,  column,  mylD - 1, mylD, 

MPI.C0HM.W0RLD); 
MPI_Recv(fc(disparityMap[0] [startCol-1]),   1,  column, mylD - 1, 

mylD - 1, MPI_C0MM_W0RLD, fcstatus); 
} 

else { 
MPI_Send(ft(disparityMap[0] [startCol]),   1,  column, mylD -  1, mylD, 

MPI_C0MM_W0RLD); 
MPI_Send(ft(disparityMap[0][stopCol]),   1,  column,  mylD + 1, mylD, 

MPI_C0MM_W0RLD); 
MPI_Recv(ft(disparityMap[0][startCol-1]),   1,  column, mylD - 1, 

mylD - 1, MPI_C0MM_WORLD,   fcstatus); 
MPI_Recv(fc(dispaxityMap[0][stopCol+1]),   1,  column, mylD + 1, 
mylD + 1, MPI_C0MM_W0RLD,  fcstatus); 
} 

for  (i = 1;  i <  (n - 1);   i++) 
for  (j = start;  j  <= stop;  j++)  { 

newState = RandomNewState(disparityMap[i][j]); 
oldEnergy = Energy(i,  j, disparityMap[i][j]); 
nevEnergy = Energy(i,  j, newState); 
deltaEnergy = newEnergy - oldEnergy; 
if  (deltaEnergy < 0) 

tempDisparityMap[i][j]   = newState; 
else  if  (RAND0M.PR0BABILITY < 

exp((double)-deltaEnergy/currentTemp)) 
tempDisparityMap[i] [j]   = newState; 

else 
tempDisparityMap[i] [j]   = disparityMap[i] [j] ; 
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for (i = 1; i < (n - 1); i++) 
for (j = start; j <= stop; j++) 

disparityMap[i] [j] = tempDisparityMap[i] [j] ; 

} 
currentTemp -= (currentTemp * TEMP.REDUCTION); 
} 

/* If I am not the boss, send my results back to the boss. */ 

if (myID != 0) 
SendResultsToMaster(n, mylD, startCol, stopCol); 

} /* end Anneal */ 

void main(int arge, char *argv[]) { 
int numProcs, myID, n; 
int startCol, stopCol; 
int chunkSize, destination; 
int i, j, oldDestination; 
double tl; 
MPI.Datatype column; 

MPI_Init(feargc, feargv); 

MPI_Comm_size(MPI_COMM_WORLD, fenumProcs); 
HPI_Comm_rank(HPI_COMM_WORLD, fcmylD); 

n = atoi(argv[l]); 

/* Determine the start and stop columns. */ 

chunkSize = (n / numProcs); 
startCol = (chunkSize * myID); 
stopCol = (startCol + chunkSize) - 1; 
if (myID == numProcs - 1) 

stopCol = max(stopCol, n-1); 

if (mylD == 0) { 
/* Read in the left and right image files. */ 

if (ReadLeftlmage(n) ftft ReadRightlmage(n)) { 

/* Send the image data to the different processors.  Processor 0 
gets the first part of the image. */ 

MPI_Type.vector(n, 1, MAX.COLS, MPI.UNSIGNED.CHAR, ftcolumn); 
MPI_Type_commit(ftcolumn); 

oldDestination = 1; 
for (i = chunkSize; i < n; i++) ■[ 

destination = min(i / chunkSize, numProcs - 1); 
if (destination != oldDestination) { 

for (j = i - 1; j <= (i - 1) + D.MAX; j++) 
MPI.Send(ft(leftImage[0][i]),   1,  column,  oldDestination, 

LEFT,  MPI.COMM.WORLD); 
oldDestination = destination; 

} 
MPI.Send(fc(leftImage[0][i]),   1,  column,  destination,  LEFT, 

MPI.C0MM.W0RLD); 
MPI.Send(ft(rightImage[0] [i]),   1,  column,  destination,  RIGHT, 

HPI.C0MM.W0RLD); 
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} 
} 

tl = MPI.WtimeC); 

AnneaKn, mylD, startCol, stopCol, numProcs); 

printf("Total time for column decomposition %d = JC.2f seconds\n", n, 
MPI.WtimeC) - tl); 

./* Collect results from the workers. */ 
CollectResultsCn, numProcs, chunkSize); 

WriteResultGrayScaleMap(n); 

} 
else { 

/* Gather information from the boss. */ 

GetImageDataFromMaster(n, mylD, numProcs, startCol, stopCol); 
AnneaKn, mylD, startCol, stopCol, numProcs); 

} 

MPI.FinalizeO; 

} /* end main */ 
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E    FORTRAN and HPF code. 

module timer 

contains 

subroutine print.time 

character*8   :: date   ! ccyymmdd 

character*10  :: time   ! hhmmss.sss 

call date.and.time(date,time) 

print *, date(5.-6)//'/'//date(7:8)//'/'//date(3:4) 

print *, time(l:2)//':'//time(3:4)//,:'//time(5:10) 

return 

end subroutine print.time 

real function cputimeQ 

cputime = secnds(O.O) 

return 

end function cputime 

end module timer 

program rows 

use timer 

implicit none 

integer MAX.ROWS, MAX.COLS 

parameter (MAX.ROWS = 600, MAX.COLS = 600) 

integer D.MIN, D.MAX 

parameter (D.MIN = 0, D.MAX = 6) 

integer LAMBDA 

parameter (LAMBDA = 5) 

integer SCANS 

parameter (SCANS = 10) 

real STARTING.TEMP, ENDING.TEMP, TEMP.REDUCTION 

parameter (STARTING.TEMP = 100.0, ENDING.TEMP =1.0) 

parameter (TEMP.REDUCTION =0.1) 

double precision start, stop 

integer dMap(MAX_R0WS, MAX.COLS) 

integer, dimension(:, 

integer, dimension(:, 

integer, dimension(:, 

integer, dimension(:, 

integer, dimensionO, 

) , allocatable :: leftlmage 

) , allocatable :: rightlmage 

), allocatable :: nevDMap 

), allocatable :: oldEnergies 

:), allocatable :: newEnergies 

real, dimension(:,:), allocatable :: randoms 

!hpf$ distribute(block, *) :: dMap 

!hpf$ align with dMap :: randoms 

!hpf$ align with dMap :: newEnergies, oldEnergies, nevDMap 

!hpf$ align with dMap :: leftlmage, rightlmage 

real currentTemp 

integer i, j, n, scanCounter, k, 1 

real dMaxReal 

interface 

pure integer function NewState(oldState, D.MIN, D.MAX) 

integer, intent(in) :: oldState, D.MIN, D.MAX 

end function NewState 

end interface 

interface 

pure real function randO 

end function rand 

end interface 
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interface 
pure integer function irandO 
end function irand 

end 'interface 
interface 

pure integer function GetDisparity(current, proposed,nevE.oldE, t) 
integer, intent(in) :: current, proposed, nevE, oldE 
real, intent(in) :: t 
end function GetDisparity 

end interface 

allocate (leftImage(MAX_ROWS, MAX.COLS)) 
allocate (rightImage(MAX.ROWS, MAX.COLS)) 
allocate (newDMap(MAX.ROWS, MAX.COLS)) 
allocate (randoms(MAX.ROWS, MAX.COLS)) 
allocate (oldEnergies(MAX.ROWS, MAX.COLS)) 
allocate (nevEnergies(MAX.ROWS, MAX.COLS)) 

n = 600 
dMaxReal = D.MAX 

call ReadLeftImage(n, leftlmage) 
call ReadRightImage(n, rightlmage) 

start = secnds(O.O) 

! Initialize the disparity map 

call random.number(randoms) 

dMap(l,:) = 0 
dMap(n,:) = 0 
dMapO.l) = 0 
dMap(:,(n-D_MAX)+l:n) = 0 
forall (i=2:n-l, j=2:n-D_MAX) 

dMap(i.j) = mod(randoms(i,j) * 10000, dMaxReal) 
end forall 

currentTemp = STARTING.TEMP 

! Start the annealing process 

do while (currentTemp >= ENDING.TEMP) 
print *, 'Temp = ', currentTemp 
do scanCounter = 1,SCANS 

forall (i=2:n-l, j=2:n-D_MAX) 
newDMap(i.j) = NewState(dMap(i,j), D.MIN, D.MAX) 

oldEnergies(i,j)  =  ((abs(dMap(i-l,j-l)   - dMap(i.j))  + ft 
ft abs(dMap(i-l,j)  - dMap(i.j))  + ft 
ft abs(dMap(i-l,j+l)   - dMap(i,j))  + ft 
ft abs(dMap(i,j-l)  - dMap(i.j))  + ft 
ft abs(dMap(i,j+l)  - dMap(i.j))  + ft 
ft abs(dMap(i+l,j-l)   - <JMap(i,j))  + ft 
ft abs(dMap(i+l,j)  - dMap(i.j))  + ft 
ft abs(dmap(i+l,j+l)   - dMap(i,j)))  * ft 
ft LAMBDA)  + abs(leftImage(i,j+dMap(i,j))   - ft 
ft right Imaged,j)) 

newEnergies(i.j) = ((abs(dMap(i-l,j-1) - newDMap(i,j)) + ft 
ft abs(dMap(i-l,j) - newDMap(i.j)) + ft 
ft abs(dMap(i-l,j+l) - newDMap(i,j)) + ft 
ft abs(dMap(i,j-l) - newDMap(i.j)) + ft 
ft abs(dMap(i,j+l) - newDMap(i,j)) + ft 
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ft abs(dMap(i+l,j-D - newDMap(i,j)) + & 
ft abs(dMap(i+l,j) - newDMap(i.j)) + ft 
ft abs(dmap(i+l,j+l) - nevDMap(i,j))) * ft 
ft " LAMBDA) + abs(leftImage(i,j+newDMap(i,j)) -  ft 
ft rightImage(i,j)) 

randoms(i.j) = rand() 

end forall 

forall (i=2:n-i, j=2:n-D_MAX, (newEnergies(i,j) - ft 
ft oldEnergies(i,j) < 0) .or.. (randomsCi, j) < exp( ft 
ft (nevEnergies(i.j) - oldEnergies(i,j)) / -currentTemp))) 

dMap(i.j) = nevDMap(i,j) 
end forall 

enddo 

currentTemp = currentTemp - (currentTemp * TEMP.REDUCTION) 

enddo 

stop = secnds(O.O) 

print *, 'Total time parallel = ', stop - start 

call WriteResults(n, dMap) 

end 

subroutine ReadLeftImage(n, leftlmage) 
implicit none 
integer n 
integer leftlmage(n, n) 
integer i, j 

open (unit=10, file='LeftDot600.f', status='old') 
read (10,*) ((leftlmage(i,j), j=l,n),i=l,n) 
close (10) 

return 
end 

subroutine ReadRightImage(n, rightlmage) 
implicit none 
integer n 
integer rightImage(n, n) 
integer i, j 

open  (unit=10,  file='RightDot600.f',   status='old') 
read (10,*)   ((rightImaged, j) ,   j=l,n) ,i=l,n) 
close  (10) 

return 
end 

subroutine WriteResults(n, disparityMap) 
implicit none 
integer n 
integer disparityMap(n, n) 
integer i, j 
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open (unit=10, file='HPF_ROW_RESULTS', status='nev') 
write (10,*) (((disparityMap(i,j) * (255 / 6)), j=l,n) ,i=l,n) 
close (10) 

end subroutine WriteResults 

pure integer function NevState(oldState, D_HIN,, D_MAX) 
implicit none 
intent(in) :: oldState, D.MIN, D.MAX 
integer oldState 
integer D.MIN, D.MAX 
integer randomNumber 
real x 
interface 

pure integer function irandO 
end function irand 

end interface 

if (mod(irand(), D.MAX) > ((D.MAX / 2) - 1)) then 
randomNumber = -1 

else 
randomNumber = 1 

end if 

NevState = oldState + randomNumber 

if (NevState < D.MIN) then 
NevState = D.MIN 

else if (NewState > D.MAX) then 
NevState = D.MAX 

end if 

return 
end function 

pure integer function GetDisparity(current, proposed, nevE, oldE, t) 
implicit none 
intent(in) :: current, proposed, nevE, oldE 
intent(in) :: t 
integer current, proposed, newE, oldE 
real t 
interface 

pure real function randO 
end function rand 

end interface 

if ((newE - oldE) < 0) then 
GetDisparity = proposed 

else if (randO < exp((-(nevE-oldE)) / t)) then 
GetDisparity = proposed 

else 
GetDisparity = current 

end if 

return 
end function 

48 



NO. OF 
COPIES ORGANIZATION 

NO. OF 
COPIES ORGANIZATION 

DEFENSE TECHNICAL 
INFORMATION CENTER 
DTICDDA 
8725 JOHN J KINGMAN RD 
STE0944 
FT BELVOIR VA 22060-6218 

HQDA 
DAMOFDQ 
DENNIS SCHMIDT 
400 ARMY PENTAGON 
WASHINGTON DC 20310-0460 

DPTY ASSIST SCY FOR R&T 
SARDTT F MILTON 
RM 3EA79 THE PENTAGON 
WASHINGTON DC 20310-0103 

OSD 
OUSD(A&T)/ODDDR&E(R) 
JLUPO 
THE PENTAGON 
WASHINGTON DC 20301-7100 

1       GPS JOINT PROG OFC DIR 
COLJCLAY 
2435 VELA WAY STE 1613 
LOS ANGELES AFB CA 90245-5500 

1      ELECTRONIC SYS DIV DIR 
CECOMRDEC 
JNIEMELA 
FT MONMOUTH NJ 07703 

3       DARPA 
L STOTTS 
JPENNELLA 
B KASPAR 
3701 N FAIRFAX DR 
ARLINGTON VA 22203-1714 

1       US MILITARY ACADEMY 
MATH SCI CTR OF EXCELLENCE 
DEPT OF MATHEMATICAL SCI 
MDN A MAJ DON ENGEN 
THAYERHALL 
WEST POINT NY 10996-1786 

CECOM 
SP & TRRSTRL COMMCTN DIV 
AMSEL RD ST MC M 
H SOICHER 
FT MONMOUTH NJ 07703-5203 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCSALTP 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

PRIN DPTY FOR TCHNLGY HQ 
USARMYMATCOM 
AMCDCGT 
MFISETTE 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

DPTYCGFORRDEHQ 
USARMYMATCOM 
AMCRD 
BGBEAUCHAMP 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCSALTA 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCILL 
2800 POWDER MULL RD 
ADELPHI MD 20783-1145 

ABERDEEN PROVING GROUND 

INST FOR ADVNCD TCHNLGY 
THE UNIV OF TEXAS AT AUSTIN 
PO BOX 202797 
AUSTIN TX 78720-2797 

DIRUSARL 
AMSRLCILP(305) 

49 



INTENTIONALLY LEFT BLANK. 

50 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public repotting burden lor this collection ot intomutlon Is estimated to average 1 Hour peTrespönse, Including th7Üm?törr»vl«wlng Instructions, searching easting dam SOUR«; 

gathering »nd malnttlning «is dm needed, and completing and reviewing ths collection of Information. Sand comments regarding this burden estimate or any other aspaet of this 
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate lor Information Operations and Reports, 4216 Jefferson 
Devi« Hlohw,. Sun« 1204. Arllnoton. VA nx>l**t. .nd to th. OfHe. of M.n.o^, -nd Bud-I. fWwprt Refaction ProlectlOTO^Ifffl). Weshlnolon. DC 20603. 

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED 

May 1998 Final, October 1997 - December 1997 
4. TITLE AND SUBTITLE 

MPI and HPF Performance in a DEC Alpha Cluster 

6. AUTHOR(S) 

Dale Shires 

5. FUNDING NUMBERS 

78M841 

7. PERFORMING ORGANIZATION NAME'S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: AMSRL-WM-MD 
Aberdeen Proving Ground, MD 21005-5066 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-1668 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

There are several different types of parallel computer architectures in use today. Some of these are large machines 
that house hundreds of processors with low- to mid-range computing capabilities. A different type of parallel computer 
architecture becoming increasingly popular is that of the cluster. Clusters are basically networked workstations: each 
containing 1 to ~30 processors with mid- to high-range computing capabilities. While arguments can be made for both 
paradigms, clusters seem to be gaining in popularity. They provide fast computation through multiplicity and fast 
processor throughput Furthermore, code reuse on different cluster environments is now possible with the adoption of 
standard interprocessor communication tools like the message-passing interface (MPI) and high-performance 
FORTRAN (HPF). This report compares and contrasts the performance of MPI and HPF on a currently available 
computer cluster. 

14. SUBJECT TERMS 

clusters, parallel computing, high-performance FORTRAN, message-passing interface 

15. NUMBER OF PAGES 

50  
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 

51 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18      298-102 



INTENTIONALLY LEFT BLANK. 

52 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers 
to the items/questions below will aid us in our efforts. 

1. ARL Report Number/Author ARL-TR-1668 (Shires') Date of Report    Mav 1998  

2. Date Report Received  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will 
be used.)  

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.). 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 
avoided, or efficiencies achieved, etc? If so, please elaborate.  

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, 
technical content, format, etc.)  

Organization 

CURRENT                            Name                                                          E-mail Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old 
or Incorrect address below. 

Organization 

OLD                                      Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 


