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Chapter 1 

Background 

1.0 Introduction and Motivation 

There is an ongoing need for more capable laser sources that combine high 
average power with quantum noise limited performance for applied physics and 
photonic engineering applications, including free space optical communications 
systems, heterodyne spectroscopy and laser interferometry for gravity wave 
detection. At this time, one of the most plausible laser candidates to meet the 
application requirements is the diode laser pumped solid state laser (DPSSL)i. To 
push the state of the art of these lasers to the next level, technologists need to 
understand and characterize the noise properties. It is well known that amplitude 
and frequency-phase noises are coupled and hence it is important to characterize 
both frequency and amplitude noise to fully understand the noise properties of 
lasers. The question posed by this comparative study is, given the need for 
coherent optical power, on the order of tens of watts to kilowatts, what is the best 
amplitude noise performance attainable? Will the best amplitude noise 
performance for a given optical output power be obtained from a laser oscillator or 
from a master oscillator power amplifier (MOPA) approach? 

The primary technological motivation for this thesis is to understand the 
relative intensity noise (RTN) of a laser system required for the Laser 
Interferometer Gravitational - Wave Observatory (LIGO). Table 1 displays the 
expected RTN performance parameters for the initial LIGO laser and the advanced 
LIGO laser system as defined in the 1995 Galileo Proposal to the National Science 
Foundation. The two key frequency ranges of interest are the phase modulation 
frequency at 15 MHz and the gravity wave system interaction frequency regime 
between 10 Hz and 10 kHz. The acronyms and units used in the table will be 
explained in subsequent sections. 
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Table 1. LIGO Laser Amplitude Noise Performance Parameters 

Initial LIGO Requirements Advanced LIGO Requirements 

Laser Power 10W 100 W 

RIN@15MHz Shot Noise Limited (SNL) SNL 

RIN@100Hz   l/V/fe 4 x 10 -7 8x10-* 

RIN@10kHz   l/Vi/z 4 x 10 -0 8x10 -9 

This study is bounded by the following comments. This study does not 
include theory or experimentation leading to the decrease of technical or 
environmental noises most often associated with or encountered from acoustic or 
thermal sources, such as: water coolant turbulent flow, vibration of mounts or 
thermalization of laser components. This study does not include parametric 
amplifiers or wave mixing amplifiers. In many cases the system discards the idler 
wave, rendering these devices, in many cases, too inefficient for the high power 
applications. It must be noted that these types of systems have very low quantum 
noise. Also, squeezed light, is not included experimentally in this study. 
Theoretically it may be possible to use this non-classical type of light to lower the 
amplitude noise of a laser system in particular applications and at particular 
frequencies below the expected quantum limit, but this simultaneously has 
deleterious effects on the conjugate quantum variable, the phase. Since, phase 
changes represent the key experimental parameter in an interferometer such as 
LIGO, care must be taken not to over optimize the amplitude noise and drive the 
phase noise to unacceptable levels. 

1.1 Thesis Content 

The content of this thesis is divided into chapters devoted to theory, 
experimentation and the comparison of the two. The first chapter discusses the 
background information and the definitions of terms. Here, emphasis is placed on 
clearly describing the different noise power measurement systems to prevent 
confusion when later comparing the theoretical and experimental outcomes of 
different authors. The theory portions are detailed in Chapters two and three. 
Chapter 2 contains the historical overview of theoretical approaches to laser 
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amplitude noise, while Chapter 3 encapsulates the noise power derivations for the 
particular solid state laser systems tested in the experimental portion of this study. 
Very simple theoretical expressions for the amplitude noise of traveling wave 
amplifiers are derived. These derivations are followed by a comparison of three 
approaches to calculating the amplitude noise of an injection locked oscillator. 
Chapter 4 details the experimental procedures. The noise power spectral density 

for the laser amplifiers is characterized at 15 MHz, (the LIGO interferometer 
signal frequency), and is shown to support the theory. Chapter 5 offers concluding 
remarks comparing the theory to the experimental results and providing comments 
on future work. Appendices are provided for the material which is too detailed or 
pedantic for the main body of the study. 

This concludes a very brief introduction to the goal and content of this 
study. The next step is to relate this study effort to the studies of laser noise as a 
whole. 

1.2 Laser Noise Overview 

Laser noise studies actually began with studies of noise in the maser, the 
predecessor of the laser. As would be expected, electrical engineers viewed the 
laser noise as being similar to noise in standard RF amplification systems and used 
terms with which they characterized those systems. Terms such as noise factors 
and signal to noise ratios were keys for characterizing laser radiation for 
communications, especially as the field of guided wave or fiber optic 
communications developed. Applied physicists used different terminology 
including photon statistics and spatial modes to characterize the noise properties of 
predominantly free space communication systems. The two disciplines have since 
overlapped and created a large body of knowledge which lacks some coherence, 
common nomenclature and units. 

With current technology it is not possible to remain entirely in an electronic 
or photonic regime to obtain the noise information about the laser systems 
themselves. There is no way to electronically "query" the atomic dipoles just prior 
to stimulated emission to determine the laser noise properties. There also is no 
current way to query the photonic stream, once it exists, without converting it to an 
electronic counterpart. Surely, if there were a purely photonic method for 
measuring the noise of a laser it would be much easier than converting the photons 
to electrons, determining their noise and then implying the noise characteristics of 
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the photon stream. The crux of the experimental study of laser noise is the 
crossover that occurs in the photodetection process. The photodetector can be 
viewed as converting the purely optical noise into noise which has components 
both from the optical noise, and from the detection processing of the photons 
themselves. Therefore, it is important to understand the noises created by the 
photodetection process as well as the photonic noise generated in the lasing 
process. These noises are categorized and explained in the next section. Following 

the definitions of noise are brief descriptions of the systems under comparison and 

a short background summary of detector related noise concerns. 

1.3 Noise: Definitions and Types 

It is not possible to have a deterministic or "noise free" measurement of coherent 
optical power. There are uncertainties in the location, momentum, energy or 
arrival time of the photons. So, in the case of photons, noise can be viewed as an 
inherent randomness in a physical process or it can be viewed as the inherent 
uncertainty involved in any measurement. Random fluctuations as studied in the 
statistics of random variables are often characterized mathematically by the 
concepts of the probability density function (PDF) and probability generating 
functions (PGF). These functions are used to describe the noise statistics of both 
the electrons and photons. Associated with these density functions are the mean, 
or average or entities called "expectation values", and the variance, or its root, the 
standard deviation. These qualities are also related to what statisticians call the 
first and second moments of the probability distribution. In most cases of CW 
laser operation only the first two moments are needed to characterize the noise. 
Higher moments are needed when dealing with noise properties of coherent photon 
streams in the study of digital communication systems. The equations for the first 
two moments of any distribution of random discrete variables are given by 

(it1) = £»^(11) (1.1) 
n=0 

and 

(n2) = fjn
2P(n), (1.2) 

71=0 
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where P(n) is the probability that the random variable takes the value n. 
Throughout this study n will be representing numbers of photons. The ( ) 

indicates either an ensemble or a time average, as it is assumed the processes under 
study are ergodic. The first moment serves as the mean value or expectation value. 
In many cases it will represent the signal. The variance, a2 and standard 
deviation, a, are derived from a combination of the first and second moments as 
follows. 

^=((A»)a) = ((»-W)2) 

= (n2-2n{n) + {n)2Sj 

= {n2)-(2n(n)) + (n)2 

= {n2)-2(n)(n) + (n)2 

= (n2)-2(n)2
+(n)2 

°2=(»2)-(n)2 (1.3) 

° = ^/PW (1.4) 

The standard deviation (1.4) is also referred to as the RMS noise in the 
literature. The variance (1.3) is called the "noise power" is the observable data 
taken from a spectrum analyzer as a power spectral density per Hz, as it has 
traditionally been used to characterize noise in RF systems. However, a complete 
explanation of statistical concepts, including the PDF and PGF is better left to a 
texts. The only other statistical knowledge required for this study is the statistical 
distributions which photons can assume and which produce given PGF and PDF 
functions. The photon statistical distributions for a completely (perfectly) coherent 
source are Poissonian and for an incoherent or thermal source ape Bose-Einstein. 
This will be explained in more depth shortly. Standard statistical calculations can 
be done on these photon distributions and assuming the photoelectrons are created 
via a Bernoulli random process, it can be assumed that the photoelectrons also 
follow the photon statistics. The difficulty then lies in converting the theoretical 
statistical values for the first two moments of the photon distributions into the 
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photoelectron noise power spectral density which is the observable obtained from 
a spectrum analyzer in an actual amplitude noise experiment. 

Now that the mathematical background for characterizing noise has been 
briefly introduced, it is necessary to categorize noise in a useful way. The first 
category will focus on the radiation (photon) noise. This is the inherent noise on a 
photonic stream. It cannot be directly measured but a theoretical value can be 
determined. The second category is the noise associated with electrons after they 
have been photogenerated. It will include shot noise and the Nyquist or thermal 

noise in the measurement system. The third category will be called excess noise. 
This will be the noise which cannot be accounted for by either the photon statistics 
which evolve as the photon stream passes through a passive system or the 
electronic noise created in the receiver. It will be the noise created by the 
interactions of the original photonic streams with active media which supply both 
stimulated emission or gain and amplified spontaneous emission (ASE). In other 
words, any increase in the variance of the original photon statistics is deemed 
excess noise and is added by an amplification system. Technical noise, which 
covers macroscopic effects in the laser environment, such as acoustical coupling to 
coolant flow and microphonics will not be discussed. It is assumed in this study 
that the laser systems are free of these technical noises. 

In this study, the interaction of a laser oscillator's (NdrYAG non-planar ring 
oscillator (NPRO)) photonic stream with a laser amplifier will be investigated and 
characterized. Several interesting features will be exposed. Some excess noise 
can be viewed as either a classical beating of signal and noise fields at a "square 
law" detector or as the statistical outcome of quantum mechanical interactions 
which change the photonic stream's statistics (total number or phase) as it passes 
through the optical amplifier. It is a classic example of a wave, particle duality. It 
is also possible to show that spontaneous emission not only adds amplitude noise, 
it also broadens the spectral width by adding random phase noise. This is in 
accordance with the Schalow-Townes equation for the linewidth of a photonic 
stream from a laser. This phenomenon is an example of the Heisenberg 
uncertainty relation because photon number (amplitude) and phase are non- 
commuting observables. So, an increase of amplitude noise is reflected as an 
increase in the spectral width of the signal. As indicated earlier, amplitude and 
frequency noise are inextricably linked. 

The first noise category of interest, radiation noise, arises from the original 
distributions of photons created by the radiating source, which is usually an atomic 
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dipole undergoing a transition. The subsequent photon statistics depend on these 

initial distributions. There are two types of photon statistics: Poisson statistics 

arising from a coherent light source and Bose-Einstein statistics arising from a 

thermal, i.e., blackbody source. All sources create radiation whose statistics fall 
between these two distributions. The Poisson distribution is used because it is in 
good agreement with experimental estimates of discrete processes, in this case, 
photon emission. The discrete processes assume the probability of detecting a 
photon goes to zero as the time goes to zero. Also, the emission of a photon is 
binary in nature, i.e., the particle is present or not. Multiple binary processes, or 
the train of randomly occurring emission events, then lead to a binomial 
distribution which becomes the Poissonian distribution as the number of particles 
per sample time approaches infinity. The photon emission events are time 
independent, or in other words the probability of detecting a photon is independent 
for non-overlapping time intervals. Only "perfectly" coherent light meets this 
criteria. The Nd:YAG laser oscillator used in this experiment operates in a single 
mode with a very narrow linewidth and a high degree of coherence and hence the 
Poisson assumption is a good one3. The Poisson probability distribution function 
is given by* 

/>(«) = ^-exp(-(n)) 

from which the first two moments are found 

using equations (1.1) and (1.2). The moments inserted into equation (1.3) yield the 
variance 

a2=(n). (1.5) 

So the noise power of a coherent photon stream is directly proportional to the 
mean number of photons in that stream. 
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At the other extreme of photon distributions, where the light is incoherent 

or chaotic, we have the Bose- Einstein statistics. These statistics were first applied 
to the study of noise from maserss. The probability distribution is given by 

P(»)=     l 
i+(»)(i+y<»))"' 

Using this probability function and equations (1.1),(1.2) and (1.3) we obtain 

a2=(n)2+(n) (1.6) 

for the noise power*. It is clear that an incoherent field is far "noisier" than a 
coherent one, as expected. Equations (1.5) and (1.6) will be used in the theoretical 
discussions of noise in the subsequent sections. 

The second category of noise includes noise associated with electrons, 
regardless of whether they were generated through photoelectron pair production 
or exist due to the flow of charges in the measurement system. This category 
includes shot noise and the Nyquist noise or thermal noise. Shot noise is an 
inherent outcome of the randomness involved in the interaction of a charged 
particle with a radiation field. The granularity of charge is ultimately responsible 
for the existence of shot noise, but this is not the complete explanation. Shot noise 
occurs only under the conditions of DC flow and the presence of a potential barrier 
over which the electrons must leap. These conditions are met in a square law 
photodetector converting photons to electron-hole pairs and they are not met when 
electrons flow through a linear resistor. As electrons hop the barrier there is a 
discontinuity in the current which translates to a random arrival time. The shot 
noise power equation has been derived by numerous authors, but a succinct 
explanation is found in Yariv?. The shot noise equation is 

o-;
2=29/ocA/, (1.7) 

where q represents the electron charge, IDC is the direct current flow and Af 

refers to the bandwidth of the measurement. From this equation two qualitative 
statements can be made. Shot noise power drops linearly with the DC 
photocurrent.    So, for example, to calibrate a photodetector just decrease the 
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intensity linearly and verify the noise power goes down linearly. This linear 
relationship implies that more intense laser beams are inherently noisier. Also 
notice that as the bandwidth increases, the precision of the time measurement is 
increased. When this occurs, the precision in the count of the electrons in the 
stream decreases as one would expect from the uncertainty principle. Hence the 
shot noise increases. For consistency, all noise measurements need to be 
referenced to a particular bandwidth, which in this study will be 1 Hz. For this 
reason, often the bandwidth will not appear in the shot noise power equation in this 
study. However, for correct units the bandwidth needs to be indicated. 

Shot noise has an underlying assumption which is worthwhile summarizing 
here for completeness. Shot noise is postulated to have a white noise or constant 
power spectrum. However, since this would imply infinite energy—through the 
integration of the power spectral density over an infinite set of frequencies—there 
must be some characteristic fall-off at high frequencies. It is assumed that the 
rolloff occurs at frequencies outside of the bandwidth across which the 
experimental measurements were taken. However, rather than just postulating a 
rolloff, the difficulty can be resolved by considering that in the case of 
photodetectors, there are non-zero carrier transit times across a potential barrier, 
such as a depletion region in a PIN photodiode. The transit times impose a type of 
bandwidth limitation or roll-off. The shot noise should decrease once the noise 
frequency becomes comparable to the inverse transit time of the charge carrier. 
So, the linear shot noise equation only holds for noise spectral components whose 
frequencies are small compared with the inverse transit time. Above that critical 
value, the shot noise equation over estimates the noise. 

If a charge carrier passing through a depletion layer of a diode creates a 
rectangular current pulse, whose duration is equivalent to the transit time, the noise 
equation (1.7) is slightly modified via a Fourier transform and produces the 
following expression for the shot noise 

°"?  = 247DCA/ 
<   Ttftst ) 

For frequencies up to 0.25 I At, whereAris the transit time, the correction is 
smaller than 10% . The InGaAs PIN photodiodes used in this study have transit 
times up to 1 nS. This gives bandwidths of 1 GHz. If the noise measurements are 
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conducted at 15 MHz, the value of the sine function at 0.015 will give the correct 
value within 0.03 % of the simpler theory. Experimental error will be much 

greater than this, so the simpler equation is adequate for this study. It should be 

noted that if the noise power measured in a detection system is dominated by the 
shot noise contributions, the detection system is said to be operating in the 
"quantum-limited" detection regime. This is the most desirable detection regime in 
which to operate. Sometimes, however, another noise power comes into play, 
Nyquist or thermal noise. 

Nyquist or thermal noise is the result of the random walk of electrons 
through any lossy device. It is an inherent noise in any electronic circuit with a 
lossy component. Since measurement involves adding a load to the system under 
test and this load represents a lossy component, thermal noise will be present. The 
derivation of the thermal noise can be found in numerous texts, and similar to the 
shot noise discussion above there is a correction which takes into account rolloff of 
the noise at high frequencies. This correction, called the Plank correction, is not 
used when operating below a terahertz at room temperature. The simplified 
formula for the mean square current density is« 

_ MTAf 
CJ   thermal — , 

R 

where as before A/ refers to the bandwidth of the measurement, k is Boltzman's 

constant, T is the temperature in Kelvins, and R is the resistance. Assuming the 
loads are matched throughout the experimental set up, the value of thermal noise 
for a 50 ohm system at room temperature, in a 1 Hz bandwidth is -174 dBmW. 
This value is well below the shot noise measurements made with the Hewlett 
Packard spectrum analyzer used in this experiment. The HP 71000 system 
spectrum analyzer has a noise floor of approximately -143 dBmW through out the 
megahertz region with a standard 50 ohm terminator on its input. Therefore, 
thermal noise will not be discussed for the remainder of this study. 

1.4 Noise Measurement Units 

Having briefly discussed the types of noise which are under study it is now 
appropriate to clarify the units which are used to quantify noise and to provide 
nomenclatures for the observables in the experiment.  The most important mental 
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picture is that of the noise power represented by the power spectrum. This is a 
continuum of noise power spread from DC to frequencies well beyond what the 
experimental apparatus can measure. This particular experiment focuses on the 

noise power gathered in one second at a particular frequency, 15 MHz, and is 

called the power spectral density at that point. The unit for measuring this 
particular observable is the dBmW in 1 Hz, abbreviated dBm/Hz. 

Any power which is gathered by the experimental apparatus which is not 
derived from the desired signal is considered to be noise. (Note that it is critical to 
determine what the power of the signal actually is in order to understand what the 
noise may be. ) To put noise into the proper perspective with the signal, the term 
relative intensity noise (RIN) is used. RTN should be viewed as a ratio of the 
intensity of the noise versus the signal intensity. Since both electric field and 
optical intensity terms occur in these experiments, the term RTN can be used with 
both photonic and electronic noises. (However, the electrical and optical RIN are 
not equal — see Appendix 2) RIN is not expressed in power density units, but as a 
relative unit in dB, depending on the DC level of the signal, which is linked to the 
DC photocurrent or the electrical current. If, for example the majority of the noise 
is shot noise (the ideal case), then the RTN due to shot noise can be found by 
plotting the shot noise power and the detected signal power and subtracting the 
two in units of decibels. Converting the detected photonic intensity into 
photocurrent in a 1 Hz bandwidth or a 1 second integration results in the diagram 
in Figure 1. 

As noted above, in the ideal case, the shot noise is the predominant noise in 
the system under test (SUT) and it basically implies that the limits to the 
measurement are the experimental apparatus themselves. It is assumed here that if 
the intensity and original statistics of the signal are known then the shot noise can 
be calculated and subtracted from the total noise measured to determine the excess 
noise added by the amplification process. It is the excess noise created by the 
interaction of the photonic stream with the amplifier or oscillator under test which 
is of ultimate interest. The RIN increases with an increase in the signal power, as 
indicated in Figure 1. So, just amplifying a signal, for example adding coherent 
photons to increase the total number of photons in the stream, will automatically 
result in greater RIN. 
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Figure 1. Diagram of Noise Power and RIN. The relative intensity noise 
increases with increasing optical power. 

If the device under test (DUT) gives a RIN value which is due only to the 
contribution of the shot noise then the SUT is considered shot noise limited (SNL) 
and this is classically the very best noise performance one can expect from that 
system. As an aside, it can be very tempting to make noise measurements at high 
photocurrents such as 10 mA, to take advantage of the increased shot noise power 
over and above the spectrum analyzer noise floor and thereby forego adding an 
additional amplifier stage. However, it is important to take into account the effects 
this higher current can have on the photodetector and amplifier response and 
design accordingly. For example, higher photon fluence can lead to saturation 
effects which are different at different frequencies. Detection saturation was 
encountered early on in this study and is described in greater depth in the 
following section. Appendix 4 describes an apparatus to determine the 
photodetector frequency response which is very convenient when undertaking 
broadband noise analysis. 

In addition to the RIN (in either electrical or optical units) another term is 
often used, called the quantum noise equivalent level (QNEL). This is also a 
frequency normalized form for comparing the noise power and the signal power 
and it is often seen in the literature as a ratio of optical intensities or powers. The 
RIN (in electrical units) is twice the QNEL when both are given in dB. The QNEL 
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is in units of l/V7fe and the mathematical relationship between the QNEL and the 

RIN is: QNEL = -jRINlinear. (Note: In Table 1, strictly speaking, the units of 

amplitude noise for LIGO should have read QNEL not RIN.) A handy conversion 
chart is provided in Figure 2. 
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Figure 2. Conversion Chart for RIN and QNEL 

Another commonly used term for discussing noise properties is the signal to 
noise ratio (SNR). It is particularly useful when discussing the properties of 
amplifiers, which are judged by how much they degrade the SNR of an incoming 
signal. SNR can be defined if the measurements of the noise and signal are time 
averaged over a time which is long compared to the inverse bandwidth of both of 
them. The measurements made in this study were for time averages over 
milliseconds while the inverse bandwidths were on the order of microseconds. 
The signal to noise ratio in the electrical and optical sense can be viewed as either 
ratios of power quantities or signal quantities. This study will use the convention 
of the power ratio given by 

SNRJS. 
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In electrical terms, 

while the optical terms, 

In) 
SNR = X ' 2   " 

The SNR values for the Poisson and Bose-Einstein photon distributions are 

derived using substitution and algebraic rearrangement. 

For Poisson Statistics 
SNR = (n), 

and it is apparent that Poisson statistics are highly desirable due to the fact their 

optical signal to noise ratio scales with average photon number. 

For Bose Einstein Statistics 

to SNR = 
to + 1 

and it is clear that the optical SNR cannot be greater than 1 regardless of the 
number of photons. Hence, it is not feasible to use Bose-Einstein distributions for 
systems where signal to noise is an important parameter, as it is in communication 

systems for example. 
The optical signal to noise ratios just derived have assumed well defined 

photon statistics. This study is aimed at finding the noise and hence the SNR for 
an as yet unknown statistical distribution which will not be mathematically as 
simple as these two pure cases. It will become clear in the theory section that there 
is another approach to find the noise using a semi-classical calculation which 
evokes the concepts of "beats" or the visualization of heterodyning of photon 
fields on a square law detector. The use of this heterodyning approach in this 
particular case requires the current associated with the local oscillator (NPRO 
probe beam) be much greater than the current due to the amplified spontaneous 
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emission (ASE). This implies that the noise used in the SNR calculation is 
predominantly the shot noise from the local oscillator photoelectrons. 

Comparisons of SNRs can be tricky because in some cases the SNR is in 

optical terms and in the other it is in electrical terms. For now, the electrical SNR 
for a heterodyned system as found in the fiber optic communications or IR 
astronomy field of study will be quoted for reference and then later compared to 
the derived theory. The equation for SNR for a heterodyned system where n^E 

is the number of ASE photons is 

SNR = 2{nASE). 

The last units discussed in this section are the noise factor, the noise figure 
and the Fano Factor. Noise Factor, commonly given the term "F", is the ratio of 
the SNR input to the SNR output of a system, usually measured at 290 K and 
Noise Figure, commonly given the term "NF", is the noise factor converted to 
decibels. An ideal amplifier would have a noise factor of 1 and a noise figure of 
OdB. Amplifiers whose noise figures are 3 dB or less are considered very good 
amplifiers. The Fano Factor, "f', is slightly different. It is defined as 

f = f-v (1-8) 

For Poisson statistics f=l and for Bose-Einstein f=<n> +1. A system whose Fano 
Factor approaches one is also a very good system. 

1.5 Laser Amplifier and Oscillator Configurations 

A clear definition of units is mandatory. It is also important to clearly define the 
configuration of the systems whose noise properties will be compared. In this 
case, a traveling wave amplifier operating in two regimes, the linear and the non- 
linear or saturated, will be compared to the oscillating or recursive wave amplifier. 
In addition, the concepts of noise properties of amplifier chains which use relay 
imaging will be touched upon because these types of amplifier chains are the next 
logical step when power scaling a solid state laser system. It is also important to 
briefly add a comment about coherent and incoherent amplifiers. Those that 
preserve both the phase and amplitude information of the original signal are 



Chapter 1: Background 16 

coherent and those that destroy one or both are considered incoherent. Linear 

amplifications will be viewed as coherent and non-linear amplification or saturated 

amplification will be incoherent. 
The linear traveling wave amplifier, also called less precisely an 

"unsaturated" amplifier, operates under conditions where so few photons enter the 
amplifier that their presence does not substantially change the stimulated emission 
and absorption cross sections and hence the probabilities of emission. It is also 
called the small signal case. The linear amplifier can also be considered "coherent" 
since it preserves the phase information of the original signal. The saturated 
traveling wave amplifier is one whose medium is pumped to a full inversion and 
then a large number of photons are flooded into the material to cause the 
absorption or emission characteristics to roll off. It is important to clearly 
understand which cross sections or which set of atomic transitions are affected—be 
it saturation of the pump transition or the radiation transition. Fundamentally, the 
amplifier is saturated when the photon populations and the excited state 
populations are coupled such that the input pump or signal (NPRO probe) 
significantly affects these two populations. In this study the saturation refers to the 
stimulated radiation transitions. 

The third configuration used in this study is the oscillator or recursive wave 
amplifier which can be as basic as a traveling wave amplifier with a Fabry Perot 
cavity imposed around it or as complex as an injection locked oscillator. This type 
of amplification has generated great interest because it can be built into a feedback 
system which should provide greater control over several types of noise properties. 
The only type of oscillator configuration examined in this study, in depth, is the 
injection-locked oscillator. The reason is that generally high power oscillators, 
which are seeded from their own noise, require intracavity elements to ensure the 
single mode operation desired for laser gravity wave interferometry and using 
these elements robs the system of power. Injection locked oscillators may be a 
candidate for the applications of interest to this study, but are more complex to 
operate and do not offer convenient power scaling with high operational reliability. 
Briefly, the injection locked oscillator studied here is a small, low noise oscillator, 
like an NPRO, which is used to seed and thus control the oscillating modes of a 
higher power slave laser oscillator. The system is set up so that the frequency 
difference between the lasers is small so that the locking range is fairly robust. In 
the case used here, a small, 200 mW Nd:YAG NPRO is used to lock a Nd:YAG 
slab laser at 20 Watts.   Other general rules of operation for this system include 
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good mode matching of the master and slave laser optical fields and a careful 
tradeoff of the ratios of the master and slave laser powers and the locking range. 
The theory section gives more details on the characteristics of this system. 

Lastly, lumped amplifier chains, especially relay imaged versions, are 

gaining in popularity. The idea is to relay the beam from amplifier to amplifier 
such that the last amplifier is the only one in saturation. The major difficulties 
which need to be over come are that of keeping the beam quality throughout the 

free space optical chain and preventing optical damage. By ensuring that optical 
foci occur in either vacuum or air there is less chance that the high intensities will 
damage system optical coatings. Up till now, the only amplifier chains were found 
in the fiber optic communications field, where chains of erbium doped amplifiers 
were used for transatlantic cables and in very high power glass lasers for fusion 
research. The fiber optic systems operate with very low photon flux and a guided 
wave channel. This is in direct contrast to the free space high power systems. 
However, fiber amplifier chains provide a departure point for the free space 
amplifier chain calculations. 

1.6 Detector Properties Affecting Amplitude Noise Measurements 

As indicated earlier, the detector is the crux of the noise problem in converting 
from the photonic to electronic regimes. Several detector properties influence the 
interpretation of data as the detector converts noise power between the two worlds. 
Two properties are particularly important in the study of noise in photodiodes, the 
quantum efficiency and the response time. The reason these two are chosen is 
because it has now become common in the industry to form a responsivity and 
bandwidth product for comparison of detectors in high speed work. As is well 
known, the quantum efficiency is directly linked to the responsivity and the 
response time is inversely related to the bandwidth. The quantum efficiency term 
is used when converting noise measurements between the photonic and electronic 
regimes and the bandwidth is important when setting up measurements of noise 
power spectral densities. Both of these properties are affected by the materials 
chosen for the detector and the detector's physical layout in a receiver circuit. 
These two properties are considered in addition to the property of detector 
saturation which must be considered in all detectors. Though saturation might be 
considered the most straight forward of the three properties to be measured, in this 
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particular experimental set up saturation became the most difficult property to 

characterize. 
Quantum efficiency is the probability that a photon will be converted to an 

electron-hole pair that contributes to the detector current. Because of the nature of 
the coupling between the photonic fields and the semi-conductor bands which 
represent collections of various electronic states, photodiode detectors have 
slightly different responses to broadband or thermal light characterized by Bose- 
Einstein statistics and the very narrowband nearly coherent light typified by the 
Poisson statistics. For a broadband source, instead of one quantum efficiency for 
the entire stream, one has to introduce a spectrum of quantum efficiencies 

normalized for the entire photon stream intensity. As the light becomes more 
narrowband, the approximation of a single quantum efficiency is acceptable. One 
of the advantages of the homodyne technique used in this experiment was that the 
single longitudinal and transverse mode of the local oscillator laser selected only 
one ASE mode so effectively, by default, the noise measurements were made with 
only one quantum efficiency value. Figure 3 shows the comparison of the 
broadband tungsten source (MAG Flashlight) versus the coherent narrowband 
1064 urn output of the NPRO at 1mA. 
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Figure 3. Amplitude Noise of a Tungsten Source and the 300 mW NPRO @ 
3.8 mA photocurrent using a Si detector. The amplitude noise is found to be 
indistinguishable between the flashlight and the coherent laser source. 
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It should be pointed out that although in the lab environment the standard 

flashlight is viewed as a shot noise limited source, it is incorrect to make direct 
comparisons with the narrowband sources arbitrarily. Calculations of the 
differences in detector efficiencies between broadband and narrowband sources are 

provided in Appendix 5. 
Also, because this experiment was conducted at the fairly low frequency of 

15 MHz, the responsivity and hence the quantum efficiency was more important 
than the detector bandwidth. Since reponsivity and bandwidth are inversely 
related, this led to a decision to move to a detector with higher quantum efficiency, 
but not substantially better response times, for these measurements. 

The second major trait of photodiode detectors which is of concern in noise 
work is the response time which is composed of the transit time and the RC time 
constant. Transit time is the time allotted for the photoelectrically generated 
carrier to physically drift to the electrical contact and enter the detector circuit. 
Some photodiodes also have a restriction for diffusion time, whereby carriers 
generated outside of the depletion region take time to arrive in the depletion zone 
and then can be collected. In the design of the detectors the lifetime of charge 
carriers is also taken into account such that the dimensions are chosen to allow 
most of the carriers to be gathered before they experience recombination. The RC 
time constant is formed by the resistance and the capacitance of the photodetector 
and the receiver circuitry. It lengthens the impulse response which represents the 
creation of a photoelectron. When the RC time constant is convolved with the 
transit time response the result provides the total response time restriction. 
Response times convert directly and inversely to the bandwidth of the detector. 
For the InGaAs detectors used in this study the response times were on the order of 
100 psec which converts to GHz of bandwidth. 

For the sake of completeness, there is an additional detector trait, the dark 
current noise , which should be examined in low photon fluence noise work but 
was not examined here because the mW photon fluences essentially swamped the 
effect. Essentially, photoelectrons are created by thermal processes or tunneling in 
the absence of light. Often when biasing the detector to a higher voltage to attain a 
higher responsivity, and shorter transit times, dark current increases. Engineering 
trade-offs must then be done to optimize the detector. 

Now that the definition of terms is complete and the basic outline of the 
devices under test and the detector characteristics have been briefly discussed, it is 
time to turn to the theory of noise in both the linear and saturated amplifier cases. 



Chapter 1: Background 20 

Chapter 1 References 

1. Robert L. Byer, "Diode Laser-Pumped Solid-State Lasers", Science, Vol. 239, 
p. 742 (1988). 

2. Alberto Leon-Garcia, Probability and Random Processes for Electrical 
Engineering, 2nd Ed., (Addison-Wesley Publishing, Menlo Park, CA, 1994). 

3. E. Dereniak, and D. Crowe, Optical Radiation Detectors, (Wiley, New York 
1984), p. 18. 

4. Herbert Kroemer, Quantum Mechanics for Engineers and Applied Scientists, 
(Prentice Hall, Englewood Cliffs, NJ, 1994), p. 609. 

5. K. Shimoda, H. Takahasi, and C.H. Townes, "Fluctuations in Amplification of 
Quanta with Application to Maser Amplifiers", Journal of the Physical Society of 
Japan, Vol. 12, No. 6, p. 688 (1957). 

6. B. Saleh and M. Teich, Fundamentals of Photonics , (Wiley, New York, 1991), 
p. 407. 

7. Amnon Yariv, Optical Electronics, 4th Edition, (Holt, Reinhart and Winston, 
Inc., San Francisco, 1991), p. 364. 

8. Amnon Yariv, Optical Electronics, 4th Edition, (Holt, Reinhart and Winston, 
Inc., San Francisco, 1991), p. 369. 



Chapter 2 

Theory I: Historical Approaches to Amplitude Noise 
Calculations 

> 

2.1 Historical Overview of Linear Amplification Noise 

The theory associated with laser amplification amplitude noise began with the 

studies of maser noise in 1957 with the work of Shimoda, Takahasi and Townes1 

(SIT). They derived the photon statistics master equation for the simple case of 
linear amplification. It was based on the stochastic process of birth, death and 
immigration (BDI), a process which was well characterized for such studies as 
animal population evolution and cosmic ray showers. In the case of a laser/maser, 
birth is viewed as emission, death as absorption and immigration as that of a 
photon passing through the amplifier. Various authors since then have derived 
variants of the STT model where time dependence of the emission and absorption 
coefficients as well as some saturation phenomenon have been included. Authors 
have also looked at traveling wave configurations versus oscillator configurations 
and tried adjusting for spontaneous and stimulated emission processes to derive 
similar equations for oscillators. In all cases the basic idea of a population 
statistics approach for the interaction of the excited states and the photon 
population were retained. The original STT approach assumed a uniformly 
pumped laser medium, where all atomic coefficients were constant with length and 
unperturbed by the influx of photons from outside. Though not explicit, it was 
also assumed that light of a single optical longitudinal and transverse mode in a 
single polarization state was employed. 

The STT approach used particle distributions which followed Bose-Einstein 
statistics (geometric distribution) i.e., a thermal but narrowband source. However, 
a coherent laser source with Poisson statistics2 would result in a slightly different 
answer, though the procedure would be the same. Deviations from Poisson 
statistics at the exit point of the amplifier can be viewed as "excess noise" or the 
noise added to the photon stream by the amplifier. The STT calculations gave the 

21 
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evolution of the probability of a particular number of photons existing at a 
particular time, or if visualizing a traveling wave amplifier this number equates to 
number of photons evolving with distance, so that a set of photon statistics at the 
exit of the amplifier could be derived. It was not clear that this technique could be 
used with oscillators because the recirculation of the photons would invariably 
result in a saturation effect down to a steady state value which their model could 
not calculate. Though their approach was to solve a partial differential rate 
equation in a classical sense, other methods have been developed which included 
quantum mechanical states. Their rate equation for the evolution of the photon 
number with time, or conversely with elapsed distance in a traveling wave 
amplifier, is as follows 

dm/dt = {a- b)m + c 

where:/« is the total number of particles (photons) 
a is the probability of producing another particle-birth 
b is the probability of destroying the particle—death 
c is the rate of adding new particles-immigration. 

Let m=n at t=0 and the classical solution is 

m =("+^)ex*"-*>]-fe)- 

However, since m must represent an integral number of particles, this equation 
needs to be revised to reflect the probability of a particular number of photons at a 
particular time. Probability is denoted by the term   Pnm , which is shorthand for 

"the probability of m particles at time t assuming n particles at t=0". The 
functional dependence on time is dropped in the notation. The subsequent 
probabilistic representation of the change in the number of photons with time then 
becomes3 

dP 
-jfL = -[(a + b)m + c]Pn,m +[a(m-l) + c]P„^ + % + l)P„,m+1.     (2.1) 
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Hence the rate of change of the probability of a particular photon number is 
composed of the probabilities of the three system states, three "photon number 

states", one in which there are m, m+1 or m-1 photons. In these three states, 
different probabilistic processes can give m photon states. If one is in the m-1 
state, to get to the m state one has the possibility of adding a photon via birth ("a") 
or by immigration ("c"). If one is in the m+1 state, to get down to the m state, one 
needs to have one of the m+1 photons die ("b"). Finally, to stay at the m state all 
the processes affecting the m state, birth, death and immigration must be accounted 
for. If there is no change in the probability of m photons existing at time t, 
dPnm/dt = 0, then the first term will equal the sum of the second and third term, as 

it is assumed sub-probabilities can evolve with time but the total photon number 
probability is fixed. This equation is called the photon statistics master equation 
and is the foundation for most of the noise work that followed. From this equation 
the first and second moments for the photon number can be derived. As detailed 
earlier, these two moments contain the information needed to obtain the variance 
or noise expected on the photon stream. The solutions for the first two moments 
are* 

{m) = (<„) + _£_) eXp[(a - b)t] - -S-, 

<"2} = V   '   (a-b)     V '   a-bA   a-b   ) 
exp(2(a-b)t)- 

(,,       c  Ya + b + 2c\      ,,     7VN    c(b + c) 

(a-bf 

Assume that a, the birth probability, is equivalent to the emission 
probability in the laser, which can be written as the emission cross section times 
the number of excited states, a = creN2, and b written as the absorption cross 
section times the unexcited states, b = aaNl. In a fully inverted Nd:YAG 
amplifier, a»b because N2))NX, due to the four level architecture of the lasing 

scheme, while the cross sections are comparable, due to the small degeneracy of 
the sublevels. Also, assume that the only immigration is from the spontaneous 
emission photon into the single  spatial mode, this  implies c=a.     Letting 
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G = exp(a-b)t, and applying the foregoing  assumptions, the moment equations 

can be simplified. The results are 

(m) = ((n) + l)G-l, 

and 

(m2) = [(w2) + 3(/i) + 2]G2 - 3((«> + l)G +1. 

Now calculating the variance from these two moments using equation (1.3), 

a2 = (w2)-- (m) , the noise power on the photon stream leaving the traveling wave 

amplifier will be 

a2 = a0
2G2 + G(G - \)((n) +1), (2.2) 

where cr0
2 =(n2}-(n)2  is the noise power on the photon stream entering the 

detector. These results are quite general because particular input photon statistics 
were not assumed. The output noise power will therefore be the input noise power 
increased by the amplifier gain and an additional term which is added by the 
amplifying medium. When the G=l or the material is passive, then the photon 
stream passes through the material unaffected. This is the case when traversing 
optical elements such as lenses in the beam train. When the amplifier is above the 
transparency gain threshold and G>1 then the noise power increases. If the 
medium is below the transparency gain threshold, and G<1, then noise power still 
increases. This output noise power has not included any effects due to the 
photodetection process, it is only the noise power inherent in the optical 
amplification process. Other than introducing the requirement for discrete 
particles, this is a classical derivation using algebra and statistics alone. As a semi- 
classical derivation it will subsequently be shown to reduce to the quantum 
mechanically derived solution. Also note, if no photons enter the amplifier there is 
still a noise power output, a2 = G(G -1), which classically is not intuitive, but will 

be shown to be related to the amplified spontaneous emission, (ASE), and the 
ASE-ASE beat terms once a photodetection process takes place. Lastly, if the 
input photon stream obeys Poisson statistics, and <n> is much larger than 1, and 
<n> is also much larger than G(G-l), then the semi-classical noise power equation 
takes on a simpler form given by 
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a2 =G(G-l) + G(n)[2G-l], , 

which can be rewritten as 

a2=G(n)[l + 2(G-l)]. (2.3) 

Once a photodetection process takes place, this noise power equation will 
be shown to actually contain 4 terms: the shot noise term, the ASE-signal term, the 
ASE and the ASE-ASE term. Prior to photodetection the semi-classical noise 
power equation cannot really be interpreted in terms of observables. There is only 
a quantum mechanical interpretation. 

In 1992, Diament and Teichs, in addition to providing a good summary of 
linear amplifier noise work up to that time, used the BDI approach to discuss the 
evolution of the statistical properties of photons as they passed through a linear 
traveling wave amplifier. In their model a single photon initiates its own BDI 
process rather than being represented by part of the immigration parameter. Their 
technique was aimed at the steady state laser amplifier used in a digital 
communications system's doped fiber amplifier where the input of photons is 
modeled as numbering in the tens to hundreds. Because the system was at steady 
state, the parameters for the BDI process were independent of time. They went on 
to prove that if the input is a Poisson distribution a noncentral-negative -binomial 
(Laguerre) distributions will occur at the output. Their technique of using the PDF 
and PGF to solve the output distribution moments proved to be more useful for 
higher order moments needed for studying the digital SNR than the STT approach 
for solving the differential moment equations, as long as the number of photons 
did not exceed approximately 1000 and if particular input distributions were given 
which could simplify the calculations. However, for this study the number of 
photons is on the order of 1015 to 1018 which makes that technique difficult, unless 
perfect Poisson input distributions are assumed. Since the analog system noise in 
this study is easily modeled by the first two moments of the photon distributions, it 
proved easier to solve the differential equations using the STT approach. 

In early 1962, Hugh HefmerS, of Stanford University's Ginzton Laboratory, 
added another chapter to the book of linear amplifier noise with his derivation of 
the fundamental amplifier noise limit from the Heisenberg uncertainty principle. 
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His approach was to assume an ideal noiseless linear amplifier (either a maser type 
or a parametric amplifier) and subsequently showed that it violated the uncertainty 
relation which exists between the photon number and their phase. He went on 
further to derive the minimum noise power associated with optical amplification6, 

PN=hvB(G-l), 

where B is the amplifier single sided optical bandwidth and G is the gain as 
defined above. This relation can also be rewritten to highlight the association of 
this minimum power with the ever present zero point energy of half a photon per 
Hz which comes about when the electromagnetic field is quantized 

where T is the sample period. This result is applicable to this study as it sets the 
lower bound of noise power for the amplifiers. 

Just a few months earlier, Louisell, Yariv and Siegman published their 
studies of quantum fluctuations and noise in parametric processes?. This was the 
first of many papers which took the quantum mechanical approach to the noise 
theory for the laser amplification process. Their results showed the same fractional 
noise power for a single frequency input as the STT theory. Though their work 
focused on very high gain parametric processes which are not discussed in this 
study, they set the stage for subsequent quantum mechanical noise work. A more 
general paper which encapsulated the results of STT and LYS and simultaneously 
produced Heffher's result appeared in late 1962. This paper, by Haus and 
Mullen«, also derived expressions for the noise figures, and the SNR. They 
showed that the minimum noise figure is 2 (i.e., 3 dB) under the condition that the 
quantum noise (uncertainty noise) is dominant and a linear amplifier of high gain 
is used«. In 1963, Glaubet laid down the mathematical formulation for coherent 
and in-coherent photon streams which when used with the density operator 
representing the amplification process, allowed a statistical distribution to 
represent the photon stream output. (The only caveat is that the number of photons 
in the system under consideration be much larger than 1.) This output distribution 
could be compared to the input distribution to determine the qualities of the 
variance or noise.   This is the approach which will be used in the subsequent 
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derivation of the prediction for noise power from the linear and saturated 
amplifiers based on the quantum mechanical technique. It will be shown in 
Chapter 3 that the semi-classical and quantum mechanical results for the noise 

theory are compatible. 
The first step in the quantum mechanical approach is to define the type of 

input photon stream. There are two approaches. The first approach is to define a 
pure photon number stream as the input. The advantage to this approach is a 
simplified mathematical picture. A pure photon number state is not realizable with 
conventional laser sources but may be created via squeezing. Basically, 
electromagnetic waves emanating from these sources do not contain a specific 
number of photons. The other approach is to define a statistical mixture of pure 
photon number states. In this case, a linear superposition of states has an 

associated probability distribution which indicates how much of each pure photon 
number state is present. Strictly speaking because the coherent states do not form 
an orthogonal set, the probability density cannot truly be associated with a 
particular coherent state. However, when the number of photons is large, the 
overlap between coherent states is minimal and the coherent states are essentially 
orthogonal, allowing the probability density formalism to be used. 

For the coherent photonic streams emanating from a laser like the NPRO, 
the probability distribution is Poissonio. To keep track of all the elements of the 
statistical mixture a subscript and summation notation is needed which complicates 
the mathematics. It is therefore common to use the pure photon number state to 
calculate the output distributions and then generalize the results to the linear 
superposition which represents the coherent states. Once the input statistical 
distribution is determined the next step is to describe the density matrix operator 
detailing the evolution of the photon statistics as they pass through the amplifiers. 
It is important in this step to ensure that the diagonal elements represent the 
probability densities and the off diagonal elements are zero. This simplifies the 
math without sacrificing validity. With these modifications the derivation of the 
linear optical noise expression is completed using statistical methods to find the 
first and second moments. The optical noise expression is subsequently converted 
to linear electrical noise. Once in terms of electrical noise, the theoretical results 
are directly comparable to the experimental results of this study. This is done in 

section 3.1 
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2.2 Historical Overview of Saturated Amplification Noise 
Processes 

The next logical step after determining the linear amplification noise power is to 
determine the saturated traveling wave (TW) amplifier noise power. This came 

about naturally with the desire to run high power laser amplifiers as oscillators in 
which saturation effects begin to appear. Work on saturation began with work by 
Sargent, Skully, and Lambu (SSL) in 1967 and continued through Abraham^ and 
Bendjaballah and Oliver^ in 1980. More recently there was a great deal of 

interest in determining whether it was a good idea to optically pre-amplify signals 
in fiber optic transmission systems. These studies were driven by the fiber optic 
communications field which began to blossom in the 1980's and included two 
approaches. One approach was to look at the noise from semiconductor lasersi4 
and the other was the fiber laser amplifiers^. Each of these approaches sheds 

some light on the problem of calculating noise in the solid state amplifier. 
However, in the case of the semiconductor systems some of the assumptions and 
physical processes do not apply because the electron interactions in the active 
material are not applicable to Nd:YAG and in the case of the Er fiber laser, the 
lasing scheme is for a three level system versus the four level Nd:YAG. 
Nevertheless, the techniques, when modified, prove very germane to this study. 
Another simplification provided by the 4-level Nd:YAG system is there is no need 
to model saturation effects in the lower state because the population of this state is 
practically zero, due to the fast decay to the ground level. This allows the earlier 
and simplified saturation models to be used. 

In all saturation studies, beginning with (SSL), the approach is to multiply 
the photon numbers by an additional term whose denominator is of the form (1 + 
snsat). "s" is called the saturation parameter and is also often annotated as s = l/nsat, 
where nsat is defined as the number of photons for which the snsat term becomes 1. 
This technique is used in models of saturation of gain in laser amplifiers. 

Saturation effects are responsible for the decrease in spontaneous emission 
which lowers the noise one expects from the non-linear amplifier and was 
succinctly derived by Abraham^. Abraham also derived a simple semi-classical 
approach for determining the decrease in the noise using normalized second and 
third order moments but it is valid only up to 10% saturation, due to the use of a 
truncated power series approximation.    He additionally derived a modified 
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probability density matrix term following SSL which could be used to show at 

what rate the noise decreases with length in an amplifier at a particular saturation, 
but only under limiting cases. One limiting case was the linear case, for which we 
already have the theoretical noise expression, (see the section immediately 
preceding this one), one was for saturation onset, i.e., <10% and the third was for 
traveling photon distributions which are in completely saturated mediums and 
hence see no gain. By qualitatively piecing together the results, the evolution of a 
coherent signal, according to Abraham should follow this pattern. Initially the 
Poisson distribution is mixed with ASE which broadens the distribution, i.e., 

makes it noisier, then as saturation sets in, the distribution narrows, returning to the 

Poisson distribution with a different mean corresponding to the mean of the 
amplified signal. 

The saturated noise problem is a difficult one and numerical solutions have 
been attempted. Oliver and Bendjaballahi? completed an exact numerical 
integration of the probability density equations in August 1980 which used a 
limited parameter set (number of particles (1000) modeled, number of moments 
calculated (2) and a coherent input field), yet it also showed that the laser noise 

initially increased with saturation, becoming greatest with modest saturation, then 
decreased to a constant at complete saturation, reinforcing the Abraham finding. 

For approximately seven years these finding were neither challenged nor 
improved upon. In 1987 additional higher order moments were calculated by 
Ruiz-Moreno et. al.i» (RJS) based on improvements in computer platforms. These 
higher order moments were needed to calculate bit error rate (BER) in digital 
communications and the theory was modified to fit semiconductor lasers. In 
section 3.2, the basic solution methodology of RJS is used but is modified to fit the 
Nd:YAG system. 

2.3 Historical Overview of Oscillator Amplitude Noise 

The third and final system of interest to this study is the laser oscillator As 
indicated in the introduction and initial background of noise studies, the noise of a 
laser depends very much on its configuration. Gas, solid state and semiconductor 
lasers have all been found to have unique noise properties. It is necessary to 
understand the amplitude noise of these systems because they will probably seed 
the amplifiers already discussed or as has been discovered recently, they may have 
some particularly useful amplitude noise characteristics of their own. 
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There are numerous difficulties in attempting to generate vast quantities of 
perfectly coherent photons to attain the lowest noise solution, or in other words 
generating the highest powered, narrowest line width optical outputs. The ultimate 
noise trade off will be found in choosing the balance of amplitude and phase noise 
which is bounded by the spectral Heisenberg relation. Since the phase noise 
ultimately sets the natural linewidth, the lowest theoretical amplitude noise can 
also be determined. In what follows, a brief overview of noise studies on 
oscillators is given with the intent of then focusing solely on the amplitude noise 
properties of injection locked oscillators for high power applications in section 3.4. 

The oscillator amplitude noise studies historically began with the maser and 
the van der Pol negative conductance oscillators in the RF frequency spectrum and 
evolved to the higher frequencies associated with the laser. The initial efforts to 
determine noise used a simple and intuitive method based on modeling an 
oscillating (RLC) electrical circuit with internal and external noise inputs. An 
example of this approach was provided by Nilsson, Yamamoto and Machinda in 
1986.19 Their model did not relate to any particular laser structure so care had to 
be taken when comparing the outputs of the model to actual laser systems. 
Subsequent work derived a model for an injection locked system. However, to 
obtain a theoretical expression to compare to actual observables, the noise 
spectrum of the pump source, in the case of this experiment, the diode laser arrays, 
must be known. A simplified calculation for the injection locked DPSSL system 
using this technique is included in section 3.4. This method of determining 
oscillator noise will be denoted the RLC approach throughout this study. 

The second approach to evaluating noise in laser oscillators followed from 
the photon statistic rate equations technique used so successfully in evaluating the 
noise in the traveling wave amplifiers, denoted here as the STT approach. 
Basically, the STT method is used and the birth, death and immigration 
parameters are modified to obtain the appropriate coefficients for the recursive 
systems. This approach was attempted by Yamamoto20 and Goldstein and Teich2i. 
The Yamamoto recursive solution was derived by considering the effects a simple 
Fabry Perot (FP) cavity would have on the standard STT traveling wave solution. 
This work relied heavily on taking the original forms of the STT solution for the 
linear case and rewriting the gain portions to reflect the effects of phase lag 
imposed by the boundary conditions of an oscillator system. 

Taking the formalism of the STT approach and following Yamamoto's 
modifications, the basic form of the noise equation for the oscillator do not change 
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compared to the traveling wave amplifier amplitude noise equations found in 

sections 3.1 (linear) and 3.3 (saturated or non-linear). This assumes once again a 
large number of Poisson distributed photons in a single mode arriving at the 
entrance to the FP cavity. The change in the noise equation occurs in the 
representation of the gain term. Interestingly enough, in representing the 
Yamamoto equations in the same format as the linear and non-linear cases derived 
above and in Chapter 3, it is found that the FP cavity amplifier will produce lower 
or equivalent noise. This can be seen from the following calculations. Taking the 
total cavity gain from Yamamoto's paper given by 

(1-^X1-^)0 
Cr, = 2     ' (i-Vw?) 

where G is equal to the single pass gain, and the equations for the average output 

number of photons and the variance (noise) 

M = Gc(n0) 

(i-Vw?) 

it is possible to rewrite the variance equation in the form 

a2=Gc{n0)(l + 2(Gc-l-X)), 

where X = R, 
(i-Vw?) 

It is apparent that "X" is always positive. This implies that for a given 
single pass gain it is possible that the FP resonator with amplifying medium could 
have a lower noise than its traveling wave counterpart. In Appendix 6 there is a 
Mathcad document displaying these results graphically. It appears there is a 
possibility of improved noise performance when the single pass gain is between 1 
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and 2 and the mirror reflectivities of the FP are dissimilar and low. However, this 

low a gain may not be useful in LIGO power amplifier configurations. 
A third approach for calculating the noise behavior of an oscillator is a 

hybrid of the STT rate equation approach and the RLC approach. It was derived 
by Farinas et al.22 and uses the concept of the system transfer function to model the 
injection locked oscillator amplitude and frequency noise spectrum. Since this 
approach does not deal with pure oscillators it will not be explained here but rather 
in section 3.4. Results from the transfer function approach (TFA) can be directly 
compared to the RLC approach as they are both semi-classical approaches solved 
with nearly steady state conditions. They will also be compared to the next and 
final approach for discussing oscillator noise, the Quantum Langevin Approach 
(QLA). 

The last and most complex oscillator noise modeling approach is the full 
quantum mechanical treatment using the Langevin equations and modeling the 
effects the evolution of internal and external noise reservoirs have on the laser. A 
seminal paper in this area was published by Yamamoto and Imoto in 198623. 
However, there was a difficulty in modeling the evolution of the noise reservoirs 
themselves. More recently, the QLA approach has been simplified and applied 
directly to injection locked lasers by Ralph et. al.24 By using a linearized analysis 
they were able to derive amplitude noise properties of the injection locked system 
in a broader frequency range than the previous approaches. A more complete 
discussion of their efforts and the comparisons of the RLC, TFA and QLA 
amplitude noise modeling for the injection locked lasers is found in section 3.4. 
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Chapter 3 

Theory II: Derivation of Theoretical Expressions for 
Laser Amplitude Noise 

3.1 Linear Amplifier Amplitude Noise 

Following upon the comments made in the historical overview to the linear 
amplifier noise processes, the following assumptions will be used in the 

calculation: 
-pure photon number states will be used to simplify the mathematics 
(though the experiment did not use these pure states); 
-single optical mode is assumed throughout (single transverse, longitudinal 
and polarization singled out by the NPRO probe beam); 
-the interaction Hamiltonian is dominated by the electric dipole interaction 
(which is true for most visible strong transitions in materials); 
-the atomic dipoles are aligned with the interacting field (again simplifying 
the calculation); 
-only two atomic states are considered: |l), the ground state and |2),the 

excited state; 
-transitions only involve the emission or absorption of one photon in a 
single optical mode. 

Any or all of these assumptions can be foregone for a more in-depth analysis. 
However, doing so will not change the qualitative aspects of the outcome. It will 
only raise the precision of absolute measurements which experimentally are 

difficult to make. 
The calculation proceeds with the emphasis on the number of photons in the 

photonic stream and how the probability density for these photon number states 
changes versus the more standard approach of viewing the atomic transition 
probability as the item of interest. Hence all probabilities will apply to the photon 
number states. Using the Loudoni notation, the first step is to specify the 

36 
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interaction Hamiltonian, which is the second quantized electric dipole Hamiltonian 

given by 

HED =flexp(-^0|2>(l|-fl+exp(^0|l>(2| 

where a\n) = 4n\n-\) , and a*\n) = Jn + l\n + l) are the lowering and raising 

operators. The     matrix     element      for     photon      absorption      is: 

(n-l2HED\n,l) = >fnexp(-i6Jt), and the matrix element for photon emission is: 

(n + WHED\n,2) = Jn+lexp(i(i>t).   The rate at which the photons are emitted or 

absorbed goes as the absolute square of the matrix elements, which leaves for the 
absorption a rate proportional to n and for emission a rate which is proportional to 
n+1. This rate is directly converted to a probability by assuming that the 
interaction time has occurred and the atom has either jumped to the upper state and 
absorbed a photon or gone to the lower state and emitted a photon. Basically, 

"transition rate to final state" x t = "probability of final state at time t". 
Now that the probabilities of the absorption and emission of the photons are 

known, it is possible to compose the complete probability that a system will have n 
photons after any interaction. Since the system can only go up or down by one 
photon at a time, there are only three levels or pure photon states which are needed 
to specify the probability^ of a specific photon number n, after an interaction: 
In), |n + l) and |«-1). The probability of a final state will be equal to the 

probability of each of the initial states times the probability of the appropriate 
transition. Figure 4 shows a diagram to help clarify the derivation of the total 

probability from the component probabilities. 

Emission states: 

Absorption states: 

|"-1) \n) |» + 1> 
Figure 4. Probability Representation of Photon States versus Photon States 



Emission 
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The photon number states are listed across the bottom of Figure 4 and the 

probability of being in one of these states prior to an interaction is: Px where x 
can be n-1, n, n+1. By taking these initial state probabilities and multiplying by 
the appropriate term for the emission or absorption interaction the following four 

terms result 

Absorption: 

W)=nPn ^ 

^M-.)=nPn-l <3-3) 

W,n>=(n+1)pn <3-4> 

To compose the equation which represents the change in the probability of a 

particular photon number state, dPn , as the photon stream propagates through the 
amplifier, requires additional steps. The change in the probability will depend on 
the four terms (3.1 - 3.4) but it will also depend on the absorption and emission 
cross sections and how many atoms are in each of the two states, Ni and N2. 
Using the notation from the semi-classical STT derivation where a = aeN2 and 
b = aa JV,, the photon number probability will evolve with distance, dz, as 

dP„ = {-bnP„ + anP„_, + b(n + 1)P„+1 - a(n + \)Pn }dz. 

The processes which move the photon number away from \n) are given (-) and the 
processes which move the photon number towards \n) are given (+). This 

equation can in turn be written in the more recognizable form 

^f- = a{nPn_l-(n + l)P„}+b{(n + \)Pn+,-nP„}. (3.5) 
dz 

This will be called the QM photon statistics master equation. 
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There are two approaches to solving for the first two moments of the photon 
number based on the probability density function. One approach follows the 
algebraic and differential equation solution method used by STT and by Sargent, 
Scully and Lambs, (SSL) and the other approach uses the more general probability 
generating function used by Diament and Teichl The SSL approach is to start 
with the moment distribution 

71=0 

then apply the derivative and shift it inside the summation 

±ln') = W± 
dz\    I    %     dz 

For the first moment or average photon number 

7-M = 2>[ a{nP„_,-(n + l)Pn}+b{(n + l)P„+1-nPn} ]. 
az n=0 

Multiplying through by n and adjusting the summations and indices so that only Pn 

terms are left, gives 

|<«>=S [«{»+i}-»Mfc. 
az »=o 

or substituting for the expectation of n 

—{n) = (a-b)(n) + a. 

At z = 0, (n) = («(0)) and assuming a and b are not functions of position in the 

amplifier, gives a solution for the average photon number at the output of the 
amplifier 

(n) = G(n0) + A, (3.6) 
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where G = exp (a-b)z and A= a(G-l)/(a-b). From this it is easy to see that the A 

represents an additional number of photons~the amplification spontaneous noise 
and it is present whether photons enter the amplifier or not. It is also apparent that 
the amplified spontaneous noise is lowest when b is zero, or when Ni , the ground 
state population, is zero. This occurs when the amplification medium is fully 
inverted—something which was easy to attain with the 4 level Nd:YAG solid state 

slab amplifiers used in this experiment. 
The second moment is obtained using a similar procedure 

(n2) = G2 (n2 (0)) + 3G(G - l)(n(0)) + 2N2+N, (3.7) 

where in addition at z = 0, (n2) = (n2(0)\. To obtain the optical noise power 

leaving the amplifier, a2 = (n2)-(n)2, substitute the moments from equation (3.6) 

and (3.7) and algebraically manipulate the results. This leaves 

a2„=G2(a2
0- (n(0))) + G(n(0)) + 2GN(n(0)) + N2+N, (3.8) 

where   a0
2 = («(0)2 \ - («(0)) .      It   is   common   to   highlight   the   'classical' 

interpretation of these quantum mechanically derived optical noise power terms, a 
trend which began with YamamotoS. Often the term "beat" is used to describe 
some of the terms in equation (3.8) as the photodetection process downstream 
from the amplifier squares the field amplitudes and results in mixed "beat" terms. 
This is strictly speaking not what this equation indicates, but one can assume a 
perfect detector is being used at this point and proceed with the beat analogy. 

The first term in equation (3.8) represents the noise power added by the 
amplifier, over and above the noise of the input optical stream. It corresponds to 
the "excess" noise spoken of earlier. The second and last terms represent the 
photons which would fall on the detector and give the DC current shot noise. 
Hence, they are called the shot noise component. Term three is the beat noise 
between the signal and the spontaneous emission and the fourth term is the beat 
noise between the spontaneous emission and itself. To reiterate, at this point no 
photodetection process has occurred and no assumption was made regarding the 
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input photon statistics. This equation represents the photon stream statistics after 
the photons have interacted with a linear amplifier. 

The next steps are to point out the qualitative aspects of the noise power 
equation (3.8) which might be observed in the experimental setting. If the device 
is passive, G=l then the input noise, regardless of the input statistics, equals the 
output noise. Hence, Poisson statistics or Bose-Einstein statistics are preserved 

when light is passing through a passive device. If the input stream obeys Poisson 

statistics and there are a large number of photons, the noise power equation (3.8) at 

the output of the amplifier can be rewritten as 

^=G(*(0))[1 + 2(G-1)], (3.9) 

and A = G-l has been used, assuming full inversion. There is no excess noise to 
deal with. However, if the input stream is Bose-Einstein, as ASE is expected to 
be, the excess noise does not cancel, using equation (1.6), but makes a substantial 
contribution to the overall noise. Note also, this full quantum theory derivation, 
equation (3.8), gives the same results as the semi-classical theory, equation (2.2), 
for absorption and stimulated emission and adds the information corresponding to 
the spontaneous emission. Probability generating functions can also be used to 
arrive at these results as mentioned earlier^. The mathematical foundations of 
PGFs give a far more general result and can extend to even higher moments, but 
they are limited by the computation time required for higher photon fluence. 

A slight modification to the single mode noise power expression yields 
multiple mode noise power estimates. For example, if multiple transverse modes 
are needed to compose a square top or super Gausssian profile, which would be of 
interest in amplifier chaining for a higher powered LIGO laser system, Desurvire 
has calculated the effects of multiple modes as they effect fiber systems and found 
the noise equation 

a2„ = G2 (&1 - (n(0))) + G(n(0)) + 2GA{n(0)) +MA2+MA, 

where M = the number of modes. As long as the number of modes is not a 
substantial fraction of the number of photons entering the amplifier the effects of 
the additional modes are negligible. This is the case for LIGO applications. From 
this point on only the single mode calculation will appear. 
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It is now appropriate to bring the theoretical results in line with the 
experimental processes by introducing the effects of the propagation and detection 
process on the noise power of a photon stream after the amplifier. The photon 
stream will experience loss as it propagates to the detector. The detection process 
of converting the photons to photoelectrons will be imperfect and the receiver will 
add additional noise power. 

In this experiment the receiver was designed to add insignificant noise 
power to the photoelectron stream, leaving the loss processes as the major 
modification to the photon and hence photoelectron stream statistics. The key 
concept is the Bernoulli random deletion process occurring in the passive elements 
and the detector. This deletion process can represent the effects of channel loss 
through scatter or absorption and the imperfect conversion of photons to 
photoelectrons. However, the Bernoulli process maintains the form of the photon 
stream statistics». By maintaining the form of the photon statistics through these 
elements, linear multipliers called efficiency factors appear in the first and second 
moments of the output statistical distributions and hence in the noise power 
representation (the variance). 

Since the form of the photon statistics remains the same and only 
multiplicative efficiency factors are needed to account for the absolute changes in 
the photon statistics, this allows a matrix to represent the transfer of the photon 
statistics across a given element. The transfer matrix can be derived from the first 
two derivatives of the PGF evaluated at the lowest order z transform components 
The efficiency factors, r|'s, factor out of the differentials of the PGF. It takes only 
a few steps to rearrange the results into a linear superposition of the average 
photon number and the variance. 

The average photon number and the variance then compose a two element 
vector which when operated on by the transfer matrix, describes the change of 
those two quantities as they traverse the optical component represented by the 
matrix. The results are 

(»«-)=Mv 

where the subscripts refer to the input and output statistics for the single optical 
element with transmission efficiency, r|.   These vector representations can be 



Chapter 3: Theory II: Derivation of Theoretical Expressions for Laser Amplitude Noise 43 

summarized compactly, just as ABCD matrix representations are compact 
representations for photon beam or ray calculations through a beam line. The 

transfer matrix is given by 

D = V      0 

The output statistics, in general, are given by 

<».}1 = #0' 
v cL J \<r* 

With this handy tool it is now possible to write the form the photoelectron 
noise power expression will take, given an actual experimental apparatus. In the 
experiments conducted in this study both single and double pass amplifier set ups 
were used, but for simplicity the single pass photoelectron noise power will be 
derived first. For a single pass situation a block diagram details the efficiencies as 

follows 

T|L1 T1L2 

Linear Amplifier Photodetector 

(a) (b) (c) 

Figure 5. Diagram of Noise Propagation through an Amplifier System under 
Test. The letters indicate measurement reference planes for amplitude noise. 

At point (a), the output of the NPRO is a stream of Poisson distributed 

photons, with statistical vector, [(«fl),^] = [(«),(«)], where subscripts denote the 

locational letter and (n) is the average value of photons leaving the NPRO. This 

photon stream will experience a reflective loss or clipping upon entry to the 
amplifier material and possibly passive loss in the channel which will result in 

another statistical vector at (b), [(wft),crj] = r\LX[("),(")] where LI represents optical 
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path leg 1. In the amplifier the photons experience gain and upon exit, (c), they 

will have a statistical vector [(«c),o-^| = [ijnG(n),{nc)[l + 2(G-1)]]. There is loss in 

the optical channel and at the cover glass of the detector, which leads to a 
transmission efficiency, rjL1. Finally there is an attenuation caused by a less than 
perfect quantum conversion efficiency, t]d, (assuming no detector effects due to 

bandwidth limitations), which leaves a statistical vector at (d) that can be 
represented by the linear vector equation 

'M = Vd 

1       0 

I-?,    1 
7 L2 1-7 L2 

k>' 

This gives a photoelectron noise power of 

with Tiw^TiLilnVd or 

^ = 7,0,G(H)(l + 2(G-l)/7i2/7„), 

<yd=cr)hol(l + 2{G-\)ii), (3.10) 

where rjto,G{ri) represents the shot noise contribution and T]=T}L2rjd. This 

expression shows that the excess noise due to the amplification process is seen as a 
multiplier of the shot noise. Once a photocurrent is established in an experiment, 
the shot noise level is also established and the excess noise measurements can then 
be made relative to that level. Data can then be represented in terms of 'shot noise 
units' above the theoretically perfect shot noise floor and with a linear 
dependency. No absolute measurements are required. 

A theoretical plot of the linear amplifier amplitude noise, Equation 3.10, in 
shot noise units, expected for different r\L1 efficiency values, is found in Figure 6. 

In Figure 6 the detector quantum efficiency, T|q was set to 0.4 and the optical 
efficiency after the amplifier, TJL2 , was varied between 0.1 and 0.9. The slopes of 
the lines are directly related to the efficiency values. As expected, the higher 
efficiencies show the steepest slopes and the largest noise values. 
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4 6 

Gain 

Figure 6. Linear Amplifier Amplitude Noise versus Gain, Equation 3.10, for 
three different  t]L2 values (0.1, 0.5, 0.9).    As the efficiency increases the 
amplitude noise increases. The shot noise level at the input to the detector is 
labeled for reference. 

The linear amplifier amplitude noise characteristics can also be depicted 
using the earlier defined optical SNRo, the optical noise figure or the Fano Factor. 
Comparing the photon stream SNR just before the amplifier, 

SNR*. = M
2 

= Vn(n): 

to the photon stream SNR just after the amplifier, 

k>! (luG{n)y 
OA77? _ _ 

°u'-   vl   -^G(«)(1 + 2(G-1)) 

will give a noise figure 
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JVF = 10xlog 
( SNR„ 

SNR 
= 10xlog 

1 + 2(G-1))' 

G 
(3.11) 

Notice that the efficiency is eliminated from the expression. The plot of the NF is 
found in Figure 7. 

Gain 

Figure 7. Linear Amplifier Amplitude Noise Figure versus Gain, Equation 
3.11. 

The Fano Factor, in linear units, is: 

and is the same form as Equation 3.10 plotted in Figure 6. 
Lastly, what type of noise figure could be expected at the detector?  The 

noise figure will now be composed of the SNR prior to the amplifier 

SNRi„=^r=rIn{n) 

and the SNR at the detector 
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(l    \2\     ( 
SNRd = M 

\ aä J 

GrjM 
l + 2(G-l)/7L2/7j' 

giving 

7VFd=10xlog 
fSNR, ^ ( 

KSNRd; 
= 10xlog 

1 + 2(G-I)i7ui7, 

VLIIOG 

(3.12) 

This noise figure is plotted for different values of TJL2 in Figure 8. 
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Figure 8. Noise Figure referenced to the detector for different values of 
optical efficiency between the amplifier and the detector, Equation 3.12. The 
NF for a perfect amplifier is drawn at 3 dB for reference. 

Notice that the greater the attenuation in the path between the amplifier and 
the detector, for the same photocurrent, the higher the noise figure. Higher noise 
figures indicate that more noise is being added to the photon stream by 
amplification.   So the most desired situation is to have as little attenuation as 
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possible after the amplifier. Figure 8 also graphically illustrates that optical 
amplifiers can never improve SNR. It also shows that even though attenuation 
does not change the Poisson statistics of the photon stream, it does degrade the 

SNR. 
For a double pass amplifier the results will be derived in a similar manner 

but with a gain factor for each amplifier and more loss factors for the additional 
legs. The block diagram is 

NPRO 

V L\ V n VL3 

Linear Amplifier Linear Amplifier 

(a)       (b) 

Gl G2 

(c)    (d) (e) 

•CK 
Photodetector 

(f) 

Figure 9. Double Pass Amplifier Block Diagram 

and its noise equation is 

o) = o-L {l + 2(G2 - \)rjnr]d + 2(G, -l^tj^tj^tj,}. (3-13) 

Again, the theoretical results can be plotted relative to the shot noise 
component in shot noise level units. Figure 10 shows the noise expected for 
several different gain values, G2, in the second amplifier and where the loss in both 
legs is the same, 6% and the detector efficiency is now 80%. Note that the noise 
contributions are still roughly linear with gain and they increase with increasing 
gain in the second amplifier. This is the same behavior as the single pass amplifier 
case depicted in Figure 6. A single pass noise curve is given for reference. Notice 
the shot noise floor across the bottom of the plot. 

The matrix methodology for determining amplitude noise power can be 
extended to a chain of 'k' amplifiers and the results are found in section 3.2 below. 
It is also interesting to note that each amplifier could have also been treated as a 
distributed amplifier versus a lumped amplifier where the gain and loss sections of 
the amplifier slabs form a continuum. That technique is used to describe the noise 
for very long fiber amplifiers with lengths of tens of kilometers. 
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Gain (in first Amplifier) 

Figure 10. Double Pass Linear Amplifier Amplitude Noise, Equation 3.13. The 
top three curves are for increasing values of gain in the second amplifier, and 
the bottom curve is the amplitude noise for a single pass device.   The shot 
noise level is labeled for reference. The units are the same as in Figure 6. 

3.2 Linear Amplifier Chain Amplitude Noise 

A natural extension of the linear double pass amplifier noise theories presented in 
section 3.1 above is to increase the number of amplifiers and generate a recursion 
relationship. This type of amplifier chaining has been well known in the fiber optic 
field as it is the basis for long haul optical communication along transoceanic 
cables. For a number of amplifier and loss elements chained together, assuming 
the input photon stream is Poisson, each amplifier is fully inverted, only one or a 
few modes propagate, the amplifiers have approximately the same gain, G, and the 
transmission efficiency between the amplifiers, T|, is the same, a noise power 
relationship has been established^ 
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■\=(riG)k(n,)(\ + 2riG-\)xk) 

1 _ ( c\k 

where xk = —^     '   , and k represents the number of amplifier stages. Since the 
1 — TjG 

number of photons (n0) is so large, the second term can be eliminated, leaving the 

familiar formula already derived for the amplitude noise properties 

^=^(1 + 2T(G-1K). (3.14) 

This relationship produces amplitude noise plots indicating that as long as 
the gain is moderate, less than approximately 4 per stage, the additional noise is 
less than 10 times the shot noise level. The plot in Figure 11 shows the amplitude 
noise above shot noise, in shot noise level units, for 3, 5 and 10 stage amplifier 
chains with gain per stage as indicated along the x axis and an interstage 
transmission efficiency of 0.9. Figure 11 is directly comparable to Figures 6 and 
10. 

DU 1                  1 

10 
1          \ \ 1 

Amps /   5 Anm? 
/^ 
£ 40 /    — 
oi 
o 
+J 

S30 
_ 

<u 
Vi 

% 20 /    3 Amps - 

3 
"eL 
Jj 10 

--"l            1 i               i 
10 

Gain 

Figure 11. Linear Amplifier Chain Amplitude Noise, Equation 3.14. The top 
curve is for 10 amplifiers the middle for 5 and the lower for 3. The chains 
have very similar behavior at low gain. 



Chapter 3: Theory II: Derivation of Theoretical Expressions for Laser Amplitude Noise 51 

3.3 Non-linear amplifier amplitude noise expression 

From the historical background section in section 2.2 it is apparent that 
further study of the amplitude noise arising from non-linear amplification ceased 
in the late 1980's. It is also apparent that the evolution of the amplitude photon 
noise as the amplifier transitions from the linear regime to the saturated regime is 
not trivially derived for moderate to low numbers of photons, say under 1000, and 

for a large number of modes. However, it has been shown numerically by 
Bendjaballah and Oliverii and Abraham^ that amplifier amplitude noise increases 
to a certain point and then decreases to a constant level at saturation. With the 
large number of photons found in the applications of interest to this study i.e., 
LIGO, a simpler result is available. In general, the outcome is that the output 
distribution of the amplitude noise variance is broader when compared to a 
coherent or Poisson distribution of the same mean, until complete saturation 
occurs. In the case studied here, as the amplifier becomes completely saturated 
and the gain approaches 1, the output photon stream approaches a Poisson 
distribution. Saturation has effectively turned the active lasing medium into a 
passive medium as far as the first two moments of the photon distribution are 
concerned. To study the effects of gain saturation on other photonic systems, such 
as communication systems, requires higher order moments be compared between 
the non-linear and linear amplifier output photon distributions. 

As in the linear case, discussed in sections 2.1 and 3.1, the calculations 
presented here will begin with the probability density functions for the photon 
fields with similar assumptions to the linear case. As a reminder, these 
assumptions include a fully inverted four level lasing medium operating as a CW 
traveling wave amplifier and that the initial photon input distribution is Poisson 
and single mode. 

The first step is to modify the unsaturated probability density evolution 
function or the QM photon statistics master equation, equation (3.5), by 
incorporating the saturation factor function 

/.-   ' n     1 + nln   „ /  sat 
into 
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dP 
^f- = a{nPn_x - (n + \)Pn} + b{(n + 1)P„+1 -nP„], 
dz 

which becomes 

HP 
^ = a{nf„Pn_x -(n + l)fn+lP„}+b{(n + l)fn+iPn+l -nfnPn}, 
az 

For a folly inverted medium b = 0, and the equation simplifies to 

dz 

Using the moment distribution function 

dP 
z- = a{nfnPn_x-(n + \)fn+xPn} . 

{nk) = ±nkPn, 
n=0 

and taking the first derivative as before 

becomes 

d 

dzx    i    £S     dz 

(ni) = l;^a{»/„Pn.1 -(n + l)fn+lPn} 
dz n=0 

Applying the translation property 

gives 

±(nk) = fja{(n + \ri-nk(n + l)}f„+xPn. 
dz „=0 

Again applying the moment distribution gives 
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d_ 
dz 

(nk) = a({(n + l)k+l-nk(n + \)}fn+i). 

For the evolution of the first moment, i.e., k = 1, or the evolution of the average 
number of photons at a particular position in the amplifier the equation becomes 

±(n) = a({(n + l)2-n(n + l)}fn+i) 
dz 

or 

j-(n) = a{{(n + l)}fn+l). 

This equation normally cannot be analytically solved due to the statistical 
correlation between the saturation factor function fn+i and the term (n+1). A 
solution can be obtained if the photon probability density function is known as a 
function of distance Pn(z). Numerous authors have used decorrelation methods 
involving expansions and numerical routines to provide approximate solutionsi3-i5. 
However, in this study, the saturation factor function is not correlated to the 
photon number states because the saturation of the gain medium in the laser 
amplifier is provided by another laser source, not by the probe signal stream <n> 
from the NPRO. (This assumes the optical power of the saturating source is much 
greater than the NPRO.) This implies that the equation may be written as 

—{n) = a{n + l) 1 
l + sn„ 

where the saturation factor function, fn+i has been rewritten with ne representing 
the influx of photons from an external source. The saturation effect is 
encapsulated in the saturation parameter, "s". In addition, in this study, n » 1 
allows an even greater simplification and a straightforward solution given by 

(«> = («0>expf-^-l, (3.15) 
Kl + snJ 
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where L is the optical length traversed by the probe beam through the amplifier 
and (n0) is the average photon number at the input, or L=0 point of the amplifier. 

For simplicity Equation 3.15 can be written as 

(n) = (n0)Gs, 

which is the same form as the linear solution for high photon numbers as derived 
in section 3.1. At the point of total saturation, Gs = 1, effectively the "a" or 

emission coefficient, has been driven to zero by driving the excited state 
population N2 to zero. Gs is the power gain experienced by a signal traversing the 
amplifier. In real systems there will be losses distributed throughout the length of 
the amplifying medium. The gain provided by the medium as well as the losses 
are encapsulated in the Gs term. By definition it cannot be less than 1. 

The same approach can be used to obtain a second order moment and the 
variance. The saturated gain term Gs can encapsulate the effects of the non-linear 

amplification situation as long as n » 1 and n » G, which is the case in this 
study. This leaves an equation identical in form to the linear amplifier Equation 

(3.9) 

<r2=G,<«0)[l + (2 + i)(G,-l)] (3.16) 

Hence, all earlier material derived for the linear case including the equations for 
chains of amplifiers can be used in the non-linear case. The form of Equation 3.16 
implies that the experimental approach used for verifying the linear amplifier 
noise, Equation 3.9, can also be used to verify the non-linear version. (Since the 
probe photon stream is continuous and the amplifier attains steady state saturation 
with an external photon stream uncorrelated to the probe, pulse saturation effects 
described by the Franz-Nodviki6 equations do not apply). 

If a saturated amplifier is designed as a multi-pass amplifier for the probe 
beam, with discrete losses at the output couplers and turning optics, the system can 
be modeled as an amplifier chain using Equation 3.14 and 3.16. (If the probe is 
multi-passed through the amplifier in an attempt to cause saturation using only the 
probe beam, Equation 3.16 does not apply). If the amplifying medium is hosted 
inside a simple oscillator configuration the equations in section 2.3 apply. It is 
possible to directly compare the amplitude noise performance of a linear, and non- 
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linear multi-passed amplifier to a simple oscillator by using the noise figures as 
defined in section 1.4. The noise figure for the multi-passed non-linear amplifier 

is given by 

JW^=H>*log 
l + ^ + ^G.-l^ 

my 

where k is the number of amplifier stages and 

Xsk ~ 

The noise figure for the oscillator is given by Equation 2.4 

ATFO5C=10*log 
l + 2(Gc-l-Xy 

where 

R, 

f    nr2 
G-.P- 

X = 
\ R i / 

(I-V^"G)2 and 
(\-R,)(\-R2)G 

Gc=-     2 (l-Vw?) 

Lastly, the linear amplifier chain noise figure is derived directly from Equation 

3.14 

( 

JVF    =10* log amp 

\ + {2)iJG -\)xk 

(ijGY 

where 

** = 
1-W 

I-77G 

If G = Gs, then the oscillator and the amplifier chains can be directly compared as 
in Figure 12.  Different combinations of mirror reflectivities in the oscillator can 
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lead to very different noise figure results.   Appendix 6 describes the effects of 
using various mirror reflectivities on the SNR of the oscillator. 
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Figure 12. Noise Figure for Linear and Non-Linear Amplifier Chains and the 
Simple Oscillator. (Ri = R2 = 0.1, k = 3 and transmission efficiency r| of 0.9). 
The 3 dB Noise Figure for a perfect amplifier is drawn for reference. 

3.4 Injection locked oscillator amplitude noise 

Extensive work has been done defining the operational characteristics and noise 
properties of injection locked DPSSLs.i7,i8 This study did not attempt to 
reproduce the experimental data, rather use the published data and theoretical 
approaches to compare to the data taken on the amplifier systems. In particular, 
the Transfer Function Approach (TFA), Yamamoto's Circuit Approach (RLC) and 
the Quantum Langevin Approach (QLA) mentioned in section 2.3 with be 
compared. 

The study of the amplitude noise of the injection locked systems often 
begins with a study of the decoupled, low power, low noise master oscillator and 
the high power, noisier slave laser. Then the noise equations are derived for the 
coupled system. In the case of this study and numerous others, the choice of 
master laser is straightforward and the discussion of how master lasers are 
designed for low noise operation will be limited to one type of master laser. It 
may be possible to use the low noise techniques traditionally reserved for just the 
master laser on combinations of master and slave oscillator. This would require 
simulation of the total system in which the laser is to be embedded and a 
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discussion of the engineering trade offs of the more complex system. This trade- 
off analysis will not be attempted here. 

To date, one of the quietest master laser designs is the monolithic non- 
planar ring oscillator NPRCM9. It is a diode pumped solid state laser, operates 
single mode, and has been built with electronic feedback systems to reduce two 
sources of noise. The first feedback control system is composed of the 
temperature stability loop to ensure the diode pump laser maintains the most 
efficient pump frequency for a given solid state material, avoids mode hops, and 
hence produces stable long term amplitude output for a given pump input. A 
second feedback loop senses the optical output of the laser and adjusts the current 
driving the diode laser to decrease the amount of amplitude noise over shorter 
periods of time. This loop is particularly useful in suppressing the resonant 
relaxation oscillation present in Nd:YAG systems20. This technique, employed in 
commercial systems from Lightwave Corporation, is known as a "noise eater" 
circuit. Though originally demonstrated by CD. Nabors, at Stanford University2i, 
Kane has demonstrated a 37 dB suppression in the amplitude noise attributed to 
the resonant relaxation oscillation. 

NPRO lasers demonstrate shot noise limited performance in the Megahertz 
range making them very desirable for the LIGO systems employing phase 
modulation at 15 MHz. This is an impressive use of electronic feedback in a 
particular frequency range of laser operation. Another notable but lesser known 
stabilization effort was done by Tsubono and Moriwaki22 in 1992. They were able 
to attain RIN values of < 10"7 within the range of 100 Hz to 10 kHz on an NPRO. 
This is the desired LIGO gravity wave interaction range and indicates that it may 
be possible to attain shot noise limited performance with DPSSLs in this region. 

One of the most complete efforts to date to achieve the benefits of 
electronic feedback in the low frequency regime can be attributed to the 
collaboration between the Australian National University and the Laser Center in 
Hanover, Germany. In 1994, they demonstrated a feed back control system 
capable of reducing noise to 1 x 10"7 / jHz for frequencies between 300 Hz and 10 
kHz for an injection locked laser configurations. This number is within the RIN 
requirements for the initial LIGO design. It is interesting to note that feedback 
control systems will always introduce excess noise such that a laser using this 
method for stabilization will always have amplitude noise at least 3 dB above the 
quantum noise limit. It may be possible to use external resonant "mode cleaners" 
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to reduce the amplitude and frequency noise of an injection locked or amplifier 
system without resorting to electronic feedback24. This would be a very important 

step in the design of the laser systems for LIGO. 

Given all the attention devoted to finding an ultra-quiet injection locked 
laser, it is important to settle on one rendition of the master laser's power spectral 
density of amplitude noise. With this noise profile of the master laser in hand it 

will be possible to insert the master laser power spectral density of noise into the 
equations for the injection locked systems power spectral density of amplitude 
noise. The master laser noise equation used here will be the polynomial fit to the 
power spectral density of intensity noise of a feedback controlled NPR025 

a)(/) = lOlogß^V x 50Q] + (-0.024/3 + 0.58/2 -5.71/ + 21.42).        (3.17) 

This is given in dBmW and where 1^ is in terms of mA of detected optical signal 

and f is in units of MHz. This choice will allow direct comparisons of the three 
injection locked amplitude noise power theories by agreeing to the same master 
laser (NPRO) input amplitude noise. 

Having looked at the master oscillator amplitude noise it is now appropriate 
to consider the coupling of the master and the slave laser and compare the TFA, 
RLC and QLA approaches to the amplitude noise problem. The Transfer Function 
Approach265 is derived from a semi-classical approach to the laser rate equations 
based on Siegman27. it gives the internal photon number noise (unlike the external 
noise solution by Yamamoto which follows immediately thereafter). TFA 
assumes: 

- the pump noise and externally incoupled master laser noise are 
uncorrelated, allowing a superposition of the two noise solutions as the square root 
of the sum of the squares; 

- amplitude and frequency noise are decoupled; 
- the slave laser remains in the locking range without electronic feedback; 
- pump rate amplitude noise equates to the external amplitude noise of the 

slave; 
perfect master to slave mode matching. 

This last assumption is not strictly correct but mode matching of 95% can 
be achieved. Though pump rate amplitude variations are directly related to pump 
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amplitude noise they are not necessarily directly related to the external photon 
number noise from the slave. However, it is very difficult to obtain relations and 
experimental data to verify this. If it were possible to obtain the laser diode pump 
amplitude noise spectral density and then compare that to the slave laser external 
amplitude noise, the predictions of this theory would be more precise. This is 
experimentally very difficult to do, especially with diode pump arrays, but the 
Australian and German groups have begun the process by studying the noise 
characteristics of single diode lasers and diode arrays28. They find a difference 
between the semiclassical TFA approach and their own QLA approach in the 
frequency regime well below the resonant relaxation oscillation. However, after 
comparing the results of these two theories, the difference appears minimal. 

While working with the TFA approach it became apparent that the transfer 

function from the pump rate fluctuations to the internal photon number noise in the 
slave, G« when multiplied by the spectral density of amplitude noise taken from 
external measurements of the slave, SNJP rendered a problem with units29. In most 
cases, transfer functions need to be unitless or the corresponding spectral density 
functions need to have complimentary units. This was not the case. So, using the 
Yamamoto equations as a guide, the TFA approach was modified slightly to 
correct this problem. The results of the comparison of the amplitude noise from 
the TFA, RLC and QLA approaches with the same input master and pump noise 
are given in Figure 15 below. The calculations can be found in the "MathCad" 
document in Appendix 7. [Note that TFA uses QNEL units and RLC and QLA 
uses dB and dBmW units. The TFA numbers were changed to dB for comparison 
in the same figure.] 

Yamamoto's "RLC" approach to the injection locked oscillator begins with 
an RLC definition of the standard oscillator and assumes the injection locked 
system's outcoupling resembles a connection to a standard transmission line, as 
depicted in Figure 13. The master oscillator amplitude noise v^ is modeled as 

entering a circulator just as the load noise does 

RL+j\coL- — \-Ra+jXa 
(OCJ 

t = va+vL+vt 

where the subscript "a" refers to the gain material, and the subscript "L" refers to 
the load. 
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Figure 13. Schematic of the RLC Model of an Injection Locked Oscillator 

A few assumptions are used in the derivation, such as: 

- single mode operation, 
- photon lifetime much longer than the excited state lifetime of the atoms in 

the gain medium, 
- slave laser operating far above threshold, 
- the noise sources of the load,   vL, and the gain medium,   va, are 

uncorrelated, 
- the master and slave lasers are locked 
-and the injected signal is much smaller than the total output power. 

With these assumptions it is possible to derive the power spectrum of the 
amplitude noise of the injection locked system regardless of the choice of master 
laser power spectral density of amplitude noise, 5iC(Q), and the slave laser power 

spectral density of amplitude noise, S^ (Q), where both are spectrums of voltage 

values,    [V2 -s\ and arise from vL and va respectively. This power spectrum is 

SA^) = AR\ 

(Q/Qc)
2+4(^/^)2 

SiC(Q) + - SA&) (3.18) 
1 + (Q/QC)

2 """   '    l + (0/Qc)
2 

in units of [A2 -S\ and where Qc refers to the cavity resonant frequency. 

At very high frequencies (Q) the amplitude noise spectrum is dominated by 
the noise of the load, including the master laser input, which qualitatively can be 
understood as the external noise reflecting off the input coupler of the slave. 
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(Using the RLC analogy there is a mismatch between the load, which is modeled 
as a transmission line, and the source, which is the slave cavity.) Conversely at 
very low frequencies, the external noise is attenuated by the power ratio of the 
external and internal field amplitudes (A„l A)2, in this case 0.01, so that the 
internal gain medium noise, composed mostly of the diode pump laser noise, 
dominates. In the middle region of frequencies a weighting of both external load 
noises and internal noises occurs. It is clear that if the external noise is quantum 
limited Slc(Q) = 4heoRL, then at high frequencies the injected system is also 

quantum limited,  S^ÄJG) = — . If the diode pump lasers are quantum limited 

then at very low frequencies the system should be nearly quantum limited. 
To compare the three injection locked amplitude noise theories, Equation 

(3.17) was used to derive values for noise power spectral densities of the master 
laser while the pump noise spectral density is assumed to be shot noise limited. 
The calculations used a power ratio between the master and slave laser of 100:1, 
indicative of using a 200 mW NPRO and a 20 W slave. The parameters of the 
Shine30, injection locked ring laser were used to calculate the cavity resonances to 
insert into the three separate injection locked oscillator amplitude noise theories. 
The RLC calculations are done in MathCad and found in Appendix 7. The results 
of the comparison of the three theories are found in Figure 15. Note that the linear 
frequency is in units of MHz. The system is quantum limited at approximately 10 
MHz in the RLC calculation. 
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Figure 14. Schematic of the Injection Locked Ring Laser [After Shineso] 
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The third and final theoretical approach to the injection locked laser's 
amplitude noise calculation is the QLA approach. This theoretical contribution 
from Ralph, Harb and Bachor3i, was to take previous Langevin representations of 
a laser system and apply a linearized analysis to the injection locked solid state 
laser operating near steady state. This approach provides more information about 
the behavior of the solid state laser in two regimes: that well below the frequency 
of the relaxation oscillation and well above the oscillation in comparison to the 
semi-classical rate equation approach. The results differ from the semi-classical 
TFA approach used by Farinas et. al.32, in the location of the crossover point for 
the laser into the shot noise limited regime beyond the relaxation oscillation and 
the amount of low frequency noise expected under the low pump noise 
approximation. The good news is that in either theory (and supported by 
experiment) the laser system for LIGO can be SNL at the 15 MHz phase 
modulation frequency due to the filtering effect of the injection locked cavity33. 
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Figure 15. Injection Locked Amplitude Noise Power Spectral Density for 
three different theoretical approaches. The Quantum Langevin Approach 
(QLA) shows the highest relaxation oscillation noise but crosses into the SNL 
at the lowest frequency. The RLC approach does not reproduce the 
amplitude noise represented by the relaxation oscillation.    The Transfer 
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Function  Approach  (TFA)  and  the  QLA  approach  have  very  similar 
behavior. 

It should be possible to suppress the pump noise and obtain better noise 
properties (possibly sub shot noise performance) in the 100 Hz to 10 kHz regime34. 
Experimental results obtained by Harb and Ralph et. al.35 demonstrated excellent 
agreement with their theory and imply that injection locked systems are capable of 
producing high power and shot noise limited outputs in the non-amplification 
regimes on either side of the relaxation oscillation. Calculations of the QLA 
amplitude noise power approach can also be found in Appendix 7. In Figure 15, 
the noise power for the same injection locked system is plotted using the three 
different injection locked theories. There is a strong similarity between the results 
for the TFA and QLA approaches. 
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Chapter 4 

Experiment 

4.0 Introduction 

The intent of the experimental portion of this study was to verify the linear and 
non-linear amplifier amplitude noise calculations. Up to this time the only 
experimental work in the area was conducted on argon gas lasers by Harris et. al. 
in 19921 Using an argon gas laser in a traveling wave amplifier configuration in 
both a single and double pass set-up, their results showed that the amplified beam 
acquired amplitude noise which was greater than would be expected from a perfect 
Poissonian distribution. Their technique was aimed at verifying the relationship 
between the degree of population inversion and the amount of ASE at a particular 
gain level. Though the results are not directly applicable in this study, due to the 
nearly perfect inversion quality of the Nd:YAG diode pumped system, the form of 
their equations and the emphasis placed on ensuring single mode operation of their 
systems is very similar to the approach taken in this study. 

To obtain data which could be compared to the theory derived in Chapter 3, 
several important assumptions had to be converted into experimental reality. The 
first was the requirement for single optical mode operation. Recall the theory 
section wherein the noise equations were simplified by assuming that only one 
mode propagated. The second assumption was a completely inverted gain medium 
would be needed to simplify the expression for ASE. The third assumption was a 
Poisson stream of input photons would enter the amplifier under test. 

All assumptions were satisfied by the choice of components and the 
experimental methodology. First, the probe laser must operate in a single mode, 
produce a Poisson light distribution and be shot noise limited at the frequency of 
interest. The Lightwave Model 122-300 non-planar ring oscillator (NPRO), met 
all the requirements. Second, the laser amplifier was fully inverted with gain and 
loss coefficients independent of position within the amplifier slab. This was 
achieved with a diode-pumped fiber coupled Nd:YAG zig-zag slab amplifier. In 

68 
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addition, by using the single mode NPRO as a probe beam it was possible to use a 
homodyning technique to select a single ASE mode from the amplifier. 

In addition, if a super Gaussian or flat top mode is used as a probe beam, 

since it is inherently a multi-mode structure, it must be carefully determined if 
these noise calculations apply to this situation, or if a multiplier must be used. In 
general, if the number of modes is far less than the average number of photons, 
which will almost always be the case for LIGO applications, these noise 
calculations will remain valid. As for a chain of amplifiers, if relay imaging is 
used properly, a single mode will propagate and the calculations for noise, as 
found in this study, will be valid. 

4.1 The Laser Amplifier 

The laser amplifier for both the linear and non-linear experiments as well as the 
single and double pass work was the same. It was a zig-zag slab Nd:YAG diode 
pumped device. The active material was Brewster end cut with dimensions 1.7 
mm x 1.8 mm by 58.9 mm long. The head was pumped through fiber coupled 
diode lasers which had computer controlled current sources and electronically 
controlled TECs for temperature stability. 

The slab was face cooled with pure water and designed to have turbulent 
flow. To improve operational characteristics, the 25 separate pump sources were 
fiber coupled perpendicularly to a manifold parallel to the slab, so if one pump 
diode failed, the change in the smoothness of the inversion would be minimal. 
This was critical to ensure the a and b coefficients did not change along the length 
of the amplifier. Even with this design feature, there probably is some slight 
difference throughout the inverted region because the center frequency of each 
diode drifts slightly differently with temperature and each has a slightly different 
set point to attain the desired 808 run pump frequency. However, the advantage of 
the zig-zag path design is that the wavefront traverses a path which averages out 
these different regions of gain. The pump diodes were operated with TEC coolers 
which would indicate when the temperature went more than 10% too high or too 
low. Tighter control could not be maintained with this design. The slab itself was 
pumped and cooled through the same surfaces. A more complete description of 
the head and the information about this particular device can be found in Shine2. 

The head was removed from its laser configuration and used in the traveling 
wave amplifier configuration. As an amplifier it was important to characterize the 
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small signal gains for various diode laser pump levels. This would give a feel for 
the gain envelope the NPRO probe beam would experience and set the upper 
boundary of the noise that could be measured. The following figures display the 

single and double pass gains versus the laser diode pump level, stated as a 

percentage of maximum pump power of approximately 220 Watts. 
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Note the threshold values for gain at approximately 10% of maximum 

pump power. There after the amount above threshold scales linearly with the 
pump percentage. Loss through the slab on one pass was approximately 4% and 
between 11 and 16% on the double pass experiments, depending on the setup of 
mirrors and lenses. The amplifier was rarely run over 70% pump due to thermal 
loading and degradation of the fiber couplings into the laser head, r values (pump 

rate or number of times above threshold) scaled with % so that 30% was an r=3. 
These gain values indicate that the dynamic range of the experiment would not be 

very large. 
This four level system is also easily and nearly completely inverted at low 

pump percentages. The inversion quality was verified by measuring the amplifier 
ASE in the same solid angle through an apertured detector at the same distance 
from amplifier. Complete inversion occurred at 10% pump power and remained 
linear to 70% pump power. Figure 18 shows the single pass and double pass ASE 
versus gain. The complete inversion was required as explained in the introduction 
to this chapter. 
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4.2 Detection Systems 

Three different detection systems were considered for this study. They included 
direct homodyne detection, resonant homodyne detection and balanced detection. 
They are briefly discussed in this section and the detection system of choice is 

further characterized in the following section. 
Direct detection of the homodyned "signal/ASE" and signal components 

was initially used to characterize the noise of the NPROs. The idea was simply to 
attenuate the NPRO and sample the photon stream with a fast detector at fairly 
high photocurrents. A large area silicon PIN detector (13 mm2 ) was used that 
could handle high photon fluences, commensurate with tens of milliamps of 
photoelectrons that would be expected in LIGO dark fringe interferometer 
detectors. However, the photodiode had only moderate responsivity at 1.06 urn. 
Other problems, discussed below, also occurred with the Si direct detector. This 

led to a search for other direct detector candidates. 
The next detection type considered, resonant homodyne detection, uses a 

resonant or tank circuit to enhance the signal (shot noise) measurement at a 
specific frequency. This would have been an acceptable solution for this particular 
experiment because the data set for this experiment was limited to 15 MHz, the 
LIGO phase modulation frequency. Though the basic idea of resonant homodyne 
detection is simple it requires the impedance matching of the detector to the 
amplifier to effect maxim power transfer. The device can also drift under normal 
operating conditions. Due to time constraints, the effort to construct, calibrate and 
maintain this more complex resonant detector design was stopped. 

Balanced detection could also be used in noise experiments. This is the 
preferred approach for the Australian and German teams mentioned earlier. Its 
advantage is that it can reject common biases and leave only the noise components. 
It can be used over a very wide range of frequencies, but it does require two 
perfectly matched photo detectors. Again due to time constraints, this method was 
not used. However, commercial balanced detectors are becoming far more 
common and it may now be worthwhile to revisit this approach. 

The direct homodyne approach was used in this experiment but it was done 
at much lower photoelectron currents than originally desired. A transimpedance 
amplifier design, coupled with an InGaAs detector material was operated at 1 mA. 
The following section details the steps leading up to this choice of design. 
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Detectors 

The first step in any experimental approach is to create a trusted measurement 
agent. In this case, the problem was to create a detector/receiver combination 
which could faithfully convert optical to electrical noise. The initial desire was to 
verify the possibility of operating a detector at very high photoelectron generation 

rates, and still have excellent linearity and absence of saturation effects. 
Even before noise measurements were attempted it was most important to 

establish the linearity of the detector. There are two time constants which must be 
considered when determining whether or not a photodiode detector is linear at a 

particular frequency. The first consideration is the RC time constant limited 
capacitance of the diode structure and other parasitics. These capacitances can 
couple with device resistances to create unanticipated and undesired filters, usually 
the low pass type. This would be an obvious reason for DC behavior to be linear 

while the behavior at 15 MHz would be non-linear. 
Also, though it is often tempting to use a larger active area to obtain high 

photocurrents and hence higher dynamic range, the larger area leads to transit time 
limited performance. It physically takes more time for the photoelectrons to be 
collected when they have to cross large distances. This would be more serious for 
the PIN structure due to the large intrinsic region in the center. It is also possible 
that extremely large photocurrents cause bunching which alters the very 

distributions of the photoelectrons. 
The second most important characteristic of a detector is its responsivity. 

Responsivity is directly related to the quantum efficiency of the device, a 
parameter which allows more precise analysis of the experimental results. A 
detector without a uniform responsivity across its face would produce unusual 
behavior, especially if the beam position changes between measurements. The 
larger the detector area the more likely the responsivity would vary with position. 

Steps were taken in this experiment to ensure the detector was linear, even 
at 15 MHz. Saturation effects were controlled by maintaining a low 1 mA DC 
current and ensuring no hot spots in the beam profile. A much smaller area 
detector was used to lower the chance of positional responsivity differences. The 
responsivity to varying photon fluences was measured at the 15 MHz frequency of 
interest. The actual measurements and detector characteristics are discussed in the 

experimental characterization section 4.3.1 below. 
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The detector/receiver was constructed around an Epitaxx ETX 300T high 

speed InGaAs detector. Linear operation of the detector was verified up to 4 mA 
of photocurrent while data was taken at 1 mA of photocurrent. It had a cutoff 

frequency well beyond the 15 MHz measurement point, in this particular case a 
bandwidth of 0.4 GHz. In general, direct bandgap materials such as InGaAs can 
be made much faster for a given quantum efficiency than indirect gap materials 
such as Si since the absorption coefficient of the direct gap material increases more 
rapidly with decreasing wavelengths. The schematic of the detector circuit is 
found in Figure 19. InGaAs detectors can also be used at much lower 
photocurrents because they have higher quantum efficiencies, 0.71 at 1.06 urn vs. 
0.3 to 0.4 for Si. The only disadvantage to the detector was its small diameter (300 
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Figure 19. Schematic of InGaAs Detector/Receiver 

A transimpedance amplifier converted the photogenerated current into the 
noise voltage registered in the spectrum analyzer. As can be seen in Figure 19, 
there is almost no voltage drop across the input terminals of the high gain 
operational amplifier, so the entire battery voltage appears across the photodiode 
no matter what the current flow from the photodiode This is an example of a 
vertical load line. This improves the speed of the photodetector response at higher 
photoelectron fluences because the photoelectrons still see a high field situation. 
In addition, there is almost no current flowing into the input terminals of the op 
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amp. Hence, the entire diode current flows through the feedback resistor Rf. 
Since the negative op amp terminal is nearly at ground, the output voltage is just 
Rf times the photodiode current. 

This set up is completely linear and if Rf is chosen to be 2 MQ, the 
transimpedance conversion factor y, which is the ratio of voltage to current, can be 
very large. Hence, a 1 mA current registers 2 Volts on the DMM. This 
detector/receiver combination had an additional biasing circuit to zero out the dark 
current background. A DC port, and an AC port with BNC for RG-58 cables was 
provided. A 15 Volt power supply was provided to power the op amp and the 
photodiode biasing. 

A commercial Mini-Circuits ZFL-500LN low noise amplifier followed the 
InGaAs detector/receiver. It had a Noise Figure of 1.9 dB and a small signal gain 
of approximately 28 dB. After the preamplifier the HP 71000 series RF spectrum 
analyzer system completed the sampling electronics. This system was impedance 
matched at 50 Q and provided linear operation at 15 MHz with approximately a 
13-15 dB margin over the electronics noise floor, as shown in Figure 28. Linear 
operation was verified as shown in Figure 20. The system was capable of 
operation from 100 Hz to 2.96 GHz. 

4.3 Experimental process 

4.3.1 Characterization and Calibration 

This section is devoted to understanding the idiosyncrasies or operational 
characteristics of the major components of the experiment. In particular, this 
section describes the characteristics of the InGaAs detector, the HP 71000 
Spectrum Analyzer, the amplifier head and the NPRO 122-300 lasers. 

The InGaAs detector efficiency and linearity were verified. This was 
accomplished by varying the DC photocurrent in multiples of 2 and watching for a 
commensurate 3 dB difference between the noise levels. The results are shown in 
Figure 20. 
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4.00 

Though it was a minor activity, the reflection coefficients of the 
preamplifier towards the detector and towards the SA were checked. It was 
necessary to determine if there would be a substantial amount of noise power 
reflected back towards the detector. To verify the reflection coefficient, p, the 
voltage standing wave ratio, VSWR, from the amplifier specification sheet was 

VSWR -1 
used where p = . Between the detector (50 Q load) and the Mini-Circuits 

VSWR + l 
ZFL 500LN Amplifier at 5.4 and 53 MHz, p was measured to be 1.5 % and 4.3 % 
respectively. At 15 MHz the values were approximately 2% so this was within the 
error of the noise measurements. The VSWR between the preamplifier and the SA 
was 4.8 % at 5.4 MHz and 3.8% at 53 MHz, also acceptable values. 

The characterization of the equipment proceeded with consideration of the 
noise floors and spectrum analyzer drift. There was more than a 10 dB margin 
above the SA noise floor which was deemed adequate. However, the averaging 
function of the spectrum analyzer led to an upward drift in the electronics noise 
floor which increased with increasing number of averages as depicted in Figure 21. 
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Averaging Function 
The video averaging function of the spectrum analyzer rounds and stores 

data. Eventually this continual rounding up and storing bumps up the readings. 
Based on this information, a tradeoff was made. At low video averages the 
variances in the noise signal are so great that it is difficult to find the mean. An 
average of 200 seemed an optimum choice between drift of the signal upwards and 
the large variances in the noise signal which make it unreadable. 

The characterization of the amplifier included intensity profiles versus 
pump power to verify the thermal steering. At various pump power values the 
intensity profile would shift and broaden. The steering and subsequent clipping of 
the beam at the slab apertures and detector made it difficult to obtain power 
readings and noise measurements, especially with the double pass configuration. 
It was necessary to re-center the beam on the 0.3 mm diameter detector each time 
the pump percentage was changed. The following four figures depict the change 
in the vertical and horizontal intensity profiles for the single and double pass 
amplifier experiments. The beam steers mostly in the horizontal plane so, for the 
most part, it was only necessary to adjust one positioner. Though thermal lensing 
was reduced with the zig-zag slab design, it was not eliminated. 
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Saturated noise measurements on the slab amplifier verified that the gain 
did decrease as expected when the slab was flooded with additional 1.06 urn 
radiation. A second Nd:YAG slab oscillator/amplifier head and a 7W Lightwave 
Laser were employed to make enough light to lower the gain in the main amplifier 
head. The main amplifier slab was pumped to various gain levels (30, 50%) and 
then laser light from the high power oscillator (1-18 Watts) was guided through a 
path which was angle multiplexed with the NPRO probe beam. The approach was 
to get enough overlap with the NPRO beam path through the head to saturate some 
of the gain region through which the probe beam passed. Figure 26 shows the 
saturation of the gain versus input power to the slab from the high power laser 
oscillator. It is apparent that 10's of Watts of power were needed to cause 
saturation. Total saturation was never attained. An additional 10 to 20 Watts of 
power would probably have been needed. 
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Figure 26. Saturation Characteristics of the Nd:YAG Amplifier Slab. Two 
different amplifier pump levels were used to demonstrate saturation of the 

gain in the slab while oscillator input power varied from 1 to 18 Watts. 

The amplitude noise qualities for two NPRO 122-300 were characterized, 
(serial #118 and #282) These NPROs were different ages and run at different 
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currents. The plots below are in two different frequency regions. However, the 
RIN was expected to be within approximately 2 dB of the shot noise limit 
according to the manufacturer They appeared to be shot noise limited at 15 MHz. 

The NPRO #282 had a linewidth specified as 3 kHz. NPRO #118 had a 
linedwidth specified as < 5 kHz/msec. When the noise suppression circuit (noise 
eater) is active there is a slight increase of noise at 2 MHz. The NPRO favored the 
"s" polarization, showing an elliptical polarization of 89% i.e. normal to the plane 
of incidence, However, intensity plots indicated that the thermally induced 
birefringence of the slab may have lowered this from 89 to about 85%. This was 
deduced from a polarization extinction measurement performed on the head with 
the NPRO beam. The second NPRO was used as the probe laser throughout the 
experiment. There are several interesting things to note about the noise traces of 
NPRO #282 in Figure 28. The top two traces are the NPRO, which is shot noise 
limited at two different photocurrents (4 mA and 1 mA) at 15 MHz. The other 
thing to notice is the 14 dB of margin above the electronics floor, the lower trace. 
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Figure 28. NPRO Serial #282 Noise Power Spectral Density Plot. 

4.3.2 Experimental layout 

Most of the components in the following diagrams have been described in detail 
elsewhere in this thesis. One note, however, concerns the optical isolator. It was 
an Electro-Optics Technology Model 1845 Faraday Isolator with greater than 30 
dB isolation. It is known that even small feedback into a laser system can cause 
multi-mode instabilities. This was to be avoided in this experiment. 
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Figure 31. Layout of Saturated Amplifier 

4.3.3 Technique for Gain and Noise Measurements 

Technique for Gain Measurements 

Once the experimental equipment had been characterized and the layouts settled, 
two measurements were needed: the gain values experienced by the NPRO probe 
beam and the noise plots from the spectrum analyzer. Of the two, the gain 
measurements required multiple steps and were more prone to experimenter error. 
Data was taken in most cases with 30% increments to conserve the diodes, fiber 
couplings and seals on the amplifier head. The thermo electric coolers (TEC's) 
would also get extremely hot, causing the diodes to drift and the gain to roll off. In 
some cases, the room was too warm to operate the system for long periods of time. 

In theory the gain measurement was straightforward. Two different power 
meters, the Molectron 500D thermal power meter with the PM-10 head and a 
Newport 385 silicon large array detector power meter with the 883SL head were 
used to obtain the in and output powers of the Poisson stream and the ASE at the 
measurement planes indicated in the experiment layouts.    Both meters were 
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eventually fitted with identical apertures.  It was necessary to block the backs of 

the thermal meters to prevent pick up of stray ASE and drift. 
As a first step in each measurement, the 1 mA photocurrent was established 

at the detector by modifying the NPRO probe input power into the amplifier. Then 
the power meters were shifted and inserted in the measurement planes before and 
after the amplifier. Each time the detector was shifted to the other measurement 
plane it was nulled to the ambient light conditions. ASE was measured at the 
output plane with the NPRO blocked. Then the NPRO beam after the amplifier 
was sampled. The power meters were then removed and the spectrum analyzer 

recorded the noise spectrum. 
The spectrum analyzer video and resolution bandwidths were set to 100 

kHz with a video average of 200. The center frequency of 15 MHz was bracketed 
by a 1 MHz wide spectrum trace. The shot noise floor was recorded with only 
NPRO light prior to amplifier turn on. The shot noise floor trace was stored in the 
spectrum analyzer, then noise power spectrums for various pump levels were 
recorded and displayed together to measure the relative noise power level above 
the shot noise floor. 

Power gain, G, from the amplifier was calculated by taking the output 
power, subtracting the ASE and background and then dividing by the input power. 
At higher powers only the Coherent 100 Watt power meter was used. The use of 
two different thermal meters (PowerMax and Coherent) caused some discontinuity 
in the data taking because it was unusual to get them to agree precisely. The same 
Newport 385 detector was used to sample the NPRO beams before and after the 
amplifier. Prior to each power measurement the Newport 835 was nulled to the 
ambient light conditions. Thermal steering in the amplifier head, described earlier, 
required the detector to be re-centered and optimized to the highest voltage reading 

for each measurement. 
Saturated gain measurements were more challenging. Ensuring high power 

(10-20 Watts) laser alignment and adequate overlap with the probe beam passed 
required numerous adjustments. Beam radius measurements were taken before 
and after the slab under various conditions to ensure no clipping. Also, due to the 
high power of the laser used to saturate the amplifier head it seemed safer to set the 
NPRO input probe beam power and not change it for the duration of the 
experiment. That ensured that there would be no need to reach across the area 
where the high power beam was traveling. The amplifier had to be pumped as 
high as possible and then saturated as hard as possible to get some dynamic range 
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to the measurements. The amplifier was run at 70% and the oscillator could be run 

almost to 20 Watts. 

Technique for noise measurements 

As explained in the theory section the NPRO was used as a local oscillator and the 
ASE acted as the signal for homodyne detection. The NPRO was routed through 

both single pass and double pass (angle multiplexed) configurations. This was in 
an attempt to increase the amplifier gain G, and hence the dynamic range of the 
experiment. The intensity profiles of the beams after the single and double passes 
through the amplifier quantified the beam steering and provided a basis for 
estimating the optical efficiency values. 

The second requirement was to always take noise power data in terms of the 
shot noise level for a specific DC photocurrent so that data would be comparable. 
A 1 mA current was established on the InGaAs detector and verified by a Fluke 83 

DMM. This set the value of <n>Gr|Lir|L2'r|d f°r me snot noise from Equation 3.10. 
Since G would be known by taking the gain measurements, <n>r|Li would be 
known from the "power-in" measurements, that left the combination of r|L2T|d as 
the only unknown. Since this was also the only unknown factor appearing within 
the noise term, even if the r|L2T|d term was not known apriori, it could be calculated 
from the shot noise. Then this value would be inserted into the noise term to 
verify the theoretical fit to the data. With this approach, even if either efficiency, 
T1L25 "Hdj changed it would be transparent to the theory. 

It is valid to criticize this fitting approach. However, the alternatives of 
determining all the constants in the shot noise power equation, <n>, G, T|LI, T|L2, 

and rid would introduce even more error, due to the fact 4 or 5 measurements (r|d 
might be considered a true constant, in which case only 4 values would need to be 
measured) would be multiplied together. Also, if after the measurements the total 
multiplication did not result in the same photocurrent for each measurement, then 
each measurement would have to be normalized to one photocurrent shot noise 
value in order to be plotted on the same graph. 

Another option would have been to alter the gain G, and T|L2 and leave the 

rest of the terms, i.e., <n>r|LiTid al°ne- This method would then assume that the 
detector quantum efficiency does not change, which is possible, and that the r|L2 
term could be measured with the same precision as the laser noise power.  Based 
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on these considerations the choice of experimental method with the minimum 

number of measurements and minimum number of assumptions was used. 
The saturated amplifier noise measurements were taken in a different way. 

In this case, for safety, the incoming beam was fixed in power. Then the gain was 
found assuming the input power and efficiency on the first leg did not change 

throughout the experiment. 
Finally, the spectrum analyzer was calibrated at the factory just prior to the 

experimentation and carried a noise floor of (-150 dBm). The amplifier thermal 
noise was at -144 dBm, the detector and amplifier combination (electronics floor) 
produced a noise floor at -120 dBm and the shot noise floor for 1 mA was at 
approximately -105.5 dBm. This left a margin of approximately 15 dB for the 

measurements. 

4.4 Results and Analysis: 

By far the measurements of gain were the most difficult and most prone to error. 
The steering and subsequent clipping of the beam at the Nd:YAG slab amplifier 
apertures made it difficult to obtain power readings with the double pass 
configuration. Hence, for the double pass configuration, the small signal gain was 
calculated separately from the noise data by using a 1 mW NPRO input beam and 
the output beam power as the pump percentage was increased. Data above 70% 
pump power was not used. This procedure improved the consistency of the gain 
measurements versus pump percentage. 

The linear amplifier noise power stated as multiples above the shot noise is 
plotted versus the amplifier gain in Figure 32, with the dashed lines indicating the 
best linear fit. Error bars are given for both gain and noise power multiplier. The 
abscissa indicates the power gain, (PowerOut - ASE)/PowerIn, while the ordinate 
plots the (1 + 2(G-1)T7) noise multiplier above the shot noise floor, Equation 3.10. 

It is very important to subtract the ASE from the "Power Out" to obtain the correct 
gain value. The slope of the best fit line gives the overall "efficiency factor" for 
each configuration but it is not necessary to know this factor to verify the linear 
behavior. The power measurement errors represent half of the least significant 
digit value. The noise power error was derived from a slight drift (1 dBm) of the 
indicated noise power upward when the spectrum analyzer averaged 200 traces, 
and a 0.1 dBm error for reading the data from the spectrum analyzer plot. Error 
bars for the gain and noise measurements were calculated using Bevingtons. The 
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results agree very well with the theory as is evidenced by the linearity of the data 

and the near unity intercept as power gain, G, decreases to 1. 
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The analysis becomes more complex when reviewing the overall efficiency 
factors. Recall that the requirement for taking the noise data was to always reset 
the DC photocurrent to 1 mA to ensure comparability of noise data points. While 
doing this procedure it became apparent that something unexpected was happening 
to the product of r|Li<n>G. As the gain G, was turned up, the number of input 
photons T|Li<n> was going down, i.e., the measured NPRO input power was 
decreasing, but the product <n>Gr|Li was not a constant. This implied that one of 

the other efficiencies out of <n>GnLiiU2'nd was als0 changing. It was assumed 
that it was the \]L2 value and hence the need to "fit" the points with a calculated 
r|L2 value. Even after this fitting effort, the calculated efficiencies did not agree 
with the rough estimates of what nL2 should be. This residual error cannot be 
accounted for in the linear theory, Equation 3.10, unless it would be acceptable for 
the detector efficiency to vary greatly. This seemed an unlikely possibility due to 
the excellent linearity of the detector itself. Another possible explanation follows. 

One of the assumptions used in deriving Equation 3.10 was that there would 

be a single mode and the overlap of these modes would be perfect.   This is the 
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point at which that assumption probably broke down. An additional efficiency 

term needed to be added to take into account two different "geometric" problems 
occurring in the overlap of two photon fields. First, the NPRO beam is a Gaussian 

beam and the ASE is a much more uniform distribution of photon flux. This 
automatically creates a difference in homodyning efficiency. Also, the angle 
offset 0, of the phase fronts of the two modes would cause the homodyning 
efficiency of the two modes to decrease substantially. Based on a paper by 
Cohen6, the homodyne efficiency of a Gaussian beam overlapping a uniform 
intensity field was explored. The factors affecting the efficiency were the angle of 
the phase front misalignment, 0, the beam radius of the Gaussian distribution, w 

and the diameter of the detector active area, r0. 
Qualitatively, as the gain in the amplifier increased and the NPRO beam 

was being thermally steered, the angular alignment with the ASE was changing. 
At low gain, the NPRO and ASE overlapped with very little angle offset but this 
angle changed at higher gains. Also, at higher gains, the shape of the Gaussian got 
broader and the overlap with the ASE profile got better, especially in the double 
pass case. These two effects, depending on the ASE profile, could actually cancel 
each other somewhat, giving a situation where initially the angular offset dropped 
the homodyne efficiency quite a bit, but then the improved overlap with a larger 
area beam somewhat compensated. In Figure 33, the ASE profiles of the slab 
amplifier are plotted for the vertical and the horizontal. In the vertical case, the 
ASE was centered and uniform. In the case of the horizontal ASE, it was off 
centered and clipped on the positive displacement side. This asymmetry in ASE 
intensity profile was particularly disturbing because the horizontal beam steering 
was the greater of the two. Essentially, the NPRO beam, which is only about a 
millimeter across, is centered at zero in the horizontal and vertical dimensions. In 
the case of the vertical dimension, since there was almost no beam steer and very 
little beam spreading, the vertical geometry changes did not contribute to a change 
in the homodyning efficiency. However, for the horizontal case, the NPRO beam 
overlapped the horizontal ASE on the left slope of the curve. The NPRO beam 
shifted left and its cross section expanded with increasing gain from the amplifier. 
So, even though the intensity overlap was decreasing, the area of overlap was 

increasing. 
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Figure 33. ASE Intensity Profiles for Slab Amplifier.    The asymmetric 
horizontal ASE profile contributed to a lower homodyning efficiency 

The corrections to the total efficiency using the homodyne efficiency are 
made to Equation 3.10 in the following way. The homodyning efficiency of the 
NPRO beam with itself is defined as one. The homodyne efficiency of the NPRO 
Gaussian beam with the more uniform distribution of ASE will be called r|h0m and 
Equation 3.10 will be rewritten as 

o\ = G(n)?ju?jL2Tjd(\ + 2(G-l)TjL27jd7jbom). 

The interaction of the change in r|L2 and r|hom can be described as follows. 
In the single pass case, the optical path efficiency decreased from 0.96 to 0.71, ( as 
the amplifier was increasingly pumped from 10 to 100%) mostly due to aperturing 
inherent in overfilling the detector. ( 0.5 mm spot on a 0.3 mm detector ) At the 
same time, the homodyne efficiency went from about 70 percent to almost 100 
percent. In the double pass case, optical path efficiency went from 0.87 down to 
0.61 while the homodyne efficiency oscillated between 0.73 and 0.85. These 
trends are plotted in Figures 33 and 34. When these corrections are made, the 
homodyne efficiencies account for the discrepancies noted in the overall system 

efficiency. 
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The techniques for actually calculating the homodyne efficiency are fairly 
straightforward. First a few simple definitions. The homodyne detection 

parameter will be defined as 

7 = 
7ho 

Vo 

where T|hom has already been defined and r|o is the standard detector efficiency. 
This means that when y is one, the homodyne efficiency is essentially one and only 
the detector quantum efficiency remains. The uniform ASE is essentially a 
constant over the area of the detector and zero elsewhere. This means that there is 
an apertureing function at work. The overlap integral essentially goes to zero 
outside the detector area. The Gaussian local oscillator parameter, in this case the 

one associated with the NPRO, is defined as 

z0= — • 
w 

The governing equation for the small angle approximation for this particular 
homodyning situation is? 

y(Z0,r0,k,®) = yi 1- iffr.Q 
2V2Z  > 

1- 
2Zi 

exp(Z0
2)-l 

1 2 

where 

2 [l~exp(-Z0
2)2] 

r-"Z?[l-oqf2Z.')] 

Values for the homodyne detection parameters for the Gaussian-vs.-uniform 
and the uniform-vs.-uniform case for an optimum choice of Z0 are found in Figure 

36. 
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Figure 36. Homodyne Detection Parameter Degradation with Increasing 
Phase Front Misalignment. [From Cohen»]. The vertical axis depicts the 
homodyne parameter value normalized to the optimum Gaussian beam size 
for a given detector radius. As the phase front misaligns, efficiency declines. 

For non-vanishing phase misalignments, 0, there is a decreasing homodyne 
efficiency when normalized to the maximum detection parameter. For those 
situations where the phase front mismatch angles, 0, are zero, the homodyning 
efficiency approaches 1. As the angle of mismatch increases, the efficiency drops. 
In this particular case, kr0 = 890. This makes the system very sensitive to the 
angle of misalignment. 

The experimental data for the saturated amplification experiment was 
inconclusive. The dynamic range over which saturation occurred was not 
sufficient to obtain meaningful noise power readings. 

In summary, the amplitude noise power of a linear traveling wave solid- 
state amplifier has been demonstrated to follow a simple quantum mechanical 
formulation as shown in Figure 32. A homodyning efficiency term was added to 
bring the experimental and the theoretical data into better agreement. The 
experimental techniques were focused on the relative noise power measurement 
above the shot noise floor in units of shot noise power for different power gains of 
the amplifier. The system was operated CW and data taken at 15 MHz in order to 
verify the noise properties of a laser system which could be used in the current 
LIGO design. 
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Chapter 5 

Conclusion 

5.1 Summary 

The primary goal of this study was to characterize the amplitude noise properties 

of solid state laser amplifiers and oscillators. This amplitude noise knowledge, 
when coupled with the phase noise knowledge, will allow a more complete 
understanding of the engineering trade-offs in the design and construction of the 
LIGO system. In particular, this study effort was driven by the desire to make an 
early design decision between high power Nd:YAG amplifiers and injection 
locked oscillators for the ultra-quiet laser source embedded in the LIGO 

interferometer. 
The theory portion of this study was devoted to the analysis of the linear 

and non-linear traveling wave amplifier and injection locked oscillator amplitude 
noise properties. After examining the classical (STT), semi-classical (Yamamoto) 
and quantum mechanical (Loudon, etc.) based approaches, the amplitude noise 
power of the traveling wave amplifier was shown to follow a simple quantum 
mechanical formulation given by Equation 3.10. Though there are demonstrated 
parallels with the semi-classical theory, the quantum mechanical approach 
demonstrates the amplitude noise is an artifact of the statistics of the photonic 
stream itself, not the photodetection process. The quantum mechanical theory 
ensures the proper interpretation of the effect spontaneous emission has on 
amplitude noise levels found on a photonic stream experiencing amplification. 
However, due to the assumptions of very high photon number and very low optical 
mode number, the quantum mechanically derived noise expression should only be 
used in high power solid state amplifiers. In addition, a simplified expression for 
the amplitude noise in an amplifier chain was included in anticipation of the need 

to use this approach in the LIGO design. 
The analysis of the injection locked oscillators was based on a comparison 

of three recent and popular approaches to the amplitude noise problem, the 

95 
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Transfer Function Approach (TFA), the electrical circuit model approach (RLC) 

and the Quantum Langevin Approach (QLA). Each approach has its advantages 

and disadvantages. The most important outcome of this portion of the study was 
the realization that sub quantum level noise performance was possible under 
particular circumstances. More precisely, it may be possible to attain sub shot 
noise limited performance from an injection locked system in the low frequency 
regime of interest (100 Hz to 10 kHz in LIGO. Since the injection locked laser is 
so sensitive to its pump source at these low frequencies, using sub quantum level 
amplitude noise pump sources would translate directly into similar noise 
performance for the injection locked laser system as a whole. This assumes there 
is no electronic feedback loop in effect in this region. If this system could be built, 

it would have the best possible amplitude noise performance. It may be possible to 
obtain quantum noise limited performance by filtering the laser output with a mode 
cleaner prior to entering the interferometer. Realistic engineering considerations 
are discussed below. 

After completing a broad review of the theory area, the experimental efforts 
took a narrower scope. Since the amplifier studies appeared simpler to implement 
in the lab than the injection locked systems and with the knowledge that other 
groups were addressing the injection locked oscillator noise, this study only 
examined amplifier noise experimentally. 

The experimental work had mixed outcomes. The linear single and double 
pass efforts supported the quantum mechanical theory to a point. The data 
supported the form of the amplitude noise power equation but indicated an 
inconsistency in the experimental efficiencies. The saturated amplifier work was 
inconclusive, most likely due to inadequate dynamic range. Basically, the linear 
amplifier experimental efforts uncovered the need to include a homodyning 
efficiency term. This was beneficial for several reasons. It exposed a shortfall in 
the theoretical assumptions, but it also opened up numerous areas for further 
characterization and application of this effect. Including this new efficiency term 
in the noise power equation provides excellent agreement between theory and 
experiment. 

The original goal of this study was to determine whether the amplifier or 
the oscillator had the better amplitude noise performance for LIGO applications at 
10 to 100 Watts. The answer is the injection locked oscillator is quieter in theory. 
It can be quantum noise limited at the phase modulation frequency of 15 MHz if 
its master laser is quantum limited at that frequency.   Since there are already 
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quantum limited master oscillators available at this frequency this becomes and 
engineering problem to couple the two together. At the low frequency end of the 

spectrum, where the gravitational wave interaction occurs, the injection locked 
oscillator can always perform better than the amplifier if no electronic feed back 
systems are used. This assumes no additional filtering after the amplifier. In 
addition, as mentioned earlier, if injection locked oscillator pump sources, with sub 

quantum level performance are available, then this makes the comparison "no 
contest". In the amplification regime near the resonant relaxation oscillation, the 
amplitude noise properties of the injection locked system will be far worse than the 
amplifier system, but this should be inconsequential to the LIGO design. In 
summary, the amplifiers will always have greater than shot noise level amplitude 
noise due to the creation of amplified spontaneous emission, while the injection 
locked oscillators will not. 

5.2 Further Work 

Theory 

There are numerous areas for expanding and improving this research effort. In 
particular, further work could be aimed at refining this approach as it applies to the 
LIGO laser source. If so, there are several important engineering considerations to 
keep in mind. 

Since the LIGO is built around very large and very carefully 
environmentally controlled optics, it is very important to consider the effect of the 
optical source on them. For example, it would be far better for the optical source 
to degrade gracefully rather than suddenly fail. This "soft failure mode" would 
maintain power on the interferometer mirrors, which is essential for maintaining 
thermal loading and hence maintaining the correct radius of curvature of these 
devices. Assuming the problem with the optical source was repairable while in 
operation, though the interferometer would not be usable for taking data during 
repairs, it would take less time to bring the interferometer back up to thermal 
balance. This would be an important feature to help ensure the LIGO can meet its 
operational availability requirement of > 99%. 

The second engineering consideration is the need to scale the system to ever 
higher optical power. Amplifiers by their nature allow power scaling. By adding 
amplifier modules, the laser can be geometrically scaled to hundreds to thousands 
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of Watts of low noise optical power.   Would it be possible to do the same with 
injection locked oscillators without severely limiting the locking range? 

The third requirement is that the system must be more efficient. This will 
probably mean the use of semi-conductor lasers in the design regardless of the 
solid state material chosen for the active medium. So, additional work in the noise 
properties of diode lasers is critical. 

The LIGO system must be designed with all noise processes taken into 
consideration. As was mentioned in the introduction, the amplitude noise is only 
part of the problem. The frequency noise must also be characterized. Trying to 
optimize the amplitude noise solution all the way down to the quantum mechanical 
level will make the conjugate frequency noise problem more difficult. Technical 
noise from feedback systems and cooling systems will affect the optical control 
and hence the optics themselves. Designing the most sophisticated control system 
for the laser would be senseless if it destroyed the sensitivity of the interferometer. 

To meet these engineering challenges, the first step would be to modify the 
assumptions of the linear theory for a more in-depth noise study. It is necessary to 
include the effect of multiple mode structures such as the super Gaussians in the 
noise calculations. The next step would be to work on improvements to the 
amplifier chain noise calculations and follow that with a double amplifier 
experiment. It would probably be worthwhile to revisit the parametric amplifier. 
It is possible to use the parametric amplifier to generate squeezed states. If there 
were a way to use more of the idler wave and increase the system efficiency, this 
could be a very good candidate amplifier. 

The work on noiseless pump sources for the injection locked systems 
should be given a very high priority. Though the injection locked system may not 
be the current design choice for LIGO, due to the complexity involved in keeping 
it locked to the master laser, it is very important to verify whether the oscillator, 
with the low noise pumps, has enough noise advantage over the amplifier to 
employ in LIGO. The problem with these sub shot noise photon streams is that 
their noiseless properties are easily lost at beam splitters and ports, due to the 
coupling of the radiation partition noise. After examining the optical noise 
characteristics of the injection locked system, an in-depth study of the trade off 
between electronically controlled injection locked lasers versus amplifiers is 
needed. It is necessary to know if an electronic feedback system, with nested 
control loops for the master and the slave laser, can be used. Does the excess 
noise, 3 dB, added by the electronics and the more complex design necessarily 
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eliminate the oscillator from competition? For that matter, any system that relies 
on a sample beam as a comparison standard can be best attain the same SNR as 
that beam. So if the amplifiers have control systems which use beam sampling, 
they would not necessarily perform better than the injection locked systems. As a 
rule, weak sample beams have poorer SNR ratios, but even sampling up to 50% of 

the total beam power will still leave a system with the excess noise added by the 
electronics. 

Experimental Apparatus 

There is always room for improvement in the experimental apparatus. One area of 
improvement that would pay big dividends would be to start work now on a low 
noise detector which could handle the much higher photocurrents expected on the 
LIGO interferometer dark fringe. While developing this detector it would be 
imperative to better characterize the photodetector frequency response by covering 
a much broader frequency range than was covered in this study. The detector 
studies could also include careful comparisons of the low noise balanced and 
resonant detectors at various frequency ranges. 

In closing, probably the most important effort to improve these laser 
amplitude noise studies would be to improve the laser amplifier and oscillator. A 
laser head with low thermal induced steering, birefringence and beam jitter would 
have made this study much quicker, easier and more precise. Though it will not 
change the physics or the noise calculations per se, it would bring the ultimate 
LIGO laser closer to reality. 

The techniques for characterization and control of optical amplitude noise 
can obviously be applied to even greater challenges than LIGO. A very careful 
definition of terms and most of all an understanding of the measurement planes 
used in taking and comparing experimental data would encourage even more rapid 
progress in overcoming these challenges. The demarcation between optical and 
electrical amplitude noise properties and units was maintained through out this 
study in order to achieve this additional goal. 
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Appendix 1: Summary of Useful Equations 

Noise Power or Variance: 

Shot Noise Power in bandwidth Af: 

°2=(»2)-(»Y 

°sww = 2^DCAf 

(1.3) 

(1.7) 

Signal to Noise Ratio; 

Fano Factor of Amplifier ASE: 

Photonic Linear Noise Equation: 

SNR = w
2 

/=^)=[1+2(G-1H 

o-2=G(«)[l + 2(G-l)] 

Photoelectron Linear Noise Equation: a] =<J
2

SNL\1 + 2(G-1)T]\ 

Linear Amplifier Chain (Type A)Noise Equation:     a\ = a2
SNL [l + 2{G - \)rfKk j 

Non Linear Photonic Noise Equation: = Gs(n0) 1^ + I)(G,-1) 

(1.8) 

(2.3) 

(3.10) 

(3.14) 

(3.16) 

l-(ijG)k 

where Xt = *——, k is the number of stages and r| depends on type of amplifier. 
I-/7G 
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dB 
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Appendix 2: Optical vs Electrical RIN 

It was mentioned in section 2.1 that there are two types of RIN, optical and 
electrical. It was also stated that these two are not equivalent. This appendix explains 
this important difference. 

As with any measurement theory, it is important to know the reference plane in 
which the measurement is taken. In the case of experiments designed to characterize 
optical noise power, there are two very important and distinctly different reference planes, 
the measurement reference plane just prior to the detector, described in optical units and 
the measurement plane just after the detector, described in electrical units. Whenever 
discussions of RIN occur it is very important to clarify which reference plane is being 
used for the comparison. 

Though it is easy to talk about optical RIN, there is no way to actually measure it. 
This is not as difficult a situation as it appears. The photodetection process, due to its 
nature as a Bernoulli random deletion process, maintains the statistics of the particular 
photonic distribution it samples, and generates a faithful reproduction of the impinging 

optical signals. [D,159] There are known conversion factors for converting optical 
power to electrical current in the detector itself (the quantum efficiency and its derived 
unit the responsivity) as well as for the equipment used after the detector, the receiver. In 
this particular experiment the receiver is largely composed of an RF spectrum analyzer 
and it will receive the most attention. Note: though there are now what are called 
"optical" spectrum analyzers, these devices just perform the conversions internally. The 
basic concepts of what follows is still the same. 

The conversion process in the spectrum analyzer is not one that can be represented 
by a linear multiplication factor, as it is for the detector. Rather there is quite a bit of 
uncertainty in the "absolute" measurements a spectrum analyzer does make, even when it 
is properly calibrated. Due to the use of heterodyning techniques and the need to 
integrate over fixed periods of time with imperfect filters, numerous conversion and 
adjustment factors need to be included to come up with a noise power measurement. For 
now, the two most important conversions are the square law conversion and the RMS 
conversion. 

When an electrical spectrum analyzer measures "modulated" optical power, in this 
case, noise, that has been directly detected by a square law detector, the squared optical 
quantity (field amplitude), when converted to dB electrical units, causes a multiplier of 2 
to move from the linear exponent to its position out in front of the logarithm. This is 
solely because of the choice to use units of dB. There is not twice as much electrical as 
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optical power. Secondly, an electrical spectrum analyzer is traditionally set up to provide 
an RMS value, which is a sinusoid centered on zero, squared, a mean taken and then the 
square root. Unfortunately, the mean of the optical signal is not centered on zero prior to 
the RMS process, rather it is centered at the average power of the optical signal, or for a 
sinusoid, halfway up on the optical modulation curve. This creates a downward shift of 
half of the total amplitude or -3 dB when converted to the electrical units. (Note: this 
also means that as the noise measurements approach the noise floor of the analyzer 
(within a few dB optical), the lower excursion of the sinusoid (modulated noise) will 
actually dip below the noise floor of the spectrum analyzer. The signal above the noise 
floor will still be sampled, but there is an additional conversion factor which changes 
non-linearly in these last few dB. This additional factor was not taken into account in this 
experiment. The best thing is to get as much margin (at least 10 dB) as possible above 
the noise floor. See Appendix 3 for noise floor considerations.) 

In summary the difference between optical and electrical REST is: 

RIN(electrical dB) = 2* RIN(optical dB) - 3 dB. 

So, -70 dB of optical noise becomes, -143 dB in the electrical units. Though this may 
seem artificial, the use of relative units is very beneficial and avoids the problems 
encountered when attempting absolute measurements. 
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Appendix 3: Conversion Calculations and Noise Floor Considerations 

This appendix describes the noise floors and the spectrum analyzer conversion factors for 
those times when absolute noise measurements are to be derived from the displayed 
values. The conversion factors will be covered first. 

The filters and amplifiers inside the spectrum analyzer modify the noise envelope 
and its mean. Reference Figure Al for the following two effects. 

CORRECTIONS 

MIXER 

A D> 

' *- 

4 I 

(tttti 
SWEEP 

iii| ku 

LOG AMP 1.45 dB 

.OETECTOR 1.0S dB 

TOTAL +2JS dB 

Figure Al. Log Amplifier and Envelope Filter Noise Corrections 

The first effect is due to the logarithmic amplifiers. The gain of the logarithmic 
amplifiers (amplifiers used to increase the intermediate frequency (IF) amplitude after the 
front end mixing with the local RF oscillator) is inverse to the signal level. Lower level 
signals are expanded and higher level signals are compressed in amplitude. Just 
measuring the thermal noise on a spectrum analyzer which is not hooked up to anything 
gives an amplitude for the noise which is 1.45 dB too low. 

Second, the envelope detectors read the RMS value of a sine wave, i.e. 0.707 of 
the peak value. In addition, the analyzer thermal noise sampled through its own filters 
(the Gaussian shape of these filters has an additional effect mentioned shortly) has the 
statistics of the Gaussian distribution, while the noise statistics that are actually being 
measured are Rayleigh distributed.   The mean of Rayleigh statistics is 1.2533 times 
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higher than the mean of the Gaussian statistics. So the actual displayed mean of the noise 

is 1.2533*0.707=0.8862. In logarithmic terms this equates to 201og(0.8862) = -1.05dB. 
Taking these two effects together gives a displayed value which is 2.5dB too low. 

Some spectrum analyzers will add the 2.5 dB back on automatically but this has to 
verified on the operational noise menu and on the output CRT. For HP spectrum 
analyzers this is indicated by the Noise Marker tattletale. 

The third effect is that the Gaussian shaped IF filters do not faithfully reproduce 

the ideal rectangular filter for a specified resolution bandwidth. See Figure A2. 

NOISE-POWER BANDWIDTH NORMALIZATION 

BW„ 

EQUAL AREA 

V. IOEAL 
k / RECTANGULAR FILTER 

SPECTRUM ANALYZER 
IF FILTER 

BWB . NOISE POWER BANDWIDTH 

Figure A2. Noise Power Bandwidth Resolution 

This means that every resolution bandwidth must be multiplied by 1.2 prior to its 
normalization back to 1 Hz. 

As mentioned in Appendix 2, knowledge of the measurement reference planes is 
critical when comparing noise data from two different experiments. The concept is 
simple. The noise will always be given in terms of an equivalent 1 Hz bandwidth 
referenced to its measurement plane. Reference Figure A3. The most desirable plane of 
reference, especially for LIGO calculations is Plane A, the optical plane just before the 
detector. The next most desirable is Plane B immediately following the photodetector, 
where the conversion process from the detector material is straight forward. Plane C is 
probably the least desirable due to the need to take into account any additional amplifiers 
in front of the spectrum analyzer (this is experiment specific). 
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Figure A3. Measurement Reference Planes for the Noise Experiments 

For this experiment the data was all taken and analyzed in electrical units at plane 
C. Since the shot noise level (SNL) was used as the unit of measure,all measurements 
were made relative to this SNL. Since shot noise level performance is indicative of 
photon quantum noise level performance, these results can be directly converted to 

optical units. 
The key piece of equipment, the spectrum analyzer, was calibrated and certified by 

HP just prior to these noise measurements. This ensured linearity and a high probability 
that absolute noise measurements would have the lowest error. The HP 71000 series 
spectrum analyzer was specified to have a noise figure of 29 dB and a noise floor 
normalized to 1 Hz of-145 dBmW/Hz. These numbers will only be used as an example 
in this appendix. (They illustrate that the noise power gathered across a resolution 
bandwidth greater than 1 Hz must be normalized to 1 Hz and don't forget the corrections 

mentioned above.) 
However, no matter how good the spectrum analyzer, it cannot distinguish whether 

a signal it has received is directly from the photodetector or has been processed in some 
way. All it can do is make corrections from its input connector at reference plane C and 
display noise powers referenced to this plane on its screen. 

In the low noise experiments done in this study, it was necessary to have pre- 
amplifiers before reference plane C. Low noise preamplifiers can improve the sensitivity 
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of the noise measurement if the gain is greater than the loss due to the NF of the amplifier 
and if the NF is low enough relative to the NF of the spectrum analyzer. Recall from 
Appendix 2 that it is a good idea to be more than 10 dB above the SA noise floor. At 
plane C the noise is higher after the preamplifiers are inserted, but at plane B, the overall 
sensitivity is improved. This is explained in greater depth. 

In general, from the amplifier chaining theory, it is well known that the lowest 

overall noise performance is attained when the amp with the lowest NF is the first in the 
sequence. This is because each gain stage multiplies the previous stages noise. 

^,a/=^+^--etc. 

If G\ » F2-I then Ftotal is approximately equal to F^. 

Though the NF s are given in dB, in order to do the calculations, the NF s must be 
converted back to noise factor or linear units to do the calculations. 

NFSA = 29 dB or FSA
=

 794.3 = F2 
NFamp = 6 or Famp = 3.98 = Fi 

Gi = 50 dB or Gi = 100,000 

Using the above equation, 

794.3 -1 
Flotal =3.98+ =3.99. 

100,000 

This is approximately 6 dB, which is much closer to the preamplifier NF than the 
spectrum analyzer's NF. (Rule of thumb: when the sum of the preamplifier gain and 
noise figure are at least 10 dB greater than the SA NF, the NF is essentially the 
preamplifier's NF.) 

Now it is possible to make the comparison of sensitivities at Plane B.  With the 
total NF of 5.5 dB, the noise input at plane B is 

NFß= 6 dB + Resolution Bandwidth (in dB) - the thermal noise (50 Ohm load), 
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where thermal noise (in 1 Hz) is (-174 dBmW) and assuming bandwidth units are 

converted to 1 Hz as well, gives 

NFß = 6 +0-174 = -168 dBmW. 

Since the original noise floor of just the spectrum analyzer was -145 dBmW, there 
is a 23 dB improvement with the addition of the amplifier. (Note that the improvement 

when adding the 55 dB of gain did not give 55 dB worth of noise improvement.) If the 
average optical input power and the responsivity of the detector is known, the change in 
sensitivity at reference plane A due to the addition of the preamplifier can be calculated 

in optical units. 
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Appendix 4 - Set Up for Photodetector Frequency Analysis 

Due to the advances in fiber optic communications, new diagnostic equipment has been 
developed which can be directly applied to the characterization of detectors. One 

characteristic which is of particular interest to the LIGO community is the frequency 
response of detectors to changing optical intensity. It is critical to ensure that a detector is 
not displaying saturation behavior at any frequency at which it may be used. 

In this study, much time was spent determining the characteristics of detectors for 
the noise experiments. The detector under test (and in some cases a pre-amplifier) was 
connected to an RF spectrum analyzer. When illuminated from a known laser source, the 
detector generated a photoelectron current whose characteristic shot noise extended 
essentially over all frequencies. Only a small sample was taken over a narrow frequency 
range. (The optical source had to be calibrated prior to the test using another trusted 
detector). The optical intensity from the known source was then increased in known, 
calibrated steps, usually by using a beam spliter and wave plate combination. A 
commensurate increase in shot noise power levels indicated the detector was linear. It 
was a tedious and somewhat error prone process. 

A much more efficient and consistent measurement technique is to use a sweep or 
tracking generator to drive a diode laser source and actually modulate the light at the 
source. The tracking generator would send a signal to the diode laser and to the spectrum 
analyzer. (If an optical spectrum analyzer is available then rather than sample the 
tracking generator signal, sample the light directly from the laser to get a ground truth for 
what the optical detector was receiving). The light from the optical source will not have a 
linear response to this sweep of current. By storing the first sweep trace in the spectrum 
analyzer and later subtracting it from the sampled noise, the non-linearity will be 
removed. Using diodes of different powers, a range of photocurrents can mimic the 
photocurrent expected during the operation of the photodetector device as shown in the 
figure below. 

n Tracking Generator Laser Optical Input 

 U 
Photodetector 

Electrical Input 

Spectrum 
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Appendix 5: Calculations of the differences in quantum Efficiency for a 

Monochrome and Broadband Optical Source 

Broadband thermal sources (flashlights) are often used in the lab to give a shot noise level 
input photon field to a detector to conduct linearity and responsivity experiments. 
However, it is known that thermal sources such as flashlights are not truly shot noise 
limited because they follow Bose-Einstein statistics. Two questions arise. How much 
noisier are the thermal sources than their coherent counterparts and how does the 
broadband nature of the light affect detector responsivity and hence efficiency.   First 
some useful constants from Dereniak and Crowe, Chapter 1. 

Cj := 3.741-10"16    [Watts meter2 1 

c2= 1.439-10"2 [meter Kelvin] 

T := 2473,2474.. 3373 Tungsten emission temperatures in Minimag Flashlight bulbs 

[Kelvin] 

l-= 100-10"9,101-10"9..4-10"6    [Wavelength of optical radiation (m)] 

These constants are used in the equations describing any thermal source. The first 
descriptive equation is the spectral distribution of thermal radiation called spectral 
radiant exitance and it is in units of W nr3. 
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In this figure the spectral radiant exitance at two different temperatures for 
Tungsten bulbs are plotted. Notice that they both peak near the 1.06 urn line of 
Nd:YAG. 
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Once the spectral radiant exitance of a thermal source is established it is necessary to 
impose the particular emission signature of the element on that source and establish the 
spectral radiant emission profile. Since most emission signatures are compose of 
discrete points, it is necessary to curve fit the data. This is a fourth order polynomial fit 
to the tungsten emissivity curve. Wavelength is in microns. 

e(V) := .52523472 + -.11452186A.-106 + -.085972315-(l06-^)   + .044087598-(lO6-^ 

+ -.0054929325-(l06-X)4 

2 3 
Wavelength (urn) 

Now multiply the emissivity and spectral radiant exitance together to get the spectral 
radiation profile for Tungsten at two temperatures. 
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What is the total power emitted that can be intercepted by the detector? It depends on 
the overlap of the detector spectral responsivity with the source spectral radiation 
emission. This is the fourth order polynomial fit for the spectral responsivity of a Si pin 
photodiode. Using the wavelength range 

X:=300-10"9,30M(r9.. 1.1-10 6 

R(X) := -2.5197336045919 + 0.0157702029358-X-109 + -0.0000354732155619-(lO9-^2 

+ 3.78299021106529-10" 8-(l09-X)3+-1.51308941009916-10" "-(lO9-^4 
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The responsivity can now be converted into the quantum efficiency using 

T1(X) : = 
R(A,)-1.24 

X-106 

This produces the familiar Si quantum efficiency plot. 
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The final step is to overlap the source emission and the detector efficiency curve and 
divide by the total emissivity to obtain the total efficiency. 
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This is the total efficiency on the Si detector for the Tungsten Vacuum Bulb. These 
values are very close to the values expected for Nd: YAG 
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So it appears the efficiencies for the laser and the mini-mag flashlight are the same. Now 
what about the noise? Take the equations for the first two statistical moments and insert 
the Bose Einstein Correction for the thermal source. Then find the noise power 
correction. The Bose-Einsten moments and variance are 

<»>- 

exp| (-%) 

l-exp(-%)' 

(-»)- 
M'"%T)*eM'2hV/kT) 

l-exp(-%f 

<72 = 
M-"VAT)   „ °^-%) 

=(»)- 
(l-exp(-%))        'l-exp(-%) 

So the increase in noise over the Poisson source is contained in the last factor. The 
correction factor is calculated using the following constants. 

c=299792458    Speed of light   h = 6.6260755-10"34     Planck's const 

k:= 1.380658-10"23 
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Notice the correction for the broadband 
source will be very small. It is certainly 
too small to give a 3 dB noise difference 
observed on the spectrum analyzer. 
Hence a flashlight is a good SNL source 
in the lab. 
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This appendix supports section 2.3, amplitude noise calculations for a simple oscillator. 
The goal is to determine whether a FP cavity imposed around gain material can give better 
SNR than a single pass system with the same gain material for single pass gains greater than 
1. The following parameters and variable assignments are used throughout the derivation. 

G =1,1.01.. 10 
This single pass gain variable, G, represents what an actual Nd: YAG 
laser amplifier might be capable of supplying. This is in keeping with the 
experimental nature of this paper. 

Rj : = 0.01,0.02.. 1 
These are the mirror power reflectivities for the FP cavity. 

The following equation provides the cavity gain based on the FP system where the 
numerator represents the transmissivity of the optical power through the two interfaces and 
the denominator represents the influence of gain. This is found in Saleh and Teich, 
Photonics, p. 316. 

(l-R1)-(l-R2)-G 
GC(R1,R2,G):=- 

■F •RrG 

Notice there is no correction for gain saturation effects in this equation. There is also a 
symmetry here in that either way the reflectivities, R, and R2 are ratioed, we will see the 

same effects. 
This first set of 9 plots provides the FP cavity gain, Gc for various combinations of 

mirror reflectivities. When the single pass gain is greater than one, indicated by the dotted 
vertical line, it is clear that the cavity gain can be a very large number. 

1M04 

1000 - 

Ü 

I   100 h 

s 

-
    1         1         1 

I
I
I
-

 

10 
Single Pass Gain 

R =0.1,R =0.9 

Single Pass Gain 

R, = 0.1,R2 = 0.1 



Appendix 6: Fabry Perot Cavity with Gain Medium 115 

1M04 

1000 - 

O 

i loo 
u 

10 - 1 
  
  

  
 1
  

  
  
  

1  
  

_
 

1             I             i           r
 

Single Pass Gain 

0 5 10 
Single Pass Gain 

R, = 0.3, R2 = 0.9 R, = 0.3, R2 = 0.3 

i-iu 

1000 

li 

i 

c 

O 
£• 
a loo —  ' — 
u 
s 1 
o i       \ H 

10 

1 IV, ; 
0 5 10 

Single Pass Gain 

0 5 10 
Single Pass Gain 

R, = 0.5, R, = 0.9 R, = 0.5, R2 = 0.5 



Appendix 6: Fabry Perot Cavity with Gain Medium 116 

Single Pass Gain 
0 5 

Single Pass Gain 

R, = 0.7, R2 = 0.9 
i«m^ 

Single Pass Gain 

R, = 0.7, R2 = 0.7 

1 

1 

1000 _ — 
e 

3 
& 
%   100 — — 

CJ 

s 
o 
H 

10 

1 1             1 
10 

R, = 0.9, R2 = 0.9 
It appears from the first nine plots that very high gains are available from the FP cavities. 
However, does this mean they also have good noise noise performance? To answer that 
question use Yamamoto's equations from section 2.3 and compare the noise 
performance for the oscillators to the single pass amplifiers. The first equation is the gain 
parameter X. 

,2 

Rr G 
X(R1,R2,G) 

^ 
•RrG 
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If X can be made large enough to counter the added amplification noise, it may be 
possible to get shot noise performance out of a system at very low single pass gains but 
rather high cavity gains. To verify this hypothesis, we will compare the SNR for the 
cavity type system to the single pass system for cases where the cavity gains exceed 1. 
The ratio of SNRs for the single pass amplifier and the oscillator is given as follows 

SNR(R1,R2,G)=101og 
Gc(R1,R2,GHl + 2-(G-l)) 

Q-(l+2-(Gc(R1,R2,G)-l-X(R1,R2,G))) 

100 

Single Pass Gain Single Pass Gain 

R,=0.1,R2 =0.9 R, = 0.1,R2 =0.1 

100 

Single Pass Gain Single Pass Gain 
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The simple oscillator with asymetric mirror reflectivities has two "sweet spots" where 
it produces better noise performance than the single pass amplifier. The cavity with 
symmetric mirror reflectivities has a single spike where it has performance better than 
the single pass amplifier. As the mirror reflectivities increase, the sweet spot narrows 
and makes the control of the single pass gain value critical in order to maintain the 
excellent noise performance. The best noise performance for the FP cavity was for 
the cases where R, = 0.1, R2 = 0.9 and R, = 0.5, R2 = 0.5 and the gain was 

approximately 2. The remaining cases do not have as great an advantage over the 
single pass amplifier. 

If the single pass gain can be controlled very precisely, this analysis shows that 
Fabry Perot oscillators can have superior gain and superior noise qualities compared 
to the single pass amplifier. This has direct bearing on the choice of design for the 
LIGO laser source. 
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This appendix calculates the amplitude noise for the 3 different injection locked oscillator 
theories and provides the material for Figure 15. The first calculation is Yamamoto's 
RLC approach to the Injection Locked Oscillator Noise. Throughout these calculations 
a 1 Hz unit of spectral width is assumed. The first statements assign values to constants 
used throughout the entire appendix. 

y e = 70      This is the cavity resonance in MHz for the Shine injection locked 
laser. 

f := 0.0001 0.001   20     ™s *s *e va*ue °f *e fi*e(luency m units of MHz. This 
covers the entire range of operation of the planned LIGO. 

h := 1.055-10"34        This is the reduced Planck's constant 

o := 1.781015 This is the frequency of light at 1.06 um 

K := 0.01 This is the power ratio of the master to the slave laser, 200 mW to 20 W. 

As described in section 3.4 the calculation begins with the Harb polynomial fit, Equation 
3.17, to the NPRO noise spectrum in units of dB. 

ETC(f) := -0.024-f3 + 0.58-f2 - 5.71-f-t- 21.42 

0.001        0.01 0.1 1 
Frequency (MHz) 

10 
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Now taking the first term of Equation 3.18 and substituting in the known values gives 
the noise power due to the master laser input noise power. 

PWRMmw(f) 

+ 4-K 
'ETC(f) 

•expi^ö- 
1 + 

0.01 0.1 1 
Frequency (MHz) 

This is the noise due to only the master laser. The shot noise floor is at zero 
and the noise is given in linear units. 

Taking the other term in Equation 3.18 will give the noise due to the pump 
source.   (The pump is shot noise limited.) 

PWRSmw(f) 
1 

i + (A
2 
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This is the amplitude noise due to the pump noise in the slave laser only. 

Taking the noise due to the master and the noise due to the slave will give the 
total amplitude noise.  Notice the pump is the predominant input of noise to the 
slave laser. The next two equations give the total noise in linear and dB units and the 
plot gives the total noise in dB units above the shot noise floor. 

PWR mw(f) = PWRS mw(f) + PWRM mw(f) 

dBPWRmw(f) := 10-log(PWRmw(f» 

0.001 0.01 0.1 1 
Frequency (MHz) 

10       100 

The system is shot noise limited at approximately 10 MHz. Otherwise it is very low 
noise at approximately 1.3 dB above the SNL. 
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The next section will calculate the Farinas Transfer Function Approach (TF A) to the 
Injection Locked Oscillator Amplitude Noise using the same parameters as the 
Yamamoto approach. This calculation also starts by defining variables and constants 

f := 0.0001,0.001.. 20       Frequency range of interest. (MHz) 

i := 4' 1 Definition of the imaginary number. 

y c = 111.8106 This it the cavity decay rate 

y 2 := 4350 This is the population decay rate from Siegman. 

y e := 70-106 This is the cavity resonance in MHz for the Shine injection locked 
laser, 

r = 5 This it the number of times pumped above threshold 

© sp\r        ' 'c ' 2 This is the spiking frequency 

Note: the spiking frequency and the spiking decay rates are actually squared values. 
Mathcad has trouble with designating squared functions in assignment statements. 

First is the equation for the spiking decay rate. 

^2 / ?2 
y sp    2 + * ■ r—   + 1 

This is the transfer function for pump modulation to cavity photon number noise 
in linear and dB units. 

©en 
G p(f) := SP  

(D       - 12-Tt-flO6 + 2-i-(2-Jt-f-106)-y sp 

dBGp(f):=10-log(Gp(f)) 
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The pump modulation transfer function to internal photon noise spectral density is 
basically a low pass filter. Now look at the expression for the transfer function for the 
master laser amplitude power spectral density to internal photon noise spectral density. 
Note: the equation has been scaled by a factor of two to bring the transfer function 
response in the resonant relaxation oscillation (RRO) regime to the Odb level. This 
expression is provided in both linear and dB units. 

1 + 

Gm(f):=2TT2-YeW-01-f 

i-2-g-f-106 

r-y2 

CO sp - (2-n-f-lO6)    4-2-i-(2-7t-f-106)-y sp 

dBGm(f)=10-log(Gm(f)) 

0     0.001 0.01     0.1        1 
Frequency (MHz) 

10   100 
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Lastly, the expression for the total noise using the TFA approach is a combination of the 
noise attributable to the master and the pump. 

dBPWRM(f) := 10-log (Gm(f)> exp(^^) + Gp(f) 

Third and last is the calculation for the QLA Approach to the Amplitude Noise of the 
Injection Locked Laser. Only two definitions are needed. 

£i .       . /^ The locking range will be set at ye *. 1, reflecting the square 
root of the ratio of powers between master and slave. 

y Lm : = 0.01 • Al      The damping rate for master laser will be set to be less 
than the locking range. 

The QLA approach transfer functions are for squared units. To compare to the other 
approaches they must be rooted. They are also referenced to the SNL so the " 1" used in 
the original equation has been subtracted. The first equation is the transfer function for the 
pump to slave noise. 

Vps(f): = 
3-104-ye-co e    sp 

co_-(2-Tt-flO6)2]   +(2-wf-106)2-(y,   N2 

sp sp 

20 

m -a 

I    ° 
-a 
2 

-20- 
n. 
E 
3 

OH 

-40 

II        1        1        1 

1 

^^\   QLA 

TFA    ^X 

i          i          i          i \ 
0       0.001 0.01        0.1 1 
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The plots of the QLA and TFA pump-to-slave amplitude noise agree very well. 
This implies that the semi-classical and QLA approach treat pump amplitude noise in a 
similar fashion. This was expected. 

Now the QLA equation for the transfer of amplitude noise from the master laser to 
the injection locked system amplitude noise. It looks like the Farinas result—more like 
an asymmetric bandpass filter. A factor was inserted to bring the function to 0 dB at the 
RRO. 

VmS(f): = 
2-K-f-lO6)   ^Lin J-l^e^spVLin-^e-^-f-lO6)2^ 

sp 2-TfflO6)2]  +(2-7T-f-106)2-(y    ) 

10.7 -1 

dBV(f) := 10-log Vms(f> exp(^9) + Vps(f) 

0      0.001     0.01       0.1 1 
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10     100 

This plot shows the TFA internal photon noise number due to the master laser and 
the QLA rendition of the amplitude noise of the injection locked system from the 
master laser noise inputs. They show great similarities. 
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Finally the plot which compares all three theories for total amplitude noise. This is 
Figure 15. 
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