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ABSTRACT 

As the number of computers and computer systems in existence has grown over 

the past few decades, we have come to depend on them to maintain the security of private 

or sensitive information. The execution of a program may cause leaks of private or 

sensitive information from the computer. Static secure flow analysis is an attempt to 

detect these leaks prior to program execution. 

It is possible to analyze programs by hand, but this is often impractical for large 

programs. A better approach is to automate the analysis; which is what this thesis 

explores. 

We describe some previous research and give background information about 

secure flow analysis. A secure flow analyzer is presented. It implements a secure flow 

type inference algorithm, for a subset of Java 1.0.2, using a parser generator called Java 

Compiler Compiler (JavaCC). Semantic actions are inserted into a grammar specification 

to perform the secure flow analysis on a given program. 
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I. INTRODUCTION 

The number of computers and computer networks has exploded over the past few 

decades, and computer security is a major concern. In a multi-level system where 

information exists with different security classifications, such as a military computer 

system, we want to protect information with a high security classification. It is desirable 

to have an automated tool to detect whether information we wish to keep secret in 

applications remains secret and is not leaked. This thesis introduces a program that will 

statically analyze a subset of Java programs to ensure that private information is not 

leaked. 

A.       SECURE INFORMATION FLOW 

Verifying secure information flow within computer systems is necessary in order 

to protect sensitive information, especially in a military system Denning and Denning 

state that information flow occurs from a storage object x to another storage object y 

when information stored in x is transferred to y, or used to derive information transferred 

to y. A flow may be either explicit or implicit [1]. 

Explicit information flow occurs when information is directly copied or 

transferred from one storage object to another. Consider the code segment "y := x". The 

information contained in x is directly copied into y, so information flows from x to y. 

The flow from x to y is independent of the value stored in x. 

Implicit flow occurs when information is indirectly copied or transferred from one 

storage object to another. If the variable x contains either 0 or 1, then the following code 



segment will copy the value of x into y using an implicit flow: 

y:=0;   if (x= l)theny := 1 

In this case, there is no direct flow from x to y. However, the value of x determines 

whether the then statement will be executed. The flow in both of these examples is 

allowed only if the security classification of y is at least that of x. For instance, if x were 

classified high then y must also be classified high in order for the code to be secure [1]. 

B. A TYPE-BASED TREATMENT OF SECURE INFORMATION FLOW 

Goguen and Meseguer introduced a notion of security for deterministic computer 

systems called noninterference [2]. The basic idea is that a system has users who may 

supply information with various security classifications to the system. A system satisfies 

the noninterference property if its low-level outputs remain the same when its high-level 

inputs are changed. 

Volpano and Smith [3] have applied this idea to programming languages. When 

applied to languages, the idea is that low-level program outputs are unaffected by 

changes in high-level program inputs. 

C. A TYPE INFERENCE ALGORITHM 

Volpano and Smith go on to describe an algorithm that is defined by cases on the 

phrases of a simple imperative language. The evaluation of an expression returns a 

principal type and a set of typing constraints. A typing constraint is an inequality 

between two types that are security levels. For example, if x is type high and x' is type 

low then x' < x is a constraint. Note that x' = x is equivalent to x' < x and x < x'. It is 

important to note also that the algorithm produces constraints among type variables, 

where a type variable ranges over types like high and low. Constraint-set satisfiability 
2 



can be used on the set of constraints to determine whether illegal flows exist in the 

program being analyzed, for instance, if a constraint set contains high < low. 

The classifications, or types, over which type variables range, depend on the 

system being modeled. In a typical military system, the types would be unclassified, 

confidential, secret, and top secret. For the purposes of this discussion, we consider a 

simple system of only two types, high and low, where low < high. 

As an example of how the algorithm works, consider the case of the preceding 

assignment statement, y := x. Assuming x and y have already been assigned the type 

variables x0 and ti respectively, the following set of constraints will be generated by the 

type inference algorithm: 

{TO<T2, Ti = T2,T3<T2} 

Therefore, the principal type of the expression is t3 cmd. The constraint set can be 

simplified to {t0< Ti, T3 < i\). So, for the assignment statement y := x, the algorithm 

states that the classification of y must be at least as high as the classification of x. The 

second constraint allows downward coercion on command types [7]. 

D.        AN IMPLEMENTION OF THE ALGORITHM 

This thesis presents a Java program that implements the type inference algorithm. 

The program is generated from a specification that is input to a compiler compiler called 

JavaCC. JavaCC is a tool that reads a grammar specification written in a LEX/ YACC- 

like manner and converts it into a parser for the grammar. The algorithm was 

incorporated into a grammar specification for Java 1.0.2 supplied with the JavaCC 

distribution. The actions specified by the algorithm were performed by adding Java code 
3 



(semantic actions) to the corresponding productions in the grammar specification. The 

generated parser is a secure flow analyzer for a subset of Java. Several statements, 

expressions, and other Java functionality were removed from the grammar specification 

because they are not currently supported by the type inference algorithm 

E.        THESIS ORGANIZATION 

Work in the area of secure information flow and a lattice model of secure 

information flow are discussed in Chapter II, followed by a description of the secure flow 

type system in Chapter III. The type-inference algorithm is discussed in Chapter IV. In 

Chapter V, the static analyzer and the Java subset we consider are discussed. Chapter VI 

gives an example run of the analyzer, and Chapter VJJ discusses some possible future 

work and presents conclusions about secure flow analysis and the static analyzer. 



II. THE LATTICE MODEL OF SECURE INFORMATION FLOW 

The security mechanisms of most computer systems do not attempt to detect or 

prevent insecure information flows. Computer system security requires that programs at 

high security levels be unable to transfer information to low security users or programs. 

Most access control mechanisms are concerned with direct access control and are not 

concerned with information flow channels that may exist. Other systems rely on the 

trustworthiness of processes [5], 

In the lattice model of secure flow, a flow policy is represented by the poset 

<S5 "*> [5]. S is a set of security classes and -> is a partial order, called the flow 

relation. The flow relation specifies permissible flows between the security classes. 

Every variable x is assigned a security class, denoted x, that is statically bound to x and 

that can be determined at compile time from declarations given in the program. If x and 

y are variables in a program and an information flow from x to y exists, then the flow is 

allowed if x -^ y [6], 

Each programming construct has a certification rule. Some rules, such as 

assignment statements, certify explicit flows and other rules, such as if statements, certify 

implicit flows. An assignment statement, x := y, will be certified if x -> y. The rules for 

conditional constructs such as the following if statement certify implicit flows. 

if x = 0 then y := 0 else z := 1 

This statement is certified if x -> y and x -> z. 

If the poset <S, ->> is a lattice, then there is a unique least upper bound and 

greatest lower bound for any pair of classes. A simple grammar consisting of synthesized 

attributes can be given to certify programs. The attributes are security classes computed 
5 



using the least upper bound, lub, and greatest lower bound, gib, operations. For example, 

the certification requirement for the above if statement becomes the single condition 

x -> glbfc z) [6], 



III. A SECURE FLOW TYPE SYSTEM 

Volpano, Irvine, and Smith describe a type system consisting of a set of type 

inference rules and axioms for deriving typing judgements. The types of the system are 

divided into three levels. One level contains data types, which we refer to as x types. 

These are the security classes of Denning's model and they are partially ordered, for 

example, low < high. 

At the next level, are the n types. They consist of the data types x, command 

types x cmd and the procedure types 

xproc(xh r2 var, r3 ace) 

A variable of type x var means it can store information at level x. A command has type 

T cmd only if every assignment in the command is made to a variable whose security 

level is x or higher. Lastly, the x in the above procedure type refers to the security level 

of its body. That is, a call to a procedure of this type would have type x cmd. 

At the third and final level are the p, or phrase, types. They consist of are the 

% types, type x var and type x ace (we ignore type x ace). So, our procedure types, in this 

this, are of the form: 

xproc{x\ var,...,xn var) 

The partial order on x types is extended to a subtype relation over phrase types. 

The subtype relation is anti-monotonic in the types of the commands, meaning if x is a 

subtype of z», then T' cmd is a subtype of x cmd. The intuition here is that if one can read 

level T' (high) information then they can read level T (low) information. There is also a 
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typical type subsumption rule that states if a phrase has type p then it can be assigned a 

type p' if p is a subtype of p' [7], 

The typing rules of the system guarantee secure explicit and implicit flow. 

Consider the typing rule for assignment: 

Y |- x : x var 
Y\-Q: X  
;r|-x:=e : xcmd 

where y is an identifier typing that maps identifiers to p types. The rule states that the 

explicit flow from expression e to variable x is secure if e and x have the same security 

level. This does not prevent e from having a lower security level than x, because 

subtyping allows the level to be coerced upward. 

The next example shows a rule that deals with a situation where an implicit flow 

exists. Consider the following program phrase where x is either 0 or 1: 

if x = 1 then y := 1 else y := 0 

There is no explicit flow from x to y, but when the phrase is executed, y will contain the 

value of x. To guarantee the implicit flow from x to y is secure, the following typing rule 

is used: 

y|-e: T 

Y |- c : x cmd 
rl-c': xcmd 
y\- if e then c else c': xcmd 

The commands c and c' must have type x cmd, because information of type x is implicitly 

known by evaluating the predicate e. Therefore c and c' can only make assignments to 

variables at security level x or higher. The rule requires e, c, and c' to have the same 



security level, namely x. Nevertheless, an upward implicit flow from e to c and c' can be 

accommodated by subtyping. 

There is also a rule for local variable declarations. A local variable declaration of 

the form 

letvar x := e in c 

creates a variable x with an initial value e, whose scope is command c. The initialization 

of x may cause an implicit flow, but it is always harmless. 

Two lemmas are needed to prove type soundness: Simple Security and 

Confinement. Simple Security applies to expressions and Confinement applies to 

commands. If an expression e can be assigned type T, then Simple Security states that 

only variables of type x or lower will be read when e is evaluated (no read up). 

Confinement says that if a command c can be assigned type x cmd, then every variable 

that is updated in c has security level x or higher (no write down). These two lemmas are 

used to prove that the type system is sound. Soundness is formulated as a 

noninterference property. The noninterference property states that variables in a well- 

typed program do not interfere with variables at lower security levels. 

It is possible to automatically check whether a program is well typed, using the 

techniques of type inference. The basic idea of type inference is to use type variables to 

represent unknown types in a program, and to generate constraints in the form of 

inequalities. An assignment of types to these variables must satisfy the constraints in 

order for the program to be well typed with respect to that assignment. A principal type 

can be formulated that represents all possible types the program can be given. 
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IV. A SECURE FLOW TYPE INFERENCE ALGORITHM 

A type inference algorithm that ensures secure information flow is described in 

this chapter. Volpano and Smith have extended the type system discussed in the previous 

chapter to a simple language with first order procedures [3]. They also prove the 

noninterference property for the system in order to establish the type soundness in the 

context of procedures. Figure 1 shows the core language they considered. 

expressions ::= x \ n \ I \ 
ei + e2 \ 
proc(in xh inout x2, out x3) c 

commands ::=   ct; c2 \ 
if e then ci else c2 \ 
while e do c \ 
ei := e2 \ 
letvar x := e in c \ 
letproc x (in xj, inout x2, out x3) c in c' \ 
e(e],e2,e3) 

Figure 1. Core Language 

For expressions, meta-variable x ranges over identifiers, n ranges over integer literals, 

and / ranges over locations. Expressions also consist of anonymous procedure 

expressions. Their names are provided via letproc. 

Commands consist of the following: composition of commands, if, while loops, 

assignment, variable declarations, procedure declarations, and procedure calls. 

Volpano and Smith give a secure flow type inference algorithm in [3]. It is shown 

in Figure 2 and is defined by cases on the phrases of the core language. The algorithm 

takes as inputs a location typing X, an identifier typing y, a program phrase p, and a set of 
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x : cue T(X) of 
r :({?<«}, a, Vu {or})    o£V 
r «*r :({?<*},<*, Vu{«})    **V 
defult: &ii 

»:«},«,yu{«})    cr*V 

^({A(l)<«},a,VU{a})    «*V 

let(C,,1i,V)-»K(A,7,e1,V) 

m(ftuCiu{n=5iKn,V") 

proc (la st, hunzt x», out *») «: 
fet (C,r «mrf.VO- W(A;T{*I :«r,x8 :0 «w.x, :* «cc],e,Vu{a,/M}) 
in (C.r proc(o, /9twr, « aoc),V*)    a, laadtffV 

«tf cj :kt<C»,n emd,V) = W(\,-j,ct,V) 
let (d,% «*», V) . W(A,9>ea,V0 
i» (Cj UftU{n =.T»},n «nwI.V*) 

if e then ci else <?): 
kt<C.?,K') = W(A,T,e,V) 

'.fc£<4.'ft «noW")-!^*.?, <*>»") 
let (Q,»* «*f, V") = W(A,9,«a,F") 
lB(CUCtUQU{r = n=5s,«<iO,acii»d!,V*'u{ot})     «J?VW 

while «doe: 
tet{C,r,V')=W(A,7,e,V) 
let (C,? emrf, V") « W(A,7,c,K') 
5a{CUC*U(r = r',a<r),««mrf,V*'U{«f})    ojJV" 

kt{C,f,V') = »r(A,%«»,V) 
cateei of 

x: if?Xx)=r«aror7(*) = raectkeii 
(Cu{?»?,«<?'}l«MKi,yu{«})   «(fv 

eke fail 
I:   (CU{A(0 = ?,«<r'},<rcW,Vu{«})    orffV* 
debnlt :&3 

letvw x:« e in c: 
lettCr.VO^^X.^e.V) 
kt (C,? awl.V) - ^(A.^x :?t«rj,c,V") 

letproc x(in xi, burnt x», out xs) e in e*: 
let (C,*, V) s W(A,9,i»6c (in. xi, burnt x», oat x,) c,V) 
kt (C,r «wrf, V) = W(A,7,&m>c (in xj, burnt x», oat xs) e/xle'.V) 
bt(CuC,?«»rf,V«') ' 

«(*»>«»>«»)•: 
let (C,?pnc(Ti, ft Mr, ft «c), V*)» wr(A,7,«,»0 
let(C,?'1V-)«ir(A,9.eifK') 
let <?" = ewe ea of 

x: if^x) = r"twr then CuCu{r*»n,?"«Ti} eke tul 
I:   CuCu(? = ?i1A(l) = n} 
default: &Ü 

in cue es of 
x : if 9(x) « ?* «or or 9(x) « ?" ace then (C U {?" = ft}, f cm«f, V) 

eke&a 
I: (C* U {A(Q« ft},? ema, V) 
defknlt : fail 

Figure 2. Volpano-Smith Type Inference Algorithm 
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type variables V. A location typing maps addresses to T types and an identifier typing 

maps variables to types x and x var, for some T. The latter treats free variables in a 

program, while the former treats free addresses. We shall assume programs have no free 

addresses, and drop A from the implementation of the type inference algorithm. The set V 

contains a list of previously-used type variables and allows the algorithm to choose new 

type variables. If the algorithm succeeds, it returns a triple consisting of a set of 

constraints C, a type n, and the updated set of stale variables V. The constraints in C are 

inequalities among type variables. 

To illustrate how the algorithm works, we give an example from [3], shown in 

Figure 3, of a procedure that indirectly copies a variable x to another variable y. 

proc (in x, out y) 
letvar a := :xin 
letvar b := = 0in 

while i i>0do 
b:= = b+l; 
a := a-1; 

y:=b 

Figure 3. Example Program 

Figure 4 shows the results of calling the algorithm on the procedure. The algorithm yields 

a triple consisting of a set of stale type variables V, the list of generated constraints and 

the type of the procedure, here denoted by n. This triple is used to form the principal 

type for the procedure. 

Type simplification can be used to simplify the constraint set C and type n [8]. 

The static analyzer developed for this thesis does not include any mechanism to perform 

type simplification and such simplification is shown here for demonstration purposes 
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V =     {a, y, v, o, s, i, £ v, 8, TJ, 6, K, k, ß £} 
C=     {a<y v= o, £= i, v<s, s = £ y<e, z = v,8 = rj, i<8, 

V=0,8<ri,y^K v<y K= A, y<K ß= & o<ß8<$ 
n-     (v proc(a, ß ace)) 

Figure 4. Algorithm Results of Sample Program 

only. The first step collapses the strongly connected types and produces a more useful 

form, as shown in Figure 5. 

C=     {8<$o<lÄ<ö,a<X) 
7i =     (o proc(a, £accS) 

Figure 5. Algorithm Results after Type Simplification 

Further simplification is possible leading to the 7i in Figure 6. 

7t = (£proc(££ ace)) 

Figure 6. Principal Type after Applying Monotonicity-Based Instantiations 

14 



V. IMPLEMENTATION OF THE TYPE INFERENCE ALGORITHM 

The static analyzer that performs the security checks specified by the type 

inference algorithm was developed using the Java Compiler Compiler (JavaCC). JavaCC 

takes, as input, a grammar specification. The output is a Java program that will parse the 

specified language and perform the semantic actions indicated in the grammar 

specification. 

Rather than start from scratch and build a JavaCC specification for the language 

in Figure 1, we started with a grammar specification for Java 1.0.2, which we modified to 

reflect the language in Figure 1. Semantic actions were added to encode the type 

inference algorithm. The specification is given in Appendix A. There are several 

restrictions imposed on the kinds of Java programs that the static analyzer can check 

because there are many constructs in the Java language that are not currently treated in 

the type inference algorithm. Each of the phrases in Figure 1 was mapped to a 

corresponding expression or statement in the Java grammar specification. 

A.       A BRIEF LOOK AT JAVACC 

JavaCC constructs a Java program that acts as a recursive descent parser for the 

language described by the grammar specification. A sample from the Java 1.0.2 grammar 

specification is shown in Figure 7. The sample shows three productions that are used to 

parse a Java method declaration and parameters. JavaCC converts each production into a 

method in the generated parser. 
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void MethodDeclarator() : 
{} 
{ 
<IDENTIFIER> Formalparameters() ( "[" "]" )* 

} 

void Formalparameters() : 
{} 
{ 

"("   [   Formalparameter()    (   ","  Formalparameter()   )*   ]   ")" 

void Formalparameter()    : 
{} 
{ 

TypeO   VariableDeclaratorldO 
} 

Figure 7. Sample Productions 

Each production begins with the return type of the corresponding method in the 

parser, which is void for the three productions in Figure 7. The name of the production 

will also be the name of the method in the parser. Parameter passing can be adding to the 

productions in the same way it is used in Java programs. 

There is a notion of "calling" a production because of its relationship with the 

corresponding method in the generated parser. For example, if the production 

Formalparameter () in Figure 7 is called, it will in turn call the productions 

Type () and VariableDeclaratorld () . 

Java code can be added anywhere in the production, but must be enclosed in curly 

braces,"{ }". When JavaCC converts the production into its corresponding method, the 

added code will remain where it was placed. Local variable declarations for any 

production should be inserted in the first set of curly braces ofthat production. In the 

three productions shown in Figure 7, there are no local variable declarations. 

16 



B. IMPLEMENTING THE ALGORITHM USING JAVACC 

There are two main data structures in the implementation of the algorithm. The 

first is called gamma, and contains identifier typings. The second is called triple, and 

consists of the items returned by the type inference algorithm, namely, a set of constraints 

C, a type or, and a list of stale type variables V. 

The initial attempt to implement the algorithm used two Stacks from the Java 

utility package. The gamma stack held objects called gamma items. A gamma item 

consisted of a variable name and its type variable. The triple stack contained the triple 

items consisting of the constraint set in the form of a linked list and the principal type. 

The set of stale type variables was kept in a separate symbol generator for the entire 

program. 

The idea of the gamma stack was to push a gamma item whenever a new variable 

was encountered and to pop the stack when the variable's scope ended. It became 

apparent that determining when the variable's scope ended was going to be a difficult task 

unless the analyzer kept track of more information about the variables being declared. 

The analyzer soon had four separate stacks to keep track of the important information. 

The triple stack had similar problems. 

It was determined that all of the external stacks could be eliminated if the run time 

stack was utilized. In this implementation, gamma became a linked list of gamma items 

that is passed as a parameter from one production to those productions it calls. In 

addition, each production returns a triple that contains all the constraints generated in the 

program. This did pose one problem. A local variable declaration requires an update to 
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the gamma list with the variable's type information and it also requires the generation of a 

new triple item. Both must be returned to the calling production. 

This problem may be overcome by adding new productions to the specification 

but the productions were not added in this implementation. Instead, a new data structure 

was developed to simply hold the new gamma list and the generated triple so that both 

the gamma list and the generated triple could be returned. The structure, called Dual, was 

later updated to also hold a string when a similar situation arose in the method declaration 

production that required a gamma list and the string representation of a token to be 

returned. 

Each of the commands and expressions of the core language listed in Figure 1 are 

"mapped" to one or more productions in the Java 1.0.2 grammar specification. Mapping 

the algorithm to the Java specification was performed in two steps. The first step was to 

determine which productions in the grammar specification correspond to commands or 

expressions in the core language. Once the relationship between the core language and 

grammar specification was established, the second step entailed encoding the semantic 

actions specified by the algorithm and placing the code in the corresponding productions 

of the grammar specification. We consider, in turn, each of the cases of the algorithm in 

Figure 2. 

Case "x" 

The Name () production in the grammar file is an instance of case x. Name () 

returns a string representation of the current token when the production is called. The 

type inference algorithm requires the type of x, x or x var, to be determined. The type 
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resolution of the token that corresponds to x is performed within the production that calls 

Name(). 

Case "n" 

The Literal () production is an instance of case n. Literal () accepts the 

Java primitive types of integers, floating point numbers, characters, strings, boolean 

values "true" and "false", and "null". 

Case "I" 

The third case statement, /, deals with locations and is not implemented in the 

Java grammar. 

Case "ei + e2" 

The expressions below are all instances of case ei + e2: 

ConditionalOrExpression() 
ConditionalAndExpression() 
InclusiveOrExpression() 
ExclusiveOrExpression() 
AndExpression() 
EqualityExpression() 
RelationExpression() 
ShiftExpression() 
AdditiveExpression() 
MultiplicativeExpression() 

Case "proc(in xt, inout x2, out X3) c" 

The case in the algorithm for procedure declarations has the following form: 

proc(in xi, inout x2, out x3) c 

The modes of the parameters, in; inout; and out, are similar to those used in the Ada 

programming language. The productions dealing with procedures starts with the 

MethodDeclaration () production. The name of the procedure and the parameters 
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are treated in a call to the MethodDeclarator () production. The parameters are 

added to the environment with a call to the Formalparameters () production so they 

may be referenced in the body of the procedure. MethodDeclarator () returns the 

procedure name and the types of the parameters. All parameters are considered to be 

inout mode and are typed as such, meaning they have type r var for some T. Finally the 

body of the procedure, c, is handled in a call to the Block () production. The static 

analyzer does not handle recursive procedures or method declarations. 

Case "ci; c2" 

Next in the algorithm is the statement for composition, ci; c2. Composition within 

a block, delimited by {}, is handled by the BlockStatementList () production. 

The original Java grammar specification handled composition in the Block () 

production. It was necessary to add the production BlockStatementList () to 

handle the letvar statement. Changes to the grammar specification for the letvar 

statement are explained later in this section. 

Case "if e then ci else C2" 

If-then-else statements are handled by the If Statement () production in the 

grammar specification. The else portion of the statement is not mandatory in Java. If it 

is not used, then the semantic actions in the algorithm pertaining to the else statement are 

not executed. 

Case "while e do c" 

The next case is the while loop of the form, while e do c. It has been mapped to 

both the WhileStatement () and DoStatement () productions in the Java 

specification. 
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Case "x := e" 

The assignment statement x := e is mapped to Assignment (). Note that": =" 

is not the only assignment operator allowed; others include: "*=", "/=", "+=" and "-=" 

A modification to the grammar specification was required here. The Java 1.0.2 grammar 

specification Assignment () production is listed in Figure 8. The production, 

PrimaryExpression (), may be evaluated as a literal (), Name (), 

Expression (), or AllocationExpression (). PrimaryExpression () is 

also called from a number of other productions as well and those productions require that 

PrimaryExpression () return a triple consisting of a constraint set, a type, and a list 

of stale type variables. However, the Assignment () production requires that 

PrimaryExpression () return the type ofx from the identifier typing y. For this 

reason, a new production, PrimaryLef tExpression (), was introduced into the 

Grammar specification. It returns the string representation ofx, so that it may be 

referenced in y, and replaces PrimaryExpression () in the Assignment () 

production. 

void Assignment()    : 
{} 
{ 

PrimaryExpression()AssignmentOperator()Expression() 

Figure 8. Assignment Production 
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Case "letvar x := e in c" 

Mapping the letvar statement to the Java language required another modification 

to the Java grammar specification. The original specification handled local variable 

declarations at the same level as all other statements within BlockStatement (). The 

original Java specification productions that handle local variable declarations are shown 

in Figure 9. 

void Block() : 
{} 
{ 

"{" ( BlockStatement() )* "}" 
} 

void BlockStatement() : 
U 
{ 
LOOKAHEAD(Type() <IDENTIFIER>) 
LocalVariableDeclaration() "; " 

I 
Statement() 

} 

void LocalVariableDeclaration() : 
{} 
{ 
Type() VariableDeclaratorO ( "," VariableDeclarator() )* 

} 

Figure 9. Java Specification Productions to Handle Local Variable Declarations 

In the original grammar specification, composition is handled in the Block () 

production. The * operator indicates that the production(s) within the preceding set of 

parentheses is called zero or more times. Two new productions, 

BlockStatementList () and LetvarStatement (), were added to the grammar 

specification because it is necessary to pass the identifier typing y, updated with a typing 

for x, to the production that parses c in letvar x = e in c. The original Java 1.0.2 grammar 

specification had no productions specified for c, so BlockStatementList () was 
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introduced to handle this problem. In the modified grammar specification, Block () 

calls BlockStatementList () once per BlockStatement (). 

BlockStatementList (), the production used to handle composition, calls 

BlockStatement () zero or more times. BlockStatement () calls 

LetvarStatement () if a local variable declaration is found, otherwise, 

Statement () is called. LetvarStatement () first calls 

LocalVariableDeclaration () to handle the declaration, then 

BlockStatementList () to parse the rest of the program that is within the scope the 

new variable. The section of the modified grammar file is listed in Figure 10. 

Case "letproc x(in xi, inout x2, out x3)c in c' " 

The next case in the type inference algorithm, letproc, allows procedures to be 

used polymorphically and was not implemented in the Java grammar specification. 

Therefore, all procedures are treated as monomorphic in the analyzer specification. 

Moreover, only static methods are allowed because that is the only kind of method the 

algorithm treats. 

Case "e(ei, e2, e3)" 

The final case in the algorithm types procedure calls. The Java specification 

handles procedure calls in the PrimaryPref ix () production. First, the 

name of the procedure is found in the identifier typing, y, then the types of the arguments 

are compared with those retrieved from y. The original grammar specification for Java 

allowed arguments to be expressions. In the modified specification, all parameters must 

be either a literal or a previously declared and initialized variable name. 
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void Block() : 
{} 
{ 

"{" BlockStatementList() "}" 
} 

void BlockStatementList() : 
{} 
{ 

( L00KAHEAD(2) BlockStatement() )* 
} 

void BlockStatement() : 
{} 
{ 
LOOKAHEAD( Type() <IDENTIFIER> ) 
LetvarStatement() 

I 
Statement() 

} 

void LetvarStatement () : 
{} 
{ 
LocalVariableDeclarationO ";" BlockStatementList() 

void LocalVariableDeclaration() : 
{} 
{ 
Type() VariableDeclaratorO ( "," VariableDeclarator () )* 

1 

Figure 10. Specification Changes for letvar Statement 

All of the source code files used to implement the static analyzer are given in 

Appendix B. 

C.       RESTRICTIONS IMPOSED ON PROGRAMS 

The type inference algorithm in [3] does not treat an object-oriented language like 

Java. Although we started with a JavaCC specification for Java, the result was not an 

analyzer for full Java but rather an analyzer for that subset of Java corresponding to the 

simple language in Figure 1. So how big is this subset? 
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First, the subset that can be analyzed has no objects, and consequently no instance 

variables or instance methods. 

Second, all expressions must be free of any side effects. This is the reason that 

assignment expressions in Java are prohibited, as are pre and post increment 

"expressions". They all violate the confinement property. 

Other restrictions on Java programs include that they be closed (no free 

variables), that they have only non-recursive static methods, that they have no methods 

with a return type other than void, and that they have no forward references. Yet, other 

restrictions are imposed because certain constructs were not treated in the algorithm of 

[3]. They include try-catch blocks, synchronized blocks and so on. In summary, the 

following features of Java are not analyzed: 

1. Static Initializes 
2. Arrays 
3. Explicit Constructor Invocation 
4. Conditional Expressions 
5. Instanceof Expressions 
6. Preincrement and PreDecrement Expressions 
7. Postincrement and PostDecrement Expressions 
8. Cast Expressions 
9. Allocation Expressions - (object creation) 
10. Labeled Statements 
11. Switch Statements 
12. For Statements 
13. Break Statements 
14. Continue Statements 
15. Return Statements 
16. Throw Statements 
17. Synchronized Statements 
18. Try Statements 
19. Catch Statements 
20. Finally Statements 
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The constructs that have been disallowed have only been commented out in the 

grammar specification file listed in Appendix A in order to allow for their 

implementation in the future. This means they cannot be parsed in the current 

implementation. 
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VI. AN EXAMPLE RUN OF THE STATIC ANALYZER 

The program in Figure 11 illustrates an application of the static analyzer. It 

corresponds to the example program of Figure 3, in Chapter HI, written in Java. 

However, it is not identical, for Java has no parameter-passing mode corresponding to 

mode out. Nevertheless, it serves to illustrate the analyzer. The results of the static 

analyzer when run on this program are shown in Figure 12. 

class test 
{ 
public static void p(int x, int y) 
{ 
int a = x; 
int b = 0; 
while (a > 0) { 

b = b + 1; 
a = a - 1; 

} 
y = b; 

} 
} 

Figure 11. Static Analyzer Test Program 

V -        {to, Tl, 12, T3, 14, T5, X6, T7, Tg, T9, T10, Til, T12, T13, T14} 

C =        {TM = T12, Tl2 < T4, Tg = t4, T5 = T4, T2 < T4, tu = T8, T8 < T6, T6 = T3, T7 = T6, 

X3 < X6, Tu < T9,T9 = T2,Tio = T9, T2 < T9, T14 < T13, Tl = T13, T3 < T13, T0 < T2} 

7i=     Ti2proc(Tovar, xivar) 

Figure 12. Test Program Results 

We sketch a trace of the analyzer on part of the program. The parameters, x and 

y, are the first tokens to be analyzed. They are assigned the type variables T0 and Ti 
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respectively. Then the variable declaration: 

int  a = x 

is analyzed. A new type variable for x, namely T2, is created and the constraint set 

{to < T2} is generated. The constraint is generated by the case for identifiers where an 

upward coercion is introduced (see Figure 2). The variable a is assigned the type 

variable x2 in analyzing the rest of the program. 

Next, the variable declaration: 

int b =  0 

is analyzed in the same manner, except that no constraint is generated since 0 is an 

integer. This is the integer literal case of the type inference algorithm. Finally, b is 

assigned the type variable T3. At this point, gamma contains the following types: 

{x: to, y : Ti, a : T2, b : T3} 

and only one constraint, To < T2, exists. 

Next, the while loop 

while(a  >  0) 

is analyzed. The predicate, a >  0, is checked first and generates the following new 

constraints: 

T2 < T4, T4 = T5 

The first comes from the identifier case of the algorithm (upward coercion of a's type) 

and the second comes from x, = T2 in the case for d + e2 in the algorithm of Figure 2, 

where Tt = x4 and t2 = T5 The rest of the program is analyzed in the same manner. 
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VII. CONCLUSIONS 

As we rely more on computer systems, secure flow analysis is a necessary tool to 

protect the information stored on these systems. Denning's work [1] [5] provides a good 

base of knowledge for secure information flow. The Lattice Model consists of a set of 

storage objects, a set of processes, and a set of security classes. Each storage object is 

bound statically or dynamically to a security class. Security classes are required to form 

a lattice, hence the name. A flow relation indicates permitted information flows between 

security classes. The lattice shows all allowed information flows within the system. 

Volpano and Smith [3] treat the model in the context of a type system and prove 

the soundness of the type system They also give a type inference algorithm for the 

system. This thesis describes an implementation of that algorithm using JavaCC. The 

result is a static analyzer that checks for secure information flow at compile-time. 

The static analyzer can only analyze a subset of the Java 1.0.2 language. It may 

be too limited to allow one to write interesting and useful programs. Future work might 

focus on analyzing a larger subset of Java. 
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APPENDIX A - JAVA GRAMMAR SPECIFICATION 

The following pages represent the modified Java 1.0.2 grammar specification that 

is the input to the Java Compiler Compiler. The original grammar file was developed by 

Sriram Sankar on 6/11/96 and is copyrighted by Sun Microsystems Inc. Semantic actions 

were added to the original grammar to perform secure flow analysis on a subset of Java 

1.0.2 programs. 
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l-k-k 

* 

* Copyright (C) 1996, 1997 Sun Microsystems Inc.* 
* 

* 

* 

Use of this file and the system it is part of is constrained by the 
file COPYRIGHT in the root directory of this system. You may, 
however, make any modifications you wish to this file. 

* Java files generated by running JavaCC on this file (or modified 
* versions of this file) may be used in exactly the same manner as 
* Java files generated from any grammar developed by you. 
* 
* Author: Sriram Sankar 
* Date: 6/11/96 
* 

* This file contains a Java grammar and actions that implement a 
* front-end. 

Modified 24 Feb 98 by LT James D. Harvey, USN. 

* Modifications have been made to incorporate a type checker into the 
* compiler. Several portions of the Java language have been disabled 
* in this version because the type checker does not support them. The 
* portions that are not implemented are as follows: 

* Static Initializers 
* Arrays 
* Explicit Constructor Invocation 
* Conditional Expressions 
* Instanceof Expressions 

Preincrement and PreDecrement expressions 
* Cast Expressions 
* Allocation Expressions 
* Labeled Statements 
* Switch Statements 
* For Statements 
* Break Statements 
* Continue Statements 
* Return Statements 
* Throw Statement 

Synchronized Statement 
* Try Statement 

* 
* 

*/ 

# Permission to reproduce has been obtained from Sriram Sankar of Sun Microsystems. 
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options { 
LOOKAHEAD = 1 ; 
JAVA_UNICODE_ESCAPE = true; 

} 

PARSER_BEGIN(JavaParser) 

import thesis.*; 

public class JavaParser { 

static SymbolGenerator sg = new SymbolGenerator(); 

public static void main(String args[]) { 

JavaParser parser; 
Triple ConstraintSet; 
Gamma gamma = new Gamma("myGamma"); 

if (args.length == 0) { 
System.out.println{"Java Parser Version 1.0.2:  Reading from 

standard input . . ."); 
parser = new JavaParser(System.in); 

} else if (args.length ™ 1) { 
System.out.printlnf"Java Parser Version 1.0.2:  Reading from file 

" + args[0] + " . . ."); 
try { 
parser = new JavaParser(new java.io.FilelnputStream(args[0]) ) ; 

} catch (java.io.FileNotFoundException e) { 
System.out.println("Java Parser Version 1.0.2:  File " + 

args[0] + " not found."); 
return; 

} 
} else { 
System.out.println("Java Parser Version 1.0.2:  Usage is one 

of:"); 
System.out.println("        Java JavaParser < inputfile"); 
System.out.println("OR"); 
System.out.printlnf"        Java JavaParser inputfile"); 
return; 

1 
try { 
ConstraintSet = parser.CompilationUnit(gamma); 
System.out.println("Java Parser Version 1.0.2:  Java program 

parsed successfully."); 
} catch (ParseError e) { 
System.out.println("Java Parser Version 1.0.2:  Encountered 

errors during parse."); 
} 

} 
} 

PARSER END(JavaParser) 
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SKIP : /* WHITE SPACE */ 

"\t" 
"\n" 
"\r" 
"\f" 

} 

SPECIALJTOKEN : /* COMMENTS */ 
{ 

<SINGLE_LINE_COMMENT: "//" (~["\n","\r"])* ("\n"|"\r"I"\r\n")> 
I <FORMAL_COMMENT: ••/**" (-["*-•])* «*., ,,.*„ , ,,„„,,, „,„, , ,„'.„, 

I <MULTI_LINE COMMENT: "/*" (~["*"1)* "*" ("*" i /-,r»*» »/»l , r«*«i 

} 

TOKEN : /* RESERVED WORDS AND LITERALS */ 
{ 

< ABSTRACT: "abstract" > 
I < BOOLEAN: "boolean" > 
I < BREAK: "break" > 
I < BYTE: "byte" > 
I < CASE: "case" > 
I < CATCH: "catch" > 
I < CHAR: "char" > 
I < CLASS: "class" > 
I < CONST: "const" > 
I < CONTINUE: "continue" > 
I < _DEFAULT: "default" > 
I < DO: "do" > 
I < DOUBLE: "double" > 
I < ELSE: "else" > 
I < EXTENDS: "extends" > 
I < FALSE: "false" > 
I < FINAL: "final" > 
I < FINALLY: "finally" > 
I < FLOAT: "float" > 
I < FOR: "for" > 
I < GOTO: "goto" > 
I < IF: "if" > 
I < IMPLEMENTS: "implements" > 
I < IMPORT: "import" > 
I < INSTANCEOF: "instanceof" > 
I < INT: "int" > 
I < INTERFACE: "interface" > 
! < LONG: "long" > 
I < NATIVE: "native" > 
I < NEW: "new" > 
I < NULL: "null" > 
I < PACKAGE: "package"> 
I < PRIVATE: "private" > 
I < PROTECTED: "protected" > 
I < PUBLIC: "public" > 
I < RETURN: "return" > 
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< SHORT: "short" > 
< STATIC: "static" > 
< SUPER: "super" > 
< SWITCH: "switch" > 
< SYNCHRONIZED: "synchronized" > 
< THIS: "this" > 
< THROW: "throw" > 
< THROWS: "throws" > 
< TRANSIENT: "transient" > 
< TRUE: "true" > 
< TRY: "try" > 
< VOID: "void" > 
< VOLATILE: "volatile" > 
< WHILE: "while" > 

TOKEN : /* LITERALS */ 
{ 

< INTEGER_LITERAL: 
<DECIMAL_LITERAL> (["1","L"])? 

I <HEX_LITERAL> ( [ "1","L"])? 
| <OCTAL_LITERAL> (["1","L"])? 

> 
I 
< #DECIMAL_LITERAL: ["l"-"9"] (["0"-"9"])* > 

I 
< #HEX_LITERAL: "0" ["x","X"] (["0"-"9", "a"-"f", "A"-"F"])+ > 

I 
< #OCTAL_LITER^L: "0" (["0"-"7"])* > 

I 
< FLOATING_POINT_LITERAL: 

(["0"-"9"])+   "."    (["0"-"9"])*    «EXPONENT»? 
(["f","F","d","D"])? 

|    "."    (f'0"-"9"])+   «EXPONENT»?    ( [ "f", "F", "d", "D"] ) ? 
|    (["0"-"9"]}+  <EXPONENT>   (["f","F","d","D"])? 
|     (["0"-"9"])+    «EXPONENT» ?    [ "f", "F", "d", "D"] 

> 

I 
< #EXPONENT:    ["e","E"]    (["+","-"])?    (["0"-"9"])+   > 

I 
< CHARACTER_LITERAL: 

II f II 

(   (~["'","\\","\n","\r"]) 
I ("\\" 

( ["n","t","b","r","f","\\","'",»\»"j 
I [»o"-»7"] ( ["0"-"7"] )? 
| ["0"-"3"] ["0"-"7"] ["0"-"7"] 
) 

) 
) 
Tl I II 

> 

37 



<   STRING_LITERAL: 
IT \   tt TT 

(       (-["V'VW'VXn'V'Xr"]) 
I   ("\\" 

(   ["n","t","b","r","f","\\",»>»f"\"»] 
|    ["0"-"7"]    (   ["0"-"7"]    )? 
|    ["0"-"3"]    ["0"-"7"]    ["0"-"7"] 
) 

) 

tl \     II IT 

TOKEN : /* IDENTIFIERS */ 
{ 

< IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* > 
I 

< #LETTER: 

"\u0024", 
"\u0041"- 
"\u005f", 
"\u0061"- 
"\u00c0"- 
"\u00d8"- 
"\u00f8"- 
"\u0100"- 
"\u3040"- 
"\u3300"- 
"\u3400"- 
"\u4e00"- 
"\uf900"- 

"\u005a", 

"\u007a", 
"\u00d6", 
"\u00f6", 
"\u00ff", 
"\ulfff", 
"\u318f", 
"\u337f", 
"\u3d2d", 
"\u9fff", 
"\ufaff" 

< #DIGIT: 

"\u0030"- 
"\u0660"- 
"\u06f0"- 
"\u0966"- 
"\u09e6"- 
"\u0a66"- 
"\u0ae6"- 
"\u0b66"- 
"\u0be7"- 
"\u0c66"- 
"\u0ce6"- 
"\u0d66"- 
"\u0e50"- 
"\uOedO"- 
"\ul040"- 

"\u0039" 
"\u0669" 
"\u06f9" 
"\u096f" 
"\u09ef" 
"\u0a6f" 
"\uOaef" 
"\u0b6f" 
"\uObef" 
"\u0c6f" 
"\uOcef" 
"\u0d6f" 
"\u0e59" 
"\u0ed9" 
"\ul049" 

] 
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TOKEN   :   /*   SEPARATORS   */ 
{ 

<   LPAREN:    "("   > 

") "   > 
"{"   > 
tl 1 II 

< RPAREN 
< LBRACE 
< RBRACE > 
< LBRACKET:    "["   > 
< RBRACKET:    "]"   > 
< SEMICOLON:    ";"   > 
< COMMA:    ","   > 
< DOT:    "."   > 

TOKEN   :   /*   OPERATORS   */ 
{ 

< ASSIGN:    "="   > 
< GT:    ">"   > 
< LT:    "<"   > 
< BANG:   "!"   > 
< TILDE:    "~"   > 
< HOOK:    "?"   > 
< COLON:    ":"   > 
< EQ 
< LE 
< GE 
< NE 

IT -——TT   -^ 

" !="   > 
< SC_OR:    "||"   > 
< SC_AND:    "&&"   > 
< INCR:    "++"   > 
< DECR:    "—"   > 
< PLUS:    "+"   > 
< MINUS:    "-"   > 
< STAR:    "*"   > 
< SLASH:    "/"   > 
< BIT_AND:    "&"   > 
< BIT_OR:    "|"   > 
< XOR:    "A"   > 
< REM:    "%"   > 
< LSHIFT:    "«"   > 
< RSIGNEDSHIFT:    "»"   > 
< RUNSIGNEDSHIFT:   ">»"   > 
< PLUSASSIGN:    "+="   > 
< MINUSASSIGN:   "-="   > 
< STARASSIGN:    "*="   > 
< SLASHASSIGN:    "/="   > 
< ANDASSIGN:    "&="   > 
< ORASSIGN:   "|="   > 
< XORASSIGN:    "A="   > 
< REMASSIGN:    "%="   > 
< LSHIFTASSIGN:    "«="   > 
< RSIGNEDSHIFTASSIGN:   "»="   > 
< RUNSIGNEDSHIFTASSIGN:   ">»=" 
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* THE JAVA LANGUAGE GRAMMAR STARTS HERE * 

/* 
* Program structuring syntax follows. 
*/ 

Triple CompilationUnit(Gamma gamma) : 
{Triple cs = null;} 
{ 
//[ PackageDeclaration() ] 
//( ImportDeclarationO )* 

( cs = TypeDeclaration(gamma) )* 
<EOF> 
{return cs;} 

void PackageDeclarationf) : 
{} 
{ 
"package" Name() ";" 

) 

void ImportDeclarationO : 
{} 
{ 

"import" Name() [ "." "*" ] ";" 

Triple TypeDeclaration(Gamma gamma) : 
{Triple cs = null;) 
{ 
(LOOKAHEAD( ( "abstract" | "final" | "public" )* "class" ) 
cs = ClassDeclaration(gamma) 

I 
InterfaceDeclaration(gamma) 

I 
";") 

{return cs;} 

/* 
* Declaration syntax follows. 
*/ 
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Triple ClassDeclaration(Gamma gamma) : 
{ 
Triple es = null; 
Dual d = new Dual(cs,gamma); 

} 
{ 

( "abstract" | "final" | "public" )* 
"class" <IDENTIFIER> [ "extends" Name() ] [ "implements" NameListO 
"{" ( d = ClassBodyDeclaration(d.gamma) )* "}" 
{ 

if (d != null){ 
j return d.cs; 

else{ 
return cs; 

}//end if 
} 

Dual ClassBodyDeclaration(Gamma gamma) : 
{ 
Triple cs = null; 
Dual d = null; 

} 
{ 

( 
/* 

L00KAHEAD(2) 
Staticlnitializer() 

I 
*/ 

LOOKAHEADf [ "public" | "protected" | "private" ] Name() "(" ) 
cs = ConstructorDeclaration(gamma) 
{d = new Dual(cs,gamma);} 

I 
LOOKAHEAD( MethodDeclarationLookahead() ) 
d = MethodDeclaration(gamma) 

I 
d = FieldDeclaration(gamma) ) 
{ 
System.out.println("Constraint set: " + d.cs); 
System.out.println("Gamma: " + d.gamma); 
return d; 

} 
} 

// This production is to determine lookahead only. 
void MethodDeclarationLookahead() : 
U 
{ 

( "public" | "protected" | "private" | "static" | "abstract" | 
"final" | "native" | "synchronized" )* 

ResultType() <IDENTIFIER> "(" 
} 
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void InterfaceDeclaration(Gamma gamma) : 
{Triple cs = null;} 
{ 

( "abstract" | "public" )* 
^interface" <IDENTIFIER> [ "extends" NameListf) ] 
"{" ( InterfaceMemberDeclaration(gamma) )* "}" 

void InterfaceMemberDeclaration(Gamma gamma) : 

{ 
LOOKAHEAD( MethodDeclarationLookahead() ) 
MethodDeclaration(gamma) 

I 
FieldDeclaration(gamma) 

} 

Dual FieldDeclaration(Gamma gamma) : 
{ 
Dual d = null; 

} 
{ 

( "public" | "protected" | "private" | "static" | "final" 
"transient" | "volatile" )* 

Type()  d = VariableDeclarator(gamma) ";" 

return d; 
} 

Dual VariableDeclarator(Gamma gamma) : 

Triple cs = new Triple(sg.NextSymbol(),""); 
String id; 

} 
{ 

id = VariableDeclaratorldO ( "=" cs = Variablelnitializer(gamma) 
cs = Default() ) s 

{ 

gamma = gamma.Append(new Gammaltem(id,cs.getType(),"var")); 
Dual d = new Dual(cs, gamma); 
return d; 

} 

Triple Default() : 
{} 
{ 

{return  new Triple(sg.NextSymbol(),    ""); 

42 



String VariableDeclaratorld() : 
{String id;} 
{ 

< IDENTIFIED 
{id = token.image;} 

//  ( "[" "]" )* 
{return id;} 

} 

Triple Variablelnitializer(Gamma gamma) : 
{Triple cs = null;} 
{ 
/* 

"{" [ Variablelnitializer(){ LOOKAHEAD(2) "," Variablelnitializer{) 
)* ] [ "," ] "}" 
I 
*/ 

cs = Expression(gamma) 
{return cs;} 

} 

Dual MethodDeclaration(Gamma gamma) : 
{ 
Triple cs = null; 
Dual d = new Dual(cs,gamma); 
Gamma temp; 
Gamma param = new Gamma("param") ; 

} 
{ 

( "public" | "protected" | "private" | "static" | "abstract" | 
"final" | "native" | "synchronized" )* 
ResultType() 
temp = MethodDeelarator(gamma,d) 
{ 
while ( ! (temp.isEmptyO ) ) { 

Gammaltem gi = (Gammaltem) temp. getFromList () ; 
gamma = gamma. Append(gi); 
param = param.Append(gi); 
temp = temp.removeFromList(); 

}//end while 
} 
[ "throws" NameListO ] 
( cs = Block(gamma) | ";" ) 
{ 
Gammaltem GI = new Gammaltem(d.id, cs.getType(), "proc"); 
GI. setParam(param) ; 
d.gamma = d.gamma.Append(GI); 
return new Dual(cs,d.gamma); 

} 
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Gamma MethodDeclarator(Gamma gamma, Dual d) : 
{String id;} 
{ 
<IDENTIFIER> {id = token.image;} 
gamma = Formalparameters() ( "[" "]" )* 
{ 
d.id = id; 
return gamma; 

} 
} 

Gamma Formalparameters() : 
{Gamma temp = new Gamma("temp");} 
{ 

"(" [ temp = Formalparameter(temp) ( "," temp = Formalparameter(temp) 
)* ] ")" 

{return temp;} 
} 

Gamma Formalparameter(Gamma gamma) : 
{String id;} 
{ 
Type() id = VariableDeclaratorld() 
{ 
gamma = gamma.Append(new Gammaltemfid, sg.NextSymbol(),"var")); 
return gamma; 

} 
} 

Triple ConstructorDeclaration(Gamma gamma) : 
{Triple cs = null;} 
{ 

[ "public" | "protected" | "private" ] 
<IDENTIFIER> gamma = Formalparameters() [ "throws" NameListO ] 
"{" //[ L00KAHEAD(2) ExplicitConstructorlnvocation() ] 

( cs = BlockStatement(gamma) )* "}" 
{return cs;} 

} 

/* 
void ExplicitConstructorlnvocation() : 
{} 
{ 

"this" Arguments() ";" 
I 
"super" Arguments() ";" 

} 
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void Static-Initializer () : 
{} 
i 
i 

"static" Block()) 

1 
*/ 

/* 
* Type, name and expression syntax follows. 
*/ 

void Type() : 

{} v 

{ 
( PrimitiveTypeO | Name () ) (»[»»]»)* 

} 

void PrimitiveTypeO : 
{} 
{ 
"boolean" 

I 
"char" 

I 
"byte" 

I 
"short" 

I 
"int" 

"long" 

I 
"float" 

I 
"double" 

} 

void ResultTypeO : 
{} 
{ 

"void" 

I 
Type() 
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String Name() : 
/* 
* A lookahead of 2 is required below since "Name" can be followed 
* by a ".*" when used in the context of an "ImportDeclaration". 
*/ 
{String id;} 
{ 
<IDENTIFIER> 
{id = token.image;} 

//  ( LOOKAHEAD(2) "." <IDENTIFIER> )* 
{return id;} 

} 

void NameList() : 
{} 
{ 
Name() 
( ", " Name() 
)* 

} 

/* 
* Expression syntax follows. 
*/ 

Triple Expression(Gamma gamma) : 
{Triple cs;} 
{ 

( LOOKAHEAD( PrimaryExpression(gamma) AssignmentOperator() ) 
cs = Assignment(gamma) 

I 
cs = ConditionalOrExpression(gamma) ) 
{return cs;} 

} 
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Triple Assignment(Gamma gamma) : 
{ 
String id; 
Triple cs; 

} 
{ 
id = PrimaryLeftExpressionO AssignmentOperator () cs = 

Expression(gamma) 
{ 
Gammaltem item = gamma.FindType(id); 
if(item != null){ 

String mod = item.getModifier() ; 
if(mod.equals("var") || mod.equals("ace")){ 

String tau = item.getType(); 
String tauPrime = cs.getType(); 
String alpha = sg.NextSymbol(); 
Constraintltem cil = new ConstraintItem(tau,tauPrime); 
Constraintltem ci2 = new ConstraintItem(tauPrime,tau); 
Constraintltem ci3 = new ConstraintItem(alpha,tauPrime); 
cs = cs.Append(cil); 
cs = cs.Append(ci2) ; 
cs = cs.Append(ci3); 
cs.setModifier("cmd") ; 
cs.setType(alpha); 

} 
else{ 

System. err.println("Secure Parse failed"); 
System.exit(0); 

}//end if 
} 
else{ 

System, out.println("Unrecognized variable " + id); 
System.exit(0); 

}//end if 
return cs; 

} 
} 

void AssignmentOperator() : 
{} 
{ 

»— tl   |   II * _ II   |   III _ It   I   " % — "   I   " _|__ It   j   II ___ II   |   tl <<-=- II   I   II »= II   |   II >»=« 

M £ = "   I   " A_«   I   If I _ l| 

} 

/* 
void ConditionalExpression() : 
{} 
{ 
ConditionalOrExpressionO [ "?" Expression() ":" 

ConditionalExpressionO ] 
} 
*/ 
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Triple ConditionalOrExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null;} 

{ 
csl = ConditionalAndExpression(gamma) ( "||" cs2 = 

ConditionalAndExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 
} 
)* 
{return csl;} 

} 

Triple ConditionalAndExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

} 
{ 

csl = InclusiveOrExpression(gamma) ( "&&" cs2 = 
InclusiveOrExpression(gamma) 

{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 

{return csl;} 
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Triple InclusiveOrExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

) 
{ 

csl = ExclusiveOrExpression(gamma) ( "|" cs2 = 
ExclusiveOrExpression(gamma) 

{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = cs1.Union(cs2).Append(cil).Append(ci2); 

} 
} 
)* 
{return csl;} 

Triple ExclusiveOrExpression(Gamma gamma) 

Triple csl; 
Triple cs2 = null; 

csl = AndExpression(gamma) ( "A" cs2 = AndExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new Constraintltem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 
} 
)* 
{return csl;} 
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Triple AndExpression(Gamma gamma) 
{ 
Triple csl; 
Triple cs2 = null; 

{ 
csl = EqualityExpression(gamma) ( "&" cs2 = EqualityExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

)* 
{return csl;} 

} 

Triple EqualityExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

csl = RelationalExpression(gamma) ( ( "==" | "!=" ) cs2 = 
RelationalExpression(gamma) 

{ 
if(cs2 != null){ 

String taul = csl.getType (); 
String tau2 = cs2.getType(); 
Constraintltem cil = new Constraintltemftaul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

)* 
{return csl; 

} 

/* 
void InstanceOfExpressionf) : 
{} 
{ 
RelationalExpression() [ "instanceof" Type() ] 

} 
*/ 
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Triple RelationalExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

} 
{ 

csl = ShiftExpression(gamma) ( ( "<" | ">" | "<=" | ">=" ) cs2 = 
ShiftExpression(gamma) 

{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 
} 

)* 
{return csl;} 

Triple ShiftExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

J 
{ 
csl = AdditiveExpression (gamma) ( ( "«" | "»" | ">»" ) cs2 

AdditiveExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 
} 
)* 
{return csl;} 

} 
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Triple AdditiveExpression(Gamma gamma) : 
{ 
Triple csl; 
Triple cs2 = null; 

} 
{ 
csl = MultiplicativeExpression(gamma) ( ( "+" | "-" ) cs2 = 

MultiplicativeExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new Constraintltemftaul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2, taul) ; 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} 

return csl; 
} 

} 

Triple MultiplicativeExpression(Gamma gamma) : 

Triple csl; 
Triple cs2 = null; 

} 
{ 
csl = UnaryExpression(gamma) ( ( "*" | "/" | "%" ) cs2 = 

UnaryExpression(gamma) 
{ 
if(cs2 != null){ 

String taul = cs1.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new ConstraintItem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2).Append(cil).Append(ci2); 

} ) 
{ 
return csl; 

} 
} 
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Triple UnaryExpression(Gamma gamma) : 
{Triple cs;) 
{ 

(( »+» | »_» ) cs _ UnaryExpression(gamma) 
I 
/* 

PrelncrementExpression() 
I 
PreDecrementExpression() 

I 
*/ 

cs = UnaryExpressionNotPlusMinus(gamma) ) 
{return cs;} 

/* 
void PrelncrementExpressionI 
{} 
{ 

"++" PrimaryExpressionO 

void PreDecrementExpression() : 
{} 
{ 
"—" PrimaryExpressionO 

} 
*/ 

Triple UnaryExpressionNotPlusMinus(Gamma gamma) 
{Triple cs;) 
{ 
H "~" I "!" ) cs = UnaryExpression(gamma) 

I 
/* 

LOOKAHEAD( CastLookahead() ) 
CastExpression() 

I 
*/ 

cs = PostfixExpression(gamma) ) 
{return cs;} 

} 
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/* 
// This production is to determine lookahead only.  The LOOKAHEAD 
// specifications below are not used, but they are there just to 
// indicate that we know about this. 
void CastLookaheadO : 
{} 
{ 
LOOKAHEAD(2) 
"(" PrimitiveType() 

LOOKAHEAD("(" Name() "[") 
"(" Name() "[" "]" 

II / II Named ")" ( "~" I "!" | "(" | <IDENTIFIER> | "this" | "super' 
"new" | Literal() ) 
} 
*/ 

Triple PostfixExpression(Gamma gamma) : 
{Triple cs;} 
{ 

cs = PrimaryExpression(gamma) //[ "++" | "—" ] 
{return cs;} 

} 

/* 
void CastExpressionf) : 
{} 
{ 

(LOOKAHEAD(2) 
"(" PrimitiveType() ( "[" "]" )* ")" UnaryExpression() 

I 
" (" Named ( "[" "] " )* ")" UnaryExpressionNotPlusMinus () ) 

} 
*/ 

Triple PrimaryExpression(Gamma gamma) : 
{Triple cs = null;] 
{ 

cs = PrimaryPrefix(gamma) //( PrimarySuffix(gamma) )* 

{return cs;} 
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Triple PrimaryPrefix(Gamma gamma) : 
{ 
Triple cs = null; 
Triple csl = null; 
Triple cs2 = null; 
String id = null; 
Gamma temp = null; 

} 
{ 

(cs = Literal() 
I 

["this" "."] id = Named 
{ 
Gammaltem item = gamma.FindType(id); 
if(item != null){ 

String mod = item.getModifier(); 
if(mod.equals("var") || mod.equals("")){ 

String tau = item.getType(); 
String alpha = sg.NextSymbol(); 
Constraintltem cil = new ConstraintItem(tau,alpha); 
cs = new Triple(cil,alpha,""); 

} 
else if(mod.equals("proc")){ 

temp = item.getParam(); 
} 
else{ 

System.err.println("Secure Parse failed"); 
System.exit(0); 

}//end if 
} 
else{ 

System, out.println("Undefined variable: " + id); 
//   System.exit(0); 

temp = new Gamma("temp").Append(new Gammaltemf"",sg,"")); 
}//end if 

} 
[ "(" [ csl = PrimaryPrefix(gamma) 
{ 
//create constraint type(csl) = type(param) 
String tauPrime = csl.getType(); 
String taul = ((Gammaltem)temp.getFromList()).getType(); 
temp.removeFromList{); 
Constraintltem cil = new ConstraintItem(taul,tauPrime); 
Constraintltem ci2 = new ConstraintItem(tauPrime,taul); 

//add constraint to csl 
csl = csl.Append(cil).Append(ci2); 
cs = csl; 

} 
( "," cs2 = PrimaryPrefix(gamma) 
{ 
//create constraint type(cs2) = type(param) 
String tauDoublePrime = cs2.getType(); 
String tau2 = ((Gammaltem)temp.getFromList()).getType(); 
temp.removeFromList(); 
Constraintltem ci3 = new Constraintltem(tau2,tauDoublePrime) ; 
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Constraintltem ci4 = new ConstraintltemftauDoublePrime, tau2); 

//csl Union cs2 
csl = csl.Union(cs2); 

//add constraint to csl 
csl = cs1.Append(ci3).Append(ci4); 
cs = csl; 

} 
)* ] ") " ] 

/* 
I 
"this" 

I 
"super" "." <IDENTIFIER> 

*/ 

(" cs = Expression(gamma) ")" 
ft f IT 

AllocationExpression(' 
*/ 

) 
{ return cs;} 

} 

/* 
Triple PrimarySuffix() : 
{} 
{ 

"[" Expression() "] " 
I 

"." <IDENTIFIER> 
I 
Arguments() 

'/ 

String PrimaryLeftExpression() : 
{} 
{ 

[ "(" ] [ "this" "." ] Named [ ") " ] 
{return token.image;} 

} 
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Triple Literal() : 
{} 
{ 

( <INTEGER_LITERAL> 
I 
<FLOATING_POINT_LITERAL> 

I 
<CHARACTER_LITERAL> 

I 
<STRING_LITERAL> 

I 
BooleanLiteral() 

I 
NullLiteralO ) 
{return new Triple(sg.NextSymbol(),""); 

void BooleanLiteral() : 
{} 
{ 

"true" 
I 
"false" 

} 

void NullLiteralO : 
{} 
{ 

"null" 
} 

/* 
void Arguments() : 
{} 
{ 

"(" [ ArgumentListf) ] ")" 
} 

Triple ArgumentList(Gamma gamma) : 
{} 
{ 
Expression;) ( "," Expression() )* 
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void AllocationExpression() : 
{} 
{ 
L00KAHEAD(2) 
"new" PrimitiveType () ArrayDimensions() 

I 
"new" Name() ( Arguments () | ArrayDimensions () ) 

*/ 

/* The second LOOKAHEAD specification below is to parse to 
* PrimarySuffixif there is an expression between the "r. . .1"  */ 

/■* 

void ArrayDimensions() : 
{} 
{ 

( L00KAHEAD(2) "[" Expression() "]" )+ ( L00KAHEAD(2) "[" "] " )* 

*/ 

/* 
* Statement syntax follows. 
*/ 

Triple Statement(Gamma gamma) : 
{Triple cs = null;) 
{ 

(LOOKAHEAD(2) 
/* 

LabeledStatement() 

/ 
cs = Block(gamma) 

cs = EmptyStatement(gamma) 

cs = StatementExpression(gamma) ";" 

* 

SwitchStatement() 

/ 
cs = IfStatement(gamma) 

■cs = WhileStatement(gamma) 

cs = DoStatement(gamma) 

ForStatement() 

BreakStatement() 

ContinueStatement() 

ReturnStatement() 
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ThrowStatement() 
I 
SynchronizedStatement() 

I 
TryStatement() 

*/ 
) 
{return cs;} 

} 

/* 
void LabeledStatement() : 
{} 
{ 
<IDENTIFIER> ":" Statement() 

} 
*/ 

Triple Block(Gamma gamma) : 
{Triple cs;} 
{ 

"{" cs = BlockStatementList(gamma) "}" 
{return cs; } 

} 

Triple BlockStatementList(Gamma gamma) : 
{ 
Triple csl = null; 
Triple cs2; 

( L00KAHEAD(2) cs2 = BlockStatement(gamma) 
{ 
if(cs2 != null){ 

if(csl == null){ 
csl = cs2; 

} 
else{ 

String taul = csl.getType(); 
String tau2 = cs2.getType(); 
Constraintltem cil = new Constraintltem(taul,tau2); 
Constraintltem ci2 = new ConstraintItem(tau2,taul); 
csl = csl.Union(cs2); 
csl = csl.Append(cil); 
csl = cs1.Append(ci2); 

}//end if 
}//end if 

} 
)* 
{return csl;} 
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Triple BlockStatement(Gamma gamma) : 
{Triple cs;} 
{ 

(LOOKAHEAD(Type() <IDENTIFIER>) 
cs = LetvarStatement(gamma) 

I 
cs = Statement(gamma)) 
{return cs;} 

} 

Triple LetvarStatement (Gamma gamma) 
{ 
Dual d; 
Triple cs = null; 

} 
{ 
d = LocalVariableDeclaration(gamma) 
{gamma = d.gamma;} 
cs = BlockStatementList(gamma) 
{ 
if(cs != null){ 

cs.Union(d.cs); 
cs.setModifier("cmd") ; 

} 
else{ 

cs = d.cs; 
} 
return cs; 

} 

Dual LocalVariableDeclaration(Gamma gamma) : 
{Dual d;} 
{ 
Type() 
d = VariableDeclarator(gamma) 
( "," VariableDeclarator(gamma) )* 
{return d;) 

} 

Triple EmptyStatement(Gamma gamma) : 
{} 
{ 

II . II / 
{return new Triple(sg.NextSymbol(),"cmd"); 

} 
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Triple StatementExpression(Gamma gamma) : 
/* 
* The last expansion of this production accepts more than the legal 
* Java expansions for StatementExpression. 
*/ 
{Triple cs;} 
{ 

( LOOKAHEAD( PrimaryExpression(gamma) AssignmentOperator(gamma) ) 
cs = Assignment(gamma) 

I 
cs = PostfixExpression(gamma) ) 
{return cs;} 

} 

/* 
void SwitchStatement() : 
{} 
{ 
"switch" "(" Expression() ")" "{" 

( SwitchLabel() ( BlockStatement() )* )* 
II 1 II 

} 

void SwitchLabel() : 
{} 
{ 
"case" Expression() "s" 

"default" ":" 
} 
*/ 
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Triple IfStatement(Gamma gamma) : 
/* 

* The disambiguating algorithm of JavaCC automatically binds dangling 
* else's to the innermost if statement.  The LOOKAHEAD specification 
* is to tell JavaCC that we know what we are doing. 
V 

{ 
Triple cs; 
Triple csl; 
Triple cs2 = null; 

1 
{ 

"if" "(" cs = Expression(gamma) ")" 
csl = Statement(gamma) 
[ LOOKAHEAD(1) "else" cs2 = Statement(gamma) ] 
{ 
String tau = cs.getType(); 
String taul = csl.getType(); 
String alpha = sg.NextSymbol(); 
Constraintltem cil = new Constraintltemftau,taul); 
Constraintltem ci2 = new ConstraintItem(taul,tau); 
Constraintltem ci3 = new ConstraintItem(alpha,tau); 
cs = cs.Union(csl).Append(cil).Append(ci2).Append(ci3); 
cs.setType(alpha); 
cs.setModifier("cmd"); 
if(cs2 != null){ 

String tau2 = cs2.getType(); 
Constraintltem ci4 = new Constraintltem(tau,tau2); 
Constraintltem ci5 = new ConstraintItem(tau2,tau); 
Constraintltem ci6 = new ConstraintItem(taul,tau2); 
Constraintltem ci7 = new ConstraintItem(tau2,taul); 
cs = 

cs.Union(cs2).Append(ci4).Append(ci5).Append(ci6).Append(ci7); 
}//end if 
return cs; 

} 
} 
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Triple WhileStatement(Gamma gamma) 
{ 
Triple csl = null; 
Triple cs2 = null; 

{ 
"while" "(" csl = Expression(gamma) ")" cs2 = Statement(gamma) 
{ 
String tau = csl.getType(); 
String tauPrime = cs2.getType(); 
String alpha = sg.NextSymbol(); 
Constraintltem cil = new ConstraintItem(tau,tauPrime); 
Constraintltem ci2 = new Constraintltem(tauPrime,tau); 
Constraintltem ci3 = new Constraintltem(alpha, tau); 
csl = csl.Union(cs2).Append(cil).Append(ci2).Append(ci3); 
csl.setType(alpha); 
csl.setModifier("cmd") ; 
return csl; 

} 

Triple DoStatement(Gamma gamma) : 
{ 
Triple csl = null; 
Triple cs2 = null; 

} 
{ 

"do" cs2 = Statement(gamma) "while" "(" csl = Expression(gamma) ") 

{ 
String tau = csl.getType(); 
String tauPrime = cs2.getType() ; 
String alpha = sg.NextSymbol(); 
Constraintltem cil = new Constraintltem(tau,tauPrime); 
Constraintltem ci2 = new Constraintltem(tauPrime,tau); 
Constraintltem ci3 = new ConstraintItem(alpha,tau); 
csl = csl.Union(cs2).Append(cil).Append(ci2).Append(ci3) 
csl.setType(alpha); 
csl.setModifier("cmd"); 
return csl; 

} 

/* 
void ForStatement() : 
{} 
{ 

"for" "(" [ ForlnitO ] ";" 
[ Expression() ] ";" 
[ ForUpdateO ] ")" 

Statement() 
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void ForlnitO : 
{} 
{ 
LOOKAHEAD( Type() <IDENTIFIER> ) 
LocalVariableDeclaration() 

I 
StatementExpressionList() 

void StatementExpressionList() : 
{} 
{ 
StatementExpressionO ( "," StatementExpression() )* 

void ForUpdatef) : 
{} 
{ 
StatementExpressionList() 

) 

void BreakStatement() : 
O 
{ 
"break" [ <IDENTIFIER> ] ";" 

} 

void ContinueStatement() : 
{} 
{ 
"continue" [ <IDENTIFIER> ] ";" 

} 

void ReturnStatement() : 
{} 
{ 

"return" [ Expression!) ] ";" 

void ThrowStatement() : 
{} 
{ 

"throw" Expression() ";" 

void SynchronizedStatement() : 
{} 
{ 
"synchronized" "(" Expression() ")" Block() 

} 
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void TryStatement() : 
{} 
{ 

"try"  Block() 
( "catch" "(" Formalparameter() ")" Block{} )* 
[ "finally" Block() ] 

} 
*/ 
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APPENDIX B - STATIC ANALYZER SOURCE CODE 
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// File: Gamma.java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer.  Basically a linked list. 
//***************+**********************^***+************************** 

package thesis; 

import java.io.*; 

public class Gamma 
{ 
protected Object obj; 
protected Gamma next; 
protected Gamma rear = null; 
public String name; 

public Gamma(String name) 
{ 
this.obj = null; 
this.next = this; 
this.name = name; 

if(rear == null) 
rear = this; 

} 

private Gamma() 
{ 
this.obj = null; 
this.next = this; 

public Object getFromList() 
{ 
return this.obj; 

public Gamma removeFromList() 
{ 
return this.next; 

public synchronized boolean isEmptyO 
{ 
if(this == rear) 

return true; 
else 

return false; 
} 
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public Gamma Append(Gammaltem gi) 
{ 
Gamma g = new Gamma() ; 
g.obj = gi; 
g.next = this; 
return g; 

public Gammaltem FindType(String name) 
{ 
Gammaltem temp = null; 
Gamma list = this; 
boolean matchFound = false; 

do{ 
ifdist.obj == null) 

return null; 

String item = ((Gammaltem)list.obj).Name; 

if(item.equals(name) ) { 
temp = (Gammaltem)list.obj; 
matchFound = true; 

} 
else{ 

list = (Gamma)list.next; 
}//end if 

}while(!matchFound); 

return temp; 
} 

public String toStringO 
{ 
if(isEmpty()) 

return ""; 
else 

return(this.obj + "" + this.next); 
} 

}//end gamma class 
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// File: Gammaltem.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer.  It is an item to be placed into gamma. The 
// structure consists of a name and a type.  The type may 
// consist of 1-3 fields. 
//*********************** + * + ********* + ** + ■), + + + + + + + **** + + + + + + + + + + + + + + + + + + 

package thesis; 

import java.io.*; 

public class Gammaltem 
{ 
protected String Name; 
protected String Type; 
protected string Modifier; 
private Gamma param; 

public Gammaltem(String Name, SymbolGenerator sg, String mod) 

this.Name = Name; 
this.Type = sg.NextSymbol(); 
this.Modifier = mod; 

public Gammaltem(String Name, String Type, String mod) 
{ 
this.Name = Name; 
this.Type = Type; 
this.Modifier = mod; 

} 

public void setParam(Gamma gamma) 
{ 
this.param - gamma; 

1 

public Gamma getParam() 
{ 
return this.param; 

} 

public String getName() 
{ 
return this.Name; 

} 

public String getType() 
{ 
return this.Type; 
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public String getModifier{) 
{ 
return this.Modifier; 

} 

public String toStringO 
{ 
if(Modifier.equals("proc")){ 

return ("("+ Name +":"+ Type + Modifier +"("+ param +")"+")"); 
} 
else{ 

return ( "(" + Name + ":" + Type + Modifier + ")" ); 
}//end if 

} 
}//end class 
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//****************************************************** + *** + *^^ + ^^ 
//     File: Triple.Java 
//  Date: 24 Feb 98 
// 
//  Author: LT James D. Harvey, USN 
// 

//  Purpose:  Developed as part of a secure information flow static 
// analyzer.  The structure consists of a constraint set 
l/ and a principle type.  The type may consist of 1-2 
// fields. 
//******************* *************************** ********** ******* ****** 

package thesis; 

public class Triple 
{ 
private LinkedList ConstraintSet; 
private String Type; 
private String TypeModifier; 

public Triple() 
{ 
this.Type = "Type"; 
this.TypeModifier = "mod"; 
ConstraintSet = new LinkedList("name"); 

} 

public Triple(Constraintltem ci, string Type, string Modifier) 

ConstraintSet = new LinkedList("name"); 
this.Type = Type; 
this.TypeModifier = Modifier; 
ConstraintSet = ConstraintSet.addToList(ci); 

} 

public Triple(LinkedList ConstraintSet, String Type, String Modifier) 

this.Type = Type; 
this.TypeModifier = Modifier; 
this.ConstraintSet = ConstraintSet; 

} 

public Triple(String Type, String Modifier) 
{ 
this.Type = Type; 
this.TypeModifier = Modifier; 
ConstraintSet = new LinkedList("name"); 

} 

public String getType() 
{ 
return this.Type; 
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public String getModifier() 

return this.TypeModifier; 

public void setModifier(String Modifier) 

this.TypeModifier = Modifier; 

public void setType(String type) 

this.Type = type; 

public Triple Union(Triple setTwo) 

LinkedList temp = this.ConstraintSet; 
if((Constraintltem)temp.obj == null){ 

return new Triple(setTwo.ConstraintSet,this.Type, 
this.TypeModifier); 

while(temp.next.obj != null){ 
temp = temp.next; 

} 

temp.next = setTwo.ConstraintSet; 
this.ConstraintSet.rear = setTwo.ConstraintSet.rear; 
return new Triple(this.ConstraintSet,this.Type,this.TypeModifier); 

} 

public Triple Append(Constraintltem C) 
{ 
return new Triple(this.ConstraintSet.addToList(C), this.Type, 

this.TypeModifier); 
} 

public String toStringO 
{ 
return("{"+"["+ ConstraintSet +"]"+","+ Type + TypeModifier +"}" ); 

} 
}//end class 
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//************************************************+*+++*+++^++^+llrllr;lr^ 
// File: Constraintltem.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer.  The structure consists two types. 
//******************************************************************* 
package thesis; 

public class Constraintltem 
{ 
protected String Typel; 
protected String Type2; 

public ConstraintltemfString Typel, String Type2) 

this.Typel = Typel; 
this.Type2 = Type2; 

public String toStringO 
{ 
return ( "(" + Typel + "," + Type2 + ")" ); 
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// File: LinkedList.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer. 
//***************************************VHt + + + lt + + ^SHt^^ + + + + + + + ^^ + + + + + + 
package thesis; 

public class LinkedList 
{ 
protected Object ob j; 
protected LinkedList next; 
protected LinkedList rear = null; 
public String name; 

public LinkedList(String name) 
{ 
this.obj = null; 
this.next = this; 
this.name = name; 

if(rear == null) 
rear = this; 

} 

private LinkedList() 
{ 
this.obj = null; 
this.next = this; 

public LinkedList addToList(Object o) 
{ 
LinkedList 1 = new LinkedList(); 
l.obj = o; 
l.next = this; • 
return 1; 

public Object getFromList() 
{ 
return this.obj; 

} 

public LinkedList removeFromList() 
{ 
return this.next; 

} 
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public synchronized boolean isEmptyO 
{ 
if(this == rear) 

return true; 
else 

return false; 

public String toString() 
{ 
if(isEmpty()) 

return ""; 
else 

return(this.obj + " " + this.next); 
} 

//end class 
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//**** + **** + *********************** + + ****** + + ***** + *****+* + ** + + * + + + ***•; 

// File: SymbolGenetator.java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer. Generates new type variables 
//***+********+*+++*+++***********++********+****+^++++++^+++++^+++++ 

package thesis; 

import java.io.*; 
import Java.lang.*; 

public class SymbolGenerator 
{ 
private int counter = 0; 
private static String TAU = "tau"; 

public synchronized String NextSymbol() 
{ 
String Symbol = TAU + counter; 
counter++; 
return Symbol; 

} 

public static void main(String [] args) 
{ 
SymbolGenerator sg = new SymbolGenerator(); 

for(int i = 0; i < 10; i++){ 
Systern.out.println(sg.NextSymbol()); 

i 

} 
}//end class 
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//  File: SymbolGenetator.Java 
//  Date: 24 Feb 98 
// 
//  Author: LT James D. Harvey, USN 
// 
//  Purpose:  Developed as part of a secure information flow static 
// analyzer. A data structure 
//************************ + ************* + ******•*■ + ********•******** + *** 

package thesis; 

public class Dual 
{ 
public Triple cs; 
public Gamma gamma; 
public String id; 

public Dual(Triple cs, Gamma gamma) 
{ 
this.cs = cs; 
this.gamma = gamma; 

} 

78 



APPENDIX C - TEST PROGRAMS 
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// File: test.java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer. 

class test 
{ 
public static void pl(int x, int y) 
{ 

y = x; 
} 

The output of the static analyzer on the above program produced the following results: 

Constraint set: {x3 < x2, X2 = Xi, to < X2} 

Gamma: pi : x3proc (x0var,   xivar) 

Results show, with x: x0var and y: xivar, that x0 < Xi. This is what we would expect to 
ensure secure flow since the program assigns the value of x to y. 
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// File: test.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information flow static 
// analyzer. 
//******************************************** + *vtvtvt + + vt + + + jt + + + + ^ + Jr + ^ + Jr 

class  test 
{ 
public static void pi(int x, int y) 
{ 
if(x == 0) 

y = 0; 
else 

y = l; 
} 

} 

The output of the static analyzer on the above program produced the following results: 

Constraint set: {x7 = x5, x7 = x2, x8 < x2, x5 = x2, x3 = x2, 

TO < X2, X5 < X4, X4 = Xi, X7 < X6, X6 = Xi  } 

Gamma: pi : xsproc(xovar,   xivar) 
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// File: test.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information 
// flow static analyzer. 

class test 
{ 
public static void pi (int x, int y) 
{ 
int a = x; 
int b = 0; 
while (a > 0){ 

b = b + 1; 
a = a' - 1; 

} 
y = b; 

} 

The output of the static analyzer on the above program produced the following results: 

Constraint set: {xI4 = x12, x12 < x4, x8 = x4, x5 = x4, x2 < x4, xu = x8, 

t8 < X6, X6 = X3, Xi = Xe, X3 < Xe, Xn < X9, X9 = X2, 

XlO = X9, X2 < X% Ti4 < Xn, Xi = XB, X3 < Xi3, X0 < X2} 

Gamma =       p 1: t12 proc(x0var, xivar) 

A partial trace of the analysis of this program is shown in Chapter VI. 
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// File: test.Java 
// Date: 24 Feb 98 
// 
// Author: LT James D. Harvey, USN 
// 
// Purpose:  Developed as part of a secure information 
// flow static analyzer. 

class test 
{ 
public static void pi(int x, int y) 
{ 
int a = x; 
int b = 0; 
while (a > 0){ 

b = b + 1; 
a = a - 1; 

) 
y = b; 

} 

public static void p2(int a, int b) 
{ 

a = a + 4; 
b = b + 2; 

if(a > b){ 
pl(b,a); 

}else{ 
pl(a,b); 

} 
b = a + b; 

} 
public static void main() 
{ 
int s = 1; 
int t = 8; 
do{ 

p2(2,t); 
t = t - 1; 

}while(t > 3) ; 
} 
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The output of the static analyzer on the above program produced the following results: 

1. The First procedure, p 1, produces: 

Constraint set: {xu = xn,T12 < x4, x6 = x4, x5 = x4, x2 < x4, x9 = x6, 

Xs < X6, X6 = T3, X7 = X6, X3 < X6, T11 < X9, T9 = X2, 

XlO = X9, X2 < X9, X14 < X13, To = Xi, X3 < X13, X0 < T2 } 

Gamma: pi: Xi2proc(x0var,   Tivar) 

2. The second procedure, p2, produces: 

Constraint set: {x3o = TJ7, x29 = x17, x20 = xn, x]9 < Tn, Xn = x15, 

Xl8 = X17, T15 < X17, X22 < X2o, X20 = Xi6, X2i = X20, 

Xl6 < X20, X27 = X25, X27 = X23, X^ < X23, X25 = X23, 

X24 = X23, X15 < X23, Xi6 < X24, X26 = Xo, X25 = To, 

Tl6 < X25, T15 < X26, X28 = To, T27 = To, T15 < T27, T16 < T2g, 

T32 < T30, T30 = Ti6, T31 = T30, T15 < T30, Tie < T31  } 

Gamma: p2 : Tnproc(Ti5var,   Ti6var), 

pi : Ti?proc(T0var,   Tivar) 

3. The third procedure, main, produces: 

Constraint set: {T42 < T4O, T35 = x4o, x4i = x^, x34 < x40, 

T37 = T35, T36 = T15, T35 = T15, T34 < T36, 

T39 < T37, T37 = T34, X38 = T37, T34 < T37 } 

Gamma: main : T42proc (), 

p2 : T17 proc (a: Ti5var,   b: Ti6var), 

pi : T12proc (x: T0var,   y: Tivar) 

4. Gamma is updated with each procedure. 
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