
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A STATIC SECURE FLOW

ANALYZER FOR A
SUBSET OF JAVA

by

James D. Harvey

March, 1998

Thesis Advisor:
Second Reader:

Dennis M. Volpano
Craig W. Rasmussen

INO

Approved for public release; distribution is unlimited.

'$££ QUALITY INSPECTED 3,

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A STATIC SECURE FLOW ANALYZER FOR A SUBSET OF JAVA
6. AUTHOR(S)
Harvey James D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ~~~

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As the number of computers and computer systems in existence has grown over the past few decades,
we have come to depend on them to maintain the security of private or sensitive information The execution
of a program may cause leaks of private or sensitive information from the computer. Static secure flow
analysis is an attempt to detect these leaks prior to program execution.

It is possible to analyze programs by hand, but this is often impractical for large programs. A better
approach is to automate the analysis, which is what this thesis explores.

We describe some previous research and give background information about secure flow analysis. A
secure flow analyzer is presented. It implements a secure flow type inference algorithm, for a subset of Java
1.0.2, using a parser generator called Java Compiler Compiler (JavaCC). Semantic actions are inserted into a
grammar specification to perform the secure flow analysis on a given program.

14. SUBJECT TERMS

Secure Flow Analysis, Type Inference, Program Certification, Information Flow, Protection

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES

98

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

u

Approved for public release; distribution is unlimited

A STATIC SECURE FLOW ANALYZER FOR A SUBSET OF JAVA

James D. Harvey
Lieutenant, United States Navy

B.S., The Ohio State University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1998

Author:

Approved by:

Dennis M. Volpano, Thesis Advisor

Craig_W- Rasmussen, Second Reader

c te-j^

Dan Boger, Chairman
Department of Computer Science

in

IV

ABSTRACT

As the number of computers and computer systems in existence has grown over

the past few decades, we have come to depend on them to maintain the security of private

or sensitive information. The execution of a program may cause leaks of private or

sensitive information from the computer. Static secure flow analysis is an attempt to

detect these leaks prior to program execution.

It is possible to analyze programs by hand, but this is often impractical for large

programs. A better approach is to automate the analysis; which is what this thesis

explores.

We describe some previous research and give background information about

secure flow analysis. A secure flow analyzer is presented. It implements a secure flow

type inference algorithm, for a subset of Java 1.0.2, using a parser generator called Java

Compiler Compiler (JavaCC). Semantic actions are inserted into a grammar specification

to perform the secure flow analysis on a given program.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. SECURE INFORMATION FLOW 1

B. A TYPE BASED TREATMENT OF SECURE INFORMATION
FLOW 2

C. A TYPE INFERENCE ALGORITHM 2

D. AN APPLICATION OF THE ALGORITHM. 3

E. THESIS ORGANIZATION 4

II. THE LATTICE MODEL OF SECURE INFORMATION FLOW. 5

III. A SECURE FLOW TYPE SYSTEM 7

IV. A SECURE FLOW TYPE INFERENCE ALGORITHM 11

V. IMPLEMENTATION OF THE TYPE INFERENCE ALGORITHM 15

A. BASIC DESCRIPTION OF A JAVACC GRAMMAR
SPECIFICATION 15

B. IMPLEMENTING THE ALGORITHM USING JAVACC 17

C. RESTRICTIONS IMPOSED ON PROGRAMS 24

VI. AN EXAMPLE RUN OF THE STATIC ANALYZER 27

VII. CONCLUSIONS 29

LIST OF REFFERENCES 31

APPENDIX A. JAVA GRAMMAR SPECIFICATION 33

APPENDIX B. STATIC ANALYZER SOURCE CODE 67

APPENDIX C. TEST PROGRAMS 79

INITIAL DISTRIBUTION LIST 85

Vll

Vlll

LIST OF FIGURES

Figure 1 Core Language 11

Figure 2 Volpano-Smith Type Inference Algorithm. 12

Figure 3 Example Program. 13

Figure 4 Algorithm Results of Sample program 14

Figure 5 Algorithm Results after Type Simplification 14

Figure 6 Principle Type after Applying Monotonicity-Based Instantiations 14

Figure 7 Sample Productions 16

Figure 8 Assignment Production 21

Figure 9 Java Specification Productions to Handle Local Variable
Declarations 22

Figure 10 Specification Changes for letvar Statement 24

Figure 11 Static Analyzer Test Program. 27

Figure 12 Test Program Results 27

IX

ACKNOWLEDGEMENT

To Dr. Dennis Volpano, I would like to express my deepest thanks for being so

patient while repeatedly explaining the required concepts. Your support, guidance,

knowledge, instruction and ability to explain difficult concepts was instrumental to my

being able to complete this thesis.

To Dr. Craig Rasmussen, I would like to express my sincere gratitude for your

support, guidance, and dedication. Your attention to detail was essential through this

process.

To my wife, Cindy, and daughter, Madison, who have cheerfully put up with late

nights and missed dinners. I thank you for your support, understanding and devotion.

XI

Xll

I. INTRODUCTION

The number of computers and computer networks has exploded over the past few

decades, and computer security is a major concern. In a multi-level system where

information exists with different security classifications, such as a military computer

system, we want to protect information with a high security classification. It is desirable

to have an automated tool to detect whether information we wish to keep secret in

applications remains secret and is not leaked. This thesis introduces a program that will

statically analyze a subset of Java programs to ensure that private information is not

leaked.

A. SECURE INFORMATION FLOW

Verifying secure information flow within computer systems is necessary in order

to protect sensitive information, especially in a military system Denning and Denning

state that information flow occurs from a storage object x to another storage object y

when information stored in x is transferred to y, or used to derive information transferred

to y. A flow may be either explicit or implicit [1].

Explicit information flow occurs when information is directly copied or

transferred from one storage object to another. Consider the code segment "y := x". The

information contained in x is directly copied into y, so information flows from x to y.

The flow from x to y is independent of the value stored in x.

Implicit flow occurs when information is indirectly copied or transferred from one

storage object to another. If the variable x contains either 0 or 1, then the following code

segment will copy the value of x into y using an implicit flow:

y:=0; if (x= l)theny := 1

In this case, there is no direct flow from x to y. However, the value of x determines

whether the then statement will be executed. The flow in both of these examples is

allowed only if the security classification of y is at least that of x. For instance, if x were

classified high then y must also be classified high in order for the code to be secure [1].

B. A TYPE-BASED TREATMENT OF SECURE INFORMATION FLOW

Goguen and Meseguer introduced a notion of security for deterministic computer

systems called noninterference [2]. The basic idea is that a system has users who may

supply information with various security classifications to the system. A system satisfies

the noninterference property if its low-level outputs remain the same when its high-level

inputs are changed.

Volpano and Smith [3] have applied this idea to programming languages. When

applied to languages, the idea is that low-level program outputs are unaffected by

changes in high-level program inputs.

C. A TYPE INFERENCE ALGORITHM

Volpano and Smith go on to describe an algorithm that is defined by cases on the

phrases of a simple imperative language. The evaluation of an expression returns a

principal type and a set of typing constraints. A typing constraint is an inequality

between two types that are security levels. For example, if x is type high and x' is type

low then x' < x is a constraint. Note that x' = x is equivalent to x' < x and x < x'. It is

important to note also that the algorithm produces constraints among type variables,

where a type variable ranges over types like high and low. Constraint-set satisfiability
2

can be used on the set of constraints to determine whether illegal flows exist in the

program being analyzed, for instance, if a constraint set contains high < low.

The classifications, or types, over which type variables range, depend on the

system being modeled. In a typical military system, the types would be unclassified,

confidential, secret, and top secret. For the purposes of this discussion, we consider a

simple system of only two types, high and low, where low < high.

As an example of how the algorithm works, consider the case of the preceding

assignment statement, y := x. Assuming x and y have already been assigned the type

variables x0 and ti respectively, the following set of constraints will be generated by the

type inference algorithm:

{TO<T2, Ti = T2,T3<T2}

Therefore, the principal type of the expression is t3 cmd. The constraint set can be

simplified to {t0< Ti, T3 < i\). So, for the assignment statement y := x, the algorithm

states that the classification of y must be at least as high as the classification of x. The

second constraint allows downward coercion on command types [7].

D. AN IMPLEMENTION OF THE ALGORITHM

This thesis presents a Java program that implements the type inference algorithm.

The program is generated from a specification that is input to a compiler compiler called

JavaCC. JavaCC is a tool that reads a grammar specification written in a LEX/ YACC-

like manner and converts it into a parser for the grammar. The algorithm was

incorporated into a grammar specification for Java 1.0.2 supplied with the JavaCC

distribution. The actions specified by the algorithm were performed by adding Java code
3

(semantic actions) to the corresponding productions in the grammar specification. The

generated parser is a secure flow analyzer for a subset of Java. Several statements,

expressions, and other Java functionality were removed from the grammar specification

because they are not currently supported by the type inference algorithm

E. THESIS ORGANIZATION

Work in the area of secure information flow and a lattice model of secure

information flow are discussed in Chapter II, followed by a description of the secure flow

type system in Chapter III. The type-inference algorithm is discussed in Chapter IV. In

Chapter V, the static analyzer and the Java subset we consider are discussed. Chapter VI

gives an example run of the analyzer, and Chapter VJJ discusses some possible future

work and presents conclusions about secure flow analysis and the static analyzer.

II. THE LATTICE MODEL OF SECURE INFORMATION FLOW

The security mechanisms of most computer systems do not attempt to detect or

prevent insecure information flows. Computer system security requires that programs at

high security levels be unable to transfer information to low security users or programs.

Most access control mechanisms are concerned with direct access control and are not

concerned with information flow channels that may exist. Other systems rely on the

trustworthiness of processes [5],

In the lattice model of secure flow, a flow policy is represented by the poset

<S5 "*> [5]. S is a set of security classes and -> is a partial order, called the flow

relation. The flow relation specifies permissible flows between the security classes.

Every variable x is assigned a security class, denoted x, that is statically bound to x and

that can be determined at compile time from declarations given in the program. If x and

y are variables in a program and an information flow from x to y exists, then the flow is

allowed if x -^ y [6],

Each programming construct has a certification rule. Some rules, such as

assignment statements, certify explicit flows and other rules, such as if statements, certify

implicit flows. An assignment statement, x := y, will be certified if x -> y. The rules for

conditional constructs such as the following if statement certify implicit flows.

if x = 0 then y := 0 else z := 1

This statement is certified if x -> y and x -> z.

If the poset <S, ->> is a lattice, then there is a unique least upper bound and

greatest lower bound for any pair of classes. A simple grammar consisting of synthesized

attributes can be given to certify programs. The attributes are security classes computed
5

using the least upper bound, lub, and greatest lower bound, gib, operations. For example,

the certification requirement for the above if statement becomes the single condition

x -> glbfc z) [6],

III. A SECURE FLOW TYPE SYSTEM

Volpano, Irvine, and Smith describe a type system consisting of a set of type

inference rules and axioms for deriving typing judgements. The types of the system are

divided into three levels. One level contains data types, which we refer to as x types.

These are the security classes of Denning's model and they are partially ordered, for

example, low < high.

At the next level, are the n types. They consist of the data types x, command

types x cmd and the procedure types

xproc(xh r2 var, r3 ace)

A variable of type x var means it can store information at level x. A command has type

T cmd only if every assignment in the command is made to a variable whose security

level is x or higher. Lastly, the x in the above procedure type refers to the security level

of its body. That is, a call to a procedure of this type would have type x cmd.

At the third and final level are the p, or phrase, types. They consist of are the

% types, type x var and type x ace (we ignore type x ace). So, our procedure types, in this

this, are of the form:

xproc{x\ var,...,xn var)

The partial order on x types is extended to a subtype relation over phrase types.

The subtype relation is anti-monotonic in the types of the commands, meaning if x is a

subtype of z», then T' cmd is a subtype of x cmd. The intuition here is that if one can read

level T' (high) information then they can read level T (low) information. There is also a

7

typical type subsumption rule that states if a phrase has type p then it can be assigned a

type p' if p is a subtype of p' [7],

The typing rules of the system guarantee secure explicit and implicit flow.

Consider the typing rule for assignment:

Y |- x : x var
Y\-Q: X
;r|-x:=e : xcmd

where y is an identifier typing that maps identifiers to p types. The rule states that the

explicit flow from expression e to variable x is secure if e and x have the same security

level. This does not prevent e from having a lower security level than x, because

subtyping allows the level to be coerced upward.

The next example shows a rule that deals with a situation where an implicit flow

exists. Consider the following program phrase where x is either 0 or 1:

if x = 1 then y := 1 else y := 0

There is no explicit flow from x to y, but when the phrase is executed, y will contain the

value of x. To guarantee the implicit flow from x to y is secure, the following typing rule

is used:

y|-e: T

Y |- c : x cmd
rl-c': xcmd
y\- if e then c else c': xcmd

The commands c and c' must have type x cmd, because information of type x is implicitly

known by evaluating the predicate e. Therefore c and c' can only make assignments to

variables at security level x or higher. The rule requires e, c, and c' to have the same

security level, namely x. Nevertheless, an upward implicit flow from e to c and c' can be

accommodated by subtyping.

There is also a rule for local variable declarations. A local variable declaration of

the form

letvar x := e in c

creates a variable x with an initial value e, whose scope is command c. The initialization

of x may cause an implicit flow, but it is always harmless.

Two lemmas are needed to prove type soundness: Simple Security and

Confinement. Simple Security applies to expressions and Confinement applies to

commands. If an expression e can be assigned type T, then Simple Security states that

only variables of type x or lower will be read when e is evaluated (no read up).

Confinement says that if a command c can be assigned type x cmd, then every variable

that is updated in c has security level x or higher (no write down). These two lemmas are

used to prove that the type system is sound. Soundness is formulated as a

noninterference property. The noninterference property states that variables in a well-

typed program do not interfere with variables at lower security levels.

It is possible to automatically check whether a program is well typed, using the

techniques of type inference. The basic idea of type inference is to use type variables to

represent unknown types in a program, and to generate constraints in the form of

inequalities. An assignment of types to these variables must satisfy the constraints in

order for the program to be well typed with respect to that assignment. A principal type

can be formulated that represents all possible types the program can be given.

10

IV. A SECURE FLOW TYPE INFERENCE ALGORITHM

A type inference algorithm that ensures secure information flow is described in

this chapter. Volpano and Smith have extended the type system discussed in the previous

chapter to a simple language with first order procedures [3]. They also prove the

noninterference property for the system in order to establish the type soundness in the

context of procedures. Figure 1 shows the core language they considered.

expressions ::= x \ n \ I \
ei + e2 \
proc(in xh inout x2, out x3) c

commands ::= ct; c2 \
if e then ci else c2 \
while e do c \
ei := e2 \
letvar x := e in c \
letproc x (in xj, inout x2, out x3) c in c' \
e(e],e2,e3)

Figure 1. Core Language

For expressions, meta-variable x ranges over identifiers, n ranges over integer literals,

and / ranges over locations. Expressions also consist of anonymous procedure

expressions. Their names are provided via letproc.

Commands consist of the following: composition of commands, if, while loops,

assignment, variable declarations, procedure declarations, and procedure calls.

Volpano and Smith give a secure flow type inference algorithm in [3]. It is shown

in Figure 2 and is defined by cases on the phrases of the core language. The algorithm

takes as inputs a location typing X, an identifier typing y, a program phrase p, and a set of

11

x : cue T(X) of
r :({?<«}, a, Vu {or}) o£V
r «*r :({?<*},<*, Vu{«}) **V
defult: &ii

»:«},«,yu{«}) cr*V

^({A(l)<«},a,VU{a}) «*V

let(C,,1i,V)-»K(A,7,e1,V)

m(ftuCiu{n=5iKn,V")

proc (la st, hunzt x», out *») «:
fet (C,r «mrf.VO- W(A;T{*I :«r,x8 :0 «w.x, :* «cc],e,Vu{a,/M})
in (C.r proc(o, /9twr, « aoc),V*) a, laadtffV

«tf cj :kt<C»,n emd,V) = W(\,-j,ct,V)
let (d,% «*», V) . W(A,9>ea,V0
i» (Cj UftU{n =.T»},n «nwI.V*)

if e then ci else <?):
kt<C.?,K') = W(A,T,e,V)

'.fc£<4.'ft «noW")-!^*.?, <*>»")
let (Q,»* «*f, V") = W(A,9,«a,F")
lB(CUCtUQU{r = n=5s,«<iO,acii»d!,V*'u{ot}) «J?VW

while «doe:
tet{C,r,V')=W(A,7,e,V)
let (C,? emrf, V") « W(A,7,c,K')
5a{CUC*U(r = r',a<r),««mrf,V*'U{«f}) ojJV"

kt{C,f,V') = »r(A,%«»,V)
cateei of

x: if?Xx)=r«aror7(*) = raectkeii
(Cu{?»?,«<?'}l«MKi,yu{«}) «(fv

eke fail
I: (CU{A(0 = ?,«<r'},<rcW,Vu{«}) orffV*
debnlt :&3

letvw x:« e in c:
lettCr.VO^^X.^e.V)
kt (C,? awl.V) - ^(A.^x :?t«rj,c,V")

letproc x(in xi, burnt x», out xs) e in e*:
let (C,*, V) s W(A,9,i»6c (in. xi, burnt x», oat x,) c,V)
kt (C,r «wrf, V) = W(A,7,&m>c (in xj, burnt x», oat xs) e/xle'.V)
bt(CuC,?«»rf,V«') '

«(*»>«»>«»)•:
let (C,?pnc(Ti, ft Mr, ft «c), V*)» wr(A,7,«,»0
let(C,?'1V-)«ir(A,9.eifK')
let <?" = ewe ea of

x: if^x) = r"twr then CuCu{r*»n,?"«Ti} eke tul
I: CuCu(? = ?i1A(l) = n}
default: &Ü

in cue es of
x : if 9(x) « ?* «or or 9(x) « ?" ace then (C U {?" = ft}, f cm«f, V)

eke&a
I: (C* U {A(Q« ft},? ema, V)
defknlt : fail

Figure 2. Volpano-Smith Type Inference Algorithm

12

type variables V. A location typing maps addresses to T types and an identifier typing

maps variables to types x and x var, for some T. The latter treats free variables in a

program, while the former treats free addresses. We shall assume programs have no free

addresses, and drop A from the implementation of the type inference algorithm. The set V

contains a list of previously-used type variables and allows the algorithm to choose new

type variables. If the algorithm succeeds, it returns a triple consisting of a set of

constraints C, a type n, and the updated set of stale variables V. The constraints in C are

inequalities among type variables.

To illustrate how the algorithm works, we give an example from [3], shown in

Figure 3, of a procedure that indirectly copies a variable x to another variable y.

proc (in x, out y)
letvar a := :xin
letvar b := = 0in

while i i>0do
b:= = b+l;
a := a-1;

y:=b

Figure 3. Example Program

Figure 4 shows the results of calling the algorithm on the procedure. The algorithm yields

a triple consisting of a set of stale type variables V, the list of generated constraints and

the type of the procedure, here denoted by n. This triple is used to form the principal

type for the procedure.

Type simplification can be used to simplify the constraint set C and type n [8].

The static analyzer developed for this thesis does not include any mechanism to perform

type simplification and such simplification is shown here for demonstration purposes

13

V = {a, y, v, o, s, i, £ v, 8, TJ, 6, K, k, ß £}
C= {a<y v= o, £= i, v<s, s = £ y<e, z = v,8 = rj, i<8,

V=0,8<ri,y^K v<y K= A, y<K ß= & o<ß8<$
n- (v proc(a, ß ace))

Figure 4. Algorithm Results of Sample Program

only. The first step collapses the strongly connected types and produces a more useful

form, as shown in Figure 5.

C= {8<$o<lÄ<ö,a<X)
7i = (o proc(a, £accS)

Figure 5. Algorithm Results after Type Simplification

Further simplification is possible leading to the 7i in Figure 6.

7t = (£proc(££ ace))

Figure 6. Principal Type after Applying Monotonicity-Based Instantiations

14

V. IMPLEMENTATION OF THE TYPE INFERENCE ALGORITHM

The static analyzer that performs the security checks specified by the type

inference algorithm was developed using the Java Compiler Compiler (JavaCC). JavaCC

takes, as input, a grammar specification. The output is a Java program that will parse the

specified language and perform the semantic actions indicated in the grammar

specification.

Rather than start from scratch and build a JavaCC specification for the language

in Figure 1, we started with a grammar specification for Java 1.0.2, which we modified to

reflect the language in Figure 1. Semantic actions were added to encode the type

inference algorithm. The specification is given in Appendix A. There are several

restrictions imposed on the kinds of Java programs that the static analyzer can check

because there are many constructs in the Java language that are not currently treated in

the type inference algorithm. Each of the phrases in Figure 1 was mapped to a

corresponding expression or statement in the Java grammar specification.

A. A BRIEF LOOK AT JAVACC

JavaCC constructs a Java program that acts as a recursive descent parser for the

language described by the grammar specification. A sample from the Java 1.0.2 grammar

specification is shown in Figure 7. The sample shows three productions that are used to

parse a Java method declaration and parameters. JavaCC converts each production into a

method in the generated parser.

15

void MethodDeclarator() :
{}
{
<IDENTIFIER> Formalparameters() ("[" "]")*

}

void Formalparameters() :
{}
{

"(" [Formalparameter() ("," Formalparameter())*] ")"

void Formalparameter() :
{}
{

TypeO VariableDeclaratorldO
}

Figure 7. Sample Productions

Each production begins with the return type of the corresponding method in the

parser, which is void for the three productions in Figure 7. The name of the production

will also be the name of the method in the parser. Parameter passing can be adding to the

productions in the same way it is used in Java programs.

There is a notion of "calling" a production because of its relationship with the

corresponding method in the generated parser. For example, if the production

Formalparameter () in Figure 7 is called, it will in turn call the productions

Type () and VariableDeclaratorld () .

Java code can be added anywhere in the production, but must be enclosed in curly

braces,"{ }". When JavaCC converts the production into its corresponding method, the

added code will remain where it was placed. Local variable declarations for any

production should be inserted in the first set of curly braces ofthat production. In the

three productions shown in Figure 7, there are no local variable declarations.

16

B. IMPLEMENTING THE ALGORITHM USING JAVACC

There are two main data structures in the implementation of the algorithm. The

first is called gamma, and contains identifier typings. The second is called triple, and

consists of the items returned by the type inference algorithm, namely, a set of constraints

C, a type or, and a list of stale type variables V.

The initial attempt to implement the algorithm used two Stacks from the Java

utility package. The gamma stack held objects called gamma items. A gamma item

consisted of a variable name and its type variable. The triple stack contained the triple

items consisting of the constraint set in the form of a linked list and the principal type.

The set of stale type variables was kept in a separate symbol generator for the entire

program.

The idea of the gamma stack was to push a gamma item whenever a new variable

was encountered and to pop the stack when the variable's scope ended. It became

apparent that determining when the variable's scope ended was going to be a difficult task

unless the analyzer kept track of more information about the variables being declared.

The analyzer soon had four separate stacks to keep track of the important information.

The triple stack had similar problems.

It was determined that all of the external stacks could be eliminated if the run time

stack was utilized. In this implementation, gamma became a linked list of gamma items

that is passed as a parameter from one production to those productions it calls. In

addition, each production returns a triple that contains all the constraints generated in the

program. This did pose one problem. A local variable declaration requires an update to

17

the gamma list with the variable's type information and it also requires the generation of a

new triple item. Both must be returned to the calling production.

This problem may be overcome by adding new productions to the specification

but the productions were not added in this implementation. Instead, a new data structure

was developed to simply hold the new gamma list and the generated triple so that both

the gamma list and the generated triple could be returned. The structure, called Dual, was

later updated to also hold a string when a similar situation arose in the method declaration

production that required a gamma list and the string representation of a token to be

returned.

Each of the commands and expressions of the core language listed in Figure 1 are

"mapped" to one or more productions in the Java 1.0.2 grammar specification. Mapping

the algorithm to the Java specification was performed in two steps. The first step was to

determine which productions in the grammar specification correspond to commands or

expressions in the core language. Once the relationship between the core language and

grammar specification was established, the second step entailed encoding the semantic

actions specified by the algorithm and placing the code in the corresponding productions

of the grammar specification. We consider, in turn, each of the cases of the algorithm in

Figure 2.

Case "x"

The Name () production in the grammar file is an instance of case x. Name ()

returns a string representation of the current token when the production is called. The

type inference algorithm requires the type of x, x or x var, to be determined. The type

18

resolution of the token that corresponds to x is performed within the production that calls

Name().

Case "n"

The Literal () production is an instance of case n. Literal () accepts the

Java primitive types of integers, floating point numbers, characters, strings, boolean

values "true" and "false", and "null".

Case "I"

The third case statement, /, deals with locations and is not implemented in the

Java grammar.

Case "ei + e2"

The expressions below are all instances of case ei + e2:

ConditionalOrExpression()
ConditionalAndExpression()
InclusiveOrExpression()
ExclusiveOrExpression()
AndExpression()
EqualityExpression()
RelationExpression()
ShiftExpression()
AdditiveExpression()
MultiplicativeExpression()

Case "proc(in xt, inout x2, out X3) c"

The case in the algorithm for procedure declarations has the following form:

proc(in xi, inout x2, out x3) c

The modes of the parameters, in; inout; and out, are similar to those used in the Ada

programming language. The productions dealing with procedures starts with the

MethodDeclaration () production. The name of the procedure and the parameters

19

are treated in a call to the MethodDeclarator () production. The parameters are

added to the environment with a call to the Formalparameters () production so they

may be referenced in the body of the procedure. MethodDeclarator () returns the

procedure name and the types of the parameters. All parameters are considered to be

inout mode and are typed as such, meaning they have type r var for some T. Finally the

body of the procedure, c, is handled in a call to the Block () production. The static

analyzer does not handle recursive procedures or method declarations.

Case "ci; c2"

Next in the algorithm is the statement for composition, ci; c2. Composition within

a block, delimited by {}, is handled by the BlockStatementList () production.

The original Java grammar specification handled composition in the Block ()

production. It was necessary to add the production BlockStatementList () to

handle the letvar statement. Changes to the grammar specification for the letvar

statement are explained later in this section.

Case "if e then ci else C2"

If-then-else statements are handled by the If Statement () production in the

grammar specification. The else portion of the statement is not mandatory in Java. If it

is not used, then the semantic actions in the algorithm pertaining to the else statement are

not executed.

Case "while e do c"

The next case is the while loop of the form, while e do c. It has been mapped to

both the WhileStatement () and DoStatement () productions in the Java

specification.
20

Case "x := e"

The assignment statement x := e is mapped to Assignment (). Note that": ="

is not the only assignment operator allowed; others include: "*=", "/=", "+=" and "-="

A modification to the grammar specification was required here. The Java 1.0.2 grammar

specification Assignment () production is listed in Figure 8. The production,

PrimaryExpression (), may be evaluated as a literal (), Name (),

Expression (), or AllocationExpression (). PrimaryExpression () is

also called from a number of other productions as well and those productions require that

PrimaryExpression () return a triple consisting of a constraint set, a type, and a list

of stale type variables. However, the Assignment () production requires that

PrimaryExpression () return the type ofx from the identifier typing y. For this

reason, a new production, PrimaryLef tExpression (), was introduced into the

Grammar specification. It returns the string representation ofx, so that it may be

referenced in y, and replaces PrimaryExpression () in the Assignment ()

production.

void Assignment() :
{}
{

PrimaryExpression()AssignmentOperator()Expression()

Figure 8. Assignment Production

21

Case "letvar x := e in c"

Mapping the letvar statement to the Java language required another modification

to the Java grammar specification. The original specification handled local variable

declarations at the same level as all other statements within BlockStatement (). The

original Java specification productions that handle local variable declarations are shown

in Figure 9.

void Block() :
{}
{

"{" (BlockStatement())* "}"
}

void BlockStatement() :
U
{
LOOKAHEAD(Type() <IDENTIFIER>)
LocalVariableDeclaration() "; "

I
Statement()

}

void LocalVariableDeclaration() :
{}
{
Type() VariableDeclaratorO ("," VariableDeclarator())*

}

Figure 9. Java Specification Productions to Handle Local Variable Declarations

In the original grammar specification, composition is handled in the Block ()

production. The * operator indicates that the production(s) within the preceding set of

parentheses is called zero or more times. Two new productions,

BlockStatementList () and LetvarStatement (), were added to the grammar

specification because it is necessary to pass the identifier typing y, updated with a typing

for x, to the production that parses c in letvar x = e in c. The original Java 1.0.2 grammar

specification had no productions specified for c, so BlockStatementList () was

22

introduced to handle this problem. In the modified grammar specification, Block ()

calls BlockStatementList () once per BlockStatement ().

BlockStatementList (), the production used to handle composition, calls

BlockStatement () zero or more times. BlockStatement () calls

LetvarStatement () if a local variable declaration is found, otherwise,

Statement () is called. LetvarStatement () first calls

LocalVariableDeclaration () to handle the declaration, then

BlockStatementList () to parse the rest of the program that is within the scope the

new variable. The section of the modified grammar file is listed in Figure 10.

Case "letproc x(in xi, inout x2, out x3)c in c' "

The next case in the type inference algorithm, letproc, allows procedures to be

used polymorphically and was not implemented in the Java grammar specification.

Therefore, all procedures are treated as monomorphic in the analyzer specification.

Moreover, only static methods are allowed because that is the only kind of method the

algorithm treats.

Case "e(ei, e2, e3)"

The final case in the algorithm types procedure calls. The Java specification

handles procedure calls in the PrimaryPref ix () production. First, the

name of the procedure is found in the identifier typing, y, then the types of the arguments

are compared with those retrieved from y. The original grammar specification for Java

allowed arguments to be expressions. In the modified specification, all parameters must

be either a literal or a previously declared and initialized variable name.

23

void Block() :
{}
{

"{" BlockStatementList() "}"
}

void BlockStatementList() :
{}
{

(L00KAHEAD(2) BlockStatement())*
}

void BlockStatement() :
{}
{
LOOKAHEAD(Type() <IDENTIFIER>)
LetvarStatement()

I
Statement()

}

void LetvarStatement () :
{}
{
LocalVariableDeclarationO ";" BlockStatementList()

void LocalVariableDeclaration() :
{}
{
Type() VariableDeclaratorO ("," VariableDeclarator ())*

1

Figure 10. Specification Changes for letvar Statement

All of the source code files used to implement the static analyzer are given in

Appendix B.

C. RESTRICTIONS IMPOSED ON PROGRAMS

The type inference algorithm in [3] does not treat an object-oriented language like

Java. Although we started with a JavaCC specification for Java, the result was not an

analyzer for full Java but rather an analyzer for that subset of Java corresponding to the

simple language in Figure 1. So how big is this subset?

24

First, the subset that can be analyzed has no objects, and consequently no instance

variables or instance methods.

Second, all expressions must be free of any side effects. This is the reason that

assignment expressions in Java are prohibited, as are pre and post increment

"expressions". They all violate the confinement property.

Other restrictions on Java programs include that they be closed (no free

variables), that they have only non-recursive static methods, that they have no methods

with a return type other than void, and that they have no forward references. Yet, other

restrictions are imposed because certain constructs were not treated in the algorithm of

[3]. They include try-catch blocks, synchronized blocks and so on. In summary, the

following features of Java are not analyzed:

1. Static Initializes
2. Arrays
3. Explicit Constructor Invocation
4. Conditional Expressions
5. Instanceof Expressions
6. Preincrement and PreDecrement Expressions
7. Postincrement and PostDecrement Expressions
8. Cast Expressions
9. Allocation Expressions - (object creation)
10. Labeled Statements
11. Switch Statements
12. For Statements
13. Break Statements
14. Continue Statements
15. Return Statements
16. Throw Statements
17. Synchronized Statements
18. Try Statements
19. Catch Statements
20. Finally Statements

25

The constructs that have been disallowed have only been commented out in the

grammar specification file listed in Appendix A in order to allow for their

implementation in the future. This means they cannot be parsed in the current

implementation.

26

VI. AN EXAMPLE RUN OF THE STATIC ANALYZER

The program in Figure 11 illustrates an application of the static analyzer. It

corresponds to the example program of Figure 3, in Chapter HI, written in Java.

However, it is not identical, for Java has no parameter-passing mode corresponding to

mode out. Nevertheless, it serves to illustrate the analyzer. The results of the static

analyzer when run on this program are shown in Figure 12.

class test
{
public static void p(int x, int y)
{
int a = x;
int b = 0;
while (a > 0) {

b = b + 1;
a = a - 1;

}
y = b;

}
}

Figure 11. Static Analyzer Test Program

V - {to, Tl, 12, T3, 14, T5, X6, T7, Tg, T9, T10, Til, T12, T13, T14}

C = {TM = T12, Tl2 < T4, Tg = t4, T5 = T4, T2 < T4, tu = T8, T8 < T6, T6 = T3, T7 = T6,

X3 < X6, Tu < T9,T9 = T2,Tio = T9, T2 < T9, T14 < T13, Tl = T13, T3 < T13, T0 < T2}

7i= Ti2proc(Tovar, xivar)

Figure 12. Test Program Results

We sketch a trace of the analyzer on part of the program. The parameters, x and

y, are the first tokens to be analyzed. They are assigned the type variables T0 and Ti

27

respectively. Then the variable declaration:

int a = x

is analyzed. A new type variable for x, namely T2, is created and the constraint set

{to < T2} is generated. The constraint is generated by the case for identifiers where an

upward coercion is introduced (see Figure 2). The variable a is assigned the type

variable x2 in analyzing the rest of the program.

Next, the variable declaration:

int b = 0

is analyzed in the same manner, except that no constraint is generated since 0 is an

integer. This is the integer literal case of the type inference algorithm. Finally, b is

assigned the type variable T3. At this point, gamma contains the following types:

{x: to, y : Ti, a : T2, b : T3}

and only one constraint, To < T2, exists.

Next, the while loop

while(a > 0)

is analyzed. The predicate, a > 0, is checked first and generates the following new

constraints:

T2 < T4, T4 = T5

The first comes from the identifier case of the algorithm (upward coercion of a's type)

and the second comes from x, = T2 in the case for d + e2 in the algorithm of Figure 2,

where Tt = x4 and t2 = T5 The rest of the program is analyzed in the same manner.

28

VII. CONCLUSIONS

As we rely more on computer systems, secure flow analysis is a necessary tool to

protect the information stored on these systems. Denning's work [1] [5] provides a good

base of knowledge for secure information flow. The Lattice Model consists of a set of

storage objects, a set of processes, and a set of security classes. Each storage object is

bound statically or dynamically to a security class. Security classes are required to form

a lattice, hence the name. A flow relation indicates permitted information flows between

security classes. The lattice shows all allowed information flows within the system.

Volpano and Smith [3] treat the model in the context of a type system and prove

the soundness of the type system They also give a type inference algorithm for the

system. This thesis describes an implementation of that algorithm using JavaCC. The

result is a static analyzer that checks for secure information flow at compile-time.

The static analyzer can only analyze a subset of the Java 1.0.2 language. It may

be too limited to allow one to write interesting and useful programs. Future work might

focus on analyzing a larger subset of Java.

29

30

LIST OF REFERENCES

1. Denning, D. E. and Denning, P. E., "Certification of Programs for Secure Information
Flow," Communications of the ACM, vol. 20 no. 7, pp. 504-513, July 1977.

2. Goguen, J. and Meseguer, J., "Security Policies and Security Models," Proceedings
192 IEEE Symposium on Security and Privacy, pp. 11-20, 1982.

3. Volpano D, and Smith, G., "A Type-Based Approach to Program Security,"
Proceedings ofTAPSOFT '97, Colloquium on Formal Approaches in Software
Engineering, 14-18 April, 1997.

4. "Java Compiler Compiler," Sun Microsystems,
http://www.suntest.com/JavaCC/index.html

5. Denning, D. E., "A Lattice Model of Secure Information Flow," Communications of
the ACM, vol. 19 no. 5, pp. 236-243, May 1976.

6. Volpano, D., Irvine, C, "Secure Flow Typing," Computers and Security, vol. 16 no.2,
pp. 137-144,1997.

7. Volpano, D., Irvine, C, and Smith, G., "A Sound Type System for Secure Flow
Analysis," Journal of Computer Security, vol. 4, pp. 167-187, 1996.

8. Smith, G., "Polymorphic Type Inference for Languages with Subtyping and
Overloading," Cornell University, Technical Report, 91-1230,1991.

31

32

APPENDIX A - JAVA GRAMMAR SPECIFICATION

The following pages represent the modified Java 1.0.2 grammar specification that

is the input to the Java Compiler Compiler. The original grammar file was developed by

Sriram Sankar on 6/11/96 and is copyrighted by Sun Microsystems Inc. Semantic actions

were added to the original grammar to perform secure flow analysis on a subset of Java

1.0.2 programs.

33

l-k-k

*

* Copyright (C) 1996, 1997 Sun Microsystems Inc.*
*

*

*

Use of this file and the system it is part of is constrained by the
file COPYRIGHT in the root directory of this system. You may,
however, make any modifications you wish to this file.

* Java files generated by running JavaCC on this file (or modified
* versions of this file) may be used in exactly the same manner as
* Java files generated from any grammar developed by you.
*
* Author: Sriram Sankar
* Date: 6/11/96
*

* This file contains a Java grammar and actions that implement a
* front-end.

Modified 24 Feb 98 by LT James D. Harvey, USN.

* Modifications have been made to incorporate a type checker into the
* compiler. Several portions of the Java language have been disabled
* in this version because the type checker does not support them. The
* portions that are not implemented are as follows:

* Static Initializers
* Arrays
* Explicit Constructor Invocation
* Conditional Expressions
* Instanceof Expressions

Preincrement and PreDecrement expressions
* Cast Expressions
* Allocation Expressions
* Labeled Statements
* Switch Statements
* For Statements
* Break Statements
* Continue Statements
* Return Statements
* Throw Statement

Synchronized Statement
* Try Statement

*
*

*/

Permission to reproduce has been obtained from Sriram Sankar of Sun Microsystems.
34

options {
LOOKAHEAD = 1 ;
JAVA_UNICODE_ESCAPE = true;

}

PARSER_BEGIN(JavaParser)

import thesis.*;

public class JavaParser {

static SymbolGenerator sg = new SymbolGenerator();

public static void main(String args[]) {

JavaParser parser;
Triple ConstraintSet;
Gamma gamma = new Gamma("myGamma");

if (args.length == 0) {
System.out.println{"Java Parser Version 1.0.2: Reading from

standard input . . .");
parser = new JavaParser(System.in);

} else if (args.length ™ 1) {
System.out.printlnf"Java Parser Version 1.0.2: Reading from file

" + args[0] + " . . .");
try {
parser = new JavaParser(new java.io.FilelnputStream(args[0])) ;

} catch (java.io.FileNotFoundException e) {
System.out.println("Java Parser Version 1.0.2: File " +

args[0] + " not found.");
return;

}
} else {
System.out.println("Java Parser Version 1.0.2: Usage is one

of:");
System.out.println(" Java JavaParser < inputfile");
System.out.println("OR");
System.out.printlnf" Java JavaParser inputfile");
return;

1
try {
ConstraintSet = parser.CompilationUnit(gamma);
System.out.println("Java Parser Version 1.0.2: Java program

parsed successfully.");
} catch (ParseError e) {
System.out.println("Java Parser Version 1.0.2: Encountered

errors during parse.");
}

}
}

PARSER END(JavaParser)

35

SKIP : /* WHITE SPACE */

"\t"
"\n"
"\r"
"\f"

}

SPECIALJTOKEN : /* COMMENTS */
{

<SINGLE_LINE_COMMENT: "//" (~["\n","\r"])* ("\n"|"\r"I"\r\n")>
I <FORMAL_COMMENT: ••/**" (-["*-•])* «*., ,,.*„ , ,,„„,,, „,„, , ,„'.„,

I <MULTI_LINE COMMENT: "/*" (~["*"1)* "*" ("*" i /-,r»*» »/»l , r«*«i

}

TOKEN : /* RESERVED WORDS AND LITERALS */
{

< ABSTRACT: "abstract" >
I < BOOLEAN: "boolean" >
I < BREAK: "break" >
I < BYTE: "byte" >
I < CASE: "case" >
I < CATCH: "catch" >
I < CHAR: "char" >
I < CLASS: "class" >
I < CONST: "const" >
I < CONTINUE: "continue" >
I < _DEFAULT: "default" >
I < DO: "do" >
I < DOUBLE: "double" >
I < ELSE: "else" >
I < EXTENDS: "extends" >
I < FALSE: "false" >
I < FINAL: "final" >
I < FINALLY: "finally" >
I < FLOAT: "float" >
I < FOR: "for" >
I < GOTO: "goto" >
I < IF: "if" >
I < IMPLEMENTS: "implements" >
I < IMPORT: "import" >
I < INSTANCEOF: "instanceof" >
I < INT: "int" >
I < INTERFACE: "interface" >
! < LONG: "long" >
I < NATIVE: "native" >
I < NEW: "new" >
I < NULL: "null" >
I < PACKAGE: "package">
I < PRIVATE: "private" >
I < PROTECTED: "protected" >
I < PUBLIC: "public" >
I < RETURN: "return" >

36

< SHORT: "short" >
< STATIC: "static" >
< SUPER: "super" >
< SWITCH: "switch" >
< SYNCHRONIZED: "synchronized" >
< THIS: "this" >
< THROW: "throw" >
< THROWS: "throws" >
< TRANSIENT: "transient" >
< TRUE: "true" >
< TRY: "try" >
< VOID: "void" >
< VOLATILE: "volatile" >
< WHILE: "while" >

TOKEN : /* LITERALS */
{

< INTEGER_LITERAL:
<DECIMAL_LITERAL> (["1","L"])?

I <HEX_LITERAL> (["1","L"])?
| <OCTAL_LITERAL> (["1","L"])?

>
I
< #DECIMAL_LITERAL: ["l"-"9"] (["0"-"9"])* >

I
< #HEX_LITERAL: "0" ["x","X"] (["0"-"9", "a"-"f", "A"-"F"])+ >

I
< #OCTAL_LITER^L: "0" (["0"-"7"])* >

I
< FLOATING_POINT_LITERAL:

(["0"-"9"])+ "." (["0"-"9"])* «EXPONENT»?
(["f","F","d","D"])?

| "." (f'0"-"9"])+ «EXPONENT»? (["f", "F", "d", "D"]) ?
| (["0"-"9"]}+ <EXPONENT> (["f","F","d","D"])?
| (["0"-"9"])+ «EXPONENT» ? ["f", "F", "d", "D"]

>

I
< #EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

I
< CHARACTER_LITERAL:

II f II

((~["'","\\","\n","\r"])
I ("\\"

(["n","t","b","r","f","\\","'",»\»"j
I [»o"-»7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"]
)

)
)
Tl I II

>

37

< STRING_LITERAL:
IT \ tt TT

((-["V'VW'VXn'V'Xr"])
I ("\\"

(["n","t","b","r","f","\\",»>»f"\"»]
| ["0"-"7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"]
)

)

tl \ II IT

TOKEN : /* IDENTIFIERS */
{

< IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
I

< #LETTER:

"\u0024",
"\u0041"-
"\u005f",
"\u0061"-
"\u00c0"-
"\u00d8"-
"\u00f8"-
"\u0100"-
"\u3040"-
"\u3300"-
"\u3400"-
"\u4e00"-
"\uf900"-

"\u005a",

"\u007a",
"\u00d6",
"\u00f6",
"\u00ff",
"\ulfff",
"\u318f",
"\u337f",
"\u3d2d",
"\u9fff",
"\ufaff"

< #DIGIT:

"\u0030"-
"\u0660"-
"\u06f0"-
"\u0966"-
"\u09e6"-
"\u0a66"-
"\u0ae6"-
"\u0b66"-
"\u0be7"-
"\u0c66"-
"\u0ce6"-
"\u0d66"-
"\u0e50"-
"\uOedO"-
"\ul040"-

"\u0039"
"\u0669"
"\u06f9"
"\u096f"
"\u09ef"
"\u0a6f"
"\uOaef"
"\u0b6f"
"\uObef"
"\u0c6f"
"\uOcef"
"\u0d6f"
"\u0e59"
"\u0ed9"
"\ul049"

]

38

TOKEN : /* SEPARATORS */
{

< LPAREN: "(" >

") " >
"{" >
tl 1 II

< RPAREN
< LBRACE
< RBRACE >
< LBRACKET: "[" >
< RBRACKET: "]" >
< SEMICOLON: ";" >
< COMMA: "," >
< DOT: "." >

TOKEN : /* OPERATORS */
{

< ASSIGN: "=" >
< GT: ">" >
< LT: "<" >
< BANG: "!" >
< TILDE: "~" >
< HOOK: "?" >
< COLON: ":" >
< EQ
< LE
< GE
< NE

IT -——TT -^

" !=" >
< SC_OR: "||" >
< SC_AND: "&&" >
< INCR: "++" >
< DECR: "—" >
< PLUS: "+" >
< MINUS: "-" >
< STAR: "*" >
< SLASH: "/" >
< BIT_AND: "&" >
< BIT_OR: "|" >
< XOR: "A" >
< REM: "%" >
< LSHIFT: "«" >
< RSIGNEDSHIFT: "»" >
< RUNSIGNEDSHIFT: ">»" >
< PLUSASSIGN: "+=" >
< MINUSASSIGN: "-=" >
< STARASSIGN: "*=" >
< SLASHASSIGN: "/=" >
< ANDASSIGN: "&=" >
< ORASSIGN: "|=" >
< XORASSIGN: "A=" >
< REMASSIGN: "%=" >
< LSHIFTASSIGN: "«=" >
< RSIGNEDSHIFTASSIGN: "»=" >
< RUNSIGNEDSHIFTASSIGN: ">»="

39

* THE JAVA LANGUAGE GRAMMAR STARTS HERE *

/*
* Program structuring syntax follows.
*/

Triple CompilationUnit(Gamma gamma) :
{Triple cs = null;}
{
//[PackageDeclaration()]
//(ImportDeclarationO)*

(cs = TypeDeclaration(gamma))*
<EOF>
{return cs;}

void PackageDeclarationf) :
{}
{
"package" Name() ";"

)

void ImportDeclarationO :
{}
{

"import" Name() ["." "*"] ";"

Triple TypeDeclaration(Gamma gamma) :
{Triple cs = null;)
{
(LOOKAHEAD(("abstract" | "final" | "public")* "class")
cs = ClassDeclaration(gamma)

I
InterfaceDeclaration(gamma)

I
";")

{return cs;}

/*
* Declaration syntax follows.
*/

40

Triple ClassDeclaration(Gamma gamma) :
{
Triple es = null;
Dual d = new Dual(cs,gamma);

}
{

("abstract" | "final" | "public")*
"class" <IDENTIFIER> ["extends" Name()] ["implements" NameListO
"{" (d = ClassBodyDeclaration(d.gamma))* "}"
{

if (d != null){
j return d.cs;

else{
return cs;

}//end if
}

Dual ClassBodyDeclaration(Gamma gamma) :
{
Triple cs = null;
Dual d = null;

}
{

(
/*

L00KAHEAD(2)
Staticlnitializer()

I
*/

LOOKAHEADf ["public" | "protected" | "private"] Name() "(")
cs = ConstructorDeclaration(gamma)
{d = new Dual(cs,gamma);}

I
LOOKAHEAD(MethodDeclarationLookahead())
d = MethodDeclaration(gamma)

I
d = FieldDeclaration(gamma))
{
System.out.println("Constraint set: " + d.cs);
System.out.println("Gamma: " + d.gamma);
return d;

}
}

// This production is to determine lookahead only.
void MethodDeclarationLookahead() :
U
{

("public" | "protected" | "private" | "static" | "abstract" |
"final" | "native" | "synchronized")*

ResultType() <IDENTIFIER> "("
}

41

void InterfaceDeclaration(Gamma gamma) :
{Triple cs = null;}
{

("abstract" | "public")*
^interface" <IDENTIFIER> ["extends" NameListf)]
"{" (InterfaceMemberDeclaration(gamma))* "}"

void InterfaceMemberDeclaration(Gamma gamma) :

{
LOOKAHEAD(MethodDeclarationLookahead())
MethodDeclaration(gamma)

I
FieldDeclaration(gamma)

}

Dual FieldDeclaration(Gamma gamma) :
{
Dual d = null;

}
{

("public" | "protected" | "private" | "static" | "final"
"transient" | "volatile")*

Type() d = VariableDeclarator(gamma) ";"

return d;
}

Dual VariableDeclarator(Gamma gamma) :

Triple cs = new Triple(sg.NextSymbol(),"");
String id;

}
{

id = VariableDeclaratorldO ("=" cs = Variablelnitializer(gamma)
cs = Default()) s

{

gamma = gamma.Append(new Gammaltem(id,cs.getType(),"var"));
Dual d = new Dual(cs, gamma);
return d;

}

Triple Default() :
{}
{

{return new Triple(sg.NextSymbol(), "");

42

String VariableDeclaratorld() :
{String id;}
{

< IDENTIFIED
{id = token.image;}

// ("[" "]")*
{return id;}

}

Triple Variablelnitializer(Gamma gamma) :
{Triple cs = null;}
{
/*

"{" [Variablelnitializer(){ LOOKAHEAD(2) "," Variablelnitializer{)
)*] [","] "}"
I
*/

cs = Expression(gamma)
{return cs;}

}

Dual MethodDeclaration(Gamma gamma) :
{
Triple cs = null;
Dual d = new Dual(cs,gamma);
Gamma temp;
Gamma param = new Gamma("param") ;

}
{

("public" | "protected" | "private" | "static" | "abstract" |
"final" | "native" | "synchronized")*
ResultType()
temp = MethodDeelarator(gamma,d)
{
while (! (temp.isEmptyO)) {

Gammaltem gi = (Gammaltem) temp. getFromList () ;
gamma = gamma. Append(gi);
param = param.Append(gi);
temp = temp.removeFromList();

}//end while
}
["throws" NameListO]
(cs = Block(gamma) | ";")
{
Gammaltem GI = new Gammaltem(d.id, cs.getType(), "proc");
GI. setParam(param) ;
d.gamma = d.gamma.Append(GI);
return new Dual(cs,d.gamma);

}

43

Gamma MethodDeclarator(Gamma gamma, Dual d) :
{String id;}
{
<IDENTIFIER> {id = token.image;}
gamma = Formalparameters() ("[" "]")*
{
d.id = id;
return gamma;

}
}

Gamma Formalparameters() :
{Gamma temp = new Gamma("temp");}
{

"(" [temp = Formalparameter(temp) ("," temp = Formalparameter(temp)
)*] ")"

{return temp;}
}

Gamma Formalparameter(Gamma gamma) :
{String id;}
{
Type() id = VariableDeclaratorld()
{
gamma = gamma.Append(new Gammaltemfid, sg.NextSymbol(),"var"));
return gamma;

}
}

Triple ConstructorDeclaration(Gamma gamma) :
{Triple cs = null;}
{

["public" | "protected" | "private"]
<IDENTIFIER> gamma = Formalparameters() ["throws" NameListO]
"{" //[L00KAHEAD(2) ExplicitConstructorlnvocation()]

(cs = BlockStatement(gamma))* "}"
{return cs;}

}

/*
void ExplicitConstructorlnvocation() :
{}
{

"this" Arguments() ";"
I
"super" Arguments() ";"

}

44

void Static-Initializer () :
{}
i
i

"static" Block())

1
*/

/*
* Type, name and expression syntax follows.
*/

void Type() :

{} v

{
(PrimitiveTypeO | Name ()) (»[»»]»)*

}

void PrimitiveTypeO :
{}
{
"boolean"

I
"char"

I
"byte"

I
"short"

I
"int"

"long"

I
"float"

I
"double"

}

void ResultTypeO :
{}
{

"void"

I
Type()

45

String Name() :
/*
* A lookahead of 2 is required below since "Name" can be followed
* by a ".*" when used in the context of an "ImportDeclaration".
*/
{String id;}
{
<IDENTIFIER>
{id = token.image;}

// (LOOKAHEAD(2) "." <IDENTIFIER>)*
{return id;}

}

void NameList() :
{}
{
Name()
(", " Name()
)*

}

/*
* Expression syntax follows.
*/

Triple Expression(Gamma gamma) :
{Triple cs;}
{

(LOOKAHEAD(PrimaryExpression(gamma) AssignmentOperator())
cs = Assignment(gamma)

I
cs = ConditionalOrExpression(gamma))
{return cs;}

}

46

Triple Assignment(Gamma gamma) :
{
String id;
Triple cs;

}
{
id = PrimaryLeftExpressionO AssignmentOperator () cs =

Expression(gamma)
{
Gammaltem item = gamma.FindType(id);
if(item != null){

String mod = item.getModifier() ;
if(mod.equals("var") || mod.equals("ace")){

String tau = item.getType();
String tauPrime = cs.getType();
String alpha = sg.NextSymbol();
Constraintltem cil = new ConstraintItem(tau,tauPrime);
Constraintltem ci2 = new ConstraintItem(tauPrime,tau);
Constraintltem ci3 = new ConstraintItem(alpha,tauPrime);
cs = cs.Append(cil);
cs = cs.Append(ci2) ;
cs = cs.Append(ci3);
cs.setModifier("cmd") ;
cs.setType(alpha);

}
else{

System. err.println("Secure Parse failed");
System.exit(0);

}//end if
}
else{

System, out.println("Unrecognized variable " + id);
System.exit(0);

}//end if
return cs;

}
}

void AssignmentOperator() :
{}
{

»— tl | II * _ II | III _ It I " % — " I " _|__ It j II ___ II | tl <<-=- II I II »= II | II >»=«

M £ = " I " A_« I If I _ l|

}

/*
void ConditionalExpression() :
{}
{
ConditionalOrExpressionO ["?" Expression() ":"

ConditionalExpressionO]
}
*/

47

Triple ConditionalOrExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;}

{
csl = ConditionalAndExpression(gamma) ("||" cs2 =

ConditionalAndExpression(gamma)
{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

}
}
)*
{return csl;}

}

Triple ConditionalAndExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

}
{

csl = InclusiveOrExpression(gamma) ("&&" cs2 =
InclusiveOrExpression(gamma)

{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

}

{return csl;}

48

Triple InclusiveOrExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

)
{

csl = ExclusiveOrExpression(gamma) ("|" cs2 =
ExclusiveOrExpression(gamma)

{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = cs1.Union(cs2).Append(cil).Append(ci2);

}
}
)*
{return csl;}

Triple ExclusiveOrExpression(Gamma gamma)

Triple csl;
Triple cs2 = null;

csl = AndExpression(gamma) ("A" cs2 = AndExpression(gamma)
{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new Constraintltem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

}
}
)*
{return csl;}

49

Triple AndExpression(Gamma gamma)
{
Triple csl;
Triple cs2 = null;

{
csl = EqualityExpression(gamma) ("&" cs2 = EqualityExpression(gamma)
{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

)*
{return csl;}

}

Triple EqualityExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

csl = RelationalExpression(gamma) (("==" | "!=") cs2 =
RelationalExpression(gamma)

{
if(cs2 != null){

String taul = csl.getType ();
String tau2 = cs2.getType();
Constraintltem cil = new Constraintltemftaul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

)*
{return csl;

}

/*
void InstanceOfExpressionf) :
{}
{
RelationalExpression() ["instanceof" Type()]

}
*/

50

Triple RelationalExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

}
{

csl = ShiftExpression(gamma) (("<" | ">" | "<=" | ">=") cs2 =
ShiftExpression(gamma)

{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

}
}

)*
{return csl;}

Triple ShiftExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

J
{
csl = AdditiveExpression (gamma) (("«" | "»" | ">»") cs2

AdditiveExpression(gamma)
{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

}
}
)*
{return csl;}

}

51

Triple AdditiveExpression(Gamma gamma) :
{
Triple csl;
Triple cs2 = null;

}
{
csl = MultiplicativeExpression(gamma) (("+" | "-") cs2 =

MultiplicativeExpression(gamma)
{
if(cs2 != null){

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new Constraintltemftaul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2, taul) ;
csl = csl.Union(cs2).Append(cil).Append(ci2);

}

return csl;
}

}

Triple MultiplicativeExpression(Gamma gamma) :

Triple csl;
Triple cs2 = null;

}
{
csl = UnaryExpression(gamma) (("*" | "/" | "%") cs2 =

UnaryExpression(gamma)
{
if(cs2 != null){

String taul = cs1.getType();
String tau2 = cs2.getType();
Constraintltem cil = new ConstraintItem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2).Append(cil).Append(ci2);

})
{
return csl;

}
}

52

Triple UnaryExpression(Gamma gamma) :
{Triple cs;)
{

((»+» | »_») cs _ UnaryExpression(gamma)
I
/*

PrelncrementExpression()
I
PreDecrementExpression()

I
*/

cs = UnaryExpressionNotPlusMinus(gamma))
{return cs;}

/*
void PrelncrementExpressionI
{}
{

"++" PrimaryExpressionO

void PreDecrementExpression() :
{}
{
"—" PrimaryExpressionO

}
*/

Triple UnaryExpressionNotPlusMinus(Gamma gamma)
{Triple cs;)
{
H "~" I "!") cs = UnaryExpression(gamma)

I
/*

LOOKAHEAD(CastLookahead())
CastExpression()

I
*/

cs = PostfixExpression(gamma))
{return cs;}

}

53

/*
// This production is to determine lookahead only. The LOOKAHEAD
// specifications below are not used, but they are there just to
// indicate that we know about this.
void CastLookaheadO :
{}
{
LOOKAHEAD(2)
"(" PrimitiveType()

LOOKAHEAD("(" Name() "[")
"(" Name() "[" "]"

II / II Named ")" ("~" I "!" | "(" | <IDENTIFIER> | "this" | "super'
"new" | Literal())
}
*/

Triple PostfixExpression(Gamma gamma) :
{Triple cs;}
{

cs = PrimaryExpression(gamma) //["++" | "—"]
{return cs;}

}

/*
void CastExpressionf) :
{}
{

(LOOKAHEAD(2)
"(" PrimitiveType() ("[" "]")* ")" UnaryExpression()

I
" (" Named ("[" "] ")* ")" UnaryExpressionNotPlusMinus ())

}
*/

Triple PrimaryExpression(Gamma gamma) :
{Triple cs = null;]
{

cs = PrimaryPrefix(gamma) //(PrimarySuffix(gamma))*

{return cs;}

54

Triple PrimaryPrefix(Gamma gamma) :
{
Triple cs = null;
Triple csl = null;
Triple cs2 = null;
String id = null;
Gamma temp = null;

}
{

(cs = Literal()
I

["this" "."] id = Named
{
Gammaltem item = gamma.FindType(id);
if(item != null){

String mod = item.getModifier();
if(mod.equals("var") || mod.equals("")){

String tau = item.getType();
String alpha = sg.NextSymbol();
Constraintltem cil = new ConstraintItem(tau,alpha);
cs = new Triple(cil,alpha,"");

}
else if(mod.equals("proc")){

temp = item.getParam();
}
else{

System.err.println("Secure Parse failed");
System.exit(0);

}//end if
}
else{

System, out.println("Undefined variable: " + id);
// System.exit(0);

temp = new Gamma("temp").Append(new Gammaltemf"",sg,""));
}//end if

}
["(" [csl = PrimaryPrefix(gamma)
{
//create constraint type(csl) = type(param)
String tauPrime = csl.getType();
String taul = ((Gammaltem)temp.getFromList()).getType();
temp.removeFromList{);
Constraintltem cil = new ConstraintItem(taul,tauPrime);
Constraintltem ci2 = new ConstraintItem(tauPrime,taul);

//add constraint to csl
csl = csl.Append(cil).Append(ci2);
cs = csl;

}
("," cs2 = PrimaryPrefix(gamma)
{
//create constraint type(cs2) = type(param)
String tauDoublePrime = cs2.getType();
String tau2 = ((Gammaltem)temp.getFromList()).getType();
temp.removeFromList();
Constraintltem ci3 = new Constraintltem(tau2,tauDoublePrime) ;

55

Constraintltem ci4 = new ConstraintltemftauDoublePrime, tau2);

//csl Union cs2
csl = csl.Union(cs2);

//add constraint to csl
csl = cs1.Append(ci3).Append(ci4);
cs = csl;

}
)*] ") "]

/*
I
"this"

I
"super" "." <IDENTIFIER>

*/

(" cs = Expression(gamma) ")"
ft f IT

AllocationExpression('
*/

)
{ return cs;}

}

/*
Triple PrimarySuffix() :
{}
{

"[" Expression() "] "
I

"." <IDENTIFIER>
I
Arguments()

'/

String PrimaryLeftExpression() :
{}
{

["("] ["this" "."] Named [") "]
{return token.image;}

}

56

Triple Literal() :
{}
{

(<INTEGER_LITERAL>
I
<FLOATING_POINT_LITERAL>

I
<CHARACTER_LITERAL>

I
<STRING_LITERAL>

I
BooleanLiteral()

I
NullLiteralO)
{return new Triple(sg.NextSymbol(),"");

void BooleanLiteral() :
{}
{

"true"
I
"false"

}

void NullLiteralO :
{}
{

"null"
}

/*
void Arguments() :
{}
{

"(" [ArgumentListf)] ")"
}

Triple ArgumentList(Gamma gamma) :
{}
{
Expression;) ("," Expression())*

57

void AllocationExpression() :
{}
{
L00KAHEAD(2)
"new" PrimitiveType () ArrayDimensions()

I
"new" Name() (Arguments () | ArrayDimensions ())

*/

/* The second LOOKAHEAD specification below is to parse to
* PrimarySuffixif there is an expression between the "r. . .1" */

/■*

void ArrayDimensions() :
{}
{

(L00KAHEAD(2) "[" Expression() "]")+ (L00KAHEAD(2) "[" "] ")*

*/

/*
* Statement syntax follows.
*/

Triple Statement(Gamma gamma) :
{Triple cs = null;)
{

(LOOKAHEAD(2)
/*

LabeledStatement()

/
cs = Block(gamma)

cs = EmptyStatement(gamma)

cs = StatementExpression(gamma) ";"

*

SwitchStatement()

/
cs = IfStatement(gamma)

■cs = WhileStatement(gamma)

cs = DoStatement(gamma)

ForStatement()

BreakStatement()

ContinueStatement()

ReturnStatement()

58

ThrowStatement()
I
SynchronizedStatement()

I
TryStatement()

*/
)
{return cs;}

}

/*
void LabeledStatement() :
{}
{
<IDENTIFIER> ":" Statement()

}
*/

Triple Block(Gamma gamma) :
{Triple cs;}
{

"{" cs = BlockStatementList(gamma) "}"
{return cs; }

}

Triple BlockStatementList(Gamma gamma) :
{
Triple csl = null;
Triple cs2;

(L00KAHEAD(2) cs2 = BlockStatement(gamma)
{
if(cs2 != null){

if(csl == null){
csl = cs2;

}
else{

String taul = csl.getType();
String tau2 = cs2.getType();
Constraintltem cil = new Constraintltem(taul,tau2);
Constraintltem ci2 = new ConstraintItem(tau2,taul);
csl = csl.Union(cs2);
csl = csl.Append(cil);
csl = cs1.Append(ci2);

}//end if
}//end if

}
)*
{return csl;}

59

Triple BlockStatement(Gamma gamma) :
{Triple cs;}
{

(LOOKAHEAD(Type() <IDENTIFIER>)
cs = LetvarStatement(gamma)

I
cs = Statement(gamma))
{return cs;}

}

Triple LetvarStatement (Gamma gamma)
{
Dual d;
Triple cs = null;

}
{
d = LocalVariableDeclaration(gamma)
{gamma = d.gamma;}
cs = BlockStatementList(gamma)
{
if(cs != null){

cs.Union(d.cs);
cs.setModifier("cmd") ;

}
else{

cs = d.cs;
}
return cs;

}

Dual LocalVariableDeclaration(Gamma gamma) :
{Dual d;}
{
Type()
d = VariableDeclarator(gamma)
("," VariableDeclarator(gamma))*
{return d;)

}

Triple EmptyStatement(Gamma gamma) :
{}
{

II . II /
{return new Triple(sg.NextSymbol(),"cmd");

}

60

Triple StatementExpression(Gamma gamma) :
/*
* The last expansion of this production accepts more than the legal
* Java expansions for StatementExpression.
*/
{Triple cs;}
{

(LOOKAHEAD(PrimaryExpression(gamma) AssignmentOperator(gamma))
cs = Assignment(gamma)

I
cs = PostfixExpression(gamma))
{return cs;}

}

/*
void SwitchStatement() :
{}
{
"switch" "(" Expression() ")" "{"

(SwitchLabel() (BlockStatement())*)*
II 1 II

}

void SwitchLabel() :
{}
{
"case" Expression() "s"

"default" ":"
}
*/

61

Triple IfStatement(Gamma gamma) :
/*

* The disambiguating algorithm of JavaCC automatically binds dangling
* else's to the innermost if statement. The LOOKAHEAD specification
* is to tell JavaCC that we know what we are doing.
V

{
Triple cs;
Triple csl;
Triple cs2 = null;

1
{

"if" "(" cs = Expression(gamma) ")"
csl = Statement(gamma)
[LOOKAHEAD(1) "else" cs2 = Statement(gamma)]
{
String tau = cs.getType();
String taul = csl.getType();
String alpha = sg.NextSymbol();
Constraintltem cil = new Constraintltemftau,taul);
Constraintltem ci2 = new ConstraintItem(taul,tau);
Constraintltem ci3 = new ConstraintItem(alpha,tau);
cs = cs.Union(csl).Append(cil).Append(ci2).Append(ci3);
cs.setType(alpha);
cs.setModifier("cmd");
if(cs2 != null){

String tau2 = cs2.getType();
Constraintltem ci4 = new Constraintltem(tau,tau2);
Constraintltem ci5 = new ConstraintItem(tau2,tau);
Constraintltem ci6 = new ConstraintItem(taul,tau2);
Constraintltem ci7 = new ConstraintItem(tau2,taul);
cs =

cs.Union(cs2).Append(ci4).Append(ci5).Append(ci6).Append(ci7);
}//end if
return cs;

}
}

62

Triple WhileStatement(Gamma gamma)
{
Triple csl = null;
Triple cs2 = null;

{
"while" "(" csl = Expression(gamma) ")" cs2 = Statement(gamma)
{
String tau = csl.getType();
String tauPrime = cs2.getType();
String alpha = sg.NextSymbol();
Constraintltem cil = new ConstraintItem(tau,tauPrime);
Constraintltem ci2 = new Constraintltem(tauPrime,tau);
Constraintltem ci3 = new Constraintltem(alpha, tau);
csl = csl.Union(cs2).Append(cil).Append(ci2).Append(ci3);
csl.setType(alpha);
csl.setModifier("cmd") ;
return csl;

}

Triple DoStatement(Gamma gamma) :
{
Triple csl = null;
Triple cs2 = null;

}
{

"do" cs2 = Statement(gamma) "while" "(" csl = Expression(gamma) ")

{
String tau = csl.getType();
String tauPrime = cs2.getType() ;
String alpha = sg.NextSymbol();
Constraintltem cil = new Constraintltem(tau,tauPrime);
Constraintltem ci2 = new Constraintltem(tauPrime,tau);
Constraintltem ci3 = new ConstraintItem(alpha,tau);
csl = csl.Union(cs2).Append(cil).Append(ci2).Append(ci3)
csl.setType(alpha);
csl.setModifier("cmd");
return csl;

}

/*
void ForStatement() :
{}
{

"for" "(" [ForlnitO] ";"
[Expression()] ";"
[ForUpdateO] ")"

Statement()

63

void ForlnitO :
{}
{
LOOKAHEAD(Type() <IDENTIFIER>)
LocalVariableDeclaration()

I
StatementExpressionList()

void StatementExpressionList() :
{}
{
StatementExpressionO ("," StatementExpression())*

void ForUpdatef) :
{}
{
StatementExpressionList()

)

void BreakStatement() :
O
{
"break" [<IDENTIFIER>] ";"

}

void ContinueStatement() :
{}
{
"continue" [<IDENTIFIER>] ";"

}

void ReturnStatement() :
{}
{

"return" [Expression!)] ";"

void ThrowStatement() :
{}
{

"throw" Expression() ";"

void SynchronizedStatement() :
{}
{
"synchronized" "(" Expression() ")" Block()

}

64

void TryStatement() :
{}
{

"try" Block()
("catch" "(" Formalparameter() ")" Block{})*
["finally" Block()]

}
*/

65

66

APPENDIX B - STATIC ANALYZER SOURCE CODE

67

// File: Gamma.java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer. Basically a linked list.
//***************+**********************^***+**************************

package thesis;

import java.io.*;

public class Gamma
{
protected Object obj;
protected Gamma next;
protected Gamma rear = null;
public String name;

public Gamma(String name)
{
this.obj = null;
this.next = this;
this.name = name;

if(rear == null)
rear = this;

}

private Gamma()
{
this.obj = null;
this.next = this;

public Object getFromList()
{
return this.obj;

public Gamma removeFromList()
{
return this.next;

public synchronized boolean isEmptyO
{
if(this == rear)

return true;
else

return false;
}

68

public Gamma Append(Gammaltem gi)
{
Gamma g = new Gamma() ;
g.obj = gi;
g.next = this;
return g;

public Gammaltem FindType(String name)
{
Gammaltem temp = null;
Gamma list = this;
boolean matchFound = false;

do{
ifdist.obj == null)

return null;

String item = ((Gammaltem)list.obj).Name;

if(item.equals(name)) {
temp = (Gammaltem)list.obj;
matchFound = true;

}
else{

list = (Gamma)list.next;
}//end if

}while(!matchFound);

return temp;
}

public String toStringO
{
if(isEmpty())

return "";
else

return(this.obj + "" + this.next);
}

}//end gamma class

69

// File: Gammaltem.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer. It is an item to be placed into gamma. The
// structure consists of a name and a type. The type may
// consist of 1-3 fields.
//*********************** + * + ********* + ** + ■), + + + + + + + **** + + + + + + + + + + + + + + + + + +

package thesis;

import java.io.*;

public class Gammaltem
{
protected String Name;
protected String Type;
protected string Modifier;
private Gamma param;

public Gammaltem(String Name, SymbolGenerator sg, String mod)

this.Name = Name;
this.Type = sg.NextSymbol();
this.Modifier = mod;

public Gammaltem(String Name, String Type, String mod)
{
this.Name = Name;
this.Type = Type;
this.Modifier = mod;

}

public void setParam(Gamma gamma)
{
this.param - gamma;

1

public Gamma getParam()
{
return this.param;

}

public String getName()
{
return this.Name;

}

public String getType()
{
return this.Type;

70

public String getModifier{)
{
return this.Modifier;

}

public String toStringO
{
if(Modifier.equals("proc")){

return ("("+ Name +":"+ Type + Modifier +"("+ param +")"+")");
}
else{

return ("(" + Name + ":" + Type + Modifier + ")");
}//end if

}
}//end class

71

//** + *** + *^^ + ^^
// File: Triple.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//

// Purpose: Developed as part of a secure information flow static
// analyzer. The structure consists of a constraint set
l/ and a principle type. The type may consist of 1-2
// fields.
//******************* *************************** ********** ******* ******

package thesis;

public class Triple
{
private LinkedList ConstraintSet;
private String Type;
private String TypeModifier;

public Triple()
{
this.Type = "Type";
this.TypeModifier = "mod";
ConstraintSet = new LinkedList("name");

}

public Triple(Constraintltem ci, string Type, string Modifier)

ConstraintSet = new LinkedList("name");
this.Type = Type;
this.TypeModifier = Modifier;
ConstraintSet = ConstraintSet.addToList(ci);

}

public Triple(LinkedList ConstraintSet, String Type, String Modifier)

this.Type = Type;
this.TypeModifier = Modifier;
this.ConstraintSet = ConstraintSet;

}

public Triple(String Type, String Modifier)
{
this.Type = Type;
this.TypeModifier = Modifier;
ConstraintSet = new LinkedList("name");

}

public String getType()
{
return this.Type;

72

public String getModifier()

return this.TypeModifier;

public void setModifier(String Modifier)

this.TypeModifier = Modifier;

public void setType(String type)

this.Type = type;

public Triple Union(Triple setTwo)

LinkedList temp = this.ConstraintSet;
if((Constraintltem)temp.obj == null){

return new Triple(setTwo.ConstraintSet,this.Type,
this.TypeModifier);

while(temp.next.obj != null){
temp = temp.next;

}

temp.next = setTwo.ConstraintSet;
this.ConstraintSet.rear = setTwo.ConstraintSet.rear;
return new Triple(this.ConstraintSet,this.Type,this.TypeModifier);

}

public Triple Append(Constraintltem C)
{
return new Triple(this.ConstraintSet.addToList(C), this.Type,

this.TypeModifier);
}

public String toStringO
{
return("{"+"["+ ConstraintSet +"]"+","+ Type + TypeModifier +"}");

}
}//end class

73

//**+*+++*+++^++^+llrllr;lr^
// File: Constraintltem.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer. The structure consists two types.
//***
package thesis;

public class Constraintltem
{
protected String Typel;
protected String Type2;

public ConstraintltemfString Typel, String Type2)

this.Typel = Typel;
this.Type2 = Type2;

public String toStringO
{
return ("(" + Typel + "," + Type2 + ")");

74

// File: LinkedList.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer.
//***************************************VHt + + + lt + + ^SHt^^ + + + + + + + ^^ + + + + + +
package thesis;

public class LinkedList
{
protected Object ob j;
protected LinkedList next;
protected LinkedList rear = null;
public String name;

public LinkedList(String name)
{
this.obj = null;
this.next = this;
this.name = name;

if(rear == null)
rear = this;

}

private LinkedList()
{
this.obj = null;
this.next = this;

public LinkedList addToList(Object o)
{
LinkedList 1 = new LinkedList();
l.obj = o;
l.next = this; •
return 1;

public Object getFromList()
{
return this.obj;

}

public LinkedList removeFromList()
{
return this.next;

}

75

public synchronized boolean isEmptyO
{
if(this == rear)

return true;
else

return false;

public String toString()
{
if(isEmpty())

return "";
else

return(this.obj + " " + this.next);
}

//end class

76

//**** + **** + *********************** + + ****** + + ***** + *****+* + ** + + * + + + ***•;

// File: SymbolGenetator.java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer. Generates new type variables
//***+********+*+++*+++***********++********+****+^++++++^+++++^+++++

package thesis;

import java.io.*;
import Java.lang.*;

public class SymbolGenerator
{
private int counter = 0;
private static String TAU = "tau";

public synchronized String NextSymbol()
{
String Symbol = TAU + counter;
counter++;
return Symbol;

}

public static void main(String [] args)
{
SymbolGenerator sg = new SymbolGenerator();

for(int i = 0; i < 10; i++){
Systern.out.println(sg.NextSymbol());

i

}
}//end class

77

// File: SymbolGenetator.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer. A data structure
//************************ + ************* + ******•*■ + ********•******** + ***

package thesis;

public class Dual
{
public Triple cs;
public Gamma gamma;
public String id;

public Dual(Triple cs, Gamma gamma)
{
this.cs = cs;
this.gamma = gamma;

}

78

APPENDIX C - TEST PROGRAMS

79

// File: test.java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer.

class test
{
public static void pl(int x, int y)
{

y = x;
}

The output of the static analyzer on the above program produced the following results:

Constraint set: {x3 < x2, X2 = Xi, to < X2}

Gamma: pi : x3proc (x0var, xivar)

Results show, with x: x0var and y: xivar, that x0 < Xi. This is what we would expect to
ensure secure flow since the program assigns the value of x to y.

80

// File: test.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information flow static
// analyzer.
//** + *vtvtvt + + vt + + + jt + + + + ^ + Jr + ^ + Jr

class test
{
public static void pi(int x, int y)
{
if(x == 0)

y = 0;
else

y = l;
}

}

The output of the static analyzer on the above program produced the following results:

Constraint set: {x7 = x5, x7 = x2, x8 < x2, x5 = x2, x3 = x2,

TO < X2, X5 < X4, X4 = Xi, X7 < X6, X6 = Xi }

Gamma: pi : xsproc(xovar, xivar)

81

// File: test.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information
// flow static analyzer.

class test
{
public static void pi (int x, int y)
{
int a = x;
int b = 0;
while (a > 0){

b = b + 1;
a = a' - 1;

}
y = b;

}

The output of the static analyzer on the above program produced the following results:

Constraint set: {xI4 = x12, x12 < x4, x8 = x4, x5 = x4, x2 < x4, xu = x8,

t8 < X6, X6 = X3, Xi = Xe, X3 < Xe, Xn < X9, X9 = X2,

XlO = X9, X2 < X% Ti4 < Xn, Xi = XB, X3 < Xi3, X0 < X2}

Gamma = p 1: t12 proc(x0var, xivar)

A partial trace of the analysis of this program is shown in Chapter VI.

82

// File: test.Java
// Date: 24 Feb 98
//
// Author: LT James D. Harvey, USN
//
// Purpose: Developed as part of a secure information
// flow static analyzer.

class test
{
public static void pi(int x, int y)
{
int a = x;
int b = 0;
while (a > 0){

b = b + 1;
a = a - 1;

)
y = b;

}

public static void p2(int a, int b)
{

a = a + 4;
b = b + 2;

if(a > b){
pl(b,a);

}else{
pl(a,b);

}
b = a + b;

}
public static void main()
{
int s = 1;
int t = 8;
do{

p2(2,t);
t = t - 1;

}while(t > 3) ;
}

83

The output of the static analyzer on the above program produced the following results:

1. The First procedure, p 1, produces:

Constraint set: {xu = xn,T12 < x4, x6 = x4, x5 = x4, x2 < x4, x9 = x6,

Xs < X6, X6 = T3, X7 = X6, X3 < X6, T11 < X9, T9 = X2,

XlO = X9, X2 < X9, X14 < X13, To = Xi, X3 < X13, X0 < T2 }

Gamma: pi: Xi2proc(x0var, Tivar)

2. The second procedure, p2, produces:

Constraint set: {x3o = TJ7, x29 = x17, x20 = xn, x]9 < Tn, Xn = x15,

Xl8 = X17, T15 < X17, X22 < X2o, X20 = Xi6, X2i = X20,

Xl6 < X20, X27 = X25, X27 = X23, X^ < X23, X25 = X23,

X24 = X23, X15 < X23, Xi6 < X24, X26 = Xo, X25 = To,

Tl6 < X25, T15 < X26, X28 = To, T27 = To, T15 < T27, T16 < T2g,

T32 < T30, T30 = Ti6, T31 = T30, T15 < T30, Tie < T31 }

Gamma: p2 : Tnproc(Ti5var, Ti6var),

pi : Ti?proc(T0var, Tivar)

3. The third procedure, main, produces:

Constraint set: {T42 < T4O, T35 = x4o, x4i = x^, x34 < x40,

T37 = T35, T36 = T15, T35 = T15, T34 < T36,

T39 < T37, T37 = T34, X38 = T37, T34 < T37 }

Gamma: main : T42proc (),

p2 : T17 proc (a: Ti5var, b: Ti6var),

pi : T12proc (x: T0var, y: Tivar)

4. Gamma is updated with each procedure.

84

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93940

3. Dr. Dan Boger, Chairman, Code CS.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

4. Dr. Dennis Volpano, Code CS/Vd.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

5. Dr. Craig Rasmussen, Code MA/Ra.
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93940

6. LT. James D. Harvey.
7090 Brook Dr.
Morrow, OH 45152

85

