
Carnegie Mellon University
Software Engineering Institute

Assessment of
CORBAand
POSIX.21 Designs
for FAA En Route
Resectorization

B. Craig Meyers

Daniel R. Piakosh

Patrick R. H. Place

Mark Klein

Rick Kazman

April 1998

vxr>

SPECIAL REPORT
CMU/SEI-98-SR-002

TSfeTRIBUTlON STAThWi %

proved for public releos«
SKstrilmtiP«» Unlimited 3

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

CMU/SEI-98-SR-002

Assessment of
CORBA and POSIX.21
Designs for FAA En
Route Resectorization
B. Craig Meyers

Daniel R. Plakosh

Patrick R. H. Place

Mark Klein

Rick Kazman

Dynamic Systems
Product Line Practices

April 1998

Carnegie Mellon University
Software Engineering Institute

Pittsburgh, PA
15213-3890

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Jay Alonis, Lt Col, USAF
SEI Joint Program Office

this work is sponsored by the U.S. Department of Defense.

Copyright 1998 by Carnegie Mellon University.

NO WARRANTY

-rare rAPMBriP MFII ON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

SSSm«ÄWTSESMMBMEUX.N«£^ >"™ ™S™T *"*
ifwn FTTHFR EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
3Xi5S?OFmMBS FORPURPOSE OR MERCHANTABILITY. EXCLUSIVITY, OR RESULTS OBTAINED
Z^^nv^^^^CM^^MEUJOtf UNTVERSrrY DOES NOT MAKE ANY WARRANTY OF
55?iS5 ^^i^^^^^^AlS^^BMA^ OR COPYRIGHTINFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use Permission to reproduce this document and to prepare derivative works from this document for internal use is
5SS pro'vTdTmroJyngKd »No Warranty» statements are included with all reproductions and denvaüve works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
2^ri^^Ä?Ston of the Software Engineering Institute, a federally funded research and Mj«
cemerThe Government of She United States has a royalty-free government-purpose hcense to use. duphcate, or disc ose±c
woSÄoYe o^n pan and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engm^Tecrmology (ASSET):]3^.L^^
PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-800-547-8306 / FAX.
(304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service ^>;^™*lon °n

ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTJO. DTIC P^J^^Su S

iansferScientific and technical information for DoD personnel. DoD contractors andpotential f«0";^.0*" U-S"
oTvemmeragency personnel and their contractors. To obtain a copy, please contact DTICf^DjtajTWfflgJ
MorTation Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvo>r, VA 22060-6218 / Phone. (703)

767-8274 or toll-free in the U.S.: 1-800 225-3842.

Table of Contents

Executive Summary xv

1 Introduction 1

2 Problem Statement 3
2.1 Architectural Context 3

2.1.1 Overall Architectural Context 3
2.1.2 Scope of This Report 5

2.2 Intuitive Explanation of Sector Combination 6
2.3 Detailed Explanation of Problem 9

2.3.1 Fix Posting Areas 9
2.3.2 Sectors 12
2.3.3 Non-Geometric Considerations 13

2.3.3.1 Track Data 13
2.3.3.2 Flight-Plan Data 13
2.3.3.3 Data Blocks 13
2.3.3.4 Inbound List 13
2.3.3.5 Hold List 14
2.3.3.6 Conflict-Alert List 14

2.4 Component Combinations 14
2.4.1 Initial Sectorization for an En Route

Center 14
2.4.2 Sector Combination 15
2.4.3 Assignment of a Sector to a Radar Display

Console 15
2.4.4 Assignment of an FPA to a Sector 16
2.4.5 Assignment of One FPA to Another

FPA 16
2.4.6 Non-Geometric Considerations 17
2.4.7 Atomicity of Operations 17

3 Requirements Specification 19
3.1 Scope 19
3.2 Assumptions 20
3.3 Software Requirements 21

CMU/SEI-98-SR-002

3.3.1 System Management 22
3.3.1.1 General Requirements 23
3.3.1.2 State Data Management 23
3.3.1.3 Airspace Management 24

3.3.2 Radar Display Console Processing 30
3.3.2.1 Local Sector Airspace Mar i-

agement 30
3.3.2.2 Display of Track Data 32
3.3.2.3 Display Lists 32

3.3.3 Flight-Plan Management 33
3.3.3.1 Management of Flight-Plan

State Data 33
3.3.3.2 Distribution of Flight-Plan

Data 34
3.3.3.3 Flight-Plan Extrapolation 35

3.3.4 Track Management 36
3.3.4.1 Management of Track State

Data 36
3.3.4.2 Distribution of Track Data 39

3.3.5 System Capacity Requirements 39
3.3.6 System Timing Requirements 40

3.4 Procedural Requirements 40

4 CORBA Approach 43
4.1 CORBA 43

4.1.1 Background 43
4.1.2 Architectural Overview 44
4.1.3 Real-Time Considerations 46
4.1.4 Communication Mechanisms 46
4.1.5 Additional Services 47

4.2 Presentation of Design Information 48

4.3 Basic Design Issues 50
4.3.1 Object Identification 51
4.3.2 Interface Determination 51
4.3.3 Design Transformation •52

4.4 Architectural Considerations 53
4.4.1 Chosen Architecture 53
4.4.2 Migration Considerations 55

4.5 Initial Design 56
4.5.1 System Management 58
4.5.2 Airspace Management 59

ii CMU/SEI-98-SR-002

4.5.3 FPAs 62

4.5.4 Sectors 63

4.5.5 Consoles 65

4.5.6 Data Lists 67

4.5.6.1 Inbound List 67

4.5.6.2 Hold List 68
4.5.6.3 Conflict-Alert List 69

4.5.7 Track Management 70

4.5.8 Track Data 70
4.5.9 Flight-Plan Management 71
4.5.1 OFIight Plans 72
4.5.11 Summary of Initial Design 73

4.5.11.1 Objects and Their Inter-
action 73

4.5.11.2 Sample Data Flows 75

1.6 Refinement of Initial Design 83
4.6.1 System Management 83
4.6.2 Airspace Management 84

4.6.3 FPAs 87
4.6.4 Sectors 87
4.6.5 Consoles 88

4.6.6 Data Lists 89
4.6.7 Track Management 90
4.6.8 Track Data 91

4.6.8.1 Object Considerations 91
4.6.8.2 Local or Distributed Manage-

ment 92
4.6.8.3 Distribution of Track Data 93

4.6.9 Flight-Plan Management 98

4.6.1 OFIight-Plan Data 100
4.6.11 Flight Plan/Track Correlation 100
4.6.12Summary of Refined Design 101

4.6.12.1 Objects and Their Inter-
action 101

4.6.12.2 Mapping the Refined Design
onto Hardware 103

4.6.12.3 Sample Data Flows 105

4.7 Implementation Concerns 111

4.8 Summary of CORBA Design 112

CMU/SEI-98-SR-002

5 P0SIX.21 Approach 113
5.1 IEEE POSIXP1003.21 113

5.1.1 Background 113
5.1.2 Architectural Overview 114
5.1.3 Real-Time Considerations 114
5.1.4 Communication Mechanisms 115
5.1.5 Additional Services 116

5.2 Presentation of Design Information 118
5.3 Basic Design Issues 120

5.3.1 General Considerations 120
5.3.2 Use of Endpoints 121

5.4 Architectural Considerations 122
5.4.1 Chosen Architecture 122
5.4.2 Migration Considerations 123

5.5 Design 124
5.5.1 Design Components 124

5.5.1.1 System Management 124
5.5.1.2 Airspace Management 125
5.5.1.3 Track Management 126
5.5.1.4 Flight-Plan Management 129
5.5.1.5 Displays 131

5.5.2 Overall Design 132
5.5.2.1 Components and Their Inter-

action 132
5.5.2.2 Additional Comments 134
5.5.2.3 Sample Data-Flow Dia-

grams 134
5.5.3 Mapping the Design onto Hardware 142

5.6 Implementation Concerns 142
5.7 Summary of POSIX.21 Design 143

6 Assessment of Designs 145
6.1 Overview of Principles 145

6.1.1 Architecture Trade-off Analysis 145
6.1.2 Why Use Architecture Trade-off Analy-

sis? 147
6.1.3 The Architecture Trade-off Analysis Meth-

od 147
6.1.4 The Steps of the Method 148

6.2 Candidate List of Scenarios 152
6.3 Performance Assessment 152

iv CMU/SEI-98-SR-002

6.3.1 Performance Considerations 152
6.3.2 A Performance Scenario 153
6.3.3 Performance Using CORBA 154

6.3.3.1 Scenario Realization 155
6.3.3.2 Performance Modeling 162

6.3.4 Performance Using POSIX 170
6.3.4.1 Scenario Realization 170
6.3.4.2 Performance Modeling 173

6.4 Modifiability Assessment 179
6.4.1 Brief Description of SAAM 179
6.4.2 Modifiability Using CORBA 180

6.4.2.1 Scenario Realization and Re-
finement 181

6.4.2.2 Scenario 1: Dynamic Sector
Boundaries in CORBA 181

6.4.2.3 Scenario 2: Live Insertion in
CORBA 182

6.4.2.4 Scenario 3: Have All Consoles
Aware of All Data in
CORBA 184

6.4.3 Modifiability Using POSIX 185
6.4.3.1 Scenario Realization and Re-

finement 186
6.4.3.2 Scenario 1: Dynamic Sector

Boundaries in POSIX 187
6.4.3.3 Scenario 2: Live Insertion in

POSIX 188
6.4.3.4 Scenario 3: Have All Consoles

Aware of All Data in
POSIX 189

6.4.4 Comparing CORBA to POSIX 189

7 Summary 191

References 193

Appendix A Acronyms 195

Appendix B Glossary 197

CMU/SEI-98-SR-002

Appendix C Possible Sector Changes 205
C.1 Taxonomy of Operations 205
C.2 Operations on One Node 206
C.3 Operations on Multiple Nodes 207
C.4 Operations on Line Segments 208
C.5 Operations on a Geometric Entity 211
C.6 Summary 213

Appendix D Additional Requirements
Specification 215

D.1 Adaptation Data Management 215

Appendix E Message Contents 221

Appendix F Specification of Loading
Conditions 223

Appendix G Details of CORBA Approach 225
G.1 Description of Objects 225
G.2 Sample IDL Description 225

vi CMU/SEI-98-SR-002

List of Figures

Figure 1 Overview of Proposed En Route Architec-
ture 4

Figure 2 Sample Flight Path Through ARTCC 6
Figure 3 Adjacent Sector Example 7

Figure 4 Illustration of Sector Combination 8
Figure 5 Details of Sector Combination 8
Figure 6 Sample Fix Posting Area 11
Figure 7 An FPA with Exclusive Modules 11
Figure 8 Sector Combination 15
Figure 9 Assigning an FPA to a Sector 16
Figure 10 Assigning an FPA to Another FPA 16
FigureH En Route Evolution Path 19
Figure 12 Simplified Functional Data-Flow

Model 22
Figure 13 Interaction of Client and an Object 44
Figure 14 CORBA Architectural Model 45
Figure 15 Notation for Use of CORBA Methods 49
Figure 16 Notation for CORBA Event Channels 50
Figure 17 Assumed CORBA Architecture 54
Figure 18 CORBA-Based Migration Architecture 55
Figure 19 Console-Object Relationships 57
Figure 20 Initial Object Specification for System

Management 58
Figure 21 Initial Object Specification for Airspace

Management 61
Figure 22 Initial Object Specification for a Fix Post-

ing Area 63
Figure 23 Initial Object Specification for a Sector 65

Figure 24 Initial Object Design for Console
Class 67

Figure 25 Initial Object Specification for an Inbound
List 68

CMU/SEI-98-SR-002 VII

Figure 26 Initial Object Specification for a Hold
List 69

Figure 27 Initial Object Specification for a Conflict-
Alert list 69

Figure 28 Initial Object Specification for Track Man-
agement 70

Figure 29 Initial Object Specification for a Track 71
Figure 30 Initial Object Specification for Flight-Plan

Management 72
Figure 31 Initial Object Design for Flight-Plan Ob-

ject 73

Figure 32 Initial Design Objects and Interaction 74

Figure 33 Initial Design for Track-Update Data
Flow 76

Figure 34 Initial Design for Flight-Plan Update Data
Flow 78

Figure 35 Initial Data Flow for Sector Combi-
nation 80

Figure 36 Initial Design for Data Flow of Console-
Object Failure 82

Figure 37 Refined Object Specification for System
Management 84

Figure 38 Refined Object Specification for Airspace
Management 86

Figure 39 Refined Object Design for Console
Class 89

Figure 40 Refined Object Specification for Track
Management 91

Figure 41 A Console Requesting Track Information
94

Figure 42 A Track-Data Management Object Trans-
ferring Track Data to a Console 94

Figure 43 Using Methods to Distribute Track
Data 95

Figure 44 Use of CORBA Event Channels for Distri-
bution of Track Data 96

Figure 45 Refined Object Specification for Flight-
Plan Management 99

Figure 46 Object Specification for Correlation Pro-
cessing 101

Figure 47 Refined CORBA Design 102

viii CMU7SEI-98-SR-002

Figure 48 Centralized Hardware Mapping of
CORBA Design 103

Figure 49 Distributed Mapping of CORBA
Design 104

Figure 50 Refined Design for Track-Update Data
Flow 105

Figure 51 Refined Design for Data Flow of Flight-
Plan Update 107

Figure 52 Refined Design for Sector Combi-
nation 109

Figure 53 Refined Design For Console Failure 110
Figure 54 Architectural Context for POSIX.21 114
Figure 55 Sample POSIX.21 Design Notation 118
Figure 56 Additional POSIX.21 Notational

Devices 119
Figure 57 Assumed POSIX.21 Architecture 123
Figure 58 POSIX Design for System Manage-

ment 124
Figure 59 POSIX Design for Airspace Manage-

ment 125
Figure 60 POSIX Design for Track Manage-

ment 129
Figure 61 POSIX.21 Design for Flight-Plan Manage-

ment 131
Figure 62 POSIX.21 Design for Display

Console 132
Figure 63 Overall POSIX.21 Design 133
Figure 64 Track-Update Data Flow for POSIX.21

Design 135
Figure 65 Flight-Plan Data Flow Example 137
Figure 66 Sector-Combination Data Flow

Diagram 139
Figure 67 Console-Failure Data Flow Example 140
Figure 68 Steps of the Architecture Trade-off Analy-

sis Method 148
Figure 69 Conventions Used When Augmenting the

Original Designs 154

Figure 70 Process/Thread Structure of
System_Management 156

Figure 71 Process/Thread Structure of
Airspace_Management 158

CMU/SEI-98-SR-002 ix

Figure 72 ORB and Airspace_Management 158

Figure 73 Process/Thread Structure of
Console_Display_Object 161

Figure 74 Summary of Resectorization "String" of
Computation 168

Figure 75 System Management Threads When Us-
ing POSIX 171

Figure 76 Airspace Management Threads When
Using POSIX 172

Figure 77 Console Threads When Using
POSIX 173

Figure 78 Summary of Resectorization "String" of
Computation Using POSIX 177

Figure 79 CORBA Design with Realization of Sce-
nario 1 182

Figure 80 CORBA Design with Realization of Sce-
narios 1 and 2 184

Figure 81 CORBA Design with Realization of Sce-
narios 1, 2 and 3 186

Figure 82 POSIX Design with Realization of Scenar-
io 1 188

Figure 83 POSIX Design with Realization of Scenar-
io 2 190

Figure 84 Moving an Existing FPA Node 206

Figure 85 Adding a Node to an FPA 207

Figure 86 Deleting a Node from an FPA 207

Figure 87 Coalescing Two Nodes Into One 208

Figure 88 Creating a New Line Segment 209

Figure 89 Moving a Line Segment 209

Figure 90 Deleting a Line Segment 210

Figure 91 Translation of a Line Segment 210

Figure 92 Translation and Rotation of a Line Seg-
ment 211

Figure 93 Scaling an FPA 211

X CMU/SEI-98-SR-002

Figure 94 Translating an FPA 212

Figure 95 Rotating an FPA 212

CMU/SEI-98-SR-002 xi

xü CMU/SEI-98-SR-002

List of Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

System Capacity Requirements 39

System Timing Requirements 40

Estimated Number of Objects in Initial De-
sign 75

Comparing Methods and Event Channels
for Distribution of Track Data 97

Summary of CORBA Design-Object Char-
acteristics 112

Schedulability Model for Keyboard Laten-
cy Using CORBA 164

Schedulability Model for
Combine_Sectors in
Airspace_Management 166

Schedulability Model for
Console_Display_Object 167

Schedulability Model for Resectori-
zation 169

Schedulability Model for Keyboard
"String" Using POSIX 174

Schedulability Model for
Combine_Sectors "String" 175

Schedulability Model for Assign_Sector in
Console Object 176

Schedulability Model for Resectorization
Using POSIX 177

Schedulability Comparison for Resector-
ization 178

Modifications Required to Satisfy Dynam-
ic Sector Boundaries in CORBA 181

CMU/SEI-98-SR-002 XIII

Table 16 Summary of Changes to Support Live In-
sertion in CORBA 183

Table 17 Modifications Required to Satisfy "Aware
Consoles" in CORBA 185

Table 18 Modifications Required to Satisfy Dynam-
ic Sector Boundaries in POS IX 187

Table 19 Summary of Changes to Support Live In-
sertion in POSIX 189

Table 20 Assumptions About Console Loading 224

xiv CMU/SEI-98-SR-002

Executive Summary

Background

Modernizing the En Route system presents major acquisition issues to the Federal Avia-
tion Administration (FAA). At the present time, efforts are underway to upgrade the En
Route system, primarily focusing on the host computer system. Some of the major issues
include the following:

• What are the consequences of using different technologies and products?

• How can one assess the use of different technologies?

Resolving issues such as those above will affect the acquisition strategy for upgrading the En
Route system. For example, the use of different technologies will influence the design charac-
ter of the En Route system. This will consequently effect the ability to integrate different com-
ponents and influence the amount of developed integration code that may be required. Clearly,
the ability to optimize the acquisition strategy will have far-reaching consequences for the
FAA and must be carefully considered.

This report addresses the use of different technologies and an architecture trade-off
approach to a typical En Route system problem. We were requested to consider the prob-
lem of resectorization, i.e., the combination and decombination of sectors (and fix posting
areas) during operation of an En Route center. Such capabilities may become desirable for an
implementation of free flight. Two technologies have been applied to develop solutions to this
problem, namely Common Object Request Broken Architecture (CORBA) and POSEX.21
(Portable Operating System Interface Standard). The former is based on an object-oriented
model, while the latter is based on a message-passing model.

Approach

The context for this work is in a »architecture of the existing host computer system. The
main functions of the current host are track management and flight plan management. The
design presented here accounts for the distribution of functionality onto both hardware and
software components. For both CORBA and POSIX.21, the designs were strongly influenced
by both performance and fault-tolerant considerations.

CMU/SEI-98-SR-002 xv

Requirements for the resectorization problem were developed based on the existing host.
To be clear about the problem considered, we developed a set of requirements (based on the
PAMRI 1.3 [Peripheral Adapter Module Replacement Item] documentation). The problem
was constrained to its essential features. For example, we did not consider the initialization of
the En Route system or operations that can be performed in a training mode. However, the
requirements do address distribution of track and flight plan data, as well as data associated
with a sector, such as the inbound list and hold list.

Designs for both CORBA and POSIX.21 were developed and then refined. The initial
CORBA design was based on a maximal object principle. This principle is useful for under-
standing the potential objects and the way in which those objects must interact. This allows the
functional concerns to be separated from a choice of possible implementation strategies. The
initial design contained over 2500 objects. The design was refined by using rough estimates of
performance.

The initial POSIX.21 design was based on the identification of communicating objects (known
as endpoints) and the way that they communicate (by the exchange of messages), and the
mechanism for exchange of messages (such as unicast, multicast, or broadcast). This repre-
sents a different type of abstraction than that used in the CORBA design, yet there is still an
emphasis on data abstraction, a prime characteristic of traditional object-oriented designs.

Each design was assessed by applying an architectural trade-off analysis (ATA)
approach. The premise of ATA is that quality attributes can be assessed and trade-offs
between them made by considering a system's architecture. The quality attributes considered
in this report were modifiability and performance. For modifiability, the following scenarios
were considered: (1) sector combination, (2) dynamic sector boundaries, and (3) console fail-
ure. The performance attribute was assessed by developing an analytic model for the time
required to complete a system management operator request to combine two sectors. The
model includes preemption, blocking, and execution effects.

xvi CMU/SEI-98-SR-002

Results
This report is not a comparison of CORBA and POSIX.21. There is the temptation to cast
the results of this work as a comparison of CORBA and POSEX.21. To a limited degree this is
true. However, only qualitative estimates are presented in the context of one problem. Such
results do not lead to generalization. Both CORBA and POSIX.21 have strengths and weak-
nesses. It was not the purpose of this work to assess each design technology systematically in
the context of the overall En Route system.1

The development of requirements for the resectorization problem was complicated by
potentially missing requirements. We found a number of problems with the current require-
ments specification. It quickly became apparent that (1) there are requirements that are imple-
mented in a procedural manner, and/or (2) there are unstated requirements in the software
documentation. An example of resectorization deals with adjacency of sectors in order for
them to be combined. We would expect that there would be a software requirement that the
sectors be adjacent in order for them to be combined, but we found no such requirement.

The designs exploited strengths of CORBA and POSIX.21. For example, the strengths of
CORBA were support for object-oriented abstraction and support for heterogeneous systems.
On the other hand, the strengths for POSIX.21 were flexible message-oriented design models
and performance.

The CORBA design required significant refinement to meet performance and fault-toler-
ant requirements. One way to characterize the En Route system is as a collection of large
numbers of potential objects, such as flights and tracks, with strong coupling between the
objects. For example, conflict-alert processing is performed on the tracks to determine possi-
ble safety violations indicating the close coupling between track objects. The existence of
close coupling implies communication between and among many objects. The current
CORBA specification does not provide a one-to-many method invocation. Hence, the refine-
ment of the initial design caused us to eliminate a track as a CORBA object, and tracks were
subsequently encapsulated in a database. Decisions such as this caused the initial object-ori-
ented design to lose much of its object character. A depiction of the final CORBA design
appears below.

1. There is additional work that provides a comparison of CORBA and POSK.21 with respect to
support for real-time distributed systems communication. This is a joint effort between the SEI
and MITRE and will be published as an SEI technical report, A Comparison of CORBA and
POSIX.21 With Respect to Real-time Distributed Systems Communication (CMU/SEI-97-TR-15),
B. Craig Meyers, Patrick R. H. Place, and Arkady Kanevsky. Pittsburgh, Pa.: Software Engineer-
ing Institute.

CMU/SEI-98-SR-002 xvii

System Management

Airspace Management

(Console Geometry j

FPA
Data

Sector
Data

Flight Plan
Management

Flight Plan
Database

l
Flight Plan/Track

Correlation

Uncorrelated
Track

Database

Uncorrelated
Flight Plan
Database

Track Management

Track
Database

The POSIX.21 design exploited features that are useful for the real-time domain. For
example, the POSIX.21 standard includes memory management (to eliminate multiple copies
on data transfer), message priorities (integer and deadline), and a number of one-to-many
communication mechanisms. The use of multiple communication models allowed for a greater
distribution of state data, resulting in data (and processing) distribution onto replicated display

XVIII CMU/SEI-98-SR-002

consoles. A consequence of this is that the time to restart a display console can be performed
in an efficient manner. A depiction of the POSIX.21 design appears below.

Display Consoles

System Management

I

Local System Management

Local Airspace Management

Local
Flight Plan
Management

Local
Track Correlation

Local
Track Management

Track-Flight Plan
Correlations

Track Correlation

Conflict Alert
Messages

Flight Plans

Track Data

6-ty
,., Track
: Messages

Track Management

The assessment procedure illustrated a number of technical points that showed the
strengths and weaknesses of each technology considered. By assessing different scenarios,
we were able to predict the consequences of system changes based on the particular scenario
considered. For example, consideration of the sector recombination scenario showed that
maintenance of global state data in a CORBA design would be more performance intensive
than in a POSIX.21 design. The reason for this is the use of multicast in POSIX.21, thus per-
mitting a more efficient communication mechanism than those currently available in CORBA.

CMU/SEI-98-SR-002 XIX

Assessment of multiple attributes concurrently provided a deeper understanding of sys-
tem issues. The principal attributes of concern were modifiability and performance. It is clear
that a modification to the system will have performance consequences and that these attributes
must be examined together to achieve a system view. For example, consider the ability to have
each console aware of each track. The modification to both CORBA and POSIX.21 designs to
accommodate this were almost identical. However, the two designs have dramatically different
performance characteristics. In the POSIX.21 design, there was small impact on performance,
but the CORBA design would be highly unlikely to meet performance requirements. The
impact of considering multiple attributes is shown below. As illustrated, it may be possible to
increase functionality, but decrease the performance and fault-tolerance characteristics of a
design.

Function

Initial value before change

Value after change

Fault Tolerance

Performance

Recommendations

A formal specification of some selected En Route requirements should be performed. It is
well known that the use of formal specification techniques will help in the specification of
requirements. They provide for a clear and concise specification (in mathematical notation)
and help to identify incomplete and inconsistent requirements. We believe a formal specifica-
tion of some basic En Route functionality would help to improve understanding.1

1. The SEI is working with Dr. Valerie Harvey, a visiting scientist from Robert Morris College, who
is developing a small formal specification for the resectorization problem.

xx CMU/SEI-98-SR-002

In addition, our assessment of the current software requirements indicates that more modern
practices could be applied to the specification of requirements. One example of this is
increased use of state models and state-transition diagrams. Another example is to focus on a
data-centric approach. For example, what are the states and attributes of a sector? It would be
interesting to develop a prototype document that could be hosted on the Web.1

The case of a hybrid design approach, incorporating both CORBA and POSIX.21 com-
ponents, should be considered. This report focuses on two extreme design approaches, one
entirely based on CORBA and one entirely based on POSIX.21. It may be the case that the
most appropriate design is one that uses both CORBA and POSIX.21. We term this a heteroge-
neous design approach. A fundamental question in this context is the amount of coupling
between a CORBA and POSIX.21 design. That is, would an overall design really be two
loosely-coupled designs (one CORBA and one POSIX.21)? If these approaches must interact,
how may this best be accomplished? For example, what would it take for a CORBA and
POSIX.21 implementation to interoperate? A myriad of interesting technical issues are associ-
ated with this issue.

The architecture tradeoff analysis should be extended, including development of a Guide
to Architectural Performance Analysis (APA). The architectural analysis approach was useful
in assessing the designs in this report. Further work is warranted in this area to assess the inter-
action of multiple attributes. For example, if a modifiability scenario is proposed, what are the
performance consequences of the considered design changes?

The architectural performance analysis applied in this report was especially useful as a means
to assess competing designs for the same problem. We believe that this approach should be
presented as a guide, discussing the purpose and a method for conducting different analyses.
The existence of such a document could have several benefits to the FAA. For example, it can
be recommended (or required) that a contractor apply this approach when responding to a
request for proposal (RFP). It therefore becomes an evaluation criteria for an RFP submission.
Naturally, it would also be necessary, as part of this task, to develop suggested RFP language
for the use of the APA approach. Another potential advantage would be that we recommend an
FAA contractor be tasked to perform an APA in the context of the host upgrade. This would
help in understanding the potential changes (and cost) that may be necessary in upgrading
DSR.

1. For example, we have considered the notion of an annotated software requirements specification
(SRS) that would permit a reader to easily move through the document and obtain background
information about a particular requirement (such as rationale). Hosting such a document on the
Web would be an interesting approach to distributing the documents.

CMU/SEI-98-SR-002 xxi

The performance assessment should be extended to include quantitative results. This
report does not include quantitative results for a number of reasons. First, quantitative results
are both implementation and platform dependent. Second, a quantified model will most likely
require values for commercial off-the-shelf (COTS) products, which may not be available.
Continuing work in this direction may require only ball-park estimates, and coupled with sen-
sitivity analysis, may shed further insight into the design.

A goal of performance analysis is the ability to predict the execution characteristics for a par-
ticular design quantitatively. To achieve this requires performance characteristics of the system
components, including COTS components. There are interesting challenges to developing a
performance model that includes COTS components. For example, a number of the perfor-
mance characteristics may not be provided by a vendor and thus need to be determined. This
may naturally lead one to consider the development of benchmarks for CORBA and
POSIX.21. The existence of such benchmarks would aid in the selection of implementations
that meet necessary performance characteristics for inclusion in the En Route architecture.

Other scenarios (e.g., hand-off, flight-plan management) should be considered. The more
scenarios that are assessed, the more confidence one has about the design. It would be interest-
ing to see the additional changes to the design as a result of including more scenarios. Both
hand-off and flight-plan management are directly related to the resectorization problem.

Support for development of real-time CORBA and POSIX.21 should be continued. FAA
and other organizations have contributed to the development of CORBA and POSIX.21. There
are several reasons to continue this support. One is to keep abreast of the development of the
specifications (and products). Another, more important, reason is to try to influence the stan-
dard so that it is appropriate for the FAA domain. Finally, there is the intriguing possibility that
a real-time CORBA could be developed on top of a POSIX.21 implementation.

xxii CMU/SEI-98-SR-002

1 Introduction

The acquisition and evolution of major software-intensive systems requires that a number of
complex and challenging questions be considered. One of these questions deals with the tech-
nology that will be used in the system. The choice of a technology can have implications in a
number of areas, such as

• performance and/or fault tolerance of implementations system components

• the degree to which the system can be modified as part of its evolution

• the degree to which different technologies may be used to integrate other system compo-
nents

The Federal Aviation Administration (FAA) is in the process of major program acquisitions to
modernize both hardware and software for the En Route centers. As part of this acquisition
effort, it must address issues such as those posed above. The purpose of this report is to
address the following issues:

• Illustrate the application of CORBA and POSIX.21 as two different technology choices
for the FAA En Route system. The former supports an object-based approach, while the
latter is a message-based model.

• Demonstrate the application of a systematic approach to comparing different design
approaches to the same problem.

In comparing different technologies, there are a number of approaches that one may take.
Some examples include assessments based on

• specifications

• implementations

• model problems based on both specifications and implementations

Specification-based assessment examines a specification with respect to some set of criteria.
An example of this approach, for Common Object Request Broker Architecture (CORBA) and
POSIX.21 (Portable Operating System Interface Standard), is presented in A Comparison of
CORBA and POSIX.21 From a Real-Time Communication Perspective [Meyers 97]. Assess-
ment of an implementation examines one (or more) implementations of a technology specifi-
cation. The assessment of implementations is similar to the application of different types of
benchmarks. An assessment can also be based on model problems, the advantage being that it
is performed in the context of an application. In this report, we will use a model-problem

CMU/SEI-98-SR-002

approach based on a specification of an architecture to illustrate how two different technolo-
gies could be applied to the same problem. Performing an assessment of candidate architec-
tures early in the development phase has certain obvious advantages.

The model problem that will be considered in this report is that of sector combination. This
allows for changing the airspace for which an air traffic controller is responsible during system
operation. The existence of such a capability helps to balance the load on controllers. How-
ever, in the context of a future En Route system, combining sectors or performing other opera-
tions, such as dynamically changing the boundary of a sector, may assist in the
implementation of a free-flight capability.

This report is organized in the following manner; Section 2 provides a discussion of the prob-
lem. In Section 3, we provide a discussion of the requirements for the resectorization problem.
The design approaches for CORBA and POSDC.21 are then presented in Sections 4 and 5,
respectively. The assessment of these different approaches is discussed in Section 6. A brief
summary of the work appears in Section 7. A number of appendices accompany this report,
including a glossary, list of acronyms, and information relevant to the details presented in the
text of the report.

We would like to thank Bill Wood and Valerie Harvey for discussions related to this work.

CMU/SEI-98-SR-002

Problem Statement

2.1 Architectural Context

2.1.1 Overall Architectural Context

It is helpful to place the present work in the context of an overall architectural structure. To
illustrate this, we have chosen the architectural view developed by a special study, commis-
sioned by the FAA. The proposed architecture [FAA 95a] is presented in Figure 1 below.

The boxes in Figure 1 denote the major subsystems that comprise an En Route Center. The
rings in the figure denote a mechanism to achieve connectivity among the indicated sub-
systems. It does not necessarily denote a physical ring; other hardware representations may
achieve the same goals. Figure 1 includes two networks interconnected by a gateway. The rea-
son for two networks is for fault-tolerant considerations.

The functionality of the various subsystems shown in Figure 1 is described below:

Air Traffic Management: provides predictions of potential separation issues; helps control-
lers to optimize air-traffic flow; helps controllers plan for resolution of potential problems

Communication Subsystem: provides for data transfer (both send and receive) to other air-
space facilities; provides assistance to controllers for aircraft control and clearances

D-side Controller: manages controller data display

Display Management: presents integrated view and allows for monitoring and planning
for air traffic controllers. (This function also serves as a directory-like agent to map sectors
onto physical addresses for display consoles.)

Flight-Data Processing: receives and processes flight plan information; provides capabil-
ity to predict aircraft positions

System Management (M&C; Maintenance and Control): provides for overall system man-
agement

Prototype Gateway: provides a mechanism to incorporate prototypes in an operational
system

R-side Controller: manages controller radar display

Surveillance Data Processing: receives and processes real-time data on air tracks; devel-
ops predictions based on real-time data and identifies potential problems to controllers

CMU/SEI-98-SR-002

Weather: receives weather information (observations and forecasts) and provides this
information to other subsystems

Surveillance Data
Processing

Flight Data
Processing

Air Traffic
Management

Weather V

?
Prototype
Gateway

Display
Management

Primary LAN

D-side
Controller

Display

System
Management

Communication
Subsystem

R-side
Controller

Display
1

Weather

Prototype
Gateway

Display
Management

Air Traffic
Management

System
Management

Communication
Subsystem

Surveillance Data
Processing

Flight Data
Processing

Figure 1: Overview of Proposed En Route Architecture

CMU/SEI-98-SR-002

The preceding is a simplified overview of the various subsystems proposed for the En Route
architecture.

The currently deployed system includes a host computer system (HCS) which interfaces with
various display devices. The principal functions of the host are to

• manage track data

• manage flight-plan data

• manage communications with external systems

Clearly, the host is the central computer system of the current architecture.

2.1.2 Scope of This Report

For the purpose of this report, it will not be necessary to include all of the elements indicated
in the preceding figure. The scope of this report is restricted by the following:

• We assume that the current HCS, currently implemented in a single processor, will change
to accommodate modernization and increased functional changes.

• We assume that there may need to be changes to the current display system replacement
(DSR) consoles with which a revised host would interface.

• The degree of change, for either the host or DSR, with respect to the use of either CORBA
or POSIX, is a function of the need for change and is discussed later in this report.

One of the basic issues that must be faced by the FAA is how the host will change in the future.
For example, will it remain a centralized architecture, or will it move to a distributed architec-
ture? Influencing the architectural decision is the degree to which commercial off-the-shelf
(COTS)-based components could be applied to the overall En Route architecture. Further dis-
cussion of the evolutionary aspects of the overall En Route system are discussed in Section
3.1.

This report will address the problem of sector combination in an En Route Center. This prob-
lem was posed by FAA management as a typical problem that may be relevant for the future
En Route Center.1 This report was motivated by comparing how a CORBA approach would

1. An earlier description of this problem was addressed in a limited context. Meyers, B. Craig &
Place, Patrick R. H. The Use of IEEE Draft Standard 1003.21 Real-Time Distributed Systems
Communication in an FAA En Route Architecture (CMU/SEI-Special Report). Pittsburgh, Pa.:
Software Engineering Institute, March 1,1997.

CMU/SEI-98-SR-002

compare with the POSDC.21 approach. The use of sector combination may then be viewed as a
model problem, to be examined using two different technologies.

2.2 Intuitive Explanation of Sector Combination

In this section we present an intuitive description of the problems related to sector combina-
tion. The flight of an aircraft is controlled by a number of facilities. One such facility, called an
En Route Center (denoted ARTCC for Air Route Traffic Control Center), is responsible for
controlling the flight as it crosses airspace between airports. Thus, an ARTCC may be viewed
as a collection of airspaces, known as sectors. Associated with a sector are air traffic control-
lers who maintain the following positions:

• R-position: a controller who manages radar data

• D-position: a controller who manages data for the R-position controller

An example of the airspace managed by an ARTCC is presented in Figure 2 below.

Flight Plan Route

ARTCC Boundary

Figure 2: Sample Flight Path Through ARTCC

This figure illustrates an expected path of an aircraft through an ARTCC airspace, as denoted
by the shaded arrow. The filled circles denote handoff points, either from one ARTCC to
another ARTCC, or from one sector to another sector within the same ARTCC. Note that the
anticipated path crosses a number of sectors that comprise the ARTCC topology. Each display
console maintains an inbound list that indicates the expected time at which a controller must
be made aware of a flight that will enter that controller's sector from another sector. The distri-
bution of flight-plan information related to the inbound list is sequential in nature. That is, first
the sector that will receive control of the flight is notified. Then, as the flight comes close to the
next sector along the expected flight path, that sector is notified. This process continues until

CMU/SEI-98-SR-002

the flight transits from one ARTCC to an adjacent ARTCC. Each such transition (either
ARTCC to ARTCC, or sector to sector) involves a handoff of the flight.

As part of handing off an aircraft as it traverses the airspace managed by an ARTCC, it is nec-
essary to determine the sectors that are adjacent to a given sector. An illustration of adjacent
sectors is shown in Figure 3 below.

Figure 3: Adjacent Sector Example

In Figure 3, the sector that appears crosshatched has five adjacent sectors. The boundary indi-

cated by O is adjacent to an external facility. Note that one of the edges of the crosshatched

sectors is adjacent to two sectors (namely those denoted © and ©). Knowledge of adjacent
sectors and/or other En Route Centers is especially relevant if sector boundaries are dynamic
(for example, if a controller could change the boundary of a sector).

The geometry (and other aspects) of a sector are specified as adaptation data. These data
uniquely define a given ARTCC. Since ARTCCs differ in sector geometry, and many other
factors, the use of adaptation data provides a means to configure a particular facility through
data that are loaded as part of system initialization.

CMU/SEI-98-SR-002

In the case of a sector combination, two (or more) existing sectors are combined to form a new
sector. This is illustrated in Figure 4.

Initial Sectorization Combining Two Sectors

Figure 4: Illustration of Sector Combination

The result of the combination is to produce a new sector, as indicated by the shading on the
right-hand side of Figure 4.

There are different ways in which the combination can be accomplished. We introduce the
concept of an active and passive sector according to the following definitions:

• active sector: a sector in which a controller is currently providing control of aircraft

• inactive sector: a sector in which a controller is not currently providing control of aircraft

Thus, it is the controller at the active sector who manages the new sector. This arrangement is
shown in Figure 5.

Intended Sector
Combination

Inactive Sector

Active Sector

Combined Sectors

Figure 5: Details of Sector Combination

CMU/SEI-98-SR-002

The sectors that are crosshatched in Figure 5 are intended to be combined into one sector. The
resulting combination, involving sectors 4 and 5, is shown at the right of Figure 5. Sector 5 is
designated as the active sector, while sector 4 is designated as an inactive sector.

To illustrate how sector combination could take place, we consider the following procedural
semantics. Doing so helps illustrate the roles of the active and passive sectors:

1. Assume there exists a set of sectors, each of which is active. This means they are all man-
aging flights within their own airspace.

2. A choice is made to combine two sectors. The choice is procedural in nature and initiated
by an operator. One of the initial sectors is chosen to be the active sector for the resulting
combination; any others will become inactive sectors.

3. A message is sent to the affected consoles indicating that the sectors should be combined.
The transfer of this message is initiated by a system management function.

4. Upon receipt of the message, the operational consoles that received the message initiate
processing to transition to the indicated state. This means that the active sector will
assume control of aircraft in the sector(s) designated to be inactive. Correspondingly, the
sector(s) designated to be inactive will no longer perform control of aircraft in their air-
space.

The conditions for which a sector combination is permitted could involve many consider-
ations. For example, if a sector is designated to become inactive and that sector is in the pro-
cess of handing off a flight, we would expect that the handoff would be completed before the
sector is transitioned to the inactive state.

2.3 Detailed Explanation of Problem

The preceding discussion was a simplified introduction to the problem considered in this
report. We now consider a more detailed presentation of the problem.

2.3.1 Fix Posting Areas

The fundamental unit of airspace that is managed by an ARTCC is a fix posting area (FPA).
The following types of FPAs are defined:

• En Route airspace: An FPA that defines a unit of airspace in an ARTCC that is not used
for the functions specified below. This represents the majority of cases for an FPA defini-
tion.

• Approach control FPA: An FPA that contains an approach-control facility, commonly
referred to as a tower facility.

CMU/SEI-98-SR-002

• ARTS Approach control: An FPA that contains an ARTS approach-control facility, com-
monly referred to as a TRACON.

• No_Airspace: An FPA that has no airspace associated with it, defined without an altitude.
This type of FPA is used to describe postings for flow control and air management infor-
mation service.

An FPA may also have attributes that indicate characteristics of the FPA. These include1

• a focal point fix (FPF), which is required for each domestic FPA (except those of type
no_airspace), used for posting of direct route flights

• An entry point posting indicator (EPPI), which is used for direct route flights

• A direct route priority indicator (DRPI), which is used for direct routes

• The major and minor airways that are contained within an FPA

• an indication that the FPA is considered for oceanic processing

• an indication of a wind station, used to report wind velocities

• an indication if there is no radar coverage for the FPA

• information about adjacent FPAs

• information about map(s) associated with the FPA

An FPA is a three-dimensional volume of airspace that is defined in terms of horizontal2 line
segments, each of which has an altitude. The line segments that comprise an FPA form a poly-
gon when viewed in the horizontal and vertical planes.The polygon may be either convex or
concave. The points that define the line segments are called nodes, which are described in
terms of latitude and longitude. Figure 6 illustrates a simple FPA.

It is also possible for an FPA to contain other FPAs. This is done to define exclusion regions.
In this case, the structure of an FPA becomes more complex. For example, Figure 7 illustrates
the case where one FPA contains other FPAs [FAA 95g].

1. This information is taken from pages 2-9 through 2-25 of FAA specifications [FAA 95g].

2. The term horizontal means parallel to the surface of a planar earth. This is the definition for the
context of a non-Oceanic En Route Center.

10 CMU/SEI-98-SR-002

Nodes Altitude

Figure 6: Sample Fix Posting Area

2705

(Top View)

BD11

2607

BD14

BD15
ß. QBD16

! 2801 i

------4BD17 BD19Ä -02A
BD18 i •

j 2802]

222

BD12

221

2702

BD13
ZCH

18,000

(Side View)

4,000

FPA 2701

5,000

Figure 7: An FPA with Exclusive Modules

FPAs are defined as part of adaptation data. The basic information used to describe the FPA
includes the following:

• a unique identifier

• line segments, defined in terms of nodes

CMU/SEI-98-SR-002 11

• the altitude of each line segment

• each adjacent FPA(s) and/or adjacent ARTCC

In addition to the above data, the attributes of an FPA (discussed above) are also specified as

part of adaptation data.

2.3.2 Sectors

A sector is a geographical area, having specified altitude limits, that is capable of being dis-
played on one (or more) display consoles. A sector airspace is a set of one or more contiguous
FPAs that constitute a specified sector. A sector is identified by either a two-digit integer or an

identifier.

Sectors are defined as part of adaptation data. There are two major elements to the definition

of sector adaptation data. The first is information concerning the configuration of a sector by
assigning a set of devices to the sector. For example, the types of devices that may be assigned

to the sector include

• flight strip printers

• D-position consoles (keyboard and display)

• R-position consoles (keyboard and display)

The second part of sector adaptation data is defined in terms of a sector plan record? A set of
sector plans is defined, one of which is called the basic sector plan. The basic sector plan is
that plan in which each FPA is attached to the sector with the same number as the first two dig-
its of the FPA identifier. The other sector plans are defined as modifications of the basic sector
plan. For example, in sector plan 7, sector 12 could be defined as the set of FPAs associated
with sector 12 in the basic sector plan; in addition, a number of other FPAs could be assigned
to sector 12. The assignment of the FPAs to one sector also implies that the FPAs are removed
from the default associated sector. In addition, one sector could be assigned to another sector
as part of a sector plan.

1. See page 14-1 of FAA specifications [FAA 95d].

2. See pages 5-24 through 5-26 of FAA specifications [FAA 95g].

12 CMU/SEI-98-SR-002

2.3.3 Non-Geometric Considerations

The previous discussion was oriented toward the geometric aspects of a sector and an FPA.
From the perspective of an air traffic controller, there are the data associated with a sector.

These data include

track data

flight-plan data

data blocks

inbound list

hold list

conflict-alert list

2.3.3.1 Track Data

A track refers to a computer-generated representation of an aircraft position and velocity. It
may also contain other state data (such as the type of aircraft) and the temporal history of the
location of the track. Track data are displayed and continuously updated on a display console.
A track is sometimes denoted by a computer ID (CID).

2.3.3.2 Flight-Plan Data

A flight plan is a set of information about a flight. Flight plans are defined for an aircraft before
it departs and can be modified during flight. Information associated with a flight plan includes,
for example, a flight plan identification, assigned altitude, and route of flight.

2.3.3.3 Data Blocks

A data block refers to the display of information on a controller screen for a specified track.
The information can include a symbol denoting the track position, indication of the track
velocity, and numeric data about the state of the track (such as the altitude and velocity).

2.3.3.4 Inbound List

An inbound list contains a list of aircraft that are expected to enter a sector from either an adja-
cent facility or a tower facility that is contained within a particular ARTCC. An aircraft is
added to the list for a particular sector when it is within a specified time interval of crossing the
receiving sector's boundary.

CMU/SEI-98-SR-002 13

2.3.3.5 Hold List

A hold list contains information about those flights that are placed in a hold state. The hold is
defined with respect to a hold fix (a point in space). A flight can be added or removed from this
list as a result of an operator action or receipt of a message from another facility.

2.3.3.6 Conflict-Alert List

A pair of tracks are said to be in conflict if there is an indication of an immediate, current, or
impending violation of adapted spatial separation of aircraft. Such separation can be in a lat-
eral direction or vertical direction between aircraft. If two tracks are detected to be in conflict,
they are placed on the conflict-alert list for one, or possibly more, display consoles.

2.4 Component Combinations

We use the generic term component here to describe either a sector or a fix posting area. There
are several combinations of components that are possible. Each of these is discussed in the fol-
lowing subsections. These combinations are accomplished through the use of the Restore Mes-

sage (CS message).1

2.4.1 Initial Sectorization for an En Route Center

Before discussing possible combinations of sectors and/or FPAs it is important to understand
how the initial state of an En Route Center is specified. This is achieved through the use of a
sector plan. A sector plan is used to specify an initial configuration of a facility via adaptation
data. One such plan is known as the basic sector plan. During initialization, a sector plan is
defined for a facility. It may be either the basic sector plan or some other sector plan which we
shall denote as a derived sector plan. A derived sector plan is a specification of only the modi-

fications of the basic sector plan.

During the course of operations, it is possible to change the sectorization of a facility by apply-
ing a sector plan, known as resectorization. When this happens, the appropriate changes to the
current sectorization are performed. This would result in controllers controlling different air-

space.

1. See pages 6-37 through 6-42 of FAA specifications [FAA 95b].

14 CMU/SEI-98-SR-002

2.4.2 Sector Combination

The simplest combination that is currently permitted is that where two (or possibly more) sec-
tors are combined.This case is shown in Figure 8 below and is analogous to the discussion in
Section 2.2. Initially, there were two sectors, each based on certain FPAs. The FPAs are
denoted by the dashed lines in the figure.

~ ^*^ ^W y^ Sector 2 v ^W w
Sector 1 ^^f „ ^ _ ^^f

^ Sector 1 ~

Figure 8: Sector Combination

The result of the combination is that sector 1 will become the active sector, while sector 2
becomes an inactive sector. This implies that the air traffic controller who was initially control-

ling sector 1, will now also be controlling the airspace defined by sector 2.

2.4.3 Assignment of a Sector to a Radar Display Console

Another type of operation, which is not explicitly a combination of either a sector and/or FPA,
is the ability to assign a radar display console to a specified sector. When this happens, the dis-
play of the specified console is changed to display the specified sector. As a result of this
change, the controller now assumes control of the aircraft in the specified sector.

CMU/SEI-98-SR-002 15

2.4.4 Assignment of an FPA to a Sector

Another possible combination is that where an FPA is assigned to a sector. This case is illus-

trated in Figure 9 below. The figure shows the result of combining FPA 0201 with sector 1.

FPA 0201

Sector 1
Sector 2 Sector 1

Sector 2

Figure 9: Assigning an FPA to a Sector

The result of the assignment of the FPA to the sector is shown on the right-hand side of Figure
9. The shaded area represents the new airspace which constitutes sector 1. This means that the
airspace denoted by the shaded region will now be controlled by the controller in sector 1. The
remaining airspace will continue to be under the control of sector 2.

2.4.5 Assignment of One FPA to Another FPA

The last combination that is currently permitted is the case where an FPA is assigned to
another FPA. This case is shown in Figure 10 below. The sector that is crosshatched on the left
side of the figure is intended to be combined with the indicated FPA.

FPA 0201 FPA 0202
FPA 0202

Sector 1
Sector 2 5*3 Sector 1 ^^

Figure 10: Assigning an FPA to Another FPA

16 CMU/SEI-98-SR-002

Initially, FPAs 0201 and 0202 are part of sector 2. The figure illustrates the case where FPA
0201 is assigned to FPA 0202. The result of the assignment is shown on the right side of Fig-
ure 10. The shaded area denotes FPA 0202, the result of the assignment. After the assignment,
FPA 0202 will be the primary FPA, and FPA 0201 will be the subjugate FPA.

Note that the assignment of one (or more) FPA to another FPA could happen in a number of
contexts. These include

• the case where all FPAs are in the same sector, as indicated above

• the case where one FPA is in one sector and another FPA is in another sector

2.4.6 Non-Geometric Considerations

The preceding discussion has focused only on the geometric aspects of an FPA or sector. A
number of data elements that are relevant to the control of aircraft were noted in Section 2.3.3.
It is important to understand that when a sector and/or FPA change, there are associated
changes with the data elements associated with the sector.

For example, each sector has an associated hold list. If two sectors are combined, it is neces-
sary to combine the hold lists of each individual sector. A similar action must be performed for
the inbound lists and conflict alert list. Also, flight plan information is distributed to certain
display consoles. Hence, when two sectors are combined, there may be a change in the distri-
bution of flight plan data.

2.4.7 Atomicity of Operations

Consider the case where two sectors are being combined. A basic question is whether the com-
bination should be performed in an atomic manner. That is, either the sector combination will
complete, or no combination will take place. An alternative is to allow the sector combination
to proceed in parallel, but if there is a failure, the desired combination may not be realized. If a
dynamic change to an FPA or sector should be performed in an atomic manner, it places con-
straints on the software. For example, one could define the state of a sector as either fix or
changing. The changing state means that some aspect of the sector is undergoing a change,
such as the sector boundary. Not only that, but the adjacent sectors would have to be in the
changing state for some period of time where their boundaries are being recomputed, and so
forth.

The notion that a change to either an FPA or sector must be atomic in nature is analogous to
treating the FPA or sector as a shared resource. This would then mean that, from the time a
dynamic change is requested on an FPA or sector until that change has been completed, the
FPA or sector would be locked. Clearly, there are consequences for locking an object, because

CMU/SEI-98-SR-002 17

it would also mean that there could be a lock on the non-geometric aspects associated with the
object: for example, if (as a result of a dynamic change to a sector boundary) the state of a
handoff is locked, because the sector is changing]. A relevant factor in this discussion is the
amount of time that it would take to effect a dynamic FPA or sector change, because this
would dictate the locking time on the object.

There is the possibility that when a change is initiated, such as assigning an FPA to a sector,
the majority of the work associated with the change could be performed as a background pro-
cess. During this processing, no other change would be permitted. Thus, when the state of a
sector (or FPA) is changing, not only would the new geometry be computed (including possi-
ble changes to other sectors and/or FPAs, as noted above), but the data elements associated

with the sector change would also be recomputed. For example, the elements of an inbound
list to a sector may change as a result of combining two sectors. After all the changes have
been prepared, the sector would be locked for a relatively short period of time, while the

changes were displayed.

It is our understanding that the current host system provides procedural mechanisms to avoid
possible problems about dynamic state data for a sector.

18 CMU/SEI-98-SR-002

3 Requirements Specification

3.1 Scope

The FAA En Route system is changing with respect to how the system functions. Some of
these changes are hardware in nature, while some are software in nature. To discuss the En
Route evolution we define the following:

• HCS: host computer system

• PVD: plan view display

• DSR: display system replacement

Using the above notation, we present the En Route evolution paths in Figure 11.

HCS ► PVD

HCS' ►DSR

®
HCS" ►DSR'

Figure 11: En Route Evolution Path

The above figure is explained in the following way:

• The currently deployed HCS interacts with PVDs, which provide the display capability.

This interaction is denoted by the symbol ®.

• The PVDs are being replaced by DSR, which largely consists of new workstations and
associated infrastructure, both hardware and software. The transition from PVDs to DSR

is shown by the symbol d).

CMU/SEI-98-SR-002 19

• To accommodate the change to DSR, certain changes must be made to the HCS. This tran-

sition is shown by the symbol d) and will result in a modified HCS, denoted by HCS'.

• After replacement of the PVDs by DSR and modifications to HCS, there will be a new

system, whose interaction is shown by the symbol ®. This system is planned for installa-

tion in 1997.

• The HCS and/or modified HCS requires the ability to be upgraded. Hence, there is an
intended migration of HCS to a new HCS, which is denoted HCS". The migration from

HCS' to HCS" is shown by the symbol (D.

• Given an upgrade to the modified HCS, it will also be necessary to make some degree of
change to DSR. This will result in a modified DSR, denoted DSR'. The evolution of DSR

is denoted by the symbol ®.

• Finally, we have a final state where a new HCS interacts with a modified DSR. This inter-

action is indicated by the symbol CD.

The scope and degree of changes that will be made to the En Route System are significant.
Among the changes that require consideration, we note the following two items:

• What is the appropriate choice of technology on which to base the new HCS?

• Should the new HCS be acquired as a COTS product or should the FAA go through a full-
scale development, as was done for DSR?

These questions are complex and intertwined. The latter question is particularly relevant to the
requirements that will be presented below. For example, if one accepts the premise that a
COTS product(s) will be used for the HCS replacement, then one has the following options:

• Accept the COTS functionality as provided. This may, or may not, permit resectorization,
for example.

• If the COTS product does not provide for some feature, pay to have that feature incorpo-
rated into the COTS product.

In the end, the role of FAA requirements for En Route functionality can significantly affect the
acquisition strategy. In the case of this report, we assume that the requirements are developed
in the context of a new HCS.

3.2 Assumptions

Clearly, a full specification of requirements for resectorization is beyond the scope of this
report.We shall not address the following topics:

20 CMU/SEI-98-SR-002

• initialization processing: This includes processing of adaptation data files.

• mode-specific requirements: The system can operate in multiple modes (which would
include simulation for example), and this will not be considered here.

• shutdown processing: Certain functions are performed as part of system shutdown, but this
processing will not be discussed.

• flight strips: We do not address the routing and printing of flight strips.

In short, the requirements presented in this section are based on a steady-state model of the
system.

3.3 Software Requirements

This section specifies that subset of the software requirements that are relevant to the problem
of sector combination. The basic system functions that are considered here are shown in Fig-
ure 12. The labels in Figure 12 denote data transfer between the functions, with the arrows
labeled by the nature of the data that is transferred.

In developing the requirements for the resectorization processing, we have used existing FAA
documentation to the maximum extent possible.2 However, our efforts in developing the
requirements were limited by some issues with current FAA documentation. For example, we
noted that there are a number of requirements that are either unspecified or implemented as a
procedural manner. This point is discussed further in Section 3.4.

We believe that the requirements specified below represent a reasonable subset of what are
appropriate requirements, subject to issues of the role of procedural requirements, discussed in
Section 3.4.

We feel it is appropriate to make a general observation about the requirements documents that
were available to us. That is, we believe that the way these documents are specified could be
improved. For example, we would recommend the use of state transition diagrams. We would
further recommend a more robust specification of state data. (For example, it is not really clear
what state an FPA is.) A final consideration is the use of a formal specification approach to
developing and presenting the requirements.

There are interesting questions about shutdown. For example, it is possible to cancel a system
shutdown and such an activity could affect the state of information about sectorization.

Specifically, we have used the CD-ROM distribution of the PAMRI (Peripheral Adapter Module
Replacement Item), version 1.3 distribution.

CMU/SEI-98-SR-002 21

The development of easily understood and correctly specified requirements is crucial to the
FAA, whether a component of the En Route system is contracted out or acquired from a ven-
dor as part of a COTS acquisition.

System
Management

Resectorization Requests

Display Console

Flight Data Processing
Messages

Flight Data
Processing

Track Messages

Track Data
Management

Figure 12: Simplified Functional Data-Flow Model

3.3.1 System Management

System management is responsible for the overall management of components within an En
Route Center, such as consoles and interfaces to external systems. System management also
helps in the detection of possible faults and is responsible for the reconfiguration of failed
devices.

The basic functions performed include the following:

• system state data management (see Section 3.3.1.2)

• sector airspace management (see Section 3.3.1.3)

• display status information for sectors (see Appendix C)

22 CMU/SEI-98-SR-002

3.3.1.1 General Requirements

The following general requirements apply to system management:

1. The system shall support multiple system management consoles.

2. Each system management console shall be capable of accepting any valid command at any
time. The capability shall be provided to ensure that potential conflicts due to similar com-
mands being entered from multiple consoles are handled in a consistent manner.

3. Each console shall not require the processing of a command to complete before accepting
and initiating processing for another command.

4. Each console shall maintain consistent state data, as necessary.

3.3.1.2 State Data Management

The following subsections identify requirements for the management of state data for system
management.

3.3.1.2.1 Component State Data Management

This section defines requirements associated with the state for components of an En Route
Center. The term component is used here to denote a hardware component.1

3.3.1.2.1.1 Console State Data

The following general state data shall be maintained for each console:

• an identifier that uniquely identifies this console

• an physical address that may be used to communicate to the console

• the Console_Function, being either Null, System_Management, or Radar_Display

1. This can easily be generalized to include software components also.

CMU/SEI-98-SR-002 23

3.3.1.2.1.2 Radar Console State Data

The following specific state data shall be maintained for each radar display console:

• information about the map current displayed, including

an identifier of the map

the center coordinates for this map
• beacon code list

3.3.1.3 Airspace Management

The airspace management function provides management capability for the En Route Center

airspace (defined in terms of fix posting areas and sectors) including the ability to

• combine (and decombine) one or more sectors with (from) an existing sector

• assign a radar display console to another sector

• assign an FPA to a sector

• assign an FPA to another FPA

3.3.1.3.1 Airspace State Data Management

3.3.1.3.1.1 Node Data Management

The system shall provide for the management of nodes, where a node is defined as a point in
space. The following state data is associated with a node:

• the name of the node, which is required to be specified as an alphanumeric string of at

most six characters

• latitude

• longitude

3.3.1.3.2 Fix Posting Area State Data

The following state data shall be maintained for each fix posting area:

• an identifier that uniquely specifies the FPA

• the FPA current_state, being either primary or subjugate

• the FPA type, being either sector, no_airspace, approach_control, or
ARTS_approach_control

• the function of the FPA, being either FDEP, ARTSJII, FDEP_and_ARTS, or

AdjacentjCenter

24 CMU/SEI-98-SR-002

• the sector to which the FPA is currently assigned

• the sector to which this FPA is assigned in the initial state associated with the adapted sec-

tor plan in effect

3.3.1.3.3 Sector State Data

The system shall maintain the current sector plan that is in effect.

The following state data shall be maintained for each sector:

an identifier that uniquely specifies the sector. (The identifier may be either a number or a

name.)

the current sector jstate, being either active or inactive

the SectorJUse (which is one of Current_Training, PermanentJtraining, or Operational)

the Sector_Altitude_Type, which may be one of the following: high_altitude_sector,

low_altitude_sector, or ARTS_ARTCC_Adjacent

the sector CA_Boundary_Constant (APSB), used for display of conflict alerts for the sec-

tor

the sector CA_MCI_Boundary_Constant (APSC), used in conflict-alert processing and

display eligibility of MCI alerts for the sector

conflict-alert list (and associated state; see Section 3.3.2.3.3)

inbound list (and associated state; see Section 3.3.2.3.1).

hold list (and associated state; see Section 3.3.2.3.2)

VFR inhibit list

MCI function

Group_Suppression_List associated with the sector

an identifier for the printer associated with the sector

an identifier of the console where the sector is currently displayed

3.3.1.3.4 Sector Plan Management

The capability shall be provided to apply an adapted sectorization plan to an En Route Center.
This request may be made as part of system initialization or later, during system operation.

CMU/SEI-98-SR-002 25

3.3.1.3.4.1 Acceptability

The following requirements apply to the acceptability of a request to apply a sector plan to a
facility:

• The request must be entered from a system management console.

• The specified sector plan shall be valid.

If either of the above conditions exists, the request shall be rejected.

3.3.1.3.4.2 Processing

Upon acceptance of a valid request to apply a sectorization plan, the following requirements
applies:

• For each sector whose assignment changes, a notification shall be sent to its corresponding
display console(s) indicating the new assignment.

3.3.1.3.5 Sector Combination

The capability shall be provided to combine two or more sectors into a new sector.1 This pro-
vides flexibility with respect to airspace control.

3.3.1.3.5.1 Acceptability Criteria

The functional form of a request to combine sectors may be written as follows:

(Is) ->CS

where {Is} denotes a set of initial sectors and Cs denotes a controlling sector (i.e., the sector

that will assume control of the sectors in the set {Is}). The following requirements apply to a
request to combine sectors:

• The request must be entered from a valid console as defined in the Input Message Eligibil-
ity Record adaptation data.

• All sectors shall be defined in adaptation data.

• There shall be at least one sector in the set {Is}.

1. This is case (b) of the CS message in NAS-MD-311.

26 CMU/SEI-98-SR-002

• Each sector in the set {Is} that is not identical to the controlling sector must be active.

• If there is a sector in the set {Is} that is identical to the controlling sector, it must have at

least one FPA adapted to it in the adapted sector plan currently in effect.

If any of the above conditions exist, the request shall be rejected.

3.3.1.3.5.2 Processing

The following requirements apply to the processing of a valid request to combine two or more
sectors.

If the controlling sector is identical to one of the sectors in the set {Is}, all of the FPAs adapted

to that sector in the adapted sector plan currently in effect shall be assigned to that sector plus
any other FPA(s) currently assigned to that sector. When merged FPAs are affected by this
action, the following applies:

• If a primary FPA is included in the new combination, its subjugate FPA remains merged
with it.

• If a subjugate FPA is included in the new combination without its primary FPA, the
merger is broken, and the primary FPA remains assigned according to current sectoriza-
tion.

If the controlling sector is not one of the sectors in the set {Is}, all FPAs, including merged

FPAs, assigned to the specified sector in the current sectorization are reassigned to the control-
ling sector.

A notification shall be provided to each sector, including the designated controlling sector,
indicating the intent to be combined into the sector designated as the controlling sector.

3.3.1.3.6 Assignment of a Sector to a Radar Display Console

The capability shall be provided to assign a radar display console in one sector to the radar dis-
play console position in another sector. This also includes the capability to reassign a radar
console to its originally adapted position.1

This is case (c) of the CS message in NAS-MD-311.

CMU/SEI-98-SR-002 27

3.3.1.3.6.1 Acceptability Criteria

The functional form of a request to assign a radar console in one sector to a radar console in
another sector may be written as follows:

Ss—>SD

where Ss is the source sector which will be assigned to the destination SD.

The following requirements apply to a request to assign a radar display console in one sector
to the radar display console position in another sector:

• The request must be entered from a system management console.

• When at least one request for radar-console assignment is in effect, the only other accept-

able requests for that console that lead to a change in sectorization shall be another request
for radar-console assignment.

• All sector numbers must be adapted.

• Each sector shall be currently assigned to a radar-console position.

• The sector Ss must be in an active state, and the sector SD must be in an inactive state.

• If sector Ss is equal to SD, the request is interpreted as a reassignment of radar console to

its original position.

• No more than one radar console may be assigned to another radar-console position.

3.3.1.3.6.2 Processing

Upon acceptance of a valid request to assign a radar console to a specified sector, the follow-
ing shall be performed:

• A notification shall be sent to each affected radar console initiating the requested change.

3.3.1.3.7 Assignment of an FPA to a Sector

The capability shall be provided to assign an FPA to a specified sector.1

1. This is case (d) of the CS message in NAS-MD-311.

28 CMU/SEI-98-SR-002

3.3.1.3.7.1 Acceptability Criteria

The following requirements apply to this function:

• The specified FPA and sector shall be valid.

• The specified FPA must not be of type FDEP, ARTS III, combined FDEP/ARTS III, or
associated with an adjacent center.

3.3.1.3.7.2 Processing

Upon acceptance of a valid request to combine an FPA with a sector, the following shall be
performed:

• A notification shall be provided to the display consoles associated with the specified FPA
and, if different, the display console associated with the specified sector.

3.3.1.3.8 Assignment of One FPA to Another FPA

The capability shall be provided to assign one FPA to another.1 The FPA that is proposed to be
assigned will be denoted as the source FPA, and the proposed receiving FPA will be denoted
as the destination FPA.

3.3.1.3.8.1 Acceptability Criteria

The functional form of a request to assign one FPA to another FPA may be written as follows:

FS->FD

where Fs is the source FPA that is to be assigned to the destination FPA, denoted FD.

The following specifies the acceptability criteria for assigning one FPA to another FPA.2 The
following general requirements apply:

• Both the source and destination FPAs shall be one of the following types: sector, "no air-
space," approach control, or ARTS approach control.

• The source FPA must not currently be a subjugate FPA.

1. This is case (e) of the CS message in NAS-MD-311.

2. See page 6-39 of MD311.

CMU/SEI-98-SR-002 29

The following specifies the assignment of one FPA to another FPA:

• An FPA whose type is sector may be assigned only to another sector FPA.

• An FPA whose type is "no airspace" may be merged only with another "no airspace"
FPA.

• An FPA whose type is approach control may be assigned to a sector FPA or to another
approach control FPA.

• An FPA whose type is ARTS approach control may be assigned to a sector FPA or to
another approach control FPA.

The following specifies the assignment of an FPA to itself:

• An FPA whose type is sector may not be assigned to itself.

• An FPA whose type is "no airspace" may not be assigned to itself.

• An FPA whose type is approach control may be assigned to itself only if it is currently a
subjugate FPA.

• An FPA whose type is ARTS approach control may be assigned to itself only if it is cur-
rently a subjugate FPA.

If any of the above criteria are not satisfied, the request to combine FPAs shall not be accepted.

3.3.1.3.8.2 Processing

Upon recognition of a valid request to combine one FPA with another, the following shall be
performed:

• For the appropriate FPA(s), a notification shall be sent to the display console that is cur-
rently controlling the airspace associated with the FPA.

3.3.2 Radar Display Console Processing

The Radar Display Console Management Function is responsible for managing the state of a
display console. This includes interaction with the System Management Function to perform
functionality appropriate to the local console (such as initialization) and operations on sector
and/or FPA combination and decombination. This function is also responsible for displaying
track data and lists, such as the inbound list or hold list.

3.3.2.1 Local Sector Airspace Management

Each display console shall be capable of providing support to locally manage its airspace. This
results from interaction with the System Management function.

30 CMU/SEI-98-SR-002

3.3.2.1.1 General Resectorization Processing

The following general requirements apply when the sectorization is changed:

• If a display console receives a notification to change the current sectorization and an error
is detected, the request shall not be processed, and a notification shall be sent to the sender

of the request.

• If a valid request to change the current sectorization is received, an acknowledgment shall

be sent to the console that initiated the request.

The following specifies the processing to be performed when a valid notification to change the
current sectorization is received. If, as a result of a resectorization request, one of the consoles
transitions to an inactive state, the following processing shall be performed for that console:

• The console shall cease display of track and flight-plan data.

• The console shall not display the hold, inbound, or conflict-alert lists.

• The console shall not accept commands from a controller.

• The console state shall be set to inactive.

The following processing shall be performed for the console that will assume control of new
airspace. Any state data associated with the airspace being combined shall be transitioned to
the assigned airspace (and associated console) in the following manner:

• The assigned console shall receive and display the track display information for the con-
sole geometry.

• Flight-plan state data shall be updated to reflect the new airspace configuration.

• The hold, conflict-alert, and inbound lists shall be updated to reflect the new airspace con-
figuration. That is, all data associated with the resectorization shall be transitioned to the
new console. For example, elements of the hold list that are to be controlled by a new con-
sole shall be displayed on that console. Such data shall no longer be displayed on the other

console(s).

When resectorization processing is complete, a notification shall be displayed on all consoles
participating in the recombination indicating that the resectorization has been completed.

CMU/SEI-98-SR-002 31

3.3.2.2 Display of Track Data

The system shall have the capability to display information associated with a track.1 The infor-
mation shall contain the following:

• a symbol denoting the current position of the track. Different symbols shall be used to
denote one of the following: flight-plan aided track, free track, coast track, or a track cur-
rently in a hold state.

• a symbol denoting the track velocity vector

In addition, the following information shall be displayed:

• aircraft identification

• assigned altitude

• reported altitude

• computer ID number (CID)

• information about the track state (e.g., in handoff or hold), beacon code, and/or ground
speed

3.3.2.3 Display Lists

The system shall provide the capability to display lists of information for the operator. These
include inbound, hold, and conflict-alert lists. For each list, the controller shall have the ability
to

• enable and disable the display of the list

• position the list at a particular location on the display console

Default values of the above items shall be specified in adaptation data.

3.3.2.3.1 Inbound List

The inbound list shall be subdivided into sublists, with each sublist denoted by the first posted
fix within a center boundary. The sublists will be presented in alphabetical order by the name
of the first posted fix. For each sublist, the following information will be displayed:

1. This information is based on FAA specifications [FAA 95c](e.g., page 3-7). We refer to the full
data block.

2. This information is based on FAA specifications [FAA 95c] (e.g., page 3-24).

32 CMU/SEI-98-SR-002

• aircraft identification

• assigned altitude

• assigned beacon code

The entries in each sublist shall be ordered according to the center boundary crossing time,

with the earliest time first.

3.3.2.3.2 Hold List

The hold list shall be subdivided into sublists, with each sublist denoted by the hold fix as
specified in a hold message, first posted fix within a center boundary.1 The sublists will be pre-
sented in alphabetical order by the name of the hold fix. For each sublist, the following infor-

mation will be displayed:

• aircraft identification

• hold time

• aircraft altitude

The entries in each sublist shall be ordered according to decreasing aircraft altitude.

3.3.2.3.3 Conflict-Alert List

The conflict-alert list shall contain information about pairs of tracks for which a potential con-
flict alert exists.2 For each pair, the following information shall be displayed:

• aircraft identification for each aircraft in the conflict pair

• identity of the sector that has control of the aircraft

• the center identity, if an adjacent center is exercising control of either aircraft

3.3.3 Flight-Plan Management

3.3.3.1 Management of Flight-Plan State Data

The following information constitutes the state data associated with a flight plan:

• Flight_Plan_ID, which uniquely identifies a flight plan

1. This information is based on FAA specifications [FAA 95c] (e.g., page 3-25).

2. This information is based on FAA specifications [FAA 95c] (e.g., page 3-27).

CMU/SEI-98-SR-002 33

State, which can be either active or inactive

hold_state, which indicates if the flight is currently in a hold

assigned_altitude

aircraft_data

beacon_code

speed

coordination_fix

coordination_time

requested_altitude

route_information

comment_text

3.3.3.2 Distribution of Flight-Plan Data

The capability shall be provided to distribute flight-plan data to one or more display consoles
in a center. Such data shall be based upon receipt of any of the following messages:

Activate flight plan

Amend flight plan

Assign flight plan altitude

Assign flight plan beacon code

Deactivate flight plan

Delete flight plan

Flight plan

Hold flight plan

Upon receipt of any of the messages listed above, the following shall be performed:

• Relevant information shall be distributed to those display consoles that are holding infor-

mation for a specific flight plan.

• The current state of a flight plan shall be maintained for use by other functions.

34 CMU/SEI-98-SR-002

3.3.3.3 Flight-Plan Extrapolation

The capability shall be provided to extrapolate a specified flight plan. Flight plan extrapolation

is used to determine

• when flights inbound from an adjacent ARTCC are eligible for inclusion in an

Inbound_List

• the next and previous sector-posted fix of the extrapolated route

• when a flight qualifies for exclusion from a Hold_List display

• when an extrapolated flight-plan position is past the first posted fix in a sector

• when an extrapolated flight-plan position is past the last posted fix in a sector

3.3.3.3.1 Inbound List Eligibility

A flight that is inbound from an adjacent ARTCC will be eligible for inclusion in the inbound
list. Such a list is displayed at the sector position where the flight plan will enter the center air-

space.

For all active inbound flight plans that are not eligible for display on an inbound list, the fol-

lowing check will be made:

Tp < (BCT - ILET)

where

• Tp is the current clock time.

• ILET is the inbound list eligibility time (in minutes) prior to the calculated boundary

crossing time.

• BCT is the boundary crossing time for the inbound route segment.

The first time that the above inequality is true, the associated flight plan is eligible for display

for the first controlling sector in the ARTCC.

1. Seepage3-8ofNAS-MD-313.

CMU/SEI-98-SR-002 35

3.3.4 Track Management

3.3.4.1 Management of Track State Data

The following state data shall be maintained for a track.1 Track-state data shall be recovery

protected in the case of a fault.

• Track category

operational

simulated

computer ID
• Current track control

location type

- null

adjacent ARTS (automated radar terminal system)

adjacent NAS (National Airspace System)

this center

- external ARTS

interfacility point-out status

location identifier

computer ID value
• Track position

X-position

Y-position

altitude

assigned

type (none, single altitude, OTP altitude, blocked altitude, AFA altitude, VFR alti-

tude)

value

reported

- data source (mode C or controller entered)

value

1. The information is based on pages 1-23 of FAA specifications [FAA 95h].

36 CMU/SEI-98-SR-002

interim

- available (boolean)

value
Track velocity

- X component

Y component

ground speed
Associated flight-plan ID

Beacon code

established (boolean)

beacon code has changed (boolean)

current value
Conflict information

conflict indicator (boolean)

controlling console
Handoff information

handoff to/from other location

handoff type

to adjacent ARTS

to adjacent NAS

adjacent ARTS to this center

adjacent NAS to this center

location ID

handoff within this center

current controlling sector

receiving sector

- auto-handoff state

inhibited

manually

by program

- by program, temporarily

not inhibited

CMU/SEI-98-SR-002 37

Controlling track sector history data1

fourth oldest controlling sector

third oldest controlling sector

second oldest controlling sector

first oldest controlling sector
Track status indicators2

emergency (beacon code 7700 correlated)

radio failure (beacon code 7600 correlated)

OLD (Crosstell track data timed out)

- FAIL (DR received for TI or TA)

- HDFH (H handoff)

- HDFO (O handoff)

- HDFK (K handoff)

HOLD (hold at present position)

- CST (coast)

SBCO (special code 1 correlated)

SBC1 (special code 2 correlated)

RCVB (received beacon code used for smoothing not equal to assigned beacon code)

NONE (no beacon code received but code is assigned)

- BLNK (blank)

GSPD (ground speed of fiat tracked aircraft to be displayed)

- MSAW (E-MSAW alert)

MOFF (E-MSAW specific suppress)

MIFF (E-MSAW indefinite suppress)

track is an ARTS arrival

track detected across a sector boundary without transfer of control

1. This is called sector history data, but what is actually stored is a pointer to a table that contains
addresses of consoles.

2. This information is mainly referenced for E-field display.

38 CMU/SEI-98-SR-002

3.3.4.2 Distribution of Track Data

The capability shall be provided to distribute track data to radar-display consoles. These data
are then used for display and operator management.

When information about either a new track or an update to an existing track is received, the
following requirements apply:

• The information shall be distributed to those display consoles that are currently displaying
the track.

• Current information about all tracks shall be maintained for use by other functions.

3.3.5 System Capacity Requirements

The following table lists parameters that define system capacities and design requirements. It
is a subset of the requirements presented in Annex A of FA A specifications [FA A 95f]. The
values below are intended to apply to every ARTCC.

Parameter Value

Tracks 700

FPA boundaries 255

Total FPAs 400

Total approach control and ARTS approach control FPAs 255

Total fixes 6000

Sectors 100

Adjacent centers 10

Number of track update messages per subcycle 200

Number of active flight plans 2500

Table 1: System Capacity Requirements

CMU/SEI-98-SR-002 39

3.3.6 System Timing Requirements

The following table lists system timing requirements. The values are largely taken from FAA
specifications [FAA95e].

Parameter Value

Start-up 2 min

Startover 10 seconds

Switchover 10 seconds

NAS-to-Glass 1 second

Table 2: System Timing Requirements

3.4 Procedural Requirements

There are a number of procedural requirements that apply to the combination of a sector and/
or FPA with another sector and/or FPA. These requirements are listed below, based on our cur-
rent understanding of procedural semantics within an ARTCC. After a presentation of each
requirement, we provide a comment regarding the degree to which such a requirement could
be implemented in software.

1. Two (or more) sectors can be combined only if they each contain an FPA that shares a
common boundary with the other.
Comment: This would require that the proposed sector(s) for combination be examined to
make sure that there is a shared common boundary.

2. Two (or more) FPAs can be combined only if each contains a common boundary with the
other.
Comment: This would require that the proposed FPA(s) for combination share a common
boundary.

3. Two (or more) sectors can be combined only if they are within the same operational area.
Two (or more) FPAs can be combined only if they are in the same operational area. An
operational area is a set of sectors within which an operator is certified to control aircraft.
Comment: This could be implemented in software by defining an operational area in
adaptation data, either in terms of sectors or FPA(s). Then, for a proposed sector and/or

40 CMU/SEI-98-SR-002

FPA combination, a check would be necessary to make sure that the elements are in the
same operational area. Another alternative would be to associate an operational area with
an FPA, then verify the equality of operational areas when a sector and/or FPA combina-
tion is proposed.

CMU/SEI-98-SR-002 41

42 CMU/SEI-98-SR-002

4 CORBA Approach

4.1 CORBA

4.1.1 Background

CORBA, the Common Object Request Broker Architecture, is an industry standard developed
by the Object Management Group (OMG). Within OMG, there are approximately 500 mem-
bers from industry, universities, and government labs; the OMG is often cited as one of the
largest software consortia.1 The cost to join OMG is a function of a member's activity. For
example, industry costs can be substantial, depending upon the sales of the company, while an
academic membership is relatively inexpensive. However, there is a direct relation between the
amount of financial contribution and the amount of influence a member has regarding what
specifications are developed and approved by the OMG.

The main goal of the OMG is to promote the use of object technologies. This is achieved pri-
marily through the development of specifications, such as CORBA [OMG 95a]. Another doc-
ument particularly relevant to this report is the specification of CORBA services [OMG 95b].

The simplified process by which the OMG accepts a specification is outlined below:

1. A group of people recognize a need for a document specifying some functionality that is
related to CORBA.

2. The group is granted a charter by the OMG to carry out the work.

3. The group develops a request for proposal (RFP). After the request is approved within
OMG, it is publicized.

4. Vendors respond to the RFP stating the technology that they intend to implement. A ven-
dor must also commit to having a commercial implementation within one year.

5. If multiple vendors submit proposals, they are encouraged to work together to seek a com-
mon solution.

1. The OMG Web site is http://www.omg.org/.

CMU/SEI-98-SR-002 43

When the consensus is reached by the vendor(s), a vote is taken within OMG to accept or

reject the proposal.

4.1.2 Architectural Overview

The architectural context for CORBA is a fundamental aspect of the specification and the way
in which CORBA is used in a system. It is perhaps easiest to describe this as an interaction
between a client and a target object. The client makes a request of the object, and a response is

provided, as shown in Figure 13.

X Requests
Client H R^= ►< 0bjCCt *Q

Figure 13: Interaction of Client and an Object

Figure 13 can be interpreted in terms of a client-server model. The mechanism used to achieve
interaction between a client and an object is the remote procedure call mechanism.

One of the strengths of CORBA is to define an architectural model for the interaction of a cli-
ent and an object. This context is presented in Figure 14.

44 CMU/SEI-98-SR-002

f N Metl
f Client)^

A J|Requests^^k

Methods (Operations and Parameters)

Responses

IDL
Stubs

Dynamic
Invocation

Dynamic IDL
Skeleton

Static IDL
Skeleton

Object Request Broker (ORB)

CORBA Services

I Naming J (Events J

Figure 14: CORBA Architectural Model

The essential features of the architectural context include the following:

• A client makes a request of an object by invoking a method on the object. The request is
invoked on an object and may have input and output parameters.

• An interface description language (DDL) is used to specify the interface between objects.
From the IDL, client stubs are generated. The specification of the object is achieved by
filling in the details of the IDL skeleton. The IDL allows for platform and programming-
language independence and is a fundamental aspect of CORBA.

• The object request broker (ORB) is the basic arbitrator of interaction with an object.
Among other things, the ORB provides for creation, activation, and communication
between objects and other object management services.

• A number of CORBA services are available to provide support for naming, event manage-
ment, and so on. These services are modeled on the notion of an object, and an application
can invoke requests for a particular service, of which there are many. These services are
described further in Section 4.1.5.

The discussion associated with Figure 14 was presented at a simple level to convey the basic
elements of the CORBA architectural context. For more details, refer to the CORBA docu-
mentation.

CMU/SEI-98-SR-002 45

An additional advantage provided by CORBA is flexibility. For example, if a new service is
defined, it is specified in IDL, which is neutral with respect to language mappings. That is, a C
or Ada language mapping can be defined for the new service. Hence, the IDL provides a level
of abstraction that permits the development of flexible language bindings.

4.1.3 Real-Time Considerations

The current CORBA specification [OMG 95a] was not developed with a focus on the real-time
domain. Within the past two years, a Real-Time Platform Special Interest Group (RTPSIG)
has been formed. That group is developing RFPs that would lead to the development of a real-
time CORBA. An RFP has been developed to include the following:

• real-time protocol (RT ESIOP)

• fixed priority scheduling

• pluggable transport layer

There is also an RFP for a minimal CORBA, which is intended to be a version of CORBA that
is lightweight in its memory footprint, although not necessarily focused on real-time aspects.

4.1.4 Communication Mechanisms

CORBA provides a number of mechanisms for communication between objects. The basic
interaction is through the use of a method invocation, which is an abstraction of a remote pro-
cedure call. A method is the code that is executed to perform a service of the object. If a client
makes a request of an object, the corresponding method will be called on the object. The
request (and method) specifies the name of the operation and parameters, both input and out-
put. The delivery semantics of a method are reliable. It is also possible to specify additional,
vendor-defined information, that can provide quality-of-service information. This is defined as
a context, and the information is passed as a character string.

It is also possible to specify that a method be one-way, indicating that the caller will not be
blocked. This form of interaction is subject to the following constraints on the caller:

• The delivery semantics are best effort and not guaranteed.

• There can be no output parameters, and the return type must be void.

• No application-defined exceptions can be raised, although predefined exceptions may be
raised.

In a sense, the one-way method invocation is a form of asynchronous interaction in that the
caller is not blocked. Although the above constraints are rather restrictive, the one-way method
invocation is sometimes useful in practice. If output parameters were desired, a sender-

46 CMU/SEI-98-SR-002

receiver model using one-way semantics could be developed. However, in this case, the appli-
cation must perform more management activity, such as matching requests and responses. In
this case, it becomes increasingly like a message-passing system rather than an object-interac-
tion system. Another approach would be through the use of a callback mechanism.

CORBA also supports a one-to-any model (publish-subscribe), which is based on the notion of
an event. Basically, there can be producers of events and consumers of events. The communi-
cation takes place over an event channel. This is defined in the Event Service specification
[OMG 95b].

The manner in which a client and server interact can be specified in one of the following ways:

• static IDL: All the methods are known in advance to both the client and server. This is the
most common form of interaction and is simple and efficient. It also provides for type-safe
operation.

• dynamic IDL: The methods are defined at runtime. This provides more flexibility than the
static IDL approach, but is believed to be more complicated and less efficient.

In this report, we will be mainly concerned with the use of static IDL specifications.

As a result of executing the method, a result may be returned or an exception may be raised.
Exceptions may be of two types: those that are predefined by CORBA and those that are
defined by an application in the IDL specification. As an example of those that are predefined
by CORBA, if a method is invoked and a parameter is invalid, a predefined exception will be
raised indicating that the parameter is invalid.

4.1.5 Additional Services

In addition to the basic CORBA architecture, there are a number of associated services defined
that are available to an application. These are specified in OMG specifications [OMG 95b] and
include the following:

• naming service: This service provides interfaces to define a naming context (a scope in
which all names are unique) and binding for a name to an object.

• event service: This service provides interfaces for producers and consumers to communi-
cate information about events. The communication between the producer and consumer is
asynchronous in nature, as it is mediated by an event channel. Event distribution is reliable
in nature. This is an example of a publish-subscribe communication model.

• life-cycle service: This service provides interfaces for creating, deleting, copying, and
moving objects. It is also possible to perform operations on a graph of objects. An impor-
tant concept in this area is the role of a. factory (an object that creates other objects).

CMU/SEI-98-SR-002 47

• persistent object service: This service provides interfaces for retaining and managing the
persistent state of objects. Included is the ability to specify a persistent object, which has
an associated identifier. Clients can then interact with the persistent object to manipulate
state data.

• transaction service: This service provides interfaces for transactions. Two models are
available: a flat transaction model and a nested transaction model, with the latter being
optional. The service supports management of both system and application transactions.
The service permits coexistence of a procedure-oriented paradigm with an object-oriented
paradigm. Multiple transactions can be executed concurrently.

• concurrency control service: This service provides interfaces for a coordination mecha-
nism among multiple clients for access to a shared resource. The coordination is achieved
through the use of locks. For example, a client must obtain a lock before being granted
access to the resource. This prevents multiple clients from performing a conflicting action
on a shared resource. Read and write locks are among the locking modes supported.

• relationship service: This service allows for the specification of entities and relationships
between them, where an entity is a CORBA object. For example, a flight plan contains a
route; correspondingly, a route is contained in a flight plan.

• externalization service: This service provides the capability to record the state of an object
in some storage media (e.g., memory or file system). The service also includes protocols
and conventions for externalization (and the converse operation of internalizing) an
object's state.

The existence of services, such as those described above, illustrates the philosophy in the
development of CORBA by the OMG. That is, there is a basic architectural model that permits
the specification of objects (using IDL, for example) and mechanisms for their interaction. The
services supplement that basic model and allow for applications to make use of the services
needed for a particular application context.

It is important to note that CORBA does not specify a particular operating system. There are,
however, certain expected functions of an operating system that have been implicitly and
abstractly specified.

4.2 Presentation of Design Information

For the purposes of this report, we will use a design notation that allows us to describe

• object classes

• objects as instances of a class

• methods available on an object

• event channels

48 CMU/SEI-98-SR-002

An example of the notation for the use of CORBA methods is presented in Figure 15.

Object_lnstance_Name Object_lnstance_Name f \
Method-1

Method-2

Class.Name

Object_lnstance_Name

Class Name

Figure 15: Notation for Use of CORBA Methods

The essential points about the above diagram are summarized below:

• An object class is represented by a rounded rectangle. The class of the object is listed
beneath the object. If an instance of an object must be uniquely denoted, that name
appears above the object.

• The methods that are provided by an object appear on the side of an object (class), and the
name of the method is present.

• Invocations on an object are shown by a solid line with the tail of the arrow denoting the
caller.

The intent of the above notation is to achieve a simple approach that can be easily understood.
We recognize that object classes do not interact per se. The semantics of object interaction are
defined in the context of a class and implemented through an instance of the class.

CORBA also provides for the use of event channels that permit an asynchronous interaction
between the producer and consumer of the event. The four cases for how event channels can be
used are illustrated in Figure 16.

CMU/SEI-98-SR-002 49

Producer
Pull J Event »

\ Channel :
%» y

Push
Consumer

Producer
Push Event

Channel
Pull

Consumer

Figure 16: Notation for CORBA Event Channels

Figure 16 shows two examples of the notation for CORBA event channels. The event channel
that is being used by a producer and consumer is labelled and appears as a dashed line. There
are different ways in which a producer and consumer interact with the event channel. For
example, the top of Figure 16 shows a pull producer and a push consumer; the bottom of Fig-
ure 16 shows a push producer and a pull consumer. The concept of push and pull denotes the
way in which events are provided and consumed from the event channel. The ability to provide
these different mechanisms allows versatility in how events are handled.

4.3 Basic Design Issues

Before discussing the design considerations specific to the resectorization problem within an
ARTCC, we will discuss general design principles appropriate for designing systems using
CORBA. Although CORBA promotes communication between objects and, thus, object-ori-
ented design, it is not strictly necessary to create an object-oriented design to use CORBA; it
would be possible to create a functional design and use CORBA to communicate between sub-
systems. However for the purposes of this report, we have considered an object-oriented
design method with the expectation of exploiting all of CORBA's capabilities.

The design process is composed of a number of phases: object identification, interface deter-
mination, and design transformation. The key difference between object-oriented and more

50 CMU/SEI-98-SR-002

traditional design approaches is that the former is based on data, while the latter is based on
actions.

4.3.1 Object Identification

One of the hardest problems in object-oriented design is identifying the objects to be imple-
mented. Perhaps the root cause of this difficulty is answering the question, "What is an
object?" One answer to this question is that an object is an encapsulation of data with an inter-
face that permits the data to be modified or recalled as needed by a user of the object. The
important part of the answer is that an object encapsulates the data so that the only way the
data may be accessed is through the interface similar to an abstract data type. With this in
mind, we can now consider how to identify objects to be implemented.

If our design structure is going to last, given that there will be changes in requirements, it is
important to choose the objects carefully. Objects should model things (for want of a better
word) in the real-world system that are persistent in nature and whose interface will not
change (or will vary in only a minor way) for their lifetime (although the implementation of
the interface may change). Typically, this means choosing objects to represent physical objects
with invariant structures and functions. A good example in our context would be an aircraft.
Although the details of an aircraft will vary considerably over the life of the system, we expect
that all aircraft will have a consistent set of attributes (X and Y coordinates, altitude, velocity,
etc.). Of course, the things we model do not have to be physical in the sense of being solid; the
things might be more ephemeral, such as tracks produced by an analysis of radar data. Again,
there are certain attributes that we expect all tracks to have, and we expect that our system will
always rely on the concept of a track for correct operation. Finally, the things that we model
might not have any physical existence at all; we might choose to model a relationship between
objects as an object in its own right. An example of this would be an object that models the
relationship between a track and a flight plan. The consistent idea behind these examples (and
suggestions as to what objects should be chosen) is that the objects should encapsulate certain
data items and are expected to remain fairly constant throughout the lifetime of the system.
More importantly, the data items encapsulated within an object should have a strong relation-
ship to each other and not need a strong relationship to data items encapsulated in other
objects.

4.3.2 Interface Determination

During the object identification phase, we will have some idea of how the software system is
expected to interact with each object. We will have an intuitive idea of the relationships
between different objects (either of the same or different types) and the needs that each object
has of other objects, so that the object may perform its function correctly. For example, the

CMU/SEI-98-SR-002 51

display of a track object (more precisely, an object representing a track) will need the coordi-
nates of the track so that a determination can be made of the screen region that corresponds to
those same coordinates. This example shows that the display object needs to access the track
object's X and Y coordinates.

During the interface determination phase, the designer chooses the precise nature of the inter-
faces that the object will provide. In the example above, it would be possible for two interface
routines to be provided: one to provide the X coordinate and one to provide the Y coordinate.
Of course, we would not do this as we cannot imagine that any part of the system might want
one coordinate without the other, and even if we did find that need, the burden of getting both
co-ordinates and then "forgetting" the unneeded coordinate is small. We would generally
choose an interface routine that provided both coordinates. But, what about other information

that might be encapsulated in the object? Should the interface routine return altitude? Should it
return velocity? The choices here are endless, and the decisions should be shaped by the ways

that other objects will be permitted to modify (through an interface routine) or access the

encapsulated data.

One of the advantages of object-oriented design is that new interface routines can always be
added without disturbing existing interface routines (assuming that the new interfaces do not
interfere with the function of the existing interfaces). Some objects may end up with many
interface routines; this is typical of many object-oriented designs and may cause system imple-
mentors to have difficulty determining which interface routine to use.

Generally when adding a new interface routine, the designer should examine the existing rou-
tines and see if a generalization of one of the existing routines might serve the same purpose as
adding the new routine. Of course, if the generalization requires a change in the syntax of the
interface routine, all objects currently using the routine will have to be updated appropriately.

4.3.3 Design Transformation

The initial development of an object-oriented architecture can be performed in the context of a
generic object system. Part of the design transformation is to refine that initial design in the
context of a particular object system, in our case CORBA.

At this stage, particularly in the context of an ARTCC, it is likely that the design will consist of
a number of objects, with the expectation that there may be many instances of each object.
Realistically, particularly in the distributed object (CORBA) context, it takes time to commu-
nicate from one object instance to another, and as the number of instances increases, the sys-
tem will be swamped by communication delay. The existing design should, therefore, be
modified and collections of objects brought together to create the CORBA objects. The rules
guiding this collation process are similar to those for identifying objects in the first place —

52 CMU/SEI-98-SR-002

collect into one CORBA object the object instances that encapsulate closely coupled data
items. For example, we might create an aircraft-manager object as a collection of all aircraft-
object instances. As we go through this process, some of the interface routines may vary. We
might (within the CORBA object) still treat the object instances as separate instances. How-
ever, we would not make their interface routines directly available for use by other CORBA
objects.

If there are other CORBA objects that need the data for one of the hidden objects, we would
need to add a new interface routine to the object container (in our example, the aircraft man-
ager), and this routine would access the hidden object. There is a danger here, though, that we
might not have gained much by the collation. If, as in our example, we hide the aircraft
instances within the aircraft-manager object, we still had a need for some other object (such as
the display) to access individual aircraft data, and the communication overhead still exists. The
purpose of the collation and instance hiding is to minimize communications. Thus, the data
collections should be treated en masse; otherwise the communications to the individual data
items will become a bottleneck in system performance.

4.4 Architectural Considerations

4.4.1 Chosen Architecture

The architecture chosen for the CORBA aspect of this report will contain the following com-
ponents:

• display consoles

• system-management consoles

• flight-data processing

• track-data management

The flight-data processing and track-management functions are intended to replace the current
Host computer system processing. The incorporation of CORBA in the ARTCC architecture is
based on the following:

Design Consideration C-l
DSR consoles will be allowed to contain CORBA-based objects.

CMU/SEI-98-SR-002 53

To accommodate the above design consideration, we need the following, somewhat stronger
statement:

Design Consideration C-2
Any component of the ARTCC, such as flight-data processing, track management, or sys-
tem management, will be allowed to contain CORBA-based objects.

The resulting architecture, which includes the above design considerations, appears in Figure
17.

Display
Console

CORBA

>
Display
Console >

CORBA

Display
Console

CORBA

Display
Console

CORBA

System
Mgmt

Console

CORBA

Flight
Data

Processing

CORBA

Figure 17: Assumed CORBA Architecture

The important point to note in Figure 17 is that we are assuming that CORBA is present on all
system components. This would require a change to the current display system replacement
(DSR) to accommodate a CORBA implementation. If CORBA is to be seriously considered
for inclusion within an ARTCC in a long-term solution, it should be permitted to be fully dis-
tributed over all components, as needed.

The ring connectivity in Figure 17 should be interpreted as logical connectivity. We are aware
that the DSR connectivity among consoles is a multi-ring structure, and there is nothing that
would prevent maintaining that connectivity in the context of a redeveloped host. In this
report, we emphasize the components rather than their physical connectivity.

54 CMU/SEI-98-SR-002

4.4.2 Migration Considerations

The architecture described above may require many changes to the current DSR system. It is
worth a moment to reflect on a possible migration path that would first permit the introduction
of CORBA as part of redeveloping the host computer system. This could then be followed by a
fully distributed CORBA implementation. An architecture to accommodate this migration
approach is presented in Figure 18.

Display
Console

Display
Console

Track
Data
Mgmt

CORBA

Display
Console

CORBA
Server

System
Mgmt

Console

CORBA

Display
Console

Display
Console

Flight
Data

Processing

CORBA

Figure 18: CORBA-Based Migration Architecture

The essential features of the above intermediate architecture are that it provides a mechanism
to incorporate CORBA into the currently planned ARTCC. This is accomplished through the
use of a CORBA server. In the above figure, system management and the new host functions
(track-data management and flight-data processing) communicate to a given console by the
CORBA server acting as an intermediary. Then, the CORBA server could communicate with
the display consoles using the current DSR communication protocols, for example.

The architecture in Figure 18 is functionally equivalent to that shown in Figure 17. That is, in
Figure 18, the objects are physically collocated (for ease of migration), whereas the objects are

CMU/SEI-98-SR-002 55

physically distributed in Figure 17. Thus, a fully distributed CORBA architecture can be
obtained by distributing the object functionality from the server onto the physical consoles.

Although the two architectural diagrams are functionally equivalent, there are several impor-
tant non-functional differences. These include the following:

• The CORBA server would be a single point of failure. It would be necessary to incorpo-
rate fault-tolerant techniques to eliminate the risk of a single component failure.

• Performance could degrade with the server. The server would, in effect, have to manage
multiple resources (objects), and this could lead to first in, first out (FIFO) queuing of
method invocations. For example, the time to distribute track data would increase because
the server is functioning in part as a protocol translator. Such additional processing comes
at a price.

• The server could become complex. Because the server would have to communicate both
with CORBA implementations and the current DSR protocols, not to mention the possibil-
ity of other components (e.g., CTAS or URET), it could quickly become a complex
design.

4.5 Initial Design

In this section, we present the initial CORBA design for this work. The overall guiding princi-
ple in the development of the initial design is expressed as follows:

Design Consideration C-3
The initial CORBA design will be based on the maximal use of objects, without regard to
implementation considerations.

This consideration permits us to concentrate on the functionality that is required without con-
sidering implementation details. This also implies that we will not consider, as part of the ini-
tial design phase, possible performance or fault-tolerant considerations. Such considerations
could be treated as a refinement of the initial design. The implementation of the initial design
will be developed in the context of a virtual machine.

The following is a list of the candidate object classes we will consider for the CORBA design:

system management

airspace management

FPAs

sector

console

56 CMU/SEI-98-SR-002

inbound list

hold list

conflict-alert list

track management

track

flight-plan management

flight plan

Much of the information listed above is associated with the functionality of the display con-
sole. Figure 19 should help illustrate the relations among the relevant objects.

Console

Controls

Consists Of Associated With

(FPA-IJ) (FPA-2) (FPA-N Conflict
Alert
List

Figure 19: Console-Object Relationships

In the following subsections, we present a discussion of the candidate classes with emphasis
on the state data and methods associated with each class. A brief discussion of descriptive
information appropriate for the initial design is contained in Appendix G.

CMU/SEI-98-SR-002 57

4.5.1 System Management

The purpose of system management is to maintain a list of all console objects, sectors, and

FPA references for display and control.

The state data associated with system management includes the following:

• console object references: a database of system console object references

• FPA object references: a database of FPA object references

• sector object references: a database of sector object references

The methods associated with system management include the following:

• initialize: performs initialization for system management1

• console notify: provides the object reference of a console

• sector notify: contains the object reference of a sector that has been created, deleted, or
modified

• FPA notify: contains the object reference of an FPA that has been modified

In terms of our notation, we represent the system management as shown in Figure 20.

c ^

Initialize Sector_Notify

ConsoleJMotify FPA_Notify

V J
System_Management

Figure 20: Initial Object Specification for System Management

1. Each object will have a method for initialization. For example, the invocation of the initialization
method on an object may perform memory-management operations for local state data.

58 CMU/SEI-98-SR-002

4.5.2 Airspace Management

The purpose of airspace management is to manage the creation, modification, and deletion of
sectors. This function also distributes data to sector objects based on the sector and console
geometry. The distribution of track data to this object is performed by the track-management
object. As part of system initialization, all display and management consoles must register
with airspace management.

The state data associated with the airspace-manager object includes the following:

object references for all sectors in the system

a database of FPA object references

database of object references for all registered display consoles, with the console geome-
try and assigned sector

database of references for all registered system management consoles

The methods associated with the airspace-manager class include the following:

Initialize: performs initialization for the airspace-manager object

Get available consoles: returns a list of object references for all known consoles

Register display console: allows for a console to register with airspace management

Register management console: allows for a system-management console to register with
airspace management

Create FPA: creates an FPA having a specified geometry and type

Get FPA references: returns a list of object references for all the FPAs in the system

Create sector: creates a sector object from a specified set of FPAs. once the sector object is
created, the airspace manager updates the sector object with all relevant data.

Delete sector: deletes a specified sector object and deassigns all FPAs associated with that
sector

Get all sector references: returns a list of object references for all sectors in the system

Combine sectors: combines two (or more) sectors into one sector and returns an object ref-
erence for the combined sector

Split sector: removes a previously established sector combination (i.e., to split a sector
into its constituent parts)

Assign sector: assigns a sector to a console and notifies the sector object of the assign-
ment

Deassign sector: removes the assignment of a sector to a particular console

- Track notify: provides notification that data are available for a new track or the data
for an existing track have been updated

CMU/SEI-98-SR-002 59

Drop track: track object reference that has been dropped

Purge tracks: all track object references dropped

Flight plan notify: provides notification that either data are available for a new flight
plan or the data for an existing flight plan have been updated

Delete flight plan: indicates that the flight plan has been deleted

Purge flight plans: indicates that all flight plans have been removed from the system

Conflict notify: provides notification of a new conflict or updated information about
an existing conflict

Conflict resolved: indicates that the conflict no longer exists

Console geometry changed: provides notification of a change in the geometry of a
console

60 CMU/SEI-98-SR-002

In terms of our notation, we represent the airspace manager object as shown in Figure 21:

L
Initialize

Create FPA

Get FPA_Refs

Create Sector

Delete_Sector

Get_AII_Sector_Refs

Combine Sectors

Split_Sectors

ConflictJMotify

Conflict Resolved

Register_Management_Console

Assign_Sector

Deassign_Sector

Track_Notify

Drop_Track

Purge_Tracks

Flight_Plan_Notify

Delete_Flight_Plan

Purge_Flight_Plans

Register_Display_Console

Get Available Consoles

Console_Geometry_Changed

Airspace_Management

Figure 21: Initial Object Specification for Airspace Management

CMU/SEI-98-SR-002 61

4.5.3 FPAs

As noted earlier in this report, the FPA is the fundamental unit of airspace within an En Route
Center. We define an FPA class from an object-oriented perspective.

The state data associated with an FPA includes

geometry

type (such as controlled or no_airspace)

default sector to which the FPA is assigned

current sector to which the FPA is assigned

a list of other FPAs that are assigned to this FPA

the FPA to which this FPA is assigned

The methods associated with the FPA class include the following:

Initialize: performs initialization for the object

Get geometry: returns the geometry of a specified FPA

Assign FPA to sector: assigns a specified FPA to a specified sector

Deassign FPA from sector: deassigns a specified FPA from a specified sector

Get assigned sector: returns an object reference to the sector to which a specified FPA is

assigned

Assign to FPA: assigns a specified FPA to another specified FPA

Deassign from FPA: removes the assignment for a specified FPA from another specified

FPA

Get the FPAs that are assigned to this FPA: returns a list of the FPAs assigned to a speci-
fied FPA

62 CMU/SEI-98-SR-002

In terms of our notation, we represent the FPA class as shown in Figure 22:

/_
Initialize

Zx.
Assign_to_FPA

Get_Geometry Deassign_from_FPA

Assign_FPA_to_Sector Get_Assigned_FPAs

Deassign_From_Sector Get_Assigned_Sector

~7
FPA

Figure 22: Initial Object Specification for a Fix Posting Area

4.5.4 Sectors

A sector is specified as a set of FPAs. A sector object will manage all information associated
with a sector such as tracks, flight plans, and lists. When a sector object is created, it will cre-
ate instances of inbound, hold, and conflict-alert lists. The sector object computes and main-
tains list data (such as inbound and hold lists) based on information provided from flight-plan
management.

The state data associated with a sector include the following:

geometry

assigned console

list of tracks (object references) in sector

list of FPAs (object references) in the sector

hold-list object reference

inbound list object reference

conflict-alert list object reference

CMU/SEI-98-SR-002 63

The methods associated with the sector class include the following:

Initialize: performs initialization for the sector

Get assigned FPAs: returns a list of all FPAs assigned to the sector

Assign sector to console: assigns a sector to a console and notifies the console object of
the assignment

Deassign sector from console: deassigns a sector from a console and notifies the console
object of the deassignment

Get assigned console: return the console object reference assigned to the sector

Get sector geometry: returns the geometry information for this sector

Assign FPA to sector: assigns an FPA to a sector object. The sector object shall notify the
FPA object, the console object, and airspace-management objects.

Deassign FPA from sector: deassigns an FPA from a sector object. The sector object shall
notify the FPA object, the console object, and the airspace-management objects.

Track notify: provides notification that either data are available for a new track or the data
for an existing track have been updated

Drop track: removes a track-object reference from the local track data

Purge tracks: removes all track-object references from local track data

Flight plan notify: provides notification that either data are available for a new flight plan
or the data for an existing flight plan have been updated

Delete flight plan: indicates that the flight plan has been deleted

Purge flight plans: indicates that all flight plans have been removed from the system

Conflict notify: provides notification of a new conflict or updated information about an
existing conflict

Conflict resolved: indicates that the conflict no longer exists

Get list references: returns object references for all lists associated with this sector

Get state data: returns all state data for the object

In terms of our notation, we represent the sector as shown in Figure 23.

64 CMU/SEI-98-SR-002

Initialize

Assign_Sector_to_Console

Deassign_Sector_from_Console

Get_Assigned_Console

Assigri_FPA_to_Sector

Deassign_FPA_from_Sector

Get_Assigned_FPAs

Conflict_Notify

Conflict_Resolved

Track_Notify

Drop_Track

Purge_Tracks

Get ListRef

Get_Sector_Geometry

Flight_Plan_Notify

Delete_Flight_Plan

Purge_Flight_Plans

Get State Data

Get ListReferences

~7
Sector

Figure 23: Initial Object Specification for a Sector

4.5.5 Consoles

The purpose of the console object is to manage information about the console display and sec-
tor assignment. As part of initialization, a console is expected to register with system manage-
ment.

The state data associated with the console class includes the following:

CMU/SEI-98-SR-002 65

State: the current state of the console (active or inactive)

Assigned sector reference: an object reference of the sector object that is assigned to the
console

Hold list reference: an object reference for the hold list associated with this console

Inbound reference: an object reference for the inbound list associated with this console

Conflict-alert list reference: an object reference for the conflict-alert list associated with
this console

Tracks: a database of object references for tracks associated with this console

The methods associated with the console include the following:

Initialize: performs initialization for the console

Assign sector: assigns a console to a specified sector

Deassign sector reference: deassigns a sector object from the console

Get assigned sector: returns an object reference of a specified sector

Get console state: returns the current state for a specified console object

Track notify: provides notification that either data are available for a new track or the data
for an existing track have been updated

Drop track: removes a specified track-object reference from the track-object reference
database

Purge tracks: removes all track object references from the track-object reference database

Hold list updated: provides a notification of a data update in the hold-list object associated
with the sector

Inbound list updated: provides a notification of a data update in the inbound-list object
associated with the sector

Conflict-alert list updated: provides a notification of a data update in the conflict-alert list
object associated with the sector

Sector geometry changed: provides a notification that there has been a change in the
geometry for a specified sector object reference

In terms of our notation, we represent the console class as shown in Figure 24.

66 CMU/SEI-98-SR-002

n
Initialize

Assign_Sector

Deassign_Sector

Get_Assigned_Sector

Get_Console_State

Sector_Geometry_Changed

A
Drop_Track

Purge_Tracks

Hold_List_Updated

lnbound_List_Updated

Conflict_Alert_List_Updated

Console

Figure 24: Initial Object Design for Console Class

4.5.6 Data Lists

A number of lists are associated with a sector. These include the inbound, hold, and conflict-
alert lists which are discussed below.

4.5.6.1 Inbound List

The inbound list maintains a list of flight plans and associated parameters that provide infor-
mation to the controller about flights that are expected to enter a particular sector.

The state data associated with the inbound list includes the flight-plan object reference.

The methods associated with the inbound list include the following:

Initialize: performs initialization for the inbound list

Add flight plan: adds a specified flight plan to an inbound list

Delete flight plan: deletes a specified flight plan from an inbound list

Clear list: clears all elements of an inbound list

Modify list data: provides for changing the data associated with an inbound list

CMU/SEI-98-SR-002 67

In terms of our notation, we represent the inbound list as shown in Figure 25:

JC
Initialize

ClearJJst

IX
Add_Flight_Plan

Delete_Flight_Plan

Modify_List_Data

Inbound List

Figure 25: Initial Object Specification for an Inbound List

4.5.6.2 Hold List

A hold list contains information about flight plans that are currently in a hold state. The hold
list is eligible for display at a particular console.

The state data associated with the hold list includes the following:

• flight ID

• hold fix

• hold time

The methods associated with the list include the following:

Initialize: performs initialization for a hold list

Add flight plan: adds a specified flight plan to a hold list

Delete flight plan: deletes a specified flight plan from a hold list

Clear list: removes all elements from a hold list

Modify list data: provides for changing the hold-list data

68 CMU/SEI-98-SR-002

In terms of our notation, we represent the hold list as shown in Figure 26.

Initialize

ZX.
Add_Flight_Plan

ClearJJst

Delete_Flight_Plan

Modify_List_Data

Hold_List

Figure 26: Initial Object Specification for a Hold List

4.5.6.3 Conflict-Alert List

A conflict-alert list maintains information about tracks that may be in a conflict situation.

The state data associated with the conflict-alert list includes the track pairs that are in conflict.

The methods associated with the conflict alert include the following:

• Initialize: performs initialization for the conflict-alert list object

• Add data: adds information to a conflict-alert list about track pairs that are in conflict

• Remove data: removes information from a conflict-alert list about track pairs that are in
conflict

• Clear list: removes all data from the conflict-alert list

In terms of our notation, we represent the conflict-alert list class as shown in Figure 27.

r A
Initialize Add.Data

ClearJJst Remove_Data

K J
Conflict_Alert_List

Figure 27: Initial Object Specification for a Conflict-Alert list

CMU/SEI-98-SR-002 69

4.5.7 Track Management

The purpose of the track management object is to maintain information about each track
object for the system. The airspace management object is informed of the existence of a new
track, an update to an exiting track, or a track deletion.

The state data associated with track management includes a list of object references for all
tracks in the system.

The only method exported by track management is that for initialization.

In terms of notation, the track management object appears as shown in Figure 28.

Initialize

TrackJUIanagement

Figure 28: Initial Object Specification for Track Management

4.5.8 Track Data

A track is one of the fundamental data types used in an En Route system. Information about
tracks are displayed for controllers and used to predict possible conflicts.

The state data associated with a track include the following:

position (x and y)

altitude

speed

heading

computer ID

flight-plan object reference

The above list is representative of track state data; details can be found in Section 3.3.4.1. The
methods associated with the track object class include the following:

70 CMU/SEI-98-SR-002

• Update track parameters: provides a way to update state data associated with a particular

track

• Get track parameters: provides state data for a specified track

• Extrapolate track: extrapolates dynamic attributes of a track (such as position and veloc-

ity) ahead in time

In terms of our notation, we represent a track object as shown in Figure 29.

Initialize Update_Track_Parameters

ExtrapolateJTrack Get Track Parameters

Track

Figure 29: Initial Object Specification for a Track

4.5.9 Flight-Plan Management

The purpose of the flight-plan management object is to maintain information about each flight
plan object for the system. The airspace management object is informed of changes to a flight

plan.

The state data associated with flight-plan management includes a list of object references for

all flight plans in the system.

The only method exported by flight-plan management is for initialization.

In terms of notation, the flight-plan management class would appear as shown in Figure 30.

CMU/SEI-98-SR-002 71

r
Initialize

Flight_Plan_Management

Figure 30: Initial Object Specification for Flight-Plan Management

4.5.10 Flight Plans

A flight plan is one of the basic data elements fundamental to the operation of an En Route
center.

The state data associated with a flight plan includes the following:

aircraft ID

aircraft data

beacon code

speed

coordination fix

coordination time

assigned altitude

requested altitude

route

The methods associated with the track class include:

• Initialize: performs initialization for a flight plan object

• Update FP data: provides for updating information about a specified flight plan

• Get FP data: provides for data for a specified flight plan

In terms of our notation, we represent the flight-plan class as shown in Figure 31.

72 CMU/SEI-98-SR-002

Initialize Update_FP_Data

Get_FP_Data

Flight_Plan

Figure 31: Initial Object Design for Flight-Plan Object

4.5.11 Summary of Initial Design

4.5.11.1 Objects and Their Interaction

A simple summary of the initial design is obtained by considering object (classes) and their
interactions (via method invocations). This information is presented in Figure 32. For purposes
of brevity, we do not show the methods on this diagram.

CMU/SEI-98-SR-002 73

0

<
System_Management

<*

i>
Fix_Posting_Areas

-f lnbound_List V

>

/Hold_List\

Console
>

Sector

<
Conflict_Alert_List

-c
l>

Ai rspace_Management

Track.
Management

7 Track J-

f Flight.PlanY

D

C Flight_Plan_Management D
Figure 32: Initial Design Objects and Interaction

Recall that we have made the assumption of a steady state when we developed the above
design. Among other things, the design does not address initialization requirements. In reality,
we would expect interaction between system management and all other objects. One reason
for this would be related to initialization, while another would be to maintain and display state
data for system-managed objects. For example, it may be desired to display the number of

conflict pairs for each sector as part of system management.

74 CMU/SEI-98-SR-002

An interesting question is to consider the number of objects that would be present in an En
Route system. This is presented in the Table 3.

Object Instances

System Management 2

Airspace Management 1

Fix Posting Areas 655

Sectors 100

Consoles 100

Inbound List 100

Hold List 100

Conflict-Alert List 100

Track Management 1

Tracks 700

Flight-Plan Management 1

Active Flight Plans 2500

Table 3: Estimated Number of Objects in Initial Design

Table 3 indicates a total of about 4,000 objects in the system. Note that the above estimate is
largely based on system capacity requirements (see Table 1).

4.5.11.2 Sample Data Flows

In this section, we will present some typical data flow diagrams for the initial CORBA design.
We do this for several reasons, including to

• help the reader understand the functionality of the objects and their interaction

• gain insight into issues that may play a role in the refinement of the initial design

Data flows will be presented for the following cases:

• track update

• flight-plan update

• sector combination

• console-object failure

CMU/SEI-98-SR-002 75

4.5.11.2.1 TVack Data

The first example of a data flow consideration will be that for the distribution of track data. We
chose this for a number of reasons. First, the ability to display track data in a timely manner is
a fundamental requirement of the En Route system. Second, when we consider the problem of
sector combination, it requires a look at the redistribution of track data. Hence, an understand-
ing of how track data are distributed is important for other functions performed in the En

Route center.

A diagram representing the data flow for an update of a track is shown in Figure 33.

Q

<
System_Management

<=

!>

Fix_Posting_Areas

-f InboundJJst V

>

/HoldJJstY

Console

• "

D- ■4 Sector J

<
Conflict_Alert_List

0

3
>

Airspace_Management

Track_ \©
Management I c\

Figure 33: Initial Design for Track-Update Data Flow

76 CMU/SEI-98-SR-002

The sequence of events for the track update is described below (items in the list below corre-
spond to those in Figure 33):

1. Get track object reference: Data are provided from the radar, and we assume that there is a
computer ID (CID) for this track. The CID may be used by track management to deter-
mine an object reference for the particular track that is being updated. The mapping of
CID onto track is maintained.

2. Update track with data: Track management invokes a method on the object reference for
the specified track. The particular method is that which updates the state data for the track,
such as position and velocity information.

3. Get sector object reference for track: Track management invokes a method on airspace
management to obtain an object reference for the sector(s) where the track is being dis-
played.

4. Get consoles for track display: Airspace management must determine the sectors where
this track information must be displayed.

5. Distribute object reference for track: Airspace management invokes a method on the con-
sole object to provide an object reference for this track.

6. Get and display track data: The console where the track will be displayed uses the object
reference to invoke a method on the track object. This is done to obtain information about
the track parameters. Once the information is returned, the new track data are displayed.

It is an interesting exercise to develop a very rough estimate of the time required to update a
track on a display console. Items 2 through 6 in the above list will each require a remote proce-
dure call, meaning five remote procedure calls in total. If each remote procedure call takes 4
milliseconds, it will require 20 milliseconds to update one track.

The system requirement is for 640 tracks which are updated during a 6-second radar scan. This
amounts to about 110 tracks per second. If each track requires 20 milliseconds, it means a rate
of 50 per second. Hence, a very rough estimate indicates that tracks can be updated at only half
the required rate.

Note the sensitivity to the assumed value of the time for the remote procedure call. If the time
is 50 percent too large, it is possible to update all tracks in the specified interval. On the other
hand, if the time for a remote procedure call is 50 percent too small, the requirement rate is off
by a factor of 4.

The preceding has been a very rough estimate of the overall track-update cycle. It was based
only on an assumed value for a remote procedure call. It did not take into account any other
concurrent operations that could block the track update. Such considerations would require a
more detailed analysis.

CMU/SEI-98-SR-002 77

4.5.11.2.2 Flight-Plan Data

A second important category of data is that associated with a flight plan. We will consider the
case where an amendment message arrives at the En Route center for an existing flight plan.
The relevant data flow diagram is presented in Figure 34 below.

r Console D-
xs>

Track_
Management

<
System_Management

\ FixJ

•>

Posting_Areas

-f lnbound_List V

">

-THold_List\

<
Conflict Alert

X

:_List\

Airspace_Management 5- ©

T Track J

©
**C Flight_Plan J

Flight_Plan_Management)

■4 Sector J

Figure 34: Initial Design for Flight-Plan Update Data Flow

78 CMU/SEI-98-SR-002

The sequence of events for the update to a flight plan is described below:

1. Get flight-plan object reference: When the amendment message is received, we assume it
is sent to flight-plan management for processing. The object reference for the specified
flight plan is determined. The mapping of flight plan ID to flight object is maintained.

2. Update flight-plan data: The obtained object reference is used to update the flight- plan
data for the object.

3. Get sectors: A given flight plan can be resident in one or more sectors.

4. Get consoles: Given the sectors on which the flight plan data is present, it is necessary to
determine the display consoles where the sector resides.

5. Distribute object reference to consoles: Each console that has knowledge of the flight plan
must have an object reference for the specified flight plan object.

6. Get and update flight-plan data: Each console that is holding the flight plan uses the object
reference to invoke a method on the flight-plan object. This results in the distribution of
new data to the console where it can be displayed, and so forth.

CMU/SEI-98-SR-002 79

4.5.11.2.3 Sector Combination

The initial motivation for this work was to consider the question of sector combination. We
will now describe the data flow and sequence of operations that occur when there is a choice
made to combine two sectors. This situation is presented in the Figure 35.

<
System_Management

-f FixJ Posting_Areas

-f InboundJJst V

>

o

Figure 35: Initial Data Flow for Sector Combination

80 CMU/SEI-98-SR-002

The sequence of events for sector combination is described below:

1. Operator request: A system-management operator invokes the request to combine the
specified sectors. For example, consider combining sector SLwith sector SR.

2. Create new sector object: System management creates a new sector (say S) that will be
responsible for controlling the areas previously controlled by sectors SL and SR. This will
involve the creation of other new objects such as hold, inbound, and conflict-alert lists.

3. Distribute object references for existing sectors: The system-management object invokes a
method on the newly created sector and provides it with the object references for the sec-
tors that are to be combined.

4. Get sector data: The newly created sector invokes methods on sectors SL and SR to
retrieve their FPAs, inbound lists, conflict-alert lists, track data, and flight-plan data. After
the sector data have been retrieved, sectors SL and SR will not accept new data. On com-
pletion, the new sector, S, informs the system manager that it has captured the data from
sectors SL and SR.

5. Activate new sector: Either the system manager activates the new sector and calls, or data
destined for sectors SL or SR are directed to the combined sector, S.

6. Assign new sector to console: The new sector is assigned to the appropriate controlling
console.

7. Delete sector objects: The last step in this process is to delete the sector objects associated
with sectors SL and SR that were combined to form the new sector. As part of deleting the
sector objects, we assume that the associated objects, such as the hold-list object, inbound-
list object, and so forth, are also deleted.

4.5.11.2.4 Console Object Failure

Fault tolerance is an important consideration in the En Route domain. Hence for this final
example, we will consider the case where there is a failure of a console object that is in an
active state. Since this initial design is for a virtual machine, we are restricted to discussing the
failure of an object, as opposed to a physical device. Thus, the failure of a console object is
taken to illustrate just one of several possible failures that could occur. It will provide us with
an overall understanding of what happens in the case of a failure and the processing that needs
to be performed for detection and recovery. For this case, we assume that spare display con-
soles that have software loaded exist, but are not controlling a particular sector. The relevant
data flow diagram is shown in Figure 36.

CMU/SEI-98-SR-002 81

c Console D*

<
System_Management

<=

!>

Fix_Posting_Areas

-f lnbound_List V

>

/Ho!dJJst\

/conflict_Alert_List\

Track. \ ©
Management I

I: Alrspace_Management

TC™*)

*f nighLPIaiW

c

©@0@
S W Sector D

0®

Flight_Plan_Management
)

Figure 36: Initial Design for Data Flow of Console-Object Failure

The sequence of events associated with handling a display-console failure is described below:

1. Console fails: An active display console undergoes a hard failure such that it is incapable
of sending and receiving any data.

82 CMU/SEI-98-SR-002

2. Failure detected: Some object attempts to invoke a method on an object resident in the
failed console. For example, assume that the assigned sector object attempts to notify the
Console Object that the inbound list has been updated. This will require the invocation of
a method on the failed console object. Note that the object reference is valid; it is the
device referenced by the object reference that has failed. The method will fail, and a
CORBA exception will be raised.

3. Deassign sector: The deassign sector method is invoked on the airspace-management
object by the system-management object.

4. Deassign sector: Airspace management invokes the deassign-sector method on the sector
object that is assigned to the failed console.

5. Assign sector: The system-management object invokes the assign-sector method on the
airspace-management object.

6. Assign sector: Airspace management invokes the assign-sector method on the sector
object to be assigned to the console.

7. Assign sector: The sector object invokes the assign-sector method on the console object.

8. Get sector geometry: The console object invokes the get-sector geometry method on the
assigned sector object.

9. Get list object references: The console object invokes the get-lists-object-references
method on the assigned sector object.

4.6 Refinement of Initial Design

In this section, we will refine the initial design based on considerations of performance and
fault tolerance. For each object class presented in Section 4.5, we will reassess the initial
design. For example, we are interested in questions such as the following:

• Are there performance considerations that would warrant an initially selected object
(class) not to be treated as a CORBA object?

• Are there fault-tolerant considerations that would warrant an initially selected object
(class) to not be treated as a CORBA object?

4.6.1 System Management

The purpose of the system-management object is to encapsulate state data for the system. In
the refinement of the design, we believe that this choice continues to be appropriate. It main-
tains a list of all console object references and sectors with assigned FPAs.

The state data associated with system management includes the following:

CMU/SEI-98-SR-002 83

• console object references: a database of system console object references

• sectors with assigned FPAs

The methods associated with the system management include the following:

• Initialize: performs initialization for system management

• Console update: indicates that a new console is now online, or an existing console has

changed state

• Sector update: indicates that a sector has been created, deleted, or changed

• FPA update: indicates that an FPA has been modified

In terms of our notation, we represent the system management as shown in Figure 37.

c ^

Initialize Sector_Update

Console_Update FPA_Update

^ J
System_Management

Figure 37: Refined Object Specification for System Management

4.6.2 Airspace Management

The purpose of airspace management is to manage the creation, modification, and deletion of
sectors. This function also distributes data to console objects based on the sector and console
geometry. The distribution of track data to this object is performed by the track management
object. As part of system initialization, all display and management consoles must register
with airspace management.

The state data associated with the airspace manager object includes the following:

• database of all sectors in the system with the assigned console and FPAs

• database of all display consoles with the console's geometry and assigned sector

• database of references for all registered management console's

84 CMU/SEI-98-SR-002

The methods associated with the airspace manager class include the following:

Initialize: performs initialization for the airspace-manager object

Register display console: provides for a console, specified by an object reference, to regis-
ter with airspace management

Register management console: provides for a system management console, specified by an
object reference, to register with airspace management

Get registered display consoles: returns a list of registered consoles along with state infor-
mation

Create sector: creates a sector from a specified set of FPAs

Delete sector: deletes a specified sector and deassigns all FPAs associated with that sector

Get all sectors: returns a list of all sectors in the system with the assigned FPAs and con-
sole object references

Get all FPAs: returns a list of all FPAs in the system with the FPA geometry and assigned
sector

Combine sector request: requests two sectors (or airspace entities, such as FPAs) to be
combined

Combine sectors: combines two (or more) sectors into one sector

Split sectors: removes a previously established sector combination (i.e., to split a sector
into its constituent parts)

Assign sector: assigns a sector to a console

Deassign sector: deassigns a sector to a display console

Assign FPA: assigns an FPA to a sector

Deassign FPA: removes an FPA from a sector

Track update: creates new track or update of an existing track

Drop track: track that must be dropped

Purge tracks: all tracks dropped

Flight plan update: a new flight plan or an update for an existing flight plan

Delete flight plan: indicates a flight plan that needs to be deleted

Purge all flight plans: indicates that all flight plans are no longer valid

Conflict update: indicates a new conflict or an update of an existing conflict

Conflict resolved: indicates that the conflict no longer exists

Console geometry update: provides notification of a change in the geometry of a console

In terms of our notation, we represent the airspace-manager object as shown in Figure 38.

CMU/SEI-98-SR-002 85

 ^

Initialize

Register_Management_Console

Register_Display_Console

Get_Registered_Display_Consoles

Console_Geometry_Update

Create Sector

Delete_Sector

Get_AII_Sectors

Combine_Sector_Request

Combine_Sectors

Split.Sectors

Conflict_Update

N

Assign_Sector

Deassign_Sector

Track_Update

Drop_Track

Purge_Tracks

Flight_Plan_Update

Delete_Flight_Plan

Purge_AII_Flight_Plans

GetAIIFPAs

Assign_FPA

Deassign_FPA

Conflict Resolved

7
Airspace_IUIanagement

Figure 38: Refined Object Specification for Airspace Management

86 CMU/SEI-98-SR-002

4.6.3 FPAs

In the initial design, each FPA was treated as a separate object. In the refinement, we believe
that this is not the correct choice for the following reasons:

• FPAs are static (i.e., their state data are fixed as part of adaptation data processing for sys-
tem initialization).

• FPAs are small in functionality. (For example, there are a small number of methods associ-
ated with an FPA in the initial design; see Figure 22.)

• Often, it is necessary to deal with an aggregate of FPAs rather than an individual FPA
(e.g., assigning one sector to another can be represented as assigning all FPAs in
one sector to another sector).

Based on the above considerations, we make the following decision:

Design Consideration C-4
In the refinement of the design, fix posting areas will not be represented as
CORBA objects.

Note that a major influence in the above decision was the static nature of the FPA. For exam-
ple, if the FPA were a dynamic object, a node that forms one of the vertices of the FPA could
be moved; then the above decision would be worth revisiting.

In the refinement of the design, we shall simply consider FPAs as a set of state data managed
by airspace management.

4.6.4 Sectors

In the initial design, a sector was implemented as an object. In the refinement of the design, we
believe it is not necessary to retain this choice for reasons similar to those discussed in Section
4.6.3. Hence, we have the following design considerations:

Design Consideration C-5
In the refinement of the design, sectors will not be represented as CORBA
objects.

In the refined design, a sector will be treated as having state data and managed by airspace
management.

CMU/SEI-98-SR-002 87

4.6.5 Consoles

The purpose of the console object is to manage information about the console display and sec-
tor assignment. As part of initialization, a console is expected to register with airspace man-
agement.

The state data associated with the console class includes the following:

state: the current state of the console (active or inactive)

assigned sector geometry

console geometry

hold list

inbound list

conflict-alert list

tracks database

flight-plan database

The methods associated with the console include the following:

• Initialize: performs initialization for the console

• Activate console: sets console to an active state

• Deactivate console: sets console to an inactive state

• Set sector geometry: sets the sector geometry of the console

• Track update: creates new track data or a data update for an existing track

• Drop track: removes the track from the database

• Purge tracks: removes all tracks from the track database

• Conflict-alert list update: updates conflict data

• Flight plan update: creates new flight-plan data or a data update for an existing flight plan

• Flight plan drop: removes a flight plan from the database

• Purge all flight plans: indicates that all flight plans are no longer valid

• Get console state: returns the current state of a specified console

In terms of our notation, we represent the console class as shown in Figure 39.

88 CMU/SEI-98-SR-002

r
Initialize Track_Update

Assign_Sector Drop_Track

Deassign_Sector Purge_Tracks

Get_Assigned_Sector Activate Console

Get Console_State Deactivate_Console

Set_Sector_Geometry Conflict_Alert_List_Update

Flight_Plan_Update Purge_AII_Flight_Plans

Flight_Plan_Drop

Console

Figure 39: Refined Object Design for Console Class

4.6.6 Data Lists

A number of lists are used to display information on a particular console. Examples of this
include hold, inbound, and conflict-alert lists. It is necessary to decide if these lists will be
treated as objects or as an attribute of an object.

Each of the lists noted is directly associated with only one sector. In addition, only one
instance of a list exists for each sector. These considerations lead us to the following design

consideration:

CMU/SEI-98-SR-002 89

Design Consideration C-6
All sector-specific lists, such as hold, inbound, and conflict-alert lists, will be
treated as attributes of the sector with which they are associated.

The preceding result indicates that lists, such as the inbound list, will not be CORBA objects.
However, it is necessary to maintain the interface for each list. That is, the inbound-list object
had a method that allowed a flight plan to be added to the list.

4.6.7 Track Management

The purpose of track management is to encapsulate information about tracks. This is achieved

in the initial design and will be retained in the refinement of the design. There is only one

object for the track-management function. A later possibility of design modification would be
to have separate track managers for different types of tracks. For example, it would be possible
to have a track-management object for managing simulated tracks. If that were the case, it
would allow for data encapsulation and allow a natural separation of real and simulated tracks.
Further consideration of simulated tracks is beyond the scope of this report.

Track management maintains the following state data:

• objects registered to receive track data and the type of information requested

• conflict list

• a track database with the following state data for each track:

- position (x and y)

altitude

speed

heading

computer ID

flight-plan cross reference

The above list is representative of track state data (for details, see Section 3.3.4.1). The meth-

ods associated with the track-management class include the following:

• Initialize: performs initialization for track management

• Track data register: instructs track management to provide track data to an object

• Track data de-register: instructs track management to stop providing track data to an

object

• Correlate track: associates a flight plan with a track

90 CMU/SEI-98-SR-002

• De-correlate track: disassociates a flight plan with a track

• Track update: provides track data from a sensor

• Get tracks for region: provides all track data for a specified region; used for sector combi-
nation and other airspace modification requests

• Get conflicts in region: returns a list of conflicts within the specified region

In terms of our notation, the track-management object appears as shown in Figure 40.

Initialize Correlate Track

Track_Data_Register Decorrelate Track

Track_Data_Deregister Get_Conflicts_in_Region

Track_Update

Track_Management

Get_Track_Data_For_Region

Figure 40: Refined Object Specification for Track Management

4.6.8 Track Data

4.6.8.1 Object Considerations

In the initial design, each track was instantiated as an object. In the refinement of the initial
design, it is worthy to reconsider this choice. We believe that this is not an appropriate design
choice for the following reasons:

• Managing over 500 individual objects may have adverse performance consequences.

• There are functions, such as determining track conflict, which require comparing one track
against all others. This could mean n method invocations of the n track objects in order to
determine the existence of a possible conflict. For a value of n equal to 640 tracks and a 2
millisecond method invocation time, this would mean 1.28 seconds simply to get the data,
even before any conflict-alert processing was initiated. Furthermore, during the time
required for all the communication of track data (methods to get the state for each track,
for example), the state would be changing.

CMU/SEI-98-SR-002 91

In view of the above consideration, we make the following design consideration:

Design Consideration C-7
Tracks will not be implemented as CORBA objects.

Instead, tracks will be managed in some other manner, such as a centralized data structure that
would permit database operations to get and set attributes of a track.

4.6.8.2 Local or Distributed Management

A basic question that deals with track data is the ability to maintain state. Another way to con-
sider this question is whether the data are managed in a centralized manner or distributed
among a number of components. There are two possible choices:

• Have a central management capability for track objects.

• Have each track object managed by the console(s) where the track is displayed.

One advantage to a centralized management approach is overall maintenance of state data. A
related advantage is that when there is a need to perform an operation over multiple pairs of
tracks (such as conflict-alert processing), it is more efficient if those data are centrally man-
aged.

On the other hand, it is possible for track-data to be distributed. One possibility is that when
new data are received for a track, those data are transferred to the appropriate display console.
Thus, the distributed management would be on a per-console basis. However if a console fails,
it would not be possible to recover the current state of those tracks that were maintained by the
failed console. This would further mean, for example, that until the data could be reconstituted
(by new radar reports most probably), there would not be data available to display or to use
with track conflict-alert processing.

The preceding discussion leads us to make the following design consideration:

Design Consideration C-8
Track data will be managed in a centralized manner.

From the perspective of an object-oriented design, the result of this design consideration is that
track objects will be physically collocated. We assume further that they are resident in a device
that is fault tolerant and capable of restoring a state. Note that we could have made a similar
choice and required, for example, that all display consoles be fault tolerant and capable of
maintaining a state. However, for practical reasons, we felt that it would be easier to have just
one track-management capability be fault tolerant, rather than perhaps 100 fault-tolerant con-
soles.

92 CMU/SEI-98-SR-002

4.6.8.3 Distribution of Track Data

A fundamental characteristic of an En Route center is the ability to distribute track data to one,
or more, display consoles. There are two ways in which track data are distributed in existing
systems:

1. Distribute track data to all consoles, and then each console would filter the data as neces-
sary.

2. Send the track data to a console on an as-needed basis. That is, if a console is expected to
hold information on some set of tracks, only those tracks would be sent to that particular
console.

Our first design choice for distribution of track data is based on the following design consider-
ation:

Design Consideration C-9
Track data will be distributed only to those consoles that require information
about a particular track.

The main reason for the above choice is to minimize the number of method invocations for
distributing track data. There is clearly a performance penalty when providing all tracks to all
consoles via unicast method invocations.1 It is appropriate to note that the option of providing
all tracks to any console is currently implemented using a broadcast capability.2 However,
CORBA does not provide such a mechanism. This further strengthens the rationale for distrib-
uting tracks only to those consoles that require information about a specific track. Typically, a
given track could be displayed on two consoles, but this could be handled by invoking a
method for the same track on each console. In other words, there is not a scalability question
for distributing track data with respect to the consoles that may need track information.

A number of options are available to achieve the distribution of track data, including the use of
methods or event services.

However, buffering track data may decrease the number of method invocations, but then one
may either increase the end-to-end time to get data to a console or place timing constraints on
the processing along the "string" for track-data distribution (e.g., requiring airspace manage-
ment to have less time to process track messages).

It may be possible to achieve a functional equivalent of broadcast in a CORBA design, although
we expect that the performance penalty could be quite high (e.g., replicated invocation of meth-
ods for all consoles). In such a case, scalability would be a serious issue.

CMU/SEI-98-SR-002 93

We will not consider the use of services that are under development in the OMG, such as asyn-
chronous messaging services.

4.6.8.3.1 Use of Methods

Given that tracks will be distributed only to those consoles that require information about a
specific track, there are a number of ways to achieve this capability in CORBA. For the use of
methods, there are the following choices:

• A console invokes a method on the track-data management object, requesting information

about tracks.

• The track-data management object invokes a method on a console object and transfers

information about tracks.

Note that the above options are the converse of each other. The first case is summarized in Fig-

ure 41.

A
Get_Track_Data()

Console_Class

Track_Management_Class

Figure 41: A Console Requesting Track Information

The case of the second design choice, where airspace management distributes track data (since
airspace management has knowledge of the console geometry), would be represented as
shown in Figure 42.

H
Provide_Track_Data()

Console.Class

Airspace_Management

Figure 42: A Track-Data Management Object Transferring Track Data to a Console

94 CMU/SEI-98-SR-002

There is an important distinction between the above two cases. In the case where the console
initiates a method, this is tantamount to polling for track data by a console. It is well known
that there are performance consequences associated with the use of polling. In view of this, we
make the following design consideration:

Design Consideration C-10
If the distribution of track data will be accomplished through the use of a
method invocation, the receiver of the data should be invoked by the distribu-
tor of the data, and not the converse.

Note that the number of possible method invocations would be equal to the number of receiv-
ers (in this case, about 50 consoles) multiplied by the number of methods (about 5, one for
Drop Track, Update Track, etc.). Hence, a somewhat more realistic picture that emerges is like
the one shown in Figure 43.

Track_Management_Class

Console_N

Figure 43: Using Methods to Distribute Track Data

An alternative would be to overload the information that is distributed via a method invoca-
tion. For example, there could be one method that would be called Track Data. As part of the
data specification, there would be a code indicating the function (such as a new track) or a
track update (similar to a variant record). We prefer not to use this approach because it unnec-

CMU/SEI-98-SR-002 95

essarily hides the purpose of the method. In other words, the semantics of the method would
not be defined by the name of the method, but rather, by the data that are transferred in the

method.

4.6.8.3.2 Use of Event Channels

For the use of CORBA event channels, we would have the following:

• Each instance of data, such as information about a new track or a drop track, would be dis-
tributed through a separate event channel. Separate event channels are needed because of
the different syntactic structure of data passed over the channel.

• A number of models for distribution and receipt of events are possible. For example, we

could have a push producer and a pull consumer.

The resulting design would appear (for the case of the push producer and pull consumer) as

shown in Figure 44.

V J

/::::"*; ZZ.

//S::>~ ::
Console_1

• • • Producer

V)

.v'/y'' *'*'"
S/y."

«I;«..*-...

V:>«. "■•*'-)—. f \

V J
Console_N

\\\ 'Xf->-*

\V~^ :::-:

Figure 44: Use of CORBA Event Channels for Distribution of Track Data

96 CMU/SEI-98-SR-002

4.6.8.3.3 Discussion

The methods and event channels for data distribution are compared and summarized in Table
4.

Methods Event Channels

Advantage • Simplicity • Can exploit asynchronous interaction
• Possibly more flexible, e.g., ease of con-
nectivity

Disadvantage • Forces synchroniza-
tion between sender
and receiver of track
data

• Doubles the number of remote proce-
dure calls
• Lack of semantics defined by CORBA
• Longer time to detect a console failure

Table 4: Comparing Methods and Event Channels for Distribution of Track Data

Based on the above information, we make the following design consideration:

Design Consideration C-ll
The distribution of track data will be achieved through the use of method invo-
cations, not event channels.

Two major considerations in making the above choice were performance and fault tolerance.
In addition, we are struck by the lack of semantics in the CORBA documentation about event-
management services. For example, all semantics of quality of service are left to the imple-
mentor.

Note that in assessing both the use of method invocation and asynchronous events, we
assumed one method (or event) for each type of data being communicated. That is, there
would be one method (or event channel) for the update of information on a track, one method
(or event channel) for an indication that a track had to be dropped, and so on. In both cases, we
could encapsulate the track information (update or drop, for example) into one method (or
event channel) that could be called Track Notification. Such a choice would hide the actual
function by encapsulating the information in some data structure. Doing so, however, may
complicate the design, and it is not clear that there would be a benefit in terms of performance.

It is possible to further refine the track management in a number of ways. Of special concern
was the large number of remote procedure calls necessary to distribute track data. Hence, per-
haps one would like to be able to minimize the number of remote procedure calls (which is
how methods communicate). One alternative is to buffer track data on a console basis before
invoking the method to distribute the track data. This would decrease the number of method
invocations by the amount of track-data buffering that can be achieved. However, there could

CMU/SEI-98-SR-002 97

be additional latency because the buffer that contains the track data would be delayed in its
distribution. The refined design is silent with respect to this issue, and it would be possible to
incorporate track-data buffering. However, note that there is a question of where the buffering
is done. If it is done in track management, it assumes knowledge of the sector topology which
could change. An alternative is for the buffering to be performed in airspace management.

Another alternative is for track management to distribute data to consoles directly, without
routing by airspace management. Airspace management would provide console geometry to
track management on which track data are distributed. Recall that the distribution of track data
is based on the geometry associated with a console. Thus, it may be possible for a console to
inform the track manager of its geometry, allowing that manager to distribute data to the
appropriate consoles. This is a form of caching console_ids for a given track identifier. Such a

choice would certainly decrease the role of the airspace management object and, for this rea-

son, was not chosen.

Both of the above choices are expected to provide increased performance over the refined
design. However, they do so at a cost. For example, the collapse of function into track manage-
ment would remove some of the simplicity present in the refined design. Furthermore, it needs
to be demonstrated that the refined design will not meet its performance requirements to war-
rant further change to the design. We would prefer, as a general consideration, to meet the per-
formance and fault-tolerance requirements, while at the same time achieving a simple design

which can be extended.

4.6.9 Flight-Plan Management

The purpose of flight-plan management is to encapsulate information about flight plans. This
is achieved in the initial design and will be retained in the refinement of the design. There is
only one object for the flight-plan management function.

Flight-plan management maintains the following state data:

• objects registered to receive flight plans and the type of flight plans requested

• a flight-plan database with the following state data for each flight plan:

aircraft ID

aircraft data

beacon code

speed

coordination fix

coordination time

assigned altitude

98 CMU/SEI-98-SR-002

requested altitude

route

The methods associated with the flight-plan management class include the following:

Initialize: performs initialization for flight-plan management

Right plan register: instructs flight-plan management to provide flight plans to an object

Flight plan de-register: instructs flight-plan management to stop providing flight plans to
an object

Correlate flight plan: associates a track with a flight plan

De-correlate flight plan: disassociates a track with a flight plan

Modify flight-plan data

Get flight plans for region: returns a list of flight plans for the specified region

Flight plan update: creates new or updated flight plan from an external source

Flight plan purge: provides notification from an external source that a flight plan or set of
flight plans are no longer valid

The above specification is basically a refinement of the initial flight-plan management pre-
sented in Section 4.5.10. In terms of our notation, the flight-plan management class would
appear as shown in Figure 45:

r ^
Initialize Correlate_Flight_Plan

Flight_Plan_Register Decorrelate_Flight_Plan

Flight_Plan_Deregister Modify_Flight_Plan

Flight_Plan_Update Get_Flight_Plans_for_Region

Flight_Plan_Purge

V J
Flight_Plan_Management

Figure 45: Refined Object Specification for Flight-Plan Management

CMU/SEI-98-SR-002 99

4.6.10 Flight-Plan Data

The refinement of flight plan data is similar to the refinement for track data. Thus, we first
make the following design consideration:

Design Consideration C-12
Flight-plan data will be distributed only to those consoles that require infor-
mation about a particular flight.

Similarly, we make the following decision about the way in which flight-plan data will be
managed:

Design Consideration C-13
, Flight data will be managed in a centralized manner.

Finally, we make the following decision about how the flight-plan data are distributed:

Design Consideration C-14
The distribution of flight-plan data will be achieved through the use of method
invocations, not event channels.

4.6.11 Flight Plan/Track Correlation

The purpose of the correlation object is to correlate flight plans with track data. There is only
one object for correlation function.

The flight plan/track correlation object maintains the following state data:

• A flight plan database containing uncorrelated flight plans

• A track database of uncorrelated tracks

The methods associated with correlation processing include the following:

• Initialize: performs initialization for the correlation

• Track update: creates new track or update of an existing track

• Drop track: track that has been dropped

• Purge tracks: all tracks dropped

• Flight plan update: creates a new flight plan or an update for an existing flight plan

• Delete flight plan: indicates that a flight plan needs to be deleted

• Purge all flight plans: indicates that all flight plans are no longer valid

100 CMU/SEI-98-SR-002

In terms of our notation, the correlation processing object appears as shown in Figure 46.

Initialize Flight_Plan_Update

TrackJJpdate Delete_Flight_Plar

DropJTracks Purge_AII_Flight_Plans

Purge_tracks

Correlation Processing

Figure 46: Object Specification for Correlation Processing

4.6.12 Summary of Refined Design

4.6.12.1 Objects and Their Interaction

In Figure 47, we present the result of refining the initial design.

CMU/SEI-98-SR-002 101

System Management

Airspace Management

(Console Geometry j

FPA
Data

Sector
Data

Right Plan
Management

Flight Plan
Database

I
Flight Plan/Track

Correlation

Uncorrelated
Track

Database

Uncorrelated
Flight Plan
Database

Track Management

Track
Database

Figure 47: Refined CORBA Design

The shaded arrows in Figure 47 denote interaction between the components indicated. Note
that much of the initial object character of the design is no longer present in Figure 47. The
principal reasons for this are as follows:

• Tracks and flight plans, which contained the largest number of objects, are now repre-
sented as databases. This is because of the need for dealing with many-to-many interac-
tions (such as correlation), as well as performance and fault-tolerant considerations.

• Data lists, such as inbound and hold lists, are simply attributes of a sector. Hence, their
treatment as an object was not warranted.

• There is a resulting encapsulation of function through the use of objects.

102 CMU/SEI-98-SR-002

4.6.12.2 Mapping the Refined Design onto Hardware

It is interesting to map the resulting CORBA design onto hardware. We shall now consider two
different examples of possible mappings.

The first mapping to consider is termed a centralized mapping. In this case, the current host
functionality associated with track management, flight-plan management, and track/flight plan
correlation is mapped onto a central hardware component. This is shown in Figure 48.

Assigned
Sector

Inbound
List

Figure 48: Centralized Hardware Mapping of CORBA Design

CMU/SEI-98-SR-002 103

The second mapping to consider is that in which the major host-related components (track
management, flight-plan management, and track/flight plan correlation) are each mapped to an
individual processor. This represents a distributed mapping onto the hardware components and
is shown in Figure 49.

FPA
Data

Sector
Data

Console Display Object

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

^

Track
Database

Figure 49: Distributed Mapping of CORBA Design

Although the hardware mappings satisfy functional requirements, they have different perfor-
mance characteristics. For example, in the case of the centralized mapping, it is possible to use
local interprocess communication since the processes are assumed to reside on the same
machine. However, in the case of the distributed mapping, the communication becomes non-

104 CMU/SEI-98-SR-002

local in nature. Of course, the lack of close coupling in the distributed mapping may be advan-
tageous from a system-evolution perspective.

4.6.12.3 Sample Data Flows

4.6.12.3.1 "ftack Data

Figure 50 shows the sequence of events to update a display console with new track data.

System Management

Right Plan
Management

Right Plan
Database

Airspace Management
I

0 Console Geometry

FPA
Data

Sector
Data

Right Plan/Track
Correlation

Uncorrelated
Track

Database

Uncorrelated
Right Plan
Database

U
f Console Display Object

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

Track Management

Track
Database

\-

Figure 50: Refined Design for Track-Update Data Flow

CMU/SEI-98-SR-002 105

The sequence of events for the track update is described below (we are neglecting track corre-
lation as in the previous example):

1. Receive new track data: Track data are assumed to be provided from an external system,
such as a controller for surveillance processing. These data are then sent to track manage-

ment.

2. Send track data to airspace management: The track data are sent to airspace management,

which is responsible for routing the data to one or more display consoles.

3. Route track data to console(s): Airspace management maintains information about the

geometry that a display console is controlling. When track information arrives, we assume
it has the current track position, this information is used by airspace management to map
the track position onto one or more consoles. Then, the method is invoked on the appropri-

ate consoles to provide them with new track data.

Note the simplicity of track-data distribution compared to the initial design (see Figure 29 and
the ensuing discussion). One of the reasons for the simplicity is the simplification of the initial
design with respect to the number of objects maintained.

4.6.12.3.2 Flight-Plan Data

The treatment for flight-plan data is similar to the earlier case. That is, it is necessary for infor-
mation about a new flight to be distributed. In terms of the refined CORBA design, Figure 51
illustrates the distribution of data.

106 CMU/SEI-98-SR-002

System Management

Flight Plan
Management

Flight Plan
Database

I
Airspace Management

Console Geometry

FPA
Data

Sector
Data

Flight Plan/Track
Correlation

Uncorrelated
Track

Database

Uncorrelated
Flight Plan
Database

y_Ä
f Console Display Object \

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

Track Management

Track
Database

Figure 51: Refined Design for Data Flow of Flight-Plan Update

The sequence of steps in the flight plan update is described below (again, we neglect correla-
tion processing):

1. New flight-plan data: We assume that there is new information abut a flight plan and that
this information is provided to flight-plan management.

2. Send data to airspace management: The flight-plan data are sent to airspace management,
which is responsible for routing the data to one or more display consoles.

CMU/SEI-98-SR-002 107

3. Route flight-plan information to console(s): Airspace management maintains information
about the geometry that a display console is controlling. When flight-plan information
arrives, airspace management maps the flight plan onto one or more consoles. Then, the
method is invoked on the appropriate consoles to provide them with new flight-plan data.

As in the case for revised track-data updates, the distribution of flight-plan data in the revised
design is simpler than in the initial design. There is also symmetry between the distribution of
flight-plan and track data.

4.6.12.3.3 Sector Combination

The case where two sectors are combined was one of the motivating points for this report. A
description of the data flow for sector combination in the refined design is presented in Figure

52.

The sequence of steps in the example is described below:

1. Operator request: A system management operator invokes the request to combine the
specified sectors.

2. Send request to airspace management: After the request is validated at system manage-
ment, a method is invoked on airspace management to combine the desired sectors.

3. Make requests of consoles: Airspace management maintains knowledge of what sectors
are currently mapped to a particular console. A request to combine two sectors means that
console geometry will be changed. Hence, airspace management invokes methods on the
affected consoles, indicating that they should change their configuration.

4. Route data to new console configuration: After the sectors have been combined, it is nec-

essary to route new data to the appropriate console. This routing information is known by
airspace management. Hence, when new data (such as track or flight-plan data) arrive,
these data will be routed to the newly combined consoles, as appropriate.

As in the examples for the distribution of track and flight-plan data, the refined design is sim-
pler for the case where sectors are combined.

108 CMU/SEI-98-SR-002

^

System Management

Airspace Management

(Console Geometry j

FPA
Data

Sector
Data

t_t
/ Console Display Object

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

Flight Plan
Management

Flight Plan
Database

I
Flight Plan /Track

Correlation

Uncorrelated
Track

Database

Uncorrelated
Flight Plan
Database

Track Management

Track
Database

Figure 52: Refined Design for Sector Combination

4.6.12.3.4 Console Failure

The final example we shall present is that where a console fails such that no objects can com-
municate with the console. This case is shown in Figure 53.

CMU/SEI-98-SR-002 109

System Management

\

Airspace Management

Console Geometry

FPA
Data

Sector
Data

fl ©0©
/ Console Display Object \

Assigned
Sector

Conflict Alert
Ust

Inbound
List

Hold
List

Flight Plan
Management

Flight Plan
Database

I
Flight Plan / Track

Correlation

Uncorrelated |
Track

Database

Uncorrelated
Flight Plan
Database

Track Management

Track
Database

Figure 53: Refined Design For Console Failure

The sequence of events for the above figure is described below:

1. Console fails: An active display console undergoes a failure such that it is incapable of
sending or receiving any data.

2. Failure detected: An object attempts to invoke a method on a console. Assume, for the
present case, that the failure is detected by airspace management invoking a method on a
particular sector object.

110 CMU/SEI-98-SR-002

3. Airspace management notification: Due to the central role that airspace management
plays, it will need to be notified of a failure in a console. In this case, we are assuming that
airspace management detects the failure, but it could be detected by other objects. In either
case, airspace management must be notified of the failure.

4. Assign sector to new console: When the console failed, we assume that it was controlling

some active sector in the En Route center. To initiate error recovery, it is necessary to

assign the sector to a new console.

5. Update new console: It is necessary to initiate recovery for the new console so that it has

information about the state of tracks, flight plans, and associated data.

6. Notify system management: The last step in the recovery process is for airspace manage-

ment to notify system management that the failure has been resolved and a new console is
now controlling the airspace that had been associated with the failed console.

This example illustrates the typical sequence of operations that would have to take place in the
event of a display-console failure. Basically, a new console must be brought up, and then
repopulated with data for the failed console. The function is similar to that presented in the ini-
tial design, only here it has been somewhat simplified.

4.7 Implementation Concerns

The suitability of a given technology is a function of the implementations of that technology.
During the course of this work, some issues about implementation performance were raised.
To resolve these issues, it is necessary to have information specific to a given implementation.
Some of this information is described below:

• General performance characteristics: For example, what is the time to invoke a method as
a function of the amount of data transferred in the method? Information such as this usu-
ally falls under the term of feature benchmarks.

• Event channels: In the CORBA documentation, it states that quality of service for event
channels is implementation defined. Hence, one would need this information for a particu-

lar implementation.

• Failure detection: A fundamental question is the amount of time it takes to detect a failure
of a method invocation. The amount of time is important for fault-tolerant considerations.

1. If the internet protocol mapping (such as TCP) is being used to transport CORBA method invo-
cation data, the TCP keep-alive timer may determine the time to detect a failure. Traditionally,
the values of the TCP keep-alive timer have been quite large (say 30 seconds or more). However,
there may be implementation dependencies that decrease the time until a method failure is de-
tected.

CMU/SEI-98-SR-002 111

There are a number of other implementation-specific concerns that can be studied. Most of
these can be represented as classes of benchmarks and will not be pursued here.

4.8 Summary of CORBA Design

As a means of summary, Table 5 compares the initial CORBA design to the refined design.

Object Class Initial Design Refined Design

System
Management

Serves to encapsulate system state
data

Same as initial

Airspace
, Management

Serves to encapsulate airspace
objects

Same as initial

FPA One object per FPA Attribute of a sector, not an object

Sector One object per sector Data managed by airspace manage-
ment

Console One object per console Same as initial

Inbound List One object per inbound list per
sector

Attribute of a sector, not an object

Hold List One object per hold list per sector Attribute of a sector, not an object

Conflict-Alert list One object per conflict-alert list
per sector

Attribute of a sector, not an object

Track Management Serves to encapsulate track
objects

Same as initial

Track One object per track Collapse track objects into a track
database

Flight-Plan
Management

Serves to encapsulate flight-plan
objects

Same as initial

Flight Plan One object per flight plan Collapse flight-plan objects into a
flight-plan database

Table 5: Summary of CORBA Design-Object Characteristics

It is important to emphasize that the rationale for the resulting refined design was based on
performance and fault-tolerant considerations. An additional characteristic is the resulting
simplicity of the refined design.

112 CMU/SEI-98-SR-002

5 P0SIX.21 Approach

5.1 IEEE POSIXP1003.21

5.1.1 Background

The Institute of Electrical and Electronics Engineers (IEEE) is involved in the development of
standards in a number of computer-related fields. Of particular relevance to this report are the
application program interface standards which are managed by the Portable Applications Stan-
dards Committee (PASC). These are principally defined in terms of C and Ada language bind-
ings. Among the standards that are developed by PASC, one major subset is the family of well-
known POSEX (Portable Operating System Interface) standards.

The 1003.21 draft standard is presented as a language-independent specification (LIS). It is
based on operations on abstract data types and does not include programming language con-
structs. Hence, LIS allows one to specify the interface semantics without reference to how
those semantics will be implemented in a language binding (such as Ada or C). Given a lan-
guage-independent specification, it is possible to derive language bindings.

The process by which the IEEE accepts a specification is outlined below:

1. A group of people recognize a need for a standard specifying some functionality related to
some domain.

2. The group develops a project authorization request (PAR) which is reviewed and
approved by the PASC sponsor executive committee.

3. The group develops a standard for the intended functionality.

4. The standard is balloted by members of the IEEE and affiliated societies. The only restric-
tion on voting is that an individual be a member of the IEEE or an affiliated society. Other
votes are accepted, and the working group is encouraged (but not required) to address
such comments.

5. The working group attempts to resolve ballot comments, reaching a 75% consensus
among the ballot group.

When consensus is reached, the standard is officially approved by the IEEE. POSIX standards
are fast-tracked to then become ANSI (American National Standards Institute) and ISO (Inter-
national Organization for Standardization) standards.

CMU/SEI-98-SR-002 113

5.1.2 Architectural Overview

In an architectural context, POSIX.21 is a component of an operating system. More specifi-
cally, because it resides in part of a family of POSIX standards, it would be a part of a POSIX
operating system interface. We represent this as shown in Figure 54.

Application

• ■■:*&■■,'%

■•-*jf i,^;/*!«*!*^-?.!

?. •viPOSIX.21 -^.gfeS

•• ••:. ::?M* ;*. ■ *.-. -.....-.. - i

Ölpther POSIX' ,VI
^Components
lii<f:9:«^e?l*t,m^-f!

POSIX Operating System

Platform

Figure 54: Architectural Context for POSIX.21

The POSIX standards are an organizational subset of those managed by the PASC. Hence,
PASC standards may be appropriate for consideration in an acquisition. Examples of these
standards include interfaces for directory services and ASN.l.

5.1.3 Real-Time Considerations

The IEEE draft standard 1003.21 (Real-time Distributed Systems Communication) has been
developed to meet the needs of applications in the real-time computing domain, in particular
distributed systems. Features included to meet real-time needs include

• buffer management: The 1003.21 standard supports buffer management where the buffers
reside in implementation space. This capability is expected to permit zero-copy implemen-
tations, allowing for shorter and more deterministic latencies for message transfers.

• asynchronous and synchronous interaction with the implementation: Most of the opera-
tions are specified in either an asynchronous or synchronous manner. This permits the
development of flexible applications based on their communication needs.

• bounding blocking in the implementation: Most of the operations have an associated time-

114 CMU/SEI-98-SR-002

out. The use of a time-out will bound the delay that can occur while the implementation is
executing a requested operation. This helps to eliminate problems in which the implemen-
tation can become blocked while providing service to an application.

• message priorities: Each message may have an associated message priority. The imple-
mentation must service high-priority messages before servicing low-priority messages.
This approach eliminates well-known problems associated with first-in-first-out (FIFO)
queueing of messages (such as priority inversion). Two representations of priority are
specified. One is based on a simple integer representation, the other on a deadline repre-
sentation.

• message labels: A message may have an associated message label that is transferred with
the message. The use of message labels is an efficient model for applications, since they
need not know the set of all intended receivers. An application may also register to receive
messages of a specific type, allowing for message filtering by the implementation. The
semantics of operations on message labels do not require or imply a particular implemen-
tation approach. This approach is analogous to a publisher-subscriber model where the
negotiated element is the message label that is published and subscribed by applications.

• implementation protocol: A definition of a protocol header for use between implementa-
tions is defined. This protocol is needed to support interoperability of message priority,
type, and format.

These are some of the more important considerations that the 1003.21 standard includes with
respect to real-time systems.

5.1.4 Communication Mechanisms

To understand the communication mechanisms provided by the 1003.21 standard, we begin by
briefly noting the basic interface components specified in the standard. These include

• endpoints: An endpoint is an object that is created and maintained by the implementation.
It is used by applications for sending and receiving messages, and by the implementation
for identifying the source and destination of the messages.

• messages: A message is a sequence of octets that is transferred from a local endpoint to
one or more remote endpoints. The semantics associated with the message data are
defined entirely by an application.

• buffers: A buffer is an area in memory used to store application messages. The use of buff-
ers is expected to permit zero-copy operations-an important optimization in real-time con-
siderations. An application can also allocate buffers from application space and use those
buffers in data-transfer operations. However, this choice may result in a copy operation,
making it less efficient.

CMU/SEI-98-SR-002 115

• logical names: A logical name may be used to identify one or possibly more (in the case of
a multicast group) endpoints.

• multicast groups: A multicast group is defined to be a set of endpoints. Multicast groups
can be created and deleted by applications, and endpoints may join or leave a group.

The 1003.21 standard supports a number of communication mechanisms. The communication
takes place between an endpoint and either a destination endpoint or an identifier that is used
to denote a set of endpoints. The basic mechanisms include

• one-to-one (unicast): transfer of a message from a source endpoint to a destination end-
point. The destination endpoint is not required to be within the same process as the source
endpoint.

• one-to-many (multicast): transfer of a message from a source endpoint to a set of known
• destination endpoints, denoted by a multicast group.

• one-to-any: transfer of a message from a source endpoint to a set of destination endpoints
that have registered to receive the message, but are unknown to the sender. The messages
are denoted by a message label which an application can register (or deregister) to receive.
The sender does not know who receives the message.

• one-to-all (broadcast): transfer of a message from a source endpoint to all other possible
destination endpoints. The scope of all is determined by the implementation.

Associated with a communication mechanism, there can be various quality-of-service
attributes. Two important attributes are

• priority: a requirement on the implementation to provide a queueing policy for sending
and receiving a message. A message may have a message priority of either an integer
value or a deadline.

• reliability: a requirement on the implementation to deliver the message without failure.

The relation between the communication mechanism and quality of service is summarized as
follows:

• The priority of a message can be included with any message.

• A message label can be included with any message.

• Reliability can be specified for one-to-one and multicast communication models.

5.1.5 Additional Services

The following topics are also included in the 1003.21 standard:

• Initialization and termination: An operation for the implementation initialization is pro-
vided by the standard. This initialization must be performed before any other operation is

116 CMU/SEI-98-SR-002

initiated. Termination semantics are also defined in the 1003.21 standard. There are two
different cases in which the termination semantics are necessary. The first is the case in
which the application is terminated by some external agent, such as another process. The
second is the case in which an application-schedulable unit (either process or threads
within the scope of the process) voluntarily terminates. In the second case, two modes of
termination are provided: graceful and abrupt. As an example of the termination seman-
tics, if a thread has created an endpoint and the thread is terminated, the resources associ-
ated with the endpoint remain available to other threads.

• Event management: There are occasions where an asynchronous event may be detected
and raised by an implementation. The 1003.21 standard provides a a way for events to be
queued (in a FIFO manner) for the endpoint with which the event is associated. An exam-
ple of a case where an event is raised is if a remote endpoint has terminated a connection.

• Directory services: A lightweight interface for directory services is included in the stan-
dard. The interface permits two views of the underlying naming model. In the first case,
logical names are emphasized; for example, it is possible to obtain a local identifier for a
remote endpoint, specified by its logical name. In the second case, the emphasis is on a
protocol-dependent address. Here, for example, an application can define a local identifier
for a specified protocol-dependent address.

• Protocol management and mappings: The intent of the standard is to make the interface as
protocol independent as possible. In practice, however, this may not be possible because
of differences in underlying (transport) protocols. The term protocol mappings refers to
the ability to get and set protocol parameters for a specified endpoint, as well as to obtain
visibility of protocol-specific operations. The standard provides protocol support for TCP
(transmission control protocol), IP (Internet protocol), and UDP (universal datagram pro-

tocol).

• Connection management: It was recognized that application developers, who are familiar
with connection-oriented data transfer, would need the ability to use such a model in a
real-time system. Hence, the standard includes a typical interface for operations such as
opening a connection, rejecting a connection request, and so forth.

As noted earlier, because 1003.21 is a part of the POSIX family of standards, these other inter-
faces would be available. This includes interfaces for a broad range of features. In this report,
our focus is on real-time communication, a subset of general real-time issues. Other POSIX
standards address aspects of general real-time features, including the following:

• signals

• semaphores

• memory locking and mapping

• process and thread scheduling

CMU/SEI-98-SR-002 117

• clocks and timers

• interprocess message queues

Both C and Ada language bindings are defined for the above features. There are also pre-
defined profiles (a collection of one or more standards and their options), one of which is for
the real-time domain.

5.2 Presentation of Design Information

Much of the design information presented in this report is in the form of diagrams. We have
used these diagrams because they are simple and relatively easy to understand. They also offer
intuitive semantics that help the reader to understand the meaning of the diagram.

The diagrams are based on the basic concepts defined in the 1003.21 draft standard, such as
endpoints and messages. We also include a means to encapsulate an endpoint in a logical
structure. Such a structure could be a process, although we do not require this.1 We also permit
multiple levels of encapsulation, although we emphasize that the structures used to encapsu-
late basic components (such as endpoints) do not imply any mapping to underlying hardware.
Instead, the encapsulations are purely logical in nature, and multiple mappings of an encapsu-
lation structure onto hardware can exist.

Figure 55 illustrates the design notation for communication between a system-management
entity for sector reconfiguration management and a local management agent.

System Management Display Consoles

V ./ Sector Reconfiguration /*
Management \.

\ Local Sector Reconfiguration
) Management

/ \

Figure 55: Sample POSIX.21 Design Notation

1. In the 1003.21 draft standard, the operations are defined within the scope of a process. This may
be viewed as a basic encapsulation mechanism. However, the 1003.21 draft standard also in-
cludes semantics for operations in the context of a thread (or task) when necessary. For example,
if a thread creates an endpoint and the thread is deleted, it is necessary to define what happens
to the endpoint that was created by the thread.

118 CMU/SEI-98-SR-002

The following symbols are used in the diagram:

• Rectangles denote encapsulation. For example, there is an entity called System Manage-
ment that includes an entity called Sector Reconfiguration Management.

• Circles associated with a rectangle denote an endpoint.

• Arrows indicate a message transfer. The direction associated with the arrow denotes the

direction of data transfer. In Figure 55, messages are sent to and from Sector Reconfigura-
tion Management (in System Management) and Local Sector Reconfiguration Manage-

ment (in Display Console).

It may sometimes be necessary to indicate whether a message is transferred in a reliable man-
ner. We will denote reliable and unreliable message transfers by the use of solid and dashed
lines, respectively. In addition, it may also be necessary to denote the way in which a message
is transferred as either multicast, broadcast, or as a labeled message (denoted by the use of the
letter M, B, and L, respectively associated with the arrow). If an arrow is not denoted with any
of the above, we assume it will be sent in a unicast manner.

The above refinements are presented in Figure 56:

System Management Display Console-1

Sector Reconfiguratio
Management

n r~\ M ^f\ Local Sector Reconfiguration
^\) Management

c
t

s \ \

1 '

\ \
s \ \ \ \

Display Console-2

Ch
Sector Status Management

Local Sector Reconfiguration
Management

Figure 56: Additional POSIX.21 Notational Devices

In Figure 56, note the following:

• Sector Reconfiguration Management multicasts a message, in an unreliable manner
(denoted by based lines) to the two display consoles.

CMU/SEI-98-SR-002 119

• Sector Reconfiguration Management also exchanges messages, in a reliable manner
(denoted by solid line) with an entity called Sector State Management. The lack of a label
on the arrow denotes that messages are exchanged in a unicast manner.

There is clearly a simplicity in presenting design information in a graphical manner, as illus-
trated above. This approach will be used for expressing the POSDC.21-based design.

5.3 Basic Design Issues

5.3.1 General Considerations

The design process for a POSIX.21-based system is oriented toward the distribution of data,
via messages, among system components. Some of the main issues that need to be addressed
in the software context, include the following:

• What is the mapping of system functionality onto software processes?

• What is the allocation of data onto messages, and how are they sent/received?

• What is the allocation of endpoints within a process?

• What is the relationship between endpoints and threads?

Each of the above points raises major issues that require consideration in a full-scale design
and development effort. It is not our intent to go into detail about how one would address
issues such as those raised above. However, examples will be presented. To illustrate one of
the cases, note that the relation between endpoints and threads is coupled to the question of
endpoint-message relationships. From the perspective of thread considerations, one could have
the following:

• one task per message (sent and/or received): This approach leads to a design that is highly
message-specific in nature. If there were a large number of messages, there would be a
large number of tasks.

• one task per communication model (i.e., one task and endpoint for sending and receiving
broadcast messages, one for unicast, etc.). This approach focuses on the intended receivers
of the message.

• one task for reliable messages and one task for messages that do not have reliability con-
straints. This approach is oriented toward quality-of-service considerations. Following this
line, it is possible for there to be a separate task for high-priority messages.

Other choices are possible. In this report, we are more interested in architectural properties.
Hence, it is our intent to refrain from lower level design issues to the extent possible. However,

120 CMU/SEI-98-SR-002

as we shall see later, it will be necessary to selectively reveal lower levels of design informa-
tion (such as threads) to perform a design analysis.

5.3.2 Use of Endpoints

An endpoint is the basic communication object defined in the POSIX.21 standard. As such, the
degree to which endpoints are used needs to be considered as part of the design decisions. A
number of factors need to be considered in the performance aspects of using endpoints.1 These
factors include the following:

• memory required to allocate an endpoint

• time to create and/or delete an endpoint

• management time for endpoints with respect to data transfer operations

For example, the amount of memory allocated to an endpoint is about 180 bytes, which
appears reasonable. We conclude the following:

Design Consideration P-l
The design shall not be overly constrained in the number of endpoints that are
used for communication.

The preceding consideration illustrates an important point about the design of real-time sys-
tems, particularly those that are distributed in nature. That is, the design is typically influenced
by performance factors of the underlying components. Knowledge of such factors early in the
design process helps to ensure that overall system-performance characteristics can be
achieved.

1. An earlier description of this problem was addressed in a limited context. Meyers, B. Craig &
Place, Patrick R. H. The Use of IEEE Draft Standard 1003.21 Real-Time Distributed Systems
Communication in an FAA En Route Architecture (CMU/SEI-Special Report). Pittsburgh, Pa.:
Software Engineering Institute, March 1,1997.

2. Endpoint deletion time is important for mode change considerations.

CMU/SEI-98-SR-002 121

5.4 Architectural Considerations

5.4.1 Chosen Architecture

The chosen architecture for the POSIX.21 design is similar to that for the CORBA design (see
Section 4.5). Thus, we assume the following entities:

display consoles

system-management consoles

airspace management

flight-data processing

track-data management

The flight-data processing and track-data management functions are intended to replace the
current Host computer system processing. The incorporation of POSIX.21 in the ARTCC
architecture is based on the following design consideration:

Design Consideration P-2
We assume that the DSR consoles can contain an implementation of
POSDC.21.

To accommodate the above design consideration, we need the following, somewhat stronger
statement:

Design Consideration P-3
We assume that any component of the ARTCC, such as flight-data processing,
track management, or system management, can contain an implementation of
POSIX.21.

122 CMU/SEI-98-SR-002

The resulting architecture, which includes the above design considerations, appears in Figure
57.

Display
Console

POSIX.21

Display
Console

POSIX.21
Display
Console

POSIX.21

Display
Console

Track
Data
Mgmt

POSIX.21

POSIX.21

System
Mgmt

Console

POSIX.21

Flight
Data

Processing

POSIX.21

Figure 57: Assumed POSIX.21 Architecture

The important point to note in the above figure is that we are assuming that POSIX.21 is
present on all system components. This would require a change to the current DSR to accom-
modate a POSIX.21 implementation. If POSIX.21 is to be considered seriously for inclusion
within an ARTCC in a long-term solution, it should be fully distributed over all necessary
components.

The ring connectivity in Figure 57 should be interpreted as logical connectivity. We are aware
that the DSR connectivity among consoles is a multi-ring structure, and there is nothing that
would prevent maintaining that connectivity in the context of a redeveloped host. In this
report, we address the components rather than their physical connectivity.

5.4.2 Migration Considerations

The architecture presented in Figure 57 includes POSIX.21 in all components of the En Route
architecture. The current DSR system includes a POSDC.l-conformant implementation. To the
extent that a C-language binding to POSDC.21 would be an extension of the POSDC.l standard,
it should be possible to include POSDC.21 in the DSR.

CMU/SEI-98-SR-002 123

In addition, the current DSR design makes use of communication over sockets (an interface
which is defined in the recently approved IEEE 1003.1g C-language binding standard). We
would expect that the transition from communication over sockets to a POSIX.21-based model
should be relatively straightforward.

5.5 Design

5.5.1 Design Components

The principal components of the POSIX.21 design include the following:

system management

airspace management

track management

flight-plan management

display consoles

The function and way in which the above components communicate are discussed in the fol-
lowing subsections.

5.5.1.1 System Management

System management is responsible for the overall management of the system. In the context of
sector reconfiguration, we will allocate an endpoint that is used to communicate with consoles
for the purpose of managing the sector and FPA assignments. The resulting diagram (Figure
58) shows the configuration of system management.

Airspace Management I
Messages w

K>
{Sector Configuration

Messages

O
System_Management o

o Status Messages

Operator Requests

Figure 58: POSIX Design for System Management

124 CMU/SEI-98-SR-002

There is also an endpoint associated with system management whose purpose is to initiate
requests for status of various devices in the system. We assume that there is a response to such
requests. The purpose of this is to provide one mechanism for system management to detect a
failure in a device, notably a display. Upon recognition of a failure, we expect reconfiguration
processing to be initiated. For example, if a console failure is detected, system management
could initiate a warm restart of a null console. We will discuss this case in more detail below,
particularly the maintenance of state data.

Also shown in Figure 58 is an endpoint for communication with airspace management. The
rationale for this is discussed in Section 5.5.1.2.

5.5.1.2 Airspace Management

Airspace management can be viewed as a subfunction of system management. We assume that
airspace management would be responsible for maintenance of the following information:

• mapping of sectors onto consoles

• mapping of FPAs onto sectors (and consoles)

The resulting design for airspace management appears in Figure 59:

Airspace Management I
Messages y

K>
t Sector Configuration

Messages

Airspace_Management o System Management
Status Messages

Figure 59: POSIX Design for Airspace Management

There are two endpoints associated with airspace management. One is used for communica-
tion with system management. For example, a request to combine sectors or assign a sector to
a particular console would be processed through this endpoint. The second endpoint is used
for communication wijh individual consoles for sector (and FPA) configuration messages.

CMU/SEI-98-SR-002 125

5.5.1.3 Track Management

5.5.1.3.1 Central or Distributed Management

A basic question regarding track data is whether it is managed in a centralized or distributed
manner. For reasons similar to that in the discussion of the CORBA design (see Section

4.6.8.2), we make the following design consideration:

Design Consideration P-4
We assume that track data are managed in a centralized manner.

One major reason for centrally managing tracks is the need to perform track conflict-alert pro-
cessing, which requires comparison of one track's characteristics versus many other tracks.

Another reason is the ability to reconstitute a console in the event of a failure. However, as we
will soon see, this is less of a need in the POSIX.21 design because of the method in which

tracks are distributed.

5.5.1.3.2 Distribution of Track Information

Given that track data are centrally managed, another basic question concerns the way in which
these data will be distributed to consoles. Two choices for this issue are described below:

• Distribute track data only to those consoles that require the data: This was the choice in
the CORBA design (see Section 4.6.8.3) where track data were sent only to a console that
was unable to display the track.

• Distribute track data to the set of consoles that could be required to display the data.

Based on the above two choices we make the following design consideration:

Design Consideration P-5
Track data will be distributed to all display consoles.

In addition, we refine the above consideration in the following manner:

126 CMU/SEI-98-SR-002

Design Consideration P-6
Track data will be distributed in a multicast manner.

Some of the advantages of this are as follows:

• If a console geometry changes (by panning out or zooming in), the track data will be
locally resident on the console.

• If there is a failure of a console, a spare console can be prepared to make a warm start, as
opposed to a cold start, since it will already have the track data for its intended sector
assignment.

Using multicast to distribute track data is not without a drawback. For example, for each track
message, there is the possibility that an interrupt will be raised, which must be handled.

A refinement of the design for distribution of track data is based on the use of message labels.
This is stated in the following design consideration:

Design Consideration P-7
Message labels will be used to distinguish the different types of track informa-
tion (such as new track, update track, etc.).

One of the features of the POSIX.21 interface is the ability to assign a label to a message. The
associated label then serves to identify the content of the message. For example, different val-
ues of the message label can be used to distinguish a track-update message from a drop-track
message.

The design is silent with respect to the possibility of buffering track data messages. For exam-
ple, one message could be sent that contained several messages. The advantage of this
approach would be

• less network bandwidth, since there is only one message header per group of messages as
opposed to per message

• less interrupt-level processing (decreased number of interrupts)

One the other hand, some possible disadvantages of buffering messages include

• additional latency

CMU/SEI-98-SR-002 127

• data dependency: The semantics of a message are data dependent (that is, there would be
one message called TrackJData, and it would encapsulate new track data, drop track, or
update-track data).

The design presented here could be analyzed to assess the impact of track-message buffering.
We emphasize, however, that the current design can accommodate either a single-message or
buffered-message approach.

5.5.1.3.3 Use of Message Priorities for Conflict-Alert Processing

It is important to be able to process conflict-alert messages with as little delay as possible. We
can achieve this in a POSIX.21 design through the use of message priorities. Thus, a message
with a high priority will be received (and subsequently processed) sooner than a message with
a low priority. A natural case for the use of message priorities is messages that deal with a con-
flict. Therefore, to address this issue, we have the following design consideration:

Design Consideration P-8
Messages associated with conflict-alert processing will be sent in a prioritized
manner.

The use of message priorities helps to decrease the end-to-end delay associated with a particu-
lar message.

5.5.1.3.4 Resulting Design

The design that results from the above discussion is shown in Figure 60.

128 CMU/SEI-98-SR-002

Conflict Alert
Messages

System Management
Status Messages

Track Sensor Data

Figure 60: POSIX Design for Track Management

In Figure 60, note that the conflict-alert and track messages are sent in a multicast manner.

5.5.1.4 Flight-Plan Management

5.5.1.4.1 Centralized or Distributed Management

The design for flight-plan management faces similar issues as that of track management. One
of these issues concerns how flight-plan data will be managed. One of the main concerns that
must be addressed is that flight plans must be correlated with track data. This statement favors
the following:

Design Consideration P-9
Flight-plan data will be managed in a centralized manner.

5.5.1.4.2 Distribution of Flight-Plan Data

A second concern deals with the distribution of flight-plan data. One possibility is to distribute
a flight plan only to those consoles that require the information. Another option, similar to that
for track data, is to multicast flight-plan information. If this is the case, flight-plan information
would be available to any console requiring such information. We choose to make the follow-
ing design consideration:

CMU/SEI-98-SR-002 129

Design Consideration P-10
Flight-plan messages will be distributed in a multicast manner.

An important consequence of the above design decision is that flight-plan messages will be
available to any console that chooses to register for such messages. As in the case of track-
message distribution, this design decision will make it easier (and faster) to perform a warm
start of a console in the event of a failure.

We must also be able to account for the fact that an operator can perform an action that results
in the state change of a flight plan. For example, an operator could change the assigned altitude
of a flight plan. We require that flight-plan management maintain a consistent state of all flight
plans. In order to accommodate this, we allocate an endpoint that will process state-change
messages. The operational semantics of an operator-initiated change would be as follows:

1. An operator changes some state data associated with a flight plan for a flight that is con-
trolled by the operator.1

2. The local flight-plan management agent in the console sends a message to flight-plan
management indicating the change. The message is expected to be sent in a reliable man-
ner.

3. Flight-plan management then multicasts the modified flight plan to the flight-plan multi-
cast group.

1. We are aware that an operator can make a change to any flight plan through the use of a I OK
override. This is easily accounted for in the present discussion.

130 CMU/SEI-98-SR-002

The resulting structure for the flight-plan processing appears as shown in Figure 61.

State Change
Messages

o—Ö
Flight_Plan_Management

Flight Plan Messages

M

o
9

System Management
Status Messages

From External Sources

Figure 61: POSIX.21 Design for Flight-Plan Management

5.5.1.5 Displays

The design of the display component is driven by the need to communicate with other compo-
nents for data management and response to operator commands, including those from system
management. The design must therefore account for the following types of communication:

• system management for overall status and management

• airspace management for sector and FPA configuration processing

• track management for the receipt of track messages, including high-priority conflict-alert
messages

• flight-plan management for flight-plan data

The overall design is relatively straightforward with the structure shown in Figure 62.

CMU/SEI-98-SR-002 131

Display_Console

System Management
Messages ■^-

Airspace Management
Messages -^-

Flight_Plan
Messages -^-

Status Messages M

Local_System_Management

Local_Airspace_Management

Local.
Flight_Plan_
Management

Local.
Track_Management

<^^V
Local_Status_
Management

Conflict Alert
Messages

Track
Messages

Figure 62: P0SIX.21 Design for Display Console

5.5.2 Overall Design

5.5.2.1 Components and Their Interaction

The view that emerges, as illustrated in Figure 63, is that of a collection of replicated, autono-
mous distributed agents; that is, there is a symmetry between the system functions, such as
track management, and the console-specific processing by (symmetric) local agents on that
type of data. Another characteristic of the design is that its loose coupling would possibly indi-

132 CMU/SEI-98-SR-002

cate that it is extensible. For example, if it were necessary to include a time synchronization
function, it could be included in Figure 63 in a straightforward manner.

Display_Console

System_Management (\^ I»/) Local_System_Management

Airspace_Management
^> <|)

State Change
Messages

Local_Airspace_Management

Local_
Flight_Plan_
Management

Local
Track Correlation

■£:

Local_
Track_Management

Track-Flight Plan
Correlations

Track Correlation

Conflict Alert
Messages \ \

Correlation M2

Flight Plans

Track
Messages'

■o^y\
Track_Management

Track Data'

Note: For simplicity, system management status messages are not shown. Mi denotes the "i-th"
multicast group.

Figure 63: Overall POSIX.21 Design

CMU/SEI-98-SR-002 133

5.5.2.2 Additional Comments

5.5.2.2.1 Console-Related Lists

Associated with each console are a number of lists, such as inbound and hold lists. One char-
acteristic of the design is that we assume that list-specific computations are performed at a
local console. The alternative would be for the list information to be computed centrally, and
then distributed to a particular console (as in the current HCS). For example, each console has
information about all flight plans and can therefore determine when a particular flight plan

should be added to an inbound list.

5.5.2.2.2 Consistency of State

A major aspect of the POSIX.21 design is that each console maintains global information

about all flight plans and tracks. For this approach to be successful, it requires a consistency
consideration of state data. This was achieved in the design by using reliable multicast data
transfer for track and flight-plan information.

An additional comment, and one that is perhaps more relevant to the existing HCS design,
deals with the distribution of state data. We are aware that in the current system, an operator
may make a local change to a flight plan, and the associated state data are not propagated to
the host, because this would cause flight strips to be printed. This is a procedural workaround
to minimize the amount of flight-strip printing. In our design, it is assumed that state data are
consistent and therefore distributed to other consoles. We defer the question of flight-strip
printing. However, if there is an overriding requirement that each time a flight attribute
changes, a flight strip will be printed, a large number of flight strips could be printed.

5.5.2.3 Sample Data-Flow Diagrams

We will again use selected data-flow diagrams to help the reader develop an understanding of
the POSIX.21 design. The cases are similar to those used for the CORBA design.

5.5.2.3.1 Track Data

The first case to consider is that in which new track data are available. The distribution of track
data is a fundamental operation of an En Route center. A diagram of the data flow for track

data is presented in Figure 64.

134 CMU/SEI-98-SR-002

Dispiay_Console

System_Management r\^ l-f) Local_System_Management

Airspace_Management ^_p-—<J)
State Change
Messages

Local_Airspace_Management

Local.
Flight_Plan_
Management

Local
Track Correlation

■£:

Local.
Track_Management Lo

Track-Flight Plan
Correlations

Track Correlation

©

Conflict Alert M„_a__,
Messages w Messa9ei

Correlation ..„
)ata M2^

<r

Flight Plans

Track • GJk
lessagea v

f M1

Track_Management

Track Data-

Note: For simplicity, system management status messages are not shown. Mi denotes the "i-th"
multicast group.

Figure 64: Track-Update Data Flow for POSIX.21 Design

The sequence of actions for the distribution of track data is outlined below:

1. New data available: Data containing information about a track is received from the radar.

This data will be received by the track-management function, and we assume it is also
received by track correlation. This could be accomplished through a multicast message
transfer.

CMU/SEI-98-SR-002 135

2. Distribute track data: Track management multicasts the track data to all consoles. The
message is sent in an unreliable manner.

3. Correlate track data: Track correlation processes the new track data to determine if there is
a correlation between the received track identification and an existing flight plan.

4. Distribute correlation status: If track correlation determines a new correlation between an
existing flight plan and information received for the new track, that information is multi-
cast (reliably) to local track correlation. The correlation information is maintained for each
console. For example, when a data block is displayed for a track, the data block also con-
tains the flight plan ID with which the track is correlated.

5.5.2.3.2 Flight-Plan Data

The second important type of data that is processed by an En Route center is that associated
with flight plans. The data flow for this case is shown in Figure 65.

The steps required to distribute flight-plan data are as follows:

1. New data available: Flight-plan data are received by flight-plan management, and concur-
rently, by track correlation. This could be accomplished through a multicast message
transfer.

2. Distribute flight-plan data: Flight-plan management multicasts the flight-plan data to all
consoles. The message is sent in an unreliable manner.

3. Correlate flight-plan data: Track correlation processes the new flight-plan data to deter-
mine if there is a correlation between the received flight plan and an existing track.

4. Distribute correlation status: If track correlation determines a new correlation between an
existing flight plan and information received for the new flight plan, the information is
multicast (reliably) to local track correlation. The correlation information is maintained
for each console. For example, when a data block is displayed for a track, the data block
also contains the flight plan ID with which the track is correlated.

136 CMU/SEI-98-SR-002

Display_Console

System.Management /'S |(/-\ Local_System_Management

Airspace_Management ^Q"—'<£
State Change

Messages

Local_Airspace_Management

Local_
Flight_Plan_
Management

Local
Track Correlation

■£.

Local_
Track_Management

M4 yS Track-Flight Plan
Correlations

Track Correlation

©

Flight Plans

Track Data

Figure 65: Flight-Plan Data Flow Example

CMU/SEI-98-SR-002 137

5.5.2.3.3 Sector Combination

One of the main motivations of this work was to deal with the question of sector combination.
The data-flow example for this case is presented in Figure 66.

The data-flow diagram illustrates the following steps:

1. Operator request: A system-management operator issues a request to combine two exist-
ing sectors. We assume that the request is valid.

2. Update airspace management: System management sends the request for sector combina-
tion to airspace management. One reason for this is that one of the functions of airspace
management is to maintain the mapping of sectors onto console (physical) addresses.

Another reason is that we assume there can be more than one system-management console
operating simultaneously; hence, we need a way to serialize and validate sector combina-

tion requests. This serialization and validation is assumed to be performed by airspace
management.

3. Initiate request of consoles: For the affected consoles (i.e., those that are controlling the
airspace with the associated sectors), airspace management sends a message indicating a
request to combine the sector. The message is sent in a unicast manner to the local system-
management agent. Processing will not be complete until each console intended to be part
of the new combination responds in a positive manner. The response indicates a willing-
ness to enter into the combination.

4. Distribute new sector information: Each console must maintain knowledge of other con-
soles' addresses. This information is needed, for example, for communication between
consoles for handoff processing. We assume that the information is multicast and received
by the local airspace management agent on each console.

1. Thus, one may think of airspace management as a type of directory service agent.

138 CMU/SEI-98-SR-002

Display_Console

Local_System_Management

LocaLStatus_Management

Local_Airspace_Management

Local_
Flight_Plan_
Management

Local
Track Correlation

■£:

Local_
Track_Management

Track-Flight Plan
Correlations

Conflict Alert

Track Correlationv Correlation

Track
Messages w Messaged

Flight Plans
TrackJManagement

Track Data

Figure 66: Sector-Combination Data Flow Diagram

Since track and flight plans are distributed in a multicast manner to all consoles, there is no
need to reconfigure the new sector with regard to track and flight-plan data. In other words,
since each console maintains track and flight-plan state information, a console geometric

reconfiguration can proceed in a natural manner.

CMU/SEI-98-SR-002 139

5.5.2.3.4 Console Failure

There are a number of ways in which a console failure would be detected. For the example
data flow, we shall consider the case where the failure is detected by system management. The
data-flow diagram for this is shown in Figure 67. We have also included the local status man-
agement function in Figure 67 because it is relevant for this example. This is assumed to be a
subset of the local system management function.

Display_Console

System_Management /~\ \d

Local.
Flight_Plan_
Management

Local_System_Management

Local_Airspace_Management

©

Local
Track Correlation

Local.
Track_Management

Track-Flight Plan
Correlations

Conflict Alert

Track Correlation Correlation
)ata

Track
Messages \ r Messages

Flight Plans
Track.Management

Track Data

Figure 67: Console-Failure Data Flow Example

140 CMU/SEI-98-SR-002

The sequence of events for the console failure case is outlined below:

1. Failure of status message: We assume that system management sends a status message at
some periodic rate to all devices that it manages in the system. We also assume that this
message is sent in a reliable manner (or built on an unreliable request-response model).
The message is received by the local status management agent. If there is a console that
undergoes a hard failure, the transmission of the status message will fail.

2. Start-up new console: We assume that a spare console exists, which is capable of a warm
start. This means that such a console will be receiving track and flight-plan data, but has
no assigned sector. When a failure is detected, system management sends a message to a
spare console indicating that it should go into operational mode.

3. Initiate airspace-management processing: When the spare console acknowledges the
request to become operational, system management informs airspace management.

4. Load console data: Airspace management initiates the transfer of information specific to
the sector that is being reconstituted for the spare console. Much of the necessary data is
adaptation data (that is, the geometry of the sector, FPAs, airways, console configuration
parameters, and so forth). Data are sent to the local airspace management agent on the
spare console.

5. Update local state: The last action to make the spare console operational is to determine
and/or update local state information, such as what flights were on a hold list. When the
local state update is complete, the console is operational.

6. Distribute new sector information: Similar to the discussion of the sector combination
data flow, each console must maintain knowledge of other consoles' addresses. This infor-
mation is needed, for example, for communication between consoles for handoff process-
ing. We assume that the information is multicast and received by the local airspace
management agent on each console.

There are two issues associated with console failure and subsequent restart that are worthy of
consideration. The first issue deals with the amount of time required to detect the console fail-
ure. This is largely associated with the rate at which system status management polls each
device. Roughly, the amount of time to detect the failure is equal to the polling period. We
would expect that this rate could reasonably be once every few seconds.

The second issue is the time needed to reconstitute a console so that it becomes operational. In
terms of the data necessary to achieve this, the two largest data sets involved are the tracks and
flight plans. Since track and flight-plan data are being multicast to all consoles, including spare

1. To simplify the discussion of Figure 67, we are referring to the same display console object to de-
note both failed and null consoles.

CMU/SEI-98-SR-002 141

consoles, there is no need to reconstitute the data. This saves time to transfer all track and
flight plans.

Finally, since each console maintains state data for all tracks and flight plans, information
about various lists (such as inbound lists) can be computed at a particular console for a given
sector. Again, this decreases the overall load by having a given console perform the computa-
tion locally, rather than in another function such as flight-plan management.

5.5.3 Mapping the Design onto Hardware

As was the case for the CORBA design, different mappings from the software onto hardware
are possible. Two likely candidates are

* centralized design: Track management, flight-plan management, and track correlation
would reside on the same processor.

• distributed design: Track management, flight-plan management, and track correlation
would each reside on a separate processor.

The characteristics of these two designs (which represent ends of a hardware mapping spec-
trum) are similar to those discussed in Section 4.6.12.2.

5.6 Implementation Concerns

Similar to the discussion in Section 4.7, it is important to understand implementation charac-
teristics of a particular POSIX.21 interface. Some of the items that arose as part of developing
the design include the following:

• general performance characteristics: This represents the use of feature benchmarks. For
example, what is the time to create or delete an endpoint? Note that this particular case
was discussed in Section 5.4 in connection with a design consideration.

• multicast groups: The use of multicast groups provides a powerful design mechanism.
However, there are performance considerations that could affect the use of this feature. For
example, the POSIX.21 interface semantics could be satisfied through the use of a true
multicast data transfer, or through replicated unicast data transfers to group members.
Note that the time for these two methods would be quite different. It would be appropriate
to know the way in which multicast is implemented.

It is necessary to have performance information for a particular implementation to develop
overall system performance models.

142 CMU/SEI-98-SR-002

5.7 Summary of P0SIX.21 Design

The P0SIX.21 design includes the following overall characteristics:

• There is a natural mapping of functionality onto components. For example, track manage-
ment and flight-plan management were easily mapped onto components.

• The design has a lot of symmetry in the context of local components. That is, the symme-
try is exploited by having a local track management component in each console that inter-
acts with track management. This allows us to replicate local components on multiple

consoles in the architecture.

• Multiple communication models were used as needed. Depending on the requirements, we
used unicast, multicast, and labelled-message transfer. The versatility proved extremely
useful, allowing us to tailor the communication model to the needs at hand.

• Message priorities were useful. For example, when a track is detected in conflict, a mes-
sage was sent that had a higher priority than other messages. This eliminated the FIFO
queueing of critical messages and would no doubt be useful in other areas as well.

A diagram of the overall design appears in Figure 63 page 133.

CMU/SEI-98-SR-002 143

144 CMU/SEI-98-SR-002

6 Assessment of Designs

An architecture is the earliest manifestation of a fledging artifact. The objective of assessing an
architecture is to raise one's level of confidence (or fear) that the architecture is heading in the
right (or wrong) direction, the philosophy being that major course corrections are easier and
cheaper the earlier they are made.

The purpose of this section is to illustrate how architectures can be assessed for various quali-
ties. We illustrate this using performance and modifiability as two important and dissimilar
attributes. Performance lends itself to quantitative analysis and draws on mature disciplines
such as scheduling theory, while modifiability tends to be more qualitative in nature and does
not have such strong theoretical foundations.

Another purpose of this section is to illustrate how to make trade-offs at the architecture level
between several quality attributes. This addresses questions such as, "What are the perfor-
mance ramifications of making a certain class of modifications?"

We do not perform comprehensive analyses for either attribute. Rather, our goal is to highlight
the types of questions precipitated by such analyses, the approaches for carrying out the analy-
ses, and the types of conclusions that can be drawn.

6.1 Overview of Principles

6.1.1 Architecture Trade-off Analysis

Quality attributes of large software systems are principally determined by the system's soft-
ware architecture. That is, in large systems, the achievement of qualities such as performance,
availability, and modifiability depends more on the overall software architecture than on code-
level practices such as language choice, detailed design, algorithms, data structures, testing,
and so forth. This is not to say that the choice of algorithms or data structures is unimportant,
but rather that such choices are less crucial to a system's success than its overall software
structure, its architecture. Thus, it is in our interest to try to determine, before it is built,
whether a system is destined to satisfy its desired qualities.

CMU/SEI-98-SR-002 145

Although methods for analyzing specific quality attributes exist, these analyses have typically
been performed in isolation. In reality however, the attributes of a system interact. Perfor-
mance affects modifiability. Availability affects safety. Security affects performance. Every-
thing affects cost. While experienced designers know that these trade-offs exist, there is no
principled method for characterizing them and, in particular, for characterizing the interactions
among attributes.

For this reason, software architectures are often designed "in the dark." Trade-off are made—
they must be made if the system is to be built—but they are made in an ad hoc fashion. Imag-
ine a sound engineer being given a 28-band graphic equalizer, where each of the equalizer's
controls has effects that interact with some subset of the other controls. But the engineer is not
given a spectrum analyzer and is asked to set up a sound stage for optimal fidelity. Clearly

such a task is untenable. The only difference between this analogy and software architecture is

that software systems have far more than 28 independent but interacting variables to be

"tuned."

There are techniques that designers have used to try to mitigate the risks in choosing an archi-
tecture to meet a broad palette of quality attributes. The recent activity in cataloguing design
patterns and architectural styles is an example of this. A designer will choose one pattern
because it is "good for portability" and another because it is "easily modifiable." But the anal-
ysis of patterns does not go any deeper than that. A user of these patterns does not know how
portable, modifiable, or robust an architecture is until it has been built.

To address these problems, this report introduces the architecture trade-off analysis method
(ATAM). The ATAM is a method for evaluating architecture-level designs that considers mul-
tiple quality attributes such as modifiability, performance, reliability, and security in gaining
insight into whether the fully fleshed out incarnation of the architecture will meet its require-
ments. The method identifies trade-off points between these attributes; facilitates communica-
tion between stakeholders (such as user, developer, customer, and maintainer) from the
perspective of each attribute; clarifies and refines requirements; and provides a framework for
an ongoing, concurrent process of system design and analysis.

The ATAM has grown out of work at the Software Engineering Institute on architectural anal-
ysis of individual quality attributes: Software Architecture Analysis Method (SAAM)
[Kazman 96] for modifiability, performance analysis [Klein 93], availability analysis, and
security analysis [Lipson 97]. SAAM has already been successfully used to analyze architec-
tures from a wide variety of domains: software tools, financial management, telephony, multi-
media, embedded vehicle control, and so on.

The ATAM, like SAAM, has both social and technical aspects. The technical aspects deal with
the kinds of data to be collected and how these data are analyzed. The social aspects deal with
the interactions among the system's stakeholders and area-specific experts, allowing them to

146 CMU/SEI-98-SR-002

communicate using a common framework, to make the implicit assumptions in their analyses
explicit, and to provide an objective basis for negotiating the inevitable architecture trade-offs.
This report will demonstrate the use of the method and its benefits in clarifying design issues
along multiple attribute dimensions, particularly the trade-offs in design.

6.1.2 Why Use Architecture Trade-off Analysis?

All design, in any discipline, involves trade-offs; this is well accepted. What is less well under-
stood is the means for making informed, and even optimal, trade-offs. Design decisions are
often made for non-technical reasons: strategic business concerns, meeting the constraints of
cost and schedule, using available personnel, and so forth.

Having a structured method helps ensure that the right questions will be asked early, during
the requirements and design stages when discovered problems can be solved cheaply. It guides
users of the method—the stakeholders—to look for conflicts in the requirements and for reso-
lutions to these conflicts in the software architecture.

In doing ATAM analyses, we assume that attribute-specific analyses are interdependent, and
that each quality attribute has connections with other attributes, through specific architectural
elements. An architectural element is a component, a property of the component, or a property
of the relationship between components that affects some quality attribute. For example, the
priority of a process is an architectural element that could affect performance. The ATAM
identifies these dependencies among attributes: what we call trade-off points. This is the prin-
cipal difference between an ATAM analysis and other software analysis techniques—that it
explicitly considers the connections between multiple attributes and permits principled reason-
ing about the trade-offs that inevitably result from such connections. Trade-off points arise
from architectural elements that are affected by multiple attributes.

6.1.3 The Architecture Trade-off Analysis Method

The ATAM is a spiral model of design, as depicted in Figure 68. It is like the standard spiral
model in that each iteration takes one to a more complete understanding of the system, reduces
risk, and perturbs the design. It is unlike the standard spiral in that no implementation need be
involved; each iteration is motivated by the results of the analysis and results in new, more
elaborated, more informed designs.

Analyzing an architecture involves manipulating, controlling, and measuring several sets of
architectural elements, environmental factors, and architectural constraints.

CMU/SEI-98-SR-002 147

The primary task of an architect is to lay out an architecture that will lead to system behavior
that is as close as possible to the requirements within the cost constraints. For example, perfor-
mance requirements are stated in terms of latency and/or throughput. However, these attributes
depend on the architectural elements pertaining to resource allocation: the policy for allocating
processes to processors, scheduling concurrent processes on a single processor, or managing
access to shared data stores. The architect must understand the impact of such architectural
elements on the ability of the system to meet its requirements and manipulate those elements
appropriately.

This task is typically approached with a dearth of tools. The best architects use their hunches,
their experience with other systems, and prototyping to guide them. Occasionally, an explicit
modeling step is also included as a design activity, or an explicit formal analysis of a single

quality attribute is performed.

Create
Scenarios N Attribute-Based

Requirements/
Constraints/
Environment

Describe
Architectural

Views

Design
Principles/Styles

/

Attribute-Specific
Analyses

Critiques,
Trade-offs

Action plan
(for next iteration)

Assessment/
Refinement

Figure 68: Steps of the Architecture Trade-off Analysis Method

6.1.4 The Steps of the Method

Once a system's initial set of requirements has been elicited and an initial architecture (or
small set of architectures) is proposed, subject to environment and other considerations, each
quality attribute will be evaluated in turn, and in isolation, with respect to any proposed
design. After these evaluations comes a critique step. During this step, trade-off points are
found - elements that affect multiple attributes. After the critique, we can either refine the
models and re-evaluate; refine the architectures, change the models to reflect these refine-
ments, and reevaluate; or change some requirements.

Step 1 — Create Scenarios

The first step in the method is to elicit system usage scenarios from a representative group of
stakeholders. This serves the same purposes as it does in SAAM-to facilitate communication

148 CMU/SEI-98-SR-002

between stakeholders and to develop a common vision of the important activities that the sys-
tem should support.

Step 2— Attribute-Based Requirements/Constraints/Environ-
ment

The second step in the method is to identify the requirements, constraints, and environment of
the system. A requirement can have a specific value or be described via scenarios of hypothet-
ical situations. The environment must be characterized for subsequent analyses (e.g., perfor-
mance or security), and constraints on the design space, as they evolve, are recorded because
they also affect attribute analyses. This step places a strong emphasis on revisiting the scenar-
ios from the previous step to ensure that they account for important quality attributes.

Step 3— Design Principles

Once we believe that we understand our requirements well enough, we can look for engineer-
ing principles that help us deal with those requirements. These principles help us to overcome
the conflicts inherent in any set of complex requirements. For example, when building a sys-
tem that needs to be highly available, or highly fault tolerant, an engineering principle to
increase the availability of the system is to introduce redundant components. However, these
engineering principles must account for variation in the problem domain. For example, if these
redundant components always fail by halting, a switch can be inserted that "listens" to the pri-
mary component. If this primary component ever stops producing output, the switch detects
this and switches to the backup component. On the other hand, if the redundant components
can fail "actively"—that is, continue to operate, but produce erroneous output— a more com-
plex switch must be inserted. This more complex switch listens to the (typically three or more)
redundant components and then decides, based upon some voting or averaging scheme, which
output to use and whether to flag any of the redundant components as failed.

Engineering principles such as "use redundancy to address availability requirements" are gen-
eral, but can be refined into a particular structural means of addressing the achievement of a
system's requirements, based upon the environment in which these principles are applied.

Step 4— Describe Architectural Views

The requirements and design principles together generate candidate architectures and con-
strain the space of design possibilities. In addition, design almost never starts from a clean
slate: legacy systems, interoperability, and the successes/failures of previous projects all con-
strain the space of architectures. These are described in this step.

CMU/SEI-98-SR-002 149

Moreover, the candidate architectures are described in terms of the architectural elements that
are relevant to each of the important quality attributes. For example, voting schemes are an
important element for reliability; concurrency decomposition and process prioritization are
important for performance; firewalls and intruder models are important for security; and
encapsulation is important for modifiability.

Throughout our description of the method, we assume that multiple, competing architectures
are being compared. However, designers typically consider themselves to be working on only

a single architecture at a time. Why are these views not aligned? From our perspective, an
architecture is a collection of functionality assigned to a set of structural elements, with con-
straints on the coordination model—the control flow and data flow among those elements.

Almost any change will mutate one of these aspects, thus resulting in a new architecture.
While this point might seem like a splitting of hairs, these are important hairs to split in the

ATAM context for the following reason: the ATAM requires building and maintaining attribute
models (both quantitative and qualitative models) that reflect and help to reason about the
architecture. To change any aspect of an architecture—functionality, structural elements, coor-
dination model—will change one or more of the models. Once a change has been proposed,
the new and old architectures are "competing," and must be compared: hence, the need for new
models that mirror those changes. Using the ATAM, then, is a continual process of choosing
among competing architectures, even when these look "pretty much the same" to a casual
observer.

Step 5 — Scenario Realization

Scenarios are realized (overlaid) on an architecture to determine their impacts. For example,
performance scenarios are run through a system to understand the flow of data and control.
Modifiability scenarios are overlaid to understand what components, connections, and inter-
faces need to be changed.

Step 6 — Attribute-Specific Analyses

Once a system's initial set of requirements and scenarios has been elicited and an initial archi-
tecture (or small set of architectures) is proposed, each quality attribute must be analyzed in
isolation, with respect to each architecture. These analyses can be conducted in any order; no
individual critique of attributes against requirements or interaction between attributes is done
at this point. Allowing separate (concurrent) analysis is an important separation of concerns
that allows individual attribute experts to bring their expertise to bear on the system.

The result of the analyses leads to statements about system behavior with respect to particular
attributes: "requests are responded to in 60 ms. average," "the mean time to failure is 2.3

150 CMU/SEI-98-SR-002

days," "the system is resistant to known attack scripts," "the hardware will cost $80,000 per
platform," "the software will require 4 people per year to maintain," and so forth.

Step 7 — Critiques, Trade-offs

The next step of the method is to critique existing models and to find the architectural trade-off
points. Although it is standard practice to critique designs, significant additional leverage can
be gained by focusing this critique on the interaction of attribute-specific analyses, particularly
the location of trade-off points. The following paragraph describes how this is done.

First, the sensitivity of individual attribute analyses to particular architectural elements is
determined. Once these high-sensitivity architectural elements have been determined, finding
trade-off points is simply the identification of architectural elements to which multiple
attributes are sensitive. For example, the performance of a client-server architecture might be
highly sensitive to the number of servers (performance increases, within some range, by
increasing the number of servers). The availability of that architecture might also vary directly
with the number of servers. However, the security of the system might vary inversely with the
number of servers (because the system contains more potential points of attack). The number
of servers, then, is a trade-off point with respect to this architecture. It is an element, poten-
tially one of many, where architectural trade-offs will be made.

Step 8 — Assessment/Refinement Condition

The purpose of this step is compare the results of the analyses done up to this point to the
requirements. When the analyses show that the system's predicted behavior comes adequately
close to its requirements, the designers can proceed to a more detailed level of design or to
implementation. In practice, however, it is useful to continue to track the architecture with ana-
lytic models: to support development, deployment, and beyond to maintenance. Design never
ceases in a system's life cycle, and neither should analysis.

Step 9 — Action Plan

In the event that analysis reveals a problem, we now develop an action plan for changing the
architecture, models, or requirements. The action plan will draw on the attribute-specific anal-
yses and identification of trade-off points. This step may then lead to another iteration of the
method.

In the sections that follow, we will exemplify parts of the ATAM. Space does not permit a
complete analysis. The information that we present here is for the purpose of illustrating spe-
cific parts of the ATAM.

CMU/SEI-98-SR-002 151

6.2 Candidate List of Scenarios

Using brainstorming, we came up with the following set of scenarios, some generated with
specific attributes in mind (such as performance, modifiability, and reliability) and others with

some specific functionality in mind:

increase in number of flights, for example, 10% / year (modifiability)

free flight (modifiability)

dynamic sector boundaries (modifiability)

introduction of global positioning system (GPS) (modifiability)

get track data to the display (performance)

flight plan to display (performance)

resectorization (performance)

console failure (reliability)

multi-center conflict alert (functionality)

handoffs (functionality)

starting an idle console (functionality)

online upgrade (modifiability)

While this list was generated in a relatively short period of time, it represents a potentially rich
initial set of scenarios that could/should be applied to host replacement.

6.3 Performance Assessment

6.3.1 Performance Considerations

By performance, we are referring to timeliness, usually measured in terms of the number of
events processed in a given interval of time (that is, throughput), or the amount of time
required to respond to a specific event (that is, latency). In this section, we consider only
latency, and in particular, latency under worst-case conditions.

Performance is basically determined by

• resources

• resource usage

• resource arbitration (including preemptability and queuing)

152 CMU/SEI-98-SR-002

Resources include processors, networks, memories, and so forth. Resource usage refers to
resource consumption in the absence of competition for the resource. Examples are the execu-
tion of a process on a dedicated processor or message transmission time on a dedicated net-
work. Resource arbitration refers to the policy for deciding how to allocate a resource to one of
several competing requests for the resource. An example is the scheduling policy used for
determining which process in the ready queue should execute.

The challenge of performance analysis is to determine if latency requirements will be satisfied
given resources, resource-usage patterns, and resource-arbitration policies. The challenge of

performance analysis at the architecture level is to derive useful performance predictions in the
face of incomplete, inaccurate, or yet-to-be-determined information.

In this report, we confine ourselves to analyzing the latency of processes (and threads) on a
collection of processors. Networks and other resources are not explicitly considered. We
assume an arbitration policy based on assigning static priorities to processes.

Threads and processes refer to units of concurrency that use the processor. Processes are usu-
ally assumed to be "heavier," usually having their own address space, thereby resulting in rela-
tively expensive (when compared with threads) interprocess communication. A process can
contain more than one thread. Communication between threads within a process is usually rel-
atively inexpensive. The scheduling of threads is usually performed within the scope of the
parent process, but can be between threads of different processes (this is implementation
dependent).

The latency of each process/thread is analyzed by examining all of the possible contributors to
its latency. Three primary sources of latency are execution time (represented by C in schedula-
bility expressions that appear later), blocking (represented by B), and preemption time, which
is accounted for in schedulability equations.

6.3.2 A Performance Scenario

For the purpose of illustrating architecture-level performance analysis, we will consider a sin-
gle high-level scenario concerned with resectorization. This scenario is fleshed out in more
detail first using CORBA and then using POSDC.

1. We use the term resectorization to refer to operations for combining sectors or combining an FPA
with a sector.

CMU/SEI-98-SR-002 153

Scenario: A system-management operator issues a command requesting resectoriza-
tion. The resectorization should be completed within the time specified in the system
requirements.

A caveat: Clearly, a comprehensive performance analysis cannot be based on only one sce-
nario. This is not our intent. As stated above, our intent is to show how the approach can
uncover potential performance problems and offer a modicum of confidence by performing
high-level analysis at the architecture level.

In the next two sections, we will take a detailed look at this scenario, first using CORBA (Sec-
tion 6.3.3) and then using POSIX (Section 6.3.4). At the end of Section 6.3.4, we make several
brief remarks about differences between CORBA and POSIX that were highlighted by the
analysis.

6.3.3 Performance Using CORBA

In this section, we first look at a realization of the above scenario using the CORBA architec-
ture. This will force us to describe more detail than was in the original object model. Given
this additional detail, we then describe a performance model.

The notational conventions shown in Figure 69 are used when augmenting the original
designs.

 ^ Method
invocation

 ► Interprocess / 7 static

communication / / tbieao!
 Signal

or interrupt / / dynamic

^ Asynchronous *- ' thread
-7? «

communication

Figure 69: Conventions Used When Augmenting the Original Designs

154 CMU/SEI-98-SR-002

6.3.3.1 Scenario Realization

A high-level realization of the resectorization scenario is described below:

1. The system management operator initiates a request to combine two (or more) sectors,

which results in an Airspace„Management method invocation.

2. The Combine_Sector method in AirspaceJAanagement needs to validate the request (Is
the sector number valid, sector state valid, etc.). The method either completes the sector
combination request or returns a status indicating why it failed. (That is, the operator does

not have to first confirm status and then issue the real request).

3. Airspace „Management invokes methods of the Console_Display_Objects whose geome-

try has changed.

4. The active sector (sector into which other sectors are being joined) gets list data from one

of the following:

a. the consoles on which the inactive sectors reside

b. Flight_PlanJAanagement and Track_Management

5. Airspace_Management adjusts its view of active sectors.

This high-level realization is discussed in more detail below. It is subdivided into three main

parts:

• System management operator initiates a resectorization request

• Combine_Sector method in airspace management is invoked

• Airspace management invokes console display object methods

6.3.3.1.1 System Management Operator Initiates a Resectorization Request

A keyboard (KB) process is responsible for parsing the operator's command and then initiat-
ing action that will eventually result in the invocation of the Combine „Sectors method of
Airspace „Management. To ensure that the operator perceives adequate response time, process
KB should not be allowed to block for too long and hence should not perform the method
invocation itself. Rather, process KB spawns a method invocation thread (Mli) to perform the
i'th outstanding method invocation (See Figure 70).

Since CORBA method invocation is synchronous and does not provide a time-out mechanism,
we need a mechanism that will return control to thread Mli if a failure occurs that prevents the
completion of Combine „Sectors. Therefore, thread Mli must start a timer that will generate a
signal after a specified amount of time. However, not all implementations of CORBA will nec-
essarily allow a method invocation that is in progress to be interrupted by an OS signal; thus,
we need yet another thread, the time-out (TO) thread to accept the time-out signal and termi-

CMU/SEI-98-SR-002 155

nate thread Mli. When method invocations are timed out or when they complete, a message is
displayed on the display console which is managed by the display (DP) thread.

Airspace_Management

Combine Sectors
/

System_Management /

/
/

/
/

' Mil / K*,

Time-out

Figure 70: Process/Thread Structure of System_Management

The process of creating a detailed realization of the scenario reveals

• refinements to the scenario and to the requirements

• implicit design constraints and assumptions, which are constraints on the design imposed
on the architect/designer

• design considerations, which are constraints placed on the design by the architect/designer
carrying the assessment process

6.3.3.1.1.1 Scenario and Requirement Refinements

The following scenario and requirement refinement was noted while constructing the process/
thread structure for System_Management:

• Latency for user-interface response time must be bounded.

6.3.3.1.1.2 Design Constraints and Assumptions

Design constraints and design assumptions that became evident as a consequence of realizing
this scenario using CORBA follow:

156 CMU/SEI-98-SR-002

• Assume that thread creation is relatively inexpensive.

• Assume that CORBA method invocation might not be interruptible by operating system

(OS) signals.

• System_Management and Airspace JAanagement objects reside on different processors as
shown in Figure 70.

• Assume that the CORBA server is multi-threaded (to accommodate several outstanding
method invocations to the same CORBA object).

• Assume that signals can have data passed with them so that TO knows which method
invocation has been timed out

• Assume that signals are reliably queued.

6.3.3.1.1.3 Design Considerations

The following design considerations have an impact on the subsequent performance analysis:

• Based on the assumption of inexpensive thread creation, System JAanagement has one
static process that spawns threads for carrying out the appropriate method invocation.

• Priority-based preemptive scheduling is used to schedule processes/threads. (Otherwise,
the scheduling of threads in a multi-threaded environment is not defined and might result
in, for example, round-robin scheduling, resulting in less than the desired amount of con-
trol and hence a loss of predictability.)

• Assume that the processes/threads of System_Management have the following priorities:
KB - 10; Mis - 20; TO - 30; DP - 15. (A larger number means a higher priority.)

• A mechanism is needed to time out a method invocation that appears (has taken more than
a tolerable amount of time) to have failed. Reliable time-out signals are being used for this
purpose.

6.3.3.1.2 Combine_Sector Method in Airspace Management Is Invoked

The Combine_Sectors method is responsible for validating the command (e.g., ensuring
proper sector status and correct sector numbers), for figuring out which consoles are responsi-
ble for which sectors, and invoking methods on the appropriate consoles.
Airspace_Management is also responsible for serializing overlapping resectorization requests.
A process architecture that is similar to the one used for SystemJAanagement is also appropri-
ate here and is shown in Figure 71.

CMU/SEI-98-SR-002 157

Airspace_Management

Combine_Sectors

CLi /

Time-out

ConsoleJDispl ay_Obj ect_i

Combine .Sector Request

Combine Sector

Console_Display_ObjectJ

r
Combine. Sector Request

Combine Sector

X
Figure 71: Process/Thread Structure of Airspace_Management

Notice that we are assuming that methods are "reentrant," that is, a single method can have
more than one active invocation. This is represented by the shaded task in the above figure.
This allows multiple resectorization requests involving disjoint sets of sectors to proceed con-
currently. Since the ORB needs to spawn a process for this purpose, we explicitly represent the
ORB as shown below in Figure 72.

Airspace_Management

7 = ■ A

Figure 72: ORB and Airspace_Management

158 CMU/SEI-98-SR-002

Sector data (SD) must be examined to determine which consoles are affected. For example,
AirspaceJAanagement maintains the state of a sector including the assigned console and
whether it is active, inactive, or in transition. For each affected console, a thread is spawned
(CLi) to invoke the Combine_Sector_Request and Combine_Sector methods for each appro-
priate console. The same time-out mechanism used in System_Management is used here. Since
sector data are shared by multiple methods, mutual exclusive access must be enforced. This is
handled by thread SD.

AirspaceJAanagement invokes the Combine_Sector_Request method on the new controlling
console and on one or more consoles being combined and requesting permission to commence
resectorization. If all consoles respond in the affirmative, AirspaceJAanagement changes its
sector data so that flight plan and track data are sent to all consoles involved in the resectoriza-
tion, and AirspaceJAanagement directs all of the involved consoles to commence resectoriza-
tion by invoking the CombineJSector method on each involved console. When all consoles
indicate that resectorization has been completed, AirspaceJAanagement lets all of the con-
soles know that the new sector assignments can be put into effect.

AirspaceJAanagement also performs a data-routing function. It routes flight-plan-related and
track data from Flight J'lanJAanagement and Track JAanagement, respectively, to the appro-
priate consoles. This can result in contention for sector data. We will assume that new flight-
plan-related data arrive once per Tpp seconds on the average, and new track information arrives
once per TTK seconds for each of NFiights.

6.3.3.1.2.1 Scenario and Requirement Refinements

The following scenario and requirement refinements were noted while constructing the pro-
cess/thread structure for AirspaceJAanagement:

• AirspaceJAanagement is responsible for the "serialization" of requests to combine sec-
tors. For example, if a request to combine sectors 1 and 2 is underway, and a request for
combining sectors 2 and 3 is received, AirspaceJAanagement must wait until the first
request has been processed before starting the second. Moreover, it might be prudent to
send status information to the system management operator reflecting this type of situa-
tion.

• Assume that new flight-plan-related data arrives once per Tpp seconds.

• Assume that a track update arrives once per TJK seconds for each of Nnights.

6.3.3.1.2.2 Design Constraints and Assumptions

Design constraints and assumptions that became evident as a consequence of realizing this
scenario using CORBA follow:

CMU/SEI-98-SR-002 159

• Assume predictable termination semantics when CLi is "killed" by TO; that is, CS
receives control within a relatively short amount of time after CLi is killed and also knows
that the return occurred under exceptional conditions.

• Since the ORB manages the routing of a method invocation from source to destination and
there can be many concurrent invocations, assumptions must be made about how conten-
tion for the ORB is handled:

Assume that the ORB queue is unlimited, and therefore no requests are "turned away"
for later retry.

Assume that the ORB queue requests are handled in a FIFO manner.

6.3.3.1.2.3 Design Considerations

The following design considerations have an impact on the subsequent performance analysis:

• SD requires a locking mechanism to manage contention for shared data (such as sector
state). Assume that there are multiple concurrent readers, but only a single writer is
allowed.

• Assume that SD has been assigned a priority that is higher than the priority of any of its
clients (thereby achieving a blocked-at-most-once property1).

6.3.3.1.3 Airspace Management Invokes Console Display Object Methods

Combine_Sector_Request and Combine_Sector are invoked by AirspacejManagement on
each affected console object (See Figure 73). Combine .Sector„Request queries console opera-
tors to determine whether a change in sector geometry is viable. If the operator consents (and
all other criteria are met), an affirmative indication is sent back to Airspace „Management. If
all consoles consent, Airspace „Management requests that resectorization commences by
invoking Combine„Sector. The controlling console gathers data from
Flight_Plan_Management and Track_Management to regenerate list data (i.e., the hold, con-
flict-alert and inbound lists). If it receives list data within a certain time interval, it then sends a
completion indication to Airspace„Management. When Airspace„Management lets all con-
soles know that resectorization has been completed, the active console assumes control, and
the inactive console relinquishes control. This protocol is handled by the console management
(CM) process.

A high-priority thread benefits from a blocked-at-most-once property when its worst-case block-
ing time is derived from a single critical section of a lower priority thread. On a uniprocessor,
when multiple threads access a shared resource (such as sector data) and the priority of the crit-
ical section is higher than the highest priority thread which accesses the data and execution is
not suspended during the critical section, a block-at-most-once property is achieved.

160 CMU/SEI-98-SR-002

Console_Display_Object_i

Combine_Sector_Request

Combine Sector

ORB

\

\
\ A. V?

L
List data

Flight_Plan_Management

Get_Flight_Plans_for_Region
x:

Track_Management

Get_Tracks_for_Region

Figure 73: Process/Thread Structure of Console_Display_Object

Then, the console must make any appropriate geometry changes and communicate those
changes back to Airspace_Management.

6.3.3.1.3.1 Scenario and Requirement Refinements

The following scenario and requirement refinements were noted while constructing the pro-
cess/thread structure for the Console_Display_Object:

• There will be a short window of time in which two consoles can receive data for a sector.
This window occurs after all consoles agree to participate in resectorization and before the
consoles are notified that resectorization has been completed. A maximum duration for
this "short" window must be specified.

6.3.3.1.3.2 Design Constraints and Assumptions

No additional design constraints or assumptions were revealed when examining the
Console_Display_Object.

CMU/SEI-98-SR-002 161

6.3.3.1.3.3 Design Considerations

After a sector has been added or deleted from the purview of a console, its list data must be
acquired by the active console. There are two options for how to approach this:

• Invoke methods on Flight_Plan_Management and Track_Management to acquire data.

• The active console requests the data from the inactive console(s).

The first option was chosen because it ensures the consistency of state data. The second option
has potential performance advantages if the consistency of state data can be ensured.

6.3.3.2 Performance Modeling

Using the scenario discussed in the previous section, we develop performance models in this

section. Again, be aware that the performance models developed in this section are representa-
tive of what can be done, but are by no means comprehensive. We have not considered all of
the preemptive and blocking effects, nor have we modeled resources other than the processor;
most notably we have not modeled the network. Nevertheless, a comprehensive model
requires the same type of reasoning used here and undoubtedly will provide more insights than
we have gained through a cursory analysis.

Once again, we consider the scenario in three stages:

• System management operator initiates a resectorization request

• Combine_Sector method in airspace management is invoked

• Airspace management invokes console display object methods

After the three stages are discussed, end-to-end latency for the scenario is discussed.

6.3.3.2.1 System Management Operator Initiates a Resectorization Request

Since the operator response time must be bounded, in this section we consider the latency
associated with KB. It receives a command (which has already been echoed to the display) and
must parse it and spawn a thread to carry out the resulting method invocation. The computa-

tion time for this is

CRB + ^Mi-start (6-1)

Mi-start includes thread creation, the starting of the timer, data marshalling, and the method
invocation-all of which occur in thread Mli at a priority 20. Note that thread KB cannot con-
tinue to execute until Mli is suspended since Mli's priority is higher than KB's priority.

162 CMU/SEI-98-SR-002

To emphasize the various aspects of Mi-start an alternate, more detailed expression could be

CRB
+ ^Thread-create + ^Timer-start + ^Marshall + C'Invocaüon (6-2)

used:1

There is no blocking of KB due to the sharing of resources with other threads and hence no "B
terms" in the above expression. However, since KB has the lowest priority, there will be occa-
sions in which KB and "Mi-start" are preempted by either the return or the timing out of the
method invocations. Assuming ninv outstanding method invocations and that in the worst case

they all preempt either KB or Mi-start, the expression accounting for preemption is

ninv [max(CT0, CM,.end) + CDP] (6-3)

The value of TO includes the time to field the time-out signal and kill thread ML Mi-end
includes unmarshalling time, and time to process status information from the method invoca-
tion, send this information to DP, and then terminate. The max function is needed since either
the time-out or the return from method invocation occurs, not both.

The worst-case latency for KB is the sum of the first (or second) expression and the third
expression:

CRB + CMi-start + ninv [max(CT0, CMI.end) + CDP] (6-4)

In general, we will not use this level of detail in the schedulability expressions. Rather, we will
use less detail and tables to explain what aspects of computation are denoted by each term.

CMU/SEI-98-SR-002 163

The schedulability model for determining KB's worst-case latency is shown in Table 6.

Process
/

Thread
Priority Description of

Computation
Schedulability

Expression

KB 10 KB computation CKB + ^Mi-start

Mi-start 20 Create thread
Start timer
Marshall data
Invoke method

TO 20 Field time-out signal
Kill thread

max(CT0, CMI.end) + CDP

Mi-end 20 Return from method invoca-
tion
Unmarshall data
Process status information
Send to DP
Terminate

DP 15 Display status

"KB latency" = CKB + CM,.start + ninv [max(CT0, CMI.end) + CDP]

Table 6: Schedulability Model for Keyboard Latency Using CORBA

Note that the above analysis serves two purposes: (1) to describe the latency for KB, and (2) to
get insight into the contribution of System JAanagement to the end-to-end latency for resector-
ization.

6.3.3.2.2 Combine_Sector Method in Airspace Management Is Invoked

Since we assume that the ORB uses a FIFO queue for outstanding method invocations, we
assume that in the worst case, SystemJAanagement invokes Combine „Sectors immediately
after all NRights track-update requests (through the Track_Notify method) have been made.1

The blocking time experienced is

NfljghtsBoRB (6-5)

1. From the specifications of loading discussed in Appendix D, it is evident that track updates dom-
inate updates associated with flight plans. For this analysis, we ignore the effects of flight-plan-
related updates.

164 CMU/SEI-98-SR-002

Eventually, the ORB activates CS, which does some computation after data is unmarshalled
and then queries SD to find out which consoles are involved in resectorization. Since it is pos-
sible that the needed data are currently being changed by some other thread, CS might be
blocked before reading the database. These three additional terms for the schedulability
expression are:

CcS + BsD-write + ^so-read

Each CL thread takes time to be created, set its timer, marshall data, and commence method
invocation. As for SystemJAanagement, there is work to be performed upon the return or
time-out of the method invocation. These two additional terms are

Hcombine [CCL-start + max(CT0, CCL.end)] (6-7)

Finally, the remote execution for each console needs to complete before being timed out.
Assuming that it does not time out, the expression follows (where LCLi stands for the latency
associated with each console):

max(LCLi, LCLJ) (6'8)

The result of adding together expressions 6-5, 6-6, 6-7, and 6-8 is:

NnightsBoRB + Ccs +BsD-write + CsD-read +
ricombine [CcL-start + max(CT0} CCL^nd)] + max(LCLi, LCLj) (6-9)

Note that we are making several simplifying assumptions. It is likely that there are other com-
putations being performed by Airspace_Management other than those for resectorization.
These other computations could contribute additional latency through preemptive effects (of
course, depending on the priority at which they are carried out). Other scenarios would high-
light these computations. The performance models should then be incrementally updated to
reflect these new computations.

1. While unmarshalling is handled by the ORB, it is associated with CS for performance-modeling
purposes.

2. Note that the priority of SD plays an important role in determining the blocking time. It has been
assigned a "ceiling" priority that is higher than the priority of any client threads that call it. In
doing so, we limit how long a high-priority client has to wait to the longest critical of all lower
priority clients.

3. Strictly speaking, the latency term is actually several latency terms. Airspace_Management and
Console_Display_Object engage in a protocol involving several method invocations. We model
this as a single method invocation.

CMU/SEI-98-SR-002 165

Also note that we are modeling the case in which there is only a single concurrent resectoriza-
tion. If more than one resectorization is proceeding simultaneously, one could preempt the

other and add to its latency.

Table 7 summarizes the performance model for Airspace „Management.

Process
I

Thread
Priority

Description of
Computation

Schedulability
Expression

n/a n/a Queuing in the ORB
Unmarshalling track data

NFlightsBORB

CS

SD

20

35

Unmarshall data
Possibly block on SD

Os + B CS ■*■ DSD-write r ^SD-read + Cc

Read or write sector data

CL-start

TO

CL-end

30

30

30

Create thread
Start timer
Marshall data
Invoke method

cCL-start + max(CT0, CCL.

end-'

Field time-out signal
Kill thread

Return from method invoca-
tion
Unmarshall data

n/a n/a Latency for console opera-
tions

max(LCLi, LCLj)

"Combine Sectors Latency" =
NFlightsBORB + CcS +BsD-write + CsD-read+ ncpmbine ICci-start + max(CT0, CCI.end

+ max(LCIi, LCLi)

Table 7: Schedulability Model for Combine_Sectors in Airspace_Management

6.3.3.2.3 Airspace Management Invokes Console Display Object Methods

Assume that there are about nconsoles consoles that evenly control Np^ tracks.

Combine „Sector„Request and Combine„Sector are invoked by Airspace „Management on
each affected console object. This causes the string of execution to "fork" when the different
methods are invoked and "join" when all of the method invocations complete. We will focus

166 CMU/SEI-98-SR-002

on the active console's branch since it is likely to be the one that takes the longest amount of

time to complete. That is, it is likely to be the value of max(LCLi, LCLj).

The ORB is a potential bottleneck here as it was for Airspace_Management. Assuming that
either the Combine_Sector_Request or Combine_Sector method is invoked immediately after

a batch of N^ghts/n^so!,.,. tracks arrive at the console, there is a blocking term:

(NRight/nconsoles)BORB (6-10)

After data are unmarshalled, the next step is for CMi to perform its computation and then
gather data from Flight_Plan_Management (FPM) and Track_Management (TM) for recon-
structing list data. Each of these databases is a potential source of blocking:

CcMi + C-TM+ CppM+ BTM + BppM (6-11)

Finally, the possibility exists that list data are being accessed by another thread causing further

blocking:

CLD + BLD (6-12)

We assume that any changes in console geometry are communicated back to
Airspace JAanagement after resectorization is completed.

Table 8 summarizes the performance model for Console_Display_Object:

Process
/

Thread
Priority Description of

Computation Schedulability Expression

ORB n/a Blocking due to ORB
Unmarshalling track data

(NFlights/nconsoles)BORB

TM n/a Blocking due to TM CCMi+ CTM+ CFP M+ BTM +

FPM n/a Blocking due to FPM
BFPM

CMi 20 Local computation
Get flight plan data
Unmarshall
Get track data
Unmarshall

CMi 20 Blocking due to LD
Process list data

CLD + BLD

"Assign_Sector Latency" = (NHights/nCOnSoles)B0RB + CCMi + C-TM+ CFPM+ B-TM +

Table 8: Schedulability Model for Console_Display_Object

CMU/SEI-98-SR-002 167

6.3.3.2.4 End-to-End Latency for Resectorization

Figure 74 summarizes the resectorization string of computation.

System_Management Airspace_Management

KB

.' Mil/- -

DP

' CLj /
i. '

Console Display Object i

Flight_Plan_Management

& Console Display ObiectJ

Track_Management

Figure 74: Summary of Resectorization "String" of Computation

Table 9 summarizes the schedulability expressions for the constituents of the resectorization
string of computation. For each object, the schedulability expressions are labelled as preemp-
tion, execution, or blocking.

Note that the above expression for System„Management is slightly different than the one
shown at the bottom of Table 6. Here, we assume that the method invocation does not time out,
and hence we do not show a time-out term in the expression. Second, the expression in Table 9
represents SystemJWanagement's contribution to end-to-end latency, whereas the expression
in Table 6 modeled KB's latency. The time-out term also does not appear in the expression for
Airspace „Management.

168 CMU/SEI-98-SR-002

Subsystem Schedulability Expression

System_Management Preempt ninv [CMI-end + Cpp]

Exec CRB
+ Qll-start + ^Mi-end + ^DP

Airspace_Management Exec Q:S + Qo-read + ncombinc [Cci-start + ^ci-end]

Block NnightsBoRB + BsD-write

Console_Display_Object_i Exec CcMi + C™+ Cpp M+ CLD

Block (NFlights/nconsoles)BoRB + ^TM + BFPM
+ ^LD

Table 9: Schedulability Model for Resectorization

The end-to-end latency for resectorization is computed by adding together the latencies due to
System JAanagement, Airspace _Management, and Console_Display_Object_i. In our case,
this means simply adding together the expressions in Table 9. However, in most cases,
accounting for preemption is much more involved:

6.3.3.2.5 Performance Observations for CORBA-Based Design

There are several observations that we can make simply by examining the expressions in Table
9, without having to plug numbers into the expressions:

1. Blocking could be a major contributor to resectorization latency. In particular, the poten-
tial blocking due to the assumed FIFO queue in the ORB could be significant.

2. There is a significant amount of data marshalling and unmarshalling in the resectorization
string of computation. If the computational cost for marshalling and unmarshalling is
high, it could contribute to end-to-end latency. For homogeneous systems, this cost would
be unnecessary overhead. For heterogeneous systems, the data transformations are neces-
sary with the cost being incurred either by CORBA or the application.

3. The synchronous nature of method invocations combined with the lack of "timed method
invocations" resulted in the need for dynamic thread creation and termination in several
places. The cost of this service needs to be examined to ensure that it is not too high.

4. Priority assignment for threads controlling shared resources is very important. This point
is subtle, since we assigned priorities that achieve a minimal amount of blocking. How-
ever, when assigning SD in Airspace_Management, for example, a lower priority could
result in a significant level of blocking.

CMU/SEI-98-SR-002 169

6.3.4 Performance Using POSIX

In this section, we look at a realization of the scenario shown in Section 6.3.2 using a POSIX-
based architecture.

6.3.4.1 Scenario Realization

A high-level realization of the resectorization scenario using POSIX is described below:

1. The system management operator initiates a request to combine two (or more) sectors,
which results in a message being sent from System_Management to
Airspace „Management.

2. Airspace .Management needs to validate the request. (Determine if the sector number is
valid, sector state is valid, etc.)

3. Airspace „Management sends messages to each of the Console „Display„Objects whose
geometry has changed.

4. The active sector (sector into which other sectors are being joined) gets list data either
from the consoles on which the inactive sectors reside, or by reconstructing list data from
locally stored track and flight data.

5. Airspace „Management adjusts its view of active sectors.

This high-level realization is discussed in more detail below. It is subdivided into three main
parts:

• System management operator initiates a resectorization request

• Combine „Sector in airspace management is invoked

• Airspace management sends message to console displays

The discussion that follows is less detailed than the CORBA realizations. Since the realiza-
tions are not substantially different than those for CORBA, we focus on the differences
between CORBA and POSIX.

6.3.4.1.1 System Management Operator Initiates a Resectorization Request

The POSIX process architecture is slightly different than CORBA's, the difference motivated
by the desire to exploit the asynchronous send facility of POSIX. (Recall that CORBA method
invocations are synchronous.)

As for CORBA, KB is responsible for parsing commands. The command is sent (via a local
synchronous interthread communication facility) to the sending (Snd) thread, which in turn
asynchronously sends a message to a receiving endpoint of Airspace „Management. The mes-

170 CMU/SEI-98-SR-002

sage contains all of the information needed to direct Airspace JAanagement to perform a
resectorization. Embedded in the message is a message label, which will be used by
Airspace JAanagement when it ultimately replies that resectorization is complete or has failed.
This process is illustrated in Figure 75.

Snd consists of a tight loop, basically waiting for KB to send it a command. It then sends a
message asynchronously to another subsystem (in this case Airspace JAanagement), starts a
timer, and returns to the top of the loop. The receiving thread, Rev, waits for labelled messages
or time-out signals. Rev has registered for a set of specified message labels at system initial-
ization. For each message sent by Snd, Rev will receive either a labelled message in response
or a time-out (associated with the same label). Rev responds by passing this information to DP,
which displays an appropriate message on the system console.

System_Management Airspace_Management

Figure 75: System JAanagement Threads When Using POSIX

6.3.4.1.1.1 Scenario and Requirement Refinements

Note that no new scenario/requirement refinements were discovered relative to the CORBA
equivalent of System JAanagement.

6.3.4.1.1.2 Design Constraints and Assumptions

The following design constraints and assumptions became evident as a consequence of realiz-
ing this scenario using POSDC:

• Assume the ability to send messages asynchronously.

• Assume the ability to associate a time-out with a message.

6.3.4.1.1.3 Design Considerations

The following design considerations have an impact on the subsequent performance analysis:

• Since KB and DP will initiate and display information involving all of the subsystems and
thus communicate with all of the subsystems, we chose to separate sending and receiving
services into their own threads, respectively.

CMU/SEI-98-SR-002 171

• Using asynchronous communications with other subsystems will allow KB to have a
quick response time.

6.3.4.1.2 Combine_Sector in Airspace Management Is Invoked

Threads are shown in Figure 76 for Airspace JAanagement for a POSDC implementation: CS,
SD, and OP. The thread responsible for combining sectors (CS) blocks on labelled messages
(relevant to resectorization) sent to the receiving endpoint of Airspace JAanagement. CS uses
the same protocol discussed in the CORBA implementation to effect a resectorization between
two or more consoles. Sector data are still managed by Airspace JAanagement and can be
shared by multiple threads; hence, mutual exclusive access is enforced by SD. There are also
likely to be other threads for handling other processing (OP) for which Airspace JAanagement
is responsible. We call this out explicitly to emphasize that endpoints will be shared with other
threads, and all threads will wait for the appropriate labelled messages using POSIX facilities.

System_Management

Airspaee_Management

Consoles

Figure 76: Airspace JAanagement Threads When Using POSIX

6.3.4.1.2.1 Scenario and Requirement Refinements

Note that no new scenario/requirement refinements were discovered relative to the CORBA
equivalent of System JAanagement.

6.3.4.1.2.2 Design Constraints and Assumptions

The following design constraint and assumption became evident as a consequence of realizing
this scenario using POSIX:

• Assume minimal overhead in handling a priority queue of prioritized messages.

172 CMU/SEI-98-SR-002

6.3.4.1.2.3 Design Considerations

The following design consideration has an impact on the subsequent performance analysis:

• Assume that the priority of OP is less than the priority of CS.

6.3.4.1.3 Airspace Management Sends Message to Console Displays

The main difference between the POSIX and CORBA implementations is that in the POSIX
implementation, the consoles have a local copy of all flight-plan and track data. This allows
list data to be reconstructed using local data. OP represents another thread which is responsi-
ble for receiving and updating the local data stores. Note that OP possibly fields interrupts due
to the multicasting of track data. The relevant threads for this case are shown in Figure 77.

Console i

List Data 9'

Airspace_Management

Figure 77: Console Threads When Using POSIX

6.3.4.2 Performance Modeling

We develop performance models for the POSIX realizations in this section. Continue to be
aware that the performance models are representative of what can be done, but are by no
means comprehensive.

CMU/SEI-98-SR-002 173

Again, we consider the scenario in three stages:

• System management operator initiates a resectorization request

• Combine„Sector in airspace management is invoked

• Airspace management sends message to console displays

After the three stages are discussed, end-to-end latency for the scenario is discussed.

6.3.4.2.1 System Management Operator Initiates a Resectorization Request

The schedulability model for System „Management using POSIX is very similar to the model
when CORBA is used. This should not be surprising since the CORBA concurrency architec-
ture for System „Management using CORBA was constructed to emulate asynchronous com-
munication.

Process
/

Thread
Priority Description of

Computation
Schedulability

Expression

KB 10 KB computation
EPC to Snd

CKB + CSnd

Snd 20 Async send

Rev 20 Receive message and process
or
Receive time-out signal and
process
EPC to DP

max(CT0, CRcv) + CDp

DP 15 Display status

"UI latency" = CKB + CSnd + ninv[max(CT0, CRcv) + CDP]

Table 10: Schedulability Model for Keyboard "String" Using POSIX

While the schedulability expressions for CORBA and POSDC appear to be very similar, some
possible differences are highlighted by the difference in the description of the computations
shown in Table 6 and Table 10, respectively. In particular, the CORBA implementation must
incur the overhead of thread creation and deletion to achieve the effect of asynchronous com-
munication. Moreover, the overhead due to the marshalling and unmarshalling of data in
CORBA should be checked to see if it is significant.

174 CMU/SEI-98-SR-002

6.3.4.2.2 Combine_Sector in Airspace Management Is Invoked

The main difference between the schedulability expressions for the CORBA and POSIX
implementations of Airspace_Management are due to the effect of track processing on each. In
the CORBA implementation, all of the track data were routed through Airspace JAanagement,
whereas in the POSIX implementation the data were multicasted to all of the consoles directly
from TrackJAanagement. As shown in Table 11, the blocking term that was present for
CORBA is gone for POSIX. Moreover, through priority queues associated with endpoints and
assigning the appropriate priority to threads responsible for other processing (OP), the pre-
emptive and blocking effects due to other processing are easily controlled.

Process
1

Thread
Priority Description of

Computation
Schedulability

Expression

CS 20 Start combination
Possibly block on SD

CCS + BSD-write + CSD-read

SD 35 Read or write sector data

CS-Snd 20 Start timer
Async send

CCS-send + max(CT0, Ccs.^)

CS-Rcv 20 Receive message or time-out

OP 10 Other lower priority process-
ing

n/a n/a Latency for console opera-
tions

max(LCLi, LCLj)

"Combine Sectors Latency" =
CcS+BSD-write + CsD-read + Combine [CcS-said + max(CT0, Ccs.rcv)] + max(LCLi,

Table 11: Schedulability Model for Combine_Sectors "String"

6.3.4.2.3 Airspace Management Sends Message to Console Displays

The main difference between CORBA and POSDC implementations of the console is due to
the use of multicast for the POSDC implementation. This difference manifests itself primarily
in two places.

Consoles will be keeping a local copy of track data and hence will be receiving all track data,
not just the track data they display. Depending on the hardware configuration, the arrival of

CMU/SEI-98-SR-002 175

each track could cause a processor interrupt and thus add a preemption term to the schedula-
bility expression. The computing associated with inserting the data into the track database can
be relegated to a lower priority and hence will not affect resectorization. (These computations
are shown in Table 12.)

Consoles can reconstitute list data locally or acquire the data from the subordinate console; in

either case, the blocking due to the FIFO queue in the ORB is not experienced by the POSIX
implementation.

Process
/

Thread
Priority Description of

Computation
Schedulability

Expression

Interrupt 50 Interrupt due to multicast of
track data

NnightsMnterrapt

OP 10 Local processing of track data NFlightsCoP

CM 20 Resectorization processing CcMi

LD n/a Blocking due to LD
Reconstruct list data

Cl,D + ^LD

"Assign Sector Latency" = NR^C^^, + C^ + CLD + BLD

Table 12: Schedulability Model for Assign_Sector in Console Object

176 CMU/SEI-98-SR-002

6.3.4.2.4 End-to-End Latency for Resectorization

Figure 78 summarizes the resectorization string of computation for POSIX.

System_Management Airspace_Management

►Or*

Q« ,s< /OP /

Figure 78: Summary of Resectorization "String" of Computation Using POSIX

Table 13 summarizes the schedulability expressions for the constituents of the resectorization
string of computation. For each subsystem, the schedulability expressions are labelled as pre-
emption, execution, or blocking.

Subsystem Schedulability Expression

System_Management Preempt ninv [CRCV + CDp]

Exec CRB
+ Qnd + CRcv + CDP

Airspace_Management Exec CcS + CsD-read + "combine [CcS-send + CcS-
rcvJ

Block BsD-write

Console_i Preempt ^ Flights*- Interrupt

Exec Q>Ii+ CLD

Block BLD

Table 13: Schedulability Model for Resectorization Using POSIX

CMU/SEI-98-SR-002 177

As for the CORBA implementation, note that the above expression for System_Management is
slightly different than the one shown at the bottom of Table 11. Again, we assume that no
time-out occurs, and hence, we do not show a time-out term in the expressions. Secondly, the
expression in Table 13 represents System_Management's contribution to end-to-end latency,
whereas the expression in Table 11 modeled KB's latency.

The end-to-end latency for resectorization is computed by adding together the latencies due to
SystemJAanagement, AirspaceJAanagement, and ConsoleJ. In our case, this means simply
adding together the expressions in Table 13. However in most cases, accounting for preemp-
tion is much more involved.

6.3.4.2.5 Performance Observations: CORBA Vs. POSIX Designs

Table 14 shows the schedulability expressions for the CORBA and POSIX implementations of
SystemJAanagement (SM), AirspaceJAanagement (AM), ConsoleJ (CDi) and ConsoleJ
(CDj).

Schedulability Expression

Subsystem CORBA POSIX

SM Preempt ninv [CMI-end + CDP] ninv [CRCV + Cop]

Exec CRB + CMi.start + CMI.end + CDP CRB + Qnd + ^Rcv + CDP

AM Exec CcS + CsD-read +
ncombine ICci-start + Cci-end]

CcS + CsD-read +

ncombine Ivcs-send + Ors-rcvl

Block NnightsBoRB + BsD-write BsD-write

CDi Preempt ^ Flights'- Interrupt

Exec CcMi + C-TM+ Cpp M+ CLD CcMi + CLD

Block (NFlighu/nconsoles)BoRB + ^TM + BFPM +

BLD

BLD

Table 14: Schedulability Comparison for Resectorization

There are several observations that we can make simply be examining the expressions in
Tables 13 and 14:

• The ability to use asynchronous communications seems to have simplified the design.

• The elimination of FIFO queues and the use of priority queues lessens blocking. One
needs to check the efficiency of priority queues and the communication facilities in the
POSIX implementation to ensure that the apparent benefits are being achieved.

178 CMU/SEI-98-SR-002

• Multicasting and storing track data locally at the consoles introduced some overhead due
to the processing of track-data interrupts. The benefit gained is not having to acquire the
data remotely, thus allowing for quicker console restarts.

Many of the assumptions that we made concerning CORBA can be traced to the current speci-

fication for CORBA. For example, the basic interaction in CORBA is defined as a unicast, syn-
chronous remote procedure call. In addition, the lack of priorities in CORBA has a
consequence of FIFO queuing method invocations.

6.4 Modifiability Assessment

The modifiability assessment of the two candidate designs—CORBA and POSDC—will be
done using the SAAM, which feeds into the overall ATAM, as described in Section 6.1.1.

6.4.1 Brief Description of SAAM

The SAAM method consists of the following steps (a subset of the ATAM's steps):

1. scenario elicitation: Anticipated uses of, and changes to, the system are described. There
is an important distinction between scenario types that we introduce at this point. Recall
that a scenario is a brief description of some anticipated or desired use of a system. The
system may directly support that scenario, meaning that anticipated use requires no modi-
fication to the system for the scenario to be performed. This would usually be determined
by demonstrating how the existing architecture would behave in performing the scenario
(rather like a simulation of the system at the architectural level). If a scenario is not
directly supported, there must be some change to the system that we could represent archi-
tecturally. This change could be a change to how one or more components perform an
assigned activity, the addition of a component to perform some activity, the addition of a
connection between existing components, or a combination of these.

2. architectural view description: In the case of SAAM, the view of interest is a developer's
view, that emphasizes the code units to be modified.

3. scenario realization: Scenarios are mapped onto the architectural description. For each
indirect scenario, the changes to the architecture that are necessary for it to support the
scenario must be listed, and the cost of performing the change must be estimated. A modi-
fication to the architecture means that either a new component or connection is intro-
duced, or an existing component or connection requires a change in its specification.

4. assessment of the design: For each indirect scenario, the effect or set of changes that the
scenario has on the architecture is described. A weighting of the change's difficulty also
accompanies this stage. Usually, this weighting is coarse grained, based on the under-
standing of the architecture—it may be nothing more than an order of magnitude estima-

CMU/SEI-98-SR-002 179

tion (1 day, 10 days, 100 days, etc.), or it may be more precise if sufficiently detailed
design information is available to make the assessment of difficulty confidently. A tabular
summary is especially useful when comparing alternative architectural candidates because
it provides an easy way to determine which architecture better supports a collection of sce-
narios.

When two or more indirect task scenarios require changes to a single component of a sys-
tem, they are said to interact in that component. Scenario interaction is important to high-
light because it exposes the allocation of functionality to the product's design. The
interaction of semantically unrelated scenarios explicitly shows which system modules are
computing semantically unrelated functions. Areas of high scenario interaction reveal
potentially poor separation of concerns in a system component. Thus, areas of scenario
interaction indicate where the designer should focus subsequent attention. The amount of
scenario interaction is related to metrics (such as structural complexity, coupling, and
cohesion). Therefore, it is likely to be strongly correlated with the number of defects in the
final product.

Finally, a weight is assigned to each scenario and the scenario interactions in terms of their
relative importance. The weighting should be used to determine an overall ranking. The
purpose of assigning weights is to resolve the situation in which the first candidate archi-
tecture scores well on half the scenarios, and the second candidate architecture scores bet-
ter on the other half. Assigning weights is a subjective process involving all of the
stakeholders in the system. Rather than offering a single architectural metric, SAAM pro-
duces a collection of small metrics, a set of per-scenario analyses. Given this set of small
metrics, SAAM can be used (and, in fact, was developed with the intent) to compare com-
peting architectures on a per-scenario basis. It is left to the users of SAAM to determine
which scenarios are most important to them so that they can resolve cases in which the
candidates out-score one another on different scenarios. The process of performing a
SAAM analysis has also been used to gain a high-level understanding of the competing
architectures; this high-level understanding, rather than just a scenario-based table, is use-
ful for performing comparative analysis.

6.4.2 Modifiability Using CORBA

We consider three modifiability scenarios, a subset of the scenarios presented in Section 6.2, in
this analysis:

1. dynamic sector boundaries

2. live insertion of consoles

3. have all consoles aware of all data

180 CMU/SEI-98-SR-002

Every architecture partitions possible changes into three categories: local, non-local, and
architectural. A local change can be accomplished by modifying a single component. A non-
local change requires multiple component modifications, but leaves the underlying architec-
ture intact. An architectural change affects the fundamental ways in which the components
interact with each other—the style of the architecture—and frequently requires changes all
over the system. Obviously, local changes are the most desirable; therefore, an effective archi-
tecture is one in which the most likely changes are also the easiest to make.

6.4.2.1 Scenario Realization and Refinement

When considering the effects of the changes implied by scenarios 1 and 2, we will see that
those scenarios both have non-local effects for the CORBA design. But scenario 3 for the
CORBA case has architectural implications; it changes the topology, data, and control flow of
the entire system. Because of this, we will consider that change separately from the others,
which leave the underlying architecture intact.

6.4.2.2 Scenario 1: Dynamic Sector Boundaries in CORBA

Supporting the ability to have a controller dynamically (through direct manipulation of the
user interface) redefine sector boundaries involves the changes described in Table 15.

Description of Modification Estimate of Effort
(person weeks)

System Management GUI modifications (to support user interac-
tion)

2.0

System Management IDL modifications (to support new messages
to System Management Console)

0.5

Additional System Management logic changes (to support new user
interaction/interfaces)

5.0

Additional Airspace Management logic changes (to support new
data filtering/forwarding processing)

6.0

Airspace Management Object IDL modifications (to support new
messages to System Management Console)

0.5

Total 14.0

Table 15: Modifications Required to Satisfy Dynamic Sector Boundaries in CORBA

In Figure 79, these changes are mapped onto the system's architectural representation as indi-
cated by the "1" annotating objects and their interfaces.

CMU/SEI-98-SR-002 181

f System Management

/ Console Display Object \

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

Flight Plan 1
Management

Flight Plan
Database

I
Flight Plan/Track

Correlation

Track
Database

Flight Plan
Database

Track Management

Track
Database

Figure 79: CORBA Design with Realization of Scenario 1

6.4.2.3 Scenario 2: Live Insertion in CORBA

This scenario describes the ability of the system to contain a number of consoles to serve as a
backup for radar display consoles, where the system has the ability to insert a console into the
network during operational conditions ("live insertion").

182 CMU/SEI-98-SR-002

The changes required to satisfy this scenario are described in Table 16.

Description of Modification
Estimate of

Effort (person
weeks)

GUI modifications for Console Display Object (for when it first
becomes active, to support configuration)

1.0

Modifications to the server object that will provide operational soft-
ware

3.0

Modifications to Flight Plan Management and Track Management, to
send data to new consoles

6.0

Total 10.0

Table 16: Summary of Changes to Support Live Insertion in CORBA

In Figure 80, these changes are mapped onto the system's architectural representation from
Figure 81 as indicated by the "2" annotating objects and their interfaces.

CMU/SEI-98-SR-002 183

Flight Plan 1,Z\
Management

Figure 80: CORBA Design with Realization of Scenarios 1 and 2

6.4.2.4 Scenario 3: Have All Consoles Aware of All Data in CORBA

Supporting the ability to have all consoles aware of all data means that any console could act
as a backup for any other, or could include any sectors with only minimal changes (in terms of
the data that it needs to be aware of). This modification involves the changes described in
Table 17.

184 CMU/SEI-98-SR-002

Description of Modification Estimate of Effort
(person weeks)

Remove airspace manager 1.0

Change track manager to transmit data to all consoles 1.0

Change flight plan manager to transmit data to all consoles 1.0

Move console geometry logic into console display objects 3.0

Move controlling the sector and FPA assignments to system
management

1.0

Total 7.0

Table 17: Modifications Required to Satisfy "Aware Consoles" in CORBA

These changes are architectural. That is, they dramatically alter the system's communication
topology, its allocation to hardware, the flow of data control and control in the system, and the
allocation of functionality to structure. The new architecture resulting from the application of
scenario 3 would appear as shown Figure 81.

In addition to these structural changes, communication will be radically altered (in that many
more messages will be flowing around the system, since now every console will be receiving
each message). If there are n consoles and m track or flight-plan messages per second, commu-
nication goes from approximately 2m to nm cost, assuming that this is done naively (by simply
sending the same message n times, one to each console).

Regardless of how this is achieved, it will have enormous implications for the system's perfor-
mance; therefore the performance models built in Section 6.3 will have to be revisited. This is
an example of how attributes interact and how this interaction is modeled in an ATAM analy-
sis.

6.4.3 Modifiability Using POSIX

For the consideration of the POSIX design, we once again consider three modifiability scenar-
ios, a subset of the scenarios presented in Section 6.2:

1. dynamic sector boundaries

2. live insertion of consoles

3. have all consoles aware of all data

CMU/SEI-98-SR-002 185

System Management

FPA
Data

Sector
Data

Console Display Object

Flight Plan
Management

Flight Plan
Database

l
Flight Plan /Track

Correlation

Track
Database

Flight Plan
Database

(
Console Geometry

)

Assigned
Sector

Conflict Alert
List

Inbound
List

Hold
List

Track Management

Track
Database

Figure 81: CORBA Design with Realization of Scenarios 1, 2 and 3

6.4.3.1 Scenario Realization and Refinement

When considering the effects of the changes implied by scenarios 1 and 2, we will see that
those scenarios both have non-local effects for the POSIX design. But scenario 3 for the
POSIX case has no implications, because this is the way that the system already operates. In
SAAM terms, it is a direct scenario.

186 CMU/SEI-98-SR-002

6.4.3.2 Scenario 1: Dynamic Sector Boundaries in POSIX

Supporting the ability to have a controller dynamically (through direct manipulation of the
user interface) redefine sector boundaries involves the changes shown in Table 18.

Description of Modification Estimate of Effort
(person weeks)

System Management GUI modification (to support user interaction) 2.0

Modify message formats for System Management including mar-
shalling

2.0

Additional System Management logic changes (to support new user
interaction/interfaces)

5.0

Modify message formats for Airspace Management (including mar-
shalling)

2.0

Additional Airspace Management logic plus modifications 4.0

Total 15.0

Table 18: Modifications Required to Satisfy Dynamic Sector Boundaries in POSIX

In Figure 82, these changes are mapped onto the system's architectural representation as indi-
cated by the "1" annotating objects and their interfaces.

CMU/SEI-98-SR-002 187

Display_Console

System_Management

Airspace_Management £^ ■$

State Change
Messages

Local_System_Management

Local_Airspace_Management

Local.
Flight_Plan_
Management

Local
Track Correlation

^

Local.
Track_Management

Track-Flight Plan
Correlations

Track Correlation

Conflict Alert
Messages

M2^

Flight Plans

Track Dat

Track
Messages'

<*>;

Track_Management

Figure 82: POSIX Design with Realization of Scenario 1

6.4.3.3 Scenario 2: Live Insertion in POSIX

This scenario describes the ability for the system to contain a number of consoles to serve as a
backup for radar display consoles, where the system has the ability to insert a console into the
network during operational conditions ("live insertion"). The changes required to satisfy this
scenario are described in Table 19.

188 CMU/SEI-98-SR-002

Description of Modification
Estimate of

Effort (person
weeks)

GUI modifications for Console Display Object (for when it first
becomes active, to support configuration)

1.0

Modifications to the server object that will provide operational
software

3.0

Modifications to Flight Plan Management and Track Management,
to send data to new console

6.0

Total 10.0

Table 19: Summary of Changes to Support Live Insertion in POSIX

In Figure 83, these changes are mapped onto the system's architectural representation from-
Figure 82 as indicated by the "2" annotating objects and their interfaces.

6.4.3.4 Scenario 3: Have All Consoles Aware of All Data in POSIX

This scenario is direct. This is how the system operates now, so no changes are needed.

6.4.4 Comparing CORBA to POSIX

The purpose of this example assessment was not to rank the CORBA or POSIX designs for
their quality, but rather to provide an example of how the assessment proceeds, what the impli-
cations of an assessment are, and how assessment results from the consideration of one quality
feed into another quality.

We have not considered enough scenarios here to provide a comprehensive analysis; even if
we had considered enough scenarios, these scenarios have not been elicited from the true
stakeholders of the system, which they must be for the analysis to be valid.

The purpose of this exercise, then, is to show how scenarios are realized on a system's archi-
tecture to shed light on the changes necessary to meet an anticipated change to the system (an
indirect scenario), or if a scenario can be met by the system as is (a direct scenario). Obvi-
ously, all other things being equal, one prefers direct scenarios to indirect ones with respect to
any design. Among indirect scenarios, we look for places where many different scenarios coa-
lesce in a single structure. This indicates a potential area of high complexity within the archi-
tecture, because this structure is the site of many unrelated changes.

CMU/SEI-98-SR-002 189

For example, flight-plan management, in Figure 80, is the site of changes relating to both sce-
nario 1 and 2 for the CORBA design. This might be an early indication of a problem area. But
only a larger number of scenarios, elicited from a population of the system's stakeholders, will

meaningfully uncover such areas.

Display_Console

SystemJVIanagement g> \ ►f) Local_System_Management

Ai rspace_Management 5^ <

State Change
Messages

Local_Airspace_Management

LocaL
Flight_Plan_
Management

Local
Track Correlation

LocaL
Track_Management

Track-Right Plan
Correlations

Track Correlation

Conflict Alert
Messages

M2

Flight Plans

Track Dat

Track
Messages ,r Messaged

Track_Management

Figure 83: POSIX Design with Realization of Scenario 2

190 CMU/SEI-98-SR-002

7 Summary

The purpose of this report was to identify issues regarding the use of CORBA and POSIX.21
in a large distributed system. In particular, the function of sector combination in the context of
an FAA En Route architecture was addressed. The ability to reconfigure a sector geometry
(through sector combination, for example) is a current En Route capability, and extensions of

this capability are believed to apply to free flight.

The approach of this report was to

• develop designs for resectorization using CORBA and POSIX.21

• assess the designs using an architectural trade-off analysis (ATA) approach, focusing on
modifiability and performance

The following points are relevant to the summary of the designs:

• The CORBA design was initially based on a maximal object principle and then iteratively
refined. The refinement was motivated by performance and fault-tolerance considerations.
The final design, for the resectorization problem, had a small number of large-grained
objects.

• The POSIX.21 design focused on communication needs for resectorization. This led to a
functional partitioning, and focused on data considerations and mechanisms to support
data transfer.

The major difference between the CORBA and POSIX.21 designs was due to the use of differ-
ent communication models. Some of the consequences of this appear in central versus local
track management, fault tolerance, and the ability to localize changes to consoles, not other

functions.

The following points are relevant to the assessment of the designs:

• modifiability: Both designs were believed to be equally modifiable with respect to the cho-
sen scenarios.

• performance: Analytic models for both designs showed the consequences of FIFO queue-
ing in CORBA and the use of multicast in POSIX.21.

An important aspect of the use of the ATA approach is that one must consider interactions
between different architectural attributes. For example, the modifications necessary to have

CMU/SEI-98-SR-002 191

each display console aware of all tracks were similar in the CORBA and POSDC.21 designs.
However, the performance consequences of such a choice have dramatically different results.

In summary, the use of CORBA and POSIX.21 for the resectorization problem highlighted the
utility of each design approach. In addition, the use of the ATA approach helped to influence
the development of each design.

192 CMU/SEI-98-SR-002

References

[FAA 95a] Federal Aviation Administration. National Airspace System Com-

puter Program Functional Specifications: Introduction to Specifi-
cation Series (NAS-MD-310). Washington, DC: August 15,
1995.

[FAA 95b]

[FAA 95c]

[FAA 95d]

[FAA 95e]

[FAA 95f]

Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Message Entry and
Checking (NAS-MD-311). Washington, DC: August 15,1995.

Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Local Outputs (NAS-
MD-314). Washington, DC: August 15, 1995.

Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Adaptation (NAS-MD-
316). Washington, DC: August 15, 1995.

Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Performance Criteria
fNAS-MD-318). Washington, DC: August 15,1995.

Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Software Design
Requirements (NAS-MD-325). Washington, DC: August 15,
1995.

[FAA 95g] Federal Aviation Administration. National Airspace System Com-
puter Program Functional Specifications: Adaptation Collection
Guideline (NAS-MD-326). Washington, DC: August 15,1995.

[FAA 95h] Federal Aviation Administration. National Airspace System,
Compool Table Design Specification, Track Control/Display

Table (NASP-5130-HO-P03). Washington, DC: August 1995.

CMU/SEI-98-SR-002 193

[FAA 96]

[IEEE 96]

[IEEE 95]

[Kazman 86]

[Klein 93]

[Lipson 97]

[Meyers 97]

[OMG 95a]

[OMG 95b]

Federal Aviation Agency. En Route Architecture Team Study

Findings. Washington, DC: May 1996.

Institute for Electrical and Electronics Engineers. IEEE Draft
Standard 1003.21, Information Technology - Portable Operating

System Interface (POSIX) - Part 21: Real-time Distributed Sys-
tems Communication Application Programming Language Inter-

face (API) [Language Independent]. Los Alamitos, CA:

September 1996.

Institute for Electrical and Electronics Engineers. IEEE Emerging
Practices in Technology, Interface Requirements for Real-time

Distributed Systems, IEEE P1003.21 N008 Rl 1. Los Alamitos,

CA: July 1995. [Available online: <URL: http://stan-

dards.ieee.org/reading/ieee/ept/>].

Kazman, R.; Abowd, G.; Bass, L.; and Clements, P. "Scenario-
Based Analysis of Software Architecture," IEEE Software, Nov.
1996,47-55.

Klein, M; Ralya. T.; Pollak, B.; Obenza, R.; and Gonzales Har-
bour, M. A Practitioners Handbook for Real-Time Analysis. Klu-

wer Academic, 1993.

Lipson, H. and Longstaff, T.(eds.), Proceedings of the 1997 Infor-
mation Survivability Workshop. IEEE Computer Society Press,

1997.

Meyers, B. C; Place, Patrick R.H.; & Kanevsky, A. A Compari-
son ofCORBA and POSIX.21 From a Real-time Communication

Perspective (CMU/SEI-97-TR-15). Pittsburgh, Pa.: Software

Engineering Institute, December 1997.

Object Management Group. The Common Object Request Bro-

ker: Architecture and Specification, Version 2.0. Framingham,

MA: July 1995.

Object Management Group. CORBA Services: Common Object

Services Specification. Framingham, MA: March 31,1995.

194 CMU/SEI-98-SR-002

Appendix A Acronyms

This appendix contains a list of acronyms relevant to this report. The terms come from a vari-
ety of domains. In the table below, the second column indicates the domain use of the term in
the following manner:

• C: CORBA; from OMG specifications [OMG 95a].

• F: FAA air-traffic control; from FAA study findings [FAA 95a].

• P: POSIX.21; from IEEE standards [IEEE 96].

Term Use Meaning

AHI F Automatic handoff initiation

ARTCC F Air route traffic control center

ARTS F Automated radar terminal system

BCP F Boundary crossing point

CFAF F Central flow automation facility

CID F Computer ID

CORBA C Common Object Request Broker Architecture

CS F Resector message

DRI F Distance reference indicator

FDB F Flight data block

FPA F Fix posting area

HCS F Host computer system

ISO P International Organization for Standardization

NADIN F National Airspace Data Interchange Network

ORB C Object request broker

PDA P Protocol dependent address

CMU/SEI-98-SR-002 195

POSIX P Portable operating system interface

PS F Planned shutdown message

RC F Sector assignment request message

SMMC F System maintenance and monitor console

196 CMU/SEI-98-SR-002

Appendix B Glossary

This appendix contains a glossary of terms relevant to this report. The terms come from a vari-
ety of domains. In the table below, the second column indicates the domain use of the term in
the following manner:

• C: CORBA; from OMG specifications [OMG 95a].

• F: FAA air-traffic control; from FAA study findings [FAA 95a].

• P: POSIX.21; from IEEE standards [IEEE 96].

Term Use Definition

Acknowledged data
transfer

P The transmission of data from a source endpoint to one end-
point — or, in the case of multicast, more than one endpoint —
and the subsequent response indicating the status of the data
transmission.

Activation C Preparing an object to execute an operation. For example,
copying the persistent form of methods and stored data into an
executable address space to allow execution of the methods on
the stored data.

Active sector F A sector providing air-traffic control in one or more assigned
fix posting areas.

Adaptation F Data tables that define the unique environment of a given
ARTCC. Examples are boundaries, airways, fix posting areas,
and input/output devices.

Adaptation data F Data available to the operational software. These data include
permanent data which define the characteristics of the operat-
ing-system environment at a unique location. Examples
include geographic data (radar site locations, fix and airway
data), aircraft characteristics, design parameters, initial condi-
tions, and other system parameters included in adaptation. Pro-
vision is made for modifying adaptation data whenever the real
world represented by the stored data changes.

Adapted F Contained or preset in adaptation.

CMU/SEI-98-SR-002 197

Adapted sectorization
plan

F Any one of 10 plans that may be activated by a resector (CS)
message.

Adjacent center F A center whose area is adjacent to that of the center being dis-
cussed.

Airway F A named, adapted route defined as a series of adapted fixes and
junctions.

Approach control
area

F One or more contiguous fix-posting areas controlled by an
approach-control facility. Approach-control airspace may
overlie or underlie airspace controlled by ARTCC sectors or
adjacent approach-control facilities.

Approach control
facility

F An air-traffic control facility exercising control within a dele-
gated block of airspace.

Asynchronous events P Events that occur independently of the execution of an applica-
tion.

Asynchronous inter-
action

P An interaction between schedulable units (processes and/or
threads) in which, after a schedulable unit invokes an operation
to take part in the interaction, control is allowed to return to the
schedulable unit before the operation is completed.

Basic sector plan F A sector plan in which each FPA is assigned to the sector iden-
tified by the first two digits of the FPA number.

Blocking operation P An operation in which, during the execution of the operation,
the schedulable unit (process or thread) that invoked the opera-
tion cannot continue execution and cannot be rescheduled until
some part or all of the operation is completed.

Boundary crossing
point

F The point at a flight's altitude where a boundary crossing
between two centers occurs.

Boundary crossing
time

F The time at which a flight is calculated to intersect the bound-
ary crossing point.

Broadcast P A non-guaranteed transfer of data from a source endpoint that
is available to all other endpoints known to the implementa-
tion.

Client C The code or process that invokes an operation on an object.

Converted fix F A fix developed by the program from the filed route.

Coordination fix F A fix used as a common reference point for coordination
between facilities.

Connection P A logical virtual circuit established between two endpoints.

198 CMU/SEI-98-SR-002

Crosstell F The condition of track handoff between facilities (i.e., ARTS
III, NAS). The condition can exist at both sending and receiv-
ing facilities.

Current sectorization F The arrangement of control sectors and their assigned FPA(s)
resulting from the sector plan in effect, plus modification of
resectorization (CS) messages.

Data block F The symbology displayed adjacent to a tracked or untracked
aircraft target on a PVD, containing (subject to field filtering)
tracked aircraft or a flight-plan position symbol, leader, veloc-
ity vector, and alphanumeric data associated with the aircraft.

Datagram P A message transferred between communicating endpoints
without the benefit of a connection.

Departure list F A list of aircraft to the PVD associated with the sector that is to
receive the first flight-progress strip on a departed flight.

Directory P A distributed collection of information that applications can
access to make queries or updates. The information of interest
to communicating applications in a directory includes, but is
not limited to, logical names associated with applications and
the protocol-dependent addresses at which they are located.

Directory services P The set of operations that allows an application to interact with
a directory.

Distance reference
indicator

F A 12-sided polygon displayed at a radius of 5 miles about a
selected track position.

Endpoint P An object created and maintained by the implementation ti*at
is used by applications to send and receive data, and by the
implementation to identify the source and destination of the
data.

Fix F Any geographical point.

Fix name F An alphanumeric identification of a geographic point that con-
tains 2-12 characters.

Fix-posting area
(FPA)

F A volume of airspace, bounded by a series of connected line
segments with altitudes, that is assigned to a sector or
approach-control facility. The FPA is the basic unit of space
within the air-traffic control system.

Fix time determina-
tion (FTD)

F The establishment and maintenance of stored fix times for each
converted fix in each flight plan in the system. This process
uses speed and times filed or updated in the flight plan, geo-
graphical route and adaptation data, and stored wind data.

CMU/SEI-98-SR-002 199

Flight data F All data applicable to a flight including filed flight plan, flight
amendments, reported altitude, track position and velocity, and
time estimates.

Flight plan F A collection of data relating to a specific aircraft or formation
of aircraft, containing all the information necessary for track-
ing and producing flight-progress strips used to control the
flight. The status of a flight plan may be either proposed or
active.

Full data block F See data block.

Handoff fix F A predetermined geographical location over which an aircraft
will transit from one area of control to another.

Handoff status F The status of a track during the time its control is being trans-
ferred from one sector or facility to another (e.g., between ini-
tiation and acceptance of handoff).

Implementation
inheritance

C The construction of an implementation by incremental modifi-
cation of other implementations. The ORB does not provide
implementation inheritance. Implementation inheritance may
be provided by higher levels.

Inactive sector F A sector to which no fix-posting areas are currently assigned.

Inbound list F A list of inbound aircraft from adjacent centers or ARTS III
facilities within a specified number of minutes of the center
boundary crossing for the sector associated with this PVD.

Inheritance C The construction of a definition by incremental modification of
other definitions. See interface and implementation inherit-
ance.

Interface C A listing of the operations and attributes that an object pro-
vides. This includes the operation signatures and attribute
types. An interface definition ideally includes the semantics as
well. An object satisfies an interface if it can be specified as
the target object in each potential request described by the
interface.

Interface inheritance c The construction of an interface by incremental modification
of other interfaces. The IDL language provides interface inher-
itance.

Logical name p An identifier known to the application that can be used to refer
to an endpoint.

200 CMU/SEI-98-SR-002

Message P A unit of information that can be transferred between commu-
nicating endpoints. A message includes application-specific
data plus a number of message attributes that may represent
information about how the message is controlled (such as pri-
ority, message label, and format).

Message label P An associated "message type" that is transferred with a mes-
sage.

Metering F A function that provides the capability to determine and dis-
play an ordered sequence of aircraft. This function has two
major components. One is for metering the arrival of aircraft
destined for airports that are external to the center (En Route
Spacing Program or ESP). The other is for metering aircraft
destined for airports located within the center (Arrival
Sequencing Program or ASP).

Method C An implementation of an operation. Code that may be exe-
cuted to perform a requested service. Methods associated with
an object may be structured into one or more programs.

Multicast P A transfer of data from a source endpoint to a set of specified
endpoints.

Multicast group P A set of endpoints that are available as a group for communi-
cation.

Node F The geographical point used to define the horizontal structure
of a fix-posting area and/or other lines used in displaying infor-
mation in a center.

Object C A combination of a state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of rele-
vant requests. An object is an instance of an implementation
and an interface. An object models a real-world entity, and it is
implemented as a computational entity that encapsulates a
state and operations (internally implemented as data and meth-
ods) and responds to requestor services.

Object adapter C The ORB component that provides object reference, activa-
tion, and state-related services to an object implementation.
Different adapters may be provided for different kinds of
implementations.

Object reference C A value that unambiguously identifies an object. Object refer-
ences are never reused to identify another object.

Outbound coordina-
tion fix

F The coordination fix transmitted to an approach control or
adjacent center.

Persistent object C An object that can survive the process that created it. A persis-
tent object exists until it is explicitly destroyed.

CMU/SEI-98-SR-002 201

Primary FPA F The FPA to which another FPA is assigned.

Protocol P A set of syntactic and semantic rules for exchanging informa-
tion.

Reconfiguration F (1) Automatic reconfiguration: an action taken by the opera-
tional software to recognize a failure and switch the failed ele-
ment or devices out of the operational system and replace it
with a standby unit. (2) Manual reconfiguration: Similar to
automatic reconfiguration except that it is caused by an input
from a supervisory position.

Resectorization F The act of changing the FPAs and sectors assigned to the vari-
ous sectors according to one of the sectorization plans.

Route (of flight) F A defined path, consisting of one or more route segments that
an aircraft traverses over the surface of the earth.

Route segment F A part of a flight route, consisting of two fixes and the route
between them.

Sector F A geographical area limited to an altitude within an ARTCC
that may contain one or more related control positions.

Sector airspace F One or more contiguous fix-posting areas controlled from a
single control sector (i.e., the FPAs assigned to a sector). A
sector's airspace may overlie or underlie airspace controlled by
another sector or by an approach-control facility.

Sector plan F An adapted set of sector/FPA assignments that may be imple-
mented by reference to a unique plan name. (See also sector
plan)

Server C A process implementing one or more operations on one or
more objects.

Signature C Defines the parameters of a given operation including their
number and order, data types, and passing mode; the results, if
any, and the possible outcomes (normal vs. exceptional) that
might occur.

Subjugate FPA F An FPA that is assigned to a primary FPA by means of adapta-
tion. (See also Primary FPA)

Synchronous interac-
tion

P An interaction between schedulable units in which, after a
schedulable unit invokes an operation to take part in the inter-
action, the schedulable unit is blocked until the operation is
completed.

Track F The computer-generated representation of an aircraft's posi-
tion and movement.

202 CMU/SEI-98-SR-002

Transient object C An object whose existence is limited by the lifetime of the pro-
cess or thread that created it.

Unicast P A transfer of data from a source endpoint to a destination end-
point.

CMU/SEI-98-SR-002 203

204 CMU/SEI-98-SR-002

Appendix C Possible Sector Changes

It is appropriate to provide some discussion of the operations on FPAs and sectors that are cur-
rently not supported. These possible operations may be worth considering for a future
enhancement of the system.

C.1 Taxonomy of Operations

A number of possible operations on an FPA or sector are possible. It is useful to develop a tax-
onomy of operations. We shall therefore consider the following classes of operations:

• operations on a node

• operations on a line segment

• operations on the FPA as an entity

Operations on a node view an FPA as a set of independent nodes. In this case, because of the
set property, an operation on a node is independent (explicitly) of any other node. There are,
however, implicit dependencies that are possible. For example, if a node is deleted from an
FPA, there must be a procedure to ensure that the result of the operation leaves the FPA a
closed object.

Operations on a line segment are based on the view that an FPA is a set of line segments.
Again, any operation on a line segment must include a procedure to ensure that the resulting
FPA maintains a closed boundary. These operations are implicit.

Operations on an FPA as an entity are performed on all elements of the FPA. Depending upon
the operation, it may be more appropriate to perform the operation on the nodes or the line
segments. Examples of operations that fall into this class include scaling, translating, and
rotating an FPA.

CMU/SEI-98-SR-002 205

C.2 Operations on One Node

The first set of operations to be discussed are those that relate to an individual node. These are
relatively simple to present. The first case to be considered is that of moving an existing node.
This option is presented in Figure 84 below. The notation of Figure 84 will be used throughout

this section and is as follows:

• The left side of the figure denotes the initial state, while the right side denotes the result of

an operation.

• An open circle denotes a node of an FPA or sector. An open circle on the right side of a

figure means that the node is unchanged. If the node will be affected by the operation, it
appears as a filled circle on the left side. If the node is filled on the right side, it means that

the node changed.

•' The FPA or sector boundary is presented as a solid line on the left side of a figure, but as a

broader, shaded gray line on the right side of the figure if the corresponding boundary

changes as a result of the operation.

• The lines from the FPA or sector boundary that connect to another FPA and/or sector are
indicated by a solid line on the left side of a figure. If, as a result of an operation, the lines
change, they appear as dashed lines on the right side of the figure.

Note that when a node is moved to another location, as indicated in Figure 84, it causes the fol-

lowing additional changes:

• Two line segments of the FPA must be recomputed.

• The boundary of the FPA must be recomputed.

• The line segments and FPA boundary of the adjacent FPA must be recomputed.

Move Node

Node to be
Moved

Figure 84: Moving an Existing FPA Node

206 CMU/SEI-98-SR-002

The second case is that of adding a new node to an FPA. This case is shown in Figure 85
below. This results in the creation of two line segments and the deletion of a previously
defined line segment. It will also change the structure of the adjacent FPAs.

Add Node

Node to be Added

Figure 85: Adding a Node to an FPA

The last case of a node-specific operation to consider is that where an existing node is deleted.
This is shown in Figure 86 below. Deleting an existing node results in a decreased number of
line segments in the FPA. There are also a number of options for what happens to the line seg-
ments of any FPAs that were adjacent to the FPA that has a node deleted. For example, the
deleted node could be extended toward the new line segment; this possibility is shown in the
dashed line in the figure. After a choice has been made for the "dangling line segment," the
remaining line segments of the adjacent FPAs would need to be recomputed.

Delete Node

Node to be Deleted

Figure 86: Deleting a Node from an FPA

C.3 Operations on Multiple Nodes

It is also possible to envision operations that are simultaneously performed on an FPA's set of
nodes. One opportunity here is where two (or more) nodes would be coalesced to either an
existing node or a new node. An example of this is shown in Figure 87. The point indicated

CMU/SEI-98-SR-002 207

with + will be called a coalescent point; this means that the nodes that are to be coalesced will

be moved to this point. This type of operation is clearly more complex than an operation on an

individual node. For example, if two nodes as coalesced, as indicated in the figure, a new node
must be computed (the coalescent point), and two new line segments of the FPA must be
recomputed. Furthermore, additional computation of the line segments of the adjacent FPA(s)
must be recomputed. Note that in Figure 87 we have assumed that the line segments of the
adjacent FPA will be connected to the coalescent point. This seems to be a reasonable assump-

tion.

Coalesce Nodes

Nodes to be Coalesced

Coalescent Point

Figure 87: Coalescing Two Nodes Into One

C.4 Operations on Line Segments

Another class of operations are those that are performed on a line segment. The first type of
operation is that in which a new line segment is created in an FPA. This case is illustrated in
Figure 88, where the dashed line is the line segment to be added. The result of adding the line
segment results in a partition of the original FPA, as indicated on the right side of Figure 88. If
this type of operation were supported, it would be necessary to define a new FPA. However,
note that the nodes in this case are invariant with respect to the creation of the new line seg-

ment.

208 CMU/SEI-98-SR-002

Create_Line_Segment

Line Segment to be Created

Figure 88: Creating a New Line Segment

A second type of operation on a line segment is where a line segment of an existing FPA is
moved. An example of this is illustrated in Figure 89 below. Here, the line segment on the
right has been translated to the right, resulting in a change to the FPA. An additional conse-
quence of this operation is that the line segments of the adjacent FPA must be recomputed
since two nodes have changed.

Move_Line_Segment

Line Segment to be Moved

Figure 89: Moving a Line Segment

The next type of operation to consider on a line segment is where a line segment is deleted. An
example of this is shown in Figure 90. When a line segment is deleted, some choice must be
made to maintain connectivity of the FPA. The choice made in Figure 90 is to use the midpoint
of the deleted segment to implicitly create a new node, which is then connected to the appro-
priate line segments.

CMU/SEI-98-SR-002 209

Delete_Line_Segment

Line Segment to be Deleted

Figure 90: Deleting a Line Segment

Another possibility is where an FPA is translated a specified distance in a specified direction.
This is illustrated in Figure 91 where the FPA has been translated to the right. Note that under
the translation, all the nodes must be recomputed, as well as the line segments that connect the
nodes to nodes in other, adjacent FPAs. The changes in the line segments that connect to an
adjacent FPA are shown as dashed lines in Figure 91.

Translate_Line_Segment

Line segment to be translated
to the right

Figure 91: Translation of a Line Segment

More complex operations on a line segment can also be considered. For example, Figure 92
shows the result of translating and rotating a line segment that forms the boundary of an FPA.
As before, the nodes of the FPA would need to be recomputed, as well as the line segments of
any adjacent FPAs.

210 CMU/SEI-98-SR-002

Translate_And_Rotate_
Line_Segment

Line segment to be translated
to the right and rotated

Figure 92: Translation and Rotation of a Line Segment

C.5 Operations on a Geometric Entity

The final class of operations to discuss are those that are performed on an FPA, treated as an
entity. The first case is that where an FPA is scaled. This is shown in Figure 93 where a scale
factor greater than unity is assumed.

Scale FPA
1 ii i

i

Original
FPA

Figure 93: Scaling an FPA

Another possibility is that where an FPA is translated a specified distance in a specified direc-
tion. This is illustrated in Figure 94 below where the FPA has been translated toward the right.
Note that under the translation, all the nodes must be recomputed, as well as the line segments

CMU/SEI-98-SR-002 211

that connect the nodes to nodes in other, adjacent, FPAs. These are indicated by dashed lines
on the right side of the figure.

Translate_FPA
 ►

Figure 94: Translating an FPA

The final type of operation that we will consider on an entire FPA is that where an ITA is
rotated. This is illustrated in Figure 95, where the indicated FPA has been rotated in the clock-
wise direction by about 30 degrees. As a result of the rotation, it is necessary to determine the
locations of the new nodes, as well as the line segments from adjacent FPAs that connect to
these nodes. These are shown as dashed lines on the right side of the Figure 95.

Rotate FPA

Figure 95: Rotating an FPA

Another obvious case is that where an FPA undergoes both a translation and a rotation.

212 CMU/SEI-98-SR-002

C.6 Summary

Permitting dynamic sector and/or FPA boundaries is an interesting concept, particularly in the
context of free flight. In many cases, this would require recomputing node positions (which are
defined in adaptation data) and ensuring that certain constraints on node separation are
assured. Currently, the constraints on node separation are performed off-line. However, allow-
ing dynamic operations, such as those discussed above, would require that this processing be
performed during runtime. There are also additional constraints that would need to be deter-
mined in order to accept a particular dynamic change to an FPA structure.

It is important to remember that in the current specification of the En Route system, all FPAs
are indivisible geometric objects. Moreover, sectors are combinations of one or more FPAs.
The operations discussed above would relax this fundamental assumption, by allowing, for
example, an FPA to become a dynamic object.

CMU/SEI-98-SR-002 213

214 CMU/SEI-98-SR-002

Appendix D Additional Requirements
Specification

D.1 Adaptation Data Management

Adaptation data are those data that are unique to a given ARTCC and permit a certain tailoring
of displays, and so forth. Different types of adaptation data shall be supported including

• radar-console display configuration

• sector plan adaptation data

• FPA adaptation data

• node adaptation data

D.1.1 Radar-Console Display Configuration

Each radar display console shall have a coordinate system in an xy-plane, where both x and y
values are in the range 0 to 1023, inclusive.

The capability shall be provided to specify the locations of various data elements that are dis-
played on a radar display console.1 The following data elements may be specified in adapta-
tion data for a specified console:

UTC time display

hold list display

inbound list display

departure list display

conflict list display

1. The following is based on a discussion of the Plan View Display Record on pages 7-22 through 7-
31 of FAA specifications [FAA 95g]. Additional elements, listed in the indicated pages, are omit-
ted.

CMU/SEI-98-SR-002 215

• conflict-alert status display

• VFR inhibit display

• sector-meter list display

In addition, the capability shall be provided to specify the above data elements such that they
are applicable to all radar display consoles.

The format of the above data elements is defined in FAA specifications [FAA 95g].

D.1.2 Management of Sector-Adaptation Data

Sector adaptation data refer to that set of data that is used to describe the adaptation character-

istics of a sector. This includes the following types of data:

• sector configuration, defining the devices associated with a sector, and certain attributes of
a sector, such as whether or not the sector is permanently defined as a training sector

• sector plans, which define one or more possible sector configurations of an En Route cen-
ter. Sector plans are used to initialize and/or reconfigure a facility

D.1.2.1 Management of Sector-Configuration Adaptation Data

Sector configuration adaptation management refers to the capability to assign one or more
local devices, and several constants, to a particular sector as part of system initialization. For
each sector number, it shall be possible to specify the following parameters:1

a sector name

the logical address of the flight-strip printer associated with this sector

D-position address: specifies both the logical and physical address of the D-position dis-
play device

R-position address: the (physical) address of the R-display

data-block offset; indicates a set of values that denote where the track-data tag should be
displayed

training indicator, indicating that the sector is permanently assigned to be a training sector

sector conflict-alert boundary constant

1. The following text is based on pages 5-20 through 5-24 of FAA specifications [FAA 95g]. It is in-
teresting to note that some of the items described in the indicated reference are required to be
present, some are optional, and some are neither optional nor required.

216 CMU/SEI-98-SR-002

• sector conflict-alert MCI boundary constant

• sector altitude type; this parameter may assume values indicating that the sector is one of
the following:

low-altitude sector

high-altitude sector

adjacent to an ARTS facility

The following requirements apply to the overall specification of a facility sector configuration,
defined as the union of all individual sector plans:

• Each sector name and sector number shall be unique.

• More than one sector may be assigned to the same logical name of a flight-strip printer.

• The set of logical names of flight-strip printers shall be disjointed from the set of logical
names for D-consoles.

• Each physical address shall be unique.

• A capability shall be provided to define multiple values of the parameters for device spec-
ification (i.e., flight-strip printer, R-console, and D-console) in a sector configuration to be
used for backup purposes. The specification of such backup parameters is subject to the
first four items above.

D.1.2.2 Management of Sector-Plan Adaptation Data

A sector plan defines a set of sectors and/or FPAs that encompass the area of an En Route cen-
ter. Sector plans, which include information about sector topology and associated map data,
are defined in adaptation data in order to provide the versatility to allow a given center to be
configured to meet its unique needs. The maximum number of sector plans shall be 10.

D.1.2.3 Basic Sector Plan

The basic sector plan is a default sector plan in which there is a predefined relationship
between a sector and one (or more) FPAs. Only one basic sector plan shall be permitted.1 The
format of a basic sector plan shall be as defined in FAA specifications [FAA 95g].

D.1.2.4 Derived Sector Plans

1. The basic sector plan is denoted as plan 0, although this sounds like implementation.

CMU/SEI-98-SR-002 217

A derived sector plan is a sector plan that is defined as a modification of the basic sector plan.
The capability shall be provided to define one or more derived sector plans subject to the fol-
lowing requirements:

• The maximum number of derived sector plans shall be less than or equal to nine.

• Only the effected sectors and/or FPAs shall be required to be specified in a derived sector
plan; all other sectors and/or FPAs remain as defined in the basic sector plan.

• A derived sector plan may specify that one (or more) sectors and/or FPAs be attached to a
specified sector. When a sector and/or FPA is attached to a specified sector, all associated
postings, communication, and so forth, shall be associated with the specified (receiving)

sector.

• FPAs shall not be combined in a derived sector plan.

• The format of a derived sector plan shall be as defined in FAA specifications [FAA 95g].

D.1.3 Management of Fix-Posting-Area Adaptation Data

Each FPA shall be denoted as <sector_id> <fpa_id> where both <sector_id> and <fpa_id>
shall be in the range from 0 to 99, inclusive.

D.1.4 Input Message Eligibility Record

The system shall provide a mechanism to configure a console with respect to the requests that
may be initiated from a particular console. This information shall be provided in the input
message eligibility record. The format of this information shall be as specified in FAA specifi-
cations [FAA 95g].2

D.1.5 Node-Adaptation Data Management

A node is a geographic point that is used to define the horizontal structure of an FPA, B-line,
S-line, and/or transition line. The following requirements apply to node-adaptation data man-

agement:

• A node shall be specified by an identifier of two to four alphanumeric characters.

• All node identifiers shall be unique within the context of a specific En Route Center.

1. In particular, see pages 5-24 through 5-26 of FAA specifications [FAA 95g].

2. In particular, see Section 5.3 of the referenced document.

218 CMU/SEI-98-SR-002

• A node shall be specified in terms of latitude and longitude, expressed in degrees, minutes,

and seconds.

The following restrictions apply to those nodes that are used to define an FPA:

• Each FPA node shall be at least one-quarter of a mile from any other node of that FPA.

• Each FPA node shall be at least one-quarter of a mile from any line of that FPA that does

not contain the node.

• Each FPA node must be at least one-quarter of a mile from a different node of another

FPA.

CMU/SEI-98-SR-002 219

220 CMU/SEI-98-SR-002

Appendix E Message Contents

A number of messages are currently used to convey information about flight plans or track
data. The following is a brief summary of the contents of the messages referenced in the text,
listed in alphabetical order. The information is taken from FAA specifications [FAA 95b]
which may be consulted for detailed information about messages.

Activate Flight Plan: message type, flight plan ID

Amend Flight Plan: message type, flight plan ID, field reference identification, field refer-
ence location

Assign Flight Plan Altitude: message type, flight plan ID, logic check override, assigned alti-
tude

Assign Flight Plan Beacon Code: message type, flight plan ID, logic check override, beacon
code

Deactivate Flight Plan: message type, flight plan ID

Delete Flight Plan: message type, flight plan ID

Drop Track: message type, logic check override, flight identification

Flight Plan: message type, flight plan ID, aircraft data, beacon code, speed, coordination fix,
coordination time, requested altitude, route information, comment text

Hold Flight Plan: message type, flight plan ID, hold data

Track: message type, flight identification, speed, assigned altitude, heading, logic check over-
ride, action type, trackball coordinates, primary track class indicator

Update Flight Plan: message type, flight plan ID, aircraft data, beacon code, speed, coordina-
tion fix, coordination time, requested altitude, route information, comment text

CMU/SEI-98-SR-002 221

222 CMU/SEI-98-SR-002

Appendix F Specification of Loading
Conditions

For the development of the mathematical models presented in this report, it is necessary to
determine the load that is placed on a system element. For example, the maximum number of
track and flight-plan messages must be determined. One reason for this is network bandwidth
considerations. Another reason is because the maximum loading defines the size of queues
that can exist in a component. Queue size is a special concern for display consoles because the
queueing of track messages, for example, can delay the time it takes for resectorization pro-
cessing to complete.

The basic model we shall used is based on Appendix A of FAA specifications [FAA 95e]. The
basic assumptions are as follows:

• 1100 active flight plans during one hour

• 700 tracks

Given the rate of messages per flight, as indicated in FAA specifications [FAA 95e], we may
estimate the total number of information transfers per hour. Then, we assume there are a total
of 50 radar display consoles, each of which is equally loaded. Based on this information, the
load is summarized in Table 20.

The track update rate for the En Route center assumes a value of one track update per six sec-
onds. If 700 tracks are equally distributed over 50 consoles, this implies 14 tracks per console
being updated every 6 seconds. The dominance of track data is clear.

Note that the above assumptions do not represent a worst-case loading condition. A number of
message transfers have not been included, such as other messages from external En Route cen-
ters (although the fact that some are included, such as initiate handoff, weights the numbers to
those sectors that are adjacent to an external En Route facility), conflict-alert messages, and
other possible system operator commands. Nor does the above account for information trans-
fers that could be initiated by a radar console operator. It also does not account for any infor-
mation transfer to support the underlying network infrastructure, such as possible routing
requests, heartbeats, and so on. Any of these cases can lead to additional preemption and

CMU/SEI-98-SR-002 223

blocking with respect to processing a resectorization command. However, to account for this

level of detail, it would require a much more thorough analysis than in the current scope.

Information Total/
hour

Total/
console/
hour

Flight plan message 1,100 22

Flight plan departure message 550 11

Flight plan drop message 220 4

Flight plan altitude amendment 770 15

Flight plan route amendment 660 13

Initiate handoff 2,090 42

Accept handoff 2,530 50

Initiate transfer 1,100 22

Accept transfer 1,100 22

Track update (from external En Route center) 11,600 232

Track update (from this En Route center) 660,000 13,200

Table 20: Assumptions About Console Loading

224 CMU/SEI-98-SR-002

Appendix G Details of CORBA Approach

G.1 Description of Objects

We present here some information on how objects could be described. The information could
include

• object name

• state data associated with the object

• methods available on the object

For the methods available, associated information might contain the method name, descrip-
tion, parameters, and information about the implementation, such as the entities that invoke
the method.

For the purpose of this work, we will concentrate on the state data for an object and the name
of the method, along with a brief description. Details about parameters are viewed as being
appropriate for a lower level of design activity.

G.2 Sample IDL Description

In this section we will present the Interface Description Language (IDL) for a typical CORBA
example. This is intended to provide a high-level view of what the IDL would look like. Thus,
the following specifies the IDL for a track object.

module Track_Obj {

typedef string Obj_Ref; // Object Reference type
struct Valid_Time { // Valid Time Type

unsigned long Update_Time_Sec; // Time in seconds
unsigned long Update_Time_uSec; // Time in microseconds

};

exception Invalid_Time {};

CMU/SEI-98-SR-002 225

struct Tracl c_Data {
double CID;
double X_Position;
double Y_Position;
double Altitude;
double Speed;
double Heading;
double Beacon_Code;
Obj_Ref Flight_Plan;

Valid_Time Time;

// Computer Identifier
// X Position of track in Nautical Miles
// Y Position of track in Nautical Miles
// Altitude track in Feet
// Speed of track in Knots
// Heading of track in Degrees
// Track Beacon Code
// Object reference of flight plan
// Valid time of data

};

interface Track {
// Update Track Parameters
void Update_Parameters(in Track_Data update);

// Return Track Parameters
Track_Data Get_Parameters();

// Extrapolate Track
Track_Data Extrapolate(in Valid_Time t) raises (Invalid_Time);

};

interface Factory {
// Create and return an instance of a track object
Track CreateTrack(in Track_Data initial);

};

};

226 CMU/SEI-98-SR-002

