
AGARD-R-822 

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 

7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE 

AGARD REPORT 822 

Approved for pu.bli77elea"3^~    J 

Numerical Unsteady Aerodynamic and 
Aeroelastic Simulation 
(l'Aerodynamique instationnaire numerique et la simulation de l'aeroelasticite) 

Papers presented at the 85th Meeting of the AGARD Structures and Materials Panel, held in 
Aalborg, Denmark, 14-15 October 1997. 

U98»U W 

North Atlantic Treaty Organization 
Organisation du Tratte de l'Atlantique Nord %>, 

fe 
***> 

tQm>, 



The Mission of AGARD* 

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the 
fields of science and technology relating to aerospace for the following purposes: 

— Recommending effective ways for the member nations to use their research and development capabilities for the 
common benefit of the NATO community; 

— Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research 
and development (with particular regard to its military application); 

— Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture; 

— Improving the co-operation among member nations in aerospace research and development; 

— Exchange of scientific and technical information; 

— Providing assistance to member nations for the purpose of increasing their scientific and technical potential; 

— Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in 
connection with research and development problems in the aerospace field. 

The highest authority within AGARD is the National Delegates Board agardconsisting of officially appointed senior 
representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of 
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications 
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the 
AGARD series of publications of which this is one. 

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations. 

* AGARD merged with the Defence Research Group of NATO (DRG) on 1 January 1998 to form the Research and Technology Organization (RTO) 
of NATO. However, both AGARD and DRG will continue to issue publications under their own names in respect of work performed in 1997. 

The content of this publication has been reproduced 
directly from material supplied by AGARD or the authors. 

® 
Printed on recycled paper 

Published March 1998 

Copyright © AGARD 1998 
All Rights Reserved 

ISBN 92-836-0054-1 

Printed by Canada Communication Group 
45 Sacre-Cceur Blvd., Hull (Quebec), Canada K1A 0S7 



Numerical Unsteady Aerodynamic and 
Aeroelastic Simulation 

(AGARD-R-822) 

Executive Summary 

Two components are required for analysis of dynamic aeroelastic phenomena, a structural finite 
element model of the vehicle, and an unsteady aerodynamics model; in current practice linear 
approximations are used for both models. Although structural nonlinearities possibly play a part in 
some cases of Limit Cycle Oscillation (LCO), the analysis community is generally content with existing 
structural modeling methods. The need for accurate and user-friendly advanced aerodynamic methods, 
however, is generally recognized. 

Control surface buzz, a one degree of freedom aeroelastic phenomenon involving shock oscillation, is 
an example of a problem not susceptible to analysis using linear aerodynamics. The current practice in 
industry is to use very conservative rules of thumb in hopes of preventing buzz, or simply to ignore the 
possibility. Obviously, conservatism introduces unnecessary weight and the discovery of a buzz 
problem during the test program causes delay and an expensive redesign effort. 

As computer hardware increases in capability, CFD methods are maturing and becoming available for 
at least limited use in industry. These methods hold much hope for future improvements in unsteady 
aerodynamics predictions. More accurate analysis of ordinary flutter in the sub- and supersonic flight 
regimes as well as the development of transonic analysis methods can result in a reduction of aircraft 
weight and development cost by reducing the need for conservatism and possibly by eliminating the 
expense of flutter model testing. Up to the present time, extreme difficulty of use, computational cost 
and lack of verification against suitable test cases have severely limited use of CFD procedures in 
industry; codes suitable for analysis of complete aircraft have not been shown to exist. 

The papers at this Workshop dealt with methods at the leading edge of current technology as applied in 
industry, and with more advanced methods which are in the development and checkout process. These 
papers contribute to the expectation that the time is not far removed when industry will be able to make 
much increased use of advanced unsteady aerodynamics methods. 



L'aerodynamique instationnaire numerique et 
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Synthese 

Deux elements sont necessaires pour 1'analyse des phenomenes aeroelastiques dynamiques; un modele 
ä elements finis de la structure du vehicule et un autre concernant l'aerodynamique instable. Des 
approximations lineaires sont couramment utilisees pour les deux modeles. Bien que des aspects non 
lineaires de la structure puissent jouer un role dans certains cas d'oscillation en cycle limite (LCO), 
l'ensemble des analystes des phenomenes aeroelastiques dynamiques est globalement satisfait des 
methodes de modelisation structurale existantes. Cependant, le besoin de methodes aerodynamiques 
conviviales avancees se fait largement sentir. 

Le bourdonnement des gouvernes, phenomene aeroelastique avec un seul degre de liberte et qui 
comporte des oscillations de choc, est un exemple de probleme se pretant mal ä 1' analyse par le biais de 
l'aerodynamique lineaire. La pratique adoptee couramment par l'industrie est soit d'appliquer des 
regies empiriques tres conservatrices pour eviter les problemes de vibration, soit d'eliminer 
l'eventualite de la vibration. II va sans dire que cette approche conservatrice entraine une augmentation 
inevitable du poids et que la decouverte, au cours des essais, d'eventuels problemes de bourdonnement 
entraine des retards et peut meme necessiter la reprise integrale de la conception, avec les coüts 
additionnels y afferents. 

Avec les performances toujours croissantes de l'informatique, les methodes CFD s'ameliorent et 
trouvent dejä quelques applications dans l'industrie. Ces methodes sont porteuses d'ameliorations dans 
le domaine des previsions de l'aerodynamique instable. L'analyse plus precise du flottement previsible 
en regime de vol subsonique et supersonique, associee au developpement des methodes d'analyse 
transsoniques, pourrait entratner une diminution de la masse de F avion et des coüts de developpement, 
en diminuant le besoin d'approches conservatrices et en eliminant le coüt eleve des essais des modeles 
du flottement. Jusqu'ä present, l'emploi des procedures CFD dans l'industrie a ete tres limite en raison 
des nombreuses difficultes de mise en oeuvre, des coüts du traitement informatique, et du manque de 
donnees de verification etablies ä partir de cas d'essai representatifs. L'existence de codes appropries 
permettant l'analyse de 1'avion complet n'a pas encore ete demontree. 

Les communications presentees lors de l'Atelier traitaient de methodes liees aux derniers 
developpements technologiques, et appliquees dans l'industrie, ainsi que d'autres methodes, plus 
avancees, au stade de developpement ou de mise au point. Ces communications permettent d'imaginer 
que rindustrie pourra probablement, dans un avenir relativement proche, tirer profit des methodes 
avancees dans le domaine de l'aerodynamique instable. 



Contents 

Page 

Executive Summary iii 

Synthese iv 

Preface vii 

Structures and Materials Panel vüi 

Reference 

SESSION I: 

Technical Evaluation Report T 
by M. Lacabanne and RJ. Zwaan 

Calculated Viscous and Scale Effects on Transonic Aeroelasticity 1 
by J.W. Edwards 

Aeroelasticite et C.F.D. 
(Aeroelasticity and C.F.D.) 2 

by C. Petiau, B. Stoufflet, Ph. Nicot 

Application of the ENS3DAE Euler/Navier-Stokes Aeroelastic Method 3 
by D.M. Schuster, P.S. Beran and L.J. Huttsell 

Aerodynamics for Elastically Oscillating Wings Using the Virtual Grid Deformation Method 4 
by W. Wegner 

Application des Equations d'Euler Linearisees ä la Prevision du Flottement 5 
by G.D. Mortchelewicz 

Paper 6 Withdrawn 

Fast Staggered Algorithms for the Solution of Three-Dimensional Nonlinear Aeroelastic 7 
Problems 

by C. Fahrat and M. Lesoinne 

SESSION II: 

CFD Based Corrections for Linear Aerodynamic Methods 8 
by M.L. Baker 

Investigation of Buffet Load Alleviation on a Scaled F-15 Twin Tail Model 9 
by LJ. Huttsell, J.A. Tinapple and R.M. Weyer 

Transonic Aeroelastic Simulation of a Flexible Wing Section 10 
by S. Schulze 



NLR-TUDelft Experience in Unsteady Aerodynamics and Aeroelastic Simulation 11 
Applications 

by JJ. Meijer, M.H.L. Hounjet, BJ.G. Eussen and B.B. Prananta 

Flutter Prediction for Complex Configurations 12 
by M.J. de C. Henshaw, D.D. McKiernan and C. Mairs 

High Incidence Unsteady Aerodynamic for Aeroservoelastic Predictions 13 
by W. Luber and J. Becker 

A Unified Unsteady Aerodynamic Module for Aeroelastic and MDO Applications 14 
by P.C. Chen, D. Sarhaddi and D.D. Liu 

Experience with Unsteady Aerodynamics Computation for Saab Aircraft 15 
by B. Franzen, B. Nilsson and B. Winzell 



Preface 

The computation of unsteady aerodynamic forces generated by the vibration of the structure is the heart of the analysis of 
flutter, aeroservoelastic stability, dynamic response and related phenomena. The objectives of the Workshop were to examine 
the state of the art in computational unsteady aerodynamics with respect to methods already in use, methods available for use 
in the short term, and advanced methods which show promise of maturation into usefulness. 

The Workshop was conducted in Aalborg, Denmark in October, 1997, and provided an exchange of ideas among industry, 
academia, and research institutions. Special thanks are due to Ir. Rijkert Zwaan, retired SMP Member from The Netherlands, 
for suggesting the topic and providing the initial guidance of the Sub-Committee. 

J.A. Ellis 
Chairman, 
Sub-Committee on 
Numerical Unsteady Aerodynamic 

and Aeroelastic Simulation 
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TECHNICAL EVALUATION REPORT ON 1997 SPECIALISTS' MEETING ON "NUMERICAL 
UNSTEADY AERODYNAMIC AND AEROELASTIC SIMULATION" 

M. Lacabanne, Aerospatiale, 316 route de Bayonne A/BTE/EG/CA, 
31060 Toulouse Cedex 03, France 

R. J. Zwaan, formerly NLR P. 0. Box 90502, 1006 BM Amsterdam, 
The Netherlands 

SUMMARY 
This paper presents a technical evaluation of the Workshop 
on "Numerical Unsteady Aerodynamic and Aeroelastic 
Simulation" held at the 85th meeting of the RTO (formerly 
AGARD) Structures and Materials Panel on 13-17 October 
1997, in Aalborg, Denmark. 

ABBREVIATIONS 
AIC Aerodynamic Influence Coefficient 
AOA Angle Of Attack 
CUA Computational Unsteady Aerodynamics 
(CAP)-TSD (Computational Aeroelasticity Program) 

Transonic Small Disturbance 
CAS Computational Aeroelastic Simulation 
CFD Computational Fluid Dynamics 
DLM Doublet Lattice Method 
EE Euler Equations 
FE Finite Element 
FP Full Potential 
LCO Limit Cycle Oscillation 
MDO Multi-Disciplinary Optimization 
MIMO Multiple Input/Multiple Output 
(TL)NS (Thin Layer) Navier-Stokes 

1. INTRODUCTION 
The objectives of the Workshop were: 

Review of the technological readiness of CUA/CAS 
methods. 
Review of the industrial readiness of these methods in 
practical applications. 

SMP has monitored continually the progress in the 
development of computational capabilities in unsteady 
aerodynamics and aeroelasticity. The last meeting in this 
subject area was the 1991 Specialists' Meeting on 
"Transonic Unsteady Aerodynamics and Aeroelasticity", 
San Diego, USA, AGARD-CP-507. Since then many more 
advances were made in refining mathematical models, 
applications to more complex aircraft configurations and 
computational efficiency. 
Within SMP, however, the concern grew about in what 
measure industry could benefit from these advances. Voices 
were given to the threat that a gap existed between the 
technological and industrial readiness and that this gap was 
gradually increasing, manifested e.g. by an enormous over- 
representation of contributions to conferences and journals 
from the side of research institutes and universities in 
comparison with industry. 
The need was felt to organize a meeting in which the 
industrial views could be brought out explicitly, which has 
led to the present Workshop. A preparatory step was the 
pilot paper of M. Burt, Military Aircraft Division, British 
Aerospace Ltd., UK, who expressed the industrial needs 
and expectations of CUA/CAS. 

In accordance with the objectives of the Workshop equal 
numbers of papers from industry and institutes/universities 
were pursued and realized. One paper was withdrawn 
(No. 6) and one paper was replaced (No. 13). In section 2 
those issues of the papers are highlighted that were relevant 
to the subject of the Workshop. 

2. OUTLINE OF PAPERS 

2.1 J. W. Edwards: "Calculated Viscous and Scale 
Effects on Transonic Aeroelasticity" 

A viscous-inviscid interactive coupling method, CAP- 
TSDV, is described for the computation of unsteady 
transonic flow including possible separation and 
reattachment, occurring in self-exited shock-induced 
oscillations and transonic flutter. Basic elements are the 
lag-entrainment integral boundary layer equations and the 
transonic small disturbance potential code CAP-TSD, 
coupled with a variable gain, integral control coupling 
method. Mach scaling is applied to enable the use of 
validated modelings at wind tunnel model scale to make 
predictions at full scale flight vehicles. 
Results of flutter calculations for the AGARD 445.6 wing 
show excellent agreement for M<1.0. Numerical 
experimentation at the transonic dip yields minor scale and 
Reynolds number effects, but an obvious effect originates 
from motion amplitude. 
Another example deals with wing flutter calculations for a 
business jet. Good agreement is found with experimental 
data up to M=0.9 and with results of an NS code at small 
amplitude motions. At large amplitudes LCO is predicted, 
which corresponds with wind tunnel observations. 

2.2 C. Petiau, Ph. Nico and B. Stoufflet: "Tendances en 
CFD pour l'Aeroelasticite" 

The evolution is described of using CFD methods within 
the aeroelastic analysis system ELFINl- 
AEROELASTICITY. At the present stage the system 
includes for the "heavy" computations an EE method to 
determine in combination with an FE model the effects of 
initial shapes and rigid body motions on the so-called load 
and aerodynamic bases, according to the concept of 
ELFINI. Using the results, a linear potential method is 
applied to calculate the aerodynamic characteristics for all 
required aircraft configurations and flight conditions. 
Calibration of the aerodynamic model is achieved by using 
wind tunnel and flight test data. 
Currently two nonlinear CUA methods are explored, 
focusing on transonic flow: 

The steady method CITRON and unsteady method 
TCITRON for wings with simple geometry. 
The method using unstructured grids EUGENIE for 
complex configurations. 
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These methods can be integrated with FE models to 
perform CAS analyses. This procedure, however, is very 
expensive and the reliability of the time responses is 
uncertain because of the analysis tools requiring linearity. 
As a way out linarized CFD tools are investigated, also 
considered by ONERA. 
Results presented illustrate the various development stages. 

23 D. Schuster, M. Smith, B. Buxton, L. Huttsell and 
E. Turner: "Application of a Three-Dimensional 
Euler/Navier-Stokes Aeroelastic Method" 

This paper discusses two validation cases of the well- 
known TLNS method ENS3DAE. The method is in 
development and use since 1989; its present stage of 
development is explained in the paper. 
The first application concerns a 4% thick rectangular semi- 
span wing with a 25% chord aileron at M=0.7 and a static 
aileron deflection of 1 deg, using the inviscid EE option of 
ENS3DAE to calculate the control effectiveness for an 
increasing dynamic pressure, including control reversal. The 
results show an excellent agreement with those of CAP- 
TSD if the same grid is used. 
In the second application results of the TLNS option are 
presented for the BACT model, a 12% thick semi-span 
rectangular wing with a 25% trailing edge control surface 
that could be oscillated harmonically. Two chordwise 
sections with pressure taps were installed at and besides the 
place of the control surface. Results of static and dynamic 
calculations for M=0.77 are in very good agreement with 
wind tunnel data for the subsonic part of the pressure 
distributions, and are reasonable in the transonic part 
where discrepancies occur which will be investigated 
further. 

2.4 W. Wegner: "Aerodynamics for Elastically 
Oscillating Wings Using the Virtual Grid 
Deformation Method" 

A method for dynamic grid generation is described, which 
can be applied in CFD codes to calculate motion-induced 
aerodynamic forces. At issue is the technique to transform 
the basic flow equations into a time-dependent boundary- 
fitted coordinate system, which in most current grid 
generators implies a time-consuming recalculation of the 
grid point locations at each time step. Different from this 
technique, the author presents an alternative virtual 
mapping algorithm that uses only the normal vector of the 
cell faces and the relative velocity of the cell face centers 
instead of the precise location of the grid points. 
He claims that his algorithm is computationally time- 
efficient, but no quantification is given. 
The algorithm can also be used if viscous flow is 
considered. This is demonstrated by the application of a 
viscous-inviscid interaction method, developed by the 
author, to the AMP wing model in fixed position and in 
pitching motion. Calculated steady and unsteady pressure 
distributions are compared with wind tunnel data. The 
agreement is satisfactory, but makes clear that the influence 
of a body at the wing root and of model flexibility should 
not be neglected. 

2.5 G.D. Mortchelewicz: "Application des Equations de 
Euler Linearisees au Flottement" 

A linearized EE method, REELC, is presented for use in 
flutter calculations at small amplitudes. The unsteady 
aerodynamic solution is defined as a first-order harmonic 

perturbation of a steady solution. Consequently, the 
calculation of the unsteady solution is considered as a 
complex steady problem. Disadvantage of this procedure is 
of course the doubling of the required memory, but on the 
other hand results become available immediately in the 
frequency domain, while the computation time is 
independent of the reduced frequency. 
Calculated pressure distributions are shown for a pitching 
NACA 64A010 airfoil at a transonic flow condition, and 
compared with wind tunnel data. Noteworthy is that the 
unsteady solution converged very quickly, even before the 
steady solution was fully converged. Another example deals 
with a delta wing for which generalized aerodynamic forces 
are presented for a series of reduced frequencies as well as 
flutter characteristics using these forces. The author 
mentions the total computation time for this case and states 
that the time would have been forbiddingly long if an Euler 
method were used. 

2.6 Paper withdrawn 

2.7 C. Farhat: "High Fidelity and High Performance 
Computational Algorithms for the Solution of 
Three-Dimensional Static, Transient and Eigen 
Aeroelastic Problems" 

The author highlights the status of the three-field coupled 
fluid/structure/moving grid method , which he developed 
with M. Lesoinne, for applications to nonlinear 
(aerodynamic and structural) cases, including "pathological" 
features as high AOA and flow separation. This method 
employs a partitioned procedure for time-integrating the 
coupled equations, to be used both for explicit and implicit 
schemes. The primary subject of the paper is the algorithm 
for first-order time integration in the structural and fluid 
domain, providing maximum performance of the solution 
(reduced CPU time) at sufficient accuracy and numerical 
stability. This algorithm includes subcycling, implying that 
the structural time step is taken larger than the aerodynamic 
time step. 
The performance is demonstrated by dynamic response 
calculations for the AGARD 445.6 wing using an EE 
formulation and an unstructured grid. The CPU time turned 
out to be a factor 20 less than that of the case without 
subcycling. An intriguing second example is the time 
response of a 2-D model of the Tacoma Narrows Bridge, 
with nonlinearities in both aerodynamics and structure. The 
result is in qualitative agreement with observations. 
In the future applications to buffet problems are foreseen. 

2.8 M.L. Baker: "CFD-Based Corrections for Linear 
Aerodynamic Methods" 

The paper presents a method to introduce results of CFD 
codes into production-type aeroelastic methods through 
corrections of the initially used linear aerodynamic forces. 
This method does not imply the usual multiplicative 
correction factors for AIC's, but makes use of the concept 
of "local equivalence". This requires only a small number 
of nonlinear aerodynamic computations, in this way 
reducing effectively the expenses of the routine aeroelastic 
computations. The concept is based on defining any 
arbitrary displacement of the airplane structure as the sum 
of a "representative" displacement and a residual. The 
aerodynamics of the "representative" and residual 
displacements have to be provided by locally linearized 
CFD solutions and fully linear methods, respectively. The 
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paper indicates how the concept can be implemented 
efficiently in AIC calculation codes. 
Results of flutter stability curves for the AGARD wing 
445.6 model, calculated with the use of the DLM, the 
CAP-TSD method and the newly presented method show a 
good agreement for the latter two methods. Further 
validation for complex configurations, using Euler/NS 
codes, is ongoing. 

2.9 L. Huttsell, J. Tinapple and R. Weyer: 
"Investigation of Buffet Load Alleviation on a 
scaled F-15 Twin Model by Means of Blowing and 
Smart Structures" 

A buffet investigation is described on a sting mounted 
4.7% scale F-15C twin tail model, which is the first phase 
of a larger research program. Phase 1 included the 
experimental study of the buffet characteristics and of the 
effect of tangential blowing as a means of buffet 
suppression, computation of the flow field and a 
comparison pf computational and test results. One vertical 
tail was flexible and was provided with instrumentation to 
allow pressure measurements. Flow visualization was 
applied to trace vortical flow initiation. The unstructured 
EE simulations were performed at one tunnel test condition 
(M=0.2, AOA=24 deg, side slip angle=-4 deg). In the paper 
details are given of the methods used for surface and 
unstructured spatial grid generation and the solver for 
inviscid and viscous flow. In the present simulation the 
inviscid mode was used. 
RMS values of the measured bending and torsion moments 
at the root of the flexible tail showed that tangential 
blowing had little effect. The computed model forces and 
moments for inviscid flow agreed reasonably well with the 
test results. The vortical flow was determined to be 
initiated at the top of the engine inlets, which confirmed 
the visualization results of the tunnel test. Flow trace and 
vector plots indicated that the vortices pass the vertical tails 
very closely at the outer sides, again confirming 
visualization results. 
In a continued research program an EE simulation with a 
structured grid will be performed. 

2.10 S. Schulze: "Transonic Aeroelastic Simulation of 
a Flexible Wing Section" 

A CAS method, SNAP2d, is discussed to analyse flutter 
characteristics of an airfoil in transonic flow. Its main 
feature is the use of domain decomposition, i.e. the 
partitioned solution procedure in which the solvers for fluid 
motion and structural motion are active alternately, 
exchanging data only at certain time steps (subcycling). A 
substantial reduction of the computational effort is found in 
applying large "global" time steps in the structural domain, 
favored there by the relatively low frequency content, in 
comparison with the time steps in the flow domain, which 
are small as required by stability and accuracy. The 
theoretical basis of the method is described extensively for 
an EE modeling in combination with an FE model. 
Flutter stability curves and time responses are presented for 
a NACA 64A010 airfoil in three configurations. The 
stability curves agree mainly well with results from other 
sources, except for a small second transonic dip which was 
not predicted earlier. Also the flutter mechanism is 
analysed, revealing that especially the rapid variation of the 
out-of-phase component of the torsional moment coefficient 

with Mach number effects the shape of the transonic dip 
region. 

2.11 BJ.G. Bussen, M.H.L. Hounjet, J.J. Meijer and 
B.B. Prananta: "NLR Experience in Unsteady 
Aerodynamics and Aeroelastic Simulation 
Applications" 

The paper presents the current status and research activities 
of the CUA/CAS method AESIM. This system has been 
developed primarily for flutter certification of transport 
type aircraft, with the aim to become an affordable tool for 
industry. The solver includes FP, EE or TLNS modelings. 
The status is illustrated with pressure distributions on the 
oscillating wing of a fighter type wind tunnel model, 
calculated with the FP and TLNS options, showing 
satisfactory agreement with measured data. 
Extensions of AESIM are ongoing which are primarily 
focused on a further reduction of computational effort and 
user interference, and on increased confidence level: 

The efficient application of MIMO techniques to 
analyse calculated time responses and determine flutter 
speeds. 
An on-line prognostic method to continue time 
responses after the simulation has stopped. 
Large time step coupling procedures in CAS, using 
prolongations in either aerodynamic or structural 
domain. 

Improved Pade* techniques for transforming linear 
aerodynamics between frequency and time domain. 

LCO simulations with optimal integration of CUA 
methods and steady and unsteady wind tunnel data. 

Preliminary results of these points of investigation are 
shown. Representative are accurate EE and TLNS unsteady 
pressure distributions obtained with 8 and 48 time steps per 
period, respectively, and coupled EE results obtained using 
8 time steps per cycle. The 3-D EE and TLNS aerodynamic 
computations are about 5 and 15 times slower than those 
with FP. 

2.12 M J. de C. Henshaw, D. McKeirnon and 
C. Mairs: "Flutter Prediction for Complex 
Configurations" 

A modular process is described for the design and 
qualification of military aircraft to prevent 
aero(servo)elastic instabilities. A key characteristic is that 
the utilization is allowed of sophisticated CUA as well as 
the most effective simple methods, consistent with the 
particular stage of the design cycle being adressed. The 
authors state that about 75% of the effort required to 
qualify flutter aspects is associated with the modeling 
(major part) and analysis phases, the remaining 25% being 
involved with validation, qualification and certification 
(mainly ground and flight testing). On the other hand, 75% 
of the cost is associated with the validation and 
qualification phases. Further, the authors point out the 
strong relationship between the extent of the modeling and 
analysis effort and the cost savings through reduced flight 
testing. Also the risk of redesign is reduced. Potential for 
improving the quality of the modeling and analysis phase is 
therefore found in the use of advanced CUA codes in 
relation to transonic flow and complex configurations. 
The CUA tools at BAe(MA&A) include production tools 
like inviscid linear methods, and advanced methods like 
TSD and EE methods; an NS code is being developed. The 
optimal place of these tools in the design process is 
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discussed in the paper. Various issues concerning CUA 
developments are adressed, including the impact of CUA 
on the design process as a whole. Noteworthy is the 
authors' suggestion to link the post-processing techniques 
to determine frequencies and dampings from calculated 
response data to flutter flight data analysis methods. A case 
study is presented: the AGARD SMP taileron with a 
comparison of results 
obtained with linear, TSD and EE methods. In conclusion, 
the authors state that CPU time is the major limiting factor 
for EE and NS methods, and their expectation is that, 
although the performance of these methods will increase, 
they will complement and not replace the existing simpler 
methods. 

2.13 W. Luber and J. Becker: "High Incidence 
Unsteady Aerodynamics for Aeroservoelastic 
Prediction" 

The design of flight control laws for modern fighter aircraft 
is generally based on an analytical model describing the 
dynamics of the aircraft structure and the aerodynamic 
forces generated by the structural vibration modes and 
control surface deflections. A specific problem is the 
prediction of stability margins of the vibration modes at 
high incidences. The authors state that for these cases no 
theoretical methods exist to predict unsteady aerodynamic 
forces (including flow separation), and therefore they fall 
back on a validated semi-empirical method consisting of a 
linear theoretical method modified by steady and unsteady 
pressure distributions from wind tunnel tests. The 
modification has to affect primarily the generalized control 
surface aerodynamic efficiencies and the vibration mode 
induced aerodynamic damping forces. 
In an application to a delta canard fighter aircraft, predicted 
open-loop frequncy response functions are compared using 
the linear theoretical and the semi-empirical method. A 
validation by flight tests has still to take place. 

2.14 C. Chen, D. Liu and D. Sarhaddi: "A Unified 
Aerodynamic Module for Aeroelastic and MDO 
Applications" 

A unified AIC based unsteady aerodynamics module 
ZAERO is presented, covering subsonic to hypersonic flow. 
The integration of the module into the structural 
optimization method ASTROS is being carried out. The 
module can also be used as a stand alone system as well as 
be interfaced with FE methods like NASTRAN MSC. 
ZAERO consists of four unsteady codes: subsonic and 
supersonic for aircraft configurations with external stores, 
transonic for lifting surface systems and 
hypersonic/supersonic for lifting surface systems and wing- 
body configurations. In the paper more details about these 
codes are given. 
Numerous validation cases of ZAREO and 
ZAERO/ASTROS are presented in which calculated results 
are compared with results from other methods and 
experimental data. The agreement is generally satisfactory; 
in some cases departures exist which are explained. 
Finally, the authors present as global strategy for 
computational aeroelasticity in industrial applications: to 
utilize the AIC methods complimentary to CFD methods. 

2.15   B. Franzen, B. Nilsson and B. Winzell: 
"Experience with Unsteady Aerodynamics for 
SAAB Military Aircraft" 

The authors present an outline of current numerical 
unsteady aerodynamic and aeroelastic tools used at SAAB. 
The corner stones are the linear system AEREL for 
sub/supersonic flow and complete aircraft configurations, 
an FP aeroelastic simulation code for wings and recently 
the multipurpose EE/NS program EURANUS which was 
made time-linearized and extended to a pilot version for 
aeroelastic simulation. 
Various applications are shown dealing with the Gripen and 
the SAAB 2000 aircraft. Referring to the paper for the 
details, some relevant experiences are summarized here: 

Use of CFD tools in project work is almost 
forbiddingly time-consuming, especially the grid 
generation, and should be less in next generation 
codes. Also computing time should be reduced. 
Linear flutter analysis of the Gripen provides 
acceptable results and unsteady transonic aerodynamics 
do not add much to that. 
In the attempt to get the unsteady aerodynamics in 
flutter analysis right all other contributions (structure, 
control system, etc.) should be modeled with 
corresponding accuracy. 
The confidence level of the current CFD methods is 
not high enough to justify their use in an industrial 
environment. This experience is supported by the 
results presented of an ongoing unsteady wind tunnel 
research project with two cropped delta wing models 
and a flutter analysis for the AGARD 445.6 wing. 
An indirectly gained experience is the acceleration of 
the convergence obtained in static aeroelastic 
calculations by using critical damping. 

3.    ROUND TABLE DISCUSSION AND 
EVALUATION 

From the technical presentations and discussions, some 
important points related with CUA/CAS should be noted: 

3.1 Progress of CUA/CAS in research institutes and 
industry 

It clearly appears that since the 1991 AGARD Specialists' 
Meeting on this topic progress has been evidently made in 
CUA, and also in the application of CUA to predict 
aeroelastic phenomena. 
The Workshop reviewed the whole range of CUA methods, 
as already defined in the evaluation report of the 1991 
Specialists' Meeting. They include the classical small 
disturbance potential equation, the nonlinear potential 
equation( both TSD and FP), the Euler equations (EE) and 
the NS equations (both Full NS and TLNS forms). 

Research institutes and universities are continuing to 
develop CUA methods, mainly TSD, EE, TLNS, and to 
validate them using public experimental results (e.g. 
AGARD 445.6 wing, ISOGAI and LANN wing). Most of 
the correlation between analysis and test is made with the 
AGARD 445.6 wing flutter test results. Many papers show 
the capability of the different methods to predict the 
transonic dip for the AGARD wing. 
Aircraft manufacturers commonly use linear methods 
including correction factors, but they are evolving towards 
the use of nonlinear CUA or linearized CUA. Industry 
needs to implement affordable techniques which do not 
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demand tremendous effort and high computation times, and, 
at the same time, are accurate in the prediction of 
aeroelastic phenomena. Industry uses the most advanced 
techniques only for isolated cases (paper 15 presented by 
Dr. Winzell of SAAB shows the implementation of EE and 
NS solutions). Industry will have the responsibility to 
choose the most suitable methods according to the 
development stage of an aircraft project. 
The need for AIC correction factors still remains, even if 
nonlinear CUA tends to be used as a "numerical wind 
tunnel". 
Indeed, industry must run a large number of aeroelastic 
computations, varying Mach numbers, payload and fuel 
configurations, and cannot afford to compute all the cases 
with nonlinear CUA. Furthermore, AIC's are still necessary 
for aeroelastic optimization work. 
The cost saving achieved by using CUA in the flutter 
analysis process needs to be assessed. A trade-off between 
accuracy, computation cost, manpower effort and cost 
saving induced by the application of CUA methods to 
aeroelastic phenomena predictions should be established 
whenever possible. 

3.2 Improvement of CUA techniques 
CUA techniques must still be improved so as to reduce 
computation time. This reduction might be obtained by 
improvement of algorithms and use of parallel computers. 
Another challenging aspect of CUA is the problem of grid 
generation and the choice between use of a fixed grid or 
moving grid. 

Comparisons of solutions using structured or non-structured 
grids should be made. There is a need to think about 
checks for grid generation. When using NS equations, good 
turbulence models should be used so that the solution of 
these equations involves more physics and not numerical 
concerns. 

33 Validation cases of CUA methods 
There is still a need for validation cases and for calibration 
of CUA methods versus experiments. Indeed, the AGARD 
445.6 wing which was the test reference in many papers, is 
not fully appropriate for validating CUA codes because 
there is no strong transonic effect and because some test 
results remain questionable. The AGARD wing should only 
be a case for calibration of methods before performing 
analysis on more difficult cases. 
A lot of work still remains in defining good test cases. 
There is a consensus in saying that available test cases are 
not sufficient for calibrating CUA methods and flutter 
predictions in the transonic regime. Dr. Bahtia of Boeing 
emphasized this point and proposed that research institutes 
work on the definition of new standardized cases. 

3.4 Additional comments 
The CUA tools discussed in the workshop serve typically 
aeroelastic needs and interests, and their procedures and 
algorithms are therefore not completely equivalent to those 
of the CFD tools of "steady" aerodynamic experts. So 
keeping CUA expertise in the organization of industries and 
institutes in or very close to the aeroelastic department or 
group is highly desirable. 
It was agreed that viscous effects should be included in 
computations to predict aeroelastic phenomena like LCO. 
Dr. Edwards of NASA said that "an expanded concept of 

stability for transonic flutter computations and testing 
"should be defined. 
Linearization of Euler equations must be considered as an 
alternative to the solution of nonlinear EE equations. While 
capturing nonlinear effects (shocks, etc.) for small motions, 
linearization of Euler equations allows computation time to 
be saved. 
There is a need for developing post-processing software to 
derive stability criteria from response time histories. 
All the efforts made in CUA will serve to validate the 
complete aeroservoelastic loop. 

4.    CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE EFFORTS 

There is no doubt that considerable progress has been made 
since 1991 to predict classical aeroelastic phenomena (e.g 
transonic dips), but also less classical ones like LCO. 
Progress is made step by step, both in the research 
institutes and universities and in the aeronautical industry. 
While the industry aeroelasticians perform most of the 
analysis with classical linear methods including weighting 
factors, they also use CUA methods for some cases. 
Nevertheless, the use of CUA methods in industry remains 
marginal because of cost, required implementation effort 
and the clear need for more validation of the methods 
versus experiment. 
There is a need for new standardized tests which will serve 
as a basis for further calibration of methods. These cases 
should be defined by the research institute community. 
They should cover a wide range of aeroelastic phenomena 
(static deformation, flutter in the transonic regime, LCO, 
buffet, etc.). They should address clean wing transonic 
phenomena, as well as control surface aerodynamics in 
connection with aeroelasticity concerns. 
One of the main challenges of CUA is the grid generation, 
with a need to represent the details of geometry (e.g missile 
or underwing stores for military aircraft, nacelles for civil 
aircraft). The improvement of algorithms, reduction of 
computation time and implementation effort are necessary. 
The advanced methods should only be used when they 
bring in more physics and the aeroelastician should know 
when he has to be concerned about the numerics. 

Up to now, because of insufficient calibration of CUA 
methods, high cost and the manpower required to 
implement such methods, industry is not ready to use time 
domain solutions extensively for analysis of aeroelastic 
phenomena. Industry still prefers to use, for aeroelastic 
analysis, linear or linearized solutions including weighting 
factors which improve AIC's.  However, aircraft 
manufacturers are thinking about the integration of these 
methods within the complete aeroelestic analysis and 
validation process. Calibration of the methods versus 
experiment for classical static and dynamic aeroelasticity 
and for less   conventional aeroelastic phenomena (LCO, 
buffeting, etc.) remains necessary. 
In the technical evaluation report of the 1991 Specialists' 
Meeting it was mentioned that the "one really new thing" 
seen in the presentations was the transonic LCO on a 
fighter aircraft. LCO understanding had been addressed by 
a semi-empirical method. In the 1997 Workshop papers 1 
and 10 have treated the LCO phenomenon through 
computation and correlation with tests. 
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Nevertheless, a special effort for understanding and 
predicting LCO phenomena is still necessary. 
The recommendations included in the same report remain 
relevant. The objectives of computational unsteady 
aerodynamicists and aeroelasticians should be to continue 
jointly the investigation of transonic dip phenomena, do 
comprehensive work on LCO for the short term and 
medium term and extend studies to buffeting for long-term 
studies. 



1-1 

CALCULATED VISCOUS AND SCALE EFFECTS ON TRANSONIC AEROELASTICTY 

John W. Edwards* 
NASA Langley Research Center 

Mail Stop 121 
Hampton, Virginia USA 23681-0001 

Abstract 

A viscous-inviscid interactive coupling method is used 
for the computation of unsteady transonic flows. A lag- 
extrainment integral boundary layer method is used with a 
transonic small disturbance potential code to compute the 
transonic aeroelastic response for two wing flutter models. 
By varying the modeled length scale, viscous effects may be 
studied as the Reynolds number per reference chordlength 
varies. Appropriate variation of modeled frequencies and 
generalized masses then allows comparison of reponses for 
varying scales or Reynolds number. Two wing planforms are 
studied: one a four percent thick swept wing and the other a 
typical business jet wing. Calculations for both wings show 
limit cycle oscillations at transonic speeds in the vicintiy of 
minimum flutter speed indices. 

Introduction 

The onset of transonic shock-induced flow separation 
is known to be associated with a variety of nonclassical 
aeroelastic instability and response phenomena,1-13 referred 
to variously as: single degree of freedom flutter, limited- 
amplitude flutter, limit cycle oscillations (LCO), control sur- 
face buzz, shock induced oscillations (SIO) and buffeting 
(onset). A characteristic of the "instabilities" involved is a 
tendency to grow to a constant or bounded "limit amplitude" 
which can vary from a nuisance level to levels large enough 
to cause structural failure. In the latter case, the nonclassical 
response, generically referred to herein as LCO, is typically 
observed near the flutter boundary, making a distinction be- 
tween the two response mechanisms difficult. Edwards14,15 

reviewed these features of transonic aeroelasticity, conclud- 
ing that i.) computational capability for such cases would 
require modeling of dynamically separating and reattaching 
viscous boundary layers and ii.) such capability was not yet 
mature for wings or more complete configurations. 

Fig. 1 Sketch of shock-boundary layer interaction. 

Interactive Boundary Layer Modeling (EBLM) provides 
an alternative to such direct computation of flows involving 
viscous shear layers. Separate computations are made for 
an inner viscous boundary layer region and an outer inviscid 
flow region as illustrated in Fig. 1. Subscript "e" denotes 
the "edge" of the boundary layer, while superscripts "i" and 
"v" denote inviscid and viscous variables. Ref. 16 devel- 
oped an integral boundary layer lag-entrainment method to 
compute displacement thickness 6* which was used to up- 
date the flow tangency boundary condition of the inviscid 
solver. This "direct" solution method for the entrainment 
equation becomes singular at flow separation and "inverse" 
computation methods17-22 have been developed in attempts 
to treat flow separation. 

Edwards23,24 summarizes developments of such inverse 
computational methods by many authors17-22,25-33 and ex- 
tends the inverse method of Howlett30,33, implemented in 
the CAP-TSD31,32 (Computational Aeroelasticity Program- 
Transonic Small Disturbance) potential equation code, with a 
new interactive coupling procedure capable of treating tran- 
sonic Shock Induced Oscillation (SIO) conditions for air- 
foils. Bartels12,13 has recently developed an IBLM with a 
fully unsteady finite-difference boundary layer model inter- 
acted with a two-dimensional version of the CAP-TSD code 
and presents many SIO calculations. 

In the present paper, calculations of wing flutter are 
presented for two cases: a four percent thick swept wing 
flutter model, and a thicker typical business jet wing flutter 
model. Viscous effects are shown for both models, including 
examples of LCO. The effect of model scale, and thus 
Reynolds number, is studied for both models. Evidence of 
a significant effect of Reynolds number for flutter and LCO 
conditions involving separation onset is shown. 

Mathematical Method 

Details of the inviscid flow equation, the boundary layer 
equations, the modifications to boundary conditions, and the 
IBLM coupling procedure are summarized in this section. 
Further details are given in Refs. 23 and 24. 

Inviscid Flow Equation 

The CAP-TSD potential equation code is used in this 
analysis. The CAP-TSD code uses an approximate factor- 
ization algorithm for time-accurate solution of the unsteady 
TSD equation31,32 

dt       dx       ßy       dz (1) 

'Senior Research Engineer, Aeroelasticity Branch, Struc- 
tures Division 

where 0 is the inviscid-disturbance velocity potential and 

/o = -A(pt - B<)>x (2a) 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation" 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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h = Etfs + Frfl + Gv<j>y (2b) 

f2=<j>V+ Hl<j>x(py (2c) 

h = $z (2d) 

where A = Af2, B = 2M2, EL = 1 - M2, FL = 
_1[3 _ (2 - 7)M2]M2, Gl = -4M2, and Hv = -M2. 
For the 2-D version of the code, f2 = Gi = 0. The 
code contains modifications to these coefficients developed 
by Batina3S to approximate the effects of shock generated 
entropy and voracity. 

Lag-Entrainment Boundary Layer Equations 

The effect of a turbulent viscous boundary layer is mod- 
eled in the quasi-steady manner of Green et al.16 by solving 
a set of ordinary differential equations, termed the Boundary 
Layer Equations (BLE), in x for the integral boundary layer 
quantities: momentum thickness 6; shape factor H; and en- 
trainment coefficient CE- The various closure parameters 
in these equations are given in Ref. 31. In this form, the 
equations are suitable for attached flow boundary layers and 
provide the boundary layer displacement thickness 

6* = H6 (3) 

This provides a "direct" calculation of the viscous modifica- 
tion to the airfoil shape to be implemented in the boundary 
conditions discussed below. 

At separation, the equations become singular and an al- 
ternative "inverse" IBLM is used as described by Howlett34, 
Melnik and Brook18 and LeBalleur19. In this form, the equa- 
tion for 6 is replaced by an equation for the viscous edge 
velocity, uv, and 6 and 6* are obtained from the interactive 
boundary layer coupling method described below. 

Numerical Implementation 

From the leading edge of the airfoil, the boundary layer 
is approximated by the turbulent boundary layer on a flat 
plate. At a specified point, numerical integration of the in- 
verse boundary layer equations is implemented with a fourth- 
order Runge-Kutta method. For the Mach number range 
studied, it was found that the inverse equations, in conjunc- 
tion with the coupling method described below, converged 
rapidly for attached flow upstream of regions of flow sepa- 
ration (and also for downstream regions of reattached flow). 
This obviated the use of the direct boundary layer equations 
thus circumventing the numerically troublesome switching 
between the direct and inverse equations in separating flow 
regions, where the largest parameter gradients occur. 

Interactive Boundary Layer Coupling Method 

Since the intended applications of the IBLM include 
cases of wing flutter, including SIO and LCO, the coupling 
method was developed based on the observation that at the 
transonic flow conditions of interest, the flowfield is fre- 
quently inherently unsteady, displaying oscillating shocks 
and separating and reattaching boundary layers. The inter- 
acting boundary layer method is thus regarded as a simula- 
tion of two dynamic systems, the outer inviscid flow and the 
inner viscous flow, whose coupling requires active control 
elements in order to minimize the coupling error between 

the two systems. The elements utilized, Ulustrated in ana- 
log block diagram fashion in Fig. 2, include a variable gain 
integral control element for the displacement thickness and 
a first order smoothing filter for the momentum thickness 
estimate23,24. 

For the 3-D code, the boundary layer and interactive 
coupling equations are solved independently at each span- 
wise chord station on the wing. This is accomplished at each 
time step, within the Newton linearization iteration loop of 
the approximate factorization solution algorithm of the re- 
sulting CAP-TSDV code, where the appended "V" indicates 
the IBLM capability. 

ö ,   0 

Fig.  2 Schematic diagram of variable gain, integral control, 
viscous-inviscid interative coupling method. 

Scaling and Reynolds Number Modeling 

The scaling relations used for flutter models, referred 
to as Mach scaling,36,37 are given in Table I. In construct- 
ing a flutter model, all of the scaling parameters, Xt, must 
be considered. The situation for a computational simula- 
tion of Reynolds number effect is much simpler, since there 
are no constraints on "model" size. Assuming the simulated 
"model" responses are to be computed for the same gas, 
same Mach number, same dynamic pressure, and same rel- 

Parameter Symbol Ratio- 
model/aircraft 

length Ai lm/lac 

density Ap Pm/Pac 

velocity Av Vm/V,c 

mass Am AmA,3 

frequency Af Av/Al 

force AF ApAvW 

torque AT ApAv
2Ai3 

dynamic 
pressure 

A, ApAv
2 

Reynolds 
number 

ARe XpX\X\ßac/fim 

Table 1 Mach scaling used for nutter model tesing. 
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ative deflections, we have X   = Xv = X   =1, leaving the 
following scaling relations for computational aeroelasticity: 

ration analyzed) to 8.5 percent at the wing tip. Six natural 

generalized masses: 

modal frequencies: 

Reynolds number per root chord: XRe = A, 

m cases such as the present, where experimental data from 
actual wind tunnel models is available and we wish to predict 
the behavior of a larger flight vehicle, the roles of "aircraft" 
and "model" in the scaling relations is reversed. For exam- 
ple, if we wish to predict computationally the response of 
a flight vehicle 20 times larger than the flutter model, the 
computational aeroelastic analysis should be performed by 
modifying the aeroelastic equations of motion of the flut- 
ter model with: A, = 20, Xm = 8000, A/ = 0.05, and 

XRe — 20. That is, generalized masses are increased by A^, 
modal frequencies are decreased by Xr and the Reynolds 
number increases by Xr The procedure for studying the 
effects of scale or Reynolds number on, e.g. flutter, is thus: 
determine the computational aeroelastic modal root loci for 
the two length scales (i.e., modal frequencies and dampings 
versus dynamic pressure); and then, compare the scaled fre- 
quency, XjU j, and damping, £, with those obtained from 
flutter model tests or computation with A; = 1. Also, ampli- 
tude effects such as wingtip motion, can be compared using 
the scaled deflection z(.   = zti/Xv 

Model Descriptions and Results 

Wing Flutter Models 

The first wing flutter model, shown in Fig. 3, is the 
AGARD Standard Aeroelastic Configuration38'39 which was 
tested in the Transonic Dynamics Tunnel (TDT) at NASA 
Langley Research Center. It is a semispan wall-mounted 
model having a quarter-chord sweep angle of 45 deg., a panel 
aspect ratio of 1.65, and a taper ratio of 0.66. The wing 
had a NACA 65A004 airfoil section and was constructed 
of laminated mahogany. The wing is modeled structurally 
using the first four natural vibration modes, with natural fre- 
quencies ranging from 9.6 Hz for the first bending mode 
to 91.54 Hz for the second torsion mode. The CAP-TSDV 
calculations were performed on a 150 x 30 x 80 point com- 
putational grid with 100 points along each of 15 spanwise 
chords on the wing. Other computational conditions were: 
nondimensional time step dt = 0.05, one Newton iteration, 
and Ks = 0.00030. 

The second wing flutter model, shown in Fig. 4, is a 
typical business jet configuration also tested in the TDT. The 
semispan wing-fuselage model was mounted on the wind 
tunnel sidewall and tested in air, with experimental flutter 
data obtained for Mach numbers from 0.628 to 0.888. The 
wing has a taper ratio of 0.29 and a midchord sweep of 
23 degrees. The airfoil thickness varies from 13 percent at 
the symmetry plane (for the extended wing-alone configu- 

Flg. 3 Planview of AGARD Wing 445.6 Standard Aeroelastic 
Configuration. 

Fig. 4 Business jet flutter model mounted in NASA Langley 
Transonic Dynamics Tunnel. 

vibration modes were included in the calculations, with fre- 
quencies ranging from 4.3 Hz to 62.7 Hz. The CAP-TSDV 
calculations were performed on a 100 x 50 x 80 point com- 
putational grid with 45 points along each of 33 spanwise 
chords on the wing. Other computational conditions were: 
nondimensional time step dt = 0.03, one Newton iteration, 
and K6 = 0.00010. 

AGARD Wing 445.6 Flutter Calculations 

The majority of publushed calculations for this model 
(actually a series of models with similar planforms) are for 
the "weakened model #3" tested in air, since this test covered 
the largest transonic speed range and showed a significant 
transonic dip effect. Edwards24 summarizes a number of 
these calculations from both inviscid and viscous methods. 
The focus upon this case is unfortunate, in that the model 
tested in air resulted in unrealistically large mass ratios and 
small reduced flutter frequencies. 

Models tested in heavy gas. It is thus desirable to 
study results for the "weakened models #5 and #6" which 
were tested in heavy gas and had more reasonable ranges 
of mass ratio and frequency. CAP-TSDV calculations for 
these cases are shown in Fig. 5. Again, for these cases 
with M < 1.0, the CAP-TSDV results are in excellent 
agreement with experiment for M = 0.74 and 0.92. Due 
to issues discussed above for very low supersonic Mach 
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numbers, calculations have not been attempted for the third 
experimental Mach number of 1.0. Instead, calculations at 
M = 0.90-0.96 revealed an interesting minimum feature in 
the flutter speed index parameter at M — 0.95. Figure 6 
shows flutter boundaries for five values of the scale factor, 
A, ranging from 1 to 40 and covering Reynolds number per 
root chord from 3.5 million to 140 million.   Inserts show 

0.50 

Flutter 

Speed 

Index 

0.25 

-8—   experiment 

D      CAP-TSDV 

0.4 
Mach number 

(a) flutter speed index. 

0.6 r 

1.2 

(Jjf/ua 

0.3 
0.4 1.2 

Mach number 
(b) frequency. 

Fig. 5 Comparison between experimental and calculated flut- 
ter speed index and frequency for the AGARD Wing 445.6 
tested in heavy gas. 

typical time histories for converging and diverging responses 
from which the stability boundaries were determined. For 
all the values of A there is a minimum flutter speed index 
near M = 0.95 seen in the faired curves connecting the 
data points. For Mach numbers below this minimum, there 
is a small, monotonic decrease in flutter speed index with 
increasing Reynolds number. The amount of the decrease 
is less than one percent. At M = 0.94 and 0.96 there is a 
reversal of this trend, with the flutter speed index for A = 40 
increasing over that for A = 20. 

Further numerical experimentation at M = 0.% re- 

vealed interesting nonlinear response features. It was found 
that the estimated damping of the flutter mode was depen- 
dent upon the amplitude of the response time history. Figure 
7 shows two instances of this behavior on the "backside" of 
this transonic dip in the flutter boundary for A's of 1 and 40. 
In each case, stability boundaries inferred from responses 
with larger amplitudes of motion lead to lower flutter speed 
index values. Such amplitude dependent stability behavior 
is an indication that nonlinear processes are involved, and 
that nonlinear response mechanisms, such as limit cycle os- 
cillations may be anticipated. This was investigated by cal- 
culating a simulated wing "tip rap" response forM = 0.96 
and Q = 0.75 psi., shown in Figure 8. The interpolated 
flutter dynamic pressure from the experimental data for this 
Mach number is Q} — 0.757 psi. The early portion of the 
response indicates positive damping of the flutter mode and 
also a higher frequency mode. The damping of the flutter 
mode decreases as the response amplitude decays to approx- 
imately 0.12 inches peak-to-peak, where stable limit cycle 
oscillations persist. 

.42 i- 
X RexlO"6 

O 1 3.5 
□ 4 14 
O10 35 
A 20 70 
K40 140 Flutter 

speed 
index 

.40 

.92 .94 
Mach number 

Fig. 6 Calculated effect of Reynolds number on Flutter near 
minimum transonic flutter speed. 
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Fig.  7 Calculated effect of motion amplitude upon "flutter" 
boundary near minimum transonic flutter speeds. 

This limit cycle behavior was further studied by se- 
quentially increasing the dynamic pressure between com- 
puted runs from Q = 0.5 to 0.81 psi. The resulting tip 
deflection time history is shown in Figure 9. Twelve com- 
puter runs with a total of 24,000 time steps were calculated. 
The dynamic pressure was incremented as indicated in steps 
between restarted runs. For Q < 0.60 psi., the response is 
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damped and for Q = 0.70 psi., small neutrally stable oscil- 
lations are seen. With Q increased to 0.78 psi., slowly diver- 
gent oscillations develop and with further increase to 0.81 
psi., the divergent oscillations grow with increased nega- 
tive damping until the amplitude reaches approximately 0.12 
inches peak-to-peak. The growth of the oscillations then 
quenches and it appears that a limit cycle condition will 
again develop, although further calculations are needed to 

fully establish this feature. 
This same sequence of increasing dynamic pressure 

calculations was performed for X = 10, or Re = 35 million, 
and the results are shown in Figure 10. Very similar behavior 
is shown in Figure 9 for X = 1 and Re = 3.5 million. Hence, 
for this wing geometry and "test" conditions, the nonlinear 
effect of motion amplitude dominates the effect of Reynolds 
number. 
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Fig. 8 Calculated AGARD Wing 445.6 tip response in heavy gas for M = 0.96 and Q = 0.75 psi. 
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Fig. 9 Calculated AGARD Wing 445.6 response in heavy gas for M = 0.96 and increasing dynamic pressure; A ( = 1. 
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Fig. 10 Calculated scaled AGARD Wing 445.6 response in heavy gas for M = 0.96 and increasing dynamic pressure; A, = 10. 

This limit cycle behavior for this model was only ob- 
served for the highest calculated Mach number, M = 0.96 
which lies on the "backside" of the small transonic dip seen 
in Fig. 5. At this Mach number and for the wing mo- 
tions calculated, the flow is fully attached with no signifi- 
cant transonic features. The boundary layer coupling method 
performed well, with well-converged displacement thickness 
profiles. Numerical flow visualizations of the wing pressure 
showed details which are possibly key to this nonlinear re- 
sponse behavior. At this Mach number and for this thin 
wing, significant regions of near sonic flow develop adjacent 
to the wing upper and lower surfaces as the wing oscillates. 
Very high frequency upstream moving pressure waves are 
seen in the visualizations which are consistent with forward 
propagating Mach waves. At a given point on the wing, the 
frequency of these pressure waves is 10-20 times the flut- 
ter mode frequency for this case. The amplitudes of these 
calculated limit cycles is small and no mention of such be- 
havior is reported39. It is unlikely that such small motions, 
even if present, would have been detected since they would 
have been heavily masked by the model response to tunnel 
turbulence. 

One final computational experiment for this case in- 
volved perturbing the LCO obtained at the end of the se- 
quence shown in Figure 10. Figure 11 shows this result 
obtained by restarting from the last sequence with all modal 
displacements and velocities doubled. Instead of returning to 
the original LCO state, the response slowly diverges to more 
than five times the original amplitude. Again, further calcu- 
lations are needed to establish the final state of the system. 

doubled 

GAF-i 

25 
t', chords traveled 

Fig.   11 Effect of perturbation from Limit Cycle Oscillation 
condition; M = 0.96, A=10.0, Q = 0.81 psi., heavy gas. 

Business Jet Wing Flutter Calculations 

The business jet wing flutter model shown in Figure 
4 was tested in the Transonic Dynamics Tunnel at NASA 
Langley Research Center. Gibbons40 presents flutter calcu- 
lations for the model including spatial and temporal conver- 
gence studies, and surface pressure coefficient comparisons 
for rigid and statically deformed cases, using TSD, Euler, 
and Navier-Stokes methods. For the present study, the ef- 
fects of including viscous effects and varying Reynolds num- 
ber by varying the model scale were investigated using the 
CAP-TSDV code. 

Wind Tunnel Model Scale, A = l.The model was con- 
structed from aluminum plate with fiberglass wrapped foam 
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providing the airfoil contour. The wing was mounted low 
on the side-wall mounted fuselage model which had a cir- 
cular cross-section with a conical aft end. The wing root 
angle-of-attack was varied during the test to minimize load- 
ing. The maximum angle needed for this purpose was 0.2 
degrees at the highest tested Mach number. This rootangle 
was used for the calculations described below. This resulted 
in calculated static tip deflections (for A = 1.0) of -1.33 in. 
at M = 0.628 and +1.35 in. at M = 0.888. The Reynolds 
numbers for these two Mach numbers were 2.17 million and 
1.14 million respectively, based on the 2.0 ft. root chord. 
The model had a 4.4 ft. semispan. 

Contour plots of the upper and lower wing surface pres- 
sure, displacement thickness, and skin friction are shown in 
Fig. 12 for M = 0.888. Note the lower surface leading edge 
suction peak and mild inboard shock seen in the pressures. 
The displacement thickness is oriented positive downwards 
for best visualization of the contour plot. The lower sur- 
face displacement thickness is similar to the upper surface 
with maximum thicknesses below one percent except near 
the root where the lower surface shock produces a thickness 
of approximately 1.5 percent root chord. The skin friction 
reflects these features seen in the displacement thickness and 
is informative regarding closeness to separation. The lower 
surface trailing-edge is separated at the root and there is a 
small separation bubble just inboard of the tip and aft of the 
leading-edge suction peak.  The skin friction coefficient is 

low in the trailing-edge region of the upper surface, reach- 
ing a minimum near 88 percent span. This region and the 
upper surface separation bubble are key in the effect of am- 
plitude upon flutter mode response described below. 

Calculated flutter speed indices and frequencies versus 
Mach number are compared with experiment in Fig. 13. 
The linear CAP-TSD, Euler, and Navier-Stokes resultes are 
from Gibbons40 while the four CAP-TSDV data points are 
new. Comparison of these flutter boundaries leads to similar 
observations as for the 445.6 wing: 

1. Inviscid calculations agree among themselves and 
are in very good agreement with experiment for the lower 
Mach numbers. For higher Mach numbers in the vicinity 
of the transonic dip region, the inviscid codes become in- 
creasingly conservative. For this wing, inviscid calculations 
should not be used for M > 0.80. 

2. For Mach numbers at and below the minimum 
transonic flutter speed index, the viscous methods, CAP- 
TSDV and CFL-3D, are in agreement and both provide good 
agreement with experiment, largely correcting the deficiency 
in the inviscid methods. 

3. Linear flutter calculations43 are in excellent agree- 
ment with experiment up to M = 0.85, but cannot be relied 
upon for higher transonic Mach numbers. The good agree- 
ment in the lower transonic speed range is due to well-known 
compensating defects of linear theory wherein thickness and 
viscous effects are neglected. 

Pressure Displacement Thickness Skin Friction 

Lower Surface 

Fig. 12 Contour plots of business jet wing pressure and boundary layer parameters at statically deformed conditions: M = 0.888, 
Q = 79 psf., a = 0.2°, A = 1, Re. = 1.14 million. 



All of the results discussed thus far were obtained from 
transient or harmonic responses of small amplitude, that is, 
wing tip response amplitudes were less than several tenths 
of an inch. Under these conditions, no large changes of the 
static aerodynamic loading occurred and transient responses 
exhibited exponential stability, characteristic of a "locally 
linear" system behavior. At M = 0.888 the CAP-TSDV 
code was able to calculate large amplitude response motions 
which demonstrated limit cycle behavior. The motion was 
calculated for the experimental "nutter" dynamic pressure of 
79 lb/ft2. The conditions for the limit cycle are noted in Fig. 
13 by the solid symbol indicating a 0.5 Hz. increase in fre- 
quency over the small amplitude value. Figure 14 shows two 
transient responses confirming the limit cycle behavior. The 

0.5 

Flutter 
Speed 
Index 

O experiment 
■ CAP-TSDV - 
D  CAP-TSDV 
O CAP-TSD 
A CFL3D-Euler 
v CFL3D-NS 

large amplitude 
LCO 

small amplitude 
flutter 

V 

0.5 
Mach   Number 

(a) flutter speed index. 

15 r 

1.0 

f, Hz 

10 

0.5 
Mach   Number 

1.0 

(b) frequency. 
Fig.    13 Comparison between experimental and calculated 
flutter speed index and frequency for a business jet flutter 
model tested in air. 

motions were excited from converged statically deformed 
conditions by multiplying the modal displacements and ve- 
locities by factors of 5.0 for Fig. 14a and 0.5 for Fig. 14b. 
The larger factor simulates a wing tip displacement of about 
7 inches, resulting in decaying oscillations to a limit cycle 
with an amplitude of 5-6 inches peak-to-peak. The smaller 
factor results in oscillations growing in amplitude to the limit 
cycle. This behavior is similar to model behavior observed 
during the test. Video tape of the model motions at the ex- 
perimental "flutter" conditions for this Mach number shows 
the model to be undergoing constant amplitude wing oscilla- 
tions with amplitude of slightly less than one tip chord (6.3 
inches) peak-to-peak. This is in very good agreement with 
the calculated LCO amplitude and frequency shown in Fig. 
14. The plate construction of the model provides sufficient 
strength to allow the model to sustain oscillations of this 
amplitude without structural failure. Inspection of the wing 
boundary layer parameters and surface pressures during the 
calculated limit cycle oscillations confirmed that the flow 
over the wing was intermittently separating and reattaching 
in the outboard upper and lower surface regions described 
above. This apparently provides the mechanism needed to 
quench the growth of the unstable flutter mode motions. 

10 

Ztip 

in. 

-10 

Q=79 psf 

f=9.16 Hz 

0 time, sec. 
(a) amplitude decaying to limit cycle oscillation. 

10 

Ztip    - 

m. 

0.8 

-10 

Q=79 psf 

f=9.21 Hz 
I I L 

0 time, sec. 
0.8 

(b) amplitude growing to limit cycle oscillation. 
Fig. 14 Calculated limit cycle response for a business jet wing 
flutter model: M = 0.888, Q = 79 psf., A = 1.0, Rec = 1.14 million. 

Effect of Reynolds number, A = 10.0. A limited study 
of the effect of Reynolds number on this LCO behavior at 
M = 0.888 was conducted. Figure 15 shows the steady 
deformed wing pressure contours. Comparison with Figure 
12 indicates modest changes in the wing loading for the 
increased Reynolds number. Boundary layer parameters 
(not shown) indicate that the displacement thickness over 
the wing is approximately half that shown for A = 1.0, 
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accounting for the increased gradients seen in c in the 
inboard region of the lower surface and the outboard region 
of the upper surface in Figure 15. The wing lift and moment 
coefficients decreased slightly from C L = 0.034 and C M = 
-0.038 for A = 1 to CL = 0.017 and CM = -0.027 for 
A = 10 and the scaled wing tip displacement decreased by 
several tenths of an inch. 

(a) upper surface pressure coefficient. 

(b) lower surface pressure coefficient. 
Fig. IS Contour plots of business Jet wing pressure at statically 
deformed conditions: M = 0.888, Q = 79 psf., a = 0.2°, A = 10, 
Rec = 11.4 million. 

100 

-100 
12.0 

Time, sec 

Fig. 16 Calculated limit cycle response for a business jet wing 
flutter model: M = 0.888, Q = 79 psf., A = 10.0, Rec = 11.4 
million. 

Figure 16 shows the effect of the increased Reynolds 
number upon the LCO behavior of the wing. If there had 
been no effect, the wing oscillations would be expected to 
grow to a LCO condition with wing tip motions of about 
±25-30 inches, whereas the actual motion shown in Figure 
16 has reached ±60 inches and has not yet achieved stable 

limit cycle conditions. While the higher Reynolds number 
leads to increased pressure gradients and hence slightly in- 
creased transonic shock strength, the thinner boundary layer 
is apparently less prone to providing the quenching mecha- 
nism for the LCO and larger wing motions are required to 
induce such quenching. In the present case, LCO motions 
for the A = 10 case are over twice the LCO motions calcu- 
lated and observed for the wind tunnel model scale which 
was tested. This might infer that the wind tunnel flutter 
model test provided an unconservative flutter boundary. On 
the other hand, the large LCO motions observed during the 
test were correctly interpreted by the test engineers as "flut- 
ter." The ambiguity underlying this discussion of stability for 
realistic flutter model testing should be interpreted as a re- 
quirement for an expanded concept of stability for transonic 
flutter computations and testing. 

Concluding Remarks 

A viscous-inviscid interactive coupling method has 
been described, directed towards the computation of un- 
steady separating and reattaching transonic flows which must 
be treated in cases of self-excited shock-induced oscillations 
and transonic flutter. Lag-entrainment integral boundary 
layer equations and a transonic small disturbance potential 
code are coupled with a variable gain, integral control cou- 
pling method. 

Flutter calculations for the AGARD 445.6 flutter model 
are in excellent agreement with experiment for M < 1.0 
for models tested in air and heavy gas. Calculations with 
the CAP-TSDV code are in excellent agreement with results 
from a Navier-Stokes code at M = 0.96. For Mach numbers 
below and very near unity, viscous modeling is required for 
such thin wings in order to achieve acceptable accuracy. In 
this region, calculations show evidence of small amplitude 
limit cycle behavior. Effects of scale and Reynolds number 
for this four percent thick model are small for Mach numbers 
less than the minimum transonic flutter speed; less than one 
percent decrease in flutter speed for increasing Reynolds 
number from 1 to 140 million. For Mach numbers just above 
the minimum transonic flutter speed, nonlinear amplitude 
effects are larger than Reynolds number effects for this wing. 
It is important to note that for this model and test conditions, 
there are no strong transonic flow features and the flow is 
completely attached. 

Flutter calculations for a business jet wing model also 
show very good agreement with experiment for the available 
test data up to M = 0.9. For this thicker wing, the 
requirement for viscous modeling extends to lower transonic 
Mach numbers. Again, calculations with the CAP-TSDV 
code are in very good agreement with a Navier-Stokes code 
at M — 0.888 for small amplitude flutter motions. For large 
amplitude wing oscillations, the CAP-TSDV code predicts 
limit cycle behavior at this Mach number in very good 
agreement with that observed during wind tunnel tests of 
the model. Also, the effect of a tenfold increase in scale or 
Reynolds number leads to a thinner boundary layer, weaker 
viscous effects, and limit cycle oscillation amplitude grows 
to over twice that calculated and observed in wind tunnel 
flutter tests. 
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RESUME 

Nous presentons revolution de l'utilisation 
des methodes de C.F.D. dans notre Systeme 
d'analyse aeroelastique (ELFINI). 

Nous sommes partis d'un outil fonde sur le 
couplage d'un modele E.F. structural et 
d'un modele aerodynamique, issu de la 
theorie du potentiel lineaire, recale 
empiriquement (en particulier sur les essais 
en vol) ; le caractere lineaire de ces 
modeles permettant une organisation tres 
efficace des calculs (notions de «base de 
charges » et de « base aerodynamique »), 
avec un balayage tres peu coüteux de 
1'ensemble des configurations de vol ä 
etudier (Mach, altitudes, manoeuvres, 
configuration de masses et d'emports). 
Actuellement, en gardant la meme 
organisation, nous utilisons operation- 
nellement une methode Elements Finis 
Euler pour le calcul des effets de formes 
«initiales » et de mouvements « rigides ». 

Nous poussons maintenant nos develop- 
pements sur 2 axes principaux : 
- methodes « non lineaires » de couplages 
statiques et dynamiques directs avec 
modeles aerodynamiques par methode de 
potentiel non lineaire et surtout par 
methode Elements Finis Euler stationnaire 
et instationnaire, 
- methodes d' «Euler linearisees» au 
voisinage des solutions aeroelastiques 
statiques non lineaires precedentes. 

En conclusion, nous evoquons les grandes 
lignes de notre future organisation des 
calculs d'aeroelasticite qui devront etre 
plus precis tout en restant ä un coüt 
abordable. 

ABSTRACT 

We present the evolution of the use of 
C.F.D. methods within our system of 
aeroelastic analysis (ELFINI). 

We started from a tool founded on the 
coupling of a structural F.E. model and of 
an aerodynamic model, based on linear 
potential theory, empirically calibrated 
(mainly from flight tests) ; the linear 
character of these models allows a very 
efficient organization of calculations 
(notions of «load basis» and of 
« aerodynamic basis»), sweeping of the 
whole flight configurations (Mach, 
altitudes, maneuvers, mass and external 
store configurations) being inexpensive. 

Presently, keeping the same organization, 
we use an Euler F.E. method for effects of 
«initial» shapes and of« rigid » motions. 

Now we push our developments along two 
main directions : 
- « non linear » methods of direct static and 
dynamic coupling with aerodynamic model 
by non linear potential methods and mainly 
by steady and unsteady F.E. Euler method, 

- «linearized» Euler methods, in the 
neighbourhood of previous non linear static 
aeroelastic solutions. 

As a conclusion, we evoke the main 
features of our future organization of 
aeroelasticity analysis which would be more 
accurate while remaining « affordable ». 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation" 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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1. INTRODUCTION 

Au debut des_annees 90 nos outils d'analyse 
aeroelastique etaient globalement fondes 
sur le couplage de modeles dynamiques 
structuraux "Elements Finis" d'avion 
complet (voir planche 1) et de modeles 
aerodynamiques stationnaires et 
instationnaires issus de l'equation du 
potentiel linearise resolue par methode de 
singularity de "doublets" et "sources" (voir 
references 1, 2, 3), le modele aerodyna- 
mique stationnaire faisant systematiquement 
l'objet de recalages empiriques (experience 
des avions precedents, essais en soufflerie 
et surtout essais en vol, voir reference 4, 5). 

Ces modeles nourrissent l'ensemble des 
analyses ou intervient l'aeroelasticite : 

- Analyses de stabilite (divergence statique 
et flutter) 

- Modele de mecanique du vol "avion 
souple" et fourniture des Operateurs 
necessaires ä la mise au point du 
Systeme de Commande de Vol 
(fonctions de transfert entre les 
emplacements des verins de commande 
de vol et les capteurs des mouvements 
de l'avion, indicateurs de severite des 
charges, ...). 

- Calcul des reponses structurales en 
manoeuvre et selection des cas de 
charges dimensionnants. 

Une technique particuliere, rappelee au §2, 
permet, ä partir de la constitution initiale 
d'une "base de charges" et d'une "base 
aerodynamique", de balayer ä tres faible 
coüt les milliers de configurations ä 
examiner dans le domaine de Mach, 
altitudes, manoeuvres, configurations de 
masse et d'emports. 

La relative imprecision des modeles 
aerodynamiques theoriques utilises, surtout 
eh transsonique, avait deux inconvenients : 

- Le risque de decouvertes tardives de 
difficultes au niveau des essais en vol, 
coüteuses ä rattraper. 

- La necessite d'un nombre eleve de ces 
essais en vol pour assurer la 
qualification. 

L'espoir d'ameliorer cette situation est 
venue de l'emergence de modelisations 
aerodynamiques plus precises, en particulier 
les modelisations Elements Finis EULER, 
dont les coüts de calcul commencent ä etre 
abordables, meme pour balayer de multiples 
configurations d'avion complet avec 
emports (voir planche 2). 

Nous presentons ici la penetration de ces 
techniques C.F.D. dans notre processus 
actuel d'analyse aeroelastique, nous 
evoquons ensuite les developpements en 
cours. 

2. METHODE ACTUELLE OPERA- 
TIONNELLE EN AEROELASTI- 
CITE 

Elle est dans le prolongement de notre 
approche "classique" supportee par notre 
logiciel "ELFINI-AEROELASTICITY" 
(voir reference 1, 2, 3), basee sur le 
couplage d'un modele structural "Elements 
Finis" de l'avion complet (10000 ä 100000 
degres de liberte, exemple planche 1) avec 
des modeles aerodynamiques "linearises"; 
ces modeles sont maintenant de provenance 
mixte: 

- Methode Elements Finis EULER pour 
les efFets de forme initiale et les 
mouvements "rigides" 

- Methode de potentiel linearise pour les 
mouvements "souples" et les efFets 
instationnaires. 
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^organisation des calculs est resumee 
planche 3, le principe est d'effectuer les 
operations "lourdes" sur le modele 
structural "et sur les modeles 
aerodynamiques independamment de toutes 
les configurations de vol ä etudier (Mach, 
altitude, manoeuvres, masse et emports). 

Ces operations lourdes, de constitution des 
"base de charges" et "base aerodynamique", 
sont les suivantes: 

- Le calcul des deplacements du modele 
Elements Finis pour quelques centaines 
de chargements de base. Ces 
chargements de base correspondent ä 
des charges unitaires de pression ou 
d'inertie par zones; tout chargement 
statique ou dynamique peut etre 
represente par combinaison lineaire des 
chargements de base. 

- La construction du modele aerodyna- 
mique permettant d'exprimer les charges 
aerodynamiques stationnaires et 
instationnaires dans la base de charge 
precedente, en fonction du mouvement 
de l'avion. Ce mouvement est defini par 
une combinaison de formes de base 
aerodynamiques (mouvements rigides et 
deformes souples) independantes des 
degres de liberte du modele elastique. 
Par les methodes Elements Finis 
EULER, on calcule les efFets de formes 
initiales et de mouvement rigide 
(linearisation par difference entre 
2 positions), les conditions aux limites 
de paroi peuvent tenir compte de 
l'epaisseur de couche limite. Les effets 
de deformations "souples" stationnaires 
et les efFets instationnaires sont encore 
calcules par methode de potentiel 
linearise, les efFets instationnaires sont 
calcules dans le domaine frequence. 

- L'extraction, ä partir de ces modeles 
elastique et aerodynamique encombrants 
d'operateurs de base "condenses" 
contenant les seules donnees intervenant 
dans le couplage aeroelastique : 

• Matrice de rigidite et matrice de 
masse reduite dans la base de charge. 

• Operateur de lissage des deformees 
E.F. de base par les formes 
aerodynamiques de base. 

• "Indicateurs de Severite" des charges 
de base. 

A partir de ces Operateurs de base les 
calculs qui suivent sont tres rapides et 
permettent de balayer des milliers de 
configurations, ce sont: 

- L'elaboration des coefficients des 
equations de l'aeroelasticite statique ou 
dynamique pour les configurations de 
vol et de masse consideree. 

- Les analyses de stabilite (Divergence, 
Flutter). 

- Le calcul du mouvement de l'avion, en 
quasi statique ou en dynamique, avec le 
suivi des "indicateurs de severite des 
charges". 

- La selection des cas de charges 
dimensionnants. 

Le modele aerodynamique continue ä 
pouvoir etre recale sur les essais en 
soufflerie et surtout sur les essais en vol ä 
partir de mesures de jauges de contraintes 
(voir methode ^identification de modele 
presentee dans les references 4 et 5). 

Une technique de "linearisation par zone" 
permet de prendre en compte les non 
linearites aerodynamiques dues aux grands 
mouvements rigides (principalement sur 
l'efFet d'incidence et les braquages de 
gouverne). 

Nous presentons planche 4 des comparai- 
sons de resultats de ces modeles ä des 
resultats derives des mesures en vol; elles 
sont globalement satisfaisantes pour les 
configurations quasi statiques stationnaires. 



2-4 

Avec cette approche la presence de non 
linearite mecanique (exemple : jeux, effets 
de membrane, grandes rotations des 
gouvernes, non linearites hydrauliques des 
servocommandes, ...) se traite par 
integration directe dans le domaine temps 
apres "rationalisation" (approximation par 
equations differentielles) des forces 
aerodynamiques instationnaires initialement 
exprimees dans le domaine frequence 
(methode validee pour le calcul du flutter 
en presence de jeux mecaniques). 

3. PRINCIPAUX DEVELOPPEMENTS 
EN COURS 

Nous donnons la priorite ä l'analyse du 
domaine transsonique, grand badin et done 
incidences moderees qui est le plus critique 
pour les phenomenes d'aeroelasticite et 
pour lequel nous avons un bon espoir de 
developper des outils precis ä coüt 
d'utilisation abordable. 

Nous travaillons sur 2 families d'outils. 

3.1    Couplage      aeroelastique      avec 
C.F.D. non lineaire 

On explore 2 techniques de C.F.D. : 

- Formulation de potentiel non conservatif 
avec modele de differences finies 
(methode de Jameson, voir references 6 
et 7), avec nos outils stationnaires 
CITRON et instationnaires TCITRON ; 
les calculs sont rapides mais ne traitent 
que des ailes de forme simple. Ces outils 
nous servent ä la fois pour les 
benchmark de comparaison avec les 
methodes plus lourdes et surtout pour la 
comprehension generique des 
phenomenes. 

- Formulation d'EULER conservative avec 
modele d'Elements Finis non structure 
(voir reference 8) avec notre code 
EUGENIE qui se positionne comme 
notre outil de base permettant de traiter 
les formes les plus complexes 
(interaction   des   emports   des   avions 

militaires,   des   nacelles   moteurs   des 
avions civils). 

Dans les 2 techniques, les conditions aux 
limites, correspondant aux mouvements 
paroi et ä l'epaisseur de couche limite, sont 
modelisees par une technique de 
"transpiration" evitant un traitement de la 
deformation des maillages. 

Pour le couplage le comportement 
dynamique de la structure est condense par 
la construction d'un ensemble d'operateurs 
lineaires, fournis par ELFINI, dormant le 
deplacement des noeuds du maillage 
aerodynamique ä la paroi en fonction des 
pressions aux facettes de la paroi du 
maillage C.F.D. 

En statique la condition au limite de paroi 
est actualisee periodiquement au cours des 
iterations de l'algorithme de resolution des 
equations C.F.D.; en dynamique eile Test ä 
chaque pas de temps d'integration; dans les 
2 cas le coüt d'actualisation est negligeable. 

En statique comme en dynamique les 
Operateurs structuraux represented 
simultanement les mouvements solides 
(avions et gouvernes) et ceux des modes 
"souples". En statique ils incluent le calcul 
de l'equilibre en mecanique du vol pour les 
manoeuvres considerees. En dynamique ils 
peuvent integrer la representation du 
Systeme de Contröle de Vol, ils peuvent 
etre adaptes ä tout schema d'integration 
implicite desire. 

Nous presentons planche 5 un resultat type 
de calcul d'aeroelasticite statique avec 
CITRON; un point remarquable est que le 
surcoüt est nul par rapport ä un calcul paroi 
rigide, la reactualisation de la condition au 
limite de paroi pour l'aeroelasticite 
accelerant legerement la convergence de 
ralgorithme Jameson dans ce cas. 

Planche 6 nous presentons des compa- 
raisons de calculs instationnaires avec les 
mesures sur l'aile LANN (reference 9) pour 
des mouvements rigides de paroi; la non 
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prise en compte de la couche limite 
explique en partie l'imprecision relative de 
la position des chocs. 

Planche 7 nous montrons une suite de 
calculs de reponse dynamique sur une 
derive, en decä et au delä de la vitesse 
Flutter. On compare les resultats des codes 
TCITRON et EUGENIE, ainsi que le calcul 
de l'effet d'une protuberance en haut de 
derive avec EUGENIE. 

Pour une utilisation systematique en analyse 
de Flutter, supportant des iterations de 
conception d'un avion, l'utilisation des 
simulations dynamiques avec C.F.D. non 
lineaires est confrontee ä 2 difficultes : 

- Le coüt des calculs actuels et memes 
futurs, quand on envisage des analyses 
d'avion complet avec emports (maillage 
de l'ordre du million de noeuds) et le 
balayage d'un domaine assez large de 
configurations (Mach, altitude, 
manoeuvres, configurations massiques et 
emports,...). 

- Le diagnostique precis de l'instabilite de 
Flutter ä partir de l'examen de reponses 
temporelles, sachant que les methodes 
actuelles (methodes "polyreferences") 
utilisees pour l'analyse des mesures en 
vol presument a priori la linearite des 
phenomenes et necessitent des 
echantillons de mesure de plusieurs 
centaines de fois la periode des modes 
de vibration surveilles. 

G'est le besoin de contoumer ces 
2 difficultes qui nous a conduits ä etudier 
les methodes de C.F.D. "linearisee" que 
nous presentons maintenant. 

3.2    C.F.D. "linearisee" 

Ces methodes que nous preconisions dans 
la reference3 sont maintenant bien 
defrichees par l'ONERA (voir presentation 
de G.D.Mortchelevicz dans ce workshop). 
L'idee directrice est qu'il peut exister autour 
d'un etat d'equilibre statique un domaine de 
petites perturbations stationnaires ou 
instationnaires dans lequel les equations 
C.F.D. sont linearisables (developpement 
au 1er ordre des termes des equations au 
voisinage de la solution statique, voir 
principes en encadre). 

Principe general de linearisation en analyse numerique non lineaire 

Systeme d'equations non lineaires 
ä resoudre inHialement 

CD      R (W, X) - 0 W = Vecteur d'ftat 
A. =  Vecteur des « param&res » 

(ex. parametres de formes en C.F.D.) 

Souvent on s'interesse a des quantites i fonctions de If et X, sort :        <2>     s (if, \) 

Petites perhirbations au voisinage de la solution de (D et ®   If (x),  s (X) 

8R 
aw 

aR 
ax dX 

ds . M-dW aw 
ds 
ax dX 

@ ds- as 
ax 

as \aR l"' aR 
aw [aw J      ax a 

■♦ OU 

® ds - ds 
ax ~ 

\\ aR ]~'  as ) aR 
[[aw \,   aw,) ax 

dX 

dX 

[«l-l    SD 

— -T— 
im J   aX, 

—        est« gratuit» si (D a Hi resohi par methode de Newton - on a autant de seconds membres que de parametres X. 

Avec b formale ®, la partie coflteuse des calculs est l'operation     —    —-    - on a autant de seconds membres que de quantites turvies s 

*      Necessite que R(w,\) et J (If, X) soient continuei/denvables au voisinage du point w, \ (par exemple qu'on ne soit pas tres pres d'une bifurcation) 
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Nous developpons cette technique ä partir 
de notre outil EUGENIE ; nous presentons 
planche 8 une comparaison de resultats 
entre ces methodes "linearisees" et des 
calculs non lineaires "complets". 

En instationnaire, on calcule directement 
dans domaine frequence l'ensemble des 
reponses pour des mouvements 
harmoniques des formes aerodynamiques 
de base (deformees polynominales avec 
ELFINI); cela au voisinage d'un equilibre 
aeroelastique statique calcule en non 
lineaire ; ä partir de lä, la suite des calculs 
de Flutter est menee dans le cadre de l'outil 
ELFINI-AEROELASTICTY standard. 

Une Variante de cette approche linearisee 
est developpee pour le calcul des 
"sensibilites" (derivees des performances 
aerodynamiques par rapport ä des 
parametres de forme, voir principe en 
encadre page precedente), en vue 
d'integration ä notre outil d'optimisation des 
formes aerodynamiques. 

4.    CONCLUSION 

Nous voyons poindre une nouvelle 
generation d'outils pour l'aeroelasticite 
transsonique avec l'utilisation industrielle 
des codes couples Elements Finis elastiques 
EULER, reellement en support de la 
conception de nos avions. 

Pour le balayage de l'ensemble des 
configurations de vol, l'organisation des 
calculs restera proche de l'organisation 
actuelle ELFINI-AEROELASTICITY. 

L'outil EUGENIE "rigide" donne les effets 
de forme initiale et l'outil EUGENIE 
linearise stationnaire et instationnaire 
remplacera progressivement les methodes 
de singularites pour les effets de 
mouvements des formes aerodynamiques de 
base. 

Pour les points critiques on approfondira 
l'analyse par des calculs quasi statiques non 
lineaires avec  couplage  direct Elasticite- 

Mecanique du Vol - C.F.D. EULER (calcul 
pas plus coüteux qu'un calcul rigide); 
autour de ces points d'equilibre 
aeroelastique statique non lineaire la 
stabilite dynamique (Flutter) sera analysee ä 
partir de forces aerodynamiques instation- 
naires calculees avec EULER linearise. 

On fera appel aux methodes dynamiques 
non lineaire "completes" si on redoute des 
phenomenes engendrant des mouvements 
de moyennes ou grandes amplitudes comme 
des oscillations ä cycles limites liees aux 
mouvements de chocs. II faut cependant 
noter que, si on travaille en support de la 
conception des formes, ce type de 
phenomene pathologique est plutöt ä 
contourner en changeant le dessin qu'a 
analyser finement; pour la comprehension 
"generique" de ces phenomenes, l'outil 
rapide TCITRON peut etre pratique. 

Un point important ä traiter est la prise en 
compte des phenomenes visqueux, pour 
l'instant on effectue en statique une 
correction de la forme paroi de l'epaisseur 
de couche limite en jouant sur la condition 
de transpiration ; la validite de cette 
approche est ä verifier pour les calculs 
instationnaires, linearises ou non. 

Nous developpons aussi, ä plus longue 
echeance, le couplage aeroelastique avec 
les codes Navier-Stokes instationnaires, les 
premieres applications visees sont les 
interactions entre structure et ecoulement 
decolle. 
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Planche 1 

Maillage general d'un avion de combat 
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PLANCHE 2 
CALCULS EULER AVION COMPLET 

Mach =0.9 

Incidence = 0 
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PLANCHE 3 

« ELFINI AEROELASTICITY » ORGANIZATION 
(DIRECT COUPLING OF STRUCTURE F.E.A. AND C.F.D. TOOLS) 

Mass 
Model 

Elastic 
Model 

Aerodynamic 
Model 

1 1                 1 1 

Dynamic 
Model 

Coupling 
operators 

| 
1                   1 
Aeroelastic 
operators 

F.C.S 
Model 1 

Stability 
Analysis 

«— 

Calculation of 
Aircraft Motion 

1 
Load Sizing 

Calcu lation Loads 
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PLANCHE 4 
COMPARISONS CALCUL - VOL 

(EFFETS DE FORME INITIALE ET DE MOUVEMENT RIGIDE CALCULE PAR EULER) 

mx 

200 

150 

100 

50 

0 
C 

-50 

alpha = 1 rad 
mx voilure (m3) 

>v 
- calcul Euler 

- recalage 

0.5 ,1.0 mach 1.5 2.0 

20 T 

0 

-20°JO 

my -40 

-60 ■ 

-80 

-100 - 

alpha = 1 rad 
my voilure (m3) 

mach 

0.5 1.0 

\. 

15 -2J3, 
- calcul Euler 

- recalage 

12 

10 

X    6 

4 

2 

0 
0.00 

alpha = 1 rad 
x voilure (m) 

0.50 1.00 
mach 

1.50 2.00 

3.5 
3.0 
2.5 
2.0 
1.5 
1.0 f 
0.5 
0.0 

0.0 

alpha = 1 rad 
y voilure (m) 

- calcul Euler 
- recalage 

macr 1.5 2.0 

80 

60 

40 

20 

0 
C 

-20 

alpha = 1 rad 
fz voilure (m2) 

,*■ ^* ^ 

- calcul Euler 
I— recalage 

0.5 ,1.0 
mach 1.5 2.0 
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PLANCHE 5 
AEROELASTICITE STATIQUE AVEC CITRON 

Calciil Type de convergence Arret apres Temps moyen 

Sans Couplagc convergence > 236 Iters        1 64.9s 

Avcc Co»plage convergence > 1 216 Iters (-8.5%) 62.1s (-4.3%)    © 

Tableau 2 : Temps CPU cl'tin calctil Citron avec el sans coiiplage, avec ecriliire surficliier. Conditions : M=0.H. Inc=3 tlei;. PSA= lAtm. 
Frequence tie Conplage — 20 Iters. Ciitere cle convergence - 5e-6. Calcnl snr mi noeiul du SP2. 

0>Le Couplage Aeroelastique n'implique pas de coüts supplementaires. 
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COMPARAISONS AILE LANN 
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Aue Lann, y*950 mm Aite Lann. y=6S0 mm 
1             t     —1 1  

EUGENIE   
i                 1    i                   TCITRON   

Exp. •*•• 

/rU 

//   f\  1 
■»•'-T»-*"*'' 

Ale Lann, y*200 mm 

0.4 0.6 
x/c 

Partie reelle des Kv complexes (aile Lann), M«, = 0.822, / = 24/iz 

AHe Lann, y=950 mm 

15 I 1 ' 1 1  
0 0.2 0.4 0.6 0.8 1 

x/c 

Aile Lann, y=650 mm 

10 - : ; /V 

EUGENIE   
TCITRON   

Exp. -•■• 

rW»-4 
»'"ll^iTm»! 0 i^-^v5;.^"--.-.::.-^sa~^s 

:*^TS/      I 
-10 . : .V'»"JT I   I  

•20  | V    f  ;  

•30 I I  :  

40  i i—3 i ' 

Aüe Lann, y=200 mm 

-20 
0 0.2 0.4 0.6 0.8 1 0 

x/c 

Partie imaginaire des Kp complexes (aile Lann), Mx = 0.822,/ = 24hz 



2-14 

PLANCHE 7 
COUPLAGE DYNAMIQUE AVEC C.F.D. NON LINEAIRE 

Modes slrucliiraiix 1 ä 4. derive sans pod de cön l re-mesure 

Modes siniduraux I a   I. derive aver |)0(| ,)e com re-mesure 

DMto, Mach 0.9. D«*h», Madi 0.9. i Mm. Own*. M**i 0.9.1 Mm. 

OaritV.MKft0.9.4Miii. Own». Mach 0.9, Dcrivt, Mich 0.9,4 ■ 
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PLANCHE 8 
C.F.D. LINEARISEE 

Centered Peraire-Stoufflet (second order) - given incidence 

(3469 Nodes ; 6807 Elements) 

(122 Steps ;   .0000E+00 Run Time) 

Naca0012-M=0.7 

Q. 
O 

1 degre linearise 
Ecart 1 degre linearise - 0 degre non lineaire 

0 degre non lineaire 
1 degre non lineaire 

x/corde 
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SUMMARY 

This paper discusses recent applications of the ENS3DAE 
computational aeroelasticity method. In particular, it 
describes aeroelastic and unsteady aerodynamics 
calculations performed on wings with trailing edge control 
surfaces. These simulations include the investigation of 
control reversal for a structurally flexible wing with a 
deflected control surface, and a static and dynamic analysis 
of a rigid wing with an oscillating control surface. The two 
sets of calculations were performed independently on 
different wings using different grid topologies. The control 
reversal simulation represents an inviscid Euler static 
aeroelastic analysis of a thin wing with a rectangular 
planform. The geometry of this wing makes it suitable for 
computations using more approximate, inviscid 
aerodynamics methods. Thus, the results of the present Euler 
computations are compared with numerical data generated 
by a validated computational aeroelasticity code which uses 
a simpler aerodynamic formulation. The second illustrated 
case involves the simulation of a significantly more complex 
flowfield and the static and dynamic analyses of this 
geometry were performed using the viscous Navier-Stokes 
equation option in ENS3DAE. Results of both the steady 
and unsteady calculations on this wing are compared with 
existing experimental data. 

INTRODUCTION 

The ENS3DAE aeroelastic method1 has been in 
development and use since 1989 when it was delivered to 
the Air Force Wright Laboratory by the then Lockheed 
Aeronautical Systems Company. Since that time, a number 
of static and dynamic, rigid and aeroelastic test cases have 
been analyzed using the program and the code has been 
validated against existing computational and experimental 
data. Research using the code has focused on applying the 
method to problems whose geometric and/or aerodynamic 
complexity are suited to analysis using the Euler/Navier- 

Stokes equations2'3. Flows involving shock waves 
interacting with boundary layers, generation of vortices and 
separated boundary layers are among those that can and 
should be addressed using this class of method. These types 

of flows can be generated by vehicles operating deep in the 
transonic speed regime or at high angles-of-attack, or simply 
by geometric anomalies in the surface of the vehicle. An 
example of this latter mechanism is a deflected control 
surface. 

Nonlinear aeroelasticity with control surface deflection has 

been investigated by Batina, et al.4 and Guruswamy and 

Tu5, both using inviscid transonic small disturbance 
potential flow theory as their aerodynamic basis. Pitt and 

Fuglsang6 also investigated aileron reversal using this type 
of method. These simulations were performed on wings with 
thin airfoil sections and control surface deflections of one- 
half degree or less, thus avoiding violation of the inviscid 
small disturbance assumptions inherent in the aerodynamic 
analysis. The first application described in this paper 
examines the static aeroelastic deformation of a thin wing 
with a small control surface deflection. Control effectiveness 
and reversal is predicted using the Euler equation option of 
ENS3DAE and results are compared with those of 
Andersen, et al.'s7 CAP-TSD8 transonic small disturbance 
equation analyses. 

Larger control surface deflections and thicker wing sections 
require higher-order aerodynamic simulations since inviscid 
methods classically overpredict the effectiveness of the 
control surface for these cases. Under these conditions, 
strong shocks and separated flow can form on the control 
surface. In addition, the sharp edges of the control surface 
combined with its increased loading can form local vortices 
which can interact with the rest of the lifting surface 
flowfield. In general, prediction of these features requires a 

viscous simulation. Obayashi9'    has investigated a 
semispan wing and a full-span wing/fuselage configuration 
with oscillating control surfaces using three-dimensional 
Navier-Stokes aerodynamics. Both of these simulations 
modeled a thin wing with a trailing edge control surface. 
The full-span computations involved large control surface 
deflections, and complex interactions between the wing and 
control surface vortices were observed. The second case 
presented in this paper uses ENS3DAE to perform a viscous 
calculation for a wing with a simpler planform and a thick 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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airfoil section. Both static and oscillating trailing edge control 
surface deflections are simulated, and the unsteady 
computations are performed at a much lower reduced 
frequency than the referenced computations. These 
computations are compared with experimental benchmark 
data. Of particular importance are detailed comparisons of the 
unsteady pressure distributions due to control surface 
oscillation with unsteady experimental pressure data. 

ENS3DAE AEROELASTIC METHOD 

ENS3DAE solves the full three-dimensional compressible 
Reynolds averaged Navier-Stokes equations using an implicit 
central finite difference approximate factorization algorithm. 
The method accepts either single or multiple block curvilinear 
grid topologies and can be run in a steady state or time- 
accurate mode. Turbulence characteristics are predicted using 
the Baldwin-Lomax algebraic turbulence model or the 
Johnson-King model. For the present calculations, the 
Baldwin-Lomax model is used with transition assumed to be at 
the leading edge of the wing. A multigrid option for steady 
flows has recently been added to the method and the code has 
been explicitly written to take advantage of vectorization. 
Directives for parallel operation on shared memory processors 
are also included in the programming. 

A linear generalized mode shape structural model is closely- 
coupled with the aerodynamic method to analyze structurally 
flexible vehicles. Since dynamic aeroelastic and oscillating 
control surface simulations require grid models that deform in 
time, a Geometric Conservation Law (GCL) patterned after 
that recommended by Thomas and Lombard11 has also been 
incorporated in the code. 

In the interest of brevity, the details of the numerical algorithm 
will not be discussed in this paper, and the reader is referred to 
Reference 1 and Reference 2 for a detailed description of the 
method. 

WING GEOMETRIES 

The wing geometries chosen for these studies are shown in 
Figure 1. Both have a rectangular planform and constant airfoil 
section from root to tip with no twist. The wing used for the 
static aeroelastic calculations is patterned after the so-called 

heavy Goland wing.12 In this paper, the wing is simply referred 
to as the rectangular wing. This wing has a semispan of 20 feet 
and a chord of 6 feet. It includes a 25% chord trailing edge 
control surface, designated by the shaded area in the figure, 
that extends from the wing midspan to the tip. The airfoil for 
this wing is a 4% thick symmetrical parabolic arc section. 

The oscillating control surface case was performed on the 
NASA Langley Benchmark Active Controls Technology 
(BACT)13 wing. The BACT model is also a rectangular wing 
with a NACA 001214 airfoil section. The wing has a semispan 
of 32 in., and a chord of 16 in. It is fitted with a trailing edge 

Flow 

1     Rectangular Wing 

BACT Wing 

Figure 1.     Planform views of rectangular 
and BACT wings. 

control surface which extends from 45% span to 75% span and 
has a chord of 25% of the wing chord. The wind tunnel model 
also had upper and lower surface spoilers which are not 
depicted in the figure and were not simulated in this analysis. 
Experimental data for this wing included overall wing forces 
and moments as well as unsteady pressures. A row of pressure 
taps were located on the upper and lower surfaces of the wing 
at 60% span, which coincides with the spanwise center of the 
aileron. Pressures were measured from the wing leading edge 
to the trailing edge at this wing station. In addition, a second 
row of pressures were located at 40% span. At this location, 
upper and lower surface pressures were measured from 60% 
chord to the wing trailing edge. 

Geometry Modeling and Grid Generation 

Due to the differences in airfoil section, different grid 
topologies were used to model the two wings. Since the 
rectangular wing has a thin sharp-edged airfoil, a multizone H- 
H grid topology is employed for this lifting surface. A 
planform view of the grid for this configuration is shown in 
Figure 2. This figure is arranged vertically so that the wing 
root is at the bottom of the figure and the wing tip is at the top. 
The wing is modeled using two grid zones, one for the 
flowfield above the wing surface and the other below the wing. 

Each zone consists of 120 points in the streamwise direction 
with 61 points distributed from the wing leading edge to the 
trailing edge. There are a total of 41 spanwise points with 33 of 
those stations extending from the wing root to the wing tip. 
Each zone uses 50 points normal to the wing surface to 



3-3 

25 
Rectangular Wing 

Half-finan Flan 

20 

c/ \rv p Generated H-H Grid 

15 
■ I III I IIBü- 

10 

(o IB III I DI 0) 
~ö ■IIIIIIIIIIIIIHI ■o _ 

5 
m Illlllllllllllll 
o> I             It c Ml 

u 
O) 
C    " 

. Symmetry _ CO   ■                   ■ 
® 1          tit 

« 

n 
rial c _UL 

10 15 

Figure 2. 
x (feet) 

Planform view of rectangular wing grid. 

complete the flowfield model. Thus a total of 492,000 grid 
points are used for this Euler simulation. The spanwise 
distribution of points was taken from the CAP-TSD grid used 
in Reference 7 so that a direct comparison could be made 
between ENS3DAE and CAP-TSD. 

Figure 3 displays a section of the H-grid through the middle of 
the flap on the rectangular wing with the flap deflected one 
degree. Grid points are clustered at the wing section leading 
and trailing edge as well as near the control surface hinge line. 
The first grid line parallel to the airfoil surface is placed 0.0025 
chords from the surface which is sufficiently close to the wing 
for the inviscid calculations to be performed on this geometry. 

Figure 3.    H-grid through rectangular wing section. 

Since the B ACT wing has a blunt leading edge, twelve percent 
thick airfoil section, a C-H grid topology is used to model this 
configuration. This grid consists of a total of 332,469 grid 

points distributed with 153 points in the wraparound or "C" 
direction, 53 points in the spanwise, or "H" direction, and 41 
points from the wing surface to the outer boundary. An 
isometric view of the B ACT surface grid with the aileron 
deflected -5° is presented in Figure 4. The grid lines are placed 
in the spanwise direction so as to accurately define the edges of 
the trailing edge control surface. In addition, there is a grid line 
precisely at 40% and 60% span so that a direct comparison can 
be made with available experimental data. The streamwise 
distribution of grid points is also tailored to accurately model 
the aileron hinge line. 

BACT Wing 

«All. = -5° 

Figure 4.     Isometric view of BACT wing surface 
grid, 8AiL = -5.0°. 

A side view of the viscous grid through the 60% span station is 
shown in Figure 5. The nominal wall spacing normal to the 
wing surface is 0.0002 chords at the leading edge, linearly 
increasing to 0.003 chords at the trailing edge. This spacing 
generates y+ values less than 6 over the entire surface of the 
wing. This ensures that at least one grid point will be within 
the laminar sublayer of the boundary layer, which is required 
for accurate application of the turbulence model. The aileron 
deflection for the static cases is obtained by preprocessing the 
airfoil sections used to define the wing surface. A rigid body 
rotation of the trailing edge portion of the airfoil sections at the 
inboard and outboard edges of the control surface is performed 
to define new airfoil contours at these wing stations. The 
airfoils just inboard and just outboard of the aileron are left 
unchanged. The flowfield grid is then generated about this 
modified geometry using the same techniques as for the case 
where the aileron is not deflected. This effectively shears the 
baseline grid in the vicinity of the aileron to define the 
deflected control surface geometry. This method is simple and 
very efficient to implement. However, it results in a model 
which does not have gaps between the control surface and the 
main wing. This is not a significant problem in this analysis 
since these gaps are very small on the BACT model. This 
approximation also is more significant when large control 
surface deflections are to be simulated, but in this analysis our 
deflections have been limited to five degrees or less. 

For cases where the aileron is oscillated, a mode shape 
describing the aileron deflection is input directly into the 
ENS3DAE program. The undeflected grid is used as the basis 
for the aerodynamic solution. The grid is deformed in time by 
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Figure 5.     BACT airfoil section grid, 8Ai| = 5.0°. 

superimposing the aileron deflection mode shape on the 
baseline grid and using ENS3DAE's built-in grid motion 
capability to deflect the grid. Again, this method effectively 
shears the grid in the vicinity of the aileron and control surface 
gaps are not simulated. The mode shape is also defined as a 
deflection only in the vertical direction, so the chord of the 
control surface is stretched as the aileron is deflected. For 
small deflections, this stretching is negligible. 

RESULTS 

Static Aeroelastic Analysis of the Rectangular Wing 

The rectangular wing was analyzed using the inviscid Euler 
equation option in ENS3DAE. The flow conditions for the 
analysis are Mach 0.7, zero degrees angle-of-attack and a static 
control surface deflection of one degree. The beam structural 
model of Reference 7 was used for all structurally flexible 
calculations performed on this wing. 

An initial static rigid calculation was performed at the 
reference conditions to establish a basis for aileron control 
effectiveness. A series of structurally flexible simulations were 
then performed at steadily increasing dynamic pressure. The 
rolling moment at each dynamic pressure was computed and 
the ratio of the flexible rolling moment to the rigid rolling 
moment was calculated. A plot of this ratio as a function of 
dynamic pressure is presented in Figure 6. Included on this 
figure are CAP-TSD results from Reference 7. Control reversal 
occurs when the control effectiveness ratio becomes negative, 
as shown in the figure. ENS3DAE predicts a control reversal 
dynamic pressure of approximately 310 pounds per square foot 
(psf) compared to CAP-TSD's prediction of 335 psf or an eight 
percent difference. The ENS3DAE and CAP-TSD results were 
computed with the same spanwise grid distributions, and 
similar streamwise grid point distributions. However, 
ENS3DAE's vertical grid resolution in the vicinity of the wing 
surface was finer than that used in the original CAP-TSD 
analysis shown as the upside down triangles in the figure. The 
CAP-TSD computation was rerun for dynamic pressures of 

250 and 300 psf using the Euler analysis normal grid 
distribution. These results are shown as the diamonds in the 
figure. For this grid, CAP-TSD predicts an estimated reversal 
dynamic pressure of 319 psf which compares to within three 
percent of the Euler results. These results illustrate that grid 
refinement plays a significant role in this analysis and further 
investigation into these effects are under way. 

Figure 7 compares the ENS3DAE and CAP-TSD pressure 
distributions as a function of the streamwise coordinate along 
the midspan of the flap for the 300 psf dynamic pressure. The 
Euler analysis is depicted by the solid line, while the CAP- 
TSD analysis is shown by the symbols. These pressure 
distributions were chosen since they are near the point of 
reversal. The CAP-TSD and Euler calculations compare very 
closely for this case, as would be expected for this 
configuration at these flight conditions. In general, the Euler 
analysis predicts sharper, deeper pressure peaks in the vicinity 
of the wing leading and trailing edges, and at the control 
surface hinge line. These results provide confidence that the 
ENS3DAE method is predicting accurate results for relatively 
benign flight conditions, and we are ready to apply the method 
to more challenging problems. Transonic and low supersonic 
calculations are currently being computed using ENS3DAE, 
and these data will be similarly compared with CAP-TSD 
results. 

BACT Wing Static Analyses 

Static and dynamic rigid calculations were performed on the 
BACT wing with ENS3DAE providing viscous full Reynolds- 
averaged Navier-Stokes simulations. These calculations were 
compared with experimental data acquired in heavy gas in 
NASA Langley Research Center's Transonic Dynamics 
Tunnel (TDT). The nominal flight conditions for these 
calculations are Mach 0.77 and a Reynolds number of 
280,000/ft., which coincide with the test data acquired in the 
TDT. 

Prior to computing the flowfield for the wing with the deflected 
aileron, a number of calculations were performed on the basic 
wing without control surface deflection. Inviscid Euler and 
viscous Navier-Stokes calculations were performed on the 
wing for both nonlifting and lifting cases. Detailed description 
of the Euler computations have been omitted from this 
discussion, but there are several notable features of the Euler 
analysis which should be addressed. As expected, shock 
strength was greater for the inviscid calculations, and the 
shock was displaced aft of the viscous analysis. Viscous effects 
were also clearly visible in the surface pressure distribution 
near the trailing edge of the wing. In this region, the inviscid 
pressures recovered to a significantly higher stagnation 
pressure than their viscous counterparts. This difference is due 
to the thickening of the boundary layer near the trailing edge, 
which tends to flatten the curvature of the airfoil in this region. 
This effect is even more pronounced when the control surface 
is deflected, and is the primary reason why inviscid methods 
cannot generally be applied to this problem. 
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Figure 6.    Aileron control effectiveness as a function of dynamic pressure 
for the rectangular wing, M=0.7, a=0.0°, 8Ai| =1.0°. 
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Figure 7.     Rectangular wing pressure distribution near reversal, M=0.7, 
oc=0.0°, 8Ai| =1.0°, q=300 psf. 
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Figure 8 presents the viscous computation of the flow at 
M=0.77, and zero degrees angle-of-attack. For this nonlifting 
case, the computations compare relatively well with the 
experimental data acquired in the TDT. The theory predicts a 
slightly lower pressure on the forward portion of the wing at 
the 60% span station, but the pressures on the remainder of the 
wing are in good agreement with the experimental data. 

ENS3DAE calculations are compared with experimental data 

at M=0.77 and oc=3° in Figure 9. At these conditions, a shock 
on the upper surface is clearly visible in both the theoretical 
and experimental data. The lower surface pressure distribution 
and the pressures behind the shock are accurately predicted by 
the theory. However, the pressure distributions do not compare 
well on the forward portion of the wing upper surface. This 
area is usually insensitive to viscous effects since the boundary 
layer is thin and the flow is experiencing a favorable pressure 
gradient. However, a sharp increase in the experimental 
pressure is observed on the 60% span upper surface at 5% 
chord. This sudden increase is speculated to be due to the 
transition strip on the model, and the strip could be affecting 
the flow downstream. The theory accurately predicts the 
pressure forward of 5% chord. A second possibility for this 
poor correlation is aerodynamic interactions between the 
model and the wind tunnel which are not accounted for in the 
analysis. In addition to the wind tunnel walls, there are several 
model support components including a splitter plate, and an 
instrumentation housing which add to the blockage of the 
tunnel. All computations to date have been performed without 

modeling the wind tunnel walls or support structure. 

Static calculations were also performed with aileron deflection. 
Figure 10 shows the pressure distribution for an ENS3DAE 

Navier-Stokes calculation at M=0.77, oc=0.0°, and 8Ail =5.0°. 
At these conditions, lift is generated by the wing due to the flap 
deflection. Once again, the theoretical and experimental 
pressures agree well on the aft portion of the wing, and on the 
entire lower surface. However, as with the previous lifting 
cases, the upper surface pressure on.the forward portion of the 
wing does not agree well with the experimental data. The 
theory predicts a consistently lower pressure on this part of the 
wing. 

ENS3DAE was run for a total of 2000 iterations for these 
steady Navier-Stokes analyses, and the L-2 norm of the density 
residual is reduced by approximately 2.5 orders of magnitude 
during this period. By iteration 2000, oscillations in the lift and 
pitching moment coefficient have reduced to a very small 
amplitude and can be considered at a steady state for this 
analysis. Noticeable oscillations in the drag coefficient were 
still present at this point in the solution. To further investigate 
the convergence characteristics of this problem, a viscous 

solution at a=2° was run a total of 4000 iterations and the drag 
was shown to reach a steady state at approximately 2500 
iterations. The differences in the pressure distributions 
between 2000 and 4000 iterations were virtually indiscernible. 
Therefore, for the purposes of this study, all static simulations 
were assumed to be at a steady state after 2000 iterations. 

BACT ENS3DAE Analysis 
M=0.77, o=0.0°, 5ail=0.0° 

  ENS3DAE, Navier-Stokes 
□ TDT Data - Upper Surface 
A TDT Data - Lower Surface 
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Figure 8.    Steady viscous pressure distribution on BACT wing at 
M=0.77, a=0.0°, 8AN =0.0°. 
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BACT ENS3DAE Analysis 
M=0.77, cc=3.0°, 8^ =0.0° 
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Figure 9.    Steady viscous pressure distribution on BACT wing at 
M=0.77, a=3.0°, 5AiL=0.0°. 

BACT ENS3DAE Analysis 
M=0.77, a=0.0°, 5^, =5.0° 
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Figure 10.   Steady viscous pressure distribution on BACT wing at 

M=0.77, 0=0.0°, 8A|| =5.0°. 
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Unsteady Analysis of BACT Wing with Oscillating Aileron 

Unsteady simulations have been performed by harmonically 
oscillating the BACT aileron at a specified frequency. The 
unsteady computations are performed by using a steady 
solution about the baseline condition without aileron 
deflection, then impulsively starting the aileron oscillation. 
The solution is allowed to run until a total of three cycles of 
aileron oscillation are completed. For the simulations 
presented in this paper, the aileron is oscillated sinusoidally 
with an amplitude of two degrees at a frequency of five Hertz 
(Hz), which corresponds to a reduced frequency of 0.056 
based on wing semichord. 

An initial calculation was performed using a nondimensional 
time step of 0.1172 which for this problem is a CFL number of 
approximately 90 based on the global minimum time step for 
this grid. This CFL number is well beyond where we had 
previously run the code, and we felt that these conditions 
might be near the algorithm's stability limit. With this time 
step, one cycle of aileron oscillation at 5 Hz requires 10,000 
time steps. Thus, it required 30,000 time steps to complete the 
three cycles of motion. Once this initial transient was 
successfully completed, we searched for the largest time step 
we could take and have the code remain stable. We were 
ultimately able to double the time step to 0.2344, which gave 
us a CFL number of 180 and reduced our run time to 5,000 
time steps per cycle of aileron oscillation. Upon comparing 
these two analyses, no noticeable differences in the results 
were observed. 

Figure 11 shows the unsteady pressure at 60% span and 23% 
chord for the 5,000 time step per cycle simulation. The 
pressure is plotted against nondimensional time, and the 
aileron deflection angle as a function of time is included at the 
bottom of the figure. Following an initial transient due to the 
impulsive start of the aileron oscillation, the pressure at this 
station quickly becomes sinusoidal and by the end of the first 
cycle of aileron oscillation, it has stabilized into a clean 
periodic form. The pressure distributions due to the second and 
third cycles of aileron motion are virtually identical giving us 
good confidence that the solution has reached a stable periodic 
response by the end of the second cycle of aileron deflection. 
Pressure distributions at other wing stations show similar 
character. 

The unsteady pressures at the 40% and 60% span station were 
analyzed by taking the Fast Fourier Transform (FFT) of the 
pressures during the third cycle of aileron motion and scaling 
the real and imaginary components by the amplitude of the 
aileron deflection. In the following figures, the real component 
of the unsteady pressure represents the pressure perturbation 
that is in-phase with the aileron motion, while the imaginary 
component represents the pressure perturbation whose phase 
lags the aileron motion by ninety degrees. In addition, the 
mean pressure coefficient has also been extracted from the 
unsteady pressure. 

BACT Unsteady Pressure Data 
M=0.77, oc=0.0°, 8AU=2.0o, /=5 Hz. 
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Figure 11.   Unsteady BACT pressures M=0.77, 
oc=0.0°, 6Ai| =2.0°, /=5 Hz. 
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Figure 12 compares the predicted mean pressure coefficient for 
the unsteady analysis with the TDT experimental data. The 
agreement for this case is similar to that obtained for the steady 
analysis. This figure is significant since this is a comparison of 
mean values extracted from the unsteady pressure data. This 
pressure distribution is an important contributor to the overall 
pressures computed by the analysis method, which is often 
overlooked when evaluating unsteady simulations. The 
favorable mean pressure comparison with experimental data is 
the first indicator that the computational method is providing 
an accurate temporal simulation. If there were errors in the 
temporal algorithm they would very likely be uncovered by 
this comparison. 

Figure 13 compares the in-phase and out-of-phase perturbation 
pressures at the 40% span, while Figure 14 presents this same 
comparison at 60% span. Both of these figures show that the 
pressure coefficient response to the aileron deflection is 
primarily in-phase with the aileron motion since the real 
components of the pressures are noticeably larger in amplitude 
than the imaginary components. The comparison of both the 
real and imaginary components of pressure with the 
experimental data are very good at the 40% span station. The 
comparison is also good for the real pressure at 60% span from 
60% chord aft. In Figure 14 a definite jump in the experimental 
real component of the pressure can be seen at 60% chord. The 
aileron extends from 75% chord aft, and the agreement 
between theory and experiment on this portion of the wing is 
excellent. The BACT also has a deployable spoiler at this 

station which extends from 60% chord to 75% chord. The 
pressure distribution comparison in this area is also very good. 
The wing ahead of 60% chord is fixed and does not house any 
control surfaces. It is in this area that the theory and 
experiment do not compare well. The sharp jump in the 
experimental data at 60% chord combined with the excellent 
agreement between theory and experiment on the spoiler and 
oscillating aileron suggest that there may be ah anomaly in the 
experimental data where the model transitions from the fixed 
portion of the wing to the control surfaces. However, a 
preliminary investigation into the experimental data has not 
uncovered any obvious deficiencies. Investigations with other 
numerical methods may provide further insight into these 
differences, and these calculations are planned for the near 
future. 

CONCLUSION 

The ENS3DAE computational aeroelasticity program has been 
applied to the static aeroelastic and the unsteady aerodynamic 
analysis of two rectangular wings. Both wings included 
trailing edge control surfaces, which were deflected during the 
analysis. The static aeroelastic calculations investigated 
control reversal on a thin wing with a parabolic arc airfoil. 
Results of this study have been compared with results obtained 
using the CAP-TSD computational aeroelasticity program, 
which is based on transonic small disturbance potential flow 
aerodynamics. Detailed comparisons of the pressure 
distributions at the mid-span of the control surface show 

Unsteady BACT ENS3DAE Analysis 
M=0.77, cc=0.0°, bM =2.0°, /=40 Hz. 
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Figure 12.   Mean unsteady BACT pressures, M=0.77, a=0.0°, 
8AN =2.0°, /=5 Hz. 
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Unsteady BACT ENS3DAE Analysis 
M=0.77, a=0.0°, 5Ail =2.0°, /=5 Hz. 
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Figure 13.   Unsteady BACT pressures M=0.77, a=0.0°, 5Ai| =2.0°, 
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expected excellent agreement between the ENS3DAE Euler 
equation analysis and CAP-TSD. The control reversal dynamic 
pressure predicted by ENS3DAE is approximately three 
percent lower than that computed by CAP-TSD. This 
parameter has been shown to be sensitive to the distribution of 
grid points in the CAP-TSD analysis and further grid 
resolution studies on both methods are currently underway! 

Steady and unsteady Navier-Stokes equation calculations were 
performed on the BACT wing with a fixed and oscillating 
trailing edge control surface. Computed results have been 
compared with experimental data obtained in NASA Langley's 
Transonic Dynamics Tunnel. Cases where the flow is primarily 
subsonic over the entire surface of the wing section compare 
very well with experimental data. However, cases involving 
transonic flow show a discrepancy in the pressures on the 
forward portion of the airfoil upper surface and in the shock 
strength and location. Transonic pressures ahead of shock 
waves are typically well-predicted by computational methods, 
leading us to believe that there may be complex interactions 
between the wind tunnel and the model that are not accurately 
accounted for in our numerical analysis. Mean pressures from 
the unsteady aileron deflection analysis compare very well 
with the experimental data. The in-phase component is the 
main contributor to the unsteady pressure perturbation, and 
these computations compare closely with the TDT data from 
60% chord aft. Differences on the forward portion of the wing 
similar to those observed in the steady analysis are also present 
in the unsteady perturbation pressures. The out-of-phase 
pressure component is considerably smaller in magnitude than 
the in-phase component, and given these small values, the 
comparison between theory and experiment is reasonable. 
Further calculations modeling the wind tunnel walls and 
support structure are required to investigate the transonic 
differences between the theoretical and experimental data. 
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Abstract 

A new, efficient, and at the same time most precise 
calculation method for unsteady aerodynamics is pre- 
sented in this paper. It is called the "virtual grid de- 
formation" method. The time-dependent grid defor- 
mation is observed virtually and without restriction, 
meaning that this method is also valid for high deflec- 
tions and large amplitudes, respectively. This method 
is applicable to the conservation laws of fluid flows 
which are solved by a finite volume scheme and by a 
time-stepping procedure. Numerical results of a stan- 
dard wing in steady and unsteady flow are compared 
with available measurements. 

Symbols and Definitions 

a 
A 

Ci, C„ 

2TO'oo 
P  cn = T 

Cn = TT 

e 
F,G,H 

IR 

p 
>V*A 

l» = %f°sl
2dy 

M = \ 
N = [Nx,Ny,Nz 

P 
P 
q,r 
Re 

speed of sound 
wing surface 
local lift and momentum 
coefficient 
total lift and momentum 
coefficient 
pressure coefficient 

local power coefficient 

total power coefficient 

total energy 
flux vectors in the x, y, z 
directions 
Jacobian of a functional matrix 
local profile length 
characteristic length, root profile 
chord 

characteristic length, 
mean aerodynamic chord 
Mach number 
normal vector to a coordinate 
surface 
pressure 
power 
interpolation functions 
Reynolds number 
semi span width 

[T] 
U 

V = [u, v, w] 

Vkin = [i,y,z] 

« = £ 
XR,ZR 

01,0,1 

«0 
«1 

p 
T = 

JL 
IR' 

tu 

U) 

■W 

Subscripts 

0 
1 
i,j,k 
oo 

Superscript 

rotational matrix 
vector of the conservative 
variables 
vector of the Cartesian velocity 
components 
relative velocity in fixed 
reference system 
non-dimensional Cartesian 
coordinates 
coordinates of the rotation axis 
rotational angles around the 
y,z,x axis 
steady angle of attack 
pitch amplitude 
density 
non-dimensional time 

circular frequency 

reduced frequency 

lower or left boundary 
upper or right boundary 
spatial indices 
undisturbed free-flow condition 

time level 

1    Introduction 

In the following, a theoretical flow procedure which 
occurs in the transonic speed range of modern com- 
mercial aircraft is researched. One main point is the 
calculation of periodic motion-induced air forces in or- 
der to identify unwanted aerodynamic instabilities for 
an entire configuration as well as for individual com- 
ponents. The goal is to integrate the aerodynamic 
stability of the wings of future commercial aircraft at 
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an early stage in the design. The requirement for this 
is a systematic study of the geometry and the elastic 
mode shapes of the wing and its influence on aerody- 
namic stability. 

Transformation of the basic equations of fluid dynam- 
ics into a time-dependent boundary-fitted coordinate 
system enables the calculation of flows around any 
body which has time-dependent surfaces. This, in par- 
ticular, enables the simulation of elastically oscillating 
wings in transonic flow. 

Of particular interest is the implementation of the grid 
motion in the numerical algorithm. A natural proce- 
dure arises when computational grids are generated 
with regard to the time-dependent boundary condi- 
tions. They can be made available in two different 
manners: 

- The grid is generated at each time step by sufficient 
iteration steps. 

- The grid is generated for the extreme positions of 
deflections, and the positions in between are inter- 
ploated. 

In these general methods, all of the metric terms and 
corresponding vector products have to be recalculated 
for each time step, which is time consuming. This 
major disadvantage holds true even in the case of re- 
stricting the grid generation to the extreme positions 
of deflection. These methods of dynamic grid imple- 
mentation are the basis for the current numerical al- 
gorithm for unsteady fluid dynamic and aeroelastic 
problems. It was realized for two-dimensional meshes 
by Batina [2], Hoffren [6], and Voss, Carstens [16] and 
was extended to three-dimensional meshes by Ander- 
son, Thomas, Rumsey [1]. 

An alternative procedure is explained in this paper: 
Extracted from the grid motion are those values which 
express the temporal changes of the metric terms. The 
extracted values are represented analytically as a func- 
tion of the spatial coordinates of the computational 
domain and of time with regard to the time-dependent 
boundary conditions. These are taken into account in 
the numerical solution algorithm at every time step. 

In this new method only the information of the moving 
grid required for the numerical algorithm is used. De- 
tailed information on the geometric positions is not 
necessary. This is quite understandable: The basic 
equations are those of differential equations and the 
metric terms always appear as differentials. Since the 
time-dependent positions of the grid points are not 
taken into account in the numerical algorithm, the 
grid motion can be regarded as virtual mapping. For 
this reason, the method is advantageous: 

• The basic grid is always the same boundary-fitted 
grid of the initial steady state solution 

• The numerical algorithm is computationally time 
efficient and does not limit the quality of the so- 
lution. 

The solution algorithms of both methods are different 
in the case of a dynamically deforming grid, yet their 
solutions are identical. 

2    Basic Equations 

Basically, first-order hyperbolic conservation laws 
which are derived from physical principles of conserva- 
tion and which can be written in the so-called strong 
conservation law form below are considered: 

dU     d£     dG     dH 

dt + dx + dy+ dz ~ 
(1) 

The   transformation   from    Cartesian   into   time- 
dependent, boundary-fitted coordinates 

x = x(t,Ti,£,T) t = Z(x,y,z,t) 
V = v(Z,ri,C,T)   «+   r) = ri(x,y,z,t)   ,r 
z = z(t,ri,C,T) C = C(x,y,z,t) 

(2) 

is a unique mapping if the Jacobian J of the transfor- 
mation at each location is not equal to zero: 

J = 
d(x,y,z) 

d(t,V,Q 

H Ju<n        "^C 

v« Vr,    y< 
zi zv     ZQ 

(3) 

Then the transformation again leads to a system of 
strong conservation law form: 

dU     d£     dG     dH _ 

It + 0£ + dr] + at ~ 
(4) 

The transformed equations can be expressed by the 
following relations: 

U = J-U 
F = J-[F,G,H]-N(0 + J-U-tt 
G = J -[F,G,H}- N(ri) + J -U ■ r]t 

H = J-[F,G,H]-N(0 + J-U-Ct 

(5) 

which again will be emphasized in the following state- 
ment: 

The transformation of hyperbolic conservation laws 
into curvilinear coordinates is represented as the lo- 
cal Jacobian J, as the normalized normal vectors JN 
which belongs to all of the tangential areas of the 
curvilinear coordinates £, rj, £, and as their normalized 
relative velocities. 

The components of the co- and contravariant basis 
vectors are: 

SX   — J ! 
    Zr)xC     XV^C . 

v — J > 
e    — xvVC-Vnx( . 
Sz — J ) 

„   _ zevc-ve*< Tlx — j 

'IV — J 
Tlz — J 

J Cx 

Cy — j 
/■   _ xeyn-y(Xv 

S.z - J 
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as well as 

& = -£XXT ~ tyVr - izZT 

Vt = -VXXT - VyVr - VZZT 

Ct = -CXXT - CyVr ~ (ZZT 

(7) 

(1) Examples of fluid flow modelling 

As a particular example, the Euler equations, the ba- 
sic equations of inviscid fluid motion, are regarded. 
Then U describes the vector of the so-called conserva- 
tive flow variables and F, G, H describe the fluxes in 
all coordinate directions, the components of which are 
developed by the conservation laws of mass, momen- 
tum, and energy: 

U 

G = p 

1 u 
u u2 + p/p 

= p V ; F = P uv 
w uw 
e [e + p/p] u _ 

V ■w 

vu wu 
v2 + p/p ; H = p wv 

vw w2 + p/p 
e+p lp]v _ [e+p/p]w 

(8) 

Body forces, which are due to gravitation, and rates 
of heat, which are due to thermal conduction and dif- 
fusion, can be neglected in this particular application 
of gas dynamics. The necessary closing condition is 
fulfilled by the equation of state with which a caloric 
and thermal perfect gas can be assumed. 

The representation of the transformed basic equa- 
tions into a strong conservation form eq.(4) was first 
achieved by Viviand [15] and Vinokur [14]. 

(2) Transformation of the normal vector 

The transformation of the basic equations into 
boundary-fitted coordinates can be expressed by the 
normal vectors of the areas £ = const., n = const., £ = 
const. In this section the time-dependency of the nor- 
mal vectors is extracted. 

In the following, iV(£) = grad£ denotes a non- 
normalized normal vector of the area £ = const. Ni 
denotes a normal vector normalized to the Jacobian 
J. The standard normalization is integrated as a 
special case. For example, when regarding the area 
£ = const., the following is obtained: 

N(0 = 
tx 

Ni(0 = 

N{£) = J- 
6 

ft 
2+a+ez 

Zx 

Zy 
Zz 

(9) 

J ■ N is a normalized form of N because of £x = 
£X(1/J), £y = £y(l/J), etc. which results from 
eq.(6). 

If the gradients of the normal vector are known at 
time point t — 0, the changes to time point t > 0 can 
be described by angles a,ß,*y and, if the need arises, 
by the change of the Jacobian J. In the following, 
a, stands for the rotation around the y axis, ß for 
the rotation around the z axis, and 7 for the rotation 
around the x axis. 

Then, considering the non-normalized as well as the 
normalized version, the time-dependent local normal 
vector can be obtained with a transformation: 

N(x,y,z,t) = [T](x,y,z,t) ■ N(x,y,z,t = 0)- 

J(x,y,z,t = Q) 

J(x,y,z,t) 

N(x,y,z,t) = [T](x,y,z,t)-N(x,y,z,t = 0) 

J{x,y,z,t = 0) 

J{x,y,z,t) 

(10) 

(11) 

This separation approach is the basic idea of the 
method presented here. Eq.(10) is applicable to the 
transformed fluxes in eq.(5). Eq.(ll) will be needed 
in the numerical solution algorithm for the determina- 
tion of the time-dependent change of the finite control 
volume in chapter 4. 

The transformation matrix [T] contains the rotations 
around the x,y, and z axes: 

PI = [Tx] ■ [Ty] ■ [Tz] 

with the rotation matrix in the x direction: 

%] = 
0 0 

cos 7 sin 7 
-sin 7 cos 7 

(12) 

(13) 

in the y direction: 

[Ty 

cos a   0    - sin a 
0       10 

sin a    0     cos a 
(14) 

and in the z direction: 

[Tz. 

cos ß     sin ß    0 
— sin ß   cos ß   0 

0 0       1 
(15) 

The transformation eq.(12) is non-commutative; it be- 
gins with the rotation around the z axis of the steady 
reference system and ends with the rotation around 
the x axis. Other sequences are possible which can be 
achieved by exchanging [Tx], [Ty], and [Tz] . 

With the aid of [T], the normal vectors of the moving 
grid are transformed into a fixed area. [T] and, with 
that, a, ß, 7 are dependent on the spatial coordinates 
and on time. 
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3    Virtual Grid Deformation 

The numerical solution algorithm of hyperbolic conse- 
vation laws is based on the finite volume scheme and 
on a time-stepping procedure, and it requires a dis- 
cretization of the calculation area. 

The time-dependent nodal points of each cell element 
of the computational grid define the geometric posi- 
tions of the cell face centers, the normal vectors of the 
cell faces, the cell face areas, the cell volume as well 
as their time derivatives. 

Most of the current solution methods in computa- 
tional fluid dynamics use the time-dependent geomet- 
ric positions of the grid points to recalculate the metric 
terms and the cell volume after every single time step. 

However, the hyperbolic conservation laws in time- 
dependent curvilinear coordinates, when applied to 
numercal calculations in a discretized area, require no 
more information than: 

- the normal vector of the cell faces and 
- the cell volume 

as well as the following time derivatives: 

- the relative velocity of the cell face centers and 
- the change in time of the cell volume. 

In chapter 2 it is shown that the transformed basic 
equations are dependent on the normal vectors of the 
curvilinear coordinates and on the Jacobian of the co- 
ordinate transformation. In chapter 4 it will be shown 
that the Jacobian J can be interpreted as a cell volume 
of the discretized area and that the time-dependent 
cell volume as well as its change in time can be com- 
pletely determined by the normal vectors and the rel- 
ative velocities of the corresponding cell faces. There- 
fore, essentially only the two variables are required: 

- the normal vector of the cell faces and 
- the relative velocity of the cell face centers. 

Only these extracted kinematic values have to be im- 
plemented in the numerical algorithm to simulate a 
time-dependent grid deformation. It is regarded as 
virtual mapping since the geometric positions of the 
grid points are not taken into account. 

An overview of the method is given in section (1). 
Theorems for the design of time-dependent normal 
vectors and the relative velocities are stated in sec- 
tion (2). 

(1) Principle algorithms 

The transformation into a time-dependent curvilinear 
coordinate system can be seen as a sequence of two 
steps: 

x,y,z Z,r),C t',v',C 

system £,t],( is described by the mapping eq.(2); the 
transformation from the initial curvilinear system into 
the moving curvlinear system £',?/, C' is sufficiently 
described by the local translations x,y,z and by the 
rotational angles a, ß, 7. 

^ 

c 

\   /'''            z\ z 
A 

N^-'__     __     __'        \ 
\         x 

*x 

Figure 1: Temporal change of the normal vector of a 
cell face 

Changes of a given curvilinear coordinate system are 
generally described as a function of its curvilinear co- 
ordinates. The changes can particularly be given as 
a function of a specific coordinate direction £ or r\ or 
C,. For example, the rotation matrix [T] can be repre- 
sented by: 

r = rß,fK&),C(ä,)) 
T = T(£fao),i7,Cfa>)) 

or 
(16) 

The transformation from the Cartesian coordinate 
system x,y,z into the initial curvilinear coordinate 

This kind of parametrization is valid without limita- 
tion for the application of the virtual grid deformation 
- it is even advantageous. This will be proved in the 
next section. 

The relation of the boundaries of the transformed 
computational region to the physical area depends on 
the chosen topology. Basic two-dimensional types are 
H-, C-, and 0- topologies. Three-dimensional topolo- 
gies are the result of the combination of these basic 
types. 

Grid motions are always induced at the boundaries. In 
the following, the boundaries and lines of the compu- 
tational region are specified with respect to the cause 
and effect of motion. 

Motion-inducing boundaries - as opposed to the re- 
maining boundaries - are not inhibited in their form of 
motion. Their positions are coupled with the coordi- 
nate direction which functionally expresses the spatial 
grid deformation. For example, the inner and outer 
motion-inducing boundaries determined by the levels 
£0 and (1 during the parametization of the grid defor- 
mation in the C direction. 
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Motion-induced lines connect the points of the oppo- 
site motion-induced boundaries and fulfill their move- 
ment. Otherwise, motion is achieved by interpolation. 
For this, the properties of a unique and smooth map- 
ping are required, which limit the motion possibilities. 

Time-dependent boundary conditions arise either be- 
cause of the form of motion of the body surface or due 
to the relative motion of the far field boundary and, 
depending on the topology, can occur in all boundaries 
of the computational region. Thus they determine the 
motion-inducing boundaries as well as motion-induced 
lines on the outer boundaries. In the latter case, the 
restriction of motion possibilities is irrelevant in prac- 
tice since, in the physical domain, this is usually a far 
field boundary. 

Motion-inducing boundaries can also be divided into 
fixed and free boundaries. Fixed boundaries are deter- 
mined by boundary conditions. Free boundaries only 
have to maintain the motion of their outer points and 
are totally free in motion otherwise. However, smooth 
transitions are desirable here as well. 

Manifold descriptions can be made of the motion- 
inducing boundaries and are adjusted to the formu- 
lation of the technical requirement. Both of the fol- 
lowing exceptions are of particular interest: 

1. One of the motion-inducing boundaries is fixed in 
the steady reference system: 

X " 7 ' 
y = 0; a = 
z 

0 

X 

[ß . 0 

' 7 " 
V = 1; a 
z 

i .ß J 

0    or 

(17) 

J l 

Such a construction is necessary for an unsteady 
solid boundary interference when, e.g., the flow 
of an oscillating wing is simulated in a tunnel, 
whereby tunnel wall interference must be taken 
into account. 

2. The motion-inducing boundaries are coupled in 
their form of motion. In the case of a rigid-body 
motion, the identity 

(18) 

is appropriate. The angles of the local normal 
vector are then independent of the spatial coor- 
dinates. 

Index 0 defines the left or lower boundary, index 1 
defines the right or upper boundary. 

The design of the functions which describe the virtual 
grid motion is carried out in 6 steps.   This is first 

" 7 " " 7 ' " 7 " 
a (r) = a = a 

Iß 1 Iß 1 0 [ß J 

© 
iSl   _                  \ 

s 

QjT     motion induced lines     - inducing 

                 / i   / 
1 ..    ..        / 

/ 
"°   ©   *      ©     B   ©  ' 

Figure 2: Moving of a two-dimensional curvilinear 
coordinate system 

illustrated for two-dimensional curvilinear coordinates 
£(x, z), £(x, z) in the C-topology in which local relative 
velocities Vk%n = [x,z] and the local rotation angle a 
occur (see fig.2): 

1. Choice of an appropriate coordinate direction for 
the parametization of the grid changes. In the 
following example, the essential time-dependent 
boundary conditions occur at the Co and Ci 
boundaries and are defined as motion-inducing 
boundaries. The parametization is then carried 
out in the C direction. 

2. Representation of the fixed boundaries by the lo- 
cal rotation angle a(£,T) and the local relative 
velocities V(£, r). A closed functional description 
is advantageous. 

3. Determination of the changes a(£, r), Vfcjn(£, T) of 
the free boundaries at Co- The values at the posi- 
tions (£4, Co), (£B,CO) correspond with the outer 
values of the fixed boundary. They correspond in 
the physical domain with the trailing edge of the 
given profile. 

4. Determination of the changes a((,r), Vkin((,T~) 
of the motion-induced lines in the C direction. 
The foot points lie on a free or fixed motion- 
inducing boundary which, formally speaking, 
does not make any difference. 

5. Inverse transformation of the local Cartesian ve- 
locity components Vktn = [x, z] from the virtually 
moved coordinate system £',»/,£' into the initial 
curvilinear coordinate system £, 77, C: 

i(^,C',r) cos<', C', r) - i(C, C', r) sina(^',C',r) 

->£(£, C,r) 
i(f, C', r) cos a(£', C T) + i(f, C', T) sin atf, C, r) 

->i(e,C,T) (19) 

6. Determination of a and Vuin for the points (&, Cfc) 
of the discretized computational region and for 
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the centers of the cell lines by arithmetical means: 

1 , , 
ai+iik = -[ai,k +<*i+i,fcj     > 

aitk+i_ = - [ai,k + Oi,k+i]    etc. (20) 

A spatial three-dimensional grid motion is achieved 
when steps 2,3,4 are successively expanded in the 7] 
direction. The principle of parametrization in the C 
direction does not change. In step 5, the rotational 
angles in all coordinate directions are to be consid- 
ered in the given sequence; see eq.(12). In step 6, the 
arithmetical mean is applied to the cell face centers of 

the control volume. 

The previous steps show that the analytical descrip- 
tion of the motion-induced lines is possible when fol- 
lowing the methods of differential geometry. This will 
be substantiated in the next section. The transition 
into the discretised coordinates of the computational 
grid is carried out in only one last step. 

(2) Theorems of unique and smooth grid deformations 

The analytical description of the time-dependent grid 
deformation developed here is based on the following 
prerequisite: 

Prerequisite. The boundary-fitted coordinates 
eq.(2) of the initial grid are based on a unique and 
smooth mapping. 

In the following, only the time-dependent changes of 
the initial grid are observed. They must be also a 
unique and smooth mapping. Then, an overlapping 
of grid lines is excluded and the grid quality of the 
initial grid is maintained. 

Definition 1. The mapping on curvilinear coordi- 
nates is unique when it is locally regular. 

Definition 2. Curvilinear coordinates are smooth 
when there are minimum spatial changes in their tan- 
gential vectors and when taking into consideration the 
constraints of defined tangential vectors at the bound- 

ary. 

The smoothness of the discretized computational grid 
also follows the smoothness of the cuvilinear coordi- 
nates: There are minimum spatial changes in the an- 
gles and in the distances between the lines when taking 
into consideration the constraints of the defined an- 
gles and distances at the boundary. Orthogonality at 
the boundaries specifically produces boundary-fitted 
coordinates. 

The generation of smooth grids is possible by means 
of variation approaches, several of which lead to the 
so-called elliptic grid generation: see Godunov and 
Provkopov [5], Steger and Sorensen [11], Thompson 
[13], Roache and Steinberg [9], Neisius [8]. A mathe- 
matical description for smoothness, however, has not 
yet been determined in the literature. 

Theorem 1. If the changes of a curvilinear coordi- 
nate system is angular conform in every point £, rj, C, 
i.e., if all local tangential vectors are rotated by a, ß, 7, 
then the following applies: 

1. The mapping is locally unique 
2. The mapping is locally smooth 
3. The changes a, ß, 7 can be parametrized by one 

characteristic direction £ or t] or C- 

The uniqueness follows from the separation approach 
eq.(10) or eq.(ll) which also applies to the functional 
matrix and leads to the identity det[T] = 1. The 
smoothness directly results from definition 2. The 
parametrization follows from the reduction 

a,£ = a,v = a,Q = a    ;    ß,£ = ß,v = ß,( = ß    ', 

7>€ = 7>r, = 7iC = 7 

During the transition to a discretized computational 
grid the values are obtained in the cell face centers by 
arithmetical means of the values in the discrete points 
(&,rfo,0b); see eq.(20). The local mapping is then no 
longer angular conform, however, as is necessary, it is 
smooth as according to definition 2. 

Theorem 1 presumes the existence of angular conform 
mapping which still needs to be found in the form of 
a function of one of the coordinates £ or 77 or C- Dur- 
ing parametrization in the C direction, the mapping is 
generally as follows: 

■i(0 
2/(0 
i(0 

X 
-] 

X 

= [i - 0(C)] y + Q(0 y 
z 

. 0 
z 

Ax 7 

+[l - QR(0] Ay X a 
Az 

0 iß J 

7(0 
«(0 
ß(0 

+QR(0 

= [i - R(0] 

-RQ(0 

+RQ(0 

Ax 7 
Ay X a 
Az 1 ß 

(21) 

-i 1 

" 7 " 7 " 
a + R(0 a 

[ß \ 0 .ß J 1 

' 1/Ast ' X 

1/Ay X y 

LV Az _ 
01 

z 
0 

" 1/Ax ' X 

1/Ay X y 
1/Az 

01 
z 

with the relative arc length: 

C-Co 
C = Co 

C1-C0 

the transformed distances: 

AXo = AXo - X ■ Co 
Ali =AXl-X- Ci 

AX01 = AX01 - X 

(22) 

(23) 

(24) 



4-7 

and the following abbreviations: 

AX0(Q = X(Q-X0    , (25) 

AX1(0 = X(Q-X1    ,    AXQi=X1-X0    (26) 

Indexes 0 and 1 characterize the points of the lower 
and upper motion inducing boundaries Co and Ci. 

Figure 3: Basic steps for the analytical design 
of the virtual grid deformation 

The interpolation functions <9(C)>Qfl(C) and 
R(Q, RQ (C) are dependent on the relative arc 
length (. The influences are depicted in fig.3 for a 
two-dimensional form of motion. Q, R are associated 
with the direct forms of motion, and QR, RQ with the 
coupled forms of motion. The cross products describe 
the relative velocities due to the angular velocities 
and the rotation due to the shear. 

In general, each component of the interpolation func- 
tion is individually specified which has to be expressed 
by diagonal matrices, for example: 

[Q] = 
Qx 0 0 
0 Qy 0 
0 0 «2 

(27) 

The translations x,y,z and the angular velocities 
ä,ß,j at the boundaries Co and Ci can be seen as 
auxilary values for the determination of the motion- 
induced lines of the moving grid. They are not needed 
for the numerical solution of the conservation laws. 

Theorem 2. The mapping eq.(21) and eq.(22) is 
unique if the interpolation functions Q, QR and R, RQ 
meet the following necessary conditions: 

1. Q(Co) = R(Co) = Qfl(Co) = RQ(CO) = 0 for the 
lower boundary 

2. Q(Ci) = Ä(Ci) = QR{&) = 1,RQ(CI) = 0 for 
the upper boundary 

3- qx = qy = qz = q   ;   qrx = qry = qz=rq   ; 
T x = Ty — vz = r    ;    rrx = vTy = rz = rq    ; 
for all C 

4- «(C) = «r(C)     for all C 
5. q(£) is monotonic for 0 < C < 1 

The first two conditions fulfill the time-dependent 
boundary conditions of the motion-inducing bound- 
aries. The identity of the individual components and 
the identity of the interpolation functions q and qr fol- 
lows the parametrization; it guarantees local angular 
conform mapping. The monotonic condition becomes 
clear in the example shown in fig.3a) and b), taking 
into consideration that the grid lines do not overlap. 

Of particular interest is the linkage between the local 
relative velocities and the local rotational angles in 
the field, i.e., the relation between the interpolation 
functions q,qT and r,rq. 

Theorem 3. If the interpolation functions q and qr, 
respectively, are given in the polynomial representa- 
tion to the mth degree q(£) = co+ciC+C2C2_l—l-cmC"\ 
then the following holds for all £: 

1. r(Q = d0 + diC + d2C2 + ■ 
with di = 0        for Cj = 0 
di = THTI77 for °i ^ ° 

+diC 

[i+l]ci 

2-^(C) = -|[ci+2c2C + 3c3C2 + 
3. Co = c\ = 0 

+mcmC -] 
The proof of theorem 3 and a more detailed explana- 
tion of the method will be presented in an upcoming 
paper. 

4    Changes in the Finite Volume 
Scheme 

The numerical solution algorithm requires the dis- 
cretization of the spatial coordinates £, 77, £ into i = 
1,../; j = 1,.. J; k = 1, ..K intervals. Similar to differ- 
ential equation (4), the difference equation 

A[JU]     AF     AG     AH 
-—       + -^— + -r- + -T— A, 

n+i 

= 0 (28) 
■ i,j,k 

must also satisfy the conservation laws in its integral 
form for all I x J x K cells which yields a finite volume 
scheme. The term Jij,k in eq.(28) corresponds to the 
volume of cell i,j, k. The cell face centers are the 
reference points for the flux transport and therefore 
also for the grid velocities. 
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A generalized finite volume scheme is derived from 
the integral form of conservation laws and thus is in 
no way restricted to any specific form of the control 
volume. In the following, however, a structured mesh 
with octahedron-shaped control volumes are focused 
on, and therefore the volume scheme given in eq.(28) 
becomes applicable. In this case, the unique mapping 
eq.(2) of the curvilinear coordinates directly correlates 
with the grid points of the control volumes, and the 
solution scheme for a virtual grid deformation can be 
described in a computationally efficient manner. 

The time integration has to reflect the hyperbolic 
character of the differential equations, i.e., the solu- 
tion U(T) is always successively computed from the 
previous time step for all n = 0,1,2,.. time levels. 
The representation of the time level n = \ is depen- 
dent on the type and order of time integration. 

The numerical solution depends on the initial data at 
r = 0 and on the time- dependent boundary condi- 
tions at the boundaries of the computational domain. 

The application of the virtual grid deformation 
method is independent from the type of flux differ- 
encing as well as from the type of time integration. It 
can be combined with central or upwind schemes and 
with explicit or implicit algorithms. Only the volume 
change A J/Ar in eq.(28) has to be taken into account 
which, in turn, is solved by the so-called geometric 
conservation law. 

(1) Geometric conservation law 

The geometric conservation law - first demonstrated 
by Thomas and Lombard [12] - results from the hyper- 
bolic conservation laws, eq.(4), for constant variables 
U = Uoo and any grid velocity. Then the constant 
variables can be separated and a determination of the 
temporal change of the control volume follows: 

3. second-order implicit 

A J + A| + AT) + AC 

A ^ A, 

n+i 

i,3,k 

(29) 

The discrete representation of the time level n + \ is 
dependent on the type and order of the time integra- 
tion, examples of which are shown as follows: 

1. first-order explicit 

jn+l _ J« M + ^ + ^i = 0 (30) 

«J'I* 

2. first-order implicit 

jn+l _ jn 

AT 
+ 

A€ 
+ A,      Ac 

n+l 

= 0       (31) 

Ar, + AC 
-+ ^ + ^ + =^        =o 

i,j,k 

n+l 
1.5 J"+1 - 2 J" + 0.5 J"1      M       

Ar hTA,TA<jii( 

(32) 

We gain the insight that the temporarily changing 
control volume has to be determined only by the rel- 
ative velocities of the cell face centers. Then the geo- 
metric conservation law eq.(29) is consistent with the 
hyperbolic conservation laws eq.(4). Due to infinites- 
imal rotations of the cell surfaces around its center 
points, higher-order terms are not to be taken into 
account. This statement is valid for the first-order 
hyperbolic conservation laws regarded here and for all 
corresponding numerical solution schemes. It is also 
valid when additional viscous terms are included. 

(2) Determination of the change in volume 

The description of eq.(29) is primarily dependent on 
the order of the time integration, however, it can al- 
ways be expressed as a recurrence formula: 

jn+i _ jn + &Tjn+\    (first order) (33) 

jn+l 4 4   ^ rn       _ jn- 
~r   3J 

1 + | Ar r+i 
o 

(second order) 

(34) 

It is applied for the determination of the time- 
dependent volumes Jn+1 and is obtained successively, 
starting from the well-known initial state Jn=0. With 
regard to eq.(7) and eq.(9), the term j follows from 
eq.(29): 

jn+l = A 
A£ *i 

x 

y 
z 

n+5 

+ 

+ 

_A_ 

AT? 

A 

AC 

Nv 

X 

y 

-1 

_ z 

N( 

X 

y 
z . 

n+i 

n+i 

(35) 

i,j,k 

Eq.(35) with the transformation eq.(9) is dependent 
only on the Cartesian grid only velocities x,y,z and 
on the rotation angles a, ß, 7 as well as on the well- 
known metric terms of the initial state. All of these 
values are already provided by the determination of 
the motion-induced lines either for time level n or n + 
1; see chapter 3. To the right of eq.(35), cell volume 
only J is not contained implicitly. 

The computation of the volume change with the help 
of equations (33) and (34) is advantageous because the 
evaluation of a recurrence formula is adequate and effi- 
ciently applicable in combination with a time-stepping 
algorithm. 
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5    Numerical Results 

In the following, the AMP model wing documented by 
Zingel, Jajes, Vogel [18] is examined. The theoretical 
results of a steady flow configuration and of a real 
unsteady mode shape are represented and compared 
with the measurements. In addition, the influence of 
the body is pointed out. 

A computational C-H type grid with 200 x 43 x 32 grid 
points in the £, 77, £ directions is used. The elliptic grid 
generation by the method of Steger and Sorensen [11] 
is based on an initial grid which is generated alge- 
braically by the method of Smith and Erikson [10], 
and which is carried out by Neisius [8]. The distance 
of the wing to the outer grid line is 10 root profile 
lengths. Sectional views of the grid are emphasized in 
fig.4. Unsteady grid deformations are virtually simu- 
lated, as stated in this paper. 

The virtual grid deformation method can also be ap- 
plied for all kinds of conservation laws when viscous 
terms are taken into consideration. In these numerical 
examples, a viscid-inviscid interaction method devel- 
oped by the author is used in which three-dimensional 
separation bubbles are simulated. In this context, only 
the validation with the measurements is important. 
Then, the influence of the elasticity of the wing on the 
aerodynamic forces can be judged in a correct manner 
and the importance of a grid deformation method is 
pointed out. 

(1) Steady results 

Fig. 5 shows pressure distributions in several span 
sections for the steady flow configuration Moo = 
0.78, Re = 3.49 • 106, a0 = 2.85.. The wind tunnel 
interference is taken into account by a reduction of 
the angle of attack of 0.5°. The static elastic defor- 
mation is correctly represented by the grid generation. 
Theoretical and experimental data agree sufficiently. 

The influence of the body on the wing should not be 
ignored in transonic flow. The shock is reduced and 
is positioned further upstream by the body. This ef- 
fect appears in the spanwise direction up to the outer 
area of the wing. The shock line on the wing can be 
seen as a characteristic line on which disturbances are 
transported without damping. 

(2) Unsteady results 

An actual mode shape of the AMP model wing in 
transonic flow is regarded. It results from a pitching 
motion around the rotation axis XR = 0.39, stimulated 
at the wing root by: 

the wing root. The mode shape contains a phase lag 
of the wing motion in the spanwise direction. In ad- 
dition, a rigid pitching motion without any elastic de- 
formation - a simple mode shape approximation - is 
investigated. 

Fig.6 and fig.7 show the first harmonics of pressure dis- 
tributions at several profile sections of the wing and 
the first harmonics of the local lift and momentum dis- 
tributions over the span for the rigid pitching motion 
and for the real elastic mode shape. In this case of low 
amplitude, the higher harmonics hardly apppear. It 
can be seen that the behavior in the outer area of the 
wing is different for both forms of motion especially in 
the imaginary parts. Therefore the elasticity should 
not be ignored for an aeroelastic analysis. The agree- 
ment between theory and experiment is more consis- 
tent than in the case of pure inviscid calculation; see 
Wegner [17]. 

The contrast between both forms of motion can also 
be seen in the change in the local aerodynamic coef- 
ficients of several span sections; see fig.8, and in the 
local mean power distribution over the span; see fig.9. 
The damping is relatively high during rigid pitching 
motion and there is no aerodynamic damping during 
the actual vibration mode. However, this does not yet 
indicate flutter instability. 

The differences between theory and experiment in the 
inner area of the wing are mainly due to the body 
which is shown in the last figure. On the other hand, 
the body does not essentially influence the unsteady 
flow characteristics in the outer wing area, but never- 
theless it influences the aerodynamic damping of the 
whole wing; see fig.9. 

6    Conclusions 

Elastic grid deformations are taken into account by a 
newly-presented calculation method of the unsteady 
conservation laws. The only prerequisite for this 
is that the intial computational grid is unique and 
smooth. The method is time efficient, especially for 
a physically time-dependent calculation. The simula- 
tion of an elastically moving wing allows for the pre- 
diction of aerodynamic instabilities. It cannot be ap- 
proximated by rigid-body motion. 

Moo = 0.78    ;    Re = 3.49 • 106    ; 

a(r) = 2.35° + 0.22°sm(u>V)    ;    u>* = 0.41 

All of the deflections of the mode shape are very small 
values which correspond to the pitching amplitude of 
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Fig.4: AMP model wing; C-H type grid; 200 x 43 x 32 cells. 

 body-wing configuration 

 clean wing 

a    experiment [18] 

0     0.2    0.4   0.6   0.8    1   0     0.2   0.4   0.6   0.8    1   0     0.2    0.4   0.6    0.8 10     0.2   0.4   0 6   08     1 
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Fig.5: AMP model wing in steady flow; M«, = 0.78; Re^= 3.49 • 106; a0 = 2.35° 

(AMP mode shape No. 574) 

 rigid pitching 

 elastic pitching 

□    experiment [18] 
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Fig.6: AMP model wing in harmonic pitching motion; first harmonics of pressure; 
Moo = 0.78; Re = 3.49 • 106; a0 = 2.35°; an = 0.22°; LJ* = 0.41 
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(AMP mode shape No. 574) 

 rigid pitching 

 elastic pitching 

D    experiment [18] 
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Fig.7: AMP model wing in harmonic pitching motion; lift and momentum distributions; 
Moo = 0.78;    Re = 3.49 • 106;    a0 = 2.35°; an = 0.22°; w* = 0.41 
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Fig.8: AMP model wing in harmonic 
pitching motion; lift and momentum; 
Moo = 0.78 ; Re = 3.49 • 106 ; 
a0 = 2.35°; oi = 0.22°; u* = 0.41 
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Fig.9: AMP model wing in harmonic 
pitching motion; mean power distributions 
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Fig. 10: AMP model wing in harmonic 
pitching motion; influence of the body 
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APPLICATION DES EQUATIONS D'EULER LINEARISEES A LA PREVISION DU FLOTTEMENT 
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France 

1. SOMMAIRE 

L'utilisation des equations d'Euler linearisees dans 
le cadre d'excitations harmoniques des modes struc- 
turaux permet de calculer les forces aeroelastiques 
dans le domaine frequentiel pour un coüt calcul re- 
duit, bien inferieur ä celui obtenu par la methode 
classique de simulation temporelle utilisant les equa- 
tions d'Euler. Des exemples numeriques permettent 
d'illustrer cette approche. 

2. INTRODUCTION 
La prevision de la stabilite aeroelastique des avions 
s'effectue en resolvänt le Systeme couple aerody- 
namique structure dans le domaine frequentiel et ne- 
cessite par consequent la determination des forces 
aeroelastiques sur la base modale de l'avion. Cette 
approche classique et operationnelle avec l'utilisa- 
tion de codes lineaires subsoniques ou supersoniques, 
devient particulierement onereuse dans le cadre des 
equations d'Euler malgre l'utilisation d'une condi- 
tion de debit ä la paroi en instationnaire, permet- 
tant de garder un maillage fixe au cours du temps 
(Ref 1). Le probleme du flutter consistant en la 
recherche du debut de l'instabilite, l'amplitude des 
mouvements simules est faible. Cette hypothese com- 
plementaire permet d'envisager la linearisation des 
equations d'Euler autour de la solution stationnaire, 
en considerant le mouvement du mode de structure 
comme une perturbation du premier ordre. Cette ap- 
proche a ete etudiee depuis de nombreuses annees 
dans le cadre des turbomachines (Ref 2,3,4,5,6,7). 
Differentes excitations temporelles des modes struc- 
turaux peuvent etre realisees conduisant ä des pro- 
blemes distincts : 
- l'excitation est une fonction "large bände" (sa 
transformee de Fourier est ä support compact dans 
l'intervalle [-Fmax,Fmax], une solution instation- 
naire reelle peut etre calculee dont la transformee de 
Fourier est ä support compact dans le meme intervalle 
(Ref 8) ; 
- l'excitation est une exponentielle divergente, comme 
le propose Hounjet (Ref 9), une solution stationnaire 
d'un probleme reel, doit etre calculee ; 
- l'excitation est harmonique en temps, une solution 
stationnaire d'un probleme complexe, doit etre cal- 
culee. 
Apres avoir presente l'obtention du modele des equa- 
tions d'Euler linearisees et les differentes approches 
liees ä l'excitation temporelle des modes structuraux, 
le schema utilise est developpe. Des applications 
numeriques illustrent ces developpements. 

3. LES EQUATIONS D'EULER LINEARISEES 
Les equations d'Euler s'ecrivent sous la forme : 

ou : 

W= t(p,pu,pv,pw,pE) 

f = t{pu, pu2 + p, puv, puw, (E + p)u) 

9= t(pv,puv,pv2 +p,pvw,(E+p)v) 

h = t(pw, puw, pvw, pw2 +p,(E+ p)w) 

p designe la masse volumique, (u, v, w) le champ de 
vitesse, E = pe l'energie. 
Le champ instationnaire W est decompose en un 
champ stationnaire Ws et une perturbation du pre- 
mier ordre 6(W) due au mouvement de faible am- 
plitude. En effectuant un developpement limite au 
premier ordre, on obtient l'equätion suivante pour le 
champ S(W) : 

^(S(W)) + £.(A(W,)6(W)) + ^(B(WS)S(W)) at 

+ a 
-(C(Ws)S(W))=0 

ou A(WS) , B(WS) , C(WS) designent les matrices 
jacobiennes des flux / , g , h , calculees pour le champ 
stationnaire. 
Les conditions aux limites utilisent principalement les 
relations de compatibilite (Ref 10, 11). Elles sont 
ecrites pour les cellules ayant au moins une face sur 
une frontiere. Les valeurs predites sont prises au 
centre de la cellule (extrapolation ä l'ordre zero). Les 
conditions aux limites principalement utilisees dans 
le cadre des equations d'Euler sont : 
- une condition de glissement ; 
- une condition de transpiration instationnaire per- 
mettant la simulation de deformations ou mouvement 
du profil au cours du temps. Cette condition aux 
limites consiste ä ecrire les quatre premieres rela- 
tions de compatibilite sur la base instantanee, et ä 
completer par la relation de glissement instationnaire 
V.n(t) = Vp(t).n(t), ou n(t) et Vp(t) designent la nor- 
male et la vitesse instantanee du profil. La normale 
instationnaire de la face est obtenue en deplagant 
chaque point de la frontiere du deplacement instan- 
tane et en recalculant la normale ä partir de cette 
position fictive des points ; 
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- ä l'infini on privilegie la condition de non reflexion. 
Celle-ci consiste ä considerer d'une part un domaine 
exterieur pour lequel Petat du fluide sont connues, 
et d'autre part le champ interne. L'application des 
relations de compatibilite entre ces deux domaines 
permet le calcul du champ frontiere, et ce sans avoir 
besoin de specifier le type de la frontiere (amont ou 
aval), ou Petat du champ (subsonique ou superson- 
ique). 
Les conditions aux limites ä appliquer, dans le cadre 
des equations d'Euler linearisees, sont deduites de 
celles imposees pour les equations d'Euler par lineari- 
sation au premier ordre. Pour la condition de glisse- 
ment, la normale instationnaire doit etre egalement 
linearisee. 

4. LES DIFFERENTES APPROCHES 

Les modes de structure ont une evolution en temps 
et en espace definie par : 

H(M,t) = Hs(M)f(t) 

ou f(t) designe une fonction temporelle, et HS(M) un 
mode structural. 

4.1 Excitation large bände 

La fonction /(£) prend la forme : 

/(*)   = 
sin( WQ * ) 

nt 

La transformed de Fourier de cette fonction vaut 1 
sur Pintervalle [ — o»o , uo ]■ 
Les equations d'Euler linearisees sont integrees sur 
Pintervalle de temps [-T1,+T2], -Tj designe un 
temps (negatif) ou la fonction /(£) est negligeable, 
et T2 le temps ou Penergie transmise au Systeme 
a ete recuperee. Du fait de la linearite des equa- 
tions, le champ S(W) a sa transformee de Fourier 
ä support compact dans Pintervalle [-u0,+u>o\- H 
en est de meme pour le coefficient de pression et les 
forces aeroelastiques. Une transformee de Fourier dis- 
crete (Ref 8) permet de les calculer. La resolution 
frequentielle est donnee par la relation : A/ = y, 
T = Ti+T2. 
Cette methode pose les problemes suivants : 
- obligation d'utiliser un pas de temps uniforme pour 
resoudre les equations d'Euler linearisees. En general 
les maillages tridimensionnels presentent quelques 
mailles degenerees qui obligent ä diminuer le pas de 
temps ; 
- le temps d 'integration etant fixe par la finesse de la 
resolution frequentielle de la transformee de Fourier, 
ceci conduit en general ä un coüt calcul prohibitif. 

4.2 Excitation exponentielle divergente 

La fonction /(*) prend la forme : 

f(t)  = exp( st ) 

Ceci conduit au probleme stationnaire reel : 

sS(W) + 1L(A(W.)8(W)) + ^(B(WS)S(W)) 

+—(C(W.)8(W)) = 0 

Les proprietes intrinseques de cette methode sont 
presentees avec le cas de l'excitation harmonique. 
L'utilisation, proposee par Hounjet, de cette ap- 
proche consiste ä lisser par des fractions rationnelles 
les forces aeroelastiques ainsi obtenues et a etendre 
au domaine complexe le lissage obtenu. 

4.3 Excitation harmonique 

La fonction f(t) prend la forme : 

f(t) = 5R( exp( tut) ) 

Ceci nous conduit ä resoudre le probleme complexe 
stationnaire suivant : 

iu>6(W) + ^(A(WS)S(W)) + j-(B(Ws)6(W)) 

+j-z(C(Ws)S(W)) = 0 

Ce probleme est resolu par une methode pseudo 
instationnaire : 

§-t(S(W)) + tu5(W) + JL(A{W.)6(W)) 

+ JL(B(WS)6(W)) + §-z(C(Ws)ö(W)) = 0 

L'interet de cette approche est d'obtenir directement 
la valeur des forces aeroelastiques desirees dans le 
domaine complexe. Cependant ceci conduit ä un 
doublement de la place memoire necessaire du fait 
de la necessite de travailler en complexe. 
Ces deux dernieres approches permettent l'utilisation 
des techniques classiques d'acceleration de la conver- 
gence : methode du pas de temps local, methode 
multigrille. Seule la premiere technique a ete mise 
en oeuvre dans le travail presente. 

5. SCHEMA NUMERIQUE UTILISE 
Le schema de Jameson-Lerat, developpe par Liamis 
(Ref 12) dans le cadre du code CANARI (Ref 13), 
est utilise pour resoudre ces equations. Ce schema 
s'etablit de la maniere suivante : 
- un maillage structure multi blocs du domaine de 
calcul est realise ; 
- une discretisation spatiale des equations par une 
methode de volume finie de type Jameson (Ref 14) est 
mise en oeuvre. Les inconnues sont prises au milieu 
des cellules. Le flux au travers d'une face s'obtient 
comme moyenne des flux de part et d'autre de cette 
face ; 
- on obtient ainsi un Systeme d'equations du premier 
ordre en temps que Pon integre par un schema de type 
Runge Kutta en ligne ä K pas : 

w(nfi) _ w 

w(n'l) = W 
«« A  öu;(B,,_1) 

{0) + a<Atm ,l = l,...,K 
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avec: Oil 

wn+l _ w(n,K) 
K-l + 1 

avec : K > 2. 
Pour des problemes non lineaires cette integration 
n'est precise qu'ä l'ordre 2. Par contre eile est precise 
ä l'ordre K pour des problemes lineaires ä condition 
de definir les instants intermediates par : 

tV> = {n + ai)At   ,l = 0,l,...,K   ,a0 = 0 
- une viscosite artificielle dite "dependant du pas 
de temps" est introduite, mettant en oeuvre des 
Operateurs du deuxieme ordre pour capturer les chocs, 
et du quatrieme ordre pour rendre le schema dissipatif 
au sens de Kreiss. Cette viscosite est basee sur un 
senseur pression. Des conditions aux limites particu- 
lieres, introduites par Eriksson (Ref 15), permettent 
de conferer ä la viscosite de bonnes proprietes ; 
- une phase implicite precise au second ordre, de type 
rayon spectral developpee originellement par Lerat, 
Sides, Daru (Ref 16) permet une augmentation signi- 
ficative du critere de stabilite de Courant-Friedrichs- 
Lewy (CFL), critere limitant le pas de temps par 
rapport au pas d'espace. Cependant dans les deux 
derniers cas une condition de stabilite conditionnelle 
demeure. Les formules suivantes ont pu etre etablies 
pour les excitations de type : 

■I    'Tß'7 

- exponentielle divergente : Atmax < -^— ; 

0-8 
- harmonique : /stmax <    „     ; 

LOlnz 
ou Tnz designe le facteur d'adimensionalisation en 
temps. 

6. EXEMPLES DUPLICATIONS 
La presentation ci-dessus a ete concretised avec le 
developpement du code REELC, Resolvant les Equa- 
tions d'Euler Linearisees en Complexe, dans le cadre 
de l'excitation harmonique. 
Le temps de calcul par pas de temps et par cellule 
sur le CRAY YMP de l'ONERA est de 3.033 10~5 

secondes. 
Pour les applications considerees le nombre CFL est 
pris egal ä 8. 

6.1 Cas bidimensionnel: profil NACA 64A010 
Ce cas test concerne le profil NACA 64A010 en 
ecoulement infini pour un nombre de Mach amont 
de 0.796, ä incidence nulle. Un mouvement de tan- 
gage quart avant est simule. L'amplitude du mou- 
vement est de 1.01 degre, la frequence d'excitation 
est de 34.4 Hz. Ce cas test a ete etudie experimen- 
talement par Davis (Ref 17). Du fait d'une legere 
dissymetrie entre le profil extrados et intrados la re- 
partition du coefficient de pression stationnaire, figu- 
re 1, n'est pas parfaitement symetrique. La compa- 
raison des evolutions de convergence entre les forces 
aeroelastiques et le champ stationnaire est presentee 
ä la figure 2. L'obtention d'un etat stationnaire pour 
les forces aeroelastiques, figures 3 et 4, est atteint 
rapidement : 200 ä 300 iterations, alors que le champ 
stationnaire, lui, n'est pas converge. Ce contexte fa- 
vorable est ä l'origine du gain de temps consequent 
obtenu et permet ainsi l'utilisation du code pour des 
applications complexes.   Le premier harmonique du 

coefficient de pression est compare ä la solution ex- 
perimentale ä la figure 5. 

6.2 Application industrielle au cas d'un avion militaire 
Le calcul de flottement est effectue pour une aile 
Delta. Le maillage realise est de faible dimension 
(105780 cellules). Seize modes structuraux sont pris 
en compte. Deux nombres de Mach : 0.9 et 1.2 sont 
simules. Les incidences sont ajustees de maniere ä 
obtenir une portance d'environ 90 000 Newton. Les 
matrices de forces aeroelastiques sont calculees pour 
treize frequences reduites k = y : 
0., 0.001,0.1,0.2,0.3,0.4,0.5,0.65,0.8,1.0,2.0,3.0,4.0 
La qualite de convergence n'est pas affectee par les 
valeurs des frequences reduites considerees. 
Pour les deux nombres de Mach consideres, les ef- 
fets transsoniques sont negligeables, et les resultats 
obtenus peuvent etre compares ä ceux obtenus par 
des methodes lineaires. La figure 6 presentent cette 
comparaison sur le terme diagonal des matrices de 
forces aeroelastiques pour les deux nombres de Mach 
consideres. La simulation du flottement est donnee ä 
la figure 7. 
Le temps calcul a ete limite ä 600 secondes par con- 
figuration de calcul. Une matrice de forces aeroelas- 
tiques (16 modes, 1 frequence) coüte 9600 secon- 
des de temps CPU. Chaque calcul de flottement (13 
frequences) a necessite 124800 secondes, soit pra- 
tiquement 35 heures. 
Deux remarques doivent etre faites : 
- le code REELC permet le calcul de la frequence 
nulle ; 
- un tel calcul serait inenvisageable en simulant les 
equations d'Euler dans le temps et en simulant 4 
periodes pour chaque frequence et chaque mode. 

7. CONCLUSIONS 
L'utilisation des equations d'Euler linearisees pour 
la simulation du flottement a ete demontree dans le 
cadre de l'excitation harmonique. 
Les limitations de cette methode sont liees au champ 
stationnaire qui ne peut evoluer : 
- chocs et sillages figes ; 
- mouvements de faibles amplitudes. 
L'efficacite de la methode developpee est due : 
- ä l'utilisation de la methode de pas de temps local ; 
- ä la possibilite (non traitee ici) de l'utilisation de 
methodes multigrilles ; 
- ä la possibilite d'arreter le calcul lorsqu'un niveau 
de convergence süffisant est obtenu sur les forces 
aeroelastiques generalises ; 
- ä l'independance du temps de calcul en function de 
la frequence de calcul. 
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Abstract 

We overview two sequential and parallel partitioned 
procedures that are popular in computational non- 
linear aeroelasticity, and address their limitation in 
terms of accuracy and numerical stability. We pro- 
pose two alternative serial and parallel staggered al- 
gorithms for the solution of coupled transient aeroe- 
lastic problems, and demonstrate their superior ac- 
curacy and computational efficiency with the flutter 
analysis of the AGARD Wing 445.6. We contrast 
our results with those computed by other investiga- 
tors and validate them with experimental data. 

1    Introduction 

Several approaches have been proposed in the past 
for solving fluid/structure interaction problems on 
moving and deforming meshes, among which we note 
the two closely related Arbitrary Lagrangian Eule- 
rian (ALE) [1,2] and dynamic mesh [3] methods. In 
the most general case, all of these methods can be 
used to formulate the fluid/structure problem of in- 
terest as a three-field problem: the fluid, the struc- 
ture, and the dynamic mesh that is often represented 
by a pseudo-structural system. For example, in the 
case of the ALE method, a fluid/structure interac- 
tion problem can be described by the following set 

*AIAA Associate Fellow 
fAIAA Student Member 

of coupled partial differential equations 

^T1!? + JVX.(F(W) - iW)    = JVS.K{W) 

Ps^£-div(E:e{us))    =b at2 

f dt2 div(E : e{x))    = 0 

(1) 
The first of Eqs. (1) is the ALE nondimensional con- 
servative form of the Navier-Stokes equations and 
describes viscous flows on dynamic meshes. Here, t 
denotes time, a dot designates a derivative with re- 
spect to time, x(t) denotes the time-dependent po- 
sition or displacement of a fluid grid point (depend- 
ing on the context of the sentence and the equa- 
tion), £ its position in a reference configuration, 
J = det(dx/d£), W is the fluid state vector us- 
ing the conservative variables, and T and 11 de- 
note respectively the convective and diffusive fluxes. 
The second of Eqs. (1) is the classical elastodynamic 
equation where us denotes the displacement field of 
the structure and ps its density, c and E denote 
respectively the strain tensor and the tensor of elas- 
ticities, and b represents the body forces acting on 
the given structure. This equation can be replaced 
by another one describing a nonlinear behavior of 
the structure without affecting the issues raised and 
resolved in this paper. Finally, the third of Eqs. (1) 
governs the dynamics of the fluid moving grid. It is 
similar to the elastodynamic equation because the 
dynamic mesh is viewed here a pseudo-structural 
system.   A bar notation is used to indicate that p 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation' 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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is a fictitious density, and E is a fictitious tensor 
of elasticities. The Dirichlet, Neumann, and other 
boundary conditions intrinsic to each of the fluid 
and structure problems are omitted for simplicity. 

Clearly, the first and third of Eqs. (1) are directly 
coupled. If up denotes the ALE displacement field 
of the fluid and p its pressure field, as and a-p the 
structure stress tensor and the fluid viscous stress 
tensor, T the fluid/structure interface boundary (wet 
boundary of the structure), and n the normal at a 
point to T, the fluid and structure equations are usu- 
ally coupled by imposing that 

as.n 

us 

—pn + (Tp.n 

uF 

on r 

on r 
(2) 

The first of these two interface boundary conditions 
states that the tractions on the wet surface of the 
structure are in equilibrium with those on the fluid 
side of T. The second of Eqs. (2) expresses the 
compatibility between the displacement fields of the 
structure and the fluid at the fluid/structure inter- 
face. For inviscid flows, this second equation is re- 
placed by the slip wall boundary condition 

dup 
n  = 

du* 

dt 
■.n on T     (3) 

The structure and dynamic mesh motions are also 
coupled by the continuity conditions 

dx 
dt 

Us 

dux 
dt 

on r 

onf 
(4) 

The semi-discrete form of Eqs. (1) can be written 
as 

£(AW) + Fc(W,x,x)     = R(W,x) 

M d
2u + Ku     = Fxt(W{x,t),x) 

M^ + Df + Kx     = 0 

(5) 
where x is the displacement or position vector of 
the fluid moving grid points (depending on the con- 
text of the sentence and the equation), W is the 
fluid state vector, A results from the finite ele- 
ment/volume discretization of the fluid equations, 
Fc = F —xW is the vector of ALE convective fluxes, 
F denotes the vector of convective fluxes and R the 

vector of diffusive fluxes, u is the structural displace- 
ment vector, M and K denote respectively the finite 
element mass and stiffness matrix of the structure, 
fxt is the vector of external forces acting on the 
structure, M, D, and K are fictitious mass, damp- 
ing, and stiffness matrices associated with the fluid 
moving grid and constructed to avoid any parasitic 
interaction between the fluid and its grid, or the 
structure and the fluid moving grid. For example, 
M = D = 0 includes as particular cases the spring 
analogy based mesh motion scheme introduced in [3], 
and the continuum mechanics based mesh updating 
strategies advocated by many investigators. 

The main objectives of this paper are to overview 
the solution by partitioned procedures of the semi- 
discrete Eqs. (5), address the limitations of conven- 
tional staggered algorithms that are often employed 
in computational aeroelasticity, and propose new 
ones with superior numerical properties and better 
computational efficiency. 

2    Partitioned solution procedures 

For simple and small-scale structural problems — for 
example, for an airfoil with one or two vibrational 
degrees of freedom — the second of Eqs. (1,5) can 
be recast in first-order form so that the fluid and 
the structural equations of motion can be combined 
into a single formulation (for example, see [4]). In 
such a case, a "monolithic" fully explicit or fully im- 
plicit treatment of the coupled fluid/structure equa- 
tions of motion is possible. However, for more com- 
plex aeroelastic problems, each of the three compo- 
nents of the coupled problem described by Eqs. (1,5) 
has different mathematical and numerical proper- 
ties, well-established but distinct numerical solvers, 
and readily available commercial software. Conse- 
quently, the simultaneous solution of Eqs. (1,5) by 
a monolithic scheme is in general computationally 
challenging, mathematically and economically sub- 
optimal, and software-wise unmanageable. 

Alternatively, Eqs. (1,5) can be solved by a parti- 
tioned or staggered procedure [3,5-8,16]. Partitions 
are spatially and temporally discretized by methods 
tailored to the underlying mathematical models and 
geometric complexity; for example finite volumes 
and a Runge-Kutta scheme for the fluid, and finite 
elements and a midpoint rule for the structure. The 
choice may also be influenced by software availability 
in each individual discipline. As a result, partitions 
are processed by different programs with interaction 
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effects treated as external vector inputs. They are 
advanced with their own time-step exchanging in- 
formation at synchronization points only, a strat- 
egy that simplifies explicit/implicit treatment, sub- 
cycling, load balancing, software modularity, and re- 
placements as better models and methods emerge in 
the fluid and/or structure disciplines. For example, 
an elementary yet popular partitioned procedure for 
solving Eqs. (5) goes as follows: (a) advance the 
structural system under a fluid induced load, (b) 
transfer the motion of the wet boundary of the struc- 
ture to the fluid system using Eqs. (4) and the second 
of Eqs. (2) or Eq. (3), (c) update the fluid dynamic 
mesh accordingly, (d) advance the fluid system and 
compute new pressure and fluid stress fields, and (e) 
convert the new fluid pressure and stress fields into 
a structural load using the first of Eqs. (2). Clearly, 
such a partitioned procedure can be described as a 
loosely coupled solution algorithm. However, if ac- 
curacy and/or numerical stability require it, predic- 
tor/corrector iterations can be added within each cy- 
cle of this five-step staggered scheme, in which case 
the overall partitioned procedure becomes a strongly 
coupled solution algorithm. In the latter case, the 
partitioned solution method can be preferable over 
a monolithic scheme because of its modular and ap- 
pealing mathematical and implementation features. 

2.1 The conventional serial staggered 
algorithm 

In this paper, the basic staggered algorithm outlined 
above is referred to as the Conventional Serial Stag- 
gered (CSS) procedure. It is graphically depicted 
in Fig. 1 where U denotes the structure state vector 
(u u) , p denotes the fluid pressure, the subscript 
n designates the n-th time-station, and the equalities 
shown at the top hold on the fluid/structure inter- 
face boundary T. The simplicity of the CSS method 
is attractive and apparently has earned it the highest 
popularity among partitioned procedures for aeroe- 
lastic computations in the time domain (for example, 
see [3,5,8]). 

In most if not all aeroelastic problems, the fluid 
flow usually requires a finer temporal resolution than 
the structural vibration. Therefore in such appli- 
cations, the coupling time-step At will be typically 
dictated by the time-step Atp that guarantees a cer- 
tain accuracy in the flow solution, rather than the 
time-step Ats > Atp that meets the accuracy re- 
quirements of the structural field.  Using the same 

time-step At in both fluid and structure computa- 
tional kernels presents only minor implementational 
advantages. On the other hand, subcycling the fluid 
computations with a factor ns/F = Ats/Atp can of- 
fer substantial computational advantages; these ad- 
vantages include savings in the overall simulation 
CPU time because in that case the structural field 
will be advanced fewer times, and savings in I/O 
transfers and/or communication costs when comput- 
ing on a heterogeneous platform because in that case 
the fluid and structure kernels will exchange infor- 
mation fewer times. 

The CSS method can be easily equipped with fluid 
subcycling as illustrated in Fig. 2. 

Xn=Un-l 

n+1 

Figure 1: CSS: the conventional serial staggered pro- 
cedure 

xn=un-l *n+1 = un 
xn+2~Un+l 

V^At/ris/F     Wn±i  _ 

n+1 

Figure 2: CSS: fluid subcycling 

However, as noted for example in [4] and math- 
ematically demonstrated in [7], the CSS procedure 
has the disadvantage that it is only first-order time- 
accurate, even when the underlying flow and struc- 
tural solvers are second-order time-accurate. For 
this reason, references such as [4] and others ad- 
vocate fully implicit monolithic solution procedures, 
and references such as [9] and others recommend full 
subiterations — that is, iterating on steps 1 to 4 in 
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Fig. 1 until Eqs. (5) are satisfied before advancing 
the fluid and structure responses from one coupled 
time-step to another. While these alternatives cer- 
tainly remedy the low accuracy issue of the CSS pro- 
cedure, two reservations can be formulated against 
them: (a) as stated earlier, monolithic schemes are 
not realistic for complex aeroelastic problems where 
the structure is given the same attention and impor- 
tance as the fluid (i.e., a nonlinear flexible multibody 
dynamics system and ultimately a linear or nonlin- 
ear flexible full aircraft configuration), and b) it has 
been shown for other classes of fluid/structure inter- 
action problems that the computational cost asso- 
ciated with full subiterations can offset the benefit 
of the larger time-step they can allow [10]. A third 
alternative that is presented in this paper is a new 
subiteration-free staggered algorithm that has the 
same computational complexity as the CSS proce- 
dure, and yet delivers a superior accuracy that is at 
least similar to that of a monolithic implicit scheme 
or a strongly coupled (full subiterations) partitioned 
method. Before discussing this new alternative in 
details, we overview another partitioned procedure 
that is gaining popularity on parallel computers. 

method requires relatively small time-steps in order 
to be numerically stable and sufficiently accurate, 
and to propose an improved version that has better 
accuracy properties. 

xn=un-l        xn+1=un        xn+2=un+1 

Wn      „  ©      Wn+i   ^ 

A1 
it

Un Pn+1 Un+1 

U„        (2) U, n+1 

Figure 3: CPS: the conventional parallel staggered 
procedure 

2.2    A straightforward        parallel 
staggered algorithm 

Intra-field parallelism — that is, parallelism within 
each of the fluid, structure, and mesh motion sub- 
problems — can be implemented in the CSS pro- 
cedure as in any Computational Fluid Dynam- 
ics (CFD) or computational structural mechanics 
(CSM) algorithm. However, the CSS method in- 
hibits inter-field parallelism: the structural system 
cannot be advanced in time until the fluid system is 
first updated. 

Advancing the fluid and structural systems simul- 
taneously and in a loosely coupled manner is appeal- 
ing because it has the potential of reducing the total 
aeroelastic simulation time. Recently, the authors of 
[11] have proposed a partitioned procedure for aeroe- 
lastic problems where inter-field parallelism is imple- 
mented as shown in Fig. 3. Essentially, the fluid and 
structure kernels are executed in parallel during the 
time-interval [tn, tn+i]. Inter-field communication 
or I/O transfer is needed only at the beginning of 
each time-interval. In the sequel, we refer to this 
simple parallel staggered algorithm as the Conven- 
tional Parallel Staggered (CPS) procedure. Two of 
the objectives of this paper are to show that the CPS 

3    An improved serial partitioned 
solution procedure 

Explaining the basic idea behind the improved se- 
rial partitioned procedure proposed in this paper re- 
quires recalling first an important notion pertaining 
to flow computations on dynamic meshes. 

3.1    Impact       of      the       geometric 
conservation law 

A sufficient condition for a numerical method pro- 
posed for the solution of a flow problem on a moving 
grid to be mathematically consistent is that it pre- 
dicts exactly a uniform flow. In [12] it was shown 
that this requirement is satisfied only when the nu- 
merical scheme chosen for solving the flow problem, 
and the algorithm constructed for updating the dy- 
namic mesh, satisfy a discrete Geometric Conserva- 
tion Law (GCL) that is similar in its principle to the 
GCL condition that was first pointed out in [13] for 
structured grids and finite difference schemes. More 
specifically, it was proved in [12,13] that for first- 
and second-order time-accurate ALE finite volume 
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and ALE stabilized finite element methods, the ve- 
locity of the dynamic mesh must be computed as 

x = 
x„+i 

At (6) 

in order to satisfy the GCL. 
Note that Eq. (6) is intuitive and has been "nat- 

urally" used by several investigators independently 
from any GCL consideration (for example, see [3]). 
However, we show next that the impact of Eq. (6) 
on the solution of Eqs. (5) is significant. 

The semi-discrete equations describing the motion 
of the structure are usually solved by a second-order 
time-accurate scheme where 

ü^ 
Un+l~"« 

At (7) 

It follows that if a basic partitioned procedure satis- 
fies the GCL and the first of the continuity equations 
(4), it violates the second of these interface condi- 
tions, as well as the slip condition (3) when the flow 
is inviscid and discretized by an ALE (or dynamic 
mesh) formulation. Indeed, if x = u is enforced at 
the fluid/structure interface and the velocity of the 
dynamic mesh at the interface boundary T is com- 
puted via Eq. (6), the following holds if the struc- 
tural equations of motion are time-integrated by a 
second-order scheme 

Xn + l 

At 

Un + i - U„ 

At 
#u       on    T (8) 

In particular, the reader can verify that when the 
CSS procedure is equipped with Eq. (6) in order 
to satisfy the GCL and with a second-order struc- 
tural time-integrator, it violates the continuity of the 
velocity field across the fluid/structure interface T. 
Hence, under such conditions, the CSS procedure 
introduces an error in the prediction of the energy 
exchange between the fluid and the structure on the 
boundary T, which practically limits it to small time- 
steps to maintain a certain level of accuracy. 

3.2    A    displacement    and    velocity 
conserving staggered algorithm 

Here, we propose a staggered algorithm for the so- 
lution of the aeroelastic semi-discrete equations (5) 
that can satisfy the GCL without violating either of 
the interface continuity conditions (3,4). Hence, un- 
like the CSS method, this algorithm does not intro- 
duce errors in the prediction of the energy exchange 

between the fluid and the structure on the interface 
boundary T. We label this method the Improved 
Serial Staggered (ISS) procedure because, as shown 
in Section 6, it is capable of computing highly accu- 
rate aeroelastic solutions using coupling time-steps 
that are at least comparable to those afforded by 
fully implicit monolithic schemes and strongly cou- 
pled solution methods. 

The description of the ISS method proposed in 
this paper goes as follows 

(1) given some initial conditions Wo, uo and üo, 
initialize the fluid dynamic mesh motion as fol- 
lows 

At . 
x_i=uo — uo     on r (9) 

For n = 1,... 

(2a) set 
xn = un (10) 

(2b) update the fluid dynamic mesh as follows 

xn+i=xn_i+Atxn (11) 

(3) solve the flow problem to obtain the fluid 
state vector W„ . i 

(4) extract the pressure field on T from Wn+1 
and convert it into a structural load 

(5) advance the structural system using the 
second-order time-accurate midpoint rule 

PROPOSITION 1. Using the ISS procedure, the fol- 
lowing relation holds 

i = u„ 
At. 

on r (12) 

PROOF. Eq. (12) holds for n = 0 (see Eq. (9)). 
Assuming it holds for a given n, Eqs. (10,12) can be 
substituted into Eq. (11) to obtain 

x„+i    =xn_|+Atx„ 

= un - ^un + Atun (13) 

un + 4^un     on T 

Since the structural problem is solved by the mid- 
point rule, it follows that 

un+i - u„ = -ytün + un+i) (14) 
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Finally, from Eqs. (13,14) we derive 

xn+i = un+i - -yün+i     on T (15) 

which completes the proof by induction of PROPO- 
SITION 1. 
PROPOSITION 2.     The ISS procedure described 
(tbove satisfies Eq.   (6) (implied by the GCL) and 
both interface continuity equations (4). 
PROOF. Define 

xn   i +xn+i 

Substituting Eq. (11) into Eq. (16) gives 

M  . 
xn — xn-§ +    2    X" 

(16) 

(17) 

and substituting Eqs. (10,12) into Eq. (17) gives 

x„ = un     on T (18) 

which concludes the proof of PROPOSITION 2. 
REMARK 2. From Eq. (13), it follows that up- 

dating the fluid dynamic mesh using Eq. (11) is 
equivalent to updating it using 

^n+i 
At . 

= u„ + —-u„ (19) 

The second proposition summarizes the main idea 
behind the design of the ISS method, and high- 
lights the major difference between this improved 
serial staggered procedure and the conventional se- 
rial staggered procedure CSS overviewed in Section 
2.1. 

The ISS method advocated in this paper is illus- 
trated in Fig. 4. It is subiteration-free, has a com- 
putational complexity that is similar to that of the 
CSS method, and exhibits superior numerical prop- 
erties that are highlighted in Section 6. It can be 
equipped with fluid subcycling as for the case of the 
CSS procedure (see Fig. 2). 

4    An improved parallel partitioned 
solution procedure 

The mathematical analysis performed in [7] for a 
linearized aeroelastic model problem suggests that 
for the CPS procedure, inter-field parallelism is 
achieved at the expense of amplified errors in the 
fluid and structure responses. This is not surprising 

At. At. 
xn-l/2=un-l+2Un-l      xn+l/2=un+2Un 

W„-l/2   © Wn+1/2 

Un        0 U, 

Figure 4: ISS: the improved serial staggered proce- 
dure 

given that the CPS method does not implement any 
feedback between the fluid and the structure within 
one coupled time-step. In order to improve the ac- 
curacy of this basic parallel time-integrator, we pro- 
pose to exchange information between the fluid and 
structure kernels at half-step. We label the corre- 
sponding staggered algorithm the Improved Parallel 
Staggered (IPS) procedure, and depict it graphically 
in Fig. 5. 

xn=-j(V! + «„)       Xn+U2=un *„+l=2(Un+"n+l) 

w„        0       wn+i      0   Wn+1 

Figure 5: IPS: the improved parallel staggered pro- 
cedure 

The computations performed during the first half 
of a cycle of the IPS procedure are identical to 
those that are performed during a cycle of the 
CPS method, except that the fluid system is ad- 
vanced only up to tn+i, while the structure is time- 

integrated all the way to t„+i. Let Wn+i and Un+i 
denote respectively the fluid and state vectors com- 
puted during the first half of an IPS cycle. At <n+1, 
the fluid and structure kernels exchange the most 
recently computed pressure, displacement and ve- 
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locity information. In the second half of the same 
IPS cycle, the fluid system is advanced from tn+1 to 

tn+i using the structural state vector U„+1, and the 
structural response is simultaneously re-computed 
using the fluid state vector W„+i. Hence, the eval- 

uation of Un+i can be interpreted as a prediction 
step whose objective is to guess the next position 
of the fluid/structure boundary T in order to up- 
date the fluid dynamic mesh using a better informa- 
tion than U„. Note that the IPS procedure can be 
equipped with fluid subcycling as for the case of the 
CSS method (see Fig. 2). 

From the results of the mathematical analysis per- 
formed in [7] for a linearized aeroelastic model prob- 
lem, we can expect the IPS method to have a bet- 
ter accuracy than the CPS procedure, at the ex- 
pense of one additional communication step or I/O 
transfer during each coupled time-integration cycle, 
and one additional flow solution if no subcycling is 
performed (the additional structure solution is per- 
formed in parallel and therefore does not consume 
additional parallel CPU time) 

5    Flow, structure, load, and mesh 
motion solvers 

The three-dimensional unsteady implicit flow solver 
considered in this paper operates on unstructured 
dynamic tetrahedral meshes. It combines a Roe 
upwinding scheme for the computation of the con- 
vective fluxes with a Galerkin centered approxima- 
tion for the approximation of the viscous terms. 
Second-order accuracy is achieved through the use 
of a piecewise linear interpolation method that fol- 
lows the principle of the Monotonie upwind Scheme 
for Conservative Laws (MUSCL). An ALE formu- 
lation [2,14] is incorporated into this fluid solver to 
allow the grid points to displace in a Lagrangian 
fashion, or be held fixed in an Eulerian manner, or 
be moved in some specified way to give a continuous 
and automatic rezoning capability, depending on the 
needs of the physical problem to be solved. Time- 
integration is carried out by a second-order implicit 
backward difference scheme whose implementation 
satisfies the geometric conservation laws (GCL). 
This three-dimensional unstructured and unsteady 
implicit flow solver is parallelized using domain de- 
composition [14]. 

In all application problems discussed in the next 

section, the structure is represented by a finite ele- 
ment model, and its dynamic behavior is predicted 
using the true displacement, velocity, and accelera- 
tion degrees of freedom (d.o.f.) rather than modal 
or other generalized coordinates. The corresponding 
semi-discrete equations of dynamic equilibrium are 
time-integrated with the implicit second-order mid- 
point rule. 

6    Applications 

In order to illustrate the issues, support the claims, 
and validate the new algorithms presented in this pa- 
per, we consider the flutter analysis of the AGARD 
Wing 445.6 [15]. This wing is an AGARD standard 
aeroelastic configuration with a 45 degrees quarter- 
chord sweep angle, a panel aspect ratio of 1.65, a 
taper ratio of 0.66, and a NACA 65A004 airfoil sec- 
tion. The model selected here is the so-called 2.5-ft 
weakened model 3 whose measured modal frequen- 
cies and wind-tunnel flutter test results are reported 
in [15], and for which computational aeroelastic data 
can be found in [8,16]. 

An undamped finite element model of the wing 
with 800 triangular composite shell elements and 
2646 d.o.f. is constructed using the information 
given in [15]. It yields natural mode shapes and 
frequencies that are similar to those derived exper- 
imentally. More specifically, the frequencies associ- 
ated with the first four natural modes of this finite 
element model are respectively 9.83 Hz, 39.54 Hz, 
50.50 Hz, and 96.95 Hz. They differ from the exper- 
imental ones by only 2.5 %, 3.6 %, 4.5 %, and 5.9 %, 
respectively. These modal results are included here 
only for validation purposes; we remind the reader 
that our flutter analysis is conducted using the true 
finite element representation of the wing and not its 
modal coordinates. 

Two three-dimensional unstructured tetrahedral 
CFD Euler meshes are generated. The first one is 
coarse as it contains 22014 vertices only; it is this 
mesh that is intended for flutter analysis. The sec- 
ond one is finer: it contains 331233 vertices and 
is intended only for flutter convergence verification. 
Note that our first mesh is coarser than the CFD 
grid with 45180 nodes that was used in [8] and an 
order magnitude coarser than that with 261129 grid 
points that was employed in [16] for similar flutter 
analyses. 

All computations discussed next are carried out on 
an IBM SP2 parallel computer. A single processor 
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is assigned to the finite element structural model, 3 
processors to the coarse CFD mesh, and 40 proces- 
sors to the fine one. 

6.1 Mesh convergence verification 

First, the freestream conditions are set to Moo = 
0.901, poo = 1.117 x 10~7, and poo = 10.0. 
The last two values are dimensional values with the 
same units as in [15]. The finite element structural 
model is perturbed along its first bending mode, 
and two steady state solutions are computed around 
the deformed configuration of the wing using both 
the coarse and fine CFD meshes. Next, this per- 
turbation is used as an initial condition, and the 
aeroelastic response of the wing is computed us- 
ing both the coarse and fine CFD meshes, and the 
ISS procedure with a dimensional coupling time- 
step At = 10-3 and with At/2. In all cases and 
for all subsequent aeroelastic computations, the di- 
mensional global fluid time-step is set to Atp — 
min(5 x 10~4, At). Hence, the dimensional coupling 
time-step At = 10~3 leads to a subcycling factor 
ns/F = 2. Note also that this dimensional coupling 
time-step corresponds to sampling the period of the 
first torsional mode of the dry wing in 25 points, as 
usually done for a fully implicit monolithic solution 
algorithm. The obtained dimensional lift histories 
are shown in Fig. 7. These results indicate that for 
the given freestream conditions, the wing does not 
flutter, which is consistent with the experimental re- 
sults detailed in [15]. They also show that the spatial 
resolution of the coarse CFD mesh and the size of the 
dimensional coupling time-step At = 10-3 are ade- 
quate for the aeroelastic analysis in the time domain 
of the AGARD Wing 445.6. In particular, note that 
for the coarse CFD mesh, the curves for At = 10-3 

and At = 5 x 10~4 are undistinguishable. Hence, 
for the sake of efficiency, all subsequent aeroelastic 
computations are performed using the coarse CFD 
mesh, and for ISS, a dimensional coupling time-step 
At = 10-3. 

6.2 Benchmark     of    the     improved 
staggered algorithms 

Next, the previous freestream conditions are kept 
the same and the aeroelastic response of the wing is 
recomputed using the CSS, CPS, and IPS algorithms 
and various time-steps. 

AGARD Wing 445.6 

5      o 

Coanw CFD nwih: 22014 grtdpoints-Dt-0.001 - 
Coarea CFD rrwsh: 22014 gnd points - Dt - 0.0005 ■ 

Finn CFD mash: 331233 grid points ~ Dt ■ 0.001 •■ 

Figure 6: Lift histories predicted by ISS using At = 
io-3 

The results reported in Fig. 8 show that for a 
dimensional At = 10~3, CSS predicts an unstable 
behavior of the wing. However, after reducing the 
dimensional time-step to At = 2 x 10-4, CSS re- 
produces the same stable response as ISS (curves 
are undistinguishable in Fig. 8). In the absence of 
a formal theoretical analysis of the solution of the 
transient nonlinear aeroelastic semidiscrete problem 
(5) by partitioned procedures, we can conclude that 
either the domain of numerical stability of the CSS 
procedure is more restrictive than that of the ISS 
method, or that the ISS procedure has higher accu- 
racy properties than the CSS method. In any case, 
this example highlights the superior performance of 
the proposed ISS procedure which is shown to be 
capable of reproducing the same result as the CSS 
method using a coupling time-step that is 5 times 
larger than can be afforded by the CSS algorithm. 

Similarly, the lift histories reported in Fig. 9 and 
Fig. 10 show that the coupling time-step has to be 
reduced by a full order magnitude to At = 10-4 

before the CPS procedure converges to a stable re- 
sponse, and by a factor of 3 to A< = 3.3 x 10-4 

before the IPS method also converges to a stable 
behavior and reproduces a response that is undistin- 
guishable from that prediced by ISS with At = 10-3. 
Once again, this demonstrates that inter-field paral- 
lelism compromises numerical stability and/or ac- 
curacy, and that the improved parallel staggered 
procedure IPS proposed in this paper has better 
stability and/or accuracy properties than the con- 
ventional parallel staggered method CPS [11]. For 
At = 3.3 x 10-4, the IPS procedure performs two 
flow solutions per staggered cycle (recall that Atp = 
min(5 x 10-4, At) -4 ns/F = 1); on the other hand 
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for At = 10-4, the CPS method performs only one 
flow solution per staggered cycle. However, the IPS 
method allows a time-step that is 3.3 times larger 
than that of the CPS algorithm, and therefore for 
this problem, the IPS method is 1.6 times faster than 
the CPS procedure. 

AOARD Wing 445.6 

AGARDWmg 445.6 

ISS: DI - 0.001 — 
CSS:Dt-IP.O01 +-- 

C9¥:Dt-$\oo02 -i- 

5      o 

Figure 7: Convergence analysis of CSS 

AGARD Wmg 445.6 

ISS: Dl- 0.001 - 
CPS: Dt-0.001 - 

CPS: Pt- 0.00025 - 
CPffibt-O.CfOOl - 

5       o 

Figure 8: Convergence analysis of CPS 

The numerical instability of CSS, CPS, and IPS at 
the specified coupled time-step At = 10~3 highlights 
the potential for confusing numerical and physical 
instabilities when investigating flutter problems in 
the time domain. Most significant is the fact that the 
instability exhibited by these methods and shown 
in Fig. 8-10 is of the "slow" or "weak" type, and 
therefore does not necessarily strike an analyst as 
a numerical instability; it could rather mislead him 
to conclude that a flutter point is reached. This 
difficulty is intrinsic to flutter analysis in the time- 
domain, whether a monolithic or staggered algo- 
rithm method is chosen for solving Eqs. (5). Adap- 
tive time-stepping (simplified here to a uniform re- 

1           I i IPßiDt-0.0005 ■ 
,'|           jl           ji           j!           II IPS (1-0.00033- 

U    U    ;,    ij    M jl 
IAI in I 

5        o 

Figure 9: Convergence analysis of IPS 

duction of the time-step) is the only feasible cure 
for this problem that we are aware of. Nevertheless, 
the results reported herein show that staggered algo- 
rithms can be refined to alleviate this problem. They 
also demonstrate the superiority of the ISS method 
over the conventional CSS procedure (a factor 5 im- 
provement in the time-step), and the superiority of 
the IPS method over the CPS algorithm (a factor 
3.3 improvement in the time-step). Again, note that 
the dimensional coupling time-step At = 10~3 cor- 
responds to sampling the period of the first torsional 
mode of the dry wing in 25 points, and therefore is 
comparable to the time-step usually selected for the 
more restrictive fully implicit monolithic algorithms. 

6.3    Validation     of     the     improved 
staggered algorithms 

^^___^_^ AGARD Wing 44S.6 

Fartiat and LB so inn« (22K-points, Dt-0.001) 
Lee-Rausch and Batina (261K-p«nts, Dt-0.0001). 

Gupta {45K-points, Dt-0.0000425» 
Experimental (Yatesjf 

Figure 10: Flutter speed index 

Finally, we compute the flutter speed index and flut- 
ter frequency ratio as functions of the Mach num- 
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Figure 11: Flutter frequency ratio 

bers. More specifically, for each target Mach num- 
ber, we set the freestream density as in [15] and 
vary the freestream pressure until we observe the 
onset of flutter. For this purpose, we employ the 
coarse CFD mesh with 22014 grid points and the 
ISS solution method. We set the dimensional cou- 
pling time-step to At = 10-3 (ns/F = 2). We 
compare our simulated results with the experimen- 
tal data published in [15], and with the computa- 
tional results published in references [8,16]. Both 
methods used in [8,16] are staggered solution pro- 
cedures that are similar to the CSS method dis- 
cussed in this paper, and that use implicit Euler 
flow solvers with an accuracy comparable to our 
Euler flow solver. However, both of these refer- 
ences represent the structure by its modal coordi- 
nates (reference [16] uses the measured frequencies), 
and reference [8] includes a 2% modal damping for 
the dry wing. In reference [8] the CFD mesh has 
45180 nodes, the dimensional coupling time-step is 
set to A<M = 0.0017027/40 = 4.25 x 10~5, and no 
subcycling is used. Hence, our coupling time-step 
is more than 23 times larger, and our fluid global 
time-step more than 11 times larger. In reference 
[16], the CFD mesh has 261129 grid points, the non- 
dimensional coupling time-step (based on the root 
chord and the freestream speed of sound) is set to 
0.05456, which means that the dimensional coupling 
time-step is set to A^16^ = 10~4, and no subcycling 
is used. In other words, our mesh is 10 times coarser, 
our coupling time-step is 10 times larger, and our 
fluid global time-step 5 times larger than in [16]. 

The results reported in Fig. 11 and Fig. 12 show 
that in the range 0.499 < Mm < 0.960, our com- 
putational methodology compares more favorably 

with the experimental data than both results pub- 
lished in [8] and [16]. In the supersonic regime, our 
results compare more favorably with experimental 
data than those of [16], but less favorably than those 
of [8]. As a matter of fact, it seems that in the su- 
personic regime, our computational results validate 
those of [16]. However, the results reported in this 
work as well as those reported in [8,16] correspond 
to Euler flow solutions, and as stated in [16], the 
modeling of the flow physics by the Euler equations 
is incomplete. In any case, given that our CFD mesh 
is coarser than both meshes employed in [8,16], that 
our ISS algorithm has the same computational com- 
plexity as the partitioned procedures used in these 
references, and that our time-step is at least an order 
of magnitude larger than both time-steps employed 
in [8,16], the results shown in Fig. 11 and Fig. 12 not 
only validate our aeroelastic computational method- 
ology, but also highlight its superior computational 
efficiency. Furthermore, they demonstrate that, for 
aeroelastic problems, a well designed staggered algo- 
rithm can afford a time-step that is comparable to 
that of a fully implicit monolithic scheme. 

7    Conclusions 

It has often been stated that loosely coupled par- 
titioned procedures for the solution of aeroelastic 
problems in the time domain are inferior to strongly 
coupled fully implicit monolithic schemes. We do 
not subscribe to this viewpoint. Partitioned proce- 
dures offer the possibility to combine different so- 
lution methods that are tailored to the different 
mathematical models and geometric complexity un- 
derlying the fluid and structure problems, can take 
into account software availability in each individ- 
ual discipline, simplify mixed explicit/implicit treat- 
ment, facilitate subcycling, preserve software mod- 
ularity, and are the most if not only feasible com- 
putational methods when the structural system is 
more complex than a simple airfoil or a homoge- 
neous flat plate. Partitioned procedures are compu- 
tationally more economical than fully implicit mono- 
lithic schemes. However, they can be less accurate 
than these methods when they are equipped with 
the basic staggering algorithm, in which case they 
often necessitate small time-steps. In this paper, 
we have shown that better staggered algorithms can 
be designed to improve the efficiency of partitioned 
procedures. More specifically, we have presented an 
enhanced staggered algorithm whose computational 
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complexity is comparable to that of the basic ones, 
and yet allows the simplest partitioned procedure 
to operate with coupling time-steps that are com- 
parable to those afforded by fully implicit mono- 
lithic schemes. We have validated this algorithm 
with the flutter analysis of the AGARD Wing 445.6, 
and highlighted its superior accuracy and computa- 
tional efficiency by proving it capable of operating 
accurately with a coupling time-step that is 10 to 
23 times larger, and a fluid global time-step that is 
5 to 11 times larger than previously reported in the 
literature. We have also improved an existing par- 
allel staggered algorithm for the solution of aeroe- 
lastic problems. Unless the structural problem is 
large enough, we recommend the improved serial 
staggered algorithm as it allows a time-step that is 
several times larger than the maximum time-step al- 
lowed by the parallel variant. 
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Abstract 
In the past few years, great strides have been made 
in the analytical prediction of nonlinear flows 
using computational fluid dynamics (CFD). 
Coupled with the exponential growth in computer 
power, this has made it possible to analytically 
predict the unsteady aerodynamics and aeroelastic 
motion of complex configurations in nonlinear 
flow regimes. Unfortunately, these analyses are 
extremely costly due to the vast amount of 
computational effort required to compute the 
requisite time histories. This computational 
expense limits the use of these nonlinear 
aeroelastic tools to special cases, and eliminates 
them from consideration whenever a large number 
of conditions must be evaluated. Due to this high 
cost, the aerodynamic tools used in certification 
analysis and aeroelastic design optimization are 
usually based on linear lifting surface theory or 
panel methods. This paper presents a method to 
bridge this gap, so that the improved accuracy of 
the expensive nonlinear aerodynamic/aeroelastic 
methods can be injected into the economical 
production-type aeroelastic analyses through 
corrections to the linear aerodynamics. In contrast 
to techniques based on multiplicative correction 
factors, the present technique corrects the linear 
aerodynamics by removing a component of the 
pressure distribution from the linear theory, and 
replacing it with a component computed with a 
nonlinear method using a concept called "local 
equivalence." This allows a small number of 
nonlinear analyses to be applied to a large number 
of aeroelastic analyses. The technique is equally 
applicable to steady and unsteady aerodynamics. 
The formulation is such that, if available, steady or 
unsteady wind tunnel data can also be used in 
aeroelastic analysis and optimization. The scope 
of the paper is limited to comparing the results of 
corrected linear aerodynamics to the available 
nonlinear data, since many comparisons between 
nonlinear simulations and experiment are available 
in the literature. An application of the current 
technique to the flutter analysis of the AGARD 

445.6 wing is shown, along with correlations 
between direct nonlinear flutter simulations and 
flutter solutions with corrected aerodynamics. 

Introduction and Prior Work 
Currently, a great deal of research is being 
conducted in the solution of the nonlinear unsteady 
aerodynamic and aeroelastic equations. The 
techniques being used range from relatively simple 
nonlinear models based on the transonic small 
disturbance potential equation [1,2,3,4] to 
solutions for the full Euler or Navier-Stokes 
equations [5,6,7,8]. Many of these codes also have 
the capability of including a model of the 
structural dynamics of an airplane, allowing the 
direct simulation of the nonlinear aeroelastic 
behavior of an airplane. 

While these codes provide the most complete and 
accurate analytical methods for predicting the 
aeroelastic behavior of airplanes in nonlinear 
(especially transonic) flight regimes, they all suffer 
from the same drawback: They are very expensive 
to use. A condition that may take only a few 
seconds to analyze on a workstation using linear 
lifting surface theory [9,10] will often take the 
better part of a day on a supercomputer to simulate 
using nonlinear aerodynamics. In addition it is 
not always clear how the results of a nonlinear 
simulation (which usually consists of time history 
data or frequency/damping values for a single 
flight condition) should be used most effectively. 
While there is a tremendous amount of analysis 
and optimization software (and experience) 
available for designing airplanes using linear (or 
linearized) aerodynamics, there has been little 
progress in integrating the fully nonlinear 
techniques into the airplane aeroelastic analysis 
and design phases. This has left aeroelastic CFD 
tools to peform mostly research roles, with some 
forays into the "real" world to analyze isolated 
conditions. 

The design of an airplane typically requires the 
steady and unsteady aeroelastic analysis of 
thousands of conditions. Due to the large number 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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of analyses required, the nonlinear techniques 
mentioned above are unlikely to significantly 
impact the aeroelastic design of future airplanes 
unless two goals can be met: The computational 
cost must be reduced by orders of magnitude, and 
the nonlinear aerodynamic data must be integrated 
into production quality aeroelastic analysis and 
design tools. 

For many years, aeroelasticians have recognized 
the shortcomings of linear aerodynamics. In flight 
regimes where the accuracy of linear methods is 
insufficient, they have attempted to develop 
improved accuracy models. While there has been 
some recent work in developing reduced-order 
unsteady aerodynamic models based on nonlinear 
CFD codes [11,12,13,14,15, 16,17,18], the 
approach has historically been to apply weighting 
factors to the lift and moment distributions 
obtained from linear theory in order to match 
nonlinear data [19,20]. Typically, the available 
data has been experimental (i.e. wind tunnel) 
airplane lift and moment coefficients, and when 
available, the spanwise lift and moment 
distributions. The resulting weighting factors are 
typically functions of the flight condition, 
including Mach number, Reynolds number, angle 
of attack, etc. 

While the weighting factor approach has been used 
with some success for analysis of high aspect ratio 
wings, there are several difficulties. Weighting 
factors are typically used to force the corrected lift 
(and sometimes moment) distributions to match 
nonlinear data. Since the number of available 
correction terms is much larger than the number of 
lift/moment constraints, this results in an 
underdetermined set of equations. In order to 
solve for the weighting factors, arbitrary shape 
functions (such as step/ramp functions) must be 
assumed, or a least squares approach [20] must be 
taken. This can lead to unreasonable (i.e. large or 
negative) weighting factors. Since the vast 
majority of wind tunnel tests are steady, and since 
unsteady aerodynamic data calculation using CFD 
codes is only now becoming affordable, most 
applications of aerodynamic correction techniques 
concentrate on steady aerodynamics. Some 
notable exceptions to this trend can be found in 
[19], where the authors have developed guidelines 
in applying steady correction factors (i.e. 
correction factors computed using steady test data) 
to unsteady aerodynamic matrices. 

With recent advances in computer technology (and 
affordability!) and CFD codes, it has at last 
become     possible     to     use     the     resulting 

"computational wind tunnel" to generate 
aerodynamic data that cannot be obtained 
economically from a conventional wind tunnel. 
Specifically, these codes make it possible to obtain 
a full description of the surface pressure 
distribution when the airplane is subjected to 
virtually any motion, including non-testable 
conditions such as a pure oscillation of a bending 
mode. 

In this paper, an aerodynamic correction method is 
developed that specifically makes use of the 
distributed pressure data available from unsteady 
CFD solutions to develop improved linear 
(linearized) aerodynamics that can be used to 
predict the small-motion stability of the aeroelastic 
system. The new technique does not use 
weighting factors, and therefore does not require 
arbitrary weighting functions or least-squares 
solutions. In contrast to previous methods, which 
typically correct only the magnitudes of the 
aerodynamic coefficients, the current technique 
constructs corrected aerodynamic influence 
coefficient (AIC) matrices by directly using the 
unsteady data, which allows correction of both the 
magnitude and phase of the entire pressure 
distribution. Since the pressure distribution (rather 
than sectional lift and moment coefficients) is 
corrected, the present technique is more applicable 
to low aspect ratio configurations than previous 
approaches, and is more applicable to flutter 
mechanisms not dominated by classical 
bending/torsion interaction. It should be 
emphasized that the present technique requires 
linearization of the nonlinear aerodynamics, and is 
not intended to capture dynamically nonlinear 
behavior, such as limit cycle oscillation. 

The Local Equivalence 
Concept 
Consider an airplane undergoing a general 
aeroelastic deformation, including not only 
structural deflections, but also rigid body rotations 
and surface deflections as well. If we define a 
"representative" deflection shape function <p, then 
any arbitrary deformation of the airplane can be 
written in the form 

u -(pr\ + du (1) 

Where u is the actual deflection of the airplane, r\ 
is a scalar coefficient determining the magnitude 
of the "representative" deflection cp, and at is a 
residual. The pressure distribution on the airplane 
surface, which is of course dependent on the 
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airplane deflection u, can be expressed as a first 
order Taylor series 

PNL(u) = PNL(<prj)+ — Su        (2) 

where the superscript "NL" denotes a nonlinear 
quantity. If nonlinear aerodynamic data is 
available for deflections of the form u = rj<p for 
various values of TJ and a specified representative 
deflection shape <p, then the first term in the above 
equation can be taken directly from the available 
CFD solutions. Since <p is specified ahead of time, 
only the coefficient TJ can be chosen 
independently. The value of TJ is chosen in order 
to make the first term as dominant as possible, and 
to minimize the impact of the residual deflection 
on the pressures of interest. In general, the value 
of TJ will depend on the deflection u of the 
airplane. 

For stability analysis, we are not so interested in 
the absolute values of the pressures, but in their 
derivatives with respect to deflection. These 
derivatives, or Aerodynamic Influence 
Coefficients (AIC's) are commonly used in 
aeroelastic analysis. The following derivation will 
not explicitly point out the unsteady nature of the 
AIC's, but each quantity is assumed to be 
complex-valued in general, and to depend 
implicitly on reduced frequency k=wc/2V. By 
simply differentiating equation (2) with respect to 
deflection, we can approximate the derivative of 
the nonlinear pressure with respect to deflection 
(in essence, a corrected AIC matrix) as 

dP^^dP"1 

du 
{(prj) drj    dP dSu 

drj      du     du du 
(3) 

If the partial derivative of pressure with respect to 
deflection (dP/du) in the residual term of the above 
equation is approximated by the linear AIC matrix 
AI& (which has little effect on the solution if the 
residual term is small), then the corrected AIC 
matrix can be written as 

AIC( dPNL drj    AT^L d(u-<prj) 
 - + AIC1 -^—^-LL   (4) 

drj   du du 

where the definition of du from Equation (1) has 
been substituted into the last term, the explicit 
dependence of P^ on <pr\ has been omitted for 
brevity, and the notation of the corrected AIC 
matrix AIC° has been introduced. This can also be 
written as 

AICC =AICL + 
fdP NL 

dr] 
-AICl<p 

J 

drj 

du 
(5) 

Therefore, if the nonlinear aerodynamic pressure 
distribution is known for a given <p and various 
values of TJ, and if the (unsteady) derivatives of Jthe 
nonlinear pressure with respect to 77 are known, 
then a corrected AIC matrix can be constructed 
that captures some of the effects of aerodynamic 
nonlinearities. It should be emphasized that this 
technique is not a "correction factor" in the 
traditional sense. Typically, correction factors are 
multiplicitave corrections applied to the linear AIC 
matrix in order to bring some selected derivative 
values into agreement with nonlinear data. In this 
technique, however, the linear pressures are not 
simply multiplied by a factor, but a component of 
the linear pressure distribution (the third term of 
equation 5) is removed, and it is replaced with a 
nonlinear pressure distribution (the second term of 
equation 5). For deflections u which are nearly 
collinear with the shape function q>, the part that is 
replaced is the dominant part, and the residual 
term is small. 

It should be noted that the derivative dP^ldtj is, in 
general, a function of Mach number, Reynolds 
number, reduced frequency, and the steady-state 
incidence and deformation of the airplane. 
Although the example presented below is based on 
a symmetric wing at zero angle of attack (and 
therefore zero steady-state deflection), the 
procedure can be expanded to compute a corrected 
AIC matrix that depends on the steady-state trim 
and deformation state of the airplane. 

The technique of Equations (2) and (5) is termed 
an equivalence technique, since the aerodynamic 
nonlinearities are introduced through an 
"equivalent" scalar variable 77. The introduction of 
the equivalent variable TJ makes is possible to 
estimate the nonlinear pressure distribution (and its 
derivatives) due to various values of 77, and to 
apply them to correct an entire AIC matrix. This 
is feasible, since the subspace of deflections for 
which nonlinear aerodynamic data is required is 
now one-dimensional, rather than the many- 
dimensional space of all possible deflections. 

The'problem now is to choose a value of TJ such 
that the "equivalence" concept makes sense. The 
choice of values for TJ can be thought of as a 
(potentially non-orthogonal) projection from the 
space of all possible deformation states of the 
airplane to the subspace of the deformations for 
which   more   accurate   aerodynamic   data   is 
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available. If the projection is linear, then it can be 
written in matrix form as 

Tj = Du (6) 

In order to illustrate the possible correction 
techniques that can be built from the equivalence 
concept, we shall consider several methods of 
choosing the parameter TJ. In the first case, let us 
assume that TJ simply represents the angle of attack 
of the airplane, and Su contains all the aeroelastic 
deflection. The representative mode vector <p then 
is simply a vector representing a unit angle of 
attack, and the projection operator D in this case is 
simply 

D = 0    0 1/ 
<Pi 

0   0 (7) 

where the non-zero entry corresponds to the pitch 
degree of freedom of some reference point on the 
airplane (such as the center of gravity). The value 
<Pi is the magnitude of the pitch rotation of that 
degree of freedom in the mode shape q>. This is 
certainly nothing new, since the method described 
above is essentially identical to the common 
practice of using experimental or CFD data for a 
rigid airplane, and appending a linear correction 
for aeroelastic effects. 

This approach has the advantage of simplicity, but 
has several shortcomings. Perhaps most 
significant is the fact that the equivalent 
deflections depend only upon the position of a 
single reference point, and make no use of 
information about the deformation of the rest of 
the airplane. Another possible technique is to use 
a simple vector projection, such that 

D = 9 
(8) 

\<P 
In this case, the representative deflection of the 
airplane will be that of an equivalent "mean" angle 
of attack of the configuration. With this 
formulation, it might be expected that better results 
could be obtained, because the true shape of the 
airplane would be in some sense "balanced" 
around the representative shape, and the largest 
error would be smaller than that obtained with the 
first technique. 

Each of the approaches described above makes use 
only of the vector definitions of the deformed 
shapes of the airplane, and therefore has no 
information pertaining to the aerodynamic 
interference that may be  occurring.     A third 

method computes the equivalent deflection based 
on equivalence of some aerodynamic quantity such 
as lift. In this case, the projection operator D is 
given by 

D = (HAIC
L

<PYHAIC
L
       (9) 

where A1& is the linear aerodynamic influence 
coefficient matrix, and His an integration matrix 
converting aerodynamic pressures into an 
integrated aerodynamic coefficient. If the tp vector 
again represents a unit angle of attack, the 
equivalent deflection TJ computed using this 
technique is the angle of attack that, assuming 
linear aerodynamics, gives the same overall lift 
coefficient as the deformed shape in question. 

This is perhaps the best of the techniques 
presented so far. This concept, which is based on 
equivalence of some integrated aerodynamic 
quantity (such as lift) is an improvement over the 
others presented, but it still has the disadvantage 
that the aerodynamic nonlinearities are only 
applicable to a global "mean" deformation. Since 
the airplane will (presumably) encounter other 
deformations, this is a serious shortcoming, and 
must be overcome in a successful method. 

One technique for accounting for some of the 
effects of unpredicted deformations is to apply the 
method of equations 2 and 5 to discrete areas, or 
"zones" of the airplane, each of which have their 
own distinct values of TJ. In this paper, for 
simplicity, the only type of zone that will be 
considered is a streamwise strip of the wing, but 
the technique allows for more general definitions. 
If the airplane is discretized into zones, then for a 
given deflection state, each zone has a given value 
of the integrated coefficients of interest, and 
therefore has its own equivalent deflection TJ. The 
pressure distribution on that zone can then be 
computed using a variation of that used in 
Equations (3-5): 

6PC 

du 

yNL 

Ö7J 
(HiAICL<pYHiAICL + 

AICL [i - (p^iAlC-pY H.AIC1 

f DM. 

= AICL + -AICL(p 
\ dtj 

\^iAICL(p]XHiAICL 

(10) 
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where the subscript / indicates that the equation 
only applies to compute pressures on zone /', and 
the matrix 77, integrates the aerodynamic 
coefficients of zone /' (such as the local sectional 
lift coefficient). The overall corrected AIC matrix 
is then formed by taking the appropriate rows from 
each of the [SP'VSK], matrices and assembling 
them into one full AIC matrix. This can be written 
in matrix notation as 

AICC = ZJ< 
1=1 

dPc 

du 
(11) 

where the matrix J, is a diagonal matrix with null 
entries for aerodynamic elements (boxes) that are 
not in zone /', and unit (1.0) entries for 
aerodynamic boxes that are included in zone /'. 

Conceptually, this approach is very simple if one 
considers the special case of a high aspect ratio 
wing where the equivalent deflection is a rigid 
airplane angle of attack and the local equivalence 
zones are wing strips. In general, any deflection of 
the wing affects the flow over the entire wing, and 
this effect is captured by the concept of a locally 
equivalent angle of attack. For example, if the 
wingtip pitches up, a lift will be induced over the 
entire wing. At a given span station (strip), the 
nonlinear pressure distribution due to the total 
(including induced) lift is assumed to be 
equivalent to that generated by an "equivalent" 
airplane angle of attack, for which the nonlinear 
pressures are known. Any residual effect is 
corrected using linear theory. 

Results: 
Wing 

The AGARD 445.6 

The process described above has been applied to 
the transonic flutter analysis of the AGARD 445.6 
wing. This configuration is well documented in 
the literature, and has been extensively analyzed 
using many codes, ranging from the simplest linear 
methods [21] to small disturbance solutions [2,3] 
to full Navier-Stokes simulations [6,22]. In this 
study, the AGARD 445.6 wing is analyzed using a 
linear lifting surface method, a transonic time- 
marching aeroelastic simulation method, and a 
linear analysis with corrected aerodynamics. 
While the transonic effects for this configuration 
are not extreme, the results indicate that the local 
equivalence correction factor technique can 
accurately predict the stability boundaries in the 
presence of a transonic flutter dip. 

The baseline linear flutter analysis was performed 
using the pk-method of flutter solution with linear 
doublet lattice aerodynamics [10,23], while 
nonlinear aerodynamic and aeroelastic solutions 
were computed using the transonic small 
disturbance (TSD) equations [1,2,3]. While the 
TSD equation is one of the simplest models- of 
transonic aerodynamics, it is expected that if the 
corrections can successfully capture the behavior 
of the TSD solutions, they should also capture the 
transonic effects of Euler or Navier-Stokes 
solutions. 

The AGARD 445.6 wing configuration was 
actually a series of models tested in the NASA 
LaRC Transonic Dynamics Tunnel (TDT) in the 
1970's, and the geometry and mode shapes are 
thoroughly documented in reference [21]. All 
solutions presented here correspond to the so- 
called "Weak3" model. The experimental flutter 
boundaries are also presented in [21], and 
correlation between nonlinear aeroelastic solutions 
and the experimental flutter boundaries are 
presented in [3,6,22]. 
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Figure 1: Planform Geometry and 
Aerodynamic Box Geometry of the 445.6 Wing. 

The main focus of this paper is not to correlate 
with the experimental data, but to show correlation 
between an "expensive" nonlinear aeroelastic 
solutions and an "inexpensive" corrected linear 
solution. Therefore, there is no discussion of the 
experimental flutter results. However, a brief 
discussion of the model geometry and vibration 
characteristics is in order. The 445.6 wing is a 
semispan wing with the planform shown in Figure 
1. The" wing has a (full span) aspect ratio of 4.0, 
leading edge sweep of 45 degrees, and a taper ratio 
of 65%. The airfoil section is a symmetric NACA 
65A004 section. The aeroelastic behavior of the 
445.6 wing is a classical bending-torsion flutter, 
and is accurately captured using only the first two 
vibration modes. The first bending mode has a 
frequency of 9.6 Hz, and the torsion mode has a 
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frequency of 38.1 Hz. Since the flutter mechanism 
of interest is a classical bending/torsion 
interaction, the first bending and torsion modes of 
the wing are shown in Figure 2. 

Figure 2: First Bending and First Torsion 
Mode Shapes. View from Inboard Trailing 

Edge 

Choice of Unsteady Motion 

The first step in applying the correction method 
described above is to decide on what type of 
unsteady motion (representative deflection <p) for 
which to obtain unsteady aerodynamic data. 
Ideally, the representative deflection should be 
chosen to be as similar to the target flutter 
mechanism as possible in order to improve the 
fidelity of the corrected aerodynamic matrices in 
predicting the flutter mechanism of interest. This 
implies that the value of TJ on all zones will be 
approximately equal, and that the residual term du 
will be small. 
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Figure 3: Time History of Pitch Angle and 
Wing Lift and Moment Coefficient 

Unfortunately, it is often impractical to choose a 
representative deflection shape in this manner, 
either because multiple flutter mechanisms are 
targeted, or because the mechanisms are not 
known accurately ahead of time. For reasons of 
simplicity and economy, it is also desirable for the 
corrected aerodynamics to be constructed using 
unsteady aerodynamic solutions due to simple 
rigid body motion of the airplane, rather than 
elastic motion. In this work, the "representative 
deflection" q> was chosen to be a rigid body 
pitching motion about the midchord of the wing 
root. While not the most accurate choice possible, 
the use of rigid body pitching as a representative 
deflection is a good test of the robustness of the 
proposed technique. Since the flutter mechanism 
of interest is primarily first wing bending, greater 
accuracy could probably be obtained if the 
"representative deflection" was selected to mimic 
the first bending mode. 

Comparison of Spanwise Lift Distribution 

0.5 

Figure 4: Spanwise Lift Distribution Due to 
Pitching Motion. Mach 0.95, k = 0.1. 

Nonlinear unsteady data 

The nonlinear unsteady aerodynamic data for 
generating correction factors was generated using 
the pulse transform method [24] with the transonic 
small disturbance aerodynamic method of [1]. In 
this technique, a forced motion analysis is 
performed, where a single generalized 
displacement is defined as a function of time as 

»(')= ae c(t- 

where a is the pulse amplitude (chosen to be small 
enough that small perturbation assumptions are not 
violated), c is a constant determining the width of 
the pulse (chosen to be small enough that 
significant excitation is obtained in the reduced 
frequency of interest), and tc is the "center"of the 
pulse, chosen such that the deflection when the 
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solution is started is essentially zero, avoiding 
discontinuities and the associated transients in the 
solution. For this analysis, the generalized 
displacement was wing pitch about the root 
midchord, the amplitude was 0.01 radians. The 
resulting time histories of the wing pitch and wing 
lift coefficient is shown in Figure 3. Note that 
since the airfoil is symmetric and the flutter 
solution is at zero angle of attack, the initial and 
final lift and moment coefficients are zero. 

Comparison of Spanwise Lift Distribution 
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Figure 5: Spanwise Lift Distribution Due to 
Pitching Motion. Mach 0.95, k = 0.1. 

From this time history data, and the associated 
time histories of the surface pressures, the Fourier 
transforms of the input (pitch) and the outputs 
(pressures) can be obtained, and by simple 
frequency-by-frequency division, the pressure 
distribution due to a harmonic pitching oscillation 
at various frequencies can be estimated. A 
comparison between the pulse transform technique 
and a direct harmonic oscillation of the wing was 
performed, and showed very close agreement. The 
spanwise distribution of lift coefficient is shown in 
Figures 4 and 5 at a reduced frequency of 0.1 (near 
the flutter reduced frequency). Figure 4 shows the 
lift distribution in terms of real and imaginary 
parts, while Figure 5 shows magnitude and phase. 
By definition, the corrected aerodynamics exactly 
match the nonlinear aerodynamics for pitching 
motion. 

Since the flutter mechanism is primarily wing 
bending, let us consider what happens when the 
wing is vibrated in the first wing bending mode. 
Recall that the wing is divided into zones (strips), 
and that when the wing is excited in the first 
bending mode, each strip will have its own 
"equivalent" pitch angle determined by the local 
equivalence process described above. In order to 
illustrate the concept, Figure 6 shows the spanwise 
distribution of "equivalent" pitch angle (real and 
imaginary part) for the first bending mode (shown 

in Figure 2). The equivalent pitch angle is shown 
for at a reduced frequency of 0.1, which is near the 
flutter frequency. For comparison, Figure 6 also 
shows the geometric pitch angle (real and 
imaginary parts) as a function of span. Note that 
the equivalent pitch angles include the induced 
effects of the entire wing deformation, so -the 
equivalent pitch angle is a "smeared" version of 
the geometric pitch angle (i.e. the higher pitch 
angles at the tip induce upwash at the root, causing 
an induced angle of attack that is shown in the 
equivalent pitch). 
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Figure 6: Equivalent Pitch Distribution for the 
First Wing Bending Mode. 

Flutter Time History, Mach 0.95, Q=54 psf 

20 40 60 80 

Chord Lengths Traveled 

100 

Figure 7: Time History of First Two 
Generalized Displacements for Direct Flutter 

Solution at Mach 0.95. 

Flutter Results 
The variation of frequency and damping with 
dynamic pressure as computed in the linear flutter 
solution at Mach 0.95 is shown in Figures 8 and 9. 
The linear flutter crossing is fairly mild, at a 
dynamic pressure of approximately 79 pounds per 
square foot (PSF). The corresponding nonlinear 
time-marching flutter solution is shown in Figure 
7, showing the time histories of the first two 
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generalized displacements, corresponding to the 
first bending and first torsion modes. This time 
history data is computed at a dynamic pressure of 
54 PSF, which is very close to the neutral stability 
point (estimated at 56.2 PSF). Figures 8 and 9 also 
show the estimated variation of frequency and 
damping with dynamic pressure, based on the 
nonlinear aeroelastic time-marching solution. As 
in the linear case, the nonlinear flutter solution 
shows a coalescence between the bending and 
torsion frequencies, and a fairly mild flutter 
crossing. However, the flutter dynamic pressure 
and frequencies are much lower than those 
predicted by the linear analysis. 

Finally, Figures 8 and 9 also show the variation of 
frequency and damping with dynamic pressure for 
the flutter analysis using corrected linear flutter 
analysis. The solution method is identical to that 
used to generate the linear solutions, but the 
aerodynamic influence coefficient (AIC) matrices 
have been corrected to match the nonlinear 
unsteady aerodynamic data due to pitching motion 
about the root midchord. Once again, the flutter 
crossing is fairly mild, but the dynamic pressure at 
instability is very close to the nonlinear stability 
boundary, at about 60 psf. 

These figures indicate that the local equivalence 
correction technique can indeed be used to 
accurately estimate aeroelastic stability in the 
presence of transonic aerodynamics. The obvious 
question is: Can other, simpler correction methods 
do the same (or better) job? While a rigorous 
survey of all correction techniques that have been 
proposed over the years is beyond the scope of a 
single paper, one common technique was tested. 
In the transport aircraft industry, it is common to 
generate a real valued, diagonal pre-multiplier 
correction factor matrix W and apply it to the AIC 
matrix at each reduced frequency such that the 
corrected AIC matrix is given by 

AICC =WAICL (12) 

The values of the correction factors Ware typically 
chosen such that some commonly measured 
quantities, such as the spanwise lift and moment 
distributions due to a unit angle of attack, are 
matched exactly at zero frequency. This technique 
was applied to the flutter analysis of the AGARD 
445.6 wing at Mach 0.95, and the flutter results are 
compared to the linear and nonlinear solutions in 
Figures 11 and 12. In the steady aerodynamic 
solutions, the lift distribution predicted by linear 
theory was fairly accurate, but the aerodynamic 
center location was significantly forward of that 

predicted by the nonlinear code. This results in a 
diagonal correction factor matrix that significantly 
amplifies the pressures on the aft portion of the 
wing, while depressing the leading edge-pressure 
spike. This effect can clearly be seen in the 
behavior of the torsional mode frequency with 
increasing dynamic pressure, since the more/aft 
aerodynamic center reduces the "softening" effect 
of the aerodynamics. 

Overall, the real diagonal method reproduces the 
frequency variation with dynamic pressure fairly 
well. However, since the real correction factors do 
not correct the phase of the unsteady aerodynamic 
forces, this technique fails to accurately predict the 
stability boundary, in fact showing significantly 
more error than uncorrected linear theory. 

Mach 0.90 0.95 

Linear 93.8 PSF 

16.4 Hz 

79.0 PSF 

15.0 Hz 

Nonlinear 

(CAP-TSD) 

86.5 PSF 

15.5 Hz 

56.2 PSF 

12.9 Hz 

Local 
Equivalence 
Correction 

83.6 PSF 

14.4 Hz 

59.8 PSF 

13.0 Hz 

Sectional Lift 
& Moment 
Correction 

N/A 102.5 PSF 

17.0 Hz 

Table 1: Summary of Linear, Nonlinear, and 
Corrected Flutter Results. Dynamic Pressure 

in PSF, followed by frequency in Hz. 

Since the AGARD 445.6 wing has a moderate 
aspect ratio, and since the flutter mechanism is a 
pure interaction between bending and torsion 
flutter, it is somewhat surprising that this 
technique gives such poor results. It is conjectured 
that this is due to the failure of a real weighting 
factor to correct the phase of the unsteady forces, 
and improved results might be obtained with 
complex, frequency-dependent weighting factors 
for this configuration. 

A similar set of linear, nonlinear, and corrected 
linear analyses using the local equivalence 
approach were performed at Mach 0.90, with 
comparable results. The aerodynamic corrections 
did not change the character of the flutter 
mechanism, but the dynamic pressure at the 
instability was significantly reduced due to the 



8-11 

nonlinear aerodynamics.   The flutter results are 
summarized in Table 1, and in Figures 12 and 13. 

Flutter Dynamic Pressure 
120 

110 

.100 

3  90 
?  80 

70 

60 

50 

40 

<„_ 

(I     '""^ 

-- 
♦   Linear 

B   Nonlinear 

A   Local Equivalence II 

0.8 0.85 0.9 
Mach 

0.95 

Figure 12: Summary of Linear, Nonlinear, and 
Corrected Linear Flutter Boundaries. 
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Figure 13: Linear, Nonlinear, and Corrected 
Linear Flutter Frequencies. 

Conclusions 
A new technique has been presented that allows 
linear unsteady aerodynamic matrices to be 
corrected to improve agreement with nonlinear 
unsteady aerodynamic data, which can come from 
CFD codes or wind tunnel tests. The new 
technique is distinct from previous correction 
factor techniques in that the correction is not in the 
form of a multiplicative weighting factor, but is 
formed by directly replacing part of the linear 
aerodynamic pressures with data from a nonlinear 
analysis. Any residual is accounted for with linear 
theory. The corrections are applied to discrete 
zones on the aircraft such that for each zone, the 
nonlinear pressure distribution is based on that 
zone's "equivalent deflection." Since the 
corrections are computed and applied on a zone- 
by-zone basis, the technique is called local 
equivalence.       Since   the   local   equivalence 

correction technique directly replaces a component 
of the linear pressure distribution with nonlinear 
values, there is no requirement for arbitrary 
weighting functions or least squares solutions. 
Since the technique corrects pressures, rather than 
spanwise lift/moment coefficients, the technique is 
more applicable to low aspect ratio configurations 
than previous methods, and would be expected to 
give better performance for non-bending/torsion 
flutter mechanisms. 

The resulting corrected linear aerodynamics were 
applied to a dynamically linear stability analysis of 
die AGARD 445.6 wing, and good agreement was 
shown between a direct nonlinear stability 
calculation and the corrected linear solution. 
Several other flutter analyses were performed 
using linear aerodynamics with simple correction 
factors applied to correct the spanwise lift and 
moment distribution, and it was shown that the 
local equivalence corrections give significantly 
better correlation with the direct nonlinear 
solution. 

While the emphasis of the current paper is 
unsteady applications, the local equivalence 
correction technique presented is also applicable to 
steady nonlinear aeroelastic analysis (i.e. loads), 
and provides a simple and elegant method for 
including the effects of nonlinear aerodynamics 
into production-level aeroelastic analysis and 
aeroelastic optimization. 

Further validation of the local equivalence 
correction technique for steady and unsteady 
aerodelastic analysis, including applications to 
complex, low aspect ratio configurations using 
Euler and Navier-Stokes aerodynamics is ongoing. 
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SUMMARY 

One of the common problems on twin tail fighters operating at 
high angles of attack is buffet. The Air Force Research 
Laboratory Unsteady Aerodynamics Integrated Product Team 
(IPT) performed an experimental buffet investigation on a 
scaled F-15 model. The model was tested in the Subsonic 
Aerodynamic Research Laboratory (SARL) located at Wright- 
Patterson AFB, Ohio. Phase I of this program characterized 
the buffet characteristics and investigated tangential blowing 
as a means of buffet suppression. Phase II will investigate the 
use of piezoelectric actuators on the flexible tail to suppress 
the structural response due to buffet. A numerical simulation 
of the rigid model was performed for a Mach number of 0.2, 
24 degrees angle of attack, and -4 degrees of slideslip using an 
unstructured CFD (Computational Fluid Dynamics) code. A 
second computation was performed to evaluate engine mass 
flow effects. This paper will present the results of the buffet 
tests, the computational effort, and a comparison of the 
computational and test results. 

LIST OF SYMBOLS 

AOA Angle of Attack 
M freestream Mach number 
PSD Power Spectral Density 
psf pounds per square foot 
Q dynamic pressure 
a angle of attack 

1. INTRODUCTION 

Current fighters are required to maneuver at high angles of 
attack and are experiencing structural problems due to buffet 
on aft components of the empenage, in particular vertical tails. 
The ability to accurately predict the buffet on a vertical tail is 
difficult due to the complexity of the interaction between the 
aircraft geometry, flow field, vortex trajectory and empenage 
structure. In the past, the dynamic buffet loads have been 
estimated from model tests by means of scaling procedures. 
References 1,2, and 3 report buffet testing on the F-15, F/A- 
18, and F-l 11 TACT aircraft. 

The buffet or aerodynamic excitation associated with 
separated flow is normally broad-band random fluctuations 
with predominant frequencies associated with the air flow 
properties of the aircraft (i.e., vortex flow from inlets and sharp 
comers, wakes behind pods or other components of the 
aircraft). The buffeting, or structural response to buffet, can 
result in large oscillatory responses at resonant frequencies of 
the aircraft. A good review of the general principles of the 
buffet problem is given by Jones (4). The effects of buffeting 
and other transonic phenomena on maneuvering aircraft were 

the subject of a study conducted by an AGARD Working 
Group (5). Lamar (6) summarized this study and documented 
the comprehensive state-of-the-art review of buffet techniques 
and prediction methods by the Working Group. Another 
assessment of dynamic loads due to flow separation is 
reported by Mabey (7). 

The vortical flow pattern on the F/A-18 aircraft at high angle 
of attack is shown in Figure 1. The burst vortex travels aft and 

Figure 1. Vortical Flow on F/A-18 at High Angle of Attack 

upward, impinges on the vertical tail and causes very high 
dynamic loads. A full-scale F/A-18 aircraft was tested in the 
National Full Scale Aerodynamic Complex 80 by 120 Foot 
wind tunnel at NASA Ames. Buffeting pressures and the 
resulting structural response of the vertical tails were obtained 
over a range of angle of attack and sideslip conditions (8 and 
9). The tests were conducted with and without the Leading- 
Edge-Extension (LEX) fences (installed to reduce the buffet 
load). NASA Langley has also conducted buffet tests on a 16 
percent scale F-l8 model. Three different suppression 
concepts (existing rudder, oscillating cylinder, and 
piezoelectric actuators) were evaluated. A comparison of the 
pressure measurements from the 1/6 scale tests and the full- 
scale tests is presented in reference 10. Buffet tests on F/A-18 
models have also been performed by others such as Lee and 
Tang (11). Under a Phase IISBIR (Small Business Innovative 
Research) contract, Active Control experts (ACX) is 
developing an active buffet suppression system for an F/A-18 
(12). The suppression system uses distributed piezoelectric 
actuators and will be demonstrated by ground tests on a full 
scale vertical tail. 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation' 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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In 1981, buffeting pressure measurements were made on the 
vertical tail surfaces of a 13 percent F-15 model (1). The test 
variables included dynamic pressure, angle of attack, vertical 
tail incidence, and rudder deflection. The pressures and 
associated vibration response levels reached a maximum at 
approximately 22 degrees angle of attack. The flow field 
characteristics in the vicinity of the vertical tail were 
investigated and are shown in Figure 2. Other flow field 

Figure 2. F-15 Vertical Tail Flowfield Characteristics 

measurements on an F-15 model at high angles of attack have 
been performed by Komerath et al (13). An on-going SBIR 
contract with Rohini International and Georgia Tech is 
investigating the use of stacked piezoelectric actuators for 
buffet alleviation. Several structural fixes have been made to 
the F-15 aircraft to extend the fatigue life of the vertical tails. 
The most recent modification is the addition of a composite 
"exoskin" doubler (14). 

Within the Air Force Research Laboratory, an Integrated 
Product Team (IPT) was formed for coordinating and 
integrating unsteady aerodynamic research. The IPT is a 
multidisciplinary team with members from the 
Aeromechanics, Flight Controls, and Structures Divisions. 
One of the on-going projects is buffet suppression. This paper 
will present the results of the buffet tests on a scaled F-15 
model and the CFD computations. 

2. EXPERIMENTAL PROGRAM 

The wind tunnel testing was conducted in the Subsonic 
Aerodynamic Research Laboratory (SARL) located at Wright- 
Patterson Air Force Base, Ohio (USA). The SARL facility is a 
modern high contraction ratio open circuit wind tunnel with a 
maximum Mach number of approximately 0.55. The test 
section is 10 feet high by 7 feet wide and 15 feet in length with 
2 foot flats on the corners to give the cross section an 
octangular shape. A honeycomb section sandwiched between 
two sets of screen arrangements dampen and condition the 
inlet flow to provide low turbulence in the test section. Fifty- 

six percent of the test section walls are comprised of optical 
quality Plexiglas to allow any model view angle, and laser 
light sheet visualization techniques. 

The SARL data system consist of a Micro VAX HI 
programmable computer connected to a software controlled, 
120 channel, 40 mV to 10 V, double ended multiplexer and a 
13 bit 100,000 samples per second, auto ranging analog to 
digital converter. Balance channels, discrete pressure 
transducers, strain gages and accelerometer signals were fed 
through Dynamic brand amplifiers/bridge conditioners. 
Additionally for this test a Metrum dynamic data recorder was 
used to record the vertical tail surface pressure, bending and 
torsion strain gages, and tip pod accelerometers. 

For these tests the tunnel was operated at Mach 0.2. An 
existing 4.7% scale model of an F-l 5C aircraft was modified 
for these tests. Figure 3 shows a photo of the sting mounted 
model in the SARL wind tunnel. The model was a standard 

Figure 3. F-15 Model in SARL Wind Tunnel 

aerodynamic model, essentially rigid at these low speeds and 
dynamic pressures. The model was modified by replacing the 
rigid vertical tail on the left hand side with a scaled flexible tail 
that emulated the first several vibration modes of the full size 
tail. The tail was constructed using a single aluminum spar 
with a thin aluminum web to form the profile of the tail.    End 
grain balsa wood was used to form the airfoil shape. The 
flexible tail was equipped with bending and torsion strain 
gauge bridges located at the root to measure bending and 
torsion moments, both static and dynamic. Accelerometers 
were placed in the forward and aft areas of the tip pod. Six 
pressure transducers were mounted on each side of the rigid 
and flexible tails to measure static and oscillatory pressures. 
The locations of these transducers (Figure 4) were the same on 
both sides so that a pressure difference across the tail could be 
obtained. 

The model was further modified to allow for blowing 
introduced tangentially at three locations (the nose, the gun 
bump, and the wing root leading edge). Figure 5 shows a 
sketch of these blowing locations. The six blowing locations 
(two laterally symmetric blowing slots at each location) were 
all achieved by designing and fabricating new model segments 
that replaced the existing solid segments. All six blowing 
locations featured a tangential blowing slot that was .010 inch 
wide by 0.75 inch long and was fed by a plenum built into the 
model. Before the test entry each of the six blowing slots was 
calibrated for mass flow verses plenum pressure (for choked 
flow) using a precision orifice plate flow meter. At the wind 
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tunnel test condition of 56 psf, blowing coefficients of up to 
0.005 were obtained. 

Figure 4. Location of Pressure Transducers 
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Figure 5. Location of Blowing Ports 

3. CFD SIMULATIONS 

The CFD simulations were performed at one tunnel test 
condition (M=0.2,24 degrees angle of attack, and -4 degrees 
of sideslip) to aid in the determining the origin of the vortex 
and to describe the flowfield experienced by the vertical tails. 
Another goal of the CFD effort was to demonstrate the 
capabilities of a new unstructured grid method for complex 
configurations. The simulation used the inviscid (Euler) form 
of the equations of fluid flow, and globally marched in time 
until convergence was reached. 

A clean F-15C aircraft was computationally modeled similar 
to the wind tunnel model, except for the aft end. The wind 
tunnel model Was sting mounted through the centerline. Both 
models had flow through ducts, and the inlets and internal 
ramps were set for the subsonic high angle of attack condition. 
Computationally all surfaces were rigid and no tunnel wall 
effects were modeled. 

The geometry used for this effort resided on a CAD system. 
An in-house utility converted the actual aircraft surfaces to 
250 discretized structured surface panels. The Interactive 
Graphics for Geometry Generation & Visual Interactive Rapid 
Grid Generation (I3G/VTRGO) was used to clean the surface 
geometry. The unstructured gird generator TETMESH (15) 
was used to define the distribution of grid points along each of 
the surface panels received from I3G. The points were 
clustered in areas of highly curved geometry, corners, and 
small gaps. The density of points was also biased toward the 
upper surface of the aircraft to capture the vortical flow 
structure. Figure 6 shows the left side (forward half) of the 
aircraft with its surface triangles. Once the surface was 
completed, then the volume grid was generated with 
tetrahedrals using Delaunay method. The farfield for the grid 
was a sphere that was located ten times the wing semispan 
from the aircraft. The resulting volume grid had 578,000 
tetrahedral cells. 

Figure 6. Surface Grid for CFD Computations 

Cobalt (16) was the aerodynamic flow solver used. It can treat 
two-dimensional, axisymmetric, and three-dimensional 
problems with structured or unstructured grids. Cobalt solves 
the inviscid or viscous sets of fluid flow equations. It has the 
Spalart-Allmaras (17) and Baldwin-Barth (18) one-equation 
turbulence models. Cobalt uses the approximate Riemann 
solution method of Collela (19) in combination with the 
iterative method of Gottlieb-Groth (20) which is all based on 
the exact Riemann solver of Bodunov. The fundamental 
algorithm is finite-volume, cell-centered, first-order accurate in 
space and time. Second-order accuracy in space is patterned 
after van Leer's MUSCL scheme (21) and linear variations are 
constructed using a least squares method, second, third, and 
fourth-order temporal accuracy is achieved via the low storage 
Runge-Kutta methods of Williamson (22). For these 
simulations the code was run with an unstructured grid and 
used the inviscid flow equations. The solution was run with 
second order accuracy in space and time. 

A second computation was performed at the same tunnel 
conditions to help bridge the step from a flow through inlet 
model to an aircraft in flight. For this engine-on case, the 
nozzle vanes were rotated and set to the correct exit area ratio. 
The grid for this case used a new design for the farfield and 
added more points on the vertical tail surfaces. This resulted 
in an inviscid single zone volume grid with 630,000 
tetrahedrals. 

4. RESULTS 

First the test results with no blowing will be presented as PSD 
plots of bending and torsion responses as a function of angle 
of attack with sideslip variations. Figure 7 shows the root 
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bending response for angles of attack (AOA) up to 32 degrees 
for the three different angles of sideslip (-4,0, & 4 degrees). 
Note that the bending responses for all three angles of sideslip 
increase with AOA and that the negative sideslip tends to 
increase the response compared to the other cases. This 
makes sense when considering that the vortex is outboard of 
the left tail (flexible tail) and negative sideslip moves the left 
wing forward which pushes the left hand vortex into the left 
tail. Higher AOA is needed to define the bending peak 
response. Figure 8 shows the root torsion response for the 

same range of angle of attack and sideslip. The torsional 
response peaks within the AOA range, with the sideslip effects 
before peaking showing the same trend as in bending plot. 
After the torsional response peaks, the positive sideslip tends 
to increase the response. 

Tangential blowing at the nose and gun bump had little effect 
on the vertical tail response. Blowing at the wing root was the 
most effective, but produced mixed results for the various test 
conditions. Figures 9 and 10 are a set of cross plots that shows 

*„ 

-*—4 deg sideslip 
-♦— 0 deg sideslip 
-•-  4 deg sideslip 

Angle of Attack,   deg 

Figure 7. Bending Response, Q=56 psf, No Blowing 

-*~-4 deg sideslip 
-♦- 0 deg sideslip 
-m~  4 deg sideslip 

Angle of Attack,   deg 

Figure 8. Torsion Response. Q=56 psf. No Blowing 
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Response of Sending Mode for Various Levels of Blowing 
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Figure 9. Bending Response with Blowing, Q= 56 psf 

Response of Torsion Mode for Various Levels of Blowing 
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Figure 10. Torsion Response with Blowing, Q= 56 psf 

the effect of blowing at the wing leading edge for zero 
sideslip. The tail response is plotted versus angle of attack for 
three values of blowing (0,45, and 65 psf). Blowing tends to 
slightly increase the bending response at lower angles, while at 
the higher angles, blowing decreases the response. For 
negative sideslip where buffet is stronger, the effect of 
blowing tends to increase response up through larger angles of 
attack. For positive sideslip a 45 psf blowing tends to 
decrease response at lower angles of attack, but increases 

response at higher angles. The blowing pressure of 65 psf 
shows a reduction in response at higher angles. Torsional 
responses are different, peaking around angle of attacks of 24- 
28 degrees, with blowing showing reduction of the response 
below the peak and increases above the peak. Both bending 
and torsion responses suggest that the flow injection can move 
the vortex activity into or away from the tail as well as move 
the vortex spanwise along the tail. 
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The computations of forces and moments for the flow through 
inlet case are compared to the experimental data in Table 1. 
The lift coefficient is only 1 percent high compared to test 
data. The drag coefficient differs by 29 percent presumably 
due to the lack of viscosity in the computations. The pitching 
coefficient differs by 6 percent and the rolling coefficient 
differs by 27 percent. The side force and yawing moment 
coefficients are small making the percentage difference large. 

Table I. Force and Moment Comparison (Wind Axis) for 
Flow Through Inlet Case 

Coefficient 
Lift 
Side Force 
Drag 
Pitching Moment 
Yawing Moment 
Rolling Moment 

For the inviscid solution (flow through inlet case), the origin of 
the vortex was on top of the inlet at station 425 for the leeward 
side and station 427 on the windward side. The flow sweeping 
over the gun bump fairing to the top of the inlet initiates the 
vortical flow shown in Figure 11. From the top of the inlet, the 
vortex core flows aft and then turns out on the wing to about 
mid-span. It then lifts away from the surface and travels aft 
outside the vertical tail as shown in Figure 12. This same 
surface flow behavior was demonstrated during the wind 
tunnel test where a surface flow visualization run was done 
with the same freestream conditions. The wind tunnel test 
showed more separation at the wing tip. Also shown in Figure 
11 is another vortex which forms from the nose of the aircraft 
on the leeward side at station 406. It tracks over the fuselage 
just right of the centerline, but loses its structure near the wing 
leading edge (approximately station 500). 

Test Computations 
1.2901 1.3032 
-.0055 -.0015 
0.8257 0.5829 
-.1834 -.1722 
0.0026 0.0054 
0.0158 -.0201 

i   < 

Figure 12. Flowfield Just Forward of Vertical Tails 

A laser light sheet was also used in the test to highlight the 
vortex shape. Figure 13 is an enhancement of a frame 
showing the vortex shape at the vertical tail station. Figure 14 
clearly indicates the impact of the vortical flow with the outer 
part of the vertical tail and tip pods. Also visible are the 
smaller vortices that form between the tails and at the root of 
the vertical tails. The path of the vortex is indicated from the 
streamline traces from the inlet area shown in Figure 15. 
Figure 16 shows that the flow from the inlet top remains close 
to the surface and travels out the wing and then lifts up, while 
the flow from the wing leading edges separates from the 
surface. Figure 17 takes a slice about mid-span of the left 
wing and shows the velocity vectors in the x-z plane. Note 
that the air above the wing is flowing inboard. The lengths of 
the velocity vectors are scaled differently for each figure to 
enhance the visualization. 

Figure 11. Flowfield Around the Forward Section 

Figure 13. Laser Light Sheet 
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Figure 14. Vortical Flow Near Tip Pods Figure 17. Vector Plot in X-Z Plane (Mid-Span of Left Wing) 

Table n. Force and Moment Comparison (Wind Axis) for 
Flow Through and Engine-on Case 

Figure 15. Streamlines Showing the Flow Over the Inlets 

For the engine-on case, the mass flow rate through the inlet 
represented the engine running at this flight condition. Table 2 
presents a comparison of the computed forces and moments 
with those for the flow through inlet case. In the engine-on 
case the lift is increased by 6 percent and the drag is increased 
by 10 percent. The pitching moment increased by 7 percent. 
For both tails, the inner surface has a larger side force than the 
outer surface. These differences were small. 

Coefficient Engine-on Flow Through 
Lift 1.3833 1.3032 
Side Force -.0023 -.0015 
Drag 0.6453 0.5829 
Pitching Moment -.1841 -.1722 
Yawing Moment 0.0001 0.0054 
Rolling Moment -.0192 -.0201 

The influence of the engine suction on the location of the 
vortex origin is that it moved forward by three inches on the 
leeward side and three inches aft on the windward side. The 
vortex from the nose of the aircraft on the leeward side does 
not form until 12 inches farther aft (station 418). The vortical 
flowfield is similar, however, the engine-on case has main 
vortices that are tighter and closer to the vertical tails. 

5. CONCLUSIONS 

The wind tunnel tests of the 4.7% scale F-15 model provided 
detailed buffet characteristics for a range of angle of attack (0 
to 32 degrees) and three angles of sideslip. Buffet alleviation 
tests using tangential blowing provided alleviation in some 
cases but showed mixed results. A second buffet alleviation 
test is planned using an active control system with 
piezoelectric actuators on the vertical tail. This test is 
scheduled for March 1998. 

Figure 16. Side View of Streamlines 

The computation solution provided insight into the flowfield 
around the F-15 for M=0.2, alpha=24 degrees, and -4 degrees 
of sideslip. The origin of the vortex was determined to 
initially form on the top of the inlet for this inviscid solution. 
Flowtrace and vector plots were used to describe the path of 
the vortex and the entire flowfield of the aircraft. The forces 
and moments were calculated and compared reasonably well 
to the test results. This computational effort also demonstrated 
the ability of the grid code, TETMESH, to generate an inviscid 
unstructured grid around a complex configuration. 

Under an on-going computational effort, a structured grid is 
being generated for the F-15 and an Euler simulation will be 
performed with one rigid and one flexible vertical tail. The 
Euler/Navier-Stokes 3-Dimensional Aeroelasticity 
(ENS3DAK) code (23) will be used for this computation. 
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ABSTRACT 

Flutter characteristics and results of aeroelastic time response 
analyses of NACA64010 airfoils oscillating in transonic flow 
are presented. These solutions were obtained by a newly devel- 
oped two-dimensional aeroelastic simulation code which is de- 
signed in such a manner that the flow and the structure can be 
modelled independently by using the so-called domain decom- 
position approach. The coupled field problem is then effective- 
ly solved in the time domain by applying a partitioned solution 
procedure in which the fluid and the structural solvers are exe- 
cuted in an alternating fashion and exchange interface data only 
at certain time steps. 

In this study the prediction of the flow field around airfoils in ar- 
bitrary motion is based on the solution of the unsteady Euler 
equations. The structure might either be modelled as a rigid 
body system or as a more realistic flexible configuration. In this 
context, the finite element method is used to model elastic ef- 
fects in the chordwise direction of a typical wing section, thus 
accounting for more general motions of the airfoil including the 
fluid structure interaction boundary. 

The underlying theory is briefly outlined and results are present- 
ed for several aeroelastic test cases of varying complexity in the 
structural model. Both cases with and without control surface 
are dealt with and the effect of flexibility on the transonic ae- 
roelastic stability behavior is investigated. 

1   INTRODUCTION 
Although the field of aeroelasticity is well established, modern 
developments, e.g., the maturing adaptive structures technolo- 
gy combined with modern control system theory, continuously 
pose new problems to the aeroelastician. The general problem 
of meeting future air transport requirements challenges re- 
searchers, particularly when new concepts such as the new 
class of super transport aircraft are pursued. Among other prob- 
lems introduced by the use of smart materials, control systems, 
etc., the increasing size and, hence, the structural flexibility of 
such aircraft result in a variety of severe static as well as dynam- 
ic aeroelastic and flight mechanic problems, particularly in the 
transonic flight regime, which is generally of primary concern. 

The physical domain of aeroelasticity in the transonic region is 
richly varied due to nonlinear aerodynamics. Apart from flow 
separation, the physical manifestation of nonlinear aerodynam- 
ics lies in the development of strong pressure discontinuities, 
generally referred to as shocks. Indeed, the formation of shocks 
may be regarded as the definition of transonic (mixed subsonic 
supersonic) flow. 

Some important aeroelastic problems caused by nonlinear aero- 
dynamics are listed here: 

• transonic dip (i.e., a significant decrease in flutter speed 
when the Mach number approaches unity) 

• limit cycle oscillations (LCO) (i.e., flutter with finite 
amplitudes due to the dynamics of shock waves, sometimes 
with flow separation) 

• aileron buzz (i.e., transonic controlsurface flutter where 
shock wave motions and flow separation in the vicinity of 
the control surface play an important role) 

In general, one can say that undesired, yet not well understood 
aeroelastic phenomena impose constraints on advanced aircraft 
designs. New phenomena cannot be anticipated by simply ex- 
trapolating current experience, particularly when nonlinearities 
are present. In order to expand the design frontiers for high per- 
formance aircraft new methods must be developed and applied. 
This is of paramount importance since the usefulness of classi- 
cal flutter and divergence prediction methods based on Fourier- 
type solution procedures in the frequency domain is limited in 
the transonic flight regime. This is because the aerodynamic 
nonlinearities mentioned earlier cannot be adequately repre- 
sented by these methods and the airloads have to be calculated 
in the time domain. 

In the past decade much progress has been made in the develop- 
ment of computational methods for the calculation of unsteady 
aerodynamics around airfoils, wings, and complete aircraft con- 
figurations in the time domain, typically referred to as Compu- 
tational Fluid Dynamics (CFD). The favored formulation of 
fluid dynamic equations is generally Eulerian and finite differ- 
ence methods have proven to be a powerful tool for their solu- 
tion. On the other hand, in the field of structural and solid 
mechanics finite element methods using the Lagrangian formu- 
lation have taken over other alternatives, including finite differ- 
ence methods, and are firmly established and widely used in 
practice today. It is unlikely that finite difference methods will 
experience a revival in solid mechanics, nor can it be expected 
that finite element methods will replace finite differences in flu- 
id mechanics in the near future. Hence, in order to take full ad- 
vantage of developments in the single domains, the coupling of 
fluid and structural solvers is widely practiced for the treatment 
of fluid structure interaction problems. As for the solution, par- 
titioned analysis procedures provide an efficient and modular 
way to deal with such problems. Thus, in conjunction with re- 
cent advances in supercomputers, aeroelastic time domain cal- 
culations for the prediction of highly nonlinear aeroelastic 
phenomena have become feasible. 

In order to do justice to the nonlinear aspects of transonic flow 
and the increased flexibility of future aircraft structures, a two- 
dimensional aeroelastic simulation code called SNAP2d (Simu- 
lation of Nonlinear Aeroelastic Phenomena) has been devel- 
oped. It is designed in such a manner that the flow and the 
structure can be modelled separately by using the domain de- 
composition approach. Regarding the presented results, the pre- 
diction of the flow field around airfoils in arbitrary motion is 
based on the solution of the unsteady Euler equations. The 
structure might either be modelled as a rigid-body system or as 
a more realistic flexible configuration using the finite element 
method. 

The purpose of this study is to present some preliminary results 
showing the effect of flexibility on transonic flutter and limit cy- 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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cle behavior. The first part gives an overview of the underlying 
theory while the second part is devoted to the presentation of 
the obtained results and their discussion. 

2 AEROELASTIC MODEL AND METHOD OF SOLUTION 
It is well-known that in order to study the motion of a continu- 
ous body essentially two approaches exist, namely the 
Lagrangian and the Eulerian description. In the Lagrangian de- 
scription one observes the motion of all material particles of a 
continuum from the initial to the end condition. This formula- 
tion is particularly suited for structural dynamics because in 
this field small particle motions are generally of primary con- 
cern. In the Eulerian description one observes the material flux 
and, hence, the time variation of physical variables at a fixed 
geometrical point in space. This formulation is generally pre- 
ferred in fluid dynamics where large particle motions are 
present and it usually suffices to know the change in flow vari- 
ables at certain points in space. However, for many free-surface 
flows and problems of fluid structure interaction, a more versa- 
tile description of the fluid domain is needed. Accordingly, the 
demand to apply boundary conditions on moving surfaces and 
the desire to effectively control solution accuracy led to the 
idea of moving and adaptive meshes, respectively. These gener- 
alized descriptions, generally referred to as mixed or arbitrary 
Lagrangian-Eulerian formulations (ALE), were originally de- 
veloped by Noh [30] and Hirt, Amsden and Cook [2], [23] in fi- 
nite difference formats while Belytschko et al. [7] and Donea et 
al. [20] contributed to the development of the theoretical frame- 
work for mixed Lagrangian-Eulerian finite element formula- 
tions for compressible inviscid flows. An ALE finite element 
method for incompressible viscous flows had first been report- 
ed by Hughes [25]. Fairly recently, Bendiksen [9] introduced 
the arbitrary Lagrangian-Eulerian formulation to aeroelastic 
stability and response analysis and demonstrated the capabili- 
ties of the method in simulating transonic aeroelastic phenome- 
na with emphasis on the nonlinear effects in a sequel of papers 
[10], [11], [12]. 

From the above, one can draw the conclusion that the arbitrary 
Lagrangian-Eulerian formulation is the most promising solu- 
tion for treating future aeroelastic problems. Indeed, certain 
problems have been successfully solved with this method but it 
also has specific shortcomings. First, due to the inevitably dis- 
tinct physical nature of the two media, fluid and structure, both 
domains in general have different natural time constants in the 
sense of their response characteristics, thus, accurate solutions 
by a monolithic time integration scheme can only be obtained 
by the use of very small time steps. Second, establishing a reli- 
able computer program would be at least as much work as was 
necessary to develop the single domain codes and would run 
three risks: uncontrollable complexity, rigidity in formulation 
(and thus the inability to accommodate technology advances), 
and lack of flexibility to deal with new problems. Finally, insuf- 
ficient experience is a disadvantage which should not be under- 
estimated. 

As a consequence, and keeping in mind the fact that the bulk of 
existing engineering software has been developed for the treat- 
ment of single-field problems, it appears that the coupling of 
available and reliable single-field solvers is the most practica- 
ble and efficient alternative. In so doing, different field solvers 
including its pre- and post-processing software can be used as 
„plug in" modules, thus offering the analyst flexibility to deal 
with the specific problem at hand. Also, maintaining simplicity 
in the single-field solver facilitates the adoption of new prob- 
lem formulations. Rather than establishing large-scale comput- 

er programs that do everything - and probably not too well - 
already existing software should be utilized to deal with multi- 
disciplinary problems. This approach is favored by the majority 
of researchers in the field of aeroelasticity, as is here as well. 

2.1 Aerodynamic Model 
Since aeroelasticity is concerned with interactions between the 
elastic deformations of structures in an airstream and the result- 

■ ing aerodynamic reactions, the accurate evaluation of the non- 
conservative forces acting on the structure is of vital 
importance. As long as flow separation does not occur, the Eul- 
er equations are a reasonable aerodynamic model for transonic 
flutter calculations. The development and motion of shock 
waves in particular can be adequately described. 

2.1.1 Governing Equations 
The two-dimensional conservation form of the Euler equations, 
derived from the fundamental physical principles: 

• conservation of mass, 
• conservation of momentum, and 
• conservation of energy 

in an inviscid compressible fluid and applied to a finite control 
volume V with the surface S fixed in space in Cartesian coordi- 
nates (x, z), can be written in integral form as follows 

HL^dVs-iUFdS'+HdS^ 
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with g, the vector of independent solution variables, and F 
and H, the two flux vectors in the x and z direction, respective- 
ly. The variables pFlip, u, w are the fluid density, pressure, Car- 
tesian velocity components and E, H are the specific total 
energy and enthalpy. Under the condition of an ideal gas the 
pressure p can be eliminated from Eq. (1) using the relations 

p= (K-l)p„e = ^, (2) 

E = 
1 

K(K- l)+2("2 + M;2)' 

"r = irh4("W) 

(3) 

(4) 

where a is the local speed of sound and K = c /cv the ratio of 
specific heats. 

In view of a numerical solution of the Euler equations by means 
of finite difference methods the partial differential form of 
equation (1) 

dt     dx     dz 
(5) 

is preferred and can be directly obtained by applying the funda- 
mental physical principles to an infinitesimal fluid element or 
indirectly by manipulating the integral form. 

Equation (5) was derived in Cartesian coordinates and for a 
control volume fixed in space. For the aeroelastic problems to 
be solved here, however, a transformation to a boundary-fitted 
moving coordinate system (^, Q which allows for general de- 
formations of the control volume is needed. 
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a) C-mesh around profile including far-field 

Fig. 1     Spatial discretization around profile 

b) C-mesh near profile including coordinate definition 

On condition that the relation 

x = x(£, £, T) 

t = i x = t 
(6) 

between the Cartesian and boundary-fitted coordinate systems 
are known at any time t, the Euler equations (5) are now given 
in the new coordinate system still in conservative form by 

3Ö + ^ + ^ = 0 (7) 3r   35   ac K' 

with the transformed vectors 

Q = JQ, 

P = 3^tQ + %xF + ^H). (8) 

The subscripts in equation (8) denote derivatives of the consid- 
ered coordinate with respect to its subscript, e.g. %x = d\/hx, 
the so-called metric terms, while 

7 _   3 (x, z)    _ 
3(5,0    " 

= xfz, \%~%% XrZy. (9) 
XK.   XV 

is the Jacobian or functional determinant of the transformation. 

2.1.2 Mesh Generation 
In order to make the application of kinematic boundary condi- 
tions easier, the Euler equations have been transformed to con- 
tour adaptive coordinates. In the present study, as is depicted in 
Fig. 1, a C-mesh is used where £ = const, -lines map the inner 
and outer boundary. Thereby, the influence of the gap between 
the wing and the control surface on the fluid flow is assumed to 
be negligible, thus not included in the spatial descretization of 
the fluid domain. The mesh consists of 149 points in the % and 

21 in the £ direction with 105 mesh points coinciding with the 
airfoil's surface. Since stronger gradients in the flow were ex- 
pected in the vicinity of the control surface hinge, the mesh 
lines were contracted in this region. The necessary mesh defor- 
mations are computed by the elliptic mesh generation method 
described in [17]. This procedure is based on a set of Poisson 
equations, so that the mesh'generation itself becomes a bound- 
ary value problem. Although this is computationally more ex- 
pensive than algebraic methods, it appears superior with 
respect to the smoothness of the mesh and the capability of 
treating complicated boundary conditions. During the computa- 
tion the mesh is smoothly deformed from zero at the outer 
boundary (far-field boundary) to the values prescribed by the 
motion of the profile's surface (fluid structure boundary). Or- 
thogonality constraints are imposed at the inner boundary to re- 
duce the computational effort in determining the pressure 
acting at the deformed surface. 

2.1.3 Boundary Conditions 
The governing equations above are valid for inviscid fluid flow 
in general. They are the same equations whether the flow is 
through a cascade, a wind tunnel, or around an airfoil. The dif- 
ference enters through the boundary conditions. Since the fluid 
flow is very sensitive to changes in the boundary conditions and 
the exchange of information between the structure and the fluid 
only takes place via the fluid structure boundary, it is of utmost 
importance to be very careful in their numerical implementa- 
tion. 

In case of a stationary surface with the flow passing over it, the 
physical boundary condition for an inviscid fluid demands that 
the flow slips over the surface since there is no friction. Hence, 
the flow must be tangent at the surface. This condition of tan- 
gent flow along the airfoil's surface is satisfied by setting the ve- 
locity components normal to the surface to zero v • 0, 
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where v is the velocity vector and n the normal vector, posi- 
tive outward. In case of a moving boundary the relative normal 
velocity vector vre! has to be considered 

(v-vT) n = 0, (10) 

where vT is the vector containing the surface mesh speeds. 

The pressure on the body's surface is determined from the nor- 
mal momentum equation following the proposal of Rizzi [32]. 
This method is more accurate than the simple extrapolation of 
the pressure from interior field values. 

Non-reflecting boundary conditions are applied in the far-field, 
which ensure that disturbances can leave the interior field 
across the outer boundary without being reflected into the com- 
putational domain. 

2.2 Structural Model 
For the theoretical investigation of the probably most danger- 
ous, though not the most frequently encountered type of aircraft 
flutter, which results from the coupling of fundamental bending 
and torsional motions of relatively large aspect-ratio wings, the 
two-dimensional representative wing section introduced by 
Theodorsen and Garrick [33], [34] has been extensively used 
and a great deal of qualitative information can be obtained 
about the influence of various system parameters on the above- 
mentioned type of aeroelastic instability. 

In order to do justice to the increased flexibility of modern light- 
weight aircraft the finite element method is used in this study to 
account for more general motions of a typical wing section. 
With the introduction of additional degrees of freedom it is pos- 
sible to describe the motion of the airfoil more accurately. In 
particular, local changes of.the profile's surface leading to local 
changes in the angle of attack, thus changing the pressure distri- 
bution, are captured. 

2.2.1 Governing Equations 
The governing finite element equations are usually generated 
via variational principles, e.g. the principle of virtual work or 
displacement and stationarity of the total potential. Hamilton's 
principle or the principle of virtual work in combination with 
d'AIembert's principle can be applied for dynamic problems. 
Both formulations are equivalent to each other and lead to the 
same differential equations of motion. While Hamilton's princi- 
ple uses energy expressions, the virtual work principle directly 
considers the actual loads acting on the structure. 

Since the main idea of the finite element method is the approxi- 
mation of a continuous body by a finite number of discrete ele- 
ments interconnected at the nodal points at the element 
boundaries, it is expedient to establish general relations on the 
element level using a local coordinate system in which the local 
degrees of freedom at the nodes are measured. The system ma- 
trices of the total element assemblage are then obtained by iden- 
tifying the global degrees of freedom which correspond to the 
local element degrees of freedom using some kind of connectiv- 
ity array. If the local coordinates are not aligned with the global 
coordinate system, an additional transformation is necessary 
prior to the assemblage. 

Applied on the element level denoted by the superscript (e), 
Hamilton's principle in its extended form, taking into account 
non-conservative external loads can be written as [ 16] 

where 8 is the variational operator, 5L^ = öT(c' -8£/'e> is 
the variation of Lagrange's function with 7"M and t/(c> as the 
element specific kinetic and potential energy, and &Wexl is the 
virtual work of all external loads acting on the element no mat- 
ter whether they can be derived from a scalar potential or not. 

Assuming a linear elastic continuum where the stress-strain re- 
lationship is given by Hook's law 

r« #MeM , (12) 

with H M as the symmetric, positive definite matrix of material 
constants, and the vectors s M and e M representing the stress- 
es and strains, the element specific potential energy including 
discrete linear springs of stiffness c(. at the points i can be ex- 
pressed as 

f/M = I    j" e(e)TH(e)e(e) dV(e) + 1 £v.M2c.,     (13) 
(VW) (0 

where v.M are the displacements at the points i, and V(e> is 
the element volume. The element strains e <e> depend on the ele- 
ment displacements v(e) and can be evaluated by differentia- 
tion using an element specific differential operator D(e) 

c(<0 = nWvW (14) 

J 2(8LM +8WM)dt = 0, (11) 

It should be noted that the displacement vector v M is related to 
all particles i of the continuum and represents a continuous dis- 
placement field. Following the original ideas of Lagrange, how- 
ever, it is generally assumed that the motion of the body can be 
described by a carefully chosen set of generalized (or 
Lagrange) coordinates w w, which, in case of the finite ele- 
ment method, are identical with the nodal displacements. The 
interior displacement field, necessary for calculating the strains 
and stresses, is then approximated by interpolation (shape) 
functions (Ritz method). Introducing the element displacement 
interpolation matrix G (-e\ it follows for the displacement field, 
the strains, and the stresses, respectively: 

vW  = GMwM , (15) 

eM = D^G^uM =D^U<-«K (16) 

SM = H^D^G^uM = H^D^uM ,       (17) 

where D^ stands for the application of the differential opera- 
tor Z)M to G<«>. 

It is now possible to rewrite the potential energy as a function of 
the generalized nodal displacements u w only 

UM =i   j     u^TD^TH^D^u^ dVM + 
(VW) . (18) 

Ü) 

Similarly, the element specific kinetic energy can be found as 

7-M = i   J   pWiW^wrcWjWivC),      (19) 
(VW) 

where p (') is the element material density and ü (e> are the ele- 
ment nodal velocities (i.e., the first time derivative of u M). 
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The variation of Lagrange's function in generalized coordinates 
results in 

5LM   =      J     pM§u(e)TG(e)TG(e)ü(e)dV(e) _ 

(V(e)) (20) 

0") 
Considering only the distributed surface loads p (c\ the virtual 
work in generalized coordinates reads as 

8WM=-    j      iuWTG^e)Tple)dS(e)t (21) 

(S<«>) 

where G^e) is the surface displacement interpolation matrix an- 
alog to G(c), and S (c> the element surface. 

Introducing equations (20) and (21) into (11), the solution of 
equation (11) as variational problem leads to the well-known 
Lagrange equations of second kind 

3LW 
.p£U/<«)(,),  j= 1A....JV.       (22) 

Neglecting structural damping effects, the equations of motion 
of the element (e) in local coordinates follow as 

M<e>H<e) + #«>«<«)   = /M (23) 

with the element mass matrix, the element stiffness matrix, and 
the applied loads, respectively 

MM =     j     pMGMTG(e) dV(e)   t (24) 

(V<«>) 

KM   =     J    D£>rff<«>D#> dVM , (25) 
(VM) 

/(O   =     J   G^fpWdSW . (26) 
(so) 

The assumption of small strains in general permits the evalua- 
tion of the integrals over the undeformed geometry of the ele- 
ment without significant error. 

The assembly process might be written symbolically as 

X(MW«W+A:WHW) = X f(e) (27) 
(«) (0 

and, after introducing boundary constraints, leads to the equa- 
tions of motion of the entire system in global coordinates 

Mü + Ku   =/, (28) 

where M and K are the constant global mass and stiffness ma- 
trices, and / is the global vector of applied loads. 

2.2.2 Application to Typical Wing Section 
Following the ideas of Theodorsen and Garrick, a typical wing 
section of unit width in the spanwise direction is considered, as 
illustrated in Fig. 2. It is assumed that the inertial and elastic 
properties of the system can be represented by a finite element 

assemblage of beams or plates which do not necessarily model 
the aerodynamic surface of the system. In addition, the spatial 
discretization of the structure is independent of that of the fluid 
(and vice versa) and is accomplished by structural constraints 
like material discontinuities, the need to implement hinges, 
elastic supports, and the specification of nodal displacement 
conditions only. Every node k might be supported by a transla- 
tional and/or rotational spring, and adjoining elements e might 
be interconnected by a stiffness coupling matrix to establish a 
hinge for the purpose of modelling one or several control sur- 
faces, as indicated in the figure. The local element degrees of 
freedom are measured in the local coordinate system 
(x(e\ zM), while the global degrees of freedom refer to the 
global coordinate system (x, z), both of which are Cartesian. 
The surface of the profile in the global coordinate system is giv- 
en by T| (x) and coincides with the inner £ = const, line of the 
aerodynamic mesh. During the temporal integration of the cou- 
pled field problem the pressure p is computed in each mesh 
cell and assumed to be constant throughout each cell. 

finite elements e = 1,2,...,« 
finite element nodes    k = 1,2,..., n+\ 
aerodynamic points    ('  = 1,2,..., m 

Fig. 2    Typical wing section and relation 
between the spatial discretization of 
the fluid and the structural domain 

w^\2   'e^ 

XM 

Fig. 3    Definition of local nodal displacements 

Since in the decomposition approach favored here the only way 
to communicate between the structure and the fluid is via the 
surface (fluid structure boundary), it is of utmost importance to 
describe the motion of the surface as accurately as possible. 
The importance is twofold. Firstly, the time-varying surface 
specifies the kinematic boundary for the fluid, and secondly, 
some assumptions about the kinematic of the surface have to be 
made in order to be able to determine the generalized forces 
(i.e., the evaluation of the integral (26)) transmitted from the 
fluid to the structure in a consistent manner with the mechanical 
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principles already applied (kinetic or natural boundary condi- 
tion for the structure). This leads us to the matter of shape func- 
tions for the elements. 

For the sake of simplicity, a beam element of unit width with 
the nodal degrees of freedom 

uw = [«,(«> w,M e,M K2W w2M 82w]r (29) 

measured in the local coordinate system (x<£\ z(c)) is consid- 
ered, as illustrated in Fig. 3. 

Based on the well-known differential equations of equilibrium 
of a prismatic beam for bending and axial behavior the interior 
continuous displacement field 

V(e»(jW)   =   [„M  w(e)  Q(e)Y (30) 

can be exactly expressed (within the classical beam theory) as 
function of the nodal displacements according to equation (15), 
where the element displacement interpolation matrix can be 

written as 

G« (*(">) = 

(e)T 

,(e)T 
w 

Ae)T 

(31) 

The vectors g<-e), ?W and ge
(£,) contain the so-called Her- 

mitian polynomials [5] corresponding to the degrees of free- 
dom u W, w M and 9 M , so that, e.g. u <e> =  g^ Tu M . 

Finally, the surface displacements v^e) as functions of the nod- 
al degrees of freedom u M remain to be specified. For this pur- 
pose, an element including its corresponding surface (fluid 
structure boundary) in local coordinates is shown in Fig. 4, 
where, for matters of simplicity, only the upper side is consid- 
ered. The shape of the surface given by r| (e)(x<e)) in the unde- 
formed state (its slope is r|'M = drx\^/dx^) can be 
arbitrary with the only exception that it should be not too far 
away from the element, and, of course, continuous at the ele- 
ment boundaries. In so doing, a linear relation between the dis- 
placements of the elastic center line and the surface 
displacements of the element can be obtained. 

The following model for the deformation of the surface is ap- 
plied. In the undeformed state the surface is measured perpen- 
dicular to the elastic center line of the element, i.e., 
perpendicular to the JC<

C
> axis. While the deformation the sur- 

face point P moves to P, assuming that the distance between 
the center line of the element and the surface does not change 
and that it is still measured perpendicular to the now deformed 
elastic center line. The continuous surface displacements are 
identified by the subscript S. According to this procedure, a 
bending moment assumed to be positive in the clockwise direc- 
tion about the y (e> axis causes tension in the top fibers of the el- 
ement and the upper surface is stretched while the bottom fibers 
of the element and the lower surface are subjected to compres- 
sion. This is simply the transfer of the well-known hypothesis 
of Bernoulli for bending deformations of prismatic beams, 
which, without emphasizing it explicitly, has already been as- 
sumed to be valid in the construction of the shape functions for 
the beam element. 

It is important to note that the elastic and inertial properties of 
the system are solely represented by the finite element and that 

no resistance comes from the tension and compression of the 
surface. From a mechanical point of view one can imagine the 
following: Along the bearing element aligned with the x(e> ax- 
is, several massless and infinitely rigid beams, allowing the 
transmission of axial forces and bending moments, are perpen- 
dicularly and rigidly connected to this element. The lengths of 
these beams are prescribed in a way that they model the aerody- 
namic surface, i.e., their outer ends coincide with the surface. 

deformed state 
undeformed state 

Fig. 4    Definition of local element surface 
displacements 

From the geometrical interpretation of Fig. 4 one can derive the 
following relation 

v^e> (xM) = 

which gives linearized 

4e) „(e) +n<e)sinew 

H,(e) „^(e) (l-C0SeM) 

0(e) 

.  (32) 

„(e) +T1(e)e(e) 
f (JW)  = w(e) . (33) 

0(e) 

Applying Eq. (15) in conjunction with (31) to (33) finally yields 

v^ (JCM) »(e) T 

*eWT 

Gie> (XM)MM , 

ü(e) 

(34) 

where G^e) is the searched element surface displacement inter- 
polation matrix. 

With the help of Gje> the surface's motion can be automatically 
determined if the nodal displacements u M, and thus, the interi- 
or element displacement field v M are known. In addition, the 
knowledge of G^ allows for the calculation of the integral 
(26) to obtain the generalized element forces. 

2.2.3 Boundary Conditions 
As already mentioned above, every node might be supported by 
a translational and/or rotational spring and adjacent elements 
might be interconnected by joints. In the following example cal- 
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culations the system is similarly supported by discrete linear 
springs like the classical wing section model and has an option- 
al control surface. Under this condition, the fundamental de- 
grees of freedom responsible for classical flutter are retained 
while still allowing for elastic deformations in the chordwise di- 
rection. 

All nodal degrees of freedom can be constrained or prescribed 
with the additional feature of having the possibility to impose 
dynamic displacement conditions. This is useful in order to ini- 
tialize an unsteady aeroelastic calculation or for the determina- 
tion of unsteady aerodynamic coefficients. In this study the 
axial displacements u^ of all elements are constrained since 
their contribution to the overall solution is negligible and leads 
only to increased computational effort. 

The kinetic boundary condition is fulfilled with the evaluation 
of the integral (26). 

2.3 Method of Solution 
The coupled field problem can be effectively solved in the time 
domain by applying a partitioned solution procedure in which 
the fluid and the structural solvers are executed in an alternating 
fashion and exchange interface data such as pressure, displace- 
ments, and velocities at certain time steps. Theoretically, a 
large number of available finite difference expressions can be 
employed. However, with effectiveness considerations in 
mind, only a few methods need to be considered. 

2.3.1 Fluid Domain 
The Euler code used in this study was written and adopted to 
the requirements of the partitioned solution procedure by the 
author of [ 18], where it is described in detail and applied to two- 
dimensional transonic cascade flow. Results of computations of 
unsteady transonic flow around oscillating airfoils are given 
and compared with solutions of a Full Potential method and ex- 
perimental data in [37]. The agreement is generally good in the 
whole frequency range important for flutter prediction. 

The Euler code makes use of the flux vector splitting method 
developed by van Leer [36] for Cartesian coordinate systems. 
Anderson et al. [3], [4] paved the way to enable the application 
of this naturally dissipative upwind method also to boundary- 
fitted moving coordinates while retaining the advantages of the 
original splitting, in particular the shock capturing capabilities. 
The solution in the time domain is based on the approximately 
factored Beam/Warming implicit single-step algorithm [6] us- 
ing a cell-centered finite volume formulation with a MUSCL- 
type extrapolation (Monotonie Upstream Centered Scheme for 
Conservation Laws) [35] for the spatial discretization. The con- 
dition for numerical stability of the fluid solver depends on the 
spatial and temporal discretization and can be expressed by 
means of a linear stability analyses by the CFL number (Cou- 
rant-Friedrichs-Lewy). 

2.3.2 Structural Domain 
For the time integration of the structural equations of motion, 
Newmark's method [29] is employed, which can be cast in ex- 
plicit and implicit form by the variation of two method-specific 
parameters. It also has the advantage of being a single-step al- 
gorithm, thus, the whole procedure is easily extended to vary- 
ing time step sizes. The critical time step required for stability 
and accuracy has to be calculated from the mass and stiffness 
properties of the complete finite element model. More specifi- 
cally, the highest frequency obtained by an eigenanalysis of the 
free vibration equilibrium equations determines the time step. 
Comprehensive discussions of this important subject can be 
found, e.g., in [5], [39]. 

Since the required number of operations to solve equation (28) 
is directly proportional to the order and bandwidth of the sys- 
tem matrices, the computational effort can be considerably re- 
duced by transforming the basis to modal (normal) generalized 
coordinates using the eigensolutions of the free vibration equi- 
librium equations with neglected damping. In so doing, the sys- 
tem matrices can be diagonalized, hence, the system of 
differential equations (28) decoupled. Also, only a fraction of 
the total number of decoupled equations needs to be considered 
to obtain a good approximate solution, which is generated by 
the mode superposition principle. The contributions of higher 
frequencies and mode shapes are usually negligible and the so- 
lution is dominated by the low frequency content of the system. 
As a result, much larger time steps can be used. Once a decision 
has been made on the modal approach, and the reduction of the 
system to the normal generalized degrees of freedom which sig- 
nificantly contribute to the expected response has been per- 
formed, the question whether to employ the implicit or explicit 
formulation of Newmark's method does not arise. The admissi- 
ble time step has to be almost the same for both methods due to 
accuracy requirements. For simplicity, the explicit scheme, 
which is spectrally equal to the well-known central difference 
method [5], is used. 

2.3.3 Solution of Coupled Field Problem 
The coupled time integration procedure can be conceptionally 
described as follows employing the same time step At for the 
fluid and the structure (Fig. 5). 

1. Obtain starting values from the actual state of the en- 
tire system, i.e., generalized displacements «(., ve- 
locities «(., accelerations w(., and aerodynamic 
loads f. at time level t{. If the system is not al- 
ready in motion, the generalized aerodynamic load 
vector is determined from the free-stream condition 
corresponding to the fixed initial wing-surface 
boundary. 

2. Compute generalized displacements M( + 1 , veloci- 
and accelerations ti i+l at time level 

f.   j = f. + At  using the aerodynamic forces at 
time level ti. 

Update the aerodynamic mesh, advance the fluid do- 
main, and calculate the generalized aerodynamic 
load vector /.+ ]  according to «(.+ , 
ti. +_, at time level t, 

*i + i , and 

*; + ! 

fluid domain 

'i+i- 

structural domain 

t. ti + At 

Fig. 5    Temporal flow diagram illustrating the 
coupled field integration scheme 
assuming the same time step for the 
fluid and the structural domain 
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This cycle is repeated until the desired response is obtained. 
The mutual time step for stability of the coupled field integra- 
tion procedure is determined from the condition 

At = min {AtF(CFL),Ats(mmax)} (35) 

where AtF and Ats are the admissible time steps for the fluid 
and the structure, respectively, which are restricted by the re- 
quirements discussed above. 

Of course, in the case of making use of the modal approach, the 
computed normal generalized displacements, velocities, and ac- 
celerations have to be transformed into the physical plane at 
each time step since the fluid structure boundary is described in 
physical coordinates, while on the other hand, the aerodynamic 
loads acting on the surface have to be transformed into the com- 
putational plane of generalized forces corresponding to the nor- 
mal coordinates. 

Assuming a judicious choice of the mathematical model repre- 
senting the structure, in aeroelastic response and stability analy- 
ses a greater time step for the integration of the structural 
equations of motion can generally be chosen as compared to 
that of the fluid. However, when considering that the computa- 
tion of the aerodynamic data by modern CFD methods makes 
up the lion's share of the total computational costs, it is usually 
not worth applying a different scheme. Only when working in 
heterogeneous hardware environments, where the single-field 
solvers are executed on different platforms, it might be desir- 
able to reduce the time needed to exchange data by employing 
different time steps in each domain. With these considerations 
in mind, the coupled time integration procedure described 
above has been extended as follows. 

fluid domain 

structural domain 

t. tt + At        t 

Fig. 6    Temporal flow diagram illustrating the 
coupled field integration scheme 
assuming different time steps for the 
fluid and the structural domain 

If AtF<Ats, the global time step At = Ats is divided into 
ns/P equally spaced intervals so that 

Afr 

A;, 
<n S/F (36) 

holds, where AtF is determined by the CFL condition and Ats 

by the highest frequency of the structural system. The structural 
domain is time-marched from r;. to r(.+ | in a single time step 
At = Ats, as described above, while the fluid domain is ad- 
vanced from r. to t. j in ns/F time steps. Since data exchange 
is only permitted at the time steps t( and t. + ,, the necessary 

generalized displacements, velocities, and accelerations to ad- 
vance the fluid domain within the open time interval 
t- < t < t. , have to be approximated, e.g. by linear interpola- 
tion. 

t-t: 

»W  =   »/ + -Ä7 (»/+!-",■).    ',-*'*', i+i 
(37) 

It should be noted that a.   , is already known within the full ac- *i + l 
curacy of the employed structural integration scheme and that 
only the values inside the open interval ti <t<ti+l are approx- 
imated. However, experience has shown that the use of higher 
order interpolation functions has no significant, if any effect on 
the overall solution. The procedure is illustrated in Fig. 6. 

2.3.4 Energy Considerations 
Newmark originally proposed the constant average accelera- 
tion method, also well-known as the trapezoidal rule, which to- 
day is considered a special case within the Newmark family of 
algorithms [5], [39]. It is probably not exaggerated to say that it 
is the most popular and most often applied time-step algorithm 
in structural dynamic analysis. This is because for this class of 
problems it possesses a unique property that it shares with the 
exact continuum equations of motion for undamped systems 
subjected to a conservative force field. It exactly conserves the 
total energy of the structural system 

Em = T(u, t) + U(u, t) = E0 = const. (38) 

i.e., the sum of kinetic T and potential energy U remains con- 
stant during the evolution in time and is equal to the initial ener- 
gy E0 . This means that no amplitude decay is introduced and 
that also the higher frequency components, although not accu- 
rately evaluated, are not damped out and still retained in the re- 
sponse, which is in sharp contrast to the behavior of other 
implicit time integration schemes. 

On the other hand, the fundamental conservation law (38) does 
not hold for non-conservative loadings, but the more general 
energy identity 

Etol = T{u, t) + U{u, t) = E0 + j'uT(x)fnc(x) dx,   (39) 

readily derivable from Lagrange's equations, can be employed, 
where the integral comprises the effects of all non-conservative 
generalized forces fnc . In this case the total energy Ewt is not 
a constant equal to the initial energy E0 , it is in- or decreased 
by the value of the integral in the time t. 

Since damping and other dissipative effects have been neglect- 
ed in the derivation of the structural equations of motion, the 
following energy identity 

EtorWext = r<"''>+ U(-u>') - //WCO dx = E0,  (40) 

must be satisfied by the solutions of the initial-value problem 
(28), where Wext is the external work done by the generalized 
aerodynamic forces /. 

Such energy relations are commonly valid in physical problems 
and have long been used in the theory of differential equations 
to prove existence and uniqueness of solutions. However, be- 
ginning with the work of Courant, Friedrichs, and Lewy [19], 
they also have a long tradition to attest numerical stability and 
accuracy of finite difference approximations [31]. 
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As discussed further below, the energy identity (40) can be used 
to check the accuracy of the proposed partitioned time integra- 
tion procedure, which is why it is included here. 

3 RESULTS OF AEROELASTIC COMPUTATIONS 

Based on the progress in computational fluid dynamics, many 
aeroelastic applications have followed. For matters of simplici- 
ty and the reasons given above, the two-dimensional typical 
wing section introduced by Theodorsen and Garrick [33], [34] 
was often used as structural model in these studies. In particu- 
lar, extensive efforts to predict transonic aeroelastic phenome- 
na have resulted in a sequel of papers, e.g., [8], [21], [22], [26], 
[38]. It is, however, clear that the assumption of two-dimension- 
ality of the flow at transonic speeds is only valid for some por- 
tions of large aspect-ratio wings. 

More recently, Blom and Leyland [15] presented related work 
concerning the partitioned solution procedure, while Bendiks- 
en [9] also accounted for camber bending in the stability analy- 
sis of a typical wing section using a newly proposed ALE 
method for aeroelastic applications. 

In order to be able to compare the results of the suggested meth- 
od with previous flutter calculations and also to show the effect 
of chordwise flexibility of a wing segment in two-dimensional 
transonic flow on aeroelastic stability, the classical rigid wing 
section was used as reference model. Since the general formula- 
tion of the finite element method allows for the lumping of 
structure properties and loads, the exact rigid case can readily 
be treated in a very effective manner. Another alternative offers 
the application of the modal decomposition technique. Either 
procedure leads to a reduced order structural model resulting in 
larger admissible time steps for the integration of the structural 
equations of motion in time. This is an advantage of the present 
method in contrast to Bendiksen's ALE formulation of the prob- 
lem [9], where the rigid case is achieved by letting the stiffness 
of the elements approach infinity. Further considering that in 
reference [9] the five-stage Runge-Kutta scheme was used for 
the entire fluid structure domain, which is only conditionally 
stable and thus demanding very small time steps not only for ac- 
curacy but above all for numerical stability, considerable com- 
puting time can be saved by using the domain decomposition 
approach. Personal experience has shown that by stiffening the 
elements to a degree where no significant camber bending oc- 
curs, the admissible time step for the structure using an uncon- 
ditionally stable scheme is decreased well below that 
acceptable for the fluid domain. 

In this section, transonic time response solutions are presented 
for five test cases, two of which were previously studied using 
the well-known transonic codes LTRAN2-NLR [24] and USTS 
[26], which solve the two-dimensional transonic small distur- 
bance equations. More specifically, a two-degree-of-freedom 
(2 d.o.f.) system investigated by Isogai [26] and a three-degree- 
of-freedom (3 d.o.f.) system examined by Yang and Batina [38] 
were used as basis configurations. The aeroelastic parameter 
values for both cases are listed below using the definition of pa- 
rameters and sign conventions of reference [38]. 

Isogai [26]: 

ah= -0.3,xa= 0.5, ra= 0.7, <äh/(äa = 0.2, u, = 60 

Yang/Batina[38]: 

ah= -0.2, xa= 0.2, ra= 0.5, co/co^ 0.3, u_ = 23.48 

Xp = 0.008, rß = 0.06, cß = 0.5, coß/coa = 1.5 

The remaining test cases are modifications of the latter model 
utilizing the same parameters. First, a 2 d.o.f. system was estab- 
lished by merely locking the control surface to the wing, and 
second, this 2 d.o.f. system and the original 3 d.o.f. system 
were allowed to have chordwise flexibility. For the sake of clari- 
ty, the test cases are listed in Table 1, where the sequence of cas- 
es is chosen according to the complexity of the structural 
model. 

Table 1    Aeroelastic test cases 

Case A CaseB CaseC CaseD Case E 

Isogai same as Yang/ same as same as 
[26], Case C, Batina Case B, Case C, 
2 d.o.f, but with [38], but chord- but chord- 
rigid 2 d.o.f 3 d.o.f, wise flex- wise flex- 

rigid ible ible 

It should be noted that originally Cases C and E were the main 
objectives of this investigation, where the flutter boundaries 
surprisingly exhibited two transonic dips in flutter speed. This 
phenomenon was initially attributed to the presence of the con- 
trol surface, which is why the control surface was locked in a 
second attempt resulting in Cases B and D. Perhaps not surpris- 
ingly, these cases also showed a second dip, since the relatively 
high stiffness in the control surface hinge of Cases C and E 
(cOg/coa = 1.5) effectively diminishes possible flutter for the 
bending-aileron and torsion-aileron branches. Due to the fact 
that in reference [38] results for the considered case are only 
presented for a single Mach number, and therefore a sound ba- 
sis of comparison was still lacking, an additional example, tak- 
en from reference [26], was considered (Case A) with the 
advantage of having comprehensive information on the behav- 
ior of critical flutter parameters vs. Mach number for a typical 
2 d.o.f. system. As is discussed further below, a second dip was 
also detected for this case. 

Regarding the finite element modelling, the continuous mass 
and stiffness parameters were obtained by formulating and 
solving nonlinear constrained optimization problems, so that 
the global system parameters exactly match the prescribed dis- 
crete values. In this context, some assumptions were necessary 
about the way in which the structural properties should be dis- 
tributed. Accordingly, the mass and stiffness coefficients were 
approximately scaled to the square and cube of the profile's 
thickness, respectively. In so doing, it turned out that in order to 
retain the global structural parameters, especially the location 
of the center of gravity of the wing and the mass-balanced con- 
trol surface, the introduction of two small eccentric tuning 
masses was necessary. Except where noted, nine beam ele- 
ments were used in the chordwise direction in the present study. 
The rigid body Cases A to C were exactly obtained by lumping 
the distributed system properties. Also note that for Cases B to 
E the same finite element model was used since only the bound- 
ary conditions needed to be changed. 

All results of aeroelastic computations presented here were per- 
formed for zero mean angle of attack and using a 
NACA64A010 airfoil, where the airfoil coordinates were taken 
from reference [14]. In order to extract the frequency, damping, 
amplitude, and phase information from the simulation data, the 
time-history series were fitted in a least square sense with com- 
plex exponential functions [13]. The problem of finding the crit- 
ical flutter solution, which by definition is an oscillation with 
steady amplitude, so with zero damping, was iteratively solved 
by employing the Newton-Raphson method [5], which is qua- 
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dratic in convergence. The iteration cycle: (1) prescribe (in- or 
decrease) flight speed, (2) compute aeroelastic time response, 
and (3) determine vibration parameters, was continued until a 
predefined tolerance for the damping coefficients was achieved. 

3.1 Results for Rigid Wing Section (Cases A to C) 
The results for the three typical rigid wing segments presented 
in this section serve as a basis for comparison with previously 
published results and as reference solutions for the Cases D and 
E. Although not shown here, it should be noted that additional 
flutter computations in the low subsonic Mach number range 
were successfully carried out during the checkout phase of the 
program, including comparisons with results obtained from 
classical frequency domain flutter computations. 

3.1.1 Results for Case A 
Case A is the same as Case B in reference [26] studied by Isogai 
and simulates the vibrational characteristics of an unswept 
wing. A relatively mild transonic dip was observed, as shown 
in Fig. 7, where the non-dimensional flutter velocity coefficient 
Up = UF / (icoa*/jI) vs. Mach number M is plotted. Also 
shown in the figure is a result predicted by Bendiksen for the 
same case at a Mach number of M = 0.8, taken from refer- 
ence [8]. The results are compared to the predictions obtained 
by the present code for the ideal rigid wing segment. As can be 
seen, the agreement is generally good, but a second dip was de- 
tected in the Mach number range 0.85 <M< 0.9 with the 
present code. It is interesting to note that Isogai did not present 
any results for this very range. The two neighboring points 
were merely connected with a dashed line. Fig. 8 shows the cor- 
responding flutter frequencies cof , non-dimensionalized by the 
torsion natural frequency coa, vs. Mach number, which also 
compare very well with the previously obtained results except 
for the Mach numbers 0.85 < M < 0.9 . 

In order to impart an idea of the response behavior of the sys- 
tem, typical time-domain solutions for Case A are presented at 
M = 0.8 for four different flight speeds. These examples cor- 
respond to the neutrally stable, stable, unstable, and LCO solu- 
tions depicted in Fig. 7. Fig. 9 shows the displacement response 
and the evolution of the energy quantities with time for the criti- 
cal flutter velocity coefficient Up* = 0.453 . The system was 
forced to oscillate according to the previously determined flut- 
ter mode 

*£U^Sin(ay + q>A), 
oc(r) = aQ sin (Wpt + q>a), 

^ = 0.155,    i° = 0.01,    <pa-<pA = 6.1594[rad] 

for four cycles 871/co^ of the flutter frequency a)f given by the 
frequency ratio (0F /(äa = 0.349 . After its release, additional 
25 cycles of free motion were computed in order to obtain the 
aeroelastic time response. As can be seen, no disturbances oc- 
cur at the transition from forced to free motion, indicating that 
the exact flutter conditions were used to initiate the time re- 
sponse calculation. Also, the values of the displacement ampli- 
tudes were chosen within the range where the unsteady 
aerodynamic coefficients depend linearly on the displacement 
amplitudes, as has been investigated in [26]. 

The energy quantities were only computed for the free motion 
of the system according to equation (40) and non-dimensional- 
ized by the initial energy EQ , so that the difference between the 
total energy and the external work should be equal to one in the 
whole simulation period (£,„,- Wgxt) /EQ = const. = 1 . 

This means that neither energy is introduced nor dissipated by 
the numerical integration scheme. In so doing, the energy iden- 
tity (40) provides an autonomous check on the numerical accu- 
racy and stability of the finite difference approximation of the 
coupled field problem. However, it should be noted that the sat- 
isfaction of (40) does not guarantee a „healthy" solution of the 
entire aeroelastic problem, since it does not account for mis- 
takes in the calculation of the generalized forces from aerody- 
namic pressure data. For example, any arbitrary constant (in 
reasonable bounds) can be added to the generalized force vec- 
tor without violating the energy identity (40). 
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Fig. 8     Flutter frequency vs. Mach number for 
Case A 

As can be seen in Fig. 9, the difference £,„,- Wexl remains 
constant and equal to the initial energy E0, thus attesting the 
quality of the proposed partitioned integration procedure. No 
systematic divergence of Efol - Wext away from the initial ener- 
gy could be detected, as was repeatedly observed by Bendiksen 
[9], [11] using the domain decomposition approach. Even for 
long-term calculations up to 100 cycles, covering more than 
60.000 time steps, the energy identity (40) was satisfied and the 
aeroelastic response remained neutrally stable as if the first 25 
cycles in Fig. 9 had been copied to the end of the simulation pe- 
riod. 

Fig. 10 shows the displacement response and energy evolution 
for Case A at M = 0.8 for a subcritical velocity coefficient, 
while Fig. 11 shows the same for a supercritical velocity coeffi- 
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x10 x10 

Fig. 9    Displacement response and energy 
evolution for Case A at M = 0.8 for 
critical flutter velocity coefficient 
Up = 0.453 (neutrally stable solution) 

cient. More specifically, the stable solution was obtained by de- 
creasing, and the unstable solution by increasing the critical 
flutter speed by about two percent. 

Again, the calculation was initiated by forcing the system to os- 
cillate according to the flutter mode as described above. Then 
the airfoil was left free in order to obtain the aeroelastic re- 
sponse. As compared with the neutrally stable response, the fre- 
quency for the stable solution (Fig. 10) was found to be slightly 
lower and for the unstable solution (Fig. 11) to be slightly high- 
er than that for the critical flutter solution. 

When the flight speed was increased by about 10%, the solution 
entered a steady limit cycle oscillation (LCO) after 12 cycles of 
free motion, as can be seen in Fig. 12. The reason for this 
bounded amplitude oscillation lies in the dynamics of the 
strong shocks present at this Mach number for the considered 
airfoil. The vibrations are characterized by an increased ampli- 
tude and frequency ratio. Also, the torsional response is no 
longer a simple harmonic oscillation but shows the presence of 
higher harmonics resulting from the shock wave motions. 

In this context, it should be noted that whether or not LCO is 
found depends to a certain degree on the length of the chosen 
simulation period, since the approach of the system to a steady 
LCO depends on the magnitude of the flow velocity. The higher 
the flow velocity for a given (sufficiently high) Mach number 
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Fig. 10  Displacement response and energy 
evolution for Case A at M = 0.8 for 
subcritical velocity coefficient 
U*= 0.443 (stable solution) 

the faster the system reaches its steady LCO amplitude and vice 
versa. It is therefore anticipated that the unstable solution de- 
picted in Fig. 11 might have entered a LCO solution for an ex- 
tended simulation period. 

As can be seen in Fig. 12, the difference in energy Etot - W£xt 

starts oscillating slightly about the mean value £0 as the ampli- 
tudes increase. However, the spurious growth and decay of en- 
ergy tend to compensate each other over one cycle of 
oscillation, thus no systematic divergence occurs. The.same be- 
havior was observed for even higher torsional amplitudes, 
where the applicability of the method is open to question since 
the assumption of small displacements, thus the justification of 
linearity in deriving the governing structural equations of mo- 
tion is violated. Although very interesting limit cycle solutions 
were repeatedly computed during this study, it is beyond the 
scope of this paper to discuss their origin and mechanism in de- 
tail. Numerical investigations on this fascinating nonlinear ae- 
roelastic phenomena have been published by Kousen and 
Bendiksen [27], where the interested reader is referred to. 

3.1.2 Results for Case B 
Case B is a modification of the 3 d.o.f. system previously stud- 
ied by Yang and Batina [38], which is the object of investiga- 
tion in the next section. As for the results presented in this 
section, the system was modified in so far as the control surface 
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Fig. 11   Displacement response and energy 
evolution for Case A at M = 0.8 for 
supercritical velocity coefficient 
£/*= 0.461 (unstable solution) 

was locked to the wing, while keeping the values for the 
aeroelastic parameters as used for Case C. The computed flutter 
boundary for Case B is depicted in Fig. 13, while the corre- 
sponding flutter frequency, amplitude ratio, and phase differ- 
ence of the displacement response vs. Mach number are 
depicted in Fig. 14. 

In Fig. 13 also shown by specific symbols are some additional 
representative results, which were obtained during the search 
and trail of the expected flutter boundary. Whereas most sym- 
bols in context with the legend descriptions are self-explanato- 
ry, the cross 'X' symbolizes explosive flutter, which is 
accompanied by the failure of the numerical scheme within a 
few cycles in so far as the amplitudes grow without bound. 

For Mach numbers lower than 0.70 no shocks are present and 
the solution rapidly grows (unstable solution) when the critical 
value of the flutter speed is exceeded. Decaying (stable) solu- 
tions are obtained for subcritical speeds. The flutter modes at 
the critical values of flight speed are characterized by typical 
bending-torsion motions at a frequency between those of the 
uncoupled natural frequencies of the binary system. Also, for 
this range of Mach numbers, no significant change in the phase 
difference between the torsional and bending motions exists, as 
can be recognized from Fig. 14. 
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Fig. 12  Displacement response and energy 
evolution for Case A at M = 0.8 for 
supercritical velocity coefficient 
U* = 0.497 (LCO solution) 

With increasing Mach number attended by the development of 
weak shocks, a mild drop in critical flutter speed and a broaden- 
ing of the region where exponentially growing solutions were 
computed is found. The minimum value of the critical flutter 
speed coefficient is predicted at M = 0.78 when the shock 
wave is located at about 55 to 60 percent of the profile's chord. 
The presence of the shocks is well reflected by the unsteady 
load distribution, as has been shown in great detail in the excel- 
lent work of Isogai [26]. In order to impart an idea on the behav- 
ior of the unsteady lift and moment coefficients at a relevant 
reduced frequency k = <ab/U {b - semichord) for Case B, the 
variations of the in-phase (real part) and out-of-phase (imagi- 
nary part) components of the first harmonic of the lift coeffi- 
cient cn a and the torsional moment coefficient cml a for 
small torsional oscillations about the elastic axis x = ahb 
(40% chord position) versus Mach number are plotted in Fig. 
15 and Fig. 16, respectively. The coefficients are defined as in 
reference [26]. As is obvious from these figures, the large nega- 
tive value of the out-of-phase component of the torsional mo- 
ment coefficient at about M = 0.78 (which means that there is 
a considerable phase lag between the torsional motion of the 
profile and the unsteady aerodynamic response) has a damping 
effect on the torsional degree of freedom of the system, while at 
the same time the drop in the out-of-phase component of the lift 
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coefficient (bearing the sign convention in mind) indicates 
less aerodynamic damping in the bending degree of free- 
dom. This is also mirrored by the displacement responses 
(Fig. 14), where at the bottom of the first dip in flutter speed 
the flutter frequency approaches a minimum close to the 
first natural frequency (bending), involving an increase in 
the bending amplitude. This implies a bending-dominated 
flutter mode at the bottom of the first transonic dip. With in- 
creasing Mach number the shocks strengthen and migrate 
further aft towards the trailing edge, which is accompanied 
by a significant decrease in the magnitude of the in-phase 
component of the torsional moment coefficient, since the 
center of pressure shifts also aft towards the elastic axis. 
This, and the decrease in the in-phase component of cm] , 
have a stabilizing effect on the flutter boundary (Fig. 13). 

In addition, the out-of-phase component of 
the torsional moment coefficient rapidly 
rises, thus resulting in less aerodynamic 
damping in the torsional degree of free- 
dom. This enables the transition from 
bending-dominated flutter to torsion-domi- 
nated flutter for Mach numbers beyond 
where the first dip in flutter speed occurs, 
as is well reflected in the displacement re- 
sponses (Fig. 14). The flutter frequency ap- 
proaches the torsion natural frequency, the 
torsional amplitude increases, and the 
phase difference between the bending and 
torsional motions reverses. 
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Fig. 14  Flutter frequency, amplitude ratio and phase difference 
of displacement response vs. Mach number for Case B 

Within the considered range of free-stream 
Mach numbers the flutter boundary reach- 
es a maximum at M = 0.83. With a fur- 
ther increase, a second drop in flutter 
speed occurs which might be interpreted in 
a similar fashion as just discussed, since 
the aerodynamic coefficients as well as the 
displacement responses change anew, 
though at different absolute values. More 
specifically, the notable point in Fig. 16 is 
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that the out-of-phase component of the torsional moment coeffi- 
cient is actually positive, thus producing negative aerodynamic 
damping in the torsional degree of freedom. This might also be 
the reason that explosive flutter and no limit cycle behavior is 
predicted in this Mach number range for slightly higher flight 
speeds than the critical speed. 

It is interesting to note that such behavior of the flutter bound- 
ary at transonic speeds has been observed only for three-dimen- 
sional transport-type wing configurations so far. For example, 
two transonic dips have been found experimentally for a super- 
critical wing model tested at NLR [40] while numerically pre- 
dicted flutter boundaries exhibiting two dips are reported on in 
reference [28]. The observations made in these studies that the 
first („usual") transonic dip involves bending-dominated flutter 
while the second dip is characterized by an almost single de- 
gree-of-freedom torsional type of flutter are also striking in the 
present study using a strictly two-dimensional model. It is rec- 
ognized, however, that viscous effects might play an important 
role at these Mach numbers, as was observed in the experiment 
at NLR [40], where the single degree-of-freedom torsional type 
of flutter was found under separated flow conditions for higher 
angles of attack. 

Finally, it should be noted that extensive attempts to find multi- 
ple solutions of the flutter boundary near the first dip were un- 
successful and, apart from explosive flutter, resulted in either 
decaying, exponentially growing, or LCO solutions, as is indi- 
cated in Fig. 13. Such multiple solutions have been reported for 
binary systems simulating the vibrational characteristics of an 
swept wing, see e.g. [8]. 

3.1.3 Results for Case C 
Case C is identical to the 3 d.o.f. system studied by Yang and 
Batina [38] using the NACA64A010 airfoil. In reference [38] 
results of time response and classical flutter analyses are pre- 
sented at M = 0.825, applying unsteady aerodynamic coeffi- 
cients computed by the codes LTRAN2-NLR [24] and USTS 
[26]. For the given parameters the flutter speed and mass ratio 
were found to be U* = 0.539 at \i = 20.86 using LTRAN2- 
NLR coefficients and U* = 0.518 at u = 27.60 using USTS 
coefficients. Based on the flutter solution using LTRAN2-NLR 
aerodynamics,   with   hQ/b = 0.001,   aQ /(hQ/b) = 0.748 , 

ßo/(ho/b) ~°-638 > and aF/coa = °616 (no pnase infor" 
mation given), diverging responses were obtained with the 
present code. However, neutrally stable responses resulted at 
U*= 0.509 and n = 23.48. 

Estimates of the vibrational parameters of the critical aeroela- 
stic  response  were  determined  to   a0/(hQ/b) = 0.817, 

ß0/(V*) = °-565' °¥/toa = °-617' «Pa-«P» = °-679' 
and9ß-(pA = 5.413 [rad]. 

The flutter boundary for Case C as a function of Mach number 
as predicted by the present code is shown in'Fig. 17, while the 
corresponding flutter frequencies are depicted in Fig. 18. The 
amplitude and phase information of the critical displacement re- 
sponses vs. Mach number are plotted in Fig. 19. 
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(a)   M = 0.70 

(b)   M = 0.79 

M = 0.82 

(d)   M = 0.85 

M = 0.866 

-continued 

(f)  M = 0.85 

Fig. 20  Iso-Mach contour lines at various Mach 
numbers for Case C 

Also, in order to impart insight into the distinct flow patterns, 
the instantaneous contour lines at various Mach numbers are 
shown in Fig. 20. The animation snapshots correspond to the 
points in Fig. 17 which are labeled (a) through (/). 

For Mach numbers lower than 0.80 the flutter behavior differs 
only little from that of Case B. This is not surprising, since the 
system can approximately regarded as a 2d.o.f. system be- 
cause of the high stiffness in the control hinge. The high fre- 
quency ratio of (ü„/(üa = 1.5 totally avoids flutter for the 
bending-aileron branch. However, as will become apparent in 
the following, it still allows for torsion-aileron torsion associat- 
ed aeroelastic instabilities. 

As the Mach number increases a steep upward rise of the flutter 
boundary and an increase in flutter frequency is predicted, as 
was observed in the 2d.o.f. system. However, as compared to 
Case B the second drop in flutter speed appears somewhat earli- 
er at about M = 0.82. This behavior has a close relation to the 
presence of the control surface and the strong shock waves in 
its vicinity at these Mach numbers. As is clear from the ampli- 
tude and phase information depicted in Fig. 19, the flutter mode 
changes and becomes primarily torsion flutter, where it is evi- 
dent that the control surface degree of freedom contributes ap- 
preciably to the flutter mode in the range of Mach numbers 
0.82 <M< 0.855. In addition, the flutter frequency rises and 
reaches a maximum value shortly after the bottom of the sec- 
ond dip at M = 0.86, reflecting the dominance of the torsion 
natural mode. 

For Mach numbers higher than 0.86, when the shocks move to- 
wards the trailing edge, the flutter mode changes and the flutter 
boundary increases anew. At M = 0.875 the amplitude and 
phase parameters of the bending-torsion branch, |oc0 \/\hQ/b\ 
and cpa - cpA, approach almost the same order of magnitude as 
they exhibit at Mach numbers lower than 0.70. 

3.2 Results for Flexible Wing Section (Cases D and E) 
Based on sample calculations using the arbitrary Lagrangian- 
Eulerian formulation, Bendiksen concluded that camber bend- 
ing might play an important role in the transonic flutter prob- 
lem. This conclusion reached in reference [9] is more definitely 
confirmed in the present study and may have particular implica- 
tions for the application of adaptive structures in wing technolo- 
gy. In this section, the effect of chordwise flexibility on the 
aeroelastic response behavior of two typical wing segments, 
namely those of Case B and C, is investigated. 

In order to gain insight into the possible dynamic behavior of 
the studied cases and also to provide a meaningful measure for 
the flexibility taken into account, the eigensolutions of the re- 
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spective free vibration equilibrium equations of motion were 
computed first. In addition, since there is usually little justifica- 
tion for including the dynamic responses of the higher frequen- 
cy modes, the computational effort was significantly reduced 
by transforming the basis to modal (normal) generalized coordi- 
nates and considering only a few modes. This implies that all re- 
sults presented in this section were computed using the modal 
approach. It should, however, be noted that during the checkout 
phase of the program also computations for the rigid wing seg- 
ments (Cases B and C) were performed using either discrete or 
modal (normal) generalized coordinates, which led to exactly 
the same results within the accuracy of the output routine (8 dig- 
its). 

The influence of the flexibility on the dynamic behavior was as- 
sessed by comparing the fundamental mode shapes tyb of Cas- 
es D and E with the corresponding sets of mode shapes <|>a 

obtained for the rigid body Cases B and C. On condition that 
the considered eigenvectors <)>fl, fyb consist of the same number 
of components representing the same coordinates (sign conven- 
tion) in a common basis, this can be achieved by employing the 
Modal Assurance Criterion (MAC) [1] 

MAC = (♦>*) 
«t>J<U («£♦*) 

• 100% 

which is independent from the possibly different normalization 
of the eigenvectors. Maximum conformity is given by a MAC 
value of 100%, while at least a MAC value of 70% is required 
in order to speak of related mode shapes. 

For the purpose of enabling direct comparison between the Cas- 
es B and D as well as Cases C and E by applying the Modal As- 
surance Criterion, the eigenvectors of Cases B and C were 
exactly expanded to the required size. 

3.2.1 Results for Case D 
Case D is the same as Case B except that the dynamic behavior 
of the system is now described by 20 degrees of freedom. More 
precisely, 9 beam elements are used in the chordwise direction 
of the typical wing segment, each of which has two degrees of 
freedom at each node, i.e., one translational and one rotational 
degree of freedom. The entire finite element assemblage then 
has 20 degrees of freedom, thus accounting for more general de- 
formations, or in other words for chordwise flexibility, of the 
typical wing segment. From inspection of the eigensolutions of 
the system it was concluded that the first four mode shapes are 
sufficient to represent the global dynamic behavior of the sys- 
tem including camber bending effects. As a result, the frequen- 
cy content of the system is reduced from initially 
com.ix/coa = 1.34 • I03 to comM/coa = 7.81 accompanied 
by a reduction in the admissable time step for the structural do- 
main from Ms/Ta = 4.97 • 10"6 to At/Ta = 6.39 • 10"3 

(where 7"a = 2n/a>a), assuming that one period of the high- 
est frequency of the system is resolved by 150 time steps, i.e., 
Ars = l/(150/m.|X). Typical admissible time steps AtF/Ta 

for the temporal integration of the fluid domain are of a order of 
magnitude of about 10-4 for the explicit and 10-3 for the im- 
plicit time integration scheme. This attests more precisely the 
statement given above that the admissible structural time step 
can decrease well below that acceptable for the fluid domain. 

The MAC values with respect to the first and second natural 
mode shapes of Case D are 99.85% and 98.61%, respectively, 
while the corresponding frequencies exhibit relative errors of 
- 0.33% and - 3.5%. As is clear from these values, the funda- 
mental modes of the rigid body system (Case B) are well repro- 

duced by the finite element model. Even more surprising are 
the remarkable changes in the flutter boundary and the flutter 
frequency, which are plotted vs. Mach number in Fig. 21 and 
Fig. 22. Also depicted in these figures are the solutions ob- 
tained for the corresponding rigid system in order to make com- 
parison easier and also to contrast the effects of flexibility. 
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As can be seen, for Mach numbers lower than 0.79 the flutter 
boundary as well as the flutter frequency are shifted towards 
lower values. This means that the minimum of the first transon- 
ic dip is also shifted towards lower critical flight speeds. The 
reason for this might lie in the effect that camber bending mo- 
tions of the profile increase the in-phase components of the un- 
steady aerodynamic coefficients, thus increasing the impact of 
the aerodynamic forces on the structure. The minimum value in 
flight speed is predicted at the same Mach number as for Case 
B, indicating that the out-of-phase components of the unsteady 
aerodynamic coefficients remain relatively unchanged. For 
Mach numbers slightly higher than 0.79 a steep upward rise of 
the flutter boundary is predicted, and reaches a maximum at a 
significantly higher level than was observed for Case B. 

Another notable point is that the flexibility seems to have a sta- 
bilizing effect on the limit cycle behavior of the system. For ex- 
ample, in the region where the second dip occurs no LCO was 
found for the rigid wing section, while stable LCO solutions 
were predicted for the flexible wing segment. 
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However, as already mentioned above, whether or not LCO is 
found depends on the length of the considered simulation peri- 
od. It is therefore expected that some of the unstable solutions 
depicted in Fig. 13 for Mach numbers where firm shocks are 
present might have resulted in LCO solutions for extended sim- 
ulation periods. In addition, the higher the flow velocity the 
faster the system reaches its steady LCO amplitude and vice 
versa. In so far the rapid approach of the flexible system to its 
steady LCO solution might also be viewed as an effect of the in- 
creased impact of the airloads due to camber bending. 

The second drop in flutter speed is predicted at slightly lower 
Mach numbers compared to Case B, which, from the discus- 
sion in section 3.1.2, implies that camber bending affects the 
precise position of the shocks, therefore producing a phase shift 
in the unsteady aerodynamic coefficients. 

3.2.2 Results for Case E 
By analogy with the comparison of the results for Case D with 
those of Case B, the results for Case E are now compared to the 
results obtained for the 3 d.o.f. system studied in section 3.1.3 
(Case C). The finite element assemblage used for Case E has 21 
degrees of freedom. However, again the dynamic behavior of 
the system was found to be sufficiently accurately described by 
mode superposition using only the first six mode shapes of the 
system. The respective eigensolutions are depicted in Fig. 23. 
Also, in order to impart an idea on the possible deformations of 
the typical wing section including its surface (fluid structure in- 
teraction boundary), Fig. 24 shows a sketch of the 6th mode as 
an example. 

Fig. 24  Example of deformed typical wing 
section using the 6th mode shape of 
Case E 

The MAC values with respect to the first three natural mode 
shapes were computed as discussed in the previous section and 
are 99.81%, 99.73%, and 99.35%, respectively. The relative er- 
rors in the corresponding frequencies are -0.40%, -5.42%, 
and - 3.07%. Again a high level of conformity between the 
mode shapes of the two systems is obvious, though the relative 
error in the frequency of the second mode (torsion) is notewor- 
thy. 

In Fig. 25 and Fig. 26, the predicted flutter boundaries and vari- 
ations in flutter frequencies for the Cases C and E are plotted vs. 
Mach number in the same figures. Again, the flutter boundary 
as well as the corresponding flutter frequencies are shifted to- 
wards lower values for Mach numbers smaller than those 
where the minimum in flutter speed was predicted for Case C. 
In contrast to the phenomenon found in Case D, where com- 
pared to the rigid case the flutter boundary reached a even more 
pronounced maximum for slightly higher Mach numbers be- 
yond the first transonic dip, the flutter boundary for Case E 
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reaches almost the same value before it starts to drop anew with 
increasing Mach number. As with the first drop in flutter speed, 
the minimum of the second transonic dip is also found to be 
smaller than that of the rigid wing segment. 
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Another notable point in comparing Cases C and E with each 
other is that the consideration of chordwise flexibility seems to 
have a destabilizing effect on the limit cycle behavior, as can be 
seen from the obtained LCO solutions for both cases (Fig. 17 
and Fig. 25). This is in contrast to the observed behavior for 
Cases B and D, where for the flexible Case D (Fig. 21) more sta- 
ble LCO solutions were predicted than for the corresponding 
rigid Case B (Fig. 13). This effect, however, was not further in- 
vestigated in this study. 

4 CONCLUDING REMARKS 

An aeroelastic simulation code has been developed to analyze 
the response behavior and stability characteristics of typical air- 
foil sections in two-dimensional transonic flow by using the do- 
main decomposition approach. The prime features of the 
proposed method are viewed in its capability to implement 
aerodynamic models of varying complexity and in the general 
formulation of the structural model by means of the finite ele- 
ment method, while different spatial discretizations in the fluid 
and structural domain are permitted. Elastic effects in the chord- 
wise direction of a typical wing section are taken into account, 
thus allowing for more general motions of the airfoil including 

the fluid structure interaction boundary. The exact rigid case is 
readily treated in a very effective manner by lumping the struc- 
tural properties and distributed loads. In addition, the proposed 
method allows for the application of the widely used modal de- 
composition technique to the structural equations of motion, 
which was shown to lead to a significant decrease in computa- 
tional costs. 

In this study transonic aeroelastic time response calculations 
were carried out for several test cases and the effect of chord- 
wise flexibility on the aeroelasitc stability behavior was investi- 
gated. More specifically, the flutter characteristic of a two 
degree-of-freedom airfoil oscillating in pitch and plunge was 
first calculated and compared with previously published re- 
sults. The agreement was generally good, though for a narrow 
range of free-stream Mach numbers a second drop in flutter 
speed was predicted with the present code, which did not show 
up in the previous analysis. The same phenomenon was found 
in all considered cases and was shown to be closely related to 
the shock dynamics. 

An energy identity was implemented to obtain an independent 
check on the accuracy of the proposed partitioned time integra- 
tion procedure. This was mainly done to verify the conclusion 
reached in references [9] and [11] that the „classical" domain 
decomposition approach overestimates the energy flux from 
the fluid to the structure, thus leading to a systematic diver- 
gence of the difference between the total energy of the structur- 
al system and the work done by the aerodynamic loads. As is 
clear from the present analyses, a well-posed partitioned time 
integration procedure is capable of correctly reproducing the 
energy exchange between the fluid and the structure. 

Based on sample calculations using the arbitrary Lagrangian- 
Eulerian formulation, it was also concluded in reference [9] 
that camber bending might play an important role in the tran- 
sonic flutter problem. This conclusion was more definitely con- 
firmed in the present analyses and may have particular 
implications for the application of adaptive structures in wing 
technology. The investigations in this study revealed that for 
the considered cases the minimum of the flutter boundary is 
shifted towards lower critical flight speeds if camber bending 
motions are included in the analysis. In addition, the minimum 
of the second drop in flutter speed is predicted at slightly lower 
Mach numbers as compared to the corresponding rigid case, 
which implies that camber bending affects the precise position 
of the shocks, therefore producing a phase shift in the unsteady 
aerodynamic coefficients. 
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SUMMARY 

The development of computational aerodynamic and 
aeroelastic simulation codes is steadily making progress. 
Nevertheless these codes are only modestly being ac- 
cepted by the end-users in industry and other agencies 
in charge of flutter clearance or aeroelastic responses, in 
general. 
Various shortcomings of the current codes can be named 
which cause the reserve of the end-users. One of them 
is often unacceptable amount of manpower required for 
pre- and postprocessing. 
NLR is developing a numerical aeroelastic simulation 
environment for applications to civil and fighter-type 
aircraft, of which a pilot version is in operation. Special 
attention has been given to the design of userfriendly 
pre- and postprocessing. 
The paper will discuss the motivation of an aeroe- 
lastic simulation environment, the status of the NLR 
AEroelastic SIMulation system, the current research 
activities, the pre- and postprocessing and future re- 
search activities. Several applications will be shown, 
demonstrating the use to both civil and fighter-type air- 
craft. 

ABBREVIATIONS 

CUA Computational Unsteady Aerodynamics 
CAS Computational Aeroelastic Simulations 
CFD Computational Fluid Dynamics 
DL Doublet Lattice Method 
EE Euler Equations 
FEM Finite Element Method 
FP Full Potential 
LCO Limit Cycle Oscillation 
MIMO Multiple Input/Multiple Output 
(TL)NS (Thin Layer) Navier Stokes 

1.    INTRODUCTION 

The objective of the present paper is a review of the 
current status and ongoing research at NLR of 
• the technological readiness of both Computational 

Unsteady Aerodynamics (CUA) and Computational 
Aeroelastic Simulations (CAS), 

• the industrial readiness of these methods in pratical 
applications. 

Since the last meeting in this subject area [1, 2, 3] many 
advances were made at NLR in refining mathematical 
models, applications to more complex aircraft configu- 
rations and computational efficiency. 

However, a gradually increasing gap exists between the 
technological and industrial readiness, manifested e.g. 
by an overpresentation of contributions in this research 
area from the side of research institutes and universi- 
ties in comparison with industry. A preparatory step to 
diminish this gap was presented in [4], which describes 
the industrial needs and expectations of CUA/CAS. 

The subject here is being addressed because of these 
industrial needs for an efficient aeroelastic simulation 
system able to improve aircraft design with adequate 
and efficient assessment of aeroelastic behaviour (flut- 
ter and/or dynamic responses) for transonic flight or 
other nonlinear conditions. 

Today's industrial aeroelastic studies are performed 
mainly with a set of classical methods restricted to lin- 
ear assumptions due to their efficiency in assessing the 
critical state cases for a large state space. For transonic 
flow these results are questionable and the aforemen- 
tioned methods are often matched with data obtained 
from experiment and or other CFD methods. 

The NLR AESIM method is developed with the objec- 
tive to assist in the design of future aircraft which are 
subjected to increases in flexibility, aerodynamic load- 
ing and nonlinearity and might be of value in the early 
design and development phase for assessing flight stabil- 
ity and control, safety and risk valuation and ride qual- 
ities. The method focuses primarily on aeroelasticity at 
transonic and mildy separated flows where aerodynamic 
nonlinearities are a non-negligible factor which cannot 
be estimated with extrapolating current methodology 
which is suited for flight at subsonic and low angle-of- 
attack supersonic speeds. 

The system was developed primarily for flutter certifi- 
cation of transport-type aircraft, with the aim to be- 
come an affordable tool for industry. Recently activ- 
ities have been started to extend the AESIM method 
in the direction of flows and geometries which are en- 
countered in fighter-type aircraft.  Then the code will 
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be ready to prove its value in applications with mild 
flow separation which is primarily responsible for in- 
ducing strong Limit Cycle Oscillation (LCO) structural 
responses, which might restrict the flight envelope of 
the aircraft. 

In the next section an outline is presented of the current 
status and ongoing research activities of the CUA/CAS 
method AESIM, which will be discussed and illumi- 
nated with applications in the subsequent sections. 
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Figure 1: AEroelastic SIMulation system. 

2.    OUTLINE 

In order to identify the current status of the AEroelas- 
tic SIMulation system and the current research activi- 
ties a list of the main and sub items have been given 
below. The aim of these activities are to obtain a re- 
alistic and affordable aeroelastic simulation system for 
both transport- and fighter-type aircraft. 

• Motivation 

* Realistic and Affordable aeroelastic 
simulation 

• AEroelastic SIMulation system status [5, 6] 

* Realism 

* Application of flow solver for off-design 
conditions 

* Application of aeroelastic simulation be- 
yond the envelope usually demonstrated 
by design codes 

• Solver downgrading in difficult areas 
to incompressible flow 

* Aeroelastic Accuracy 
• Arbitrary grid reduction in I-, 

K-direction 

* Affordability 

* Tailoring of Surface and Field grid gener- 
ation 

* Volume Spline Interpolation [7] 
* Efficient flow solvers linear DL, FP, EE, 

TLNS [8, 9] 
* Efficient aero-structural coupling meth- 

ods [10] 
* Direct visualization and on-line analysis 
* Analysis from single point towards multi- 

point prediction [11] 
* No ad-hoc implementations 

• Current research activities 

* MIMO research 

* CEAS Rome 1997 paper Hounjet/ 
Eussen/Soijer [11] 

* Cooperation Delft University of Technol- 
ogy 

* Points of attention: 
• Multi-point strategy 
• Signal processing 

* TLNS+ research 

* CEAS Rome 1997 paper Prananta/ 
Hounjet [10] 

* Cooperation Delft University of Technol- 
ogy 

* Superiority TLNS for LANN wing 
* Points of attention: 

• Time-step reduction/Extrapolation 
methods 

• Prognostics using TAM 
• Turbulence models 

* Linear aero research 

* CEAS Rome 1997 paper Hounjet/ 
Eussen/Soijer [11] 

* Points of attention: 
• Complex curve fitting 
• Transfer functions for control system 

design 
• Most straightforward approach 

* LCO simulation system [12]—[15] 

* CEAS Rome 1997 paper Meijer [15] 

* LCO database experience 

• Future research activities 
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3.    AEROELASTIC SIMULATION SYSTEM 

At NLR much effort has been spent to create a complete 
AEroelastic SIMulation system, to be used primarily 
for the flutter certification of transport-type aircraft in 
the transonic speed regime. Time-accurate simulation 
of fluid and airframe structure interaction is empha- 
sized. The AEroelastic SIMulation system is referred 
to as AESIM, after the name of the core program. 
The AEroelastic SIMulation system is built around the 
AESIM core and consists of six independent main pro- 
gram modules, (Fig. 1): 
• FOLDIT: surface grid generation. 
• BLOWUP: grid generation. 
• NASAES: elastomechanical data manipulation. 
• AESIM core. 
• Output interfacing e.g. to NASTRAN or MIMO. 
• Linear methods library. 
The AESlM core program is divided into 5 individual 
modules and contains those subroutines which are CPU 
intensive and make it possible to run the core in stand 
alone mode: 
• Interpolation: Interpolation of elastomechanical 

and aerodynamic data (Volume Spline Method [5, 7]). 
• Aero solver: Time-accurate solving of aerodynamic 

equations (FP and TLNS *). 
• Motion: Either description of motions, seeded flows, 

or solving of elastomechanical equations with or with- 
out external loadings. 

• Monitoring: Visualization of simulated data. 
• Postprocessing: Recollection and assimilation of 

facts and figures of past simulation(s). 
The various aspects of this environment will now be 
discussed in some detail. 

3.1     Surface grid generation 

Consistent with aeroelastic requirements and discussed 
in [5] only the sub-structures of aircraft which are slen- 
der and have surfaces with low curvature (wing, tail 
and fin) need to be modelled quite well in obtaining the 
aerodynamic force in normal direction. Consequently 
the quality and density of the surface grids can be re- 
laxed in the other areas. While the aeroelastician is not 
expected to be an expert surface modeller who creates a 
surface grid from scratch, the assumption is made that 
an initial surface grid is available which can be tuned to 
his needs in routine applications by the geometry pre- 
processor. 

The geometry preprocessor FOLDIT generates a mono- 
block structured surface description and/or paneling of 
the complete aircraft with embedded upwind slits and 
downwind slits (wake surfaces) by assembling and inter- 
polating separate parent surface grids (provided by the 
user by means of CAD/CAM programs). Instrumental 
in assisting the user in specifying the required spacing of 
each component in order to obtain smooth transitions is 

Figure  2: 
FOLDIT. 

Fighter-type  aircraft geometry input for 

1 Recently the TLNS methodology as reported in [8, 9] has 
been embedded. 

the so-called domino approach. This approach requires 
the input of the spacings and the number of patches for 
a few of the parent surface grids which are interpolated 
(extrapolated) by the volume spline method [7] to the 
other surface grids. On the floor this means that the 
user only has to specify the leading and trailing edge 
resolution of the lifting parts. 

FOLDIT also constructs the slits, allows for redistri- 
butions, data editing, data smoothing and stripping 
and tailors the configuration to aeroelastic needs. By 
this, considerable flexibility is offered to the aeroelasti- 
cian who is not directed to other programs when minor 
changes have to be made for parametric studies. Also 
identification tags are generated which may be required 
by the interpolation of the elastomechanical data to the 
surface grid. 

3.2    Grid generation 

The grid generation is performed by the hyperbolic grid 
generation method BLOWUP described in [16]. The 
effort to generate mono-block HO grids about the sur- 
face description of the complete aircraft with embed- 
ded upwind slits and downwind slits (wake surfaces) 
with mild concavities is low enough to be applied by 
'non-grid expert applicators'. The grids have accept- 
able quality about concave areas such as airfoil noses 
and wing-fuselage junctions. The consequence of some 
limitations in accuracy of the mono-block grid approach 
to more complex configurations is considered acceptable 
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Figure 3: Outline of support surfaces of a fighter-type 
aircraft. 
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Figure 4: Location of structural points of a fighter-type 
aircraft. 

for aeroelastic applications rather than for performance 
design. 
In the solution of the aforementioned modelling, addi- 
tional in-plane dissipation terms are applied which are 
well described in [17]. In addition, metric regulariza- 
tion terms have been developed to guarantee a proper 
behavior at axis, slit tips, strongly swept surfaces and 
non-smooth surface grids at wing-body junctions, tip 
regions, etc. 
Also it has turned out that the constant implicitness 
parameters which are applied nowadays in most hyper- 
bolic grid generators and control the out-of-plane dissi- 
pation required for preventing grid lines from crossing in 
the marching direction should be enhanced to prevent 
impairing the grid in convex zones. Therefore NLR has 
introduced a flexible implicitness parameter which can 
be applied more selective (small in convex zones and 
large in concave zones) and has worked well in all cases 
treated so far. 
Many configurations can be gridded without angle con- 
trol terms. In this case one relies on the dissipation 
terms for rendering concave domains. However, for 
some cases experiencing very strong concavities it might 
be necessary to use one of the following angle control 
options: 
• The terms are automatically derived from previously 

generated planes. 
• The terms are built from directions of the far field. 

• The terms are evaluated by a 2-D aerodynamic panel 
method. 

• The terms are provided by the surface(volume) spline 
method. 

• The terms are provided from a feedback procedure 
to prevent grid folding. 

In addition BLOWUP has been equipped with the pos- 
sibilities: 
• Starting with an orthogonal grid. 
• Post-elliptic smoothing with control functions to 

smooth the grid. The smoothing is primarily meant 
for smoothing the transition zone between the hyper- 
bolic and the algebraic generated grid contours and 
in strong concave zones. 

• Algebraic grid generation of grid surfaces in the far 
field (far front, far rear and far radial surfaces) can be 
applied when outer boundaries are to be prescribed. 

• A hyperbolic shooting method is embedded to gener- 
ate a grid with a fixed far field boundary distribution. 

• Finally existing grids can be refined, enlarged and/or 
smoothed. 

Also CH,CO topologies of the grid are provided for 
single wing applications of the AESIM system. Other 
topologies that are provided include HH, XH and OC. 
A complete description of the BLOWUP grid generator 
is presented in [18]. 
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Figure 5: 3-D view of vector plot and contour plot of 
normal displacements of an arbitrary symmetric vibra- 
tion mode of a fighter-type aircraft. 

Figure 6: 3-D projections of vector plot and contour 
plot of normal displacements of an arbitrary symmetric 
vibration mode of a fighter-type aircraft. 

3.3    Aerodynamic models 

The aeroelastic solver is able to carry out the nonlinear 
aeroelastic analysis in the subsonic, transonic and su- 
personic speed range. 
At present the time-accurate flow is modelled by: 
• FP, completed by the Clebsch potential model for 

flows with strong shock waves which takes into ac- 
count entropy and vorticity corrections [19]. 
The choice for this model, mainly motivated by op- 
erational requirements with respect to turn-around 
time and computational costs, is discussed in [5]. 

• Recently the EE/TLNS methodology as described in 
[8, 9] has been embedded because there is enough 
evidence that with the TLNS complemented with a 
simple turbulence modelling the needs of the industry 
can be met for many realistic configurations. The 
latter extension is motivated by the type of flows and 
geometries which are encountered with fighter-type 
aircraft. 

3.4    Simulations 

The present version of the method enables the follow- 
ing types of simulation around 2-D and 3-D configura- 
tions: 
• Steady aerodynamic simulation at given Moo  and 

angle-of-attack for rigid configuration; 

• Steady aeroelastic simulation with static deforma- 
tions at given M», angle-of-attack and dynamic pres- 
sure; 

• Unsteady aerodynamic simulation for forced motion, 
deformation or gust at given Moo, angle-of-attack, 
vibration mode and type of the motion (gust) (sinu- 
soidal, impulse, jump, polynomial, etc.); 

• Unsteady aeroelastic simulation due to elastome- 
chanical motion or deformation at given Moo, angle- 
of-attack, dynamic pressure and vibration modes. 
Also an external force due to exciters (flutter vane, 
gusts) can be included. 

Simulations can be performed about symmetric con- 
figurations with symmetric and/or anti-symmetric vi- 
bration modes with respect to the xy (horizontal) and 
xz (vertical) planes. Also simulations are possible for 
wing-tail configurations and for complete bodies which 
require circumferential periodicity conditions to be ap- 
plied. 
On slit surfaces emanating from apices or non-trailing 
edge body parts the imposing of a hard wall, a free jet 
or a undisturbed pressure condition can be imposed. 

3.5    Elastomechanical model 

The elastomechanical model is split into a static part 
and a dynamic part which are explained in the following 
sections. The static deformation of the aircraft configu- 
ration is obtained by means of the 'free-free' flexibility 
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Figure 7: Normal displacements of an arbitrary sym- 
metric vibration mode (5th) of a fighter-type aircraft, 
from nutter computational chain (surface-spline). 

matrix. The dynamic structural behavior of the air- 
craft is based on the generalized modal deflection ap- 
proach. The dynamic deformations are expressed in 
generalized coordinates g,- and their associated modal 
mass M, damping D, stiffness K and vibration modes 
hi. For a description see [5]. 

3.6 A(ero)E(lasto) Transfer 

The information transfer at the fluid/structure interface 
is performed by the interpolation models which are well 

described in [7]. 
From the implemented interpolation models [5] it has 
turned out in applications that the Least Squares Poly- 
nomial approximation of the data and Hounjet's vol- 
ume spline interpolation method are attractive to se- 
lect because they do not require any user preparation 
or intervention. The well-known planar surface spline 
interpolation and its curvilinear application are hardly 
used in applications. 
In general it is assumed that the elastomechanical data 
are obtained through e.g. NASTRAN so that for this 
case the interface NASAES has been created. 

3.7 Others 

Besides the vibration modes, other sets of geometric dis- 
turbance fields (control modes, pseudo vibration modes) 
which are interpolated by the volume spline or poly- 

nomial spline method might be specified by the user. 

These modes are also described in [5]. 
In order to facilitate the comparison with other refer- 
ence pressure data during the simulation, the volume 

Figure 8: Mesh around wing-body-tail fighter-type con- 

figuration, number of points ~ 200,000. 

spline method is also used to interpolate arbitrary data 
to the aerodynamic surface grid. 

3.8    Time signal analysis 

One of the fundamental tasks in an aeroelastic analysis 
is the determination of the frequency and damping of 
aeroelastic modes (e.g. to detect if. one of the gener- 
alized displacements becomes unstable and flutter will 
occur). As many different time response signals may 
have to be analyzed several methods for curve-fitting 
should be available. In general each time response sig- 
nal exists of contributions of various modal modes, of 
which the frequency and damping of each one have to 
be determined. 
Therefore, during an unsteady simulation the data must 
be analyzed on-line in the time domain in order to de- 
termine the behavior of a coupled system. The main 
purpose of this analysis is to determine the frequency 
and damping characteristics of the discrete time signal. 
To fulfil that task the following methods have been em- 
bedded [11]: 
• The exponential sine fit, 
• Prony's method, 
• Fast Fourier Transform analysis, 
• Curve-fitting of transfer functions. 
Since a wide array of time response signals is available 
several ways exist to make use of the above-mentioned 
time-fitting tools. The most common time response sig- 
nals which can be used to determine the frequency and 
damping characteristics of the discrete time signal con- 

sist of: 
• For every modal mode separately: 

• the generalized coordinate, 
• the velocity of the generalized coordinate, 
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Fighter Type Conf.  Euler 
M=0.92, Alpha=6 deg -«■-■ HSTexp. 
Pitching    FP 
Dalpha=0.5 deg  FP-Coarse 

Figure 9: Mean pressure contours (EE) on fighter-type 
configuration at Moo — 0.92, am = 6.0 deg. 

• the generalized force. 
• Also a combination of modal modes and/or the pres- 

sure or deformation data at selected points can be 
analyzed. 

3.9    Monitoring and Postprocessing 

Direct monitoring and analysis of all aeroelastic quanti- 
ties ofinterest are of major importance to the user. The 
monitoring of the system is able to provide a graphical 
presentation of the deformations and pressure distribu- 
tion on the configuration at selected time samples as 
well as the mean steady pressure distribution and its 
first harmonics over a selected time interval. Further- 
more, the monitoring is able to provide the dynamic 
response of integrated loads as lift and moment coeffi- 
cients for complete configurations as well as individual 
components. Also the pressure coefficients might be 
compared with: 
• Pressure coefficients generated at a different time or 

iteration index which is important for checking con- 
vergence. 

• Pressure coefficients generated in a different session 
which is important for checking different modellings 
(e.g. FP against EE). 

• Arbitrary reference pressure (experimental) coeffi- 
cients during the simulation which is important for 
identification. The volume spline method is used to 
interpolate the arbitrary data to the aerodynamic 
surface grid. 

When the aeroelastic equations are solved for sev- 
eral flow conditions (variable Mach numbers, angles-of- 

o.ooo 0.500       1.000.000 x/c 0.500       1.000 
x/c 

Figure 10: Comparison of experimental and calculated 
mean pressure distributions on the wing of fighter-type 
configuration at Moo — 0.92, am — 6.0 deg. 

attack, amplitudes and frequencies of oscillation) facili- 
ties are available to monitor and predict the derivatives 
of the unsteady airloads in that range and to estimate 
the critical flutter speed. 
Attention has been paid to provide the user with 2- 
D and 3-D plot and analysis facilities to inspect and 
analyze all aeroelastic quantities of interest during the 
simulation. At any time the user may interrupt the pro- 
gram for the analyses and inspection of the data. Again 
this strongly reduces the workload of the aeroelastician 
who is not directed to other programs for visualization. 
The visual output includes screen output and off-plot 
PostScript output. 
Except for the mean and first harmonic components of 
the aforementioned data which is only available after 
finishing a complete period of a harmonic motion, the 
data may be required by the user at any time or itera- 
tion step. 

3.10    Inspection: Screen and PostScript plots 

Two kinds of visualization tools are available: 
• A 2-D facility for plotting collections of 2-D abscissa- 

ordinate plots gathered on one screen or on multiple 
screens. 

• A 3-D facility for plotting collections of 3-D surfaces 
with contour plots and/or vector plots on one screen 
or on multiple screens. 

The facilities may be used to plot the aforementioned 
quantities depending on the type of simulation. The 
plots can be stored in color PostScript format (using the 
special options in the interactive plot facility or using 
screen dump techniques in combination with other plot 
facilities. 
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Figure 11: Comparison of experimental and calculated 
first harmonic pressure distributions (real part) on the 
wing of fighter-type configuration at M«, = 0.92, otm = 
6.0 deg, aamp = 0.5 deg and k = 0.16. 

Figure 12: Comparison of experimental and calculated 
first harmonic pressure distributions (imag. part) on the 
wing of fighter-type configuration at Af«, = 0.92, am = 
6.0 deg, aamp - 0.5 deg and k = 0.16. 

3.11    Applications 

The applicability of the method is directed to 2-D air- 
foils, 3-D wings, 3-D wing-bodies, T-tail, etc. Many 
applications of the simulation method were already pre- 
sented in references [5, 6, 19]. The examples here will 
focus on current ongoing activities in 3-D to demon- 
strate the status of the aeroelastic environment. Two 
applications will be considered. The first one deals with 
a fighter-type configuration and the second one with a 
transport-type T-tail fuselage configuration. 

3.11.1    Fighter-type aircraft 

In view of the development of time-accurate aerody- 
namic solvers the ability of the aeroelastic simulation 
system to deal with fighter-type aircraft (Fig. 2,3) is 
considered. The complete geometry from ICEM-CFD 
was processed by FOLDIT, in order to obtain a sur- 
face grid. The surface grid initiates then the volume 
grid (Fig. 8). The surface grid should fulfil the require- 
ments to investigate the requested aeroelastic phenom- 
ena. This means that tailoring of surface and field grid 
generation may play an important role. 

Running the process to manipulate or tailor the geom- 
etry the volume spline interpolation technique [7] has 
shown to be of invaluable value. This interpolation tech- 
nique, which may be applied for both structured and 
unstructered data in general, is demonstrated here for 
the elastomechanical data transfer between the struc- 
tural grid and the aerodynamic surface grid. 

A NASTRAN finite element model is available from 
which the symmetric vibration modes and structural 
grid for a typical fighter-type configuration of the con- 

sidered aircraft were obtained. In total 679 structural 
points were applied (Fig. 4). An existing surface grid 
containing 43 support surface patches (Fig. 3) was used 
to perform the interpolation. 
Results are shown in figures 5,6 of an arbitrary symmet- 
ric vibration mode (5th). The figures show the outlines 
of the patches, the displacement vectors at the outlines 
and contour values of the absolute displacement vector 
normal to the surfaces. The result of the same symmet- 
ric vibration mode obtained with the "standard chain" 
of computational flutter tools has also been presented in 
figure 7, which was calculated with a 2-D surface spline 
technique. It appears that the results shown in figures 
5,6 agree well with the result represented in figure 7. 
Interpolations for other vibration modes demonstrate 
comparable results as well. More details of interpola- 
tion applications are discussed in [7]. 

Recently the TLNS methodology has been embedded as 
mentioned in section 3.3. The applicability of the time- 
accurate TLNS method is demonstrated by comparing 
calculated data with experimental data for a realistic 
fighter-type configuration oscillating in pitch at 56.8 % 
of the root chord with an amplitude of 0.5 deg. The case 
considered is a transonic flow condition at MM =0.92 
and amean = 6.0deg. The reduced frequency k = 0.16 
based on the semi-mean aerodynamic chord correspond- 
ing with a frequency of / = 4.5Hz for the real aircraft. 
Because the robustness of the code for small and large 
time steps will be shown, only EE results are considered, 
since from accuracy reasons these allow the largest time 
steps to be taken. Experimental data are obtained from 
[3, 20]. 
Figure 8 shows a mesh with about 200,000 points 
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Figure 13: T-tail configuration. Figure 14:  Steady pressure distribution (FP) on hori- 

zontal tail. 

around the configuration. The inlet of the engine has 
been smoothed. All results were obtained using FP (fine 
and coarse grid) and EE equations. Figure 9 shows 
the mean pressure contours (EE) on the surface of the 
aircraft. The comparison of the pressure on the upper 
surface of the wing between the present results (EE,FP) 
and the experimental data is presented in figure 10. The 
overall agreement is good except at the shock and tip 
region. The latter may be explained by the fact that the 
experimental result was obtained using a wind tunnel 
model having a tip-launcher, while the present calcula- 
tion was carried out without one. The shock which is 
too strong may be improved by using the NS equations. 
Note that the FP calculations both on a fine and on a 
coarse grid show fairly well results, espacially those on 
the coarse grid perform well except near the tip span 
station. 
Figures 11,12 show the real and imaginary part of the 
first harmonic pressures (EE,FP) on the upper surface 
of the wing compared to the experimental results. Two 
runs were made for the EE calculations employing small 
time steps (64/cycle) and large time steps (8/cycle). 
Except for peak values the small time step results as 
well as the large time step results show a good agree- 
ment with the experimental data. Details of the EE 
calculations are further discussed in [10]. 
Again the FP calculations both on a fine and on a coarse 
grid present fairly well results, except for the peak val- 
ues. In general it can be concluded that the coarse grid 
does not have sufficient resolution for a detailed descrip- 

tion of the unsteady flow, but if one is only interested 
in a global impression of the flow field and an estimate 
of hysteresis effects then a coarse grid can be sufficient 
for a first impression. 

3.11.2    T-tail-fuselage 

In order to demonstrate the ability of the system to 
deal with existing aircraft structures the transport-type 
T-tail fuselage configuration has been chosen (Fig. 13), 
as discusses in [6]. It should be noted that no parts 
of the geometry were omitted. The complete geometry 
from ICEM-CFD was processed by FOLDIT, in order to 
obtain a surface grid. The surface grid initiates the vol- 
ume grid of which characteristic grid planes are shown 
in reference [6], which shows also the ability of the grid 
generator to deal with strongly swept wings and non- 
uniform distributions. 
For the grid 67x30x33 nodes were applied. Figure 14 
shows the steady pressure distribution (FP, M«, = 
0.84) on the horizontal tail. From top left to bottom 
right pressure distributions at different spanwise sta- 
tions from root to tip are depicted. A considerable tran- 
sonic flow effect is apparent. 
As an example the second mode shape of the T-tail 
configuration is shown in figure 15. Unsteady calcula- 
tions (FP aerodynamics) were performed at M^ = 0.84 
and zero altitude in Standard Atmosphere. The elasto- 
mechanical model consisted of the first ten vibration 
modes, obtained with MSC/NASTRAN FEM method. 
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Figure 15: Second mode shape of T-tail configuration. 

The generalized coordinates of each individual mode 
were calculated in time as a result of a non-zero initial 
value for the acceleration of the generalized ccoordinate. 
The result of the simulation is shown in figure 16. In 
figure 17 the time response data is evaluated through 
exponential sine fit signal processing [11] to get damp- 
ing and frequency information. The exponential sine fit 
results compare well with the simulated data. 
The results of these simulations confirm that the T-tail 
has a stable dynamic behavior for the flight condition 
under consideration. This is in accordance with the 
MSC/NASTRAN flutter diagram [6]. 

4.    CURRENT RESEARCH ACTIVITIES 

In this section a number of current research activities 
are discussed, viz. the subjects: 
• MIMO class research 
• TLNS+ research 
• Linear aero research 
• LCO simulation system 

4.1     MIMO research 

To analyze the many time response signals a number of 
methods have been embedded (see section 3.8). Very 
recently a feasibility study has been started to apply 
the promising MIMO-class techniques [21] for that pur- 
pose too. They will enhance the analysis capability as 
depicted in figure 18. 

Experience has learned that for a fail safe analysis of an 

M. 
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Figure 16: Result of a T-tail configuration of dynamic 
response of generalized coordinates at Moo = 0.84 and 
altitude 0.0 ft in Standard Atmosphere. 

elasto-mechanical system the mentioned fitting routines 
are applied first to the non-aerodynamically loaded sys- 
tem and next to the system loaded using linear aerody- 
namics [22], through convolution of transfer functions, 
[23]. The data from these analyses might act as a guide- 
line for the analysis of the non-linear time signal, origi- 
nating from the coupled non-linear fluid structure sim- 
ulation. The analysis process has been fully automated 
through use of scripts. This facility allows the analysis 
process to be repeatible and to be documented. 
It should be noted that also the analysis might provide 
a prognostic way to speed up the simulation by allowing 
for larger time steps [10]. 

The adoption of MIMO technology [21] permits a black 
box 2 evaluation of the aeroelastic system in such a way 
that after a single fully-coupled simulation for one flight 
condition the system state for other flight conditions 
(e.g. qdyn) might be predicted and to extract useful 
data (e.g. Generalized Forces) from the coupled simu- 
lation which can be used for other purposes. 
The main purpose is to extend the single point applica- 
tion of coupled simulation methods to multiple points 
and wayhead is given to perform postprocessing activi- 
ties, pk-, k-method etc, with extracted data from an ap- 
plication of a fully-coupled simulation. This multi-point 
strategy is explained in the figures 19,20 and further 

2 No knowledge is assumed of coefficients of the structural and 
aerodynamic system. 
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Figure 17: Result of a T-tail configuration after expo- 
nential sine fit signal processing of dynamic response of 
generalized coordinates at M^ — 0.84 and altitude 0.0 
ft in SA. 

described in [21]. A slightly different model structure 
MIMO* includes auto regressive terms on the outputs. 
Two examples here focus on current ongoing MIMO 
activities [11] with respect to the time-analysis and 
demonstrate the status of the aeroelastic environment 
too. 

4.1.1    AGARD I-wing 445.6 

The first example of the applicability of the MIMO-class 
techniques, in this case the modified MIMO* method, 
in flutter analysis is presented for an aeroelastic investi- 
gation which was conducted for one of the 3-D AGARD 
standard aeroelastic configurations in subsonic, tran- 
sonic and supersonic flow. This configuration is de- 
scribed in [24]. The configuration for dynamic response 
I-wing 445.6 model "weakened no. 3" was selected at 
Mach=0.901. The data were obtained from [10]. 
The data (generalized forces) as obtained from simula- 
tion with the identified MIMO* model, together with 
the original data for subcritical flight condition are pre- 
sented in figure 21. The data has been plotted for time 
points after the transition has damped out. An excel- 
lent agreement is shown between both data sets (they 
conincide entirely!). 
The main purpose of the excercise will be a simulation, 
at an increased airspeed to a supercritical value, apply- 
ing the MIMO* results obtained from the subcritical 
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Figure 18: Deployment time-analysis methods with re- 
spect to aeroelastic systems. 
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Figure 19: Multi-point strategy. 

condition and make the comparison with results of the 
aeroelastic simulation at the higher airspeed. Figure 22 
depicts the comparison which shows that the system at 
the supercritical airspeed is unstable and that the lin- 
ear MIMO* model prediction performs very well for the 
lower 3 modes. Mode 4 is overpredicted. 
Slightly larger errors were found with the MIMO model, 
i.e. without the auto regressive terms [11]. Which 
model set results in the best estimates for aerodynamic 
modelling in aeroelastical closed-loop systems is yet to 
be investigated. 

4.1.2     T-tail-fuselage 

The second example to demonstrate the ability of the 
MIMO-class techniques deals with the transport-type 
T-tail fuselage combination, which was already consid- 
ered in section 3.11.2. The conclusion was that the 
exponential sine fit results (Fig. 17) of the time sig- 
nals compare reasonably well with the simulated data 
(Fig. 16). Results with the MIMO-class procedure are 
depicted in figure 23.  The MIMO-class fit results are 
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Figure 20: Flowdiagram multi-point strategy. 
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Figure 21: Comparison of MIMO* fitted (...) with auto 
regressive terms on outputs and original (-) generalized 
forces data for AGARD I-wing 445.6 at subcritical flight 
condition. 

astonishingly good. Both methods revealed about the 
same damping and frequencies. The results of these sim- 
ulations show again that the T-tail has a stable dynamic 
behavior for the flight condition under consideration. 

4.2     TLNS+ research 

Transonic aeroelastic investigations of modern aircraft 
put increasingly higher demands on the accuracy of 
predicting unsteady aerodynamic loads and aeroelastic 
characteristics. Methods for numerical aeroelastic sim- 
ulations have joined, in which the aerodynamics and 
structural dynamics are considered simultaneously and 
so provide an integrated approach for the multidisci- 
plinary aeroelastic problems. A central question is the 
affordability of of these methods at various levels of 
pratical applications. It is evident that opinions about 
affordability depend on local needs conditions and ap- 
preciations. It is also clear, however, that answer- 
ing this question should be based on a thorough in- 
sight into potential gains in efficiency and robustness 
of these methods. The exploration of these gains is a 
research topic in which Delft university of Technology 
(DUT) and the National Aerospace Laboratory (NLR) 
in Amsterdam cooperate. 

The outcome of that research so far has been presented 
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Figure 22: Comparison of MIMO* predicted (...) and 
reference (-) generalized forces data for AGARD I-wing 
445.6 at supercritical flight condition. 
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Figure 23: Result of T-tail configuration after MIMO 
signal processing of dynamic response of generalized co- 
ordinates at Moo = 0.84 and altitude 0.0 ft in SA. 

in [8, 9, 10] for 2-D and 3-D CUA and CAS meth- 
ods using EE and TLNS solvers. One of the main 
features of these solvers is the development of a ro- 
bust efficient upwind implicit time-marching algorithm 
for time-accurate TLNS equations, employing subitera- 
tions, espaciallly directed to the aeroelastic analysis in 
viscous transonic flow. The purpose of using subiter- 
ations is to accelerate steady-state convergence and to 
permit a large time step in time-accurate simulations, 
thereby reducing the computational cost, while main- 
taining adequate accuracy. Further details are discussed 
in [8, 9]. The ability of the method was demonstrated 
for many cases, including cases of inherently unsteady 
flow due to shock-induced separation. Considered 3-D 
cases were: 1) ONERA M6 wing, 2) Fighter-type wings 
and 3) LANN wing. 

Important observations related to pratical aeroelastic 
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simulations concluded in [9] were: 
• Accurate results have been generated applying not 

more than 24 and 48 time steps per period for the 
EE and the TLNS applications, respectively. In that 
perspective again attention is devoted to the calcula- 
tion results with EE equations employing small time 
steps (64/cycle) and large time steps (8/cycle) for a 
fighter-type configuration (see section 3.11.1 and [9]). 

• The methods turned out to be very robust and the 
only principal user-supplied numerical parameter for 
an unsteady calculation is the time step. 

• The comparison with experiments demonstrated the 
superiority of the TLNS method over the inviscid 
methods for cases involving thick wings. 

• The 3-D methods have turned out to be about a fac- 
tor 0(5) to 0(15) slower as compared ta a time- 
accurate FP method for the inviscid and the TLNS 
applications, respectively. This makes them afford- 
able for embedding in an aeroelastic simulation envi- 
ronment. 

• Since the stability restriction to the time step of the 
components of the aeroelastic simulation have been 
strongly relaxed, the next goal is to improve the cou- 
pling of the aerodynamic and structural equations. 

• Also it seems to be appropriate now to improve on 
the turbulence modelling. 

Related to the above-mentioned observations a num- 
ber of current research subjects and/or subjects, which 
need continously attention, are discussed and illumi- 
nated with some applications. These subjects are: 
• Applications of the current TLNS method 
• Time-step reduction in CUA applications 
• Time-step reduction in CAS applications by: 

• Higher order extrapolation methods 
• Prognostics using Time Analysis Methods (TAM) 

• Turbulence models: 
• Baldwin-Lomax 
• Sparlat-Allmaras 

4.2.1.   Semi-span straked delta wing 

To investigate the efficiency and robustness of the cur- 
rent TLNS code the applicability is further demon- 
strated by comparing calculated data with experimental 
data of the NLR wind tunnel test described in [25] for 
the semi-span straked delta wing. The geometry of the 
outer wing panel is the same as that of the fighter-type 
configuration discussed in section 3.11.1. The flow con- 
dition is Moo = 0.90, atm = 6.0 deg. Steady calculations 
have been performed with the EE mode of the TLNS 
code [9] on a mesh of 97x125x30 grid points. 
Figure 24 shows the planform and steady isobar con- 
tours at the upper side of the wing with total pressure 
contours behind the wing. Clearly visible are the vor- 
tices initiated by the simple strake and the tip of the 
outer wing panel. Measured mean pressure contours at 
the same flow conditions are presented in figure 25. 
A qualitative comparison of the pressure contours (Figs. 
24,25) on the upper surface at the indicated wing sta- 
tions of the outer wing panel shows a fairly well agree- 

ment, in particular the presence of the lambda shock 
waves near the tip 3. 

W///} 
Figure 24: Steady pressure contours (EE) on a semi- 
span straked delta wing configuration with total pres- 
sure contours behind the wing at M«, = 0.90, am = 
6.0 deg. 

Figure 25: Measured mean pressure contours on a 
semi-span straked delta wing configuration at M«, = 
0.90, am = 6.0 deg. 

3 Quantitative comparisons and results for oscillating condi- 
tions in pitch will be presented in a forthcoming publication. 
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4.2.2 LANN wing 

To verify the current TLNS method for 3-D steady and 
unsteady applications with moderate viscous and tran- 
sonic effects for cases involving thick wings the LANN 
wing was selected in [9]. The superioty of the TLNS 
method over the inviscid methods for the LANN wing 
was clearly demonstrated. Because of the superioty of 
the TLNS method and future applications for fighter- 
type aircraft the results are presented again. 
The geometry of the wing has been taken from [26]. The 
experimantal data is obtained from [27]. Extensive com- 
parison of calculated FP data with experimental data 
was already performed in [28]. 
Calculations and comparisons were made for pitch- 
ing oscillation about 62.1% root chord at Minfty = 
0.822, am = 0.6deg and .Re,» = 7.3 x 106 based on root 
chord. The amplitude of oscillation was 0.25 deg, with a 
reduced frequency ib = 0.102 based on root semi-chord. 
The dimension of the grid was 128x32x24 for the invis- 
cid case and 128x32x36 for the viscous case. The same 
surface grid was used in both cases. For the turbulence 
modelling the simple Baldwin-Lomax algebraic model 
was applied. 
Comparison of the mean pressure distributions is shown 
in figure 26 at selected span stattions. The Euler results 
show already a substantial offset to the experimental 
data, even at the lower side. The TLNS data are in 
fairly good agreement with the experimental data for 
the whole wing at both sides for both shock positions 
and peak suction levels at the leading edge. Note that 
the FP results approximate good the Euler data. 
Unsteady first harmonic pressure coefficients are com- 
pared in figures 27, 28. The EE results were generated 
with 24(12) time steps per cycle and TLNS results were 
obtained using 48(16) time steps per cycle. 
The lower side shows, except at the root, a subsonic 
distribution. The upper side shows clearly the effect of 
the lamda shock waves. Except for peak values the real 
part of the data is predicted fairly well by the TLNS 
method. The Euler data show too much differences. 
The agreement for the imaginay part of the data is less 
adequate at both sides. Aft of the shock wave the TLNS 
method performs better. In front of the shock wave the 
Euler data seem to compare better. 
In general, is has to be concluded that a fairly good 
agreement has been achieved. Part of the differences 
between calculated and experimental data should be at- 
tributed to the deformation of the wind tunnel model 
during wind-on conditions and the added complication 
of peak measurements and integration in the experi- 
ment. 

4.2.3 Time-step reduction in CUA 

In view of the development of a robust and an efficient 
algorithm for time-accurate TLNS equations to obtain a 
realistic and affordable simulation system an earlier ap- 
plication discussed in [8], will be reconsidered, viz. the 
2-D AGARD standard test case for transonic viscous 

!UI! 

Figure 26: Comparison of experimental with FP, 
EE and TLNS calculated mean pressure coefficients 
on LANN transport-type wing, M«, = 0.82, am = 
0.6 deg and ÄeM = 7.3 x 106. 

flow (case 3 of Landon [27]). The flow conditions are 
Moo = 0.60, am = 4.86 deg , Re«, - 4.8 x 106 and the 
boundary layer is fully turbulent. The mode of vibra- 
tion is a pitching oscillation of the NACA 0012 profile 
about quarter-chord with an amplitude of 2.44 deg and 
a reduced frequency k — 0.081 based on semi-chord. 
In [8] the computational efficiency of the code for the 
current case was demonstrated for several variations of 
the iteration parameters, i.e. time steps/period, subit- 
erations and Jacobian recalculations, thereby applying 
2nd order extrapolation. 
Comparison of calculated sectional coefficients, C\ and 
Cm (Fig. 29) for variety of time step simulations reveals 
that larger time steps/period for 3rd order extrapola- 
tion could be obtained, thereby reducing the computa- 
tional cost, while maintaining adequate accuracy. Four 
cases of calculated results have been presented for high 
(400) to very low number (16) of time steps/period 
in combination with 4 and 12 subiterations, respec- 
tively. The lift coefficient shows a very good agreement. 
The moment coefficient shows a more sensitive behav- 
ior. Some differences are apparent, but the extremities 
appear to be captured well enough by all the cases. For 
this particular viscous test case it seems that 16 time 
steps with 12 subiterations is sufficient. 
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Figure 27: Comparison of real part of experimental 
with FP, EE and TLNS calculated first-harmonic pres- 
sure coefficients on LANN wing at Moo = 0.82, am = 
0.6 deg, aamp = 0.25 deg and k = 0.102. 
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Figure 28: Comparison of imag. part of experimental 
with FP, EE and TLNS calculated first-harmonic pres- 
sure coefficients on LANN wing at Moo — 0.82, am — 
0.6 deg, aamp = 0.25 deg and k = 0.102. 

4.2.4    Extrapolation methods in CAS 

Driven by the requirement of realistic aeroelastic simu- 
lations, special attention is devoted not only to a proper 
modeling of the physics but also to their efficiency and 
robustness. Consequently, an important practical as- 
pect is the capability to march accurately at a large time 
step, thereby reducing the overall turn-around time. 
However, this implies that all components of the simu- 
lation methodology should possess a large time step 
capability. 
Therefore, an improvement of the aero-structural cou- 
pling procedures is necessary to benefit from the large 
time step allowed by the current aerodynamic meth- 
ods, shown earlier. In [10] two coupling methods have 
been studied: an improved aerodynamic extrapolation 
method and a structural extrapolation method. Also a 
third one is introduced: the prognostic method. The 
latter is an extension of the structural extrapolation 
method and uses results of the time analysis to guess the 
new states. The three coupling approaches have been 
presented in detail in [10], therefore the main features 
will be discussed briefly and exemplified with a few ap- 
plications. 

In general the equations of motion for the aeroelastic 
system can be written into a standard state-space form 

A standard method [10] can be used to solve Eq.l: 

rt(n + l) 
X n+1    =    $X° + / *(* - T)BU(r)dr 

Jo 
«    $(At)Xn+e(At)Ü, (2) 

where Ü is a representative value of the aerodynamic 
force U(t) between time levels (n) and (n + 1). Calcu- 
lation of $ and 0 are described in [10]. This commonly 
used loosely coupled method was originally suggested 
in [29], where the aerodynamic force U(t) is assumed to 
vary linearly between time steps (n) and (n + 1). The 
aerodynamic force at time level (n + |) is then extrap- 
olated as: 

\un-\un~\ (3) U n + i 

This value is used to represent the value of U between 
time step (n) and (n+1). This method fails, however, to 
give good results for large time steps simulations. Two 
approaches are studied to improve the method: 

Aerodynamic extrapolation 
The aerodynamic force is expressed as: 
U = U(Q, X) and the extrapolation to time level 
n + is: 

X = AX + BU (1) 
U n+i 

{dQ dt    dx dt' 2'   w 
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Figure 29: Comparison of sectional coefficients, C; 

and Cm for variety of time step simulations, during 

oscillatory pitching motion of NACA 0012 profile at 

Moo = 0.60, am = 4.86 deg 
2.44 deg and k = 0.081, 

,Reoo = 4.8x 106, lamp 

where Q is defined by the TLNS equations [10]. 
The dQ/dt and dX/dt are readily available data 
while dU/dQ and dU/dX have to be calculated. 

Structural extrapolation 
The reason for this method is the fact that the 
structural part behaves smoother than the aerody- 
namic forces. Thus a better result may be expected 
from extrapolating the structural state. To obtain 
the aerodynamic force at time level (n + |), the 
state of the mesh is first approximated as: 

xn+i «x"+ry. (5) 

The x in the second term is readily available while 
the x is approximated simply as (xn - xn~l)/At. 
Using this data a mesh is generated and the surface 
velocity is used to enforce the boundary condition. 
Thus the aerodynamic part of the method marches 
at a time level between the structural states. This 
method is more efficient than the first one since 
all quantities needed for extrapolation are readily 
available or can be easily calculated. 

To show the applicability of the improved extrapola- 
tion methods for large time step simulations a forced 
vibration case [10] of the 3-D configuration for dynamic 
response I-wing 445.6 model weakened no.3 is presented. 
Only calculation results with EE are shown. The ap- 
plied grid consists of 121x29x24 mesh points. The case 
at Moo = 0.96 is considered. The second mode of the 

wing is excited in a sinusoidal motion with reduced fre- 
quency k = 0.10, based on root semi-chord, and an am- 
plitude of 0.005. Figure 30 shows the response of the 

first two vibration modes using a small time step (48 
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Figure 30: Comparison of time responses between small 
(48/period) and large (10/period) time step simula- 
tions for improved aerodynamic extrapolation method, 

for AGARD I-wing 445.6 at Moo = 0.96, am = 
0.0 deg, amp = 0.005 (2nd mode) and k = 0.10, during 

forced vibration. 
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Figure 31: Comparison of time responses between small 
(32/period) and large (8/period) time step simulations 
for the prognostic method, employing Prony's method, 

on Isogai case A at Moo = 0.85. 

steps/period) and a large time step (10 steps/period). 
The conclusion is that no significant differences are ob- 
served.  Other applications have been demonstrated in 

Finally a prognostic method is proposed, which is dis- 
cussed in the next section. 

4.2.5    Prognostics using TAM in CAS 

The prognostic method proposed in [10] which is a re- 
finement/generalization of the previous extrapolation 
methods and mightbe regarded as a higher-order ex- 
trapolation using transfer functions. In each time step 
the structural or aerodynamic part is extrapolated to 

the next time level by: 

*(»+*) P[X,U,n+-\oT 



[/("+*) (xtU,n+\) 

Here P(#,t) denotes the approximation of time trace 
{#n>#r.-i>------i#n-m} at t which should be ob- 
tained by performing one of time analysis methods 
(TAM) presented in [10], m denotes the number of re- 
tarded time steps in the time domain. It will be obvious 
that as soon as the function P is not changing anymore 
the simulation can be finished since the following time 
steps will not present any new additional information. 
In fact this means the time step is virtually infinite. 

A 2-D aeroelastic application of the prognostic extrap- 
olation method, discussed in [10], is presented for the 
NACA 64A010 airfoil using structural data from the Iso- 
gai case A [30]. The structural parameters are a=-2.00, 
xo=1.80, r^=3.48, ^=60.00 and the ratio of the uncou- 
pled frequency w/,/wa=1.00. The flutter boundaries of 
this case, compared to some other methods, have al- 
ready been shown in [8]. The result presented here will 
concentrate on the large time step aspect of the method. 
A mesh consisting of 140x32 points was applied. Only 
application with EE equations will be presented. The 
simulation is started from a steady condition with an 
initial x. The small time step simulation uses 32 time 
steps/period of the uncoupled mode while the large time 
step simulation applies 8 time steps/period. 
The case considered is a sub critical condition at M^ = 
0.85 with V* = Uoo/i^a^y/JJ) — 0.53. Comparison of 
simulation using small time steps and large time steps 
for the prognostic method, employing Prony's [11] anal- 
ysis for the time traces is shown in figure 31. The results 
of both simulations show an excellent agreement, no dif- 
ferences are observed. The inadequacy of the common 
method [29] for large time step simulations of this case 
have been shown in [10]. 

4.3    Linear Aero Research 

To ease applications and to build confidence a coupled 
aeroelastic simulation should also be run based on lin- 
ear aerodynamics. This requires the generalized aero- 
dynamic forces (transfer functions) which are in general 
available in the frequency domain to be fitted [23, 31] 
and transformed to the time-domain. 
Figure 32 shows a number of possibilities to calculate 
the generalized aerodynamic forces together with the 
transformation tools to obtain transfer function repre- 
sentations of the loads for ease formulation in the time 
domain. The blocks in the four outer corners of the dia- 
gram are sources to calculated the aerodynamic forces. 
The three inner blocks around the kernel of the dia- 
gram, transfer function, are fitting procedures for the 
aerodynamic forces. These fitting procedures include: 
1) Complex curve fit in s-domain, 2) Real fit curve in 
s-domain, and 3) MIMO-class techniques and Prony's 
method, which have been described in [11]. 

A feasibility study with 2-D airloads and 3-D airloads 
has been performed [11] to investigate the most effi- 
cient way to embed linear aerodynamics in the AESIM 
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method. Without the analytical details the procedure 
was as follows [11]. 
The assumption is made that the behavior of any un- 
steady parameter of interest such as an aerodynamic 
load or a pressure coefficient can be described by a ap- 
propriate form for the transfer function which is a ratio 
of two s dependent polynomials which is known as the 
Pade approximation. The complex fitting procedure has 
been assumed to obtain the approximation. The ratio- 
nal polynomial has been transformed to the state-space 
form. Subsequently, this system has been solved using 
the Newmark scheme embedded in the AESIM system. 
Two applications of the study will be presented, a 2- 
D case for a flat plate and a 3-D case of the AGARD 
I-wing 445.6. 

2-D application Calculations of unsteady airloads 
have been performed with DOULAT for a flat plate 
heaving (mode 1) and pitching about an axis 0.5c in 
front of the leading edge (mode 2) at JHM = 0.5 and a 
reduced frequency range up to | s |= 1.0. (Note: The re- 
duced frequency is defined here as k — Im(s), based on 
the semi-chord.) The generalized forces data generated 
by DOULAT were fitted with the afore-mentioned pro- 
cedure. Thereafter the Newmark scheme was applied to 
oscillatory motions in the same frequency range and the 
time traces were transformed to the frequency domain. 
Figure 33 shows the comparison in the frequency do- 
main between the original data (circle) and the fitted 
data (line-cross) which show a good agreement. Fig- 
ure 34 shows the comparison in the frequency domain 
between the original data (circle) and the data (cross) 
obtained by analysing the time traces which again show 
a good agreement. From this the conclusion might be 
drawn that the aforementioned procedure is applicable 
in 2-D. 

3-D application Calculations have also been per- 
formed with GUL for the 3-D AGARD I-wing 445.6 
at Moo = 0.901. This configuration is described in [26]. 
Again two modes were selected, modes 2 and 4. A sim- 
ilar procedure was applied as outlined above. 
Figure 35 shows the comparison in the frequency do- 
main between the original data (circle) and the fitted 
data (line-cross) which show a good agreement. Figure 
36 shows a comparison in the frequency domain between 
the original data (circle) and the data (cross) obtained 
by analysing the time traces which shows again a good 
agreement. 
From this the conclusion might be drawn that the afore- 
mentioned procedure shows good promise for embed- 
ding in the AESIM system. 

4.4    LCO simulation system 

Modern fighter-type aircraft operating in the high sub- 
sonic, transonic and low supersonic speed regime may 
experience under certain conditions transonic nonlinear 
flutter, known as limit cycle oscillations (LCO). The 
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Figure 32: Flowchart of techniques for transforming lin- 
ear aerodynamics between frequency and time domain. 

Figure 33: Comparison of directly calculated and fit- 
ted unsteady coefficients of a harmonically heaving and 
pitching flat plate at Moo =0.5. 

phenomenon is related to flutter but affects aircraft per- 
formance in a manner similar to buffet. Conditions 
of transonic LCO instabilities are moderate angle-of- 
attack, usually smaller than 10 deg and transonic Mach 
numbers ranging from ~ 0.9 to ~ 1.1. The flow con- 
ditions during this type of LCO are characterized by 
mixed attached/separated flow. Lowly damped vi- 
bration modes tend to respond provided they have the 
proper characteristics to couple with this type of flow. 
The coupling frequently occurs near flutter boundaries 
obtained with linear theory [14], i.e. with panel meth- 
ods for attached flow. 

To determine accurately this kind of nonlinear aeroelas- 
tic instabilities, an investigation was started at NLR in 
the early nineties to understand the nature of LCO ex- 
perienced by fighter-type aircraft maneuvering at tran- 
sonic speeds. In addition to conducting an extensive 
wind tunnel investigation on oscillating fighter type 

Figure 34: Comparison in the frequency domain of di- 
rectly calculated and to and fro transformed unsteady 
coefficients of a harmonically heaving and pitching flat 
plate at Moo =0.5. 

wings [3, 20, 32], a major objective was to develop a 
semi-empirical method for predicting LCO [12, 13, 15] 
characteristics of full scale aircraft. 

As part of the method, a model for determining aerody- 
namic loads from steady and unsteady data bases was 
developed that is suitable for predicting LCO of fighter- 
type aircraft at transonic speeds. Based on previous 
studies using steady pressure data [32], it was shown 
that time lags in the aerodynamic flow field are essen- 
tial to obtain realistic LCO amplitudes. Analysis of un- 
steady wind tunnel data obtained from [3, 20] showed 
that these aerodynamic time lags are affected by the 
various types of flow field involved. Further, on the basis 
of the knowledge of these flow field types and the results 
of the unsteady wind tunnel measurements, an aerody- 
namic (pressure) state-space model was developed by 
NLR, for transforming the unsteady highly nonlinear 
aerodynamic loads into a form appropriate for use in 
time simulation methods. This pressure model is simi- 
lar to the nonlinear "ONERA" aerodynamic model ini- 
tially developed by Tran k Petot [33]. The development 
of the NLR unsteady pressure model and capability of 
producing nonlinear transonic aerodynamics that are 
typical of transonic LCO were presented in [12, 13, 15]. 
It was also demonstrated for a number of aircraft con- 
figurations [12, 13, 15] that the current status of the 
semi-empirical LCO prediction method with implemen- 
tation of the NLR unsteady pressure model produced 
results which correlate correctly with flight test data. 

The above description of the NLR pressure model shows 
that extensive use is made of steady and unsteady wind 
tunnel test data. It is clear that the effectiveness and re- 
liability of the model strongly depends on the complete- 
ness of the experimental data base and the thorough- 
ness of the evaluation of the model. These, however, 
have been obtained on a limited scale in the present re- 
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Figure 35: Comparison of directly calculated and fit- 
ted unsteady coefficients of the harmonically oscillating 
AGARD I-wing 445.6 at Mx = 0.901, (modes 2 and 4). 
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test use can be made of the existing wind tunnel 
model. 

Application of CUA/CAS. 

CUA For model configurations and flow condi- 
tions which have not or can not be represented 
in a wind tunnel test program the required aero- 
dynamic information may be obtained from CUA- 
techniques, steady and unsteady. The current de- 
velopment of these techniques shows that they are 
very promising, even for the complicated types of 
flow including flow separation (see sections 3 and 
4), but that they have matured more sufficiently. 
It is to be expected that in the near future these 
CUA-techniques may play a complementary role. 
Measured steady and unsteady pressure and loads 
data [3, 20, 32] may be used to validate those tech- 
niques. 

CAS Extensions for typical fighter-type aircraft 
applications of the discussed AESIM system to 
perform realistic computational aeroelastic simula- 
tions. Because of the modular design of the sys- 
tem, such extensions should be carried out relative 
easy. Measured flight test data may be used to val- 
idate the updated AESIM system. Further, calcu- 
lated aeroelastic responses may be compared with 
results of the semi-empirical prediction method, or 
vice-versa. 

Realisation of the suggested extension of the AESIM 
system will enhance the aeroelastic analysis capability 
for fighter-type aircraft as depicted in figure 37. 

Figure 36: Comparison in the frequency domain of di- 
rectly calculated and to and fro transformed unsteady 
coefficients of the harmonically oscillating AGARD I- 
wing 445.6 at MM = 0.901, (modes 2 and 4). 

search program. Continued research is therefore needed 
to enhance the confidence in the model and to establish 
its applicability for wide ranges of model and flow pa- 
rameters. Such research may be defined in one or more 
of the following directions. 

• Continued pressure and load measurements in the 
wind tunnel. 

The aim of this test is to extend the unsteady part 
of the data base, which currently corresponds to a 
limited number of model and flow parameter val- 
ues, and so to bring it in balance with the steady 
part [32] of the data base, which corresponds to 
an extensive set of parameter values. Particularly, 
interest exists in collecting data for more leading- 
edge and trailing-edge flap deflections and denser 
frequency ranges (e.g.  frequency sweeps).   In the 
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Figure 37: Classification of prediction methods. 

5.    FUTURE RESEARCH ACTIVITIES 

Future aeroelastic research activities will be focused 
on realistic and affordable aeroelastic simulations de- 
picted in In figure 38. The aim is to extend the cur- 
rent AESIM system to an aeroelastic simulation envi- 
ronment for fighter-type aircraft application. 
Starting with the basic ingredients of the aircraft: 
• Structural modelling, 
• Aerodynamic modelling and 
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Figure 38: Future developments of AEroelastic SIMu- 
lation method. 

• Control system modelling 

the following analyses should be performed in more or 
less detail: 
• Vibrations, flutter, non-linear flutter (LCO), 
• Loads: static and dynamic, inclusive deformations, 
• Aeroelastic responses due to store release and 
• Impact of control system on aeroelastic responses. 

6.    CONCLUSIONS 

In this paper the status of the NLR system for aeroe- 
lastic simulations has been presented and demonstrated 
with an up to date account of applicability. Experiences 
with recent applications and ongoing developments led 
to the following observations: 
• The most critical part in the AEroelastic SIMulation 

is the geometry handling. 
• The interpolation at the fluid/structure interface can 

be carried out satisfactory with the available models. 
• The volume spline method has proven its value as 

interpolation tool for structured as well as unstruc- 
tured data. 

• The analysis of time-signals can be carried out satis- 
factory with the available models. 

• The availability of direct graphical monitoring of all 
relevant data is crucial. > 

• The effort to obtain consistency between the geomet- 
rical and elastomechanical input data sets is often 
overlooked in interdisciplinary use. 

• Accurate results: EE/TLNS at 8/48 time steps per 
period. 

• Adequate coupled EE results are obtained using 8 
time steps per cycle. 

• Present 3D EE/TLNS aerodynamic computations 
are about 5/15 times slower compared to FP. 

• Increased affordability. 
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1. SUMMARY 
Flutter analysis requires the linking of structural deformation 
modelling with unsteady fluid dynamics; at British Aerospace, 
Aerospace Military Aircraft and Aerostructures (MA&A) a 
series of computational methods are used to model the various 
aspects of flutter to provide clearance data for aircraft. The 
various methodologies will be briefly described and the manner 
in which the parts of the process interface outlined. 

Future aircraft require the tools to be capable of modelling 
complex configurations including novel planforms and aircraft 
with stores; these must also include the difficult transonic flow 
regime. The requirements of the unsteady methods needed to 
provide this capability and the manner in which they must be 
inserted into the existing process will be discussed. 

Initial results obtained using an unsteady Multiblock Euler 
method will be presented and the development of this method 
within the overall process will be detailed. These results will 
be used to illustrate the ways that sophisticated unsteady CFD 
methods must be developed, in terms of interface with 
structural components of the process, to meet project 
requirements for complex configurations. The post-processing 
requirements will also be presented. 

2. INTRODUCTION 
Development of tools to predict fluid-structure interaction 
requires a good deal of interaction between fluid and structural 
dynamicists. Probably because of the difficulty in 
economically calculating unsteady flows, for all but the most 
simple cases, Flutter Engineers have hitherto tended to lean 
more towards structural expertise, and the methods for 
calculating unsteady fluid flow have been somewhat limited in 
terms of the geometries and physical flows to which they are 
applicable. With improvements in computer power, and the 
development of more sophisticated CFD (Computational Fluid 
Dynamics) methods, greater degrees of complexity are now 
possible. At British Aerospace (MA&A) the developing 
process for flutter prediction is based on a modular approach, 
which allows new (more sophisticated) methods, as well as the 
most effective simple methods, to be easily inserted as they 
become available. 

A key aspect of the flutter prediction philosophy is the 
application of the simplest, least expensive, method consistent 
with the particular stage of the design cycle being addressed. 
Thus, simple unsteady aerodynamic methods with empirical 
corrections may be favoured over more sophisticated methods, 
where these can provide adequate results more quickly. 
However, more sophisticated methods (e.g. Euler and Navier- 
Stokes) are being developed as a means of supplementing 

simple methods and studying new configurations. Use of more 
sophisticated methods will increase as they mature, but they are 
viewed as complementary to the simple methods, not as 
replacements for them. The benefits of improved fluid 
modelling are associated with extending the capability to more 
complex flows and geometries. 

This paper begins with a description of the modular process for 
the design and qualification of military aircraft to prevent 
aeroelastic and aeroservoelastic instabilities, including flutter. 
The focus of the paper will be primarily on the CUA 
(Computational Unsteady Aerodynamic) application within the 
modelling and analysis phases of the process. The physical and 
geometric capabilities required for future designs will be 
discussed and the desired process improvements highlighted; 
this is intended to identify to academia the tools which industry 
requires to continue a pragmatic approach to application of 
theoretical modelling of flutter phenomena. Some initial results 
from studies comparing a simple lifting surface method, UTSP 
(Unsteady Transonic Small Perturbation) and Euler unsteady 
codes will be presented, and the next development stages, 
concerned with coupling these methods into the overall process 
will be discussed. 

3.   FLUTTER DESIGN & QUALIFICATION PROCESS 
Figure 1 shows, in broad terms, the modular process that is 
developing for the design and qualification of military aircraft 
to prevent aeroelastic and aeroservoelastic instabilities, 
including flutter. The overall process can be divided into major 
phases of modelling, analysis, validation, qualification and 
certification. 

The process is illustrated (figure 1) in terms of the analysis 
modules and the activities with which they would generally 
link. Thus, the geometry is transformed appropriately so that 
panels, or grids, may be constructed for input to one of the 
choice of CFD solvers. The solvers are grouped to show 
increasing sophistication (and cost) from left to right. The 
NASTRAN MSC structural modelling is standard for all and, as 
such, there is a high degree of commonality in the interpolation 
between structure and fluid models. Fluid models are validated 
using experimental unsteady data, and test data matching 
(ground and flight) is used to develop common structural 
models for each configuration. The interpolation procedure 
facilitates the use of coupled solutions, currently effort is 
directed principally at weakly coupled solution, however, a 
strongly coupled method could also be used, but must be 
developed in such a way as to be compatible with data input 
and output currently used. 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation" 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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With existing tools and processes at MA&A, approximately 
75% of the effort required to qualify flutter aspects is associated 
with the modelling and analysis phases. The bulk of this 
currently involves accurately modelling the structure; 
relatively little effort is required to use the linearised unsteady 
aerodynamic tools which are now established as the workhorse 
of the flutter engineer. The remaining 25% of the flutter effort 
involves validation, qualification and certification, which is 
predominately ground and flight testing. 

It should be noted that effort (in terms of man years, say) 
expended on a given phase does not equate to the cost ofthat 
phase. Indeed, since flight flutter testing is expensive, around 
75% of the overall flutter cost is associated with the validation 
and qualification phases. 

Experience has shown that there is a high gearing between the 
modelling effort and the cost savings made through reduced 
flight testing. The risk of subsequent redesign is greatly 
reduced through the increased knowledge gained by high 
quality modelling and analysis. 

The greatest potential for further reductions in both cost and 
risk lies with the use of advanced CUA codes to underpin the 
qualification of flutter in the transonic regime, particularly for 
complex configurations. This will inevitably lead to an 
increase in the modelling and analysis effort (and cost), but this 
is clearly justified if greater cost savings are made during 
testing and qualification. It is essential that the development 
and application of advanced CUA codes is managed effectively 
through close co-operation and mutual understanding on the 
part of code developers and end users. 

4.   PRESENT CUA CAPABILITY 
The CUA methods currently available fall into one of two 
categories: those which are considered as being 'production 
standard' tools (and used on existing aircraft); and those which 
fall under the heading of 'advanced methods' which are yet to 
mature. 

4.1   Production Standard CUA Tools 
The CUA modelling techniques predominantly used by MA&A 
flutter groups are a combination of Doublet Lattice, Kernel 
Function, Characteristic Box and Finite Difference methods. 
The toolsets built around these methods are relatively quick, 
robust and easy to use in comparison with more advanced CUA 
tools. User confidence has been established in these methods 
through application to a range of aircraft projects, but a number 
of shortcomings are recognised, namely: 

- Only subcritical / supersonic Mach numbers can be 
modelled, due to inviscid linearised flow prediction. 

- Linearity requirement allows only small perturbations to be 
considered of attached flow (e.g. small deflections, low 
incidences). 

- Limited capability to model complex configurations. 

Within the calculation process the structural and aerodynamic 
models have different time step constraints and the grids each 
have a different geometric optimum, implying the need for 
interpolation. A significant challenge associated with 
interfacing the structural model with the aerodynamic 
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prediction method stems from the need to interpolate structural 
deflections onto an aerodynamic grid, and aerodynamic forces 
onto a structural grid. The mainstream tool used for structural 
modelling, MSC NASTRAN, now contains aerodynamic 
modelling capabilities comparable to traditional MA&A in- 
house linearised CUA tools. The interpolation burden is eased 
through the use of NASTRAN as an integrated structural and 
unsteady aerodynamic modelling tool. 

The shortcomings of simple linearised CUA methods (and 
those provided by NASTRAN) in terms of flow physics tend to 
give a pessimistic prediction of flutter speeds due, for instance, 
to the over-prediction of unsteady trailing edge control effects. 
The strength of these methods lies in the rapid prediction of the 
fundamental unsteady aerodynamic trends for simple flutter 
mechanisms rather than quantitative accuracy. However, the 
use of these methods leads to a relatively conservative approach 
to flight qualification and testing, particularly in the transonic 
flight regime. The attractiveness of the speed of use of these 
methods within the design process is, therefore, offset by a 
more rigorous flight test programme. 

Simple linearised CUA methods can model total aircraft 
unsteady aerodynamics assuming small perturbations and 
attached flow, and treating all components as flat plates or 
simple bodies. The unsteady aerodynamics generated by 
complex shapes requires more sophisticated methods. 

4.2   Advanced CUA Methods 
The UTSP (Unsteady Transonic Small Perturbation) code 
provides the means of calculating the flow where the freestream 
Mach number is close to unity, although the geometric 
capability is somewhat limited. UTSP is confined to modelling 
wings only, which it does through a flat plate representation 
with the sectional geometry introduced into the surface 
boundary conditions as functional terms. Three linearity 
options are available: non-linear harmonic, linear harmonic and 
linear indicial, and full-coupled solutions of the structural 
equations of motion with the non-linear TSP aerodynamic 
equation can be performed. 

An unsteady Euler Multiblock code (UEMB) has been 

developed from a steady Euler solver, by introducing a global 
time step strategy, and effecting geometric motion through 
transpiration velocity boundary conditions. This code provides 
considerable enhancement to the geometric capability, and the 
well established grid generation tools, used in steady flow 
analyses, allow a fast turnaround in terms of model generation, 
even for complex shapes. The use of transpiration boundary 
conditions obviates the need for re-gridding within the scheme. 

Development of an unsteady Navier-Stokes code (RANSMB) is 
currently underway. This has a high degree of compatibility 
with UEMB, and will extend the range of flow conditions (in 
particular to highly separated conditions). Moving grid 
technology is being developed within the RANSMB 
programme. 

Although the solutions from UTSP or Euler calculations may 
be used for non-linear analysis, system identification algorithms 
may be used to provide accurate values of the frequency and 
damping for the air-on modes, together with the mode shapes. 
From these aerodynamic stiffness and damping matrices can be 
extracted and used as input to the (more familiar) linear flutter 
solvers to predict approximate flutter speeds The alternative 
analysis routes are shown in figure 2, which represents an end- 
users perspective of the flutter analysis process. 

5.   TARGET CUA CAPABILITY 
CUA models, in conjunction with the structural mathematical 
model, perform two distinct functions in the flutter design and 
qualification process. 

The first of these functions is the prediction of flutter 
characteristics, primarily on individual components, during the 
earlier phases of design. Quick turnaround of flutter analyses 
and sensitivity studies is essential to influence the design and 
minimise later modification. Hence the use of existing methods 
is best in terms of cost and time scale. However, future aircraft 
configurations may be dominated by design drivers other than 
aerodynamic considerations, which will need investigation with 
respect to the applicability of these methods. 

The second function is the complete aircraft flutter prediction 
leading to clearances prior to flutter envelope expansion flying. 
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Figure 2  Flutter Analysis Process 
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This impacts directly on the flight qualification philosophy 
adopted, in that the known inaccuracy of linearised CUA 
methods leads to a relatively conservative approach to flight 
flutter testing. Flight testing within the transonic regime, and 
especially with external stores, requires particular caution. It is 
here that advanced CUA methods will have an impact on cost, 
time scales and adherence to specification. 

In the short to medium term the use of advanced CUA methods 
will involve high turnaround times and computing costs, 
limiting their use within the early part of the design process. 
However, later in the design process (where accurate structural 
models are available) these disadvantages will be offset by a 
reduction in the necessary flight testing due to the increased 
accuracy of predictions. This approach will also capture, later 
than ideal in the process, but very early in the development 
flight testing, any previously unpredicted flutter problems not 
captured by the simpler methods. 

6.   CUA DEVELOPMENT ISSUES 
Various issues within the CUA development programme are 
addressed below: 

Configurations being proposed for future projects have a degree 
of novelty. The extent to which simple linearised CUA codes 
can cope with novel features is uncertain. Rules for usage of 
such codes, established by lessons learned on previous projects, 
are likely to be stretched and therefore further validation is 
required. 

User requirements for advanced CUA methods need clear 
definition, as does the way the methods are to be validated and 
used in the design process. 

It is anticipated that advanced CUA methods will require much 
greater run times and greater user expertise than existing 
methods. The effect of using these methods on costs and time 
scales must therefore be offset by a greater level of accuracy 
and user confidence which allows a more confident approach to 
be taken to flight testing with resulting reduced costs. 

Experience of UTSP tool development has shown that user 
confidence must be gained in a new method if it is to become a 
production tool. Central to this is the user friendliness of the 
method, the validating evidence of its accuracy and the quality 
of the pre- and post processing. These latter two requirements 
need specifying in detail by the users to the code developers. 
Assessments of code developments should be carried out in a 
feedback loop between code developer and code user. A 
suitable link between developer and end-user is required for 
this purpose. 

Performance of flutter solutions using non-linear aerodynamics 
(as offered by advanced CUA methods) will require the 
coupling of structural and aerodynamic models and time 
domain analysis of the structural response (including the FCS - 
flight control system - as appropriate). Consideration of non- 
linear structural models will also be possible. This will lead to 
the requirement for extensive post-processing software to 
derive frequency and damping information from response time 
history data. To a large extent the type of post-processing 
analysis required is similar to that used for flutter flight data 
analysis. Developments of such tools should therefore be 
geared to satisfying the requirements of both CUA and flight 
flutter analysis. 

Aircraft time scale constraints inevitably come to bear as design 
freeze and flight dates approach. The academic community 
should be encouraged and supported in proposing and 
implementing cost efficient methods for the analysis of coupled 
solutions. In particular the aim should be to provide the flutter 
engineer with a means of minimising the number of time 
domain flutter simulations through the use of advanced post- 
processing techniques. 

The level of modelling complexity determines the applicable 
type of flutter analysis. For the simple linearised methods 
frequency plane analysis is appropriate. The introduction of 
non-linear effects through use of UTSP, Euler and Navier- 
Stokes methods generally dictate the use of time plane analysis. 
System identification algorithms could offer an alternative 
approach to obtain frequency, damping and mode shapes. This 
effectively linearises the problem for subsequent frequency 
plane analysis. The two analysis routes are shown in figure 2. 
In many cases the more simple and familiar frequency plane 
analysis is sufficient. 

7.   DELIVERY OF PROJECT READY CAPABILITY 
At MA&A the various components of the flutter design and 
qualification process (figure 1) are largely developed, the 
improvements being sought now are mostly concerned with the 
process as a whole, i.e. developing the links between the 
various components and improving the performance of 
combinations of modules rather than individual modules. 

The methods themselves have significantly different model 
definition requirements, and so commonality is not strictly 
possible, although commonality of geometry definition is 
possible. The interpolation procedure is largely independent of 
the fluid model, and different interfaces to the fluid dataset 
make the addition of new capabilities a straightforward matter. 

Doublet lattice and similar methods have been in use for many 
years and, although their direct applicability is very limited, 
used with empirical data, read across and engineering 
judgement they may be applied to a wide range of conditions. 
For existing aircraft a large body of knowledge has been built 
up which allow these methods to provide a fast turnaround 
capability. UTSP provides a refinement in terms of predictive 
capability in the transonic flow region, it should be noted that 
results indicate that the UTSP method provides a good match in 
terms of shock position (see section 8), however, this is entirely 
serendipitous and a degree of caution should be observed in 
using the method. UEMB, and in due course RANSMB, 
provide the geometric complexity that UTSP lacks, and these 
methods are required for the design of novel planforms, and 
for geometric detail such as wing, pylon, store or wing + tip 
missile type configurations. For instance, a wing with a tip 
missile might be modelled by first performing spot calculations 
using UEMB, but then intermediate points can be filled in by 
using UTSP. The missile can be modelled by applying twist to 
the wing tip through the boundary conditions to give a 
representative flow. Future developments require new methods 
to be inserted into the current process in such a way that the 
benefits of existing methods are not lost. As new 
configurations are approached, validation of existing techniques 
using the developing sophisticated methods will be an 
important aspect of the technology insertion. At MA&A this is 
conducted using link personnel between developer and end- 
user. 
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8.   CASE STUDY-AGARD SMP TAILPLANE 
The need to develop processes whereby simple methods are 
used to provide the bulk of the data, validated using more 
complex methods at a limited number of conditions is 
illustrated by comparing the processing time of the options 
available within the design and qualification process. It is 
instructive to compare the relative times for using the various 
methods on a standard simple test case; the AGARD SMP 
tailplane [ref. 1] (figure 3) has been chosen with the following 
condition: 

M = 0.86 (Mach number) 
a = 0.4O (angle of attack) 
V = 0.9294 (frequency parameter) 

Amplitude = 0.4° 
Pitch axis = 0. 6819c0 (c0 = root chord) 

8.1 Simple Method - Richardson Kernel Function 
The simple model used was a Richardson Kernel function 
(lifting surface) theory, with a 7(x) X 8(y) grid, as shown in 
figure 4. This code uses a four 'kink-point' planform 
definition, and provides real and imaginary pressure 
coefficients for the bending, torsion and yaw modes. For the 
simple planform chosen for this case study the pre-processing 
time is extremely short (a few minutes), but for more complex 
planforms this increases depending on the level of complexity. 
The most time-consuming activity with this method is the post- 
processing. 

8.2 UTSP 
The volume grid used for this code consisted of 120(x) X 20(y) 
X 40(z) points, the surface distribution is shown in figure 5. 
Pre- and post-processing time are the most time consuming 
aspects of this calculation method, although currently a higher 
degree of user skill and understanding is required to obtain the 
most satisfactory results and interpretation from the method. 

8.3 Unsteady Euler Multiblock (UEMB) 
For this simple configuration a fully automatic grid generator 
may be used, but for general (complex) configurations a higher 
degree of user interaction is required, leading to a more 
substantial pre-processing effort, however, the solver CPU time 
is by far the most limiting factor with the Euler Multiblock 
code. The surface grid used consisted of 40(x) X 28(y) points 
(figure 6) giving a comparatively small (89964) number of 
nodes in the volume. 

8.4 Results 

8.4.1 Pressures 
The real and imaginary pressures are shown at five spanwise 
stations for the three different methods and compared with 
experimental measurements in figure 7. There is a clear 
improvement in match to experiment as the level of modelling 
sophistication increases, and still further improvement might be 
expected from the inclusion of viscous effects either within 
Euler or as a Navier-Stokes solution. 

8.4.2 Solution times 
Table 1 shows the relative number of jobs it is possible to run 
using a simple method (such as the Richardson kernel function 
method) and UTSP compared with the Euler Multiblock code. 
The relative number of jobs based on CPU demonstrate that it 
is essentially the computational effort which is the most 

limiting factor with regard to Euler methods (note that the CPU 
times were scaled to take varying platforms into account). 

Method Relative 
number 
of runs 

based on 
total time 

Relative 
number 
ofruns 

based on 
CPU 

Relative 
number 
of runs 

based on 
turn 

around 
UEMB 1 1 1 

UTSP 46 1485 80 

Simple 
method 

165 89100 209 

Table 1 
Relative timings for obtaining solutions based on 

the AGARD SMP Tailplane test case. 

The relative number of jobs based on total time includes the 
pre- and post-processing times for a single configuration, and 
the turn around time is based on the time required for an 
existing configuration (i.e. minimal pre-processing). 

9. CONCLUSION 
The comparative times indicate the desirability of a pragmatic 
approach, whereby an initial calculation with UEMB is used to 
guide subsequent runs using UTSP, which in turn may guide a 
large number of simple method runs with corrections applied. 

This paper has reviewed the role of unsteady aerodynamics 
within the flutter design and qualification process used by 
MA&A; a process begun very much as discrete units is being 
developed into a fully integrated process, and future 
developments of specific methods (particularly with reference 
to more sophisticated CFD) must accommodate this 
requirement. The objective is to provide the flutter engineer 
with a toolbox which allows a choice of methods at various 
stages of the design process based on the imposed time scales, a 
clearly defined confidence level is required for each method 
used at each design stage. CPU time is the major limiting 
factor for methods such as Euler (and Navier-Stokes). 
Although performance of these methods is expected to 
substantially increase over the next few years, nevertheless 
these will complement, not replace, existing techniques. 

10. REFERENCE 
1.   Mabey, D.G., Welsh, B.L. and Cripps, B.E., 

"Measurements of steady and oscillating pressures on a 
low aspect ratio model at subsonic and supersonic 
speeds", Royal Aircraft Establishment report TR84095, 
September 1984. 

11.   ACKNOWLEDGEMENT 
The authors gratefully acknowledge support and contributions 
from colleagues in the fields of aeroelastics and unsteady 
aerodynamics at each BAe site, particularly from Mr. T L 
Kelly, of the Flutter Group, British Aerospace, Military Aircraft 
and Aerostructures, Warton. 



12-6 

43 
2 

•a 
ü 
Ö o 

■o 

■s 

ö 
3 
00 

•c 
Ü 
u 
ü 

t: 
3 

■8 

I 
I 
<U 
1- 
3 
DO 

E 

T3 
•c 
Ü 
«3 

3 
00 
PU 
00 
H 
& 
in 

ß 
3 
00 



12-7 

Imaginary   (Cp) 

H- 
IQ 
C 
H 
fl) 
03 

<] 
p> 

I 
O 

o 

Real   (Cp) 

2 6        10        14 

I I I 
18 

W 
II 
o 

H» 

to 

> 
> 
Ü 

CO 
S 

H3 
PJ 
H- 
h-1 

h-1 

in 

a 
Cfl 
ft 
CD 
P> 

o 
(D 
M 

CO 
C 
H 
i-h 
P) 
O 
(D 

hj 
li 
CD 
CO 
en 

CD 
CO 

Imaginary   (Cp) 

-2 0 2 

Imaginary   (Cp) 

-2 0 2 

_L 

Real   (Cp) 

2 6        10 

X -^ 
o 

o 



12-8 

Imaginary   (Cp) 

-2 0 2 

H- 
IQ 
C 

o>. 
co 

-j 

& 
<] 
fD 

> 

u 
CO 
S 
13 

•-3 
P) 
H- 
M 

•Ö 
h-1 

CD 
0 
(D 

§ 
CO 
rr 
fD 
&) 
0. 

^< 

O 
s: 
fD 

CO 

l-h 
0) 
O 
fD 

hJ 
i-i 
fD 
W 
CO 
£ 

fD 

-jo/ 

Imaginary   (Cp) 

-2 0 2 
1      n   '      ? i       i 

°U1>»^ 
O   '• ^ 

VQ 
Ov- 
o'.\ 

o- 

lo'O V 

o \ o 
OJ '•a 
o ÖI 
* ( ) -i 

X    o oj 
O    ui 

o/ 
o 

o\ q: 
o 9: 

<] 9 
o 9 
00 

? 
o 
ID W 
I-1 tf 
O 

o 

Real   (Cp) 

6        10 

co 
n 
o 

00 

CO 
II 
o 

1 O     tH 
H 
2 

1 M 

m C pd M M 
a i-3 H X •> 
f w n >ti go 
M ^  ffi  H   M 
» >    ?0    M 

JO   H 
a is 
to M 
O 2 
3  ^ 



13-1 
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P.O. Box 80 11 60 

81663 Munich, Germany 
Phone: +49-89-607-26996 
Fax: +49-89-607-28707 
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Summary 
The aeroservoelastic stability of a fighter type 
aircraft is investigated at high angle of attack. The 
effects of non-linear, incidence dependent unsteady 
aerodynamic forces of elastic modes and of control 
surface deflections on the structural coupling are 
demonstrated for low and high subsonic speeds for 
different incidences. The difference of open loop 
frequency response functions calculated with linear 
and with high angle of attack unsteady 
aerodynamics documents the necessity of 
introduction of high incidence effects for 
aeroservoelastic stability calculations. Non-linear 
effects are introduced using unsteady pressures of 
windtunnel experiments on an oscillation model by 
correcting of theoretical pressures. 

List of Symbols 

VL 

» Omax 

'Omax 

GM 

PM 

fLi 
<lr 
(Or 

Mr 

Kr 

Arj(a0,Ma) 

Ar,iB(a0Ma) 

Limit Airspeed 
Minimum Operational Airspeed 
Maximum Operational Airspeed 
Gain Margin> Minimum change 
in loop gain, at nominal phase, 
which results in an instability 
beyond that allowed as a residual 
oscillation 
Phase Margin => The minimum 
change, at nominal loop gain, 
which results in an instability 
Mode frequency in Hz 
generalised co-ordinate 
mode frequency 
generalised mass 
generalised stiffness 
generalised unsteady aerodynamic 
forces of the modes 
generalised unsteady aerodynamic 
efficiency of inboard flap 

AnOB(ao,Ma) generalised unsteady aerodynamic 
efficiency of outboard flap 

Ar,Fp(a0,Mci) generalised unsteady aerodynamic 
efficiency of foreplane 

MrjB generalised inertia coupling term 
for inboard flap 

Mr,OB generalised inertia coupling term 
for outboard flap 

Mr,FP generalised inertia coupling term 
for foreplane deflection 

FACTO®) Actuator impedance function 
Fomo(ico) Sensor transfer function 

FpHASE-ADv(i<ß) Advance filter characteristic 
KJB Inboard flap control loop gain 
KOB Outboard flap control loop gain 
Kpp Foreplane control loop gain 
Acp(i(o)j pure theoretical pressure of the not 

measured mode j 
AcpfiaJi pure theoretical  pressure  of the 

measured mode i 
Ac/icoUexp experimental pressure of the 

measured mode i 
Oj(x,y,i(o) incidence distribution of the not 

measured mode j 
Oi(x,y,i(o) incidence distribution of the 

measured mode i 
Acp(i(o)j corrected pressure distribution of 

the not measured mode j 

1.         Introduction 

This contribution describes a possible way to 
predict the aeroservoelastic stability of an aircraft 
at high incidence including non-linear aerodynamic 
effects. The design of flight control laws for modern 
aircraft is very much influenced by aeroservoelastic 
means to alleviate structural coupling effects. Notch 
filters or active feedback's of local elastic 
acceleration or rates have to be optimised in order 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation' 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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to give minimum structural coupling together with 
rninimum acceptable effects on aircraft handling 
and on flutter phase and gain margins without 
violating required stability margins. The design of 
the notch filters or of the active feedback control 
laws is general based on an analytical dynamic 
model which includes the description of flight and 
structural dynamics together with unsteady 
aerodynamic forces of the elastic vibration modes 
and of control surface deflections. A specific 
problem area concerning layout of filters or control 
loops arises especially at high incidence, high 
altitude flight conditions, since the unsteady 
aerodynamic forces, especially in case of unstable 
aircraft configurations play an important role for 
the stability margins of elastic modes compared to 
the margins for on ground conditions. 

Fig. 1: Aircraft Two Side View 

Usually theoretical unsteady aerodynamics from 
linear theory are applied which do not include high 
incidence aerodynamic effects, effects of flow 
separation or related non-linear aerodynamic 
behaviour. In general the high a unsteady 
aerodynamics of rigid and elastic aircraft modes 
cannot be predicted by existing theoretical methods. 
Numerical simulation of high a aerodynamics is not 
applicable for flexible aircraft aeroservoelastic 
design and clearance work. Much effort has to be 
invested into unsteady windtunnel experiments, and 
design and clearance tasks have still to be based on 
in-flight measurements. Unsteady windtunnel 
experiments of unsteady pressures for a rigid roll 

mode as applied in this investigation have to be 
extrapolated for arbitrary mode shapes and 
carefully analysed and validated by comparisons to 
windtunnel and in-flight response calculations for 
measured accelerations before full application to the 
aircraft structure. Many effects like model support 
interference, freestream turbulence, Reynolds 
number, tunnel wall interference have to be 
considered. The investigation is performed for a 
typical delta canard fighter aircraft shown in Fig. 1. 

Stability Criteria 

For aeroservoelastic stability assessments of an 
aircraft with Flight Control System (FCS) criteria 
from the following MIL Specifications have to be 
applied: 

Flight Control System MIL-F-9490D 

•        Airplane Strength and Rigidity, Vibration, 
Flutter and Divergence MIL-A-8870 

The military specifications for aircraft with FCS 
contain gain and phase margin requirements for the 
open loop frequency responses. For the rigid 
dynamics in the frequency range of the modes M 
from 0.06 <fM< first aeroelastic mode which are in 
the range of rninimum to maximum operational 
speed 6 dB gain and 45 degree phase margin and at 
limit airspeed VL 4.5 dB gain and 30 degree phase 
margin. MIL-F-9490D requires for the mode 
frequencies fM > first elastic mode 8 dB and 60 
degrees phase margin in the operational range and 6 
dB and 45 degrees phase margin for VL. 
The requirements are summarized in Table 1. 

Airspeed 
Mode 
Frequ. 

Below 
Vomin 

Vomin 
to 
»Omax 

At limit 
speed VL 

Above 
1.15VL 

fM<0.06 GM=6.0 
NoPM 
below 
Vomin 

GM=±4.5 
PM=+30 

GM=±3.0 
PM=+20 

GM=0. 
PM=0. 
stable 
nominal 
phase 
and gain 

.06<fM<l 
st ASEM 

GM=±6.0 
PM=±45 

GM=±4.5 
PM=±30 

fM>lst 
ASEM 

GM=±8.0 
PM=±60 

GM=±6.0 
PM=±45 

Table 1: MIL-F-9490D minimum gain and phase 
margin requirements 

Special requirements for mode frequencies fM > 
first elastic mode may be formulated which take 
into account uncertainties in the prediction of 
unsteady  aerodynamic  forces   at  extreme   flight 
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conditions. Especially if actively controlled 
configurations are concerned, which are unstable. 
For these configurations the flight clearance has to 
be based upon prediction for open loop response 
functions. 

The aeroservoelastic stability requirements defined 
for flutter in MIL-A-8870B shall be met as well. A 
minimum required flutter margin boundary of 15% 
in VD at constant altitudes and Mach numbers is 
defined there. The damping coefficient g for any 
flutter mode shall be at least three percent. 
The damping requirements are demonstrated in 
Figure 2. 

Critical Mode 

Equivalent Air Speed 

Wing Bending / Tank Roll f = 4.5 Hz 

Fig. 2: Minimum Required Damping Margin 

3; Description of the structural coupling 
problem 

The structural coupling problem described here is 
specific for military aircraft with heavy underwing 
tanks and stores with low frequencies down to 
about 4 Hz tank/stores and wing bending modes are 
present due to the high mass condition. These low 
frequency wing bending elastic modes, shown for 
the configuration analysed in Figure 3, produce 
counteracting fuselage modes which are mainly 
rigid fuselage pitch oscillations. 

Tank Yaw Mode f = 3.5 Hz 

\    \ Fuselage Bending / Tip Pod Pitch f = 14.0 Hz 

Fig. 3: Normal Mode Shape, A/C with Tank 
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The rigid fuselage modes caused by the wing 
bending mode creates a coupling problem which is 
in contract to the general well known structural 
coupling problem caused by the first elastic bending 
mode of the fuselage and the feedback of its elastic 
fuselage pitch rate signal through the gyros to the 
control surfaces, see Figure 3 fifth mode. The 
structural coupling effects caused by the first 
fuselage bending mode can easily be reduced by 
putting the gyros in a position of zero elastic mode 
pitch angle or rate. Strong notch filtering can be 
introduced in the feedback loop to avoid the 
structural coupling of the 1 st fuselage bending 
mode. 

The feedback signal of the gyro in the frequency of 
the low frequency wing bending modes however 
cannot be influenced and alleviated by gyro 
positioning. In addition the frequency of the first 
elastic mode is so low that the normally used notch 
filter technique to reduce structural coupling cannot 
be applied fully. The stability criteria for handling 
would be affected by lose of phase at around the 
short period mode frequency due to effects of the 
notch filtering. Therefore the low frequency mode 
shall be shown as a phase stable mode, if this mode 
cannot be phase stabilised, configuration changes or 
active control means would be helpful. A typical 
behaviour of the structural coupling effect in the 
low frequency mode is the increase of the frequency 
response in flight due to unsteady aerodynamic 
excitation by the control surfaces. (This effect was 
not experienced in the structural coupling signal of 
the first fuselage bending mode of other fighter 
aircraft where the problem was always found 
critical for on ground conditions, in flight 
aerodynamic mode damping caused lower 
coupling.) 
Therefore the aerodynamic excitation forces of the 
low frequency mode and its aerodynamic damping 
is of prime interest for the stability of heavy 
tank/stores aircraft configurations. The effects of 
unsteady aerodynamic forces at high angle of attack 
have to be considered carefully. 

4. Analytical Modelling 

The calculation of open loop frequency response 
functions has to be based on an analytical model 
which represents the rigid aircraft dynamic and 
contains the dynamic equations of the control laws, 
the sensor, computer and actuators transfer 
functions. This rigid aircraft dynamic model is 
coupled to the structural dynamic aircraft model 
which represent to the dynamic behaviour of the 

elastic aircraft including unsteady aerodynamic 
forces of the elastic modes and of the control 
surfaces (generalised aerodynamic force of elastic 
modes and generalised efficiencies of inboard, 
outboard and foreplane rotations). The structural 
dynamic equations are formulated for unsteady 
aerodynamic forces which are functions of the angle 
of attack. 

j 

-m2Mrqr+Kr(l+ igr)qr +JX '9j{^) + 

+{(Ar,B ■8iB'KIB +Ar,OB '5OB 'KOB +ArJ>P •8FP'KFp) + 

+{Mr,B -8ZB •KB +Mr,OB -80£ *KOB + MrfP '&FP 'KPPJ   } ' 

FACr{ia>) •P'oYRoi^) ■FPHASE-ADv{i®) 

The unsteady aerodynamic forces A$ ArJB, Ar,0B, 
Ar,FP be calculated by computer programs for the 
derivation of linear unsteady aerodynamic forces 
for the case of small angles of attack and for high 
angle of attack with the procedure as described in 
the following chapter. 

5. Prediction of unsteady aerodynamic 
forces at high incidence 

Aeroservoelastic and flutter calculations with the 
inclusions of flight control effects are normally 
performed for level flight conditions using linear 
unsteady aerodynamic theory. The results of these 
calculations could be in error for manoeuvring 
conditions of military aircraft from medium up to 
high incidence, since the applied linear theories do 
not account for effects of leading edge vortices at 
higher incidences and effects of locally separated 
flow are not included in the calculation of motion 
induced unsteady aerodynamic forces. These effects 
may be introduced into the aeroservoelastic analysis 
using a correction method as described in ref. 1 to 3 
and using measured unsteady pressure distributions 
on a windtunnel model for only one rigid mode. 

5.1       Description of the correction method 

The correction method as developed in ref. 1 is 
applied for the update of generalised forces used in 
the analytical model for aeroservoelastic 
calculations. 
The calculation of the generalised aerodynamic 
motion dependent forces Ar,(ao,Ma,k) is performed 
by a modification of linear unsteady aerodynamic 
theory, the 3D Doublet lattice method, or the 
collocation method using both measured steady 
pressure distributions and the measured unsteady 
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pressure distribution of a wing oscillation. The 
problem consists here mainly in the prediction of 
the diagonal terms A„ and of the coupling terms A^, 
at separated flow condition if only one measured 
mode is available. 
The corrected generalised aerodynamic motion 
dependent forces An{ao,Ma,k) are calculated as 
follows for given Machnumber Ma and reduced 
frequency k. 

Ai = jJ(AC(ao>*) +(AM«o,£) ~ Ac;.(a0,£)))«/* 

The   corrected   unsteady   pressure   distribution 
Ac*, of the measured vibration mode ut(x,y) is 

calculated by using a modified cinematic boundary 
condition. 

Ac*pi=(D' + iD")~1-a 

where: 

(D' + iD ")      is the matrix of aerodynamic 
influence coefficients 

a  = 
£/ +*/n   du, 

U„ 
0 ^L + i-k-% 

dx 

The local velocity Ux + u0 is calculated from local 
Machnumber and speed of sound. 

U«, +ü0(x,y) = a(x,y)-Ma(x,y) 

Ma(x,y) = 
K-l 

l + ^zl.Mal 
K-l 

-1 

1 + - 
K-Mal 

The local speed of sound a(x,y) = -JKRT is 
derived from adiabatic compression. 

From the difference between measured and 
corrected unsteady pressure distribution of the 
measured vibration mode an additive correction 
term 

[A^-AC*,] 

is known, which for the formulation of arbitrary 
vibration modes is assumed to be independent of the 
mode. 
The corrected pressure distribution for arbitrary 
mode shapes Uj are then calculated by 

Ac^lD' + iD'f.a'+lAc^-Ac;] 

In general the measured motion induced pressure 
contains a contribution of the fluctuating pressure 
at the reduced frequency of the harmonic oscillation 
k. The contribution Acpo(lc) may be approximately 

extracted from the static measurement. 
Therefore the measured unsteady pressure can be 
corrected. 

asjk)=[te„(k)+Acpi(k)) - Acpo(k) 

5.2 Windtunnel model description 

5.2.1       Unsteady pressure plotting model 

Windtunnel tests were performed on a 1/7 scaled 
half model of a tactical fighter type aircraft. The 
model configuration included a delta wing, a 
foreplane and half a fuselage installed at the 
windtunnel wall. The wing and foreplane were very 
stiff, machined out of steel, see Figure 4. 

Fig. 4: Wind Tunnel Model 

The fuselage was fixed to the turn table by means 
of a large rigid cylindrical part locked when 
incidence was reached by a set of hydraulic brakes, 
Fig. 5. The fuselage contained two hydraulic 
rotating actuators. The first one aligned with the 
foreplane axis, allowed to give static foreplane 
deflections while the second one aligned with the 
fuselage centre line provided roll excitation of the 
wing. 
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The different measurements performed were steady 
and unsteady pressure fields, steady and unsteady 
roll moment, accelerations on the wing. The model 
was equipped with 67 pressure pickups, 67 steady 
pressure tapping, 7 accelerometers, 3 strain gauge 
bridges. The steady and unsteady pressure pick-ups 
pairs were distributed along four wing sections on 
the upper surface and, in a smaller number, along 
three wing sections on the lower surface. 

Foreplane Actuator 

Locking Disc 

Dummy Balance 

Turn Table 

„ Wing Roll 
Actuator 

Hydraulic Brake 

Fig. 5: Windtunnel Model Set Up 

Tests were performed using sinusoidal wing roll 
excitation. After conditioning and switching, 
amplifying and filtering at a cut-off frequency 
chosen between once and twice the excitation 
frequency, the signals were digitalized at a sampling 
rate of eight times the excitation frequency. Fourier 
analysis was performed, modulus and phase of each 
signal, normalised to the amplitude of the roll 
oscillation were computed at the excitation 
frequency, giving unsteady pressure coefficients. 
Tests were performed for different Mach numbers 
and angles of attack including buffeting situations. 
The Mach number ranged from 0.3 to 0.95, 
incidence ranged from 0 to 40 degrees, decreasing 
as Mach number increased: 40 degrees at M = 0.3, 
10 degree at M = 0.85 and 0.9, 8 degrees at Ma = 
0.95. 

5.2.2    Steady pressure plotting model 
In addition to the unsteady pressure model which 
included steady/quasisteady pressure measurement, 
a full series of quasisteady measurement have been 
performed on a steady pressure plotting windtunnel 
model. Especially steady pressures have been 
measured for different flap deflections at different 
high incidence to derived the derivatives due to 
flaps dAcp/8a Flap (a, Ma). 

5.3 Measured quasisteady pressures 
distributions (a ± Aa conditions) 

The quasisteady pressure distributions dAcp/daare 

demonstrated for some characteristic conditions in 
Figures 6 to 8 for the upper and lower wing surface 
separately. There are 7 spanwise section shown for 
upper and lower side, 5 are corresponding to real 
measurement sections. The values at y/s = 0.3 and 
0.15 are interpolated. 

Mach 0.8, zero incidence 
The pressure distribution at upper and lower side 
shown in Fig. 6 above is typical for subsonic flow, 
upper and lower side pressures are similar in 
amplitude, no transonic effect are apparent. The 
applicability of linear subsonic theory may be 
reasonable for this condition. 

16 

12 

8 

4 

Quasi Steady Pressure 
Ma=0.8; alfa=0 

Quasi Steady Pressure 
16   -CP'     Ma=0.8; alfa=0 
12- 

8 

4 

Fig. 6:    Quasisteady Pressures at upper and 
lower side, Ma = 0.8, a = 0° 
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Mach 0.9, zero incidence 
The pressure distribution at the wing upper side is 
characterised by transonic effects, visible in the 
spanwise  sections y/s  =  0.5,  0.75,  0.9,  0.95, 
possibly due to a shock located at about midchord 
is shown in Fig. 7. 
The lower side shows less effects and is similar to 
the Ma = 0.8 results. 

Quasi Steady Pressure 

16-, 

Quasi Steady Pressure 
_Cpu    Ma=0.9; alfa=0 

12 

8 

4- 

rj ^*^^^           ^""^^^^Z^^^^v/""^^*»- ^ 

& p 
1.5 

Quasi Steady Pressure 
16-j -Cpl   Ma=0.9; alfa=0 

Fig. 7: Quasisteady Pressures at upper and 
lower side, Mach = 0.9, a = 0° 

Mach 0.8, a = 8.0 degree 
Strong changes can be observed in the upper side 
pressure distribution if the static incidence is 
increased from 0 to 8.0 degrees indicating a strong 
nonlinear behaviour of the quasisteady forces with 
incidence, Fig. 8. High effects due to a leading edge 
vortex are present for the inner wing resulting in 
high pressure peak's, even changes in pressure sign 
are observed at y/s = 0.5. 

The lower side pressures are less effected, 
especially for inner wing sections, however outer 
wing sections show a decrease in amplitude 
compared to zero incidence results. 
Similar strong leading edge vortex effects are 
observed also at Mach 0.9 at inner wing sections in 
the upper side pressure distribution. 
The strong increase of the outer wing trailing edge 
pressures compared to zero incidence results 
observed at a = 8.0 deg. upper side gives an 
indication of the changes in mode excitation if the 
behaviour is extrapolated to pressure for outboard 
flap rotation. 

16 Quasi Steady Pressure 
1 "CP"     Ma=0.8; alfa=8. 

F„ °-5 

Fig. 8:    Quasisteady Pressures at upper and 
lower side, Mach = 0.8, a = 8° 

Conclusion from quasisteady pressures dAc Ida: 

Mach 0.8,a = 8.0 deg. 

• A very strong non-linear behaviour of 
quasisteady pressure distributions at wing upper 
side with static incidence observed both for Ma 
= 0.8 and Ma = 0.9. The lower side pressures 
are less affected by static incidence and remain 
almost unaffected from 6.5 degree onwards. 

• Outer wing trailing edge pressures show an 
increase compared to zero incidence results, 
indication higher excitation forces if 
extrapolated for instance to outboard flap 
rotation both for Ma = 0.8 and Ma = 0.9 and 
incidences greater than zero. 

Quasisteady pressure distributions for flap 
deflections dAcp/05^(6^ lAZ^) 

Normal force derivative versus incidence due to 
flap deflection. Fig. 9 demonstrates the trend of the 
normal force derivative due to inboard 
dcN/ddIBand outboard flap dcN/d8OB versus 
incidence. As shown above by quasisteady 
pressures the normal force derivative decreases 
strongly from 10 deg onwards both for inboard and 
outboard flap deflection. 
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Fig. 9: Ma=0.8, Normal Force Derivative 
Versus Incidence due to I/B and O/B Deflection 

5. 4      Description of measured unsteady 
pressure distribution due to harmonic 
wing roll oscillations 

Quasisteady pressure distributions for a = 4 deg 
and a = 20 deg due to fullspan flap deflection are 
demonstrated in Fig. 10 for Mach = 0.9 . 
The comparison shows the decrease of Acp8 with 

incidence. Especially the outer wing experiences a 
strong decrease at 20 deg compared to a = 4 deg. 

5.4.1 Mach 0.8 results 
The pressure distributions due to harmonic wing 
roll are demonstrated for the upper and lower side 
of the wing in real and imaginary part of the 
unsteady pressure upper side in Figure 11. 

cpu{x,y,z) = cpu(x,y,z) + i- cjx,y,z) 

for real and imaginary part k = 27ifs/V reduced 
frequency f = 10 Hz. 

Static incidence 8.0 degrees 
Strong non-linear affects with incidence are found 
in general for the inner upper wing leading edge 
corresponding to leading edge vortex effects and 
also for the outer wing sections strong a dependent 
effects occur in the real and imaginary part of the 
unsteady pressure. The lower side pressure 
distributions are less influenced. Only one example 
is demonstrated here for 8.0 degrees and Mach 0.8. 

Ma=0.9,S.L.,alfa=4.0 
sideslip=0, flaps>0 

'W       0."ff 
^^       1-2" 

Ma=0.9, S.L, alfa=20.0 
sideslip=0, flaps>0 

Fig. 10: Quasisteady Pressure Distribution due 
to Flap Deflection: Comparison of high a 
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Fig. 11: Unsteady Pressures Distribution due to 
Wing Roll Motion, Ma = 0.8; a = 8° 
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Conclusions of the unsteady results 
Similar strong non-linear effects with static 
incidence as observed for quasisteady pressures are 
present in unsteady upper side pressures due to 
harmonic wing roll oscillations. The modulus of the 
unsteady pressures is increased at incidences 3.5 to 
9.0 degrees at the inner wing loading edge region 
and at the trailing edge outer wing region in real 
and imaginary part. The lower side unsteady 
pressures are less affected by static incidence. 

5.4.2 Mach 0.3 results 

The unsteady pressure distributions due to the wing 
roll oscillations were evaluated for different static 
incidences from a = 12.5 up to 40 degrees and roll 
motion frequencies 6, 12 and 18 Hz for the clean 
wing configuration for wing upper and lower side. 
Some results are shown in Figure 12 for 25 degrees. 
Influence of frequency 
The imaginary part of the upper side pressure 
distribution changes almost linearly with frequency 
in the measured frequency range 6-18 Hz. All 
typical leading edge vortex effects are repeated with 
different frequency for different high static 
incidences. A quasisteady behaviour is found at 
high incidence. 

Influence of static incidences 
The increase in the amplitude of the upper side 
outer wing imaginary parts of the pressure 
distribution at high incidence compared to zero 
incidence or linear theory gives indication of an 
increase in elastic mode damping at least for the 
first wing elastic bending mode. 

(O 
D. 

(O 

5 Ic   -   0.4 

M   -   0.8 

oc   =    8° 

4   . H   ■    0.-5 

 Theory 

3   -  Experiment 

O /\ 
2   . 

V f\ 
>     . V v °-«/^—^^. ~o^ -^^^^ 

-O^Ö^HX^ 

x/c   1.0 

Fig. 11: Unsteady Pressures Distribution due to 
Wing Roll Motion, Ma = 0.8; a = 8° 

There is also the indication that the aerodynamic 
damping of elastic modes will be present up to 40 
degrees of incidence, since all imaginary parts of 
the pressure distribution for all high a conditions up 
to 40 degree are of significant amplitude and 
increase linearly with frequency. Therefore no loss 
of damping may be expected also for other modes 
than the rigid wing roll mode. 

Lower mode excitation due to an inboard/outboard 
flap rotation might be expected due to the decrease 
(a > 13 deg) of trailing edge real and imaginary 
pressures found at all high incidences as also found 
in quasisteady measurements. It might be concluded 
that quasisteady measurements are sufficient to 
predict the magnitude of unsteady aerodynamics. 
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-Cpu 
Unsteady Pressure Real Part  upper side 

4 Ma = 0.3, alfa = 25°, f = 6Hz 

3 

-Cpu    unsteady Pressure Imag. Part upper side 
4i       Ma = 0.3,alfa = 25°,f = 6Hz 

'^s      
10 

Cpl        Unsteady Pressure Real Part   lower side 
4T Ma = 0.3,alfa = 25°,f=6Hz 

*»4*w.1-0 

Cp     Unsteady Pressure Imag. Part  lower side 
Ma = 0.3, alfa = 25 °, f = 6 Hz 

Fig. 12:   Unsteady Pressure Distribution due to 
Wing Roll, Ma = 0.3, a = 25°, f = 25 Hz 

For the structural configuration treated the 
generalised aerodynamic damping of the low 
frequency elastic total aircraft modes and the 
generalised inboard and outboard flaperon unsteady 
efficiencies will cause the most interesting coupling 
effects in flight. 

Generalised control surface efficiencies 
a > 13 deg 
For Mach 0.4 both for the inboard and outboard 
flap the correction causes in general a decrease in 
the magnitude of the real part of the generalised 
control surface efficiencies of about 10% - 48% of 
the theoretical value depending on the normal mode. 
The unsteady hinge moments of outboard flap is 
strongly decreased. The imaginary parts of the 
efficiencies are also strongly changed. 

a < 10 deg. 
The effects on unsteady outboard efficiencies are 
different at Ma = 0.8, a = 6.5 and 8 degrees. 
Factors up to 1.7 are present depending on the 
mode. The effects are smaller at Ma = 0.9 a = 7.5 
deg, factors up to 1.35 are found compared to linear 
theory. The increase for a < 10, decrease for a > 
13 degree was also found in the steady normal force 
derivative. 

Aerodynamic mode damping 

Comparison of corrected and theoretical generalised 
forces for the second elastic mode are shown in 
table 2 for Mach 0.4, and in table 3 for Mach 0.8. 

• At Mach 0.4, 25 deg the imaginary part of the 
second elastic mode is increased by a factor of 
1.25. 

• At Mach 0.8, 6.5 degrees the imaginary part of 
the second elastic mode is increased by a factor 
of 1.7, at Mach 0.8, 9 degrees the factor is also 
1.7. 

5.5     Generalised aerodynamic forces at high 
incidence 

Two aerodynamic magnitudes are essential for the 
aeroservoelastic stability namely: 

• The generalised control surface efficiencies 
• The aerodynamic mode damping 

• At Mach 0.9, 7.5 degrees the imaginary part of 
the second elastic mode is increased by a factor 
of 1.3. 

It is noted that the aerodynamic mode damping is 
proportional to the imaginary part of the generalised 
force. 



13-11 

6. Proof of the prediction method 

The validation of the prediction method has been 
performed earlier in ref. 2 and 3 using windtunnel 
measurements on a trapezoidal wing. 

The corrected pressure distribution Aqy of a not 
measured mode j is predicted from a measured 
mode i according to chapter 5.1 

Ac 
aAia) ,(/'co). = Ac (i(i>). dl_ + ( AC„,.(/Cö)    - Ac„,(/©)) —4—I 

>\     )j P\     Ij-th     \     P'\     /otp P'\     i)   a(ja\ 

The windtunnel measurements on the trapezoidal 
wing have been performed for a pitch and roll 
motion, see Figure 13. 

A '3,2 

A .0,3 

S '0.(S84m! 

tp'0.608m 

Profil :HACA 64 A005 

y.y 

Wm7fi77m>w//wMi>?}twrw?tyf}. W. 
JL. 

w# 

0, &&&&&&?} WflWfifl 

850 

3022 

386 
Roll Axis 

Fig. 13: Trapezoidal Wing Windtunnel Model 
for unsteady pressure measurement 

For instance the corrected (predicted) pressure 
distribution of a pitch oscillation from a roll 
oscillation is 

töpJ,m{i«>) = Acpmch{i&) + Ac^m)—J j*   X°' 

&CpD\ — ^C^,Äo«-exp.      &Cp-Roll 

or the corrected pressure distribution of a roll 
oscillation from a pitch oscillation is 

AW») = **-M + *Ata)m$x_XD) 

^CpD2 ~ ^Cp.Pitch-exp. ~ **C p-Pitch 

Figure 14 demonstrates the comparison between 
theoretical and measured results of a wing roll 
motion with predicted pressures from wing pitch 
motion pressures. The result fully validates the 
correction method for subsonic speeds. 

Acp,=[Z)' + /D'f-a'-A^-Ac; 

U„      x      Jj    U    Y 

is simplified because the influences of local velocity 
components were shown to be of minor influence 
for low subsonic flow. 

Real Part 

— Experiment 
Prediction 

Fig. 14: Validation of the correction Method for 
High Incidence Aerodynamic 

The validation of the method using transonic model 
results could not be performed in a consistent 
manner for high subsonic speeds since only one 
vibration mode, wing roll was tested. 
In   order   to   check   the   prediction   at   high 
Machnumber quasisteady results have been applied 
in order to predict unsteady pressures from wing 
roll measurements. 
Using quasisteady pressures for the prediction of 
transonic model unsteady wing roll results was 
based on a reduced formula 

AC,_Ä>>*) = ACSZ 
+[Ac?a  M = °) - 

AcT
a
h^ (k =())]■ iky 

where 
Ac^(a,£=0) measured quasisteady 

pressure distribution 
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Ac™eory (k = O) theoretical pressure 
distribution 

The comparison of measured unsteady pressures of 
the transonic model wing roll motion with this 
prediction at Mach 0.8 and Mach 0.9 also 
demonstrated an improvement especially at the 
wing tip region. 

7. Open loop frequency response functions 

The effects of high incidence unsteady aerodynamic 
forces on gain and phase margins are illustrated in 
Figure 15 for the open loop response function of the 
longitudinal controller of the Delta Canard fighter 
aircraft for Mach 0.4, 25 degrees and sea level. 

270 180 90 

Open Loop Phase [ ° ] 

270     180     90 

Open Loop Phase [ ° ] 

Fig. 15: Open Loop Frequency Response 
Function, Comparison high incidence aerodyn. 

Figure 15 shows the Nicholas diagram with and 
without corrected aerodynamics in the frequency 
range up to the third elastic mode. The first wing 
bending mode with corrected unsteady 
aerodynamics shows a decrease in dB's and an 
additional phase shift compared to the not corrected 
frequency response. 

The first elastic mode is shown to be phase stable, 
where as the second mode at 4.5 Hz does not meat 
the stability requirements indicated by the shaded 
area (notch filter effects are needed). 

12i 

-270 -180 

Open Loop Phase [ ° ] 

-360 -270 -180 

Open Loop Phase [ * ] 

90 

Fig. 16: Nichols Diagram open loop frequency 
Response, Comparison of High Incidence 
Aerodynamic Effects 
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In Figure 16 the results for Mach 0.8 and 8 degrees 
of incidence are illustrated without and with 
corrected unsteady aerodynamic forces in the 
Nicholas diagram. For corrected and pure 
theoretical unsteady aerodynamic forces the results 
show a phase stable first and second elastic mode. 

The third mode at 5.5 Hz does not meet the 
requirements with and without the effect of high 
incidence aerodynamics, but with incidence 
correction a reduction of the positive dB's is 
present. For higher elastic modes at 9 and 12 Hz the 

. effect is about a 4 dB increase as demonstrated in 
the Bode diagram in Figure 17. In general the high 
a unsteady aerodynamic forces lead to alleviation 
of the dB level in the 1st wing bending mode and 
give raise to the phase shift. 

15 
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15- 

-30 
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sensor positioning. The low frequency modes 
must be phase stabilised using filters. 

• At incidences below about 6 to 13 degrees the 
unsteady aerodynamic damping of elastic modes 
is smaller than the damping at small incidence. 

• At incidences above 13 degrees the elastic mode 
damping is higher than the values at small 
incidence. 

• The control surface unsteady aerodynamic 
forces above about 13 deg of incidence are 
decreasing and their phase shift increases 
leading to dB reductions in open loop frequency 
response functions and additional phase shift. 

• The prediction method for high incidence 
unsteady aerodynamics is validated by 
windtunnel tests. 

• The prediction method has to be validated 
through flight test. 

• In general high incidence aerodynamic effects 
have to be considered in aeroservoelaetic 
stability predictions. 

9. References 

0.01 o.i o:o 
Frequency [ ° ] 

10.0 100. 

Fig. 17: Bode Diagram of Open Loop Frequency 
Response, Comparison of High Incidence 
Aerodynamic, Ma = 0.8, a = 8° 

8. Conclusions 

From the investigation of the aeroservoelaetic 
behaviour of a Delta Canard configuration at high 
incidence the following conclusion can be drawn: 
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Generalised Forces of First Elastic Mode 
Mode 

NO 
Ma = 0.4, k = 0.5, <x = 0° 

Real Part Imaginary Part 
1 - 0.00001433 0.000002274 
2 -0.0001537 0.00001882 
3 0.0001892 - 0.00000388 
4 - 0.0002493 0.00003429 
5 -0.00009616 0.000003141 
6 0.0001343 - 0.00005503 
7 0.0002158 - 0.0000204 
8 0.0000945 0.00001851 
9 - 0.0002496 0.00001810 
10 0.00004518 0.00008549 

Table 2a: Pure Theoretical 
Aerodynamic Forces of 1st 
Ma=0.4, k=0.5, a=0° 

Generalized 
Elastic Mode 

Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.4, k = 0.5, a = 0° 

Real Part Imaginary Part 

1 0.00003953 0.00005300 
2 0.0005247 0.0006567 
3 0.0008979 -.10211 
4 0.0008267 0.001117 
5 -0.0004031 -0.0004026 
6 0.0001672 -0.0003934 
7 0.0007172 -0.0004710 
8 0.0005312 -0.0003275 
9 - 0.0007978 0.0006582 
10 - 0.0005874 -0.0002293 

Table 3a: Pure Theoretical Generalized 
Aerodynamic Forces of 2nd Elastic Mode 
Ma=0.4, k=0.5, a=0° 

Generalised Forces of First Elastic Mode 
Mode 

NO 
Ma = 0.4, k = 0.5, a = 25° 

Real Part Imaginary Part 

1 - 0.00001568 0.00000550 
2 -0.0001716 0.00006041 
3 0.0002474 - 0.00007965 
4 - 0.0002744 0.0001062 
5 0.0001289 0.00003640 
6 0.00007601 - 0.00002757 
7 0.0002546 -0.00004711 
8 0.0001989 - 0.00002882 
9 - 0.0003587 0.00007063 
10 0.0001635 - 0.0005685 

Table 2b: Corrected Generalized Aerodynamic 
Forces of 1st Elastic Mode 
Ma=0.4, k=0.5, a=25° 

Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.4, k = 0.5, a = 25° 

Real Part Imaginary Part 

1 0.00003172 0.00006188 
2 0.0004805 0.0008194 
3 0.00096190 -0.0014671 
4 0.0006923 0.001403 
5 0.0004330 0.0005823 
6 0.0001387 0.0000602 
7 0.0008705 -0.000451 
8 0.0007595 - 0.000673 
9 - 0.0009688 0.000836 
10 - 0.001742 0.000218 

Table 3b: Corrected Generalized Aerodynamic 
Forces of 2nd Elastic Mode 
Ma=0.4, k=0.5, a=25° 
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Generalised Forces of First Elastic Mode 
Mode 

No 
Ma = 0.8, k = 0.5, a = 0° 

Real Part Imaginary Part 
1 -0.00001568 0.000003261 
2 - 0.0001703 0.00002626 
3 0.0002131 0.000000468 
4 - 0.0002758 0.00004727 
5 -0.0001079 0.000004113 
6 0.0001450 - 0.00008669 
7 0.0002390 - 0.00004396 
8 0.0001117 0.00002989 
9 - 0.0002826 0.00002951 
10 0.0000267 -0.0001317 

Table 4a: Pure Theoretical Generalized 
Aerodynamic Forces of 1st Elastic Mode 
Ma=0.8, k=0.5, a=0° 

Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.8, k = 0.5, a = 0° 

Real Part Imaginary Part 
1 -0.00004183 0.00006174 
2 - 0.0005784 0.0007545 
3 0.001065 -0.001135 
4 - 0.0009078 0.001279 
5 - 0.0004627 0.000459 
6 0.000830 - 0.000533 
7 0.0007200 - 0.000627 
8 0.0006679 - 0.0003566 
9 - 0.0008845 0.0007964 
10 - 0.0009134 -0.0003091 

Table 5a: Pure Theoretical Generalized 
Aerodynamic Forces of 2nd Elastic Mode 
Ma=0.8, k=0.5, a=0° 

Generalised Forces of First Elastic Mode 
Mode 

No 
Ma = 0.8, k = 0.5, a = 6.5° 
Real Part Imaginary Part 

1 - 0.00002837 0.00001523 
2 - 0.0002943 0.0001063 
3 0.0004135 0.0000525 
4 -0.0004718 0.0001944 
5 -0.0002160 0.0000233 
6 0.0001072 - 0.0004658 
7 0.000344 - 0.0002962 
8 - 0.000370 0.0000867 
9 - 0.0006443 0.000268 
10 - 0.0002553 - 0.000559 

Table 4b: Corrected Generalized Aerodynamic 
Forces of 1st Elastic Mode 
Ma=0.8, k=0.5, a=6.5° 

Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.8, k=0.5, a = 6.5° 
Real Part            Imaginary Part 

1 -0.0000319 0.000113 
2 - 0.000584 0.00128 
3 0.001933 -0.00166 
4 -0.001017 0.00223 
5 - 0.000770 0.000732 
6 - 0.00144 - 0.00137 
7 0.000588 - 0.00134 
8 0.001549 -0.000319 
9 - 0.000995 0.00138 

10 -0.003319 - 0.00168 
Table 5b: Corrected Generalized Aerodynamic 
Forces of 2nd Elastic Mode 
Ma=0.8, k=0.5, a=6.5° 

Generalised Forces of First Elastic Mode 
Mode 
No 

Ma = 0.8, k = 0.5, a = 0° 
Real Part Imaginary Part 

1 - 0.00001568 0.000003261 
2 - 0.0001703 0.00002626 
3 0.0002131 0.000000468 
4 - 0.0002758 0.00004727 
5 -0.0001079 0.000004113 
6 0.0001450 - 0.00008669 
7 0.0002390 - 0.00004396 
8 0.0001117 0.00002989 
9 - 0.0002826 0.00002951 

10 0.0000267 -0.0001317 
Table 6a: Pure Theoretical 
Aerodynamic Forces of 1st 
Ma=0.8, k=0.5, a=0° 

Generalized 
Elastic Mode 

Generalised Forces of First Elastic Mode 
Mode 

No 
Ma 0.8, k = 0.5, a = 8.0° 

Real Part Imaginary Part 
1 - 0.00002067 0.000005742 
2 - 0.0002678 -0.000003112 
3 0.0005179 0.000223 
4 - 0.0002269 0.00002287 
5 -0.0001302 - 0.00005679 
6 0.000233 - 0.0003974 
7 0.0003955 - 0.0001993 
8 - 0.0004609 0.000232 
9 - 0.0006454 0.0000414 
10 -0.0001441 - 0.0006855 

Table 6b: Corrected Generalized Aerodynamic 
Forces of 1st Elastic Mode 
Ma=0.8, k=0.5, a=8.0° 
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Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.8, k = 0.5, a= 0° 

Real Part Imaginary Part 

1 - 0.00004183 0.00006174 
2 - 0.0005784 0.0007545 
3 0.001065 -0.001135 
4 - 0.0009078 0.001279 
5 - 0.0004627 0.000459 
6 0.000830 - 0.000533 
7 0.0007200 - 0.000627 
8 0.0006679 - 0.0003566 
9 - 0.0008845 0.0007964 
10 -0.0009134 -0.0003091 

Table 7a: Pure Theoretical Generalized 
Aerodynamic Forces of 2nd Elastic Mode 
Ma=0.8, k=0.5, a=0° 

Generalised Forces of Second Elastic Mode 
Mode 

No 
Ma = 0.8, k = 0.5, a = 8.0° 
Real Part Imaginary Part 

1 - 0.00006028 0.00009879 
2 -0.001182 0.001279 
3 0.003109 - 0.002028 
4 -0.001866 0.002335 
5 - 0.001205 0.0007689 

6 -0.001888 - 0.0005377 
7 0.0008453 - 0.0008769 

8 0.002208 -0.0001753 

9 - 0.00147 0.0006049 
10 - 0.004434 -0.001867 

Table 7b: Corrected Generalized Aerodynamic 
Forces of 2nd Elastic Mode 
Ma=0.8, k=0.5, a=8.0° 

Generalised Forces of First Elastic Mode 

Mode 

No 

Ma=0.9,k=0.5,a = 0° 

Real Part Imaginary Part 

1 -0.0000165 0.00000429 

2 -0.0001793 0.00003433 
3 0.0002345 0.000002205 
4 - 0.0002895 0.00006146 
5 -0.0001167 0.000006226 
6 0.0001313 -0.0001167 
7 - 0.0002459 - 0.0000678 
8 0.00013138 0.0000378 
9 -0.0003019 0.00004408 

10 -0.00001428 -0,0001696 

Table 8a: Pure Theoretical 
Aerodynamic Forces of 1st 
Ma=0.9, k=0.5, a=0° 

Generalized 
Elastic Mode 

Generalised Forces of Second Elastic Mode 

Mode 

No 

Ma=0.9,k=0.5,a = 0° 

Real Part Imaginary Part 

1 -0.0000401 0.0000681 
2 - 0.000590 0.000827 
3 0.001190 -0.00123 
4 - 0.000918 0.001398 

5 - 0.000498 0.000505 

6 -0.0000688 - 0.000629 
7 0.000644 - 0.000736 

8 0.000793 - 0.000402 

9 - 0.000903 0.000917 

10 - 0.001279 - 0.000295 

Table 9a: Pure Theoretical Generalized 
Aerodynamic Forces of 2nd Elastic Mode 
Ma=0.9, k=0.5, a=0° 

Generalised Forces of First Elastic Mode 

Mode 

No 

Ma= 0.9, k= 0.5, a = 7.5° 

Real Part Imaginary Part 

1 0.000010406 - 0.00000164 

2 0.0001033 - 0.0000302 
3 -0.00006217 0.0000759 
4 0.0001380 - 0,00003738 
5 0.0000293 - 0.00002627 
6 -0.000316 - 0.00000848 
7 - 0.0000737 - 0.000005276 
8 0.00001303 0.0000654 
9 0.0001374 - 0.0000524 

10 - 0.0003077 -0.000125 

Table 8b: Corrected Generalized Aerodynamic 
Forces of 1st Elastic Mode 
Ma=0.9, k=0.5, a=7.5° 

Generalised Forces of Second Elastic Mode 

Mode 

No 
Ma= 0.9, k= 0.5, a =7.5° 

Real Part Imaginary Part 

1 - 0.0000399 0.000000514 

2 - 0.000748 0.000111 
3 0.001837 - 0.000456 
4 - 0.001227 0.000260 
5 - 0.000646 0.0002209 

6 - 0.000458- 0.000925 
7 0.000377 - 0.000348 

8 0.001034 - 0.000254 

9 - 0.000766 - 0.0000489 

10 -0.00219 0.000366 

Table 9b: Corrected Generalized Aerodynamic 
Forces of 2nd Elastic Mode 
Ma=0.9, k=0.5, a=7.5° 
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Summary 

Recent advances in the lifting surface methods are attributed to the possible generalization of the 
Aerodynamic Influence Coefficient (AIC) method to the Transonic and Hypersonic flight regimes. 
Thus, a unified AIC (UAIC) approach has been developed for aeroelastic/MDO applications in the 
complete Mach number range. 

A typical CFD method usually requires CFD/CSD interfacing in a time-domain aeroelastic analysis, 
while additional grid generation effort is needed in each MDO design cycle. The former procedure is 
still underdeveloped and the latter could be costly. Free from these procedures, the present UAIC is 
fully compatible with classical linear aeroelastic matrix equations. Thus, the UAIC approach as an 
unsteady aerodynamic module can be readily integrated with current standard FEM systems or into a 
MDO environment, practiced by aerospace industries. Specifically, the present module consists of 
four major unsteady aerodynamic codes which jointly cover all flight regimes, thereby rendering the 
module unified for all Mach numbers. First, the capability of the present aerodynamic module will 
be discussed. Second, the seamless integration of the present aero module with a MDO software 
ASTROS is properly defined. Third, cases studied for the validation of the integrated aerodynamic 
module will be presented. These include: supersonic analysis of a swept untapered wing, a fighter 
wing with transonic flutter constraint and a rectangular wing in roll with control surface reversal. 

Finally, we will present our concept of computational aeroelasticity in terms of Aeroelasticity 
Modeling Methodology (AIC methods) and Aeroelasticity Simulation Methodology (CFD methods) 
from the standpoint of industrial application. We believe that these two methodologies, if their 
practices follow the proposed global strategy, could compliment each other in achieving further 
computational expediency and with wider applicability. 

INTRODUCTION 

In recent years, rapid progress in aeroservo- 
elasticity and multi-disciplinary optimization 
(MDO) has demanded further improvement of 
computational aerodynamic methods in their 
capability to generate s-domain aerodynamics, 
their compatibility with structural FEM and 
their expediency for design optimization. 
Meanwhile, aerodynamic parameters such as 
wing thickness, body-wing configurations, and 
Mach number range to cover Transonic and 
Hypersonic flow regimes are considered as 
important parameters to be included in a 
general aerodynamic module, ready to be 
integrated with a MDO system such as 
ASTROS1. 

Although current CFD methods have reached a 
rather mature stage for steady aerodynamic 
design/analysis, its acceptance by industries for 
aeroelastic applications is still hampered by the 

problems in grid generation, CFD/CSD 
interfacing and extensive turn around time. 
For example, without a major modification, the 
program structure of ASTROS remains totally 
unfriendly to be interfaced with a time-accurate 
CFD method2,3. On the other hand, panel 
methods  imbedded in  the  Aero  module   of 
ASTROS such as the Doublet Lattice Method4 

(DLM) and the Constant Pressure Method5 

(CPM), albeit fully compatible with the 
structural FEM, requires further improvement 
in their robustness, their confinement to lifting 
surfaces (rather than wing-body systems) and 
their extendibility to transonic and hypersonic 
Mach numbers. 

Towards this end, during the last few years we 
have re-examined the above lifting surface 
methods critically from the viewpoint of 
program robustness and range of applicability. 
The result of this re-examination effort is a 
developmental     planning     of     a     unified 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 



14-2 

aerodynamic influence coefficient (UAIC) 
approach extending the applicability of our 
current wing-body AIC methods to the 
transonic and hypersonic regimes (Fig. 1). This 
paper attempts to report this UAIC approach 
and review these methods developed in each 
valid flight regime accordingly. 

A unified unsteady aerodynamic module 
(hereinafter called ZAERO module) is 
developed based on the UAIC formulation. 
The ZAERO module is a stand-alone 
Aerodynamic module, which can be interfaced 
with existing FEM programs such as 
NASTRAN and ASTROS. Under Wright 
Lab/AF contractual support, a seamless 
integration of the ZAERO module into 
ASTROS is being carried out. Fig. 2 shows the 
integrated ASTROS/ZAERO program 
architecture. 

In what follows, three validation cases for 
ASTROS/ZAERO will be presented. These 
include a swept untapered wing analysis in 
supersonic flow, a fighter wing with transonic 
flutter constraint and a rectangular wing in roll 
with control surface reversal. 

ZAERO: A UAIC BASED AERODYNAMIC 
MODULE 

The ZAERO module consists of four major 
unsteady aerodynamic codes that jointly cover 
the complete domain of all Mach number 
ranges, namely ZONA7U (formerly ZONA51U), 
ZONA6, ZONA7 and ZTAIC. As can be seen in 
Fig 1, the aero modules currently integrated 
within MSC/NASTRAN and ASTROS only 
have the purely subsonic and supersonic 
capabilities. 

By contrast, the ZAERO module serves as a 
unified aerodynamic tool which provides 
computed data from unsteady pressures to 
Generalized Aerodynamic Forces (GAF's) 
throughout all Mach numbers by means of the 
unified AIC approach. In fact, it is the UAIC of 
the ZAERO Module that has efficiently 
provided the k-domain solution. By means of 
rational-approximation techniques' the s- 
domain solution can be obtained from the k- 
domain solution for the subsequent 
aeroservoelastic application . 

The development of the ZAERO module has 
been the major endeavor of ZONA Technology 
in the last decade. The following is a brief 
account of the capability of the computer codes 
in ZAERO. 

ZONA6/ZONA7:    Generates Unsteady 
Subsonic/Supersonic Aerodynamics for Aircraft 

8 9 Configurations with External Stores ' 

Prior to 1990, all unsteady aerodynamics 
methods for aeroelastic computations were 
based on lifting-surface models (e.g. DLM). The 
aerodynamic effects due to the presence of 
bodies and due to wing-body interference were 
largely ignored. Meanwhile, the coupled 
external-store wing flutter, a problem that is of 
frequent concern to modern aeroelastiaans, can 
no longer be resolved by the lifting surface 
modeling alone. For this reason, development 
of methods such as ZONA6/ZONA7 is 
mandatory. 

In the following examples, Figs. 3 and 4 are 
computed by ZONA6 and Fig. 5 by ZONA7. 
Note that ZONA6 and ZONA7 are based on a 
higher-order panel formulation, and therefore 
are more robust than a low-order method like 
DLM. ZONA6 also includes a body-wake option 
for treatments of truncated stores. 

Fig. 3 presents the out-of-phase pressures on 
two spanwise stations on a 70° Delta Wing. It is 
seen that using a typical panel cut, DLM totally 
breaks down at M=0.8 and k=0.5. Fig. 4 presents 
the unsteady pressure along the underwing 
store of a NLR Wing-Tiptank-Pylon-Store 
configuration. It is clearly seen that a large 
discrepancy exists between the results of body 
alone and that of the wing-body. 

Fig. 5 presents the spanwise unsteady forces and 
moments of a NLR wing (F-5 wing) with 
underwing fin-missile and pylon. It is seen 
that, in both cases, the discrepancy between the 
wing-only results and the wing-body results are 
substantial. 

ZONA51U/ZONA7U:    Generates Unified 
Unsteady Hypersonic/Supersonic Aero- 
dynamics for Lifting Surface Systems1 

and Wing-body Configurations 

JO,11 

A Unified Supersonic/Hypersonic Lifting 
Surface Method has been developed 
recently10'11. This method combines the 
Supersonic Lifting Surface Theory (such as 
ZONA5112) with a nonlinear thickness 
correction matrix E,y, based on a composite 
third-order theory, which is rendered 
uniformly valid throughout the 
Hypersonic/Supersonic regime, i.e. 

J4C/>) = [D + /^-;{w} 
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where D is the linear supersonic downwash 
matrix provided by ZONA51 and p is a 
switching function that operates on the 
nonlinear thickness matrix E for compression 
and expansion waves. This correction matrix 
takes the flow nonlinearity as well as the flow 
rotationality due to shock waves into account, 
which covers both the Mach wave and 
Newtonian limits. For aeroelastic applications, 
ZONA51U has been applied to various wing 
planforms with thickness distributions. 
Superseding ZONA51U, ZONA7U integrates 
ZONA51U into ZONA7 in that only the lifting 
surfaces are subject to unified 
hypersonic/supersonic aerodynamics. 

Fig. 6 shows the GAF CL of an oscillating wedge 
by ZONA7U is in good agreement with Euler 
solution13. Fig. 7 shows the flutter results of a 
70° Delta Wing. It is found that ZONA7U 
improves substantially over the linear theory 
results in terms of pressures, stability 
derivatives, and provides more conservative 
flutter boundaries due to the thickness effect. 
Furthermore, the input format of ZONA7U is 
nearly the same as that of ZONA7 only with an 
additional input card on the Wing Profile 
Slope. The computing time for ZONA7U is 
also comparable to that of ZONA7. 

where [MAIC\ = 

ZTAIC:   Generates Unsteady Transonic 
Aerodynamics for Lifting Surface Systems ,14,15,16 

Since 1985, ZONA has been following up on the 
development   of  the   Transonic   Strip   (TES) 
Method14'15 for unsteady flow computations of 
arbitrary wing planforms. The TES method 
consists of two consecutive steps, to a given 
nonlinear Transonic Small Disturbance Code 
such as ZTRAN, namely the chordwise mean 
flow correction and the spanwise phase 
correction. Based on the TES concept, ZONA's 
Transonic Aerodynamic Influence Coefficient 
(ZTAIC) method is developed to fully automate 
the computation procedure resulting in a 
modal-based AIC matrix16. The computation 
procedure requires direct pressure input from a 
set of computed or measured data. Otherwise, it 
does not require airfoil shape or grid generation 
for a given planform. Meanwhile, all the 
mean-flow shock jumps are properly included 
in the resulting unsteady aerodynamics 
through the AIC formulation. The unsteady 
pressures can be readily solved on the surfaces 
of a lifting surface system according to the 
following modal-based AIC formulation, i.e. 

[ACp} = [MAlC\{h) 

AC
Pk- W W <t> J, <t> is the base- 

line modes. ACPb is the computed pressure due 
to 0, and h is the given modes which expressed 
in terms of <f>. 

Computed results of ZTAIC have been 
validated with existing results for a number of 
wing planforms. These include: the Lessing 
Wing17 at M=0.9 (Fig 8); the LANN Wing18; the 
Northrop F-5 Wing with/without control 
surface19 (see Refs. 14,15 and 16). 

Computed flutter results of the AGARD 
standard 445.6 wing (Fig. 9), the modeled F-16 
Wing and the Doggett Wing are presented in 
Refs. 16, 20, 21, and 22. It is seen in Fig. 9 that 
the flutter results of ZTAIC and CAPTSD are in 
good agreement. In contrast to CAPTSD, the 
essential feature of ZTAIC is that it can provide 
transonic Modal AIC's, which can be readily 
adopted by the ASTROS static/dynamic matrix 
equations. The Modal AIC also serves as the 
aerodynamic transfer function. Once computed 
it can be repeatedly used in the ASTROS 
optimization loop. Furthermore, ZTAIC has a 
user-oriented input format which is fully 
compatible with mat of DLM. 

ZAERO MODULE IN ASTROS 

According to the ASTROS/ZAERO program 
architecture (Fig. 2), database entities (such as 
MAIC) generated by the ZAERO module are 
computed during the ASTROS preface phase 
and need not be recomputed in the ASTROS 
analysis/optimization     loop. Meanwhile, 
computation of the ZAERO module is triggered 
by the new bulk data entry MKAEROZ which 
specifies the Mach number, reduced 
frequencies, method flags and the mean flow 
conditions. 

With the seamless integration of ZAERO into 
ASTROS near completion, several validation 
cases are underway. A case studied by Rodden 
using MSC/NASTRAN - Aero II and two 
specific cases studied using ASTROS/CAPTSD 
by Kolona)T and by Andersen et al are 
selected for present validations of the 
developed ASTROS/ZAERO. 

Swept Untapered Wing:   Supersonic Flutter 
Analysis 21 

Fig. 10 and Table 1 present a validation case on 
supersonic flutter analysis of a 15° swept 
untapered wing at M=1.3 and 3.0. In Table 1, 
computed results of ASTROS/ZONA7 for the 
no-thickness case and that of Rodden's method 
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(employing ZONA51 in MSC/NASTRAN) are 
compared with test data26. While the predicted 
flutter speeds with thickness effect (Case B) due 
to Rodden and ZONA7U are slightly 
unconservative at M=1.5, both are found 
conservative at M=3.0. 

Fighter Wing Optimization with Transonic 
Flutter Constraint24 

(Figs. 11-13, Tables 2-4) 

A fighter wing test case by Kolonay is selected 
for the present validation of the ZAERO 
module for transonic aeroelastic 
analysis/optimization at a design Mach number 
M=0.93. Fig. 11 shows the FEM and ZAERO 
aerodynamic models for this wing. The FEM 
model consists of 86 grid points. 62 membrane 
(CQDMEM/ CTRMEM) elements are used for 
modeling the wing skins, 361 shear (CSHEAR) 
elements for spars and ribs, 111 rod (CROD) 
elements for sparcaps and shear webs. There 
are 26 design variables defined for skin, spar, 
rib, sparcap and shear web design. 
ASTROS/ZAERO optimization is performed 
for one flutter constraint, which is: Flutter free 
from 0 ~ 15,000 in/sec at M=0.93 with mean 
angle-of-attack of <x=0.5°, and density at 
p=6.67E-07 slinch/in3 (= lb-s2/in4). 

Three unsteady aerodynamic methods in the 
ZAERO module are used in conjunction with 
the ASTROS optimization. These are: ZONA6, 
(linear subsonic), ZTAIC with CAPTSD2 steady 
input (ZTAIC/TSD), and ZTAIC with 
ENSAERO3 steady input (ZTAIC/N-S). 

The flutter speeds and frequencies of the initial 
design (at M=0.93, a=0.5*) are presented in 
Table 2. Here, the flutter speed of the initial 
design is about 20% below the constrained 
flutter speed (15,000 in/s). The computed 
results of ZAERO are compared with those of 
Kolonay27 using linear/nonlinear versions of 
CAPTSD with ASTROS. Overall, flutter results 
of the linear and nonlinear methods show good 
agreement. Less than 5% discrepancy in flutter 
speeds is found between ZTAIC/N-S and 
nonlinear CAPTSD. 

Fig. 12 shows the steady and unsteady pressure 
distributions of the initial design (at M=0.93, 
a=0.5* and k=1.0). The steady pressures of 
CAPTSD show stronger shock strength than 
that of ENSAERO, as expected. This difference 
in shock strength does influence somewhat the 
in-phase and out-of-phase pressures due to first 
bending and torsion modes. However, it is 
interesting to note that the corresponding 
flutter speeds in Table 2 (at M=0.93 but at 

different flutter frequency) vary no more than 
2%. 

Fig. 13 shows the design weight history of the 
fighter wing using ASTROS/ZAERO. Note that 
ASTROS optimization achieves converged 
solutions at the 11th iteration using ZONA6, 
9th iteration using ZTAIC/TSD and 8th 
iteration using ZTAIC/N-S. By converged 
solution, it is meant that the weight is 
minimized, while the flutter constraint is 
satisfied. Table 3 presents the optimized 
weights and flutter speeds at final design. For 
final design weight due to the nonlinear 
methods, the difference between weight 
percentage change of ZAERO and CAPTSD is 
about 11% and the trend is acceptable. 

By contrast, the final design weight due to the 
linear methods show opposite trend in weight 
percentage change. ZONA6 yields a 31.7% 
weight reduction whereas linear CAPTSD a 
1.87% weight increase. The reason for this 
remains to be clarified. 

Table 4 presents a list of local design variables of 
the final design structure. It is seen that the 
final structure design using ZTAIC/TSD and 
ZTAIC/N-S are nearly the same. They are also 
in good agreement with the results using 
nonlinear CAPTSD, except at design variables 8, 
16 and 21. Again, variance in the percentage of 
structure changes of the design variables are 
noticed when using the linear methods. 

Rectangular Wing in Roll Performance with 
Control Surface Reversal25 (Figs. 14-17) 

A rectangular wing test case of Andersen et al 
is selected for the present validation  of the 
ZAERO module for static aeroelastic analysis of 
the wing in roll with control surface reversal, 
the Mach number ranges from M=0.7 to 1.5. 

Fig. 14 shows the planform and aerodynamic 
model of the wing with aileron. The FEM 
model (not shown here) is a beam model 
consisting of ten equal length beam elements 
along the one-third chord position. A single 
aileron spans the outboard half of the wing 
with the hinge line located at three-quarter 
chord. 

Fig. 15 presents the "equivalent" rigid rolling 
moment derivatives C^ and reversal dynamic 
pressure qreversal computed by ZONA6, ZONA7 
and ZONA7U. Note that Cgs is aerodynamic 
related, but qreversai results from aerodynamic- 
structure interaction of the wing. Good 
agreement at M=0.85, 0.9, 0.925, 0.95, 0.975,1.1, 
1.2 and 1.5 with  the   solutions   due to the 
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CAPTSD/linear method is noted. ZONA7U 
provides the most  conservative   solution   at 
M=1.5. 

Fig. 16 presents the "equivalent" rigid rolling 
moment derivatives and reversal dynamic 
pressure computed by ZTAIC/TSD, ZTAIC/N-S 
and by CAPTSD at five transonic Mach 
numbers (M=0.85,0.9,0.925,0.95 and 0.975). It is 
seen that ZTAIC/TSD results are in good 
agreement with nonlinear CAPTSD. By 
contrast, different results using ZTAIC/N-S in 
Cts is observed near M=0.975, showing a low 
value of Cgs obtained at M=0.975. 

The discrepancies between the two ZTAIC 
solutions in C/s at high transonic Mach number 
is caused by the steady shock solutions of 
CAPTSD and ENSAERO. The CP plot of Fig. 17 
shows the forward shock location due to 
ENSAERO, in contrast to the aft shock (of the 
trailing edge) due to CAPTSD. Consequently, 
the lifting pressures ACp are impacted by these 

steady shock solutions as shown by the ACp's on 

the aileron. The kink in ACp due to ZTAIC/N- 
S is clearly a result of the steady N-S shock 
solution. The large departure in these aileron 
ACp's is known to affect the transonic hinge 
moment, whose value is sensitive to prediction 
methods and flow viscosity (Winzell, Ref. 28). 
Here, the effect of aileron ACp on the rolling 
moment derivative is apparent. 

COMPUTATIONAL AEROELASTICITY 

Preference to CFD methods or AIC methods for 
aeroelastic applications has been the subject of 
much discussion. Here, we refer both 
methodologies as a part of the computational 
aeroelasticity. In general, our concept of 
computational aeroelasticity consists of 
Aeroelastic Modeling Methodology, which 
includes AIC methods, structural FEM, etc., and 
Aeroelastic Simulation Methodology, which 
includes CFD methods, closely-coupled 
CFD/CSD interfacing method, etc. (see Figs 18, 
19) In our estimation, there should exist little 
conflict in the choice of these two 
methodologies for aeroelastic applications. 
Rather, they should compliment each other if 
their practices could follow the proposed 
strategy as shown in Figs 18 and 19. 

On the one hand, AIC methods, as evidenced by 
the present module, could provide expedient 
amplitude-perturbation solutions in both the k- 
domain and s-domain. Consequently, their 
application to aeroservoelasticity and the MDO 
environment  is straightforward.   In terms of 

aeroelastic applications, they should provide 
selected critical conditions for CFD methods to 
fine tune the unsteady aerodynamics in a 
confined flow regime, thus saving a substantial 
computing effort in search of potential flutter 
solutions. 

On the other hand, the utilization of CFD 
methods is to link up with a structural FEM via 
a closely-coupled CFD/CSD interfacing, such as 
the BEM solver29, as indicated in Figs 18, 19. 
Clearly, CFD methods are required when more 
accurate solutions become mandatory in a flow 
regime where nonlinearity dominates (e.g. 
thick wing in supercritical flow, high-angle-of- 
attack flow with vortex dynamics). 

For classical-flutter predictions, the flow 
nonlinearity could be linearized through a 
robust indicial method routine in conjunction 
with a proposed modal AIC method16. In this 
way, CFD solutions could be carried over to the 
k-domain for its subsequent participation to 
aeroservoelasticity and MDO applications. For 
applications in static aeroelasticity, the proposed 
modal AIC method can be an expedient means 
in utilizing CFD solutions to generate a 
flexibility correction to the measured rigid load. 

Thus, it is in this context that we propose the 
global strategy for computational aeroelasticity. 
From the standpoint of industrial application, 
the utilization of AIC methods and CFD 
methods should not be mutually exclusive, but 
rather be complimentary. 

CONCLUSIONS 

We have presented a unified AIC based 
unsteady aerodynamic module ZAERO, 
applicable to all ranges of Mach number, from 
subsonic    to    hypersonic. The     seamless 
integration of ZAERO into ASTROS was 
successfully demonstrated by the present in- 
depth study on three selected validation cases. 
However, two specific findings in these cases 
studies are of some concern. For the fighter 
wing optimization case, good agreement is 
found between all methods in the initial design, 
but not so in the final design. The departure 
found between the final design results of two 
linear methods is probably caused by the 
difference in their aerodynamic sensitivities. 
Perhaps a standard test cases(s) should be 
established for applying other CFD methods to 
ASTROS for further verification of this issue. 

For the rectangular wing in roll performance 
case, the disagreement between our two ZTAIC 
results in Cgg using CAPTSD and ENSAERO 
steady inputs indicates that the inclusion   of 
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viscous effect is crucial to the prediction of 
transonic static aerodynamic moments, as noted 
by Winzell. 

As the seamless integration of ASTROS/ 
ZAERO near completion, its validation should 
continue to cover more cases for transonic and 
hypersonic design and analysis. 
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Figure 1.   ZAERO and Other Aerodynamic Modules. 
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> Gust force vectors 
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• Steady aerodynamic force 

vectors of trim parameters 
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and Optimization Loop 

Figure 2.   ASTROS/ZAERO Program Architecture. 
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Figure 3.     Out-of-Phase Pressures on Two Spanwise Stations. 
70* Delta Wing at M=0.8, k=0.5, Pitch Axis=0.5cR. 
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Figure 4.       Unsteady Pressures Along Store of NLR Wing-Tiptank-Pylon-Store Configuration at M=0.45, 
k=0.3055, Pitch Axis=0.5cR. 
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Figure 5.      Spanwise Normal Force and Pitching Moment for the Clean F-5 Wing and F-5 Wing with Underwing 
Store Configuration at M=1.35 and Reduced Frequency k=0.1, pitch axis=0.5cR. 
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M>1.0 

Figure 6.      GAF C^ and Cj^ of a Rectangular Wing with Wedge Profile at Various Reduced Frequencies 

(M=4.0, 0*15", h=0.25c). 
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Figure 7.   Flutter Speeds and Frequencies of a 70' Delta Wing vs. Mach Number. 
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Figure 8.   Lessing Wing Oscillating in First Bending Mode at M=0.9, k=0.13. 
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Figure 10.   15' Swept Untapered Wing 
Showing Dimensions. 

Table 1. Flutter Results of a 15' Swept Untapered Wing With 
and Without Thickness Effect. 

Flutter Results of Case HA145FB (With/Without Thickness) 

O = 0.20606 o = D.391 
M=1.3 M= =3.0 

Vf(ft/s) ff(Hz) Vf(ft/s) ff(Hz) 

Test 1280 102 2030 146 

Rodden 1397 124 1913 149 

i ASTROS (ZAERO) K-Methcx 1/P-K Method 

ZONA7 1583/1601 132/130 2369/2448 158/154 

ZONA7U 1415/1426 123/122 1859/1923 156/152 
a=P/Psea level 

FEM Model ZAERO Model 

Figure 11.    Structural/Aerodynamic Models of a Fighter Wing Test Case: Optimization with Transonic Flutter 
Constraints at M=0.93 (Kolonay, Ref. 24). 
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Table 2.   Flutter Speeds of the Initial Design: Fighter Wing Optimization. 

Linear Method Nonlinear Method 
Kal<n>y 
(Linetr 
CAP-TSD) 

ASTROS/ZAERO 
(ZONA6) 

Kolomy 
(Nonlinear 
CAP-TSD) 

ASTROS/ZAERO 
(ZTAIC/TSD) 

ASTROS/ZAERO 
(ZTAIC/N-S) 

Flutter 
Speed 
(in/s) 

12,492 12,309 12,137 11,734 11,550 

Flutter 
Frequency 

(Hz) 
19.72 19.71 19.64 19.61 19.55 

M=0.93,   a=0.5" 

2y/b=0.35 

1.2   0.4    0.6   0.8   1.0 
X/C 

2y/b=0.85 
0.0   0.2   0.4    0.6   0.8 

X/C 

First Bending Mode, k=1.0 
-0.15 

-ZTAicyrsD 
-ZTAIC/N-S 
-ZONA6 

-0.2- A>~^ 
a -o.i- 
<. °°- 
£ o.i- *h 0.2- Y 

0.3- —i—i—i—i— 

-0.2 
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0.3 ■ 8 

0.0 0.2   0.4   0.6   0.8    1.0 
X/C 
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First Torsion Mode, k=1.0 
-0.7 
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X/C 

Figure 12.  Unsteady/Steady Pressure Distributions of the Initial Design: Fighter Wing Optimization. 
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Figure 13.  ASTROS/ZAERO Design Weight History: Fighter Wing Optimization. 
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Table 3.   Design Weight and Flutter Speeds of the Final Design: Fighter Wing Optimization. 

a) Weight at Final Design: 

Linear Method Nonlinear Method 
Kolonay 

(Linear CAP-TSD) 
ASTROS/ZAERO 

(ZONA6) 
Kolonay 

(Nonlinear CAP-TSD) 
ASTROS/ZAERO 

(ZTAIC/TSD) 
ASTROS/ZAERO 

(ZTAIC/N-S) 

Final 
Weight Obs) 

507 340 427 373 376 

Weight 
Change (%) 

+1.87 -31.7 -14.22 -25.1 -24.5 

Initial Weight = 497.7 lbs 

b) Flutter Speed of Final Design (p=6.76E-07 slinch/in3). 

ZAERO(ZONA6) ZAERO(ZTAIC/TSD) ZAERO(ZTAIC/N-S) 

Flutter Speed 
(in/s) 15,000 15,100 15,000 

Flutter 
Frequency (Hz) 

17.07 17.08 17.05 

Flutter Speed 
Increase (%) 21.8 28.0 29.8 

Table 4.   Final Design Structure: Fighter Wing Optimization. 

% Change of Property from Initial Values 

Global 
Design 

Variable 
Local Design Variable 

Initial 
Property 

Value 

Linear Methods Nonlinear Methods 

Kolonay/ 
CAPTSD 

ZONA6 Kolonay/ 
CAPTSD 

ZTAIC/ 
TSD 

ZTAIC/ 
N-S 

1 CROD 101-131 0.050 in* -75.46 -88.88 -82.07 -90.0 -90.0 

2 CSHEAR 309.310312.314316.318,312.324,328,332 0.075 in -75.0 -75.0 -75.0 -75.0 -72.7 

3 CSHEAR 311,313,315,317,319.322.325,329,333 0.065 in -75.0 -75.0 -75.0 -75.0 -75.0 

4 CSHEAR 320,323.326,330.334 0.050 in 24.21 -71.14 -70.05 -75.0 -75.0 

5 CSHEAR 327.331,335 0.030 in 50.0 50.0 50.0 50.0 50.0 

6 CROD 134 -153 1.000 in2 -89.39 -90.0 -84.05 -90.0 -90.0 

7 CROD 164-181 0.750 in2 -90.0 -90.0 -88.92 -90.0 -90.0 

8 CROD 188 -197 0.600 in-1 25.0 25.0 25.0 -4.25 -5.23 

9 CROD 204-209 0.500 in2 25.0 25.0 25.0 25.0 25.0 

10 CSHEAR 340-361 0.080 in 50.0 50.0 50.0 50.0 50.0 

11 CTRMEM 1,2 0.250 in -87.6 -90.0 -88.9 -90.0 -90.0 

12 CTRMEM23.24 0.188 in -87.29 -90.0 -87.75 -90.0 -89.8 

13 CTRMEM 43,44 0.080 in -87.75 -90.0 -88.9 -90.0 -90.0 

14 CTRMEM 55.56 0.040 in 50.0 50.0 50.0 50.0 50.0 

15 CQDMEM1 3 - 22 0.250 in 27.24 -90.0 -73.36 -90.0 -90.0 

16 CODMEM125-42 0.188 in 50.0 0.08 50.0 30.3 30.3 

17 CODMEM145-54 0.080 in 50.0 50.0 50.0 50.0 50.0 

18 CODMEM157-62 0.040 in 50.0 50.0 50.0 50.0 50.0 

19 CSHEAR 300.336 0.135 in 50.0 50.0 50.0 50.0 50.0 

20 CSHEAR 301-304,337 0.120 in 50.0 50.0 50.0 50.0 50.0 

21 CSHEAR 305,306,338 0.090 in 50.0 0.0 -3.34 -62.5 -66.66 

22 CSHEAR 307.308,339 0.050 in 50.0 50.0 50.0 50.0 50.0 

23 CROD 132.133.154.155 1.750 in2 25.0 25.0 25.0 25.0 25.0 

24 CROD 156-163.182,183 1.350 in2 -89.52 -90.0 -88.91 -90.0 -90.0 

25 CROD 184-187.198,199 1.050 in2 25.0 25.0 25.0 25.0 25.0 

26 CROD 200-203.210,211 0.880 in2 25.0 25.0 25.0 25.0 25.0 
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Figure 14.    Planform and Aerodynamic Model of a Rectangular Wing Test Case: Transonic Roll Performance with 
Control Surface Reversal (Andersen et al, Ref. 25). 

0.025 

0.000 

 CAP-TSD (nonlinear) 
—- CAP-TSD (linear) 
♦ 20NA6/7 (linear) 
■     ZONA7U 

I   ii   ii   juiijuii   jimji   ii   ijiiiijitu 

0.7      0.9      1.1       1.3      1.5 
Mach Number 

 CAP-TSD (lunar) 
.-WO- -s •      ZONA6/7 (linear) * 

■ ■X « ■      ZONA7U /      ' 
M ^v* 4              / 
m 280- Vx                                            **    X   ' 
k 

> \\                           +*    s 
la 

a1 220- V^/7 
160- vC^* 
100- 

0.7      0.9      1.1       1.3      1.5 
Mach Number 

Figure 15.    Rigid Rolling Moment Derivative and Reversal Dynamic Pressure of the Rectangular Wing: 
ZONA6/7/7U vs CAPTSD. 
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Figure 16.    Rigid Rolling Moment Derivative and Reversal Dynamic Pressure of the Rectangular Wing: ZTAIC vs 
CAPTSD. 
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Figure 17.  Rectangular Wing Pressure Distributions at M=0.975: Steady Lifting Pressures. 
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Figure 18.   Computational Aeroelasticity: A Global Strategy. 
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Figure 19.  Computational Aeroelasticity for MDO Applications. 
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Experience With Unsteady Aerodynamics Computation 
for Saab Aircraft 

by 

Bo Franzen, Bo Nilsson and Bengt Winzell 
Flutter and Loads Department 

SAAB AB 
S-58188 Linkoping, Sweden 

SUMMARY. 

Unsteady aerodynamics plays a vital role in the design 
of an aircraft. Already in the initial phase it is necessary 
to have reliable estimates of flutter boundaries and to 
supply information for control system software and 
hardware. Thus speed and accuracy of unsteady aerody- 
namic computation are required. In practise, it is natural 
to depend mainly on computations based on linear the- 
ory. There are situations where speed of computation 
and accuracy are contradictory, and then one must resort 
to previous experience and correction strategies. 

The elastic modern aircraft is becoming more and more 
aero-servo-elastic. The quality of simulation of the 
numerous feedback mechanisms is highly depending on 
the accuracy of control surface aerodynamics. More- 
over, the frequent application of multi-disciplinary opti- 
mization puts new strong demands on unsteady 
aerodynamic accuracy. 

In this paper we will show examples of validating exper- 
iments and computations, and discuss applications of 
classical and new methods for real civil and military air- 
craft. 

INTRODUCTION. 

Modern aircraft are flexible structures which easily 
respond to aerodynamic unsteadiness. While experience 
of previous projects and flight testing plays a fundamen- 
tal role in the clearance of a new design, there is a fun- 
damental and ever increasing role of computation for 
flutter and response. 

At Saab we saw the advent of computer programs for 
unsteady aerodynamics more than 40 years ago. Since 
then the efficiency and accuracy of the linear aerody- 
namics modeling have reached considerable heights, 
now enabling whole design concepts to be analyzed in a 
fraction of the time that was possible before. Recently, 
more complicated modeling of the flow in terms of non- 
linear equations for the Full Potential, Euler's and even 
Navier-Stokes' equations have been introduced. It is not 
always true, however, that an increase of precision in the 
prediction have compensated the computational effort 
of more sophisticated methods. Moreover, the accuracy 
of the sophisticated methods is itself subject to suspi- 
cion and doubt. 

Although classical bending/torsion flutter seems to be 
accurately predicted by existing computational meth- 

ods, and thus can be excluded already in the early 
design phase, there are many aspects of airforce compu- 
tation which are less mature. For instance the control 
surface effectiveness and hinge moments are difficult to 
calculate correctly and such data are important for suc- 
cessful prediction of the coupled aerodynamics - elastic- 
ity - controls system. The installation of a large number 
of weapons under the wings and even at wing tips lead 
to considerable change in the elastic and aeroelastic 
properties of an aircraft. This challenges both the aero- 
dynamics and the structural dynamics analysis to accu- 
rately predict these properties, in particular as we are 
looking for an "optimal design". 

COMPUTER PROGRAMS. 

The corner stone in flutter and response analysis is the 
AEREL system, once introduced by Stark. It contains a 
linear unsteady potential boundary element method for 
subsonic flow, ADE, and another method for supersonic 
flow. Recently we have included ZONA512 enabling a 
common modeling of the full configuration aircraft in 
the whole speed range. The program package contains 
pre and post processing tools for loads, generalized 
aerodynamic forces, flutter analysis and means for 
checking data and results. The linear methods work in 
the frequency plane. 

Mainly for analyzing single wing transonic phenomena, 
an unsteady aerodynamics method based on the full 
potential equation was introduced3. This method steps 
in time, using transpiration technique for the time vary- 
ing deformation input and for strip wise boundary layer 
correction. It also couples the aerodynamics solution 
directly with the equations of motion for the deforming 
wing. 

Through close cooperation with FFA (the Swedish 
Aeronautical Research Institute in Stockholm) we have 
recently introduced the multi purpose CFD program 
EURANUS in industrial applications. The EURANUS4 

program was developed by FFA and VUB (Vrije Uni- 
versiteit Brüssel) for steady state Euler and Navier-Sto- 
kes flow, capable of handling multi-block structured 
grids. It was made time accurate by FFA through a dual 
time step technique and introduction of a moving grids 
option. A pilot version of a direct coupling of aerody- 
namics and structures was introduced by Saab. 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation' 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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APPLICATIONS FOR MILITARY AIRCRAFT 

During ten years, considerable work including analysis, 
tests and experiments for the JAS 39 Gripen aircraft was 
carried out. Careful modeling of the aircraft as a set of 
planar thin surfaces for the AEREL1 system enabled 
complete flutter analysis of many weapons configura- 
tions, including the effect of the digital control system. 
The analysis was based both on Finite Element mode 
shapes and mode shapes measured in ground vibration 
tests. The subsequent flight test program essentially ver- 
ified the flutter calculations. We will briefly discuss, 
however, a case where the flight test program showed a 
difference in damping, compared with calculations. 

Unsteady aerodynamics modelling 

A multi-role aircraft such as Gripen suggests a large set 
of different weapons configurations. It turns out, how- 
ever, that very few cases require actual aerodynamic 
modeling of under wing stores. The tip installation is of 
higher aero-elastic importance, and thus the bulk of 
computations have used an aerodynamic model for the 
complete aircraft, including its wing tip configuration, 
but with few exceptions under wing storage has entered 
the computations only via the mode shapes. 

Example of full aircraft 
geometric modelling 
for AEREL. 

The model is trimmed such that typical aerodynamic 
derivatives match available data in the aerodynamic 
design data base. This usually requires correction fac- 
tors for control surfaces. 

Aerodynamic influence matrices in a reasonably fine 
grid are computed for a set of subsonic and supersonic 
Mach numbers and a range of reduced frequencies. 
These matrices are stored and reused for repeated gener- 
alized aerodynamic forces calculations for multiple con- 
figuration elastic mode shapes. The generalized forces 
are treated as aerodynamic transfer functions in flutter 
analysis, aero-servo-elastic analysis and response analy- 
sis. 

Aero-servo-elastic analysis and flutter test excitation 
method. 

The Gripen aircraft has a fly-by-wire control system 
with feedback control to overcome its basic longitudinal 
instability in subsonic flight. The feed back signals are 
given by accelerometers and rate gyros, and these pick 
up any motion in the rigid but also the elastic aircraft. 
Hence this aircraft is an aero-servo-elastic system and 
must be treated as such in flutter analysis and dynamic 

response analysis. In particular this requires the elastic 
mode shapes to be computed or measured also at the 
gyro position. In most cases, however, the impact of the 
control system feedback on flutter stability is rather 
weak. 

The control surface servos are used for flutter excitation. 
A repeated sine sweep of the elevons, the rudder and the 
canards excite the aircraft, and the response at several 
locations on the aircraft is measured by accelerometers. 
The signals are telemetrized to the ground control for 
on-line examination and are recorded for detailed post 
flight evaluation. An example of the response at the 
wing tip launcher is presented below. 

Elevon angle 
(mainly flutter excitation) 

Accelerometer reading 
at wing tip. 

To verify stability for the aero-servo-elastic (ASE) sys- 
tem the following steps are taken: 

• Calculate, at specified flight conditions and for dif- 
ferent aircraft configurations, the response of the 
aircraft and the autopilot sensors for a harmonic 
motion of the control surfaces. In this calculation 
the same aerodynamic and structural model of the 
aircraft as in the flutter analysis is used. 

• Calculate the resulting control surface commands 
due to the sensor response. In this calculation a 
reduced model of the autopilot is used 

• From the open loop gains it can be verified whether 
the stability requirements are fulfilled. If not, 
requirements on body-bending attenuation filters 
and maximum autopilot gains are fed back to the 
flight systems department. 

The ASE-analyses as described above are carried out by 
the flutter department for every relevant change of the 
aircraft configuration and every new version of the auto- 
pilot. The elastic contribution to the sensor response 
can, depending on the sensor location, be considerable 
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and affect the stability of the flight control system as 
described above. 

To reduce the number of iterations in the autopilot 
design process, the flight systems department get at an 
early stage approximate correction factors for the trans- 
fer functions between control surface deflection and 
autopilot sensors. These correction factors account for 
the elastic contributions to the transfer functions. 

The theoretical analyses are checked by extensive test- 
ing both on ground and in flight. The ground testing is 
used for calibration of the structural model i. e. the 
mode shapes, modal deflection at the autopilot sensors 
and mass couplings to the control surfaces. In the 
response calculations measured structural damping is 
used. The figure below shows a comparison between 
measured and calculated response of the pitch rate gyro 
to pitch command. The reduced model of the autopilot 
is checked by measuring the different transfer functions 
between sensor outputs and control surface commands. 
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The ASE-flight testing which is performed in connec- 
tion with flight flutter testing is used for verification of 
the calculated stability margins. The accuracy of the 
ASE-process depends to a large extent on the unsteady 
aerodynamic calculations especially on the control sur- 
face, aerodynamics. This is most often over-predicted 
which calls for the use of correction factors. The figure 
below shows a Nyquist diagram with a comparison 

Pitch rate vs 8e deg/sec/deg Mach 0.6 6 km 

Calculated 
- Measured 

between calculated and measured pitch rate to elevator 
deflection. 

Flutter analysis and flight test. 

Flutter analysis is done with the p-k method. Hence one 
iterates in the equation 

[p2 • M + p* • C + K + A(Im(p*)) + S(p*)]q = 0 
* 

P   = P 

to find the eigen solutions q and the eigenvalues p of 
the coupled aerodynamic-structures-controls system. 
Here M is the mass matrix, C is a damping matrix, 
A (co) is the matrix of aerodynamic transfer functions 
defined for pure harmonic oscillation and S is the 
resultant transfer functions matrix for the control sys- 
tem. The solution p = d + ico of the non-linear eigen- 
value problem thus contains the increment d/co and the 
frequency co. 

We are generally using Mach number and altitude as 
parameters in the analysis and present the flutter analy- 
sis in a set of diagrams of damping versus flight speed at 
different altitudes. Similarly frequency versus speed is 
given for different altitudes. 

During testing it was found that there is a difference 
between computed and measured damping rates for 
high transonic Mach numbers. 

Decrement 

1.0 Mach number 

This discrepancy was unexpected and considered too 
large not to be explained. An investigation of the cause 
of the non-conservative prediction was initiated. The 
damping is for a mode involving the tip missile motion 
and the flexible wing tip. The following hypotheses 
were put forward: 

• Transonic dip phenomena due to shock waves etc. 
As will be discussed below, the conclusion was that 
no strong transonic effects could be detected when 
replacing linear theory unsteady aerodynamics by 
Euler computations. 

• Could there be flow separation over the wing, and 
was this an effect similar to the LCO-phenomena 
discussed by Cunningham and Meijer ? 
As will be discussed in the next subsection, the 
conclusion was that the wing is very well shaped, 
not admitting any flow separation at normal angles 
of attack in this speed range. 

• Spurious feedback control? 

Although not necessary for the clearance of the present 
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aircraft, an explanation is important to have confidence 
in the unsteady aerodynamics. 

It is difficult to measure unsteady aerodynamic forces in 
flight but in this case such data were obtained to validate 
the linear unsteady aerodynamic forces at the wing tip. 
Indeed, exciting the aircraft at resonance frequency and 
measuring shear force and pitching moment close to the 
wing tip, we could compare computed aerodynamic 
forces with measured ones and found good correlation. 
The diagrams below compare (in the frequency plane) 
measured data at a supersonic free stream Mach number 
with computations. The motion of the wing tip was used 
as input for the computed aerodynamics. 

Comparing measured 
(solid line) and com- 
puted (dashed) shear 
force for the aircraft 
excited at resonance 
frequency. 

Comparing measured 
(solid line) and com- 
puted (dashed) pitch- 
ing moment for the 
aircraft excited at reso- 
nance frequency. 

CFD application 

In order to estimate the strength of transonic effects on 
the flutter characteristics of the Gripen aircraft we 

applied the CFD program EURANUS4'5. A detailed 
grid around the wing with its complex wing tip geome- 
try was created by the MULCAD module of ICEM/ 

CFD7. 

The grid consisted of a little more than 1,000,000 points 
in 194 blocks. A reason for such a large number of 
blocks is that EURANUS works in structured meshes 
and that the geometry has many details, such as depicted 
in the figure below. 

solid walls 

An example of Mach number distribution about part of 
the wing tip is shown below for a free stream Mach 

I 0.7Dtf 

number of M = 0.95. The whole grid was then deformed 
according to the elastic mode shapes, one by one. The 
amplitude of this deformation was a pulse of "one 
minus cosine" type. The transient response in pressure 
distribution was computed, and because of the small 
maximum amplitude in the perturbation, air force matri- 
ces were obtained using Fourier analysis. Using these 
transonic aerodynamic forces in flutter analysis some- 
what reduced the damping compared to linear analysis, 
but this reduction was global in speed and of much 
smaller magnitude than the difference to flight data. We 
rather attributed this difference in damping to the ten- 
dency of inviscid analysis to over emphasize transonic 
effects. No transonic effect was detected. 

So far we have not applied unsteady Navier-Stokes anal- 
ysis for the Gripen aircraft. However; in an attempt to 
spot any signs of possible flow separation on the wing, 
steady viscous CFD analysis was carried out for several 

Iso Mach lines in a vertical section and 
velocity vectors at the trailing edge. 
M = 1.05, a = 5°. 
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transonic and supersonic Mach numbers, M > 0.9, and 
for angles of attack up to 5 degrees. The snapshot above 
demonstrates the attached flow character that we found 
to be typical for the JAS Gripen wing. This supports the 
experience from flight tests that the flow over the wing 
is of very high quality. 

Use of CFD in project work seems still to be almost for- 
biddingly time consuming. This is partly due to the 
many man weeks or even months it takes to create struc- 
tured grids around complex geometries. However, the 
gridding problem should be less time consuming in the 
next generation of CFD codes, using various types of 
more freely distributed blocks or even unstructured 
grids. But also the computing time is considerable. At 
present our experience in the work on Gripen is that for 
flutter, linear analysis does a reasonably good job and 
that the effects of transonic unsteady aerodynamics are 
less pronounced. 

APPLICATIONS FOR CIVIL AIRCRAFT 

We will briefly discuss two examples of applications for 
the Saab 2000 aircraft. The first example concerns con- 
trol surface aerodynamics and dynamics of dampers. 
The second example is for gust load evaluation. 

Flutter stability of a spring tab system. 

The initial design of Saab 2000 had a mechanical con- 
trol system for the elevator. The concept was later aban- 
doned for a power controlled elevator. The change in 
design was motivated by the flight mechanics longitudi- 
nal stability which had to be increased in certain 
extreme configurations. The flutter stability was well 
proven both in test and analysis. 

The mechanical control system consisted of aerodynam- 
ically balanced control surfaces with tabs which also 
had an aerodynamic balance. The tab was a so called 
spring tab. 

Elevator 
Tab 

Tab input affects the main 
surface through aerodynamics 
and spring/damper. 

The unsteady aerodynamics for the spring tab system 
was obtained from a combination of linear potential the- 
ory and specially designed flight tests to obtain reliable 
correction factors to the computed forces. Control sur- 
face aerodynamics is rather difficult to compute, and in 
this case both the tab and the main control surface were 
aerodynamically balanced. In such a configuration, the 
hinge moments is the difference of two large but almost 
equal numbers, and the resultant force enters the deli- 
cate stability equations. Measuring tab loads in flight 
gave quasi-steady data and with the help of this, correc- 
tions to the linear potential analysis could be obtained. 
In the flutter analysis, a variation of these factors was 

made to certify the robustness of the prediction. 

It turned out that in order to prove flutter stability in the 
extended flight envelope (20% increased speed range), 
spring tab dampers had to be introduced. These were of 
hydraulic type, and influenced the dynamics of the ele- 
vator and tab considerably. 

Usually a damper is a pure damper only in a narrow fre- 
quency band. In the diagram below we show measured 
characteristics of the damper that was used in the air- 
craft. It shows a stiffness component and a damping 

K (kN/m) D (kN/(m/s)) 
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component of the total impedance. The interesting, and 
as it turns out, most beneficial effect of the spring tab 
flutter damper is the stiffness it adds at higher frequen- 
cies. It separates the two (or more) basic control surface 
frequencies. The "tab frequency", which without 
damper is in the order of 15 Hz, was raised to above 25 
Hz. Thus the elevator mode, which on ground has a low 
frequency, but becomes suffer due to the aerodynamic 
spring with increasing dynamic pressure, is unable to 
couple with the tab mode. This is clearly demonstrated 
in the diagrams below. 
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This analysis is an example of how, in addition to the 
difficulty to get the unsteady aerodynamics right, the 
flutter analyst also has to consider all other dynamic 
ingredients in the model. 

Unsteady aerodynamics for dynamic loads. 

Unsteady aerodynamics plays an important part in gust 
loads calculations. Considerable work is spent on devel- 
oping a reliable computational model for the unsteady 
linear potential theory. Since gust loads are obtained in a 
global model of the aircraft and the equations of motion 
for the whole rigid and elastic aircraft are to be solved, 
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the basic aerodynamic derivatives have to be well repro- 
duced and the quasi-steady aerodynamic loads distribu- 
tion over fuselage and lifting surfaces must be correct. 
Since modern aircraft also have feed back control, the 
inclusion of any control system is important and there- 
fore also the control surface effectiveness. 

Linear theory has to be corrected for numerous effects 
which are not usually covered by the linear theory. This 
includes the relaxation of the Kutta condition on non- 
lifting surfaces and the control surface effectiveness. 
Means  for such  corrections  were  included in  the 
AEREL1 package. 

x104 Effect of angle of attack 

3 
—  Authorized 

... 
:K M AEREL 

' "-*-«*»<  
BL(m) 

The diagram above is an example of how the computa- 
tional model is trimmed to closely reproduce detailed 
air loads on the aircraft. This is the wing torsion distri- 
bution due to change in angle of attack. In particular, the 
jump in load across the engine nacelle is a crucial fea- 
ture. The authorized loads data were obtained from a 
combination of wind tunnel experiments, computations 
and similarity with other aircraft. Our experience is that 
the detailed trimming of the computational model sel- 
dom calls for any drastic deviations from just plain geo- 
metric corner coordinate data in the aircraft definition. 

EXPERIMENTS AND VALIDATION 

Nonlinear methods for unsteady aerodynamics can be 
accepted for industrial application only when proven 
accurate and ready to use in such applications where a 
better analysis than the classical methods is needed. 
Unfortunately our experience is, that many times the 
cases which call for the more complicated analysis also 
are complicated with respect to geometry or flow condi- 
tion. The geometry can be too complicated to enable 
enough detailed grids for appropriate resolution, or the 
flow conditions may be highly vortical or contain sepa- 
rated flow and there we have less confidence in the abil- 
ity of new methods to really pick up the true physics. 
So, overall, unsteady CFD methods are considered with 
suspicion since it appears that in the cases where you 
really would need them, they are not ready for use. 

However, anticipating the methods to mature we have 
ongoing programs to investigate the accuracy one can 
achieve and the ease by which the methods can be han- 
dled in the industrial environment. We will discuss three 
rather simple cases here. 

Unsteady air loads on a pitching delta wing. 

Jointly with VAC (Volvo Aero Corporation) and FFA 
(Swedish Aeronautical Research Institute) we have 
taken part in a series of experiments and computations 
of unsteady pressure on a cropped delta wing with a 55 
degree leading edge sweep. The model was built in two 
different sizes, one three times the other. The larger 
model was equipped with a part span trailing edge con- 
trol surface. One chord was instrumented with dynamic 
pressure transducers. 

pressure transducers 29-31 

pressure transducers 1-28 

X„ s Bccderornatsr no 

Dimensions in mm 

The larger model9 

With a NACA64A006 section this wing is purely sub- 
sonic for M = 0.7 and moderate angles of attack. There- 
fore unsteady pressures, measured in a transonic 0.5 m x 
0.5 m wind tunnel at VAC should match the ones com- 
puted with linear potential theory. The figure below 
indeed verifies this. For the computations we have used 
Stark's ADE method1. The frequency of 285 Hz for this 
model with a root chord of 23 cm corresponds to a 
reduced frequency of about 1.0, based on the chord 
where the measurements were taken. 

Unsteady Cp due to 
pitch oscillation 

For M = 0.95 (actual tunnel reading was M = 0.97, but it 
was later discovered that the Mach number over the 
wing was less) the flow is transonic already at a = 0°. 
The computation is thus carried out with an unsteady 
full potential analysis, including a simple boundary 
layer correction. Here the reduced frequency based on 
local chord is about 0.25. 
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Unsteady Cp due to 
pitch oscillation 

The experimental data in the figure above was obtained 
with three different levels of pitch amplitude, ranging 
from 0.2 to 0.7 degrees. There is a spread in the data, but 
there is no evidence that this is due to physical nonlin- 
earity. It is probably more an estimate of the tolerances 
in the measurement. 

The comparison seems to indicate that the measure- 
ments were correct (agreement with linear theory for 
subsonic flow) and the transonic case supports the use of 
the transonic full potential method for mild transonic 
flow and pitch motion. Without boundary layer correc- 
tion, however, the results were inadequate. More about 
this is published in Reference 8. This experiment will be 
followed by one in the larger T1500 wind tunnel at FFA, 
this time with a variation in mean angle of attack. 

Unsteady air loads due to oscillating control surface. 

The larger model of the delta wing was tested at FFA in 

the wind tunnel T15009. The trailing edge control sur- 
face was oscillated around different mean angles and 
with different frequencies and amplitudes. For the sub- 
sonic free stream Mach number, M = 0.7, the compari- 
son with theory is rather good. For higher Mach 
numbers, with well developed transonic flow conditions, 
the comparison between theory and measurements is 
reasonable as long as the theory can handle the tran- 
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Unsteady pressure due to control surface 
oscillation. M = 0.94. 

sonic flow and if the mean control surface angle is not 
too large. A large deflection angle resulted in separated 
flow over a large part of the control surface. 

In the figure above we plot unsteady pressure measure- 
ments (symbols), compared with unsteady Euler com- 
putations (lines) for the subcritical case, M = 0.94, in 
which the shock is located just ahead of the hinge line. 

For M = 0.97, the shock is stronger and located slightly 
behind the hinge line. Because EURANUS was used in 
the inviscid Euler mode, the shock location in the com- 
putation is too far aft, and this of course worsens the 
comparison. The peaks are also much higher in the com- 
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Unsteady pressure due to control surface 
oscillation. M = 0.97,8 = 0°. 

putation. The height of such peaks depends on ampli- 
tude and sampling rate in tests and on grid size in the 
computations. Therefore global quantities, like the lift- 
ing force, can be reasonable even if the detailed pressure 
plot shows bad agreement. In this case, however, the 
hinge moments must be completely different in the test 
and in the computation. 

When the control surface is further deflected, the shock 
moves further aft in the test until the flow separates. 
This physical phenomenon has a great effect on the con- 
trol surface effectiveness, but so far a CFD analysis has 
not been successfully applied. The figure below presents 
steady pressure distribution for a sequence of increasing 
control surface deflection angles. Notice the fully super- 
sonic character of the pressure ahead of the hinge line 
and also the classical behavior of pressure on a ramp in 
supersonic flow behind the hinge line. The classical for- 

mula AC   =       ope    suggests an M,    of about 1.08 

Steady pressure distribution for a sequence 
of control surface angles. M = 0.97. 
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here, and that is about what corresponds to the local Cp 
of about 0.25-0.3 ahead of the control surface. 

Flutter analysis for the 445.6 elastic wing model. 

Previous investigations comparing measured flutter data 
with linear theory predictions and also full potential 
analysis have shown that for thin wings and small angle 
of attack, already linear theory is enough to get reason- 
able to good agreement with experiments. This was pre- 
sented in References 10 and 11. If for instance there is a 
transonic dip, linear theory appears to miss that, and if 
the dip is at a subsonic Mach number, well below Mach 
one, a typical recovery of flutter speed after the dip is 
not predicted at all by linear analysis. However, full 
potential analysis predicted such a recovery at too early 
a Mach number11, a dangerous result. 

Here we will present recent analysis for the AGARD 
445.6 wing12, tested in NASA Langley's Transonic 
Dynamics Tunnel. So far only linear analysis and full 
potential calculations have been carried out. We intend 
to follow up by Euler and Navier-Stokes computations 
in the near future. 

The 445.6 wing is very thin. The flutter data were 
obtained at zero angle of attack. This wing therefore is 
relevant for validation of methods which will be used in 
military aircraft design. There is a transonic dip, but the 
dip is located in the speed range close to Mach one. 
Hence the shift in aerodynamic characteristics between 
subsonic and super sonic flow could be expected to be 
similar to the reduction of flutter speed at a transonic 
Mach number and the subsequent recovery for higher 
Mach numbers. The occurrence of the phenomenon 
should however be somewhat earlier in the test than in 
the linear analysis. Indeed this seems to be the case. 
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In the diagram above we have plotted the measured data 
by ring symbols, joined by the solid line. The linear the- 
ory prediction is given by plus symbols, and an "engi- 
neer's concept" of the transonic dip is introduced as a 
dashed line. The prediction is somewhat non-conserva- 
tive, but on the supersonic side it is far better than what 
was achieved by full potential analysis: 
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The full potential program can work in two different 
grid structures. The CH-grid prediction, which is given 
by star symbols, joined by dashed lines, agrees very 
well with test data for the subsonic free stream Mach 
numbers, but on the supersonic side the discrepancy is 
intolerable. There is a strong influence of grid on the 
results. The plus symbols are predictions made using an 
HH-grid instead of the CH-grid. The normal strategy is 
to use HH-grid for high Mach numbers and CH-grid for 
low speed. The result above supports this, but the differ- 
ence is too large to ensure confidence in any of the 
results. 

Another question mark should be raised for the flutter 
frequency estimates. Below we plot the experimental 
data (solid lines and ring symbols) together with linear 
theory (dashed line), CH-grid (stars) and HH-grid 
(pluses) full potential predictions. Usually we expect the 
linear theory to predict the low speed data with high 
accuracy. The discrepancy here for M = 0.5 indicates 
that the coupling mechanism between the structural 
modes is not correct. This could for instance be due to 
the mode shapes which are computed rather than mea- 
sured. 

Flutter frequency 

ty 

o   :   Measurements (NASA Langley) 

*   i  Full potential {CH-grid) 

+  ;   Full potential:(HH-grid) 

- - - :- Linear theory: 

Our conclusion is, as so many times before, that the lin- 
ear theory, the faults and weaknesses of which we are 
quite familiar with, seems to be the better tool when 
assessing the flutter stability in the whole speed range. 
On the other hand, the nonlinear CH-grid prediction is 
very good up to M = 0.95, and therefore it is important 
to find out what the reason for the non-conservative 
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supersonic estimates is. 

Strong aeroelastic coupling. 

All our nonlinear codes for unsteady aerodynamics have 
been extended to include a simple means of coupling 
with the structure. Presently such coupling assumes that 
every deformation can be expressed as a combination of 
natural elastic mode shapes with coefficients q;. In this 

case the mass and stiffness matrices are diagonal. Fur- 
ther development to more general deformation shapes 
can easily be done, simply by introducing the capability 
of the codes to handle non-diagonal mass and stiffness 
matrices. 

By strong coupling we mean that in the implicit time 
marching scheme, the inner iterations update both 
deformation and flow before moving on to the next time 
step. Hence the equations of motion 

nij • (q'j + 2dcoiqi + (Oj2) + A; = Fj 

for the aeroelastic system are solved in time. 

For small amplitude (flutter onset) analysis it is feasible 
to compute air force matrices using one mode shape at a 
time, and then to apply the classical flutter solver for the 
flutter analysis. The strong coupling seems to be an 
alternative either for large deformations or when the 
number of mode shapes is very large and only a few 
flow conditions have to be analyzed for flutter. 

The coupling is, however, much more needed in static 
aeroelasticity, for instance when computing the actual 
wing geometry in flight, knowing only the jig shape. 
(The inverse problem, determining a jig shape that 
results in a desired flying wing is also tractable with a 
coupled method.) 

required CL the resulting CD can be significantly dif- 

ferent if the analysis is performed with a rigid wing or if 
the wing is allowed to deform. The example wing is 
defined by supercritical section profiles and thus is sen- 
sitive to small changes in angle of attack or local twist in 
the transonic regions. In this case the jig shape must be 
changed to increase wing performance, but viscous 
effects have smaller influence (although it certainly 
changes the angle of attack for trim). 
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CL versus CD, computed with viscous (symbols) 
and inviscid, coupled (dashed) and uncoupled 
(solid) full potential method. 

CONCLUSIONS 

We have demonstrated how different methods for com- 
puting unsteady aerodynamics have been applied to 
Saab military and civil aircraft. The experience with 
nonlinear methods is that Euler or Navier-Stokes com- 
putations are hardly mature enough for industrial 
project work. 

We have also demonstrated cases where classical linear 
analysis is not enough but also demonstrated that linear 
analysis on thin wing configurations is rather accurate. 
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Convergence to static aeroelastic state 
using critical modal damping (left) and 
no modal damping (right). 

The experience with coupled analysis for static 
aeroelasticity is that the convergence can be accelerated 
by using critical damping (d = 1) in the equations of 
motion. Moreover, for a well designed wing it can be 
easier to converge the coupled flow solution than the 
uncoupled one, since the aeroelastic deformations 
reduce the local twist of the wing. 

The following theoretical example shows that aeroelas- 
tic effects play a crucial role in drag estimates. For a 

Several of the CFD results presented here were obtained 
by our colleague Anders Karlsson at Saab. 
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