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SUMMARY 

Most approaches to weather and cloud forecasting entail the use of a large numerical weather 
prediction code. These codes assimilate many forms of current weather data and then propagate 
that weather into the future using the governing dynamic equations. PSR has developed a cloud 
forecast model based on a neural network (NN) intended for eventual (by FY2002) integration 
into the Cloud Depiction and Forecast System n (CDFS II) at Air Force Global Weather Central. 

Work to date indicates a capability to analyze and forecast clouds can be accomplished on a 
single workstation and satellite data feed within a theater of operations, potentially with no 
connection to a weather center. 

The cloud forecast model is founded on established forecast principles combined with promising 
new analysis techniques. The model is based on three fundamental processes: persistence, 
advection and evolution. These processes encompass the full range of atmospheric time and 
length scales that influence short- and extended-range cloud forecasts. Current meteorological 
methods are used to define the basic elements of each process but a NN is employed to analyze 
and combine the elements. 

The current PSR worldwide cloud prediction model (WCPM) is based upon a pixel-by-pixel im- 
plementation of a NN. The advection of clouds within a pixel is traced through time. The 
temporal evolution of a pixel is estimated from past data. The persistence of cloud properties at 
a pixel is estimated from past data. The forecast is based upon this pixel level analysis and is 
almost independent of changes in neighboring pixels. 

The NN was trained on SERCAA cloud images from both the Mediterranean Sea and the 
Central/South America region. Forecasts up to 12 hours were calculated and compared to truth. 
The approach demonstrated the ability predict both the advection and evolution of clouds. 

The approach has considerable difficulty forecasting scattered clouds. This is not surprising 
given that the scattered clouds are completely random in both location and evolution. The best 

results were therefore obtained by training on and predicting median filtered clouds. RMS 
prediction errors of ~20% were typical for the WCPM as compared to rms errors of ~30% for 
tropical HRCP predictions. The dominant errors arise from over-predicting scattered clouds. 
The scattered clouds also were found to adversely affect the forecast sharpness by smearing the 
forecast. 

The limited amount of data available for training severely impacted the ability of the NN to 

forecast. A NN should be trained on a variety of situations. Our data is dominated by evolved 

in 



cloud fields with scattered clouds. Advection is therefore not well represented in the data, 
neither are days with more than 25% cloud fraction. It is obvious what the NN best predicts. 
This can be remedied only by further training. Further training will not improve the forecast of 
random clouds, however. 

It is felt that both of these problems can be repaired by modifying the pixel-by-pixel forecast 
approach. An object-oriented approach was described that better represents the regional weather 
situation. Pixels are no longer independent of their surroundings but depend upon the nature of 
approach (and receding) weather conditions. The object-oriented approach addresses the 

scattered cloud problem by including randomness as part of object descriptions. 

IV 



CONVERSION TABLE 
Conversion factors for U.S. Customary to metric (SI) units of measurement 

MULTIPLY            
TO fiFT                   e 

->               BY 
BY <  

 s»         TO GET 
           DIVIDE 

angstrom 1.000 000 x E ■10 meters (m) 
atmosphere (normal) 1.013 25    x E +2 kilo pascal (kPa) 
bar 1.000 000 x E +2 kilo pascal (kPa) 
barn 1.000 000 x E •28 meter (m ) 
British thermal unit (thermochemical) 1.054 350 x E +3 joule (J) 
calorie (thermochemical) 4.184 000 joule (J) 
cal (thermochemical)/cm2 4.184 000 x E -2 mega joule/m2 (MJ/m2) 
curie 3.700 000 x E +1 *giga becquerel (GBq) 
degree (angle) 1.745 329 x E -2 radian(rad) 
degree Fahrenheit tK = (t°f+459.67)/1.8 degree kelvin (K) 
electron volt 1.602 19    x E -19 joule (J) 
erg 1.000 000 x E -7 joule (J) 
erg/second 1.000 000 x E -7 watt(W) 
foot 3.048 000 x E -I meter (m) 
foot-pound-force 1.355 818 joule (J) 
gallon (U.S. liquid) 3.785 412 x E -3 meter3 (m3) 
inch Z540 000 x E -2 meter (m) 
jerk 1.000 000 x E +9 joule (J) 
joule/kilogram (J/kg) (radiation dose 

absorbed) 1.000 000 Gray (Oy) 
kilotons 4.183 terajoules 
kip (1000 Ibf) 4.448 222 x E +3 newton (N) 
kip/inch2 (ksi) 6.894 757 x E +3 kilo pascal (kPa) 
ktap 1.000 000 x E +2 newton-second/m 

(N-s/m2) 
micron 1.000 000 xE -6 meter (m) 
mil 2.540 000 xE -5 meter (m) 
mile (international) 1.609 344 x E +3 meter (m) 
ounce 2.834 952 x E -2 kilogram (kg) 
pound-force (lbs avoirdupois) 4.448 222 newton (N) 
pound-force inch 1.129 848 x E -1 newton-meter (N m) 
pound-force/inch 1.751 268 xE +2 newton/meter (N/m) 
pound-force/foot2 4.788 026 x E -2 kilo pascal (kPa) 
pound-force/inch2 (psi) 6.894 757 kilo pascal (kPa) 
pound-mass (Ibm avoirdupois) 4.535 924 x E -1 kilogram (kg) 
pound-mass-foot2 (moment of inertia) 4.214 011 xE -2 kilogram-meter2 (kg m ) 
pound-mass/foot 1.601 846 x E +1 kilogramAneter3 (kgAn3) 
rad (radiation dose absorbed) 1.000 000 x E -2 •»Gray (Gy) 
roentgen 2.579 760 x E -4 coulomb/kilogram (Cftg) 
shake 1.000 000 x E -8 second (a) 
slug 1.459 390 x E + 1 kilogram (k) 
torr (mm Hg, 0°C) 1.333 22    x E -1 kilo pascal (kPa) 

•The becquerel (Bq) is the SI unit of radioactivity; 1 Bq ■■ 
♦♦The Gray (Gy) is the SI unit of absorbed radiation. 

1 event/s. 
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SECTION 1 
INTRODUCTION 

Most approaches to weather and cloud forecasting entail the use a large numerical weather pre- 
diction code. These codes assimilate many forms of current weather data and then propagate 
that weather into the future using the governing dynamic equations. An alternative approach to 
cloud forecasting is developed here. The new cloud forecast model is based on a neural network 
(NN) intended for eventual (in FY2002) integration into the Cloud Depiction and Forecast 
System E (CDFS E) at Air Force Global Weather Central. 

The cloud forecast model is founded on established forecast principles combined with promising 

new analysis techniques. The model is based on three fundamental processes: persistence, 
advection and evolution. These processes encompass the full range of atmospheric time and 
length scales that influence short- and extended-range cloud forecasts. Current meteorological 
methods are used to define the basic elements of each process but a NN is employed to analyze 
and combine the elements. While NNs have only recently been applied to meteorological prob- 
lems (McCann, 1992; Blankert, 1993; Welch, et al., 1992), they are widely used for problems 
such as pattern recognition where formal analysis is often ineffective. NNs are attractive for 

cloud forecasting because they (1) are robust in the face of incomplete data, (2) readily accept 
data from widely divergent sources, (3) are fast once trained, and (4) can model nonlinear 
relationships. 

The worldwide cloud prediction model (WCPM) is based upon a pixel-by-pixel implementation 
of a NN. The advection of clouds within a pixel is traced through time. The temporal evolution 
of a pixel is estimated from past satellite and numerical weather prediction data. The persistence 

of cloud properties at a pixel is estimated from past data. The forecast is based upon this pixel 
level analysis and is almost independent of changes in neighboring pixels. 

This report documents the three stages of project development First, individual modules were 
developed to forecast clouds using only advection, persistence, or evolution. A separate NN was 
developed for each module. Second, a rigorous analysis was performed on the selected predic- 

tors in an effort to reduce redundancy and eliminate noisy or useless predictors. A unified NN 

was developed that simultaneously utilized the advection, persistence and evolution predictors. 
Lastly, the quality of the resulting forecasts was evaluated using skill scores on data not used for 
NN training. 

The cloud forecast model developed can easily run in a standard work station environment 
Over the limited data available for verification, the NN developed was found to perform some- 



what better in tropical regions than the current High-Resolution Cloud Prognosis (HRCP) model. 

Lack of data prevented testing on a global basis. 

Performance was best in regions of significant cloud cover. Poor forecast sharpness was associ- 
ated with regions of scattered clouds. The NN smeared the scattered clouds uniformly across the 
region. This was due both to the limited training set and to the pixel-by-pixel approach. Based 
upon the forecast capabilities of WCPM, an alternative, fully object-oriented approach to the 
NN is outlined to improve the performance and forecast sharpness in regions of scattered clouds. 



SECTION 2 
THE NATURE OF CLOUD FORECASTING 

All forecasting problems start with a conceptual model of the required phenomenon to be fore- 
cast, in our case clouds, which must in some way conform to the way the clouds are sampled. 
Our basic requirement is to forecast cloud fraction and altitude, including at least four cloud lay- 
ers (if present), on a global (or regional) basis. Several conceptual models are possible to de- 

scribe the same cloud distribution, yet which result in dffierent forecast model parameterizations. 

Models differ in terms of the parameterization of the clouds themselves, and in the parameteri- 
zation of the cloud distributions. 

The primary source of cloud data for the following development and analysis is SERCAA Level 
3 or 4 cloud data (Gustafson, et al., 1994). The SERCAA cloud data is parameterized in terms 
of cloud fraction (in four layers) and (eventually) cloud type. A complete nephanalysis is per- 
formed on high resolution imagery (2 to 5 km pixel resolution) to estimate cloud fraction at a 
1/16* mesh scale (approximately 25 x 25 km). A minimum requirement for computer forecast- 
ing is pixel-by-pixel cloud fraction; cloud type designators are useless. Neither descriptor pro- 
vides cloud image information (information that relates clouds at one pixel to clouds at 
neighboring pixels). Neither descriptor provides information about the randomness in the cloud 
scene. 

A typical cloud scene (Figure 2-1) can best be described as several spatially and/or temporally 
correlated features with both mean and random cloud properties. The mean properties (shape, 
area, average cloud cover) of features A, B, C and D are potentially predictable; the random 
properties (the pixel-by-pixel cloud fractions) are not predictable, although their statistics might 
well be. Here feature A has a mean cloud fraction (23%) and cloud top temperature (300 °K). 
The random cloud distribution within the feature might be described by higher moments or a 
fractal dimension, but is only predictable in a statistical sense. 

Feature D is an example of a relatively stable cloud distribution with very low cloud fraction. 
Only isolated clouds (a few pixels each) are present that appear to jump around from temporal 
image to temporal image. Here, either the clouds are evolving and/or advecting much more 
rapidly than the sampling time so a consistent picture of the detailed clouds is not available. The 
clouds appear to be randomly distributed throughout the feature although the total cloud fraction 
is relatively constant. 



Figure 2-1.   Cloud scene from the Mediterranean Sea and North Africa showing several cloud 
features (A, B, C, D). North is approximately to the left on the image. 

The remaining clouds not included in the four features are random with temporal sampling. It 

might be possible to predict a mean "background" cloud fraction but not its spatial distribution. 

The above discussion of predictable and random clouds is highly contingent upon the data reso- 

lution and sampling time. A much higher sampling rate (than one image per hour) would allow 

smaller clouds to be better tracked. Higher resolution (than the 1/16th mesh SERCAA data) 

would allow smaller significant features to be defined. At some resolution, however, clouds are 

randomly created and destroyed. The conditions under which clouds form, grow or diminish are 

predictable, however, clouds are known to form randomly in space within those conditions. 



Therefore, the detailed cloud distribution within regions of light clouds will always be a random 

process and not predictable. 

Two parameterizations of cloud distributions can be considered. The most straightforward con- 

ceptual model is the generalized model. The clouds are located in space by a pixel designator 

(i,j) and the cloud top height (or IR brightness temperature). Each pixel can conceivably have 

clouds at several heights. Each pixel is in many ways independent of adjacent pixels. Minimal 

nephanalysis or pre-processing of the cloud images is required. 

An alternative conceptual model is a layered model. Here, the clouds are pre-processed into L 

finite thickness layers. The layers can be of either fixed or floating height and thickness. Each 

layer is independent of the other layers. The layering imposes an implicit physical relationship 

between clouds in the same layer. Complete nephanalysis and considerable pre-processing of 

the cloud images are required. 

The former parameterization is the most general and provides the more exact representation of 

the available cloud data. The data is fully represented in terms of cloud fractions, pixel location, 

and cloud top heights. In doing so, however, it stresses the forecast algorithms because more 

parameters must be predicted. Generality is lost if layering is imposed, but the forecast algo- 

rithms need not forecast cloud top height at independent pixels. This is a great advantage in that 

clouds at many adjacent pixels are usually related in origin through (spatially) smoothly varying 

atmospheric conditions (weather systems or fronts). 

The generalized model is preferred because it de-emphasizes the nephanalysis and will be inves- 

tigated first. The layered model may be pursued at a later time. The final choice will be based 

upon the model robustness to various cloud scenarios and upon prediction performance 



SECTION 3 
MODEL DEVELOPMENT AND REFINEMENT 

A pixel-by-pixel NN algorithm is adopted as the generalized approach to cloud forecasting. The 

approach is based upon the assumption that a forecast is possible based solely upon the past, 

current and approaching clouds to a single pixel. The pixel-by-pixel implementation was chosen 

to minimize and simplify the data input into the neural network. Each pixel is treated separately 

and is only loosely connected to surrounding pixels through the latitude and longitude inputs. 

No formal synoptic weather inputs are employed in this approach. 

The forecast code is designed around a unified NN (described in Section 3.4) with major 

weather inputs representing advection of clouds, persistence of clouds, and evolution of clouds 

along with several influence parameters. The general structure of the code is illustrated in Fig- 

ure 3-1. This final form is somewhat different from the original configuration that employed a 

separate NN for each module input and a NN to combine the individual forecasts. The latter was 

abandoned in favor of the unified approach to reduce the redundancy of the input parameters. 
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Figure 3-1. General structure of the code. 



The weather inputs are divided into two categories: cloud observation data and meteorological 
parameter input. The advection and persistence modules represent the former while the evolu- 

tion module represents the latter. For this study's purposes, the cloud observation data is taken 
from SERCAA level 3 nephanalysis. Navy Operational and Global Atmospheric Prediction 
System (NOGAPS) numerical analysis and forecasts are used for the meteorological parameter 

inputs. See Appendix A for a description of SERCAA and NOGAPS data. 

The model will be described below essentially in the same way it was developed, as individual 
algorithms that were eventually merged into a single neural network. It should be remembered, 
however, that although the algorithms are separately described, there was never any intention 

that they would perform well as stand alone modules. 

3.1   ADVECTION DEPENDENCE. 

The advection module has significantly evolved from its original incarnation. The stand-alone 
model was based upon somewhat more than simple advection and assumed that clouds do not 
depend on location, season, or local time - kinematic assumption - and that the clouds will fol- 
low the same trajectory and undergo the same changes during the next 12 hours as during the 
previous 12 hours.  The original NN module therefore included the following components 
(totaling 200 input values): 

1. Advection of the current time clouds to the forecast time; 

2. Current clouds at hourly increments upwind; 

3. Previous clouds at hourly increments upwind. 

Only the first input was retained in the final advection inputs. The purpose of the latter two in- 
puts was to describe how the clouds were changing as they were adverted. These inputs were 
dropped because of noise. Both cloud time series were found to be white noise sequences. The 
noise originated from two sources: errors in the advection trajectory and in cloud sampling. 
Both were aggravated by the fact that the data is dominated by broken clouds in both EASA and 
CNSA. 

A detailed analysis of the performance of the advection estimation algorithm resulted in a major 
change in the approach. The previous approach was purposely simple: 

• Wind vectors were estimated for the previous hour. 

• Forecast time wind vectors were obtained by simply multiplying the 1 hour vectors by the 

forecast time. 

• Clouds were moved based upon the vectors. 



It was hoped that the neural network would correct for poor wind estimates. Instead, it was 
found that poor wind estimates (when advection actually was the primary process) degraded the 
performance of the persistence and evolution inputs. Based upon this, two improvements to the 
advection module were instituted. A progressive wind vector advection algorithm replaced the 
simple single wind vector prediction, and a smoothing algorithm was developed for the wind 

field. 

The previously employed advection algorithm was simple and efficient for short-term forecasts 
or wind fields with little curvature. When significant curvature exists, as occurs in flow about a 
major high or low pressure system, the simple linear approach produces extremely poor results. 

To rectify this a progressive vector advection module was created. 

The clouds at a mesh point are advected using the following algorithm illustrated in Figure 3-2: 

B = 4xA 

A(1) 

Figure 3-2. In cases of significant curvature to the wind field, the progressive vector method (A) retains 
more accuracy than the linear extrapolation method (B). 

• The wind field for the most recent hour is assumed to be the best estimate of the wind field 

in the future. 

• The clouds at a mesh point are advected forward 1 hour in time to a new mesh point using 

the wind vector at the current point. 

• The wind vector at the new point is used to advect the clouds forward an additional 1 hour in 

time. 

• The previous step is repeated until the desired forecast time is attained. 



This procedure better retains the overall shape of the cloud formations as long as the current 
wind field accurately reflects the future wind field and the clouds are predominately advected (as 

opposed to evolved). 

The correlation analysis results in an inconsistent wind field, e.g. the field is not smooth and 
vectors often cross. To help alleviate (but not completely eliminate this problem) a smoothing 
process has been added to the wind field estimate. We have advection data defined on a 2D grid 
with lots of gaps - cloudless grid points with no good advection estimate. A weighted least 
squares smoother interpolator was developed. 

The input data is on a grid of dimensions nxxny, with grid points at positions x = 1,2,...,nx and 

y = 1,2,..., ny. The input data consists of three pieces of data for each grid point: u(x, y) is the x 

component of the advection, v(x,y) is the y component, and w(x,y) is the weight, w is con- 

structed from the correlation data: for good pixels, w is the correlation value (between 0 and 1 - 
no negative values); for bad pixels, w is set to zero. For bad pixels we should also set u and v to 
zero. 

The data is fit by a set of smooth 2D basis functions. We'll specify the basis functions later, but 
for now let nb be the number of basis functions used, and the basis functions are Bb{x,y) for 

b -1,2,...nb, defined for allx and y. The smoothed advection functions are linear superpositions 

of the basis functions, with some coefficients: 

usm0ou1(x,y) = 2abBb(x,y) 
(3.1) 

vsmooth(x»y) = XbbBb(x>y) 

The coefficients are determined by doing a weighted fit to the advection data. This is the stan- 
dard linear least squares fitting result, with weights. For the u data, define the variance 

1       "»   ny 

<^2 =—EX^^K^y)-"—*ix>yjf ■ (3-2) 
nxny *=1 y=l 

Make the following definitions for the scalar UU, the vector BU, and the n,, x nb matrix BB: 



UU= ^w(x,y)u{x,y)2 

fix^y  x,y 

BUb=—^w{x,y)Bb{x,y)u{x,y)     . (3.3) 
•*x"*y  x,y 

BBW =—X w(x> y)Bt (x> y)K{x, y) 
nxny x,y 

With these and some math, the variance is 

Gx
2 =UU-l^BU^a^yBB^  . (3.4) 

b bjb' 

Minimizing this with respect to ab gives a solution in terms of the inverse of the matrix BB: 

ab=^BB-\»>-BUb,  , (3.5) 

and with this the variance is 

Gx
2=UU-Y,BUbBB-\f,-BUb,  . (3.6) 

by 

The variance is useful to calculate, because it gives us a feeling for how well we're fitting the 

data. 

If the basis functions were orthogonal, so that 

BBW =—J£w(x,y)Bb{x,y)Bb,(x,y) (3.7) 
nxny x,y 

was zero for b*b', then the matrix would be diagonal and the inversion trivial. However, be- 
cause of the arbitrary weights w in the equation, it is impossible to choose orthogonal basis 
functions. We will just choose simple basis functions, and have to live with the matrix inver- 

sion. 

Figures 3-3 and 3-4 show an example calculation for the Mediterranean wind field. First, the 
north and east components of the wind field are estimated for individual cloudy pixels (Figures 
3-3a and c). These are then smoothed and interpolated to produce the wind field used for ad- 

vection (Figures 3-3b and d). The results of the advection are shown in Figure 3-4. Here, the 
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original (T0) clouds are advected 12 hours based upon the old and the new smoothed T0 wind 
field. The results are compared to truth 12 hours later. Both approaches suffer from the fact that 
the cloud motion is not dominated by advection throughout the region; the clouds over southern 
Europe (to the left) are not moving but are evolving. Over northern Africa where advection is 
more dominant, the new model provides a better advection only forecast. 

(a) 

- □ x m 
(b) 

IQnjJSJ 

mmz 

m *S*täi3D£ii 
mmssBm 

n x 

^^•■•'■••'■■■•'•:;?--r' 

(C) (d) 

Figure 3-3. Cloud advection calculation using a 41" order fit for the EMDA. 
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Figure 3-4. Cloud advection results. 

3.2   PERSISTENCE DEPENDENCE. 

Persistence is the tendency of weather to change slowly or to predictably repeat itself after some 
time interval. A forecast that merely persists current weather is usually the best short-term (0 to 
3 hours) predictor. Some current tropical forecast models rely solely on simple persistence and a 
variation of it, diurnal persistence. Analyses by Salby, et al. (1991) indicate that a better persis- 
tence forecast might be obtained by including a more complete time history of cloud behavior. 
In particular, Salby, et al. noted strong regionally-dependent semi-diurnal and 4-day cycles asso- 

ciated with easterly waves in the tropics. A cloud history function that spans at least four days 

might improve forecasts. 
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The dominance of persistence in the SERCAA data areas is best represented by power spectral 

analysis. The power spectra were obtained by analyzing 2000 9-day hourly time series from 
random locations. 

The results of the spectral analysis for EASA March 1993 tropical and mid-latitude ocean and 
land are shown in Figures 3-5 through 3-8. For cloud fraction, the top line corresponds to total 
cloud fraction and the lines below are fore SERCAA layers 1 through 4, respectively. For cloud 

height, starting at the top, the lines correspond to SERCAA layers 1 through 4, respectively. 

As expected, the data show a definite diurnal cycle over tropical land areas. No trends of any 
sort are apparent over ocean areas or at temperate latitudes. In fact, with the exception of the di- 
urnal peaks, the spectra are representative of a white noise process with a very long term trend 
superimposed. The results for layers 3 and 4 represent pure white noise processes. These results 

do not preclude the presence of long period cycles but more likely reflect poor resolution of the 
lower cloud layers by the SERCAA nephanalysis. 

The above results do require a significant modification to the anticipated persistence modeling 
approach. The proposed approach called for an auto-regressive model using a 6-day time series 
to capture the easterly wave 4-day cycle. The data clearly does not support such a model. Lim- 
ited data also precludes model dependence upon geographic region and time of year. Given 
these constraints a simpler approach to a persistence model was adopted that only includes a 12 
hour cloud history and an average diurnal input. 

The 12 hour cloud history is simply input by including the current time cloud characterization 
along with cloud characterization for 1,3,6, and 12 hours past. This data is meant to establish 
the near-time trend in cloud parameters. 

The diurnal cycle in cloud parameters is input by averaging the cloud parameters from 24,48, 
and 72 hours before the forecast time. This approach appears, and is, simple but was chosen for 
its robustness. The diurnal input can be averaged in several different ways and still be input A 
recursive filter with a three day weight is an obvious choice for an operational system. The 
choice of weighting should be based upon information available upon longer term weather 
trends. A semi-diurnal or 4 day cycle can be input instead of the diurnal input. 
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EASA:Doys 81/2 to 89/23,    Loyers  1-4 , Tropical (0-25 deg), Ocean,    1066 Cases 
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Figure 3-5. Spectral analysis of cloud history in EASA March 1993 over tropical ocean regions. 

14 



EASA:Doys 81/2 to 89/23,    Layers   1-4 , Tropical (0-25 deg), Land,      125 Coses 
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Figure 3-6. Spectral analysis of cloud history in EASA March 1993 over tropical land regions. 
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EASA:Days 81/2 to 89/23,    Layers  1-4 , Mid-latitude (25-60 deg), Land,      242 Cases 
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Figure 3-7. Spectral analysis of cloud history in EASA March 1993 over mid-latitude ocean regions. 
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EASA:Days 203/1  to 212/23,    Layers  1-4 , Tropical (0-25 deg). Land,      137 Cases 
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Figure 3-8. Spectral analysis of cloud history in EASA March 1993 over mid-latitude land regions. 
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Table 3-1 summarizes both the minimal and normal data requirements for the persistence algo- 
rithm. The minimum requirements refer to data requirements necessary for a cold start. There- 
fore the model can be started with only the previous day's data. Normal operation requires three 

previous days of data. 

Table 3-1. Persistence model data requirements. 

Minimum 
Requirements Normal Requirements 

to to 
t0 -1 (hours) t0 -1 (hours) 

t0-3 t0-3 

to-6 to-6 

t0-12 t0-12 

t        -24 t,„r«.«-av(24I48,72) 

Three quantities are input for each of the times (except diurnal) in Table 3-1. For each identified 
layer of clouds these include: (1) time delay from t„; (2) cloud fraction at the time delay; (3) 

cloud top temperature at the time delay. 

3.3   EVOLUTION DEPENDENCE. 

Like persistence, the evolution algorithm depends on local characteristics such as topography, 
geography, latitude and time-of-day, but whereas the persistence and advection algorithms 
merely extrapolate cloud behavior in time and space, the evolution algorithm exploits atmos- 
pheric dynamics to predict clouds by engaging the output of a numerical weather prediction 
(NWP) model. Since the military intends to consolidate all NWP functions under FNMOC, and 
since NOGAPS is the Navy's global forecast model, it is likely that NOGAPS data will be the 
source of NWP data in future AF cloud forecast systems. Therefore, the decision was made to 

rely exclusively on NOGAPS as the source for NWP data. 

Since NWP models generally do not predict clouds directly, it is necessary to relate the model 

output data to the cloud fields. The standard procedure for doing this is termed Model Output 

Statistics (MOS). The first step in the MOS approach is to define a set of predictors based on 

NWP forecast data. Predictors are not limited to NWP data and may include, for example, the 

current observed cloud fields. The predictors are then related to the forecast clouds 
(predictands) by means of a regression analysis on historical data. Our approach is similar ex- 

18 



cept that we use a neural network to relate predictors to predictands. The advantage of the neu- 
ral network approach is that possible nonlinear and cross-product relationships between 
predictors are automatically ferreted out by the neural network to produce a better estimate of 

the predictand. The predictors are drawn from a pool of potential predictors that include ele- 
mental and derived variables based on NOGAPS data. 

There is a large disparity in the resolutions of predictors based on NOGAPS data and predic- 

tands based on SERCAA data. NOGAPS provides a global analysis and a 12-hour forecast 

twice daily at 00 and 12 Z on a 2.5 x 2.5 degree latitude/longitude grid. The resolution at 60° N 
is 139 km, decreasing to 278 km at the equator. In contrast, SERCAA data is available hourly 
(nominally) and the resolution of 16th-mesh SERCAA data at 60° N is 23.8 km, increasing 

toward the equator. The current NOGAPS operational model is higher resolution (0.75 x 0.75 
degree) but unfortunately no archived data is available for the 1993 and 1994 times correspond- 
ing to the SERCAA data sets. Figure 3-9 is an example of a NOGAPS analysis of mean sea 
level (MSL) pressure. The EAS A region is outlined at NOGAPS resolution. (Note, there is an 
error in NOGAPS depiction of the century. It should show 1993 rather than 1893.) 

Table 3-2 shows the variables considered in the search for cloud field predictors. The first 6 
variables are elemental NOGAPS model output data. The remaining variables, beginning with 
divergence, are derived from the elemental variables. The height variable refers to the height of 
the pressure (hPa) surface. All variables, other than MSL pressure and surface (SFC) tempera- 
ture, are defined on pressure surfaces listed across the top to the table. Vapor pressure (and thus 
relative humidity) is available only to 300 hPa. Divergence and vorticity are associated with 
vertical motion in the atmosphere at mid- to upper-latitudes and therefore likely to be correlated 
with clouds. Relative humidity is obviously linked with cloudiness. Temperature advection, 
vorticity advection, wind speed, and wind shear are often associated with developing storm sys- 
tems. Temperature difference and thickness between pressure surfaces are measures of atmos- 
pheric stability i 

Each predictor listed in Table 3-2 is used in three different ways. First, we simply take the pre- 
dictor defined by the 12-hour forecast as it stands. Second, we subtract the zonal average from 
the 12-hour forecast value. Last, we define a trend based on the predictor at forecast time and its 
12-hour forecast value. All calculations are performed on the NOGAPS 2.5 x 2.5 degree grid 
and interpolated to the SERCAA 16th-mesh grid. Predictors are only compared to total cloud 
fraction and no attempt is made to discriminate predictors as a function of cloud layer, 
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Table 3-2. Evolution module predictors. 

PREDICTOR 
HEIGHT 

MSL SFC 1000 850 700 500 400 300 200 150 100 50 70 20 30 10 925 

PRESSURE 

HEIGHT 

TEMPERATURE 

VAPOR PRES 

ZONALVEL 

MERIDNLVEL 

DIVERGENCE 

VORTICITY 

REL HUMID 

TEMP ADV 

VORTICITY ADV 

THICKNESS 

WIND SPEED 

WIND SHEAR 

TEMP DIFF 

* Blocked area indicate the heights for which predictor data is available. 

height, geography, or latitude zone. The 3 forms of 15 predictors at 17 heights result in pool of 

618 potential predictors (not all variables are available at all heights). 

The next step is to identify the predictors that show the highest degree of association with the 
predictands. Several measures of association were considered. One approach is to compare the 
chi-square, entropy, and Spearman rank correlation values calculated from a contingency table 
of predictor versus predictand. The analyses based on contingency tables all produced similar 
results. For example, if the chi-square value was high, then so were the other measures of asso- 
ciation. We also performed a matrix correlation between predictor and predictand. The best 
correlated predictors produced by this analysis significantly differed from those ranked high 

based on the contingency table. Visual comparisons of predictor and predictand in both cases 

led us to choose correlation as the best measure of association. 

The correlation between predictor and predictand was then calculated for all times in each data 
set. The absolute values of correlation were averaged and ranked. Predictors that were related 
were eliminated to reduce redundancy. For example, if vapor pressure and relative humidity at a 

given height were both found to be highly correlated with total cloud fraction, then only the 
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higher ranked predictor was kept. Similarly, only the higher ranked zonal wind or total wind 
speed was kept, since the zonal wind vector usually accounts for most of the wind speed magni- 
tude. Also, only the higher ranked fundamental variable or its zonal perturbation was kept, not 
both. Table 3-3 shows the 25 top-ranked predictors for the March and July EASA data sets. 
Figures 3-10 and 3-11 illustrate the close correlation between total cloud fraction observed at 00 
Z on 29 July 1993 and the relative humidity based on a 12-hour forecast made at 12 Z on 28 July 

1993 for EASA. 

Table 3-3. 25 top-ranked predictors for EASA data sets. 

MARCH JULY 

400 hPa VAPP TREND 400 hPa VAPP 
700 hPa VOR 500 hPa RH 
850 hPa VOR 300 hPa VAPP 
500 hPa SPEED 850 hPa U GRD 
300 hPa SPEED 925 hPa U_GRD 
700 hPa SPEED 700 hPa RH 
200 hPa SPEED 1000 hPa U GRD 
400 hPa SPEED 700 hPa U GRD 
700 hPa SHEAR 500 hPa U GRD 
100 hPa T DIF 300 hPa VAPP 
925 hPa VOR 850 hPa SHEAR 
150 hPa SPEED 400 hPa VAPP       TREND 
100 hPa SHEAR 200 hPa DIV 
500 hPa VAPP TREND 400 hPa T DIF       TREND 
50 hPa T_DlF - 925 hPa HGT - 
10 hPa U_GRD - TREND 850 hPa HGT - 

700 hPa RH TREND 850 hPa RH 
200 hPa T_DIF - TREND 400 hPa U GRD 
500 hPa VOR 1000 hPa HGT - 
300 hPa THICK TREND OMSL PRES - 
300 hPa TMP TREND 10 hPa U GRD       TREND 

1000 hPa VOR 925 hPa DIV - 
400 hPa TMP TREND 1000 hPa DIV - 
850 hPa VOR TREND 700 hPa HGT - 
850 hPa HGT - 50 hPa U GRD - 

Once the best predictors were identified, a set of vectors was generated for neural network 
training. Each training vector contains 37 input and 16 output elements. The input elements 
consists of predictors (25), current cloud fraction fields (4), elevation (1), time-of-day (2), lati- 
tude (1), longitude (2) and terrain slope (2). The output elements are 4 cloud fraction fields at 3, 
6, 9, and 12 hours (16). The 25 top-ranked predictors were first calculated on the 2.5 x 2.5 de- 
gree NOGAPS grid and then interpolated to the 16th-mesh SERCAA grid. Predictors were 
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Figure 3-10. SERCAA total cloud fraction observed at 00 Z on 29 July 1993. 
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Figure 3-11. NOGAPS relative humidity 12-hour forecast for Figure 3-9. 

24 



selected from 500 random locations within the region for each time in the data set. The times 
used for training are determined by the NWP forecast cycle. Only times where NWP data is 
available at the forecast time (Figure 3-12a) are used. The model has not been tested for times 
where NWP data is not synchronized with the forecast (Figure 3-12b). The last 12-hour period 
in the data set encompassing a NWP forecast cycle is reserved for validation. There are typi- 

cally 15 times in each data set, excluding the last 12-hour period, where NWP data is synchro- 
nized with the forecast time. As a result, the training set for each data set consists of about 7500 

(500 x 15) training vectors. 

a. 
NWP/CLOUD 

INPUT 

|    I FORECAST (HR) 

0 3 6 9 12 
I 1 1 1 1 

00 12 
TIME (UTC) 

b. 
NWP      CLOUD 

INPUT      INPUT 

▼ n 

FORECAST (HR) 

0 3 6 9 12 
\ 1 1 H 

00 12 
TIME (UTC) 

Figure 3-12. Evolution data feed: (a) forecast cycle tested in the current model configuration, 
(b) example of another forecast cycle the model must eventually handle. 

Figures 3-13 and 3-14 show 3,6,9, and 12-hour forecasts produced by the evolution algorithm 
alone for EASA. The forecasts are produced for the last 12-hour period in each data set. The 
neural network weight/bias sets were not trained on this data, so these forecasts are an indication 
of how well the neural network performs on new data. Forecast times are 00 Z on 30 March 
1993 (Julian day 89) and 31 July 1993 (Julian day 212) for EASA. Images are displayed in the 
16th-mesh coordinate system so each panel is oriented with the equator near the top and 60° N 

near the lower right corner. SERCAA data was not provided for southern latitudes and this 
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accounts for the arc near the top of each panel defined by the absence of clouds. Wedges of dis- 
continuous cloud fraction in the observed clouds are an artifact of the SERCAA merge process. 
The wedges are the result of improper geometric corrects or calibration of multiple satellites 
before merge. Discontinuities in the forecast images are visible where there is a transition 
between weight/bias set predictions for a specific latitude zone and geography. An example is 
the transition between latitude zones at 25° N across the center of most forecasts images. 

These results are preliminary and are only indicative of the performance of the evolution algo- 

rithm. Evolution inputs will be further refined when the three algorithms are combined. There 
are some encouraging features from the evolution only algorithm. Figure 3-13 indicates reason- 

able cloud development over land in the tropics. The light area visible near the top and center- 

right of the forecast panels in Figure 3-13 shows cloud development coincident with Borneo. 

The outline of Borneo is apparent in the observed clouds (top panels), but not as sharply defined. 

Similarly, cloud development is predicted over the Philippines but not the surrounding ocean. 
At mid-latitudes (lower half of Figures 3-13 and 3-14), the general pattern of the observed cloud 

field is predicted but features are not as well defined as in the tropics. 

3.4   COMBINED NEURAL NETWORK. 

Combining the individual algorithms consisted of two interactive parts. First, the general form 
of the NN was established. Second, the final selection of the input vectors was made based upon 

NN prediction performance. Both are discussed in the following sections. 

The fully-connected, feed-forward-back-propagation NN shown in Figure 3-15 was adopted for 
use on this project. The NN has 28 (the final number of inputs) input nodes, two hidden-layers 
(12 and 10 nodes each) and three output nodes for a total of 430 degrees of freedom. Several 
other variations on the number of hidden layers and the number of nodes in the hidden-layers 
were attempted. This was by no means an exhaustive study but several trends pointed toward the 
current selection. Greatly increasing the number of nodes in the hidden-layers significantly im- 
proved the training error but not the prediction error. A single hidden-layer performed more 
poorly. Reducing the hidden-layer nodes degraded the prediction capability. 

3.4.1   Neural Network Training. 

Training takes place on a batch of input vectors selected at random from the population of 
training vectors. The objective of training is to reduce the sum squared difference between the 
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28 input parameters 

12 nodes 

10 nodes 

3 output nodes 

Figure 3-15. Neural network configuration. 

neural network output and target cloud fields. The weight/bias set giving the least error is 
sought using a line minimization approach. Line minimization attempts to quickly hunt down 

the minimum of a two-dimensional curve by successively fitting parabolas to a region that 
brackets the niinimum. This is usually more efficient than iterative methods where the minimum 
is found by taking a series of steps in the direction of greatest decreasing error (gradient de- 
scent), particularly if the minimum lies within a broad, shallow region of the curve. The error 
surface is actually multidimensional, the dimension depending on the number of weights and bi- 
ases in the network. The search for a global minimum on the multidimensional error surface is 
reduced to a series two-dimensional searches by iteratively finding the minimum in first one di- 
rection, then another. Gradient descent moves in the direction of maximal error reduction. We 
employ a more efficient search that proceeds in the so-called conjugate gradient direction, which 
is a compromise between the previous search direction and that of gradient descent. The path 
defined by conjugate gradient directions tends to approach the minimum smoothly, eliminating 
inefficient zigzags inherent in the gradient descent approach. 

The NN was extensively trained on the best and longest data set, the first six days of EMDA data 
(days 73 through 78).  The following procedure was followed: 

1. An input file was created for all descriptors of each available (some were missing) 
hourly image. 

2. One-third of all pixels were randomly selected from the first three days of data. 

3. The NN was trained for 100 iterations on this training set. 

4. The process was repeated for the second three days of data but the training was started 

with the previously obtained nodal weights. 
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The above procedure guaranteed that training included a distribution of available latitudes, lon- 
gitudes, times of day and land types. (Dividing the data into two three-day pieces was based 
upon a computer limitation.) The NN was trained on a total of approximately 500,000 inde- 

pendent input vectors. 

Training was stopped after 100 iterations in all cases. It was found that 95% of the training was 
accomplished in the first 25 to 35 iterations. Little improvement in training was realized after 
that point. In general, the training error varied from 15 to 20% when raw data was used as in- 

put; a 5% improvement was realized when median filtered data was used for training (see Sec- 

tion 4.2). 

The greatest shortcoming of the training was a lack of variety in the cloud cover. A quick 
perusal of the cloud images in Appendix A results in the conclusion that the data set is best char- 

acterized by scant cloud cover. For the most part, clouds are confined to coastal areas around 
Italy, Greece and Turkey with variable clouds in North Africa. No instances of heavy clouds are 
recorded. More robust training is required in the future if better prediction performance is to be 

achieved. 

The same procedure was followed for training the NN on the CNSA data. As indicated in Table 
A-l, Appendix A, far fewer image hours of data were available. To overcome the lack of data, 
the training commenced using the weights obtained from the EASA training. 

3.4.2  Training Vector Definition. 

The final input vector definition was selected based upon an input parameter sensitivity study. 
The most straightforward method of deternrining which input parameters are important is to 
selectively omit parameters from the training process (Butler and Meredith, 1996). The removal 
of a parameter can affect NN performance in three ways: 1) if the parameter is important the 
NN performance is degraded, 2) if the parameter is unimportant, the NN performance is 
unchanged, and 3) if the parameter acts like a noise source, the NN performance is improved. 
Parameters that fall into the last category should be eliminated. Parameters that fall into the sec- 
ond category should be strongly considered for removal because their inclusion increases the 
training requirements and adds undesired degrees-of-freedom to the network. 

A detailed study of all possible parameter combinations was obviously not performed. Instead, 
the study focused on the persistence input, the evolution parameters and the influence parameters 
(latitude, longitude, land type, elevation, etc.). Table 3-4 presents the qualitative results of the 

study. Two important results emerge. First, the elevation input degrades the NN performance. 
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Second, individually removing any of the many evolution parameters does not affect the NN 
performance, however, removing all of the evolution parameters degrades NN performance. 

Based upon these results, the evolution parameters were re-evaluated in terms of the applicable 
atmospheric physics to select a much reduced input parameter set. The primary atmospheric 
condition that favors cloud formation is the uplift of warm moist air. This can be characterized 
by the NOGAPS relative humidity, velocity divergence, and temperature parameters at various 
altitudes. A new evolution predictor set of relative humidity, velocity divergence and tempera- 
ture at five altitudes (Sea level, 100,300,500 and 850 hPa) was tested. Five altitudes provided 
redundant information. Two altitudes ( 850 and 500 mBars) provided the best compromise. 

Temperature was found to provide no meaningful NN performance and was eliminated from the 

predictors. The final predictors are listed in Table 3.5. The basic results reflect the most impor- 
tant predictors found by others. In reviewing the predictors (used and not used) it is important to 
remember that these were chosen based upon NN performance with a particular, limited set of 

tropical cloud data. Other scenarios might require some additions or adjustments to these pre- 
dictors. More extensive NN training might reduce the training error and result in additional pre- 

dictors becoming important 
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Table 3-4. Skill scores for NN forecasts (cloud fraction). 

Training Data 
Sharp 
Obs. 

Sharp 
For. Brier ESS G20/20 

2 hour forecast 
all* 0.97 0.67 0.12 0.26 0.62 
elevation removed 0.97 0.77 0.13 0.33 0.67 
lat/lon removed 0.97 0.77 0.14 0.21 0.67 
longitude removed 0.97 0.70 0.13 0.32 0.62 
land type removed 0.97 0.54 0.15 0.27 0.50 
evol removed 0.97 0.71 0.11 0.32 0.65 
evol removed except div850 0.97 0.74 0.12 0.32 0.67 
elev. evolution <500 removed 0.97 0.74 0.12 0.29 0.66 
div @ 850,500 onlyf 0.97 0.70 0.12 0.22 0.64 
rh @ 850,500 onlyf 0.97 0.71 0.12 0.36 0.65 
tmp @ 850,500 only! 0.97 0.74 0.11 0.39 0.67 
temp & div @ 850,500 only+ 0.97 0.75 0.12 0.33 0.67 
rh & div @ 850,500 only+ 0.97 0.73 0.12 0.39 0.66 
tmp & rh @ 850,500 onlyf 0.97 0.76 0.12 0.32 0.68 
evol @ 850,500 onlyf 0.97 0.68 0.12 0.29 0.63 

3 hour forecast 
all* 0.97 0.67 0.13 0.28 0.60 
elevation removed 0.97 0.75 0.13 0.31 0.66 
lat/lon removed 0.97 0.78 0.14 0.19 0.67 
longitude removed 0.97 0.68 0.13 0.32 0.61 
land type removed 0.97 0.51 0.16 0.25 0.47 
evol removed 0.97 0.69 0.12 0.32 0.63 
evol removed except div850 0.97 0.71 0.12 0.30 0.64 
elev. evolution <500 removed 0.97 0.71 0.12 0.31 0.64 
div @ 850,500 onlyf 0.97 0.68 0.12 0.22 0.63 
rh @ 850,500 onlyf 0.97 0.69 0.13 0.33 0.63 
tmp @ 850,500 only+ 0.97 0.73 0.12 0.31 0.66 
temp & div @ 850,500 onlyf 0.97 0.74 0.12 0.33 0.66 
rh & div @ 850,500 onlyf 0.97 0.71 0.13 0.33 0.64 
tmp & rh @ 850,500 onlyf 0.97 0.75 0.12 0.34 0.67 
evol @ 850,500 onlyf 0.97 0.66 0.12 0.30 0.61 

6 hour forecast 
all* 0.97 0.64 0.13 0.30 0.58 
elevation removed 0.97 0.75 0.14 0.31 0.66 
lat/lon removed 0.97 0.74 0.14 0.17 0.64 
longitude removed 0.97 0.68 0.14 0.29 0.60 
land type removed 0.97 0.48 0.18 0.21 0.44 
evol removed 0.97 0.61 0.13 0.32 0.57 
evol removed except div850 0.97 0.68 0.13 0.28 0.63 
elev. evolution <500 removed 0.97 0.67 0.12 0.30 0.61 
div @ 850,500 onlyf 0.97 0.65 0.13 0.27 0.59 
rh @ 850,500 onlyf 0.97 0.67 0.14 0.30 0.60 
tmp @ 850,500 onlyf 0.97 0.73 0.13 0.30 0.66 
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Table 3-4. Skill scores for NN forecasts (cloud fraction) (Continued). 

6 hour forecast (continued) 
temp & div @ 850,500 onlyf 0.97 0.73 0.13 0.26 0.65 
rh & div @ 850,500 only+ 0.97 0.70 0.14 0.30 0.63 
tmp & rh @ 850,500 onlyf 0.97 0.74 0.13 0.26 0.66 

9 hour forecast 
all* 0.97 0.59 0.13 0.37 0.55 
elevation removed 0.97 0.74 0.13 0.31 0.66 
lat/lon removed 0.97 0.77 0.14 0.26 0.66 
longitude removed 0.97 0.72 0.14 0.29 0.62 
land type removed 0.97 0.49 0.17 0.18 0.45 
evol removed 0.97 0.59 0.14 0.27 0.54 
evol removed except div850 0.97 0.73 0.13 0.32 0.66 
elev. evolution <500 removed 0.97 0.65 0.12 0.38 0.59 
div @ 850,500 onlyf 0.97 0.72 0.12 0.24 0.65 
rh @ 850,500 onlyT 0.97 0.69 0.14 0.27 0.61 
tmp @ 850,500 onlyf 0.97 0.78 0.13 0.33 0.68 
temp & div @ 850,500 only! 0.97 0.71 0.13 0.22 0.63 
rh & div @ 850,500 onlyf 0.97 0.71 0.13 0.32 0.64 
tmp & rh @ 850,500 only+ 0.97 0.73 0.13 0.33 0.65 
evol @ 850,500 onlyf 0.97 0.70 0.12 0.32 0.64 

12 hour forecast 
alT 0.97 0.62 0.13 0.28 0.56 
elevation removed 0.97 0.72 0.13 0.33 0.65 
lat/lon removed 0.97 0.81 0.15 0.17 0.67 
longitude removed 0.97 0.75 0.14 0.27 0.64 
land type removed 0.97 0.57 0.17 0.18 0.51 
evol removed 0.97 0.62 0.13 0.25 0.56 
evol removed except div850 0.97 0.81 0.13 0.23 0.71 
elev. evolution <500 removed 0.97 0.67 0.12 0.22 0.60 
div @ 850,500 onlyf 0.97 0.74 0.13 0.18 0.65 
rh @ 850,500 only+ 0.97 0.68 0.13 0.24 0.61 
tmp @ 850,500 onlyf 0.97 0.81 0.13 0.28 0.71 
temp & div @ 850,500 onlyf 0.97 0.72 0.13 0.32 0.64 
rh & div @ 850,500 onlyf 0.97 0.73 0.13 0.30 0.65 
tmp & rh @ 850,500 onlyf 0.97 0.76 0.13 0.30 0.67 
evol @ 850,500 onlyf 0.97 0.76 0.13 0.26 0.68 

This set has a duplicate to parameter included. 
+These sets have elevation removed 
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Table 3.5. Final Predictors 

 NN Predictors  

UT of forecast time 
At before forecast 

Latitude 

Longitude 

Advected cloud fraction 

Advected cloud top temperature 

TCFatt0 

CTTatt0 

TCFatt0-1 hour 

CTT at t0-1 hour 

At from forecast 

TCF at t0-3 hour 
CTT at t0-3 hour 

At from forecast 
TCFatt0-6hour 

CTT at t0-6 hour 

At from forecast 

TCFatt0-12hour 
CTTatt0-12hour 

At from forecast 
Clouds/no clouds flag 

Relative humidity @ 850 hPa 

Relative humidity @ 500 hPa 

Velocity Divergence @ 850 hPa 

Velocity Divergence @ 500 hPa 
TCF at t0-24 hours 

(Averaged over past 3 days) 

CTT at t0-24 hours 
(Averaged over past 3 days) 

Land type 
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SECTION 4 
MODEL PERFORMANCE 

Model performance is not easily quantifiable due to the variability of the realizable cloud 

scenes. At this point in development and training, model performance is not robust. Neverthe- 

less, the model performance must be quantified. Toward this, the next two sections discuss the 

performance of the pixel-by-pixel model trained on raw images or median filtered images. 

Six forecast times not originally included in the NN training were selected for evaluation. The 

times were selected to provide the largest cloud scene variability that this data set allows. The 

model forecasts were then characterized by standard skill score figures-of-merit: equitable skill 

score (ESS), 20/20 score, Brier's score, and scene correlation. For a discussion of each see 

Appendix B. 

Before reviewing the results, however, it will be beneficial to reconsider the discussion in Sec- 

tion 2 dealing with the conceptual model of the clouds. It was stated that only some fraction of 

the clouds were predictable while the remainder were considered to be random. To get an idea 

of how this affects the skill scores, Figure 4-1 shows two cloud scenes separated by one hour 

that were analyzed. The skill scores obtained are shown in Table 4-1. The 20/20 score indicates 

that 93% of the pixels are within ±20% of each other and the Brier score indicates a small rms 

error; this is what the eye sees. Even though the cloud scenes appear to be remarkably similar 

the ESS is quite low because the score reflects the detail not easily seen by eye. The correlation 

score is higher than the ESS because it does not penalize for incorrect forecasts. 

(a) 7909 (b)7910 

Figure 4-1. Consecutive hours of total cloud cover in EMDA. 
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Table 4-1. Skill scores comparing consecutive hours of total cloud cover from EMDA 
shown in Figure 4-1. 

Skill Score Value 

Brier .04 

ESS .27 

20/20 .93 

Correlation .41 

The same pattern of scores is expected when comparing forecasts to truth in Sections 4.1 and 

4.2. The overall picture will be statistically correct but it will be smeared due to a tendency of 

the NN to forecast an average value for the random component. The smearing results in a very 
small or negative ESS, especially when the full resolution of the data is analyzed. A better ESS 
will be achieved using the median filtered data. Large ESS cannot be expected when forecasting 
with temporally or spatially aliased images. 

4.1   PIXEL-BY-PIXEL NN. 

The training vector sets and the training process are described in Section 3.4. Raw (unfiltered, 
unsmoothed) pixel data from days 71 through 78 were input for training. Figure 4-2 is an exam- 
ple of a prediction for day 79. Table 4-2 shows the resulting skill scores. 

The rms error (the square root of the Brier score) range from 17% to 27%, generally increasing 
with forecast duration. The basic problem with the forecasts is the smearing of the clouds. Not 
shown in the color scale is the fact that there is a low (<10%) cloud fraction forecast over virtu- 
ally the entire area. As the length of the forecast increases, the pervasive low cloud fraction 
grows. 

The low cloud fraction does not affect the 20/20 scores for short forecasts but is the primary rea- 

son it drops at longer forecasts. The background level comes up. Also, the NN fails to forecast 
high cloud fractions, a further result of the smearing. 

The smearing is a direct result of randomness in the cloud field aM the small size of the training 
set. Clear improvements are evident when the size of the training set is doubled from three to six 
days. There is no reason to expect that this trend will not continue for several doublings in 
training set size. 
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Prediction Truth 

790901 

790903 

790906 

790910 

790912 

Figure 4-2. Total cloud cover forecasts for unfiltered pixel-by-pixel EMDA data on day 79. 
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Table 4-2 Skill scores for day 79 forecast. 

Skill Score 

Forecast Duration (hours) 

1 3 6 10 12 

Brier .03 .04 .04 .07 .05 

ESS .29 .11 .06 .02 .02 

20/20 .91 .85 .83 .71 .77 

4.2   MEDIAN FILTERED NN. 

As discussed in Section 2, much of the cloud field is random, not predictable. Yet, the NN dis- 

cussed in Section 4.1 was trained using data including this random cloud content. In the best of 

all worlds where training data is not at a premium, the random cloud data would cause no prob- 

lem; the NN would learn to treat the random fluctuations as a source of noise. This cannot be 

expected from a limited (6 days) training set, however. 

The above problem is addressed by filtering the training data. A median filter was selected be- 
cause it is a nonlinear filter that maintains the sharpness of cloud boundaries better than a simple 
smoothing filter. Yet, isolated (random) clouds will not pass through the filter. Figure 4-3 il- 
lustrates the effect of a median filter on a cloud image. In the figure, the original cloud image is 
compared to three levels of filtering. The 7x7 filter removes many of the larger cloud masses. 
The 3 x 3 or 5 x 5 filter removes most of the isolated clouds but maintains the larger cloud 
groups. The 5x5 filter was selected for training purposes. 

Forecasting with the median filtered images (Figures 4-4,4-5, and Table 4-3) as input has the 
expected effect. The forecasts are sharper yet. There are far fewer large regions of sparse 

clouds covering cloudless areas in the truth image. 

Several attributes of the NN are evident in the forecasts. First, there appears to be more evolu- 
tion and persistence in the clouds than advection.  When advection clearly dominates the cloud 
history as on day 81 (Figure 4-6), the NN still tries to evolve the cloud field. The advected 
feature is apparent in the forecast as the region of highest cloud fraction, but is obscured by 
forecast regional persistence. The median filtering appears to have little impact on the forecast 
Day 79 (Figure 4-4) is dominated by scattered clouds. As the forecast time gets longer, the 
ability of the NN to forecast the details greatly diminishes until at 12 hours, only the largest 

cloud groups are forecast. These predictable cloud groups are the result of evolution along the 

coast of southern Europe. 
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Day '79 Hour 

No Filter 

5X5 7X7 

Figure 4-3. Effects of median filtering on the cloud image. 
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Prediction Truth 

a) 

790901 

790903 

790906 

790910 

790912 

(The number code above denotes the day/time/forecast duration 

Figure 4-4. Day 79 EMDA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input. 
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Prediction Truth 

b) 

790901 

790903 

790906 

790910 

790912 

(The number code above denotes the day/time/forecast duration. 

Figure 4-4. Day 79 EMDA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input (Continued). 

43 



Prediction Truth 

a) 

801501 

801503 

801506 

801509 

801512 

(The number code above denotes the day/time/forecast duration.) 

Figure 4-5. Day 80 EMDA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input. 
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Prediction Truth 

801503 

801506 

801509 

801512 

(The number code above denotes the day/time/forecast duration.) 

Figure 4-5. Day 80 EMDA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input (Continued). 
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Prediction Truth 

a) 

812101 

812103 

812106 

812109 

812112 

(The number code above denotes the day/time/forecast duration.) 

Figure 4-6. Day 81 EMDA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input. 
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Prediction Truth 

b) 

812101 

812103 

812106 

812109 

812112 

(The number code above denotes the day/time/forecast duration.) 

Figure 4-6. Day 81 EMDA forecasts for a neural network trained on median filtered data (a) usinq 
unfiltered input, and (b) using median filtered input (Continued). 
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Table 4-3. Skill scores for median fitter training. 

Forecast Duration (Hours) 

3 6 10 12 

Forecast Time ui MF2 U1 MF2 U1 MF2 ui MF2 ui MF2 

Day 7909 
Brier .02 .01 .03 .02 .04 .02 .04 .02 .05 .02 
ESS .30 .18 .03 .02 .50 .02 .04 .05 .03 .05 
20/20 .93 .97 .89 .95 .88 .90 .88 .91 .87 .90 

Dav 8015 
Brier .02 .00 .03 .01 .02 .01 .05 .04 .05 .05 
ESS .13 .00 .00 -.02 -.02 .00 -.04 -.02 -.04 -.02 
20/20 .95 .99 .94 .98 .94 .96 .84 .85 .84 .84 

Dav 8121 
Brier .04 .03 .06 .02 .04 .11 .10 .12 .08 .09 
ESS .54 .58 .37 .02 .50 .26 .22 .23 .07 .00 
20/20 .88 .92 .69 .95 .88 .52 .54 .55 .75 .76 

' Unfiltered input; 2Median filtered input 

A limited number of days (and hours during the day) of central American (CNSA) SERCAA 
cloud images were available for verification. The data set was too small for complete training of 
a separate NN so the EASA NN was further trained using the available CNSA data. The first 
four days of CNSA was used for training. No attempt was made to optimize the input predictors 

as was previously done with EASA; the same predictors were input The fact that the NN is 
capable of forecasting in a completely different region than the training region demonstrates the 

versatility of the approach. 

The only reason for any additional training is due to the inclusion of latitude and longitude as 
predictors. Training on the EASA locations alone resulted in a NN that forecasts no clouds out- 
side of the EASA region. In the future this problem should be rectified by eliminating longitude 
as a predictor and better optimizing the use of land type predictors. 

The CNSA images have far more clouds than EASA. Figure A-5 (Appendix A) also shows that 
the Central American clouds are almost completely dominated by evolution or persistence with 
little advection evident. Figure 4-7 shows the forecasts for 2300 Z on day 84. Again note that 
the truth time is constant but the time from which the forecast is made (Q changes with the 

forecast length (1, 2, 6, and 9 hours). The 12 hour forecast is omitted due to data gaps. 
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Prediction Truth 

842303 

842306 

842309 

(The number code above denotes the day/time/torecast duration.) 

Figure 4-7. Day 84 CNSA forecasts for a neural network trained on median filtered data (a) using 
unfiltered input, and (b) using median filtered input. 
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Prediction Truth 

842303 

842306 

842309 

(The number code above denotes the day/time/forecast duration.) 

Figure 4-7. Day 84 CNSA forecasts for a neural network trained on median filtered data (a) usinq 
unfiltered input, and (b) using median filtered input (Continued). 
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It is difficult to draw too many conclusions from the CNSA forecasts because the clouds do not 

change much over the nine hours of the forecast. As a result the forecasts look much like the 
input advection field which looks much like the truth. The bulk of the clouds are forecast cor- 
rectly. Again, too many clouds are forecast in some places. 

4.3   COMPARISON TO HRCP PERFORMANCE. 

Skill score information for overlapping analysis times is not available for HRCP. However, the 
monthly HRCP verification statistics report provides some insight into the relative performance 
of the two models (HRCP and WCPM). 

HRCP performance is documented in terms of the rms error for 3,6 and 9 hour forecasts on a 
monthly basis. No differentiation is made in terms of the local time of the forecast. Perform- 
ance is also categorized in terms of environmental zones with the tropical zone best for our com- 
parison purposes. 

Combining the last fourteen months of performance reports results in an average rms error for 3, 
6 and 9 hour forecasts of 29%, 38% and 39% respectively. These should be compared to the 
square root of the Brier scores previously discussed. Typical Brier scores from WCPM indicate 
rms errors for 3,6 and 9 hour forecasts of 17%, 20% and 25%. 

Although a significant improvement in forecasting ability is indicated, the comparison might be 
somewhat deceptive. The WCPM results were obtained for a few realizations in one area; the 
HRCP results include many realizations in all tropical areas. The WCPM results are for a 16th 

mesh resolution while the HRCP results are for an 8th (or larger) mesh resolution. Rigorous 
comparisons should not be made based upon these preliminary results. 

51 



SECTION 5 

FORECAST IMPROVEMENTS —OBJECT ORIENTED APPROACH 

The greater success of the median filtered forecasts and the discussion in Section 2 of cloud 

randomness strongly suggests a potentially superior approach to cloud forecasting, an object ori- 

ented approach. The object oriented approach takes the concept of cloud layers one step farther 

and isolates cloud "masses, clusters or systems" for analysis. The analysis and forecasting then 

takes into account spatial correlation and relationships in the clouds and thus becomes more 

similar to that performed by a meteorologist. 

The meteorological "object" information will be obtained from a cloud segmentation and classi- 

fication analysis of remote sensing multi-spectral and microwave radiometer images combined 

with available NWP data (e.g. National Meteorological Center data, NOGAPS data, European 

Center for Medium Range Weather Forecasting data). The segmentation and classification 

analysis will either replace the nephanalysis or defer the need for a nephanalysis until after the 

forecast is made. The new process is illustrated in Figure 5-1 by the structure of the NN. The 

following will discuss the critical aspects of this approach. 

C TERRAIN 
DATABASE t CLOUD INPUT 

GOES, SSM 

 JLI 
SEGMENTATION 

I 

ADVECTED 
CLOUD FIELD 

1 
HIST 

1 

c TERRAIN 
DATABASE 

TEMPORAL 
SMOOTHER 

J 
TIME HISTORY TIME HISTORY 

I 
PERSISTENCE 

1 

1 

NEURAL NETWORK 

^ 
FORECAST 

Figure 5-1. Proposed structure of the NN for theater area cloud forecast. 
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The greatest change proposed in the forecast model is the inclusion of image object advec- 
tion/persistence/evolution descriptive input. The role of the meteorological objects or weather 
systems in the analysis will be twofold. First, it will enable a coarser forecast capability at a 
regional level (about twice the size of the theater area of interest) to be related to cloud proper- 
ties. Second, it will partially or totally take the place of a nephanalysis in that the cloud fractions 

and heights will be properties of the objects. 

5.1   CLOUD SEGMENTATION. 

A variation of the NN cloud segmentation algorithm of Peak and Tag (1988) will be developed 

to perform the object or weather system identification. Whereas Peak and Tag was mainly inter- 

ested in isolating contiguous cloud masses from visible satellite data and identifying cloud types, 
the current need is to identify and characterize a weather system, its motion, and its evolution. 

Each weather system will be characterized by its location, physical size, intensity, motion and 
rate of growth. Associated cloud masses will be characterized in terms of cloud type, height, 
motion, moisture content, and texture, along with the evolution of these parameters. It is the 

cloud mass characterization that will form the basis of the forecast 

At this point, it is anticipated that the cloud segmentation and description will be performed 
using multi-spectral and microwave remote sensing as well as NWP input. Existing algorithms 
use one or the other but not both to identify cloud types. Peak and Tag use a hierarchical 
approach and a NN for segmentation. He can include many size, shape and texture parameters 
as input to the NN. Formally, the approach can accommodate multi-sensor information or other 
meteorological information. Peak's segmentation methodology was investigated and rejected for 

use in the pixel-by-pixel worldwide cloud forecast model but is quite appropriate to an object 

oriented approach. 

Liu, Curry, and Sheu (1995) have classified clouds into non-traditional categories based upon 
combined infrared and microwave radiometer data to predict precipitation. This approach ap- 
pears to be more appropriate to cloud and precipitation forecasting than standard cloud classifi- 
cation because the classification (Table 5-1) is based upon those characteristics of the clouds 
most diagnostic of precipitation. In particular, clouds are classified based upon present and past 
moisture content and cloud top height. No actual segmentation was attempted. The addition of 
microwave radiometer data opens the possibility to forecast precipitation of various types as well 

as cloud thickness. 
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Table 5-1. Schematic diagram of microwave index (/) versus cloud top temperature for cloud 
classification. 

Thin High-Top 
Nonprecipitating 

Cloud 

Deep High-Top 
Nonprecipitating 

Cloud 

Anvil With 
Stratiform 

Precipitating 
Cloud 

Deep Convective 
Precipitating 

Cloud 

Midtop Nonprecipitating Cloud Midtop Precipitating Cloud 

Warm Nonprecipitating Cloud Warm Precipitating Cloud 

0.25 0.0 
/(Microwave Index) 

0.75 

(Liu, Curry, and Sheu, 1995) 

5.2 CLOUD MOISTURE. 

Moisture is obviously a key input into the cloud forecasting model. Numerical weather predic- 
tion (NWP) models rely on radiosonde data for moisture field initialization. Numerous tech- 
niques were developed in the past 10 years to utilize satellite multi-spectral and microwave 
radiometer data to infer vertical profiles of water vapor and precipitation in the atmosphere (e.g., 
Weng and Grody, 1994; Jones and Vonder Haar, 1990; Liu, Curry, and Sheu, 1995). Multi- 
spectral data (e.g. AVHRR) is effective at estimating water vapor content in clear sky regions, 
but depends on an accurate temperature profile. If free water is also present, better results are 
achieved using microwave radiometer systems such as SSM/I and SSM/T-1 or /T-2 (e.g., 
Falcone et al., 1992; Butler, Meredith, and Stogryn, 1996; Butler, Meredith, and Rosenberg, 
1992). Comparisons with radiosonde data are good within the operating zone of the radiosonde. 
Simulations have also demonstrated the expected sensitivity to upper atmosphere relative 

humidity (e.g., Butler, Meredith, and Rosenberg, 1992). 

5.3 PIXEL-BY-PIXEL DATA. 

The pixel data still remains an important part of the forecast input for two reasons. First, per- 
sistence information (e.g., diurnal or multiple day trends) can best be characterized on a pixel- 
by-pixel basis. Secondly, the pixel-by-pixel data retains the highest resolution information. 
Neither should be discarded. Advective and evolutionary information will now be relegated to 
the object level. The number of pixel level model predictors will therefore be greatly reduced. 
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5.4   UNIVERSAL PARAMETERS. 

A NN is relatively unlimited in terms of the quantity of data that can be input. However, once 
trained, it is severely limited in terms of the types of data it can accept without a complete new 
training. The choice of universal input parameter definition is therefore critical and will be 
one of the first tasks performed. 

Raw multi-spectral and microwave radiometer data represents brightness temperatures at differ- 

ent frequencies and must be interpreted in terms of frequency. The frequency dependence must 

be removed before it can be algebraically combined. The frequency dependence is removed if 
physical parameters such as vapor pressure, free water content, true temperature, etc. are esti- 
mated. Similar parameters are estimated from radiosonde data and thus can be easily included in 
the analysis. Other data such as wind vectors can be directly included into the advection 
analysis. 
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APPENDIX A 
DATA 

Data for three study regions were provided as the primary database for the WCPM. All three 
regions (EASA—East Asia, CNSA—Central and South America, EMDA—Eastern 

Mediterranean Sea) were tropical (Figure A-l). The total data set is listed in Table A-l and 
includes the SERCAA, NOGAPS, RTNEPH and terrain data. 

Figure A-1. Regions for which SERCAA data was supplied. 
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Table A-1. WCPM datbase. 

Type Description Size (MB) 

Numerical weather prediction NOGAPS 
Feb-Apr 1993 and 1994 
May-Jul 1993 and 1994 

1,656 

Terrain TACNEPH 2 

SERCAA 
Elevation 
Geography 

63 
17 

Nephanalysis RTNEPH 
Feb-Apr 1993 and 1994 
May-Jul 1993 and 1994 

SERCAA 

6,660 

EASA 22-30 Mar 1993 1,180 
EASA 22-31 JUI1993 1,323 
CNSA 22-31 Mar 1994 495 
EMDA 12-21 Mar 1994 313 

SERCAA data processing was still being developed during the first year of this contract. Much 
of the EASA and CNSA data received at PSR was unsuitable for our purposes due to the 
presence of processing artifacts. Hence, neural network training focused on the EMDA data. In 
addition, Level 4 SERCAA processing (the integrated results from all available satellites) was 
unusable due to poor satellite merging and equalization. WCPM processing utilized only the 
GOES-6 data in the SERCAA Level 3 data set. 

A.1   TERRAIN DATA. 

Figure A-2 shows the input SERCAA land type data for area EMDA. Five land types were 
utilized in this study. 

A.2   SERCAA DATA. 

SERCAA algorithms incorporate high-resolution sensor data from multiple military and civilian 
satellites, polar and geostationary, into a real-time cloud analysis model and apply multispectral 
cloud analysis techniques that improve the detection of clouds. The SERCAA algorithms 
consist of a number of processes involved in integrating cloud analyses from multiple satellite 
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Figure A-2. Location and land type map for EMDA. 
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platforms into a single cloud analysis product. The steps required to process the raw sensor data, 
collected from each of the platforms, into each of the individual cloud analysis products include 
total cloud algorithms for DMSP, AVHRR, GOES, METEOSAT and geostationary platforms, 
cloud layer and type algorithms, and an analysis integration algorithm (see Sarkisian et al., 
1994). 

SERCAA products are available with three levels of processing. Level 1 represents raw, 
individual satellite data. Level 2 represents corrected satellite data. Level 3 represents 

individual satellite nephanalyses. Level 4 merges the individual satellite Level 3 analyses. Final 

SERCAA products are reported on a 16* mesh and include total cloud cover fraction, number of 

cloud layers (4 maximum), cloud layer coverage fraction, cloud type, cloud height, and a 
measure of confidence. 

The primary data used for analysis is shown in Figure A-3. Although hourly images (with a few 
gaps) are available, the Level 3 total cloud fraction is shown at three hour increments. 

A.3   NOGAPSDATA. 

NOGAPS "data" is provided by FNMOC. NOGAPS is the output of a large NWP code that also 
assimilates satellite weather observations to produce a current prediction of the numerical 
parameters previously shown in Table 3-2 and a 12 hour forecast of those parameters. A 
complete description of the NOGAPS algorithms is beyond the scope of this report. The reader 
is referred to reports specifically related to NOGAPS for model details. NOGAPS does not 
produce a nephanalysis. 

NOGAPS provides a global analysis and a 12-hour forecast twice daily at 00 and 12 Z on a 2.5 x 
2.5 degree latitude/longitude grid. The resolution at 60° N is 139 km, decreasing to 278 km at 
the equator. In contrast, SERCAA data is available hourly (nominally) and the resolution of 
16th-mesh SERCAA data at 60° N is 23.8 km, increasing toward the equator. The current 
NOGAPS operational model is higher resolution (0.75 x 0.75 degree) but unfortunately no 

archived data is available for the 1993 and 1994 times corresponding to the SERCAA data sets. 

Figures A-4 and A-5 show NOGAPS data corresponding to the SERCAA EMDA data. 
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APPENDIX B 

SKILL SCORE DEFINITION 

The skill scores used in this study are completely defined and described in Gandin and 
Murphy (1992). For completeness, a short definition of each is provided below. 

Brier Score: 

The Brier score is the standard measure of the mean square error between the forecast 
and the truth. There is not selective weighting or penalty. The score is normalized to 
range from 0 to 1 with a score of 0 being perfect. 

Equitable Skill Score (ESS1: 

The ESS is defined to emphasize an ability to accurately forecast the unusual in an 
image. ESS also penalizes for poor forecasts. To accomplish this ESS weights points 

approximately inversely proportional to their fractional occurrence. Therefore, the 

correct forecast of an isolated feature is very heavily weighted while the correct forecast 
of the most commonly occurring values is lightly weighted. Conversely, incorrect 
forecasts are negatively weighted according to their fractional occurrence. Negative ESS 
is therefore possible. ESS can range from -1 to +1 with +1 being perfect 

Evaluating the ESS is very difficult because the concept of a "good" score is image 
dependent. Low, but positive, ESS (0.1 to 0.2) is expected for the cloud fields shown in 
Figures A-2 to A-5. The cloud fields are very broken. Isolated pixels of clouds are 
observed and are randomly populated. The opportunity for forecast penalties is very 
large due to these isolated pixels. 

2Q/2Q: 

The 20/20 score simply measures the ability of the forecast to predict within ±20% of the 
correct value. There is no weighting according to the chance of occurrence for that 

value. Scores range between 0 and 1 with a score of 1 being perfect. 

The EMDA data is dominated by areas of no clouds (about 70% of the pixels have no 

clouds). The 20/20 score should be high if the model accurately forecasts "no clouds". 
In regions of uniform clouds (no clouds or all clouds) the scores are expected to exceed 
0.8. In areas of scattered clouds lower scores of 0.5 to 0.6 are expected. 

B-l 



Correlation fCORR): 

This is the standard zero-lag image correlation coefficient given by 

CORR = ±-fjxijyij (B.1) 
N „ 

where x{- and v; are pixels in the forecast and truth images each containing N pixels. This 
score emphasizes the correct forecasting of larger features in the images. Since cloudless 
pixels have a value near zero, the cloudy pixels contribute most to the correlation. 
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