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Abstract 

This paper presents some of the steps in an emerging architecture tradeoff analysis method 
(ATAM). The objective of the method is to provide a principled way to understand a software 
architecture's fitness with respect to multiple competing quality attributes: modifiability, secu- 
rity, performance, availability, and so forth. These attributes can interact or conflict—improv- 
ing one often comes at the price of worsening one or more of the others, thus it is necessary to 
trade off among multiple software quality attributes at the time the software architecture of a 
system is specified, and before the system is developed. This report illustrates typical quality 
attribute models, analyses, and tradeoffs using a small real-time industrial application. 
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1     Why Architecture Tradeoff Analysis? 

In large software systems, the achievement of qualities such as performance, availability, secu- 
rity, and modifiability is dependent not only upon code-level practices (e.g., language choice, 
detailed design, algorithms, data structures, and testing), but also upon the overall software 
architecture. Quality attributes of large systems can be highly constrained by a system's soft- 
ware architecture. Thus, it is in our best interest to try and determine at the time a system's 
software architecture is specified whether the system will have the desired qualities. 

A variety of qualitative and quantitative techniques are used for analyzing specific quality 
attributes [Barbacci 95]. These techniques have evolved in separate communities, each with its 
own vernacular and point of view and have typically been performed in isolation. However, 
the attribute-specific analyses are interdependent, for example, performance affects modifi- 
ability, availability affects safety, security affects performance, and everything affects cost. In 
other words, each quality attribute has interfaces to other attributes. These interfaces represent 
dependencies between attributes and are defined by parameters that are shared among attribute 
models. If we can identify these interfaces, the results from one analysis can feed into the oth- 
ers. This is the principal difference between an architecture tradeoff analysis and other soft- 
ware analysis techniques—that it explicitly considers the interfaces between multiple 
attributes, and permits principled reasoning about the tradeoffs that inevitably result from such 
connections. Other analysis frameworks, if they consider connections at all, do so only in an 
informal fashion, or at a high level of abstraction (see [McCall 94, Smith 93]). 

In addition to the technical factors represented by the quality attribute's models and analysis, a 
software architecture is influenced by business and social forces from multiple stakeholders. 
Thus, design decisions are often made for non-technical reasons: strategic business concerns, 
meeting the constraints of cost and schedule, using available personnel, and so forth. "[The 
message] is that the relationships among business goals, product requirements, practitioner's 
experience, architectures, and fielded systems form a cycle with feedback loops that a business 
can manage" [Bass 98]. This "architecture business cycle" is illustrated in Figure 1-1. 

CMU/SEI-97-TR-029 



Architect's Influences 

^ ==^ 
^ 

\ 
Stakeholders—i 

J> Requirements 
Development—1    (Qualities) 
organization 

Technical 
environment 

* 
Architect -> Architecture 

1 
System     1 

«fllillllftllii Wm          M 

A 

r 
Figure 1-1: The Architecture Business Cycle [Bass 98] 

There are multiple activities involved in the architecture business cycle: 

• creating the business case for the system 

• understanding the requirements 

• creating or selecting the architecture 

• representing and communicating the architecture 

• analyzing or evaluating the architecture 

• implementing the system based on the architecture 

• ensuring that the implementation conforms to the architecture 

These activities do not take place in a strict sequence and there are many feedback loops as the 
multiple stakeholders negotiate among themselves, striving for some consensus. To visualize 
the process, imagine a blackboard, Figure 1-2, in which the participants read and write various 
types of information (e.g., requirements, constraints, evaluation results) without necessarily 
following a set order or rank. The implication is that potentially any of the stakeholders (archi- 
tects, attribute experts, developers, etc.) can make use of information developed by any other 
stakeholder and can introduce information that could be of interest to anyone else. 
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Other 
stakeholders 

Figure 1-2: Information in the Blackboard 

The purpose of this report is to illustrate, through a simple problem, the attribute modeling, 
analysis, and tradeoff activities suggested by the blackboard "boxes." We have chosen a 
"model system" that has been used in several case studies [Nielsen 87, Sanden 89, Smith 93]. 
We have generalized the problem description by requiring support for multiple host computers 
acting as clients — the single host computer in the original problem becomes a special case. 
This extension provides a richer basis for exploring a variety of quality attribute issues. 

In Chapter 2 we present the problem, identify the requirements and constraints, and present a 
structural view of an architecture to be analyzed. In Chapter 3 we present attribute-specific 
models for performance, availability, and security. The models to be considered in an architec- 
ture tradeoff analysis are determined by the system requirements, the architectural views, and 
the experience of the attribute specialists and the architect. 

In Chapter 4 we apply the attribute models developed in the previous chapter and carry out the 
analyses. To conduct the analyses we must identify values for the parameters of the models. 
As we shall see, these parameters can be explicit in the requirements or architectural view, dis- 
covered in the models, or assumed in scenarios used to carry out the analyses. In all cases, the 
values are either known from prior experience or are assumed to be so, but subject to confir- 
mation during development. The discovered and assumed parameters have to be added to the 
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architecture as refinements or annotations. Since any assumptions, constraints, etc. needed for 
a model could potentially affect other models, the annotation of the architectural views— 
together with the scenarios—must be exposed or communicated to all stakeholders. 

Finally, Chapter 5 discusses the sensitivity of the results to the information used in the analy- 
ses and the tradeoff points between attributes. 
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2     Requirements and Architectural Views 

2.1    Problem Description 
The system is a simple industrial application consisting of a remote temperature sensor (RTS) 
and a number of remote host computers (operator stations). The RTS controls a battery of fur- 
naces and a digital thermometer. The function of the RTS is to periodically query the ther- 
mometer for the temperature of a specified furnace and to report the temperatures to the host 
computers. Safe operation of the plant requires that it operates with minimal downtime and 
that the temperature readings are timely and accurate. 

The RTS and the host computers communicate by passing messages on a local area network. 
To simplify the exposition, we assume that the RTS is a simple device, capable of doing one 
thing at a time. Thus, there is no overlap between internal operations and transmission of 
reports over the network. 

The hosts specify the frequency of temperature readings for each furnace of interest by send- 
■~v occasional control requests specifying a furnace number and the interval (10 to 99 sec- 

;ias) between temperature readings. Control requests are stored in a FIFO queue until the 
RTS is free to process the requests. 

Processing a control request involves updating the schedule of periodic readings, requesting an 
initial temperature reading from the thermometer, and storing the temperature reading in a 
FIFO output queue until the RTS is free to transmit temperature reports to the requesting hosts. 

Processing periodic reports involves keeping track of time, requesting a temperature reading 
from the thermometer at the scheduled reading time, and storing the temperature reading in a 
FIFO output queue until the RTS is free to transmit temperature reports to the requesting hosts. 

To obtain a temperature reading, the RTS calls the thermometer task with a furnace number as 
a parameter and the thermometer returns the temperature of the furnace, a value in the range of 

0-1000°C. 
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2.2   Identification of Requirements and Constraints 
There are a number of formal and informal techniques for requirements elicitation and valida- 
tion, including introspection, questionnaires, interviews, and protocol analysis; any number of 
techniques or combinations thereof could be used. However, independently of how we derive 
the requirements, we must link them to the architecture views, attribute models, analysis, and 
other information in the blackboard. That is, the information written in the requirements box 
of the blackboard has to be meaningful to all the stakeholders. It would be useful, for example, 
to categorize requirements according to attribute-specific concerns and use this to guide the 
refinement of requirements.1 

Although the problem description is not very detailed and does not provide a great deal of 
quantitative information, we can nevertheless identify several attributes of concern as a start- 
ing point. It does not matter if we miss a hidden requirement or if we can not assign a value to 
a requirement at this time. The development of the attribute models and their analysis will pro- 
vide grounds for quantifying or identifying missing requirements. 

Table 2-1 quotes the word(s) in the system description that suggest that the particular attribute/ 
concern is important (i.e., that there is a requirement to address the concern). In general, the 
requirement will fall into several classes: 

• explicit: appears in the original problem description 

-    bound or specified (e.g., FIFO queueing, range of reading intervals) 

unbound or unspecified (e.g., acceptable RTS downtime) 

• discovered: identified by the models and added to the requirements as either bound or 
unbound requirements (e.g., RTS failure and repair rates) 

• assumed: identified by the models and postulated in scenarios as values for unbound 
requirements (e.g., types of attacks the system must resist) 

We use scenarios to explore the space of requirements and constraints. Scenarios help put in 
concrete terms otherwise vague or unqualified requirements and constraints. They also facil- 
itate communication between stakeholders because it forces them to agree on their perception 
of the requirement or constraint. 

This is a somewhat recursive argument: We need to identify the relevant attributes and them map the requirements to these 
attributes but we don't know what the relevant attributes are until we have the requirements. This is one of the reasons why 
a fixed sequence of steps is hopeless and a shared blackboard works better than a pipeline. 
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Statement in 
problem 

description 

Suggested 
attribute 

Attribute 
specific 
concern 

Example of requirement 
statement 

Minimal downtime 
(requirement) 

RTS availability RTS downtime 
(system not oper- 
ational) 

The RTS must be operational W% of 
the time. 

Timely readings 
(requirement) 

Periodic readings 
(requirement) 

Reading intervals 
range from 10 to 
99 seconds, (con- 
straint) 

RTS and network 
performance 

latency (delay of 
temperature 
reports) 

jitter (variability in 
delay) 

The hosts must receive periodic 
reports within R ± D (or AD) seconds of 
their scheduled reading. 

The hosts must receive an initial report 
within R ± D (or AD) seconds of send- 
ing the request. 

Accurate read- 
ings (require- 
ments) 

Furnace tempera- 
ture ranges from 
0to1000°C (con- 
straint) 

RTS and network 
security 

integrity of the 
reports 

The reports must be protected against 
attacks of type A with probability P. 

thermometer 
accuracy 

deviation from 
true value 

The temperature reading must be with 
R% of its true value. 

Sequential opera- 
tion (constraint) 

RTS and network 
performance 

latency and 
throughput (num- 
ber of reports per 
minute) 

The system must process at least R 
reports per minute. 

Multiple furnaces 
and hosts 
(requirement) 

RTS and network 
performance 

throughput The system must support up to F fur- 
naces, H hosts, and a load distribution 
L 

Occasional con- 
trol requests (con- 
straint) 

RTS and network 
performance 

throughput A host issues a control request every 
C minutes. 

The control requests constitute X% of 
the traffic. 

Table 2-1:  Requirements and Attributes 
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2.3   Structural View of the Architecture 
Figure 2-1 presents a structural view of the architecture, in which multiple servers implement 
the functionality of the RTS and where the host computers act as clients, evenly allocated to 
the servers. This is the architecture view that will be the focus of the modeling and analysis 
This particular architecture was chosen because it is a direct map of the problem description.1 

I V\       F 

RTS Server 1 

Schedule 1 

. Furnace Client 1,1 

Furnace Client C, 1 

VTS Server S 

ISchedule I 

. Furnace Client 1 ,S 

FFurnaces Furnace Client C,S 

Figure 2-1: Structural View of the Architecture 

In this structure, the path for a control request generated by a client and the corresponding tem- 
perature report sent back by a server consists of the following steps: 

1. A control request message is transmitted via the LAN and stored in the input queue. 

2. The control request eventually arrives at the head of the input queue and is processed: 

a. update the schedule for temperature readings 

b. request a temperature reading from thermometer, as if a scheduled event time had 
arrived 

3. The temperature reading is stored in the output queue. 

4. The temperature report eventually arrives at the head of the output queue and is transmit- 
ted via the LAN to the client. 

1. This begs several questions: Who did it? How did it happen? Is it always a structural view? The fact is, there is always a 
creative step at the beginning and the initial candidate just happens. An alternative way to phrase this is that every analysis 
starts with a little synthesis. 
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The path for a periodic temperature report generated by a server consists of the following 
steps: 

1. A periodic temperature reading is performed: 

a. wait for the next scheduled reading 

b. request a temperature reading from the thermometer 

2. The temperature reading is queued in the output queue. 

3. The periodic temperature report eventually arrives at the head of the output queue and is 
transmitted via the LAN to the client. 

As in the case of the requirements, the structural view of the architecture must be annotated 
with information or parameters needed for the attribute specific models. These parameters fall 
into several classes: 

• explicit: appear in the initial architecture view 

bound or specified (e.g., execution paths) 

-    unbound or unspecified (e.g., S servers, C clients) 

• discovered: identified by the models and added to the architecture view as either bound or 
unbound parameters (e.g., operation times, transmission times, failure rates) 

• assumed: identified by the models and postulated in scenarios as values for unbound 
parameters of the architecture (e.g., minimal, maximal, and average loads; probability of 
success of an attack) 

We use scenarios to explore the space defined by the attribute models. Scenarios help put in 
concrete terms parameters of the models that are not part of the architecture. They also facili- 
tate communication between stakeholders because it forces them to agree on their perception 
of the architecture. 
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Attribute Models 

In this section we illustrate models for performance, availability, and security—the attributes 
suggested by the requirements in the problem description. Notice that all of these attributes are 
observable at runtime (i.e., are exhibited by the system during execution). Other attributes not 
observable at runtime (e.g., modifiability) could be included but the level of detail in the prob- 
lem description, requirements, and architectural view is insufficient to make this a useful or 
interesting exercise. 

3.1    Performance Model 
In a real-time system latency and jitter are frequent concerns and these will be the focus of our 
performance modeling. Latency and jitter of the temperature reports are important because the 
information might be used by the client to perform operations that could have disastrous con- 
sequences if the temperature reports arrive late or at unpredictable times. 

The performance analysis involves computing latency (in simple cases) by tracing the execu- 
tion path of a function and assigning latencies to each portion of the path. More complex cases 
involving throughput and capacity can be analyzed using either scheduling, simulation, or 
queueing models [Audsley 95, Conway 67, Klein 93, Lehoczky 94, Smith 90, Stankovic 95]. 
To carry out the performance analysis we can use direct execution scenarios to identify the 
execution paths, complemented by checklists to identify or assign arrival rates and distribu- 
tions to each component and connector in the path. Given the arrival rates and distributions for 
each component, we can compute the latency, throughput, and capacity of the system as a 
whole. 

3.1.1     Execution Path Components 
To build the latency models, we need to identify the paths, the components, and the execution 
times to be added, and all of these must be identified in the architecture. From the structure of 
the architecture, we identify the components involved in the execution path of an activity and 
for each component we must determine an execution time. These execution times, unless 
already specified in the architecture, are discovered parameters needed by the performance 
model.1 
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The activities of interest are the control requests and the generation of periodic reports; their 
execution paths are shown in Figure 3-1. The components involved in the operations are 

• Local area network. Network transmission time for control request messages is Cnet. 

Network transmission time for periodic reports is Cnet. 

• Input and output queues. Queues for control requests received by the server and tempera- 
ture reports ready for transmission to the clients. Queueing time for control packets is Cdq. 

Queueing time for temperature reports is C^. 

• Digital thermometer. Temperature reading time is included in the caller's operation. 

• Task for control requests (calls thermometer). Control request processing time, including 
thermometer invocation, is Cfnc. 

•, Task for periodic reports (calls thermometer). Scheduler processing time, including ther- 

mometer invocation, is Cf„c. 
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Figure 3-1: Performance Model Paths and Components 

We are making two simplifying assumptions. First, queueing operations for control requests 
(input queue) and temperature reports (output queue) take the same amount of time, Cdq. The 

second assumption is that the processing time to generate temperature reports in response to a 
control request (initial reports) or in response to a scheduled reading (periodic reports) take the 
same amount of time, Cfnc- The times could be different due to different message sizes but the 

difference is negligible. In any event, as we shall see, different queueing and processing times 
could be easily included in the models. With these path definitions, we can now express the 

latency and jitter models. 

1 The models here measure latency between the client sending the request and the client receiving the result. Another inter- 
esting latency that might be considered is the time between the operator issuing the request and the operator seeing the 
result (i.e., We would need to add the computing time of the client software.). 
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3.1.2    Latency and Jitter Equations 
We distinguish the latency of an initial temperature report (i.e., the first report in response to a 
control request) from the latency of a periodic report. These are the two activities of interest 
identified from the problem description and the requirements. 

The worst case control latency (WCCL) occurs when all clients assigned to a server simulta- 
neously send control requests for readings from all furnaces. The worst latency affects the cli- 
ent whose request is the last one to be received by the server because requests are processed in 
FIFO order (i.e., its initial reading will also be the last to be sent by the server). If we assume 
that the clients (C) are evenly allocated to the servers (S), and each client wants to engage all F 
furnaces, WCCL is given by Equation 3-1: 

WCCL = C/S * F * (2 * Cnet + 2 * Cdq + Cfnc) [Equation 3-1 ] 

Since control requests are infrequent, additional models (i.e., average and best case) might not 
tell us much. This is the most stressful case. If the queueing, processing, and network times for 
control requests and periodic reports are different, the times in the equation above should be 
those of the control request, and the times in the equations below should be those of the peri- 
odic reports. 

In general, the latency of a periodic report (PL) is given by Equation 3-2: 

PL = (Q+1) * (Cdq + Cfnc + Cnet) [Equation 3-2] 

Q is the number of temperature reports scheduled to take place at the same time as the report 
of interest. The new report is placed at the end of the queue and has to wait until its turn arrives 
(i.e., until there are no reports ahead of it). Notice that the formula assumes no concurrency 
between network transmission and server operation time. 

The worst case periodic latency (WCPL) occurs when all clients assigned to a server have 
scheduled readings from all furnaces and these are all due at the same time (Q = C/S*F). 
Obviously, the best case periodic latency (BCPL) occurs when there are no reports in the 
queue (Q = 0). Varying Q, we can bracket the latency affecting a periodic temperature report 
(see Equations 3-3 and 3-4). 

WCPL = C/S * F * (Cdq + Cfnc + Cnet) [Equation 3-3] 

BCPL = (Cdq + Cfnc + Cnet) [Equation 3-4] 
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Jitter is defined as the variation in latency from the ideal or best case (see Equation 3-5): 

Jitter = PL - BCPL [Equation 3-5] 

3.2   Availability Model 
We focus on evaluating the availability of the servers (i.e., the amount of time the servers are 
working). Availability of the temperature reports is important because the information might 
be used by the client to perform operations that could have disastrous consequences if the tem- 
perature reports are missing. 

In performing availability analysis, we rely on Markov modeling to calculate the reliability 
and availability of the system as a whole from the reliability of the system's parts. To conduct 
the availability analysis, we assign each component a failure rate and a repair rate—the rate at 
which this component recovers from a failure—obtained from questionnaires or checklists, 
depending on the maturity of the domain or prior experience with similar components. To 
understand the availability of the RTS, we use a machine repair model with S machines and 
one repairman (see for example [Ross 89]). The amount of time each machine operates before 

;*>g down is exponentially distributed with mean 1/X, (the failure rate of machines is A,). 
ww tuiiount of time that it takes to repair is exponentially distributed with mean l/|i (the repair 

rate is \i). Both X and (X are discovered parameters needed by the availability model. 

In the machine repair model we say that the system is in state n whenever n machines are not it 
use. In our situation, we say that the system is operating (albeit with diminished capacity) 
whenever at least one server is operating and we say that the system is down whenever all S 
servers are down. The long-run proportion of time that the system is in state S (i.e., the system 
is down, by our definition) is given by Equation 3-6: 

De   = 
"•©) 

[Equation 3-6] 

S " S 

n = l 

Availability is simply the complement, the long-run proportion of time that the system is not in 
state S (where all the servers are down) (see Equation 3-7): 

A = 1 -Ds [Equation 3-7] 
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3.3   Security Model 
We focus on the accuracy of the temperature reports sent from the servers to the clients. This 
information might be used by the clients to perform operations that could have disastrous con- 
sequences if the temperature reports are altered by an attacker.1 Thus we are concerned with 
the integrity of the information passing between the servers and clients. 

There are several recognized techniques for a security analysis. The two major categories of 
these techniques are formal analysis and scenario-based analysis. In formal analysis, mathe- 
matical specifications of the requirements are used as goals to be verified from a rigorous 
specification of the behavior of the architecture. In scenario-based analysis, specific threats 
and objects to be protected in a system are identified, then the defensive measures are tested 
under expected behavior of the threat scenarios to determine if the goals of the security 
requirements have been met. Formal analysis is best suited for small, fully-specified systems 
that are designed around a detailed security model. The scenario-based analysis is more suited 
to a balanced approach of attribute analysis and will be used for the system under consider- 
ation. 

The window of opportunity, W, for an intruder is the length of time the intruder can operate 
undetected. This means that after about W minutes, it is likely that the intruder would be 
detected by an operator and traced to a point of origin. Within the window, there is an attack 
rate (R) that the intruder is capable of — this activity includes target selection of a particular 
client/server connection to attack and investigation of the specific properties of this connection 
to attack. This rate, multiplied by the exposure time (W), gives the number of system attacks 
attempted by an intruder during the exposure window. For an attempted intrusion to be suc- 
cessful, the intruder must then successfully apply the attack (e.g., kill server) with some prob- 
ability of success P. In general the attack will consist of several components with probabilities 
of success, Pt... Pn, and the general expression for the expected number of successful attacks 

is shown is Equation 3-8: 

E = W * R * P! * ... * Pn [Equation 3-8] 

To calculate the number of successful attacks within an acceptable window of opportunity for 
an intruder, we need to define various parameters associated with the environment, including 
probabilities of successful attacks using standard assumptions and other values reasonable for 
the design.2 These are discovered parameters needed by the security models. 

There are no requirements that temperature reports be hidden or kept secret. Thus we don't care if attackers can read the 
temperature reports, we just don't want them to modify the values. 

In general, these probabilities are dependent on the operational environment of the delivered system, which includes such 
factors as operator training and patch management for the operating system. These dependencies are out of the scope of 
architectural analysis at this level of abstraction, but must be considered later in the design process. 
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4     Attribute Analysis 

In this chapter we apply the attribute models previously developed. As we will see, not all the 
information needed for the analyses is available from the requirements and architectural 
views. To conduct the analyses we must assign values to the parameters in the various models. 

4.1    Performance Analysis 
For purposes of illustration let's assume the following values for the performance parameters: 

• F = number of furnaces = 16 

• S = number of servers = 2 

• C = number of clients = 8 

Cnet = Network transmission time = 120 ms 

• Cdq = Queue operation time = 10 ms 

• Cfnc = Processing time = 160 ms 

There is one additional parameter in the equations that is not really part of the architecture but 
depends on the assumed behavior of the clients and their demand on the system. This is Q, the 
number of simultaneous periodic reports (Equation 3-2). This has to be postulated via scenar- 

ios. 

The calculation of the worst case control latency (Equation 3-1) and best case periodic latency 
(Equation 3-4) are fairly straightforward since they do not depend on the length of the queue 

for periodic reports: 

WCCL = C/S * F * (2 * Cnet + 2 * Cdq + Cfoc) = 8/2 * 16 * (2*120 + 2*10 + 160) = 26,880 ms 

BCPL = (Cnet + Cdq + Cfnc) = (120 + 10 + 160) = 290 ms 

To calculate the worst case periodic latency, WCPL, we must postulate various combinations 
of how many clients have requested temperature readings from each furnace and the frequency 

1. Well, not exactly. The case of the control request assumes that the server was Idle and there were no pending periodic re- 
ports In the output queue when the control requests arrived. To be more realistic, we would add to WCCL the time to transmit 
any pending periodic reports and this could be extracted from one of the subsequent scenarios. 
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of these readings. If we had some idea of the arrival rates for control requests and the distribu- 
tion of periodic reading intervals, we could use queueing theory to compute the queue lengths. 
This information might not be available and the queue length might have to be guessed using 
"back of the envelope" estimates. However, in this case we face a possible explosion of sce- 
narios, given the millions of possible arrangements.1 Rather than engage in any exhaustive 
exploration of the space, we will pick a heavy load and a medium load scenario. In actual prac- 
tice, it would be up to the stakeholders to decide if these scenarios are representative of the 
workload or if additional scenarios are needed. 

Heavy load scenario — The heaviest load occurs when all clients assigned to a server have 
scheduled all furnaces making a total of C/S*F = 8/2 * 16 = 64 scheduled temperature reports. 
The assumption is that all reports are synchronized and have the same period, thus they are all 
due at once, regardless of how much time elapses between the occurrences of the event. When 
the appointed time arrives, the server goes into overdrive, getting temperature readings from 
the thermometer, queueing them up as fast as it can, and finally transmitting them when all 64 
readings are queued. The periodic latency (Equation 3-2) for the heavy load scenario is 

PLHL = Q * (Cnet + Cdq + CfnC) = 64 * (120 + 10 + 160) = 18,560 ms 

If the assumed common period is greater than 18,560 milliseconds the system can handle the 
load because it will be able to flush the queue before the next block of readings is due. If the 
common period is smaller that 18,560 milliseconds the system will never keep up.2 

Moderate load scenario — A moderate load could have each client engaging only 8 of the 16 
furnaces for a total of 32 (8/2*8) scheduled readings. If all readings are synchronized and due 
at once, the periodic latency (Equation 3-2) for the moderate load scenario is 

PLML = Q * (Cnet + Cdq + Cfec) = 32 * (120 + 10 + 160) = 32*290= 9,280 ms 

That is, even if all 32 scheduled readings had the minimal reading frequency (10 seconds), the 
system can handle the whole queue before the next group of readings is due. We could try any 
number of additional combinations of clients, furnaces, and reading intervals and repeat the 
calculations. 

1. Rounding reading intervals to the nearest second, each client can engage up to 21S combinations of furnaces and each fur- 
nace can be assigned 89 (i.e., 99-10) possible intervals, for a grand total of 46,661,632 cases. 

2. The assumption that all reports are synchronized is not too farfetched. Even if all the scheduled reading intervals are evenly 
spread between 10 and 99 seconds, every once in a while (the least common multiple of the intervals) they will all again 
coincide and the queue will fill with 64 reports as described above. If the last report in the queue has a reading interval smaller 
than 18.560 seconds it will miss deadlines as often as the queue builds up beyond some limit. 
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The calculation of Jitter (Equation 3-5) is straightforward: 

JitterHL = PLRL -BCPL = 18»560 -290 = 18>270 ms 

JitterML = PLML - BCPL = 9,280 - 290 = 8,990 ms 

The performance results are summarized in Table 4-1. 

WCCL PLHL PLML BCPL JitterHL JitterML 

26.880 
seconds 

18.560 
seconds 

9.280 
seconds 

0.290 
seconds 

PLHL - BCPL= 
18.270 seconds 

PLML-BCPL = 
8.990 seconds 

Table 4-1:  Performance Summary 

4.2   Availability Analysis 
The availability model required the specification of S, X and |1, the number of servers, and 
server failure and repair rates respectively. Let's assume the same value of S (2) used in the 
performance scenarios. The fraction of downtime (Equation 3-6) becomes the following: 

[Equation 4-1] 

Ds = 
€ 

i + U) X\n        S! 
x 

2x (ä 
l+2x 

n = l 
(S-n)! (MJ 

2-X 
2 2 

\i  + 2-X- |i. + 2- X 

The failure and repair rates could be "discovered," if we had experience with previous sys- 
tems, and simply taken from a product specification sheet. It is more likely that we have to 
assume failure and repair rates in some scenario; these rates would have to be tested or con- 
firmed during development. For the purposes of illustration, assume that there are two types of 
faults that can bring the server down: hardware and software. For each of these fault scenarios 
we assume a rate of failure and a rate of repair. 

Hardware failure scenario — The rate of a hardware failures, such as a burned-out power sup- 
ply, range from 1 to 2 failures/year and require a visit by a technician to repair (1/2 day to 

repair). That is, X = 1~2 failures/year and jl = 2 repairs/day (730 repairs/year). 
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Software failure scenario — The rate of software failures, such as an operating system crash, 
range from 8 to 24 failures/year and require restarting the server to repair (10 minutes to 
reboot). That is, A, = 8-24 failures/year and |l = 144 repairs/day (52,560 repairs/year). 

Solving Equation 4-1 for the higher values of hardware (HF) and software (SF) fault scenarios 
yields 

DHF =(2X2)/(\i2 + 2X|X + 2X2) = (2*22)/(7302 + 2*2*730 + 2*22) = 1.4930164157E-5 

DSF =(2X2)/(u2 + 2X\i + 2X2) = (2*242)/(52,5602 + 2*24*52560 + 2*242) = 4.1662483059E-7 

We can not simply add the downtimes as if these failures scenarios were independent. Soft- 
ware failures can only occur when the hardware is operating. Thus, the combined fraction of 
downtime is: 

D = DHF + (1-DHF)*DSF = 1.5346782767E-5 

Converting these fractions of a year into hours, the availability results are summarized in Table 
4-2. 

Hardware Failures (1/2 day 
repair) 

Software Failures (10 minute 
repair) Combined Failures 

Failures 
per 

year 

Availability 
(1-DHF) 

Hours 
down 

per year 

Failures 
per 

year 

Availability 
(1-DSF) 

Hours 
down 

per year 
Availability 

Hours 
down 

per year 

2 0.99998507 0.1307 24 0.99999958 0.0036 0.99998465 0.1344 

Table 4-2:  Availability Summary 

4.3   Security Analysis 
We will consider two modes of operation for an attacker to distort the information sent by the 
server. In a man-in-the-middle (MIM) attack, the intruder gets between the server and its cli- 
ents and modifies temperature reports sent to the clients. In a spoof-the-server attack, the 
intruder spoofs or takes over the role of a server and fakes temperature reports sent to its cli- 
ents. 
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4.3.1     Man-in-the-Middle Attack Scenario 
For the man-in-the-middle attack, Figure 4-1 shows the attack as it would take place on the cli- 
ent side of a network. In a MIM attack, the attacker uses a TCP intercept tool to modify the 
values of the temperatures during transmission. The window of opportunity (W) for an 
intruder is the length of time the intruder can operate undetected. Within the window, there is 
an attack rate (R) that the intruder is capable of. For an attempted intrusion to be successful, 
the intruder must then successfully apply the attack scenario with some probability of success 
Pj-cp There are no specific defenses beyond the difficulty of matching the correct intrusion 

tool with the client/server versions of the hardware and software. The only barrier is the length 
of the window of opportunity and the probability of success for the TCP intercept tool. The 
expected number of successful MIM attacks within the window is derived from Equation 3-8: 

EMIM = W * R * PTCp [Equation 4-2] 

Furnaces RTS Server LAN 

Attacker 

J • 
'       X      % Furnace Client —    A    ^ 

Figure 4-1: Man-in-the-Middle Attack 

4.3.2    Spoof-the-Server Attack Scenario 
For the spoof-the-server attack, Figure 4-2 shows the attack as it would take place on the 
server side of the network. To successfully spoof the server, there are three possible ways to 
succeed. The intruder could wait for the server to fail, then spoof the server's address and take 
over the client connections. This presumes that the intruder can determine when the server has 
failed and can take advantage of this before the clients time-out. Another successful method 
would be to cause the server to fail (the "kill server" attack), then take over the connections. A 
third is to disrupt the connections between the client and server, then establish new connec- 
tions as the spoofed server (the "kill connection" attack). For this analysis, it is presumed that 
the intruder is equally likely to attempt any of these methods in a given attack. 
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Furnaces RTS Server     LAN 

Furnace Client 1 

Furnace Client n 

Attacker 

Figure 4-2: Spoof-the-Server Attack 

As in the MIM attack, the window of opportunity (W) for an intruder is the length of time the 
intruder can operate undetected. Within the window, there is an attack rate (R) that the intruder 
is capable of. For an attempted intrusion to be successful, the intruder must then successfully 
apply the attack scenario with some probability of success Paftac^ and assume the identity of 

the server with some probability of success Psp0of-lP The expected number of successful spoof 

attacks within the window is derived from Equation 3-8: 

^Spoof-failure-"    "    ^Server-failure    ^Spoof-IP 

ESpoof-Kill = W * R * PKNI-Serverl * PSpoof-IP 

Espoof-Kill-connection = "    "    ^Kill-connection    ^Spoof-IP 

[Equation 4-3] 

[Equation 4-4] 

[Equation 4-5] 

For a given server failure rate X, the probability of a server failure within the window W is 

Server-failure = 1-e ■a.sw [Equation 4-6] 

4.3.3    Parameters for Security Scenarios 
To evaluate the probability of successful attacks under either scenario we have to provide val- 
ues for the various probabilities of success, windows, and rates of attack. Since these are only 
estimates based on experience of the security analyst's experience in the environment, they 
may be adjusted based on additional information or constraints on the environment. Additional 
training for the operators may, for example, reduce the exposure time for an intruder. Alterna- 

tively, the probability for a successful attack may increase as more information about the con- 
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figuration of the system is gained by the intruder. However, the estimates provided here are 
sufficient to illustrate the analysis method: 

attack exposure window, W = 60 minutes 

attack rate, R = 0.05 systems/minute (20 minutes per attack) 

server failure rate, X = 10 failures/year 

number of servers, S = 2 

probability of success of a TCP intercept (MIM), PTCP = 0.5 

probability of success of a spoof IP address (spoof), Pspoof-iP = 0-9 

probability of success of a kill connection (spoof), Picill-Connection = 0.75 

probability of success of kill server (spoof), Piciii-Server= 0-25 

The expected number of successful attacks (Equation 4-2 through Equation 4-6) is 

EMIM = W * R * PTPP = 60 * 0.05 * 0.5 = 1.5 TCP 

■ Server-failure 51ll„ = 1 . e-teW =l-e -00 * 2* 1/(24*365)) = 0>0023 

Espoof-Server-failure = W * R * Pserver-faUure * PSpoof,IP = 60 * 0.05 * 0.0023 * 0.9 = 0.0061 

Espoof-Kill-server = W * R * PRfll-server * PSpoof-IP = 60 * 0.05 * 0.25 * 0.9 = 0.66 

Espoof-KUl-connection = W * R * PKül-connecüon * PSpoof-IP = 60 * 0.05 * 0.75 * 0.9 = 2.04 

The security results are summarized in Table 4-3. 

Man-in-the-Middle 
(MIM) Attack 

Spoof-the-Server Attacks 

EMIM ^Spoof-failure ^Spoof-KIII-server ^Spoof-KIII-connection 

1.5 0.0061 0.66 2.04 

Table 4-3:  Security Summary 
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5     Model Sensitivity and Tradeoffs 

5.1    Comparison Against Requirements 
The performance characteristics are summarized in Table 4-1. Since we did not specify 
explicit requirements for latency and jitter, we can not make any strong statements about met 
and unmet requirements. However, we know the context of the problem and we can still apply 
a "reasonableness" criteria in evaluating the performance of the system. 

A worst case control latency (WCCL) response time of 26.88 seconds is questionable. Consid- 
ering that this is almost three times the minimal reading interval (10 seconds), a client schedul- 
ing a furnace with short reading intervals will receive the first reading (the response to the 
control request) much later than it would have received the reading had it been a periodic 
update. Further, remember that the WCCL equation assumed that there was no other activity 
going on. If the server was also busy generating periodic reports, the WCCL would have been 
worse. 

The latency for periodic reports (PL) is borderline. Under the heavy load scenario the latency 
(18.56 seconds) can be almost twice the minimal reading period (10 seconds) and under a 
moderate load scenario, the latency is barely (9.28 seconds) under the threshold. This should 
alert the participants that the periodic latency, specifically the heavy load periodic latency, 
must be an explicit requirement. 

In the case of jitter, we must ask, "What is the cost of a missed update? Is it ever acceptable to 
violate this requirement?" In some safety-critical applications the answer would be "no." In 
most applications, the answer could be "yes," providing that this occurrence was infrequent. 
As in the worst case periodic latency, the high value of the jitter (18.27 seconds) compared to 
the shortest possible period indicates that the jitter must be an explicit requirement. 

The vagueness of the requirement for minimal downtime has to be resolved. Depending on the 
domain in which the RTS is used, the downtime (0.13 hours/year) could be adequate or intol- 
erable. If the stakeholders agree that this availability is adequate they could declare victory by 
codifying it into the requirements as an acceptable downtime before preceding. 

The model only captures the server availability, and any improvements in availability coming 
from this model would look for improvements in the server. A more useful and realistic model 
would include the client and the network availability. Since all three components operate "in 
series," the model would only be marginally more difficult to analyze. 
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The results of the security analysis show that within the 60-minute exposure window an attack 
is likely to succeed. For the man-in-the-middle scenario, the expected number of successful 
attacks is 1.5, indicating that an intruder would have more than enough time to complete the 
attack before detection. For the spoof attack, the number of successful attacks ranges from 
0.006 to just over 2, again showing that a penetration using this technique is also likely. 

There are two possible reactions to these results. First, the security requirements must be made 
explicit to decide if the results of this analysis are really good enough for the target environ- 
ment. Alternatively, security features could be added to the components and the architecture 
that would make these attacks more difficult. 

5.2   Sensitivity and Tradeoffs 
For each of the attribute models we must identify those parameters that have a major effect on 
the results for that model. A sensitive parameter is one that has a great impact on the model. 
(Variations in the parameter correlate strongly with variations in the modeled or measured 
value.) Parameters that are common to more than one attribute model influence multiple 
attributes and can be used to tradeoff between attributes. 

Sensitive parameters found in only one set may not have been considered by the other model 
experts, or may not be relevant or sensitive to that model. Sensitive parameters that affect 
more than one attribute can be positively correlated (i.e., a change in one direction has positive 
effects on all attributes (win-win)), or negatively correlated (i.e., an improvement in one 
attribute may result in negative impact on another attribute (win-loss)). 

Without repeating the analyses, let's examine the effect of the number of servers on the 
attribute models. Table 5-1 shows the effect of varying the number of servers from 1 to 3 (with 
all other parameters remaining the same). 
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1 Server 2 Servers 3 Servers 

WCCL 53.760 seconds 26.880 seconds 17.920 seconds 

BCPL 0.290 seconds 

PLHL (Q = C/S*F) 37.120 seconds 18.560 seconds 12.374 seconds 

PLML(Q = (C/Sr(F/2)) 18.560 seconds 9.280 seconds 6.187 seconds 

Combined downtime 
hardware rates: 
X = 2 per year 
H = 730 per year 

software rates: 
X = 24 per year 
u = 52560fyear 

27.922 hours/year 0.1344 hours/year 0.0010 hours/year 

^Spoof-failure 
A, = 10 per year 

0.0030 successful 
attacks/hour 

0.0061 successful 
attacks/hour 

0.0092 successful 
attacks/hour 

Table 5-1:  Sensitivity to the Number of Servers and Server Failure Rates 

The table shows that increasing the number of servers (S) decreases latencies at approximately 
a linear rate (actually, an exponential decay with a limiting value reached when there is one 
client per server and there is never a queueing delay); has a very large impact on availability 
(about 100 times less downtime with each additional server); and also increases the probability 
of a successful attack at approximately a linear rate (increasing servers provides more opportu- 
nities for a sever failure, needed for one of the spoof attack modes.) This is a case where the 
same parameter improves two attributes and lowers another attribute. 

The server failure rate provides another case of an interface between attributes. The same 
parameter appears in the availability and security analysis and in both cases an increase in the 
failure rate lowers both attributes. A higher hardware failure rate increases downtime and the 
expected number of successful spoof attacks. A higher software failure rate increases down- 
time but it is unlikely to affect security because the repair time is short (the spoofing intruder 
would be caught when the real server restarts). 

Notice however that the values assumed for X are very different in the availability and security 
scenarios. If these are hardware failures, the security domain expert is more pessimistic than 
the availability domain expert; if these are software failures the security domain expert is more 
optimistic than the availability domain expert. These differences have to be reconciled by the 
stakeholders. 

Sometimes the interdependence is not obvious: The number of clients affects performance 
(increasing load) and security (increasing points for MIM attack), although the number of cli- 
ents is not explicit in the security model. 
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Using richer models would help uncover additional attribute interdependencies. For example, 
although the availability analysis presented in this report was only analyzing the availability of 
the servers, in a complete analysis we would look at potential failures of the clients and the 
networks, and we would look at various failure types. One type of failure is dropping a mes- 
sage. If we assume that the communication channel is not reliable, then we must plan for re- 
sending messages. To do this involves additional computation (to detect and re-send lost mes- 
sages), storage (to store the messages until they have been successfully transmitted), and time 
(for a time-out interval and for message re-transmission). Thus one of the major implications 
of this enhanced availability model is that the performance model needs to be modified. 

Similarly, adding new requirements will have implications on the models. For example, a 
security requirement for encryption of messages between the server and client might contrib- 
ute a significant performance overhead. 

The dependencies between attributes can work in both directions. For example, improved per- 
formance of the system, in the form of a more tightly bounded jitter, will have impacts for 
security. This is because many attempts at breaching the system's security will add a delay to 
message transmission time. If the jitter is small, it will be easy to detect intruders because they 
will cause message delays that will exceed the maximum jitter bound. Another way in which 
reducing jitter aids security is that it eliminates the possibility of a covert information channel. 
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Conclusions 

Our motivation for developing an ATA method is the desire to make rational choices among 
competing architectures, based upon well-documented, well-reasoned analyses of system 
attributes at the architectural level. An important aspect of this method is that it serves as a 
vehicle for the early clarification of requirements. It does this by analyzing a system from 
many perspectives simultaneously, then comparing the assumptions made in those analyses, 
repairing the models whenever those assumptions do not coincide. 

For every assumption that we make in a system design, we trade cost for knowledge. For 
example, how should we define jitter? If a periodic update is supposed to arrive every ten sec- 
onds, do we want it to arrive exactly every ten seconds, on average every ten seconds, or some 
time within each ten second window? To give another example, consider the requirement 
detailing the worst case latency of periodic reports. Is the worst case ever acceptable? If so, 
how frequently will we tolerate it? 

The process of analyzing architectural attributes forces us to try to answer these questions. 
Either we understand our requirements precisely or we pay (by over-engineering or under- 
engineering the system). If we over-engineer, we pay by making the system needlessly expen- 
sive. If we under-engineer, we face system failures, losing customers or perhaps even lives. 

Every analysis step that we take precipitates new questions. While this seems like a daunting, 
never-ending prospect, it is manageable because these questions are posed and answered 
within an analytic attribute framework. Within this framework, we stop iterating when we are 
comfortable with the results and can accept the risks of any residual error. 

In addition to solidifying requirements, the ATA method helps to uncover implicit require- 
ments. This occurs because attribute analyses are interdependent. We discover the interfaces 
between attributes by examining the assumptions that we make for analysis A while perform- 
ing analysis B. Not allowing for retransmission in the performance analysis is one example of 
such an interface based upon an implicit, hidden assumption ("no dropped packets"). This 
assumption, if false, may have implications for security or availability. A solution to the prob- 
lem of dropping packets will have implications for performance. 

The focus on attribute interfaces forces attribute experts and other stakeholders to communi- 
cate through a shared "blackboard." Attribute experts independently create models, then 
exchange information (e.g., clarifying or creating new requirements), and on the basis of this 
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information, refine the models. The interaction of attribute-specific analyses has a greater 
effect on system understanding and stakeholder communication than any of these analyses 
could do on their own. As a result of performing the activities illustrated in this report, the 
stakeholders have an enhanced understanding of, and confidence in, the system's ability to 
meet its requirements. They also have a documented rationale for the architectural choices 
made. This documentation consists of attribute models, the scenarios used in the analyses, and 
the results of those analyses. 

In addition to this information, we are studying the concept of attribute-based architectural 
styles (ABAS). An ABAS is a specific kind of architecture in which the components and their 
interactions, the attribute models and scenarios, and the attribute tradeoffs and interfaces have 
all been identified and analyzed. Collections of ABAS would make the method more efficient 
because they tell the architect and the other stakeholders what information is needed, what 
results will be available, and what tradeoffs are available. The analysis of architectures built 
entirely or mostly from ABAS would not have to be carried out ab initio. 
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