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Abstract 

This report describes a framework for reverse-engineering environments used to aid program 
understanding. The framework is based on a descriptive model that categorizes important 
support mechanism features based on a hierarchy of attributes. The attributes include cogni- 
tive model support, reverse-engineering tasks, canonical activities that are characteristic of 
the reverse-engineering process, quality attributes supported by the reverse-engineering envi- 

ronment, and miscellaneous characteristics. 
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1. Introduction 

Many organizations are faced with maintaining aging software systems that are constructed 
to run on a variety of hardware types, are programmed in obsolete languages, and suffer from 

the disorganization that results from prolonged maintenance. As software ages, the task of 
maintaining it becomes more complex and more expensive. Poor design, unstructured pro- 
gramming methods, and crisis-driven maintenance can contribute to poor code quality, which 

in turn affects understanding. 

Better understanding of a program aids in common activities such as performing corrective 
maintenance, reengineering, and keeping documentation up to date. To minimize the likeli- 
hood of errors introduced during the change process, the software engineer must understand 
the system sufficiently well so that changes made to the source code have predictable conse- 
quences. But such understanding is difficult to recover from a legacy system after many years 

of operation. 

Program understanding is a relatively immature field of study in which the terminology and 
focus are still evolving. The goal of program understanding is to acquire sufficient knowledge 
about a software system so that it can evolve in a disciplined manner. The essence of program 
understanding is identifying artifacts and understanding their relationships; this process is 
essentially pattern matching at various abstraction levels. It involves the identification, ma- 
nipulation, and exploration of artifacts in a particular representation of a subject system via 
mental pattern recognition by the software engineer and the aggregation of these artifacts to 
form more abstract system representations. 

1.1 Program Understanding Support Mechanisms 
There are a variety of support mechanisms for aiding program understanding. They can be 
grouped into three categories: unaided browsing, leveraging corporate knowledge and experi- 
ence, and computer-aided techniques like reverse engineering. Unaided browsing is essen- 
tially "humanware": the software engineer manually flips through source code in printed 
form or browses it online, perhaps using the file system as a navigation aid. This approach is 
almost always used in some form, but it is not really a viable approach for very large systems. 
A good software engineer may be able to keep track of approximately 50,000 lines of code in 
his or her head. If there is much more than that, then the amount of information to keep track 

of becomes unwieldy. 

The second category of support mechanism is leveraging corporate knowledge and experi- 
ence. This can be done through mentoring or by conducting informal interviews with person- 
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nel knowledgeable about the subject system. This approach can be very valuable if there are 
people available who have been associated with the system as it has evolved over time. They 
carry important information in their heads about why the system was designed the way it 
was, the major changes that have occurred over its life cycle, and where subsystems have 
proven particularly troublesome. For example, they may be able to provide guidance on 
where to look when carrying out a new maintenance activity if it is similar to another change 
that took place in the past. This approach is useful both for gaining a big-picture understand- 
ing of the system and for learning about selected subsystems in detail. Unfortunately, this 
type of corporate knowledge and experience is not always available. The original designers 
may have left the company. The software system may have been acquired from another com- 

pany. Or the system may have had its maintenance out-sourced. 

In this situation, the only recourse is the third category of support mechanisms: computer- 

aided reverse engineering. A reverse-engineering environment can manage the complexities 

of program understanding by helping the software engineer extract high-level information 
from low-level artifacts, such as source code. This frees software engineers from tedious, 
manual, and error-prone tasks such as code reading, searching, and pattern matching by in- 
spection. 

1.2 About the Reverse-Engineering Environment 
Framework 
Although substantial process has been made in tool-based environmental support for aiding 
program understanding, there is not a satisfactory mechanism to classify the technology that 
is currently available. As a result, it is difficult to compare the purposes, functionality, and 
characteristics of different program-understanding tools and techniques. To address this need, 
this report provides a descriptive model that categorizes important support mechanism fea- 
tures based on a hierarchy of attributes. 

The model can be used for characterizing an individual support mechanism, a set of which 
can then be compared using a common vocabulary. At present, the model organizes attributes 
according to the broad categories of cognitive-model support, reverse-engineering tasks, ca- 
nonical activities, quality attributes, and miscellaneous characteristics. 

The reverse-engineering environment framework described in this report is based on an ear- 
lier effort that was called "Towards a Framework for Program Understanding" [Tilley 96a]. 
This earlier work was an initial attempt to solicit feedback from the community on the struc- 
ture and contents of the framework. Two special meetings were held to discuss the frame- 
work. The first was during the 1996 Workshop on Program Comprehension and the second 
was during the 1996 Software Technology Conference. One of the most important comments 
received was that the framework was too top-down. It was unclear whether the framework 
was meant to characterize research efforts or to characterize reverse-engineering environ- 
ments. Since the primary use of the framework is to guide advanced practitioners on reverse 
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engineering options, the framework was reorganized to reflect this goal. A new effort, the 
Program Understanding Framework, was started to characterize current activity areas in pro- 
gram understanding. This latter framework is also under revision and has been used to de- 
scribe the current state-of-the-practice in program understanding [Tilley 96b, Tilley 98]. 

Since 1996 the reverse-engineering environment framework has received input via email 

based on the material on the Reengineering Center's Web site 
(http://www.sei.cmu.edu/reengineering). In addition, the framework has benefited enor- 

mously from discussions with selected representative of academia and industry. It is expected 
that further meetings with various members of the program understanding, reverse engineer- 

ing, and reengineering communities will continue to contribute to the framework as it 

evolves. 

1.3 Organization of This Report 
The next section discusses support for different cognitive models that can greatly affect the 
usefulness of a reverse-engineering environment. Section 3 describes the typical reverse- 
engineering tasks; whether or not an environment supports these tasks can be a motivating 
factor for selecting one environment over another. Section 4 describes the canonical activities 
that are characteristic of any reverse engineering task, no matter what environment is used. A 
reverse-engineering environment also exhibits certain quality attributes (the "ilities") that 
affect its usefulness. For example, the degree of extensibility of the system can affect how 
well the tool can be tailored to specific reverse-engineering tasks. Section 5 explores some of 
these quality attributes in more detail. Section 6 discusses the miscellaneous characteristics 
that can be important factors in the selection of a reverse-engineering environment, such as 
cost. Section 7 summarizes the report. 
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2. Cognitive Model Support 

A cognitive model describes the cognitive processes and knowledge structures used to form a 
mental representation of the program under study. Numerous theories have been formulated 
and empirical studies conducted to explain and document the problem-solving behavior of 
software engineers engaged in program understanding, von Mayrhauser and Vans surveyed 
this area in [von Mayrhauser 95] and compared six cognitive models of program under- 

standing. 

Rather than impose a process that is not justified by a cognitive model other than that of the 
environment's developers, the environment should support the diverse cognitive processes 
and different approaches to program comprehension that the end user prefers. Storey et al 
describe a hierarchy of cognitive design elements to support the construction of a mental 
model to aid program understanding in software-exploration tools [Storey 97a]. One portion 
of the hierarchy concerns improving program understanding, such as enhancing bottom-up 
comprehension by supporting the actions of identifying software artifacts and the relations 
between them, by browsing code in delocalized plans, and by building abstractions. These 
actions are in fact composed of one or more canonical reverse-engineering activities that are 
described in Section 4. For example, the effect of delocalized plans can be reduced through 
the use of information-analysis techniques, such as slicing, and information-presentation 
techniques, such as multiple views, supported by the appropriate knowledge-management 
capabilities. 

2.1 Bottom Up 
Two common approaches to program understanding often cited in the literature are a func- 
tional approach that emphasizes cognition by what the system does and a behavioral ap- 
proach that emphasizes how the system works. These two approaches are directly related to 
the level of domain expertise of the software engineer. The functional approach is bottom up 
and deductive, relying more on the knowledge of the implementation domain to create more 
abstract concepts that may map to the application domain and the system's functional re- 
quirements. The bottom-up approach reconstructs the high-level design of a system, starting 
with source code, through a series of chunking and concept-assignment steps. 

2.2 Top Down 
The behavioral approach is top down and inductive, using a goal-driven method of hypothesis 
postulation and refinement based on expected artifacts derived from knowledge of the appli- 
cation domain. The top-down approach begins with a pre-existing notion of the functionality 
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of the system and proceeds to earmark individual components of the system responsible for 

specific tasks. 

2.3 Opportunistic 
Both top-down and bottom-up comprehension models have been used in an attempt to define 
how a software engineer understands a program. However, case studies have shown that, in 
industry, maintainers of large-scale programs frequently switch between these different mod- 
els depending on the problem-solving task at hand [von Mayrhauser 92]. This opportunistic 

approach involves creating, verifying, and modifying hypotheses until the entire system can 
be explained using a consistent set of hypotheses. The opportunistic model describes the 

maintainer as"... an opportunistic processor capable of exploiting both top-down and bottom- 

up cues as they become available." 
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3. Reverse-Engineering Tasks 

There are many different reverse-engineering tasks. This section discusses several of the most 
important: program analysis, plan recognition, concept assignment, redocumentation, and 
architecture recovery. The first three tasks can be viewed as pattern matching at different lev- 
els of abstraction. As illustrated in Figure 1, program analysis is syntactic pattern matching in 
the programming-language domain, plan recognition is semantic pattern matching in the pro- 
gramming-language domain, and concept assignment is semantic pattern matching in the ap- 

plication (or end-user) domain. 

Assigning each task to an abstraction layer can be difficult. One can argue that redocumenta- 
tion is a form of reverse engineering, or that it is simply restructuring at the same abstraction 
level. How one interprets each type of reverse engineering depends on several factors, such 
as which document you read, what you mean by reverse engineering, and what you mean by 
redocumentation. Many of these arguments are more in the lines of religion rather than prac- 
tical differences. Suffice it to say that reverse engineering is not an exact science, and neither 
is its terminology. 

Reverse-Engineering Task       Pattern Abstraction Level Artifacts 

Manipulated 

Program analysis Programming language, syntactic      Tokens 

Plan recognition Programming language, semantic      Plans 

Concept assignment Application, semantic Concepts 

Figure 1: Pattern Abstraction for Levels of Program Analysis 

3.1 Program Analysis 
Most commercial systems focus on source-code analysis and simple code restructuring using 
the most common form of reverse engineering: program analysis. Catalogs such as [Olsem 
93, Zvegintzov 94] describe several hundred such packages. Representative types of program 
analysis include control-flow and data-flow analysis, slicing, and structure charts. 

There are many ways of classifying program-analysis techniques. For example, in [Ning 89], 
Ning identified four levels of abstraction for reverse engineering: implementation, structural, 
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functional, and domain. The implementation-level view examines individual programming 
constructs; the program is typically represented as an abstract syntax tree (AST), symbol ta- 
ble, or plain source text. The structural-level view examines the structural relationships 
among the program constructs; dependencies among program components are explicitly rep- 
resented. The functional-level view examines the relationships between program structures 
and their behavior (function); the rationale behind program constructs is also investigated. 
The domain-level view examines concepts specific to the application domain. 

Program-analysis techniques may consider source code in increasingly abstract forms, in- 
cluding raw text, preprocessed text, lexical tokens, syntax trees, annotated abstract syntax 
trees with symbol tables, control/data flow graphs, program plans, and conceptual models. 

The more abstract forms entail additional syntactic and semantic analysis that corresponds 

more to the meaning and behavior of the code and less to the form and structure. Different 
levels of analysis are necessary for different users and different program-understanding pur- 

poses. 

3.2 Plan Recognition 
Software engineers usually look for code that fits certain patterns. Those patterns that are 
common and stereotypical are known as cliches. Patterns can be structural or behavioral, de- 
pending on whether one is searching for code that has a specified syntactic structure, or 
searching for code components that share specific data-flow, control-flow, or dynamic (pro- 

gram execution-related) relationships. 

To locate such patterns, what is needed is a search mechanism that is closer to the mental 
model of the software engineer than that provided by most program analysis tools that focus 
on simple statistical and cross-reference queries. This mechanism is called plan recognition, 
which attempts to discover instances of abstract representations of commonly used algo- 
rithms and/or data structures in the subject system. Program plans are abstract representations 
of source code fragments. Comparison methods are used to help recognize instances of pro- 
gramming plans in a subject system. This process involves pattern matching at the program- 

ming-language semantic level. 

One focus in plan recognition is on identifying similar code fragments. Existing source code 
is often reused within a system via "cut-and-paste" or "clone-and-own" text operations. This 
practice saves development time, but leads to problems during maintenance because of the 
increased code size and the need to propagate changes to every modified copy. Cloned code 
fragments can be detected using heuristics, since the decision whether two arbitrary programs 
perform the same function is undecidable. These heuristics are based on the observation that 
the clones are not arbitrary and will often carry identifiable characteristics (features) of the 

original fragment. These characteristics are used to compare two code fragments based on 

similarity measures. 

CMU/SEI-98-TR-005 



3.3 Concept Assignment 
Plan recognition is an improvement over the syntactic pattern matching found in most pro- 
gram-analysis tools. However, when it comes to locating source code fragments of interest to 
the software engineer (because plans are closer to the programmer's mental model than syn- 
tactic entities), the program plans must still be couched in terms of the implementation pro- 
gramming language (or some abstraction thereof). It would be better if program plans repre- 
sented application-level concepts and were not simply abstracted code fragments. 

One approach to this problem is concept assignment [Biggerstaff 93]. Concept assignment is 
the task of discovering individual human-oriented concepts and assigning them to their im- 
plementation-oriented counterparts in the subject system. It is related to teleological mainte- 

nance [Karakostas 90], which attempts to recover information from the subject system based 
on a specific user model (for example business rules), rather than from the source code. This 
type of conceptual pattern matching enables the maintainer to search the underlying code 
base for program fragments that implement a concept from the application. This is advanta- 
geous since change requests are usually couched in end-user terminology, not in that of the 
implementation. 

Concept assignment is pattern matching at the end-user application semantic level. It is a pro- 
cess of recognizing concepts within the source code and building an understanding of the 
program by relating the recognized concepts to portions of the program. Concept recognition 
is still at the early research stage, in part because automated understanding capability can be 
quite limited due to difficulties in knowledge acquisition (the identification and specification 
of plans) and the complexity of the matching process. 

3.4 Redocumentation 
The lack of detailed, accurate, and up-to-date program documentation is critical for software 
engineers and technical managers who are responsible for the evolution of existing software 
systems. Without this documentation, the only reliable and objective information is the 
source code itself [Fletton 88]. Personnel must spend an inordinate amount of time attempt- 
ing to create an abstract representation of the system's high-level functionality by exploring 
its low-level source code. One way of producing accurate documentation for an existing 
software system is through redocumentation. 

Redocumentation is one of the oldest forms of reverse engineering [Sneed 84]. It is the proc- 
ess of retroactively providing documentation for an existing software system. If the redocu- 
mentation takes the form of modifying commentary within source code, it can be considered 
a weak form of restructuring. However, it can also be classified as a sub-area of reverse engi- 
neering because the reconstructed documentation is typically used to aid program under- 
standing. One can think of it as a transformation from source code to pseudo-code and/or 
prose, the latter of which is usually considered to be at a higher abstraction level than the 

former. 
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The documentation produced is typically in-line text. However, it can take many other forms, 
including that of linked documentation accessible via hypertext [Tilley 91], cross-reference 
listings, or graphical views of the software system's artifacts and relationships [Tilley 92]. 
Some of the newer reverse-engineering environments also support augmenting the source 

code with multimedia annotations. 

3.5 Architecture Recovery 
As stated above, documentation has traditionally served an important role in aiding program 
understanding. However, there are significant differences in documentation needs for soft- 
ware systems of vastly different scales (1,000 lines versus 1,000,000 lines). Most software 

documentation is "in-the-small," since it typically describes the program at the algorithm and 

data structure level. For large legacy systems, an understanding of the structural aspects of 

the system's architecture is more important than any single algorithmic component. 

Program understanding is especially problematic for software engineers and technical man- 
agers who are responsible for the maintenance of such systems. The documentation that ex- 
ists for these systems usually describes isolated parts of the system; it does not describe the 
overall architecture. Moreover, the documentation is often scattered throughout the system 
and on different media. It is left to maintenance personnel to explore the low-level source 
code and piece together disparate information to form high-level structural models. Manually 
creating just one such architectural document is always arduous; creating the necessary 
documents that describe the architecture from multiple points of view is often impossible. Yet 
it is exactly this sort of "in-the-large" documentation that is needed to expose the structure of 

large software systems. 

Using reverse engineering to reconstruct the architectural aspects of software may be termed 
architecture recovery [Kazman 97] or structural redocumentation [Wong 95]. As a result of 
this task, the overall gestalt of the subject system can be derived and some of its architectural 
design information can be recaptured. As with redocumentation, structural redocumentation 
does not involve physically restructuring the code (although this might be a desirable out- 

come). 
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4. Canonical Activities 

As stated in Section 1, reverse engineering is the predominant support mechanism used to aid 
program understanding. It is seen as an activity that does not change the subject system; it is 
a process of examination, not a process of alteration. It can aid program understanding by 
directly supporting the essence of program understanding: identifying artifacts, discovering 
relationships, and generating abstractions. This process depends on several factors, including 
one's cognitive abilities and preferences, one's familiarity with the application domain, and 
the set of support facilities provided by the reverse engineering environment. 

The artifacts manipulated during reverse engineering can be classified into three categories: 

1. data: the factual information used as the basis for study, reasoning, or discussion 

2. knowledge: the sum of what is known, which includes data and information such as 
relationships and rules progressively derived from the data 

3. information: contextually and selectively communicated knowledge 

The data artifacts are the raw bricks used as building blocks to support program understand- 
ing. They form the foundation for the higher level knowledge artifacts. The information arti- 
facts can be created by abstracting up from the data artifacts and matching with expected re- 
sults from knowledge artifacts. 

Based on the description of these artifacts manipulated during the reverse-engineering proc- 
ess, three canonical reverse-engineering activities emerge: data gathering, knowledge man- 
agement, and information exploration (includes navigation, analysis, and presentation). All 
tasks carried out by a software engineer during program understanding can be mapped to a 
composition of one or more of these canonical activities supported by a reverse-engineering 
environment. The next three sections provide more detailed descriptions of them. 

4.1 Data Gathering 
To identify the artifacts and relationships of a system and use them to later construct and ex- 
plore higher level abstractions, raw data about the system must be gathered. Hence, data 
gathering is an essential reverse-engineering activity. It is usually, but not always, the first 
step. The raw data are used to identify a system's artifacts and relationships; without these 
data, higher level abstractions cannot be constructed and explored. New developments in 
data-gathering techniques benefit practitioners by providing them with more accurate and 
extensive capabilities they can use to extract artifacts of interest from their programs. Be- 

CMU/SEI-98-TR-005 11 



cause data represent the building blocks upon which more abstract representations of the leg- 
acy system are built, it is critically important that the data gathered not be misleading or sub- 

ject to misinterpretation; it must be factual and objective. 

Techniques used for data gathering include system examination, document scanning, and ex- 
perience capture. In addition to using data gathered from traditional sources, such as com- 
piler-based static analysis, it is also possible to integrate alternative sources of data. Examples 
include natural-language content analysis (for example, from comments and/or other docu- 
mentation, and source-code naming conventions) and informal data extraction (for example, 
interviewing). These nontraditional techniques can provide a basis for a more balanced and 
complete understanding of programs by emphasizing different attributes of program artifacts 
and relationships. This especially can benefit software engineers who work with programs 
that are difficult to understand when using only data gathered through static source-code 

analysis. 

Regardless of the source, the amount of data gathered for understanding large systems can be 
enormous. Large quantities of data can easily overwhelm our ability to assimilate it. There- 
fore, the use of intelligent data-filtering techniques play an important role in aiding program 
understanding. Presenting the user with reams of data is insufficient. To understand the data, 
the user must also assimilate the data. In a sense, a key to program understanding is deciding 
what is material and what is immaterial. In other words, knowing what to look for and what 
to ignore [Shaw 89]. 

Data filters can be used to extract selected artifacts and relationships from a rich data source. 
For example, a profiling tool may be used to gather complete run-time call information from 
a program, but the software engineer may be interested in only a subset of these calls. Such 
filters can also be used as an interface between tools that do not share a common data repre- 

sentation. 

4.1.1 System Examination 
System-examination techniques can be classified as static or dynamic. Static examination 
focuses primarily on analyzing the program's source code. Dynamic examination focuses 

primarily on analyzing the executing system. 

4.1.1.1 Static Analysis 
The predominant technique used for gathering data is static analysis by parsing a system's 
source code to construct abstract syntax trees with a large number of fine-grained syntactic 
artifacts and dependencies. This type of data gathering is essentially the same as running the 
front end of a compiler. It requires constructing a scanner and using a valid grammar for the 

implementation language of the system. 
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Creating a parser for a modern language like C++ or a legacy language like PL/I is a non- 
trivial task. Many researchers have spent an inordinate amount of time building parsers for 

various programming languages and dialects. However, mature technology already exists in 
the compiler arena that will parse source code, perform syntactical analysis, and produce 
cross-reference and other information that can be used by other tools, such as debuggers. By 
using the leverage of proven compiler-based technology for data gathering, users of reverse- 
engineering tools will be assured of predictable results. 

This is not currently the case: there are several extraction tools that, when applied to the same 
source code, produce somewhat different results [Murphy 96]. Practitioners and researchers 
alike would benefit greatly if traditional tools, such as compilers, were integrated in newer 
program understanding tools. This would produce data that are more trusted and accurate. 

4.1.1.2 Dynamic Analysis 
Dynamic analysis techniques, such as profiling, provide data that can aid the understanding 
of distributed, real-time, or client-server programs. These types of applications are becoming 
increasingly predominant, and will soon become legacy systems themselves. Dynamic analy- 
sis is also particularly useful for analyzing component-based systems, especially when the 
components are commercial off-the-shelf (COTS) products. 

Components usually do not come with source code, so most of the static program-analysis 
techniques currently in use are not applicable (with the exception of binary reverse engineer- 
ing). In the case of component-based systems, dynamic analysis of the running system is a 
more fruitful endeavor. It can provide more data on the interactions between components in 
the system, on the types of messages and protocols used, and on the external resources used 
by the system. All this data is an aid to understanding the overall system. 

4.1.2 Document Scanning 
Another form of data gathering that does not rely on the programming-language constructs of 
the source code is document scanning. For example, in-line comments1 are a potentially rich 
source of data about the program, and are often used by experts when attempting to under- 
stand a software artifact. However, automatic analysis of in-line comments and other written 
commentary, such as program logic manuals, is more difficult. Techniques such as natural 
language analysis are needed to parse these comments. In addition, judgment must be used to 
link comments to the code it purports to describe. Comments may be isolated in the code, or 
(even worse) they may no longer reflect reality and may provide conflicting information if 
the comments were not updated with the code. Nevertheless, comments represent such a po- 
tentially rich data source that work continues to focus on their analysis. 

1 Comments written in the same file as the source code. 
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4.1.3 Experience Capture 
Another source of data about software programs are the software engineers responsible for its 
ongoing evolution. Interviewing techniques can be used to capture the expertise of such peo- 
ple. This "corporate knowledge" is a potentially valuable asset if it can be applied to program 
understanding. Unfortunately, as discussed in Section 1, this type of experience capture is not 
always possible. See Section 4.2.2 for a further discussion of using this type of gathered data. 

4.2 Knowledge Management 
As the portion of corporate assets defined as intellectual capital increases, interest in knowl- 

edge-management techniques increases accordingly [Lang 97]. Knowledge management re- 
fers to capturing, organizing, understanding, and extending past experiences, processes, and 
individual know-how. If managed properly, such artifacts could be shared by all involved in a 

project, thus serving as an active repository of corporate knowledge. The management of this 
type of knowledge is valuable in many domains, such as consulting, where large organiza- 
tions are attempting to make use of pooled knowledge as a strategic advantage. 

Knowledge management is equally important in aiding program understanding, where it 
serves similar purposes. Leveraging corporate knowledge, as described in Section 4.1.3, is 
one aspect of program understanding that directly benefits from knowledge management. 
Perhaps one of the most important ways knowledge management techniques aid program un- 
derstanding is in the creation of domain models. A domain model is a representation that 
captures the structure and composition of artifacts with a problem area [Tracz 94]. A domain 
model may be constructed through domain analysis—the process of identifying, organizing, 

and representing the structure and composition of elements in a domain. Program under- 
standing relies on knowledge-management techniques such as domain modeling to create, 
represent, and reason about the artifacts and relationships of interest. 

This section describes some of the desirable knowledge-management attributes of a reverse- 
engineering tool. The attributes are organization, evolution, and discovery. Knowledge or- 
ganization describes the mechanisms used to structure the gathered data into a form more 
amenable to representing the application domain and supporting the desired operations on the 
data. Knowledge discovery describes the techniques used to support information exploration. 
Knowledge evolution is concerned with updating the knowledge about the subject system 
during the reverse-engineering process (for example, extending the schema without having to 

recreate the database). 

4.2.1 Organization 
For successful program understanding, data must be in a form that facilitates efficient storage 
and retrieval, permits analysis of artifacts and relationships, and reflects the users' perception 
of the system's characteristics. This requirement—the need to organize data in some well- 
defined and rigorous manner—led to the development of data models [Borkin 80]. A data 
model enables us to understand the essential properties and relationships between artifacts in 
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a system. Without a model, raw data are almost impossible to understand. Knowledge man- 
agement techniques are used to create, represent, and reason about data models and to struc- 

ture the data into a conceptual model of the application domain. 

A data model captures the static and dynamic properties of an application needed to support 
the desired data-related processes. An application can be characterized by static properties 
(such as objects, attributes, and relationships among objects), dynamic properties (such as 
operations on objects, operation properties, and relationships among operations), and integ- 
rity constraints over objects and operations. The result of data modeling is a representation 
that has two components: static properties that are defined in a schema and dynamic proper- 
ties that are defined as specifications for transactions, queries, and reports. A schema consists 
of a definition of all application object types, including their attributes, relationships, and 
static constraints. Corresponding to the schema is a data repository called a database, an in- 
stance of the schema. A data model provides a formal basis for tools and techniques used to 

support data modeling. 

The three best-known classical data models are the hierarchical data model, the network data 
model, and the relational data model [Ullman 80]. The hierarchical data model is a direct ex- 
tension of a primitive file-based data model; data are organized into simple tree structures. 
The network model is a superset of the hierarchical model; the objects need not be tree 
structured. The relational model is quite different from the hierarchical or network model; it 
is based on the mathematical concept of a relation (a set of n-tuples), and organizes data as a 
collection of tables. All three classical data models are instances of the record-based logical 

data model [Korth 86]. 

Although well suited to a computer environment, record-oriented data models are often se- 
mantically inadequate for modeling the application environment. They are highly machine 
oriented and organized for efficiency of storage and retrieval operations; ease of use for the 
non-programmer is of secondary importance. Typically, only two levels of abstraction are 
provided: the database schema and the actual collection of records. There are no provisions to 
extend the levels to a more general hierarchy of types, meta-types, and instances, even though 
this extension would increase the model's expressive power and provide a mechanism which 
supports the reuse of common properties. The hierarchical and network models also do not 
support semantic relativism, which is the ability when modeling a system to view the ele- 
ments and concepts representing it from different perspectives depending on the application. 
In particular, the concepts of entity, relationship, and attribute should be interchangeable. For 
these reasons, the classical data models are also known as syntactic data models. 

The lack of abstraction mechanisms provided by the classical data models is particularly 
troublesome from a program understanding point of view. Abstraction is a fundamental con- 
ceptual tool used for organizing information. It plays a key role in managing one of the fun- 
damental problems with large-scale systems—coping with complexity [Brooks 87]. When 

modeling such systems, the number of objects and relations in the knowledge base can grow 
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very large. Like a large software system, a large knowledge base needs organizational princi- 
ples to be understandable. Without these principles, a knowledge base can be as unmanage- 
able as a program written in a language that has no abstraction facilities. 

Abstraction is the selective emphasis on detail: specific details are suppressed and those per- 
tinent to the problem at hand are emphasized. Abstraction mechanisms serve as organiza- 
tional axes for structuring the knowledge base. They focus on high-level aspects of an entity 
while concealing details. Three of the most common abstraction mechanisms used are classi- 

fication, aggregation, and generalization [Sowa 88]: 

• Classification is a form of abstraction in which an object type is defined as a set of 
instances. It captures common characteristics shared by a collection of objects, resulting 
in a generic object which captures the essential similarity among its constituents. An 
instance-of relationship is established between an object type in the schema and its 
instance in the knowledge base. 

• Aggregation is a form of abstraction in which a relationship between objects is 
considered as a higher level aggregate object. When considering the aggregate, specific 
details of the constituent objects are suppressed. A part-of relationship is established 
between the component objects and the aggregate object. 

• Generalization is a form of abstraction in which similar objects are related to a higher 
level generic object. The constituent objects are considered specializations of the generic 
object. An is-a relationship is established between the specialized objects and the 
generic object. 

There have been two basic approaches to addressing some of the deficiencies in the classical 
data models to "capture more of the semantics of an application [Codd 79]." Attempts have 
been made to extend the classical models by building higher level conceptual models on top 
of them, and new more powerful semantic data models have also been developed to capture 
database concepts at a more user-oriented level. Semantic data models, starting with Abrial's 
semantic model [Abrial 74] and Chen's entity-relationship model [Chen 76], combined sim- 
ple knowledge-representation techniques, often borrowed from semantic networks [Findler 
79], with database technology. Semantic data models represent a shift in database research 
away from the traditional record-oriented model towards models that support more human- 
oriented semantic constructs. This shift is very similar to the goals in programming language 
research focusing on abstraction mechanisms for software development and artificial- 
intelligence research into knowledge representation based on network representation schemes 
[Gilbert 90]. Conceptual modeling was introduced as a term reflecting this broader perspec- 

tive [Brodie 84]. 

Conceptual modeling is the activity of formally describing aspects of some information space 
for the purpose of understanding and communication. Such descriptions are often referred to 
as conceptual schemata. A conceptual model and a conceptual schema are analogous to a data 
model and a database schema, respectively. One can think of data models as special concep- 
tual models where the intended subject matter consists of data structures and associated op- 
erations. Classical data models, grounded on mathematical and computer science concepts, 
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such as relations and records, offer little to aid database designers and users in interpreting 
the contents of a database. 

Semantic data modeling shares purposes with conceptual modeling. However, semantic data 
modeling introduces assumptions about the way conceptual schemata will be realized on a 
physical machine (the "data-modeling" dimension). Thus, semantic data modeling can be 
seen as a more constrained activity than conceptual modeling, leading to simpler notations, 
but also ones that are closer to the implementation. 

The fundamental characteristic of conceptual modeling is that it is closer to the human con- 
ceptualization of a problem domain than to a computer representation of the problem domain 
[Kristensen 94]. The emphasis is on knowledge organization (modeling entities and their se- 
mantic relationships), rather than on data organization. The descriptions that arise from con- 
ceptual-modeling activities are intended to be used by humans—not machines. Concepts in a 
conceptual model are indexed by their semantic content. This differs from other data models, 
such as relational, where the indexing scheme is geared more towards optimal storage and 
information retrieval from the implementation perspective. This is one of the main reasons 
that conceptual modeling is eminently suited to program understanding: the focus on the end 
user is paramount. 

The sometimes conflicting requirements for organizing the three different categories of arti- 
facts (data, knowledge, and information) suggest that a single technique for representing 
them may not always be suitable. In its place, a layered approach may be used: for each type 
of artifact manipulated during the reverse-engineering process, a different model may be used 
[Tilley 95b]. The advantage of such an approach is that different technologies may be used to 
their strengths, while avoiding their weaknesses. For example, a relational model may be 
used for physical storage of data artifacts, a conceptual model may be used for representing 
domain-level knowledge, and a semantic network model may be used for interactive discov- 
ery. 

4.2.2 Discovery 
Once knowledge about the problem domain has been organized, one of its primary uses is to 
aid others in understanding aspects of the problem domain. This discovery aspect of knowl- 
edge management is directly related to one of the data-gathering techniques described in 
Section 4.1.3: leveraging corporate knowledge through experience capture. Experience cap- 
ture is accomplished during information exploration, the canonical reverse-engineering ac- 
tivity discussed in Section 4.3. 

Knowledge discovery can best be accomplished by providing multiple perspectives (analo- 
gous to database views) on the underlying artifacts. Using a common web1 metaphor, the 

1 The term web refers to a structured information space composed of nodes representing artifacts from the appli- 
cation domain and links representing relationships between the nodes. The web that is part of the Internet is 
sometimes referred to as "The Web." 
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software engineer navigates through the hyperspace that represents the information related to 
the subject system, analyzes this information with respect to domain-specific evaluation crite- 
ria, and uses various presentation mechanisms to clarify the resultant information. A general- 

purpose semantic network, represented as an attributed graph, is well suited to representing 

such structured sets of artifacts [Rohrich 87]. 

In its most basic form, a semantic network represents knowledge in terms of a collection of 
objects (representing concepts) and binary associations (representing binary relations over 
these concepts). According to this view, a knowledge base is a collection of objects and rela- 
tions defined over them [Mylopoulos 84]. The semantics of the model are a careful definition 

of the meaning and usage of the nodes and arcs. Modifications to the knowledge base occur 

through the insertion or deletion of objects and the manipulation of relations. 

The use of a network model has at least three advantages related to navigating, structuring, 

and visualizing the knowledge base. The first advantage is that the network structures that 
encode information may themselves serve as a guide for information retrieval [Hendrix 79]. 
The association between artifacts defines implicit access paths. Using this model, the infor- 
mation space is indexed by neighborhoods, while artifacts are retrieved through navigation 

guided by spatial and visual proximity cues. 

The second advantage is the use of the organizational principles described in the previous 
section to structure the knowledge base. Such abstraction mechanisms capture the natural 
structure of the artifacts in the system, their properties, and the relationships among them. 
They can also be used recursively to construct abstraction hierarchies. These structuring aids 
can be represented in the semantic network by typing both the nodes and the arcs. 

The third advantage is that network representation schemes lend themselves to a graphical 
notation that can be used to depict knowledge bases and increase their understandability. 
Most humans visualize structure graphically. For examples, designers often describe system 
architecture using block diagrams of the major system components and labels that refer to 
their major functions. Modern interactive systems with graphical display capabilities facili- 
tate the direct manipulation, processing, and presentation of information in graphical form. 

Without a web metaphor, a system's knowledge discovery mechanisms should permit the 
analysis of artifacts and relationships of interest. This means that there should be support for 
standard database queries. The raw data should be available, as should the conceptual con- 
structs created during knowledge-organization activities. This information is needed so that 
the software engineer can discover facts about the system from multiple perspectives, for ex- 
ample from the implementation perspective and from the end-user perspective. 

4.2.3 Evolution 
As part of knowledge organization, the construction of the domain model about the subject 
system (or about the subject system's application domain) can precede reverse engineering 
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(so it can be used to guide the understanding process by supplying expected constructs), or it 
can be constructed during reverse engineering (if no previous knowledge about the domain 
was available). Hence, a domain model can be a guide to and a product of reverse engineer- 

ing, or it can be combined into iterative domain modeling to support exploratory under- 

standing. 

Iterative domain modeling is one form of knowledge evolution. A software engineer can use 

tools that support iterative domain modeling to recognize standard components of a system 
automatically and use these components to populate the domain model. This type of top- 
down construction can be used as a guide during program understanding. 

The software engineer can also use semi-automatic or manual techniques to classify nonstan- 
dard components and use this information to extend the domain model. In database terminol- 
ogy, this is known as dynamic schema evolution. It is another form of knowledge evolution 
that can be used during exploratory program understanding, when hypotheses about the sub- 

ject system are being tested and theories revised. 

4.3 Information Exploration 
Because the majority of program understanding takes place during information exploration, it 
is arguably the most important of the three canonical reverse-engineering activities. Data 
gathering is required to begin the reverse-engineering process. Knowledge management is 
needed to structure the data into a conceptual model of the application domain. But the key to 
increased comprehension is exploration because it facilitates the iterative refinement of hy- 

potheses. 

Exploration is a composite activity that includes navigation, analysis, and presentation. In- 
formation exploration makes use of the knowledge-discovery structures discussed in Section 
4.2.2. Using the same web metaphor, the software engineer navigates through the structured 
information space that represents the information related to the subject system. As part of the 
exploration, the information is analyzed and filtered with respect to domain-specific criteria. 
Various presentation mechanisms are used to clarify the resultant information. 

4.3.1 Navigation 
Large software systems, like other complex systems, are nonlinear and may be viewed as 
consisting of an interwoven and multidimensional web of information artifacts [Maurer 92]. 
The web's links establish relationships between the artifacts. These relationships can be com- 
ponent hierarchies, inheritances, data and control flow, and other relationships generated as 
part of the reverse-engineering process. Hypermedia-based information navigation allows 
software engineers to traverse this "information web" as part of their exploratory under- 
standing activities. The information-navigation activity can itself be subdivided into selec- 

tion, editing, and traversal. 
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4.3.1.1 Selection 
Selection is one of the most important of all canonical activities because it is related to the 
essence of program understanding—identifying artifacts and understanding their relation- 

ships. Software engineers must first find the relevant code before they can transform it. Lo- 
cating relevant code fragments that implement the concepts in the application domain re- 
quires much effort. Reverse engineering involves the identification, manipulation, and 

exploration of artifacts in a particular representation of the subject system. This is essentially 
a pattern-matching activity at various abstraction levels. This pattern recognition is accom- 
plished either mentally by the software engineer or mechanically by the reverse-engineering 
environment. Artifacts are segmented into features, patterns of which are then matched 

against stored collections of expected structural motifs. The success of this process depends 
on the recollection of existing structural knowledge and on the ability of the person (or tool) 
to recognize its presence in a noisy environment. 

Since searching for code is an extremely common reverse-engineering activity, sophisticated 
selection tools can greatly aid the process. Artifacts can be selected according to various cri- 
teria, including visual and spatial cues, attributes (such as names), and structural properties 
(for composite artifacts). The type of pattern recognition provided can range from recognition 
of simple regular expressions, such as that provided by the UNIX grep tool, to more ad- 
vanced capabilities such as plan recognition. Some query mechanisms enable users to specify 
attribute patterns that are used to identify artifacts in the database that satisfy the search crite- 
ria. A more abstract mechanism is the use of powerful query and analysis languages that do 
not involve procedural code, such as the Source Code Algebra (SCA) query formalism [Paul 
95]. The plan-recognition and concept-assignment tasks described in Section 3 are in essence 
advanced selection activities. 

To aid information selection, it is beneficial to be able to augment the operations built into the 
reverse-engineering support mechanism with advanced pattern-matching techniques that con- 
centrate more on the meaning of the code, rather than on its form. These techniques will en- 
able the software engineer to reduce the amount of time and effort spent switching between 
domains (for example, from the application domain to the implementation domain) during 
program understanding. If the patterns can be represented in terms related to the application 
domain (where most change requests are couched), then the software engineer can more eas- 
ily change the source code with fewer surprises. Program understanding can be improved by 
leveraging external tools that provide advanced searching techniques and having the results 
of their searches made available to the user and the environment. 

4.3.1.2 Editing 
Editing is an activity that can alter the knowledge organization structure, sometimes as a by- 
product of information navigation. It can involve creating new artifacts, deleting existing 
ones, or changing an artifact's attributes. For example, through editing activities, a user may 
create user-specified subsystem constructs that are logical (but not physical) representations 
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of the system. Information editing is therefore the activity that supports the evolution of the 

knowledge base as discussed in Section 4.2.3. 

4.3.1.3 Traversal 
Traversal is the action of moving from one artifact to another in the information space. For 
example, following links in the web that represent relations such as "calls" involves traversal. 
Unfortunately, as the size of this information space grows, the well-known "lost in hyper- 

space" syndrome may limit navigational efficiency [Marchionini 88]. 

Disorientation has been attributed to the tangle of links in the web [Nielsen 90a]. The prolif- 
eration of links is often due to the weak link discipline enforced by a system using a simple 
node/link mechanism, allowing unrestricted linking among arbitrary objects [Nanard 91]. 
Such linking is very powerful, but potentially disorienting [Broady 93]. The same freedom 
that provides hypertext's flexible structure and browsing capabilities may also be the direct 
cause of one of its greatest problems [Botagofo 91]. During knowledge discovery, disorienta- 
tion may occur when browsing. During knowledge evolution, the lack of design principles 
when creating associative links does not foster the creation of a consistent conceptual model 

[Hara91]. 

Clearly, reducing disorientation is a key capability that a support mechanism should address. 
Some of the solutions that have been proposed to the classical problem of user disorientation 
within a large information space include maps, multiple windows, history lists, and tour/path 
mechanisms [Nielsen 90b]. Unfortunately, many of these methods are not sufficiently scal- 
able. A more successful approach is the use of composite nodes; they reduce web complexity 
and simplify its structure by clustering nodes together to form more abstract, aggregate ob- 
jects [Casanova 91]. Composite nodes interact with sets of nodes as unique entities, separate 
from their components. 

4.3.2 Analysis 
The critical step in deriving abstractions from the raw data to foster understanding is analy- 
sis. Software engineers use the resultant information to explore the system further. There are 
many forms of analysis; the complete list is not enumerated in this report. The level of analy- 
sis is directly related to the type of canonical artifact being manipulated. The degree of ma- 
nipulation is governed in part by the level of automation provided by the reverse engineering 

environment. 

4.3.2.1 Types 
There are a great many types of analysis possible; this sub-category is both very broad and 
very deep. For example, slicing is an analysis technique that identifies program code frag- 
ments that may affect the value of selected variables. By isolating the statements that can 
change the value of a variable (or variables), the cognitive overhead of understanding a large 

piece of code is reduced significantly. 

CMU/SEI-98-TR-005 21 



There are two forms of analysis that are directly related to two forms of data gathering: static 
analysis and dynamic analysis. Most reverse-engineering tools provide a variety of static- 

analysis capabilities (for example, def/use analysis for data types and variable instances). 
There is less support for dynamic analysis. This may be due to environmental requirements; 
by necessity, dynamic analysis requires the program to execute in a real or simulated manner. 
However, some types of analysis, such as slicing, come in both static and dynamic varieties. 

Other common forms of analysis include the traditional complexity metrics and perhaps the 

most important—impact analysis. 

Estimating the effect of changes before they are irrevocable has always been an important 
part of program understanding. Engineers try to avoid causing massive changes to a system 
during maintenance. Their avoidance is due, in part, to practical issues such as recompilation 

delays, but more importantly because they are unwilling to create "change waves" that ripple 

throughout large parts of the system. The potential for errors caused by these waves is too 

great. Current tools perform impact analysis primarily at the syntactic level. Newer research, 
however, focuses on higher order impact-analysis tools that allow users to perform "what-if' 
scenarios and analyze the result of proposed changes, enabling the software engineer to func- 
tion at the application-domain level rather than the implementation-domain level. 

4.3.2.2 Levels 
The type of analysis supported is closely related to the abstraction level provided by the pat- 
tern-recognition capabilities of the tool. Program-understanding techniques can consider 
source code in increasingly abstract forms: raw text, preprocessed text, lexical tokens, syntax 
trees, control and data-flow graphs, program plans, architectural descriptions, and conceptual 
models. The more abstract forms entail additional syntactic and semantic analysis that corre- 
sponds more to the meaning and behavior of the code and less to its form and structure. Dif- 
ferent levels of analysis are necessary for different users and different reverse-engineering 

activities. 

Analyzing the structure of the information web can provide useful insight. Various metrics 
and measures can be used to guide the creation of new artifacts in the information space by 
editing the information web as part of the knowledge-evolution activity described in Sections 
4.2.3 and 4.3.1.2. The environment should support the integration of external analysis pack- 
ages that implement domain-specific metrics; this is a related quality attributed discussed in 

Section 5.2. 

4.3.2.3 Automation 
It is important to manage the tradeoff between the analyses that are handled automatically by 
a reverse-engineering environment and the functions that enable the tools in the environment 
to accept human input and guidance. Issues include how to best balance between automatic, 

semi-automatic, and manual analysis, where each is more applicable, and how the support 

mechanism can "know" when to ask for expert guidance. 
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Using the correct automation level can affect both the time taken to complete a program- 
understanding task and the level of comprehension achieved. More analysis automation is 
likely to occur as the problem characteristics become better understood. This is already hap- 
pening with regard to the so-called "Year 2000" problem [Smith 97], where the types of 

analysis are well defined and the types of remediation are limited. 

Analysis derives and extracts information that is not explicitly available and generates in- 
sightful views that can aid the understanding of the underlying system. Rather than limiting 
software engineers to designer-defined analyses that are invoked using canned methods, it is 
better to provide mechanisms that programmers can use to define their own analyses, thereby 
extending the level of automation on an as-needed basis. 

4.3.3 Presentation 
Visual metaphors are commonly used to communicate information. Reverse-engineering en- 
vironments that provide flexible presentation mechanisms that capture such metaphors can 
aid program understanding. Most reverse-engineering systems provide the user with fixed 
presentation options, such as cross-reference graphs or module-structure charts, that summa- 
rize the results of analyses such as those described in Section 4.3.2. Even though the devel- 
opers of the environment might consider fixed options to be adequate, there are always users 
who want something else. Ideally, it should be possible to create multiple, perhaps orthogo- 
nal, structures (as described in Section 4.2.1) and to view them using a variety of mecha- 
nisms. 

4.3.3.1  Multiple Views 
It is difficult to convey and communicate the wealth of information generated as a result of 
reverse engineering. This problem is exacerbated by the necessary coexistence of spatial and 
visual data [Müller 92]. Theories of cognition suggest that imagery involves both descriptive 
and depictive information [Kosslyn 80]. For program understanding, both spatial and visual 
information seem to play key roles in forming mental models of structure. 

The spatial component constitutes information about the relative positions of the artifacts in a 
neighborhood. It provides low-level, detailed information concerning the immediate neigh- 
borhood of the artifact in a graphical representation that facilitates the systematic exploration 
of the structure. The visual component preserves information about how a neighborhood1 

looks (e.g., size, shape, or density). It provides a high-level view of the neighborhood—the 

essence of the entire image. Visual graph representations aim to exploit the ability of the hu- 
man visual system to recognize and appreciate patterns and motifs such as central, fringe, or 
isolated components. 

1 A neighborhood in this context is a visual representation of the current perspective of the underlying software 
system, using the web metaphor described in Section 4.2.2. 
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The way information is presented should not be fixed by the environment. It should be possi- 
ble to create multiple, perhaps orthogonal, structures and view them using a variety of 
mechanisms, such as using different graph layouts provided by external toolkits. These views 
are a crucial component of the knowledge-discovery activity described in Section 4.2.2. The 
notion of multiple views is not new; they have been employed in the database domain for 

some time. 

4.3.3.2 Visualization Techniques 
Graph-layout theory has already proven effective in aiding program understanding; graphical 
representations of source code proliferate in current reverse-engineering systems. Refine- 
ments to this traditional area also show promise (for example, so-called "fish-eye" views that 

emphasize selected focal points while retaining relative location information ). Recent work 
has explored the coexistence of multiple views (see also Section 4.3.3.1) of the underlying 
data using a variant of fish-eye views and traditional hierarchical structure diagrams [Storey 
97b]. More advanced visualization techniques using three-dimensional data imaging, virtual 
reality "code walk-through," and user-defined views are in the experimental stage. One or 
more of these techniques can provide new insights during program understanding. 

Presentation of analysis results has traditionally taken the form of charts, tables, or graphs. 
The proliferation of multimedia-enhanced computers introduces new ways of presenting this 
information. An area that shows promise is the use of audio and video annotations as a way 
of commenting source code, capturing programmer rationale, and presenting information to 
the user in more familiar and readily accessible ways. 

4.3.3.3 User Interface 
Presentation integration can occur at different levels, including the window manager, the 
toolkit used to build applications, and the toolkit's "look and feel" [Wasserman 89]. The stan- 
dardization provided by presentation integration lessens the "cognitive surprise" experienced 
by users when switching between tools. However, what is really needed is a way for the user 
to specify the common look and feel of the applications they are interested in, or of tools that 
are part of an application [Klefstad 88]. In other words, users need to be able to impose their 
own personal taste on the user interface. This refinement of presentation integration moves 
the onus—and the opportunity—for reducing cognitive overhead induced by the user inter- 

face from the tool builder to the tool user. 

The goal of environmental customizability includes modification of the system's interface 
components such as buttons, dialogs, menus, scrollbars, and of the integration of external 
tools that present the information in different ways. Since the user interface is a crucial part 
of the infrastructure of many software environments [Young 88], and since personal prefer- 
ences for things such as menu structure, mouse action, and system functionality differ so 
much from person to person (and from domain to domain), it is unlikely that any single 
choice made by the tool builder will suit all users. Most popular PC software applications 
now provide some level of user interface customizability. 
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5. Quality Attributes 

A quality attribute is defined by Barbacci et al as a system requirement that is essentially 
non-functional in nature [Barbacci 95]. Examples of quality attributes include dependability, 
extensibility, and usability. This section briefly describes selected quality attributes that are of 
particular importance to most support mechanisms: applicability, extensibility, and scalabil- 
ity. This set of quality attributes is by no means exhaustive. Other attributes, such as usability 
and deployability, may be equally important in certain circumstances. However, they are 
more general attributes that are applicable to almost any software system. As such, they 
should be considered when investigating a particular reverse-engineering environment, but 
we will not elaborate on them here. 

5.1 Applicability 
The applicability of the support mechanism refers to a particular domain. While a domain 
may be generally defined as a problem area, domain is an overburdened term. It can refer to 
both the application domain and the implementation domains. It is naturally desirable to 
make the support mechanism as flexible as possible for use in many different domains. 

One way to maximize the support mechanism's usefulness is to make it domain specific. By 
doing so, one can provide users with a system tailored to a certain task and exploit any fea- 
tures that make performing this task easier. However, this approach limits the system's use- 
fulness to a particular domain. Using the same system on a different task, even one that is 
similar, may well be impossible. For example, many current reverse-engineering environ- 
ments support only relatively small programs. Others support just one programming language 
(or a subset of it), usually because their parsing system, database, and support environments 
are tightly coupled. This approach limits the application domain to small, "pure" programs 
rarely found in practice. One must take a pragmatic point of view: if the support mechanism 
does not work on real-world software systems, with all their "features," then it will not make 
an impact on existing systems. 

An alternative to making the support mechanism powerful by making it domain specific is to 
make it domain retargetable [Tilley 95a]. One would like to make the approach as flexible as 
possible—a subtle distinction from general. Software can be considered general if it can be 
used without change; it is flexible if it can be easily adapted to be used in a variety of situa- 
tions [Pamas 79]. General solutions often suffer from poor performance or lack of features 
that limit their usefulness. Flexible solutions may be tailored by the user to fully exploit as- 
pects of the problem that make its solution easier. 
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5.1.1 Application Domain 
The application domain of a reverse-engineering tool is one of its strongest differentiators. 
Some tools provide a programmable environment with which one constructs more special- 
ized tools. Others are targeted to narrower domains, such as redocumenting C programs. 

Subject system characteristics have considerable impact on the applicability of reverse- 
engineering environments. Different approaches to understanding are used in different appli- 
cation domains. For example, the reconstruction of the schema for database systems, the 
monitoring of task allocation in distributed systems, and the dynamic analysis of task rendez- 
vous in real-time systems all have different requirements. Different application domains and 

example representative functional requirements of the support mechanism are illustrated in 
Figure 2. 

Application Domain Representative Support Mechanism Requirements 

Database system 

Distributed system 

Real-time system 

schema reconstruction, data reverse engineering 

task allocation, inter-process communication 

dynamic analysis, timing constraint maintenance 

Figure 2: Application Domains and Support Mechanism Requirements 

5.1.2 Implementation Domain 
The subject system's implementation domain can also play an important role in the selection 
of the appropriate support mechanism. Issues to consider include the language dialect or vari- 
ant, the robustness of the parsing mechanism used (e.g., whether or not it supports imple- 
mentation-language extensions, syntactically incorrect constructs, or incomplete code frag- 
ments), and whether or not mixed-mode source code is supported. For example, older C 
programs may be written in K&R style, many FORTRAN programs make use of machine- or 
compiler-specific extensions to increase the performance of the compiled code, and COBOL 
programs may include database preprocessor directives. Some of these considerations are 
shown in Figure 3. 

26 CMU/SEI-98-TR-005 



Implementation Domain Representative Support Mechanism Requirements 

K&R, ANSI, dialects, C++ 

FORTRAN FORTRAN 66 anachronisms, FORTRAN 77 exten- 

sions, FORTRAN 90 constructs 

COBOL CICS, OO-COBOL additions, dialects 

Figure 3: Implementation Domains and Support Mechanism Requirements 

5.2 Extensibility 
Most reverse-engineering environments provide the user with a fixed set of capabilities. 
While this set might be considered large by the system's producers, there will always be users 
who want something else. One cannot predict which aspects of a system are important for all 
users, and how these aspects should be documented, represented, and presented to the user. 
Hence, the extensibility of the environment is an important quality attribute. 

5.2.1 Integration Mechanisms 
There are many tradeoffs between open and closed systems. An open system provides com- 
posable operations and mechanisms for user-defined extensions. A closed system provides a 
"large" set of built-in facilities, but no way of extending the set. Instead of a closed architec- 
ture, a reverse-engineering environment should provide integration mechanisms through 
which users can extend the system's functionality. 

There are two basic approaches to constructing extensible integrated applications from a set 
of tools: tool integration and tool composition [Arora 93]. In tool integration, each tool must 
be aware of the larger environment, and the inter-tool interactions are coded in the tools 
themselves. This works for tightly integrated environments, but it is very hard to achieve in a 
loosely coupled environment. In tool composition, tool interaction logic resides outside of the 
tools. Each tool presents a standard, well-known interface to the outside world, and knows 
nothing about its environment; the environment contains all the inter-tool coordination logic. 

The method with which one interacts with the tool can have a great impact on its effective- 
ness, applicability, and ease of use. Some tools are meant to be controlled by other applica- 
tions (for example, an embedded data-analysis component). Others are meant to be used as 
the primary interface to the underlying information space (for example, a Web-based naviga- 
tion engine). The choice of a command-line interface versus a graphical user interface, while 
sometimes viewed as a secondary concern, can often be a deciding factor in a program- 
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understanding tool. This is due in part to the significant role visual information can play dur- 

ing pattern recognition, as outlined in Section 4.3.1.1. 

The need to inter-operate with other tools is essential for reverse-engineering environments. 
One common class of applications that they often work with are computer-aided software 

engineering (CASE) tools. Usually these CASE tools support some type of design or model- 
ing standard. The support (or lack thereof) of such standards in a reverse-engineering envi- 

ronment can play a major role in certain circumstances. 

5.2.2 End-User Programmability 
It has been repeatedly shown that no matter how much designers and programmers try to an- 
ticipate and provide for users' needs, the effort will always fall short. It is extremely difficult 

to predict all the ways in which a system will be used. Customizations, extensions, and new 

applications inevitably become necessary. 

Some leading-edge reverse-engineering systems provide full-fledged programming languages 
that can be used to encode analysis methods. The ability to use end-user programmability in 
reverse engineering to develop analysis techniques for specific tasks enhances the analysis 
power of the support mechanism. For example, domain-specific scripts can increase the like- 

lihood that analyses will better apply to unique software systems. 

From an end-user perspective, the reverse-engineering environment should manage tool 
composition to facilitate the introduction of new tools into the system. This would enable end 
users to provide new parsing engines, for example, if the application implementation lan- 
guage was not directly supported by the reverse-engineering environment. For tasks such as 
transformation and pattern matching, the addition of a programmable interface can transform 
an environment from a collection of individual support mechanisms into an integrated ex- 

ploratory workbench. 

5.2.3 Automatability 
While creating the semantic abstractions that facilitate program understanding, it should be 
possible to include human input and expertise in the decision making. There is a tradeoff 
between what can be automated and what should or must be left to humans; the best solution 
lies in a combination of the two. Hence, the construction of abstract representations manually, 
semi-automatically, or automatically (where applicable) should be possible. Through user 
control, the reverse-engineering process can be based on diverse criteria such as business 
policies, tax laws, or other semantic information not directly accessible from the gathered 
data. This quality attribute is related to the canonical activity of analysis automation de- 

scribed in Section 4.3.2.3. 
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5.3 Scalability 
Ideally, any reverse-engineering environment should be applicable to large systems. As men- 
tioned in Section 4.2.1, the volume of data produced during the reverse engineering of a 
large-scale software system is considerable. Therefore, scalability is an important quality at- 

tribute. 

Large data sets and information complexity require scalable knowledge bases that use fun- 

damentally different approaches to repository technology than is used in other application 
domains. Knowledge organization, search strategies, and human-computer interfaces that 

work on systems "in-the-small" often do not scale up. To gain useful knowledge, one must 

effectively summarize and abstract the information. 

For example, not all software artifacts need to be stored in the repository; some artifacts may 
be ignored. Coarse-grained artifacts can be extracted, partial systems can be incrementally 
investigated, and irrelevant parts can be ignored to obtain manageable repositories. A scalable 
knowledge base improves the understanding of large software systems. 
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6. Miscellaneous Characteristics 

There are a wide variety of system characteristics that do not properly fit into any of the other 
categories discussed above. However, when it comes to investigating a particular reverse- 
engineering environment, they can be equally important. As with the quality attributes de- 
scribed in Section 5, the set of miscellaneous characteristics included in this section is repre- 
sentative, not exhaustive. 

6.1 Computing Platform 
The particular hardware and software platform on which the reverse-engineering environ- 
ment will run can have an immediate impact on whether or not it is appropriate for a particu- 
lar program-understanding task. For example, if dynamic analysis of the running program is 
needed, then the computing platform that hosts the reverse-engineering environment must be 
the same, or there must be a mechanism for gathering the data and incorporating it into the 
analysis engine(s) of the environment. 

6.2 Ancillary Requirements 
The ancillary requirements of the reverse-engineering environment should not be such that 
the requirements preclude the system's use. For example, the environment may require the 
user to have a valid license for a particular database system that is used by the underlying 
knowledge-management system. The requirements can also affect the computing platform, 
which in turn affects the selection of the environment. 

6.3 Cost 
Perhaps one of the most rudimentary miscellaneous characteristics of any reverse- 
engineering environment is its cost. The "cost" can be measured in various ways, not just 
initial purchase price. There is no doubt that the pricing structure of some environments pre- 
cludes their use by all but very large organizations. But the cost of maintaining the environ- 
ment (and its ancillary requirements) can outweigh the initial purchase price. This is espe- 
cially true if personnel must be specially trained in its use, and if someone must be 
designated the equivalent of "gatekeeper" for the environment (for example, for maintaining 
the system-wide schema used for knowledge management by several teams of people). 
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There is also the cost of adopting or deploying the tool. This is a characteristic that might also 
be considered a quality attribute, because adoption and deployment have proven to be such 

stumbling blocks for many tools over the years. Included in this cost is the time required to 

train users. 
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7. Summary 

Program understanding is critical to our ability to modernize legacy systems. Operational for 
many years, legacy systems embody substantial corporate knowledge, including require- 
ments, design decisions, and business rules. As its software ages, the task of maintaining a 
legacy system becomes more complex and more expensive. Nevertheless, because most suc- 
cessful legacy systems play critical roles in the day-to-day business of an enterprise, the sys- 
tem cannot simply be discarded and replaced; it must be maintained and enhanced. This can- 
not be accomplished without a sufficient understanding of the program's artifacts and 

relationships. 

There now exists a wide variety of tools and techniques that support program understanding. 
The most prevalent is computer-aided reverse engineering. This report presented a framework 
for classifying the features of reverse-engineering environments. The core of the framework 
is a descriptive model that categorizes the important support mechanisms and features pro- 
vided by the environments that aid program understanding. The descriptive model is summa- 
rized in tabular format in Figure 4. The goals for creating this framework include helping 
potential users of such environments to independently evaluate claims, assess the applicabil- 
ity of certain approaches to their own software evolution challenges, and facilitate the com- 
parison of similar approaches to the same problem. 

This work on reverse-engineering environments described in this report is part of an ongoing 
research project studying legacy system reengineering, in which program understanding and 
reverse engineering play a significant role. The conceptual framework described in this report 
will evolve through peer review, usage experience, and completeness verification. One of the 
next steps in its evolution is to populate the framework with representative reverse- 
engineering environments (both research oriented and commercial offerings) and perform 
experiments to flesh-out the basis of its descriptive model (the canonical activities of reverse 
engineering and the quality attributes). A preliminary use of the framework in the investiga- 
tion of a representative commercial offering is reported inTTilley 97]. 
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