
Carnegie Mellon University
Software Engineering Institute

A Reverse-
Engineering
Environment
Framework
Scott Tilley

April 1998

19980514 115

TECHNICAL REPORT
CMU/SEI-98-TR-005

ESC-TR-98-005

DISTRIBUTION STAT£MENTÄ~"^

Approved for pubHc release;
Distribution Uofimtod

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

CMU/SEI-98-TR-005
ESC-TR-98-005

A Reverse-
Engineering
Environment
Framework
Scott Tilley

April 1998

Reengineering Center
Product Line Systems

CarnegieMellon
Software Engineering Institute
Pittsburgh, PA
15213-3890

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Jay Alonis, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1998 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.CoreRoad;
PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free in the U.S. 1-800-547-8306 / FAX.
(304) 284-9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense■Technical
Information cLer / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703)
767-8274 or toll-free in the U.S.: 1-800 225-3842.

Table of Contents

Abstract v

1. Introduction 1
1.1 Program Understanding Support Mechanisms 1
1.2 About the Reverse-Engineering

Environment Framework 2
1.3 Organization of This Report 3

2. Cognitive Model Support 5

2.1 Bottom Up 5

2.2 Top Down 5

2.3 Opportunistic 6

3. Reverse-Engineering Tasks 7
3.1 Program Analysis 7

3.2 Plan Recognition 8

3.3 Concept Assignment 9

3.4 Redocumentation 9

3.5 Architecture Recovery 10

4. Canonical Activities 11
4.1 Data Gathering 11

4.1.1 System Examination 12

4.1.2 Document Scanning 13

4.1.3 Experience Capture 14

4.2 Knowledge Management 14

4.2.1 Organization 14

4.2.2 Discovery 17

4.2.3 Evolution 18

4.3 Information Exploration 19

4.3.1 Navigation 19

4.3.2 Analysis 21

4.3.3 Presentation 23

CMU/SEI-98-TR-005

5. Quality Attributes 25
5.1 Applicability 25

5.1.1 Application Domain 26
5.1.2 Implementation Domain 26

5.2 Extensibility 27
5.2.1 Integration Mechanisms 27
5.2.2 End-User Programmability 28
5.2.3 Automatability 28

5.3 Scalability 29

6. Miscellaneous Characteristics 31
6.1 Computing Platform 31
6.2 Ancillary Requirements 31
6.3 Cost 31

7. Summary 33

Acknowledgements 35

References 37

CMU/SEI-98-TR-005

List of Figures

Figure 1: Pattern Abstraction for Levels of Program
Analysis 7

Figure 2: Application Domains and Support
Mechanism Requirements 26

Figure 3: Implementation Domains and Support
Mechanism Requirements 27

Figure 4: The Descriptive Model 34

CMU/SEI-98-TR-005

iv CMU/SEI-98-TR-005

Abstract

This report describes a framework for reverse-engineering environments used to aid program
understanding. The framework is based on a descriptive model that categorizes important
support mechanism features based on a hierarchy of attributes. The attributes include cogni-
tive model support, reverse-engineering tasks, canonical activities that are characteristic of
the reverse-engineering process, quality attributes supported by the reverse-engineering envi-

ronment, and miscellaneous characteristics.

CMU/SEI-98-TR-005

vi CMU/SEI-98-TR-005

1. Introduction

Many organizations are faced with maintaining aging software systems that are constructed
to run on a variety of hardware types, are programmed in obsolete languages, and suffer from

the disorganization that results from prolonged maintenance. As software ages, the task of
maintaining it becomes more complex and more expensive. Poor design, unstructured pro-
gramming methods, and crisis-driven maintenance can contribute to poor code quality, which

in turn affects understanding.

Better understanding of a program aids in common activities such as performing corrective
maintenance, reengineering, and keeping documentation up to date. To minimize the likeli-
hood of errors introduced during the change process, the software engineer must understand
the system sufficiently well so that changes made to the source code have predictable conse-
quences. But such understanding is difficult to recover from a legacy system after many years

of operation.

Program understanding is a relatively immature field of study in which the terminology and
focus are still evolving. The goal of program understanding is to acquire sufficient knowledge
about a software system so that it can evolve in a disciplined manner. The essence of program
understanding is identifying artifacts and understanding their relationships; this process is
essentially pattern matching at various abstraction levels. It involves the identification, ma-
nipulation, and exploration of artifacts in a particular representation of a subject system via
mental pattern recognition by the software engineer and the aggregation of these artifacts to
form more abstract system representations.

1.1 Program Understanding Support Mechanisms
There are a variety of support mechanisms for aiding program understanding. They can be
grouped into three categories: unaided browsing, leveraging corporate knowledge and experi-
ence, and computer-aided techniques like reverse engineering. Unaided browsing is essen-
tially "humanware": the software engineer manually flips through source code in printed
form or browses it online, perhaps using the file system as a navigation aid. This approach is
almost always used in some form, but it is not really a viable approach for very large systems.
A good software engineer may be able to keep track of approximately 50,000 lines of code in
his or her head. If there is much more than that, then the amount of information to keep track

of becomes unwieldy.

The second category of support mechanism is leveraging corporate knowledge and experi-
ence. This can be done through mentoring or by conducting informal interviews with person-

CMU/SEI-98-TR-005

nel knowledgeable about the subject system. This approach can be very valuable if there are
people available who have been associated with the system as it has evolved over time. They
carry important information in their heads about why the system was designed the way it
was, the major changes that have occurred over its life cycle, and where subsystems have
proven particularly troublesome. For example, they may be able to provide guidance on
where to look when carrying out a new maintenance activity if it is similar to another change
that took place in the past. This approach is useful both for gaining a big-picture understand-
ing of the system and for learning about selected subsystems in detail. Unfortunately, this
type of corporate knowledge and experience is not always available. The original designers
may have left the company. The software system may have been acquired from another com-

pany. Or the system may have had its maintenance out-sourced.

In this situation, the only recourse is the third category of support mechanisms: computer-

aided reverse engineering. A reverse-engineering environment can manage the complexities

of program understanding by helping the software engineer extract high-level information
from low-level artifacts, such as source code. This frees software engineers from tedious,
manual, and error-prone tasks such as code reading, searching, and pattern matching by in-
spection.

1.2 About the Reverse-Engineering Environment
Framework
Although substantial process has been made in tool-based environmental support for aiding
program understanding, there is not a satisfactory mechanism to classify the technology that
is currently available. As a result, it is difficult to compare the purposes, functionality, and
characteristics of different program-understanding tools and techniques. To address this need,
this report provides a descriptive model that categorizes important support mechanism fea-
tures based on a hierarchy of attributes.

The model can be used for characterizing an individual support mechanism, a set of which
can then be compared using a common vocabulary. At present, the model organizes attributes
according to the broad categories of cognitive-model support, reverse-engineering tasks, ca-
nonical activities, quality attributes, and miscellaneous characteristics.

The reverse-engineering environment framework described in this report is based on an ear-
lier effort that was called "Towards a Framework for Program Understanding" [Tilley 96a].
This earlier work was an initial attempt to solicit feedback from the community on the struc-
ture and contents of the framework. Two special meetings were held to discuss the frame-
work. The first was during the 1996 Workshop on Program Comprehension and the second
was during the 1996 Software Technology Conference. One of the most important comments
received was that the framework was too top-down. It was unclear whether the framework
was meant to characterize research efforts or to characterize reverse-engineering environ-
ments. Since the primary use of the framework is to guide advanced practitioners on reverse

2 CMU/SEI-98-TR-005

engineering options, the framework was reorganized to reflect this goal. A new effort, the
Program Understanding Framework, was started to characterize current activity areas in pro-
gram understanding. This latter framework is also under revision and has been used to de-
scribe the current state-of-the-practice in program understanding [Tilley 96b, Tilley 98].

Since 1996 the reverse-engineering environment framework has received input via email

based on the material on the Reengineering Center's Web site
(http://www.sei.cmu.edu/reengineering). In addition, the framework has benefited enor-

mously from discussions with selected representative of academia and industry. It is expected
that further meetings with various members of the program understanding, reverse engineer-

ing, and reengineering communities will continue to contribute to the framework as it

evolves.

1.3 Organization of This Report
The next section discusses support for different cognitive models that can greatly affect the
usefulness of a reverse-engineering environment. Section 3 describes the typical reverse-
engineering tasks; whether or not an environment supports these tasks can be a motivating
factor for selecting one environment over another. Section 4 describes the canonical activities
that are characteristic of any reverse engineering task, no matter what environment is used. A
reverse-engineering environment also exhibits certain quality attributes (the "ilities") that
affect its usefulness. For example, the degree of extensibility of the system can affect how
well the tool can be tailored to specific reverse-engineering tasks. Section 5 explores some of
these quality attributes in more detail. Section 6 discusses the miscellaneous characteristics
that can be important factors in the selection of a reverse-engineering environment, such as
cost. Section 7 summarizes the report.

CMU/SEI-98-TR-005

CMU/SEI-98-TR-005

2. Cognitive Model Support

A cognitive model describes the cognitive processes and knowledge structures used to form a
mental representation of the program under study. Numerous theories have been formulated
and empirical studies conducted to explain and document the problem-solving behavior of
software engineers engaged in program understanding, von Mayrhauser and Vans surveyed
this area in [von Mayrhauser 95] and compared six cognitive models of program under-

standing.

Rather than impose a process that is not justified by a cognitive model other than that of the
environment's developers, the environment should support the diverse cognitive processes
and different approaches to program comprehension that the end user prefers. Storey et al
describe a hierarchy of cognitive design elements to support the construction of a mental
model to aid program understanding in software-exploration tools [Storey 97a]. One portion
of the hierarchy concerns improving program understanding, such as enhancing bottom-up
comprehension by supporting the actions of identifying software artifacts and the relations
between them, by browsing code in delocalized plans, and by building abstractions. These
actions are in fact composed of one or more canonical reverse-engineering activities that are
described in Section 4. For example, the effect of delocalized plans can be reduced through
the use of information-analysis techniques, such as slicing, and information-presentation
techniques, such as multiple views, supported by the appropriate knowledge-management
capabilities.

2.1 Bottom Up
Two common approaches to program understanding often cited in the literature are a func-
tional approach that emphasizes cognition by what the system does and a behavioral ap-
proach that emphasizes how the system works. These two approaches are directly related to
the level of domain expertise of the software engineer. The functional approach is bottom up
and deductive, relying more on the knowledge of the implementation domain to create more
abstract concepts that may map to the application domain and the system's functional re-
quirements. The bottom-up approach reconstructs the high-level design of a system, starting
with source code, through a series of chunking and concept-assignment steps.

2.2 Top Down
The behavioral approach is top down and inductive, using a goal-driven method of hypothesis
postulation and refinement based on expected artifacts derived from knowledge of the appli-
cation domain. The top-down approach begins with a pre-existing notion of the functionality

CMU/SEI-98-TR-005 5

of the system and proceeds to earmark individual components of the system responsible for

specific tasks.

2.3 Opportunistic
Both top-down and bottom-up comprehension models have been used in an attempt to define
how a software engineer understands a program. However, case studies have shown that, in
industry, maintainers of large-scale programs frequently switch between these different mod-
els depending on the problem-solving task at hand [von Mayrhauser 92]. This opportunistic

approach involves creating, verifying, and modifying hypotheses until the entire system can
be explained using a consistent set of hypotheses. The opportunistic model describes the

maintainer as"... an opportunistic processor capable of exploiting both top-down and bottom-

up cues as they become available."

CMU/SEI-98-TR-005

3. Reverse-Engineering Tasks

There are many different reverse-engineering tasks. This section discusses several of the most
important: program analysis, plan recognition, concept assignment, redocumentation, and
architecture recovery. The first three tasks can be viewed as pattern matching at different lev-
els of abstraction. As illustrated in Figure 1, program analysis is syntactic pattern matching in
the programming-language domain, plan recognition is semantic pattern matching in the pro-
gramming-language domain, and concept assignment is semantic pattern matching in the ap-

plication (or end-user) domain.

Assigning each task to an abstraction layer can be difficult. One can argue that redocumenta-
tion is a form of reverse engineering, or that it is simply restructuring at the same abstraction
level. How one interprets each type of reverse engineering depends on several factors, such
as which document you read, what you mean by reverse engineering, and what you mean by
redocumentation. Many of these arguments are more in the lines of religion rather than prac-
tical differences. Suffice it to say that reverse engineering is not an exact science, and neither
is its terminology.

Reverse-Engineering Task Pattern Abstraction Level Artifacts

Manipulated

Program analysis Programming language, syntactic Tokens

Plan recognition Programming language, semantic Plans

Concept assignment Application, semantic Concepts

Figure 1: Pattern Abstraction for Levels of Program Analysis

3.1 Program Analysis
Most commercial systems focus on source-code analysis and simple code restructuring using
the most common form of reverse engineering: program analysis. Catalogs such as [Olsem
93, Zvegintzov 94] describe several hundred such packages. Representative types of program
analysis include control-flow and data-flow analysis, slicing, and structure charts.

There are many ways of classifying program-analysis techniques. For example, in [Ning 89],
Ning identified four levels of abstraction for reverse engineering: implementation, structural,

CMU/SEI-98-TR-005 7

functional, and domain. The implementation-level view examines individual programming
constructs; the program is typically represented as an abstract syntax tree (AST), symbol ta-
ble, or plain source text. The structural-level view examines the structural relationships
among the program constructs; dependencies among program components are explicitly rep-
resented. The functional-level view examines the relationships between program structures
and their behavior (function); the rationale behind program constructs is also investigated.
The domain-level view examines concepts specific to the application domain.

Program-analysis techniques may consider source code in increasingly abstract forms, in-
cluding raw text, preprocessed text, lexical tokens, syntax trees, annotated abstract syntax
trees with symbol tables, control/data flow graphs, program plans, and conceptual models.

The more abstract forms entail additional syntactic and semantic analysis that corresponds

more to the meaning and behavior of the code and less to the form and structure. Different
levels of analysis are necessary for different users and different program-understanding pur-

poses.

3.2 Plan Recognition
Software engineers usually look for code that fits certain patterns. Those patterns that are
common and stereotypical are known as cliches. Patterns can be structural or behavioral, de-
pending on whether one is searching for code that has a specified syntactic structure, or
searching for code components that share specific data-flow, control-flow, or dynamic (pro-

gram execution-related) relationships.

To locate such patterns, what is needed is a search mechanism that is closer to the mental
model of the software engineer than that provided by most program analysis tools that focus
on simple statistical and cross-reference queries. This mechanism is called plan recognition,
which attempts to discover instances of abstract representations of commonly used algo-
rithms and/or data structures in the subject system. Program plans are abstract representations
of source code fragments. Comparison methods are used to help recognize instances of pro-
gramming plans in a subject system. This process involves pattern matching at the program-

ming-language semantic level.

One focus in plan recognition is on identifying similar code fragments. Existing source code
is often reused within a system via "cut-and-paste" or "clone-and-own" text operations. This
practice saves development time, but leads to problems during maintenance because of the
increased code size and the need to propagate changes to every modified copy. Cloned code
fragments can be detected using heuristics, since the decision whether two arbitrary programs
perform the same function is undecidable. These heuristics are based on the observation that
the clones are not arbitrary and will often carry identifiable characteristics (features) of the

original fragment. These characteristics are used to compare two code fragments based on

similarity measures.

CMU/SEI-98-TR-005

3.3 Concept Assignment
Plan recognition is an improvement over the syntactic pattern matching found in most pro-
gram-analysis tools. However, when it comes to locating source code fragments of interest to
the software engineer (because plans are closer to the programmer's mental model than syn-
tactic entities), the program plans must still be couched in terms of the implementation pro-
gramming language (or some abstraction thereof). It would be better if program plans repre-
sented application-level concepts and were not simply abstracted code fragments.

One approach to this problem is concept assignment [Biggerstaff 93]. Concept assignment is
the task of discovering individual human-oriented concepts and assigning them to their im-
plementation-oriented counterparts in the subject system. It is related to teleological mainte-

nance [Karakostas 90], which attempts to recover information from the subject system based
on a specific user model (for example business rules), rather than from the source code. This
type of conceptual pattern matching enables the maintainer to search the underlying code
base for program fragments that implement a concept from the application. This is advanta-
geous since change requests are usually couched in end-user terminology, not in that of the
implementation.

Concept assignment is pattern matching at the end-user application semantic level. It is a pro-
cess of recognizing concepts within the source code and building an understanding of the
program by relating the recognized concepts to portions of the program. Concept recognition
is still at the early research stage, in part because automated understanding capability can be
quite limited due to difficulties in knowledge acquisition (the identification and specification
of plans) and the complexity of the matching process.

3.4 Redocumentation
The lack of detailed, accurate, and up-to-date program documentation is critical for software
engineers and technical managers who are responsible for the evolution of existing software
systems. Without this documentation, the only reliable and objective information is the
source code itself [Fletton 88]. Personnel must spend an inordinate amount of time attempt-
ing to create an abstract representation of the system's high-level functionality by exploring
its low-level source code. One way of producing accurate documentation for an existing
software system is through redocumentation.

Redocumentation is one of the oldest forms of reverse engineering [Sneed 84]. It is the proc-
ess of retroactively providing documentation for an existing software system. If the redocu-
mentation takes the form of modifying commentary within source code, it can be considered
a weak form of restructuring. However, it can also be classified as a sub-area of reverse engi-
neering because the reconstructed documentation is typically used to aid program under-
standing. One can think of it as a transformation from source code to pseudo-code and/or
prose, the latter of which is usually considered to be at a higher abstraction level than the

former.

CMU/SEI-98-TR-005 9

The documentation produced is typically in-line text. However, it can take many other forms,
including that of linked documentation accessible via hypertext [Tilley 91], cross-reference
listings, or graphical views of the software system's artifacts and relationships [Tilley 92].
Some of the newer reverse-engineering environments also support augmenting the source

code with multimedia annotations.

3.5 Architecture Recovery
As stated above, documentation has traditionally served an important role in aiding program
understanding. However, there are significant differences in documentation needs for soft-
ware systems of vastly different scales (1,000 lines versus 1,000,000 lines). Most software

documentation is "in-the-small," since it typically describes the program at the algorithm and

data structure level. For large legacy systems, an understanding of the structural aspects of

the system's architecture is more important than any single algorithmic component.

Program understanding is especially problematic for software engineers and technical man-
agers who are responsible for the maintenance of such systems. The documentation that ex-
ists for these systems usually describes isolated parts of the system; it does not describe the
overall architecture. Moreover, the documentation is often scattered throughout the system
and on different media. It is left to maintenance personnel to explore the low-level source
code and piece together disparate information to form high-level structural models. Manually
creating just one such architectural document is always arduous; creating the necessary
documents that describe the architecture from multiple points of view is often impossible. Yet
it is exactly this sort of "in-the-large" documentation that is needed to expose the structure of

large software systems.

Using reverse engineering to reconstruct the architectural aspects of software may be termed
architecture recovery [Kazman 97] or structural redocumentation [Wong 95]. As a result of
this task, the overall gestalt of the subject system can be derived and some of its architectural
design information can be recaptured. As with redocumentation, structural redocumentation
does not involve physically restructuring the code (although this might be a desirable out-

come).

10 CMU/SEI-98-TR-005

4. Canonical Activities

As stated in Section 1, reverse engineering is the predominant support mechanism used to aid
program understanding. It is seen as an activity that does not change the subject system; it is
a process of examination, not a process of alteration. It can aid program understanding by
directly supporting the essence of program understanding: identifying artifacts, discovering
relationships, and generating abstractions. This process depends on several factors, including
one's cognitive abilities and preferences, one's familiarity with the application domain, and
the set of support facilities provided by the reverse engineering environment.

The artifacts manipulated during reverse engineering can be classified into three categories:

1. data: the factual information used as the basis for study, reasoning, or discussion

2. knowledge: the sum of what is known, which includes data and information such as
relationships and rules progressively derived from the data

3. information: contextually and selectively communicated knowledge

The data artifacts are the raw bricks used as building blocks to support program understand-
ing. They form the foundation for the higher level knowledge artifacts. The information arti-
facts can be created by abstracting up from the data artifacts and matching with expected re-
sults from knowledge artifacts.

Based on the description of these artifacts manipulated during the reverse-engineering proc-
ess, three canonical reverse-engineering activities emerge: data gathering, knowledge man-
agement, and information exploration (includes navigation, analysis, and presentation). All
tasks carried out by a software engineer during program understanding can be mapped to a
composition of one or more of these canonical activities supported by a reverse-engineering
environment. The next three sections provide more detailed descriptions of them.

4.1 Data Gathering
To identify the artifacts and relationships of a system and use them to later construct and ex-
plore higher level abstractions, raw data about the system must be gathered. Hence, data
gathering is an essential reverse-engineering activity. It is usually, but not always, the first
step. The raw data are used to identify a system's artifacts and relationships; without these
data, higher level abstractions cannot be constructed and explored. New developments in
data-gathering techniques benefit practitioners by providing them with more accurate and
extensive capabilities they can use to extract artifacts of interest from their programs. Be-

CMU/SEI-98-TR-005 11

cause data represent the building blocks upon which more abstract representations of the leg-
acy system are built, it is critically important that the data gathered not be misleading or sub-

ject to misinterpretation; it must be factual and objective.

Techniques used for data gathering include system examination, document scanning, and ex-
perience capture. In addition to using data gathered from traditional sources, such as com-
piler-based static analysis, it is also possible to integrate alternative sources of data. Examples
include natural-language content analysis (for example, from comments and/or other docu-
mentation, and source-code naming conventions) and informal data extraction (for example,
interviewing). These nontraditional techniques can provide a basis for a more balanced and
complete understanding of programs by emphasizing different attributes of program artifacts
and relationships. This especially can benefit software engineers who work with programs
that are difficult to understand when using only data gathered through static source-code

analysis.

Regardless of the source, the amount of data gathered for understanding large systems can be
enormous. Large quantities of data can easily overwhelm our ability to assimilate it. There-
fore, the use of intelligent data-filtering techniques play an important role in aiding program
understanding. Presenting the user with reams of data is insufficient. To understand the data,
the user must also assimilate the data. In a sense, a key to program understanding is deciding
what is material and what is immaterial. In other words, knowing what to look for and what
to ignore [Shaw 89].

Data filters can be used to extract selected artifacts and relationships from a rich data source.
For example, a profiling tool may be used to gather complete run-time call information from
a program, but the software engineer may be interested in only a subset of these calls. Such
filters can also be used as an interface between tools that do not share a common data repre-

sentation.

4.1.1 System Examination
System-examination techniques can be classified as static or dynamic. Static examination
focuses primarily on analyzing the program's source code. Dynamic examination focuses

primarily on analyzing the executing system.

4.1.1.1 Static Analysis
The predominant technique used for gathering data is static analysis by parsing a system's
source code to construct abstract syntax trees with a large number of fine-grained syntactic
artifacts and dependencies. This type of data gathering is essentially the same as running the
front end of a compiler. It requires constructing a scanner and using a valid grammar for the

implementation language of the system.

12 CMU/SEI-98-TR-005

Creating a parser for a modern language like C++ or a legacy language like PL/I is a non-
trivial task. Many researchers have spent an inordinate amount of time building parsers for

various programming languages and dialects. However, mature technology already exists in
the compiler arena that will parse source code, perform syntactical analysis, and produce
cross-reference and other information that can be used by other tools, such as debuggers. By
using the leverage of proven compiler-based technology for data gathering, users of reverse-
engineering tools will be assured of predictable results.

This is not currently the case: there are several extraction tools that, when applied to the same
source code, produce somewhat different results [Murphy 96]. Practitioners and researchers
alike would benefit greatly if traditional tools, such as compilers, were integrated in newer
program understanding tools. This would produce data that are more trusted and accurate.

4.1.1.2 Dynamic Analysis
Dynamic analysis techniques, such as profiling, provide data that can aid the understanding
of distributed, real-time, or client-server programs. These types of applications are becoming
increasingly predominant, and will soon become legacy systems themselves. Dynamic analy-
sis is also particularly useful for analyzing component-based systems, especially when the
components are commercial off-the-shelf (COTS) products.

Components usually do not come with source code, so most of the static program-analysis
techniques currently in use are not applicable (with the exception of binary reverse engineer-
ing). In the case of component-based systems, dynamic analysis of the running system is a
more fruitful endeavor. It can provide more data on the interactions between components in
the system, on the types of messages and protocols used, and on the external resources used
by the system. All this data is an aid to understanding the overall system.

4.1.2 Document Scanning
Another form of data gathering that does not rely on the programming-language constructs of
the source code is document scanning. For example, in-line comments1 are a potentially rich
source of data about the program, and are often used by experts when attempting to under-
stand a software artifact. However, automatic analysis of in-line comments and other written
commentary, such as program logic manuals, is more difficult. Techniques such as natural
language analysis are needed to parse these comments. In addition, judgment must be used to
link comments to the code it purports to describe. Comments may be isolated in the code, or
(even worse) they may no longer reflect reality and may provide conflicting information if
the comments were not updated with the code. Nevertheless, comments represent such a po-
tentially rich data source that work continues to focus on their analysis.

1 Comments written in the same file as the source code.

CMU/SEI-98-TR-005 13

4.1.3 Experience Capture
Another source of data about software programs are the software engineers responsible for its
ongoing evolution. Interviewing techniques can be used to capture the expertise of such peo-
ple. This "corporate knowledge" is a potentially valuable asset if it can be applied to program
understanding. Unfortunately, as discussed in Section 1, this type of experience capture is not
always possible. See Section 4.2.2 for a further discussion of using this type of gathered data.

4.2 Knowledge Management
As the portion of corporate assets defined as intellectual capital increases, interest in knowl-

edge-management techniques increases accordingly [Lang 97]. Knowledge management re-
fers to capturing, organizing, understanding, and extending past experiences, processes, and
individual know-how. If managed properly, such artifacts could be shared by all involved in a

project, thus serving as an active repository of corporate knowledge. The management of this
type of knowledge is valuable in many domains, such as consulting, where large organiza-
tions are attempting to make use of pooled knowledge as a strategic advantage.

Knowledge management is equally important in aiding program understanding, where it
serves similar purposes. Leveraging corporate knowledge, as described in Section 4.1.3, is
one aspect of program understanding that directly benefits from knowledge management.
Perhaps one of the most important ways knowledge management techniques aid program un-
derstanding is in the creation of domain models. A domain model is a representation that
captures the structure and composition of artifacts with a problem area [Tracz 94]. A domain
model may be constructed through domain analysis—the process of identifying, organizing,

and representing the structure and composition of elements in a domain. Program under-
standing relies on knowledge-management techniques such as domain modeling to create,
represent, and reason about the artifacts and relationships of interest.

This section describes some of the desirable knowledge-management attributes of a reverse-
engineering tool. The attributes are organization, evolution, and discovery. Knowledge or-
ganization describes the mechanisms used to structure the gathered data into a form more
amenable to representing the application domain and supporting the desired operations on the
data. Knowledge discovery describes the techniques used to support information exploration.
Knowledge evolution is concerned with updating the knowledge about the subject system
during the reverse-engineering process (for example, extending the schema without having to

recreate the database).

4.2.1 Organization
For successful program understanding, data must be in a form that facilitates efficient storage
and retrieval, permits analysis of artifacts and relationships, and reflects the users' perception
of the system's characteristics. This requirement—the need to organize data in some well-
defined and rigorous manner—led to the development of data models [Borkin 80]. A data
model enables us to understand the essential properties and relationships between artifacts in

14 CMU/SEI-98-TR-005

a system. Without a model, raw data are almost impossible to understand. Knowledge man-
agement techniques are used to create, represent, and reason about data models and to struc-

ture the data into a conceptual model of the application domain.

A data model captures the static and dynamic properties of an application needed to support
the desired data-related processes. An application can be characterized by static properties
(such as objects, attributes, and relationships among objects), dynamic properties (such as
operations on objects, operation properties, and relationships among operations), and integ-
rity constraints over objects and operations. The result of data modeling is a representation
that has two components: static properties that are defined in a schema and dynamic proper-
ties that are defined as specifications for transactions, queries, and reports. A schema consists
of a definition of all application object types, including their attributes, relationships, and
static constraints. Corresponding to the schema is a data repository called a database, an in-
stance of the schema. A data model provides a formal basis for tools and techniques used to

support data modeling.

The three best-known classical data models are the hierarchical data model, the network data
model, and the relational data model [Ullman 80]. The hierarchical data model is a direct ex-
tension of a primitive file-based data model; data are organized into simple tree structures.
The network model is a superset of the hierarchical model; the objects need not be tree
structured. The relational model is quite different from the hierarchical or network model; it
is based on the mathematical concept of a relation (a set of n-tuples), and organizes data as a
collection of tables. All three classical data models are instances of the record-based logical

data model [Korth 86].

Although well suited to a computer environment, record-oriented data models are often se-
mantically inadequate for modeling the application environment. They are highly machine
oriented and organized for efficiency of storage and retrieval operations; ease of use for the
non-programmer is of secondary importance. Typically, only two levels of abstraction are
provided: the database schema and the actual collection of records. There are no provisions to
extend the levels to a more general hierarchy of types, meta-types, and instances, even though
this extension would increase the model's expressive power and provide a mechanism which
supports the reuse of common properties. The hierarchical and network models also do not
support semantic relativism, which is the ability when modeling a system to view the ele-
ments and concepts representing it from different perspectives depending on the application.
In particular, the concepts of entity, relationship, and attribute should be interchangeable. For
these reasons, the classical data models are also known as syntactic data models.

The lack of abstraction mechanisms provided by the classical data models is particularly
troublesome from a program understanding point of view. Abstraction is a fundamental con-
ceptual tool used for organizing information. It plays a key role in managing one of the fun-
damental problems with large-scale systems—coping with complexity [Brooks 87]. When

modeling such systems, the number of objects and relations in the knowledge base can grow

CMU/SEI-98-TR-005 15

very large. Like a large software system, a large knowledge base needs organizational princi-
ples to be understandable. Without these principles, a knowledge base can be as unmanage-
able as a program written in a language that has no abstraction facilities.

Abstraction is the selective emphasis on detail: specific details are suppressed and those per-
tinent to the problem at hand are emphasized. Abstraction mechanisms serve as organiza-
tional axes for structuring the knowledge base. They focus on high-level aspects of an entity
while concealing details. Three of the most common abstraction mechanisms used are classi-

fication, aggregation, and generalization [Sowa 88]:

• Classification is a form of abstraction in which an object type is defined as a set of
instances. It captures common characteristics shared by a collection of objects, resulting
in a generic object which captures the essential similarity among its constituents. An
instance-of relationship is established between an object type in the schema and its
instance in the knowledge base.

• Aggregation is a form of abstraction in which a relationship between objects is
considered as a higher level aggregate object. When considering the aggregate, specific
details of the constituent objects are suppressed. A part-of relationship is established
between the component objects and the aggregate object.

• Generalization is a form of abstraction in which similar objects are related to a higher
level generic object. The constituent objects are considered specializations of the generic
object. An is-a relationship is established between the specialized objects and the
generic object.

There have been two basic approaches to addressing some of the deficiencies in the classical
data models to "capture more of the semantics of an application [Codd 79]." Attempts have
been made to extend the classical models by building higher level conceptual models on top
of them, and new more powerful semantic data models have also been developed to capture
database concepts at a more user-oriented level. Semantic data models, starting with Abrial's
semantic model [Abrial 74] and Chen's entity-relationship model [Chen 76], combined sim-
ple knowledge-representation techniques, often borrowed from semantic networks [Findler
79], with database technology. Semantic data models represent a shift in database research
away from the traditional record-oriented model towards models that support more human-
oriented semantic constructs. This shift is very similar to the goals in programming language
research focusing on abstraction mechanisms for software development and artificial-
intelligence research into knowledge representation based on network representation schemes
[Gilbert 90]. Conceptual modeling was introduced as a term reflecting this broader perspec-

tive [Brodie 84].

Conceptual modeling is the activity of formally describing aspects of some information space
for the purpose of understanding and communication. Such descriptions are often referred to
as conceptual schemata. A conceptual model and a conceptual schema are analogous to a data
model and a database schema, respectively. One can think of data models as special concep-
tual models where the intended subject matter consists of data structures and associated op-
erations. Classical data models, grounded on mathematical and computer science concepts,

16 CMU/SEI-98-TR-005

such as relations and records, offer little to aid database designers and users in interpreting
the contents of a database.

Semantic data modeling shares purposes with conceptual modeling. However, semantic data
modeling introduces assumptions about the way conceptual schemata will be realized on a
physical machine (the "data-modeling" dimension). Thus, semantic data modeling can be
seen as a more constrained activity than conceptual modeling, leading to simpler notations,
but also ones that are closer to the implementation.

The fundamental characteristic of conceptual modeling is that it is closer to the human con-
ceptualization of a problem domain than to a computer representation of the problem domain
[Kristensen 94]. The emphasis is on knowledge organization (modeling entities and their se-
mantic relationships), rather than on data organization. The descriptions that arise from con-
ceptual-modeling activities are intended to be used by humans—not machines. Concepts in a
conceptual model are indexed by their semantic content. This differs from other data models,
such as relational, where the indexing scheme is geared more towards optimal storage and
information retrieval from the implementation perspective. This is one of the main reasons
that conceptual modeling is eminently suited to program understanding: the focus on the end
user is paramount.

The sometimes conflicting requirements for organizing the three different categories of arti-
facts (data, knowledge, and information) suggest that a single technique for representing
them may not always be suitable. In its place, a layered approach may be used: for each type
of artifact manipulated during the reverse-engineering process, a different model may be used
[Tilley 95b]. The advantage of such an approach is that different technologies may be used to
their strengths, while avoiding their weaknesses. For example, a relational model may be
used for physical storage of data artifacts, a conceptual model may be used for representing
domain-level knowledge, and a semantic network model may be used for interactive discov-
ery.

4.2.2 Discovery
Once knowledge about the problem domain has been organized, one of its primary uses is to
aid others in understanding aspects of the problem domain. This discovery aspect of knowl-
edge management is directly related to one of the data-gathering techniques described in
Section 4.1.3: leveraging corporate knowledge through experience capture. Experience cap-
ture is accomplished during information exploration, the canonical reverse-engineering ac-
tivity discussed in Section 4.3.

Knowledge discovery can best be accomplished by providing multiple perspectives (analo-
gous to database views) on the underlying artifacts. Using a common web1 metaphor, the

1 The term web refers to a structured information space composed of nodes representing artifacts from the appli-
cation domain and links representing relationships between the nodes. The web that is part of the Internet is
sometimes referred to as "The Web."

CMU/SEI-98-TR-005 17

software engineer navigates through the hyperspace that represents the information related to
the subject system, analyzes this information with respect to domain-specific evaluation crite-
ria, and uses various presentation mechanisms to clarify the resultant information. A general-

purpose semantic network, represented as an attributed graph, is well suited to representing

such structured sets of artifacts [Rohrich 87].

In its most basic form, a semantic network represents knowledge in terms of a collection of
objects (representing concepts) and binary associations (representing binary relations over
these concepts). According to this view, a knowledge base is a collection of objects and rela-
tions defined over them [Mylopoulos 84]. The semantics of the model are a careful definition

of the meaning and usage of the nodes and arcs. Modifications to the knowledge base occur

through the insertion or deletion of objects and the manipulation of relations.

The use of a network model has at least three advantages related to navigating, structuring,

and visualizing the knowledge base. The first advantage is that the network structures that
encode information may themselves serve as a guide for information retrieval [Hendrix 79].
The association between artifacts defines implicit access paths. Using this model, the infor-
mation space is indexed by neighborhoods, while artifacts are retrieved through navigation

guided by spatial and visual proximity cues.

The second advantage is the use of the organizational principles described in the previous
section to structure the knowledge base. Such abstraction mechanisms capture the natural
structure of the artifacts in the system, their properties, and the relationships among them.
They can also be used recursively to construct abstraction hierarchies. These structuring aids
can be represented in the semantic network by typing both the nodes and the arcs.

The third advantage is that network representation schemes lend themselves to a graphical
notation that can be used to depict knowledge bases and increase their understandability.
Most humans visualize structure graphically. For examples, designers often describe system
architecture using block diagrams of the major system components and labels that refer to
their major functions. Modern interactive systems with graphical display capabilities facili-
tate the direct manipulation, processing, and presentation of information in graphical form.

Without a web metaphor, a system's knowledge discovery mechanisms should permit the
analysis of artifacts and relationships of interest. This means that there should be support for
standard database queries. The raw data should be available, as should the conceptual con-
structs created during knowledge-organization activities. This information is needed so that
the software engineer can discover facts about the system from multiple perspectives, for ex-
ample from the implementation perspective and from the end-user perspective.

4.2.3 Evolution
As part of knowledge organization, the construction of the domain model about the subject
system (or about the subject system's application domain) can precede reverse engineering

18 CMU/SEI-98-TR-005

(so it can be used to guide the understanding process by supplying expected constructs), or it
can be constructed during reverse engineering (if no previous knowledge about the domain
was available). Hence, a domain model can be a guide to and a product of reverse engineer-

ing, or it can be combined into iterative domain modeling to support exploratory under-

standing.

Iterative domain modeling is one form of knowledge evolution. A software engineer can use

tools that support iterative domain modeling to recognize standard components of a system
automatically and use these components to populate the domain model. This type of top-
down construction can be used as a guide during program understanding.

The software engineer can also use semi-automatic or manual techniques to classify nonstan-
dard components and use this information to extend the domain model. In database terminol-
ogy, this is known as dynamic schema evolution. It is another form of knowledge evolution
that can be used during exploratory program understanding, when hypotheses about the sub-

ject system are being tested and theories revised.

4.3 Information Exploration
Because the majority of program understanding takes place during information exploration, it
is arguably the most important of the three canonical reverse-engineering activities. Data
gathering is required to begin the reverse-engineering process. Knowledge management is
needed to structure the data into a conceptual model of the application domain. But the key to
increased comprehension is exploration because it facilitates the iterative refinement of hy-

potheses.

Exploration is a composite activity that includes navigation, analysis, and presentation. In-
formation exploration makes use of the knowledge-discovery structures discussed in Section
4.2.2. Using the same web metaphor, the software engineer navigates through the structured
information space that represents the information related to the subject system. As part of the
exploration, the information is analyzed and filtered with respect to domain-specific criteria.
Various presentation mechanisms are used to clarify the resultant information.

4.3.1 Navigation
Large software systems, like other complex systems, are nonlinear and may be viewed as
consisting of an interwoven and multidimensional web of information artifacts [Maurer 92].
The web's links establish relationships between the artifacts. These relationships can be com-
ponent hierarchies, inheritances, data and control flow, and other relationships generated as
part of the reverse-engineering process. Hypermedia-based information navigation allows
software engineers to traverse this "information web" as part of their exploratory under-
standing activities. The information-navigation activity can itself be subdivided into selec-

tion, editing, and traversal.

CMU/SEI-98-TR-005 19

4.3.1.1 Selection
Selection is one of the most important of all canonical activities because it is related to the
essence of program understanding—identifying artifacts and understanding their relation-

ships. Software engineers must first find the relevant code before they can transform it. Lo-
cating relevant code fragments that implement the concepts in the application domain re-
quires much effort. Reverse engineering involves the identification, manipulation, and

exploration of artifacts in a particular representation of the subject system. This is essentially
a pattern-matching activity at various abstraction levels. This pattern recognition is accom-
plished either mentally by the software engineer or mechanically by the reverse-engineering
environment. Artifacts are segmented into features, patterns of which are then matched

against stored collections of expected structural motifs. The success of this process depends
on the recollection of existing structural knowledge and on the ability of the person (or tool)
to recognize its presence in a noisy environment.

Since searching for code is an extremely common reverse-engineering activity, sophisticated
selection tools can greatly aid the process. Artifacts can be selected according to various cri-
teria, including visual and spatial cues, attributes (such as names), and structural properties
(for composite artifacts). The type of pattern recognition provided can range from recognition
of simple regular expressions, such as that provided by the UNIX grep tool, to more ad-
vanced capabilities such as plan recognition. Some query mechanisms enable users to specify
attribute patterns that are used to identify artifacts in the database that satisfy the search crite-
ria. A more abstract mechanism is the use of powerful query and analysis languages that do
not involve procedural code, such as the Source Code Algebra (SCA) query formalism [Paul
95]. The plan-recognition and concept-assignment tasks described in Section 3 are in essence
advanced selection activities.

To aid information selection, it is beneficial to be able to augment the operations built into the
reverse-engineering support mechanism with advanced pattern-matching techniques that con-
centrate more on the meaning of the code, rather than on its form. These techniques will en-
able the software engineer to reduce the amount of time and effort spent switching between
domains (for example, from the application domain to the implementation domain) during
program understanding. If the patterns can be represented in terms related to the application
domain (where most change requests are couched), then the software engineer can more eas-
ily change the source code with fewer surprises. Program understanding can be improved by
leveraging external tools that provide advanced searching techniques and having the results
of their searches made available to the user and the environment.

4.3.1.2 Editing
Editing is an activity that can alter the knowledge organization structure, sometimes as a by-
product of information navigation. It can involve creating new artifacts, deleting existing
ones, or changing an artifact's attributes. For example, through editing activities, a user may
create user-specified subsystem constructs that are logical (but not physical) representations

20 CMU/SEI-98-TR-005

of the system. Information editing is therefore the activity that supports the evolution of the

knowledge base as discussed in Section 4.2.3.

4.3.1.3 Traversal
Traversal is the action of moving from one artifact to another in the information space. For
example, following links in the web that represent relations such as "calls" involves traversal.
Unfortunately, as the size of this information space grows, the well-known "lost in hyper-

space" syndrome may limit navigational efficiency [Marchionini 88].

Disorientation has been attributed to the tangle of links in the web [Nielsen 90a]. The prolif-
eration of links is often due to the weak link discipline enforced by a system using a simple
node/link mechanism, allowing unrestricted linking among arbitrary objects [Nanard 91].
Such linking is very powerful, but potentially disorienting [Broady 93]. The same freedom
that provides hypertext's flexible structure and browsing capabilities may also be the direct
cause of one of its greatest problems [Botagofo 91]. During knowledge discovery, disorienta-
tion may occur when browsing. During knowledge evolution, the lack of design principles
when creating associative links does not foster the creation of a consistent conceptual model

[Hara91].

Clearly, reducing disorientation is a key capability that a support mechanism should address.
Some of the solutions that have been proposed to the classical problem of user disorientation
within a large information space include maps, multiple windows, history lists, and tour/path
mechanisms [Nielsen 90b]. Unfortunately, many of these methods are not sufficiently scal-
able. A more successful approach is the use of composite nodes; they reduce web complexity
and simplify its structure by clustering nodes together to form more abstract, aggregate ob-
jects [Casanova 91]. Composite nodes interact with sets of nodes as unique entities, separate
from their components.

4.3.2 Analysis
The critical step in deriving abstractions from the raw data to foster understanding is analy-
sis. Software engineers use the resultant information to explore the system further. There are
many forms of analysis; the complete list is not enumerated in this report. The level of analy-
sis is directly related to the type of canonical artifact being manipulated. The degree of ma-
nipulation is governed in part by the level of automation provided by the reverse engineering

environment.

4.3.2.1 Types
There are a great many types of analysis possible; this sub-category is both very broad and
very deep. For example, slicing is an analysis technique that identifies program code frag-
ments that may affect the value of selected variables. By isolating the statements that can
change the value of a variable (or variables), the cognitive overhead of understanding a large

piece of code is reduced significantly.

CMU/SEI-98-TR-005 21

There are two forms of analysis that are directly related to two forms of data gathering: static
analysis and dynamic analysis. Most reverse-engineering tools provide a variety of static-

analysis capabilities (for example, def/use analysis for data types and variable instances).
There is less support for dynamic analysis. This may be due to environmental requirements;
by necessity, dynamic analysis requires the program to execute in a real or simulated manner.
However, some types of analysis, such as slicing, come in both static and dynamic varieties.

Other common forms of analysis include the traditional complexity metrics and perhaps the

most important—impact analysis.

Estimating the effect of changes before they are irrevocable has always been an important
part of program understanding. Engineers try to avoid causing massive changes to a system
during maintenance. Their avoidance is due, in part, to practical issues such as recompilation

delays, but more importantly because they are unwilling to create "change waves" that ripple

throughout large parts of the system. The potential for errors caused by these waves is too

great. Current tools perform impact analysis primarily at the syntactic level. Newer research,
however, focuses on higher order impact-analysis tools that allow users to perform "what-if'
scenarios and analyze the result of proposed changes, enabling the software engineer to func-
tion at the application-domain level rather than the implementation-domain level.

4.3.2.2 Levels
The type of analysis supported is closely related to the abstraction level provided by the pat-
tern-recognition capabilities of the tool. Program-understanding techniques can consider
source code in increasingly abstract forms: raw text, preprocessed text, lexical tokens, syntax
trees, control and data-flow graphs, program plans, architectural descriptions, and conceptual
models. The more abstract forms entail additional syntactic and semantic analysis that corre-
sponds more to the meaning and behavior of the code and less to its form and structure. Dif-
ferent levels of analysis are necessary for different users and different reverse-engineering

activities.

Analyzing the structure of the information web can provide useful insight. Various metrics
and measures can be used to guide the creation of new artifacts in the information space by
editing the information web as part of the knowledge-evolution activity described in Sections
4.2.3 and 4.3.1.2. The environment should support the integration of external analysis pack-
ages that implement domain-specific metrics; this is a related quality attributed discussed in

Section 5.2.

4.3.2.3 Automation
It is important to manage the tradeoff between the analyses that are handled automatically by
a reverse-engineering environment and the functions that enable the tools in the environment
to accept human input and guidance. Issues include how to best balance between automatic,

semi-automatic, and manual analysis, where each is more applicable, and how the support

mechanism can "know" when to ask for expert guidance.

22 CMU/SEI-98-TR-005

Using the correct automation level can affect both the time taken to complete a program-
understanding task and the level of comprehension achieved. More analysis automation is
likely to occur as the problem characteristics become better understood. This is already hap-
pening with regard to the so-called "Year 2000" problem [Smith 97], where the types of

analysis are well defined and the types of remediation are limited.

Analysis derives and extracts information that is not explicitly available and generates in-
sightful views that can aid the understanding of the underlying system. Rather than limiting
software engineers to designer-defined analyses that are invoked using canned methods, it is
better to provide mechanisms that programmers can use to define their own analyses, thereby
extending the level of automation on an as-needed basis.

4.3.3 Presentation
Visual metaphors are commonly used to communicate information. Reverse-engineering en-
vironments that provide flexible presentation mechanisms that capture such metaphors can
aid program understanding. Most reverse-engineering systems provide the user with fixed
presentation options, such as cross-reference graphs or module-structure charts, that summa-
rize the results of analyses such as those described in Section 4.3.2. Even though the devel-
opers of the environment might consider fixed options to be adequate, there are always users
who want something else. Ideally, it should be possible to create multiple, perhaps orthogo-
nal, structures (as described in Section 4.2.1) and to view them using a variety of mecha-
nisms.

4.3.3.1 Multiple Views
It is difficult to convey and communicate the wealth of information generated as a result of
reverse engineering. This problem is exacerbated by the necessary coexistence of spatial and
visual data [Müller 92]. Theories of cognition suggest that imagery involves both descriptive
and depictive information [Kosslyn 80]. For program understanding, both spatial and visual
information seem to play key roles in forming mental models of structure.

The spatial component constitutes information about the relative positions of the artifacts in a
neighborhood. It provides low-level, detailed information concerning the immediate neigh-
borhood of the artifact in a graphical representation that facilitates the systematic exploration
of the structure. The visual component preserves information about how a neighborhood1

looks (e.g., size, shape, or density). It provides a high-level view of the neighborhood—the

essence of the entire image. Visual graph representations aim to exploit the ability of the hu-
man visual system to recognize and appreciate patterns and motifs such as central, fringe, or
isolated components.

1 A neighborhood in this context is a visual representation of the current perspective of the underlying software
system, using the web metaphor described in Section 4.2.2.

CMU/SEI-98-TR-005 23

The way information is presented should not be fixed by the environment. It should be possi-
ble to create multiple, perhaps orthogonal, structures and view them using a variety of
mechanisms, such as using different graph layouts provided by external toolkits. These views
are a crucial component of the knowledge-discovery activity described in Section 4.2.2. The
notion of multiple views is not new; they have been employed in the database domain for

some time.

4.3.3.2 Visualization Techniques
Graph-layout theory has already proven effective in aiding program understanding; graphical
representations of source code proliferate in current reverse-engineering systems. Refine-
ments to this traditional area also show promise (for example, so-called "fish-eye" views that

emphasize selected focal points while retaining relative location information). Recent work
has explored the coexistence of multiple views (see also Section 4.3.3.1) of the underlying
data using a variant of fish-eye views and traditional hierarchical structure diagrams [Storey
97b]. More advanced visualization techniques using three-dimensional data imaging, virtual
reality "code walk-through," and user-defined views are in the experimental stage. One or
more of these techniques can provide new insights during program understanding.

Presentation of analysis results has traditionally taken the form of charts, tables, or graphs.
The proliferation of multimedia-enhanced computers introduces new ways of presenting this
information. An area that shows promise is the use of audio and video annotations as a way
of commenting source code, capturing programmer rationale, and presenting information to
the user in more familiar and readily accessible ways.

4.3.3.3 User Interface
Presentation integration can occur at different levels, including the window manager, the
toolkit used to build applications, and the toolkit's "look and feel" [Wasserman 89]. The stan-
dardization provided by presentation integration lessens the "cognitive surprise" experienced
by users when switching between tools. However, what is really needed is a way for the user
to specify the common look and feel of the applications they are interested in, or of tools that
are part of an application [Klefstad 88]. In other words, users need to be able to impose their
own personal taste on the user interface. This refinement of presentation integration moves
the onus—and the opportunity—for reducing cognitive overhead induced by the user inter-

face from the tool builder to the tool user.

The goal of environmental customizability includes modification of the system's interface
components such as buttons, dialogs, menus, scrollbars, and of the integration of external
tools that present the information in different ways. Since the user interface is a crucial part
of the infrastructure of many software environments [Young 88], and since personal prefer-
ences for things such as menu structure, mouse action, and system functionality differ so
much from person to person (and from domain to domain), it is unlikely that any single
choice made by the tool builder will suit all users. Most popular PC software applications
now provide some level of user interface customizability.

24 CMU/SEI-98-TR-005

5. Quality Attributes

A quality attribute is defined by Barbacci et al as a system requirement that is essentially
non-functional in nature [Barbacci 95]. Examples of quality attributes include dependability,
extensibility, and usability. This section briefly describes selected quality attributes that are of
particular importance to most support mechanisms: applicability, extensibility, and scalabil-
ity. This set of quality attributes is by no means exhaustive. Other attributes, such as usability
and deployability, may be equally important in certain circumstances. However, they are
more general attributes that are applicable to almost any software system. As such, they
should be considered when investigating a particular reverse-engineering environment, but
we will not elaborate on them here.

5.1 Applicability
The applicability of the support mechanism refers to a particular domain. While a domain
may be generally defined as a problem area, domain is an overburdened term. It can refer to
both the application domain and the implementation domains. It is naturally desirable to
make the support mechanism as flexible as possible for use in many different domains.

One way to maximize the support mechanism's usefulness is to make it domain specific. By
doing so, one can provide users with a system tailored to a certain task and exploit any fea-
tures that make performing this task easier. However, this approach limits the system's use-
fulness to a particular domain. Using the same system on a different task, even one that is
similar, may well be impossible. For example, many current reverse-engineering environ-
ments support only relatively small programs. Others support just one programming language
(or a subset of it), usually because their parsing system, database, and support environments
are tightly coupled. This approach limits the application domain to small, "pure" programs
rarely found in practice. One must take a pragmatic point of view: if the support mechanism
does not work on real-world software systems, with all their "features," then it will not make
an impact on existing systems.

An alternative to making the support mechanism powerful by making it domain specific is to
make it domain retargetable [Tilley 95a]. One would like to make the approach as flexible as
possible—a subtle distinction from general. Software can be considered general if it can be
used without change; it is flexible if it can be easily adapted to be used in a variety of situa-
tions [Pamas 79]. General solutions often suffer from poor performance or lack of features
that limit their usefulness. Flexible solutions may be tailored by the user to fully exploit as-
pects of the problem that make its solution easier.

CMU/SEI-98-TR-005 25

5.1.1 Application Domain
The application domain of a reverse-engineering tool is one of its strongest differentiators.
Some tools provide a programmable environment with which one constructs more special-
ized tools. Others are targeted to narrower domains, such as redocumenting C programs.

Subject system characteristics have considerable impact on the applicability of reverse-
engineering environments. Different approaches to understanding are used in different appli-
cation domains. For example, the reconstruction of the schema for database systems, the
monitoring of task allocation in distributed systems, and the dynamic analysis of task rendez-
vous in real-time systems all have different requirements. Different application domains and

example representative functional requirements of the support mechanism are illustrated in
Figure 2.

Application Domain Representative Support Mechanism Requirements

Database system

Distributed system

Real-time system

schema reconstruction, data reverse engineering

task allocation, inter-process communication

dynamic analysis, timing constraint maintenance

Figure 2: Application Domains and Support Mechanism Requirements

5.1.2 Implementation Domain
The subject system's implementation domain can also play an important role in the selection
of the appropriate support mechanism. Issues to consider include the language dialect or vari-
ant, the robustness of the parsing mechanism used (e.g., whether or not it supports imple-
mentation-language extensions, syntactically incorrect constructs, or incomplete code frag-
ments), and whether or not mixed-mode source code is supported. For example, older C
programs may be written in K&R style, many FORTRAN programs make use of machine- or
compiler-specific extensions to increase the performance of the compiled code, and COBOL
programs may include database preprocessor directives. Some of these considerations are
shown in Figure 3.

26 CMU/SEI-98-TR-005

Implementation Domain Representative Support Mechanism Requirements

K&R, ANSI, dialects, C++

FORTRAN FORTRAN 66 anachronisms, FORTRAN 77 exten-

sions, FORTRAN 90 constructs

COBOL CICS, OO-COBOL additions, dialects

Figure 3: Implementation Domains and Support Mechanism Requirements

5.2 Extensibility
Most reverse-engineering environments provide the user with a fixed set of capabilities.
While this set might be considered large by the system's producers, there will always be users
who want something else. One cannot predict which aspects of a system are important for all
users, and how these aspects should be documented, represented, and presented to the user.
Hence, the extensibility of the environment is an important quality attribute.

5.2.1 Integration Mechanisms
There are many tradeoffs between open and closed systems. An open system provides com-
posable operations and mechanisms for user-defined extensions. A closed system provides a
"large" set of built-in facilities, but no way of extending the set. Instead of a closed architec-
ture, a reverse-engineering environment should provide integration mechanisms through
which users can extend the system's functionality.

There are two basic approaches to constructing extensible integrated applications from a set
of tools: tool integration and tool composition [Arora 93]. In tool integration, each tool must
be aware of the larger environment, and the inter-tool interactions are coded in the tools
themselves. This works for tightly integrated environments, but it is very hard to achieve in a
loosely coupled environment. In tool composition, tool interaction logic resides outside of the
tools. Each tool presents a standard, well-known interface to the outside world, and knows
nothing about its environment; the environment contains all the inter-tool coordination logic.

The method with which one interacts with the tool can have a great impact on its effective-
ness, applicability, and ease of use. Some tools are meant to be controlled by other applica-
tions (for example, an embedded data-analysis component). Others are meant to be used as
the primary interface to the underlying information space (for example, a Web-based naviga-
tion engine). The choice of a command-line interface versus a graphical user interface, while
sometimes viewed as a secondary concern, can often be a deciding factor in a program-

CMU/SEI-98-TR-005 27

understanding tool. This is due in part to the significant role visual information can play dur-

ing pattern recognition, as outlined in Section 4.3.1.1.

The need to inter-operate with other tools is essential for reverse-engineering environments.
One common class of applications that they often work with are computer-aided software

engineering (CASE) tools. Usually these CASE tools support some type of design or model-
ing standard. The support (or lack thereof) of such standards in a reverse-engineering envi-

ronment can play a major role in certain circumstances.

5.2.2 End-User Programmability
It has been repeatedly shown that no matter how much designers and programmers try to an-
ticipate and provide for users' needs, the effort will always fall short. It is extremely difficult

to predict all the ways in which a system will be used. Customizations, extensions, and new

applications inevitably become necessary.

Some leading-edge reverse-engineering systems provide full-fledged programming languages
that can be used to encode analysis methods. The ability to use end-user programmability in
reverse engineering to develop analysis techniques for specific tasks enhances the analysis
power of the support mechanism. For example, domain-specific scripts can increase the like-

lihood that analyses will better apply to unique software systems.

From an end-user perspective, the reverse-engineering environment should manage tool
composition to facilitate the introduction of new tools into the system. This would enable end
users to provide new parsing engines, for example, if the application implementation lan-
guage was not directly supported by the reverse-engineering environment. For tasks such as
transformation and pattern matching, the addition of a programmable interface can transform
an environment from a collection of individual support mechanisms into an integrated ex-

ploratory workbench.

5.2.3 Automatability
While creating the semantic abstractions that facilitate program understanding, it should be
possible to include human input and expertise in the decision making. There is a tradeoff
between what can be automated and what should or must be left to humans; the best solution
lies in a combination of the two. Hence, the construction of abstract representations manually,
semi-automatically, or automatically (where applicable) should be possible. Through user
control, the reverse-engineering process can be based on diverse criteria such as business
policies, tax laws, or other semantic information not directly accessible from the gathered
data. This quality attribute is related to the canonical activity of analysis automation de-

scribed in Section 4.3.2.3.

28 CMU/SEI-98-TR-005

5.3 Scalability
Ideally, any reverse-engineering environment should be applicable to large systems. As men-
tioned in Section 4.2.1, the volume of data produced during the reverse engineering of a
large-scale software system is considerable. Therefore, scalability is an important quality at-

tribute.

Large data sets and information complexity require scalable knowledge bases that use fun-

damentally different approaches to repository technology than is used in other application
domains. Knowledge organization, search strategies, and human-computer interfaces that

work on systems "in-the-small" often do not scale up. To gain useful knowledge, one must

effectively summarize and abstract the information.

For example, not all software artifacts need to be stored in the repository; some artifacts may
be ignored. Coarse-grained artifacts can be extracted, partial systems can be incrementally
investigated, and irrelevant parts can be ignored to obtain manageable repositories. A scalable
knowledge base improves the understanding of large software systems.

CMU/SEI-98-TR-005 29

30 CMU/SEI-98-TR-005

6. Miscellaneous Characteristics

There are a wide variety of system characteristics that do not properly fit into any of the other
categories discussed above. However, when it comes to investigating a particular reverse-
engineering environment, they can be equally important. As with the quality attributes de-
scribed in Section 5, the set of miscellaneous characteristics included in this section is repre-
sentative, not exhaustive.

6.1 Computing Platform
The particular hardware and software platform on which the reverse-engineering environ-
ment will run can have an immediate impact on whether or not it is appropriate for a particu-
lar program-understanding task. For example, if dynamic analysis of the running program is
needed, then the computing platform that hosts the reverse-engineering environment must be
the same, or there must be a mechanism for gathering the data and incorporating it into the
analysis engine(s) of the environment.

6.2 Ancillary Requirements
The ancillary requirements of the reverse-engineering environment should not be such that
the requirements preclude the system's use. For example, the environment may require the
user to have a valid license for a particular database system that is used by the underlying
knowledge-management system. The requirements can also affect the computing platform,
which in turn affects the selection of the environment.

6.3 Cost
Perhaps one of the most rudimentary miscellaneous characteristics of any reverse-
engineering environment is its cost. The "cost" can be measured in various ways, not just
initial purchase price. There is no doubt that the pricing structure of some environments pre-
cludes their use by all but very large organizations. But the cost of maintaining the environ-
ment (and its ancillary requirements) can outweigh the initial purchase price. This is espe-
cially true if personnel must be specially trained in its use, and if someone must be
designated the equivalent of "gatekeeper" for the environment (for example, for maintaining
the system-wide schema used for knowledge management by several teams of people).

CMU/SEI-98-TR-005 31

There is also the cost of adopting or deploying the tool. This is a characteristic that might also
be considered a quality attribute, because adoption and deployment have proven to be such

stumbling blocks for many tools over the years. Included in this cost is the time required to

train users.

32 CMU/SEI-98-TR-005

7. Summary

Program understanding is critical to our ability to modernize legacy systems. Operational for
many years, legacy systems embody substantial corporate knowledge, including require-
ments, design decisions, and business rules. As its software ages, the task of maintaining a
legacy system becomes more complex and more expensive. Nevertheless, because most suc-
cessful legacy systems play critical roles in the day-to-day business of an enterprise, the sys-
tem cannot simply be discarded and replaced; it must be maintained and enhanced. This can-
not be accomplished without a sufficient understanding of the program's artifacts and

relationships.

There now exists a wide variety of tools and techniques that support program understanding.
The most prevalent is computer-aided reverse engineering. This report presented a framework
for classifying the features of reverse-engineering environments. The core of the framework
is a descriptive model that categorizes the important support mechanisms and features pro-
vided by the environments that aid program understanding. The descriptive model is summa-
rized in tabular format in Figure 4. The goals for creating this framework include helping
potential users of such environments to independently evaluate claims, assess the applicabil-
ity of certain approaches to their own software evolution challenges, and facilitate the com-
parison of similar approaches to the same problem.

This work on reverse-engineering environments described in this report is part of an ongoing
research project studying legacy system reengineering, in which program understanding and
reverse engineering play a significant role. The conceptual framework described in this report
will evolve through peer review, usage experience, and completeness verification. One of the
next steps in its evolution is to populate the framework with representative reverse-
engineering environments (both research oriented and commercial offerings) and perform
experiments to flesh-out the basis of its descriptive model (the canonical activities of reverse
engineering and the quality attributes). A preliminary use of the framework in the investiga-
tion of a representative commercial offering is reported inTTilley 97].

CMU/SEI-98-TR-005 33

Cognitive
Model Support

Top-Down

Bottom-Up

Opportunistic

Reverse
Engineering
Tasks

Program Analysis

Plan Recognition

Concept Assignment

Redocumentation

Architecture Recovery

Canonical
Activities

Data Gathering

System Examination

Static

Dynamic

Mixed

Document Scanning

Experience Capture

Knowledge Management

Organization

Discovery

Evolution

Information Exploration

Navigation

Selection

Editing

Traversal

Analysis

Types

Levels

Automation

Presentation

Multiple Views

Visualization Techniques

User Interface

Quality
Attributes

Applicability
Application Domain

Implementation Domain

Extensibility

Integration Mechanisms

End-User Programmability

Automatability

Scalability

Miscellaneous
Characteristics

Computing Platform

Ancillary Requirements

Cost

Figure 4: The Descriptive Model

34 CMU/SEI-98-TR-005

Acknowledgements

As described in Section 1.2, Dennis Smith of the Software Engineering Institute and Santanu
Paul of IBM Research contributed to earlier versions of this framework. Dennis Smith and

Steve Woods of the Software Engineering Institute provided valuable comments on early

drafts of this report.

CMU/SEI-98-TR-005 35

36 CMU/SEI-98-TR-005

References

[Abrial 74]

[Arora 93]

[Barbacci 95]

[Biggerstaff 93]

[Borkin 80]

[Botagofo 91]

[Broady 93]

[Brodie 84]

Abrial, J. R. "Data Semantics." Data Management Systems

(Klimbie and Koffman, editors). North-Holland, 1974.

Arora, Adarsh K.; Hurst, David W.; and Ferrans, James C.
"Building Diverse Environments with PCTE Workbench," 543-
560. Proceedings of PCTE '93,1993. Paris, France, November
1993. Syntagma Systems Literature, 1993.

Barbacci, M. R.; Klein, M. H.; Longstaff, T. H.; and Weinstock,
C. B. Quality Attributes (CMU/SEI-95-TR-021, ADA 307888).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon

University, 1995.

Biggerstaff, Ted G; B. G Mitbander, B. and Webster, D. "The
Concept Assignment Problem in Program Understanding," 27-
43. Proceedings of the 1993 Working Conference on Reverse
Engineering (WCRE '93). Baltimore, Maryland, May 21-23,
1993. IEEE Computer Society Press, 1993.

Borkin, Sheldon. Data Models: A Semantic Approach for Data-
base Systems. Boston, MA: The MIT Press, 1980.

Botagofo, Rodrigo A. and Shneiderman, Ben. "Identifying Ag-
gregates in Hypertext Structures," 63-74. Proceedings of Hy-
pertext '91. San Antonio, Texas, December 15-18,1991. ACM

Press, 1991.

Broady, Donald; Haitto, Hasse; Lidbaum, Peter; and Tobiasson,
Magnus. DARC: Document Archive Controller (TRITA-NA-
P9306). Sweden: IPLab/NADA, Royal Institute of Technology,
March 1993.

Brodie, Michael L.; Mylopoulos, John; and Schmidt, Joachim
W. (editors). On Conceptual Modelling: Perspectives from Arti-

ficial Intelligence, Databases, and Programming Languages.

New York, NY: Springer-Verlag, 1984.

CMU/SEI-98-TR-005 37

[Brooks 87] Brooks, Frederick P. Jr. "No Silver Bullet: Essence and Acci-
dents of Software Engineering," Computer 20,4 (April 1987):

10-19.

[Casanova 91] Casanova, Marco A.; Tucherman, Luiz; Lima, Maria Julia D.;
Netto, Jose L. Rangel; Rodriguez, Noemi; and Soares, Lui F. G.
"The Nested Context Model for Hyperdocuments," 193-201.
Proceedings of Hypertext '91. San Antonio, Texas; December
15-18, 1991. ACM Press, 1991.

[Chen 76] Chen, Peter. "The Entity-Relationship Model: Towards a Unified

View of Data," ACM Transactions on Database Systems 1, 1

(1976):.

[Codd 79] Codd, E. F. "Extending the Database Relational Model to Cap-
ture More Meaning," ACM Transactions on Database Systems 4,

4 (December 1979).

[Findler 79] Findler, Nicholas V. "A Heuristic Information Retrieval System
Based on Associative Networks," 305-326. Associative Net-
works (Representation and Use of Knowledge by Computers).
New York, NY: Academic Press, 1979.

[Fletton 88]

[Gilbert 90]

Fletton, Nigel T. and Munro, Malcolm. "Redocumenting Soft-
ware Systems Using Hypertext Technology, " 54-59. Proceed-
ings of the 1988 Conference on Software Maintenance (CSM
'88). Phoenix, Arizona, October 24-27,1988. JEEE Computer
Society Press, 1988.

Gilbert, Jonathan Paul. Poly View: An Object-Oriented Data
Model for Supporting Multiple User Views (Ph.D. thesis). Irvine,
CA: Department of Information and Computer Science, Univer-

sity of California at Irvine, 1990.

[Hara 91] Hara, Yoshinori; Keller, Arthur M.; and Wiederhold, Gio. "Im-
plementing Hypertext Database Relations through Aggregations
and Exceptions," 75-90. Proceedings of Hypertext '91. San An-
tonio, Texas; December 15-18, 1991. New York, NY: ACM

Press, 1991.

38 CMU/SEI-98-TR-005

[Hendrix 79]

[Karakostas 90]

[Kazman 97]

[Klefstad 88]

[Korth 86]

[Kosslyn 80]

[Kristensen 94]

[Lang 97]

Hendrix, Gary G "Encoding Knowledge in Partitioned Net-
works," 51-92. Associative Networks (Representation and Use of

Knowledge by Computers) (Nicholas V. Findler, editor). New

York, NY: Academic Press, 1979.

Karakostas, V. "Modelling and Maintenance Software Systems
at the Teleological Level." Journal of Software Maintenance:

Research and Practice 2 (1990): 47-59.

Kazman, Rick and Carriere, S. Jeromy. Playing Detective: Re-
constructing Software Architecture from Available Evidence
(CMU/SEI-97-TR-010, ADA 315653). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1997.

Klefstad, Raymond O. Maintaining a Uniform User Interface
for an Ada Programming Environment (Ph.D. thesis). Irvine,
CA: Department of Information and Computer Science, Univer-

sity of California, Irvine, 1988.

Korth, Henry E and Silberschatz, Abraham. Database System

Concepts. New York, NY: McGraw-Hill, 1986.

Kosslyn, S. Image and Mind. Cambridge, MA: Harvard Univer-
sity Press, 1980.

Kristensen, Bent Bruun; and Österbye, Kasper. "Conceptual
Modeling and Programming Languages." ACM SIGPLAN 29, 9
(September 1994): 81.

Lang, S. and von Mayrhauser, A. "Towards a Systematic Analy-
sis of Program Comprehension Strategies for Legacy Software."
Workshop on Migration Strategies for Legacy Systems, held in
conjunction with the 1997 International Conference on Software

Engineering (ICSE-18). Boston, MA, May 17,1997. Los
Alamitos, CA: IEEE Computer Society Press, 1997.

CMU/SEI-98-TR-005 39

[Marchionini 88]

[Maurer 92]

[Murphy 96]

[Mylopoulos 84]

Marchionini, G and Shneiderman, B. "Finding Facts and
Browsing Knowledge in Hypertext Systems," Computer 21

(1988):70-80.

Maurer, Hermann. Why Hypermedia Systems Are Important

(Technical Report 331). Graz, Austria: Institutes for Information
Processing (IIG), Graz University of Technology, 1992.

Murphy, Gail C; Notkin, David; and Lan, E. S. C. "An Empirical
Study of Static Call Graph Extractors." The 7S"1 International

Conference on Software Engineering (ICSE-18). Berlin, Ger-
many, March 29-31,1996. Los Alamitos, CA: IEEE Computer

Society Press, 1996.

Mylopoulos, John and Levesque, Hector J. "An Overview of
Knowledge Representation," 3-17. On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages (Michael L. Brodie, John Mylopoulos,
Joachim W. Schmidt, editors). New York, NY: Springer-Verlag,

1984.

[Nanard 91]

[Nielsen 90a]

[Nielsen 90b]

[Ning 89]

Nanard, Jocelyne and Nanard, Marc. "Using Structured Types to
Incorporate Knowledge in Hypertext," 329-343. Proceedings of
Hypertext '91. San Antonio, Texas; December 15-18,1991. New
York, NY: ACM Press, 1991.

Nielsen, Jacob. Hypertext & Hypermedia. Academic Press,

1990.

Nielson, Jacob. "The Art of Navigating Through Hypertext."
Communications of the ACM 33, 3 (March 1990): 296-310.

Ning, Jim Qun. A Knowledge-Based Approach to Automatic

Program Analysis (Ph.D. thesis). Urbana-Champaign, IL: De-
partment of Computer Science, University of Illinois at Urbana-

Champaign, 1989.

40 CMU/SEI-98-TR-005

[Olsem 93]

[Müller 92]

[Parnas 79]

Olsem, Mike R. and Sittenauer, C. Reengineering Technology

Report, Volume I (Technical Report). Salt Lake City, UT: Soft-
ware Technology Support Center, 1993.

Müller, Hausi A.; Tilley, Scott R.; Orgun, Mehmet A.; Corrie,
Brian D.; and Madhavji, Nazim H. "A Reverse Engineering En-
vironment Based on Spatial and Visual Software Interconnection

Models," 88-98. Proceedings of the Fifth ACM SIGSOFT Sym-

posium on Software Development Environments (SIGSOFT '92).
Tyson's Corner, Virginia, December 9-11,1992. ACM Software

Engineering Notes 17,5 (1992).

Parnas, David L. "Designing Software for Ease of Extension and
Contraction," IEEE Transactions on Software Engineering SE-5,

2 (March 1979): 128-137.

[Paul 95]

[Rohrich 87]

[Shaw 89]

[Smith 97]

[Sneed 84]

Paul, Santanu. Design and Implementation of Query Languages
for Program Databases (Ph.D. thesis). Ann Arbor, MI: Depart-
ment of Computer Science and Engineering, University of

Michigan, 1995.

Rohrich, J. "Graph Attribution with Multiple Attribute Gram-
mars," ACM SIGPLAN 22, 11 (November 1987): 55-70.

Shaw, Mary. "Larger Scale Systems Require Higher-Level Ab-
stractions." ACM SIGSOFT Software Engineering Notes 14, 3
(May 1989): 143-146.

Smith, Dennis B.; Müller, Hausi A.; and Tilley, Scott R. The
Year 2000 Problem: Issues and Implications (CMU/SEI-97-TR-
002, ADA 325361). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 1997.

Sneed, Harry. "Software Renewal: A Case Study," IEEE Soft-

ware 1, 3 (July 1984): 56-63.

CMU/SEI-98-TR-005 41

[Sowa 88]

[Storey 96]

[Storey 97a]

[Storey 97b]

[Tilley91]

[Tilley92]

Sowa, John F. Conceptual Structures: Information Processing in

Mind and Machine. Reading, MA: Addison-Wesley, 1988.

Storey, Margaret-Anne D.; Wong, Kenny; Fong, P.; Hooper, D.;
Hopkins, K.; and Müller, Hausi A. "On Designing an Experi-
ment to Evaluate a Reverse Engineering Tool," 31-40. Proceed-

ings of the 3rd Working Conference on Reverse Engineering.
Monterey, CA, November 8-10,1996. Los Alamitos, CA: IEEE

Computer Society Press, 1996.

Storey, Margaret-Anne D.; Fracchia, David; and Müller, Hausi

A. "Cognitive Design Elements to Support the Construction of a

Mental Model During Software Visualization," 17-28. Proceed-

ings of the 5th Workshop on Program Comprehension.
Dearborn, Michigan: May 28-30, 1997. Los Alamitos, CA: IEEE
Computer Society Press, 1997.

Storey, Margaret-Anne D.; Wong, Kenny; and Müller, Hausi A.
"How Do Program Understanding Tools Affect How Program-
mers Understand Programs?" 12-21. Proceedings of the 4th

Working Conference on Reverse Engineering. Amsterdam, The
Netherlands, October 6-8,1997. Los Alamitos, CA: IEEE Com-

puter Society Press, 1997.

Tilley, Scott R. and Müller, Hausi A. "INFO: A Simple Docu-
ment Annotation Facility," 30-36. Proceedings of the 9th Annual
International Conference on Systems Documentation (SIGDOC
'91). Chicago, Illinois, October 10-12, 1991. New York, NY:

ACM, 1991.

Tilley, Scott R.; Müller, Hausi A.; and Orgun, Mehmet A.
"Documenting Software Systems with Views," 211-219. Pro-
ceedings of the l(fh International Conference on Systems Docu-

mentation (SIGDOC '92). Ottawa, Canada, October 13-16,

1992. New York, NY: ACM, 1992.

42 CMU/SEI-98-TR-005

[Tilley 95a] Tilley, Scott R. Domain-Retargetable Reverse Engineering
(Ph.D. thesis). Victoria, Canada: Department of Computer
Science, University of Victoria, January 1995.

[Tilley 95b] Tilley, Scott R. "Domain-Retargetable Reverse Engineering
HI: Layered Modeling," 52-61. Proceedings of the 1995 Inter-

national Conference on Software Maintenance (ICSM '95).

Nice, France, October 17-20, 1995. Los Alamitos, CA: IEEE
Computer Society Press, 1995.

[Tilley 96a] Tilley, Scott R.; Santanu, Paul; and Smith, Dennis B. "Toward
a Framework for Program Understanding," 19-28. Proceed-

ings of the 4th Workshop on Program Comprehension. Berlin,
Germany, March 29-31,1996. Los Alamitos, CA: IEEE
Computer Society Press, 1996.

[Tilley 96b] Tilley, Scott R. and Smith, Dennis B. Coming Attractions in
Program Understanding (CMU/SEI-96-TR-019 ADA320731).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1996.

[Tilley 97] Tilley, Scott R. Discovering DISCOVER (CMU/SEI-97-TR-
012 ADA331014). Pittsburgh, PA: Software Engineering In-
stitute, Carnegie Mellon University, 1997.

[Tilley 98] Tilley, Scott R. Coming Attractions in Program Understand-
ing II: Highlights of 1997 and Opportunities for 1998
(CMU/SEI-98-TR-001). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1998.

[Tracz 94] Tracz, Will. "Domain-Specific Software Architecture (DSSA)
Frequently Asked Questions (FAQ)." ACM SIGSOFTSoftware
Engineering Notes 19, 2 (April 1994): 52-56.

CMU/SEI-98-TR-005 43

[von Mayrhauser 92] von Mayrhauser, Anniliese and Vans, Marie. An Industrial

Experience With an Integrated Code Comprehension Model

(Technical Report CS-92-205). Ft. Collins, CO: Colorado

State University, 1992.

[von Mayrhauser 95] von Mayrhauser, Anniliese and Vans, Marie. "Program Com-
prehension During Software Maintenance and Evolution,"
Computer 28, 8. (August 1995): 44-55.

[Ullman 80] Ullman, Jeffrey D. Principles of Database Systems. New York,

NY: Computer Science Press, 1980.

[Wasserman 89]

[Wong 95]

Wasserman, Anthony I. "Tool Integration in Software Engi-

neering Environments," 137-149. Proceedings of the Interna-
tional Workshop on Environments. Chinon, France, Septem-
ber 18-20,1989. New York, NY: Springer-Verlag, 1989.

Wong, Kenny; Tilley, Scott R.; Müller, Hausi A.; and Storey,
Margaret-Anne D. "Structural Redocumentation: A Case
Study," IEEE Software 12, 1 (January 1995): 46-54.

[Young 88] Young, Michael; Taylor, Richard N.; and Troup, Dennis B.
"Software Environment Architectures and User Interface Fa-
cilities." IEEE Transactions on Software Engineering 14, 6
(June 1988): 697-708.

[Zvegintzov 94] Zvegintzov, Nicholas (editor). Software Management Technol-
ogy—1994 Edition. Staten Island, NY: Software Management

News Inc., 1994.

44 CMU/SEI-98-TR-005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

April 1998
TITLE AND SUBTITLE

A Reverse-Engineering Environment Framework

AUTHOR(S)

Scott Tilley

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

REPORT TYPE AND DATES COVERED

Final
FUNDING NUMBERS

C —F19628-95-C-0003

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-98-TR-005

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-98-005

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes a framework for reverse-engineering environments used to aid program understanding. The
framework is based on a descriptive model that categorizes important support mechanism features based on a hier-
archy of attributes. The attributes include cognitive model support, reverse-engineering tasks, canonical activities
that are characteristic of the reverse-engineering process, quality attributes supported by the reverse-engineering
environment, and miscellaneous characteristics.

14. SUBJECT TERMS

canonical activities, cognitive aids, conceptual framework, data gathering, descrip-
tive model, environment, information exploration, knowledge management, pro-
gram understanding, quality attributes, reverse engineering

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
44

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

