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1    Introduction 

This ASSERT F49620-94-1-0409 grant is linked with the parent grant F49620-95-1-0019 
entitled Robust, Nonlinear Feedback Control. Funding under this grant was used to support 
one graduate student, namely, Mr. James Akers. Mr. Akers was awarded the PhD degree in 
June 1997. 

A description of the theoretical and experimental research conducted by Mr. Akers under 
the direction of the Principal Investigator is given in Sections 2 & 3. Concluding remarks is 
given in Section 4. Relevant publications are listed in the References. 

The research described in this report was carried out in anticipation of the ACTEX Flight 
Experiment. Preliminary data from ACTEX is being evaluated by program personnel [15]. 

Mr. Akers' progress under this grant was excellent. He has been involved in both theo- 
retical and experimental activities and his research is expected to have a significant impact 
on control applications. 

2    Theoretical Research 

Our initial goal under this project was to develop a stronger theoretical foundation for 
the Juang-Pappas eigensystem realization algorithm (ERA) [13] [14, pp. 133-137]. This 
technique is a widely used method for constructing structural models from impulse response 
data. In practice such data is obtained by computing the inverse Fourier transform of the 
frequency response function. The impulse response data provides a Markov block Hankel 
matrix whose singular value decomposition is used to construct the structural model. This 
method operates in a batch mode where accumulated data is processed off-line to create the 
structural model. 

In [2] we analyzed the stability of reduced-order models obtained from the ERA algorithm 
combined with modal truncation as determined by the singular value decomposition of the 
Markov block Hankel matrix. This analysis involved error bounds associated with model 
truncation based upon finite-interval Gramians. Sufficient conditions for asymptotic stability 
of the reduced-order model along with error bounds in the presence of measurement noise 
were given. 

Next we developed the recursive ARMARKOV/ToepHtz identification algorithm [1, 5, 6, 7] 
for recursive on-line identification based upon the approach of [11] and partially developed 
in [10, 12]. This algorithm provides the first-stage in a two-stage identification algorithm, 
where ERA is used as the second-stage to construct minimal realizations from the estimated 
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Markov parameters. 

ARMARKOV models relate the current output of a system to past outputs as well as 
current and past inputs. ARMARKOV models have the same form as ARMA models, but 
explicitly involve Markov parameters. Appropriate stacking of these ARMARKOV models 
yields a block-Toeplitz weight matrix which maps a vector of past outputs and inputs to 
a vector of the current and past outputs. A recursive update law for the estimated weight 
matrix is constructed based upon a constrained gradient. This constrained gradient preserves 
the block-zero structure of the weight matrix and, in the presence of a persistent input 
sequence, guarantees that the estimated weight matrix converges to the actual weight matrix. 
Estimates of the Markov parameters can be directly extracted from the converged weight 
matrix for use in ERA. 

The principal mathematical contribution of this work is a rigorous proof of the conver- 
gence of the recursive ARMARKOV/Toeplitz identification algorithm in the presence of a 
persistent input sequence [1, 5, 6, 7]. The input sequence, which need not be white noise, 
can be tested a posteriori to determine if it satisfies the persistency conditions. In practice 
the persistency conditions are satisfied by a broad class of input sequences. 

Mr. Akers also developed alternative recursive and batch techniques based upon AR- 
MARKOV models. The alternative recursive technique incorporates an ARMARKOV model 
in a Toeplitz structure utilizing a quasi-Newton update direction to estimate the Markov pa- 
rameters [9]. The alternative batch technique generalizes ARMA least-squares to incorporate 
an ARMARKOV model [8]. 

By combining the recursive ARMARKOV/Toeplitz identification algorithms with ERA 
we have demonstrated a highly automated on-line identification technique that can readily 
be implemented in practical application. This approach provides the means for continu- 
ally updating the structural model for modal refinement and damage detection. Similarly, 
by combining the least-squares ARMARKOV identification algorithm with ERA we have 
constructed a highly automated off-line identification technique. 

3    Experimental Research 

To illustrate the method Mr. Akers developed an experimental testbed involving an acous- 
tic duct with multiple speakers and microphones. The acoustic duct provides a challenging 
testbed due to 0.5% —2% modal damping and high modal densities. These characteristics are 
shared by large flexible space structures and are difficult to handle by many identification 
techniques. In preliminary research this setup was used to validate techniques for modal 
identification as the basis for feedback control [3, 4]. 



The acoustic duct is constructed from a 39 inch long 4 inch diameter PVC pipe with 
open-closed boundary conditions. The output from the performance and measurement mi- 
crophones was passed through a four pole analog Butterworth low pass filter with a cutoff 
frequency of 1250 Hz. The disturbance and control speaker inputs and the performance and 
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Figure 1: Experimental set up of acoustic duct. 

measurement microphone outputs were recorded at a sampling frequency of 5120 Hz with a 
time-record length of 4096 data points spanning 0.8 seconds. The inputs u(k) and w(k) were 
chosen to be white noise. The experimentally measured frequency response was obtained 
using a spectrum analyzer with the frequency range chosen to be 0 - 2000 Hz with 1601 
spectral lines of resolution. A schematic of the experimental set up of the acoustic duct 
is shown in Figure 1. The recursive ARMARKOV/Toeplitz/ERA identification algorithm 
[1, 5, 6, 7] produced a 44th-order realization of the dynamics from the disturbance speaker 
to the performance microphone. The frequency response of the 44th-order realization and 
the measured frequency response is shown in Figure 2. 

Alternatively, the batch least-squares ARMARKOV/ERA identification algorithm [8] was 
also used with the same time record and produced a 46th-order realization of the dynamics 
from the disturbance speaker to the performance microphone. The frequency response of 
the 46th-order realization and the measured frequency response is shown in Figure 3. 

4    Concluding Remarks 

Under this ASSERT grant both recursive on-line and batch off-line time-domain iden- 
tification techniques have been developed that can handle lightly damped and high order. 
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Figure 2: Recursive ARMARKOV/Toeplitz/ERA identification al- 
gorithm of the acoustic duct, frequency response of the 44th-order 
identified state space realization (dashed line) and experimentally 
measured frequency response (solid line). 
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Figure 3: Least-squares ARMARKOV/ERA identification algo- 
rithm of the acoustic duct, frequency response of the 46th-order 
identified state space realization (dashed line) and experimentally 
measured frequency response (solid line). 



systems. These algorithms directly identify the Markov parameters from the time-domain 
data which are then used in ERA to obtain state space realizations. These algorithms are 
conceptually straightforward and easy to implement. Numerical simulation and experimen- 
tal results have shown the algorithms to be robust to measurement noise and model order 
underestimation. 
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