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Final Technical Report 
Pulse Propagation in Random Media   F 49620-95-1-0137 

95/02/01  - 98/01/31 

The research conducted during this period was initially done in collaboration with 
George Papanicolaou (Stanford University) and Benjamin White (Exxon Research & 
Engineering Co.) During the last half of this time period, however, the work was done in 
collaboration with Benjamin White and Leonard Srnka (Exxon Exploration Co.). In broad 
terms, the work focused upon direct and inverse problems involving wave propagation in 
complex heterogeneous media, modeled as random media. More specifically, the work has 
focused upon the following areas: 

(1) Multiple scattering of electromagnetic waves in randomly layered dissipative media. The 
magnetotelluric (MT) problem considered has lent itself to modeling within the "weak 
noise" or Gauss Markov regime. In addition to considering propagation per se, the issue 
of the detection of anomalous layers has been addressed. Details are presented in the 
enclosed preprint, "Random Scattering in Magnetotellurics", by Benjamin White, Werner 
Köhler and Leonard Srnka, which has been submitted for publication to Geophysics. 

(2) Extension of the ideas mentioned above to the case of an undulating (locally layered) 
medium. The theory developed for layered media is shown to be robust. 

(3) Incorporation of the above analysis into an inversion strategy. 

1. Magnetotelluric Probing 

We consider plane electromagnetic waves normally incident upon a layered Earth 
model in which the resistivity is assumed to vary with depth. This is the standard MT 
model. Very low frequencies are considered, i.e. 10~2 < / < 103. At these low frequencies, 
skin depth is large and the incident EM energy is capable of penetrating to considerable 
depth. Certain substances, such as groundwater and hydrocarbons, have anomalously large 
resistivities while others, such as hot, pressurized brine, are very conducting. One of the 
problems we considered was the detection of such anomalous layers. 

The main contribution of this work is our accounting for the effects of rapidly 
varying, fine scale resistivity variations. The problem falls within the theory developed by 
Khasminskii (Theory of Probability and its Applications, 11,1966, p. 211-228). Using 
this theory, the surface impedance (measured at a number of discrete frequencies across the 
band of interest) is shown to be asymptotically described as a Gaussian random vector. The 
mean value of this vector is the "effective medium" impedance vector, i.e it is the 
impedance vector one would measure were the randomly fluctuating resistivity replaced by 
a smooth effective medium. The covariance matrix of the surface impedance fluctuations is 
explicitly computable. The theory is robust and does not depend upon any detailed 
assumptions about the resistivity micro-structure fluctuation statistics. 

The Gaussian character of the limiting impedance statistics makes the signal 
processing aspects of the problem particularly tractable. For the problem we consider, a 
thin highly resistive layer is assumed to either be present or not at some depth. The task at 
hand is to use the measured surface impedance data to reach a decision. The Neyman- 
Pearson lemma provides the optimal test. As was mentioned, the Gaussian character of the 
limiting statistics makes this test relatively straightforward to implement. 

Although the study conducted deals exclusively with the MT problem, the ideas are 
general in scope and would apply to other scenarios in which the underlying scales of the 
problem are similar. One application that might be considered is the problem posed by 



Richard Albanese several years ago, in which the detection of buried chemical pools was 
the issue. 

2. Locally Layered Media: 

The effort here has been to extend the model to accomodate deviations from 
layering. Undulations are introduced and the goal is to both extend the relevant theory to 
this case and also, simultaneously, to demonstrate the robustness of the layered media 
results. For the acoustic problem studied at length in SIAM Review (December 1991, p. 
519-625),this has been difficult; a number of false starts and dead ends have occurred. 
Moreover, the results obtained have proven too compicated to be useful. 

For the simpler Gauss-Markov limit associated with the above-mentioned MT 
problem, however, the situation is simpler. Because of the scaling, a straightforward 
perturbation scheme can be used, as shown below, to account for the randomness and 
geometric undulations as additive effects. In fact, the effects of the randomness are 
ultimately computed using the plane-layered model since the effects of the undulations upon 
the randomness is of higher order. 

Let ö denote a small parameter as in the preprint, representing the ratio of the 
microscale correlation length to the macroscale. Assume that the undulations are defined as 
level curves of z' = z + 4dZ{x,y,z), where Z is a known function. We introduce a new 
coordinate system of the form: 
x' = x + 4öX{x,y,z,48), y' = y + 48Y{x,y,z,4ö), z' = z + 4öZ(x,y,z) 

where X,Fmust be determined so that jc'./are everywhere ± z'. Assuming X,Y to 
possess expansions in powers of -Jo, these functions can be determined. (Generally, the 
x',y' coordinates cannot be chosen to be mutually orthogonal, however.) In terms of these 
new coordinates, we assume that the conductivity <J is a rapidly varying function of z\ 
i.e. <j = o{z'ld). 

We can then derive equations for the electric and magnetic fields transverse to z'- 
The derivations are tedious but straightforward extensions of the ideas in Marcuvitz's 
Waveguide Handbook. We obtain: 

d,E, = e-ldx{d,Hy, - dy.H, + 4o~{Xxd,H, - Yyd,H, + X„H, - Y^Hf)] + 

^Scj-^-Z^d^-d.H,)-^^, -JS(T-lZxzfa>H/-d/Hx,) + 

ici)f^IS(xy + YX)HX, + (l - 48Zz)Hy\ + 0(8) 

d,Ey, = <J-xdy{dx.Hy, - dy,Hx, + 4s(Xxdx,Hy, - Yyd,Hx, + X^H, - Y„Hf)\ + 

45a~\Yy -Zz)d,{d,Hy. -dy,Hx,)- JSz^E, -^E^zjd^-d^)- 

i(Ofl[t8{Xy + Yx)Hy. + (l - 4SZZ)HX,]+0{S) 

E, = er"1 [d,H, - dy.H, + 48{Xxd,Hy. - Yydy,Hx, + X^H, - Y^)] + 0(6) 



Analogous equations for the magnetic field components are easily obtained by duality. 
Stacking the (locally) transverse field components into a 4 x 1 vector X leads to the 
following equation structure: 

1 
d..X = A)+V5f-^A+^ x 

where Z^ is an 0(1) deterministic operator, -?= L, is an appropriately scaled zero mean 

random operator arising from the random resisitivity fluctuations and L^ is a deterministic 
operator arising because of the undulations in the layering. To leading order, the effects of 
the undulations occur as an additive operator. Employing a perturbation expansion leads to 
an additive contribution due to the undulations at the level of the fields themselves. The 

leading order term corresponds to effective medium theory, the 0N6 ] correction 

associated with -fjl^ is the usual Gauss Markov correction associated with the layered 

randomness and the ONÖ) correction associated with l^ arises due to the undulations. 

This simple structure leads to explicitly computable results. Computations are 
currently being done for representative geometries. The case where the lateral undulations 
are themselves random, but independent of and slowly-varying relative to the rapid random 
layering, is also being evaluated.When complete, the results will be submitted for 
publication. 

3. Inversion: 

The results discussed in (1), and presented in more detail in the enclosed preprint, 
lend themselves naturally to the problem of inversion. In this case, the surface impedance 
measurement data is used to infer the large scale subsurface resistivity structure (i.e. the 
effective medium resistivity). The contribution of the Gauss-Markov theory is to explicitly 
characterize the cross-correlations of the measured multi-frequency surface impedance 
noise. 

Consider Maximum-Likelihood estimation. Because of the multivariate Gaussian 
character of the measured data, the task reduces to minimizing a quadratic functional of the 
form: 

(xd-Xmfc-j(xd-Xm) + \n{dctCm) 
where Xd is the measured data vector while Xm and Cm represent the mean vector and 
covariance matrix corresponding to the particular model under consideration. In particular, 
if N layers (resting upon a semi-infinite basement) are being used in the model to attempt 
to fit the data, then Xm and Cm are functions of 3N +1 variables, the length, mean 
conductivity and noise strength of each layer together with the basement conductivity. In 
Appendix A of the enclosed preprint, formulas are given that enable one to evolve the mean 
impedance as well as the covariance matrix across a layer. The explicit nature of these 
formulas enables one to similarly evolve the partial derivatives of these quantities with 
respect to the model parameters. In this way one obtains an explicit evaluation not only of 
the objective function at the current model state but also its gradient with respect to the 
model parameters. 

These concepts have been developed and are currently being implemented. When 
complete, the results will be submitted for publication. 
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RANDOM SCATTERING IN MAGNETOTELLURICS 

BENJAMIN S. WHITE, WERNER E. KÖHLER, AND LEONARD J. SRNKA 

ABSTRACT. Typical well logs show substantial variations of formation electrical resistivity over 
small spatial scales, down to the resolution of the logging tool. Using a plane stratified Earth model, 
we examine the effects of this fine scale microstructure on scattering of the naturally occurring 
electromagnetic waves used in magnetotellurics (MT). We show theoretically how MT data may be 
viewed as arising largely from a smoothed "effective medium" version of the resistivity vs. depth 
profile. The difference between the data produced by the true medium and that produced by the 
effective medium is due to random scattering noise, which is fundamental to MT since it arises 
from the very small spatial scales that are usually ignored. This noise is substantial and has unique 
statistical properties, which we characterize. We examine the implications of the existence of this 
noise for the detectability of a thin layer of increased resistivity at depth. The theory is shown to 
agree well with Monte Carlo simulations. 

1. INTRODUCTION 

In magneto-telluric (MT) surveys [1], [2], [3], surface measurements of the Earth's electrical 

impedance over a broad frequency range at a number of different sites are analyzed to produce 

maps of electrical resistivity in the subsurface. Naturally occurring ambient electromagnetic (EM) 

radiation is used as a source. The method is widely used for the mapping of crustal-scale structures 

both on land and at the seafloor, and can also be useful for sedimentary basin exploration in areas 

where seismic reflection data quality is poor. 

The principal drawback of MT is its limited accuracy and spatial resolution, due to the diffusive 

character of low frequency EM propagation in the Earth. Mathematically this is to be expected, 

since the processing of the MT surface measurements to produce a subsurface map is an inverse 

problem which is classically ill-posed in the sense of Hadamard [4]. That is, many different solutions 

can fit the observed data almost as well. In fact, EM prospecting was a seminal problem in inverse 

theory. Early research on EM prospecting was done by Tikhonov [5], [6], [7], [8] and Cagniard 

[9]; the theoretical aspects of the inverse problem were later studied by Weidelt [10]. Tikhonov, in 

particular [5], showed that, contrary to prevailing wisdom, ill-posed problems could be solved both 

theoretically and in practice (for a history, see [2], Chapter 1). Today, the Tikhonov regularization 

technique has achieved great success in solving inverse problems in many diverse scientific fields 

[11]. 

The basic assumption of regularization theory is that the solution is piecewise smooth. In 

choosing among candidate solutions, smoothness is valued in addition to the candidate's ability to 

explain the data, and it is this additional criterion that allows a "best" solution to be found. In 

the words of Parker [12] (p. 294), "we seek the simplest, least exciting kind of solution". 

The second author was supported by Air Force grant F49620-95-1-0137. 
We thank Exxon Exploration Company for permission to release the induction log data. 
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2 BENJAMIN S. WHITE, WERNER E. KOHLER, AND LEONARD J. SRNKA 

However, the smoothness assumption is clearly false for MT, as is evident from even a casual 

inspection of well logs. As an example, Figure 1 shows formation resistivity as a function of depth 

for an onshore Louisiana oil exploration well in the Gulf of Mexico basin. The lithology consists 

primarily of intermixed layers of sandstone and shale. Note that the geologic section is quite 

conductive, which is typical for this basin. The data were recorded using an Atlas Wireline DIFL 

induction logging tool (RILD response), with a nominal two foot vertical resolution. The figure 

illustrates the well known fact that formation resistivity is rapidly varying on very small spatial 

scales down to the spatial resolution of the tool. Furthermore, the amplitude of the resistivity 

fluctuations is by no means small. In general, resistivities varying rapidly over one or more orders 

of magnitude are not uncommon in well log data. In this paper we examine the effects of this fine 

scale structure on EM scattering, and the subsequent implications for the fundamental limits of 

vertical resolution in MT data processing. 

FIGURE 1. Onshore Louisiana Well Log Data: Resistivity (Ohm-m) vs. Depth (ft). 
The record extends from 3,500 ft to 19,900 ft in depth. 

It is natural to describe the small scale resistivity fluctuations as a random process called the 

microstructure. An MT survey will not recover resistivity with all the resolution of the microstruc- 

ture, but only some kind of smoothed, spatially averaged, version. This idea will be made more 

precise below, where furthermore we show that it is conductivity, i. e. the reciprocal of resistivity, 

that is averaged. But to explore the spatial scales involved, consider a sliding window with a length 

of 500 ft centered at different depths in Figure 1. As the center of the window moves along the 

abscissa in Figure 1, the average resistivity over that window changes smoothly. Besides the aver- 

age, other estimated statistics will also vary with window position. As a typical example, Figure 2 

shows the normalized resistivity autocorrelation function, estimated from a 500 ft window centered 

at a depth of 4,450 ft. From this figure, the length scale of the microstructure can be estimated 

as about I = 13 ft (nominally 4 m). This is the microscale, i.e., the correlation length of the 

microstructure; two points separated by much more that 4 m will have resistivity fluctuations that 

are not significantly correlated, while significant correlations will exist for distances much smaller 

than this. Our studies of other portions of this log, and of other resistivity logs with different 

lithologies, have produced qualitatively similar results. 
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FIGURE 2. Typical Onshore Louisiana Well Log Autocorrelation Function: Nor- 
malized Resistivity Autocorrelation vs. Lag (ft), measured over a 500 ft window 
centered at a depth of 4,450 ft. 

This value of I is consistent with studies of acoustic well logs, which, while recording a different 

material property, may be expected to vary on the same spatial scale. In reflection seismology, 

scattering from thin beds is explained by the now classical theory of O'Doherty and Anstey [13]. 

Their Figure 11 shows an autocorrelation function of reflectivities that is at least qualitatively 

consistent with an exponential autocorrelation function of acoustic impedance, and a correlation 

length I of a few meters. Godfrey et. al. [14] and Banik et. al. [15] use decreasing exponentials to 

get good data fits to the autocorrelation function, and give explanations for the observed expo- 

nential behavior in terms of Markovian models for the sedimentation process. Banik et. al. cite 

a typical exponential decay length, corresponding to our I, of 4.5 m. White et. al. [16] also found 

autocorrelation functions that were well fit by exponentials, with [ varying between 1 m and 10 m, 

and a most typical value of about 3 m. Other studies of the statistics of acoustic well logs that are 

generally consistent with these results are reported by Waiden and Hosken [17], Velzeboer [18], and 

Sato [19]. Some of the larger values of I obtained by these authors have been up to 20 m. A review 

of the mathematics of acoustic scattering in stratified media with fine scale structure is given by 

Asch et. al. [20]. 

In what follows, we consider horizontally plane stratified media, so that resistivity varies as a 

function of depth only. Besides the microscale I, we consider a macroscale L, on which significant 

variations of resistivity might be recovered by MT. The resistivity is then modeled as a function of 

these two disparate spatial scales L » I. The ratio 5 = l/L is a small parameter which is used in 

the asymptotic analysis that follows. 

In Section 2 we show under wide hypotheses that, despite the microstructure, there is a piecewise 

smooth resistivity vs. depth curve that approximately explains the data. More specifically, we use 

a theorem of Khasminskii [21] to derive "effective medium theory" — i.e. we construct, by suitable 

averaging, a smooth, effective medium which will produce surface impedance measurements that 

match those produced by the true resistivity profile, but with a small error of order 0(VS). In 

this context, the ill-posedness of the inverse problem can be seen as a consequence of effective 
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medium theory. Since many different microstructures can be smoothed to produce the same effective 

medium, it is not possible to distinguish between these different microstructures, as a complete 

inversion algorithm would have to do. The inverse problem becomes well-posed if one solves for 

the effective medium only. However in this case the data cannot match the solution of the forward 

problem, but will be in error by an amount of order 0(v6). 

This order O(Vö) error in the data is a kind of "geologic noise" caused by multiple scattering 

from the fine scale microstructure. This noise is fundamental to MT and cannot be reduced by 

instrumentation, since it is produced solely by a discrepancy between the true resistivity vs. depth 

profile and the smooth curve that is assumed in the mathematical inversion. Moreover, this kind 

of scattering noise can be substantial. In Section 4 (See Figure 3) we compare an estimate of the 

magnitude of geologic noise to that of all other sources of error, based on an analysis of Parker [12], 

and find that, except for very low frequencies, the magnitudes are comparable. 

In Section 2 we also apply another theorem of Khasminskii's [21] to characterize the unique 

statistical properties of geologic scattering noise. Further formulas for the effective calculation of 

these statistics are developed in Section 3. These statistics do not depend on the details of the 

microstructure, but only on some averaged quantities. Furthermore, because Khasminskii's theorem 

is a kind of Central Limit Theorem for differential equations, the surface impedance scattering noise 

has a Gaussian distribution even when the resistivity fluctuations do not. Thus there is a good 

deal of model independence, and it is not necessary to undertake a detailed statistical analysis of 

the Earth's resistivity microstructure in order to apply the theory. In particular, for the case of a 

homogeneous half space containing random fluctuations (i.e. a random half space), we can derive 

explicit algebraic formulas that predict the variances and covariances of the real and imaginary 

parts of an array of surface impedances measured at different frequencies. These formulas depend 

only on a single microstructure parameter which characterizes the noise strength and merely scales 

all the variances and covariances. Thus, for a homogeneous random half space, the statistics are 

universal. 

In Section 4 we study the implications of the theory for the detectability of a thin layer of material 

in the subsurface, when the material's resistivity varies markedly from that of the background, as 

in prospecting for hydrocarbons. Ultimately, detectability is also a question of spatial resolution 

for MT, since very large amounts of the material will almost certainly be detected, while very 

small amounts will almost certainly be missed. Clearly, detectability also depends on the depth of 

investigation. 

The question then is, "At a given depth, how strong a target is necessary for detection, given 

that the EM waves used as a probe are scattered by the microstructure ?" In Section 4 we develop 

the theory for a model problem of this type. We show that there is an optimal method of data 

processing, based on the Neyman-Pearson lemma [22], [23]. Attempts at detection will make two 

types of errors: false positives ("detecting" a nonexistent target) and false negatives (failing to 

detect a target). These two types of errors cannot be eliminated, but can be traded off against 

each other by setting a threshold on how compelling the evidence needs to be for detection to be 

declared. We derive expressions for this tradeoff, i.e. expressions relating the false negative rate to 

the false positive rate. As is standard practice in detection theory [23], this relation between error 
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rates can be expressed as a ROC (Receiver Operating Characteristic) curve, which is a plot of the 

probability of successful detection vs. the false positive rate. Because the method is theoretically 

optimal, its ROC curve cannot be improved, and so provides a fundamental limit to detectability. 

In Section 5, we compare the theory to Monte Carlo simulations. We obtain excellent agreement 

of the simulations and the theoretical noise statistics over a frequency range spanning five orders 

of magnitude. For the detectability theory we include both geologic scattering noise and a white 

noise component, to model other sources of error. The detectability theory also compares well with 

simulations. 

Although we have not pursued the idea in this paper, knowledge of the noise statistics should be 

of direct value in the inversion of MT data, by suggesting the theoretically optimal misfit function 

to be used in optimization. A simple example, corresponding to current practice, is the use of 

variance-weighted least squares [12], [24]. This misfit function is appropriate if the data errors 

at each frequency are uncorrelated, but have different variances. However, for geologic scattering 

noise, the errors at different frequencies are highly correlated, as we show here. So the appropriate 

misfit function should be a quadratic form in the errors, weighted by all the elements of the inverse 

of the covariance matrix. Whether substantial improvement in inversions can be obtained using 

this misfit function is a subject for future research. 

2. SPATIAL SCALES AND A STOCHASTIC LIMIT 

We consider a plane stratified Earth occupying the half space z < 0, with a basement layer 

consisting of a homogeneous half space for z < —L and with air in z > 0. Let a be conductivity, 

p the magnetic permeability, e the dielectric permittivity, E the electric field and H the magnetic 

field, fj, will be assumed to be constant while a and e will be assumed to vary with z, but not with 

frequency. For angular frequency u and time dependence e~UJt, Maxwell's equations become 

V x E   =   iojfiH. 

VxH   =   (or-iwe)E. (2.1) 

For a normally incident plane wave (with x-directed electric field and y-directed magnetic field), 

we obtain the usual equations for the scalar components E and H 

—E   =   —iuuH 
oz 

—H   =   (a-ioje)E. (2.2) 

To nondimensionalize, we choose typical constants ß, e, ü, ä, H and define a typical length scale 

L, impedance £ and reference electric field strength E by 

L   —   1/^üßä 

|   =   1/äL 

E   =   £H. (2.3) 

Note that y/2L is the skin depth. Let the impedance be 

Z = E/H. (2.4) 
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Magnetotelluric surveys produce measurements of £ at z — 0 over a range of frequencies a;. 

Set 

z' = z/L,     ß' = [x/fi,     e' = e/e,     J = u/ü 

H' = H/H,     E' = E/E,     ? = £/£. (2.5) 

Then equations (2.2) and (2.4) hold again for the primed variables. 

In what follows, we use the nondimensional variables but, for notational convenience, drop the 

primes. Also, for z < 0, the parameter regimes to be considered will permit us to employ the usual 

quasi-static approximation [2]; that is, displacement currents are neglected so that effectively e may 

be set equal to 0. Then, substitution of (2.4) into (2.2) yields 

Q-Z = -°"£2 - iu}V,     z < 0- (2.6) 

Because of the continuity of E and H, £ is also continuous across layer boundaries. The condition 

that there are no upgoing waves in z < —L yields that 

E = £BH    at z = -L, (2.7) 

where 
OJ/IB 

ZB   = 
kß 

kB  _    /sS2S»(i£, (2.8) 

Thus, an initial condition for (2.6) is 

■   £ = £B     at z = -L. (2.9) 

We take permeability to be constant and consider variations in the conductivity. In particular, 

we consider deterministic macroscale variations of the conductivity on a spatial scale of order L, 

and random microscale variations on a much smaller spatial scale I « L. Let 

<5 = l/L « 1, (2.10) 

so that in dimensional units, a — a (z/l,z/L). Then in nondimensional units, z' = z/L. We 

obtain, after again dropping primes for notational convenience, that 

a = a(z/6,z). (2.11) 

The random function a{z\,Z2) now drives equation (2.6) stochastically, with z\ = z/S, z-i = z. 

We assume that, for each fixed Z2, a (z\,Z2) is a stochastic process in z\ which satisfies a mixing 

condition. This means that a{z\ + Azi,^) becomes statistically independent of <r(zi,Z2) as the 

microscale separation distance Az\ —> oo. In other words, we assume that the microstructure 

has no long-range correlations. Other technical conditions are given by Khasminskii [21], whose 

theorems we will now apply. 

Let £i, £2 j • • ■ J £AT be N impedances corresponding, respectively, to the N frequencies wi, a>2, • • • , ^N ■ 
We will compute their joint statistics, approximately, for small 5. Let 

ej   =   3{&},     j = l,2,...,N. (2.12) 
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We define the vector X e R2N+1 by 

* = (&&■■■ ,&&&■■- ,&,*f- (2.13) 

Then, equation (2.6) for the complex impedance f implies that X satisfies a vector stochastic 

differential equation of the form 

■fx = F(z/5, X),     X(-L) = X0. (2.14) 
ctz - 

Here 

Xo = (^B,l)--- )^B,N)^B,1'--- >£B,N)
_

L)  , (2.15) 

where £^ •, f£ • are the real and imaginary parts of £g, given by (2.8), for frequency LJJ, and 

F(s,X)   =   a(5,X2N+1)H(X)+V 

H(X)   =    ((£* )2 - (tf )2,... , ($)2 - (d)2, ViHl ■ ■ ■ 2#&, 0)T 

V   =   (0,... , 0, -wx/x,... , -wjy/i, l)r. (2.16) 

Equation (2.14) is of the type considered by Khasminskii [21]. To apply his Theorem (1.1), we 

compute 

F(X) = lim - r £{F(s,X)}ds, (2.17) 
z-+oo z Jo 

where E{-} denotes expected or mean value. The deterministic function F(X) is the average, both 

in probability and space (over the microstructure only), of F(s,X). Then, by Theorem (1.1) X 

may be approximated, to leading order as S | 0, by the nonrandom vector X, which satisfies 

i% = *<*> 
X(-L)   =   Xo- (2.18) 

Equation (2.18) is equivalent to effective medium theory. To see this, note from (2.16) that F is 

obtained from F by replacing the random process a(s, z) by its local average over the microstructure, 

ä(z), where 

1   fs 

&(z) = lim - /   E{a{s',z)}ds'. (2.19) 
S-K50 s JQ 

Therefore, each £y is approximated, to leading order, by the deterministic impedance £,• which 

satisfies 

Zj(-L)   =   £Bd (2.20) 

Note that ä, and hence £,-, vary only on the macroscale since the local averaging (2.19) has erased 

all microscale variation. 

To derive corrections to effective medium theory, we next apply Khasminskii's Theorem (3.1). 

Let 

Y = i=(X-X). (2.21) 
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Then as S \, 0, the statistics of Y are well-approximated by the statistics of Y°, where Y° is a 
Gaussian random process that satisfies the linear integral equation 

Y°(z) = W°(z) + |" ^P (X(O) Y°(C)dC. (2.22) 

Here W°(z) is a Gaussian process with independent increments, zero expectation and a correlation 
matrix 

£{(W°(z)) (W°(z))T} = J* A (X(0) dC, (2.23) 

where 

A(X)= lim - f f E{[F(si,X)-F(X)] [P(s2)X)-F(X)]T}dSlds2. 
Z-+00 z JQ   JQ 

(2.24) 

From (2.16), (2.24) we obtain that 

A (X) = 7
2 (X2N+1), H (X) H (X)T, (2.25) 

where 

j2(z) = lim - [   I   E{{a (su z) - ä{z)) (a (s2, z) - ä{z))}dSlds2. (2.26) 
S-K30 S JQ    J0 

A more convenient representation for the correction term is obtained by expressing W°(z) as an 
Ito stochastic integral [25] 

W°(z) = jf" 7(C)H (X(O) d/3(C), (2.27) 

where ß{z) is a standard Brownian motion (the Wiener process).   Using the "white noise"-like 
property of the Brownian differential 

E{dß(Ci)dß(C2)} = *(Ci - C2)dCi, (2-28) 

(where 5((i — C2) is the standard J-function). We may verify that W° defined by (2.27) has the 
required covariance (2.23). 

Using (2.27), equation (2.22) can be differentiated to give a set of Ito stochastic differential 
equations, i.e. "white noise" equations. We identify the corrections as 

Y°=(3\...$,£,...&,0)T, (2.29) 

so that, from (2.21) written in component form, we obtain 

£i(*) =&(*) + >/* li(*)- (2.30) 

The equations for the £j are 

dij   =   -2ä(z)Zj(z)ij(z)dz+'y(z)£>(z)dß(z) 

ij(-L)   =   0. (2.31) 

Thus, the (j are linear "white noise" perturbations of (2.20). In fact, (2.31) can be derived heuris- 
tically by substituting (2.30) into (2.6), assuming that £j satisfies the effective medium equations 
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(2.20). Then, one obtains, to order 0(Vo) 

d 2 2a(z/ö,z)U-[a{z/a'Zl~ä{z)]i2. (2.32) 

Equation (2.31) is obtained from (2.32) by replacing the first a(z/S,z) by its average and by 
identifying [a(z/S, z) — ä(z)]/y/ö as an appropriate white noise with covariance proportional to 
72(z), which is the "effective noise strength" of the microstructure at macroscopic position z. 

To summarize, the conductivity is first averaged locally, via (2.19), and the result is used to 
compute the impedance £, in the effective medium of conductivity ä(z), via equation (2.20). The 
leading order correction, obtained via (2.30), is of order 0{y/5), and is given by the £,-, which 
satisfy the Ito stochastic differential equations (2.31). We shall next use (2.31) to compute the 
joint statistics of the £j. 

3. RANDOM SCATTERING STATISTICS: PROPAGATION EQUATIONS AND A HOMOGENEOUS 

RANDOM HALF-SPACE 

From equation (2.31), it follows that the £j are zero mean, jointly Gaussian random variables, 
and so it remains to compute their covariances at z = 0 to determine the statistics of the impedance 
fluctuations at the surface due to multiple scattering from the microstructure. Let 

C™   =   Eiiffi},     Cjf = E{ij&'} 

Cf   =   E[i?i{},     CjÄ = C,f,     j,l = 1,2..., N. (3.1) 

Let * denote complex conjugate. We will determine the real matrices in (3.1) from the two complex 
matrices 

<5,-i = £{&&,   cjl = E{iJin. 

Note the symmetry properties; C is complex symmetric and C is Hermitian. 

CT = C,     C*T = C. 

Then, from the identity £j = £j* + %& we obtain 

CRR   =    IsR{C + C},      Cll = \^t{C-C} 
tu £ 

Cm   =   ^9{C-C},     CIR=iö{C + C}. 

To derive an equation for C, we use Ito's multiplication table [25], Table 1. 

(3.2) 

(3.3) 

(3.4) 

dß dz 
dß dz 0 
dz 0 0 

Then 

Table 1. Ito's Multiplication Table 

d (ijii) = iidij+ijdii+4-^- (3.5) 
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In the stochastic calculus, the extra term d£jd£i is not zero since (dß)2 = dz according to Table 1. 

Substituting from (2.30) into (3.5) we obtain 

d (ijii) = -2* (Ö + 6) ijhdz + 7 (ii(j + £$) dß + T*$g?dz. (3.6) 

Now, taking expected values in (3.6), and using E{dß} = 0, we obtain 

±Öfl(z)   =   -2^(0 + 6)^+7^? 
Cß(-L)   =   0. (3.7) 

The initial condition in (3.7) follows from (2.31), i.e. the absence of random fluctuations at z = —L. 

Similarly, from the stochastic differential 

d (ijit) = iidij+£jd£t+(d£j)(d$n (3.8) 

we obtain 

±Cji{z)   =   -2ä(tj+$)Cjl+>y^(ttf 

Cji(-L)   =   0. (3.9) 

As an important special case, consider a homogeneous random half space, z < 0. Then ä and 

7 are constants and we can let L -> oo. In this case, the initial conditions are ignored and the 

z-independent solutions for C and C are found from (3.7) and (3.9) to be 

_ *-©(&)• *-©(!??)■   _    <- 
To determine £j we may set d£j/dz = 0 in (2.20) to get an algebraic relation for £2; we obtain 

ef- = J^e-w4 (311) 

Substitution of (3.11) into (3.10) yields 

'    y2«3/2  " 
Chom     _     I   TV?'2   \  (        "j"l        \ ,    ,        ., 

°jl   - [w^)[ ^+^i )■        (3-12) 

Substitution of (3.12) into (3.4) yields 

C,RR(hom) ,         syll(hom) ,       , ,      . \ 
jl =    GjlVVjVl'       Cjl = UjlKUj + "l + y/UjUl) 

CM I horn) ^IRthom) /« in\ 
jl ~   _CW>       cji = -oyiwi, (3-13) 

where 
7  /y2^3/2   \    / ^.^ 

(Xjl (££!L\(  \ (314) 

Traditionally, magnetotelluric data has been displayed in terms of the apparent resistivity [1] 

lei2 
Pa = —, (3.15) 

where £ is evaluated at the surface z = 0. 
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Substitution of (2.29) into (3.15) yields 

Pa~Pa + ^/Sßa, 

where 

Pa = it! 
UlfJ. 

n. mei] 

11 

(3.16) 

(3.17) 

(3.18) 
up ' 

Prom (3.18) we can compute the covariance of pa at two different frequencies, WJ and w;, as 

E{pajPa,l} = (^ä) »{$£^ + miCjl}- (3-19) 

To evaluate (3.17), (3.19) for a homogeneous random half space, put (3.11) into (3.17) to obtain 

Pa™ = 4- (3.20) 

That is, p~a°m is independent of frequency and equals the resistivity of the effective medium. How- 

ever, the random fluctuations in apparent resistivity are not independent of frequency. Substitution 

of (3.12) into (3.17) yields 

pr thorn thorny _    2   //^M  / 1 {y/Gj + y/ÜJ) \ . . 

In particular, for Wj = u){ = w we obtain the variance of p^0™ 

2   ]/2ä7' 

The variance increases as the square root of frequency, and so is zero at u> = 0.   This can be 

understood as resulting from an averaging over lengths of the order of a skin depth 

V upa 
(3.23) 

upa 

As frequency decreases, skin depth increases and the wave averages over more microstructure. 

Consequently, the variance decreases; effective medium theory becomes more accurate. Inserting 

(3.23) into (3.22) yields 

*<(#■)'>-s£-- (3-24> 
The variance is thus inversely proportional to skin depth and proportional to noise strength 72. 

The ä~A dependence then follows from dimensional analysis. 

The homogeneous random half space enables us to study the effects of random conductivity 

fluctuations in a setting free of any macroscale artifacts. How important are these fluctuations as 

a source of error? 

Parker [12], in Table 5.02A of his text, presents an MT data set that includes a tabulation of 

both apparent resistivity and a standard deviation of uncertainty over a broad range of periods. 

We'll use this data to provide a benchmark for an order-of-magnitude comparison. 
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From (3.20) and (3.24) we form the relative error (the standard deviation divided by the mean) 

Ra. = 
J5Em°™)2} _ fiw 

P~hom 
a 2CT2Z, 

(3.25) 

In order to evaluate this expression, we consider a model consisting of layers of thickness I. The 

conductivities of these layers are assumed to be independent, identically distributed random vari- 

ables uniformly distributed on the interval [o\, o^\ (where I, <j\ and o<i represent actual, dimensional 

values). For this model, Ra reduces to 

' &2 — G\ 
Ra = y/i/fr,), (3.26) 

K(T2 + &1. 

where zs likewise represents the actual dimensional skin depth for the effective medium half space. 

Figure 3 compares Ra with corresponding apparent resistivity quotients formed from Parker's 

data and plotted as a function of logarithmic frequency. We have used the values 02 = 0.1 S/m, 

<TI = 0.01 S/m and I = 3 m. 

FIGURE 3. Comparison of Uncertainty Levels: Apparent Resistivity Uncertainty 
vs. Logarithm of Frequency (Hz). The solid curve represents uncertainty due to 
resistivity microstructure. The circles are uncertainty levels reported by Parker [12]. 

The sources of uncertainty that we compare in Figure 3 are certainly different. However, this 

graphical comparison does illustrate the fact that a reasonable level of conductivity fluctuations 

can give rise to uncertainties that are roughly comparable in size over a significant frequency band 

to those encountered in practice. 

4. FUNDAMENTAL LIMITS TO DETECTABILITY 

In the interpretation of magnetotelluric surveys it is often assumed that the Earth consists of a 

discrete number of plane layers, within each of which the conductivity a is a constant. This type 

of model ignores small spatial scale random variations, which are always present. In this section 

we investigate the effect of scattering noise due to the microstructure on the ability of such a 

survey to detect a particular layer of interest. Since scattering noise is created by the same physical 
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mechanism as the "signal" from the macroscopic layers, this type of noise represents a fundamental 

limit to detectability that cannot be reduced by instrumentation. 

For a more general plane-layered model that includes the microstructure, we consider a to be a 

piecewise-homogeneous random function. We consider m macroscopic layers, with layer boundaries 

—L = zm < zm-\ < zm-2 < ... < zo = 0. For ZJ < z < Zj-i,a = <jj(z/5), where UJ is a stationary 

random process with mean äj and noise strength 7?. Formulas for rapid calculation of the effective 

medium impedances and of the covariances for models of this type are derived in Appendix A. 

For simplicity, we consider in detail the case m = 3, illustrated by Figure 4. The top layer, z\ < 

z < z0 has an average conductivity ä\ and an effective scattering strength 7^. These same values 

are assumed to be taken by the third layer, which lies directly above the basement. Sandwiched 

between these two layers, in z^ < z < z\, is a layer with different values, 02,73. 
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FIGURE 4. Random Three-Layer Model: Resistivity (Ohm-m) vs. Depth (m). A 
1000 Ohm-m layer (100 m thick) lies between two layers having randomly-fluctuating 
microstructure. The semi-infinite basement has a 1000 Ohm-m resistivity. 

We investigate here the statistical reliability with which the middle layer can be detected with 

an MT survey. The existence of this layer, i.e. the model shown in Figure 4, is referred to as 

hypothesis H\. This hypothesis is to be contrasted with the one in which the middle layer is not 

present, i.e. there is just one layer, occupying z% < z < ZQ, with parameters <j\ and 7^. This latter 

hypothesis is referred to as HQ, the null hypothesis. 

This example is a model for MT exploration. Since hot, pressurized brine is highly conducting, 

5-2 » äi in prospecting for geothermal energy. Since hydrocarbons are highly resistive, öl <S ä\ in 

prospecting for oil or gas. In either case, we are to reach a decision E\ or #0, as to whether or not 

the target has been detected by MT. 

Within this framework, there is an optimal method of reaching a decision by processing the 

survey data. This "most powerful test" is given by the Lemma of Neyman and Pearson [22]. Let 

the data vector be 

d=(^£2V..,$,&&••• >£N)T- (4.1) 
As before, £j*, A are, respectively, the real and imaginary parts of the impedance at frequencies un- 

measured at the surface z = 0. 
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For h = 0 or 1, let Eh denote the expectation under the assumption of hypothesis H^. Then, for 

each case, the mean of the data is 

dfc = Eh{d} = (^h, ^h,... , Hk, |{|h, f2)h,.. • , eN,h)
T ■ (4.2) 

That is, the 2N vector of real and imaginary parts of the impedances for the effective medium 

corresponding to the appropriate hypothesis. 

Similarly, putting £j = £j+Vö £j, the covariance matrix for the data depends upon the hypothesis 

(Hi or Ho). For each hypothesis we have 
(pRR    piRI \ 

ChiR     <& j • (4-3) 

That is, the 2iV x 2N covariance matrix is partitioned into four N x N blocks, which can be 

computed for the appropriate model using the general theory. 

Since the data are Gaussian, the probability density of the data vector in 2iV-dimensional space 

is, for h = 0 or 1, 

The "most powerful test" involves the choice of a threshold 9. Given this threshold, we are to 

decide H\ whenever 

m > e- (4-5) 

For the Gaussian of (4.4), this test is equivalent to thresholding the quadratic form Q(d), i.e. 

Q(d) = (d-do)TCo1(d-d0)-(d-d1)
TCi-1(d-d1)>ö. (4.6) 

Here, the alternative threshold 9 for Q is related to 9 by the relation 

0 = 21ogö + logdetCi-logdetCo. (4.7) 

Now, Q(d) has a probability density qo(Q) if hypothesis Ho is true and a probability density 

qi{Q) if hypothesis Hi is true. The false positive rate Ppp is the probability of deciding that a 

target layer has been detected when, in fact, it is not present. From (4.6) 
/•oo 

PFP = PFP{9) = /    qo(Q)dQ. (4.8) 
Je 

The false negative rate, PFN, is the probability that the decision made will miss a target that is 

present; so, from (4.6) 

PFN = PFN{9)= [    qi(Q)dQ. (4.9) 
J — OO 

These two types of errors can be traded off against each other by changing the threshold 9. In 

general, however, one error rate cannot be reduced without increasing the other error rate. The 

trade-off relation between false positive and false negative error rates is a fundamental limitation 

on the reliability of detection. It is standard practice in detection theory to illustrate the relation 

between the error rates by plotting a ROC (Receiver Operating Characteristic) curve, in which the 

probability of detection, 1 — PFN, is plotted against the false positive rate, Ppp [23]. Since the 

Neyman-Pearson Lemma guarantees that our data processing is optimal, the ROC curve cannot be 
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improved. These ideas are illustrated in the next section, where the theory is compared to Monte 

Carlo simulations. 

The above formulas simplify considerably if we make the approximation 

Ci « C0 = C. (4.10) 

This is the case, for instance, when the middle (target) layer is small, and/or the contrast in 

properties is not great, i.e. when detection is difficult. If (4.10) is valid, then the quadratic terms 

in (4.6) cancel and Q becomes linear, i.e. 

Q   «   2(di - do^C-M - d^C^di + dfC^do 

=   (d1-d0)
TC-1(2d-d1-d0). (4.11) 

Under hypotheses HQ and Hi, respectively, linearized Q has mean values 

Q0   =   Eo{Q} = -(di-dQ)TC-1(di-d0) 

Qi   =   E1{Q} = (d1-do)rC-1(di-d0). (4.12) 

Under either hypothesis, Q has standard deviation S, where 

S = 2^(di - doFC-Mdi - do) = 2y/&. (4.13) 

Using (4.11) and (4.12), the false positive and false negative error rates for the optimal test (4.6) 

can be represented using the cumulative normal probability distribution function 

F{a) = --L Ja  exp(-T2/2)tfr. (4.14) 

Then 

PFP   =   PFP(9) = 1-F(^^- 

PFN   =   PFN(0) = F(
(
^±). (4.15) 

Approximation (4.10) also simplifies the analysis of stacked data. Suppose that data vectors 

of the form (4.1) are collected from r different locations, widely separated on the surface. If it 

is assumed that the macrostructure is identical at each location, but that the microstructures are 

statistically independent (with identical probabilities), then the data vectors may be considered to 

be r independent, identically distributed samples. The optimal test then utilizes only the average 

of the r vectors; this average is used in place of d in equation (4.11). The resulting Q is then 

compared to a threshold. Stacking reduces the errors; the stacked error rates become 

s 
Ppf*[ß)   =   pfV-Q^) (4.16) 
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5. MONTE CARLO SIMULATIONS 

We use the three-layer model shown in Figure 4 as a prototype to numerically study and evaluate 

the theory. A semi-infinite basement having a constant 1000 Ohm-m resistivity is assumed to 

occupy the region z < -6000 m. A thin, highly resistive layer of interest (100 m thick with 1000 

Ohm-m resistivity) is positioned at a depth of 2000 m, i.e. —2100 m < z < —2000 m. The 

intervening regions, —6000 m < z < -2100 m and —2000 m < z < 0 m consist of random layers 

having independent, identically distributed conductivities. Since MT is quite insensitive to resistive 

targets in conductive backgrounds, this is a good test. Recall that the theory possesses a robustness 

with respect to microstructure details; it predicts that the statistical behavior of the impedance and 

apparent resistivity depends only upon the mean conductivity a(z) and the fluctuation parameter 

Sj2 and not upon the details of the statistical model generating these parameters. To provide 

some illustration of this robustness, we consider two statistical models. In the first model, the layer 

conductivities are uniformly distributed on the interval 0.01 S/m < z < 0.10 S/m and the layers are 

each assumed to be a constant 3 m in thickness. In the second model, the layer thicknesses are also 

randomized with a uniform distribution on the interval 1 m < I < 5 m. The layer conductivities 

are again assumed to be independent and identically, uniformly distributed. In this case, since the 

mean layer thickness is again 3 m, one can show that the conductivity interval generating the same 

values of ä and 5j2 remains the same. 

Two cases, where the thin resistive layer is both present and absent, are considered. (When the 

thin layer is absent, the random layering is simply taken to occupy the entire interval —6000 m < z < 

0 m.) 5000 realizations were generated for each case (i.e. thin layer present and absent) and for each 

random layering model. Fifty one frequencies, equally spaced on a logarithmic scale extending from 

—2 to 3, were considered. The results are displayed in Figure 5. We plot the apparent resistivity 

mean and the mean ± one standard deviation over the frequency range 10-2 < / < 103. Simulation 

results for the two random models are compared with the theoretical predictions. Agreement is 

good over the entire five decade frequency band. As one would expect, the resistivity fluctuations 

decrease as frequency decreases. Moreover, as frequency decreases, the entire 6 kilometers of random 

layering (with the thin resistive target layer present or not) becomes increasingly transparent and 

the surface apparent resistivity tends toward the 1000 Ohm-m value of the semi-infinite basement. 

Figures 6 offer additional evidence of good agreement between the theory and simulations for 

the real and imaginary parts of the impedance and for the apparent resistivity. The first two 

plots compare predicted (Gaussian) and computed probability density functions for the real and 

imaginary parts of the impedance, respectively, at 1 Hz. Note that for both impedance components 

the variance is small, on the order of 10-4, so that the peak density value is correspondingly on 

the order of thousands. The imaginary part is negative and roughly equal in magnitude to its 

real counterpart, as one would expect (i.e. the impedance phase is roughly —45°). The third of 

Figures 6 presents an analogous comparison of theory and simulations for the apparent resistivity 

at 1 Hz. (For simplicity, the simulations used in these and all subsequent plots are those involving 

the fixed 3 m layer thickness.) < 
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FIGURE 5. Apparent Resistivity (Ohm-m) vs. Logarithm of Frequency (Hz): a com- 
parison of theory and simulations. The mean and mean ± one standard deviation 
are plotted for (a) the thin resistive layer present and (b) the layer absent. The solid 
lines represent the theory. The circles and stars represent the two random layering 
models used in the simulations. 

FIGURE 6. Impedance Statistics at 1Hz: Comparison of Theory and Simulations. 
Probability density functions predicted by the theory (solid curves) and constructed 
from the simulations (circles) are shown for (a) the real part of the impedance, (b) 
the imaginary part of the impedance and (c) the apparent resisitivity. 

Since the number of frequencies N = 51 in our calculations, covariance matricies Ch, h = 0,1, 

as given by (4.3), are 102 x 102 real symmetric arrays. In Figures 7 we display surface plots of the 

covariance matrix subblocks CfR, C*1 and Cfl as functions of logarithmic frequency. Although 

the particular case shown corresponds to that computed from the simulations with the thin, highly 

resistive layer present, the other possibilities (theory vs. simulations, layer present vs. layer absent) 

all produce indistinguishable results on the scale shown. The behavior shown is what one would 

expect. As frequency increases, random fluctuations in both the real and imaginary parts of the 

impedance increase in amplitude. Therefore, as one moves out along the main diagonal in the first 

and third plots, the corresponding variances likewise increase; variances of the imaginary part are 

larger than their real counterparts. As the second of Figures 7 shows, the real-imaginary cross- 

correlations are likewise largest in amplitude at the highest frequencies.  Note that the behavior 
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of the fluctuations is coupled so that this fluctuation product is negative. (This negative value 

agrees with analogous cross-correlation results obtained for the homogeneous random half space; 

c.f. (3.13), (3.14). 

FIGURE 7. Covariance Submatrices: (a) Real-Real CRR, (b) Real-Imaginary CRI, 
and (c) Imaginary-Imaginary Cn Covariance Submatrices are plotted against Log- 
arithm of Frequency. 

Figures 7 suggest a large spread in the amplitudes of the covariance matrix elements but mask 

the low frequency fine structure. Such a large range of amplitudes is not surprising, given the results 

of Section 3 for the homogeneous random half space. Note in particular the frequency dependence 

in (3.13) and (3.14), together with the fact that the frequency range considered spans five decades. 

The matrix elements in Figures 7 have amplitudes ranging roughly from 6 x 10-4 to 6 x 10-11. 

Figures 8 study the real-real covariance subblock C^1 as a representative case; results for the 

other subblocks are qualitatively similar. The first two plots display the low frequency structure 

for theory and simulations, respectively. The third and fourth plots, on the other hand, study 

the impact of the thin resistive layer upon this covariance subblock; CfK — Cjp- is plotted for 

both theory and simulations. These plots further confirm the good agreement between theory and 

simulations. They also lend credence to approximation (4.10) 

Low frequency surface impedance information is very important in detecting the presence or ab- 

sence of a thin, highly resistive layer such as that shown in Figure 4. Higher frequencies correspond 

to both shorter skin depths and increased impedance fluctuation levels due to the random conduc- 

tivity microstructure. At low frequencies, sources of noise other than conductivity microstructure 

assume increasing importance; this is certainly suggested by the Parker data [12] in Figure 3. 

We will model other sources of noise with an additional white noise component. That is, the 

measured impedance will be taken to be . 

£? + *f+ «&•+*#»     J = l,..-,N, (5.1) 

where {v^, ^J }jLi is a family of independent, identically-distributed, zero mean Gaussian random 

variables having common (dimensional) variance u2. As a result of this modification, the mean 

or effective impedances £y remain unchanged but the covariance matrix undergoes the change 

ÖC ->• ÖC + u2l. 

The detection problem can be summarized by examining Figure 9. Assuming v2 — 10~9, we 

have plotted the mean apparent resistivity and the mean ± one standard deviation for each of the 
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FIGURE 8. Real-Real Covariance Submatrix vs. Logarithmic Frequency. The first 
two figures show the fine scale structure of CÄÄ, as computed by (a) theory and 
(b) simulations. The latter two figures show the effect of the thin resistive layer 
upon the covariance submatrix, i.e. CfÄ — CjfÄ, as computed by theory in (c) and 
simulations in (d). 

two cases; the solid-line curves represent the case where the thin resistive layer is present (Hi true) 

while the dashed curves correspond to the layer being absent (HQ true). The circles and stars, on 

the other hand, represent two sets of measurements, in this case two simulation realizations, both 

with the layer present. Given just one of these sets of measurements, we must decide whether or 

not the layer is present. 

_ We attack this detection problem using the ideas of Section 4. In order to determine the false 

positive and false negative rates associated with this problem, i.e. Ppp and PFN as given by (4.8), 

(4.9), we must determine the probability density functions qo and q\ present in the integrands. 

We have numerically determined these density functions for the quadratic functional Q(d) in (4.6) 

and found that the approximation Co « Ci, leading to (4.11), is a very good one for our model 

problem. As noted in Section 4, this linearizing approximation reduces Q(d) to a Gaussian random 

variable with known mean and variance and makes the theory very easy to implement. Ultimately, 

we eliminate the threshold parameter to obtain Ppp vs. PFN- This relation is plotted as a ROC 

curve, i.e. the detection probability, 1 — PFN, is plotted,against the false positive rate, PFP- 
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FIGURE 9. The Detection Problem: Apparent Resistivity (Ohm-m) vs. Logarithm 
of Frequency (Hz). The solid and dashed curves are predictions of the theory for the 
resistive layer being present and absent, respectively. The mean and mean ± one 
standard deviation are shown for each case. The circles and stars are two different 
realizations, i.e. two different sets of random microstructure, both for the case where 
the layer is present. 

To illustrate these ideas, consider a case where an added white noise level v1 = 10 exists 

and the highly resistive layer, with its upper surface remaining at a depth of 2000 m, has its 

thickness reduced from an initial 100 m to a final 10 m. We expect the layer detection to become 

increasingly difficult as its thickness is reduced. Figures 10 illustrate these ideas at the level of the 

probability density functions qn(Q)- The two plots correspond to layer thicknesses of 100 m and 

25 m, respectively. In the first case, the density functions q\ and qo, (corresponding to the 100 m 

layer being present and absent), are quite separated. Given a single realization, i.e. a single set 

of surface impedance measurements, one could therefore, with relatively high probability, correctly 

decide upon the presence or absence of the resistive layer. (If the density functions had completely 

disjoint supports, a single realization would with certainty answer the detection question.) As the 

layer thickness decreases, the density functions tend to peak and migrate toward each other; for 

the 25 m thick layer shown in the second plot, the two density functions have considerable overlap. 

In this case, given a single realization, identifying the correct hypothesis is correspondingly more 

difficult. In the extreme case where both density functions completely overlap, the realization (i.e. 

the set of impedance measurements) would provide no useful detection information. 

Symmetries are evident in Figures 10. The density functions qo and q\ are Gaussian with equal 

variances and means symmetrically located relative to the origin. This structure follows from 

(4.11)-(4.13). 

Recall that Figure 9 includes apparent resistivity plots for two realizations (i.e. different random 

microstructures), both with the 100 m resistive layer present. One can ask, in the context of the 

optimal detection theory presented, "How detectable is the resistive layer in each of these two 

particular cases?". The quadratic form Q(d) defined by (4.6) has values of 17.7 and —2.1 for the 
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FIGURE 10. Probability Density Functions for the Detection Problem: Density 
functions qo and q\ for a (a) 100 m thick resistive layer and (b) 25 m layer. In 
each case, the density function qo(Q), corresponding to the layer absent, appears on 
the left while the density function qi(Q), corresponding to the layer present, appears 
on the right. 

"circles" and "stars" data, respectively. Locating these abscissa values on the first of Figures 10 

shows that the 17.7 value is well within the probability mass of q\, essentially disjoint from the the 

probability mass of qo, while the —2.1 value is in the overlap region of the qo and q\ density tails. In 

the former case, detection of the resistive layer would be relatively straightforward. Noting (4.9), 

6 = 17.7 corresponds to PFN = 0.78; any false negative threshold less than this value would result 

in the correct detection of the layer. On the other hand, 9 = —2.1 corresponds to PFN = 0.01 and 

any higher threshold would cause the layer to be missed. 

In Figures 11, the performance of the optimal detector is illustrated by its ROC curve: that is, 

the probability of detection, 1 — PFN, is plotted against the false positive rate PFP- When the 

two probability densities qo and q\ are well separated, good detection is possible. In this case the 

probability of detection is close to one unless the false positive rate is kept very small. Therefore 

the ROC curve, which always passes through the origin, rises steeply to unity in this case. At the 

other extreme, when the two probability densities qo and q\ substantially overlap, detection will 

be poor. In this case the ROC curve lies close to the diagonal line where the detection probability 

equals the false positive rate; hence the detector performs no better than the flip of a biased coin. 

Figures 11 clearly show a progression from one extreme to the other as the resistive layer thickness 

is reduced from 100 m to 10 m. 

One can similarly study the detection question as other parameters are varied, e.g. one where 

resistive layer thickness is held fixed but the level of additive noise is varied. Figure 12 shows what 

happens, for the case of the 50 m layer, as the level of additive noise is increased from u2 = 10-11 

to v2 = 10-5. At the lowest 10-u noise level, the ROC curve predicts almost certain detection, 

unless the false positive rate is kept very low. At the highest 10-5 noise level, the detection curve 

is basically the straight line of equal probabilities. In this case the added noise has corrupted the 

measurements to the point that they no longer provide useful detection information. 
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FIGURE 11. ROC Curves: Probability of Detection vs. False Positive Rate for a 
resistive layer thickness of (a) 100 m, (b) 50 m, (c) 25 m, (d) 10 m, constructed 
using the theory. The circles represent a corresponding curve created using the 
simulations. 
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FIGURE 12. The Effect of Added Noise upon Detection: ROC curves are plotted for 
a resistive layer thickness of 50 m and added noise levels of i>2 = 10-n, 10-9,10-7, 
and 10-5. The curves decrease monotonically as the noise level is increased. 

A final point worth emphasizing is the important role that the correct covariance matrices play 

in the detection process. Figure 13 illustrates this for the case of a 50 m thick resistive layer 

and an additive noise level of v2 — 10-11. The solid curve is the ROC curve computed using the 

correct covariance matrix. The dashed curve, on the other hand, represents the performance of a 

detector which assumes that the covariance matrix is the identity matrix. (Any multiple of the 

identity matrix would correspondingly change the threshold level but not change the resulting ROC 

curve.) The improvement in detection capability achieved by using the correct covariance matrix 

is pronounced. 
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FIGURE 13. The Importance of Using Correct Covaxiance Information: the case of 
detecting a 50 m thick resistive layer in the presence of u2 = 10-11 added noise is 
considered. The solid curve is the ROC curve using correct covariance information 
while the dashed curve represents the case where these covariance weights have been 
replaced by the identity matrix. 

6. CONCLUSIONS 

The Monte Carlo simulations verify the accuracy of both the effective medium theory and the 

theory of random scattering statistics over a frequency range spanning five orders of magnitude. 

Although the scattering noise is significant compared with estimates of other noise sources, its effects 

can be substantially mitigated, in the models considered here, using the theory of this paper. If 

other sources of noise can be sufficiently reduced, good detection is possible, in these models, for 

relatively thin layers of anomalous resistivity at depth. However, good detection levels are achieved 

only through use of optimal detection algorithms, which incorporate a theoretical understanding 

of the noise statistics. 
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APPENDIX A. PIECEWISE-HOMOGENEOUS RANDOM MEDIA 

In this appendix we consider piecewise-homogeneous random media of the type introduced in 

Section 4. These types of models generalize the usual macroscopic layer models to include the 

effects of random scattering from the microstructure. 

Consider m macroscopic layers, with layer boundaries — L = zm < zm-\ < zm_2 < ... < ZQ = 0. 

For zr < z < Zr-i,0 = o> (•?/£), where ay is a stationary random process with mean är and noise 

strength 7;?. Consider the interface at z = zr for some r. We assume that £(zr),C(zr) and C{zr) 

have been determined. (Recall that £, C and C are all continuous across the interface.) We will next 

derive formulas for £(z), C(z) and C(z) for zr < z < zT-.\. Using these formulas recursively, one can 

compute the relevant quantities at z = 0 rapidly, by stepping up from the basement layer-by-layer. 

We write ä = öy, 7 = IT and z = zr. Let 

Vj = exp (äj lj{s)ds\ , (A.l) 

where the j-subscript refers to frequency ujj. Then 

d_ 
dz 7Zvi = ^JVJ (A.2) 

and 

where 

u2T ■jgVj + klVi   =   0, (A.3) 

kj = v^J~j!äei^4. (A.4) 

Since from (A.l), (A.2) 

Vj(z)   =   1 
J 

—Vj(z)   =   &£0J, (A.5) 

we obtain from (A.3), (A.5) that 

Vj = Aj exp[ikj (z - z)] + Bj exp[-ikj (z - z)], (A.6) 

where 

Aj = Ui+^ 
2 V       ikj 

Solving (A.2) for £,• and substituting from (A.6) yields 

- = ikj_ (Aj exp[ikj(z - z)) - Bj exp[-ikj(z - z)]\ 
Cj      ä  \Ajexv[ikj(z-z)]+Bjexp[-ikj{z-z)])' [   *} 

From (A.8) £,- can be determined at the next layer boundary, z = zT-\.  Formula (A.8) is well 

known in the literature [2]. 

Next, VjVi  may be identified as an integrating factor in equation (3.7), i.e. 

i{vM^=^lV?m- (A.9) 
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However, from (A.2), (A.6) we obtain 
— In   ' 

Vjtj = -=- (Aj exp[ikj(z - z)] - Bj exp[-ikj (z - z)]). (A.10) 

Now, substitution of (A. 10) into (A.9) yields 

öji{z)=v?(z)v?(z) {öji{2)+7' r v?V{2^ds)'      (A-n) 
where the integral is 

VfV^ds = (k-$)2 (A)A* (exp[2^+^)(,-f)]-l) 

, „2 P2 (exp[2z-(fcj - h){z - z)] - 1) 2 (expfiikjjz-z)]-!) 
+A*Bl M(J^J5 2^^ Ö35  

, P2 ,2 (exp[2i(fc; - A?j)(z - z)\ - 1)  ,  p2 P2 (exp[-2% + 'fr)(z - I)] - 1) 
+^< 2i(kt - ty +BiBl -Mfo + k)  

_W2AB (exp[-2^-(,-z)]-l) _ (exp[2^-z)]-l) 
J -2?fy J   °   l 2iki 

nA   T>  r>2 (exp[-2ifc;(z - 2)] - 1)   ,   , ,   „   , .„, \ 
-2AiBjBl  —^ + AAjBjAiBiiz -■ z) 1 . 

(A.12) 

When j = / in (A.12), indeterminate quotients, such as (exp[2i(A;j — fcj)(z - z)] — l)/2i(kj — ki), 
must be replaced by the limiting value (z — z). 

Similarly, V^2(V^*)2 is an integrating factor in (3.9). We obtain 

Gjl{Z) = Vf{z){VC?{z) [Öjl{2) + j2 fM<y&)2W%?d*) , (A.13) 

where the integral can be evaluated to be 

f\v&?mt?ds = (Ä)2 (^)2 (e^^-*f)(^-1)1-1) 

, ,2/y>2 (gq>[2«(*j + kf)(z - z)] - 1)     0/l2/1«D«(exp[2^(z-z)]-l) 

, P2, .^2 (exp[-2»(Arj + kf){z - z)] - 1)  ,  p2/p^2 (exppifa* - fcj)(z - z)] - 1) 
+Bj{Al) -xiki + kf) + Bj{Bl)  &■(*?-*,-)  

QD2^D. (exp[-2tfcj(z - z)] - 1) 2 (exp[-2zfcf (z - z)] - 1) 
"^ ß< =2Ü5 2AiBMi)  z^  

-2AjBj{Btf {eMm^ ~Z)] ~ 1} + 4W*T(« - *)) . 

(A.14) 
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