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OPENING WORDS BY THE CHAIRMAN OF UPoN'96 

LASZLOB.KISS 
Uppsala University, Angstrom Lab, Material Science Department, Box 534, Uppsala, S- 

75121 Sweden 

Why did we organise the conference on Unsolved Problems of Noise, UPoN'96 ? 
Nowadays, the scientific community lacks forums where unsolved problems can be 
published. I have had the opportunity to visit many institutes of physics and 
technology in different countries and have often found that the most interesting 
experimental results have been laying on the table in the lab instead of being 
published. The scientists who discovered these results were very pleased to speak 
about and discuss these findings, however they did not want to publish them until a 
rational correspondence with some accepted theoretical models or views could be 
achieved. Without that, they felt it was hopeless (sometimes, even dangerous) to get 
the paper published. I have realised that they are right. Scientific refereeing practices 
and professional opinions do not really support the publication of strange or very 
unusual issues. Progressive ways of approaching scientific problems are often 
thought to be suspect or erroneous. Many recent discoveries heralded as revolutionary 
issues are relatively slight improvements of technical issues. Less significant 
scientific results obtain Nobel prices than that happened in the 1920-1960's years. 
Michelson and Morely of today would have had serious problems with the 
publication of their unbelievable experimental data. Therefore, the Einstein of today 
would not have had the chance to read these results and to develop the theory of 
relativity. Even if he could develop it somehow, his revolutionary theory would 
certainly be classified as a fiction and not a serious scientific result. 

Inspired by these thoughts, the idea of the UPoN conference series is to provide a 
forum for discussing important unsolved problems of noise. This idea has been 
supported by many of today's scientific leaders as the international committees of the 
conference and the list of important sponsors indicate. We are very grateful also to 
the Department of Experimental Physics, JATE University, Szeged, Hungary for the 
essential help with the local organisation of UPoN'96. We hope that this meeting 
will be a kind of break-through in the objective and style of noise conferences as the 
logo of UPoN'96 shows. 

The key-sentence of the UPoN'96 conference is a citation from the "Speech on the 
Mountain" of the Bible:  "Blessed are they which do hunger and thirst after 

xv 
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righteousness: for they shall be filled" (Mt 5:6). For the UPoN'96 Organisers the 
word "righteousness" has had multiple meanings: 

1. The idea of UPoN conference is to point out the contradictions or imperfections 
of present scientific knowledge instead of hiding them. 

2. Selection of invited speakers: anyone in the scientific community had the 
opportunity to submit a proposal for an invited talk. 

3. Refereeing most of the proposals had been done in a double-blind way. Though, 
in some cases the reader could conjecture who was the author of the paper, in most 
of the cases, the Referee was uncertain about the identification of the author. 
Therefore, the name and affiliation of the authors had practically not influenced the 
refereeing process, dislike at some other scientific papers and conferences. Invited 
talk proposals (reviews of old unsolved problems) had been refereed by 3 members of 
the International Scientific Committee, while regular talk proposals (new unsolved 
problems) had beer, refereed by 2 members. 

4. After the conference, the Editors have done a last thorough screening of the 
articles. This is partly the reason why some of the presented talks is not published in 
this book. 

Before turning to the unsolved problems of noise presented in this book, I would 
like to take your attention to the probably most important unsolved problem of 
nowadays science, because this problem is also relevant to noise phenomena. We, 
noise researchers all know that a finite duration time-record of a noise does not have 
any meaning. Either, the record duration has to be infinite or we should have finite 
records from an infinite number of analogous physical systems to use the terms of 
nowadays science: distribution functions, noise spectra, etc. We are interested in the 
general properties, and we are unable to accurately predict details of single events. 
Scientists of classical physics believed that this is due to our limited knowledge and 
by solving the set of equations describing a complex system, we, in principle, could 
be able to predict even a single sequence of events accurately. Quantum physics has 
proved that it is not the case: the nature is fundamentally "noisy": the single event is 
basically unpredictable; the wavefuntion provides only a probability distribution for 
the elementary processes. The strange fact is that the experimentalist can record the 
whole sequence of elementary events, however, nowadays science is unable to deal 
with the accurate prediction of these elementary events, it is even unable outline a 
mathematical framework for that. It is like, we are studying an infinite "Book" 
entitled "Nature", in which, the different letters correspond to different occurring 
values of physical quantities. The only  thing  what a scientist  can do is   to 
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make/predict a statistics of the occurrence of different "letters" appearing in the book, 
including some cross-correlation effects. Mathematically, all these statistics are 
inherently based on some infinite ensembles of elements. On the contrary of that, in 
reality, experimentalists have always been facing ensembles with finite number of 
elements, a number determined by resolution of instruments and limited time for 
measurement. The experimentalist has to smooth, filter, trash, the vast amount of 
the particular information from the sequence of data and to compare the few 
remaining statistical results with theories for inherently infinite statistics. We cannot 
predict the particular sequence of letters on the next page what we have not seen yet 
in "Book of Nature", we can talk only about probabilities of future events. It is a 
part of the basic problem: we do NOT understand that "text" in the book. Turning to 
noise processes, for example, a thermal noise of a given impedance is a timefunction 
which contains practically infinite amount of information, it looks like an encoded 
wideband signal with an encoding which provides the maximal efficiency of 
information transfer. However, nowadays science is unable to decode that 
information, it is even unable to formulate a proper initiative question about that, it 
can understand only just a few basic characteristics of this process, like amplitude 
distribution functions, power density spectra. The Copenhagen foundation of 
quantum physics, due to Heisenberg's uncertainty principles, even forbids us to ask 
such questions about the particular information carried by a given sequence of 
elementary events. Will we ever have the ability to decode what the thermal noise of 
a particular resistor is talking to us? If yes, that science will be Another Science, not 
the science which has been evolving since Gallilei/Newton. I believe that the way of 
science and mathematical approach which we have basically been following since 
Newton, which is a way based on finding generally valid laws and formulate 
equations of balance for conserving physical quantities, strictly does lead to the 
quantum physics of our century, which is a crown of this evolution on one hand, on 
the other hand, it is a sort of deadlock, especially, when we really want to read that 
"Book of Nature ". 

I hope, by studying this book, the Reader will find interesting scientific problems to 
think about. 



OPENING WORDS FROM THE INTERNATIONAL ORGANISING 
COMMITTEE 

DEREK ABBOTT 
University of Adelaide, EEE Department, Australia 

What a marvellous idea to have a conference on "unsolved problems". Conferences 
have been traditionally about what we have come to know -now we have one about 
what we do not know. It is refreshing to have a new paradigm, do things differently 
and openly discuss vexing and unsolved problems. 

Of all the disciplines, noise is probably the most challenging and only 
stubbornly releases its secrets to us. So let us all use this conference to have some 
fun and do things a little differently. Normally an audience cross-examines the 
speaker. Perhaps in a conference on unsolved problems this should be the other way 
around - the speaker now poses questions to the audience. Question time will not be 
a one-way affair, but will be a time of lively interaction or brainstorming. Let us 
remove our academic inhibitions and let our childish fascination of nature speak out. 
The British physicist William Henry Bragg (1862-1942) once said VNThe important 
thing in science is not so much to obtain new facts as to discover new ways of 
thinking about them." 

It is an honour to be addressing so many distinguished researchers in the field of 
noise. Noise is a very deep subject and it takes a special breed of person to explore 
it. Because of the all-pervading nature of noise, the researcher is forced to become an 
expert in many areas of physics and electrical engineering. The exploration of noise 
can involve studying device physics through to electronics, biology, earthquakes, 
thunderstorms, mechanics, quantum theory and gravitation to name a few. Noise 
appears everywhere. 

It is appropriate that the birth of this conference is in 1996, which is the 70th 
anniversary of Johnson's famous experiment. Both Johnson and Nyquist were 
Swedish immigrants, working in the USA. They both attended Yale and completed 
their PhDs at the same time. Johnson shared his results with Nyquist, who only 
took a month to come up with his now well-known derivation. Although this result 
was foreshadowed by Einstein in 1905 and de Haas-Lorentz (the first woman in noise 
theory) in 1912, Johnson and Nyquist turned 1926 into a major milestone for 
electrical noise. Also exactly a hundred years earlier, in 1826, Brown carried out his 
microscope studies and opened the door for research into fluctuation phenomena. 

The more we have studied fluctuations over the last 170 years, the more we 
have learned and yet we have discovered there is even more we do not know. Noise 
certainly keeps us humble. 
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The mathematician Jacob Bronowski (1908-1974) once wrote, "There is no 
absolute knowledge  all information is imperfect. We have to treat it with 
humility." 

The famous Danish philosopher Soren Kierkegaard (1813-1855) said "The 
paradoxical character of truth is in its objective uncertainty." It is fascinating that 
this was written 100 years before there was such a beast as a Copenhagenist! Danish 
philosophy found its way into Danish physics. In contrast, the Dutch philosopher 
Benedict de Spinoza (1632-1677) wrote, "Nothing in nature is random.... A thing 
only appears random through the incompleteness of our knowledge." He said that 
some 300 years before 'hidden variable' theories were debated. 



FUNDAMENTAL PROBLEMS OF RANDOM PROCESSES 



A BRIEF HISTORY OF RANDOM PROCESSES 

MICHAEL F. SHLESINGER 
Office of Naval Research 

Physical Sciences Division 
800 N. Quincy St. 

Arlington VA 22217-5660, USA 

This volume deals with unsolved problems of noise. Before we can understand and 
appreciate noise in natural and man-made systems it may be instructive to begin by 
exploring the beginnings of the field of mathematics known as random processes. In 
addition to being instructive it is also reassuring to see that previous generations 
also faced their own set of unsolved problems. Several of those who introduced new 
ideas became very well known for their efforts. A general set of references related to 
historical matters is given at the end. 

Man's conscience deliberation with random processes is as least as old as the 
ancient game of throwing the bones . The bones in question, called astrogali, are the 
heel bones of animals including dogs and sheep. These bones fit nicely in the hand, 
and are the forerunners of dice. In fact, the French expression "jeu dliasard" (games 
of hazard or chance) comes from the Arabic for dice "al-zar" . In reality, gambling 
(from dice to actuarial tables to risk-benefit analysis) has always been in the forefront 
of expanding the frontiers of probability theory. The bones in question have only 
four faces upon which they come to rest. The four-sided spinning dreidel is the most 
similar, in this respect, to throwing of the bones. In ancient times a mathematics of 
probability did not arise. Perhaps, this was because the early dice did not have 
equally likely outcomes and the occurrence of a rare event (landing on a less probable 
face) was ascribed to luck rather than sparking the development of the idea of the 
permanence of statistical ratios. The Greeks played with a roll of five dice while the 
Roman played with a roll of four. Each combination of outcomes was given a 
name, much the same as today we call a role of a pair of ones "snake eyes". For the 
Romans four ones were called "the dogs". They labelled the four faces as 4 (upper 
bone), 3 (opposite side of the upper bone), 1 (flat lateral side), and 6 (its opposite 
side). The Venus throw of 1,3,4,6 which represented beauty had one of everything. 
On the other hand, a mathematics of probability also did not arise from the ancient 
Chinese, / Ching, which has 64 equally likely outcomes. The / Ching was used as 
an oracle and perhaps has too many outcomes to provide the insight to inaugurate a 
new field of mathematics. 

Despite some early writings on dice games, probability got its recognized 
start with a correspondence between Pascal and Fermat in 1654 which cleared up a 



misconception between the probability to win and the expected winnings. The 
problem was posed to Pascal by a French gambler, Chevalier de Mere. He found it 
was more likely to get a 6 with four throws of a die, than to get a pair of sixes with 
24 throws of a pair of dice. Specifically, the expected number of sixes in four 
throws of a die is 4/6, which equals the expected number of pairs of sixes in 24 
throws of a pair of dice. So why should the empirical probabilities differ? The 
probability to throw at least one six in four throws is 1 - (5/6) 4 = 0.5177, and the 
probability to get at least one pair of six in 24 throws of a pair of dice is 1 - 
(35/36) 24 = 0.4914. Equal expectations do not imply equal probabilities. Having 
easily settled this matter, Pascal and Fermat wrestled with other problems such as, 
how to split up the ante in games of chance which are not completed. With more 
than two players considered, these problems would tax many modern practitioners. 
For example, if A, B, and C play a game of chance and A needs 1 more win, and B 
and C both need two more wins, then if the game is not continued show that the 
ante should be split as A:B:C is to 17:5:5. 

Early confusion also existed between the difference between combinations and 
permutations. A gambler brought the following problem to Galileo's attention. 
Throw 3 dice and you are more likely to get their sum adding to 10, before a role 
gives a sum of 9. Yet, there are six combinations which give 10 [6,2,2], [5,2,3], 
[4,2,4], [6,3,1], [4,3,3], and [5,4,1], and six combinations which give rise to a 9. 
So why is getting a 10 first a better bet? As Galileo correctly pointed out there are 
6X6X6=216 possible permutations of three throws of a die. For example the [6,2,2] 
combination can occur 3 ways as [6,2,2], [2,6,2], and [2,2,6]. Adding up all the 
permutations gives the probability to get a 6 as 27/216, while the probability to get 
a 9 is only 25/216. In any event, these early concepts of probability were 
perplexing to early gambling practitioners. 

Lest we moderns feel too superior, let me relate a recent question of 
probability which caused contestants in a TV game show to scream and many times 
make wrong decisions. The game had three curtains with a prize hidden behind only 
one of the curtains. The contestant picks a curtain, say #3, which is not yet opened. 
Of the two remaining curtains, at least one (and maybe both) harboured no prize. An 
unpicked curtain with no prize behind it is opened, say #2. The contestant is then 
asked if he would like to switch the curtain he picked, #3, with the other unopened 
curtain #1. In effect, the contestant is being offered curtains #1 and #2, and these 
have a probability of 2/3 of leading to the prize. Curtain #3 has probability of 1/3 
of being right, which is one-half of the probability if the switch is made. So the 
switch should always be made. If you still need convincing, try the game yourself. 

The Pascal-Fermat letters stimulated Huygens to write a treatise on 
probability theory. This, in turn, peaked the interest of Jacob Bernoulli who turned 
his attention to questions of combinations and permutations, and games of chance. 



His works were published posthumously, in 1713, under the title Ars Conjectandi 
(Art of Conjecture). Jacob's brother John, also an eminent mathematician 
disapproved of probability and effectively held up publication of his brother's book. 
When it eventually appeared, John called it "a monster which bears my brothers 
name". What was in this monster book? Jacob introduced the Bernoulli process 
where a player has a probability p to win in each trial of a game, and probability q = 
1 - p to lose. We would today equate Jacob Bernoulli's analysis to a random walk 
on a lattice by keeping track of a player's status along a one dimensional axis, with 
success equated to a jump of one unit to the right, and failure a jump of one unit the 
left. The probability, pn(k), of k successes in n trials is given by    [n!/((n-k)!k!] 

pkqn-k Tn tne lirnit of large n, and for p=q, DeMoivre, showed, in 1756, that the 
probability to get 2/i more successes than failures (or vice versa) in n Bernoulli 
trials is (2pn)"^^ exp(-/i ^/2n). This can be seen by expanding the factorials in 
pn(k) with k = n/2 ± h. This probability function is today called a Gaussian 
because Gauss showed, in 1809, that DeMoivre's result holds in a more general 
situation of being the probability limit distribution when adding up identically 
distributed random variables with finite second moments. An intimate connection 
with these types of random walk processes and Gaussian probabilities was latter 
made to the phenomenon of diffusion called Brownian motion. For example, in 
Bernoulli's game (process) consider two players each starting with R/2 coins and 
with equal probability to win or lose a coin in each trial. The mean number of 
trials, <N(R)>,    before one player loses his fortune can be calculated to  be 
R(R+l)/6, and for large R, <N(R)> = R^. In Brownian motion, the mean square 
distance a particle moves after N steps satisfies <R^(N)> = N. In effect, Einstein 
moved the averaging to the space variable, instead of Bernoulli's time variable N. 
Bernoulli calculated what we would call today a mean first passage time, i.e., the 
number of games played until one player's stake is exhausted. His was the "first" 
first passage time calculation. 

Poisson, in the 1830's, found another possible   limit for the Bernoulli 
process; let p -» 0 and n-> infinity such that np —> 1, a constant. Then pn(k) = n( 

n-1) • • ■ ( n-k+1) pk (1-p) n"k/k! « (np)k e" nP e Pk/k! a lk e'^k!. This is called 
a Poisson probability distribution. Poisson wrote a book on probability, but 
devoted to social problems, such as the probability of a jury reaching the correct 
verdict. The first reported use of the Poisson distribution came from Germany, at 
the late date of 1894, where it was used to model the number of soldiers kicked to 
death by their horse. As this was a rare event the Poisson distribution provided a 
good fit. 

Over in London, Bernoulli's contemporary De Moivre, wrote in 1718, the 
first edition of his famous treatise on probability, The Doctrine of Chances,  which 



provided explicit odds for popular card games, and more importantly introduced new 
concepts, including the use of generating functions, Sterling's formula for log ( n!), 

the derivation of the formula (cos J + / sin J) n = cos nJ + i sin nJ, and 
proving that the Gaussian is the many trial limit of a Bernoulli process (in the 1756 
3rd edition). A problem which could be solved by generating functions can be 
found in Crystal's book on Algebra " By French Law an illegitimate child receives 
one third of the proportion of the inheritance that he would have received had he been 
legitimate. If there be p legitimate and n illegitimate children show that the portion 
of the inheritance due to a legitimate child is 1/p - n/[3p(p+l)] + n(n- 
l)/[32p(p+l)(p+2)] - - + n!/[3np(p+l) - (p+n)]. Even back then it was not 
unimportant to have an application for your work. Being a French Huguenot, 
DeMoivre was never able to secure an academic position in England. He managed 
by setting himself up in Slaughter's Coffee House where, for a fee, advice could be 
garnered. De Moivre's other probability book, Annuities Upon Lives, inaugurated 
actuarial science. De Moivre also predicted his own death. At about the age of 80 
he noticed that he was sleeping more. He then kept a log of his hours and 
extrapolated that in seven years he would be sleeping 24 hours per day. His 
prediction was correct. 

The Gaussian (also called the normal) is the limit probability distribution for 
a sum of identically distributed random variables with finite second moments. This 
was shown by Gauss in 1809, and is called today the Central Limit theorem of 
probability. Actually, this result was obtained in 1808 by Robert Adrain, an 
American of Irish descent. Adrain published in an obscure American journal called 
The Analyst, which only lasted for one volume. Nevertheless, Adrain was one of 
the several scientific and mathematical leaders who flourished during the Jefferson 
presidency. Adrain proved his result, (that adding up many identical random variable 
with finite moments, leads to the Gaussian probability distribution) in the context 
of the study of errors in measurement. The Gaussian is also called the Law of 
Errors. Galton, the English statistician was so taken with the law that he wrote "I 
know of scarcely anything so apt to impress the imagination as the wonderful form 
of cosmic order expressed by the Law of Frequency of Error. The law would have 
been personified by the Greeks and deified, if they had know of it. - The larger the 
mob and the greater the apparent anarchy, the more perfect is its sway." This last 
sentence refers to the better convergence to a Gaussian the more terms in the sum of 
random variables. 

It was not until 1879 that MacAlister introduced the distribution for a product 
of random variables called the log normal distribution, as it is a Gaussian in the 
logarithm of the variable. Schockley, the inventor of the transistor, studied the 
productivity of scientists by investigating the number of papers published by 
individuals.   He found this to obey the lognormal distribution.    He argued that 



several factors were necessary to successfully publish, including getting ideas, 
having technical expertise, the ability to fight with referees, etc. He further argued 
that a product of these random factors were related to one's productivity. And a 
product of random variables would be governed by a lognormal distribution. It was 
said that he gave pay raises to his staff based on the logarithm of the number of 
papers published, and noted this with a Marxist joke, — Let each be rewarded 
according to the logarithm of his abilities. 

Laplace in his 1815 treatise Theorie analytique des probabilities continued 
the tradition of introducing new tools in applied mathematics through probability. 
Before Laplace, most work in probability focused on the discrete where all the 
possible outcomes of a trial could be enumerated. Card and dice games are good 
examples of this genre. Laplace brought the integral and continuum mathematics to 
the fore of probability theory with questions like; if an urn contained an infinite 
number of black and white tickets and one chooses A tickets of which p turn out to 
be white and q are black, then what is the probability that if an additional B tickets 
are chosen that m are white and n are black. Laplace's solution was an integral from 
0 to 1 with an integrand of the form xP+m(l-x)1+n led the way for calculating a 
wide variety of integrals, many of which are well known today. 

Probability was still fringe area of mathematics with a somewhat disreputable 
reputation, until the work of Kolmogorov and Khintchine, in the 1930's, place 
probability on a firm mathematical basis. This foundation was necessary because 
probability ran into trouble early on. In the early 1700's, Nicolas Bernoulli 
discovered a troubling game of chance. The game was to throw a coin until a head 
resulted. With probability 1/2 this occurs on the first throw, and a win of one coin 
would result.   If N tails proceeded a head throw, this event of probability 1/2^+1 

would yield a win of 2^ coins. One wins an order of magnitude more, but with an 
order of magnitude less probability. The expected winning from a round of this 
game would be the probability of winning times the win amount, summed over all 
possible outcomes. Well, this would be 1/2 X 1 + 1/4X2 + - + 1/2N+1 X 
2N + ... _ infinity. This game is called the St. Petersburg Paradox, because 
Daniel Bernoulli wrote about it in the commentary of the St. Petersburg Academy in 
1722. The paradox arises when trying to determine a fair ante to play this game. 
The banker wants the player to ante up an infinite number of coins because this is 
the bank's expected loss. The player only wins a single coin half the time, two 
coins one-quarter of the time, etc. Thus a player would not like to place a large ante 
because most of the times his winnings are small. Today we would recognize this 
as an example which produces a normalized probability distribution, but one which 
has an infinite first moment. The paradox is trying to find a characteristic size from 
a distribution which does not possess one.   In a distribution with an infinite mean, 



sampling produces values of all size, but in such a proportion that no single size is 
dominant or characteristic. 

Statistics could also led to controversy, then and now. In the 1700's small 
pox was epidemic. It was discovered in Turkey that a primitive inoculation made 
from cowpox could create immunity to smallpox. Jenner, in England, later 
correlated that milkmaids in England were pretty (they didn't get smallpox and its 
facial scars) because they contracted cowpox which protected them from smallpox. 
Jenner developed a safe vaccine. In any event, earlier on inoculations began and 
statistics were collected. Seven percent of an untreated population died from 
smallpox. For an inoculated population .5% died from the inoculation. What to do, 
to inoculate or not? Daniel Bernoulli lobbied vigorously in favour of inoculation, 
while D'Alembert took the opposite case. D'Alembert said if left alone you have a 
93% chance to live. Get an inoculation and 1 out 200 would die from the 
inoculation. The probability was great that the death would be from the 93% that 
would have lived. Either choice has its risks for the individual, but for the 
population at large inoculation was clearly optimal. These argument reached 
Benjamin Franklin in America, where at his urging George Washington had the 
Continential Army inoculated at the time of the Revolutionary War. The army 
escaped decimation by smallpox while some town were scourged. If the army was 
taken ill the outcome of the war might have been entirely different. 

Another paradox was discovered by Betrand. Take a circle of unit radius and 
randomly draw a chord. What is the probability that the chord length is larger than 
the side of an equilateral triangle inscribed inside the circle? Draw a random chord. 
Now draw an inscribed equilateral triangle with a vertex at one end of the chord. If 
the chord intersects the side of the triangle opposite the vertex then it is longer than 
the side of the triangle. This occurs with probability 1/3. Now inscribe a circle 
inside of the triangle. Its area is 1/4 of the original circle. If a chord has its 
midpoint inside this inner circle its length will be longer than the side of the 
triangle. Picking a point at random inside the large circle will give a probability of 
1/4 that it is also in the small circle, thus giving that as the probability that a 
random chord is longer than the side of an inscribed equilateral triangle. So is the 
probability 1/3 or 1/4? This is really a question of how one measures success, as a 
one dimensional section of arc, or as a two dimensional area. One must describe the 
measurement process one uses to obtain the correct probability. 

In addition to these paradoxes, the connection of probability to gambling gave 
it an unsavoury reputation. The Edict of Louis IX said "They shall abstain ... from 
dice and chess, from fornication and frequenting taverns. Gaming houses and the 
manufacture of dice are prohibited." Kendall the English mathematician said "During 
the Dark Ages gambling was prevalent throughout Europe. Efforts ... of Church and 
State to control the evils ... were ineffective.   Nothing is more indicative of the 



persistence of gambling than the continual attempts made to prevent it. Montroll 
and the author wrote on this same subject saying, "Since travelling was onerous (and 
expensive) and eating hunting and wrenching generally did not fill the 17th century 
gentleman's day, two possibilities remained ... praying and gambling; many preferred 
the latter. But despite, opposition to probability as a real mathematics, due to a 
number of seeming paradoxes, and prohibitions from church and state, due to its 
gambling connections, the ideas set in motion by the above mentioned books would 
spread and be carried on by new generations. 

Poisson's book found its way to Russia where Chebyshev read it and did his 
1846 Master's thesis on probability, and also started a school in this area. His 
star students were Markov and Lyapunov whose Markov chains and Lyapunov 
exponents are of great importance in modern work. The year 1905 saw the name 
random walk used for the first time. Pearson, the English mathematician wrote to 
Nature on "The Problem of the Random Walker" He posed the following question. 
"A man starts from a point zero and walks L yards in a straight line: he then turns 
through any angle whatever an walks another L yards in a second straight line. He 
repeats the process n times. I require the probability that after these n stretches he is 
at a distance between r and r+dr from his starting point 0." Lord Rayleigh wrote 
back that this was a problem which he had already solved in the context of adding up 
waves of equal amplitude, but random phases. Today this is called Pearson's random 
walk. 

The early 1900's saw the introduction of Brownian motion by Einstein and 
Bachelier, and reaction kinetics by Smoluchowski. Langevin, in 1908, studied 
equations of motion with an additive random force. Jumping over potential barriers 
in noisy systems was investigated by Pontryagin, Andronov, and Witt in Russia in 
1933 and Kramers in Holland in 1940. These works initiated the field of noise- 
induced transitions. Schottky in 1922 studied the phenomena of shot noise in 
diodes. Specifically, if electrons arrive at a detector, with a rate V and cause a 
decaying  time   dependent current  i(t),   then  the  total  measured   current      is 

I(t) = yi(/-r.), whereTj represents 

7=1 J 
the past arrival time of the jth electron. 

1 
This shot noise has an average value of V\i(t)dt    and variance VJ i  (t)dt. 

0 0 
This is also known as Campbell's theorem to mathematicians and it was introduced 
in 1909. Chandrasekar's review of random processes in 1943 including random 
walks, Brownian motion, escape over barriers, and stellar dynamics dominated the 
field for many years. Rice reviewed advances in analyzing noise in electrical 
devices. The analysis of telephone switching systems, by Fry at Bell Telephone in 
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the 1920's, and by Erlang in Denmark in the 1940's produced advances in the 
statistical dynamics of congestion of networks. Fisher and Tippett in 1928 
introduced extreme value theory to find the largest or the smallest value from a set of 
random variables. Statistical physics focused on noise, for its own intrinsic 
properties, and introduced the Master equation, entropy and fluctuation-dissipation 
theorems. Levy, in the 1920's and 1930's, introduced scale invariant random walks 
and distributions for random variables with infinite moments, which were an 
important precursor for the field of fractals. Montroll beginning in the 1940's 
opened the field of random walks to physicists with a very clear and easy to use 
Green's function-generating function approach. With these advances an tools science 
was ready to pursue the question of noise in natural systems and man-made devices. 
The remainder of this volume will detail some of these exciting advances and point 
out still unsolved problems. 
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The Fokker-Planck boundary layer is essential to understanding quantites ranging from first 
passage times, to recurrence times, to the distribution of maximum excursions for a Brownian 
particle with inertia. These problems were described by Wang and Uhlenbeck in 1945 in 
their list of unsolved problems in the theory of Brownian motion, and in this paper we discuss 
how they are all manifestations of the phase space boundary conditions. We review the 
progress that has been made during the last half of the twentieth century, and we describe 
related unsolved problems which remain in applications of diffusion theory to problems with 
concentration boundary conditions, such as transport across biological channels. 

1     Introduction 

Following the seminal 1930 paper "On the Theory of Brownian Motion" by Ornstein 
and Uhlenbeck [1] and the next decade's progress by (among others) Kramers [2] and 
Chandrasekhar [3], Wang and Uhlenbeck produced an up-to-date review of the field in 
1945 entitled "On the Theory of Brownian Motion II" [4]. In the final section ofthat 
paper, Wang and Uhlenbeck identified five particular unsolved problems within the 
theory of stochastic processes. Specifically, they listed 

(a) The Approach to the Barometric Distribution, 
(b) First Passage Time Problems, 
(c) The Recurrence Time Problem, 
(d) The Distribution of the Average Value, and 
(e) The Distribution of the Absolute Maximum of a Random 

Function y(t) in a Given Time Interval T. 

Problems (a), (b), (c) and (e) share the feature that they are rooted in questions of 
boundary conditions in phase space. Problem (d) is a very general question in 
probablility theory, and we will not consider it here. 

Unsolved problem (a) illustrates the boundary condition issue in a clear and basic 
physical setting. Consider a particle of mass m diffusing in an isothermal bath under 
the influence of gravity in the half-space z > 0 with an impermeable reflecting floor 
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at z = 0. Letp denote the momentum, and P(z,p,t) be the time-dependent phase space 
probability distribution satisfying the Klein-Kramers-Fokker-Planck equation 

dP{z,p,t) pdP dP d ( _        ,   „dP\ 

where g is the acceleration of gravity, y is the friction coefficient, and kBT is 
Boltzmann's constant times the temperature. Equation (1) must be supplemented 
with initial and boundary conditions appropriate for the physical situation under 
consideration. Wang and Uhlenbeck raised the question of the solution starting from 
definite position and momentum values, 

P(z,p,0) = 8(z - z0) 8(p - p0). (2) 

The other boundary conditions are natural, i.e., P -» 0 for z -» °o and p -» ±00, but 
Wang and Uhlenbeck did not sound completely convinced about the appropriate 
boundary condition for the reflecting surface. They said, "We feel sure that this 
means the condition: 

P(0,p,t) = P(0-p,t)." (3) 

This reflecting boundary condition supports the equilibrium (barometric) distribution 

'^ = 8 ^2^"  6XP(- l£jj 6XP(- If) • (4) 

The problem posed by Wang and Uhlenbeck, then, was to determine the fully time- 
dependent exact analytic solution of (1) in order to study the approach to the 
barometric distribution. It's the reflecting boundary condition (3) that complicates 
the problem; in the absence of the floor where (3) is replaced by natural boundary 
conditions (P -» 0 as z -> -00), the exact time-dependent solution is straightforward 
to write down. In that case the phase space process is jointly gaussian in z and p and 
the distribution is completely determined by the time dependent means and variances 
which are easily computed from (1). 

Obvious attempts of applying the method of images do not work for g * 0, and I 
don't know if Wang and Uhlenbeck's problem (a) has actually been solved as of 1996. 
I do not believe it is a particularly pressing issue, but it is interesting because it 
shows that (i) even very simple physical systems may resist exact solution and, 
perhaps more significantly, (ii) nontrivial phase space boundary conditions are 
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possible for reasonable physical problems, and such boundary conditions may 
introduce new challenges. 

Unsolved problems (b), (c) and (e) are very closely related for phase space 
diffusion processes, and these are what we will focus on in this paper. Consider 
unsolved problem (b) in its simplest setting: a diffusing particle is placed in motion 
at time t= 0 in the half-space z > 0 and we ask for the statistical properties of the 
random time when the particle first achieves z = 0. This is the classical "first- 
passage" or "exit time" problem, and the boundary at z = 0 is called an absorbing 
boundary. For overdamped motion the analogous problem is exactly soluble. For 
the particle with inertia, however, it remains to this day to be solved in full 
generality by exact analytic methods. The problem may be precisely stated as 
follows: the time-dependent phase space probability distribution satisfies 

^ ■ "fr! ♦rfC,'— ,r%) 
with inital conditions corresponding to definite position and momentum values, 

P(z,p,0) = 8(z-z0)8(p-p0). (6) 

The boundary conditions are again natural (P —» 0) for z -» °° and p -> ±°°, but as in 
the previous problem, Wang and Uhlenbeck expressed some discomfort with their 
proposal for the appropriate boundary condition at the absorbing surface. They said, 
"We feel sure that this means the condition: 

P(0,p,t) = 0 Vp>0." (7) 

No condition is given for p < 0 at z = 0. That must be determined a posteriori 
from the solution. Although this "half-space" condition may seem odd, it is 
physically correct and mathematically well posed. It says that no particles are 
allowed to enter the region z > 0 from below, so when the particle crosses this 
boundary it never returns. The total probability remaining in z > 0 at time t is the 
probability that the particle has not reached z = 0 by time f, from which all of the 
statistics of the first-passage time may be computed. Equation (6) is parabolic in p, 
but it has a hyperbolic character in z with the associated speed being p/m. So while 
"initial" data is appropriately specified at z = 0 for p > 0, giving information that 
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may propagate into the equation's domain, the solution for p < 0 propagates from 
within the domain and may not be specified independently. 

Wang and Uhlenbeck's unsolved problems (c) and (e) are closely related to (b). 
The recurrence time is the random time that it takes a particle to return to a point 
from which it starts. In the overdamped, high friction limit this time is precisely 
zero, but in full phase space it may be cast as a nontrivial exit-time problem as in 
problem (b). Likewise, the problem in (e) may be rewritten as a first-passage time 
excercise, as was already recognized by Wang and Uhlenbeck. 

The fundamental problem (b) was solved analytically in its simplest form only 
in the 1985 [5], while the general exit time problem remains unsolved in full exact 
detail to this day. In the remainer of this paper we describe the progress that has been 
achieved and the continuing relevance of this problem to present day applications. 
Modern applications of these ideas include the problem of ion diffusion and transport 
through channels in biological membranes and important unsolved problems of 
stochastic motion with concentration boundary conditions where both the exit time 
and the recurrence time problems find a natural expression. 

2     Solved and unsolved problems for Brownian motion 

Consider the first-passage time problem (exit time problem) Wang and Uhlenbeck's 
problem (b). In the overdamped limit (inertia-less limit, or high friction, limit) of 
Brownian motion, the probability density of the particle's position, p{xj), obeys the 
simple diffusion equation 

I ■ °& 
where the diffusion coefficient is 

kBT 
D = —. (9) 

my v 

For the exit time problem out of an interval [0,L] starting from x0 e (0,L), the 
initial condition is 

p(x,0) = 5(x-x0) (10) 
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and the "absorbing" boundary conditions are 

p(0,0 = 0 = p(-L,t). (11) 

Let ttx be the random time at which the particle reaches the boundary. Then the 
probability distribution of tex can be computed from the solution of Eqs. (9-11) via 

L 

Prob{tex>t} = fdxp(x,t). (12) 
o 

The mean exit time is particularly straightforward to compute: 

x0(L-x0) 
<U =     2D     ■ W 

Now consider the analgous problem for a particle with inertia.    The time- 
dependent phase space probability distribution p(x,p,t) satisfies 

with inital conditions corresponding to definite position and momentum values, 

p(x,p,0) = 5(x - x0) 8(p -p0). (15) 

The boundary conditions are again natural (P -» 0) for p -» ±oo, but they are 
complicated at the absorbing boundaries. At x = 0 and L the physical condition is 
that no particles are entering the interval: 

p(0,p,t) = 0 for p > 0 and p(L,p,t) = 0 for p < 0. (16) 

These boundary conditions say nothing about the distribution for exiting particles; 
that information must be determined from the solution. If Eqs. (14-16) could be 
solved, then the probability distribution of tex could be computed according to 

Prob {tex > t) = fdpfdx p(x,p,t). (17) 
-oo      0 

Consider the recurrence time problem, Wang and Uhlenbeck's problem (c).  Here 
the question is of the random time trec between the particle successively visiting a 
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certain position, say x = 0. The relevant initial-bounday value problem is similar to 
the exit time problem, only in this case the particle starts at the absorbing boundary. 
The problem to be solved is the first passage time problem from the initial position 
back to the initial position. For purposes of explanation consider 

dt     v dx2 (18) 

with the initial condition just above the boundary at 0, 

p(*,0) = 5(x-e), (19) 

along with the absorbing boundary condition 

P(0,f) = 0, (20) 

and the natural condition (p -» 0) for x -> <*>. The recurrence time distribution is 
computed from 

oo 

^   ■ , .       lim   f. 
Prob{frec>r} = £^0 Jdx p(x,t). (21) 

Eqs. (18-20) are easily solved by the method of images, and it is easy to see that the 
recurrence time is precisely zero, with probability one, in the limit £ -* 0 when the 
particle starts at the boundary. The can also be correctly deduced from the mean exit 
time formula (13) which shows that if x0 = 0 then (tex) = 0, which implies tex = 0 
almost surely, uniformly in the length L. 

If the particle has inertia, however, then "starting at the absorbing boundary" is a 
more involved condition. For along with the initial position of the particle we must 
also specify the initial momentum. In this case the initial-bounday value problem is 

with 

p(x,p,0) = 8(x)5(p-Po) (23) 
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where for definiteness we'll take p0 > 0. Natural boundary conditions (p -» 0) are 
appropriate for p -» ±°°, and at x = 0 the physical condition is that no particles are 
passing from the region x < 0 to the region x > 0: 

p(0,p,t) = 0 for/>>0 and f>0. (24) 

This boundary condition say nothing about the distribution of particles crossing from 
x > 0 back to the region x < 0; as with the exit time problem, that distribution must 
be determined from the solution. If Eqs. (22-24) could be solved, then the 
probability distribution of tex could be computed according to 

Prob{t>t] = fdpfdx p(x,p,t). (25) rec 
_oo    0 

The question of the distribution of the absolute maximum of a diffusion process 
in a given time interval, Wang and Uhlenbeck's problem (e), is equivalent to the 
first-passage time problem. To see this, let M(7>0) be the maximum absolute value 
of the stochastic process Xt representing the particle's position during the time 
interval [0,7] when the particle starts from x0. That is, M(7>0) is the random 
variable defined by 

A/(7>0) =    ™*T   IX,I. (26) 

For a given value m, if JC0 e [-m,m] then M(Tj0) < m is the event that X, does not 
reach ±m by time T, i.e., that tex > T where tex is the exit time from [-m,m]: 

PTob{M(T,xQ) < m) = Prob{tex>T}. (27) 

Of course for m < \x0\, Prob{M(T,xQ) < m] = 0. Hence the solution of the exit time 
problem, for both cases of the simple overdamped limit and the full phase space 
problem, immediately yields the statistics for the maximum value. 

Although each of these problems may be fully analyzed for the case of simple 
diffusion describing overdamped motion, none of them has been solved in general for 
the Klein-Kramers-Fokker-Planck equation with the phase space boundary conditions. 
What has been solved [5,6] is the Klein-Kramers-Fokker-Planck equation with 
boundary conditions appropriate for a single absorbing boundary at, say, x = 0: 
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dp(x,p,t) pdP d / do\ 
"a    = -£■* + rw{pp+mk°Tf)        (28) 

for JO 0 and -o° <p < «> with boundary condition 

p(0,p,t) = 0 for p > 0. (29) 

For example, in order to sustain a steady state with these boundary conditions, a 
steady flux J = -L/l of probability from the right must be maintained. The marginal 
density for particle positions near the absorbing boundary is then 

Pto = fdpp(x,p)   =jj(x + xM)   + 0{e-*>\ (30) 

where xM is the "Milne extrapolation length" for the Klein-Kramers-Fokker-Planck 
equation, 

*u = l?<5-)IA = (1.4603...)xA, (31) 

A is the mean free length, 

Y V m (32) 

and f(z) is the Reimann zeta function.   In the overdamped limit X -> 0, and the 
density is just what is expected from the simple diffusion equation, i.e., 

f*x) = £ * • (33) 

The effect of a finite mean free length, in comparison with the elementary 
diffusion equation for this problem, is for a finite particle density to exist at the 
absorbing boundary. The "extrapolation length" is so named because the linearly 
extrapolated density vanishes a distance xM beyond the physical boundary. The 
boundary layer near the absorbing boundary has the thickness on the order of the 
mean free length and is characterized by corrections to the simple-diffusion linear 
behavior of the density, corrections which decay exponentially away from the 
boundary. These results are in excellent agreement with detailed numerical studies of 
the Klein-Kramers-Fokker-Planck boundary layer problem [7]. 

Solving the exit time problem from an interval [0,L] starting from x0 e [0,L] 
involves two absorbing boundaries, and this has not yet been computed exactly. 
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However, if the mean free length is small compared to all other length scales in the 
problem, i.e., if the particle motion is in the small Knudsen number regime with 

£  « 1,      -  « 1,     and     TZ^-7  «  1, (34) 

then the boundary layers from the two ends of the interval interfere only weakly with 
each other and with an initial layer and a matched asymptotic analysis may be 
performed. For the case of initial momentum p0 = 0, the mean exit time starting 
from x0 = 1/2, the generalization of the result (tex) = LV(W) from Eq. (13), is 

{t ) = <£&£   + JL + o(e-*) (35) v'x' 8Z> Ay v 

where K= .22749... is computed from the asymptotic analysis of the Klein-Kramers- 
Fokker-Planck equation. The accuracy of the asymptotic results have been confirmed 
in numerical simulations [8]. 

3     Other unsolved problems 

Consider the problem of diffusion of particles through a channel connecting two 
reservoirs in which fixed concentrations are maintained. An important application of 
this kind of set-up is the modeling and analysis of drift and diffusion across 
biological channels [10], although in practice those problems may be significantly 
more involved [11,12] than the basic problem posed in this section. Some quantities 
of interest in such systems are: 

(i) the magnitude of the steady state current through the channel, 
(ii) the statistics of the current fluctuations in the steady state, 

(iii) the residence time in the channel, 
(iv) conditional probablities. 

These are all relevant and observable quantities in experiments and direct (Monte 
Carlo or molecular dynamics) simulations.    Only (i) can be computed in simple 
diffusion theory. The others require some more sophisticated modeling and analysis. 

In the high friction, overdamped Brownian motion picture, the problem for 
diffusion along a channel of length L connecting reservoirs at the left and right with 
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concentrations Cin and Cout is formulated as a boundary value problem on the interval 
[0,L]: 

f=DH (36) 
with the boundary conditions 

P(0,t) = Cin,  p(L,t) = Cou„ (37) 

and initial density in the channel, 

p(*,0) = p0(x), forO<x<L. (38) 

The steady state solution is elementary: 

p(x) = Cin-(Cin-C0Ul)j- , (39) 

yielding the expected expression for the steady state current, 

J = -Dfx=D L  • <4°) 

For channels long compared to the mean free path of a particle, this magnitude for 
the current is expected to be quantitatively correct even for particles with inertia. 

But the other quantities (ii)—(iv) cannot be fully studied in the high friction 
limit. Fluctuations in the current cannot be computed, because to do so we must 
have some information on velocity fluctuations and variations of the time-of-flight of 
particles through, and/or residence times of particles in, the channel. In simple 
Brownian motion the particle motions are not differentiable and velocites are 
undefined, so these quantites either make no sense or take on trivial values. 
Likewise, conditional probabilities, such as the probability of a particle exiting at 
one end given entrance into the channel at the other, are not really meaningful in this 
limit: the probability of "transmission" before "reflection" is zero for Brownian 
motion, which paradoxically seems to imply that no particle flux is possible! 
Effectively this is just what the formula in Eq. (40) tells us because the diffusion 
coefficient, D = kBTlmy, is inversely proportion to the friction coefficient and, 
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strictly speaking, / -> 0 when y-> °° and all other parameters are held fixed.  Items 
(ii)-(iv) are simply too much for elementary diffusion theory to explain. 

For some quantities we may even be led to qualitatively wrong conclusions by 
the overdamped analysis. For example, as discussed in the last section and repeated 
in the paragraph above, the fact that the recurrence time for Brownian motion is zero 
implies that a particle that starts at the boundary (the entrance to the channel) leaves 
immediately. However, if one considers proper physical units and takes particle 
inertia into account from the beginning, we can conclude that a particle entering a 
long channel at one end spends a nonvanishing amount of time in the channel, 
proportional to the length of the channel, before exiting at one end or the other even 
in the high friction limit. The argument goes as follows: a particle with inertia 
entering the channel at x = 0 does so with a momentum on the scale of the thermal 
momentum 

Pth = (41) 

and travels a time proportional to the momentum relaxation time T = y _l before 
equilibrating again. Hence a particle is effectively inserted into the channel a distance 
proportional to the mean free length, 

*o ~ — T = A. (42) 

But from Eq. (13), the mean exit time out one end of the channel or the other is 

(tj = -35—   ~   D" • (43) 

so an estimate for the residence time in the channnel is 

(t x _ML  =-p (44) 
Vex)       D \JkBT 

uniformly in the friction coefficient y. Of course the particle really starts out in the 
Klein-Kramers-Fokker-Planck boundary layer and so Eq. (43) is not really precise, 
but the argument is compelling. The point is that in the high friction limit, even if 
the particle starts nearly at the boundary, the timescale of the motion is slowed down 
so much that it ends up taking a finite time to exit again. 
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These observations suggest that it will be essential to take particle inertia into 
account to full treat the channel diffusion problem. The situation is even more 
complicated, though, because one is then faced with the problem of defining the 
concentration boundary conditions in the phase space picture, and this is not an easy 
task. 

Consider the problem of a channel of length L extending from x = 0 to x = L 
with reservoirs extending from x = -oo to x = 0 on the left, and from x = L to x = +*> 
on the right. It is tempting to say that the reserviors consist of particles in thermal 
equilibrium at the stated concentrations, but this is not a well posed problem in 
phase space. At the boundaries between the channel and the reservoirs we are not 
allowed to specify the distributions of particle momenta of particles exiting the 
channel; those distributions must be computed from the solution to the full problem. 
There will be boundary layers, similar to those described in section 2, on both sides 
of the boundaries, in the channel and in the reservoirs. 

The best one might hope for, then, is to impose thermal equilibrium 
distributions at the given concentrations asymptotically as x -» ±°°. But even in one 
dimension this obscures where the boundary between the reservoir and the channel is 
(in the absence of energy barriers at the borders of the channel), and we might guess 
that this will also bring up the issue of the existence of a steady state at all. That is, 
for the one-dimensional problem in the simple diffusion picture, if we impose 
asymptotic boundary conditions p -» Cout and p -> Cin as x -> ±«> respectively, then 
we observe that the time asymptotic solution is p = (Cin+Cout)/2 with no steady state 
particle flux (even for finite y). The ever-increasing "depletion zone" in the 
reservoirs render this steady state trivial. These considerations suggest that we must 
consider a more realistic geometry to describe the problem. 

If the simple one-dimensional version of the problem appears to breakdown, then 
it is natural to attempt a two-dimensional formulation. It makes sense that there 
must be some geometric structure to define the border between reservoir and channel, 
and in two-dimensions this may be achieved by considering the left hand reservior as 
extending throughout the half-space (-» < x < 0, -*» < y < oo), the channel of width 
w as the region (0 < x < L, 0 < y < w), and the right reservoir as the half-space (L < 
x < oo, -oo < y < oo). in what is perhaps the simplest formulation of the problem, 
reflecting boundary conditions may be imposed on all "rigid" boundaries defining the 
geometry of the domain, and the appropriate equilibrium distributions may be 
imposed far from the channel openings. However, this formulation in two- 
dimensions presents the same problem of the constantly growing depletion zone as 
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the one-dimensional case. This may be inferred by considering the high friction limit 
due to the logarithmic behavior of the Green function for the Laplacian in two- 
dimensions (the same problem arises with an absorbing disk in two-dimensions, i.e., 
the classical Smolukowski problem, where just as in one-dimension, the depletion 
zone around an absorber grows forever). The three dimensional version of the 
problem holds more promise, because we expect the depletion zone to saturate and 
reach a steady state in that case. Hence it appears that the full three dimensional 
version of the problem must be considered! In applications to biological channels 
there may be additional modeling complications due to the channel opening and 
closing stochastically, surface diffusion, and channel migration [12]. All these 
effects can be expected to complicate the analysis further, but it remains an unsolved 
problem to uncover the behavior of the simple system described here. 

4     Conclusion 

Although the twentieth century has witnessed tremendous progress in the theory of 
stochastic processes and Brownian motion, fundamental unsolved problems remain as 
challenges for the twenty first century. As new experimental methods are developed, 
and as new applications arise, we can expect the theory of diffusion to continue to 
play a central role in our understanding of many fundamental physical, chemical and 
biological processes. In particular the problem of diffusion and current fluctuations 
through a channel connecting reservoirs at fixed particle concentrations presents an 
important and basic unsolved problem. 
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The excess (l/f) noise in conductors is a resistance fluctuation. There is some 
support for this noise in semiconductors to be linked with phonons, although no 
specific mechanism has been proposed. The possibility of phonons causing the 
noise in other systems has also been suggested, although other mechanisms seem 
more appropriate in many other materials. The evidence for a possible phonon 
mechanism is reviewed and experiments to aid our understanding are proposed. 

1    Introduction 

Excess electrical noise, that is the noise which is in addition to the well 
understood thermal and shot noise, with a l/f spectral density occurs in many 
systems. For many of these systems there are good physical models that are 
generally accepted. These are usually based on processes that are specific 
to that system but general principles can be stated. The basic fluctuator 
consists of a two state system with a characteristic time constant. Each 
fluctuator produces a spectral density with a Lorentzian spectrum with some 
characteristic time. If the time constants of the members of an ensemble 
of fluctuators varies exponentially with some parameter, such as energy or 
distance, and there is a uniform distribution of fluctuators in this variable 
then a 1// spectrum results. Examples are thermally activated processes and 
tunnelling processes for the above two example parameters. In all these cases 
the fluctuator is based on some type of defect, such as a mobile atom moving 
between interstitial sites or the change in occupancy of the discrete energy 
level or trap produced by a chemical or structural impurity. 

In bulk semiconductors and a few other systems there is still no generally 
accepted detailed mechanism for l/f noise. In some cases authors assume 
a defect model as above but in other cases the analysis is often performed 
assuming that at least some of the noise is due to mobility fluctuations 
produced by interaction with phonons. No specific mechanism or fundamental 
fluctuator for this has been proposed. The exception is the universal quantum 
l/f noise model which is predicted to be so all pervading that it produces 
noise in all systems, however, its predicted magnitude is much smaller than 
the observed noise so that we will not discuss it here. 

Here we will review the possible role of phonons in the electrical noise 
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1-8 process of bulk semiconductors and other systems where it has been invoked 

2      Electrical 1// noise 

It is generally accepted that the excess noise is a resistance fluctuation. The 
basic equations used in the analysis of 1// noise are 

SR _    7s 1 
R2 ~ R2Af~QmeasNf M 

SR_    P" /   n   \2   i 
V=WKf=0«°«{j^-t)   Nf W 

SR _     r* _L_ 

R2~ R2Af~aVf W 

where the normalised spectral density is inversely proportional to the frequency 
and N, the total number of carriers in the sample. Let us first consider Eq.l 
which is simply one way of relating the noise to the sample properties.  The 
intensity parameter amea5 was originally considered a constant for all systems 
but now it is taken as a measure of the strength of the noise in any one system. 
The implication of this equation is that each carrier is subject independently to 
fluctuations. There is no general justification for this. Since ameas is no longer 
a universal constant, N can be replaced by nV the carrier density and volume. 
Then a new strength parameter a (equal to ameaa/n in the above but not 
necessarily dependent on n) can be made as in Eq.3. The noise then varies as 
the (volume)-1 which would be appropriate if there were a uniform distribution 
of independent noise sources throughout the volume. In bulk semiconductors it 
is not easy to separate these two possibilities experimentally. In systems such 
as the silicon MOS transistor it is clear that the noise varies as (surface area)-1 

and the number of traps in the surface of the oxide above the inversion layer so 
that a different formulation using area rather than volume is more appropriate. 

The conductance depends on the product, fin, of the mobility and the 
carrier number density. There has been considerable discussion about which 
of these quantities fluctuates.    Whereas n can change by trapping, which 
immobilises the carrier with no change to the electric field pattern, the meaning 
of mobility fluctuations is less clear since mobility is a quantity which represents 
the average drift velocity of all the charges. Note that in some semiconductors 
the carriers are in valleys which have very different properties and are very 
anisotropic. Can we distinguish between a carrier immobilised at a trap for a 
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time and one scattered to a very low mobility state on the same or another 
valley? 

Let us look at two systems with well established mechanisms. In metals 
there is no carrier trapping and the resistance fluctuations are due to mobility 
or scattering fluctuations caused by moving defects rather than by phonons. 
In MOS channels the noise is caused by the trapping of carriers and the 
trapped carrier can produce local scattering by its potential so that number 
and mobility fluctuations are correlated. 

To determine whether the mobility or number fluctuates requires special 
experiments on well characterised samples. As well as the noise in the 
resistance, the noise should be measured in other quantities such as the 
magnetoresistance, the Hall coefficient or thermoelectric effect which weight 
the variables differently. The interpretation is not easy because of the energy 
and direction dependence of the carrier properties. One effect that is very 
noticeable in silicon is the piezoresistance in an extrinsic sample which is 
exceptionally large because of the change of some of the fixed number of carriers 
from high to low mobility valleys. This could be a good experimental system. 
More definitive experiments are still needed and we will discuss these later. 

The assumption that phonons are responsible for the 1// noise means that 
only the phonon (lattice) scattering contributes to the resistance fluctuations. 
The scattering due to static lattice defects is assumed to be time independent. 
Matthiessen's Rule says that in bulk, low defect concentration, samples the 
carrier scattering (RJ inverse mobility) from different causes is additive. This 
results in the extra reduction factor, (n/piatt)2 in Eq.2. In this case the 
strength parameter, aiatt should be a more fundamental quantity than amea). 
It should be noted that there are departures from the Rule, notably in samples 
with small lateral dimensions where there is boundary scattering. Eq.2 could 
be easily verified with a careful set of experiments using different amounts 
of inert impurities which do not create electrical traps or affect the surface 
condition of the sample. 

There is a basic problem with Eq.2 since it states that the noise decreases 
if defects are added in order to decrease the mobility (///<,» remains constant). 
This is in opposition to the well established observation that samples with 
almost any type of defect show large noise3-9. To account for this Eq.2 
has now been interpreted that a/att is not just due to lattice noise but can 
change its magnitude significantly if the lattice contains defects10,11 It is not 
yet clear which defects are to be included into the factor atiatt and which 
into {fi/fiiatt)2'3'4'12- This is most unsatisfactory since now the raw data 
has been thoroughly manipulated, with consequent error propagation, while 
the simplicity of the original equation (Eq.l) is lost.   At this point some of 
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the common assumptions made in the literature about mobility fluctuations 
should be pointed out. Sometimes Eq.l is referred to as appropriate to mobility 
fluctuations. In fact it is only an empirical equation that infers no mechanism, 
and is often not even an appropriate equation since amea, is not found to be a 
constant of the system when the number of carriers is changed. Approaching 
this from the other direction, if one is going to use a mobility fluctuation 
assumption then Eq.l or 2 has to be used because there is no model with a 
predictive equation. Because of the extra evidence that has been accumulated 
Eq.2 should probably be used. 

3 Phonon properties 

Phonons are the natural quantised lattice vibrations of a solid. In the low 
frequency limit they are sound waves. The energy range of the normal modes 
is about 1013 Hz ( 10-21J, 41meV or 480K). Because of the unit cell shape and 
the form of the dispersion curve the spectrum of the allowed states (density of 
states) has considerable structure. In semiconductors there can be acoustic and 
optical modes. The dispersion curves of the different modes are very different. 
There is considerable anisotropy in the phonon properties including the phase 
and group velocity. The interaction of the phonons with electrons is also very 
different for the different modes. 

The occupation of the allowed states, to give the actual mode density, 
is governed by Bose-Einstein statistics so that the occupation probability of 
any one state is slowly varying with temperature in the normal experimental 
range. We would thus expect to see any contribution to the electron noise 
due to the phonons to be very variable between different semiconductors, 
especially polar and non-polar, and only slowly temperature dependent near 
room temperature. That is there should be a major difference in the noise 
between silicon and gallium arsenide and no thermal spectroscopy is likely. 
The anisotropy is not likely to be observed since resistance effects are integrals 
over all states. However some models do suggest effects due to individual 
sections of the phonon phase space. 

4 Phonon noise 

If we assume that the electrical noise is due to phonons then the fluctuation may 
be in the number of active phonons or in the interaction cross-section. We have 
the same dilemma as in the earlier number or mobility fluctuation argument 
but with even less experimental basis. It is not easy to think of a mechanism 
for slow fluctuations in the interaction cross-section.  The phonon density is 
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given by the density of states and the occupation probability. The latter is well 
defined and has known statistical fluctuations. In the experimental region (near 
the Debye temperature) all the states have significant occupancy so that for a 
measurable effect there must be a significant fluctuation in the occupation of 
some integrated number of states. This can be compared with the success of the 
Debye spectrum which is used in the theory of specific heats which is a gross 
approximation to the real density of states because the integrated quantity 
is used. It should be remembered that there are energy and momentum 
conservation rule requirements to be satisfied. Another problem is in the 
presence of the factor \/N in Eq.l. This implies that each carrier fluctuates 
slowly independently. Each carrier has only a short life between scatterings 
which bring it back to a completely different electron state. The suggestion is 
that there are many independent phonon density fluctuations so that at any 
time each electron state is subjected to a slowly varying scattering and hence 
the ensemble mobility fluctuation varies as 1/N.10,13. This is thought to be 
unreasonable2 since there needs to be continuity of that scattering channel. 
In fact the resolution of this problem may not be difficult since there is very 
little evidence for a 1/N dependence in semiconductors and many experiments 
indicate other variations14-18 

Let us now look at the spectrum, and in particular, the presence 
of significant low frequency intensity. As with the basic discussion of 
low- frequency resistance fluctuations it is not easy to think of a possible 
phenomenon for phonons which has a very wide range of time constants 
extending down to very low frequencies. The phonons mainly concerned with 
electron scattering are near ITHz where the sound transit time and damping 
time are both much shorter than the observed noise periods. The phonon 
mean free path is about 5nm with a relaxation time of a picosecond. Although 
low frequency phonons do have long decay times, they have low density and 
weak interaction with electrons and low frequency normal modes do not exist 
in small samples. 

In equilibrium, a phonon density fluctuation corresponds to a temperature 
fluctuation. The amplitude and time constants of these depend on thermal 
diffusion through the sample and to its heat sink. These were once considered 
as a cause of 1// noise in a different context, but have been discounted in all 
systems except those with very large temperature coefficient of resistance. In 
order to produce a 1// spectrum the fluctuations at different phonon energies 
are often considered as independent and with different characteristic times. 

The slow processes which cause resistance noise in other systems are two 
level systems which change state by thermal activation or quantum mechanical 
tunnelling causing number (trapping and detrapping) or scattering noise. The 
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phonon system does have similar defects. A two level or mobile lattice defect, 
such as an interstitial or a mobile atom, will cause a local phonon mode and 
a scattering. These will both move with the atom but not cause changes in 
the number of phonons or the scattering strength because of the translational 
invariance of the scattering. However, there is the possibility of interference 
between two such scatterers. More important, there exist two level systems 
which have resonant absorption and emission, rather like a phonon trap, which 
will remove specific phonon modes for a time. Although the total number of 
phonons in an equilibrium system is constant there could be relative occupation 
fluctuations between modes. Thus a fluctuating longitudinal to transverse 
mode conversion could cause large resistance fluctuations if the scattering were 
very different between these two modes. 

5      Existing models 

Models take various forms. Mathematical methods are needed to produce the 
basic structure of the spectrum and the magnitude of the electron phonon 
system interaction. Often treated separately is the physical mechanism for the 
phonon fluctuations and the details of the interaction. 

Sato19 and Musha20 showed how phonon number fluctuations, due to 
temperature fluctuations, could produce volume resistance fluctuations, but 
they both assumed a 1// spectrum. An attempt at generating a 1// spectrum 
from a distribution of relaxation times has been made21 but this had no 
physical basis and included many assumptions. 

The most complete model of noise caused by phonon fluctuations has been 
by Jindal and van der Ziel22-24 which has been refuted by Yevick et al25. In 
this it was pointed out that there is a large isotope scattering effect in silicon 
(but not all other semiconductors). The scattering of the acoustic phonons 
by these lattice atoms of different mass leads to fluctuations in the phonon 
numbers of different modes which have reasonable time constants. However 
the phonon mean free paths which result are unreasonable. Although this 
could be rationalised if there was no surface scattering, the values are much 
longer than observed. 

The basic problem with such models has been illustrated by Weissman26. 
In order to obtain a range of time constants, to produce the 1// spectrum (and 
also to be physically realistic), it is necessary to assume that the scattering 
(mobility) varies throughout the electron distribution. Normally the direction 
dependence is ignored and only an energy dependence is assumed. Thus the 
mobility at each electron energy is assumed to fluctuate independently because 
it interacts with one of a set of individually fluctuating phonons. This has been 
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shown to produce large and varied departures from the simple theory because 
in a real material there are different energy dependencies of the different 
quantities and processes involved. This contrasts with the general features 
of the noise which are shown experimentally by many semiconductors. 

6      Phonon fluctuations 

If the basic source of the noise is fluctuations in the phonon density then 
a direct observation of this would be useful. The observed 1// noise in 
different variables observed in quartz crystals27, triglycine sulphate28 and 
optical fibres29 can be interpreted as appearing in the loss. This parallels 
nicely the observed resistance fluctuations in conductors. Direct observations 
have been made of the phonon density fluctuations by Musha et. al. on quartz 
and water30'31. Observations were made of the Brillouin scattering. These 
measurements are very difficult because great stability is needed to observe 
frequencies below 10~3 Hz and, since noises add, there are many possible 
sources of 1// noise in experimental systems. The noise was found to scale 
with the experimental volume which could be interpreted as the number of 
independent modes. In the calculations there seems to be an error by a factor 
of (kT/hw), the phonon state occupancy, which is about 200. This reduces 
the fractional phonon number fluctuations per mode. Since T is included 
this suggests a possible more direct role of temperature fluctuations. More 
experiments, using different methods, by independent workers are needed. 

7      Phonon noise spectroscopy 

A series of reports by Mihaila have shown peaks in the excess noise intensity 
at temperatures corresponding to the energies of peaks in the density of states 
of specific phonon modes. The systems reported include Cu, Ag and Si thin 
films32 and discontinuous Pt films33. He has also reported noise peaks in 
silicon bipolar transistors as the base current is varied34-36. These results are 
surprising. The density of states has sharp peaks, the occupation probability 
at, and near, room temperature is slowly varying with phonon energy and 
temperature. Thus the number of excited states also has peaks. In order 
to perform spectroscopy there must be a sharp energy selection process. In 
electron systems this is accomplished by the sharp change in the occupation at 
the Fermi energy. In a bulk semiconductor there will be phonon interactions 
over a wide range of energies and angles. As the temperature rises one would 
not expect to see a sudden change in the interaction and noise at the density 
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of states peak since the occupation of that level only changes slowly with 
temperature. 

For the thin metal films a possible mechanism is phonon assisted tunnelling 
across the insulating gaps between the metal islands. It is not clear how this 
could give a sharp change since the gaps will vary in width and the voltage 
drops across the gaps will vary a lot in such an irregular system. In the bipolar 
transistors the excess noise arises from the non- ideal, or generation current 
in the base-emitter junction and this usually occurs at the surface where the 
depletion layer reaches the surface. Again one can imagine some way that 
phonons may assist the charge flow (for instance in a tunnelling component) 
but it is not clear why it is the whole base-emitter voltage that is the relevant 
quantity. 

Since the effects seen are very small, it is necessary for these experiments 
to be repeated by independent workers, preferably with an automated system 
which can show unbiased consistency between different samples, experiments 
and a decrease or increase in the experimental variable. There are also 
problems in the interpretation which need to be investigated. Are bulk or 
surface phonons involved? Why is it the metal and not the insulator phonon 
that is involved? Why are peaks, dips and inflection points seen in the 
different cases and what are the selection rules which produce large effects? 
One interesting experiment, which does not seem to have been done, might be 
to investigate the noise in tunnel junctions under conditions where the current 
can be seen to be phonon assisted37-41. In practice, the noise in junctions 
is normally dominated by fluctuations caused by trapping and detrapping of 
traps in the insulator. 

8      Possible experiments 

In assessing the experimental evidence one must be aware of the difficulty 
of performing reliable measurements because almost any deficiency in the 
apparatus, experimental method or quality of the specimen is known to 
produce 1// noise. This can be illustrated in many cases, but naturally few 
results have been published by careful experimenters who have eliminated that 
source of noise. This is especially true of impurities and defects in the samples 
which are known to cause excess noise of the generation- recombination (GR) 
or 1// variety in many systems. There are well known cases of bulk defects 
and surface states in semiconductors and dirt in liquids. 

This point is important because mobility fluctuations due to phonon 
scattering should be an intrinsic property of the system and should produce the 
same effects for all samples and therefore there should be no sample-to-sample 
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variation. This type of variation is a common feature of noise experimental 
results, especially when the samples are from different sources and made in 
different ways. 

Other features that should be verified in each experiment is whether the 
noise is a volume or surface effect and in fact obeys Eq.l. This is rarely 
performed on each experimental system since the work involved is considerable. 
The determination for semiconductors is particularly important since there are 
known surface and boundary noise effects. 

Weissman26 has shown that rather than just studying the magnitude 
and perhaps the temperature dependence of the resistance fluctuations, 
considerable information may be obtained from Hall and thermoelectric 
voltage noise, the higher order statistical fluctuations of these signals and the 
correlations between them. 

Semiconductors are difficult materials for the study of noise since they 
contain many forms of defect which are known to cause noise. It is very 
well established that there is a noise contribution from the surface, both from 
adsorbed chemical effects, interface states at the surface-oxide layer and in the 
band bending region near the surface. The source of the noise from interface 
states is familiar in silicon MOST, but there are similar effects with other 
materials. A band bending at a surface or interface is always present due to 
oxide charges or pinning by surface or interface states. Deep levels are known 
to produce GR noise and the bent band or the continuous distribution of 
surface states will ensure that some states are at the Fermi level and therefore 
are active noise generators. This type of noise is well established and must 
appear with a broad spectrum since there will be a spread of time-constants in 
these cases. Such boundary effects have been well investigated in silicon14'15 

and GaAs16,17,42. Number fluctuations in the bulk are less likely to generate 
1// noise because suitable levels will not coincide with the Fermi level. The 
experimental results should therefore always be compared with the theory for 
surface number fluctuations as well as bulk mobility fluctuations and bulk 
number fluctuations. Surface effects have been shown to account for the contact 
noise results originally ascribed to mobility fluctuations43. 

Because of these edge effects the extensive studies on simple bulk or 
epitaxial layers is suspect. There is probably a surface noise but it cannot 
be investigated without the variables provided by a more complex geometry. 
Since interfacial noise has been found to be larger than depletion layer edges, 
the ideal sample is a conductor completely encased in depletion regions. A 
bias on the junction gives another experimental variable. A suitable sample 
might be a high quality n-type layer between two p-type layers with a pattern 
of gate electrodes to deplete the channel to form a Kelvin and Hall geometry, 
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as is done for 2DEG quantum contact samples. 
Some of the specific experiments which have been used to demonstrate 

the existence of mobility fluctuations can be explained by trapping effects. 
Excess noise in a diode, or bipolar transistor, exists in the generation current, 
/', so that Si « I'2. The diffusion current varies as / « exp(eVr/kT) and 
the generation current varies as V « exp(eV/nkT) with n « 2 so that if 
/>/', S,«/44. 

The persistent current produced in AlGaAs by exciting the DX centre has 
been used to change the number of carriers, N45. Unfortunately the system 
is not simple and the creation of these carriers also creates the same number 
of charged centres. Simple, but reasonable assumptions could then produce a 
number fluctuation with the properties observed. 

The reduction in the noise as the drift velocity saturates at high fields46 

needs further investigation and deeper interpretation since the results could be 
interpreted that a varies as //2, where \i is here the effective mobility, and this 
would agree well with the \i2meas variation often found10. 

9      Conclusions 

There is good evidence in semiconductors, as in other systems, that the excess 
noise increases as the defect density increases. Also there is a well established 
mechanism for excess noise in semiconductors in the generation-recombination 
noise due to the trapping/detrapping process. This is Lorentzian for a single 
time constant and will be 1// for a suitable distribution of time constants. 
Although there is still no complete model for such a noise mechanism it seems 
likely to be the basis of the process. There seems little need or justification for 
a mobility fluctuation model based on phonon fluctuations. 
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SOME UNSOLVED PROBLEMS IN 1/f 
CONDUCTANCE NOISE 
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1110 West Green Street, Urbana, Illinois 61801-3080 

Abstract: A selective survey of 1/f resistance noise in a variety of materials shows 
that there are diverse detailed mechanisms. The mathematics accounting for the 
1/f spectral form turns out to arise in a trivial fashion from generic properties of 
disorder. However, specific puzzles about the noise origens arise for many dissimilar 
materials, e.g. polycrystalline Bi films, spin-density waves in Cr, spin-glasses, 
amorphous metals, and even crystalline Cu with defects. Two themes emerge for 
future study- collective dynamics versus local effects in disordered systems, and the 
connection between local effects and measured properties in materials with strong 
local conductivity inhomogeneity. 

The origins of 1/f noise in conducting materials provide one of the most 
notorious problems in condensed matter physics. In this paper I shall try to 
sort out which aspects of the problem are solved and which remain unsolved. 
The general theme will be that the spectral form is so easy to produce by 
a variety of mechanisms, that it provides little guidance in unraveling the 
particular question of the noise origin in a given material. 

We shall present an argument for the ubiquity of 1/f noise that makes no 
reference to non-equilibrium dynamics. This approach will come as something 
of a surprise to those who seek an explanation for 1/f noise in general properties 
of driven dynamical systems1. 

The essential experimental evidence for the irrelevance of dynamical sys- 
tems has been described previously2. In most resistors, the apparent fluctu- 
ations in R are independent of whether R is measured using a dc current, a 
pulse train, or ac currents, and also independent of the current amplitude for 
small currents. In some cases, it has been possible to use fluctuations in the 
Johnson noise to show that the 1/f resistance noise is present in the absence of 
any applied current. We may add another obvious point: dynamical systems 
which exhibit scaling can be constructed with all sorts of scaling exponents, 
with no special preference for f_i3. The very fact that the noise exponent in 
condensed matter clusters around -1 should strongly suggest that algebraic dy- 
namical scaling laws are not the key. Of course, when noise with very different 
exponents (e.g. Barkhausen noise)4 turns up, the argument may be turned 
around to imply that non-equilibrium explanations are likely suspects (as is 
obviously true anyway for Barkhausen noise). 
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The essential argument for why condensed matter is full of 1/f noise is as 
follows5'6. The rates of the low- frequency noise processes are typically in the 
neighborhood of 1 Hz to 100 kHz. Such frequencies are very low compared 
with the typical microscopic frequencies (e.g. Arrhenius attempt rates) in con- 
densed matter, which are usually greater than 1012 Hz. Thus there is some 
big factor, ordinarily an exponential, giving the ratio of the relaxation time 
to the microscopic times. These exponential factors can either be the Arrhe- 
nius factors of thermally activated processes or the exponentials of tunneling 
processes2. In either case, if the parameters in the exponents (barrier heights, 
effective masses, tunneling distances) have some distribution of values, due to 
disorder, a distribution of characteristic rates will be found. 

The way in which such distributions add up to give 1/f noise is illustrated 
in Figure 1, which shows spectra from a collection of small resistors on a silicon 
wafer. Although each spectrum is distinct (and not 1/f) because it comes from 
a small number of traps, each with a particular characteristic time, the average 
is close to 1/f. 

Will those distributions give 1/f noise? The distribution of characteristic 
rates or frequencies, r(fc), is simply related to the distribution of exponential 
parameters, say activation energies E^, by p(fc) dfc = p (EA) dE^. Therefore 
p(ic) = p (EA) dE^/dfc. Because E^ depends logarithmically on fc, dE^/dfc 

= constant/fc. Therefore p (fc) = (a function of log (fc))/fc- So long as 
the distribution p(EA) is algebraic, the corrections to the 1/f form will be 
logarithmic in fc. Thus, in the presence of disorder one expects low frequency 
noise to be of the 1/f form with log corrections, although if one looks in regions 
corresponding to exponential or Gaussian tails of the distribution, other power 
laws can be found. 

Since explanations of the above type involve quasi-equilibrium noise, it has 
been awkward that examples of conductance noise demonstrably obeying the 
fluctuation- dissipation theorem have not been available. The main excuse has 
been that the variety of properties at local fluctuating sites precludes finding 
a suitable parameter to use in the dissipation experiment. Recently, the 1/f 
noise in giant-magnetoresistive materials has provided a nice example in which 
the magnetic field is a suitable perturbation parameter. In the large regime in 
which the fluctuating magnetization is the biggest noise source, comparison of 
the 1/f noise and the out-of-phase response of R to ac magnetic fields can be 
made via the fluctuation dissipation relation with no adjustable parameters. 
The agreement is very good, despite the fact that both the noise and the out- 
of-phase response show large hysteresis as the magnetic field is changed. (See 
Figure 2.) Thus one does not need true equilibrium, only quasi-equilibrium 
on the relevant time scale, for an equilibrium picture to work7. The unsolved 
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Figure 1: Spectral densities (integrated over octaves, so that 1/f noise gives a horizontal line) 
are shown for a series of nominally identical mm-scale resistors from a silicon-on-saphhire 
wafer. The dotted line is the average, much closer to 1/f 43. The vertical scale has been ex- 
panded more than a factor of four compared to the horizontal scale, to magnify the remaining 

deviations. 



42 

100    F 

10 

0. 

'~I   '   |   i   i   i   i   |   i   i   i   i—|—i—i—i—i—|—i—i—i—i—|—i—i—i—r 

a from %"R 

a measured 

.i i.i _i . 1 1—«—I l-_l_l._!_l_J 1—1 ■ J 1 I l._ i _t_ i |_.j | 1_1 | 

-1500 -1000  -500   0   500  1000  1500 
II (Oc) 

Figure 2: A comparison between the standard 1/f noise parameter a (defined as the mean- 
square fractional resistance fluctuatiions over a factor of e in frequency, multiplied by the 
number of atoms in the sample) and the out-of-phase ac magnetoresistivity of a Co-Cu 
giant magnetoresistive multilayer. The normalization of the out-of-phase response gives a 
predicted a based on the fluctuation-dissipation relation, with no adjustable parameters7. 
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problem of the origin of 1/f noise then splits into many little unsolved problems: 
what things are actually present in different materials to give the spread of 
relaxation rates? Within this collection of problems, new broad themes emerge: 
does the 1/f noise come from a simple sum over many separate sites, each in a 
fixed, disordered environment, or does it result from collective modes of some 
complicated, interacting physics? We shall see that this broad question has no 
general answer, but only specific answers for individual systems. 

Although there are few cases in which a first-principles explanation of 
observed 1/f noise is available, we will discuss a few of the many cases in 
which the detailed ingredients of the noise have at least been characterized. 
(A better-known case8 is provided by the noise in oxide layers on Si, for which 
technology has driven more detailed materials-oriented studies.) Because 1/f 
noise is measurable in very small samples, it provides a useful tool for probing 
slow dynamics in disordered systems. In small samples, even though many 
models can give the same average spectrum, the statistical details of the noise 
can be extremely sensitive to the form of the model. 

A few examples will illustrate the main points. Antiferromagnetic Cr, 
crystalline Cu, polycrystalline Bi, spin-glasses, amorphous metals at low tem- 
perature, and hydrogenated amorphous Si (a-Si:H) provide good illustrations 
of what is known and what remains to be found out. 

Good crystals of Cr provide one of the better examples of why universal 
theories of 1/f noise don't work. Above the Neel temperature, some 1/f noise 
of unknown origin is found. Since the magnitude of this noise grows as the 
crystal quality is lowered9,10, it is a safe guess that in some way or other it 
comes from defect motions, like typical 1/f noise in metals2,5,6. On lowering 
the temperature a few degrees, the noise power increases almost three orders of 
magnitude, without changing its 1/f form9-11. (See Figure 3.) Measurements 
of the tensor symmetry of the noise9 and of the very large individual fluctua- 
tions of which it consists indicate10 that in this regime thermal switching of the 
q-vector of domains of the spin-density-wave order between allowed crystal ori- 
entations provides the main noise source in this regime. (See Figure 4.) Just 
why the q-order breaks up into domains isn't understood, although it must 
have something to do with a combination of disorder and strain constraints. If 
the temperature is then lowered another few tens of K, the noise spectral den- 
sity does not change dramatically. However, a check of the tensor symmetry 
properties, and of the individual domain noise in small samples, shows that 
the q-vector fluctuations have frozen out, and that fluctuations, of domains 
of the polarization planes of the spin-density wave now dominate, just as in 
the acoustic attenuation12. The formation of these domains is more puzzling 
than the q-domains, because even in free single crystals neutron scattering 
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Figure 3: The noise parameter a vs T for several Cr alloy films, all epitaxial except the 
lower-quality film represented by filled circles. The dependence of the noise onset tracks the 
transition into the incommensurate spin-density wave phase, with the paramagnetic phase 
and the commensurate phase relatively quiet14. Noise in the paramagnetic phase increases 

with increasing defect scattering11. 
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Figure 4:   The resistance switching in a Cr epitaxial film is shown just below the Neel 
temperature.  These large switches, reproducible after cycling to the paramagnetic phase, 

come from q-domains of the spin-density wave10. 

shows that such domains spontaneously form even after the polarization has 
been aligned with a field, once the field is removed13. The thermodynamics 
of this spontaneous break-up don't make sense unless some residual material 
disorder is invoked. Experiments on doped material show that the incom- 
mensurability of the SDW and the lattice plays a key role14, (see Figure 3 
again.) but no theoretical understanding of how disorder and incommensura- 
bility determine the domain dynamics is available. One of the most intriguing 
results arises in the 1/f noise of a nominally simple system- single crystal Cu 
nanobridges15-17. It had long been suspected that defect motions were respon- 
sible for most 1/f noise in metals. The experiments of Rails et al showed that 
this was indeed the case, with a variety of different types of defects involved. 
These include pointlike defects which can diffuse through the sample as well as 
larger defects. The mystery arises in the temperature dependence of the noise 
statistics. Below about 150 K, the noise could be decomposed into the sum 
of several random-telegraph-like components. At higher T, even though the 
average spectrum was essentially unchanged, these components "melted" into 
some pattern which continually changed over time15-17. How is this glass-like 
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melting-freezing to be understood? What are the stable modes in the low-T 
frozen state? What are the connections between interacting defects and spin- 
glass Hamiltonians? Do ordinary metals have some sort of defect glass state, 
and if so what detrmines the glass melting temperature? 

Polycrystalline Bi films provide a different sort of puzzle. In Bi, there is 
a large, reproducible peak in the 1/f noise near room temperature, so long 
as the films are sufficiently annealed to give large crystalline domains, and so 
long as the surface-to-volume ratio is small2. The noise has distinctive ten- 
sor symmetry (nearly traceless) corrsponding to rotations in a high-symmetry 
environment18. The dependences of the noise amplitude on sample properties, 
the narrow distribution of frequencies, and the symmetry all point toward the 
same conclusion: the noise comes from the good crystalline regions, quite un- 
like typical defect noise in metals. Although the phenomenon has been known 
for many years, no one knows the explanation. Does Bi have some special 
defect, whose concentration is highly reproducible? Is there some more exotic 
source, related to weak symmetry-breaking effects such as found in Cr? 

In spin-glasses, both the magnetization itself and (in conductors) the con- 
ductance are found to show 1/f noise19-21. The famous universal conductance 
fluctuation effect22,23 provides the main mechanism by which the conductance 
noise comes from the same slow spin fluctuations which give the magnetiza- 
tion noise. The magnetization noise fits the fluctuation-dissipation theorem, 
even when the spin-glass is not in long-term thermal equilibrium19'20. How- 
ever, spin-glass theories remain highly speculative, so that the basic physical 
picture of the spin fluctuations is not established24-26. At two limits of the 
possible descriptions are the droplet picture27 and a hierarchical picture, re- 
lated to the Parisi solution of an infinite-range model28. The simplest droplet 
picture envisions the low frequency dynamics as coming from distinct compact 
spin droplets which are thermally allowed to turn over, and for which a natural 
range of sizes translates to the distribution of characteristic rates. Hierarchical 
descriptions assume that on some length scale the sets of spins which flip are 
highly diffuse and mutually overlapping, with some special statistical features 
describing those overlaps. The set of metastable spin configurations form an 
ultrametric space, where the metric is given by the fraction of the spins that are 
different. This metric also corresponds roughly to the log of the time required 
to go from one configuration to another. Various properties of the dynamics 
on such hierarchical spaces have been worked out29. 

The noise in these dissimilar descriptions is expected to be of a 1/f form 
for the usual reason. It would be misleading to say that the origins of the spin 
noise are known since one cannot even distinguish between such qualitatively 
distinct pictures. 
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Our recent experiments on small samples of the spin-glasses CuMn30'31 

and AuFe 32 showed that no universal description will work to describe the 
spin fluctuations even in conducting spin-glasses with oscillatory spin-spin in- 
teractions. In CuMn, nothing like persistent two-state droplets showed up; 
instead we found complicated multi-state fluctuators. (See Figure 5.) In AuFe, 
however, droplet-like fluctuators, switching repeatedly between two spin states 
even as the temperature or magnetic field was changed, were a major part of 
the noise. (See Figure 6.) Especially in CuMn, the scaling of higher moments 
of the noise disagreed with droplet pictures and fit expectations for a hierarchy, 
indicating that the fluctuators must be diffuse. A very convenient measure of 
htese non-Gaussian effects is provided by the "second spectrum", S2(f2,f) the 
spectrum of the fluctuations at frequency (2 in noise power measured in a band 
around frequency f. (See Figure 7.) An actual physical picture of what sort of 
spin collections fluctuate coherently, what sort of spin states they fluctuate be- 
tween, how they interact with each other, etc. remains undetermined for both 
materials. A particular open question concerns the role of the local anisotropy 
seen by the spins (very different in magnitude for these two materials) in deter- 
mining the global noise statistics. Genuinely amorphous materials have long 
been known to have low temperature excitations with a broad distribution 
of slow relaxation rates33. The microstructure of these excitations, and the 
reason for an approximate universality of their (properly normalized) density 
in a variety of materials are not known34. This same phenomenon shows up 
as low-temperature 1/f noise in amorphous conductors, allowing experiments 
to be made on samples so small as to isolate a few of the fluctuating sites35. 
In several materials such as amorphous co-sputtered Si-Au, these sites are, 
as had been hypothesized, approximately two-state or few- state systems35. 
(See Figure 8.) Their kinetics are governed either by thermal activation or by 
tunneling, depending on T; either way of course gives 1/f for the average spec- 
trum. Their interactions, determined from the slow fluctuations in the spectral 
shape, appear stronger than would be expected for strain interactions among 
randomly located defects- most sites show clear signs of interacting enough 
with other sites to exhibit slow fluctuations in their spectral density. (See Fig- 
ure 9.) The detailed pattern of sites changes after the sample is heated up to 
temperatures (e.g. 60 K) far too low to show gross annealing. Do the inter- 
actions among sites leave many different ways in which the collective system 
can freeze? What determines what floppy sites remain at low-T? What are 
the connections between the "universal" properties of low-temperature excita- 
tions in glasses and the analagous effects at higher T is defctive Cu? Because 
noise experiments can view individual sites as well as average properties, they 
have a better chance of answering such questions than do standard thermal 
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et 

Figure 5: An example of ÄR(t) for a small (under 108 atoms) CuMn sample in the spin-glass 
phase.  Although the noise is non-Gaussian, discrete random telegraph events are hard to 

find and not persistent44. 
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Figure 6: An example ÄR(t) for a small (under 108 atoms) AuFe sample in the spin-glass 
phase, at 4.7 K. The noise is dominated by discrete random telegraphs, whose sensitivity to 

magnetic field is similar to that expected for spin-glass droplets32. 
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shown for a C-Cu sample at 5.3 K. The octave number refers to which first-spectrum octave 
is used, e.g. octave 9 here is from 106 Hz to 213 Hz. Part b shows the data from octave 
9 with the (mainly Gaussian) white component subtracted. The low-f2 contributions show 
that the nominal two-state system must in fact couple to other slow degrees of freedom35. 
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measurements. 
The 1/f noise in these amorphous metals does not go away at room- 

temperature. In fact, the noise becomes non- Gaussian even in samples for 
which it is Gaussian between lOO'K -200 K35. The question again comes up: 
what sort of collective motions are involved? How general is this phenomenon 
in amorphous conductors? 

Hydrogenated amorphous silicon (a-Si:H) has been found36-38 to have 
huge 1/f noise that is very non-Gaussian even in large samples, e.g. 106 mm3. 
Big conductance steps were often found. The noise is, in detail, non-linear 
in the applied field, suggesting that motions of charged H+ are involved, 
since uncharged objects would not be sensitive to the applied field. The non- 
Gaussianity requires highly inhomogeneous current paths and/or big blobs of 
hydrogen moving collectively, which would no doubt be accompanied by highly 
inhomogeneous current anyway. Interesting fluctuations in the detailed spec- 
tral shape (random telegraphs come and go) are found39, and these turn out 
also to show up in simulations of noise in percolating networks. (The reason 
is obvious: a path on which one object is fluctuating can be shut down by 
a sloer fluctuation of another object on the same path, so long as the local 
fluctuations are large.) 

Several questions come up right away: If the local conductances among 
neighboring sites are sufficiently spread out, will highly inhomogeneous perco- 
lation like conductance result even if the sample is overall homogeneous? What 
actually are the local objects which fluctuate- can they be single H+ near the 
high-current links, or are there really H blobs? Here, solving the 1/f noise 
questions would also mean understanding the conduction mechanism better. 

A related problem has come up in a quite distinct material. In partially 
annealed, still somewhat disordered, large samples of a manganate "colos- 
sal magnetoresistance" material, giant conductance steps"appear40. Here, no 
large H blobs can be invoked. However, there must still be large local inho- 
mogeneities in the conductivity, related to the magnetoresistance itself. In 
fact, the non-Gaussian effects can be turned off by applying a sufficiently large 
magnetic field at low temperature, aligning most of the magnetic domains and 
making the conductivity more homogeneous. 

Is this non-Gaussianity also due to inhomogeneous current paths, and 
should it be expected as a general feature in variable-range hopping prob- 
lems, since these are known41 to give percolation-like piths? Work on noise in 
such highly disordered conductors has begun42, but most of the detailed pre- 
dictions needed to understand non- Gaussian effects have not yet been made. 
Simulations of noise in variable-range hopping are harder than the equivalent 
simulations in discrete percolation problems, but might turn out to have wider 
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physical relevance. 
We have seen that a general theme (collective vs. individual dynamics) 

emerges when searching for the origins of 1/f noises. Also, in strongly dis- 
ordered conductors (i.e. with big ranges of local conductivity), the relation 
between the local fluctuations and the measured macroscopic fluctuations has 
not been fully worked out. However, these themes are not very relevant to the 
question of "Why 1/f?", which has a very simple answer: dln(f)/df = 1/f. 
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DEFECTS AND THE An-Au CONTROVERSY IN SEMICONDUCTOR 1/f 
NOISE 

F.N. HOOGE 
Department of Electrical Engineering 
Eindhoven University of Technology 

5600 MB Eindhoven, The Netherlands 

We shall discuss the role defects play in the generation of 1 linoise in homogeneous semiconductors. 
Three models of 1/f noise are reviewed. 

1    Stating the problem 

Damaging the crystal lattice of semiconductors strongly enhances the 1/f noise. 
This is a well established experimental fact. The experimental fact leads to the 
following problem: Is all 1/f noise caused by defects? Or do defects create 
additional 1/f noise on top of the "normal" 1/f noise, which is always found, even in 
perfect crystals? 
I shall discuss the problem from the perspective of three noise groups, Eindhoven, 
Kiev and St. Petersburg. I am well aware that at this conference it is forbidden to 
present solutions. Nevertheless, as long as I am discussing one model I shall try to 
prove its correctness. Although each of the models, on its own, looks correct, the 
three solutions exclude and contradict each other. I can demonstrate the correctness 
of each model, but I cannot reconcile the three models. That is the real problem. 

I shall not discuss each model in its historical development but as we understand it 
now. I shall give the most decisive experimental evidence that we have after all 
these years of research. Finally, I shall mention experimental facts that seriously 
are at variance with the model. 

It is convenient to express the conductance noise of homogeneous samples as the 
quantity a, defined by the relation 

R2    JN 

where N is the total number of free carriers '. Relation (1) makes it easy to compare 
the experimentally determined noise from different samples, and to compare the 
predictions of a theoretical model with experimental results. By using (1) one does 
not say anything about the origin of the noise. In particular, one has not confessed 
to which faith one adheres: mobility fluctuations or number fluctuations. 
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I cannot fully discuss the problem of mobility versus number noise in all its aspects. 
1 shall restrict myself to the influence of defects on noise. I shall use the 
experimentally well established influence as an argument in the discussion on the 
nature of the 1/f noise. This will prove a very efficient way of generating unsolved 
problems. 

2 The Eindhoven model 

The Eindhoven model is the simplest one regarding the role of defects. The defects 
play no role at all. It explains the "normal" 1/f noise, which is found even in the 
best crystals u. There is one hypothesis to start with. 
Hyp:   The number of phonons, §, in a mode of the lattice vibrations fluctuates with 

a 1/f spectrum. 
1 When particles are scattered by a mode the scattering cross section fluctuates 

with a 1/f spectrum. This holds true for electrons (mobility noise) and for 
photons (Musha's optical experiments3). 

2 For each mechanism that scatters electrons, we define a;, analogously to (1) 

A    fit 
(2) 

where   S^./fr   is proportional  to   S^./^2, which  is proportional to 

expCe/T). 
3.  When there are several scattering mechanisms, Matthiessen's rule 

leads to 

(3) 

a^lXt)ai (4) 
;" 

where the index 2 indicates the result of all processes, like in the total mobility 
Hr and in the overall cc£, as defined in (1). 
cc; may be zero; for example for impurity- or for surface scattering where no 
modi are involved. cclatt can be further decomposed in terms of acoustic 
deformation (ad) and polar optical (po) vibrations. 
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alatt ~ 
(    V ( 

aad + 
V 

Mi 
\MpoJ 

a po (5) 

4.  Values of alatt are usually found experimentally in the range 10"4 to 10" 

This straightforward presentation, starting from one single hypothesis, differs from 
the way in which our ideas developed over the years. Some people may find the 
historical development confusing, but the final result is simple. 

Relation (4) predicts that as is proportional to //| for a series of samples with 

different doping levels and, therefore, with different contributions of impurity 
scattering. There is ample experimental evidence for the correctness of relation (4) 
u. As an example, Fig. 1 shows log a versus log u for InP at 77 K, recently 
published by Chen and Leys 4. In the case of number fluctuations the experimental 
points should follow a horizontal line. 
Since the source of the electrical 1/f noise is the 1/f noise in f the number of 
phonons per mode, there seems to be no role for defects to play. Nevertheless, we 
are well aware of the experimental fact that defects increase the noise considerably. 
Not only do we accept the experimental evidence from other groups, our own work 
on irradiated semiconductors confirms that defects increase the 1/f noise v 
Therefore we suggest that defects create additional 1/f noise on top of the "normal" 
mobility noise expressed by ociat1. 
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The 1/f fluctuations in the energy of a lattice mode could be the result of a 
special type of coupling between the modes. This special coupling is the foundation 
for purely mechanical models and computer simulations of lattice vibrations. 
Defects may play a role in the coupling of modes that are assumed to be 
independent harmonic oscillators in a perfect crystal only. 

3  The Kiev model 

Lukyanchikova collected cc-values from her own work and from literature 7,s. She 
considered resistors and simple devices, where a characteristic time x for 
generation-recombination processes could be found This provided ample support 
for the empirical relation she proposed 

CX = ßT (6) 

with ß = 300 s'1. The g-r processes could be either in the bulk or at the surface. In 
the latter situation x is the time the carriers need to diffuse to the surface. 
See Fig. 2. Relation (6) should not be applied to very thin resistors of good 
semiconductor material. In such samples the surface only acts as a scatterer, not as 
a recombination centre9. If we leave out such samples from Lukyanchikova's 
survey, no harm is done to the basic idea that g-r processes strongly influence the 
1/f noise. The processes that connect the two types of noise are unknown. Only 
some vague suggestions have been made. On might think of slow processes in the 
lattice or of slowly diffusing defects. 

What are the consequences for the present discussion on the role of defects ? 
Introduction of defects enhances the g-r processes. Either the defects themselves are 
the relevant g-r centres; their x then appears in relation (6). Or they influence the T 
by influencing the kinetics of the g-r centres already present. 

Anyway, the defects determine the a value. This cannot be a straightforward 
relation, since naive reasoning leads to: more defects give more transitions with 
lower x and hence lower a according to relation (6). This is not in agreement with 
general experience where more defects give rise to more noise. A recent 
publication10 on poly-silicon confirms that there is a relation between a and x. 
However, the experimental relation is not in agreement with relation (6). 
It is a oc x"n with 0-5 < n < 2-5. 
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4   The St. Petersburg model 

The St. Petersburg group, D'yakonova, Levinshtein and Rumyantsev studied 1/f 
noise mainly in GaAs. They summarized their work in an extensive review paper11. 
The 1/f noise is explained as g-r noise from states in an exponential tail connected 
to the conduction band. See Fig. 3. The exponential shape is required for obtaining 
a 1/f spectrum. The tail states are due to defects. It is not theoretically explained 
how the defects create a tail that is exponential. But abundant experimental 
evidence is presented for the existence of the tail states: 
1. The noise does not depend monotonically on illumination intensity. 
2. The tail explains persistant photoconductivity with a long relaxation time. 
3. The tail relates the noise quantitatively to damage. 
One could oppose that since the defects are essential, the model would predict that 
there is no 1/f noise in perfect semiconductors. The normal value of a, about 10"4, 
requires 1013 states in the tail. The authors consider this to be a low concentration 
of defects that will always be present. 

According to the St. Petersburg model, 1/f noise is a fluctuation in the number 
of free carriers due to g-r noise from states created by defects. This model cannot be 
reconciled with the idea of mobility noise. It has been demonstrated experimentally 
that 1/f noise in fairly good material is mobility noise with aiM, ~ 10^. The same a- 
values have been found in the best materials we can grow. 

C<=i«2/v»>— 

Fig. 3. Conduction band with exponential Fig. 4. a versus ft, measured at 77 K. GaAs samples 
tail according to the St. Petersburg model''.       with different original doping, irradiated with the 

same proton dose1'. 
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5  Discussion 

How strongly the three models conflict can best be illustrated by the following 
table. 

Group An? An? Model Role of defects 
Eindhoven AM fluctuation of cross- 

sections of lattice modes 
No direct role, 
(coupling of modes ?) 

Kiev An(?) related to normal g-r 
noise a = ßx 

? 

St. 
Petersburg 

An g-r noise from states in 
tail of conduction band 

defects create tail 

As promised, I shall not come up with a solution. But I think I am permitted to 
make two suggestions that may help to find a solution. 
1. The 1/f noise in disordered metal layers is adequately described by models like 

the local interference model (LI), universal conductance fluctuation model 
(UCF), and two-level systems (TLS) 1214. Perhaps, a theoretician should tell us 
how many defects are required to make such models applicable to perfect 
epitaxial layers of semiconductors. 

2. Experimentalists should investigate whether the 1/f noise induced by defects is 
of the An or Au type. 

There already is an example of such an experiment. Lin Ren l5 of the Eindhoven 
group induced 1/f noise by proton irradiation of GaAs. The induced noise was 
proportional to the radiation dose. He investigated a series of GaAs samples with 
different original impurity contents, and hence different contributions of impurity 
scattering. All samples were irradiated with the same proton dose. 
Fig. 4 shows log a versus log y., plotted analogously to Fig. 1. Lin Ren's induced 
1/f noise looks very much like mobility noise. What about Ukrainian and Russian 
1/f noise ? 
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ON 1/f NOISE AND FREQUENCY INDEPENDENT LOSS TANGENT 

T.G.M. KLEINPENNING 
Department of Electrical Engineering, 
Eindhoven University of Technology, 

Eindhoven, The 'Netherlands 

A new model has been proposed, which relates the 1/f noise in semiconductors to the frequency independent 
loss tangent in dielectrics. It is demonstrated that this model can explain the Hooge relation. The model 
supports the opinion that 1 /f noise is caused by mobility fluctuations. 

1 Introduction 

The open-circuit voltage noise Sv of a capacitor with a dielectric is given by 

SV = 4*rRe(Z) =      4fg-   . = 4*^'«f> . 4kTtanS (i) 
l+co2R2C2      l+(e"/e')2 ooC 

Here s' and s" are the real and imaginary part of the dielectric constant s, = s' - je". 
The loss tangent is defined by tan 8 = s"/s\ the capacitance is C = E'S0A/L, and the 
resistance R = L/COE"80A with L the length and A the cross-section of the capacitor. 
In many dielectrics the loss tangent is usually found to be almost frequency- 
independent and much smaller than one1, hence according to Eq. (1) the voltage 
noise Sv is inversely proportional to the frequency, just like 1/f noise. Now we can 
ask ourselves whether there is a relation between 1/f noise and loss tangent in 
materials. In this paper we try to relate 1/f noise and constant loss tangent. More 
specified, we try to relate Hooge's parameter a with the loss tangent 8. 

2 Outline of the model 

The electric charge density p(r)of an atom, built up of nuclear and electronic 
charge, can fluctuate. On the condition that the total charge is constant we have 

Ap(f, t) = p(r, t) - < p(r, t) > and / Ap(r, t)d r = 0. (2) 

These fluctuations lead to a fluctuating electric dipole. If we put such an atom in 
between two parallel metal electrodes, then we observe voltage fluctuations across 
the electrodes. On the other hand we find the cross-section for electron scattering 
by such an atom to fluctuate. 
A dielectric in between two metal electrodes shows voltage fluctuations according 
to Eq. (1). A free electron, moving in such a dielectric, will be scattered by the 
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electric field fluctuations due to Ap(r,t). These fluctuations lead to fluctuations in 
the electron mobility with spectral density S^. Now the question arises: "What is the 
relation between SK on the one side and Sv = 4kTRe(Z) on the other side ?". 

3   Theoretical approach 

3.1. Atomic scattering of electrons 

The scattering of electrons by an atom is represented by the scattering amplitude2 

f(e) = f(ir,^) = ^Je-i^(?)ei^df = _lTJp(iV^d?, (3) 

where m is the electron mass, h is Planck's constant, <|>(?) the electrostatic 

potential of the atom, 1c and 1c the wave vectors of the incident and scattered 

electron, K = t-1', and a„ = h28„/nq2m the Bohr radius, with q the elementary 

charge and s0 the permittivity of vaccum. Taking the nucleus at f = 0, we obtain 

™-^ l + ^-Jp6(?)eiKrd? 
Zq 

2Z 
a„K2 

[l-F(K)] , (4) 

where Z is the atomic number, 6 the scattering angle, pe(f) the electronic charge 
density, and F(K) the atomic scattering factor with F(0) = 1. For the nuclear charge 

density the integral at the r.h.s. of Eq. (3) leads to Zq. Fluctuations A pe(?) lead to 
fluctuations in f(6) and thus to fluctuations in the differential cross-section o(0) = 
f(6)f*(8). The asterisk denotes the complex conjugate. We have 

ACT(6)=f(e)Af*(e) + f*(e)Af(0), (5) 
with 

Af(0) = (2/aoqK2) jApe(?)eiiLrd?. (6) 

Assuming a sphere symmetrical charge distribution, then we have 
oo 

F(K) = (-47t/ZqK) J rpe(r)sin(Kr)dr . (7) 
0 

With   the   help   of  Eqs.   (4,5,6)   we   find   the   fluctuations   ACT(6)   to   be 
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Aa(0) = ^Z^)ljApe(?)cos(g?)df (8) 
qa„K4 

At room temperature the wave vector k of thermal electrons is of the order of 
2jrmvfll/h « 109 m'1. The atomic radius a is of the order of 10'10 m. Therefore we 
make the approximations 

Kr « 1, sin(Kr)« Kr - (Kr)3/6, and cos (K. ?) « 1 - (K. ?) 2/2 . (9) 

With Eqs. (7,9) and the relation J 47tr2pc(r)dr = - Zq we find 

1 - F(K) « (-K2/6qZ) J 4m4p\r)dr « K2a2/6 . (10) 

Combining Eqs. (8-10) and using the relation J Ape( r )dr = 0 we obtain 
-i2 

Acr(0)«^-.jAP
e(?) 

3qa0 

K.? 
dr. (11) 

K 

The fluctuations in the total cross-section are given by 

Inn 
Ao-= J IAa(d)sind[l-cosd]d0da> . (12) 

0 0 

3.2 Mobility fluctuations and cross-section fluctuations 

Consider a dielectric where the electronic charge density around each atom 
fluctuates. The fluctuations at different atoms are assumed to be uncorrelated. A 
free electron moving in this dielectric will have a scattering cross-section per atom 
CT, a free path X and a mobility \i. Fluctuations ACT lead to fluctuations AX, and Au. 
During the free path the electron passes p = X/2a atoms. A relative fluctuation ACT/CT 
of an atom leads to a relative fluctuation in the free path AX/X = -(ACT/CT)/P. Since 
the fluctuations ACT of different atoms are uncorrelated, the relative spectral noise 
density in the free path and in the mobility for a single electron is found to be p 
times the contribution of one atom 

SxA2 = SM/u2 = p • (SJa2)/p2 = 2n2aXSCT, (13) 

where X = l/(ncr) with n is the density of atoms, n » l/(2a)3. 
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3.3 Loss tangent and electronic charge density fluctuations 

We apply two electrodes to the dielectric. There are no free electrons. Each atom 

has a dipole "p* 

■p* =Jpe(?)fdf andAp=iApe(f)?d1. (14) 

The fluctuations A ~$ lead to voltage fluctuations across the electrodes 

AV = Apx/Cs^oA) and Sv = (e^0A)"2 Spx , (15) 

where Ap* is the component of A ^ perpendicular to the electrodes. If the dipoles 
of the N = nAL atoms fluctuate independently and if the orientation of the dipoles 

is random, then we obtain with <Ap*2> = < Ap*2 >/3 and C = E,S0A/L 

Sv = N(s,s0A)-2 SPx = [n/(3s,s0C)]Sp. (16) 

From Eq. (14) it follows 

Sp= JJSpe(f,r,)f.r,dfdf, (17) 

withS e(r,f)   the cross-correlation spectral noise density of the fluctuations 

Ap e(r) . Combining Eqs. (1,16) yields 
Sp = ÖE.EokT tan8/(7mf) . (18) 

From Eqs. (17,18) we observe that dielectrics with constant tan8 yield Spe(r,r')~ 

1/f. Consequently we can expect a 1/f spectrum for S„ (see Eqs. (11,12)). 

3.4 Relation between Hooge 's parameter a and tanS 

Putting S^/n2 = a/f and using Eqs. (13,18), we obtain a relation between a and tan8 

y   =   a/tanö =   —naXerE0kT Sa    S„. (19) 

Using Eqs. (11,12,17) and taking n = l/(2a)3 the factor y becomes 

_   2Z2a2Aere0kT    2 

7   - ,24°' v   ' 
3TI q a0 
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where the quantity r0
2 is given by 

/ 
K? 
K 

JJJJJJSDe(?,F) 

r2 = 

Kf 
K 

V       J 

JJSpe(r,f)r-?d?d? 

gCe^^dJafdede'dcpdcp' 

  ,   (21) 

with g(6,0') = sinesin0'(l-cose)(l-cos9'). 

To evaluate r„2, we have to know how the fluctuations A pe(?) go on. There are 
several possibilities. 

According to Eq. (11) a transfer of electronic charge from the spot r to the spot - r 
leads to ACT(9) = 0 and thus to y = 0. Consequently, an electric dipole, which jumps 
between two opposite directions, gives no fluctuations in the cross-section o\ 

If the fluctuations Ape(?) are at random, then we have approximately 
s e (?»?') = H(?)8(?-f). In this case the quantity r„2 becomes 

(22) 
. 2 = if ff/H(f)(K-f/K)4g(e,e')d8d8'd(pdcp'df 
° :     * • 

JH(?)? dr 

Since the fluctuations occur at the edge of the atom r « a, and 

J / sin0(l-cos9)d6d<p = An,     /(K-?)4\ » (K4r4 cos4ß) * (3/8)K4r4 , 

with ß the angle between K and r, we expect r„2 to be of the order of öTCV. NOW 
we find 

a = ytanS * [4TIZ
2

A, s.EokTCa/ao^/q^tanS . (23) 

Applying Eq. (3) to electrons in the conduction band of a semiconductor, we have 
to replace m by m* the effective mass, and a„ by a^m/m*. 

For fluctuations Ape( r ,t), which are not uncorrelated with respect to the position r 
and which are not caused by dipoles jumping between opposite directions, we 
expect to have y values of the order of magnitude as given by Eq. (23). 
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3.5 Numerical values for a = ytand 

For Si, both n- and p-type, the value of y at room temperature is of the order of 

y = 47iZ2Xs^0kT(m*a/msIa0)
4/q2 « 0.1 . 

Here we have used X » 4 x 10"8 m and m*a/ma„» 1. For Ge we obtain y « 0.05. For 
pure dielectrics the value of tanS is often found to be in the range of 10"5 to 10"3. So 
a values for Si and Ge can be expected to be in the range of 10"6 to 10"4. Usually the 
free path X is inversely proportional to the temperature, in that case y is 
independent of T. 

4   Factor 1/N 

For a single electron moving in a dielectric we obtain S^u2 = cc/f with a = ytanS. 
What happens if N electrons move criss-cross through the dielectric ? 

For a fluctuation Ap(ri) = -Ap(?2) and ri Tl , Eq. (12) leads to ACT ~ sin2Pj 

sin2ß2. Here ßli2 is the angle between E and ?i,2. For ß2 = ßi and ß2 = rc-ßi, we 
have ACT = 0, The fluctuation ACT depends on the direction of E, the average over 

all k-directions is < ACT >^= 0. Since < kV ICJ >= 0 for i * j and ij = 1 to N we 
k 

have < ACT; • ACTJ >= 0. As a result the contributions of the individual electrons to 

the fluctuations are uncorrelated. For the relative resistance noise we obtain3 

SR/R2 = S^/n*2 « y tan8/fN * cc/fN, 
N 

where n* is the average mobility of the N electrons, i.e. n* = (1/N) Z   m. 
»=1 

It is obvious that the model is compatible with the mobility fluctuation model, not 
with the McWhorter model for number fluctuations. The model predicts values for 
a of the right order of magnitude. 
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NOISE IN THIN METAL FILMS AFTER 
LOW-TEMPERATURE ELECTRON IRRADIATION 
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D-70569 Stuttgart, Germany 

Electrical resistance fluctuations in thin polycrystalline films (Al, Au) are inves- 
tigated by means of a highly sensitive noise spectrometer. The analysis of noise 
in the temperature range between 10 K and 400 K according to the model of 
thermally activated processes proposed by Dutta, Dimon, and Horn indicates that 
defects are a source of 1// noise. Other sources of resistance fluctuations observed 
are macroscopic temperature fluctuations and the relaxation of mechanical stress 
in the samples. The introduction of atomic defects by low-temperature electron 
irradiation increases the noise intensity drastically. The annealing behaviour of 
this noise component supports the view that atomic defects may contribute signifi- 
cantly to 1// noise in metals even at rather low temperatures. In Au, an additional 
noise component, proportional to l//2, showed prominent maxima during the an- 
nealing procedure which might be related to the creation of metastable defects. 

1    Introduction 

The detailed investigation of 1// noise in metals is a rather challenging ex- 
perimental task owing to the smallness of the typical resistance fluctuations 
involved. Only by the development of high-resolution noise-measurement set- 
ups1,2 did the investigation of noise in micron-scaled metal films at low tem- 
peratures become possible. 

There is increasing evidence that defects may contribute to a large extent 
to 1// noise in metals. Low-temperature irradiation with electrons or ions, 
which introduces atomic defects into the metal films, increases the 1// noise 
drastically3'4. Further evidence for the influence of defects on noise in metals 
is provided by mesoscopic samples in which two-level resistance fluctuations 
have been observed5,6 that are presumably caused by changes in the scattering 
cross-section of conduction electrons as defects move between two metastable 
states. The resulting noise spectra are Lorentzian with the knee frequency 
given by the characteristic time of the transition between these states. 

The question still under debate is to what extent other effects contribute 
to noise observed in metal films. The present paper presents results on noise 
of Al and Au films before and after low-temperature electron irradiation and 
discusses them with respect to the individual sources of electrical noise. 

*nee: Dagge 
^Present address: CompuServe, Munich, Germany 
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'/[Hz]     10 

Figure 1: Spectral density of noise power S(f) at 10 K (circles) and 300 K (rectangles) of a 
thin Al (a) and Au (b) film. The solid lines correspond to S(f) oc 1//. 

2 Experiments 

Polycrystalline samples (300 //mx5/im) were produced by electron-beam eva- 
poration with thicknesses of 100 nm (Al) or 110 nm (Au)*. The grain size 
distribution was rather wide with an average size of about 100 nm. The residual 
resistance ratios, R.3OOK/RIOK= 3.13 for Al and 6.8 for Au, are typical for 
metal films of this thickness. 

The samples were irradiated below 10 K in a high-voltage electron micro- 
scope with 3.7xl023 e~/m2 at 1 MeV. In subsequent annealing experiments 
the recovery of both electrical resistance and noise was observed as a function 
of the annealing temperature Ta. Measurement of the low noise intensities 
occurring at low temperatures was made possible by application of a special 
phase-sensitive correlation technique 2 which averages out thermal noise and 
external interference. Thus the measurement technique allows us to rule out 
fluctuations of the output signal other than resistance fluctuations of the sam- 
ple. During the noise measurements temperature fluctuations were kept below 
±2mK. 

3 Results and Discussion 

In the whole temperature range investigated the noise intensities of all samples, 
irrespective of whether they were undamaged or irradiated, were proportional 
to l//m with an exponent m close to 1 (Fig. 1). In contrast to other mea- 
surements on metal films,9 we found no increase of the noise power at low 
temperatures. Our experience is that in order to avoid any contributions to 

♦sample preparation: A. H. Verbruggen, DIMES, TU Delft, The Netherlands 
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Figure 2: Analysis of 1// noise according to the model of Dutta, Dimon, and Horn.7,8 

Measured frequency exponent m of Al (a, circles) and Au (b, rectangles) as a function 
of temperature. The solid lines give the exponent m derived from the above model, (c) 
Distribution of activation energies D{E) of Al (circles) and Au (rectangles) calculated from 

the temperature dependence of the 1// noise at 1 Hz. 

the low-temperature noise spectrum due to macroscopic temperature fluctua- 
tions it is necessary to stabilise the temperature to about ±2 mK, since the 
influence of temperature fluctuations increases drastically below about 40 K. 

3.1    Unirradiated Specimens 
The exponents m derived according to the model of Dutta, Dimon, and Horn7,8 

from S(T) were in good agreement with the frequency dependence of the noise 
power (Fig. 2a and b). In the case of Al, the analysis of the temperature de- 
pendence of the spectral density of noise power, ■S(21), within the framework 
of Dutta, Dimon, and Horn gave a maximum in the distribution of activa- 
tion energies D(E) at about 0.65 eV (Fig. 2c) and an attempt frequency VQ 
of the resistance fluctuations of 1012 Hz. The maximum of the activation en- 
ergy at 0.65 eV is in agreement with the typical activation energy for grain 
boundary diffusion10 and the attempt frequency of the resistance fluctuations 
(i/o = 1012 Hz) is compatible with the motion of atomic defects. The activation 
energy for grain boundary diffusion in Au is about 1.0 eV11 and thus outside 
the range of E < 0.9 eV (corresponding to T = 400 K) accessible in the present 
experiment. These results support the view that the diffusion of defects can 
give rise to resistance fluctuations in metal films. 

In some of the unirradiated gold samples, at low temperatures a l//2 

component was found in addition to the 1// noise (Fig. 3a). Its occurrence 
is correlated with sudden large fluctuations in the voltage across the sample 
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Figure 3: (a) Spectral density of noise power of an Au film at 90 K. The solid lines, which 
are proportional to 1// and l//2, are given for comparison, (b) Typical voltage fluctuations 

AV(t) across the sample as a function of time. 

(Fig. 3b) on the time scale of a few seconds. This suggests that the detected 
l//2 spectrum is probably the high-frequency part of a Lorentzian. Char- 
acteristically, the samples showing the l//2 component had a poor adhesion 
to the substrate and partial detachment of these films took place during the 
thermal cycling of the measurement procedure. An explanation for the l//2 

noise could thus be that resistance fluctuations occur due to fluctuations of the 
thermal conductivity to the substrate, which would cause temperature fluctu- 
ations of the sample or fluctuations in the mechanical stress of the film. Such a 
connection between resistance fluctuations and mechanical stress was already 
described by Fleetwood and Giordano.12 

3.2   Irradiated Specimens 

For both metals, Al and Au, the typical increase of the residual resistance 
due to the irradiation with 3.6 x 1023 e~/m2 was about 20 % whereas the 
noise increased about one order of magnitude. In the case of Al the typical 
energy deposited by the electrons is sufficient for the creation of vacancies and 
interstitials in the bulk material. By contrast, the threshold for the creation 
of vacancy-interstitial pairs in bulk Au at 10 K is higher than the energy 
deposited by 1 MeV electrons. The damage occurs in this case at imperfections, 
e.g. grain boundaries or surfaces, and is known as subthreshold damage.13 

In subsequent isochronal annealing experiments the noise and the resis- 
tance at fixed measuring temperature Tm were determined as a function of the 
annealing temperature Ta. The spectra of the irradiated Al specimens were 
proportional to 1// during the whole annealing procedure. The irradiation- 
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Figure 4: Recovery of noise of irradiated specimens after isochronal anneals for 6 x 102 s at 
progressively higher annealing temperatures Ta. (a) Recovery of the 1// noise at 1 Hz of an 

Al film, (b) Intensity of the l//2 component at 1 Hz of an Au film. 

induced increase in noise anneals in discrete steps (Fig. 4a) at the temperatures 
of the well-known recovery steps of the residual resistivity14 and is completely 
recovered after annealing at temperatures above 350 K, as is the irradiation- 
induced residual resistivity. The steps in noise can therefore be attributed to 
the annealing of intrinsic atomic defects such as vacancies and self-interstitials. 

In the case of irradiated Au an additional component proportional to l//2 

was superimposed on the 1// noise. Measurement of the isochronal annealing 
was performed at Tm = 70 K in order to increase the intensity of the 1// com- 
ponent and thus allow its detection with sufficient accuracy. The irradiation- 
induced increase of the 1// noise recovered completely in a discrete step at the 
same temperature as Stage II of the residual resistivity, whereas the intensities 
of the l//2 component exhibited pronounced maxima in the annealing stages 
II and III at approximately 100 K and 250 K (Fig. 4b). 

The l//2 component was correlated with large fluctuations of the voltage 
across the sample on the time scale of a few seconds. A microscopic explanation 
might be the formation of metastable defects during the recovery. These defects 
might enhance the relaxation of mechanical stress or they might fluctuate at 
70 K on a time scale of a few seconds. Both mechanisms would lead to a 
Lorentzian spectrum, whose high-frequency part shows up as l//2 noise. 

4    Conclusions 

In the entire temperature range investigated, the 1// noise of Al and Au films 
showed excellent agreement with the model of Dutta, Dimon, and Horn 7,s. 
This indicates that the 1// noise is caused by thermally activated resistance 
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fluctuations. The distribution of activation energies and the attempt frequen- 
cies calculated according to the model supports the view that the microscopic 
origin of the resistance fluctuations is the motion of lattice defects. The re- 
sults on specimens electron-irradiated at low temperatures shows that noise 
is increased drastically by the introduction of atomic defects. The annealing 
of the various defect types, e.g. vacancies and interstitials, resulted in the 
stepwise recovery of the irradiation-induced noise. The observation of a l//2 

component in irradiated Au specimens with maxima at certain annealing tem- 
peratures might be caused by the formation of metastable defects during the 
annealing. 
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IS 1/F NOISE CAUSED BY MOVING DEFECTS? 

A.V.YAKIMOV, S.YU.MEDVEDEV, I.YU.ZVORYKIN 

N.Novgorod State University, N.Novgorod 603600, Russia 

We try to test the model linked the 1/f noise with the movement of point defects. As the tool the 
method of spectral-statistical analysis is modified and used. The necessity to re-examine the term 
"stationarity" of the noise with the account of the limited measuring time was found. We have 
also found very high sensitivity of the method to the noise non-Gaussianity. 

1 Introduction 

The nature of the 1/f noise in conducting samples is discussed here. We try to ex- 
amine the model of Two Level Systems (TLS), see e.g. [1J. Every TLS is associated 
with a single point defect having two meta-stable states. The noise is stationary if 
the ensemble of TLS's is fixed. The noise may be considered as Gaussian if the en- 
semble is large enough. We suppose that defects may diffuse through the sample, 
changing the current ensemble of TLS's. Thus, the noise loses its stationarity. 

Our aim is the test of the noise stationarity and Gaussianity. For this purpose 
we use the method of the spectral - statistical analysis. Similar investigations were 
made earlier [2], but results reached are not sufficient for the strict interpretation. 
This lack is caused by the absence of the confidence interval for measured values. 

2 Problems 

The first problem we have got was the necessity to re-examine the term "stati- 
onarity" of the noise. Process x(t) is stationary (in wide sense) if its statistical mo- 
ments do not depend on time t, and correlation function 0(t;t+T) depends only on 
delay r. This definition is based on full statistical ensemble of the process. If x(t) is 
ergodic then the average over ensemble may be replaced by the average over 
te(-oo,ao). 

In the reality the averaging is made over finite time t <T. As a result, estimates 
of all statistical characteristics are random functions of/. If process x(t) is stationary 
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then the variance of these estimates tends to zero when T-x». We determine the 
confidence interval (say, on the significance level 95%) for measuring values. The 
process is stationary if only negligible part (less than 5%) of estimates is out of this 
interval. In the opposite case x(t) is considered as non-stationary. 

The usage of the method of the spectral - statistical analysis for the reveal of 
the movement of defects has yielded some unexpected results [3,4]. We performed 
two experiments: the accuracy test, and the correlation test. 

In the first one the accuracy eexp of the measurement of the filtered noise in- 
tensity is estimated. This estimate is compared with the theoretical value e,h=V(t-Af) 
found for Gaussian stationary noise. It was assumed, that the noise non-stationarity, 
caused by the diffusion of defects, is displayed through a reliable deviation of the 
estimate s^ from theoretically expected value. 

We have found that while the measurement time t is increased then e^p is de- 
creased. But the increase of the filter band-width Af may give the rise of the dis- 
crepancy between theoretically predicted and experimentally estimated accuracy 
values. 

In the second test the correlation between the noise intensities on outputs of two 
non-overlapping band-pass filters is estimated. This value for Gaussian stationary 
noise equals zero, of course, within boundaries of corresponding confidence inter- 
val. In experiments both negative and positive correlations were found. 

The positive correlation may be explained by instabilities in the measuring set- 
up (ambient temperature, and voltage supply drift). The negative correlation, as we 
assumed earlier [3,4], may be explained only by the movement of defects within the 
sample under test. 

The described results have shown the necessity to make the special test of the 
noise non-Gaussianity influence on the measurement results. 

3 Non-Gaussian noise modelling and treatment 

The signal was formed by a generator of random numbers in a computer. That 
gives the uniformly distributed pseudo - random sequence of integers. To reach 
various degree of affinity to Gaussian process the sum of N« integers was used: 

x(t) = (l/Nt)EXi(t). 
In our numerical experiments the values N, =1,16,128 were chosen. When 16 

(or more) items are summarised at once, it is usually assumed, that the process is 
reasonably close to Gaussian one. 
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For N, >16 the noise histogram (as the estimate of the pdf) is a good "Gaus- 
sian" one. At N, =128 the histogram does practically not differ from Gauss law. 
The spectrum was found by 2048 - point FFT, with the usage of the first 800 spec- 
tral components of the signal. The deviation from the spectrum of "ideal" white 
noise corresponds to theoretically expected value, that is about 0.08dB. 

The band-pass filtering was realised as follows. The signal was Fourier trans- 
formed. The intensities of nf spectral lines were summarised, whose frequencies fall 
into the chosen band As a result we got a single sample of the filtered noise in- 
tensity. The array of NT samples was accumulated and statistically treated. The re- 
sults of the treatment were presented in the following way. 

Each result was evaluated and displayed for the ensemble of n-na samples; 
n =1...M, where N =400 -the total number of the discrete samples on a time; na =8 
-number of the samples in the intermediate averaging; thus, NT = N-na. 

The theoretical value of the accuracy was determined in Gaussian approxima- 
tion: eth = V(t Af) . In the discrete variant the product (t Af) = n-(na-nj) is the current 
number of available non-correlated intensity samples of the spectral lines. 

The accuracy eap of the measurement was estimated during the data process- 
ing. This value was rationed on e,h, that gives the relative estimate of the accuracy 
of the filtered noise intensity measurement: e„i = Say/so,. If Gaussian stationary 
noise is analysed, then this relative accuracy gets values e„i «1, not leaving the 
frames of the confidence interval. With the account of this circumstance the results 
of statistical treatment were additionally shifted down and normalised on the half- 
width of the confidence (with significance level of 95%) interval AE: 

e = (srel -1)/AE= [(s^/etn) -1J/AE. 

If more than 95% of data satisfy the condition \e\ < 1, then the noise is Gaus- 
sian and stationary. The stationarity was assumed to be fulfilled in our numerical 
experiments, the main problem was the test of the noise Gaussianity. 

The confidence interval half-width, evaluated in the approximation of delta - 
correlated Gaussian noise, is as follows [4] 

AE tx4.3-£,h. 

This relation was evaluated under the condition eth « 1. 
It was assumed, that the noise non-Gaussianity is displayed first of all through 

the link between spectral lines, whose frequencies are multiple one to another (i.e. 
between harmonics). Therefore two types of the band-pass filter were chosen. 

The intensities of Fourier - components with numbers 2... 101 were summarised 
in LF filter. That is the filter, covering up to 50 harmonics. In the second case the 
HF filter, covering lines with numbers 652... 751 was chosen. Harmonically linked 
spectral lines are completely absent in this band 
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The results of numerical experiment for the LF filtered uniformly distributed 
noise are shown in fig. la. Here the numbers of accumulated samples n are pointed 
on the horizontal axis; the vertical axis contains values of the normalised accuracy 
e. Results for the HF filter are completely similar, namely, all data tend to be under 
the bottom of the confidence interval e = -1 while the time is increasing. 

Thus, the noise non-Gaussianity is manifested through the link not only be- 
tween harmonic components, but in more complex way. 

In Fig. la the vertical line n=100 is drawn. Data for n<100 correspond to the 
accuracy available when the filter band-width is decreased four times, that is 
rif =25 . Results for «/=25 are shown in Fig. lb, where the same frame is used. 
(a) (b) 
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One can see from Fig. lb, that 4 times reduction of the filter band-width has 
resulted the essential reduction of the filtered noise non-Gaussianity. Now the data 
are practically within the confidence interval restricted by lines e=±l. 

While summing 16 uniformly distributed items the difference appeared in the 
results of nj =100 spectral component summation. Strong data spread was found 
relatively to the confidence interval limits, with the weak tendency to the reduction 
while the time of the analysis (the number «) is increased. The similar picture, but 
with some smaller spread of data for nj =100, was observed for the sum of 128 
items; the corresponding illustration is given in Fig. 2(a, b). 
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4 Conclusion 

Accuracy of the filtered noise intensity measurement is very sensitive to the noise 
non-Gaussianity. An increase of the time of the analysis explicitly results in the in- 
crease of the accuracy. But the increase of the filter band-width may yield the in- 
crease of the error in the comparison with value corresponded to "ideal" Gaussian 
noise. This result agrees with [5], where it is shown, that the accuracy of the in- 
tensity measurement is determined by a tri-spectrum of the noise. 

Thus, the problems to be solved are seen as follows. 
(i) If the 1/f noise is non-Gaussian then what are the type and nature of this 

non-Gaussianitv. 
(ii) If the noise is non-stationary then: 

a) what are the type and nature of this effect ? 
b) how to reveal this non-stationarity on the real time scale? 
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The temperature dependence of 1/f noise in clean discontinuous platinum films is modeled by 
phonon density of states superposition method in the range(100-200)K. Our data show that both 
longitudinal and transversal(vertical) motion of surface atoms generate 1/f noise but enhanced 
noise level is observed when carriers couple to the vertical motion of surface atoms(Rayleigh 
waves). A possible connection between the Hooge parameter and the Eliashberg function is 

revealed. 

1   Introduction 

For more than seventy years, 1/f noise remains one of the most puzzling 
phenomenon of solid state physics. Due to its extremely ubiquity, the microscopic 
origin of 1/f noise is still unsolved. Over the last two decades, evidence has been 
accumulated proving that defects motion[l]-[12] or some kind of atomic 
motion[l],[9] could be the microscopic source of 1/f noise in metals. According to 
some authors[6],[12], experiments ensuing the defect motion models are 
inconsistent with the model which relies on phonon scattering as source of 1/f 
noise[13]. Experiments performed near the melting transition[12],[14] showed that 
the noise intensity decreases upon melting, explicitely recognizing that the lattice is 
playing a role in generating 1/f noise. Nevertheless, it is concluded that phonons 
have no influence in the noise mechanism[12]. However, phonon scattering seems 
to be involvedfl3] and both bulk[15] and surface phonons[16] were observed in the 
1/f noise. The 1/f noise observed in the laser light scattering on quartz[17] and in 
the current of a tunneling microscope! 18] was attributed to phonon number 
fluctuation. Also, using Phonon Density of States Superposition(PDOS) method, a 
kind of atomic motion, namely longitudinal motion of surface atoms, has been 
identified as source of 1/f noise[19] in discontinuous platinum films(DPF). Now we 
report that in some DPFs the transversal(vertical) motion of the surface atoms 
generates enhanced 1/f noise. But the vertically polarized surface atomic motion is 
known as Rayleigh waves[20], thus the atomic Rayleigh wave[21],[22] is identified 
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as source of 1/f noise. Finally, a new physical interpretation of the Hooge parameter 
is given. 

2. Experiments, results and discussion 

The data reported here are for clean DPF. Clean means that no desorption peak due 
to residual gases has been observed during the noise measurements. A number of 
five samples, evaporated at the same time on a sapphire substrate, were 
investigated. 1/f noise spectra were observed in all samples. The noise intensity(Sy) 
followed a quadratic dependence on the applied voltage(V), so as the 
temperature(T) dependence of the normalized noise intensity(Sv/v2) has been 
determined in the (100-200)K temperature range. Figure 1 shows comparatively the 
dependence of Sy/V2 vs. T for the sample RAB, with the lowest noise intensity, and 
for the sample RDE whose noise intensity is enhanced. 

The most salient fea- 
ture of the 1/f noise 
intensity in both sam- 
ples is the existence of 
some maxima. While 
in the sample RAB the 
maximum is structu- 
red with two peaks 
located at 144K and 
152K, respectively, in 
the case of RDE the 
maximum is enlarged, 
down shifted, with a 
maximum maximorum 
at about 130K. A 
similar behaviour as 
in RDE shows the 1/f 
noise of the other 
three samples, but in 
their case 50 times 
more noise has been 
found We were 

especially intrigued by the observation that all samples having the noise maximum 
located around 130K showed enhanced 1/f noise. Looking for a physical 
explanation of this observation, we have resorted to the PDOS method[16],[19] to 
model the temperature dependence of 1/f noise data. The noise data for the RAB 

200 
TEMPERATURE (K) 

Figure 1: Dependence of the 1/f noise intensity on temperature for the 

samples RAB and RDE at f=10 Hz; points are experimental data 
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sample and the function F(ro) obtained by PDOS method are compared in figure 2. 
The function F(©) was obtained by the superposition of some surface PDOS and 
the bulk PDOS for platinum[23]. For surface, only PDOS corresponding to the 
longitudinal motion of the platinum atoms in the first atomic layer, both in the rK 
and rM symmetry directions, were taken from Kern et al. [24]. The resulting PDOS 
was noted F(co), though the phonon frequency((ö) was converted into an equivalent 
temperature(T=rioo/kB, where the terms have their usual meaning). The reasonable 
fit between F(©) and the noise data points to the longitudinal motion of surface 
atoms as a source of 1/f noise. 

Figure 3 shows the 
dependence of 
Sy/V2 vs. T for 
RDE and for com- 
parison, the func- 
tion F(ra). In this 
case, the use of 
only F(ra) to fit the 
noise data was in 
no way satisfactory, 
let alone the 
explanation of the 
maximum at 130K. 
The way out was to 
add to F(co) the 
PDOS function 
corresponding to 
the transversal 
(vertical) motion of 
the surface atoms 
in the first atomic 
layer, in the TK 
symmetry direction 

[24]. The result was a new function F'(ra) with a maximum maximorum at 129K 
which can explain the 130K maximum in the noise. These results show that the 
transversal motion of surface atoms is another source of 1/f noise. The transversal 
vibrational mode of the surface atoms are known as Rayleigh wave "because Lord 
Rayleigh in 1885 had shown its existence in a continuous medium; we may liken it 
to a propagating ripple on the solid surface - it is a motion involved in 
earthquakes'', to quote Myers[25]. Therefore, there is enough reason to consider 

TEMPERATURE (K) 

Figure 2: Comparison between the normalized 1/f noise spectral density of the 

RAB film and the function F((D); the arrows with the associated letters indicate 
the symmetry directions in the platinum surface Brillouin zone. 
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that enhanced 1/f 
noise observed in 
RDE film is due to 
electron scattering by 
Rayleigh phonons. 
Corroborated with the 
Myers' above 
statement[25], this 
observation has direct 
implications on the 
origin of 1/f noise in 
solid state physical 
systems and not only. 

TEMPERATURE (K) 
200 

Figure 3: Comparison between the normalized 1/f noise spectral density of 

the RDE film and the function F'(C0); the arrows with the associated letters 
indicate the symmetry directions in the platinum surface Brillouin zone. 

3. Search for the physical significance of the Hooge's parameter 

Although widely used to characterize the noisiness of many physical systems, the 
physical significance of the Hooge parameter[26], a , is still obscure. It is now 
established that a depends on temperature[5],[ll],[14],[27] and scattering 
mechanisms[13],[27]. Suggestions have also been made that a would have a 
spectroscopic character[15] From the data on discontinuous platinum films, we 
have seen that Sv/V2~F(©)=EFi(ö>), where Fi(ro) is the PDOS of the i-th phonon 
branch. On the Fermi surface, the electrons couple very anisotropically to phonon 
branches[28]-[31]. Therefore, the participation of Fi(co) could be weighted by the 
associated electron-phonon matrix element(ßi2), hence Sv/V2~Eßi2Fi(eo). For some 
temperature intervals, the anisotropy of ßj2 could account for the dominance of, 
say, Fi(a>) and thus, in the Hooge's form : 

Sv/V2~oc/£.ßj2Fj(G)). (1) 
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But the product ßfoo») of the squared matrix element ßi for the electron-phonon 
interaction and the phonon density of states FJ(CD) is known as Eliashberg function. 
Consequently, the formula (1) suggests a possible connection between the Hooge 
parameter and the Eliashberg function : oc^ß^Fifa). Such a connection, if any, can 
explain at least qualitatively many unclear and apparently dissimilar aspects of the 
1/f noise in solid state physical systems. Also, it can explain our noise data, if one 
considers that the electrons couple stronger to the transversal phonon modes, as it 
happens in noble metals at the necks of the Fermi surface[28]-[32]. 

4. Conclusion 

In conclusion, the transversal motion of surface atoms, also known as Rayleigh 
wave, has been identified as source of 1/f noise in DPF. It generates more 1/f noise 
than its longitudinal counterpart. This observation was attributed to a stronger 
coupling of electrons to transversal surface atomic motion. A possible new 
connection between the Hooge parameter and the Eliashberg function has been 
found. 
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We survey the biased-percolation model based on a two-dimensional resistor net- 
work as an approach to understand abrupt failure of electronic devices. Monte 
Carlo simulations enable us to investigate the evolution of the system including: 
damage pattern, current distribution, resistance degradation, resistance relative- 
fluctuations and its power spectrum associated with 1// noise. Unsolved problems 
related to the development and improvement of the model are discussed. 

1 Introduction 

Very recently, a new percolation model1 which promises to be a good can- 
didate for understanding the abrupt failure of electronic devices2-6 has been 
introduced. This new model has been called biased percolation, because local 
Joule heating is assumed responsible for the generation of defects causing per- 
colative breakdown of the device. In this paper we briefly summarize the state 
of the art of this model and focus onto unsolved problems in the perspective 
of developing and improving existing findings. 

2 State of the art 

We consider a thin conductor film as a two-dimensional square lattice network 
of identical resistors stuck on an insulating substrate at temperature To. The 
lattice is contacted at the left and right hand sides to an external applied 
voltage U, which is kept constant. The degradation is starting because of the 
spontaneous creation of insulating defects. In our model, a defect corresponds 
to an infinite value of the resistance of an element (open-circuit model). The 
total degradation of the network implies the existence of at least one continuous 
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path of defects between the upper and lower side of the lattice and therefore 
the measured resistance becomes infinite in this case. We take the probability 
Wa of creation of a local defect indexed by a as: 

"■—*-]&> w 
where E0 is an activation energy characteristic of the defect, KB the Boltzmann 
constant, and Ta the local temperature at the resistor a : 

Ta = T0+ ArJl (2) 

A is the characteristic parameter responsible for the coupling between current 
and device degradation, its value, measured in {K/W), depends on the effi- 
ciency in the thermalization by the substrate of each resistor rQ, ia being the 
current flowing in it. It is interesting to note that this model provides a spon- 
taneous symmetry breaking: at the beginning, when there is no defect yet, 
the probability of defect creation is homogeneous in space. By the accidental 
creation of the first defect at a random location, the original symmetry is spon- 
taneously broken and the further defects will grow with a higher probability 
around the first one. When A is zero, the corresponding probability W° is 
the same for all resistors, which corresponds to a degradation governed by the 
standard percolation model.7'8 

Monte-Carlo simulations are carried out using square networks with sizes 
N x N up to N = 100. Starting from the perfect lattice, the defects are 
generated according to the probability Wa. All local currents ia are then re- 
calculated, the probability Wa is updated, and applied to generate new defects. 
As realistic parameters we take To = 300 K, E0/KB = 3000 K, ra = 1 fi, 
U = 1V and A = 100 x N2 K/W (for purposes of convenience we choose 
A scaling as N2). As indicators of degradation we have studied the evolution 
of the damage-pattern, resistance degradation and its fluctuations. The main 
results are summarized below. 

(i) The damage exhibits a filamentary pattern perpendicular to the di- 
rection of the current flow, as illustrated in Fig. 1. In particular, only a 
few clusters of defects are found in the device when it breaks down (infinite 
resistance), most of the material still remaining defect free. 

(ii) The evolution of the network resistance R and of its normalized vari- 
ance < 6R? > /R2 exhibit a sharp transition to failure as illustrated in Figs. 
2 and 3 respectively. This latter quantity is evaluated assuming that each 
resistor is fluctuating in time independently from each other, with a variance 
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Figure 1: Lattice with size 30 x 30 close to    Figure 2: Evolution of the lattice total re- 
complete failure. sistance for the standard (circle) and bi- 

ased (square) percolation models, respec- 
tively. Curves refer to a sample with sizes 

100 X 100. 

< Sr\ >= p2 , the same for all resistors, so that8: 

<SR2>_p2      Ejt 
R2 (Eo'l)2 (3) 

where we account for the fact that all ra = r and p2/r2 <g 1. We remark 
that, contrary to standard percolation, the increase of the resistance and of 
< SR2 > jR2 is not significant up to the last few percent of the device lifetime, 
where the resistance is diverging very steeply. 

(iii) Pure 1// noise spectra exhibit a colored transition near the abrupt 
failure of the device as illustrated in Fig. 4. Within our model the noise 
spectrum of resistance fluctuations SSR(/) at frequency / is: 

Sm(f) = 
R? 

r2(Zaiir 
^2sra{f)i4

a (4) 

where sra(f) is the spectral density of the a-th resistor assumed of Lorentzian 
form: 

Sra(f) = 1 + (27rra/)
2 (5) 
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with the correlation time of the a-th resistor, ra, hyperbolically distributed 
between 10-6 and 1 s. In this way, the spectral density of total resistance at 
the initial step exhibits a 1// spectrum over several decades of frequencies. 

Overall, the above features show valuable agreement with available exper- 
iments4-6 and offer interesting possibilities to test the reliability of electronic 
devices.2-3 

10' 

lo- 

ur Ü 
JO*5    ' '  ■ "■■* ■  tllllrf I_LU1UJ  -I      ■   " 

10°       10'       10*       10*       10*       105 

Number of steps 

Figure 3: Evolution of normalized variance 
for standard (circle) and biased (square) 
percolation models, respectively.    Curves 

refer to a sample with size 100 x 100. 

10* 10'       10*       103       104       105 

Frequency [Hz] 

Figure 4: Normalized spectral density of to- 
tal resistance fluctuations calculated from 
the biased percolation model for a lattice 
with size 100 x 100. The lowest curve is for 
R = 1.0 ft. The others follow in increas- 
ing order of R, respectively R = 1.5 ft, 

R = 3.4 ft,  R = 5.0 n. 

3    Unsolved problems 

Unsolved problems of this new model are summarized as follows: 
(i) The normalized variance of the resistance R scales with R : AR2/R? oc 

R? with 7 real. In the case of standard percolation this scaling exponent 7 is 
universal. Is this universality also present in the case of biased percolation ? 

(ii) What is the role of different biasing conditions ? What happens for 
different values of the biasing quantity ? 

(iii) What is the effect of contact geometry and boundaries ? For example 
we may have a point-contact, a grating contact, and so on. 

(iv) What could be the effect of dishomogeneities in the efficiency of cooling 
by the substrate (due, for example, to the quality of the adesion or to other 
dishomogeneous features of the substrate) ? 
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(v) What is the effect if the sample is non-ohmic ? 
(vi) Is it possible to define an effective noise temperature for the network 

as a good indicator to monitor abrupt failure ? 
(vii) In which way the lifetime of the device can be correlated to the 

evolution provided by Monte Carlo simulation. In other words which relation 
can exist between the iteration number and the time step ? 

(viii) In which way the network sizes can be correlated to the geometri- 
cal and structural characteristics of the real device ? In particular, how the 
granularity of the film influences its noise characteristics ? 

(ix) The model can be upgraded to provide a different sensitivity for noise 
and resistance degradation ? 

(x) Can the present model be implemented by introducing others proba- 
bilities of generating defects, or different kinds of defects ? In particular, can 
this model be usefull for studing conductor - superconductor 9 transitions ? 
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NOVEL DYNAMIC APPROACH TO THE 1/f NOISE 
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A solution of one of the main unsolved problems of 1/f noise related to the 
noise origin is suggested. We propose random short-lived large energy fluctua- 
tions(SLEF's)of small numbers JV0 > 1 of atoms and SLEF-generated transient 
point dynamical defects(TPDD's) of lifetime AT = 10~13 - 10~12* to be a source 
of 1/f noise in solids. The SLEF's and TPDD's having exponentially broad relax- 
ation times cause random (in space and time) trapping(localization) and strong 
scattering of carriers.This produces stochastic dynamical fluctuations in the car- 
rier density and mobility which possess 1/f spectral component.The Hooge-like 
relation with the parameter aH = 10-2 - 10~4 dependent on material character- 
istics has been obtained for metals and semiconductors through the SLEF-based 
approach. 

1    Introduction 

An extremely broad range of solids exibits so-called 1/f noise or flicker noise 
characterized by the spectral density (SD) S oc 1/p that makes 1/f noise 
almost a universal phenomenon [1-22]. Hence one can expect the origin of 
flicker noise to have the same universal nature common for all solids. However, 
at present, the problem of the origin of 1/f noise is unsolved in spite of over 
sixty years of investigations, a great amount of experimental data accumu- 
lated, numerous models proposed and impressive achievements in the analysis 
of experimental data and properties of possible sources of 1/f noise. The 
concept of defect-fluctuators with an exponentially broad range of relaxation 
times T = r0exp(E/kT) has been put forward for the interpretation of experi- 
mental datafl-5,17,20,21]. Nevertheless, the problem of the the nature of the 
fluctuators has not yet been solved. 

In this paper we propose a novel stochastic dynamic source of 1/f noise, 
based on the kinetic many-body electron-related theory of short-lived large 
energy fluctuations(SLEF's) of small numbers N0 > 1 of atoms (of lifetime 
AT = 10-13 - 10-12s) and SLEF-induced rate processes in solids[23-41]. We 
suggest that the random dynamical SLEF's take the role of the fluctuators gen- 
erating 1/f noise. The SLEF's have exponentially broad relaxation times. The 
SLEF theory applied successfully to numerous processes and materials shows 
that SLEF's generate transient point dynamic defects(TPDD's) of nanometric 
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size and lifetime ATR « AT. Each of the TPDD's breaks up the local material 
order, symmetry and stability and changes dramatically atomic and electronic 
properties in the nanometer region during AT. The SLEF's and TPDD's ex- 
isting simultaneously and permanently in the solid generate a strong electron- 
lattice interaction which can cause trapping (localization) of mobile carriers , 
strong carrier scattering and upward and downward electron transitions in the 
SLEF-afFected nanometric regions[23a,25-30,33-36,39]. In other words, each of 
the SLEF's induces transient local conductor-insulator transitions (TLCIT's) 
in the SLEF-afFected material region. The SLEF's and TLCIT's appear spon- 
taneously in random places at random instants of time. The random persistent 
sequences (generations) of simultaneously occurring SLEF's,TPDD's and TL- 
CIT's which form random dynamic arrays exist permanently in solids[23a,31- 
36]. They cause stochastic dynamical fluctuations in the carrier number and 
mobility and in the material resistance. These fluctuations contain the 1// 
noise component,and thus they generate 1// noise. 

2    The Origin of 1// Noise - Statement of the Problem 

The fact that 1// noise has been observed in virtually all kinds of materials 
[1-22] motivates one to expect the origin of 1// noise to be common for all 
materials, although specific properties of different materials can cause some 
observed differences in particular noise features found in different kinds of 
materials. There exists a widespread opinion that 1// noise is generated by 
ensembles of defect-fluctuators possessing a broad distribution of relaxation 
times T [1-5,17-21]. However the nature of the fluctuators and thus that of the 
origin of 1// noise is one of the key unsolved problems in the field. Observa- 
tions of 1// noise inversely proportional to the sample volume V are usually 
attributed to the bulk nature of the noise. In many experimental situations the 
famous Hooge empirical relation between SD Sj of current fluctuations, the 
total number Nc of carriers and frequency u takes place [9] Sj/I2 = a/Ncu>. 
Here the parameter a is of the order of 10-3 in many cases, but it is not a 
"universal constant" and its value in some cases can deviate strongly from 
the "normal" value of ct0 » 10-3. Two 1// noise components exist simul- 
taneously in metaZsfl]: a) a strongly temperature-dependent noise, which is 
independent of the substrate. The amplitude of this noise is proportional 
to exp(-EM/kT) at temperature T < 350ÜT,where EM » 0.1 to 0.15 eV 
and b) a weak temperature-dependent component which, however, depends 
strongly on the substrate nature. In semiconductors strong experimental ev- 
idence of the relation of 1// noise to lattice scattering has been presented. 
Hooge and coauthors [2] have concluded that "it is as if the density of phonons 
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fluctuates with a 1// spectrum". The concept of fluctuators having the ex- 
ponentially broad distribution of relaxation times attributes this distribution 
to some thermally activated processes caused by fluctuators which generate 
1// noise. We shall see below that the proposed SLEF-based model of 1// 
noise which includes SLEF-induced thermally activated processes as a source 
of 1// noises, introduces SLEF-generated fluctuators having relaxation times 
T oc exp(AG/kT)(AG » kT) but does not produce thermally activated parti- 
cles jumps over energy barriers. Let us first consider some limitations imposed 
by the conventional theory of solids which are associated with the following 
well known assumption [42-44]: 1) Average atomic displacements (or oscilla- 
tion amplitudes) a A are small compared to the average interatomic spacing d, 
i.e. a A « d. 2) The electron motion can be separated from the atomic motion 
through the Bohr-Oppenheimer adiabatic principle due to the above assump- 
tion O~A « d. 3) The collective atomic motion can be described in terms 
of harmonic (quasiharmonic) approximation and of phonons when a A « d. 
4) Relatively small electronic perturbations are taken into account. 5) The 
electron-lattice interactions are usually described in terms of the electron- 
phonon interactions. 6) Only conventional long-lived defects (vacancies, etc.) 
and their interactions with carriers are taken into account. 7) The solid is 
usually assumed to be characterized by its equilibrium atomic, electronic and 
electromagnetic parameters (if some external factors do not force it to deviate 
from equilibrium). The above assumptions, although proven extremely effec- 
tive in various fields, impose strong limitations on the consideration of a broad 
range of processes in solids which are associated with large transient atomic 
displacements (LTAD's) Ago = \q0 - q0\ « d » crA from the mean positions 
q0 (such as atomic and defect diffusion, etc.) This was first stressed by Frenkel 
[45] about 50 years ago. The theory of SLEF's and SLEF-induced processes 
[23-41] frees one from the above limitations through the consideration of large 
local non-equilibrium fluctuations hypotized by Boltzmann 100 years ago[46], 
SLEF-induced LTAD's and strongly interrelated atomic and electronic phe- 
nomena in nanometric regions which break the aforementioned assumptions. 
These SLEF-induced phenomena take place in all kinds of materials. The 
SLEF-based electron- related theory has been applied successfully to the con- 
sideration of various rate processes, phase and structural transformations in 
metals [23a,24], metal binary alloys [35], crystalline and amorphous semicon- 
ductors [23a-25,27-29,31], semiconductor lasers and light emitting diodes [30]), 
metal-semiconductor interfaces[36], semiconductor surfaces [26], high- Tc and 
low-T<; superconductors [33] and superconducting ceramics at T > Tc [39], 
semiconductor superlattices of nanometer periods [37] and semiconductors af- 
fected by light [38]. In this work we extend the SLEF theory to the problem 
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of the oiigin of 1// noise. 

3    A Dynamic Stochastic Model of the SLEF-generated Picosecond 
Nanometric Fluctuator 

The theory of SLEF's and SLEF-related phenomena is well documented in 
literature[23-40]. Here we summarize,mainly, some key points of the theory 
related to SLEF-induced LTAD's and TPDD's able to localize (trap) carriers 
for a short while and scatter them strongly.This causes random fluctuations 
ANc(t) = Ne(t) - ]V7, An(t) = n{t) - n(t), Afj, = n(t) - /I in the carrier num- 
ber Nc(t) = Vn(t) in the sample volume V, concentration n(<) and mobility 
H(t) around their mean values Nc = Vn,n and p. We use the SLEF theory 
that considers the dynamics of SLEF-induced correlated many-body picosec- 
ond atomic and electronic phenomena which occur during AT » 10-13—10-12a 
in nanometer regions of solids(or their surfaces ). Each SLEF of lifetime 
Ar = Ti + T2 emerging in random places at random instants of time generates 
N0 > 1 hyperthermal fluctuating atoms(HFA's). During the SLEF formation 
time Ti « 0.5AT the HFA's receive the energy e^ » kT only from the causal 
nanometer HFA vicinity of radius Ri « C,TX » (2 - Z)d m 10~7cm and volume 
Qi « 4Ä3 (containing ANi « 30 - 100 atoms) due to the causality condition. 
The HFA gives the "borrowed" energy back to the HFA surroundings of radius 
R2 « c,T2 « Ri during the SLEF relaxation time r2 « n (here c, is of the 
order of the sound velocity). During AT the SLEF perturbs the HFA vicinity 
of radius RA « c,Ar « 2Ri « (4 - 10)d and volume VA « 4^^ ss 30Äf 
containing NA « (3- 10)102 atoms.Mobile electrons moving with the velocity 
ve = 107 — 108cm/s can be affected by a single SLEF at distances not larger 
than re « Arve « (102 - 103)d [23,25-30,33,35-40].SLEF's can correlate with 
one another at distances of the order of RA = 10d on the atomic level and 
at distances re » (102 - 103)d on the electronic level.The HFA's experience 
LTAD's Aq0 » a A , which can be seen directly in molecular dynamic sim- 
ulations[31,32 J.They are associated with large picosecond correlated atomic 
and electronic distortions in the HFA nanometer neighbourhood. The SLEF- 
induced LTAD's and a local transient disordering form TPDD's of lifetime 
Ard « AT = 10~13 - 10_12s which differ qualitatively from the traditional 
long-lived point defects(vacancies,interstitials,etc.)[23-28,30-37]. The SLEF's 
generate a local non-equilibrium state and fluctuations in the phonon den- 
sity in the HFA's vicinity. The picosecond correlated motion of the HFA's 
and many surrounding particles in the HFA nanometer causal vicinity during 
the SLEF lifetime is described by the coupled kinetic integro-differential equa- 
tions[23,41].The SLEF probability and rate coefficients are calculated from a 
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solution of the SLEF kinetic equations[23,41]. The SLEF-induced TPDD's 
create strong transient local atomic and electronic distortions and instabilities 
that destroy, for a short while, the material symmetry,order and stability and 
generate local transient non-equilibrium states in the nanometric volumes.The 
LTAD's and TPDD's breaking the Born-Oppenheimer adiabatic approxima- 
tions induce large local transient electronic rearrangements and the motion 
and crossing of electronic levels (surfaces) and also non-adiabatic electron tran- 
sitions in the HFA vicinityjnew local moving electron levels are also created by 
SLEF's.This causes strong carrier-lattice interaction effects[23a,25-30,35-40]. 

The simultaneously existing SLEF's and TPDD's of various e^ » kT 
form a dynamic random array (the SLEF and TPDD generation) of the lifetime 
of the order of AT = 10-13 - 10-12s. The persistent random sequences of the 
picosecond SLEF (and TPDD) generations exist permanently in the sample. 
At any fixed instant of time t' the TPDD random array distorts randomly the 
spatial distribution Up(r,t') of the energy potential for carriers which form (at 
fixed t) a 3-dimensional random field. This potential contains random tran- 
sient traps for carriers of picosecond lifetime. When t varies, the random array 
of Nj(t) = Vr)(t) coexisting SLEF's and TPDD's changes randomly the spatial 
potential distribution U"p(r,<)which forms (3+l)-dimensional spatial-temporal 
random function U(r,t). Here r}(t) is the random cubic density of simultane- 
ously oc curring SLEF's and TPDD's. Thus every picosecond generation of 
SLEF-induced TPDD's produces the random potential which.in tum.creates 
random localization(trapping)of mobile carriers during AT. This generates 
random fluctuations An(t) = n(t) - n and ANc(t) = VAn(t) = Nc(t) - ~NC in 
the carrier density n(t) and number Nc(t) = Vn(t) around their mean values 
n and Nc — nV in the sample volume.In semiconductors the average nürn- 
berger SLEF and time interval AT) of localized carriers is gu = ni7eE4AT 
[23a,25-30,33,35,36].Usually this number is gt, « l;eg gt, = 10"* - 1(T2 for 
n = 1015 - 1017cm-3,cross section E( fa 10_13cm2 and ve = 10rcm/s. In met- 
als where the average carrier concentration is n fa NAIV fa 3 * 1022cm~3 every 
SLEF produces picosecond localization of gtm fa (N0+xi)7vto(N0+xi+X2),yv 
valence electrons. These electrons belong to (N0 + Xi)<o(i\T0 + xi + X2) atoms 
which include N0 HFA's, the xi or/and X2 nearest HFA's and next to the 
nearest HFA neighbours^,, is the number of valence electrons per atom. The 
(^o + Xi)i°{N„ + Xi + X2) atoms which occupy volume SVi = (N0 + Xi)<*3 to 
6V2 = (N0 + xi + X2)d3 constitute the most distorted "core" of every TPDD. 
Therefore one can expect SLEF-induced picosecond localization(per TPDD) 
of gtm « (No + xhv electrons; at N0 = l,x = 12 and 7, = 1 - 3 one finds 
gtm = 13 - 40. During AT the TPDD core ceases to be a conductor since 
carriers are unable to pass through the strongly distorted nanometer material 
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legion. This means that every SLEF induces the transient local conductor- 
insulatoi transition(TLCIT) in the nanometer region of volume SVito 6V2. 
Random TLCIT's produced by sequences of random arrays of simultaneously 
occurring SLEF's and TPDD's generate a random dynamic current redistri- 
bution similar, in a sense, to that discussed in [21].Besides,every SLEF (and 
TPDD) causes scattering on the average of g, = nve£,AT external carriers 
located in the TPDD vicinity of radius re sa veAr. Consider now the proba- 
bility of SLEF's and TPDD's to occur, taking into account that the TPDD's 
can cause Anup upward or/and And downward electron transitions (between 
levels with average energy separation < 6e >) occurring in the HFA nanome- 
ter vicinity during the SLEF lifetime Ar.The SLEF's oie^ > AE » kT and 
TPDD's occur with the probability(per second) [23,25-30,33,35-40] 

W = AT_1exp(-AG/JbT) (1) 

calculated from the kinetic consideration. Here AG = AE+(\ < 6e > |—kT)6n 
is the effective SLEF free energy,<5n = An"p - And, 6G = 6E - T6S, 6E = 
6n\ < 6e > | and SS — fc^n.From eq.(l) one finds the exponentially broad 
distribution of relaxation times of SLEF-induced phenomena 

r = W-1 = ATexp(AG/kT), (2) 

From eq.(2) one finds the distribution P(T) = W-1 = 1/r. The following two 
kinds of SLEF's are considered.The first kind of "irreversible"SLEF's forms 
thermally activated rate processes(eg. atomic diffusion, etc.) each of which 
has its SLEF threshold energies Ai£ = E-\- < 6e > 6n taking the role of mea- 
sured activation energies [23a,25-30,34-40].The second kind of SLEF's termed 
as "reversible" generates HFA's.LTAD's and TPDD's, but these SLEF's do not 
produce atomic transitions over energy barriers,as can be seen in computer 
simulations[31,32]; nevertheless these SLEF's are described by Arrhenius-like 
eqs.(l) and(2)[23a,31,32-35] and can cause experimentally observed effects[35]. 
The average cubic density of simultaneously occurring independent SLEF's of 
Cop > AE » kT and the mean distance between them are[23a,33-35] 

»7(A£) = d-3exp{-AG/kT),rf(AE) « rj~1/3 (3) 

Consider now the component of 1// noise associated only with SLEF- 
induced localization(trapping) of carriers.This component results from SLEF- 
induced fluctuations An(t) = gtAr](t) and 6Nc(t) = VgtAr)(t) in the carrier 
density and number. Here AT?(<) = rj(t) — rj is the fluctuation of the SLEF 
random density r](t) around rj. For a given AE the autocorrelation functions 
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for ANf(t, AE) = VAri(t, AE) and ANc(t, AE) are 

K(At, AE) = [ANf(AE)]2exp[-At/r(AE)] 

<pc(At,AE) = g2K(At,AE) 

[ANC(AE)Y = g2[ANf(AE)]2 (4) 

Hence one finds the corresponding spectral densities Sf [u>, T(AE)] = [AN(AE)]
2
T[1+ 

(wr)2]-1 and <pc(u,r(AE)) = [AN^AE^TII + ^T)
2
]-

1
. Integrating tpc over 

r with the weight P(T) = 1/r and using the theorem about mean value one 
finds for the total spectral functions Sc(u) and 5/(w) the relations 

Sc(u,)/Nc = Sr(u.)/r = {AN})/(uN2
c) (5) 

Taking (AN*) = ßcNc and (AN*) = ß}Nf we find the Hooge-like relations 

X(«>)/Nl = ^(w)/!2 = aH/(u>Nc) (6) 

where 
Off « ßf92fj/n (7) 

4    Discussion and Conclusions 

A dynamical SLEF-based approach to one of the unsolved problems of 1// 
noise origin and the fluctuators nature discussed in the previous sections leads 
to experimentally verifiable conclusions. Eq.(7) enables one to estimate the 
parameter an for different materials.Consider first 1// noise generated by re- 
versible SLEF's which produce LTAD's S ss 0.2d of the order of the Lindemann 
value not inducing HFA jumps over energy barriers.Local disordering effects 
of such LTAD's are confirmed by the Mossbauer spectroscopy in binary metal 
alloys[35].The mean cubic density of such SLEF's rj = </-3exp[-AG(^)/JkT] 
entering eq.(7) contains the activation free energy AG(6 = 0.2d) = AE(6) - 
TSS(S). The energy AE(6) is calculated from the relation[28,33,35] 

AE(6) = (6/d)2BCl0 (8) 

and SS = Äln(i?0/Donorm)[23a)25)27)28].Here B is the bulk modulus,no is the 
mean volume per atom,D0 is the self-diffusion Arrhenius pre-exponential factor 
and Don„m tv d2/6Ar ss 5 * 10-4cm2/s.Calculate now the Hooge parameter 
aji for metals at T = 300ÜT,eg. for Cu.using D0(Cu) fa 0.7cm2/s, eqs(7) 
and (8) and taking xi = 12,i\T0 = 1, jv = 1 and standard values for B and 
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ft0. Then one finds aH(Cu) «4* 10~3 that is in reasonable agreement with 
experimental observations. 

The strong temperature dependence of aH{Cu) oc exp(-AG/kT) can be 
expected below the temperature Tp at which the SLEF's of AG{6 ft 0.2d) ft 
0.25d eV experience a percolation-like process. This percolation.similar to 
those considered for other SLEF-related processes[23a,33,34,35], satisfies the 
condition rfA ft AAd ft Id. Hence one finds Tp = AG(fc/n^4Ji)~

1 « 500ÜT, 
that is in agreement with observations[3].At higher T > TP ft 500ÜT the tem- 
perature dependence is expected to be weaker or even can be replaced by 
some reduction in aH since the SLEF's of AG(6) start to correlate negatively 
to one another that can reduce the SLEF probability. These conclusions are 
also in reasonable agreement with observations. Calculate now the Hooge 
parameter ans for typical semiconductors at T = 300iT.Consider n-Ge with 
n = 1015cm-3, gu « 3 * 10~4,Do ft lcm2/s and 6 ft 0.2d. In this case one 
finds from eqs. (3), (7) and (8) rjft 7 * 10-5d-3, r} ft 24<2.Hence one obtains 
ajyS ft 5 * 10~4 that is in agreement with observations.Here one can expect 
a relatively weak temperature dependence(compared to that in metals) since 
ff < Aß = h/(m* * ve) ft SOd and 4A|TJ ft 35. Thus every carrier wave func- 
tion "feels" simultaneously many SLEF-induced random TPDD's associated 
with LTAD's 6 ft 0.2t£. A further increase in T does not change this situa- 
tion substantially. However a substantial reduction in T below Ti ft 200ÜT 
which satisfies the condition r/(Ti) ft \B can cause a stronger temperature 
dependence in aus- 

The proposed SLEF-based approach to the unsolved problem of the 1// 
noise origin suggests the following two pairs of Ujmin and Tjmax(j =1,2) of the 
lowest frequencies and longest relaxation time.The first pair associated with 
SLEF-induced electronic perturbations in the region of radius re ft veAr = 
(102 - 103)d is ulmin = 2ir/rlmax = 2TT(43AT)-1 = 2(107 - 104)«"1 and 
nmax = A3

eAr = (106 - 109)Ar for Ae = re/d,ve = 107 - 108cm/s and 
AT = 3 * 10-13s.The second pair is u2min = 2w/T2max = 2x(J43r AT)-1 and 
T2max = -ALAT. These parameters are associated with the SLEF-induced elec- 
tromagnetic perturbations of frequency« 2x/Ar ft 2(1013 - 1012)s_1 which 
propagate with the velocity CL at distance RL = CLAT during AT;AL — 
RL/d.Foi semiconductors where cL = 3 * 1010/nß ft 1010cm/s one finds 
AL ft 105,T2max ft 3 * 102s and w2mi„ ft 2 * 10-2a_1(nÄ = 2-4). In conclu- 
sion, a stochastic dynamical SLEF-based approach to the unsolved problem of 
the origin of 1// noise and its applications to metals and semiconductors is 
proposed. A resonable agreement with observations has been found. 

We gratefully acknowledge useful discussions with Dr.B.Ashkinadze of the 
Israel Institute of Technology. 
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ON THE NATURE OF 1IF NOISE IN SEMICONDUCTORS 
AT HIGH ELECTRIC FIELDS 

E.B. KISLITSYN, S.A. KORNILOV 
St.-Petersburg State University of Telecommunications, 

Moika 61,191186, St.-Petersburg, Russia 

The experimental study of illumination influence upon l/f current noise in OaAs avalanche 
diodes is described. The main results are: - in l/f noise formation participate traps; - there 
are experimental Indications to an additive l/f noise source existence. 

1    Introduction 

In [I] a physical model of the bulk 1/F noise has been developed. This model, 
like the "surface" model of McWhorter, attributes l/f noise to occupancy 
fluctuations of traps. According to [I], l/f-like spectrum is formed if capture 
cross-section of electrons (for n-type materials) exponentially decreases with the 
energy distance from the bottom of the conduction band. This assumption 
seems to be realistic. 

A review of experiments, supporting the mentioned model, in [2] has been 
published. The most important seem to be experiments, demonstrating illumi- 
nation influence upon l/f noise spectrum. It was found that the spectrum 
modification is produced by the photons with energy close to the energy gap 
magnitude. These experiments were carried out on donor doped GaAs and Si 
specimens; at that the illumination practically did not affect free electrons con- 
centration. So the illumination could influence Iff noise only by means of the 
generation of holes: the holes, captured by traps, change their occupancy and 
thus influence l/f noise of the electron current. In essence light experiments 
directly demonstrate a participation of traps in Iff noise formation. 

Let us note two details: a) experiments were carried out at comparatively 
weak electric fields; b) at high temperature the influence of illumination upon 
l/f noise disappears [2J. 

In [3] the model, proposed in [I], has been used to calculate the magnitude 
of the current l/f noise in avalanche diode. However, operation conditions of 
avalanche diodes are so much specific (very high electric field, up to hundreds 
kV/cm, velocity saturation, base depletion, impact ionisation of traps), that 
arises a doubt about a possibility of the adaptation of any l/f noise model, 
checked at well less fields. 

Aside from the considered publications, the problem of Iff noise in semi- 
conductors at high electric fields in [4-14] has been discussed. The models, de- 
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veloped or used in [4-8,10-12], are based on a mobility fluctuations concept. In 
[4,8,10] the primary physical source of 1/f noise was not mentioned, in [5-7] it 
was attributed to the scattering of electrons on acoustic phonons. In [12] 1/f 
noise of hot electrons was considered as a result of mobility fluctuations arising 
due to the scattering of electrons on neutral metastable centres. But the influ- 
ence of traps in [13] was not taken into account. In [13] results of the analysis of 
1/f noise in IMPATT diodes and oscillators are presented. This work is based 
on a model, including two independent 1/f noise sources: charge fluctuations of 
traps and fluctuations of drift velocity due to the scattering of electrons on 
neutral metastable centres. It was found that theoretical results agree with ex- 
perimental data. But the methodology, developed in [13], is rather complex and 
results, got in this work, demand an independent confirmation. 

So, the problem of 1/f noise at high electric fields is not yet clear and de- 
mands new experimental facts. In this paper we communicate some experimen- 
tal results concerning 1/f noise sources in GaAs at very high fields. 

2    Experimental results and discussion 

The principal object of experiments was to bring out a role of traps in 1/f noise 
formation at high electric fields. The most adequate and direct way to do that 
is to investigate a response of 1/f noise to illumination of a specimen under 
study [2]. 

1 » q p. 4 5 

5 73 

Figure I: The experimental set-up. I - power supply of the avalanche diode 3; 2 - ballast 
resistance 600 Ohm; 4 - low-noise transistor amplifier; 5 - spectrum analyser; 6 - power 
supply of the incandescence lamp 7,8 - accessory optical filter. 

Experiments were carried out on GaAs diodes by means of the 
methodology, described in [3,4]. Me-n-n+ uniformly-doped structures without 
punch-through were investigated. The diode parameters are: donor concentra- 
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16 , 
tion ND = 10 an , depletion layer and multiplication layer lengths 1 = 3 fan 
and la = 0.9 fan, structure diameter D = 150 pan. The diodes were operating in 
developed breakdown mode, the maximal strength of electric field (in multipli- 
cation layer) was about 400 kV/cm. To illuminate the structure a quartz win- 
dow in diode package was provided. As a light source an incandescence lamp 
and optical filters were used. The experimental set-up is shown in Fig. 1. 

to* 

10* 

i § 11 li i 
0,5 
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n 1 11 1 V. 
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I.» 100mA 1/F 
T=«0K 

10 100 1000    F, Hi 

Figure 2: Noise voltage spectra and characteristics of optical filters (insert). 

Fig. 2 demonstrates the illumination influence upon l/F-noise spectra. The 
insert shows spectral characteristics of optical bandpass filters used in experi- 
ments. Here A, is the wavelength corresponding to the high-frequency bound- 
ary of the filter No. I, A0 = he /AEg is the wavelength of photons having energy 
equal to the energy gap AEg. The wavelength A2, corresponding to the high- 
frequency boundary of the filter No. 2, is very close to Ao. 

The spectrum 3 in Fig. 2 was measured without illumination. The spectrum 
4 was measured by broadband illumination (without filters). One can see that 
the light makes the spectrum more flat, suppressing l/f noise at low frequencies. 
To find out what part of light spectrum is responsible for this effect, the 
measurements with optical filters were performed. In the case of the filter No. 2 
the suppression effect is almost absent (spectrum 2). On the contrary installa- 
tion of the filter No. I brings to the same effect as by the illumination without 
filters (spectra I and 4 practically coincide). These facts mean that the l/f noise 
suppression is produced by photons having energy E falling in the range 
he / Ai > E > he / A0, i.e. by photons having energy more than AEg, but close 
enough to it. The measurement of the diode resistance has shown that its 
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magnitude changes by illumination no more than by 0.2 % . It makes impos- 
sible to relate the 1/f noise suppression by illumination with free electron con- 
centration change. 

These results indisputably prove a participation of traps in 1/f noise for- 
mation process. In the main they agree with whose which were got at lower 
fields [2]. So the trap mechanism of 1/f noise, developed in [1] and outlined in 
Introduction, can be extended, at less qualitatively, to the case of very high 
electric fields. 

Let us discuss another interesting question. Experiments, carried out at low 
electric fields, have shown that the effect of illumination on 1/f noise depends 
on temperature. Being well pronounced at low and room temperature, it weak- 
ens with temperature rise, disappearing for GaAs at 430 K (ND = 10 cm3) [2] 
and 540 K (ND = 10   cm'3) [14]. Our experiments were carried out at 480 K 

16 • 
(ND - 10 cm ). One can see from Fig. 2 that in our case illumination sup- 
presses noise level at low frequencies, but this effect is rather weak (near 3 dB). 

A simple explanation of these facts can reside in existence of an additional, 
insensitive to illumination, I/f noise source [14]. In line with two-noise source 
model described in [13] (see Introduction), this unknown I/f noise source can be 
associated with velocity fluctuations arising due to the scattering of electrons 
on neutral metastable centres. It is, certainly, only a suggestion. However there 
is an interesting way to clarify the question, at least in part. 

To distinguish, is 1/F current noise related with concentration fluctuations 
or with mobility (velocity) fluctuations, the magnetoresistance methodology 
was used [2]: experiments at low temperature have shown that 1/f noise in 
GaAs manifests itself as concentration fluctuations. This result supports the 
trap model of 1/f noise. But does it held at high temperature, when 1/f noise 
does not respond to illumination? It is clear, that extension of mentioned meth- 
odology to the case of high temperature could give an important information. 

3    Conclusions 

Experiments, carried out on n-GaAs avalanche diodes and the discussion of 
results have brought to conclusions: 

1. At high electric fields, just as at low, the participation of traps in 1 /f 
noise formation is indisputable. 

2. Some experimental results point to the existence of an additional 
1/f noise source which is insensitive to illumination and prevails at high tem- 
perature. This noise source can be associated with drift velocity fluctuations, 
arising due to the scattering of electrons on neutral metastable centres. 
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3. To prove the additional I/f noise sources existence and to establish its 
physical nature we need more experimental data. We must find answers to the 
questions: 

(i) Does manifest itself 1/f noise at high temperature in the form of velocity 
fluctuations? The magnetoresistance methodology seems to be suitable to get 
the answer, at least at low field conditions [2], but as against [2] the experiment 
should be carried out at high temperature. 

(ii) If so, then: Is the scattering on neutral metastable centres the principal 
primary source of \K velocity fluctuations? This question seems to be a difficult 
one. Its discussion hardly make sense till the answer to the first question will be 
found. 
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1 Introduction 

The low-frequency noise spectrum in semiconductors and semiconductor de- 
vices is usually represented well as a superposition of 1// noise and of one or 
several Lorentzians. However, for GaAs MESFETs it is often observed, that 
the low-frequency noise is a superposition of Lorentzians and of the noise with 
the spectrum of the type l/f, where 7 lies in the range 1.3-1.5 [1-4]. It is 
customary tb associate the l//15 noise with the diffusion noise [5], or with the 
surface thermal noise [3]. 

However two different cases should be distinguished in the l//1'5 problem. 
On the one hand the S ~ l//1'5 dependence is observed in condition of 

the weak temperature dependence of the noise. This case may be observed 
either for volume or surface noise sources. The models discussed in Refs. [3,5] 
can be applied for this cases. 

On the other hand noise with the spectrum l//7, where 7 = 1.3-1.5, is of- 
ten observed in the temperature range, where generation-recombination (GR) 
noise due to a local level is a dominant component of the low-frequency noise. 
In this paper we will demonstrate that this phenomenon can be caused by 
the impurity level broadening which arises in any real crystal because of lo- 
cal stresses, lattice defects, doping inhomogeneities etc. However in order to 
explain the experimental dependences one has to suppose very unusual form 
of the level broadening, exponential temperature dependence of the capture 
cross section (a = <T0exp(-Ei/kT) and linear dependence of E\ on level po- 
sition. By this means the validity of the model, proposed in this paper, must 
be supported or argued by other experiments. 

2 Results and discussion 

Fig. 1 shows the temperature dependences of the spectral density of channel 
resistance fluctuations, S = SR/R? in a GaAs MESFET. The equilibrium elec- 
tron concentration in the channel no is 1017 cm-3, and the channel volume V is 
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Figure 1: Temperature dependences of the spectral density of resistance fluctuations for a 
GaAs sample. 

2 x 10~9cm3. For details of sample parameters and experimental conditions, 
see [6]. It easy to check that in temperature range 200 < T < 300 K the 
frequency dependences of noise closely follow the l//15law. Fig. 2 shows tem- 
perature dependences of the spectral density of channel resistance fluctuations 
for SiC FET. The equilibrium carrier concentration in the channel is 1017 cm-3, 
the channel volume at the gate voltage Ug = 0 is equal to 5 x 10-10 cm3. The 
drain-source voltage Uds = IV corresponds to the ohmic regime. Details of 
the sample parameters are given in [7]. It easy to check again that at tem- 
peratures corresponding to the left (low-temperature) edges of the peaks in 
Fig. 2 (440 < T < 500 K) the frequency dependences of the noise follow the 
l//1-5 law. Similar behavior is observed for 4H-SiC FETs at high temperatures 
T > 640 K [8]. 

In Ref. [9], S(T) curves have been presented for Si JFET. The value of 7 
calculated for the low-temperature peak edges is 1.4. 

Strikingly similar results obtained for such different materials as GaAs, 
SiC, and Si led us to think that the l//15 noise has its origin in some general 
properties of local levels in semiconductors. 

Consider first data for SiC since in this case the GR noise due to the local 
level can be clearly separated from other noise sources. The full curves in 
Fig. 3 show S(f) deduced from Fig. 2 for four frequencies. These curves are 
plotted after substraction of the background noise (broken curves in Fig. 2). 
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500 

Figure 2: Temperature dependences of the spectral density of resistance fluctuations for a 
6H-SiC sample [7]. 

Fig. 3 clearly demonstrates that the peaks in Fig. 2 are due to GR noise 
caused by a single local level. 

With the "best fit" method the following values were determined from 
the experimental curves S(T) shown in Fig. 4: E0 = 0.3 eV, E\ = 1.1 eV, 
<T0 = 5 x 10-11 cm2, JV(=5x 1015cm-3. The broken curves in Fig. 3 show 
the results of computer simulations of the GR noise, using to standard ex- 
pression [10]. The exponential temperature dependence of the capture cross- 
section a is taken into account. It is seen that the calculated and the measured 
dependencies 5max(/) and Tmax(/) are in a good agreement. However for low- 
temperature edges of the peaks the slope of the experimental curves is less 
than that of the calculated curves at any frequency. It is this difference that 
leads to the frequency dependence S(f) ~ l//15instead of S(f) ~ l//2 for 
steeper calculated curves. 

The observed broadening of the S(T) peaks can be accounted for by the 
broadening of the local level. 

The broadening of impurity levels is often invoked to explain experimental 
DLTS data [11,12]. However, the effect of level broadening on the shape of 
noise spectra S(T) has not been previously discussed. 

When the broadening effects have to be taken into account, the impu- 
rity band with distribution function p(E) must be considered. The density 
of states p{E) providing the best agreement between the simulation and the 
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Figure 3: Temperature dependences of the noise spectral density for the same sample of SiC 
as in figure 2. Full curves reperesent the experimental data. Broken curves show the results 

of computer simulations. Frequency (Hz): 1,1'—20, 2,2'-80, 3,3'-320, 4,4'-1280. 

experimental results is shown in Fig. 4 (inset). 
The dependences S(f, T) were calculated by integrating standard expres- 

sion weighted with the density of states p(E) over energy. 
The results show that if the activation energy E\ is independent on energy 

E, there is no accordance with the experiment for any p(E). 
We used the simplest model assumption of linear relation between E\ and 

E with a single fitting parameter ß [14]: 

Ei = Ew + ß(E - Eo) (1) 

where E'IO is the activation energy for E = EQ. 

Assuming the above dependence Ei(E) we succeed in fitting well the re- 
sults of the calculation to the experiment. Fig. 4 shows the experimental S(T) 
curves for SiC (the same as in Fig. 3) and the best fitting results of calculation. 

Similar results were obtained for GaAs [10]. However the very special form 
of the line and unusual dependence of the activation energy E\ on level po- 
sition in the forbidden gap have to be assumed to explain the experimental 
results. Hence the independent experiments with low-temperature optical im- 
purity spectroscopy of high resolution have to be provided to confirm or argue 
against this phenomenological model. 
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We discuss here the temperature dependence of 1/f noise in semiconductors. The experimental 
results from InP and GaAs epitaxial layers are presented. Previous measurements on 
semiconductors like InSb, Si and Ge are reviewed. No single model can explain all the findings. 

1    Introduction 

In homogeneous samples of semiconductors the 1/f noise can be described by 
equation (l).1 The 1/f noise is characterized by a parameter a 

a 
fN' (1) 

Various trends in the temperature dependence of a have been observed. The 
problem is: the existing models that work well at a constant temperature do not 
explain the temperature dependence of a. 

In this contribution, we present recent results of the temperature dependence of 
a measured on InP and GaAs. For a review of the problem, all results from the last 
15 years are also cited here. We may have some possible explanation for each 
specific situation. However, we do not understand the general results. , 

2    Experimental results of a (T). 

2.1 The results for InP 

We measured the noise in 
unintentional doped InP grown by 
chemical beam epitaxy (CBE). A series 
of samples are used. Gradually, we have 
succeeded in improving the quality of 
the samples. Figure 1 shows the 
temperature dependence of a. 

In fig. 1 we also plotted the results 
reported by Tacano et al.2 who measured 
the noise in heavily doped so-called FIB 
InP samples. The noise level is more 
than two orders lower than in our 
samples. 

10" 
6        8        10 

1000/T flC1) 

Fig. 1. a (T) in InP. 
Tacano's InP.2 The others are CBE 

InP, O: the purest CBE InP. 
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2.2 The results for GaAs 

When studying the annealing effect 
on the proton damaged GaAs, we 
measured the temperature dependence 
in MBE (molecular beam epitixy) GaAs. 
The results are given in figure 2. The 
damage by proton irradiation introduces 
the excess 1/f noise that can be reduced 
by annealing. Annealing can repair the 
lattice to a certain extent.3 In figure 2 
we plotted the results for GaAs reported 
by Ren et al.,4 and for InGaAs hetero - 
structure by Tacano et al.5 

2.3 The results for InSb 

Alekperov et al.6' 7 reported the 
results for single crystal InSb. The results 
based on n-type InSb are shown in figure 
3. When the distribution of impurities in 
the sample was inhomogeneous, the 
noise becomes high and . weakly 
dependent on temperature like date series 
of 1. For p-type InSb, the original paper 
showed the relative voltage fluctuation 
Sv / V2 versus temperature instead of a. 
The noise level increases with decreasing 
temperature.7 

2.4 The results for Si and Ge. 

1000/T flC) 

Fig. 2. a (T) in GaAs and InGaAs5 

: MBE GaAs; A x: Ren;4 A: Tacano/ 
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Fig. 3. a (T) in InSb (Alekperov6) 
+: With inhomogeneous distribution 

of impurities;   •: purer InSb. 

The temperature dependence of the 
1/f noise in Si has been intensively 
studied. Clevers8 reported many data 
from single crystal Si. It was shown that 
in all cases the noise was bulk noise. 
Various trends in the temperature dependence of a have been observed. There do 
not seem to be any reproducible results for different samples with different doping 
levels and different structures in geometry. He concluded that the different ways in 
which the samples were prepared might create different temperature dependences. 
Figures 4, 5 and 6 show the results reported by Palanskis et al.,9 Luo et al.,10 and 
Bisschopetal.." 

One can conclude: 
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a) Various trends of oc(T) exist, even 
in the same material. 

b) The value of a scatters on a large 
scale ip the same material with different 
doping levels. 

3    Discussion. 

3.1 Temperature dependence 

Usually the 1/f noise increases with 
increasing temperature. The dependence 
of the 1/f noise on temperature could be 
anything if there is non-bulk 1/f noise. 
Therefore we would rather concentrate 
on samples where the bulk 1/f noise 
dominates. For these samples a 

promising common trend of temperature dependence of 1/f noise can be found. 
Generally in a good quality material like MBE, CBE growing semiconductors and 
pure crystal semiconductors, the temperature dependence of a composes of two 
branches, (i) a branch independent of temperature at lower temperatures and (ii) 
another branch with strong dependence on temperature at higher temperatures. The 
latter can be fitted either by an activated process or by a power law as expressed in 
equation (2) and (3). The activation energy AE or the power constant y is different 
in different cases. 

6       8       10 
lOOO/TdC1) 

Fig. 4. a (T) in crystal n-Si. 
O: Palenskis;9 aom. Luo;10 ▼: Bisschop." 

a = an +bxexi A KT J' 

a = a0+ßTT, 

(2) 

(3) 

temperature where  a0,  b  and   ß   are 
independent. 

In a narrow temperature range it is 
very hard to distinguish between the 
curves of equation (2) and (3), because for 
each value of AE one can always choose a 
proper value of y that makes the curve of 
equation (3) very close" to the curve of 
equation (2). AE was found between 0.1 
and 0.2 eV. However, what that activated 
process is, is a mystery, y is then found between 3 and 6 around room temperature. 
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Fig. 6. a (T) for Ge from Bisschop." 
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Luo et al.10 also offered an alternative 
explanation by assuming that the 1/f 
noise originates in a thin surface layer via 
carrier trapping at the interface to the 
oxide layer or in the layer itself. Tacano 
et al.2' 5 observed the temperature 
dependence of a in III-V compounds. 
They interpreted it by the Handel's 
quantum theory. 

3.2   Wide range of a values 

The wide range of a values was not 
only found in the experiments discussed 
above, it is quite common. To solve this 
problem, Hooge and Vandamme12 

proposed a model in which only lattice 
scattering shows 1/f noise when several scattering mechanisms are present. Then a 
can be expressed by 

6      8      10 
1000/T (Kl) 

Fig. 5. a (T) in crystal p-Si. 
O: Ref. 9 n O •: Ref. 10 ▼: Ref. 11. 

Hutt 
(4) 

where niatt is the lattice scattering mobility, n™^ the measured mobility and aiatt a 
constant depending on the material. This model can explain the wide spread of a in 
good quality samples of the same material. Each material can be characterized by a 
value of aLatt, but aUtt has different values 
in different materials. At room temperature, 
aLatt * 5-7 x lO"4 for GaAs,4' ,3- ,4 ct^ * 
3xl03- for InP,15 aLatt « 2xl03 for Si." 
However, this model does not work so well 
at 77 K where we do not always find a 
proportional to (W*. 8" " Except for the 
recently published results for InP at 77 K,15 

there is no evidence for the correctness of 
equation (4) at 77 K. 

The temperature dependence of a^n 
can be determined from equation (4) for a 
material. Palenskis et al.9 reported that the 

<*LaU 

temperature dependence of a in a Si sample 
follows the temperature dependence of 
(Hmeas/Hiatt),   and   hence   that   aiatt   is   a 

1000/T (K) 

Fig. 7. aLatt (T) for CBE InP. 
O : the purest sample. 
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constant. Later Bisschop et al." measured the noise from a series of samples with 
different impurity scattering, the model a oc n^2 holds at temperatures down to 
150 K, not at temperatures below 150 K. He proposed that when a sample is pure 
enough the measured a is aLatt. He concluded a thermally activated process as in 
equation (5) for aLatt in Si and Ge where AE « 0. leV. However, we are left with the 
problem why the model of the 1/f noise in lattice scattering can not explain the 
results for highly doped Si at low temperatures. More recently, Ren et al.4 used a 
series of n-GaAs samples with different contributions from impurity scattering. 
Their results again showed that the model holds above 150 K. He ended the 
discussion by simply taking aLatt equal to a constant 7xl0"5 (=A) at lower 
temperatures. aLatt is also described by equation (5) with AE = 0.13eV. 

autt=A + Bexp(-—J. (5) 

Our low temperature results for the purest InP sample are not consistent with 
the results given above. While cooling down the purest InP samples, the a value 
passes through a minimum and then increases again with decreasing temperature. 
In the other InP samples, a is temperature dependent and more or less follows 
equation (2). All results, including Tacano's, fit equation (4) at 300 K and 77 K.15 

By using equation (4) we obtain a temperature dependence of aUu. for all InP 
samples. The temperature dependence of aLatt plotted in figure 7 is similar to that of 
a from the purest sample. We do not understand why ociatt depends on temperature 
in this way. Such temperature dependence of aLatt was also found with other pure 
semiconductors. Tacano et al. measured the noise in heterostructure devices where 
the 1/f noise comes from two-dimensional electronic gas in the undoped channel. 
The noise increases with decreasing temperature below 150 K (see Fig. 2). 
Bisschop obtained such a trend in his purest Si sample too (see Fig. 6). 

4 Conclusions and questions 

Bulk 1/f noise of semiconductors has various temperature dependences. In a 
good quality sample the 1/f noise increases with increasing temperature. At high 
temperatures, around room temperature, the 1/f noise can either be described by a 
thermally activated process or by a power law. It is not understood what causes this 
dependence. The model with 1/f noise in the lattice scattering can successfully 
explain most results at higher temperatures, but not all at lower temperatures, a^ 
in pure samples increases with decreasing temperature. We do not understand that 
at all. 
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It is assumed that fluctuations of some GR-levels in a semiconductor material are modulated 
by an underlying 1/f noise process with unknown physical origin. In accordance with 
empirical findings the Hooge coefficient a» can be related to the lifetime x of charge carriers. 

1      Introduction 

In context with a homogeneous semiconductor resistor, Hooge ' experimentally 
found the relation 

S,/f(f) = (Io2/No)(aH/f) (1) 

Herein Si/f(f) is the power spectral density of a fluctuating current I(t); In is the mean 
of I(t). N0 is the mean number of free charge carriers and aH is the Hooge coefficient. 

Recently, in semiconductors Lukyanchikova et al. 2 found empirically that the 1/f 
spectrum is closely related to the spectrum of GR-noise (GR=generation- 
recombination). The power spectral density of GR-noise is given by 

SGR(f) = 4 (Io2 / No) (<AN2> / No) T / {l+(2nfx)2} (2) 

Herein, <AN2> is the variance of fluctuations originating from some GR-levels; x is 
the mean lifetime of charge carriers. For finding whether 1/f noise is proportional to 
<AN2> and/or x, the temperature dependence of ocH was investigated. As a result, ocH 

was found to be only temperature dependent on x and 

aH = ßt (3) 
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Lukyanchikova 3 investigated this relation for different semiconductor materials and 
found that (3) is valid for x ranging from 10"4 to 10"10s. Since ß is ranging only from 
0.5* 102 to 103 s"1, ß was suggested as a better measure for 1/f noise. 

For interpreting empirical results, it is assumed that 1/f noise essentially is GR- 
noise which is modulated by a slowly varying time function. In this context, a 
mathematical model where 1/f noise is described as a modulated noise process is 
appropriate. In the next chapter, such a model, the clustering Poisson process is 
presented as a possible candidate and is generalized for applying also to a GR- 
process. Here the unsolved problems are: how can the cluster model be modified to 
apply to semiconductor physics? What are the predictions of this model? Is the 
Hooge formular still valid? How is about the temperature dependence? 

2      1/f noise interpreted as modulated random noise 

It is wellknown that shot noise is due to random occurrence of elementary current 
impulses. The random occurrence is described by a homogenous Poisson process for 
which the mean rate of impulses is constant in time. The spectrum is white up to a 
frequency inverse to the lifetime of impulses and is denoted Sshot(f). 

The case, the mean rate of impulses is no longer constant but is modulated in time 
by an underlying fractal noise process, has been investigated by Grüneis et al4'5. 
Such a process is constructed by a random succession of clusters of electrons and 
was denoted the clustering Poisson process (=CPP). Electrons in the cluster are 
supposed to occur at random; let X be the time between electrons in the clusters. 
Denote m the number of electrons in a cluster and pm the probability of finding m 
electrons in a cluster with m = l,2,..Nmax; Nmax is a maximum cluster size. For pm ~ 
m" , a pure 1/f shape is obtained. In this case, a mean cluster size <m> = £ mpm = 
0.6 In Nmax and a mean cluster duration xc = <m><b. For the CPP the spectrum is 
within the scaling region expressed by 

S(f) = Sshot(f) { l+(fc/f)b} (4) 

In addition to shot noise one obtains a 1/f noise component which is due to cluster 
formation, b is the fractal exponent. fc is the frequency where 1/f noise is equal to 
shot noise. It was shown that 

fc=l/3Tc (5) 
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and thus is equivalent to the mean correlation time of 1/f noise. Since xc is only 
dependent on the cluster parameters, fc is a quantity independent of shot noise. The 
second term in (4) can formally be compared to Hooge's relation (1) resulting in ocH 

= 2fcx. For this reason, the CPP is a possible candidate for an interpretation of 
empirical results of (3) which is presented in the following. 

3     How can the cluster model be applied to semiconductor physics? 

As was shown by Van der Ziel 6, GR-noise can be understood as being caused by 
fluctuations in the rate of generation and recombination and the theory of shot noise 
applies to both. Regard some GR-level between the c-band and valence band; here 
any levels as concerns traps, donors and recombination centers may be taken into 
account. Assume this GR-process is modulated as described by the CPP. By analogy 
to (4), the spectrum is expressed by 

S(f) = SGR(f) { 1 + (fc / f )b } = SGR(f) + S,«(f) (6) 

Denote by <AN2i/f> the variance of fluctuations of some GR-levels which are 
supposed to be responsible for 1/f noise. When this GR-level is identified <AN i,f> 
can be calculated as described by Burgess 7. Then, according to (2), the first term of 
(6) is the GR-spectrum which writes as 

SGR(f) = 4 (I0
2 / N0) (<AN2

1/f > / N0) x / {l+(2rtfx)2} (7) 

The second term Si/f(f) is due to cluster formation which is modulating the GR- 
process. In combination with (7), the second term of (6) is expressed as 

S1/f(f) = SGR(f)(fc/f)b = 4(Io2/No)«AN2
1/f>/No)x (fc/f )b / {1+(2jcfx)2}    (8) 

For b = 1 and f < l/2nx, this is compared with (1) giving rise to 

ccH=  4fc(<AN2
I/f>/N0) x (9) 

Inserting (5), aH can be given an even more informative form 

OCH B (<AN2
1/f>/N0) (T/Xc) (10) 
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In this form, Hooge's constant is related to the ratio between the mean lifetime T of 
charge carriers and the mean duration tc of clusters and to the contribution of 
fluctuations <AN2

1/f>/N0 of the GR-level which is supposed to be responsible for 1/f lauuns ^zirT 

noise 

4     Discussions and Unsolved Problems 

The results of this paper are based on the supposition that electrons in some GR- 
levels are generated and/or recombined in clusters. As a consequence, there are two 
contributions in the spectrum: the usual GR-spectrum which is due to the overall 
occurrence of electrons and a 1/f noise term which is due to cluster formation. For a 
clustered GR-process, in principle any level between valence and c-band may be 
taken into account. The results of the model are: 

- the proposed model is a number fluctuation model, 
- the Hooge formular is still valid, 
- in accordance with empirical findings of (3), ocH is found to be proportional to T, 
- the Hooge coefficient ccH of (10) is essentially given by the quotient of two time 

constants: lifetime of charge carriers and mean cluster duration; since ccHis a 
dimensionless constant this is a reasonable result, 

- ccH is also proportional to <AN2,/f> describing the contribution of the unknown 
GR-level responsible for 1/f noise. This is not in contradiction to the empirical 
results of Lukyanchikova et al. 2, however the levels contributing to 
their <AN2> have to be excluded as possible levels giving rise to 1/f noise, 

- at sufficiently high frequencies, 1/f noise is followed by a plateau as given by (7); 
this plateau however, may be buried in thermal noise or GR-noise of other origin, 

- often ocH is measured as a function of temperature T; relation (3) suggests 
to separate the dependence on T and to measure ß(T) = ocH(T) / T(T). 

An unsolved problem is the formation of clusters of electrons in the GR-process 
which may be due to a physical process of unknown origin. Among many other 
possibilities one may ask: 
- is there some tiny correlation between electrons? 
- is there the possibility of recombination via many levels of dislocations which may 

lead exicitation of electrons in shallow traps? 
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Pure \/f noise enhancement in the Low-Frequency Noise (LFN) spectrum of planar 
unpassivated InP and GaAs resistor samples has been measured under the influence 
of surface contamination. Furthermore, noise enhancement reminiscent of a resonant 
curve is superimposed on the LFN spectrum of surface passivated GaAs planar 
resistor samples. The physical background of these phenomena is presently 
unknown. 

1   Introduction 

Previous investigations on the low-frequency noise (LFN) behaviour of GaAs and 
InP have shown that the surface related additional noise components are by no 
means negligible. Furthermore, it is also clarified that the additional noise is generally 
due to process induced defects. Thus, the LFN measurement technique is an 
effective inspection tool in semiconductor technology. 

The most common form of the additional LFN is the generation-recombination 
(G-R) noise having a Lorenzian spectral distribution and characteristic temperature 
dependence. Furthermore, additional \/f noise is mostly a characteristic of 
semiconductor crystals of poorer perfection. Clearly, \/f noise is mainly a bulk 
effect. Nevertheless, under the influence of controlled contamination on the free 
semiconductor surface, additional noise of surprisingly pure \/f spectral distribution 
was observed. It was experimentally proved that the additional l//noise is of surface 
origin, and was dominantly observed for InP. 

In other cases, if certain passivation technologies were used, an unusual 
selective enhancement of the LFN spectrum has been observed, reminding one of a 
resonant curve. The frequency of the enhancement was strongly temperature 
dependent. This effect is certainly caused by an unknown flaw in the passivation 
technology and has been observed - very rarely - for GaAs. 
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2   Experiment 

In this work LFN measurements have been carried out on surface sensitive planar 
resistors. The length and the line width of the resistors were 800 and 40 pm 
respectively The resistor chips were fabricated by wet chemical MESA etching on a 
thin (-300 nm) n-doped (n = 2x101? Cm-3) MOCVD InP or VPE GaAs layer, grown 
in both cases on a semiinsulating substrate. The layout of the patterns was the same 
as published in [1]. High quality Ohmic contacts were fabricated on the samples [2]. 
The samples were either exposed in a N2 atmosphere to a saturated vapour of water, 
methanol, acetone or chloroform acting as contaminants, or were passivated by 
different techniques as will be detailed later. 

To convert the resistance fluctuation to LFN voltage an inspection DC current 
was applied. Depending on the sample resistance this current was set to a value 
which caused a DC voltage drop of 8 V across the resistor. Thus, a longitudinal 
electric field strength of 100 V/cm was present in the sample. Both of the DC 
resistance and the noise spectra (frequency range: 2 Hz. .20 kHz) were carefully 
monitored during the experiments. 

In the case of the unpassivated samples, the LFN and the DC resistance were 
monitored during the exposure time. After each contamination cycle the surface was 
cleaned by a special technique [1], using UV light. 

In the other case, the selective enhancement in the LFN spectrum was measured 
after the following passivation technologies has been applied to the GaAs samples: 

a.) Passivation by RF-sputtered Si3N4 (Target-temperature: 30 °C, N2 pressure: 
5.2x10-3 mbar, acceleration voltage: 1.4 kV, process-time 10 min.) 
b.) Hg sensitised photo-CVD of SiC-2 layer [3]. (Target-temperature: 150 °C, 
thickness: 100 nm) 

The passivated samples were investigated by measuring the temperature 
dependence of the LFN spectra and the DC sample resistance in the temperature 
range of 0 - 80 °C. 

3 The unsolved problems 

a.) 1/f-type additional noise. - While exposing the samples to the contaminating 
atmosphere, the noise and resistance started to increase for both of the GaAs and 
InP. After a maximum value has been reached, the noise started to fall moderately 
[1], [4]. An excellent l//*-type additional noise of high intensity was generated in InP, 
and the maximum noise enhancements were about 40, 25, 6 and 2 dB for water, 
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methanol, acetone and chloroform, respectively. Fig. 1. shows the noise 
enhancement for InP under the influence of water. For GaAs on the other hand, 
smaller and only nearly l//-like additional noise has appeared in case of water and 
acetone [1]. The maximum enhancement caused by water was only about 19 dB. 
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The shapes of the resistance transient curves [4] were monotonically growing 
for the organic solvents, but a local minimum appeared for water in the InP samples. 
The total change of the resistance was in all cases less than 10%. (The resistance 
change of the InP samples was 7% for methanol and water and only about 3% for 
acetone and chloroform.) 

The mechanism of the generation of such a perfect \/f noise due to surface 
contamination is not yet understood completely. Namely, it cannot be explained by 
the decrease of the mean carrier number caused by the widening of the surface 
depletion region [1], since this change is too small. Clearly, a 10 % increase of the 
sample resistance indicates a decrease of the mean carrier number in the same order, 
which would only cause about 0.41 dB increase in the \/f noise, due to Hooge's 
empirical equation. Unfortunately, other models based on fluctuating defect states 
[5] are also insufficient to explain such a high intensity \/f additional noise. 

Furthermore, the extra noise can be cancelled by UV illumination (X ~ 400 nm) 
and by simultaneous moderate heating of the sample in a pure N2 atmosphere [1]. 
It should be noted that the heating alone does not cancel the noise. This fact gives 
evidence that the additional \/f noise is caused by the adsorption of the 
contaminating materials. Probably they adhere to the semiconductor surface in the 
form of radicals. Regarding the photon energy of the recovering UV light, the 
attributed formation energy may be at about 2 eV. The noise enhancement and the 
accompanying resistance increment monitor this process. However, it is not clear 
while the additional noise is pure \/f- type in many cases? 
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b.) Additional noise with resonant enhancement. - Certain passivation 
technologies for GaAs, as detailed previously, result in an unusual LFN 
enhancement, which looks like a resonant curve. Fig. 2. demonstrates that the 
frequency of the peak enhancement /,- is temperature dependent, for both of the 
passivations by sputtered Si3N4 and by the photo-CVD of SiC>2. 

Furthermore, there is a decrease of the frequency of the peak enhancement, if 
the DC voltage on the sample increases. This decrease is only slight for the 
samples passivated by Si3N4, but considerable greater for the passivation by photo- 
CVD of S1O2. Below a DC field strength of about 60 V/cm in the sample, the 
anomalous enhancement has been hidden in both cases. 

Additionally, if the samples were illuminated by visible light, the resonant 
enhancement has vanished by an accompanying moderate increase of the \/f noise. 
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Fig. 2. Anomalous peak enhancement in the LFN spectra of surface passivated GaAs resistor 
samples in the temperature range of 10 - 80 °C, measured just after processing. Results for 
passivation by sputtered Si3N4 and for passivation by photo-CVD of SiC>2 layer are given. 
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Moreover, a long-term drift of the shape of the spectra has been observed in a 3 
years interval, and the frequency of the peak enhancement fr has shifted toward 
higher frequencies with the time. This is illustrated in Fig. 3. 

Due to the temperature dependence of fr an Arrhenius plot of (TT2) has 
been constructed for the different cases (Fig 4.). Note that T= (27c/,.)-1. 
Calculation of the activation energy resulted in a well-defined level at about 600 
meV for the passivation by photo-CVD of Si(>2 just after processing. For the 
samples passivated by Si3N4 on the other hand, a level at about 880 meV has been 
found after processing, but 3 years later a lower value of 600 meV has been 
determined. 
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Fig. 4. Arrhenius plot for passivation 
by photo-CVD of Si02   just after the 
processing   (-92).   For   the   samples 
passivated    by    SJ3N4    the   plot    is 
constructed after processing (-92) and 
3 years later (-95). 
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These observations suggest that slow surface states (deep levels) are formed at 
the interface of the semiconductor and the deposited dielectric layer. However, the 
spectrum of the additional noise is very different to the Lorenzian one. Clearly, the 
derivative of a spectrum consisting of a \/f spectrum and one or more Lorenzian 
components can never be positive. Due to the field-strength dependence and the 
long-term drift phenomenon the physical picture is further complicated and is not yet 
clear. Moreover it is not understandable why the two basically different passivation 
technologies can lead to the same unusual type of the additional noise. 

4 Conclusion 

Summarising the observations it should be stated that additional noise of unknown 
origins has been generated in special compound semiconductor structures. Without 
passivation these have often the form of \/f -type LFN, thus complicating the 
separation of noise components of bulk and surface origin. Otherwise, some 
passivation technologies - however under unknown conditions - are able to generate 
very disturbing additional noise reminding us of a resonant enhancement in the 
spectrum. Additionally, this latter effect shows a long-term drift ranging even after 
several years. The exact physical background is presently unknown. 
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In this paper we review the unsolved problem surrounding the exact relationship 
between noise, zero point energy and vacuum fluctuations. We survey the unre- 
solved debate highlighting marked differences of opinion in the literature. Much of 
the uncertainty is shown to be due to unresolved fundamental issues in quantum 
mechanics. 

1    Introduction 

If we consider the thermal noise across a resistor R, loaded by a capacitor C, we 
can classically calculate noise over the total bandwidth. This has been carried 
out1 for the various limiting cases of R and C and the results are displayed in 

Table 1. 

Table 1: Thermal noise over infinite bandwidth for different cases of limiting R and C. 

0 Shorted Cap. 

ooOpen Cap. 
ooShorted Res. 
0 Open Res. 

Classical 

tä) (%) (9l) 
0 

«(dc) 

oo 

0 
0 
oo 
0 

0 
kTC (dc) 

oo 

0 

Quantum 

ivl)       <&)       (il) 

£(dc) 

m*m2 

0 

0 

0 
kTC (dc) 

oo 

0 

If we examine the classical solutions in Table 1, the most obvious problem 
with thermal noise formula (r£) = ikTRAf is that it classically predicts infi- 
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nite noise voltage for C—► 0 and infinite noise current for C —► oo. This is an 
analogous situation to the black-body radiation problem where the Rayleigh- 
Jean's law suffers from the so-called ultraviolet catastrophe - the divergent 
black-body curve having infinite area over all frequencies. Anticipating this, 
Nyquist 2 in 1928 suggested replacing kT with the one-dimensional form of 
Planck's law 

ehf/kT _ I \l) 

which reduces to kT as / —► 0 and rolls off for hf > kT. This roll-off conve- 
niently imposes a physical limit on the bandwidth and we see for this quantum 
case, in Table 1, that the infinities in question disappear. The remaining infin- 
ity for noise charge, in the quantum case, is not a breakdown of quantum theory 
but is due to C —► oo becoming an infinite store of charge1. C —► oo can be 
thought of as being modeled by an ideal voltage source and note, furthermore, 
that the noise process becomes non-stationary. 

So far so good, Nyquist's quantum term successfully removes the unwanted 
infinities, however introduces a new set of problems. Firstly, this quantum 
term, alone, is obviously inadequate as it predicts that we can communicate 
with noiseless channels if hf > kT (ie. in the Tera Hertz band). This is no 
longer an academic question as gallium arsenide resonant tunneling quantum 
electronic devices now operate in the THz domain. Gallium arsenide detectors3 

and sources4 of THz radiation have been reported. 
A second problem is that the quantum term, in Eqn. 1, predicts zero energy 

at T = 0 which is a violation of the Uncertainty Principle. As we shall see the 
solution to this creates a further conundrum. 

2    The Quantum Energy Catastrophe 

During 1911-12, Planck's 'second theory' produced the following modification 
to the quantum term 5 

1U»-1 + */.WaA (jv). (2) 

The extra hf/2 term is called the zero-point energy (ZPE) and in this case, 
at T = 0, the Uncertainty Principle is not violated. This creates a further 
conundrum in that hf/2 is infinite when integrated over all frequencies, which 
is an apparent return to the type of 'catastrophe' problem we saw in the clas- 
sical case. One can only assume that Nyquist accordingly did not suggest this 
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form and probably would have been aware of Planck's own misgivings concern- 
ing the experimental objectivity of hf/2. The inclusion of hf/2 in standard 
noise texts only became popular after 1951 following the classic work of Callen 
& Welton 6 that produced the hf/2 ZPE term as a natural consequence of 
their generalized treatment of noise in irreversible systems using perturbation 
theory. 

The solution to the catastrophe problem is that hf/2, in fact, turns out 
to be the ground state of a quantum mechanical oscillator. If n is the quantum 
number, which is a positive integer, then the allowed energy states for a quan- 
tum oscillator are (n + \)hf and thus the ground state is given when n = 0. 
As there is no lower energy state than the ground state, there is no energy 
level transition available to release the ZPE. Therefore it can be argued that 
hf/2 should be dropped before integration of the quantum expression. This 
procedure is an example of renormalization, which basically redefines the zero 
of energy. Renormalization is a significant area of quantum field theory and is 
usually presented in a more formal manner. The problem of renormalization 
is an open question in the theory of gravitation where there is the apparent 
catastrophe of total energy becoming infinite. For most laboratory measure- 
ments there is no catastrophe as we are only interested in energy differences. 
It is rather vexing that many basic texts herald quantum theory as removing 
the classical catastrophe, without admitting to the new set of catastrophe type 
problems it introduces such as in gravitation - a modern fully covariant theory 
of renormalization7 resolves some problems, but the case is not yet fully closed. 

The fact that the ground state energy, which we call ZPE, cannot be 
released means that texts that quote the Callen & Welton hf/2 term as an 
observable noise component are not strictly correct. However, by coincidence it 
turns out that the mean square of the zero point fluctuation (ZPF) also has the 
hf/2 form8. The mean square does not vanish with renormalization, of course, 
and this ensures the Uncertainty Principle survives renormalization. The mean 
square fluctuation is a detectable quantity and represents the magnitude of 
the ZPF. This noise starts becoming significant, just when the thermal noise 
begins to roll-off, in the THz band, thus preventing the possibility of noiseless 
communication. 

Each mode contributes hf/2 towards the mean square fluctuation and, for 
an infinite number of frequencies, the magnitude is infinite. It is considered 
that this infinity is not fundamental, since the measurement conditions have 
not been specified. It can be shown8 that for any finite observation bandwidth 
and volume of space the magnitude of the fluctuations of a quantum field is 
finite - if either the bandwidth is infinite or the measurement is evaluated at 
a point in space then the fluctuations become infinite. 
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3    The Steak Grilling Debate 

In 1982, Grau k Kleen expressed the view that hf/2 is both unextractable 
and unobservable, adding their memorable rejoinder in the Solid-State Elec- 
tronics journal that hf/2 is not "available for grilling steaks" 9. Uncannily, 
about the same time Koch, Van Harlingen k Clarke (KVC) published noise 
measurements in superconductors reporting to have observed ZPF 10. Over 
the next 3-4 years a number of independent superconductor papers followed, 
all nonchalantly quoting the KVC interpretation of ZPF as standard. In reply, 
Kleen (1987) essentially restated his case pointing out an unanswered ques- 
tion in the superconductor measurements11. As far as we are aware there has 
been no published KVC reply. This debate epitomizes the tension in schools 
of thought between hf/2 merely producing a measurement artifact (school of 
Kleen) and hf/2 being a real noise power (school of KVC).a 

The orthodox position, is that the effects of ZPF are observable such as 
in the Casimir effect 12. ZPF also has an orthodox status in explaining the 
observations of Mullikan13, Lamb 14 and the nature of liquid helium15. On 
the other hand, consensus is not total as the school of Kleen has some sup- 
port16,17, the commonly supposed link between spontaneous emission and ZPF 
has been criticized 18 and the overall understanding of ZPF is also questioned 
as expressed, for example, in the following quote19: 

"The obvious question, then, is whether the zero-point energy and the vacuum 
fluctuations are one and the same thing. If they are, why is it that the former 
can be eliminated from the theory? The answer is not yet clear, and a deeper 
significance has yet to be discovered. Therefore, we will adopt the view that 
the zero-point energies are to be formally removed from the theory...., and 
all physical effects of the type....   discussed are to be ascribed to quantum 
fluctuations of the vacuum....   It must be admitted that the vacuum is not 
completely understood, neither physically nor philosophically.    Whether or 
not the vacuum fluctuations are intimately related to the (unobservable) zero- 
point energy remains an open question." 

where the expression "vacuum fluctuations" is an alternative term for ZPF. 
The view that ZPF cannot give rise to a detectable noise power itself, but can 
indirectly modulate or induce a detectable noise power has been expounded 
by Senitzky 20. As for grilling steaks, the debate still sizzles but has shifted 
away from electrical noise theory. Controversial attempts to harness ZPE are 
underway using the concept of system self-organization21 and presupposing the 
idea that the ground state is not the actual source of energy but is a 'pipeline' 

aIt is curious to note that KVC consistently always refer to the term 'ZPF' in their papers, 
whereas Kleen always uses the term 'ZPE' - hence there is the added confusion of semantics 
entangled with valid points of disagreement. 
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into some universal background source 22. In an enterprising decade where 
there have been controversial attempts to consider superluminal velocity 23 

and quantum information theory (promising two bits of information from one 
physical bit24 and a form of teleportation25), there is no doubt that we have not 
heard the last of ZPE research. It remains to be seen what concrete results are 
produced and, if any, what the implications are to noise theory. Until further 
evidence, the quantum zero-field should be regarded as a conservative field as 
far as the extraction of energy is concerned. We can illustrate this using the 
thought experiment of a pair of parallel plates being pulled together by the 
Casimir effect - we can imagine one of the moving plates attached to a cord 
over a pulley with a miniscule mass on the end. As the mass is raised, the plate 
therefore does work and hence a small amount of energy is extracted from ZPF. 
However, external energy must be put into the system, to separate the plates 
to restart the process. Hence we have a conservative field. It could be argued 
that the ZPF is merely releasing externally introduced energy, stored by the 
system, and this may be a mechanical analogy of Senitzky's view20. 

On the other hand, Jaynes has pointed out26 that the energy density of the 
Lamb shift, in a hydrogen atom, caused by ZPF, would give rise to a Poynting 
vector about three times the power output of the sun. This had led to a view 
that ZPF has no reality 27. Hence the level of reality of ZPF, in this example, 
is in tension with the previous example. This also reflects the tension between 
KVC and Kleen. 

Another consequence of a literal view of ZPE is that via the E = mc2 

relation and general relativity, this energy can also act as the source of a 
gravitational field - call this energy density in space W. Then the Kepler ratio 
for a planet with mean distance R from the sun and period T is proportional 
to msun + (^5)VP, where V is the volume of the sphere of radius R. To agree 
with observed ratios for the planets the upper frequency cutoff for W can be no 
higher than optical frequencies 28. But any attempt to account for the Lamb 
shift with ZPF requires a cutoff thousands of times higher, at the Compton 
wavelength 28. This gravitational energy would not only disturb the above 
ratios, but it would radically disrupt the solar system. This ad hoc selection 
of frequencies for the operation of ZPF for the convenience of explanation is 
problematic. 

4    Quantum Cut-Off Experimental Status 

Fig. 1 shows a theoretical plot of the quantum term for different temperatures. 
The hf/2 term is plotted to illustrate that at normal working frequencies 
and temperatures it is vanishingly small, so for these conditions it can be 
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5    Conclusion 

We have reviewed the debates surrounding the objectivity of the influence of 
ZPF on electrical noise. Although in the literature, terminology is not stan- 
dard, we suggest to prevent confusion that the unextractable and unobserv- 
able groundstate is called ZPE, whereas the vacuum fluctuations themselves 
are called ZPF. We noted that the mean square fluctuation of ZPF has the 
form hf/2 and ZPE also has the form hf/2. This has caused some conster- 
nation in the literature and we highlighted that these quantities are different. 
ZPE can be removed by renormalization, whereas the effects of ZPF can be 
seen in a number of physical phenomena. It is clear that noise measurements 
are affected by an hf/2 law, as seen experimentally, otherwise communication 
channels would be noiseless above a certain frequency. However unresolved de- 
bate surrounds whether this represents a real noise power or is some quantum 
disturbance of a measurement (with no power to grill steaks). Also, Senitzky 
proposed a third option that ZPF cannot do work, but can modulate power 
from an outside source. All these views have problems: (1) insistence on a 
measurement artifact, with no work done seems to deny the reality of other 
observed ZPF effects, (2) whether power is produced or modulated, as per 
Senitzky, still leaves the problem of potential indefinite increase by hf/2. It 
seems that vacuum fluctuations are still not fully understood. Solutions could 
come either from developments in quantum physics or alternatively there is an 
opportunity to further tackle the problem from the point of view of noise. 
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The problem of the generalization to the quantum case of Nyquist formula is 
rivisited. We address its applicability to a semiclassical resistor and point out the 
possibility to provide a crucial test in favour of the presence and/or absence of the 
zero-point contribution. 

1    Introduction 

The aim of this communication is to revisit some fundamental questions con- 
cerning the quantum formulation of the Nyquist theorem 1 as applied to a 
semiclassical resistor where carriers behave similarly to a Brownian motion. 
Nyquist theorem states that at thermal equilibrium the spectral density of 
current fluctuations at frequency / of a given two-terminal device as measured 

in the outside short circuit, Si{f), is given by: 

Sf(f) = 4Re[Y(f)]KBT (1) 

where KB is the Boltzmann constant, T the lattice temperature and Re[Y{f)] 
the real part of the device admittance. Equation (1) refers to the original 
classical form of Nyquist theorem 1. We remark the possibility to write Eq. 
(1) for the spectral density of voltage-fluctuations Sv(f) as measured at the 
terminals of the open circuit by replacing Y(/) with its reciprocal quantity, 
the device impedance Z(f). The extension of Eq. (1) to the quantum case, 
i.e. by substituting the Planck spectrum to the classical Rayleigh-Jeans value 
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KBT, was already suggested by Nyquist himself as: 

h being the Planck constant. A quantum derivation of Nyquist formula provided 
in a seminal paper by Callen and Welton2 suggested a further generalization of 
(2) which includes the zero-point energy of the harmonic oscillator thus giving: 

^W-^WM-^*', (3) 

The classical Eq. (1) has been verified experimentally and numerically through 
simulative techniques (e.g. with the Monte Carlo method3). The quantum 
Eq. (2) has been indirectly verified by well established measurements of the 
spectrum of black-body radiation by absorption. However the problem remains 
open for the case of a semiclassical resistor where still it can be asked: (i) which 
of the form (2) and (3) is more appropriate to generalize Eq. (1) ? (Ü) Is any 
direct detectable way to provide a crucial test in favour of (2) or (3) ? 

2     State of the art 

Concerning question (i) Callen and Welton2 provided a first principle derivation 
of Eq. (3), succesively Landau-Lifshitz4 and Kubo et al5 confirmed this result. 
However, several perplexities have been arosen about both the theoretical 
derivation and its applicability to real cases6. 

MacDonald 7 has doubted about the inclusion of zero point term in express- 
ions for Brownian mouvements and Robinson 8 provided as basic arguments 
on the same subject the fact that the notion of resistance and dissipation in 
quantum mechanics is a delicate problem to be treated as explicitely statistical 
processes describing the coupling between one quantum system, the circuit, 
and another quantum system, the heat sink. Indeed dissipation will violate 
ultimately quantum mechanics since all mechanical motion will eventually 
cease contrary to the uncertainty principle. 

Bell9 argued that zero point applies to the average power but cannot take 
place in any exchanges and is not to be included in the available noise power. 
In favour of this statement theoretical results of Bogoliubov and Shirkov10 and 
Kubo giving an average energy of a harmonic oscillator not including the 
zero point contribution are claimed. 

Gupta12, by using a Weber13 argument, argued that the zero-point energy 
of the harmonic oscillator should not be included in the available noise-power 
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because it cannot be extracted from the oscillator. In so doing, the oscillator 
would remain with zero energy thus violating the uncertainty principle. 

Kiss 14 concluded that the presence of zero-point term would contradict 
basic results of quantum mechanics. 
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Figure 1:   Normalized noise power as a function of normalized frequency.   Dashed curve 
refers to the quantum case, continuous curve to the quantum plus zero-point energy case, 

respectively. 

In any case, the possibility to confirm from a macroscopic measurement 
Eq. (3) is still under controversy, despite of a measurement made by Koch et 
al15 who claimed evidence of it in a pioneer experiment in resistivity shunted 
Josephson junctions. 

3    Unsolved problems 

According to the discussion of the previous section, we conclude that the 
validity of Eq. (2) and/or (3) for the case of a semiclassical resistor represents 
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still a challenge for researchers. From the point of simulative techniques it 
implies the introduction of the coupling between the carrier dynamics and 
the electromagnetic field in a self consistent way inside the kinetic equations. 
This step has never been solved to the authors knowledge and should be an 
interesting field for future research. From the point of view of experiments 
we offer below a tentative scheme whose practical realization is left to the 
skilfulness of experimentalists. By introducing for convenience the dimension- 
less frequency x = hf/fäßT), we report in Fig. 1 the cut-off region of the 
current spectral density of Eq. (2) and (3) normalized to the classical one. 
This numerical quantity represent the available noise power per unit bandwidth 
normalized to KßT. For x = 4 we obtain the values 0.07 and 2.1 for quantum 
and quantum with zero point spectra, respectively. This difference should 
be experimentally detectable in a low temperature (i.e. 1 K) noise-power 
measurement at high frequency (i.e. 80 GHz) of a resistor at equilibrium. 
Here, despite of being at 1 K the noise temperature of the resistor under test 
should be of 0.07 K or of 2.1 K according to the validity of Eqs. (2) or (3). 
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Thermal noise in mechanical suspension systems is presently the most severe limi- 
tation to the sensitivity of the new generation of interferometric gravitational wave 
detectors, like VIRGO and LIGO, in the frequency range between 5 and 500 Hz. 
For this reason, a few experimental groups around the world are challenging the 
strategic goal of queching thermal noise effects. 
Here we address present strategies, present some experimental data and discuss 
theoretical and experimental implications of such a task by pointing out present 
limits and still unsolved problems. 

1    Introduction 

Thermal noise is the name commonly given to fluctuations affecting a physical 
observable of a macroscopic system in thermal equilibrium with its environ- 
ment. 

The internal energy of a macroscopic apparatus at thermal equilibrium is 
shared between all its degrees of freedom or, equivalently, between all its normal 
modes each carrying an average energy kT, where k is the Boltzmann constant 
and T the equilibrium temperature. This is true also for such modes as the 
oscillations of springs, pendula, needles, etc. Such an energy manifests itself 
as a random fluctuation of the relevant observable experimentally perceived as 
the noise affecting its measured value. 

Thermal noise is ubiquitous and is one of the unavoidable limits to the 
precision of mechanical measurements. 

"Electronic mail address: Gammaitoni@perugia.infn.it 
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2    Sensitivity limit to the detection of gravitational waves 

It has been estimated that thermal noise poses a severe limit to the sensitiv- 
ity of the new generation of interferometric gravitational wave detectors, like 
VIRGO * and LIGO, in the frequency range between 5 and 500 Hz, due to 
the fluctuations in the position of the suspended elements (test masses and 
optics) of the interferometer and to the internal modes of the mirrors. It has 
been remarked that the whole suspending structure (super attenuator) can be 
treated as a multi-stage pendulum. Due to the action of thermal noise the 
position of each element of the pendulum chain will fluctuate in time. This 
is particularly true for the position of the optical components (mirror, beam 
splitter or suspended bench) located at the last stage of the chain. Such fluctu- 
ations combine with the gravitational wave induced displacement, thus setting 
a lower limit to the antenna sensitivity fig. 1. 
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Figure 1: Thermal noise contribution to the VIRGO sensitivity curve (estimate). 

It is clear that the determination of the spectral properties of the thermal 
noise affecting the antenna is an important and crucial task. It has been well 

*For   a   description  of  the   VIRGO   project   see   the   VIRGO   central  web   site   at 
"http://www.pg.infn.it/virgo". 
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known, since the fifties, that the spectral character of thermal fluctuations 
can be connected to the dissipative properties of the monitored observable 
(Fluctuation-Dissipation theorem (FDT)1): the equilibrium fluctuations (ther- 
mal noise) of a macroscopic system can be probed by applying a weak (linear 
response) external perturbation, which couples to the observable of interest. 
The system absorbs energy from the perturbation in a way which is completely 
determined by the spectral properties of the fluctuations, in the absence of the 
perturbation. 2 

This suggests an experimental way to study the spectral properties of 
thermal noise affecting a macroscopic observable: let us call x(t) a physical 
observable which quantifies the response of a system to an applied external 
force f(t). The response function H(u) (called "generalized susceptivity" in 
the physical literature) is a complex quantity defined by: 

X(u) = H(u,)F(w); (1) 

with #(«) = H'(u) + iH»{u>) = |IT(w)|e^(w). Here capital letters denote the 
Fourier transform of the corresponding time dependent quantities. The FDT 
sets a relation x between the power spectral density of x(t) , < x(w)2 > and 
IT», i.e. 

< x(w)2 >= -2 kT ^M (2) 

Most notably, the quantity Hn(u>) can be accessed experimentally and the 
fluctuation power spectral density < x(w)2 > can be obtained accordingly. 
The r.m.s. value y/< x(u)2 > can be obtained through the relation 1: 

y/< x{u>)2 > = J-J    < x(w)2 >du> = kT H'(0) (3) 

The detector sensitivity curve can thus be estimated by measuring the 
dissipation properties of the suspension structure or, to be more precise, the 
imaginary part of the response function of the observable of interest x(t) (i.e. 
the position of the mirror center of mass) to the conjugate force f(t). The 
response function H(u) is obtained from 1 by recording the time series of the 
force and the relevant displacement and, then, taking their Fourier transforms. 
Finally, the fluctuation spectral density (thermal noise) is computed from the 
H(u) imaginary part, H"(u>), by using the FDT in  2. 

3    How to reduce thermal noise effects 

Once the expected spectral noise properties of the thermal noise affecting the 
system are known, a crucial task is the quenching of thermal noise effects in 
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the frequency band of interest, down to the quantum limit. This is usually 
accomplished by acting on the dissipation properties of the mechanical struc- 
tures. After reducing external losses, one has to address the internal friction 
effects. An effective quenching strategy is mainly based on a proper choice 
of the material and on a careful characterization of the intrinsic dissipation 
mechanism. 

Such a characterization is performed phenomenogically through the study 
of the material loss angle <f>. This empirical quantity which should account 
for a number of different dissipation sources resists to a general theoretical 
treatment 3'4. Moreover simple "ad hoc models" generally fail to reproduce 
experimental data. 

The detailed knowledge of the dependence of the loss angle on load and 
frequency is still an open problem, a pre-condition for the realization of highly 
sensitive mechanical devices. Such a strategy for the reduction of thermal noise 
effects is commonly implemented by designing mechanical oscillators with high 
quality factor (see fig. 2). 
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Figure 2: Logarithmic relaxation of a full scale last stage suspension system prototype, as 
measured in Perugia. Q = 1.3 ± 0.1 106 at v<> = 0.6 Hz. 

The effectiveness of such a strategy relies much on the assumption that 
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the loss angle is independent from the frequency. While this assumption is far 
from being generally verified by experiments, we still miss a viable approach 
to frequency dependent losses. In particular, the problem of measuring losses 
in the low frequency regime, for a wide frequency band, is still unsolved. 
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A new paradox is described where the correlation between the thermal noise volt- 
ages in a 2-stage RC ladder behaves unexpectedly at limiting component values. 
A future resolution to this unsolved problem may possibly uncover a limitation in 
the circuit theory formalism for handling noise. There may be be a connection 
between this problem and Penfield's motor paradox proposed in 1966. 

1    Introduction 

For the first time, we present an unsolved paradox in a simple two stage RC 
ladder (Fig. 1). In the Appendix, we solve the relevant complex integral for 
the circuit showing that correlation between the two capacitor noise voltages 
is zero, ie. (V1U2) = 0. However, we also show that if R2 —► 0 or Ri —► 00 then 
(viv2) suddenly becomes non zero! For low R2 we obtain some correlation, 
whereas for large Ri we get anticorrelation. In practice, zero correlation will 
not be observed as we impose a limited measurement bandwidth. Zero correla- 
tion is only obtained when we consider the total frequency band. Nevertheless, 
the predicted crossover from correlation to anticorrelation, as resistor values 
change, is a surprise result. 

This dilemma is unsolved and may highlight a limitation in the circuit 
theory formalism for noise. If the capacitors are replaced by inductors, it may 
be that the problem has similar roots to Penfield's motor paradox1,2. 

It would be interesting to recalculate the correlation terms if we replace 
kT with the one dimensional form of Planck's law3, to impose the quantum 
limit to bandwidth. Closed form solutions of the resulting integrals appear 
to be exceedingly difficult and could probably be expressed in terms of the 
X function (the derivative of lnT(z)). However, as Ri —► 00, the integration 
anomalies occur near / = 0, so the quantum form would not affect the result 
in this particular case. 
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'""H /77T777 fmm 
Figure 1: Two stage RC ladder - a source of an unsolved paradox. 

2    Discussion 

It may be that there are anomalies introduced by letting Rx -, oo or R2 -► 0 
before we do the integration. It would therefore be instructive to take limits 
after the integration, for comparison. However, we do not get the opportunity 
to do this because (Vlv2) = 0 and thus there are no variables in this expression 
to manipulate. To overcome this problem, we write a new variable {»„) which 
is the voltage noise across capacitor C, due to resistor Rj. So we can separate 
the noise contributions from the two resistors as 

in) = (i>ii) + («i2> 
and 

M = (v2i) + (v22) 
hence the correlation can be written as 

(viv2) = (vnv21) + (v12v22). 

It can then be easily shown that 

(vnv21) = kT 
R2C? C1+C2 + Bg 

and 

{vi2v22) = - kT 
RsC2 ■ c1 + c2+«g 

(1) 

(2) 

(3) 

(4) 

(5) 
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Therefore the sum of these two terms, which is the total correlation, is zero 
as before. Now if we let fii -+ oo or R2 -*• 0, the total correlation is still zero. 
This contradicts our initial non-zero results, when the limits were taken before 
the integration. This basically summarizes the dilemma. The differences can 
be mathematically explained: for instance if Ri -> oo, before integration, the 
positive part of the curve becomes a delta function and is no longer captured 
by the integral. Hence we effectively integrate under the negative portion of 
the curve and the correlation becomes negative. The unsolved problem is the 
physical interpretation, in terms of noise, of the ordering of the limits. 

3    Conclusion 

We have outlined an unsolved problem regarding thermal noise correlation in 
a 2-stage RC ladder. A solution may improve understanding of the circuit 
theory formalism. If the capacitors are replaced by inductors, there may be 
some similarities with Penfield's paradox posed in 1966, though this requires 
further investigation. 
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Appendix 

General Complex Integral for Capacitor Problem 

We need to solve the integral of the general form: 

j _ J_ rj°° a°+ais+a2s2 -ds    (6) 
" 2wj J_joo   (bo + blS + 62s

2)(60 - M + M2) 

Let &o + &is + b2s
2 = b2(s - sx)(s - s2), so by factorizing the denominator 

and taking a contour integral we have, 

7 _ _1_ /  «o + <*is + a2fi2 ds (7) 

2TT? JC °K
S
 ~ si)(s - s2)(s + s0(s + s2) 

Taking the sum of the residues, 

_ a2SiS2(si - s2) ~ Qo(si ~ sz) /g\ 
~     2sis2(si - s2)(si + s2)&2 
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and using sis2 = b0/b2 with sx + s2 = -b1/b2, finally gives 

_ a0b2 - a2bo 
2b0b1b2    ■ W 

This result is quite fascinating as the ai term has totally dropped out giving 
a purely real result. This can be explained because a^s is an odd function of s. 

Another curious matter is that because of the conjugation on the denomi- 
nator of the original integral, the Cauchy-Riemann equations are not satisfied. 
However, the method of residuals happens to nevertheless work because the 
integral is essentially real given that the eti term drops out. As a precaution, 
we integrated the real part of the integral the long hand way and found that it 
did indeed reduce to the same result provided by the method of residues. Due 
to the great length of this procedure, this was accomplished using the MAPLE 
math editor software. 

The fact that the method of residues is found to work on a non-analytic 
integral, is apparently not discussed in the complex analysis literature. There 
maybe be scope for future work to formally define a class of such integrals. 

Noise Analysis of 2-Stage RC Ladder 

From nodal analysis of the circuit we find that, 

 ei(l + sC3Ri) - e2sC2Ri 
"x      1 + s(d 

and 

Vl     l + s(C1R1 + C2R2 + C2Rl) + s^ClC2R1R2 
(10) 

v2 = 
ei + *V + sC1R1)  

1 + 8(CiRi + C2R2 + C2Äi) + s^C1C2RlR2 ■ [ii) 

Using ei = 2kTRi and e2 = 2kTR2 and multiplying by complex conju- 
gates, gives us the spectral densities, 

5„ = "«-T Ri\^ + sC2R2\
2 + R2\sC2R1\

2 

|1 + «(C1Ä1 + C2Ä2 + C3Ri) + «2CiC2ÄiÄ2|
2 (   ' 

522 = 2kT fli + fl2|l + sCii?i|2  
|1 + s{ClR1 + C2R2 + C2R1) + sidCrfiRtf {6) 

s   =2kT  Ri(l + s2dC2RiR2) 
|1 + «(C1Ä1 + C2R2 + C2R!) + s^C1C2RiR2\2" 

(14) 
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These spectral densities are now integrated using the general solution given 
in the last section. This yields the noise voltages in Volts squared per Hertz, 
and the integrals simply reduce to 

("?> = §, <»2> = f. (*W = o 

but if R2 ->■ 0, 

therefore, 

If Ri -> oo, 

Sn - b22 - Ä21 - \i + 8(c1R1 + C2Ri)\2 

kT 
(«?) = (4) = (»i»2) = {Cl + C2y 

2kTR2C\ c   _ 1kTR2C\^ 
Sn ~ \Cl + C2 + sClC2R2?' 

S22 ~ \Ci + C2 + sCiC2R2p' 

-2kTR2CiC2 
Ol2 = Id + Cz + sCiCzÄzl2' 

therefore, 

kTC2 . 2v kTd .      . kT 
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Ni80Fe20 ^ms w'* a thickness of about 40 nm have been sputtered in a magnetic field on Si 
(100) substrates. Twin samples from the same substrate have been investigated: (i) with the easy 
magnetisation axis parallel to the current in the longitudinal direction and (ii) with the easy axis 
perpendicular to the current. The width of the samples was 30 um. The resistance and noise as a 
function of the applied magnetic field perpendicular to the length have been investigated. At 
strong magnetic fields, the 1/f noise parameter is of the same order of magnitude as in nonmagnetic 
metal layers (Au, Cu, ...). For moderate fields with appreciable values of dR/dH we observe an 
additional contribution to the 1/f noise parameter which we associate with fluctuations in the 
magnetisation that modulates the resistance value. 

1 Introduction 
We have investigated anisotropic magneto resistance, AMR films. The AMR 

effect is based on the dependence of the resistance on the angle between current and 
magnetisation1. The change in noise power of AMR sensors can be explained 
qualitatively using simple models. In this paper, the noise of AMR films having a 
single domain state will be compared with films showing a multi domain pattern. 

2 Experimental Procedure 
The measured Ni80Fe2o films are grown by high-vacuum magnetron sputtering 

on a Si (100) substrate in an applied magnetic field in order to induce uniaxial 
magneto- crystalline anisotropy. The films are either 400 Ä or 350 Ä thick and are 
patterned into bars and form Wheatstone-bridges. The 30 urn wide samples have 
been chosen for investigations because they showed the most interesting domain 
structure. The long axis of the bars is orientated either parallel or perpendicular to 
the magnetic field applied during growing. We prefer to measure on bridge shaped 
samples because all spurious signals, common to all elements are largely cancelled 
out. The measurements were performed in a mu-metal shielded cage. Magnetic 
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fields are generated using two pair of orthogonal Helmholtz coils. The current 
through the samples is generated with a battery in series with a relatively large 
resistor. The voltage noise over Wheatstone bridge is measured using a pair of 
battery fed ultra low-noise voltage preamplifiers (EG&G Brookdeal 5004). The 
outputs of the latter are connected to a HP3562A dynamic signal analyser which 
measures the sample noise using the cross-correlation technique. The noise is 
measured in the range between 1 Hz and 100 kHz. The equivalent noise resistance 
of the system is about 1 Q above 10 Hz. The 1/f noise often obeys the empirical 
relation2 where a is a dimensionless parameter for pure 1/f noise used to 
characterise its strength and N is the number of free carriers in the sample: 

Sv(f) _ a 
V2      Nf () 

Sy(f) is the spectral density of the voltage fluctuations induced by the resistance 
fluctuations, N is calculated for NigoFe2() bv taking the number of electrons per 
unit volume as 5><1028 m"3 and f is the frequency in Hz. Tests showed that a is 
independent of the current density through each sample (at least upto 106 A/cm2). 
The current densities used to measure the noise are between 105 and 6><105 A/cm2. 

3        Experimental Results 
Bitter-fluid was used to show the magnetic domain structure of the films. 

Films with the easy axis of magnetisation along the long axis of the sample show a 
magnetic mono-domain structure. Films with an easy axis perpendicular to the long 
axis had a multi domain structure for a width larger than 20 |im. Only the 30 ^im 
films had a stable pattern when no external fields are present. The observed noise 
spectra are proportional to fY with 0.8<y<1.2 in most cases. A weak constant 
magnetic field of 80 A/m was present parallel to the long axis during all 
measurements. This was done to force the magnetisation to rotate in one half plane. 

3.1      Experimental results on single domain structures 
Figure la shows AMR resistance change and figure lb the measured 1/f noise in 
terms of the a parameter as a function of the magnetic field perpendicular to the 
long axis of the sample. The magnetoresistance curve of figure la is well described 
by . The difference between the measured and calculated resistance is of the order 
of 1 %. The same parameters needed to model the resistance are also used to 
calculate the variance of the resistance. The calculated variance as a function of the 
perpendicular field is then compared with the experimentally observed 1/f noise. 
The similarity between the 1/f noise parameter a versus field and the variance or 
(dR/dH) presented by a dotted line is surprisingly good although not perfect. In the 
model3 the magnetisation of the complete sample is considered to be uniform, 
thereby overlooking almost all demagnetisation induced by edge effects. The a 
dependence on applied magnetic field in the AMR layer shows a dependence like 
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a(H)=a, +KA(dR/dH)2 (2) 

with a, a typical value for non magnetic metal layers and the second term in eq. 
(2) gives the excess fluctuation in R by modulation due to spontaneous fluctuations 
of the magnetisation having a 1/f spectrum. 

3.2     Experimental results on multi domain structures 
Figure 2 shows an example of resistance and noise when the easy axis is 
perpendicular to the length axis of the sample. The absence of hysteresis in the 
magnetoresistance curve shows that there are no magnetisation jumps present but 
mainly rotation of the magnetisation. The large scattering in the 1/f noise, 
especially around zero field, is typical for the samples with their easy axis 
perpendicular to the length axis. For some samples we found high values (like in 
figure 2) and for some we found low values at zero external field, but all were very 
unstable. This points to domain wall activities. For comparison we have measured 
multilayers (not shown) which showed huge scattering in the transverse 1/f noise 
compared to longitudinal 1/f noise when no external field was present. This large 
scattering was not measured at high external fields. This also points to a non 
homogeneous 1/f noise source in the sample4 due to domain wall activities. 

4 Conclusions 
Magnetic single layers showing the anisotropic magnetoresistance effect, have a 
strong 1/f noise where dR/dH shows a maximum. This is thought to originate from 
fluctuations in the magnetisation. For samples with a single domain structure this 
increase is more than a factor ten with respect to non-magnetic materials and for 
samples with a multi domain structure the increase is at least a factor hundred. The 
situation in which no domain walls are present was modelled and the calculated 
resistance fits the measured resistance very well. The intensity of the 1/f noise in 
the resistance and the variance of the resistance have the same dependence on the 
angle cp between current and magnetisation. However, the variance calculated from 
the spectrum (whatever limits of the 1/f region are used) is neglectible compared to 
the variance following from the dependence of magnetic energy on cp3. This is the 
fundamental problem arising from our investigation. When domain walls are 
present, the 1/f noise strongly scatters. Experimental results on single domain 
structures are easily summarised by a(H) = a, + KA (dR / dH)2. 
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Figure 1: (a) Resistance and (b) 1/f noise as a function of the perpendicular magnetic field. The easy axis is 
parallel with the length of the sample and a constant field of 80 A/m is present in this direction 
The 1/f noise is compared with the calculated variance (full line). The dimensions of an individual 
bridge resistance are: 360 um x 30 um x 40 nm. The dotted line represents (dR/dH)2 indicating 
that a = a, + KA (dR/dH)2 is also a good fit to experimentally obtained «-values. 
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30um wide bridge sample 
easy axis: perpendicular to the length axis of the sample 

-4000   -3000   -2000   -1000     0        1000   2000    3000   4000 

117.0- 

„ 116.5 
E 
si 
O 
— 116.0h 

115.5 

115.0 

114.51- 

C0 
sz 
JQ. 
CO 

0.1 

0.01 

-4000  -3000   -2000   -1000 1000    2000    3000    4000 

H       [A/m] 

Figure 2: (a) Resistance and (b) 1/f noise as a function of the perpendicular magnetic field. The easy axis is 
perpendicular to the length of the sample and a constant field of 80 A/m is present in the direction 
parallel to the length of the sample. The 1/f noise power is compared with the calculated variance. 
The dimensions of a single resistance in the bridge structure are: 360 |im x 30 (im x 35 nm 
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The characteristic features of the Barkhausen noise are presented in connection with the problem of 
self organisation in complex systems. The results experimentally verified and the main drawbacks of 
the existing theories are presented, togheter with the possible solutions of some intrigiung aspects. 

1. Introduction 

Since its discovery, the Barkhausen effect (BE) has been recognised as a 
fundamental tool for the investigation of magnetisation processes, and for non- 
destructive material testing. A detailed comprehension of the effect, together with 
an accurate description of experimental data, offers, in principle, the possibility to 
describe the huge variety of soft magnetic materials by a few macroscopic 
parameters, with considerable benefits in the applications. Beside this traditional 
field of studies, in the last years, with the increasing spread of research on non- 
equilibrium complex systems, broad renewed attention has been paid to BE, both 
from the theoretical and the experimental point of view, as a possible example a 
system showing self-organised criticaliry (SOC). Barkhausen noise, in fact, exhibits 
power law distributed avalanche instabilities and l//p power spectra, and lacks of 
any inertial effect as shown, for instance, by sandpiles, earthquakes, etc. Up to now, 
however, the question has not been clearly solved. Following a stimulating and in a 
sense prophetical picture of R. Feymann1,2, the central and unsolved question under 
debate is the following: is the 'sound' of Barkhausen noise that of sand grains 
falling over each other (i.e., the noise is a result of some system self-organisation) 
or of grains falling over something else (i.e., organisation is totally absent and the 
noise statistical properties simply reflect the disorder of the medium in which the 
system evolves)? An alternative and little more conservative way to pose the 
question may be: is it really necessary to invoke SOC in order to describe and 
predict the observed noise properties, or overdamped dynamics in quenched-in 
disorder is sufficient to justify the experimental results? Both points of view have 
estimators and detractors. Following the original work of Cote and Meisel3, who, 
even with not too accurate results of avalanche distributions (see refs. 4,5 for 
discussion), claimed for a SOC evidence, some authors have simulated the 
Barkhausen signal using modified sandpile models6 and related the scaling laws of 
avalanche distributions to power spectra using the SOC predictions 4,s. On the other 
hand, Sethna et al, studying zero-temperature random field Ising models7, exclude 
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any type of organisation and consider scaling laws as a simple consequence of 
quenched disorder of the medium. Otherwise, Urbach8 at al. evaluated the presence 
of 'long range' demagnetising fields, not taken into account in the previous model, 
and concluded that they do give SOC while local demagnetising fields (mainly 
related to quenched disorder) do not. Finally, for O'Brien and Weissman2, real self 
organisation requires that events on one temporal scale set the stage for events on 
another scale, and found no evidence of this feature in the existing theories and 
experimental results. Beside these different approaches, our traditional study is 
mainly focused on the possibility to describe BE statistics by a clear physical picture 
of domain wall (DW) motion9, in terms of a (stochastic) dynamical equation; only 
as a second step, we investigate the presence of any type of organisation, as shown 
in the next paragraph. 

2    Power spectra, avalanche distributions and SOC 

Up to now, the more satisfactory explanation of the BE features is given by a 
stochastic model based on a Langevin-like description of DW dynamics in a 
randomly perturbed medium9 (hereafter, ABBM). In this model, the field driving 
the DW is given by the difference between the external applied field Ha and an 
internal counterfield, made up of two components, the demagnetising field H*m of 
magnetostatic origin due to sample geometry and the pinning field Hp, which takes 
into account all other sources of counterfields, like inclusions, defects, interactions 
with other DWs and so on. As the DW motion in metals is fully dominated by eddy 
currents, the D W velocity v is given by 

V^Ha-Hdem-Hp (1) 

The DW dynamic equation is the time derivative of this equation where the applied 
field is a given function of time (e.g., dHJdt=const), and the pinning field is 
assumed to be a brownian process as a function of space (i.e. of DW position x). 
This interplay between space and time has far-reaching consequences: the 
amplitude distribution P0(v) of the DW velocity, which would be gaussian in the 
conventional Langevin approach, turns out to be a gamma distribution 
Po(v) = v"~l exp(-v) / T(c), where c is proportional to the applied field rate dHJdt. 
In addiction, the power spectrum amplitude is calculated to scale with dEJdt. 
These two results have been found to be a general property of BE in most magnetic 
materials4AI0, either single crystals, polycrystals, or amorphous alloys (see an 
example in figs. 1,2). This is a very surprising result still to be understood, also in 
connection with the fact that, on the contrary, the power spectrum data never fit 
with the l//2 shape predicted by the model, showing instead a l//p spectrum with 
1.5 £ ß < 2, in the simplest cases (fig. 1) and more complicated shapes in very 
complex materials such as some annealed amorphous alloys (see fig. 2 and ref. 10). 
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The hypothesis of a spatial random pinning field has been interpred2,4 as the 
consequence of the structural disorder of the medium, and thus in the line of 
"grains falling over something else", in the sense that the DW moves on & fixed 
(structural) pinning field, excluding any type of cooperative effects required by 
SOC. Actually, the situation is not so simple. As sketched above, the correct 
interpretation of the pinning field is that of an equivalent counterfield including all 
the random effects9 acting on the wall, consequence of structural disorder and other 
magnetic phenomena, such as flux propagation along the wall, interactions between 
DWs, an so forth. A spatial brownian pinning field only means that the effect of 
counterfields on the wall has independent increments, i.e. the wall does not retain 
any memory of the past interactions with the medium. Clearly, if this is the 
underlying physics of the magnetisation processes, no SOC occurs. Actually, the 
experimental data show that the hypothesis of a brownian pinning field, giving IIf 
power spectra, is inadequate, and one has to introduce its natural extension to 
fractional brownian processes (fBP). A really subtle problem soon arises: how can 
we reconcile the request of a fBP (likely, in the space coordinate) with the 
proportionality of the power spectra with the applied field rate (and the related 
gamma distribution of signal amplitude)? In the ABBM model, it was assumed that 
dx = v dt (the more natural assumption), so that the variance of the brownian 
process could be written as <\dW\2 > ~ dx ~ v dt, and so it was possible to consider 
and solve the associated Fokker-Planck equation9. In this case, we do not know how 
to handle a fBP with variance of the type <\dW\2> ~ dx211, unless to consider dx™ 
= v dt111 giving <\dW\2> ~ v df™, i.e. a fBP as a function of time with an amplitude 
scaling with the DW velocity v. In fact, this is the only assumption to give the 
spectra of the IIf type, with ß = 2H+1, proportional to the applied field rate", in 
the approximation v~<v> = c « dHJdt. This assumption has a very interesting 
physical meaning: because of ß<2, and H<0.5, the pinning field has an 
antipersistent character, i.e. its increments are negatively correlated. Even if 
different explanations can be given {structural disorder as a fBP, to be explained), 
this is in agreement with the presence of local demagnetising counterfields which 
are active when the DW bows and tend to realign it, pushing (pulling) the wall at 
velocities lower (higher) than the average velocity c. This fact can be consider as a 
prerequisite for self-organisation, because states the presence of an internal 
mechanism which keeps the system not too far from its average dynamical state. On 
the other hand, this does not state any presence of precursor avalanches, a requisite 
considered essential2. The meaning of the proportionality of the amplitude with the 
velocity v is, on the other hand, not straightforward, and we cannot have any clear 
meaning in terms of known magnetisation processes. 

Taking the first derivative of eq. 1 and considering a fBP pinning field, we get a 
type of dynamical equation which gives a power spectrum expression yet not too 
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accurate to describe the experimental data, especially at frequencies lower than the 
maximum (fig.l). In fact, the calculation gives a sum ot+ß=2 of the two exponents 
of the spectra before (~ ooa) and after (~ <D'

P
 ) the maximum, while the data show 

different behaviours. One of the possible solutions" is the introduction of a 
fractional differential equation, as used in the simulation of turbulence12, of the type 

dq x        ,  ,     xi     r
d'N      , ,    x —[vexp(f/Tj] = Vv—exp(r/Tj (2) 

where rm is a the time constant related to the demagnetising field, assumed constant 
in the ABBM model, and here considered a function of the applied field rate, and N 
is the white noise. In the approximation v«c, it gives a power spectrum of the type 

2g 

(o +*mr 
so that, a=2g and ß=2(#-g), which fits with excellent accuracy the simplest spectra 
and describes its variability with the applied field rate with a single time constant 
rm. (fig. 1). The physical meaning of eq. (2) is otherwise obscure, as any further 
relation to SOC, and still needs to be analysed: it is worth noticing that the ABBM 
model is recovered in the case q=l and g=0. 

The analytical expression of PG(v) cannot be calculated as in ABBM, neither after 
the introduction of the fBP pinning field, nor from the eq. (2). Thus, it still remains 
unclear why the gamma distribution is so general and if the result of the ABBM 
model is a fortunate coincidence or its structure has a deeper connection with the 
magnetisation processes involved in the DW motion. Beside these considerations, 
the results on the amplitude distribution are also promising to test the relation 
between the avalanche distributions and the power spectra. We have calculated and 
experimentally verified4 that the avalanche duration AM and size Ax follow the 
power law distributions P(Au) ~ Au^ and P(Ax) ~ Ax(S/2-c/2). Following Jensen et 
a/.13, the power spectrum can be calculated using a weighted distribution of the 
lifetimes of independent avalanches, getting ß=2. Up to now, it is not clear whether 
this discrepancy is due to the assumption of independence or we should take into 
account the particular shape of the average avalanches, as recently proposed5. 

3    Final remark 

The complex behaviour of BE and the difficulties in its comprehension has a direct 
physical explanation: as in many complex systems, we are considering a many body 
system (many interacting DWs) moving a random landscape changing during the 
evolution of the system. A similar behaviour have the piles of sand or rice, where 
avalanches change the structure of the pile. As said, many authors consider power 
laws and 1// noise a direct evidence of self organisation, while others strongly 
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refuse this statement, so that it is not universally clear which are the essential 
ingredients of SOC: intrinsic disorder, many body interactions, memory effects, 
precursors and aftershocks, or none of them. Without this clarification, in our 
opinion, the idea of SOC will remain as a general qualitative frame of 
interpretation rather than a valid physical theory to explain nature. 
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Fig. 1 Power spectra of a single crystal FeSi alloy at different average DW velocity c oc dHJdt. 
Fig. 2 Same of fig.l. for a Fe«4Co2iBis amorphous alloy. SI is the measured average flux rate oc c. 
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The extension of the impedance-field method to quantum systems is presented as 
yet an unsolved problem of relevant interest. A brief formulation of the problem 
for the simple case of one dimensional structures is given. Analogies and differ- 
ences between classical and quantum systemts are illustrated in the framework of 
a Wigner-function approach. 

1    Introduction 

Since the seminal paper of Shockley et al [1], further extended in Refs. [2-4], 
the impedance-field method has been widely used for noise modeling in the 
framework of drift-diffusion [2,4], hydrodynamic [5] and classical kinetic ap- 
proaches. In going from a classical to a quantum description of systems under 
conditions far from equilibrium these approaches have corresponding quantum 
analogues [6]. Therefore, the following problem arises in a natural way: is it 
possible to use the usual concepts and formalism of the impedance-field method 
for electronic noise modeling of a quantum system of charged carriers? In the 
framework of a quantum approach based on the Wigner function, the aim of 
this work is to present the main logic for constructing the impedance field of a 
one-dimentional structure and for determining the characteristics of the source 
of fluctuations. It should be stressed that both: the structure of the quantum 
equation for the Wigner function and the calculation of the average values of 
dynamical variables are analogues to those of the classical Boltzmann equation. 
Therefore, to appreciate similarities and differences between the quantum and 
classical cases, the most important points will be carried out in parallel for 
both approaches. 
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2    Main equations 

Let us consider a nondegenerate ensemble of N carriers (electrons) which in- 
teract with a thermostat, i.e. phonon system. By taking for simplicity a one- 
dimensional system in phase space (p,x), the equation for both the classical 
and quantum distribution function, f(p,x,t), can be written in the following 
form: 

d-t + vöJ. + F[f,U] = S[fl (1) 

Here v is the carrier group velocity and S[f] the collisional term assumed of 
the same form in both formalisms: 

S[f] = ~f(p, x,t)j w(p, p'; x)dp' + J w(p',p; x)f{p', x, t)dp' (2) 

where w{jp,p') is the probability per unit time for a carrier to be scattered from 
state p into state p' at point x. The main difference between the quantum and 
classical equations concerns the form of the field term, F[f, U], namely: 

Fc[f,U] = eE(x)^ (3a) 

Jdp'Jd, exp[ik^)l][Uix + |) _ u{x _ l)]Mft) (U) 

for the classical and quantum cases, respectively. Here eE(x) = ~dU(x)/dx is 
the electric force and U = Uu + Use the electrical potential associated with the 
built-in and self-consistent contributions. The long range Coulomb interaction 
is accounted for through the self-consistent potential determined by the Poisson 
equation: 

d2Usc e ,       f 
~äx^~= ~TZ:[N / /(p' *' Wp ~ NdW (4) = ~[N J f(p,x,t)dp- Nd(x)] 

where Nd(x) is the profile of the donor concentration, f(p, x, t) the distribu- 
tion function normalized to unity in accordance with Jjf dx fdpf(p,x,t) = 1, 
L being the structure length. Under constant-current operation mode, the 
electric field and, hence, the distribution of the self-consistent potential inside 
the system, satisfies the equation: 

8E f 
e€°~dt + eN J V^P'x>t)dP = J = const(x,t) (5) 

where J is the total current density flowing through the structure. 
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3    Impedance field formula 

The impedance field formalism is based on linear-response theory when it is 
implicitly supposed that fluctuations generated by the system are linear with 
respect to the system. (A more detailed discussion of this issue will be given in 
the next section.) Let the set of equations (1), (4), (5) has a stationary solution 
labelled by subindex s. The correspondent set of equations which describe the 
linear fluctuations takes the form: 

W + Vl^ + F[Sf'u>] = s[6f] - F[f"6u] (6) 

€€°   dt    +eN I vsf(p'x' ^dp = ~6ie^ ') (7) 

6Usc(x,t)= I   6E(x',t)dx' (8) 
Jo 

where 6jc(x,t) is the random perturbing force which describes fluctuations of 
the conduction current in the system. The solution of Eqs. (6)-(8) can be 
represented in the form: 

6E(x, i)=  I    dt' f   dx'G(t -1'; x, x')5jc(x', t') 
J-oo Jo 

(9) 

where G(t -t';x,x') is the Green-function of Eqs. (6)-(8), i.e. the transfer 
impedance in the time-domain representation which describes the evolution of 
the electric field fluctuation caused by the fluctuation Sjc = 6(x - x')S(t-t'). 
The fluctuations of the voltage between the structure terminals are obtained 
by integrating Eq. (9) over all the structure: 

SUte(t)= f    f    Vz(x',t-t')Sjc(x',t')dt'dx' (10) 
J0    J-co 

where 

Vz(x',t-t')= I   G(t-t';x,x')dx (11) 

is the impedance field describing additive contributions of conduction current 
fluctuations Sjc(x',t') at points x' to the total value of SUac(t)- 

From the standart calculation of the spectral density of a random quan- 
tity one obtains the following expression for the spectral density of voltage 
fluctuations between the strucure terminals: 

|ü2l=/   <fc' /   dx"VZ(x',U)VZ*(x",U)Sj(u,x',x") (12) 
Jo        Jo 
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f°° ^—— 
Sj(u,x',x") = 4        Sjc(t,x')6jc(t + T,x")cos(u;T)dT (13) 

Jo 
where VZ(x,u) is the Fourier transform of the impedance field given by Eq. 
(11), 6jc(t,x')6jc(t + T,X") is the autocorrelation function of conduction cur- 
rent fluctuations at points x' and x" averaged over the whole time domain. In 
terms of the formalism considered here, which is identical for both the classical 
and quantum cases, the source of fluctuations is only indicated formally, thus 
its microscopic expression should be provided by other means. A fundamental 
source of fluctuations for the system here considered is connected with the en- 
ergy exchange between the ensemble of carriers and the thermostat described 
by the collisional term in Eq. (1). Accordingly, without any additional as- 
sumption, the correlation characteristics of the fluctuations generated in the 
system must be completely determined by the structure of the collision term 
(Eq. (2)) and by the electron motion in the electric field given by the field 
term (Eqs. (3)). In the following section, we provide a logical base for such a 
description of fluctuations. 

4    Fluctuations in classical case 

The natural incorporation of fluctuations into a kinetic scheme is based on 
the ergodic hypothesis, when a stochastic Markov process continuous in time 
is constructed to describe the trajectory £(t) € (p, x) of a random walk of a 
trial particle in momentum and real spaces. The stochastic process must be 
constructed in such a way that, in the long-time limit, the time-average of an 
arbitrary function 6(p, x) along the trajectory £(t) should coincide with the 
average over the steady-state distribution function, namely: 

Km j I m*')W = j 8(p, x)f(p, x)dpdx (14) 

Such a process can be constructed (e.g. by the Monte Carlo procedure) if the 
time dependence of the conditional probability of the process, P(p, x, t\p0t x0, *0), 
describing the probability to find the trial particle at point (p, x) and time t 
under the condition that at time t0 the particle was in point (p0, xo), satisfies 
the time-dependent kinetic Eq. (1) and looses memory of its initial conditions 
at long times, i.e. 

lim   P(p,x,t\po,xQ,to) -f>{p,x) (15) 

The Green function G(t - t0;p,x\po,x0), formally obtained for the classical 
kinetic equation, satisfies the same equation as P(p,x,t\potxo,to) and, hence, 
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can be interpreted as the conditional probability of a certain process. From 
the above, the autocorrelation function of the fluctuations of 9(p, x) can be 
represented as: 

66(t + r,x)80{t,x') = N{[ dpjdp'6(j>, x)B{p', x')G(r;p, x\p', x')fs{p', x') 

- J' 0(p,x)fs(p,x)dp J' 0{p',x')f,{p',x')dp'} (16) 

Even if the determination of the correlation function can be performed in a 
natural way, some hidden problems remain. Let us come back to the condition 
of linearity. The approach described above has implicitly assumed the linear- 
ity of the kinetic Eq. (1) with respect to the distribution function. From a 
mathematical point of view one is legitimate to introduce the Green-function 
G(t — to;p, x\po, xo). When the self-consistent electric field is accounted for by 
Eqs. (4) or (5), Eq. (1) becomes nonlinear. As a consequence, for these equa- 
tions the Green-function concept looses its meaning. However, the concept of 
conditional probability remains valid even for nonlinear systems, as shown, for 
example, in simulations with the Monte Carlo procedure. This means, that 
the noise generated by a system is not necessarily linear with respect to the 
system. In other words, the amplitude of the noise at the output of the system 
is not directly proportional to the amplitude of its source. We conclude that, 
there appears the problem of nonlinear noise. Let us recall, that Eq. (9) im- 
plies linearity of fluctuations, i.e. the impedance field can describe fluctuations 
which are linear with respect to the system only. Therefore, when using the 
impedance field approach one should make an additional assumption on the 
noise source. The most natural one is that such a source is calculated from 
the kinetic equation with a frozen (i.e. nonfluctuating) electric field which 
coincides with the stationary value Es(x) obtained from the solution of the 
nonlinear task. 

5    Fluctuations in quantum case 

Within a quantum approach based on the Wigner-function formalism, an at- 
tempt to construct a logical scheme to determine the correlation function 
of fluctuations generated by the system meets serious difficulties at once. 
Even if the Wigner function can be normalized to unity in such a way that 
/o / fv(P> x> t)dxdp = 1, it cannot be interpreted as a probability since it is not 
positively defined everywhere. Nevertheless, from a formal point of view the 
approaches based on the classical and quantum kinetic equations are very simi- 
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lar. Therefore, let us discuss some analogies which follow from the classical ap- 
proach and seems to be useful for the determination of the correlation functions 
of quantum fluctuations. Since the Wigner function is not positively defined, 
an attempt to interpret the retarted Green function Gq(t — t';p,x,\p',x') of 
the Wigner-function equation as the conditional probability of some stochastic 
process fails. Nevertheless, let us suppose that Gq(t — t';p,x, \p',x') is known 
and we formally have calculated some correlation functions in accordance with 
Eq.- (16) where instead of the classical Green function and function 6(p, x) 
we have substituted their quantum analogues. The question arises: do these 
correlation functions describes fluctuations in the quantum case? Let us con- 
sider the interrelation between the quantum kinetic equation and its classical 
analogue. To this end, let us rewrite the quantum equation (1) in a form 
corresponding to the classical kinetic equation for the space nonhomogeneous 
case: 

^ + v
d^ + eE{x)dJ±-S[fq] = jy{p-p',x)fq{p',x,t)dp'        (17) 

where 

*(P-P',*) = §T 

/ *-rf«4^]P(.+|)-^-|ji-S^cp-rt 
The r.h.s. of Eq. (17) describes the difference in the dynamical motion asso- 
ciated with quantum and classical systems. By using the Green function of 
the classical form of the kinetic equation (17), Gc(t — t';p, x\p', x'), a solution 
of Eq. (17) for the quantum case with arbitrary initial condition at t = to, 
fq(p, x,to) = fo(p, x) can be written as: 

fq(p,x,t) = J dt' Jdp'dx'Gc(t-t';p,x\p',x') J*(p'-p",x')fq(p",x',t')dp" 

+ JdP'dx'Gc(t - t0;p, x\p', x')f0(p', x') (18) 

By applying to Eq. (18) an iteration procedure, a formal solution for the Green 
function of Eq. (17) can be written in the form 

Gq(t - t0;p,x\po, x0) = Mc-+q\p, x]Gc(t - t0;p, x\p0, x0) (19) 

Here Me-*q is a certain linear operator defined on a variety of classical trajec- 
tories described by the classical conditional probability. Let us consider some 



175 

consequences given by such a representation. As we can see, the transition 
from the classical to the quantum kinetic can be represented as a linear trans- 
formation Mc_4 from the space of classical dynamic variables (p, a;) to the 
corresponding of quantum variables. The stochastic part, which is responsible 
for the appearance of fluctuations in the system, is invariant for this transi- 
tion. Therefore, to introduce fluctuations in the quantum case one can entirely 
retain the classical scheme based on the ergodic hypotheses. Then, one con- 
structs a random Markov process with the conditional probability given by the 
Green-function of the classical analogue of the quantum system. In accordance 
with Eq. (14), it is also possible to perform a time-average along stochastic 
trajectories £(f), if one succeed to construct the transformation Mc^,q on these 
trajectories. For quantum kinetics, the function 0[£] which is averaged in Eqs. 
(14) must be replaced by #[£]Mc_j[£(f)]. This means that Eq. (16) holds in 
the quantum case too. 
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Current- and voltage-noise operations are the two limiting modes that can be 
employed when studying electronic noise in semiconductors. Due to their mutual 
link through the differential impedance of the sample they are usually thought 
to be perfectly equivalent. We report some considerations pointing out the 
main differences, advantages and disadvantages, critical situations and bottlenecks 
emerging from a unaware use of these operation modes. 

1    Introduction 

Current and voltage operation modes represent two mutually exclusive ways to 
detect macroscopically electronic noise. The former is realized when a constant 
voltage is applied to the device and fluctuations of the total current as measured 
in the outside circuit are detected. In this case the quantity of interest is the 
spectral density of current fluctuation Si(f). The latter is realized when a 
constant total-current is forced to flow in the device and voltage fluctuations 
are measured at the terminals of the device. In this case the quantity of interest 
is the spectral density of voltage fluctuations Su(f)- The two spectral densities 
are related as: 

where Z(f) and Y(/) are respectively the differential impedance and admittance. 
Using the generalized Nyquist relation, the two spectral densities can be written 
as: 

Sj(f)=4kBTn(f)Re[Y(f)] (2) 

and 
Su(f) = 4kBTn(f)Re[Z(f)] (3) 
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where kB is the Boltzmann's constant and T„(/) the noise temperature. Equat- 
ion (1) states that it is possible to go from one representation to the other 
through the knowledge of the small-signal response of the system. Therefore, 
it would seem that the two operation modes are perfectly equivalent. In 
spite of these simple considerations, the actual situation presents some hidden 
difficulties that we aim to point out in this paper. 
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Figure 1: Spectral densities of current 
and voltage fluctuations at equilibrium 
for a homogeneous n-Si sample at T = 
300 K with n = 1017 cm'3 and /i = 

1320 cm2V/s. 

Figure 2: Spectral density of voltage 
fluctuations for a n+ nn+ GaAs diode with 
1.25-7.5-1.25 pm length and n = 10 
and n+ = 2 x 1016 cm'3 doping levels 
obtained from a hydrodynamic simulation 
for the reported applied voltages at T = 

300 K. 

2    Are the noise spectra similar for both operation modes? 

Let us consider a homogeneous semiconductor under ohmic conditions. In this 
simple situation the differential impedance can be calculated analytically and 

it is given by: 
l + i[uTm{l-W^)-UTd] 

Z(») = R (1-^2)2+^ W 

where R is the ohmic resistance, rm the momentum relaxation time associated 
with the time evolution of the mobility, rd the dielectric relaxation time and 
Tp = JTWTA the plasma time. A trivial but not sufficiently stressed consequence 
of this relation is that, due to Eq. (1), the current and voltage spectral 
densities exhibit completely different frequency behaviors, as shown in Fig. 



178 

1 for a homogeneous n-Si sample at equilibrium. As a matter of fact, while 
the current fluctuations are associated with the momentum relaxation time, 
the voltage fluctuations are associated with the dielectric and the plasma time.' 
Furthermore, when comparing two systems a common question which arises 
is: which of the systems is the most noisy? We believe that the answer to 
this question has no meaning unless the operation conditions are not precisely 
specified. These conditions usually depend on the specific application aimed by 
the system. An example of this situation is shown by the results obtained from 
hydrodynamic calculations (lines) in Figs. 2 and 3 which report the spectral 
densities of voltage and current fluctuations for a n+nn+ GaAs diode with 
doping levels of n = 1015 cm~3 and n+ = 2 x 1016 cm~3 and cathode, n-region 
and anode lengths, respectively of 1.25, 7.5 and 1.25 /zm1. At low frequencies 
Su{f) is found to increase significantly with voltage while no significant change 
is observed for the corresponding S/(/). 

3    Do both operations enable a spatial analysis of the noise? 

When studying the noise in a inhomogeneous structure one of the most inter- 
esting point is to spatially locate the origin of the noise in the structure. If 
current-noise operation is used such a piece of information is lost since the only 
quantity which fluctuates is the total current flowing in the outside circuit. On 
the other hand, the voltage-noise operation is able to provide a spatial analysis 
of electronic noise since voltage fluctuations can be evaluated not only between 
the terminals of the device but also between two arbitrary points inside the 
structure thus providing a spatial map of the noise of the impedance-field 
formula. This is illustrated in Fig. 4 which reports the contribution of each 
point of an n+nn+ diode to the net noise, s(x, 0) and the local noise of the 
structure originated from noise sources at all positions dSu(x,0)/dx. In this 
latter case a comparison between Monte Carlo (points) and hydrodynamic 
(dashed line) calculations proves the consistency of the curve reported. 

4    What happens under strongly non-equilibrium conditions? 

Both approaches are in principle equivalent for a description of electronic noise 
of a stable system at thermal equilibrium or even far from it, but under unstable 
conditions the situation can change significantly. Depending on the operation 
mode the system can be in different physical states2. When a constant current 
is forced to flow through the structure, the diode remains stable and the voltage 
drop between the terminals is imposed by the current.  In contrast, under a 
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constant voltage f/0 applied to the diode there exist regions of values of UQ 

where periodic oscillations of the conduction current appear. 
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Figure 3: Spectral density of current 
fluctuations for the same structure of 
Fig. 2 obtained from a hydrodynamic 
simulation for the reported applied 
voltages (lines). Symbols refer to the 

results of a Monte Carlo simulation. 

Figure     4: Space      contributions 
to the voltage spectral density and space 
distribution of the local voltage noise 
calculated by HD and MC techniques at 
low frequencies for a submicron n+nn+ 

Si diode with 0.1-0.4-0.1 fim length and 
n = 2 x 101S and n+ = 5 x 1017 cm~z 

doping levels biased at U = 1.5 V. 

When a pronounced near-oscillatory macroscopic behavior is exhibited, 
the current spectral density tends to a S-like behavior and in this case it is 
the spectral width of a line which characterizes the coherence of the periodical 
oscillations in the system3. 

Furthermore, we have observed the appearance of an additional source of 
noise near the threshold voltage when the system goes from the stationary 
state independent of time into the stable state periodical in time. Due to 
this reason one can observe a strong enhancement of the low-frequency noise 
under voltages slightly below the threshold. This is illustrated by symbols in 
Fig. 3 which have been calculated using a MC simulation under current-noise 
operation. The absence at low frequencies of this extra noise in the HD results 
(perhaps due to the presence of partition noise) remains an unsolved problem 
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5    Are both operations "computationally" equivalent? 

Finally, we want to comment a technical point concerning the theoretical 
calculation of noise spectra. To this end, nowadays several numerical techniques 
are available; among them the most popular are microscopic methods such as 
Monte Carlo, Scattered Packet, and Cellular Automata or phenomenological 
methods such as hydrodynamic and drift-diffusion methods. In the framework 
of microscopic methods it has been recently demonstrated that both operation 
modes can be treated at the same level with a comparable computational 
burden. On the other hand, when using phenomenological methods, which do 
not contain directly in themselves any information on fluctuations, only the 
well-known transfer impedance method is able to provide a technique for the 
calculation of the noise. This method is developed only under the voltage- 
noise operation and the information on the local source of noise must be taken 
elsewhere (actually, phenomenological methods are able to compute only the 
influence of the local source of noise on the device terminals, i.e. the impedance 
field). 
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The problem of defining the noise-temperature spectrum Tn(f) of two-terminal 
semiconductor devices under far-from-equilibrium conditions is considered. Main 
attention is paid to the constraints of system stability and stationarity. Relevant 
features emerging when relaxing the above constraints are illustrated by numerical 
calculations for GaAs n+nn+ structures biased at increasing applied voltages. 

1    Problem formulation 

The noise-temperature concept is usually introduced to describe small fluctu- 
ations over stationary values of device characteristics [1,2] and, for the case of 
two-terminal structures, this has been widely investigated both experimentally 
[3-6] and theoretically [1-4,7-9]. Its knowledge is of general help to determine 
the equivalent sources of noise through Norton and Thevenin generators cor- 
responding to constant-voltage and constant-current operations, respectively. 
The definition of the noise temperature is based on linear-response theory 
when the constraint of a stationary stable-state is rigorously defined. How- 
ever, in both cases of experiments as well as of theoretical simulations, such 
as Monte Carlo (MC) procedures, a rigorous mathematical definition of a sta- 
tionary stable-state cannot be used and it is usually replaced by the following 
phenomenological one. Since any measured or simulated quantity fluctuates, 
a stationarity of the system is understood as invariance in time (during a cer- 
tain time interval r) of some average physical-quantity, e.g. Q(t). The noise 
is thus associated with the fluctuations around the stationary value, AQ(t). 
A simplified mathematical formulation of such a phenomenological procedure 
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can be represented as follows: 

rt+r/2 

AQ(t) = Q(t)~l f   T   W)dt' (1) 
T Jt-T/2 

Near thermodynamic equilibrium the mathematical and phenomenological def- 
initions of stationarity can be considered as equivalent for frequencies / >> 
1/r. In this case, by neglecting quantum effects associated with black-body 
radiation [10], the noise-temperature for a two-terminal device, Tn(f), satisfies 
a generalized Nyquist relation of two equivalent forms: 

T m _      Su(f) Sj(f) 
nU)     4kBRe[Z(f)]~ 4kBRe[Y(f)} W 

where Su(f) and S/(/) are the spectral densities of voltage and current fluc- 
tuations of the device, Z(f) and Y(f) are its small-signal impedance and ad- 
mittance, respectively, kB is the Boltzmann constant. The situation can be 
considerably complicated under conditions very-far from thermodynamic equi- 
librium. A significant example is a n+nn+ structure (diode) of GaAs when 
strong carrier-heating occurs because of an external voltage applied to the 
diode, especially when an N-shape of the current-voltage characteristic and 
associated Gunn-instabilities take place. Under constant-current operation, a 
Gunn-diode remains stable (i.e. it does not go to a generation regime) for any 
voltage applied between its terminals. In this case, the noise temperature defi- 
nition through Su(f) given by Eq. (2) is valid outside the amplification band, 
i.e. where Re[Z(f)] > 0. Inside the amplification band, where Re[Z(f)] < 0, 
one can introduce the noise-measure, M(f), a dimensionless quantity defined 
as [11,12]: 

M(f) = ^ill  /,> W}     UBT0{-Re[Z(f)]} W 
where T0 is the lattice temperature. The above quantity gives the intrinsic 
noise of an amplifyer with a shorted input. By assuming that the usual inter- 
relations hold, namely: 

Su(f) = SI(f)\Z(f)f,    SI(f)=Su(f)\Y(f)\\    Z(f)Y(f) = l      (4) 

one can expect to obtain the same results under const ant-voltage operation 
too. However, in this latter case the diode can go into a generation regime, 
when a transition into another physical-state, periodically oscillating in time, 
takes place. Moreover, from one side the transition into the generation regime 
occurs usually sharply at some threshold voltage. (Such a transition can be eas- 
ily controlled both theoretically and experimentally.) From another side, there 
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exists a certain pre-generation region of applied voltages below the threshold 
value. Here, the diode is still stable, in accordance with the phenomenolog- 
ical definition of stationarity, but it already "feels" the possibility to settle 
in another physical-state and, indeed, some "virtual transition" between the 
two states occurs. For example, in the time analysis of the current such a 
transition is detected as spontaneous appearance of a series of quasi-harmonic 
oscillations which spontaneously damp. Such a situation can be monitored by 
the noise-temperature spectrum. It means, that the two definitions of Tn (/) 
through Su{f) and 5/(/) given by Eq. (2) can become nonequivalent and, for 
a generation regime, the concept of noise needs an essential revision. There- 
fore, an open problem arises: does the noise temperature and its spectrum 
remain a "good" physical quantity under these conditions? 

2    Results and discussion 

To better illustrate the open problem formulated above, we report and discuss 
some results of interest obtained for a n+nn+ structure of GaAs. Figure 1 
shows Tn(f) at increasing voltages for a 0.5 - 7.5 - 0.5 ftm GaAs diode with 
doping concentration n = 1015 and n+ = 2 x 1016 cm'3 calculated under 
constant current operation with a hydrodynamic (HD) approach based on the 
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Figure 1: Noise temperature calculated for 
a GaAs diode by HD (curves 1 to 7 at 
U = 0.9,1.9, 2.2, 2.6, 2.85, 2.94, 3.05 V) 
and MC-HD (curve 8 at U = 3.0 V) ap- 
proaches under constant current and con- 

stant voltage operations, respectively. 

Figure 2: Voltage dependence of the noise 
temperature at / = 10 GHz for the GaAs 
diode of Fig. 1. Curves 1 and 2 refer 
to theory and experiment under constant 
voltage operation. Curve 3 is calculated 

under constant current operation. 
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impedance-field formalism [13]. It should be underlined that, apart from the 
generation band centered at / = 25 GHz where T„(/) takes negative values 
not reported in the figure, all positive values of Tn (/) in Fig. 1 correspond 
to the maximum noise power which can be measured by an external detector. 
Thus, the noise temperature defined by Eq. (2) for positive values of Re[Z(f)] 
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Figure 3: Spectral density of current fluc- 
tuations calculated at TQ — 300 K for 
a n+nn+ GaAs diode of Fig. 1 by MC 
method under constant voltage operation. 

Figure 4: The same as in Fig.  3 but for 
a diode with 5-fold reduced concentration 

in n-region. 

has a rigorous physical meaning. For comparison, curve 8 in Fig. 1 shows the 
noise temperature spectrum for the same diode calculated under constant volt- 
age operation with a mixed MC-HD scheme, when MC and HD approaches are 
used separately to calculate Sj(f) and Re[Y(f)], respectively [14]. The general 
behavior of T„ (/) is similar to that obtained under constant current operation. 
However, a significan difference is observed in the low-frequency range, where 
the value of Tn(f) is much higher (over a factor of 5) than the correspon- 
dent calculated under constant-current operation. Moreover, when the applied 
voltage approaches the threshold value Uth = 3.1 V this difference tends to 
be further amplified. For voltages above this threshold value, Tn{f) cannot be 
defined in the whole frequency range under const ant-volt age operation due to 
the onset of self-generation at the transit-time frequency / = 25 GHz. Any- 
way, for voltages below Uth the low-frequency noise temperature remains a 
good physical quantity and can be directly measured. This is illustrated in 
Fig. 2 where T„ at a frequency / = 10 GHz is reported as a function of the 
applied voltage. Curve 1 is calculated under constant-voltage operation with 
a mixed MC-HD scheme, curve 2 corresponds to experimental measurements 
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performed on a similar diode [6], curve 3 reports the results of HD calcula- 
tions carried out under constant-current operation. As can be seen from Fig. 
2, the MC calculations and the experimental results obtained within similar 
conditions are in good agreement. We remark that the results obtained un- 
der constant-current operation (curve 3) exhibit systematic lower values of Tn 

when compared with those obtained under constant-voltage operation (curve 
1), at U = 3 V the value of curve 3 being four times less than that of curve 
1. We believe that this difference reflects the appearance of an extra-source of 
noise detectable under constant-voltage operation in the pre-threshold region 
of applied voltages. This extra-noise should be considered as a precursor signal 
that the diode is approaching the generation regime. Indeed, as a counterproof 
of this conjecture we notice its absence under constant-current operation when 
the diode remains always stable. The fact that an extra-noise is the precursor 
of a system instability is also illustrated in Figs. 3 and 4. Here, the spectral 
density of current fluctuations calculated directly with the MC approach is 
reported in Fig. 3 for the same diode of previous figures and in Fig. 4 for a 
similar diode but with a concentration of the n-region reduced by a factor of 5. 
In this way we have been able to avoid the self-generation for applied voltages 
above the threshold value under constant-voltage operation.  For each diode 
Si(f,U) is normalized to its value at thermodynamic equilibrium and zero 
frequency 5/(0,0). As follows by comparing Figs. 3 and 4, the extra-noise at 
low-frequency is entirely absent in the spectral density of the stable diode for 
both values of voltage near and above the threshold value for Gunn-effect. It 
should be stressed that, with a proper choice of the external resonant-circuit, 
also the diode of Fig.   4 can operate as an active device for U > 3 V and 
generate microwave power.   To appreciate the physical implications of the 
extra-noise we recall that, by definition, the noise temperature is associated 
with the power extracted at the matched load and which can be measured in 
both operation modes. From an experimental point of view it means that the 
existance of the extra-noise can be easily verified. From a theoretical point of 
view it means that the two forms of the generalized Nyquist relation in Eqs. 
(2) are no longer equivalent in the pre-threshold voltage region (note, that 
the microscopic nature of this noise source is of no importance in this case). 
Furthermore, the inter-relations given by Eqs.   (4) are obtained from linear- 
response theory based on the concept of a stationary state. On the one side, 
violation of these inter-relations can be connected with violation of stationary 
conditions in one of the operation modes (e.g. constant-voltage operation for 
Gunn-diodes).   On the other side, it is implicitly supposed that the output 
noise results from a linear response, however, in this case one deals with a 
system operating under nonlinear response, and it is impossible to determine, 
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either experimentally or from numerical simulation, whether the noise is linear 
or not. In any case, by considering that: 
(i) both in practice and numerical simulations through stochastic methods 
measured and calculated quantities fluctuate in time; 
(ii) any experiment or simulation cannot take an infinite time but is always 
limited within a well defined time-interval; 
there appear here the following unsolved problems which are common to all 
noise subjects: 
(i) what shall we call as stationary part of a process (noise can be introduced 
after having provided an answer to this question only) ? 
(ii) is it always possible to separate the stationary part of a process and the 
noise ? 
(iii) is it possible to classify a noise as a result of linear or nonlinear response? 
In our opinion, a solution of these problems would allow to consider some 
unsolved problems as solved ones and vice versa. 
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We present a theoretical analysis, performed by means of Monte Carlo and hydro- 
dynamic calculations, on the applicability of the diffusion coefficient to characterize the 
local diffusion noise sources in submicron semiconductor devices. To this end the noise 
behaviour of a GaAs n*nn* structure is studied. 

1    Introduction 

Traditional techniques dealing with the study of noise in electronic devices 
usually assume that there is no correlation between diffusion noise sources at 
two different positions.1 However, it has been theoretically demonstrated that 
the velocity fluctuations remain strongly correlated over lengths shorter than the 
distance traveled by a carrier between two scattering events.2-3 This means that 
while the diffusion coefficient (DC) is appropriate to describe the local noise 
sources in long devices (as compared with the correlation length), in the case of 
short and/or non-homogenous devices some doubts about its applicability 
appear, since the spatial correlation (SC) between local noise sources should be 
taken into account. By means of Monte Carlo (MC) calculations, the existence 
of SCs in GaAs has been confirmed4 and the influence of these correlations on 
the diffusion noise in submicron devices has been analyzed for the case of an 
n+nn+ structure with an n region of 0.6 microns.5 It has been found that the SCs 
do not correspond to those found in the homogenous case (specially far from 
equilibrium) and, consequently, the addition of all these correlations provides a 
value substantially different from the DC corresponding to the local electric 
field (or to the local mean energy). This result leads to conclude that the DC 
does not seem to be the good magnitude to characterize the local noise sources 
in short non-homogenous devices, and suggests that the noise should be 
analyzed by taking into account all the individual cross-correlations. 

The objective of this work is to check this conjecture. With this aim, the 
spectral density of voltage fluctuations between the terminals of a GaAs n+nn+ 
structure has been calculated by using the impedance field (IF) method in the 
framework of a closed hydrodynamic (HD) approach.6 Here, the noise sources 
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are assumed to be uncorrelated and they are characterized by the DC 
corresponding to the local mean energy. The same calculation has been 
performed by using the MC technique, where all the SCs are naturally 
incorporated in the simulation. 

2    Theoretical analysis 

Within the IF formalism, the spectral density of voltage fluctuations between the 
terminals of a one-dimensional device of length L under constant-current 
operation is given by: 

Su((o) = ^ j\z(x,(ü)S,(x,x' ,co)VzV ,m)dxdx' (1) 

where VZ(*,co) is the local IF and S,(x,x',(a) is the noise source term associated 
to the positions x and x'. Usually it is assumed that the noise sources at two 
different points are uncorrelated and consequently, in the case of diffusion 
noise, S,(xX,a>) becomes: 

S,(x,x' ,co) = Aq2n(x)Sv(x,(ü)8(x -x') = 4Aq2n(x)D(x,(ü)5(x - x') (2) 

where A is the cross-sectional area of the device, q is the electron charge, n(x) 
the local carrier concentration and Sr(x,G>)=4D(x,(a) the local spectral density of 
velocity fluctuations, with D(x,m) the local DC, used to characterize the local 
noise source. With Eq. 2, S0(a) becomes: 

Mm) = Aq2^n(xpZ(x,(üfSv(x,<o)dx (3) 

This final expression assumes that all the noise source associated to the 
position x is localized at x (uncorrelated with other positions) and it is characte- 
rized by the local DC. With the MC simulation, the calculation of S^co)7 is 
made without introducing any assumption about the noise sources, since it 
intrinsically contains the microscopic fluctuations of the involved magnitudes. 
The comparison between the MC and IF-HD calculations of S^m) allows to 
determine if the use of the DC to characterize the local noise sources is correct. 

The evaluation of the SCs between the noise sources is also possible with 
the MC technique. The SCs are studied by decomposing the noise source 
related to a given cell n, represented by a magnitude £>„(©), into the 
contributions coming from the correlations with near cells m, Dnm"(co),4-5 so that: 

D„(co) = Xo«m(w) (4) 
m 

When the field and carrier distributions are uniform over distances longer 
than the correlation length, Dfl(co) corresponds to the bulk longitudinal DC. 
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3    Results 
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Numerical simulations have been performed for a GaAs n*nn+ diode with 
the following parameters: doping levels of 1017 cm"3 in the n+ regions and 
5xl015 cm3 in the n region; and cathode, n region and anode lengths of 0.3, 0.6 
and 0.4 |im respectively. Abrupt homojunctions are assumed. The details of 
the MC and HD calculations can be found elsewhere.5-6 The input parameters 
of the HD model were calculated from single-particle MC simulations. 

In Fig. 1 we compare the values 
of the DC corresponding to the local 
electric field and to the local mean 
energy with the values obtained for 
D„(0) by adding the contributions 
from the cross-correlations according 
to Eq. 4. The comparison is perfor- 
med in the n region of the n+nn+ 

structure, which constitutes the main 
source of voltage noise, and for three 
different biasings. At equilibrium 
[Fig. 1(a)] the three sets of values 
show a good agreement due to the 
uniformity of the carrier velocity and 
energy inside the structure. In the 
case of a bias voltage of 0.15 V [Fig. 
1(b)] the agreement is found only in 
the central part of the n region, where 
the carriers reach the steady state 
corresponding to the electric field. 
The effect of the non-stationary 
motion of the electrons is higher as 
the applied voltage is increased. For 
0.6 V the steady state is not reached 
at any position inside the n region and 
the electric field is strongly non- 
uniform. All these factors increase 
the disagreement between Dn(Q) and 
the local DC (field- or energy- 
dependent) [Fig. 1(c)], specially in 
the near-anode region. 

The previous results indicate that 
in the case of short non-homogenous 

V=0.15V 

Position (pm) 
Figure 1: Low-frequency value of the 
diffusion coefficient corresponding to (•) 
addition of cross-correlations, (A) local mean 
energy, (■) local electric field, as a function 
of the position in the n region of the n+nn+ 

structure for three applied voltages: (a) 0.0 
V, (b) 0.15 V and (c) 0.6 V. 
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equilibrium, the individual cross- 
correlations should be taken into 
account to analyze the noise and, 
therefore, the DC is not appro- 
priate to characterize the local 
noise sources. To verify this con- 
clusion, MC and IF-HD calcu- 
lations of Sj/co) in the GaAs 
n+nn* structure have been perfor- 
med. D(x,m) corresponding to the 
local mean energy, and calculated 
from MC simulations, is used in 
the noise source term of Eq. 2 for 
the IF evaluation of Sj/to). The 
comparison between MC and HD 
calculations for the three analy- 

zed voltages is shown in Fig. 2. From the previous conjecture both results are 
expected to be rather different, however they are found to be reasonably similar. 
At equilibrium a very good agreement is found, which seems logical in view of 
the favourable comparison observed in Fig. 1(a) for the possible estimators of 
the noise sources. For 0.15 V a significant (but minor) difference appears at the 
lowest frequencies. And for 0.6 V, when the most important disagreement 
could be predicted from the values shown Fig. 1(c), again both results are quite 
similar except in the range 100-300 GHz. For frequencies above 500 GHz the 
agreement found between both calculations is excellent for the three voltages. 

Figure 2: Frequency dependence of the spectral 
density of voltage fluctuations between the 
terminals of the n*nn* structure for several 
voltages, calculated by Monte Carlo (MC) and 
hydrodynamic (HD) approaches. 

4    Problem discussion 

Which is the origin of this un- 
expected agreement? Does this 
result mean that the DC remains 
the good magnitude to describe 
the local noise sources in submi- 
cron non-homogeneous devices? 
Is it due to the fact that the main 
influence of SCs takes place in 
the region of the device with the 
lowest contribution to the noise at 
the terminals? To illustrate this 
last possibility, Fig. 3 shows the 

Position (urn) 
Figure 3: Profile of the impedance field squared at 
low-frequency along the n*nn* structure for seve- 
ral voltages calculated by hydrodynamic approach. 
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profile of the IF squared at low frequency, IVZ(*,0)l2, along the n+nn+ structure. 
Following Eq. 3, this is the magnitude which weights the local noise sources to 
provide the contribution of each position to the total voltage noise at the 
terminals. For the three voltages it can be observed that IVZ(;c,0)l2 takes the 
lowest values in the region where the most important differences between D„(0) 
and the local energy-dependent DC appear (Fig. 1), thus minimizing the 
influence of the SCs on the noise at the terminals. This is specially manifest for 
a biasing of 0.6 V, case in which IVZ(JC,0)I

2
 is maximum in the near-cathode 

region, while the influence of the SCs is very important in the near-anode 
region. 

5    Conclusions 

Trying to prove the inadequacy of the DC to characterize local noise sources in 
submicron devices, we have performed a theoretical MC and IF-HD analysis of 
voltage noise in a submicron GaAs n+nn+ structure. Although the existence and 
influence of SCs in this structure are demonstrated, the results of the IF-HD 
approach using the local DC in the noise source term are in good agreement 
with the MC results. This fact would lead to conclude that the SCs can be 
ignored and that the DC remains the good magnitude for the noise analysis. 
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In this paper, & correlation between base and collector currents of heterojunction 
bipolar transistors is studied versus bias and temperature. 

1    Noise Measurement Procedure and Devices 

Noise measurements were performed on heterojunction bipolar transistors (HBTs) 
in the 10 Hz - 100 kHz frequency range. Transistors are mounted in a common- 
emitter configuration. Voltage noise is measured simultaneously on the base 
and collector (cf. Fig. 1) of the device across bias resistances. The bias resist- 
ance on the base is always chosen with a much higher value than the dynamic 
input resistance of the intrinsic transistor r,j. Noise signals are fed into low- 
noise amplifiers and then into a spectral analyser. Through a FFT algorithm, 
Svi, Sve : voltage spectral densities associated to the base and collector; as 
well as Svtvc : the cross-spectral density are measured. 

Devices studied were non-self-aligned AlGaAs/GaAs heterojunction bi- 
polar transistors (cf. Fig. 2) with different emitter surfaces. Base is C-doped 
with a doping of 4 x 1019 cm-3. 

2    Theoretical Expressions of Spectra 

All spectral densities of all transistors exhibit excess noise composed of 1/f noise 
and generation-recombination (g-r) components *■ 2. The white noise is not 
reached in the frequency range used. Using a classical small-signal equivalent 
circuit, theoretical expressions of Svj, Sve

3 and Sv\,va have been established. 
Relations take into account the spectral densities Sib, Sic associated to base 
and collector current noise sources and the cross-correlation spectral density 
St'jtc- The hypothesis has been made that noise current sources t'j and ie are 
partly correlated as previously suggested by Van der Ziel4. In the case where 
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Rp » r<j, expressions are simplified and for the excess noise become : 

/      Svh      \ (       Sib       \ 
Sve = M Sic (1) 

\RP{Svhve}J \RP{Sibic}J 

(r„ + rehfe)2 r\ 2(r„ + rehfe)re 

(RLhfe)2 R\ 2Rlhfe 
-RL(^ + rehfe)hfe    -reRL    -2RLrehfe - RLr„ t 

IP{Svtve} = -RLrr IP{Shie} (2) 

The coherence function Tvtve is defined by : 

\SVbVc\2 /ON TvhVe=s^rc 
(3) 

If TvtVc = 0, noise sources are entirely uncorrelated 
If TvtVe = 1, noise sources are entirely correlated 
If 0 < Tvi,vc < 1, noise sources are partly correlated 

3 Measurement of the Coherence Function and Temperature Study 

An example of TviVc is given for HBTs with emitter surfaces of Si = 28.5/*m2 

and S2 = 10/im2 on Fig. 3 and 4 respectively. For HBT with Si, rt>jve evolves 
between 0.9 and 1. The curve decreases regularly in the whole frequency range. 
This is the case for all HBTs studied with an emitter-surface over 10 /zm2. This 
phenomenon is also observed on classical silicon bipolar transistors. For HBT 
<Sr2, TvbVe exhibits values comprised between 0.65 and 1. For this particular 
transistor, one can observe a minimum on the curves for a frequency fm around 
800 Hz. 

The influence of temperature on this minimum has also been studied. To 
the frequency /m, a time constant is associated by r = l/2irfm. An Arrhenius 
plot of In TT

2
 versus 1000/T could be drawn (Fig. 5). Slope of the line 

corresponds to an activation energy with a mean value of 180 meV. Could 
traps with this energy be responsible for the minimum of r«jue? 

4 Coherence function associated to currents 

When TujUc approaches 1, we have shown the term associated to Sit to be 
dominant5 in the expressions oiSvt,Sve, Svtvc in the frequency and bias range 
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used. When values of TviVe diminish, the contribution of terms associated to 
Sic and 5tjte have to be considered. Using relations (1) and (2) we were able 
to calculate from the experimental results Sib, Sie, Sibie and Tibie for different 
bias currents. In the same way as for TvbVC) when rtjtc is equal to 1 there is 
a total correlation between noise sources, in this case base and collector noise 
sources. An example of rtVe is given on Fig. 6 for HBT with S2 at room 
temperature. Values of rijtc increase with bias. Also a maximum occurs at 
different frequencies /M when bias evolves: 320 Hz < JM < 900 Hz when 
10 nA<Ib< 80 fiA. 

5 Generation-Recombination Noise versus Temperature 

To study some possible generation-recombination (g-r) process occurring at 
these frequencies, measurements have been performed versus temperature on 
HBT 52- Spectral densities Sib, Sic and Sibic were extracted. An example of 
|Sijte|, and of Sib and Sic at different temperatures is given on Fig. 7 and 8 
respectively. On these figures, one can note that whatever the temperature the 
1/f noise is clearly observed on Sib only. Fig. 7 and 8 also show the presence of 
g-r components thermally activated on all spectra. The plateau increases when 
temperature decreases and cut-off frequencies shift towards lower values. Also, 
when temperature is lowered, more components appear. Finally, for a given 
temperature, curves Sib and Sic can be superimposed in the g-r frequency 
range. 

6 Discussion-Conclusion 

A possible explanation of the partial correlation observed between Sib and Sic 

is to consider a common current component between the base and collector cur- 
rent. This component would be linked to a recombination current depending 
on temperature through thermally activated traps. By considering the evol- 
ution of spectra with bias, these traps would be located in the base-collector 
space-charge-region 2> 6. From a realistic point of view, this current component 
should not be a major one. Thus we are surprised by the high values meas- 
ured for rijte. For example, at room temperature, rijte ~ 0.95 for 76 = 80/xA 
at / = 1 kHz. At this frequency, the value of rt'jte induces a nearly- total 
correlation between tj and ic. To our knowledge this phenomenon has never 
been put forward in the literature. This effect could be due to an increase in 
leakage current when scaling-down devices. All spectral densities measured on 
the transistors have shown excess noise which can be attributed to several noise 



197 

sources. Therefore is it reasonable to think that correlation measurements may 
give more indications on the physical mechanisms producing this excess noise? 
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ISSUES IN MODELLING THE HIGH FREQUENCY NOISE PARAME- 
TERS OF POLYSILICON EMITTER BIPOLAR TRANSISTORS 

M. J. DEEN 
School of Engineering Science, Simon Fräser University 

Burnaby, British Columbia, Canada V5A 1S6 

Analytical modelling of the high frequency noise parameters - minimum noise fig- 
ure (NFMIN), noise resistance (R^), and optimal source resistance (Rs.opr) and 

reactance (Xg OPT)> 
of polysilicon emitter bipolar transistors presents many chal- 

lenges. This paper presents possible solutions for some of these issues, and also 
discusses some of the outstanding problems. In particular, we discuss how the four 
noise parameters are affected by the bonding pads. Finally, we present some of the 
outstanding issues that must be solved for improved noise modelling of devices 
with smaller emitter areas and as a function of higher current levels and varying 
temperatures. 

Introduction 

Modern bipolar and BiCMOS high speed circuits now widely use polysilicon 
emitter bipolar junction transistors (PE-BJTs) because of the compatibility of these 
transistors with the increasingly important self-aligned fabrication technologies. 
High unity gain frequencies (fT's) coupled with high current gains, and high collec- 
tor-emitter breakdown voltages (BVCEQ) make these PE-BJTs suitable candidates 
for analog applications; but high frequency analog circuits are very sensitive to the 
noise of the devices. However, accurate noise modelling must take into account all 
noise sources and electrical elements in the equivalent circuit model, including 
those from the pads, the base-collector capacitance, the collector substrate junction 
capacitance, current dependence of the base and emitter resistances etc. 

In this paper, we present results illustrating the importance of the pad effects 
on the device noise and new expressions of the noise parameters that includes the 
emitter resistance. We also discuss some of the issues and problems related to better 
modelling of the high frequency noise parameters. Hopefully, this paper will stimu- 
late researchers to investigate these issues so that improved noise modelling of the 
PE-BJTs as a function of both device and operating parameters will soon be real- 
ized. 

Experiments 

The transistors used in these studies were fabricated in a 0.8 \\.m BiCMOS 
technology and they had emitter areas ranging from 3.2 \im2 to 144 \im2 (five sets), 
with the emitter width being 0.8 \im. Noise figures were measured and modelled for 
frequencies from 0.5 GHz to 5 GHz, and for collector current densities from 0.016 
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mA/(J.m2 to 0.31 mAJ\im2for all devices. In addition, the high frequency s-parame- 
ters of both transistors and dummy devices were measured using an on-wafer 
microwave test system. From the s-parameters, the unity-gain frequency (fT), base 
resistance (RB) and emitter (RE) resistance were determined. Measurements were 
made to determine the base-emitter junction capacitance (C,j) and d.c. current gain 
(ß). The biasing range was chosen to cover the realistic circuit operating conditions, 
and the collector bias was kept constant at 5 V for all measurements. For the current 
levels used, ß was between 70 and 100, and fT between 8 and 10 GHz. Finally, 
devices with two sizes of pads 80x80 p.m2 to 80x50 urn2 were used in to investigate 
the effects of bonding pads on the device noise parameters. 

Results and Discussions 

To investigate the effects of varying emitter areas on the high frequency noise, 
the 5 sets of devices with different emitter areas were studied over the frequency 
range from 0.5 to 5 GHz. These BJTs had nominally designed emitter areas of 3.2, 
12.8, 48, 96 and 144 |im2 and the biasing base current was varied from 0.031 mA/ 
Jim2 to 0.31 mA/ |im2 (5 values for all devices). The intrinsic device noise figure 
(NF) was modelled with a simplified T-equivalent circuit originally described in [2] 
and expanded in [2-7], from which the following expression was obtained. 

RB + RF 

VUi2  J 
' (R„ + RB + R p+r)2 + x£ 

2reRS 

a„ 
j^2 ■ 2^ • <<«W   - 2*CJEXS + (coC^)2 • (Rs + RB + RE) 2} . 

From this NF expression, NFMIN is then calculated to be 

NF MIN 

a„ 

l«| 
a„ 

M«|' 
;-! + • ,2ffl2c^(V*E+'Wr>' 

with RS,OPT> XS,OPT 
an(l RN defined as 

RS,OPT=  (Äß + /f£)   -XloPT+re(2(RB + RE)+re> 

XS, OPT ~ aC- 
■ r2.[,_.!0       2c2r2) 
71 e   {     \a\2 n e) 

!_    0       2c2r2 
|a|2 K e 

i-l 
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*N = 

a, 0 

|a|2 rTÖ-1 + ui2»' 
ic2r2 »2 4- y2 

5, O/T        5, OPTl 

In these three expressions, re is the emitter dynamic resistance, a is the usual fre- 
quency dependent current gain with a d.c. value of a0, Cn is the base-emitter capac- 
itance, RB is the base resistance, Rs and Xs is the source resistance and reactance, 
and co is the angular frequency. 

The pads were modelled as a series/parallel combination of impedances 
between the source and input of the device (see [3-5] for details), and from circuit 
manipulations, they were taken into consideration in modelling the noise figure 
through Rs TH and Xs TH, the Thevenin equivalent of the source and pad imped- 
ances, and Es TH the Thevenin equivalent of the source and pad noise sources. In 
the following plots, we show the effects of the pad impedances as a function of col- 
lector current. We also show the calculated results when the pad impedances were 
not considered. All results are for a frequency of 1 GHz, and these are typical of the 
results between 0.5 and 5 GHz. 

Fig. 1 shows the variation of NFMIN with Ic for all 5 devices. Note that when 
the pads' impedances are neglected, there is significant disagreement of up to 2 dB 
between calculations and experiments over a large current range for the 3 smaller 
devices, as clearly shown by comparing Figs. 1(a) to 1(b). However, inclusion of 
the pads impedances results in good agreement between experiments and calcula- 
tions for all devices, and over the entire current range. Figs. 2 and 3 show the varia- 
tion of Rs OPT 

and XS,OPT versus Ic- When the pad effects are not considered, there 
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Fig. 1(a). NFMIN versus Ic (uncorrected for pad 
effects). Note the significant disagree- 
ment between experiments and calcu- 
lations. 

Fig. 1(b).   NFMIN versus Ic (corrected for pad 
effects). Note the improved agreement 
when the pad impedances are consid- 
ered in the calculations. 
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is significant disagreement between experiments and calculations, especially for the 
smaller devices. With the pad impedances included, there is improved agreement 
between calculations and experimental data. 

To illustrate the impact of the pad impedance on high frequency noise mea- 
surements, we measured the noise figure of two devices of emitter areas of 12.8 

H.m2 and 48 ^.m2 in which the signal pads were of different sizes - 80x80 \im  and 

50x80 (im2, and the pads' impedances. Figs. 4 and 5 show the results of the imped- 
ances of the pads and the minimum noise figure, respectively. These results demon- 
strate that the smaller pad with a larger impedance to ground results in the expected 
lower measured noise figure for both devices. This is because the larger pad imped- 
ance results in less input signal being lost to ground, thus resulting in NFMIN values 
of the transistors being closer to their intrinsic values. Finally, these results, as well 
as those described above illustrate the need for proper accounting of the pads 
effects in modelling the noise figure, as well as proper design of their layout to min- 
imize their influence on the measured minimum noise figure. 

Effects to be investigated 

In the model and results discussed above, several simplifying assumptions 
were made to derive simple analytical expressions for the noise parameters. These 
include the neglect of important elements in the PE-BJT equivalent circuit model 
[1-7] such as the base-collector capacitance which significantly affects the high fre- 
quency transistor performance; the collector-substrate junction capacitance; the 
variation of the base and emitter resistances with biasing current; the effects of high 
biasing currents (which results in higher gains and unity gain frequencies); perime- 
ter effects which results in many parameters having two components, an area com- 
ponent and a perimeter component. In addition, the small signal properties of the 
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transistor changes with temperature. To date, no systematic experimental or 
theoretical study has been conducted on the effects of varying high and low 
temperatures on the noise parameters on polysilicon emitter bipolar transistors. 

However, for analytical modelling of the noise parameters, the resulting ana- 
lytical model should not so complicated that physical insight into the noise proper- 
ties are lost because of the complexity of the resulting expressions. Therefore, 
inclusions of the important effects described in the above paragraph in the analyti- 
cal noise model should involve appropriate simplifications/limiting values to retain 
a form suitable for physical insight. The goal should be include the important elec- 
trical elements in the circuit description so that large signal, small signal and noise 
properties can be predicted and relevant trends such as scaling effects, temperature 
effects and high and low current effects accurately indicated through both calcula- 
tions and appropriately simplified analytic expressions, as required. 

Conclusions 

In this paper, we demonstrated the effects on bonding pads on the noise 
parameters NFMIN< Rs,OPT and xs,OFT as a function of collector currents. The study 
also showed the effects of two different pad structures on NFMIN values of two 
transistors. For test structure designers, the study also illustrate the need to mini- 
mize the pad areas and use metals that are well above the silicon substrate so that 
pad effects can be reduced. Finally, we described some of the important electrical 
elements in the transistor equivalent circuit model that have been neglected and the 
consequences. We also described the need to study the effects of varying opera- 
tional conditions of biasing currents and temperatures, and the need to retain physi- 
cal insight from the analytical model of the noise parameters. 
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PROBLEMS OF LOW-FREQUENCY NOISE IN DEPLETION 
MODE pMOSFETs UNDER INVERSION CONDITIONS 
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ESIMOEN and C.CLAEYS 
IMEC, Kapeldreef75, B-3001, Belgium 

The new results concerning the problem of low-frequency noise observed under inversion 
conditions in MOSFETs with a /»-Si film are presented. It is shown that the source of high GR 
noise detected in DM /»MOSFETs under inversion conditions manifests itself also in EM 
»MOSFETs. The characteristics of this noise are described It is found that the correlation occurs 
between the low-frequency Vf noise and the current in DM /»MOSFETs under inversion 
conditions. The arguments are adduced in favour of the model where the fluctuations of the 
charge in centers located at some distance from the interface (below the inversion layer) can be 
responsible for the noise phenomena considered. However, many questions relating to this model 
are shown to be still open questions. 

1    Introduction 

An interface between a semiconductor and an oxide is known to be a powerful 
source of a low-frequency noise. The role of this noise can be depressed 
significantly in depletion mode (DM) MOSFETs under conditions where strong 
inversion occurs at the interface and the fluctuations of the interface potential are 
screened by the inversion channel. Such an effect was observed experimentally for 
Vf noise1 and generation-recombination (GR) noise2 in the DM »MOSFETs 
(WWMOS devices). 

The situation appears to be quite different in the DM pMOSFETs (p*pp*MOS 
devices) where the low-frequency noise increases sharply as far as inversion 
conditions are approached and this noise does not disappear even in a strong 
inversion. 

Such an anomalous behaviour was observed for the llf noise in bulk DM 
/»MOSFETs3 and SOI DM /MOSFETs prepared on ZMR substrates4. Recently the 
same behaviour has been revealed for the l#"noise in SOS DM /MOSFETs and for 
the GR noise in the SOI DM/MOSFETs processed on SIMOX substrates*'6. More 
of this, the GR noise source of the same nature has been detected also in the 
enhancement mode (EM) «MOSFETs («

+
/TH

+
MOS devices) where the physical 

situation in the p-Si film under operation conditions is similar to that in the DM 
/MOSFETs but the current passes through the inversion layer itself. Those EM 
«MOSFETs were also SOI devices processed on SIMOX substrates. 

205 



206 

New results on the noise phenomena considered are presented in this paper. It 
is shown that, though much of the behaviour of the noise is understandable, a lot of 
problems remains unsolved. 

2   Results and Discussion 

1. It has been found that the behaviour of the turn-over frequency^ and the 
plateau level 6X0) in GR noise spectra measured in the EM «MOSFETs is identical 
to that observed in the DM /?MOSFETs under inversion conditions. This suggests 
that the same mechanism is responsible for the noise in both cases. 

2. The properties off0 and 5X0) for this noise show specific features (Fig. 1) that 
are typical of the noise considered and differ significantly from the characteristics 
of the GR noise observed in the same devices in the absence of inversion. 

10" 

1(f 

10" 

I,A S„As 

16  17   18   19  20  21   22  23  24 
uGb,v 

10 

10 

-22 

23 

10 
-24 

[S,(0)/f] •Kf.s 

Figure 1: The dependences of r (1), $(0) (2) and / (3) on the back gate voltage at fV=0 (a) and the 
dependence of S/O)//2 on r measured in the subthreshold regime (6) for the EM SOI wMOSFET 

The increase of the noise with increasing gate voltage under weak inversion 
conditions is described by the relation: 

Sj(0)/P (1) 
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where   r = (2;rf0)   ~ exp(/?T£/G) and the value of ßT is much smaller than for 

the GR noise observed in the absence of inversion. For example, ß$ = (4.7 -*■ 9)V! 

and fa »0.5 V1 for inversion in the front and back interface, respectively, while ßtf 

« 25V1 and ß^ « 2.5V1 for the front and back interface GR noises in the absence 
of inversion in /MOSFETs studied6. For the EM «MOSFETs investigated we 
obtained ßa = (0.26*0.34)V1 in the subthreshold regime. 

Note that the dependence (1) is not typical for the GR noise. In the most cases 
the dependences S) (0)/I2 ~ r" where a < 2 are observed. 

The behaviour of Sj (0) and r observed in strong inversion appears to be of two 
types: (i) both values do not change with the gate voltage; (ii) both values decrease 
and this decrease can be described by the following relations: 

S7(0)//2~r~exp(-^£/GJ (2) 

In the DM /MOSFETs the decrease with b = bf =(1.1-s-1.4) V1 was observed for the 
front interface. In the EM «MOSFETs such decrease with b = bb = 0.5V1 has been 
found for the back interface. 

Note that this decrease of .S'^O) in DM /MOSFETs might be attributed to the 
screening effect. However, the fact that the same decrease is observed in the EM 
«MOSFETs (where the interface noise influences the channel current without any 
screening) shows that this is not the case. 

3. Considering that the inversion conditions near the interface (front or back) 
are responsible for the increase of the noise, the GR processes taking place on 
centers near the interface can be proposed as a possible source of the noise studied. 
However, because the screening effect does not suppress this noise even at very low 
frequencies (~ 1Hz), these centers can not be located at the interface itself. Then it 
remains to suppose that they are located in the depletion region below the inversion 
layer. Note that in this case the value of r has to be independent of the gate voltage 
if the centers are distributed uniformly over the Si film thickness7. Then the fact 
that T = T (C/&) suggests that the centers are located in some more or less narrow 
layer. The increase of r in weak inversion can be explained by that the electron 
exchange takes place between the centers and the v-band and r~\lp where p is the 
hole concentration near the centers (the value of p decreases with increasing gate 
voltage). The decrease of r in strong inversion can be due to increasing exchange 
between the centers and the c-band. 

4. An interesting properties of the phenomenon considered has been revealed 
by measuring the \lf noise in the DM /MOSFETs prepared on SOS substrates. 
These measurements were carried out on wafer level (i.e. without dicing the silicon 
wafer into chips) by using the dedicated home-made system with the special noise 
probes. This permits to study the distribution of the noise across the wafer area. The 
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results are shown  in Fig.2.   As is  seen,    the   high  scatter  in  the data for 
different samples is typical for the noise under inversion conditions whereas no 
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Figure 2: The dependences of the spectral density of l^noise (a) and of the current (b) on the gate voltage 
for three DM pMOSFETs (15 and 3) located at different regions of the SOS wafer and for one EM 
»MOSFET (4) located near the /»MOSFET characteristics of which are shown by curves 2 

dispersion of the experimental points is practically observed if the interface is 
depleted or even accumulated. What is more, the correlation is observed between 
the behaviour of the noise and of the current under strong inversion, namely: (i) the 
higher is the noise, the higher is the current; (ii) in those devices were the increase 
of the noise in strong inversion is too high the channel current appears to rise with 
the increasing gate voltage. In addition, when measuring the characteristics of the 
EM wMOSFETs prepared on the same SOS wafer where the DM pMOSFETs are 
situated, some non-trivial properties have been found in the dependences I(UG) 
measured at a small drain voltage in those «MOSFETs that are located near the 
/MOSFETs with too high 1/f noise in inversion. This is shown by curve 4 in Fig.2ft 
where the saturation portion is observed in strong inversion (C/G > 3.5V) instead of 
a trivial linear increase of/ with UG. 
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3    Conclusions 

It can be concluded that the noise phenomenon studied is observed in a wide 
variety of devices of different types, i.e. it is typical not for the devices of some 
special type but for the definite physical situation that takes place when the 
inversion occurs at the interface between the silicon of /Hype and the oxide. This 
means that the effect considered is of a rather general nature. However, there is no 
full explanation of this effect till now. 

It is shown that the physical reason for the phenomenon discussed may be the 
fluctuations of the charge at some centers in the depletion layer just below the 
inversion layer. However, in this case it is necessary to suppose that the 
concentration of these centers drops rapidly with increasing distance from the 
inversion layer. What is the nature of such centers? The other questions arised also 
and wait for their answer. They are the following. What physical situation may be 
responsible for the dependence (1)? Are the above 1//"noise and GR noise really of 
the same nature? Why, under conditions of high 1// noise studied, the channel 
current in DM /»MOSFETs can increase with increasing gate voltage and the 
channel current in EM «MOSFETs can become constant? Is not the reason of the 
well known high level \lf noise in the EM «MOSFETs just that one which gives 
rise to the increase of such a noise under inversion conditions in the depletion mode 
/MOSFETs? 
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NOISE IN NONLINEAR DYNAMICAL SYSTEMS 



SOME UNSOLVED PROBLEMS ON THE 
LEVEL CROSSING OF RANDOM PROCESSES 

Tsutomu MUNAKATA 
Tamagawa University, 6-1-1 Tamagawa-Gakuenn, Machida-shi, 

TokyoJAPAN 

Some unsolved problems regarding to the level crossings of random processes will be 
presented. The works on the method of approximation to the probability densities of 
level crossing intervals are also reviewed. 

1 Introduction 

The level crossing problem in the mathematical theory of noise is to determine the 
distribution of the intervals between level crossing time points. This problem was 
firstly discussed by S.O.Rice [1,2] in the statistical communication theory, and it can 
be also found in other fields: oceanography, speech analysis, seismology, biological 
systems and Laser optics. In most of studies the level crossing of stationary Gaussian 
processes was discussed. But in application fields many studies are available for 
Rayleigh, Rice and Ko processes as the models of fading channels and speech sig- 
nals[2,5,13,15,16]. 

An important quantity in the level crossing problem is the probability density or 
the variance of the level crossing interval length[3,6,8,9]. Up to now, none of them are 
known in analytical form. In field of communication theory, determination of the 
probability densities of the level crossing intervals was required, and some approxi- 
mations are known[4,7,10,ll,12]. These approximations are derived by applying cer- 
tain assumptions on the statistical dependences between successive intervals. 

On the other hand the problem was further extended to the case of two different 
levels or to the crossing with the barrior which changes as a time function. They are 
treated as a first passage time problems[l3,14,15], and there are so many unsolved 
problems in this field. 

In this paper some unsolved problems related to the crossings with constant level 
will be presented, and also the works on approximations or experimental approaches 
will be summarized. 

2 Definition of the Problem 
Let x(t) be a stationary random process. The process x(t) crosses the fixed level I 
upward or downward according to the time development. The time intervals between 
successive crossing points are called level crossing intervals. As it is shown in Rg.l, 
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level crossing intervals are denoted as T+ or x- depending on the start conditions, 
wheather the interval starts with upward crossing or downward crossing, resp.. In the 
same manner the crossing intervals between successive upward (downward) crossings 
are denoted as x++, (x-).   The expected 
number of crossings in a unit time is called 
crossing rate, and it is written as Nl. For 
the level crossing intervals, mean value, 
variance and probability density of them 
are the important quantities, but mostly 
they are not yet given analytically. 

T++ 

Fig.l 

* *i 
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3    Solved and Unsolved Problems, and Known Results 

3.1   Crossing rate Nl.       (solved) 
12   3   4   s_ N 

unit time 

The expected number of crossing points, which are given Fig.2 
by crossing the process with boundary upward or downword in a unit time, is called 
crossing rate, and it is written as Nl. Crossing rate can be calculated from a joint prob- 
ability density p(x,y) for the process x(t) and its derivatives y(t) as follows; 

Ni-S.lb'ipOrfoO'iy 0) 

For Gauusian processes this quantity is derived directly from the values of auto 
correlation function (ACF) of the processe and its derivatives at t=0, and it is given as; 

N,- l/Jt(-V(0)/V(0))wexp[-I2/(21»,(0))l (2) 

For many other types of random processes, crossing rates can be also calculated, 
and the following is an example for Rayleigh processes. 

NR= öw^C-VlTOJ^R/VWexpI-RVGVfl))]        (3) 

3.2   Mean value of crossing intervals. 

Case of single Level, (solved). For the crossings with single level, mean value of the 
crossing intervals can be calculated as the reciprocal of crossing rate. Let \i+, \i-, \i++ 
and \i~ be the mean values of the crossing intervals x+, x-, x++ and x-, resp., and they 

aregivenas ^ .„O-F»*— P^/N, (4) 

H_ -<TO'B(l.P(I))(>»»-(l.pa))2/NI (5) 

|i++ - <c++> « n__ . <x„> > 11N, (6) 
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where P(I) is the probability that the process x(t) stays above the level I. 

Case of two levels, (unsolved) If we consider the intervals of crossings with 
two different levels, the problm becomes little bit complicated. Several types of inter- 
vals can be available by the combination of the crossing points on both levels. Here we 
will add the several new definitions for such types . As it is shown in Fig. 3, four 
different intervals are available by the combination of polarity of crossing points on 
both levels, and they are denoted as x++,x+-,x-+ and x». Notice that, in this case the 
process is permitted to have several times of crossing with level II before it arrives to 
level 12. This kind of crossing intervals are called "Usual first passage time". 

T+- 

Fig.3 

IX 

Fig.4 

6+ 

Q 

e.+ 

e„ 

In the other hand, as it is shown in Fig. 4, if we take notice only of the shortest 
crossing intervals between both levels, other four different intervals can be defined by 
the combination of the polarity of the crossing points on each level. This kind of cross- 
ing intervals are called "Direct first passage time", and they are denoted by 8++, 6+-, 
0-+ and 8-. For these newly introduced intervals, mean values have not yet be calcu- 
lated analytically. 

3.3 Variance of the crossing intervals,   (unsolved) 

2     2    2 2 
Let a+, a-, c++ and o- be the variances of 
the crossing intervals x+,x-,x++ and x-, resp., of 
single crossing level.  Actually these quantities 
have not yet been known analytically. Also for 
the case of two levels, as a matter of course, 
none of the values for the variance of first 
passege times have been found analytically. 

In the other hand, the properties of those 
quantities have been studied by experimental 
measurement. Such results were accumulated 
widely for many types of random processes. 
Some typical results are given in Fig.5,[8,9]. 

Fig.5 
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3.4 Correlations between successive crossing intervals, (unsolved) 

As it is given in Fig. 6, the correlation between 
successive crossing intervals can be discussed[9], 
and the correlation between nth and n+i+1 th 
crossing intervals is defined as 

~i—I—i—r—;I—I 
'fl+fifififtffi- 

I ,n NM j* ^ ,a \M ya— 
Xj   X2 X3 X4 X5 X$   X7 

t t t t t t 
Fig.6   I   ftfif3.ft.fi. 

ftrkl3A" 

fori=2,4,- •• 

IC«, M [E{Xj,+ Xn*i-}- Ht H-]/(«V»_) 

Ki+=[E{X„+Xn+i»}-^]/oJ 

Kj- = [ E{Xn. Xn+i ♦} - |*+ |i_ ]/(o+o.)     for i=13^/ ■ 

fori=2,4," 

(7) 

(8) 

(9) 

(10) 

These quantities have not yet been known analytically. Difficulty of this problem is 
just same as those of variance. Since each value of w is unknown, the following two 
relation have been deriveds between the sums of « and the variance a+ and a-. 

where 

A/ß=(l-a)2oi(l+22;ic2i+) + .Iof(l+22K2i.) (H) 
1=1 M 

-4a(l-»)o+o_2K2i+1+ 
1=0 

4(l+2B)/ß2= oi(l+22Kji+)+o?(l+2iK2i-) (12) 
1=1 1=1 

m 

1=0 

(13) 

(14) 

•-• k»0.0 

A=S"UU)-<l-2a)2]dt 

B=$"[W+(tf)-ß/2]dt 

ß = Nl, and a = P(I): probability that the 
process is found upper the level I. r(t,I) 
denotes the auto-correlation function of 
bivalued clipped random process given 
as 1 for x(t)>=I and -1 for x(t)<I. 

The properties of quantities W s 
have been studied experimentally, and 
Fig. 7 show the typical result of the 
change of w vs. level I for the Gaussian   Fi 8 • 7 
process with several bandwidth (k=fl/fh) of power spectrum,[8,9].   For the case of 
crossing with two levels, this kind of correlation problem has not yet been discussed. 

0.00    0.40     0.80     1.20     1.60 
I 

2.00 
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3.5 Probability densities of crossing intervals,  (unsolved) 

Probability densities of crossing intervals are the main things of this kind of research. 
In addition to the crossing intervals x+ and t-, the sum of successive intervals are 
introduced. The sum of n+1 successive crossing intervals is dnoted by Xn+ or in-, here 
the sign + or - corresponds to the polarity of crossing at the biginning of the interval. 
The probability density of the intervals Xn+ and Xn- are denoted as Pn+(x,I) and 
Pn-(x,I),resp.. In most studies P0(x,I) and Pl(x,I) are discussed mainly rather than 
other Pn(x,I), and the calculation of these probability densities are not yet be overcome 
except special cases. Probability density Po(x,I) can be expressed as the infinite series 
of multiple integrals, but it is enough difficult to calculate each multiple integrals. To 
avoid this difficulty, several methods of approximation were proposed, and they will 
be refered later. 

In the other hand, on the results of 
experimental measurements, many inter- 
esting things were observed relating to 
the probability densities Po(x,I) or Pn(x,I). 
One of the interesting things is a number 
of peaks on the curve. In many cases, 
if the value I of level is large, several 
number of peaks can be observed on 
the curve of probability densities Pn(x,I), 

U.IAJ 

I                               n=8 
1     *                        k=0.2 

0.0 

1 ILML            I='0'5 

0 40 20 
Fig. 8 

and it is called "Multi-Peak property". Typical results of multipeak are found in Fig.8. 
Another interesting thing is a decay property of the probability density. In the range 
of large x, Pn(x,I) is expected to decay exponentially, and the factor of decay is known 
by experiment, and some analytical approximations are known. 

4   Approximations of P0(x,I) AND Pl(x,I) 

4.1   Rice function (S.CXRice) [1,2] 

Rice functions are defined as follows: Q+(x,I) and W+(x,I) are the conditional prob- 
ability densities that the process crosses the level I downward or upward, resp., in 
infinitesimal interval [tl+x, tl+x+dt], given an upward crossing with level I at tl. 
Notice that, from the definition, the Rice functions describe only the crossings at time 
point tl and tl+x, and the crossings happen in the interval x are not considerd. From 
this reason Rice functions may correspond not to P0(x,I), or Pl(x,I) but to the sum of 
Pn(x,I). Following relations are known between these quantities. 

QAi>-£Pj*C*.I>    (15)       ^ftO-JPa^W)      (16) 

Rice functions are able to approximate P0(t,I) and Pi(t,I) only for small x. 
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4.2 Quasi independent model. (McFadden) [4] 

Quasi-independent assumption means that each of the crossing intervals x+ and x- is 
statistically independent of the sum of following 2n+2 level crossing intervals, 
(n=0,l ,2,...). Under quasi independent assumption, Po(x,I) and Pl(x,I) are given as the 
solution of following integral equations; 

P0<
T' J>" Q+<T. 1>" Po<T- r> * W*<T. D (17) 

P^*, I) - W+(T, I) - P^T, I) • W+(T, i) (18) 

This approximation has following difficulties; 
1) In many cases the value of solution goes minus in some portion of time range, and 

it is not acceptable for the approximation of probability density. 
2) Results of experimental measurements for the correlations between intervals are 

contradictory to this assumption. 
As an Extension of this kind of approach, geschwaecherte (weakened) quasi inde- 

pendent model (Wolf and Brehm)[7] is available, and more precise approximations 
can be obtained. This method employs still complicated triple integral for joint prob- 
ability densities, and it is not so easy to calculate for non-Gaussian processes. 

4.3 Multi state model, 4 state and 6 state models. (Munakata) [10,11,12] 

As it is illustrated in Fig.9, the 4-state model is written by the 4 signal states of the 
process defined as follows: 

Given an upward crossing of level I at tl, then the process in 
Zl remains above the level I at least until the time tl+x; 
Z2 is found below the level I at the time tl+x after just one subsequent 

downward crossing; 
Z3 is found above the level I at time tl+x after at least one subsequent 

upward crossing during the time interval x; 
Z4 is found below the level I at time tl+x after at least two subsequent 

downward crossings during the time interval x. 

The process, which is found in state Zl 
by having un upward crossing at tl, 
proceeds to other states like 
Zl-> Z2 -> Z3 -> Z4 -> Z3 -> Z4 -> ... 
by counting new crossing. The change 
of each state probability is written by 
following differential equations; 

w=p1+pd 

Fig. 9 

Pz=X3S3 
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By assuming 

dS1(t)/dt=-X1Si(t)=-P(H(t) 

dS2(t)/dt = Xi^W-VjSjft) =P0+(t)-Plt(t) 

ds3(tydt= x2s2(t)*x4S4(t)-x3s3(t) 

= Pit(t)-Pz(t)*Pd(t) = W+(t)-Qt(t)+P0+(t) (19) 

ds4(tydt= x3s3(t)-x4s4(t> 

= Pz(t)-Pd(t) = Q^-P^O-W^O+P^t) 

X1=X3=g     X2=X4=h (20) 

the quantities g and h can be calculated as 

«= Q«(t)/pt(t) h = w+(t)/(l-P+(t)) (21) 
where 

P»(t) = Si(t)*S,(t) = 1- jJlQ.W-W^Oldt (22) 

For the calculation of these quantities only the Rice functions are required. 
Then Sl(t) and S2(t) (or POf(t) and Pl+(t)) can be given by solving following differen- 
tial equations; 

dS1(tydt=-gs1(t>=-P0+(t) (23) 

dS2<tydt = s SxWy- hs2(t) (24) 

and they are solved for Po+(t) and Pl+(t) as 

P,H(t) = 8(t)exp[-G(t)] <25> 

and P1»(t) = h(t)exp[-H(t)]]5*8(t)exp[-G(t)+H(t)]dt (26) 

where G(t)»S>)dt     H(t) = Sjh(t)dt (27) 

For large value of lebel III, this approximation is enough useful, but for small value 
of lebel III, low precision may be expected. It was required to make some modification 
to this model. 

The 6 state model was proposed as a modification of 4 state model. As it is shown 
in Fig. 10, 6-state model were derived by introducing two relaxation states Z3l and Z4l 
into the state Z3 and Z4,resp., of 4 state model. After having arrived to Z3l or Z4l, the 
process remains there for a certain time Tl and T2,resp., before it proceeds to Z32 or 
Z42. Generally such relaxation time must be a random variable, but for simplisity, 
they are assumed to be constant. State probability S3 and S4 are written as 
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S3 = S31 + S32 and S4 = S41 + S42, 
and the relaxation probabilities 
can be written as 

S3i(t)=$J_TW+<t)dt    (28) 

s4iW - S U2
[Q*(t) -po*(t)1 dt 

Q = P0+P2 

W=P,+ Pd 

Fig.10 

Po=iSi 

P,= fiS, 

Z31 Z3i   ' 

KE^h S32 

^Pz= 

S>Pd" 

Z41 

S« 

z« 

is 32 

By replacing S3 by S32 and 
S4 by S42 on right hand of z 

eq.(19), following relations are obtained, 

Po+W = Si(t) S = SxWQ^ftJ/CSiW+Ssjd)] 

= Si(t)Q+(t)/[pt(t)-S31(t)] 

Pi*(0 - S2(t)h = S2(t)W+(t)/[S2(t)+S42(t)] 

=S2(t)W+(t)/[l-P»(t)-S4i(t)] 

Only by replacing g by g in eq.(23) and h by f» in eq.(24), solutions of 6 state model are 
obtaind as 

(30) 

(31) 

I$t;Ti) = gftjTiJexpr-GdjT!)] 

where 

and 

Pi*(t;Ti,Ti.)-fi(t;T1,T2)exP[-H(t;Ti,T2)]- 

.jjKtjTOexpt-GCt^+ÄdjTLTiHdt 

^t;T1,T2.) = SlhÖ.T1,T2.)dt 

(32) 

(33) 

(34) 

(35) 

Since these solutions are still function of the relaxation times Ti and T2, one must 
found the metod to determine these parameters. For this purpose, by adjustong Tl and 
T2 the first moment of Poi6)(t;Tl) and Pl(+)(t;Tl,T2) is set to be equal to the value mo 
or mi, the first moment of Po+(t) and Pl+(t), which can be given as the mean value of 
crossing intervals.  The first moments of of the solutions are given as 

aoW ' $"t$t.Ti)dt = £«p[-G(ttt)] dt (36) 

and 
•nifIi'Ti) = ^tPiV(t;T1,T2)dt = m0Oi)* (37) 

♦5"exp[-fi<tft,T2.)] -5j F$u;T1)exp[A(UlTi,T2)Wudt 

Only Rice functions Q , W and mean values |i+, [i- of the crossing intervals are re- 
quired for the calculations. From this reason it is very easy to apply the model for non- 
Gaussian processes. Fairly good approximates are obtained for many cases. 
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5    Conclusion 

Some unsolved problems on the level crossing of random processes are summarized. 
These problems are simple to state and easy to understand, but they are still unsolved 
after half a century. In many cases the only reliable information that we have about 
these problems are experimental results. We need further attention to this field and 
more intensive investigations. 
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A surprising new stochastic resonance phenomenon is reported. The particular set-up is a 
level-crossing detector with a supra-threshold sinusoidal excitation, and the noise is an additive 
band-limited white noise in the phase angle of the sinusoidal time-function. We observe stochastic 
resonance phenomenon in the first harmonic at the output power spectral density of the system. It 
means that, if the phase noise is not zero, there is an optimal strength ofthat phase noise where the 
signal to noise ratio reaches a local maximum. At the moment, there is no theory to explain this 
phenomenon. 

1   Introduction 

Stochastic resonance (SR) is a widely investigated phenomenon of statistical and 
solid state physics. SR can occurs in special nonlinear systems, when one can 
identify a periodic and noisy input excitation. SR means that the signal-to-noise 
ratio (SNR) at the output has a maximum as a function of the intensity of the input 
noise [1]. There are several real and many artificial systems, which can produce 
stochastic resonance [1], for example SQUIDS, noisy neural networks, lasers, level- 
crossing detectors [2-6], Schmitt-triggers and a lot of different mathematical models. 
First, SR was observed and explained in dynamical, two-state systems, however, 
later it was shown, that the real meaning of SR is different: SR is basically a level- 
crossing dynamical problem of the noisy signal [5]. Recently a promising 
possibility of increasing the output SNR over the input SNR in level-crossing 
detectors has been reported [5,6], highlighting the application possibilities of SR. 

Previously, input signals used for stochastic resonators were usually additive, 
sometimes multiplicative, with the input signal. Here, we introduce a new type of 
stochastic resonance based on random phase modulation of the periodic input signal. 

2   Model 

The principle of the new stochastic resonator set-up can technically be visualised by 
a phase modulator followed by a level-crossing detector (LCD) [2], see Figure 1. The 
input of the phase modulator is a sine wave with frequency fo and the modulating 
input is fed by a band-limited white noise serving as the phase modulating quantity. 
For simplicity, the amplitude distribution of the phase noise has been chosen to be 
uniform. The phase modulator adds the noise to the phase of the input sine wave 
which can be expressed in the following way: 
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y(t) = A sin[27cfot+w(t)] 

where w(t) represents the phase noise. 

(1) 

Noise w(t) 
Phase 

modulator 
y(t) 

f                      'S 

Level- 
Crossing 
Detector 

Output 
Periodic signal 

x(t) 
z(t) 

Figure 1: Visualisation of the set-up for stochastic resonance at phase-noise. 
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Figure 2: An example for the input and output amplitudes 
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The phase modulated sine wave gets into an LCD to produce the output signal. The 
LCD emits a pulse, whenever its input value is crossing the threshold value Ut 

upwards, and the LCD output is zero otherwise. Figure 2 shows a typical input and 
the corresponding output signal of the system. 

3   Results 

We used numerical simulations to investigate the behaviour of the phase modulator 
based SR. A (high-performance) uniform random number generator was used to 
represent the input noise. These numbers were used to generate samples of length of 
16000. The power spectrum was calculated using FFT and by averaging 1000 
samples. An example for the output spectra can be observed on Figure 3. 

10' 

^ 10 ^ 

S io-2 t 

10 -3 

1 m\     Li  I*» I««» l»t ««■■<♦» o^MM^ir 

0 50 100 150   200   250 

Frequency (Hz) 

Figure 3:. An example for the output power density spectrum 

The amplitude of the sine wave was fixed to unity, and the threshold and noise 
amplitude were varied. The output signal strength and the SNR values were 
calculated and plotted as the function of the threshold of the LCD and RMS value of 
the input noise. This dependence is illustrated on Figure 4. The existence of strong 
stochastic resonance is very clear from the behaviour of both quantities. 
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Figure 4:  The output mean-square signal amplitude Ps and SNR 
versus the phase noise amplitude 

12 

It is important to note that to get any signal at the output, the system has to work 
in the supra-threshold limit: 

-A<Ut<A   , (2) 



227 

otherwise the input signal never crosses the threshold. On Figure 5, we can see the 
oSpuTspeclmUen the threshold level varies between its limits This behaviour 

ipletely different from the previously considered SR systems additive noise. is comp 

■v**     S» 

Figure 5:   Power Spectrum at the signal frequency with various threshold levels and phase noise 

4   Unsolved   problems/questions 

a. Theory. This is the really unsolved problem here. There is  no theoretical 
explanation of these new results at the moment. 

Some open questions: 

b. The same effect with different noises and different signals. 

c. Importance of this effect at practical applications. LCD systems are often used in 
the information technology and the occurrence of phase noise is rather general 
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there, too. Whenever the threshold level of the LCD is not zero, stochastic 
resonance can probably be used to optimise the signal transfer. 
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Abstract 
Stochastic resonance in an extended system is studied in a simple 

version of a reaction-diffusion (RD) model. The known form of the 
nonequilibrium potential is exploited to obtain the probability for the 
decay of the metastable extended states and expressions for the cor- 
relation function and the signal-to-noise ratio (SNR). It is shown that 
the SNR increases with the diffusivity that plays the role of a coupling 
parameter. 

1    Model and Nonequilibrium potential 

One of the most fascinating cooperative effects arising out of the interplay 
between deterministic and random dynamics in a nonlinear system is the phe- 
nomenon of stochastic resonance (SR).* The particular features of this phe- 
nomenon in the case of extended systems are still under study, with particularly 
interesting recent results of numerical simulations of arrays of coupled nonlin- 
ear oscillators2 where it was shown that the coupling enhances the response. 

We present here a brief analysis of this phenomenon in a spatially ex- 
tended system by exploiting our previous results obtained using the notion 
of the nonequilibrium potential3 in a simple RD model. We shall focus on 
a one-dimensional, one-component model of an electrothermal instability, 4 

that corresponds to an approximation to the continuous limit of the coupled 
system studied by Lindner et al.. 2 For this model we have studied the effect of 
boundary conditions (b.c.) in pattern selection, the global stability of the non- 
homogeneous structures, and the critical like behaviour due to the coalescence 
of two patterns as a control parameter is varied. 4-6 

The particular form of the model that we work with is 4 

dt<i> = DdZx<i>-<fi + 0(<j>-<t>c), (i) 

in the bounded domain x G [— L, L] and with Dirichlet b.c. at both ends, i.e. 
</>(±L,t) = 0. Clearly, we have the trivial solution <j>a{x) = 0, which is linearly 
stable and exists for the whole range of parameters. The piecewise linear 
approximation of the reaction term, mimicking a cubic polynomial, allows us 
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to find analytical expressions for the spatially symmetric solutions of Eq.(l). 
In particular we find only one stable nonhomogeneous structure, <j>a(x), that 
presents a central excited zone where <j>s(x) > <f>c. Besides that, we find another 
similar unstable structure, <j>u(x), with a smaller central excited zone. This 
pattern corresponds to the saddle separating both attractors <j>o(x) and <f>s(x). 
There are other unstable nonhomogenous solutions, but playing no role in this 
problem. 4~6 

The indicated patterns are extrema of the nonequilibrium potential or 
Lyapunov functional (LF) of our system that reads 5,e 

n<l>Ac} = fL\-j\-$ + 0[<}>-<t>c])d<j>.+ ^(j^   \dx.      (2) 

The functional 7 is such that §£ = -ff and, as a good LF, fulfills the 

condition T = —/*~ (fr) dx < 0. It offers the possibility to study the 

global stability of the patterns and the changes due to variations of model 
parameters. 5>6 

In Fig. 1 we depict the LF T[<j>, </>c] evaluated at the stationary patterns 
to TOo] = 0), 4>,(x) {?' = F[<i>,]) and <j,u(x) {Tu - T[<j>u]), for a system size 
L = 1, as a function of <j>c and for two values of D. In the bistable zone, the 
upper branch of each curve is the LF for <j>u{x), where T attains an extremum 
(as a matter of fact it is a saddle of the nonequilibrium potential). On the 
lower branch, for 4>s{x), and also for <f>o(x), the LF has local minima. For 
each value of D the curves exist up to a certain critical value of <j>c at which 
both branches collapse. It is interesting to note that, since the LF for <j>u(x) 
is always positive and, for <f>s(x), T" is positive for some values of <j>c and also 
T* —* —oo as <j>e —► 0, T* vanishes for an intermediate value of <j>c = <j>*, where 
(j>,(x) and </>o(x) exchange their relative stability. 

In order to account for the effect of fluctuations, we need to include in 
the time-evolution equation of our model (Eq.(l)) a fluctuation term £(x,t), 
modeled as an additive noise source, yielding a stochastic partial differen- 
tial equation for the random field <l>(x,t). We assume that £(x,t) is a Gaus- 
sian white noise with zero mean value and a correlation function given by 
(t(x,t)£(x',t')) = 2 7 6(t — t') S(x - x'), where 7 denotes the noise strength. 

We now exploit an scheme that allows us to describe the decay of extended 
metastable states, 7 yielding the following Kramers' like result for the first- 
passage-time (r): 

(r) = TO exp I l- !>, (3) 
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Figure 1: Nonequilibrium potential J-., for the stationary patterns, as a function of <t>c, for 
L = 1. The bottom curve corresponds to <t>s(y) and the top one to 0u(j/). The points <j>*, 

are indicated. The insert shows the behaviour of the barrier height as a function of (j>c. 

where A.F[<£,<£C] = T[^unat{y)Ae] - ^[4>meta{y),4>e]- The prefactor r0 is de- 
termined by the curvature of T[4>, <j>c] at its extrema (minima) and is typically 
several orders of magnitude smaller than the average time (r). In the insert of 
Fig. 1 we show the form of AT[(j>0,<l>e] (line (b)) and A^„^] (line(a)), as 
a function of <f>c. It also corresponds to the behavior of ln((r)/ro). 

2    Stochastic resonance and the effect of coupling 

We now assume that, due to an external harmonic variation, the parameter 
<f>c has an oscillatory part <f>c(t) = </>* + 6<j)ccos(ilt + ip). For the spatially 
extended problem, we need to evaluate the space-time correlation function 
(<£(2/,i)0(yV)). To do this we will use a simplified point of view, based 
on the two state approach of McNamara and Wiesenfeld, 8 that allows us 
to apply almost directly some of their results. To proceed with the calcula- 
tion of the correlation function we need to evaluate the transition probabili- 
ties between our two states <f>o and <j>s, W± = rj"1 exp (—AJ"[0,<£<;]/7), where 

AF[<t>, <f>c] « AT[<j>, fi] + Wc[9*3j$*B\t cos(fif + <p). This yields for the tran- 

sition probabilities W± « \ (a0T"i^ cos(üt+ip)), a0 « exp(-AJr[<^, <f>*]/j) 

and a\ « «o^o^U;- With this identification, and using the fact that <j>o — 0, 
only one term remains. Hence, after averaging over the random phase <p, we 
end up with an expression similar to their correlation function but in which 
the position of their minima, ±c, is replaced by c2 = <j>u(x)2. 

To obtain the generalized susceptibility S(K,W), we need to perform the 
Fourier transform of the correlation function in time as well as in space. Due 
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Figure 2: SNR as a function of the noise intensity 7 (Eq.(17)), for (a) D = 0.9, (b) = 1.0, (c) 
= 1.1. We fixed <t>c = <t>*c, L = 1, 6<t>c = 0.01 and fi = 0.01. The insert shows the maximum 

of SNR as a function of D. 

to the fact that the space and time dependences of the correlation function fac- 
torize, S(K,W) factorizes too, and it is enough to analyze its time dependence. 
The Fourier transform of this time dependence yields a function analogous to 
the usual power spectrum function S(w). 8 Finally, the result for the SNR is 

SNR ~ (AAT-
1)2exp(-2A^,^]/T)1 (4) 

where A is an estimation of the potential curvature at the potential minima 
(for instance given by the linear stability eigenvalue), and A ~ ^-\^8(j>c. 
Eq.(4) is analogous to what has been obtained in zero dimensional systems" but 
where AT[<t>, ^*] contains all the information regarding the spatially extended 
character of the system. 

In Fig. 2 we show the dependence of the present SNR on 7, for typical 
values of the parameters (same as in Fig. 1), and different values of D. It is 
seen that the response increases for increasing values of D. The insert shows 
the dependence of the maximum of the SNR as a function of D (that plays 
here the role of the coupling parameter). This is in agreement with recent 
numerical results for a system of coupled nonlinear oscillators. 2 

It is worth remarking here that the present calculation breaks down for 
large values of D. This is due to the fact that, for increasing D, the curves 
in Fig. 1 shift to the left while the barrier separating the attractors tends to 
zero. It is also worth noting that, besides the approximation involved in the 
Kramers' like expression in Eq.(3) and the two level approximation used for 
the evaluation of the correlation function, all the previous results (form of the 
patterns, nonequilibrium potential) are analytically exact. However, in a more 
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careful analysis of the problem, as indicated by the present rough calculation, 
we can expect different strengths for the SR phenomena for different wave 
lengths, as the dependence of the generalized susceptibility S(K, W) on K and u 
-that will not necessarily factorize- will also imply that SNR ~ SNR(K,U>). 

The present form of analysis will be extended to activator-inhibitor or 
multicomponent models that, besides applications in chemical and biological 
systems, are related to spatio-temporal synchronization problems.1>2 Also, in 
those models we have that a non-local coupling exists, in contrast with the 
nearest neighbour coupling presented here. 9 
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Abstract 
In spatially periodic structures, nonequilibrium fluctuations of spe- 

cific statistics are able to generate non-zero current (Brownian ratchets). 
An unsolved problem is: What minimal statistics for the fluctuations is 
required for inducing finite transport in ratchet-type systems? In par- 
ticular, is there a chance that a symmetric and delta-correlated additive 
noise does in fact yield directed motion? 

In generic cases, random fluctuations (and other irregular forces) are reckoned 
to act destructively on processes, starting from physical through biological up 
to sociological ones. On the other hand, constructive influence of uncontrollable 
perturbations can be observed in nature. Examples are activation processes, 
stochastic resonance phenomena, Brownian ratchets, etc. In the latter, trans- 
port (non-zero current) in spatially periodic structures can be generated by 
random fluctuations of zero average values, without any field gradients and 
external bias forces.1 The interest of such a transport mechanism is consider- 
able: In biology (protein motors: transport of vesicles and ogranelles, loco- 
motion, segregation of chromosomes),2 material sciences (separation or pump- 
ing of particles), electronics (nano- and micro-technologies) and physics. 

Periodic structures possess or do not possess a reflection symmetry. It 
means that systems can be described in terms of a spatially periodic potential 
V(x) = V(x + L) with period L. For systems with a reflection symmetry, 
there is a constant C such that V(C -x) = V(C + x). Moreover, fluctuations 
that act in systems can be symmetric or asymmetric. Symmetric noise £(t) 
is characterized by the fact that all its odd numbered cumulant averages are 
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identically vanishing; in contrast, asymmetric noise of zero mean can possess 
nonvanishing odd-numbered higher order cumulants. 

From previous investigations, it has been known that in periodic structures: 
(a) Transport can be induced by correlated symmetric noises in systems with 
a broken spatial symmetry (i.e., when the spatial potential is asymmetric).3,4 

■(b) Transport can be genereted by correlated asymmetric fluctuations in sys- 
tems without broken spatial symmetry (i.e., when the spatial potential is sym- 
metric).5 

(c) Transport can be induced by uncorrelated (or ^-correlated) asymmetric shot 
noise in systems without broken spatial symmetry.6 

(d) Transport cannot be generated by thermal fluctuations (symmetric Gaus- 
sian white noise). 

An open fundamental question thus reads: What minimal statistics of noise 
should be sufficient for inducing a macroscopic current in periodic structures? 
To be more precise, let us formulate the problem in the form of overdamped 
motion of Brownian particles (of unit masses) in spatially periodic potential 
V(x), namely, 

i = /(ar) + r(t)+£(<), (1) 

where f(x) = -dV(x)/dx. The process T(t) represents thermal fluctuations: 
It is Gaussian delta-correlated noise of zero mean and of strength DT = ksT/j 
with T and 7 denoting the temperature of the system and the friction coeffi- 
cient, respectively. The process £(t) is a "driving force" and models another, 
nonequilibrum source of fluctuations. 

Let us recast the question as follows: Is it possible to generate non-zero 
current by symmetric and S-correlatedfluctuations £(f)? We think the question 
interesting since usually it is believed that symmetric white noise cannot give 
rise to directed transport. According to Ref. 3: "... all that is needed to 
generate motion and forces in the Brownian domain is loss of symmetry and 
substantially long time correlations". In Ref. 4 it is stated: "... if (in our 
notation) {{t) is another symmetric white noise process, the stationary state 
corresponds to a thermal equilibrium state satisfying the condition of detailed 
balance, in which case no net current is possible for any shape of the potential". 
So, taking the above statements virtually, the answer to the question stated 
above would be in the negative. 

It is indeed a challenge to find white noise sources which are able to con- 
vert random walk into directed motion. Hence, the first problem is to construct 
models of such (^-correlated fluctuations £(*), which, by virtue of the statement 
in (d), should be non-equilibrium and non-Gaussian. There are several candid- 
ates for such stochastic processes as e. g. symmetric Poissonian white noises 
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(white shot noises or Poisson point processes),7 composite noises, in particular, 
multi-state diffusion processes 8 (in each state, the system is subject to diffu- 
sion with various diffusion coefficients and randomly jumps between states) or 
the so-called randomly interrupted (or flashing) Gaussian white noise: 9 Jumps 
between the Brownian diffusional state (a Feynman ratchet carrying zero cur- 
rent) and a deterministic flow (also carrying zero current) are steered by a 
symmetric two-state Markov process. 

If £(*) is Poissonian white shot noise, the output process x(t) defined by 
(1) is a Markovian stochastic process. A master equation for the probability 
distribution P(x,t) of it is a partial integro-differential equation 7 with the 
integral kernel p(z) being a probability density of weights of the ^-impulses 
of shot noise. If statistical cumulants of odd order of the noise source are all 
equal to zero, and even numbered ones are non-zero, then the shot noise is 
symmetric. This is the case when p(z) = p(-z). In dependence of a form 
of the distribution p(z), one can construct a wide class of white shot noises. 
Such noises can be realized in electronic and physical systems under a variety 
of experimental conditions. These are visible in systems where events (such 
as emission of any excitations) occur with an average spacing greater than the 
characteristic time duration of each event. For £(t) being composite noise, the 
resulting process x(t) is non-Markovian, the treatment of which is much more 
complicated. For example, let £(t) be two-state diffusion noise defined as 

*(*) = f [1 + »?(<)]Ai(<) + \[l - v(t)]A2(t) (2) 

where A,(*) (z = 1,2) are independent ^-correlated Gaussian white noises of 
strengths £>i and D2, respectively. The process n(t) = {-1,1} is a dichotomous 
Markovian process, which switches back and forth between two states 1 <-» 
-1 with the rate v. It is zero averaged and exponentially correlated proces 
with the correlation time r0 = (2v)~l. The two-state diffusion noise £(t) is 
symmetric white noise of zero mean. However, the output process x(t) in 
(1) is non-Markovian: it jumps with Poissonian statistics between dynamics 
* = /(*) + T(<) + Ai(*) and dynamics x = f(x) + T{t) + A2(t). This unusual 
two-state noise can experimentally be realized.10 

Finally, the open problem is to obtain the stationary, nonzero probability 
current of the combined, output process x(t); if so, the answer to the open 
problem is in the positive. The insight which the problem presented provides 
is clear: White and symmetric noise might - contrary to common intuition - 
produce a net directed current. 
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Abstract 

The information contained in a scalar time series and its numerical 
derivatives is used to construct a global model for the underlying dynam- 
ical system, using a model transformation presented previously. Here, we 
present some modifications of this method to mitigate the effects of ad- 
ditive noise, test this method by reconstructing global models for known 
chaotic dynamical systems, and compare the dynamical properties of the 
re-constructed and original systems. 

1     Global Modeling by Means of a Transformed System 

The construction of a global dynamical model from measured time series is 
an important challenge in different fields of natural science. Very often the 
underlying physical model of complex systems is not known (e.g., convection 
cells on the surface of the sun). Unlike simple models of data evolution, global 
dynamical models are constructed to capture fundamental physical properties 
of the underlying system. 

On the other hand, in real physical situations, usually only one or a few ob- 
servables can be measured as a function of time with satisfactory precision. 
In such cases, if the underlying system of differential equations is strongly 
coupled, it is sometimes possible to reconstruct the global dynamical proper- 
ties (e.g., dimension, Liapunov exponents, topological information) from scalar 
time series. 

If all state variables of a dynamical system can be measured, the construction 
of a global model based on such data leads to a system of ODEs which can 
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describe the original system very well. In the case of a more realistic situation, 
where only one time series is available, the global model can often be unsat- 
isfactory, due to the problems of model choice and parsimony. In this paper, 
we show how to use a single variable time series instead of Taken's trajectory 
matrix, and construct a global model in terms of a transformed system. Since 
in practice, no a priori knowledge of the original dynamical system is avail- 
able, we compare the original and model properties by integrating the model 
numerically and comparing to the solutions of the original system. We find 
that these systems are usually in good accordance with each other, and they 
are often comparable to the results of constructing a model from the whole set 
of state variables. Unfortunately, at present this method may only be defined 
for systems of dimension three or less. 

To describe this method, we start from a discrete scalar time series of length N 
of some measured physical observable, say (x\, x-i,..., xi, Xi+\,..., x^), whose 
underlying generating system is governed by a dynamical system of the general 
form 

x = ao + (i\X + a>iy + cizz + c^xy + a^xz + agyz + a7x   + a%y   + agz2 , 

y = bo + b\x + b'iy + b-$z + b\xy + b^xz + b$yz + b7x
2 + 68y

2 + baz
2 ,      (1) 

z = Co + c\x + oiy + c3z + c4xy + c^xz + c§yz + c7x
2 + cgy2 + c§z2 , 

where we here restrict ourselves to systems with 3 effective degrees-of-freedom. 
We first try to rewrite system (1) in the form of 

X=x,X=Y,Y=Z,Z=f(X,Y,Z). (2) 

It can be shown that this is not possible in general (Lainscsek, et al.1). However, 
two examples of systems that can be transformed in general are 

x=ao + ci\x + a-2y + ajx2, 

y=b0 + b\x + b-nj + bixy + b5xz + b7x
2 + bsy

2 , (3) 

z=Co + c\x + Coy + c$z + c^xy + c$xz + c%yz + c-jx2 + cgy2 + cgz2 , 

and 

i=cio + a\x + a-2y + a-jx2 . 

y=b0 + bix + b2y + b3z + b4xy + b7x
2 + b8y

2 , (4) 

Z—CQ + c\x + oiy + czz + c^xy + c<$xz + c^yz + c7x'2 + c%y2 + cgz
2 . 
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The function / (X, Y, Z) in the exact case can be estimated by constructing a 
matrix equation: 

with 

Pi 

f(Xi,Yi,Zi)=Piai (5) 

/      1 Y- -M        Y     y2   y3    Y"4    v"5    y6    y7   v       *     V V    y2V 

y2 y3 
XST^    Y^V    y5u   V"2    i_    V v2    y2y2    v"3v2   t^3      i      v V3 fa\ 
i'ti^i'ii^i'ii'i! "TT'i A«ri > Ai ri > Ai ri > ri >"v~' Ai*i > W A; A; 

*      7        '     Y  7     Y27     Y*7    V 7        x    l    Y V 7       «      »        » ^ "TTi^i! "TTJ 
Ai^i, Aj ^ti Ai "U *i^i)     v     ^i'i^i,-7;—, "TT I 

A, Aj Aj Aj       Aj / 

for Eqs. (3) and 

P. — 11   y.  y2  y3  y4  y^  y"  y^ v" v.  v.v.  Y'*V  y3 v  y4v i-[1,Ai,Ai,Ai,Aj,Aj,Aj,Aj,Aj,l',1A1l'11Ai   't,Aj   /j, Aj   ^j, 

X5 \^   \^6 v"  y2   Y v2   y2 v"2   v3 v"2   v* v"2  v3   y v3   y2 v"3 
i ^ijAj ij, rf ,Ajij ,Aj ri ,Aj ri ,Ai ri , ri ,Ajrj ,AJ yi , 

^i jZi,Xi Zi,Xi Zi, X? Zi, Xi Zi, Yi Zi, Xi Yi Zi,Xi Yi Zi, 
(7) 

for Eqs. (4). The terms in Pj are obtained by transforming Eqs. (3) or Eqs. 
(4) into Eqs. (2). The over-determined system (5) for the unknowns at, (N 
equations for 35 unknowns) can be solved in a least-square sense (e.g. by using 
the method of Singular Value Decomposition). 

Using this method we are able to build a dynamical model in the manner of 
Gouesbetr. However, we show that we may mitigate noise effects by calculating 
numerical derivatives from time-delayed estimates. 

In so doing, we finally obtain a transformed model which can be re-transformed 
to the original system (3) or (4) in the case of an exact transformation. In such 
a case a system of 35 equations for 21 unknowns a*, bi,Ci from Eq. (3) have to 
be solved: 

a0 = a2b0c3 - ao&2C3 + ^ - a0b0c6 + S&& - ^p _ 2Ä* + 

2m bnb?c<\ ■   2anti6?C(i _ 2aoaib,cg   .   2flni>ni>4Cg _ 2anft2l>4C9   4nnm tnfcucn   
65                      &5 0265 &5                    1265                    0265 

2an6ii>8C9 .   6anaiii2tisC9 ,   2(inbibscs _ 4anai6sC9 
aibs                    afia a|6s a|i>5 

_  a2bnco ,    ianbnbvca  _ »n^c9   'la^bobecp    .   2an62J>8C9    an6gC9 
1                 65                    bs 0265 «265                  af&5               af&5~ 

a-2 = . . . 
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This is again done by using a least-square procedure. A similar system has to 
be solved for Eqs. (4). 

If one has a time series where the original system is unknown, the transformed 
model in the case of the "wrong" ansatz (e.g. ansatz (6) instead of (7)) could 
give satisfactory results in the sense of invariant dynamical properties. But 
when trying to re-transform such a transformed model, one obtains no solution. 
Therefore, this method can be used to distinguish between different classes of 
original systems (e.g. Eqs. (3) or Eqs. (4)) and it also can be used to find the 
minimum set of ODE's for a given time series. 

The estimated solution is not unique because the 35 equations for the 21 un- 
knowns are under-determined; it can be shown that some of the equations are 
linearly dependent. 

2    Global Modeling of Simulated Systems 

2.1    Lorenz System Without Noise 

We can apply the above method to a simple example. The Lorenz equations3'4 

can be written as 

x- -ax + ay, y=1lx-y -xz, z- -bz + xy, (8) 

where Tl is the bifurcation parameter and er and 6 are constants. 

The numerical experiments (see Lainscsek, et al.1) of computing a transformed 
model and comparing the invariant properties with that of the original time 
series indicate good agreement between the global properties of the vector 
field of the reconstructed dynamical system with that of the original system. 
This agreement is possible because the form of model (rational polynomial)4 

allows recovery of the essential topology of the vector field. In addition, the 
SVD-based hybridization results in a more robust estimation method. 

The re-transformed model is given by: 

x   =    11.1468-10.6650a;-15.53062/-0.0012a;2 

y   =   0.3021-14.9591x-0.37422/ + 0.0256a;2/ 

+0.5652x-z - 0.0600a;2 + 0.0024y2 (9) 

z   =    -7.4430 + 0.9620a; - 1.8031j/ - 2.9667z 

-1.7684a;y - 0.0219xz + 0.0009yz - 0.0644x2 

-0.0056y2 + 0.0052z2 
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This system is compared with the original system by integrating Eqs. (10) (Fig. 
1). The projections to the x,y-, y,z- and x,z-plane in Fig. 1 show the same 

LORENZ; re-tr» «formed model LORENZ; re-tnniformed model LORENZ; rc-t «informed model 

Figure 1: Time evolution and projections of the attractor of the re-transformed model 

structure as the projections of the original Lorenz system to these planes. Also 
the unstable fixed points have the same values as in the original Lorenz System 
(8). These results are generally better than those obtained from methods which 
do not produce a rational polynomial form. 

2.2   Lorenz System With Noise 

We now consider the effects of additive observational noise on our modeling 
procedure. The same procedure as in the former section is applied to the same 
time series x of the Lorenz system with additional noise £. We use the signal- 
to-noise-ratio (SNR), SNR = 10 log10 £jg, which was set to SNR4 = 30; 
SNR2 = 20; SNR3 = 10. With these noise-levels a model in the form of 
Eq. (2) was computed and compared to the original time series by integrating 
the model system (see Fig. 2). Comparing the embedded transformed Lorenz 

lorenz; SNR=30; n = 4; D = 25 k*enz;SNR=20;n=«;D torenz; SNR=10; n = 5; D = 30 

xd+tS W » 

(a) SNR = 30 (b) SNR = 20 (c) SNR = 10 

Figure 2: Integration and embedding of Lorenz models (Eq. (2)) with different noise levels 
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models (see Fig. 2), one can see the following:' at a SNR of SNRi = 30, the 
embedded attractor is similar to the original attractor. With SNR2 = 20, 
the model is even better, but with SNR3 = 10 the model becomes worse. 
This behaviour is symptomatic of the least-squares solution, and can also be 
mitigated using singular value editing. 

The same conclusion can be drawn, if one compares the correlation time in 
the re-constructed phase space between the original and model time series 
(seperation of the two trajectories compared to the amplitudes has to be under 
10 %). This times are for SNRi = 30 : tcorr = 2.03 (about three cycles); 
SNR2 = 20 : tcorr = 2.35; SNR3 = 10 : tcorr = 0.04. 

3     Conclusion 

For dynamical systems denned by certain classes of differential equations, 
methods for global modeling have been developed when only one single vari- 
able time series is available. These methods are based on a transformation of 
the dynamical system to variables given by the time series and its derivatives 
and the re-transformation of the estimated model to the original system. Its 
application on simulated, noise-free time series (tested for the Lorenz system) 
yields good results. In the case of noisy data we modify the method using 
Takens variables and SVD, and find generally good results. 
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TRANSITION TO A FRACTAL ATTRACTOR VIA ON-OFF 
INTERMITTENCY IN A MODEL WITH DICHOTOMOUS 

NOISE 

S.P. KUZNETSOV, P.V. KUPTSOV 
Institute of Radioengineering and Electronics, 

410019, Saratov, Russia 

We consider dynamics of the discrete time model system driven by the dichotomous 
noise. The system has the fractal attractor and we show that the scenario of its 
appearance is an on-off intermittency — recently reported sort of intermittency 
which is typical for systems with multiplicative random parameter. 

Phase transitions in systems with external noise is a subject of many inves- 
tigations. Recently in this context a paradigm of on-off intermittency has been 
suggested 1>2. The intermittency of this new kind is typically demonstrated 
by systems with multiplicative random parameter. This phenomenon may oc- 
curs both in presence of external noise and as a result of interaction between 
subsystems of a complex chaotic system. 

Irwin, Farser, Kapral in Ref.3 and Fräser, Kapral in Ref.4 consider the 
linear system with discrete time forced by dichotomous noise. (Responsible for 
this noise variable switches with some probability between two possible values 
at every time step.) Such system may has a fractal attractor with Cantor's 
structure (Cantor's attractor) at some conditions. Authors of referred articles 
show that the probability distribution generated by the system consists of self 
similar series of peaks and troughs when system's control parameter lies in 
some range. This behavior authors call as a resonance regime. We will call this 
one as IFK-resonances. 

We study in this report the model system with discrete time which demon- 
strates on-off intermittency and IFK-resonances as a scenario of transition to 
a Cantor's attractor. In absence of noise the system is a nonlinear map with 
pitch-fork bifurcation. 

Xn+1 =<n—7f=f=T> I1) 
VT+ 

where f„ is a noisy parameter, £„ = a or b with probability 1/2. The positive 
values a and b we will use as control parameters. The dynamics of the system 
(1) can not cause the change of x sign and the equation is symmetric under 
operation x -¥ (—x). Hence we can consider only a nonnegative values of x. 

244 



245 

The attractor of the system (1) is disposed inside the interval [Xa, Xb\: 

Xa=X(a),   Xb = X(b), 

where 

0, when £ < 1 *(0 = { y/^l, when i > 1. ^ 

The system comes to the boundary points Xa and Xb when n —^ oo if the 
sequence £„ consists of the one repeating symbol a or 6 respectively. 

It is important that the system (1) can be reorganized to a linear form by 
the substitution: 

*» = C-l'\ (3) 

For new variable Cn one gets: 

C„+1=C2(Cn + l) (4) 

Therefore we can use the results of Refs.3,4 when analyzing the system (1). 
In changing the parameters a and b one can observe four specific kinds 

of behavior of the system (1): a) Cantor's attractor; b) regime with IFK- 
resonances; c) on-off intermittency; d) zero point attractor. To illustrate them 
we plot in Fig. 1 the time series of dynamical variable x for all of these cases. 
In Fig. 2 the parameter plane (a, b) is presented with four respective domains 
a)-d). 

The small insertions in Fig. 2 we used to show the structure of an attractor 
of the system (1). Two dimensional phase portraits are plotted with x through 
the horizontal axis and with an artificial variable y on the vertical axis. The 
last one is generated by the map: 

_ / W2> when 6> = a 
yn+1~\(l + yn)/2, when ^„ = 6 W 

The same realizations of fn drive both map (1) and map (5). The map (5) 
is chosen for its attractor to fill everywhere the unit interval with uniform 
distribution. An original attractor of system (1) is a projection of this portrait 
to the horizontal axis. 

Now let us consider the regimes of the system (1) in different domains of 
the plane (a, 6) (Fig. 2). 
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Figure 1: The time series of dynamical variable x of the system (1) in regimes of a) Cantor's 
attractor, b) IFK-resonances, c) on-off intermittency, d) and zero point attractor. 
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3.Ö0 

0.00 
0.00 1.00 2.00 3.00 

Figure 2:   The parameter plane (a,  b) of the system (1).   The domains of four regimes 
are shown: a) Cantor's attractor, b) IFK-resonances, c) on-off intermittency, d) zero point 
attractor. In the insertions two dimensional phase portraits on the dynamical variable plane 

(x, y) are presented (see (1) and (5)). 

a) Domain with Cantor's attractor: 

(l/a)2 + (l/6)2<l. (6) 

In this domain the attractor of linear system (4) is located inside the interval 
[cfc, ca] = [1/(6 - 1), l/(a — 1)] (see (2), (3)). The attractor forms in a such 
way. Let the variable Co belongs to the interval [cb, ca]. After the first iteration 
of (4) it may be found inside the one of two intervals: C\ € [ct, (l/62)ca] or 
Ci £ [(l/a2)ct,, c0]. With every iteration an amount of intervals is duplicated 
and its lengthes decrees by factors 1/a2 or 1/62. The intervals at every step do 
not overlap each other and its summary length is less then (c0 — C(,) because of 
inequality (6). 

Consequently, in the domain a) attractor of the system (4) is a Cantor's 
set with two scales5. The attractor of (1) has the same topological structure. 
It is an image of the Cantor's set under transformation (3). 

b) Domain with IFK-resonances: 

O>1,.6>1,   (1/a)2 + (1/6)2 > 1. (7) 

Here the attractor of the system (4) forms in the similar way as above. But 
now the intervals overlap partially at every time step. As it shown in Refs. ^4, 
the overlapping induces the selfsimilar series of peaks and troughs in the exper- 
imental probability density p(C) (IFK-resonances).   (We can not talk about 
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the invariant density in strict mathematical sense because the problem of its 
existence is not completely solved for today 6.) 

Similar peculiarities of probability density one can observe for the system 
(1). Its empirical distribution p(x) in domain under consideration exhibited in 
Fig. 3a. The specific peaks are seen which correspond to IFK-resonances. In 
Fig. 3b we ploted the respectiv integral distribution m(x) = f£ p(r)dr. 

c) On-off intermittency domain: 

6 > 1,   1/6 < a < 1     or     a > 1,   \/a < b < 1. (8) 

The system (1) in this regime switches abruptly from extended periods of stasis 
to bursts of large variation. Still periods are "laminar'* phases and bursts are 
"turbulent" or better to say "nonlinear" phases (Fig. lc). On the boundary of 
this domain, a = 1/6, the system demonstrates a critical behavior. Power-lows 
realize for laminar phases extension distribution (with exponent -3/2) and for 
growth of mean extension of laminar phase vs. supercritisity (with exponent - 
!)• 

Let us suppose that a < 1, 6 > 1 and make next substitutions in (1): 
xn = exp s„, £n = exp qn. Then we obtain: 

sn+i = sn + qn - In v/'l + exp2sn. (9) 

The attractor's right point of the system (1) comes to the point st = lnX& under 
the substitution and the left one comes to minus infinity (It is seen from (2) 
that now Xa = 0). When variable sn has large negative value, nonlinear part of 
(9) is negligible. Hence, system (1) is in laminar phase and map (9) describes a 
classical one dimensional random walking7. For the domain under consideration 
is valid the inequality |ln6| > |ln<z| and therefore the diffusion in positive 
direction dominates in this phase: with random fluctuations the amplitude of 
x grows. As a result the system enters into a nonlinear phase, s ~ \nXb. Here 
the inverted direction of motion begins to dominate because of nonlinearity 
and it restricts the phase — system returns to a laminar station. This scenario 
repeats again and again. This is a mechanism of on-off intermittency. 

d) Zero point attractor: 

ab < 1 (10) 

Let us suppose that a < b and consider the map (9). Now the inequality 
| In 61 < | In a | is valid and the diffusion in negative direction of s-axis dominates 
every time. Hence, the amplitude of x tends to zero. 
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Figure 3: Empirical probability density obtained numerically for the system (1) in regime of 
IFK-resonances (a) and corresponding integral distribution (b). 
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Thus for considered system one can observes in changing of parameters 
the transition from zero point attractor through on-off intermittency and res- 
onances of Irwin-Fraser-Kapral to the fractal attractor. Therefore all of this 
regimes are the parts of the one picture. A behavior in laminar phases of on-off 
intermittency is governed by universal lows of random walking. Consequently, 
our system may serves as a canonical model for this phenomenon. 

This work is supported by Russian Foundation of Fundamental Investiga- 
tions (grants 95-02-05818, 96-02-00717, 96-02-27298). 
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PROBLEMS OF THE APPLICATION OF MELNHCOV METHOD FOR 
CHAOS FORECAST IN DISSIPATTVE DYNAMICAL SYSTEMS 

YU.A. TSARIN, V.B. RYABOV, D.M. VAVRIV 
Institute of Radio Astronomy, 4 Krasnoznamennaya St. 310002 Kharkov, Ukraine 

The applicability of Melnikov criterion in dynamical systems is studied. The problems of two 
general types are considered: intrinsic applicability of the technique as an analytic tool for the 
study of chaos threshold conditions and technical difficulties in the solution of particular problems, 
especially of higher dimensional ones. The importance of balancing the dissipation value which 
must be small for using the Melnikov method and, at the same time, large enough for making the 
homoclinic structure attracting is discussed. 

1 Introduction 

Dynamical chaos is one of typical manifestations of noisy behavior in many 
physical systems. Although there is a profound difference between chaos, a 
complicated phenomenon with few degrees of freedom, and infinite-dimensional 
noise, which is impossible to describe by a set of several equations, such important 
characteristics of random processes as the power spectrum and autocorrelation 
function are often indistinguishable for the both phenomena. For the last two 
decades, a huge amount of experimental and theoretical evidence has been 
accumulated, evidencing the ubiquity of chaotic phenomena and necessity to take it 
into account in many theoretical problems and for the development of various 

physical devices in applications. 
One of the principal problems which exist in the theory of deterministic chaos 

is to predict its appearance. In other words, given a set of differential equations or a 
map governing the dynamics of a nonlinear system, how to conclude what 
combination of control parameters would lead to a chaotic behavior? In strongly 
nonlinear systems the Melnikov's method is most widely used for finding the chaos 
arising threshold in the control parameter space [1-4]. However, its application for 
the case of weak nonlinearity requires some additional tricks [3, 4]. At the same 
time, weakly nonlinear systems are very important both in applications with small 
degree of nonlinearity and for the case of large values of the nonlinearity 
parameter, where the interaction of modes plays an important role. It should be 
noted, that the necessary condition of the appearance of chaos is the availability of 
more than one oscillatory mode, and the problem of the analysis of chaotic 

251 



252 

dynamics is intimately related to the phenomenon of modes interaction in nonlinear 
systems. Such a study is usually conducted beginning from low levels of 
nonlinearity, with special techniques being used in quasillinear limit. We would 
like also to stress here that, as it has been shown both theoretically and 
experimentally, chaotic behavior appears at any, however small, value of 
nonlinearity parameter 15]. This means that, since there is always some degree of 
nonlinearity in any system, the deterministic chaoticity is an intrinsic property of 
almost any physical system with more than one degree of freedom. 

In the present work we discuss the problems which are typical for the standard 
procedure of applying the Melnikov's criterion to strongly nonlinear systems and 
pay a special attention to some peculiarities characteristic for the weakly nonlinear 
limit. 

2 The Outline of the Melnikov Method 

It is well known that the phenomenon of dynamical chaos consists in local 
instability of phase trajectories and mixing. From this point, special trajectories, 
homoclinic or heteroclinic, are of particular importance, which are considered as 
the main source of complexity in dynamical systems. These trajectories are 
associated with periodic saddle orbits and lie on their invariant manifolds. The 
availability of such orbits guarantees the local stretching and folding of the phase 
flow in its vicinity and is necessary for chaotic instability to appear. It is, however, 
not sufficient, for there is dissipation in the system which prevents the trajectories 
from the global mixing. The Melnikov's criterion gives the threshold value of the 
perturbation which is sufficient for balancing the dissipation with mixing and 
arising of intermingled trajectories. 

Technically, the application of the criterion is as follows. Consider a 
nonautonomous dynamical system 

— = f(x) + eg(x,t) (1) 

which is integrable at e = 0 and possesses a saddle orbit x = X0. In the integrable 
limit the system also has a homo- or heteroclinic trajectory x0(t) which converges 
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to the saddle as time goes to infinity x0(±<») = X0. Then, at s * 0 the condition of 
intersection of the manifolds of the saddle is calculated 

op 

Afro)* jt{*(t-t0))xg{x(t-t0),t)dt = 0. (2) 
-eo 

The existence of solutions of this equation evidences the presence of a homo- or 
heteroclinic structure in the phase space of the perturbed system, and, consequently, 
the appearance of a non trivial dynamics. 

3 Problems of the Method 

Although the method seems to be a universal tool for finding the chaos arising 
conditions, its practical implementation encounters problems, both of fundamental 
nature and the ones related to technical difficulties. We begin with the description 
of fundamental problems and then will briefly sketch the technical ones. 

3.1 Intrinsic Limitations of the Melnikov's Criterion 

The principal drawback of the method is that it gives neither necessary nor 
sufficient condition for the appearance of a chaotic dynamics. On the one hand, 
chaotic trajectories may originate from other saddle-type orbits, coexisting in the 
phase space with the one treated by the Melnikov's method. On the other hand, the 
homoclinic structure predicted by the method may be non attractive and do not 
provide the chaotization of motion. We illustrate these effects by an example of 
quasiperiodically forced Duffing oscillator [3]. Its dynamics in the vicinity of the 
primary resonance is described by the following set of equations 

dU 
— = [ä+ß(t/2 +K2)]^ + u[P2 sin(nT)-8C/] 

^ = [A + p(^2+F2)]t/ + P1 + u[P2cos(fh)-5K] 
(3) 
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where U and V are generalized coordinates, \i is the small parameter. At n = 0 the 
system has a closed separatrix loop shown in Fig.l, and, as \i becomes 
nonvanishing, the Melnikov's method can be used for finding the analytical 
conditions of chaos onset [3]. 

5-rV 

Figure 1: Separatrix loop for the system (3). 

^   i 

Al 

0 

U 

Figure 2: Poincare cross-section for system (3) at 8=1,  ß=-1.54,  A=15.05, P2=1.97, P,=3.75, 
£2=8.4. A1-A3 - coexisting attractors, S1-S4 - period-one saddle points. 
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At a definite combination of control parameters the situation depicted in Fig.2 
occurs, where both shortcomings of the Melnikov approach become clearly seen. In 
Fig.2 two strange attractors A2 and A3 coexist with a single stable periodic orbit 
Al and four unstable saddle ones S1-S4. One can see that neither of chaotic 
attractors coincides with the unstable manifold of the saddle S3 corresponding to 
the point U, of the unperturbed system. That means that Melnikov method can not 
be applied for deriving the conditions of chaotization of motion on the attractors A2 
and A3, because each of them is related to another saddle orbit, SI or S2, which are 
induced by the external force and are absent in the phase space of the unperturbed 
system. There is a homoclinic structure in the phase space which is shown in Fig.3. 
and is associated with the orbit S3 , but it is evidently not attractive. 

0 

-2 

U 
Figure 3: Unstable manifold of the unstable saddle-type orbit S3 from the Fig.2. 

An additional problem which also should be mentioned is the role of 
dissipation. It immediately follows from the Melnikov criterion that the lower is the 
level of dissipation in the system, the smaller is the threshold value of an external 
force resulting in the chaotization of the motion. However, the direct numerical 
experiments indicate that the influence of dissipation is much more complicate. Let 
us demonstrate this by considering the system (3). At zero perturbation, we have an 
integrable system which can not demonstrate chaos. If to introduce an external 
excitation only, the stochastic layers appear in the phase space near unperturbed 
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separatrixes, and their measure grows with the increase in the excitation amplitude 
P2. These layers correspond to the motion near the homoclinic structures which 
appear in accordance with the prediction of the Melnikov method. The introduction 
of arbitrary small dissipation does not destroy the homoclinic structure, but may 
completely deteriorate the stochastic dynamics which needs a stronger dissipation 
to exist. In other words, there exists a threshold in dissipation parameter 5 below 
which chaotic attractors become unstable. The situation is illustrated by the Fig.4, 

n 

Figure 4: Bifurcation diagram of the system (3). Curve 1-first period doubling, 2-second period doubling, 3- 
strange attractor appearance, 4-chaos collapse. 

where the bifurcation diagram of the system (3) illustrates the collapse of one of 
existing strange attractors under the decrease of dissipation. 

3.2 Technical Difficulties 

The problems of this type usually appear when one tries to apply the Melnikov 
method to the study of higher dimensional systems with the number of degrees of 
freedom larger than 1.5. In such cases the dimensionality of the separatrixes 
becomes larger than one and the complexity of the solutions in the unperturbed 
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systems makes the problem substantially more difficult for the analytic solution. 
Apart from the problem of integration, there also exists the difficulty in defining 
the unperturbed part itself. It should be noted that for a particular problem there is 
typically no clear evidence of what terms in the equations must be included into 
the integrable part and which ones should be considered as perturbation. It is 
necessary always keep in mind that simple discarding of the "non essential" terms 
at the initial stage of applying the Melnikov method may result in either the 

disappearance of the saddle at comparatively small values of the perturbation or in 
practical impossibility of the analytic integration of the solution on the separatrix 
with subsequent calculation of the integral (2). 

Let us consider, for example the following system, which describes the 
dynamics of three interacting modes with unidirectional action of one of the modes 
on the remaining two. 

— = -5,a-fcIftsin(\|/-<p)-/'sin\|/ 
dt 

—-=-A+ßa2-fc,— cos(\|/-cp) cosvj/ 
dt a a (4) 

— = -52b+k2a sin(\j/ - q>) 

-^ = - A + u - k2 |-cos(v|/ - <p) 
ax b 

where a and b are amplitudes of two driven modes, and P is the amplitude of 
external excitation. The phase space of this system is four-dimensional, and if to 
consider the dissipation 8j and external force P as the perturbation, we obtain the 
integrable Hamiltonian system at the initial stage of application of the Melnikov 
method. The corresponding solution on the separatrix has the form (5), if to 

introduce the new variables c = a2\I = a2 +b2;Q = \j/ -<p and parameters p ,r,and q 

Co) 
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q cosb{ jp(x-x0j)-r 

9*(T) = arctan 
-qphwh(Jp(t-v0)) 

k^jc0(lQ-c0)[qcosh(^(x - x0))-r) +^(rcosh(V?(x-T0))-g) 

e*(t)=V(i)+e0+ -A1+ßc0 + *|Sz5 

+3 arctan + arctan 

(*-*o) + 

gctf-fi^'Klp-rco 

ff 

(5) 

The calculation of Melnikov integral for this system is a cumbersome problem and 
we do not present here the final formula which is too large. 

4 Peculiarities of Quasilinear Systems 

The main difference between quasilinear and all other systems consists in the 
increased complexity of the integration of trajectories in the phase space due to the 
necessity to take into account several interacting modes in the analysis of chaotic 
regimes. This means that in such systems chaos can arise only as a result of 
interaction of several resonances which may coexist in arbitrarily large numbers at 
the same value of control parameters. There appears the problem of choice of the 
particular resonance, responsible for the formation of a given strange attractor, 
which is in essence the problem of separating the integrable part of the system [6]. 
In the simplest case of an oscillator with two frequency excitation (Eq. 3) the 
conditions for the formation of homoclinic structures obtained by the Melnikov 
technique essentially depend upon which of the spectral components in the external 
force is considered as perturbation, i.e. upon the initial choice of the governing 
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resonance. This problem, being well defined in the regions of control parameter 
space where only one resonant condition is met, becomes non trivial in the areas 

where resonances overlap [5]. 

5 Discussion of Possible Solution 

Melnikov's approach proposes one of the ways for finding the analytic criteria of 
chaos arising. The present work is devoted to the discussion of some aspects 
resulting from its nonuniversality and the necessity to use additional tools for the 
solution of the pointed out problem. We consider two types of difficulties: intrinsic 
problems of the method itself and technical ones resulting from the complexity of 
underlying sets of differential equations. 

The solutions of the technical difficulties seems can be overcome in the 
majority of situations by direct numerical calculation of Melnikov integrals. This, 
however, may lead to the results which are not substantially different from direct 
numerical integration of the initial differential equations. 

The intrinsic limitations of the method itself constitute much more profound 
problem, and, up to our knowledge, the solution does not exist so far. The only way 
which seems natural for conducting the Melnikov type analysis is the detailed 
investigation of all the resonances present in the system, combined with other 
known techniques, such as the methods of averaging or harmonic balance. This 
study needs an original approach to be developed for every system investigated and 
there is no evident way for finding a universal technique. 
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The scope of this short review is mostly restricted to fluctuation spectroscopy of ion 
currents through biological membranes. Examining membrane conductance 
fluctuations that represent the basic level of 1/f noise generation in biology, we show 
that this noise is not some inherent property of ion transport; rather, it is generated by 
independent discrete 'fluctuators'. Ion channels, nanometer-scale protein structures 
embedded in the membrane lipid matrix, fluctuate between open and closed states 
producing 1/f noise, while currents through their open steady states are remarkably 
free of this type of noise. Existing theories do not offer a satisfactory explanation of 
the phenomenological picture. 

1       Introduction 

Living organisms are nonequilibrium, nonstationary systems with highly 
developed hierarchical structures whose multiple subsystems are interconnected 
through complex mechanical, chemical, and electrical links. Electrical signals 
produced by these subsystems greatly vary both in amplitudes and in 
characteristic time scales. In this way, the biological complexity allows the 
hierarchy of characteristic times necessary for the generation of noise with 1/f 
type spectra. The dynamic activity of even a relatively simple biological object is 
a result of many kinetic processes at different 'layers of motion' related to each 
other by scaling factors1. As recently reviewed by Musha and Yamamoto2, there 
is a substantial body of data on 1/f-like fluctuations in a wide range of biological 
systems spanning from cellular to behavioral levels. 

The generating mechanisms of these fluctuations can be different in each 
case, depending on a particular system organization and its place in the organism 
hierarchy. For example, computer simulations3'4 show that artificial neuron 
networks are already complex enough to generate 1/f noise by themselves.   On 
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the other hand, the temporal deviations in the heartbeat rate of a healthy human 
are mostly related to feedback interactions between the natural cardiac 
pacemaker (the sinoatrial node) and the central nervous system — recent studies 
indicate that the heartbeat rate in recipients of heart transplants is much more 
stable5. 

In general, 1/f (flicker) noise seems to be present at every level where it 
has been looked for, from electroencephalograms of whole human brain6 to 
currents through myelinated axons7 isolated from individual nerve cells. The next 
logical question is: what is the most basic level of 1/f noise generation in biology, 
or, in other words, what is the simplest biological object still capable of 1/f noise 
generation? 

2        Biological membranes as a source of 1/f noise 

Biological membranes, that define boundaries of cells and control voltage 
gradients and ion fluxes between the cells, seem to represent this basic level. 
Many of them generate reproducible 1/f noise even under steady-state conditions. 
The first detailed measurements of flicker noise from a single node of Ranvier of 
an isolated neuronal axon were reported by Derksen and Verveen thirty years 
ago8. The structure of axons is relatively simple in comparison to the whole 
neuron (axons do not contain nuclei and other cell machinery); in addition, a 
three-terminal electrode arrangement with a correlation analysis of the resulting 
signals was used in these measurements that excluded possible contributions from 
electrodes or internode axoplasm. The authors were able to conclude that the 1/f 
noise was mostly related to the flux of potassium ions through the axon 
membrane. 

Since then techniques of noise measurements on biological preparations 
have been further improved. For example, a difference procedure, which permits 
compensation of deterministic "drifts" in currents from biological preparations, 
was developed. As a result, the magnitude of 1/f-type spectral estimates reported 
for electrical noise of nerve membranes fell by orders of magnitude and 
Lorentzian noise components were readily measured (see reviews9"15). 
Nevertheless, the results of many recent experiments show that the phenomenon 
of membrane 1/f noise does exist and cannot be considered as some artifact 
from nonoptimal data processing or poor sample preparation. 
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Figure 1: A schematic diagram of a protein ion 
channel in a membrane lipid matrix. 

3       Ion channels as elementary fluctuators 

Ion channels are proteins of about 10 nm size that have a special polar pathway 
for ion conduction16.   In biological membranes or when inserted in model lipid 
films (5 nm thick planar structures), 
ion channels form conductive sites 
(Fig. 1) whose properties are defined 
not only by the proteins themselves, 
but also by their interactions with 
surrounding lipids.     They  switch 
randomly       between       different 
conducting states with dynamics that 
depend   on   the    cell   functional 
parameters. 

It was shown that 1/f noise in 
membrane current or voltage can be 
generated by artificial systems of 
planar lipid bilayer membranes with 
incorporated channel-forming compounds17"21. In a pioneering study Sauve and 
Bamberg used a chemically dimerized form of the popular polypeptide channel- 
former, gramicidin A. Regular, monomeric gramicidin A incorporated into a lipid 
bilayer generates noise with a Lorentzian type power spectrum reflecting the 
association-dissociation reaction of ion channel formation22. In contrast to this, 
the dimerized analog, where association was stabilized by a covalent link, 
exhibited clear 1/f noise behavior over several decades of frequency. 
Comparison with the results obtained for large aqueous pores and porous 
synthetic membranes23"25 led authors to the conclusion that 1/f noise in ion 
channel currents was a general phenomenon inherent to ion transport . 

Several chemically dimerized gramicidin A analogs with differing linking 
chain lengths were used to study the effects of membrane lipid composition on 1/f 
noise18"20. It was found that 1/f noise intensity was very sensitive to the lipids 
used for membrane formation. For example, with other conditions similar, the 
power spectral density of the noise from the dimerized analogs in 
glycerolmonooleate/cholesterol membranes was 30 times higher than m 
dioleoyllecithin/cholesterol membranes. In all cases the spectral density was 
proportional to the number of channels over at least a hundred-fold increase m 
their density in the membrane. This indicates that ion channels act as 
independent conductance fluctuators. 



266 

Lipid Mayers in experiments reported in papers17"21 were formed with the 
so-called paint-brush technique26 which yields membranes with high residual 
content of nonpolar solvents27. In 
Fig.2 we present results of noise 
measurements for the "dry" 
membranes, formed using the 
monolayer opposition technique27. 
Monolayers were prepared from L- 
a-diphytanoyl lecithin solution in n- 
pentane. A dimerized gramicidin 
analog3, succinyl-bis-desformyl 
gramicidin A, was added to the 
membrane-bathing aqueous solution 
(IM NaCl) to produce ion channels. 
The measurements were taken about 
1 hour after the membrane 
formation, to allow for the 
equilibration between polypeptide in 
aqueous solution and in the membrane 
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Figure  2:   The  spectral  density  of bilayer 
current noise (10"28A2/Hz) vs. frequency (Hz). 

    It is seen that as the transmembrane 
voltage is mcreased, 1/f noise emerges from the equilibrium noise background. 
The noise intensity (normalized to membrane conductance and voltage) is several 
times smaller than the lowest one reported in references17"20, thus once again 
demonstrating that the parameters of the lipid matrix, that hosts ion channels, 
are crucially important. 

4       Noise of the current through an open channel 

Studies performed at the level of a single ion channel give unique 
information about the mechanisms of noise generation. The possibility that ion 
transport through a permanently open ion channel is a source of 1/f noise was 
tested experimentally18"19 in the following manner. If ion channels act as 
independent fluctuators, then, given the intensity of 1/f noise in a multichannel 
membrane, it is easy to calculate the root-mean-square current fluctuation 
expected from a single channel and compare it to the actual current record  The 

Succinyl-bis-gramicidin A is a generous gift by Larissa A. Fonina of the Shemyakin Institute 
of Bioorgarac Chemistry, Moscow, Russia. 
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number of channels in a particular experiment can be determined as a ratio of the 
mean current through the multichannel membrane, (/), and the mean current 
through a single channel, (/'}. The mean-square current fluctuation expected from 
a single channel is: 

(Si)2 

fh 

g]ww, (i) 

// 

MNMM 

2pA 

jUHHiKMiM.XMiimliiimM     2jkSif) 

 11 

where Sj(f) is power spectral density of 1/f noise measured from the 
multichannel membrane, _//, is the high-frequency cut-off used in the single 
channel recording to be analyzed, and fi is the low-frequency limit that can be 
estimated from the overall time of single channel observation, t0, as 
fl — \l 27tt0. The (i) I (I) term represents the inverse number of simultaneously 
open channels. 

The comparison of this calculation and a single-channel recording obtained 
from glycerol-monooleate/cholesterol membranes in 1 M KC1 at 100 mV 
transmembrane potential is shown in 
Fig. 3 (adapted from references18'19). 
It is seen that the noise level 
calculated assuming the 1/f noise is 
due only to the current fluctuations 
of an open channel, is significantly 
higher than the observed level. It 
means that 1/f noise in the ion flow 
through a permanently open channel 
(if it exists at all) can not account for 
1/f noise in the multichannel 
membrane. 

In fact, currents through permanently open ion channels are free from 1/f 
noise to a high degree of accuracy28,29. The level of flicker noise is so low that 
fluctuation spectroscopy of ion currents through open channels turns out to be a 
helpful structural and kinetic tool in ion channel biophysics30"32. The conclusion 
is that the 1/f noise measured in biological membranes is not an inherent 
property of ion transport. Rather, this type of noise is produced by fluctuator 
dynamics, that is, by random switching of the channels between their different 
conducting states. 

2 sec 

Figure 3: Noise of an open ion channel in 
comparison with the prediction of Eq. 1. 
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5       Theoretical approaches 

Theories developed so far to approach  1/f noise generation in ion 
conducting membranes can be divided into three main groups: 

5.1 Electrochemical relaxation/diffusion models33,34 (see also review35 for more 
references). These models are based on the effects of the type of diffusion 
polarization or spherical influx into a sink that give rise to l/t1/2 kinetics for ion 
transport. Appealing as they are, they do not account for the main experimental 
observations. In particular, high-resolution single channel recordings do not show 
relaxation tails at the opening/closing pulses; currents through permanently open 
channels are remarkably free from 1/f noise; membrane lipid composition plays a 
profound role in noise generation (see above). 

5.2 Models of channel-lipid interactions36"38. Here, the interaction between ion 
channels and membrane lipids is postulated in such a way that the orientation of 
hydrocarbon chains of the neighboring lipids influences channel transport 
properties. The local membrane conductance is proposed to be linearly related to 
fluctuations in the 'hydrocarbon chain director' without specifying a particular 
mechanism36 or in the sense of a time-dependent average by assuming that ion 
channel remains open for only a short time, smaller than 10^ seconds37, and that 
channel formation is coupled to the hydrocarbon chain orientation. Though these 
models address the important issue of the role of the lipid matrix in 1/f noise 
generation, unfortunately, in addition to some mathematical difficulties38, they are 
in disagreement with recent experimental data. The requirement for conductance 
of ion channels to be linearly related to a fluctuating continuous parameter - 
directly or through fast dynamics - is not consistent with single-channel data. 
Indeed, single-channel current measurements are usually done with a time 
resolution that is poorer than 10^ s. It means that, in principle, the channel record 
of the kind shown in Fig.3 can be comprised of a succession of "unresolved" 
single-channel events; but, if the assumption of channel formation coupled to 
some fluctuating continuous parameter were true, the channel record would 
exhibit substantial fluctuations. Again, experiments28,29 show that 1/f noise of a 
single open channel (or what is perceived to be a single channel) is virtually 
nonexistent. 

5.3 Fractal models of channel-forming proteins39"42. Protein structures are 
fractal at least in two ways - in terms of protein backbone sequence and in terms 
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of surface dimension42. As an alternative to simple Markov models, these 
approaches explore the idea that proteins exist in many conformational substates 
that are kinetically related to each other in a complicated way. Such complexity 
gives broad distributions of activation energy barriers, or time-dependent energy 
barriers, for transitions between open and closed states of a channel. 
Nonexponential kinetics for long-term conductance relaxation and fluctuations 
then naturally follow. These structural and dynamic interpretations are based on 
many different observations made on globular proteins. Fractal models are also 
in agreement with at least some of high-resolution single-channel recordings39, 
though the generality of this issue has been questioned43. While the existence of 
complex dynamics in complex protein molecules seems quite plausible, the 
predictive power of this approach remains unclear. Experiments show that the 
complex dynamics, i.e., 1/f noise, can be obtained from the simplest channel- 
inducing polypeptides17"20 and polyenes21. What is more, these dynamics are very 
sensitive to the composition18"20 and the method of formation of lipid bilayers 
(this paper). 

6       Random switching: 'weighted diffusion' model 

As we have argued in the preceding section, there is no satisfactory explanation 
of membrane 1/f noise at present. Some of the theoretical approaches discussed 
above seem to be potentially useful, but before they can be tested even on a 
qualitative level, they should be brought in agreement with the modern 
experimental findings. 

Interpretations of 1/f noise as a result of summation of several simple 
relaxation processes with Lorentzian spectra require the assumption of uniform 
or, at least, broad distributions of activation energies for ion channel open/closed 
transitions. For ion channels, the situation is probably even more challenging 
than that in solid state physics. For example, in the case of Lorentzians with 
exponentially distributed corner frequencies44, the mechanism of activation 
energy broadening should be so 'delicate' as not to distort the open/closed 
channel equilibrium that defines the Lorentzian amplitudes. 

As one of the outcomes, the search for alternatives to uniform activation 
energy distributions has led to the 'weighted diffusion' approach45"49. Free, 
unbiased diffusion of a particle with a spatial weighting function assigned to its 
instantaneous (and varying in time) position constitutes the essence of these 
models.  In this way they are different from the recently described50 mechanism 
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of noise generation from the linear diffusion equation, where the system is driven 
externally by white noise boundary conditions. Analytical45^17'49 and computer 
simulation48 methods showed a number of different possibilities for obtaining 
flicker45,47"19, 'universal' diffusional46, and simple Lorentzian49 noise from the 
weighted diffusion approach. 

In what follows we consider yet another unexplored option. To visualize 
the model, imagine a single ion channel undergoing free two-dimensional 
diffusion in the plane of a membrane. The ion channel is always fully open unless 
it diffuses into some 'special' areas of the membrane where it is closed (local 
membrane properties of 'special' areas trigger its transition to the closed 
conformation). Our computer simulations51 show that a variety of random 
profiles for the 'special' areas generate time-invariant noises with 1/fa power 
spectra. 

Surprisingly, a very simple and perhaps even physically plausible profile 
(the projection of a random polymer coil on the membrane surface) gives a = 
1.02+0.02.  The profile, a particular example of which is presented in Fig. 4, is 

10 100 

Figure 4: The profile generated by 
Brownian walkers for weighted diffusion 
simulations. 

Figure 5: Spectral density of 'channel 
noise' obtained from weighted diffusion 
simulations. 

constructed as an overlapping white traces of five random Brownian walkers 
(drunken ants) starting their trips in the center of 150 by 150 lattice. A channel 
does not conduct in the white areas. The spectra of the 'ion channel current' 
diffusing on such a lattice are shown in Fig. 5.  Periodic or reflecting boundary 
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conditions were used in 
simulations, no systematic 
difference was detected. Each 
spectrum represents not only 
new 'channel' runs but also a 
new set of Brownian walkers' 
traces. 'Single-channel' records 
intended to illustrate self- 
simularity at different time scales 
are shown in Fig. 6. A small- 
amplitude white noise is added to 
the records to enhance their 
likeness to real data obtained in 
single-channel experiments. 

Computer simulations 
were checked and calibrated 
using a number of spatial 
weighting functions for which 
analytical solutions are readily 
available. For example, black 
and white stripes generated a 
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Figure 6: Simulated single-channel recordings 
at three time scales differing by a factor of 7. 

'universal' diffusional 1/f m behavior at high frequencies46; a sine-wave profile 
gave a pure Lorentzian spectra with corner frequencies that were in excellent 
agreement with the straightforward calculations49. 

Conclusions 

We regard biological membranes as the 'basic' biological level of 1/f noise 
generation. Together with ion-transporting protein structures embedded in their 
lipid matrix, they represent the simplest biological objects still producing this type 
of noiseb. The main points of this short review may be summarized as follows: 

In some sense a power-law scaling recently found for DNA base sequences " may be 
considered to be the most fundamental level of biological 1/f fluctuations. It should be kept in 
mind, however, that DNA reflects the enormous complexity of the whole organism, so it 
should be regarded as a very complex system falling in the category considered by West and 
Shlesinger1. 



272 

1/f noise in biological membranes is not a fundamental (inherent) feature of 
ion transport. 
1/f noise is generated by discrete fluctuators — ion-transporting protein 
structures (channels) randomly switching between different conductance 
states. 
Complex dynamics of these structures are not yet completely understood. 
However, we demonstrate that the dynamics are highly sensitive to the 
membrane  lipid matrix  (its  composition  and the  membrane  formation 
technique); we also emphasize the potential capacity of 'weighted' diffusion in 
1/f noise description. 
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The mechanisms of associative memory with enhanced storage capacity occurring 
in neural networks with non monotone neurons generate interesting questions for 
artificial intelligence and neuroscience. The questions addressed in this paper focus 
on the Hopfield energy landscape and stability of non monotone neuron networks, 
the bifurcation diagram approach of fixed point attractor multiplication, the bio- 
physical relevance of these types of neurons and the noise induced effects. 

1    Introduction 

In the last two decades a lot of attention has been given to the emergence of 
"collective phenomena" in a variety of relatively simple systems [1-5] mimicking 
the brain's neuronal networks. There are several reasons which motivate the 
investigation of memory storage properties of such networks. These include 
the impressive increase in the computer power and speed on one hand, and 
the developments in the theoretical understanding of neural phenomena which 
attempt to narrow the gap between neural computing and neurophysiology 
or neuropsychology on the other hand. In this regard the understanding of 
storage capacity mechanisms involved in the neural computing seem to be 
of wide interest. The associative memories with enhanced storage capacity 
occurring in neural networks with non monotone neurons will be discussed in 

this paper. 
One of the most essential part of the neural network is the neural cell, 

commonly called "neuron". This is a complex nonlinear system [6,7] which do 
the processing of neural activity. It can be represented by simplified elements 
(binary, analog, nonlinear or integrate and fire neurons). In this paper we deal 
with the networks of interconnected elements modeled by analog neurons [5]. 
The behavior of the analog neuron is given by an input-output function called 
transfer function (fig.l.)- The synapse function is modeled by a modifiable 
weight (coupling) associated with each connection. Each neuron converts the 
pattern of incoming activities into a single outgoing activity to other units. 
It performs this conversion in two stages: first, it multiplies each incoming 
activity by the weight of the connection and adds together all these weighted 
inputs to get a quantity called "total input", then, the neuron uses an input- 
output function that transforms the "total input" into the outgoing activity. 
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The weights are modified according to a learning rule. In our case, the Heb- 
bian rule has the well known interpretation: if two connected neurons are 
activated at a given moment, the connection between them is reinforced. In 
all other cases the connection is not modified. The neural network models of 
the associative memory are dynamical systems with associated attractors to 
the cognitive events. An associative memory is a content addressable memory 
in which different input patterns become associated to one another [4]. The 
memories are defined as dynamically stable attractors and the retrieval (recol- 
lection) process as a down hill motion in the energy landscape [4,5], the energy 
function playing the role of a Lyapunov function. 

In 1990 Morita et al. [8] have introduced an interesting model in which 
the elements of the network obey a non monotone input-output relation rather 
than a conventional sigmoid one. The associative memory of these systems 
have some remarkable storage properties [8-16], such as an enhanced storage 
capacity, an improved memory attractor convergence which reduce the spuri- 
ous attractors and a rich diversity in dynamical behavior ranging from fixed 
point attractors to chaotic dynamics. Another associative model with enhanced 
storage capacity and improved convergence was proposed by Opris [17]. The 
high storage capacity in this case is enabled by the self-consistent noise of the 
competing patterns. 

2    Solved Aspects 

Let us consider some solved aspects of associative memories exhibiting an en- 
hanced storage capacity. The first one deals with the non monotone neurody- 
namics, conjectured by Morita [8-10]. He imagined his partial reversed method 
as an algorithm to improve the recollection dynamics based on the fact that 
"thermal noise" avoids the local minima of the energy and get the network state 
into stable attractors. The algorithm of the partial reversed method comprises 
two steps at each stage: in the first step the network evolves according to a 
conventional dynamics and in the second step the outputs of some neurons are 
reversed. Numerical experiments have shown that: 

a) the critical overlap is smaller than that of conventional dynamics, which 
means that the recollection ability of the network is raised; 

b) the number of time steps required to complete the recollection process is 
decreased; 

c) the storage capacity is enhanced compared with that of the conventional 
case; 
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d) the noise variance is reduced after the second step. 

The non monotone gain function introduced by Morita et al.[9,10] (fig.l), based 
on their partial reversed algorithm can be rewritten as a product between the 
ordinary sigmoid function and a function resembling the 'Mexican hat' shape 
[17]. This way of expressing the input-output function is showing us that the 
second function plays an important role in the regulatory mechanism of the 
global activity of the network [28]. 

The absolute storage capacity of the associative memory with non mono- 
tone neurons was analytically derived by Kobayashi [14] following the tech- 
niques of Gardner [18]. The maximum value of this parameter is around 10 for 
an input threshold of h= 1.22. Comparing these results with those of Gardner, 
a five times enhancement in the storage capacity, given by the non monotone 
conjecture, for well suited values of input, is quite exciting. After the matching 
between Gardner's model [18] and those for analog networks [9,11,15,16], as 
it was expected, the storage capacity can take values around 0.7 for a con- 
tinuous time dynamics. These results have already been obtained by Shiino 
and Fukai[16], and by Yoshizawa et al.[10]. The discrete time dynamics gave 
lower performances also to Morita [8,9] for his partial reversed method. By 
taking the equilibrium limit of the neurodynamics recursion relations we find 
an enhanced memory capacity of 0.22 [11-13], compared with the conventional 
monotonic one [2,3] of 0.138. 

Two methods of investigation the retrieval process in the general case are 
mentioned here. The first one is a generalization of the Amari-Maginu neu- 
rodynamics[20]. It employs the signal-to-noise ratio analysis [11-13,20], and 
applies to any analog neural network. This theory was extended further to 
the non monotone neuron network. The phase diagram of storage capacity 
plotted versus input threshold, regarded as non monotonicity parameter ev- 
idences various retrieval regimes. The results have been compared with the 
spin-glass variant of Little-Hopfield model [21] and checked by Monte Carlo 
simulations[13]. The number of neurons used in the simulations were 5000, 
7000 and 9000. The second investigation considers a self-consistent signal to 
noise ratio method [17,18], and takes into account the fatigue effect of the neu- 
ron [18]. A discrete time master equation framework[17] has been used to 
carry out the analysis. We note that in the low temperature limit and fatigue 
absence, for a sigmoid transfer function, the storage capacity approaches 1. 
Also, we have plotted the phase diagrams showing first and second type phase 
transitions. All these schemes have been imagined for any general odd input- 
output function. 
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3      Unsolved Aspects 

3.1 The mechanism of storage capacity 

The corresponding Hopfield energy landscape. The corresponding Hopfield en- 
ergy landscape [4] of non monotone neural network is very difficult to be de- 
fined; this happens because the non monotone input-output function does not 
have an inverse. If this difficulty can be avoided, then the energy landscape 
should exhibit more global minima for memory attractors, and less meta stable 
states for spurious memories, as it has been pointed out by Morita[8,9]. What 
would happen if the non monotone behavior of neurons will be implemented in 
an Ising-like neural network?. It is difficult to say, because the analysis can be 
done only numerically. There will probably be also some interpretation obsta- 
cles, but in this way we probably can get the corresponding global minima of 
the energy landscape, etc., because the theoretical framework is well known. 

The bifurcation diagram approach. If we choose 'h' from fig.2, as control param- 
eter one can characterize the graded change from monotone to nonmonotone 
behavior. By plotting the number of global minima versus control parameter 
'h' we expect to get a bifurcation diagram showing thus the increase of fixed 
point attractors (memories). The multiplication of fixed point attractors occurs 
when one pass from the sigmoid type of input-output function of the neuron to 
the nonmonotone one. This being a nonlinear phenomenon it is expected that 
the multiplication takes place through a Feigenbaum-like bifurcation scenario 
[6]. The multiplication number being around 5, may confirm this hypothesis. 
If the superpositions of many attractors together with the static noise effects 
and chaos regims are taken into account, this may be a valid idea. In order 
to perform it we need to find a global minimum and see if this splits into two 
or more minima. If this happens we are very near the answer to our question. 
Anyway, an overlap bifurcation diagram [28] will certainly give some good 
insights as Bolle et all. [28,29] already reported. 

3.2 The stability of neural networks with non monotone neurons 

A Lyapunov function or a Hopfield type Lyapunov function requires the inverse 
of input-output function [5]. As far as I know, this is very difficult to be 
defined and it was already mentioned (because the non monotone input-output 
function does not have an inverse). But if we can reconsider this point in 
the framework of nonlinear theory as it was suggested by Aoyagy[22], which 
have built a Lyapunov function for a nonlinear model of Van der Pol coupled 
oscillators associative memory, then it may be a way. The paradox which arises 
here is that the storage capacity of coupled nonlinear oscillator neural network 
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is much less than that of Hopfield model. The stability of neural networks 
with non monotone neurons is a not yet answered question, mainly because 
the dynamics is so rich. 

3.3 Biophysical relevance for non monotone neurons 

The answer to this question is partially given by recent experiments from cat 
auditory cortex in which non monotone firing rate of neurons in response to 
level stimulus has been recorded[30]. These experiments also points to the cor- 
relation between non monotone firing rate and a lateral inhibition mechanism. 
The electro-neurophysiology of neuronal membrane gives us additional insight 
by evidencing various ionic currents which -exhibit nonlinear dependence on 
biophysical variables; among these effects can be mentioned those that mod- 
ulates the firing activity, yielding thus a non monotone firing rate. In this 
respect Horikawa [23] has shown that two coupled FitzHugh-Nagumo neurons 
exhibit non monotone firing rate. Abbott [7] has already shown that the phys- 
iological neuron model of Hodgkin and Huxley preserves some of the nonlinear 
features of FitzHugh-Nagumo neuron [24]. Extending this model, Hindmarsh 
and Rose[25] got a bursting neuron model which mimics the firing of real neu- 
ron from thalamus [26]. A stochastic nonlinear neuron model [27] may also 
exhibit some non monotone firing rate. Finally, I would like to emphasize that 
the non monotone like behavior of the neurons may be considered as an "effect 
of regulatory mechanism" of the global activity in the network[28]. 

3.4 Stochastic neural network with non monotone neurons 

If we add a noise term in the dynamics equation we get a stochastic neural 
network model with non monotone neurons. Usually the noise contributes to 
the decreasing of storage properties but there may arise some noise induced 
effects. A clear cut answer cannot be given for the same reason -the missing of 
Lyapunov function- required as energy function by the Fokker-Planck equation 
of the network. 

4    Conclusion 

It is not completely clear what the mechanism behind this memory enhance- 
ment is, however, I have only highlighted few possible keys to solve this ques- 
tion. As I already outlined, some of them yield to paradoxes. The nonlinear 
approach based on bifurcation diagrams seem to catch some of this rich dynam- 
ical behavior at both levels: neuron and network.The non monotone neuron 
approach evidences also a relationship between local and global properties of 
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neural ensemble. Finally, it has to be mentioned the noise induced effects 
which may play an important role in such complex systems. The answer to 
the questions raised by non monotone input-output function seems to be use- 
ful not only from the point of view of artificial intelligence but also may give 
a clue for neurophysiological investigations based on simultaneous multi-unit 
recording. 
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Fig. 1     The non monotone transfer function. 
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Fig. 2    The storage capacity versus non monotonicity. 
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Random telegraph voltages in high-Te superconducting films have been investi- 
gated experimentally. The mechanism laying behind the two-level fluctuations in 
granular films is well understood. Plausible models have been proposed to ex- 
plain the experimental observations of telegraph voltages in oriented and epitaxial 
high-Te films in the current induced dissipative state only. The noise seen in the 
presence of applied magnetic field still awaits an explication. 

1 Introduction 

High temperatures of operation, combined with strong anisotropy and rela- 
tively low pinning energies of high critical temperature superconducting (HTSC) 
materials result in pronounced magnetic flux noise. Voltage noise is generally 
traced back to an indirect processes involving the fluctuator mechanism gov- 
erning the dynamics of random flux processes and the detector mechanism 
coupling these fluctuations to the observable voltages. 

The fluctuating component of a voltage drop across dc current biased 
HTSC samples frequently takes form of bias and magnetic field dependent 
random telegraph voltage signals (RTSf. In this paper we discuss the experi- 
mental aspects of random telegraph noise manifestations in HTSC thin films. 
We present the events that we well understand2'3-4'5'6, followed by the descrip- 
tion of the events that we think we understand, and concluded with the RTS 
aspects that constitute for us the Unsolved Problems of Noise in HTSC. 

2 What we see experimentally. 

In the experiments we are measuring the fluctuations of a voltage developing 
across dc current biased HTSC samples. We have detected voltage telegraph 
fluctuations with switching rates ranging from mHz up to MHz frequencies, 
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in various HTSC systems possessing different geometrical arrangements and 
structural properties. The RTS events discussed in this paper disappear at 
temperatures exceeding the sample critical temperature. This fact enables one 
to univocally associate RTS generation with an exclusively superconducting 
mechanisms. The observed events are thermally activated in the entire tem- 
perature range of our experiments, from Tc down to 4.2 K. 

The fingerprints of random telegraph voltage noise in HTSC are strong 
and characteristic dependencies of the RTS waveform on bias conditions3'6. 
The most puzzling feature of RTS manifestations in HTSC is however, their 
appearance in large superconducting samples. HTSC telegraph noise is clearly 
associated with spatially extended macroscopic two-level fluctuator possessing 
dimensions comparable with a sample size 6. 

3 What we understand. 

Paradoxically, we understand best the RTS signals appearing in the system 
that is most complicated, i.e., in a disordered granular HTSC sample. In the 
following we shall discuss only in brief the RTS events in granular systems. For 
the detailed description we guide readers to our previously published papers. 

We ascribe RTS voltages switching at UHF rates in granular films' to the 
interrupted random walk of vortices5. Generation of low frequency RTS in gran- 
ular films involves thermally activated jumps of flux lines that convert into ob- 
servable voltages within a current biased intrinsic dc quantum interferometer4. 
The switching rate of is controlled by a stress imposed on the pinning sites by 
a screening current circulating in an itragranular loop containing a Josephson 
junction biased by the current flow3. 

4 What we think we understand. 

Despite numerous experimental observations of macroscopic RTS voltages in 
oriented and epitaxial HTSC films we are still unable to suggest a reliable 
physical mechanism that would explain the amplitude and switching rates of 
these events. We observe a markedly different noise behavior in the absence 
and in the presence of weak perpendicular magnetic field. Shown in Fig.l is 
the dependence of RTS amplitude on current flow, measured at 77 K at zero 
applied field. The linear increase of RTS amplitudes with increasing current, 
symmetric with respect to the direction of the current flow, points out to a 
mechanism consisting in resistance fluctuations converted into RTS voltage by 
a dc current flow. Observe that in the simplest case of flux-flow dissipation the 
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change AJV in the number of flowing vortices changes the flux-flow resistance 

Rf = 
WTj 

N- 
$2 

wrf (1) 

(where 77 is the viscosity coefficient, $0 the flux quantum, N the total number 
of flowing vortices, w the width, and / the length of the strip), by AR <x AN, 
and produces a voltage signal with an amplitude AV oc AN. The correspond- 
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Figure 1: The dependence of telegraph noise amplitude on current flow. 

ing experimental dependencies of average RTS lifetimes in up and down RTS 
voltage states on current flow are shown in Fig. 2. For thermally activated 
RTS switching the average lifetime, in the first order approximation, is 

r = Toexp m- Toexp m exp 
( I dU(I)\ 
\kT   dl   ) (2) 

Thus a plot in Fig. 2, shows directly the dependence of the activation energy 
on current flow. One easily notices a clear difference between the linear behav- 
ior of Tdn, and nonmonotonic dependence of rup in Fig. 2. Clearly the lifetimes 
of two RTS states are governed by physically different mechanisms. We ten- 
tatively propose a scenario in which the up RTS voltage state corresponds to 
flux in motion, while the down voltage develops during the times when flux is 
immobile. Such mechanism is consistent with the linear amplitude characteris- 
tics, see Fig. 1, and with an exponential decrease of Tdn with increasing current 
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Figure 2: The dependence of RTS average lifetimes on current flow at 77 K and B=0. 

in Fig. 2. The linear decrease of the activation energy associated with T,jn can 
be attributed to the increasing strength of the Lorentz force with increasing 
current flow. The nonmonotonic behavior of rup may be seen a superposition 
of two opposing effects; a linear decrease of the life time due to increased ve- 
locity of flight and the increase in the lifetime due to decrease of the pinning 
probability at high velocities. 

The Lorentz force action moves the bundle across the stressed energy well 
at a distance x where the bundle becomes free to move. The moving bundle 
produces the excess voltage corresponding to the RTS amplitude AV = Vup — 
Vdn. The free energy change associated with the transition of a bundle into 
the state of flow is U{I) = BJxS\,d, where B = N$o/S — b, is the magnetic 
induction, N the number of vortices in a bundle of a surface 5j, and J = I/wd 
the current density in a strip of a thickness d. Consequently, the slope of the 
linear characteristic in Fig. 2 is 

ai~ di\ St wdxbbd 
')- w (3) 

The experimentally determined slope is dU/dl = 2.9±0.110"18J/4, i.e.,aj2V = 
75nm. Assuming that the size of a pinning site is of the order of the coherence 
length £ we find that the bundle contains JV 1000 flux quanta. 

At this point we should verify the correctness of the approach using Eq. 1. 
The experimental data render the viscosity coefficient h of the expected value 
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?7 oc 10"8 SI units. However, the evaluated time of flight of vortices across the 
strip is order of magnitude shorter then rup. This apparent discrepancy can be 
eliminated by adopting the model in which the vortices move in channels across 
the sample width. The channel opens and closes in a random way and thus 
Tup corresponds to the average time of opening of the channel while during Tjn 

the channel remains closed. In real samples the two edges of the strip that are 
supposed to control the dynamics of channel opening are not equivalent. Thus 
the noise characteristics should be asymmetric with respect to the direction of 
the current flow. Clearly, in our case the picture is symmetric, see Figs 1 and 
2, and the detailed mechanism causing the randomness in channel opening and 
closing still has to be enlighten. 

5    What we do not understand. 

When the sample is brought into the dissipative state in a presence of mag- 
netic field the situation dramatically changes. The amplitude characteristics 
becomes nonlinear and, moreover nonmonotonous, see Fig. 3. The picture 
resembles very much the one seen in the case of a Josephson based detector 
4. However, we have found that the current position of the maximum RTS 
amplitude is, within an experimental error, insensitive to the applied magnetic 
field. This fact strongly contradicts the Josephson mechanism. The situation 
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Figure 3: The dependence of RTS amplitudes on current flow at various magnetic field 

concerning the lifetimes is even more complicated. The characteristics depend 
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on mutually interacting magnetic field and transport current in a nontrivial 
way. As an example we illustrate the current dependence of the switching 
rates in Fig. 4. To make the experimenter life even more difficult the RTS 
waveforms in the presence of magnetic field are modulated in frequency by yet 
another telegraph signal. That is the reason why we have report two distinct 
rates for the down state in Fig. 4. 
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Figure 4: The dependence of RTS lifetimes on current flow at a fixed magnetic field 

We conclude that we are still unable to propose any plausible explanation 
for neither for the peculiarities of RTS manifestations in the presence of applied 
magnetic field nor for the origin of frequency modulation observed. 
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Typical size or structural microdefects in epitaxial YBa2Cu307 films (~ 0.1-0.3 um) is usually 
much less than the spatial resolution of experimental methods used for their characterization (~ 
1-3 um). In this case one can expect that the model based on resistor networks is valid for a 
description of both resistance and noise. However, in the vicinity of superconducting transition 
in an strongly inhomogeneous superconductor (near the percolation threshold) this model fails, 
and a specific description of electric noise should be used. Such a decription (which is, as far as 
we know, absent at present time) is definetly an unsolved problem of noise in HTSC. 

Another unsolved problem is a reliable test procedure to descriininate between different 
theoretical models to describe noise properties of thin films.We present a semi-empirical 
computer model which fits this task. It is a network model based on the effective medium 
approximation. 

1  Introduction 

Due to the substrate/film lattice mismatch and large difference in thermal 
expansion coefficients of YBa2Cu307 films and substrata, the films are known 
have a block structure. This can be confirmed by electron microscopy, X-ray 
diffraction, as well as follows from experimental data on flicker noise in the 
normal state1 . The latter allows one to investigate the energy distribution 
structural defects with internal degrees of freedom located at the blocks' 
boundaries. At high enough temperatures, close to T„ such defects can switch 
between two (or more) meta-stable states causing fluctuations in local 
parameters of a superconductor (SC). This is why the dynamical defects are 
often called the elementary fluctuators. Typical size of the blocks is of the order 
of film thickness (-0,1-0,3 um). In this connection, three important questions 
concerning flicker noise can be formulated: 
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1. What is the characteristic spatial scale of inhomogeneity which is 
responsible for ^-dependencies of resistance R and voltage noise Sv of a 
HTSC microstrip? 

2. Can a group of correlated blocks form a bottleneck which controls the 
properties of the macroscopic sample? What is the probability for such an 
event? 

3. How one can test the models describing dependencies R(T) and Sy(T)1 
Looking for answers to these questions we have met several unsolved 

problems of noise (UPoN). To analyze those the following methods were used. 
We have measured the ^-dependencies of R (from 102 tolO-'n) and Sv in 
YBa2Cu3<>7 microstrips at different bias currents / and in magnetic fields H up 
to 10 kG. These dependencies are interpreted on the basis of distributions of 
local resistivity p(x,y) and current teuä\yj(x.y). The latters were measured at 
fixed Iexpr and H=0, as well as calculated for arbitrary / and H. The most 
difficult point is a fractal structure of the SC cluster in the temperature region 
close to the percolation threshold. In this region, the experimental dependencies 
deviate significantly from the predictions of the effective medium 
approximation (EMA). On the other hand, to obtain satisfactory results with 
the help of computer models, one needs to decrease the network scale that, in 
its turn, leads to an exponential increase in the computer time. 

2  Spatial scales 

The lowest scale is the typical size of the above mentioned blocks. In high 
quality films their boundaries are transparent for carriers and contain ~ 106 

fluctuators for every block with energies 0.1 -0.3 eV. 
The next scale is the spatial resolution of characterization methods. We 

used two approaches having similar resolution (S 1-2 um): (i) calculation of 
spatial distributions of the critical temperature (7;-map), p(x,y) and j(x,y) 
from T-dependencies of the electron-beam-induced voltage (EBIV)2; (ii) 
imaging of magnetic flux distribution based on the magneto-optic Faraday 
effect that allowed to determine the spatial distribution of the critical currents 
far below TJ. Thus, in both methods, there are about -10 blocks between two 
adjacent experimental points. Consequently, it is clear that any further 
improvement of the spatial resolution will require an analysis of a new ( and 
unsolved) fundamental problem - electrodynamics of noise in a SC chaotic 
strongly inhomopeneous medium4'. 

The largest scale in question is the size of a microstrip. We have 
studied the samples of 50x500 um which were described by a matrix of up to 
25x250 values of local parameters. 

Thus, the answer to the question 1 depends both on the film structure 
and on the experimental resolution. In general, UPoN are due to various 
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mesoscopic phenomena, such as noise in 2D channel5, noise depending on the 
parity of the number of electrons in single-electron SC devices6, etc. In the case 
of HTSC film, another situation is probable - occurrence of a bottleneck when 
characteristics of the whole macroscopic sample are controlled by a 
microscopic region concentrating all current passing through the film7. Such 
situations require vigilance since they can appear in an uncontrollable way. 

3  Bottleneck 

The presence of large structural defects blocking the current path can be 
established by SEM or by EBIV images. Besides, they can lead to an unusually 
high sensitivity of noise to applied magnetic field7. It is rather difficult to reveal 
the situations where the large-scale correlation is the most important one. Fig.l 
shows the correlation functions obtained from T^-maps by the expression 

c{i)    Tc{R+j±Tc(R)-T^2 (I) 

Tc-V 
Here the average is calculated over all the 
points R of the sample. We observe an 
exponential decay of G(r) with the distance, 
the charateristic length being dqjendent on 
the growth conditions. We believe that the 

Fig. I Correlation functions of 7>spatial distribution for 
YBaCuO films grown on MgO (A) and NdGaC-3 (o) 
substrata. 

correlation in tins case is due to the clusters of dislocations of ~ 80 urn size in 
the MgO substrate observed by X-ray studies. To reduce the possibility of 
bottleneck formation , the microstrip's size should be larger than this scale. 

4  A test for theoretical models 

80 microns 

Theoretical models describing transport and noise properties can be used to 
obtain an information about the structure. Therefore it is reasonable to check 
model applicability based on the relations for classical inhomogeneous media8: 

S={dR2)=Z{dr<) 
9 

fu 
\1. 

(2) 

However, the following problems appear: (1) determination of local currents ig 
is difficult because of above mentioned UPoN; (2) insufficient accuracy of the 
methods for determination of local parameters; (3) to test a model in a wide 
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range of I and H, one must introduce some assumptions about I,H- 
dependencies of local SC . Thus, the absence of a reliable test procedure for 
theoretical models is UPoN too. To illustrate this, we present attempts to 
explain R(T) and SV(T) characteristics using the model described in the 
following subsections. 

4.1  A model for voltage noise in an inhomogeneous superconductor 

To work out a model for the voltage noise in an inhomogeneous SC film we 
have to specify three following points: 1) origin of the noise in a local 
parameter (according to our assumption, in the critical current of a weak link); 
2) influence of the fluctuations in a local parameter on the local resitance 
element, ry (or, in the non-linear case, on the shape of the local 7- V curve); 3) 
effect of local fluctuations in ry on the integral noise Sv. Note that all three 
stages are T-dependent. Therefore, for proper description of SV(T), the 
contributions to T-dependence from all the stages should be taken into 
account. However, at all three stages there exist some problems: 

Stage 1: There are at least two candidates for the microscopic origin of 
the noise: (i) structural defects (fluctuators) located at the block boundaries, 
and (ii) hopping of flux vortices between the centers of pinning. What we need, 
is the excitation energy distribution of such degrees of freedom, which 
determines both the 7-dependence of noise and the deviations of its spectrum 
from the l/f law. This problem is far from its solution for both cases. Indeed, a 
first-principle calculation of the energy distribution for the structural defects 
requires full account of the structure and concentration of point defects at the 
block boundaries which seems almost impossible9. In principle, such a 
distribution can be obtained from from experimental frequency and 
temperature dependencies of noise in the normal state1 or from the experiments 
on internal friction10. However, one should bear in mind that the distribution 
depends on the treatment in course of the measurement since YBa2Cu307 film 
is a thermodynamically unstable and strained system. 

Stage 2: So far there is no generally accepted theory even for linear 
dissipation hi HTSC below Tc; this is even more true for the noise properties. 

Stage 3: Since, firstly, I- V characteristics of SC below Tc are strongly 
nonlinear and, secondly, HTSC films are very inhomogeneous, the determina- 
tion of the integral Sv requires the solution of a fundamental and unsolved 
problem - theory of noise in a macroscopicallv inhomogeneous nonlinear medium. 
Indeed, the well-known effective medium approximation (EMA), successfully 
used for description of transport properties in inhomogeneous linear media, 
cannot be generalized to the case of nonlinear medium11 and fails to provide a 
self-consistent description of the noise12. Therefore, the only reliable way out 
here is a computer calculation of noise in a network of nonlinear resistors. 
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Despite all these complications, we propose the following version of 
EMA. Taking into account spatial distribution of Tc in the film we assume that 
its fragments with local Tc(r)<T are normal and described by a linear I-V 
curve: V=IR(H,T). In zero external magnetic field, the finite resistance of a 
fragment below Tc is presumed to be related to weak links (generally, regions 
with suppressed superconducting order parameter13) between microblocks. To 
describe I-V curve in this case, we employ the model of resistor-shunted 
junction (RSJ)">, which yields V=Rn(f- Ic

2)1/2. Here Rn is the normal 
resistance of the weak link, while Ic = IC(T,H) is its critical current. 
Fluctuations in local Ic at /<.</ lead to the voltage fluctuations 

R2I2 

v   r-i;+r   c 

which are very large at 7«7C (small item 72is introduced into the denominator 
to take account of "rounding" of the I-V curve resulting from thermally- 
activated phase slippage15). The term associated with fluctuations in R„ is 
omitted since it turned out to be not necessary to describe experimental results. 

At a given T, the SC film is considered as a two-component system 
consisting of normal regions with linear I-V curve (V=RJ) and SC regions 
with nonlinear I-V curve in the RSJ form with different values of Ic depending 
on the local Tc -value, 7c=7c0(7-7/T(:). Here Ia is the critical current at 7=0 . 
R„ of the weak links are supposed to be the same for all the fragments. Though, 
strictly speaking, EMA can be only applicable to weakly nonlinear media" , we 
use standard EMA expression which for our case takes the form 

J   Pe~Ps\IJc\ÄTc)dTc + ^^    Sf(Tc)dTc = 0 (4) 
Tc>Tpe + Ps[I,Ic) P, + Po   TC<T 

where pe is the effective resistivity of medium, while p0, p, are the resisitvities of 
the normal and SC fragments (with given /,.), respectively. f(Tc) is the re- 
distribution function over all the film. The current I, through a SC fragment 
having the critical current Ic is given (within the EMA approach) as 

pe + pt[I,Ie) 
where /„ is this current for the homogeneous case. Together with (4), this 
formula provides two equations to find pe. Solution of these equations can be 
simplified if one replaces p, and 7, in the formulas by their values averaged over 
SC fragments. To calculate Sy of the whole medium we use the expression 
similar to (2) where the values of local currents are taken from formula (5) and 
from the analogous one for normal fragments. Finally, we obtain 
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SyK      I &U1 
TC>TI

2
-I

2
C+I

2 
SIc/(Tc)dTc 

\4 

>** lffc)dTc 
Tr<T 

(6) 

So we outline the model which, despite its very rough approximations, 
can be used when direct calculations of networks are too complicated. 

4.2 Fractal structure of superconducting cluster and current distribution near Tc 

As a first step for calculation of Sv in a network model, one should determine 
the spatial distributions of SC regions and of the 
current density, j(x,y). In this subsection we 
demonstrate the fractal structure of SC cluster 
near the percolation threshold and the evolution 
of/ -distribution throughout the SC transition. 
SC cluster. When the fraction of SC fragments 
p=0.59 one can analyze a fractal structure of 2D 
SC cluster at the percolation threshold, as well as 

1 to 

Radius of Cluster 

Fig.2    SC cluster mass vs    its radius near the percolation 
threshold calculated from Tc map for sample on NdGa03. 

in the range of spatial scales between the experimental resolution 2um and the 
sample's size (see fig.2). It is known that for an infinite random 2D system at 
the percolation threshold the SC cluster has fractal dimensionality Z>y= 1.89 16. 
Df can be defined as the critical exponent connecting the mass s of the cluster 

confined in a circle of the radius L and the value of L : sec LDf. If the system 
is finite and 2L is larger than its minimal size, the system becomes effectively 
one-dimensional, and £y is equal to 1. A crossover from 2D to ID behaviour 
takes place when the radius L is or the order of the bridge's halfwidth. Fitting 
the data with straight lines provides £>/=1.95 for the 2D region and D/=1.02 for 
the ID region. Deviation from the classic result for 2D systems (Df= 1.89) is 
related (as we believe) to the presence of a spatial correlation in Tc at small 
distances (see fig.l). As a result, the percolative cluster is slightly more dense 
than for a pure random system. 
Evolution of Current Density Maps. Using images of magnetic field 
distribution and applying critical state model, the spatial distribution of /,. in 
the film has been calculated. Together with remapping data, this provides the 
full information necessary to describe I-V curves of the fragments for all the 
temperatures (R„ are assumed to be the same and T-independent for all the 
fragments). The current density distributions are then calculated by solution of 
a set of nonlinear equations and three of them at different T are shown in 
Fig.3. As T is lowered the path of the current through the film becomes more 
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T=87.0 K 
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100 200 x, urn 
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300 400 

x, |.t nn 
Fig.3 Direction of current lines in 500x50u.m strip on NdOa03 (colculatedon 250x25 network). 

complicated and wavy. This is also illustrated by Fig.4 where effective length of 
current path is defined as an 
average ratio of |/'| to the 
projection of j on the direction 
of the global current. Our 
results provide the lower 
estimate since they are limited 
by 2|xm resolution. 

Fig.4 T-dependence of the average 
length of the current path normalized to 
that for homogeneous current flow and 
transition curves: experimental (circles) 
and calculated (line). Dashed lines 
mark the points on the curve for which 
current density distribution of Fig.3 are 
shown. 

r-1.6 

-1.4 

-1.2 

-1.0 

Temperature T (K) 

4.3 Analysis of noise experiments and comparison with models. 

Voltage noise of the network has been calculated as follows.  Random 
variations in the critical currents were introduced as: Ic->Ic(l+S), S«l, and a 
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variation of the integral voltage SVJC was then calculated. In the same manner, 
we calculate a change of voltage SVR induced by variations in the resistances of 
normal resistors. Then experimental S,(T) was fitted by a linear combination 
of (6VIc)

2(T) and (SV/J (T) with arbitrary coefficients. These two coefficients 
(which are in fact the normalized spectral densities of 7C and R fluctuations) are 
the only two fitting parameters, since R0 and R„ have been determined 
independently by fitting of the R(T) curve. The final version of the computer 
program is under development now. Preliminary results for YBaCuO film are 

presented in Fig.5. They can be 

Fig.5. Spectral power density network of 
nonlinear  of voltage   noise:   experiment 
(circles), calculations using resistors (solid 

N"        1   (V/VVVv/'TI line). Calculation within EMA-based model 
<E 1   J  v Vi / ^ is also showen. 

e      J *'     Ir/ compared with the experimental 
T-dependence of Sv at frequency 
10 Hz measured in a 
YBaCuO/NdGaO sample in zero 
magnetic field. Here the function 
f(Tc) needed for the calculations 
has been taken from the data on 
remapping. It can be also 
derived from transition curve17. 

So, the results obtained can be qualitatively interpreted as follows. 
Decrease of Sv near the onset of the SC transition is related to the decrease of 
the noise associated with fluctuations of R in normal regions (see also 1S). A 
peak at low temperatures is associated with fluctuations of weak links Ic 
distributed over the film. The scatter in the values of Ic leads to large width of 
the peak: each weak link makes substantial contribution to the noise at the T 
when current passing through it is equal with its critical current, IC(T)=I. 
Individual sharp peaks observed in some samples seem to arise from individual 
weak links located in the bottleneck of current path. 

It should be noted that our model fails to explain the maximum of 
Sy(T) corresponding to R=0.02 R(T>TC). We believe that it is due to the fact 
that the model cannot take into account actual distribution of currents in the 
film. The distribution, however, has special features in the temperature region 
where there exists percolation through regions of SC fragments (T<TC), but 
there is no percolation through regions of "SC" weak links (IC>I). hi this case 
most of weak links tend to carry current which is a little bit less than their 
critical current. Thus, they tend to reside in the most nonlinear point of their I- 
V curve. This tendency, existing only in nonlinear networks, leads to a 
dynamical instability and, hence, to a very high noise. This speculation is 

M 

1     '     '     I 
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supported by one more fact. It has been found that in samples where the spatial 
correlation in Tc is weak, the peak of noise is wide and pronounced, while in the 
samples with strong correlation there are usually many individual sharp peaks. 
This is clearly illustrated by comparison of Fig.6 and Fig.l for two samples 
grown on different substrata. In the last case of highly correlated disorder, a 
redistribution of current in the film is more complicated (which is somewhat 
similar to the situation in ID systems). Since the current / through a given 
weak link is almost independent of T, this weak link gives rise to a sharp peak 
of noise at the T where IC(T)=I. For the 
whole sample one would have a sequence of 
such peaks at different T. On the contrast, 
in the absence of spatial correlation in SC 
parameters, current redistribution is 
possible. Then the system of weak links 
becomes self-adjusting and the effect of 
dynamical instability comes into play. In 
this case one would expect one wide peak 
for the whole sample. 

Fig.6. Spectral power density of voltage noise for the 
same samples as in fig.l: grown on MgO (A) and 
NdGa03(o) substrata 

> 

'T(K) 
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THE ROLE OF INTERGRAIN CONTACTS 
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The relative noise, C, in the transition temperature region of modem high temperature superconducting 
compounds (HTSC) increases over nine decades with decreasing temperature as C oc If' with 1.4 < y < 2.8. 
Percolation and temperature fluctuation models have been proposed to explain the experimental results. Here 
some other possibilities are proposed to explain the observed trend Some models are based on the 
temperature dependence of the 1/f noise parameter a. Others are based on the coalescence of multi spot 
intergrain contacts within the HTSC. 

Introduction 
The leading candidate for the explanation of the low critical current density 
problem in high temperature superconductivity is the weak link phenomenon1. The 
layers are composed of grains of very anisotropic compounds with touching 
boundaries of different sizes. The grain boundary is considered as a non 
superconducting region. The super current tunnels through this barriers. The result 
is a superposition of many local I-V characteristics and fluctuation behaviour which 
smears out. Critical currents reduce with barriers thickness at a given temperature. 
Good grain alignment is necessary for an improved critical current density. Above 
the critical current density the material loses its interest for electric wires. Noise has 
been used as an indicator of improvements in the HTSC technology2. 
The resistance noise in the normal state is well described by SR = R2C/f in the 
Ohmic region. In samples of the same volume and at the same temperature a 
reduction factor of about 10"10 in the relative 1/f noise value C has been observed 
since 1989 and an increase of 104 A/cm2 up to 106 in current density.2 Another 
striking result, the relative noise in the transition temperature region of modern 
samples increases over nine orders of magnitude with decreasing temperature as C 
oc R^ with 1.5 < y < 2.8 (see fig. 1). 
Existing models based on percolation, temperature fluctuations or flux fluctuations 
explain partially the experimental results2,3'4. Temperature fluctuations can lead to 
a 1/f spectrum only in a very limited frequency range and under very limited 
conditions5. In the p-noise percolation model2 the noise is considered as an intrinsic 
property of a network between conducting grains where the resistance noise is 
ascribed to the random switching of certain junctions. The p-noise percolation 
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model predicts y » 2.7 in 3D and y « 1.5 in 2 dimensions2. All switching events 
together can result in a 1/f like spectrum assuming Lorentzian spectra with the 
correct weight function4. In the classical percolation model only the number of 
weak links becoming short-cuts increases between superconducting grains and the 
remained normal conductor intergrain junctions provoke the 1/f noise. At every 
different temperature we have a different network but no switching in time. This 
model predicts y = 1 for ID (chain). In spite of the success in explaining partially 
the normalized noise versus resistance with temperature as a parameter, in the 
above mentioned models there still remain unsolved problems. For example: (i) the 
percolation models are linear, however, HTSC layers show a non ohmic current- 
voltage characteristic, (ii) Is there a changing intergrain contact behaviour with 
temperature ? Does the intergrain contact remain interface or constriction 
dominated ? Does the number and area of the conducting paths between grains 
change with temperature ? 
Models 
Here I hope to generate new unsolved problems by presenting other possible 
explanations based on experimental facts which might also explain the peculiar 
characteristics in HTSCs: 
(i) The first hypothesis is based on experimental facts where the 1/f noise parameter 
a in different metals seems to be inversely proportional to the resistivity squared6,7. 
For a small single crystal without grain boundary complications we expect5 R oc p 
and C oc cc/N. With an a increasing with decreasing temperature like a oc p"2 we 
find C oc R^ with y = 2. Hence we explain C oc R"2 , if the number of electrons does 
not change with temperature and the average mobility increases with decreasing 
temperature due to the onset of superconductivity over a coherence length smaller 
than the length of the sample. The problem is the fact that an a independent of 
temperature has been observed in the c direction and an a strongly reducing with 
increasing temperature in the a-b plane of a YBa2Cu307.s single crystal.8 

(ii) For samples consisting of touching grains we might explain the resistance and 
noise of the complete sample by taking the average behaviour at a boundary and 
multiply the result with a fixed geometry parameter9. In contrast to percolation 
models, if the geometry of the micro contacts between grains does not change with 
temperature we have a fixed geometry coefficient between the behaviour of two- 
touching grains and the behaviour or the whole system. Without assuming classical 
or p-noise percolation we can expect for the resistance and relative noise of a film 
dominated contact at the weak link between two touching grains1011 

R = p,t/A and C = oc/nf At or C = ccqUfR/t2 (1). 
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If the resistance reduces with temperature mainly due to a change in the resistivity 
pf of the weak link, while the cross section A, thickness t and mobility in the 
interface layer remain constant we find if a oc pf holds 

CocR-1  orCocR"2 (2). 

depending on whether or not uf is constant or Ruf is constant, 
(iii) If the resistance and noise stem from the interface contribution at the grain 
boundaries where R oc Tp and C oc o/N; oc T"x cc R^ with y = x/ß. This means 1.5 
< x/ß < 2.8. Arguments for interface dominated contacts are in ' 
(iv) For samples where hypothesis (i) and (ii) are not applicable there still is a 
possibility to explain the experimental results with 1.4 < y < 2.8 like in fig. 1. By 
assuming multispot nano-constriction contacts between the touching grains with a 
temperature and current dependence of the number of conducting channels in 
parallel and their average diameter, we also obtain 1 < y < 3. This can be 
considered as a new type of percolation phenomena in which coalescence between 
conducting paths is possible into a reduced number of paths with larger cross 
sections at increasing temperatures increasing the resistance and reducing the 
relative noise. The electric conduction area is smaller than the apparent conducting 
area between two grains. Multispot contacts with a relative small number (k) spots 
in parallel with radius a (a-spots) lying relatively far apart (several times the 
average diameter 2a) behave like k parallel individual spots. The resistance and 
relative noise of a simple multi spot contact between two grains are given by ' 

R = p/rcka and C = a/207rnka3 (3a), (3b) 

where p is the resistivity in the bulk of the grain and n the free charge carrier 
density. If we consider a as a constant the general relation for a simple multispot 
contact C versus R shows a dependence as13. 

C oc K"1 for k oc ax with x = -(y+3)/(y+l) or y = -(x+3)/(x+l) (4) 

For 1.5 < y < 3 holds -1.8 < x < -1.5 and with y = 3 we have x = -1.5. The value of 
the exponent y is very sensitive to x. Arguments for a change in k and a can be 
found in ref. 11 and 14. 
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(v) Arguments against model (iv) are that changes in resistance and noise with 
temperature become a pure geometrical phenomenon, the so-called coalescence 
effect with increasing temperature, ignoring the temperature dependence of p and 
a. These assumptions are against experimentally observed trends1,8. Therefore we 
propose a blend of the models (i) and (iv) in which the total cross section 7ika2 of 
the multi nanoconstriction contact between touching grains remains constant with 
temperature and also the concentration of free carriers in the regions where 
superconduction is not yet established. We assume: k oc a"2 or k oc Ts with 8 < 0 and 
hence aocTM; p oc T; a oc Tl with m > land t > 0. This results in the 
following dependencies for R and C on temperature and for the C versus R relation: 

<-8/2 

R oc Tm-S/2 and C oc T~e+5n and C oc R~-»* (5) 

The exponent y = (I -8/2)/(m-8/2). Independent of the value of the exponent 8, for 
m = I holds y = 1. This includes also model (iv) with m = t = 0. For y > 1 and 8 
< 0 it is necessary to have I > ym. In the temperature range 100 K < T < 150 K 
the noise parameter in single crystals changes by a factor 14 which8 points to £ « 
6. 
Kiss, Svedlindh et al.2 observed above a critical temperature and resistance value C 
oc R 1 with 0 < - y < 2. If the concentration and a remains constant with 
temperature we expect - y = 1 or y = 0 whether or not an is constant or a and Rn 
are constant with temperature. 
Conclusion: 
The large amount of models to explain the experimental results are indications that 
the dependence CocR1 is ill understood. In addition to the existing models: 
classical percolation, p-percolation and temperature fluctuation induced 1/f noise in 
HTSC, we propose a few new models explaining the experimentally observed 
trends. Two types of models have been proposed. The first type (i,ii) is based on the 
temperature dependence of the 1/f noise parameter a which is possible for 
homogeneous crystals and for compounds even where the contact resistance and 
noise between grains are dominated by a grain boundary layer. In the second type 
(iv) of model, a and the concentration of free carriers are kept constant but the 
resistance and noise are dominated by constriction dominated multi spot contacts 
between touching grains. Model (v) is a blend of (i) and (iv), an essential point in 
this model is that resistance increases with temperature partially by the coalescence 
of several spots into less spots with slightly larger diameters and partially by an 
increase in the resistivity. 
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Current-dependent investigations of the conductance noise in Yttrium based and Tallium 
based high-Tc-superconductor films provide important information about the validity and 
limitations of present models based on percolation. The well known scaling effects between 
the resistance and the noise exist only under the spacial condition when the control parameter 
is the temperature. Moreover, in Ta based films, at low current densities the classical 
percolation noise scaling exponents, while at high current densities, the p-noise scaling 
exponents have been observed. This effect indicates that the low-frequency contribution of 
the elementary fluctuators of p-noise are strongly suppressed due to high current densities 
Several new unsolved problems can be add to the old questions. 

1 Introduction 

High temperature superconductor (HTSC) materials (see [1-4] and references therein) 
are strategically important object of technological research, because future low- 
temperature electronics will probably be based on these materials. Since 1989, we 
have had the opportunity to follow the improvement of HTSC film technology via 
noise and conductivity measurements [2]. The strong interrelation between the 
quality of technology and the strength of the noise in the normal conducting state 
(described by the Hooge parameter based on atomic numbers) is very obvious. The 
improvement of the Tc by a few Kelvins and the increase of the critical current 
density from 104 to 106 A/cm2 has been accompanied by a radical reduction of the 
noise: a reduction by over 10'°, see Figure 1. However, noise investigations and the 
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understanding the mechanism of noise generation in these materials have also other 
important roles in these materials: 

i) Proper conductance noise models of these materials can help to find a proper 
noise model of HTSC active devices; 

ii) Proper understanding of the noise generation can help to find various 

alternatives for noise reduction. 

The most important temperature region of conductivity noise is the low- 
temperature part of the conductor-superconductor transition regime. In this regime 
the normalised voltage noise at fixed dc measuring current is rapidly increasing when 
the temperature is lowered. 
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Figure 1:  Reduction of the Hooge parameter (in the normal conducting state) versus the improvement 
of HTSC technology [2]. 

Thorough studies [1,2] of the conductance noise of Yttrium based HTSC 
superconductor films (YBCO films on various substrates with various kinds of 
deposition technology) have indicated that, in the low-temperature region of the 
conductor-superconductor transition region, the temperature dependence of the noise 
is controlled by percolation effects. This conclusion is based on the fact that all the 
reliable experimental noise data yield universal noise exponents which are determined 
by the geometrical dimension of the current transport only. Namely, the normalised 
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resistance noise spectrum at a fixed current density, a fixed frequency f0 and varied 
temperature is scaling as a power function of the resistance [1,2]: 

M^D. = constant *RX(T) 
R2(T) (1) 

where the exponent X has universal negative values in the temperature range of 
percolation. This behaviour indicates that the sample is a random mixture of 
conductor and superconductor elements and that the increase of the conductivity by 
decreasing temperatures is due to the increasing number fraction p of the 
superconducting elements. 

Noise exponents around-1 have been identified as classical percolation noise 
phenomena [1,2]: the noise is originating from the independent resistance fluctuation 
of normal conductor elements of the film (see Fig.2.a). On the other hand, noise 
exponents around -1.5 and -2.7 have been interpreted as a newly discovered effects 
[1,2], namely, p-noise at percolation: a given number of elements is switching 
between normal state and superconducting state (see Fig.2.b). According to thorough 
experimental investigations, high quality film samples with a low Hooge-parameter 
in the normal state usually show p-noise while poor quality samples usually show 
classical percolation noise [1,2]. 

(a) 

R+AR(t) 

wmft) Wn(t) 

R+AR(t) 

Figure 2:  One-dimensional illustration of the origin of classical percolation noise (a) and the origin of 
p-noise which also implies universal scaling at the percolation limit. 
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Unsolved problems, motives and new investigations 

The fact that, in the transition temperature regime, the HTSC materials have a 
strongly non-Ohmic characteristics implies serious questions about the applicability 
and limitations of the linear percolation models and the relevant universal exponents 
[2,3]. A relevant experimental result can be seen on Fig.3. Interestingly, in the same 
region where the normalised resistance noise is scaling with the resistance, the 
differential resistance Rd is also scaling with the resistance. This effect and the 
general problem of noise in the percolating non-Ohmic HTSC materials doe not 
have any theoretical explanation. 
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Figure 3: Three-dimensional and two-dimensional scaling (exponents = -2.7 and = -1.5) of the 
normalised noise as a result of p-noise at percolation in an YBCO film. The control 
parameter is the temperature. In the same temperature range, the differential resistance Rd is 
also scaling with the resistance. 

Recently, in order to investigate the problem of noise at nonlinear percolation 
more thoroughly, we have designed a high stability low noise current noise source 
which can provide a dc current with an ultra low noise in the range of 2*10"6A - 
64* 10"3 A. the first samples on which we have carried out investigations, were very 
high quality, laser ablated Yttrium-based films (Univ. of Birmingham) and Tallium- 
based films (Chalmers Univ.) have been measured and compared at various current 
densities. In YBCO, we have found basically p-noise phenomenon at all current 
densities (Fig.4). 
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Figure 4: Results on p-noise at percolation in a laser ablated YBCO film (Univ. of Birmingham). 

Though, at small currents, the 3-dimensional scaling does not exist, the scaling exponents are 
basically not affected by the current density, especially in the 2-dimensional case. 

0.125mA 
slope: -1.6 

R(T)      (Ohm) 
Figure 5: Results on noise-resistance scaling at percolation in a laser ablated Tallium-based film 

(Chalmers Univ., Sweden). The 2-dimensional p-noise exponent (= -1.5) found at low 
current densities cannot be found at high currents. The exponent gradually shifts toward the 
classical exponents and at high current densities, the noise is purely a classical percolation 
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On the other hand, in the Tallium-based films, at small current densities, p- 
noise has been the dominant effect while at high current densities we have observed a 
smooth transition of the exponents into classical percolation noise exponents, see 
Fig. 5. It is obvious from the plotted data that the low-frequency noise contribution 
of the p-noise fluctuators is strongly diminishing with increasing current density and 
this is the reason why the classical noise (generated by the conductance fluctuations 
of the normal conducting elements) becomes dominant at high currents. 

We have to emphasise that there is no theoretical model or picture which is 
able to explain the different behaviour of the two HTSC materials. These facts are 
emphasising the following unsolved problems [4]: 

1. What is the microscopic generation mechanism of p-noise? 

2. The present models of percolation [1] are linear models. Why do they work on 
the contrary of the fact that the HTSC samples are strongly non-Ohmic and 
how to introduce a nonlinear model? 

3. Why do have p-noise fluctuators a different current density dependence in the 
two different materials? 
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Charge Density Waves is one of a few interesting study cases in the solid state where 
one finds competition between randomness and interaction in a system with many 
degrees of freedom. This wave-like macroscopic entity has many configurational 
rearrangements in the presence of randomly placed defects, thus when sliding, it 
exhibits rich and complicated dynamics with huge low frequency noise, memory and 
hysteretic effects, glassy behavior, chaos and other features - a celebration to any 
physicist. In this paper we present some of the main disputes on the poorly understood 
low frequency noise mechanism and related phenomena of Charge Density Waves. 

1 Introduction 

In this paper we do not attempt to present or site all experimental and theoretical 
findings, rather we mainly review the controversial issues and the unsolved questions 
related to the 1/f noise mechanism of the CDW. 

Since the discovery of Charge Density Waves (CDW) some thirty five years ago, 
there have been a vast number of experimental findings as well as models suggested to 
describe the rich complicated phenomena observed.1 One of the robust features of the 
CDW is the low frequency (1/f - like) noise present when the CDW is sliding. Since 
this phenomenon is only one out of many, all related to the same entity - namely the 
CDW, one cannot isolate and investigate it without addressing the other phenomena 
and the relation between them. 

In the ideal case of CDW in semi-one dimensional metallic crystals below the 
transition temperature, an incommensurate periodic elastic deformation of the lattice 
occurs, simultaneously, a gap is opened at Fermi level and many electrons condense to 
a lower energy state below the gap, created by the periodic potential. It can be 
described as perfect parallel planes of wave fronts with transletional invariance, free 
to move either direction. In the absence of defects, even an arbitrary small electric 
field induces CDW current - namely the condensed electrons with the periodic lattice 
deformation slide together. This is a unique case in nature where one finds a coherent 
conduction of many electrons as one entity with macroscopic dimensions. 

In the presence of randomly placed defects the CDW is pinned. Each defect tries 
to dictate the local CDW phase and amplitude. Since the CDW has a finite 
deformability, it cannot simultaneously minimize the energy at every pinning site. As 
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with other systems combining such "frustration" with randomness, the CDW is 
expected to have many metastable configurations (MCs). 

When applying an external electric field, high enough to overcome the defects 
pinning force, the CDW starts sliding, introducing a non-linear excess conductivity 
and accompanied by low frequency noise fluctuations with a spectrum S(f) ~ 1/f, 
called Broad-Band Noise (BBN). In addition, a periodic signal, called Narrow-Band 
Noise (NBN), is detected in the MHz range due to wavefronts passing the sample's 
contacts. The NBN frequency is proportional to the excess CDW current. When 
applying a dc + ac bias a mod-lock occurs, causing a dramatic increase in the NBN 
peaks' sharpness as well as a reduction in the BBN magnitude.2 

Pulse overshoot experiments3"5 as well as wavelength direct view using x-ray6 

indicate that a dc bias causes a CDW wavelength shortening upstream along the 
electric field direction (global deformation), accompanied by a large polarization. 
Reversing the bias causes counter polarization and a transient excess current. 
Returning to equilibrium does not erase the last polarization. These long memory and 
hysteretic effects remind the behavior of other glassy systems. It is reasonable to 
believe that each rearrangement of the CDW (MC) has a different charge distribution 
with different polarization, thus jumping between MCs must cause measurable 
fluctuations that are manifested as low frequency noise. 

Low-frequency voltage and current noises as well as other macroscopic 
measurable quantities are found sensitive in probing the dynamics of this system: ac 
dielectric response at the pinned state,7 ac response of Young's modulus and internal 
friction,89 NBN frequency,210 and probably sample's length.11 Since CDW 
phenomenon is essentially a strong coupling between electronic and elastic entities, 
i.e. electrons charge-waves and phonons elastic-waves, configurational 
rearrangements and fluctuations in one must directly affect the other. Indeed, it was 
found that when the CDW starts sliding, Young's modulus is reduced and the internal 
mechanical friction is increased.12,13 Also, an hysteretic bias dependence of sample's 
length was found.11 

Many attempts have been made to model and simulate the dynamics of CDW,14"20 

most are classical phenomenological models containing many loosely interacting sites 
with nonlinearity, periodic potential and external force. None of them, as far as I 
know, were able to produce all CDW phenomena in one model just by changing 
parameters. 

2 Controversial issues and the unsolved questions 

An important unanswered question arises: is the noise at a bias above threshold an 
equilibrium fluctuations (where the current plays as a probe for the fluctuations - 
similar to the 1/f noise in simple metallic ohmic resistors) or a dynamically driven 
noise mechanism, where the excess current helps creating the fluctuations. When the 
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CDW is pinned, only normal electrons current is sensed, hence the system is not 
sensitive enough to pinned CDW fluctuations. Though fluctuations have been seen21 

in small samples below threshold - an indication that the pinned CDW is jumping 
between configurations. Above the threshold field the siding CDW introduces excess 
nonlinear current accompanied with a large BBN.22 In some cases the MCs available 
to the CDW at the sliding state is also found at the pinned state7-23-24 so the large BBN 
is mainly a manifest of the equilibrium fluctuations (maybe with faster dynamics). But 
mesoscopic samples,2224 where one can observe discrete microscopic fluctuating 
entities, reveal irreversible time traces in the sliding fluctuations24 - an indication of 
nonequilibrium dynamics that cannot exist at equilibrium. Another indication for the 
nonequilibrium dynamics is the memory loss of the slow fluctuating mechanism when 
a large ac bias is applied.22'2425 It is possible that in TaSß the BBN is mainly an 
equilibrium fluctuations while in NbSeß it is mainly a dynamical phenomenon. 

The specific origin of 1/f noise mechanism at the sliding state of the CDW is not 
known, also it is not clear if there is one or more and if all CDW materials (like 
NbSe3, TaS3, K0.3M0O3 and more) have the same origin(s). There have been a few 
specific suggestions. The simplest suggestion is that the threshold electric field 
fluctuates due to pinning forces fluctuations at the randomly placed defects.7-23,26 

These quasi-equilibrium fluctuations were found to be true in TaS3, though part of the 
noise came from a different source.26 Another dynamical process that is widely 
mentioned is the phase slip of the CDW at strong pinners and electrical contacts 
locations.15'2730 This mechanism can exist only at the sliding state and cannot explain 
low frequency fluctuations measured at the pinned state using dc21 or ac bias.22 

Another interesting picture is illustrated to explain the three level cyclical time trace 
measured:24 since all cases of irreversible time traces in the noise were explained as a 
displacement of some entity along the current, a model of nonequilibrium CDW defect 
drag was proposed.22 Comparison between elastic properties under ac bias, dielectric 
response at the pinned state, BBN in the sliding state and overshoot current 
experiments indicate that at least in TaS3 all show broad distribution of time constants 
therefore all come from a common relaxational origin.9 The precise relaxational 
process was not specified. 

Another dispute over the BBN origin concerns velocity shear versus velocity 
temporal fluctuations: according to the phase-only model1618 the sliding state is a 
unique configuration, so the CDW slides with the same velocity everywhere, without 
temporal fluctuations, thus there is no BBN. According to ref. 27 experimental 
results indicate that BBN is associated with different time-average CDW velocities at 
different locations of the sample causing velocity shear and low frequency noise. The 
same group demonstrated that the BBN of a sample with a thickness step parallel to 
the long axis, is much bigger that the sum of BBNs of two samples separated from the 
previous one, each with a rectangular cross-section - an indication that when there is 
no velocity shear between various sections of the sample the BBN is much lower. 
Theoretical arguments17 agree that the sliding CDW is broken into small segments 
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with different time-averaged CDW velocities. However, it is not clear how the velocity 
shear can cause 1/f-like fluctuations. Furthermore, according to ref. 10 direct 
simultaneous measurements of BBN and instantaneous frequency fluctuations of NBN 
show strong cross-correlation between the two quantities, indicating that the BBN is 
mainly a manifest of temporal velocity fluctuations of the CDW throughout the whole 
sample, rather than some velocity shear mechanism. 

The common phenomenological explanation among theoreticians, of the 1/f noise 
mechanism in CDW, is based on more general arguments:W2Q a random system with 
spatial interaction due to the stiffness of the CDW and the competing forces between 
pinning sites, are believed to be characterized by a very rough free energy landscape 
in phase space.31'32 The CDW is presented as a point wandering in this energy 
landscape that contains energy wells ("attractors") of all depths that exist close to any 
point in this space.20 Since each location in phase space is a unique CDW 
rearrangement with a specific polarization, the wandering causes the low frequency 
noise. Two forces drive the system to wander: thermal random force as well as 
external bias. Many models and simulations are based on the above description, 
though there is no agreement on many important assumptions. 

One of the main disputes is: how many degrees of freedom needed for the 
model? Can we describe CDW phenomena, and especially the low frequency 
fluctuations, by CDW phase degree of freedom,14'18'19 or do we need CDW amplitude 
too?15-17-28'33 While phase-only models produce some of the CDW phenomena, it was 
not able to exhibit the sliding state low frequency fluctuations,16'18 as well as other 
CDW characteristics,28'34 like switching behavior, hysteresis and chaos. Since phase 
slip is believed to be involved in the BBN mechanism one cannot describe the 
dynamics of CDW using phase-only model, because at the phase slip location 
amplitude variations must occur. There was no attempt so far to simulate the CDW 
dynamics using phase and amplitude together in one model. 

Another related topic is the behavior of the CDW near threshold: is it a critical 
phenomenon or not? Is there some typical length scale that diverges at the vicinity of 
threshold field? If the system is critical then all the CDW volume must start sliding 
together, alternatively - in a non-critical system the onset of threshold is probably 
characterized by percolation paths where the CDW conduction starts. Phase-only 
models simulations indicate that indeed it is a critical phenomenon,14 also by 
formulating a connection between BBN and a dynamic coherence length and 
measuring the BBN35 it was shown that this length diverges when approaching 
threshold. On the other hand general arguments indicate15'17 that at the threshold the 
critical behavior is destroyed since the sample is broken into small segments with 
different time-averaged CDW velocities, thus there is no divergence in any typical 
length. Also - if critical behavior is assumed using a phase-only model then infinite 
CDW strains will occur when increasing sample's volume.15-17 We believe that a 
critical onset of sliding must be characterized by a large sharp peak in the BBN at the 
threshold - which was never experimentally observed as far as I know. It is not clear 
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what is the relevant length scale for the phenomenological model and particularly for 
the critical behavior: phase-phase, amplitude-amplitude or velocity-velocity 
correlation length. It is not clear what is the relations between these lengths and what 
is the relations to a discrete fluctuator typical size.22 

An extension to the equilibrium vs. driven mechanism problem presented above 
is: can one predict CDW fluctuations using deterministic dynamic equations or does 
one need to add a random term36 (Langevin) to detect BBN fluctuations in 
simulations. Most of the models presented so far used deterministic equations without 
adding a Langevin term to the force. Since it is believed that there are energy wells of 
all depths in phase space, one cannot neglect thermal fluctuations. It was shown 
experimentally36 that when a mod-lock occurs, although the NBN peaks sharpen and 
the BBN is reduced, there still exist NBN amplitude fluctuations that cannot be 
explained using deterministic dynamics. We can speculate that BBN of CDW can be 
invoked by some collaboration between thermal noise that is amplified by the 
nonlinear dynamics, and resulting in 1/f - like rather than white spectrum. 

Can we formulate one detailed model that produces all CDW phenomena just by 
changing parameters? How much will the simulated spectrum of the fluctuations be 
affected by the details of the model? These questions are connected to the broader ever 
lasting challenge: can we formulate a simple phenomenological model for 1/f noise 
that loosely include all physical cases in nature with similar dynamics, i.e.: CDW, 
type II superconductors in the mixed state, spin density waves, various magnetic 
systems and other glassy systems where one finds long range interaction, randomness 
and external driving force. 

3 Speculations and future research 

Fig. 1 shows an illustration of a specific rearrangement of the sliding CDW in a non- 
ideal crystal containing various defects. We do not claim that this is the only precise 
description of CDW but we speculate that most of it is reasonably accurate. The figure 
shows a deformable CDW sliding from one contact to the other, with phase tear, 
velocity shear etc. The proportions are exaggerated a little for clarity. Strong pinners 
cause CDW pinning in some surrounding volumes, while weak pinners cause long 
range deformation in their vicinity. Electrons near the contacts must change their 
identity since there are no condensed CDW electrons outside the sample. At these 
locations a phase slip occurs, wavefronts appear at the bottom location and disappear 
at the top location. Due to a specific distribution of defects, it is energetically 
favorable, in this specific example, for two segments to slide at different velocities, 
causing velocity shear at the boundary. Any nonideality of the CDW (deformation, 
tear, shear, slip etc.) costs energy. Since external force (i.e. electric field) and thermal 
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Fig.l: An illustration of a configurational rearrangement of the sliding CDW in the presence of 
randomly placed defects. 
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force act on the system, the CDW can fluctuate by jumping to another rearrangement - 
that might be different from the one illustrated in this figure. 

Much theoretical as well as experimental works are needed to be done in order to 
deepen our understanding on the 1/f noise mechanism of CDW. Theoretical work is 
needed to improve detailed CDW models and include phase as well as amplitude 
degrees of freedom. On the other hand, general dynamical models of fluctuating 
mechanisms that develop 1/f noise spectrum, are to be pursued. These models should 
include randomness, long range interactions, nonlinearities, external force and 
random thermal noise. We believe that these models can give some insight to CDW 
noise mechanism as well as other noisy physical systems. 

Further experimenting with CDW is needed: measuring simultaneous sample's 
length fluctuations and BBN and correlating the two can give more insight into the 
relation between elastic and electronic proparties as well as better understanding of 
the CDW metastability. Experimenting with split edges CDW samples and driving 
each edge with a different CDW current can give some ideas on velocity shear and 
phase slip and their part in the BBN mechanism. More experiments on mesoscopic 
CDW samples are needed: one can find direct connection between a single fluctuate«- 
observed in the noise and a specific single intentionally planned defect in the crystal. 
A more pretentious idea is to directly view CDW rearrangements, a picture that might 
look like Fig. 1. Such an experiment is not far from reaching since current microscopy 
techniques used in STM, AFM or SEM are well established for atomic-size viewing. 

4 Conclusions 

So far, although many pieces of the puzzle are known, one cannot pinpoint one 
specific origin of the low frequency fluctuations of the sliding state of CDW. 
Theoretical and experimental results indicate that most CDW phenomena can be 
described using a classical rather then quantum mechanism. The origin of the noise 
involves competition between interaction and randomness. Metastability of the 
configurational rearrangements of the CDW over a randomly placed defects plays an 
important roll in the mechanism. Random thermal noise as well as external electric 
field cause the bouncing between these configurations. 
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We discuss the possibility of 1// fluctuations in phonon numbers. Some experi- 
mental studies and computer simulations reported so far are briefly surveyed. Our 
simulations were performed in collaboration with H. Kawamura and D. Choi of our 
group. Results obtained for Fermi-Pasta-Ulam Hamiltonian show that the spec- 
trum of phonon number fluctuations of each mode is generally Lorentzian. For low 
frequency modes, the relaxation time can be very long so that the spectrum looks 
like l//2. 

1    Introduction 

All semiconductor materials exhibit 1/f noise in the electrical conductance. 
On the origin of the noise, there has long been a controversy: mobility noise 
or carrier number fluctuations. Without arguing this point, if we assume that 
the conductance noise is due to the mobility noise, then the latter can be 
interpreted by a further assumption that the phonon numbers of each mode 
fluctuate with a 1/f spectrum1. In the present paper, we take up this second 
assumption and ask 'The 1/f phonon-number fluctuations, is that true or 
false?' No theory has ever succeeded in predicting the 1/f phonon-number 
fluctuations. So this is an open question. The question leads us to numerical 
experiments on lattice vibrations. 

Experimental studies and computer simulations in previous work are briefly 
reviewed in Section 2 and 3, respectively. Our computer simulation is described 
in Section 4. The last section is devoted to summary and discussions. 

2    Review of Optical Experiments 

Some optical experiments with the use of insulators seem to be a direct proof 
of the 1// phonon-number fluctuations. 
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2.1 Brillouin Scattering in a Single Crystal 

The intensity fluctuations of a laser light scattered by a quartz crystal have a 
1// spectrum in the frequency range KT3-8 < / < lO"1-8 (in Hz)2. The results 
can be explained if the energy fluctuations are 1// -like for the individual 
phonon mode that is involved in the light scattering. 

2.2 Attenuation in an Optical Fibre 

The intensity fluctuations of a light at the output of the quartz fibre have a 
1// spectrum in the range 1< / < 102 (in Hz)3. That can also be understood 
by assuming the phonon number fluctuations. 

In the spectra of these experiments, no plateau has been observed in 
the low frequency region, that means the fluctuation process might be non- 
stationary or the relaxation time is too long to be observed. 

3    Numerical Experiments — Review of Previous Work 

If the intensity fluctuations observed in the optical experiments are attribut- 
ed to the phonon-number fluctuations, 1// -like behavior can be an intrinsic 
character of weakly anharmonic lattices. However, there is no theory that can 
predict 1// phonon-number fluctuations. Several attempts have been made to 
simulate the lattice vibrations numerically. Those simulations are performed 
for hamiltonian systems describing a nonlinear chain of particles. 

3.1 3rd Order Potential 

Among the model systems for which the simulations have been performed, 
Fermi-Pasta-Ulam (FPU) lattices are the most popular. One-dimensional FPU 
hamiltonian with 3rd order nonlinear potential was employed by Koch et al.4 

They obtained a l//2 -like spectrum for the lattice size (i.e. the number of 
particles) N = 64, where the initial conditions are such that the lowest one, 
two or three mode-energies are excited. No plateau is observed in the low 
frequencies. 

3.2 4th Order Potential 

FPU hamiltonian with 4th order potential was simulated by Fukamachi5. The 
initial condition is such that the coordinate of each particle is random and its 
velocity is zero. For N = 8 was obtained a 1// spectrum in a wide range of 
frequency. There is no plateau observed in the low frequency region. Maybe 



325 

this is the only one successful result obtained for the hamiltonian system of 
anharmonic lattice. 

3.3 3rd plus 4th Order Potential 

FPU hamiltonian with 3rd order potential together with 4th order one was em- 
ployed by Musha et al.6 for N = 128. The nonlinear parameters are chosen as 
fitting the quartz crystal for which they observed 1// fluctuations from optical 
experiments. The power spectral density (PSD) of phonon energy belonging 
to the mode with the wave length 4 (in unit of particle distance) is Lorentzian 
with its low frequency tail being elevated. It is, however, unclear whether the 
tail is 1// -like or not. 

3.4 Lennard-Jones Potential 

A one-dimensional chain with Lennard-Jones potential was simulated by Koch 
et al. for several initial conditions7. The PSD of the lowest mode energy 
is l//a -type with no plateau in the low frequency region. The value of the 
spectral exponent a seems to be <2 in all tested cases. 

4    Numerical Experiment — Our Study 

From the numerical experiments so far reported, it is difficult to deduce any 
definite conclusion on the general features of the phonon-number fluctuations. 
Most of the results seem to indicate a l//2 spectrum but a 1// spectrum is 
also observed in some cases. A more systematic study is thus necessary. 

We made a simulation8 employing the same type of FPU hamiltonian as 
used in ref.5 where the 1// fluctuations are reported. We thoroughly investi- 
gated the following points. 

1) System-size dependence of fluctuations. 
2) Temperature/nonlinerity dependence of the fluctuations. 
3) Mode dependence of the fluctuations. 
We are also concerned with the relaxation time of the system because, 

as mentioned already, the PSD observed in the optical experiments does not 
saturate to white noise in the low frequency region. Our initial conditions 
are different with those in the past simulations. We started from the most 
probable states in thermal equilibrium, i.e., we adopted initial conditions such 
that the energy is equally distributed to each vibrational mode. Therefore our 
PSD is expected to be free from transient effects. 
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4-1    FPU Hamiltonian and the Computational Methods 

One-dimensional FPU hamiltonian with 4th order nonlinear potential is given 
by 

H = H0    +    V, (1) 

*o = ^Etf + ^Efo+i-*)8, w 
i=l j=l 

v  =  §£>+i-<fc)4. (3) 

where 

Qi+N ~ 0% ,   Pi+N = Pi ■ (4) 

The lattice, for a given N, is specified by model parameters (M, üb, ß). The 
dynamical state of the system is specified by the value of the total hamiltonian 
H. We introduce the nondimensional quantities 

wot-tt,    -^Lfc-ifc,    -0-H-+H, (5) 

and obtain a reduced hamiltonian with M = 1, ab = 1, ß = 1 in eqs.(l)~(3). 
Then the relation 

(the energy of the reduced system) 

=    4M2 x (the energy of the original system) (6) 

holds so that the number of independent parameters is only one: the total 
energy of the reduced system. Note that the energy of the original system is 
proportional to the temperature of the system. Therefore the energy of the 
reduced system is proportional to both the nonlinearity and the temperature 
of the original system. 

We are concerned with fluctuations of the phonon number nm in each 
vibrational mode m. The phonon number corresponds to the mode energy Em 
in the classical limit. If the lattice is purely harmonic, the state of the system 
{9j(0iPj'(0} can be expressed as a superposition of the normal modes with 
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eigenfrequency üm/2n as 

N 

%(') = X] Amcos ( —jv ümt ~ Vm) ' 
m=l ^ ' 

Pitt) =  Yl A™^™ Sin f —— ümt -<pm) , 
m=l ^ ' 

where 
fim = 2 sin 

/7rm 
)• 

(i = l,2,...,iV), 

(m=l,2,.--,iV) 

(7) 

(8) 

The amplitude Am and the phase tpm are constants determined by the initial 
conditions. Then the total energy with no anharmonicity is given by the sum 
of the mode energies: 

AT 

Ho = 2_j Em, 
771=1 

where 

Em = -NU2 Al 

The mode energy Em can be rewritten as 

Em = ÖÄ? If"» + *^mCm|2 , 

in terms of the Fourier transforms of <&(£) and pj(t) : 

WO = Te^qjit),        Vm(t) EE fy^p^). 
i=i j=i 

(9) 

(10) 

(11) 

(12) 

When the hamiltonian includes anharmonic terms, some ambiguity cannot 
be avoided in denning the 'phonon mode' and its energy. Here we take the 
simplest definition that is usually employed: The 'mode energy' in weakly 
nonlinear lattices is given by eq.(ll) with eqs.(12) and (8). This means that 
the state of the anharmonic lattice at any moment {qj(t),Pj(t)} is regarded as 
a superposition of the normal modes of the harmonic lattice (eq.(7) with Am 
and <pm which are not constant any more). The sum of Em's is therefore not 
equal to H but to the value of H0 at that moment. A drawback involved in 
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N=S N=16 N=n N=64 AT =128 

Figure 1: PSD of the lowest mode energy averaged over N, sample processes with different 
initial conditions. N, = 50 for the particle number N = 8,16,32,64; N, = 48 for N = 128. 
The average mode energy is fixed at eo = 0.2. The line F(f) = A/{1 + (f/fs)"} is obtained 
by fitting the PSD in the frequency range between the two 4- marks. The 'shoulder' at / = /s 
is indicated by a f mark. The observation time isT = nxmxdt where n is the number 
of time-series data used to obtain the PSD in each process, m x dt the sampling time with 
dt - 0.0075. n x m = 217 x 140 for the system size N = 8; n x m = 218 x 160 for N = 16; 

n x m = 215 x 320 for N = 32,64; n x m = 218 x 320 for N = 128. 

this definition is the origin of the unphysical sharp peak of PSD in the high 
frequency region8. 

We chose the initial condition such that each mode energy has the same 
value eo because the energy is equally distributed among the normal modes in 
thermal equilibrium: 

Em{t = 0)    =   e0    for m = l,2,---,iV - 1; (13) 

EN (t = 0)    =    0     : no translational motion of the center of mass. (14) 

This corresponds to the initial state 

2eo v-^    1 / 27rmi 

Pi{0) = V iv" ^sin vir ~ ¥'m) - 
m=l * ' 

(15) 

(1 = 1,2,-...JV), 

where ipm is a uniform random number in the interval (0, 2ir) 
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Figure 2: Same as Fig.l but e0 = 1.0.  N. = 50 for N = 8,16; JV. = 47 for TV = 32,128; 
N, = 49 for N - 64.   n x m = 217 x 80 for JV = 8; n x m = 217 x 160 for N = 16; 

n x m = 217 x 320 for N = 32; n x m = 215 x 320 for W = 64,128. 

We performed the simulation varying the system size N and the initial 
mode energy eo. For each combination (iV,eo), the PSD is averaged over 
47 ~ 50 runs with different initial conditions (i.e., different random number 
sets {<fm})- The averaged PSD P(f) is then fitted with the line F{f) = 
A/{\ + (///s)"} so that £i{P(/i) - F(fi)}2 is minimized in the fitting range 
Max{/mi„, 10-15/s} < f < 1015/s- The simulation was performed using the 
4th order Runge-Kutta method with the time step dt = 0.0075. 

4.2   Numerical Results 

We first focus on the lowest mode energy Et. Figs. 1 and 2 show the PSD of 
Ei for e0 = 0.2 and e0 = 1.0, respectively. 

The behavior of the PSD for (JV = 8, eo = 0.2) is similar to that obtained 
by Fukamachi5 at least in the low frequency region: the PSD is 1// -like with 
no saturation to white noise. 

Unfortunately that is an exceptional case. General features of the fluctu- 
ations are as follows: First, the PSD is flat at low frequencies, which means 
that the process is stationary. The inverse of the frequency at the 'shoulder', 
rc = l//s, is a relaxation time of this stationary process. Second, the spectral 
exponent a is not 1 but close to 2. 

It is now important to determine how the shoulder frequency /s and the 
exponent a depend on the system size N and the (nondimensional) total en- 
ergy. 

In Fig.3, we present log-log plots of /s against N for different values of 
e0.   For a fixed value of N, smaller values of eo yield smaller values of /s- 
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Figure 3: Log-log plot of the shoulder frequency /s vs N for various initial values of the 
mode energy eo- The straight line represents the relation /s a 1/N. 
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Figure 4: Log plot of the spectral exponent o vs N for various initial values of the mode 
energy eo- 
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Figure 5: PSD of higher mode energies Em, where the wave number k = m/N is fixed as 
k - 1/8   eo = 0.2. Each PSD is obtained by averaging over N, = 10 sample processes with 
different initial conditions. T = n X 160 x 0.0075. n = 216 for AT = 16; 215 for N = 32; 2 

for JV = 64,128. For TV = 8, see Fig.l. 

We can see two aspects of this from eq.(6). When the vibrational energy (or 
temperature) is fixed, the relaxation time 1/fs becomes longer as the nonlinear 
parameter ß decreases. When ß is fixed, on the other hand, smaller energies 
(or lower temperatures) lead to longer relaxation times. These trends are 
physically reasonable. It is interesting that /s depends on the system size 
nonmonotonically. The nonmonotonic behavior might be explained in terms 
of two competing factors. 

1) An increase in N makes the relaxation time l//s longer because l//s 

is the time necessary for the system to lose the memory of the initial state so 
that the PSD becomes white. 

2) An increase in N makes the frequency spacing smaller so that the reso- 
nance conditions necessary for mixing mode energies are more easily satisfied. 

The convex curve of /s versus N indicates that the second factor is effective 
until it is overwhelmed by the first one. /s must decrease faster than 1/7V as N 
increases if we observe the power law in macroscopic lattices. This is because 
the phonon number fluctuations are meaningless in the frequency region higher 
than the relevant mode frequency which is equal to 1/JV for the lowest mode. 

If we apply the present simulation to, for example, a quartz crystal in which 
1// fluctuations are observed2, the parameter values are6 M = 10-25 kg, Mwj = 
60Nm-1, and ß = 25x 1021 Nm"3. Then we should read t/wt,~tx4x 10 x s 
for t and {M2u)%/ß)e0 ~ e0 x 1.4 x 10"19 J for e0. Room temperature then 
corresponds to eo ~ 0.03. It is difficult to extrapolate the curves in Fig.3 reli- 
ably to the macroscopic range N ~ 10s and e0 ~ 0.03. However, it seems to 
be reasonable that the shoulder frequency /s in macroscopic systems can be 
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N=16 N=32 N=64 N=128 

Figure 6: The same as Fig.5 but e0 = 1.0. T - n x 80 x 0.0075. n = 213 for N = 16; 212 for 
W = 32,64,128. 

very low. 

The exponent a is plotted in Fig.4. We see that a increases from a ~ 1 
to a ~ 2 as N increases from 8 to 64 or 128. An exceptional case in Fig.4 is 
the datum for e0 = 0.2 with N = 128 which is even larger than 2. Actually, 
the estimation of a is, unlike /s, sensitive to the method of fitting, especially 
when the frequency range of the flat spectrum is not wide enough. However, 
we can see that the spectrum is closer to l//2-like than 1// for large N. 

Fluctuations of higher mode energies are also investigated. We fix the wave 
number A; = m/N at 1/8 and present the PSD of the mode energy Em = EN/S 

in Figs. 5 and 6 for eo = 0.2 and 1.0, respectively. The spectrum for large 
N appears to be typical Lorentzian, varying from l/^-like to constant as the 
frequency decreases. 

Finally, we present in Fig.7 the spectrum for eo = 0.03 (corresponding to 
quartz crystal at room temperature) with N = 128. We see that the spectra 
of Ex (Fig.7(a)) and ^i6 (Fig.7(b)) are l//2-like again and in the former case, 
the PSD has not yet become a white spectrum during the observation time 
T = 216 x 80 x 0.0075 because eo is very small. 

5    Summary and Discussion 

After all, our computer experiment showed that the phonon-number fluctu- 
ations obey the l//2-law in a wide frequency range except when the system 
size is small. The spectrum is generally Lorentzian, namely saturates to white 
noise at low frequencies, and so the fluctuation process is stationary. But our 
simulation suggests the possibility that the relaxation time for the low frequen- 
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Figure 7: PSD for N = 128 and e0 = 0.03. Each PSD is obtained by averaging over N. = 10 
sample processes with different initial conditions. T = 216 x 80 x 0.0075. (a) Mode energy 

E\. (b) Mode energy Eu. 

cy modes can be very long if the system size is extrapolated to a macroscopic 
one. A simulation on a different type of high-dimensional hamiltonian system 
(although not corresponding to the lattice vibrations) also yields a Lorentzian 
spectrum9. These results seem to be consistent with Aizawa's stagnant layer 
theory10. He argued the long-term tail of chaotic hamiltonian based on KAM 
theorem and suggested that the 1/f2 fluctuations are universal for hamiltonian 
systems. 

Our study is restricted on the system size, the dimension of the system 
and the type of anharmonicity. Can these factors play any role to shift the 
spectrum from l//2 to 1/f ? 

Previously, we proposed a simple stochastic model of a quanta! harmonic 
oscillator contacting with a heat bath11. The problem was described as a 
random walk on a ladder of energy levels E(n) = hu(n +1/2) (n = 0,1,2, • • •)• 
The jumping rate r^{n) which is the transition rate from the state n to n + 1 
was assumed as oc (1 + n)p. It was found that when p = 3 ~ 4, the spectrum 
is 1// -like, while for p = 1 it becomes Lorentzian with a long relaxation time. 
In weakly-nonlinear hamiltonian systems, one phonon process is dominant, 
which corresponds to the case p = 1 in the stochastic model. The results 
obtained from the stochastic model do not directly depend on the system size, 
the dimensionality or the type of the potential. From these considerations, we 
feel that the fluctuations of each mode energy are generally 1/f like instead 
of 1// at least in hamiltonian systems. 

If the phonon number really exhibits 1/f fluctuations, what can change the 
intrinsic 1/f2 -like behavior into 1/f -like? We have no answer to this question 
at present. Our final hope is to expect some dramatic effect of weak interactions 
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of anharmonic lattice with electrons, photons or heat bath. So far we have 
assumed non-dissipative systems, i.e., hamiltonian systems. Concerning this 
point, Anton at al.'s paper 14 interests us. They solved spatially discretized 
Burgers equation numerically. When the excitation force is a deterministic 
sine wave, a l//2 -like spectrum is obtained, while for white Gaussian noise, 
the PSD approaches to 1// -like. 

In connection with the phonon number fluctuations, only a few studies on 
non-hamiltonian systems have been reported11-12-13. We consider that more 
extensive research on weakly dissipative systems with many degrees of freedom 
is needed. 
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Gaussian 1/f noise has a strange property: its spectrum is invariant against amplitude saturation 
nonlinearity. A linear amplifier overloaded by Gaussian 1/f noise produces a 1/f noise at its output 
even if the output timefunction has become a random square wave due to a heavy overload. The 
invariance holds for any amplitude truncation level, including assymetric cases like half-wave 
rectified 1/f noise. Our results are purely empirical: we have no idea how to initiate a theoretical 
explanation. 

1 Introduction 

1/f noise is known to be a peculiar kind of noise, especially due to its general 
occurance in nature and the lack of a general model to explein this feture. It has been 
discovered at the same time when genaral relativity and quantum mechanics was 
established, however, even today, the field of 1/f noise is producing unexplained 
effects and, as a consequence, various controversies. 

Here, we would like to report a particularly strange property of Gaussian 1/f 
noises, which we have first published in 1993 as a side-effect of stochastic resonance 
under special conditions [1]. Since then, we have thoroughly repeated the 
experiments and extended the analysis for the case of various 1/r noises, too. 

2 Nonlinear amplitude transform of Gaussian 1/f* noises 

The invariance [1,2] of Gaussian 1/f* noises against a special nonlinear 
transform, the amplitude truncation, has been investigated in the following way. The 
nonlinear operation is defined by the following expressions: 

U2(t) = Ui(t)   if  Umi„ < Ui(t) < Umi„ (la) 

U2(t) = Umi„   if   Umi„>Ui(t) (lb) 

U2(t) = Umax    if   Umax<Ul(t) , (lc) 
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where U,(t) is the original noise, and U2(t) is the output noise; Umin and Umax are the 
lower and higher truncation levels, respectively. By other words, there are two given 
amplitude levels which limit the amplitude of the input noise. An illustration of the 
truncation is shown on Fig. 1. 

«i 

Figure 1: Amplitude truncation of a Gaussian 1/f noise. 

3 Methods of investigation 

We have carried out not only numerical but also analog simulations for the 
thorough investigation of the effects. Analog simulations have been very important 
to prove that the results are not due to aliasing errors which errors can often be found 
at computers simulation of power density spectra in nowadays' literature. 

Using numerical methods, a Gaussian random number sequence having 1/f 
spectrum was generated. The random number generator was cerafully selected to 
avoid longrange-correlation artefacts. The spectrum of the measured noise was 
calculated by FFT by averaging 1000 power spectra obtained by independent runs. 
The length of one single run was always over 200000. 

At the analog simulations the 1/f noise of a transistor was used and a proper 
analog circuit was used to perform the truncation. The output signal was filtered 
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(anti-aliasing), digitized and the spectrum was calculated using FFT. Here we used 
lengths of 4096 steps and the averaging of 1000 spectra. The frequency range of the 
1/f noise generator was = O.lHz-lOkHz. 

amplitude 

50 100 150 200 

time 

Figure 2a: An example for the amplitude truncation of a Gaussian 1/f noise. 

4 Results 

Within the experimental errors of our measurement and evaluation, the 
power spectrum turns out to be invariant against the amlitude truncation of the 1/f 
noise (see Fig.2). This surprising fact has been found for various assymetrical 
truncation levels also, including for example Umln=0 which corresponds to a half- 
wave-rectifierd noise. Of course, no one is able to test this phenomenon at each 
particular amplitude level because of the limitations of the length of simulation and 
measurement time. As, for the moment, there are no theoretical results explaining 
this behaviour, our statement is a purely empirical observation, which however, 
deserves thorough theoretical investigations. 
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Figure 2b: The power density spectrum belonging to the noise shown at Fig.2.a. 

We extended the numerical simulations for the case of 1/f* noises with k 
not equal to 1. It is obvious from the analogy with the case of diffusion noise that 
for Umlnand Um„ very close to 0 and k=2, the truncated noise should have k=1.5 . For 
2>k>l, the k exponent for the truncated noise is lower than 1.5 , it is closer to 1. 
For k<l we found a similar in variance as for k=l noise. The results are summerized 
on Fig.3. 

5 Some of the unsolved problems 

i. Theory. Unfortunately there is no theoretical explanation of our results, not 
even a picture to intuitively explain the effects described here. 

ii. Frequency range of investigations. We don't know, whether the 
invariance of the 1/f shape is valid only up to a limited frequency range. We have 
carried out investigations with limited frequency band 1/f noises (out of the 1/f range 
the spectra have tended to zero) and we have found always 1/f spectra in the same 
frequency band as in the original noise. 

Hi. Relevance of the level crossing dynamics of 1/f noise. Since the 
the spectrum seems to be invariant against any truncation of amplitude, we may say, 
that the level crossing dynamics [4] of the Gaussian 1/f noise, at any choosen level,' 
has a key role in the existence of the 1/f spectrum. 
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Figure 3: Results for various Gaussian 1/f* noises. 

iv. Preconditions. Is this invariance valid only for Gaussian noises? There are 
known non-Gaussian 1/f noises, for which the invariance is invalid [3]. 

v. Other nonlinear transforms. Are there other nonlinear transforms providing 
this invariance? 

6. Possible convergence from lP to 1/f. Since the truncation lowers the 
exponent of the power spectrum for 1/f* noises with k>l (e.g. for k=2 it goes to 
1.5, etc., see Fig.3), we may find systems which can provide convergence from 1/f2 

to 1/f, which can also be a method for generating 1/f noise. Of course, such systems 
have to be rather complex because the non-Gaussian characteristics of the truncated 
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noise requires to add up a large number of independent truncated noises to provide 
Gaussian characteristics before the next successive truncation step. 

7. Usefulness for  understanding  the generality   of 1/f noise 
If we could know the answer for several previous questions, this new 

property of 1/f noise might be useful to understand the general occurence of 1/f 
noise. In any case, our result contribute to the knowledge of 1/f fluctuations. 

8. Which real systems can produce this nonlinearity? 
Linear amplifiers obviously do. Else of importance? 
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