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ABSTRACT 

An observer extracts local and global information from a natural scene to form a 

visual perception. Neisser (1967) and Treisman (1985) demonstrated that a natural 

scene contains different types of features, i.e., color, edges, luminance, and orientation 

to aid visual search. Infrared and visible sensors present nighttime images to an 

observer to aid target detection. These sensors present the observer an adequate 

representation of a nighttime scene, but sometimes fail to provide quality features for 

accurate visual perception. The purpose of this thesis is to investigate whether color 

features (combining an infrared and visible sensor image) improve visual scene 

comprehension compared to single-band grayscale features during a signal detection 

task. Twenty-three scenes were briefly presented in four different sensor formats 

(infrared, visible, fused monochrome, and fused color) to measure subjects' global 

visual ability to detect whether a natural scene was right side up or upside down. 

Subjects are significantly more accurate at detecting scene orientation for an infrared 

and fused color scene compared to a fused monochrome and visible scene. Both the 

infrared and fused color sensor formats provide enough essential features to allow an 

observer to perceptually organize a complex nighttime scene. 
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EXECUTIVE SUMMARY 

For decades, military forces have used visual detection devices to enhance the 

ability to detect potential targets. The military operator has used long-wave infrared 

energy for target detection and visible to near-infrared energy for situational awareness. 

Each sensor provides the operator with important characteristics of the scene; however, in 

some cases, ambiguous information between the two sensor outputs may inhibit operators' 

detection sensitivity. In searching for a target, the operator must choose between the two 

sensor outputs to determine which sensor displays the target. Due to the spectral 

difference, the two sensors may display the scene in a completely different way. The 

operator must determine if the object displayed by each sensor is a target or noise. The 

inconsistent information between the two displays makes this task difficult, and thus the 

operator must guess whether the object is a target or noise. To reduce operator 

confusion, researchers have postulated that combining two spectral sensors into a single 

fused scene will improve operator detection sensitivity (Palmer, Ryan, and Tinkler, and 

Creswick, 1993). Palmer et al. (1993) demonstrated that pilots' situational awareness may 

benefit from a fused first generation long-wave infrared and an image-intensified charged 

coupled device displayed on a UH-1 aircraft. 

The majority of image fusion algorithms attempt to improve operator detection by 

increasing target contrast (Scribner, Satyshur, and Kruer, 1993; Ryan and Tinkler, 1995; 

Therrien, Scrofani, and Krebs, 1997; Waxman, Gove, Fay, Racamato, Carrick, Seibert, 

and Savoye, 1996a). The fundamental objective for each of these fusion algorithms is to 

extract, pixel-by-pixel, the most important information from each spectral sensor, enhance 

each pixel element, and then combine the two elements into an enhanced scene. The 

algorithms use contrast between pixels to delineate features imbedded in the scene, but 

they differ in the method used to enhance the pixel elements. Each algorithm uses a 

different monochrome gray scale or artificial color method to enhance the pixel 

information. 
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Researchers have used visual search experiments in an effort to show that image 

fusion improves target detection time and accuracy. These visual search experiments have 

provided inconsistent results, regardless of the fusion algorithm used, due to the 

interaction between the spectral sensors and scene characteristics. Inconsistencies are 

reflected by both the time required to detect a target and the accuracy with which that 

target is detected. In a guided visual search task, the ability to quickly and accurately 

detect a target depends on the context of the entire scene. The more coherent and logical 

the scene context, the more accurately a subject can understand the scene; the result is an 

improved visual search task (Boyce, Pollatsek 1992a, Wolfe 1994). A more fundamental 

research approach would be to investigate the improvement in global scene perception due 

to image fusion versus improvements in target detection. If improvements in global scene 

perception due to image fusion can be shown to be consistent from scene to scene, then 

that consistent behavior can be translated to the commencement of the visual search task. 

Additionally, the insight gained from investigating global perception could be used to 

refine fusion algorithms and improve scene to scene consistency in target search and 

detection. The purpose of this research is to investigate the effect of image fusion on the 

processing of the global scene context. 

The experiment was conducted on a Pentium 200-megahertz computer using 

Vision Works 3.0.4 (VRG) graphics display software. The video system consisted of a 

Cambridge VSG 2/4 controller video board and a FlexScan FX-E7 21-inch video monitor. 

The high resolution FlexScan FX-E7 color monitor had a 21-by-20-inch display area and 

an anti-reflective, non-glare, P-22 phoshere CRT. The CRT resolution was 600 by 800 

pixels, with 75.02 x and 74.92 y pixel per degree. The CRT operated at 98.9 msec frame 

update rate and used an 8-bit look-up table (LUT) to control the red, blue and green guns. 

The CRT was positioned 1.0 meter from the subject, with the viewing distance and angle 

maintained by an adjustable chin rest. 

Source images were obtained from the evaluation test flights of the Texas 

Instruments Image Fusion System (IFS) for the Army Night Vision and Electronic Sensors 

Directorate (NVSED).    Intensified (I2) and infrared (TR) images were selected from 
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available video footage, and still images were obtained during the test flights. The images 

were chosen to fit into five categories: man-made, wooded, roads, sea and general. Each 

image contained a discernible horizon, which was located within one-fourth of the center 

of the scene. The Naval Postgraduate School (NPS) monochrome fusion algorithm, used 

to produce a third set of images, further manipulated the component I2 and IR images. 

Fusing the original images and coloring them using the Naval Research Laboratory (NRL) 

algorithm created the final set of images. The images were cropped to the size of the 

smallest image available. Size consistency ensured that no scene provided more 

information than that which was based solely on image size. The images were then 

inverted to produce the upside-down version of the image for the experiment. 

The 920 trial images were composed of four independent variables. Each subject 

viewed both the right-side-up and the upside-down image, providing 460 trials of each 

type. For both image orientations, all four sensors were represented. The resulting 115 

image trials were shown as 23 scenes over five Stimulus Onset Asynchrony (SOA) 

conditions. The 23 scenes were then broken into two sessions, the first one containing 12 

scenes and the second session 11 scenes. For example, in the first session, 12 scenes were 

shown in each of the four sensor formats and both orientations to produce a block of 96 

trials. Each block was then replicated five times for each condition of SOA. The images 

were presented in random order in each block during a given session. With sixteen 

subjects, each viewing 920 trial images, a total of 14,720 trials were conducted. 

Analysis of Variance showed that the accuracy with which a subject can determine 

orientation of a scene is highly dependent on the sensor used and context of the scene. 

The interaction from scene to scene is driven primarily by the complexity of the scene. 

The more complex the scene, the more accurately the subject perceived the orientation. 

Image complexity consists of the scene context (e.g., levels of color, shape, curvature, 

object orientation) and is not related to the number of elements present in the scene. 

Additionally, the ability of a subject to accurately determine orientation of a scene was 

statistically dependent on prior experience, but not practically significant. Prior 

proficiency did not give subjects a distinct advantage in determining the overall scene 
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context. This suggests that scene perception is processed preattentively and is not learned 

or improved by training. If scene perception is indeed independent of proficiency, then 

image fusion provides a basic advantage for the commencement of guided search. An 

additional value of this study is the method it provides for further investigation of a scene 

context effect for search and detection of targets imbedded in scenes. 
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I. INTRODUCTION 

The ability to detect and classify contacts is paramount in the safe execution of 

day-to-day submarine operations. In the deep underwater environment, a submarine uses 

sonar as the primary sensor to detect contacts. At periscope depth, a specialized depth 

zone, the sonar's ability to detect contacts is degraded. To compensate for the 

submarine's vulnerability, the crew relies on visual input from the periscope. The 

submariner can observe surface traffic with moderate illumination within the general area 

of the submarine; however the submarine must operate at a reduced speed, which limits 

maneuverability. As a result, the crew wastes time maneuvering around surface vessels, 

rather than focusing on potential surface or air hazards. A system that could detect 

surface and air targets at greater distances would enhance the crew's situational awareness 

and reduce the probability of a collision. 

At submarine periscope depth, two key factors, field-of-view and sensor type, limit 

an operator's detection of an object. Typically, the conventional submarine periscope uses 

a visible sensor and an image-intensified camera, each possessing a narrow field-of-view. 

These two sensors are adequate during high illumination, but are severely degraded during 

low-light operations. Nighttime operations can be especially hazardous due to the limited 

visibility for navigating around obstacles located near a coastline. A well-trained, 

experienced watch section can overcome some of these limitations. However, without 

enough sensory input, the operator may miss something; e.g., a small vessel masked by 

shore lighting. If the sensor's signal-to-noise ratio is poor, the operator should not be 

blamed for the error. For example, during twilight operations in 1995, a submarine crew 

failed to detect a small surface contact off the coast of California. The crew lost spatial 

awareness and collided with the surface contact due to the poor characteristics of the 

visible sensor. Both vessels returned safely to port; however, the collision resulted in a 

significant breach to the surface vessel's hull and serious damage to the submarine's 

antennae. The submarine crew was held responsible, but this mishap might have been 

avoided if the crew had access to a better detection device. 



Submarine manufacturers have developed a new periscope at the request of the 

Chief of Naval Operations Submarine Warfare division. This new periscope, called the 

"Photonics mast" incorporates a high-resolution infrared sensor and a visible sensor. 

Because of its poor signal-to-noise ratio, the image-intensified sensor was replaced with 

an improved infrared sensor. The infrared and visible spectral bands provide 

complementary information that helps the user operate effectively during both day and 

night operations. The operator will obtain important scene characteristics from each 

sensor and, based on a comparison between the two outputs, decide whether to reject or 

accept the object. The operator may have to make a quick decision between conflicting 

information provided by two sensors, and the right decision may not be evident. To 

increase the probability that the operator will make the correct response, the two sensor 

formats must be displayed with minimal ambiguity. Krebs, Scribner, Miller, Ogawa, and 

Shuler (1998) showed that combining an infrared sensor and an image-intensified camera 

into a single fused image improved aviators' target recognition. This integration of 

information is similar to that of pit vipers, which fuse visible and infrared information to 

increase situational awareness of their surrounding environment and, therefore, better 

detection of their prey (Newman and Hartline, 1982). It is hypothesized that a fused 

scene, compared to either the visible or infrared sensors alone, will improve the 

submariner's situational awareness during surface surveillance. If the operator could 

easily detect and classify surface vessels, then the submarine's crew would reduce the risk 

of a collision. Furthermore, the fused image may provide additional navigation 

information that a SEAL platoon could use for coastline insertion. 

A. SENSORS 

The visual and non-visual electromagnetic spectrum of interest spans from 400 

nano meters (nm) to approximately 14 microns (urn). The normal human visible range is 

from 400 nm to 700 nm. The exploitation of the electromagnetic spectrum outside the 

visible range can enhance military operations considerably.   One particular period during 



which the ability to use the visible electromagnetic spectrum is degraded is after sunset, 

when the available light in the sky drops. The necessity to see "into the night" is the 

driving force behind the development of Night Vision Devices (NVDs). NVDs consist of 

two basic types: Image intensifier (I2) and Infrared (IR). A brief overview of the relevant 

electromagnetic spectrum is presented to provide the basic knowledge necessary to 

understand the goal of this research. Marine Aviation Weapons and Tactics Squardron 

One (MAWTS-1, 1994) provides more detailed coverage of the theory of the 

electromagnetic spectrum. 

1. Image Intensifies 

a. Sources 

The visual portion of the electromagnetic spectrum, or optical radiation, is 

exploited by I2 sensors which enables an operator to view images during low-light 

conditions. "Light, or optical radiation, manifests itself in two ways; as particles of energy 

called photons or as waves propagated through a medium, which in this case is air" 

(MAWTS-1, 1994). Sources of light are divided into two categories, generated and 

reflected. Luminance (reflected light), which originates from either terrain or man-made 

objects, is expressed in terms of foot-lamberts (ft-1). Illuminance (generated light), from a 

source such as the moon, is measured in lumens per square meter (lm/m2) and expressed in 

terms of lux. 

Several variables affect illumination magnitude and the strength of the 

resulting luminance. The amount of illumination available in the night sky is directly 

related to the phase, angle, and properties of the moon's surface. Stars and other celestial 

bodies that contribute to the light intensity of the night sky have significantly less effect 

than the moon. The sun contributes short-duration light to the night sky during the 

periods just before sunrise and just after sunset. 



b. Degrading Factors 

Atmospheric conditions have the greatest range of effect on the I2 scene. 

Many atmospheric factors can significantly reduce the effectiveness of the I2 scene, the 

dominant one being water vapor. The type and magnitude of water vapor present can be 

either invisible or opaque on an I2 display. Such wide and rapid fluctuations in the 

effectiveness of I2 due solely to water vapor require operators to have significant 

experience to recognize a deteriorating condition. To a novice operator, and even to an 

experienced operator, severe degradation in visibility can occur without the operator 

realizing it. Figure 1.1 depicts a scene from an external source, such as the moon, where a 

pilot will perceive photons reflected from the source. 

^TEHRABi REFLECTIVITY ~ 

Figure 1.1. Reflected light (luminance) generated from a source (illuminance) is 
attenuated by atmospheric conditions and received and processed by a I2 detector 
(MAWTS-1, 1994). 

2. Infrared Sensors 

a. Sources 

All objects with a temperature above absolute zero (-273 degrees 
Celsius) emit energy, most of which is in the IR portion of the EM 
spectrum. An increase in temperature will increase an object's 
molecular vibrational motion, thereby increasing its energy state. 



When the elevated energy state collapses, thermal energy in the 
form of radiation is emitted (MAWTS-1, 1994). 

Sources of an IR signature are of two types, man-made objects and stored solar energy. 

Man-made objects radiate an IR signature due to heat generated by friction, combustion of 

some type, and living creatures. Stored solar energy is radiated when the surrounding 

terrain or air cools. Unlike the visual spectrum, IR is independent of illumination and 

lumination. The magnitude of the IR signature from an object is controlled by two 

factors: conditions of the surrounding environment and thermal properties of the object. 

These two controlling factors can cause radical changes in the thermal picture hour to 

hour and make it difficult to quantitatively state how easy or difficult it will be to detect 

any one type of target. 

b. Degrading Factors 

Two primary factors can greatly reduce the effectiveness of the IR scene. 

The first, atmospheric conditions, has the widest range of effect on the IR scene due to 

energy absorption and scatter. The dominant factor impacting thermal signature loss is the 

absorption of thermal energy not scatter effects. Thermal absorption in the atmosphere is 

caused by a variety of gases and paniculate matter. The dominant component affecting 

thermal absorption is water. Unlike the visual spectrum, IR is dependent mainly on the 

magnitude of water vapor present (humidity). As humidity increases, the environment 

becomes impenetrable to IR due to complete absorption of all thermal energy being 

radiated by an object and the associated background. 

The next two factors affecting the clarity of an IR scene are the proximity 

and thermal strength of surrounding thermal signatures. Confounding thermal sources 

have some effect on the detectability of the target. The strength of the confounding 

sources is dependent upon the conditions of the surrounding environment and the thermal 

properties of the target. In contrast to the I2 scene, the IR scene degradation is easily 

recognized by the pilot. However, pilot experience does play a significant role in the 

search and detection process for targets due to the wide quantitative changes for any given 



type of target. As Figure 1.2 shows, when the thermal signature is radiated from a scene 

through the atmosphere, the IR sensor will observe reduced radiant energy of the target. 

THERMAL SOURCE 

INFRARED   SENSOR 

RADIANT   ENERGY 

INFRARED SCENE 

Figure 1.2. Radiant energy in the infrared scene in the form of latent heat from a source is 
radiated and attenuated in the atmosphere until detected and processed by a IR sensor 
(MAWTS-1, 1994). 

B. SENSOR FUSION 

1. Theory 

The idea of fusing information from several sources (sensors) to obtain a global 

and more complete view of a scene has its basis in nature. The human nervous system 

operates five distinctly different senses. These individual sensors provide mutually 

exclusive information to the brain. The brain then integrates the input from the senses and 

creates a global view of the surrounding environment. Take, for example, the presence 

and proximity of a fire. In the case of fire, four of the five senses contribute information 

and help the individual determine the magnitude of danger and potential courses of action. 

When one of the four senses is impaired, say, vision obscured due to a closed door, the 

human body relies on one or more of the other senses to compensate for the visual 

impairment. The sensation of intense heat or dense smoke, or sound of a fire in close 

proximity, may provide sufficient information to allow safe egress from the dangerous 



Situation. A secondary solution is to attempt to improve the impaired sense — look under 

the door or even open it — both of which can have catastrophic results. 

How the human body fuses information from the different senses to create a global 

representation of the surrounding environment can be used as a analogy to enhance the 

data obtained from available IR and I2 sensors currently used for visual search. 

Continuing efforts to improve the individual sensors have provided substantially longer 

detection and identification ranges, resulting in an improved safety margin. The limitations 

of the electromagnetic spectrum cannot be avoided if we rely exclusively on the 

improvements of each sensor. Additional improvements may be obtained by extracting the 

advantages of each spectrum and fusing the sensor output into a single display. Both IR 

and I2 degrade under different conditions; therefore, after the two are fused together, each 

should compensate for the other's shortcomings. The concept of fusing multiple 

electromagnetic wavelengths is inconsistent with human vision because the human eye is 

only sensitive to the visual spectrum. A better example is, again, the pit viper. 

The pit viper has two unique senses to detect electromagnetic energy in the visible 

and IR spectrums. Processing this information allows the pit viper to hunt effectively in 

daytime, as well as at night. The snake uses these two distinct electromagnetic spectral 

sensors to identify and locate potential prey. Although the pit viper can strike with deadly 

accuracy on just the thermal signature of a potential prey, mapping of neurological 

impulses in its brain shows that the visual and IR spectrums are "fused" to provide a 

complete scene (Newman, Harline 1982). 

2. Literature Review 

Current research on the potential advantage of a fused image over the component 

images is centered around four types of experiments: paired comparison, method of 

equally appearing intervals, reaction time, and mean detection accuracy. The paired 

comparison experimental procedures have provided an excellent start in investigation of 

sensor fusion.   In paired comparison experiments, subjects are presented a sequence of 



image pairs and are forced to identify the "better" image. Subjects view fused images 

along with the component images in randomized order. Krebs, Buttrey, Lewis, and 

Mckenzie (1997) used a paired comparison experiment to determine the preferred sensor 

for use in a nighttime environment. The measure used was preference in locating a 

navigational cue in the scene. The sensor types included I2, IR, and three different fused 

image techniques over 25 different scenes. The still-frame images were presented in pairs 

to obtain subject preference to the sensor type. Subjects preferred color fusion to the 

other sensor formats but there was a strong sensor by scene interaction. Sensors 

performed differently depending on the scene characteristics present (e.g., context, 

texture, and color). 

A more robust qualitative evaluation is the method of equally appearing intervals. 

The evaluation of the night pilotage system known as the Advanced Helicopter Pilotage 

System (AHPS) provides insight into the advantage of image fusion (Ryan and Tinkler, 

1995). The evaluation of the AHPS was based on a series of test flights with the AHPS 

providing real-time fused and component images to the aircraft in flight. During each 

flight, the crew conducted a series of night pilotage maneuvers with various sensor 

configurations. Each flight assessment consisted of a pilot evaluation for each sensor 

configuration, copilot evaluation of pilot performance, and an independent evaluator's 

observations and comments. The assessment concluded that the component sensors were 

"complimentary to one another and detect independent and unique characteristics of the 

scene" (Ryan and Tinkler, 1995). The pilots and evaluators used a grading scale from one 

to three, and the result showed that "image fusion was preferred over the individual 

sensors over all conditions and environments tested." (Ryan and Tinkler, 1995). Although 

the method of equally appearing intervals is an improvement over a simple paired 

comparison, it is still suspect because it depends completely on subjective responses. 

Therefore, because subjective preferences can be unreliable, a more quantitative approach 

to determine the efficiency of image fusion is desirable.   An advantage in the ability to 



search and detect target objects must be quantified to support the contention that image 

fusion is better than a single band representation. 

Measuring search accuracy and reaction time provides a better basis to highlight 

the clear advantage of image fusion. Steele and Perconti (1997) conducted a series of 

experiments to determine the benefits of integrating gray scale and synthetic color for 

natural scene imagery. The independent variables were scene type, sensor type and the 

dependent measures were reaction time and accuracy. AHPS images were used to 

develop a series of laboratory experiments on horizon perception, recognition, and 

identification tasks. Still frames were produced from I2, IR, and three different fused 

image techniques for a total of 25 different scenes. In the first experiment, the subjects' 

task was to determine whether or not the perceived scene orientation was level. Each 

scene was presented for approximately ten seconds. In their second experiment, 

videotaped sequences were presented to the subject. The subjects' task was to identify 

whether a predetermined target was embedded within the videotape sequence. Subjects 

reaction time and accuracy was measured for each trial. 

Steele and Perconti (1997) showed that fusing different imaging systems is 

beneficial. Their experiment showed promising results, however it failed to demonstrate 

that sensor fusion is consistently superior compared to the component images. Their 

results showed that subjects' reaction time and accuracy was influenced by different 

combinations of sensor by scene type. This sensor by scene interaction indicated subjects 

did not benefit from color fusion across all scenes. A specific example of this confound is 

that, for some sensor formats, accuracy and reaction time did not correlate (i.e., the 

shortest response time did not have the highest accuracy) even though the images were 

viewed for as long as ten seconds. Steele and Perconti (1997) summarized that color 

fusion is not the best sensor type for all conditions, because the fusion algorithm is 

influenced by uncontrollable illumination, scene content, and color look-up-table 

parameters. As an alternative, color fusion may benefit targeting applications due to the 

added scene contrast. 



A more critical investigation would be one that determines if the reaction time to 

detect a target can be improved using a fused image over the component images. 

Waxman, Gove, Seibert, Fay, Carrick, Racamato, Savoye, Burke, Reich, McGonagle, and 

Craig (1996) conducted an experiment to investigate the benefits of color fusion for target 

identification. Stimuli consisted I2, IR, and fused-color nighttime scenes. A square target 

of varying contrast was imbedded within several heterogeneous natural scenes. Subjects 

detected low-contrast targets more rapidly in the fused scene compared to the component 

scenes. Waxman et al., (1996) concluded that subjects identified the fused color image 

significantly faster due to the opponent color qualities of the image. However, subje 

were slow to respond to I2 and IR targets due to the poor target to scene contrast. 

Although these results show promise, there may be a methodological design flaw with the 

addition of a square target within the natural scene. This square target may cause the 

subject to experience some perceptual cognitive interference due to the introduction of a 

foreign geometric shape within a natural scene. 

Another measure of the potential advantage of image fusion is the accuracy with 

which a target can be detected in real-world scenes. Toet, Ijspeert, Waxman, and Aguilar 

(1997) conducted an experiment to investigate whether the increased amount of detail in a 

fused image can improve a subject's ability to perform a situational awareness search task. 

Imagery was collected using visible and IR sensors. The images were taken in close 

proximity to dawn, when low light contrast and little or no thermal difference in scene 

background exist. During image collection, a target that was significantly higher in IR 

contrast (a person) was present in the scene. The collected images were fused into four 

additional image formats consisting of color and gray scale. The experiment consisted of 

computer-presented images followed by a schematic representation of the scene. Subjects 

identified target location, and then error distance and missed images were calculated. The 

results showed that color fused images performed better than monochrome fused and 

component images. The use of a low-contrast environment has two distinct effects. First, 

a high-contrast target in a homogeneous scene reduces the effect of distracters in the 
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scene and enhances detection capability. Second, the experiment shows that image fusion 

offers an advantage, but is limited by scene background, target scenario, and fusion 

algorithm used. The second result provides additional support for sensor-to-scene 

interaction. 

C. THEORY OF TARGET RECOGNITION 

The five senses of the human body provide constant sources of information on the 

surrounding environment. After the stimulus interacts with the specific sensor organ, the 

nervous system transfers the information to the brain, which interprets the electrical 

impulses and provides the necessary response. The entire process is known as "cognition" 

and refers to the way in which the human body senses, transfers, interprets, and responds 

to stimuli. A more focused type of cognitive process is humans' visual ability. Messer 

(1967) offers the most concise definition of visual cognition: "Visual cognition, then, deals 

with the processes by which a perceived, remembered, and thought-about world is 

brought into being from as unpromising a beginning as the retinal patterns." The 

predominate model used is known as the "schema hypothesis" (Wolfe, 1994). 

1. Visual Search 

The schema hypothesis modeled by Wolfe (1994) encompasses the work of 

Niesser (1967), Treisman (1985) and others. The model's foundation rests on Niesser's 

proposal that visual search is a two-stage process composed of two fundamental 

components. The first process, which occurs before subject-driven search, that is before 

subject focuses attention on the object, is known as preattentive processing. The 

preattentive stage is dominated by a large-scale parallel visual search pattern. During the 

preattentive stage, the eye obtains a global perception of color, contrast, and texture. This 

global perception engages a visual schema which provides the necessary stimulus for the 

second stage of the visual process. The second stage is a serial process that determines 

the more-detailed features of a visual scene and identifies objects in the scene. The 

combination of these two visual stages provides the stimulus the brain needs to detect and 
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recognize objects. Niesser postulated that the transition between these two forms of 

visual search depends on "visual persistence" or "iconic memory." Visual persistence 

allows the eye to retain an icon of the image for about 500 milliseconds, which enables the 

human to "see" an image even after the image has been extinguished. 

In Wolfe's (1994) model, the first stage, the preattentive stage, is a parallel process 

visual search. In a scene where features have "preattentive just noticeable difference" 

(Wolfe, 1994) the process is driven primarily by the stimulus and is a scene activated, 

bottom-up, process that is independent of the subject. Wolfe's model uses building blocks 

known as "feature maps" that determine how the visual search task is completed. In the 

preattentive stage, features such as size, color, and orientation are activated in separate 

feature maps. The weighted sum of the feature maps combine into an overall "activation 

map" that directs the attention of the subject to features in the visual scene. In a scene 

that does not provide the necessary noticeable difference between the object and 

background in a specific feature map, the parallel search process is not sufficient. In such 

conditions, a top-down, subject-controlled serial search is necessary. As in the parallel- 

only preattentive visual search, the search which uses both parallel and serial search results 

in an activation map that is a weighted combination of all the feature maps. Previous 

research has been "consistent with the idea that early visual analysis results in separate 

maps for separate properties, and these maps pool their activity across locations" 

(Triesman, 1985). Figure 1.3 depicts Wolfe's model. 

The activation map is a representation of the relative magnitude of the stimuli in 

each location in the image and is derived from the feature maps. When attention is to be 

focused, the topographical analogy is that the hills would be higher on the priority list for 

visual attention. Conversely, the valleys in the activation map would be lower on the list. 

Wolfe concludes that the "activation map makes it possible to guide attention based on 

information from more than one feature. This is important in the search for targets not 

defined by a single unique feature" (Wolfe, 1994). As attention is focused and each 

location is identified, the next-highest peak is the next to be identified.   This process 
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continues until either the target is identified or all points of interest are identified as non- 

targets. It has been shown that the pooling of these maps allows "rapid access to 

information about the presence of a target" (Triesman, 1985). Preattentive processing is 

dominated by a parallel search of coarse feature categories. The dominating scene 

attributes that control the preattentive stage are, in the order of effect, object size , color, 

motion, and orientation (Triesman, 1990). 

Basic Components of Guided Search 

Activation Map 

The Stimulus is filtered 
through broadly-tuned 
"categorical" channels. 

The output produces 
feature maps with activation 

based on local differences 
(bottom-up) and task 
demands (top-down). 

A weighted sum of these activations 
forms the Activation Map. In visual 

search, attention deploys limited 
capacity resources in order of 

decreasing activation. 

igure 1.3. Wolfe's model for preattentive processing of images uses a weighted 
combination of feature maps to show the relative magnitude of the objects in the scene. 
The magnitude or "preattentive just noticeable difference" determines what features are 
detected preattentively and what features engage guided search (Wolfe 1994). 

2. Visual Persistence 

There is no doubt that a transition between parallel search and the subsequent 

serial search for features is built on volatile information storage. Subsequent research 

shows that the view that iconic memory and visual persistence are the same thing is 

incorrect (Phillips 1974, Coltheart 1980). Messer stated that visual cognition is in itself a 
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"complex of processes" (Niesser, 1967). Messer also alluded that, even when an image is 

terminated, "it seems apparent that the processing of iconic information can continue past 

this point." (Niesser, 1967). Refinement of Niesser's initial hypothesis shows that the 

overall process may be composed of both visual persistence and iconic memory 

(Coltheart, 1980). 

The effects of stimulus luminance and duration on visual persistence provide the 

basis for differentiating visual persistence and iconic memory. Both Niesser's and 

Coltheart's theories depend on the assertion that the foundation that the persistence of an 

image, even after is has been extinguished, is due to residual neural activity. The length of 

time that the image persists depends on both the length of time the stimulus is exposed and 

the magnitude of the luminance. Further support for residual neural activity being the 

basis of visual persistence is that image complexity does not reliably affect the duration of 

the persistence (Irwin and Yeomans, 1991). Irwin and Yeomans concluded that "visible 

persistence appears to be a residual neural trace of an extinguished stimulus, rather than a 

byproduct of cognitively driven information-extraction process." 

The duration of the visual persistence can last significantly longer than the stimulus 

itself. Duration of the image after the stimulus has been removed was initially determined 

to be approximately one second (Niesser, 1967). The duration of the image was later 

shown to exist for approximately 200 msec (Haber, 1970). In experimental testing, the 

control of visual persistence is vitally important when investigating the visual preattentive 

process. Masking is the tool that is readily available to provide the necessary control of 

the stimulus image persistence. 

3. Backward Masking 

Masking of a visual stimulus can be categorized in many different ways. The 

categories into which the masking falls depends on by the method used in the experiment. 

Masking can be performed in three time domains. The time domain is defined by the 

Stimulus Onset Asynchrony (SOA) or the time interval between stimulus offset and mask 

onset.  The first time domain is "forward masking" or before stimulus onset.  In forward 
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masking, the masking image is presented just before the test stimulus. Forward masking 

relies on the visual persistence of the masking image, allowing the mask image to "merge" 

with the test stimulus. In forward masking, the decay of the mask image after mask offset 

occurs requires that the proximity to the test stimulus be short. The second time domain 

is simultaneous masking, presenting the mask stimulus and test stimulus simultaneously. 

The final time domain is backward masking, when the mask stimulus is presented after the 

test stimulus. Figure 1.4 depicts backward masking. 

SOA 

IF W 

Stimulus 
Onset 

Stimulus 
Offset 

Mask 
Onset 

Mask 
offset 

Figure 1.4. Backward masking of a visual scene with visual noise. 

The three types of backward visual masking are masking by light, by visual noise, 

and by metacontrast. Kahneman (1968) provides a detailed review of all three types of 

backward masking. In general, the best method for controlling the persistence of an image 

is masking by noise. As Kahneman states, "When test stimulus is a form and masking 

stimulus is a field of visual noise, their joint presentations results in a general degrading of 

the image" (Kahneman, 1968). The effect of visual noise on the test stimulus is greatest 

when the masking stimulus is presented immediately following the test stimulus. 

Kahneman calls this "type-A." Additionally, in type-A masking, the effect of the masking 

stimulus can be demonstrated when the SOA is less than 100 msec (Niesser, 1967). Later 
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research showed that visual noise will have some effect until the SOA exceeds the visual 

persistence of the test stimulus, after which no effect can be seen. "What is most 

noteworthy is that there are no exceptions to the general principle that the visual noise 

mask will terminate the persistence of a stimulus if the mask arrives before the normal 

persistence is ended of its own accord" (Haber, 1970). 

D. SCENE FACTORS 

1. Context 

Scene context is a key factor in the identification of a target in a natural scene. 

The scene context initiates a specific schema that directly impacts the speed at which 

targets in the scene can be named. The effect of scene context on object naming occurs 

early in scene viewing, typically on the first visual fixation (Boyce and Pollatsek, 1992). 

The context determined early in scene viewing is then used in later stages of visual search 

to identify the target. Many significant factors in the scene context affect the speed and 

accuracy with which the subject can identify a target object. 

The general background characteristics of a visual scene are the driving factors 

behind a subject's global scene perception. In the preattentive stage, when coarse object 

characteristics are processed, the size and color of the background surrounding a target 

dominate the scene. Brief exposure experiments showed "that the background of a scene 

was the sole cause of the context effect" (Boyce and Pollatsek, 1992a). Previously, 

Biederman had shown that having a single inconsistent object in a visual scene did not 

affect the accuracy with which a target was detected (Biederman, 1982). 

2. Scene Complexity 

If the number of individual features of a specific object in a visual scene were 

increased, it would make sense to assume that the target would be more discernible than 

others in the scene. Early research proved that the "dimensions" or the feature maps that 

define an object do impact detection.    Increasing the number of feature maps or 
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"dimensions" that define an object in a scene results in a lower search time and, therefore, 

an increase in the scene processing rate (Teichner and Mocharnuk, 1979). Wolfe provided 

additional evidence that the reaction time to find objects in a scene increased at different 

rates depending on the number and type of features present. He showed that as the 

number of features present in a visual scene was increased, the object identification time 

was significantly reduced. Additionally, the more dominant features of color by size 

combination provided better results than color by orientation, further supporting 

Triesman's proposed hierarchy (Wolfe, 1993). 

3. Experience and Prior Expectations 

If a subject's experience level with the type of stimulus were increased, the natural 

expectation would be that performance level in search and detection of the stimulus would 

also improve.    In an effort to determine if experience plays a part in visual scene 

perception, Biederman,  Teitelbaum,  and Mezzanotte (1983) conducted a series of 

experiments in which the stimulus backgrounds for a target image changed during a 

experiment.   The learning effect due to repetition continued with consistent values of 

magnitude and slope. Thus, Biederman et al. concluded: 

The implication of these results are that the mechanisms for perceiving and 
interpreting nondegraded real-world scenes are so quick and efficient that 
conditions can readily be found in which priming and prior exposures of 
substantial portions of the scenes are not helpful for perceiving and judging 
certain aspects of those scenes (Biederman et al 1983). 

E. HYPOTHESIS 

The benefits of color fusion have been inconsistent (Krebs et al. 1997, Steele and 

Perconti 1997, Waxman et al. 1996, Toet et al. 1997). Researchers have been 

unsuccessful in clearly demonstrating that observers' detection for a color-fused target will 

be significantly better than an I2 or IR target. Both I2 and IR sensors suffer from poor 

dynamic range and uncontrollable factors, such as environmental and terrain conditions. 

Alternatively, color fusion is dependent upon the quality of input imagery. If the I2 and IR 
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sensor input is good (or poor) then fusion will not show a significant improvement. 

However, if the I2 and IR sensor input is mixed, I2 good and TR bad, then fusion should be 

superior compared to the component bands. Previous studies (Krebs et al. 1997, Steele 

and Perconti 1997, Waxman et al. 1996, Toet et al. 1997) failed to demonstrate the 

benefits of color fusion due methodological design errors. Specifically, these studies 

required subjects to detect or identify a specific target within a natural scene. This 

experimental method was susceptible to sensor by scene interaction. The color fusion 

target scores were collapsed across the different scene conditions, thus nullifying the 

benefits of a color target for a particular scene type. As a result, this study proposes to 

investigate an alternative experimental method to test the benefits of color fusion. 

This alternative method is based on preattentive processing. It is hypothesized that 

a visual search task will be influenced by the qualities of the preattentive target. Previous 

studies failed to prevent subjects' guided search for scene features. As a result, these 

studies were measuring focal attention mechanisms rather than preattentive processing. In 

order to prevent guided search and test preattentive processing, the experimenter needs to 

control the stimulus characteristics. Image duration and the length of visual persistence 

can control guided search: if an image is presented briefly enough, the subjects' visual 

cognitive process is limited to the preattentive process; and if the image duration, when 

coupled with visual persistence, is sufficiently long to allow other cognitive processes to 

engage, then the single effect of preattentive processing is lost. The combination of target 

image duration and visual mask will contain the cognitive process to the preattentive 

stage. 

When the cognitive process is controlled, the feature maps associated with an 

image and the effect image fusion has on the maps can be determined. The feature maps 

are dependent on the overall scene context. Different sensors present the associated 

features with varying clarity and accuracy. The sensor-to-scene effect of the intrinsic 

features must be adequately represented. Sufficient scenes must be used to ensure that the 

experiment looks across multiple real-world scene environments, and not just those that 
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have shown superior fusion performance. The ability to globally determine scene 

orientation is a measure of the preattentive process and the accuracy with which it occurs. 

By using multiple scenes presented both right side up and upside down, an experimenter 

can test subjects ability to preattentively process real-world scenes. If a subject can 

correctly identify the orientation of the scene more accurately with image fusion, then the 

fusion of component images is superior in the preattentive stage of visual cognition. 

The experiment presented in the next chapter investigates the following two 

hypotheses: first, that there will be no difference in the mean accuracy of the various 

sensors; and second, that there will be no difference in mean accuracy of the various 

sensors based on the experience level of the subject. The goal of the experiment is to 

examine the plausibility of these hypotheses. 
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H. METHODS 

A. SUBJECTS 

Sixteen male U.S. military officers volunteered to be subjects. Subject age ranged 

from 27 to 45 with a mean age of 32 years. All subjects had normal or corrected-to- 

normal visual acuity (20/20) and were naive as to the purpose of the experiment. Ten 

subjects had completed flight training either as aviators or flight officers. Half of the 

subjects were experienced, familiar with both component sensors (I2 and IR), and 

proficient in the use of at least one of the sensors. All subjects signed an informed consent 

and were briefed on the ethical conduct for subject participation specified in the Protection 

of Human Subjects, SECNAV Instruction 3900.39B. 

B. EQUIPMENT 

The experiment was conducted on a Pentium 200-megahertz computer using 

Vision Works 3.0.4 (VRG) graphics display software. The video system consisted of a 

Cambridge VSG 2/4 controller video board and a FlexScan FX-E7 21-inch video monitor. 

The high resolution FlexScan FX-E7 color monitor had a 21- by 20-inch display area and 

an anti-reflective, non-glare, P-22 phoshere CRT. The CRT resolution was 600 by 800 

pixels with 75.02 x and 74.92 y pixel per degree. The CRT operated at 98.9 msec frame 

update rate and used an 8-bit look-up table (LUT) to control the red, blue and green guns. 

The CRT was positioned 1.0 meters from the subject, with the viewing distance and angle 

maintained by an adjustable chin rest. A small floor lamp (5.51 cd/m2) was positioned on 

the floor behind the CRT to reduce screen glare. 

C. STIMULI 

Source images were obtained from the evaluation test flights of the Texas 

Instruments Image Fusion System (IFS) for the Army Night Vision and Electronic Sensors 

Directorate (NVSED). Images were selected from available video footage and still images 

obtained during the test flights.  The images were chosen to fit into five categories: man- 
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made, wooded, roads, sea, and general.   Each image contained a discernible horizon, 

which was located within one-fourth of the center of the scene. 

The Naval Postgraduate School (NPS) monochrome fusion algorithm used a 

modified Peli-Lim algorithm (Therrien, Scrofani, and Krebs, 1997). The NPS fused 

algorithm separated the scene into low-pass (low luminance value pixels) and high-pass 

components (high luminance value pixels). The high-pass component was amplified by a 

multiplication of the local luminance mean. The low-pass component was passed through 

a nonlinear luminance transformation so that the combination of the high-pass component 

would not saturate the fused scene. 

The Naval Research Laboratory (NRL) color fusion algorithm used a two- 

dimensional false color based on principle component analysis (Scribner, Satyshur, and 

Kruer, 1993). The IR and I2 images were digitized and plotted on a two-dimensional plot. 

The distributions of intensity values from both bands have a spheroid distribution 

extending along the principal component distribution. The elongated axis, principal 

component direction, represents brightness and the orthogonal axis is the chromaticity 

plane. The orthogonal direction was transformed into an expanded polar coordinate to 

generate a color circle with hue and saturation (Krebs, Scribner, Miller, Ogawa, and 

Shuler, 1998, pp. 6-7). For these images, red and cyan were used as the opponent colors 

on the color circle. For example, the IR used a red coloration on the bright pixels, which 

denoted the hotter objects in the scene (white hot IR configuration), while I2 used a cyan 

color on pixels with more luminance. The two images were then fused to create a two- 

dimensional, artificially colored image. The final image colors correlate as: red - a hot IR 

(red) and dark I2, cyan - bright I2 and cold IR (dark), white - hot IR (red) and bright I2 

(cyan) and black - cold IR (dark) and dark I2. 

The I2, IR, NPS, and NRL images were cropped to a standard size of 495 by 443 

pixels. Size consistency ensured that no scene provided more information based solely on 

image size. The images were then inverted to produce the upside-down version of the 

image for the experiment. Figure 2.1 illustrates four different sensor formats— sensor by 
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scene type. The checkerboard mask, 500 by 450 pixels, consisted of alternating black and 

white inner squares, 10 by 10 pixels, in size. The mask mean luminance was 7.64 cd/m2. 

Figure 2.1. Scene containing a manmade object in the four image formats: I2 

(upper left), IR (upper right), NPS fused monochrome (lower left) and NRL fused 
color (lower right). Images courtesy of NVSED. 

D. PROCEDURE 

The experiment consisted of two sessions for each subject. Each session lasted 

approximately 45 minutes. At the beginning of each session, the subject received verbal 

instructions for the task, followed by forty practice trials. These practice trials were used 

to familiarize the subject with the task. The practice trials' stimuli were not used in the 

experimental trials. 
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The experimental trial consisted of the subject viewing a fixation cross located in 

the center of the screen. The subject initiated a trial by pressing either "1" or "2" on the 

keyboard. The fixation cross would extinguish, and after a 20 millisecond delay, the 

stimulus would be presented for 50 milliseconds. The stimulus was followed by a 

checkerboard mask after a predetermined SOA (0, 20, 40, 60, and 80 milliseconds). The 

checkerboard mask was presented for 50 milliseconds. At the completion of the stimulus 

sequence, the subject made a keyboard response as to the orientation of the scene. 

Subjects received aural feedback for incorrect responses. Figure 2.2 illustrates a single 

trial. 

Each subject received 920 experimental trials composed of four different 

independent variables (orientation by sensor types, by scene types, by SOA). The 920 

trials were divided into 460 right-side-up and 460 upside-down image formats. Each 

subject contributed one threshold point ("1" for correct and "0" for incorrect) for each 

orientation by four sensor types by twenty-three scene types by five SOA conditions 

across the two sessions. The twenty-three scenes were divided into two sessions, the first 

containing 12 scenes and the second containing 11 scenes. For example, in the first 

session, 12 scenes were shown in each of the four sensor formats by two orientations to 

produce a block of 96 trials for one SOA. The trials were randomly presented within each 

block by session across all subjects. In summary, each of the sixteen subjects viewed 920 

experimental trials for a total of 14,720 trials. 

The threshold points were grouped by subject experience level providing two 

databases (experienced and novice). Each data base cell contained one threshold point for 

each subject for a total of eight threshold points per cell and was categorized by 

orientation, sensor, scene and SOA. The threshold points were converted to a percentage 

which represented the accuracy that an individual, with a given experience level, 

determined scene orientation for each orientation, sensor, scene and SOA. These 

accuracy fractions or proportions are analyzed below. 
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Figure 2.2. The experimental procedure. A fixation cross was presented on a blank 
screen for 50 msec. The stimulus followed and was presented for 50 msec. An SOA 
varying from 0 to 80 msec in 20 msec increments was followed by a checkerboard- 
masking pattern. The mask was presented for 50 msec and extinguished 
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HI. RESULTS 

A. DATA ANALYSIS 

A completely within-subject design, Analysis of Variance (Sensor by Orientation 

by SOA by Scene by Experience) was carried out on the dependent measure accuracy. 

The results quoted are based on the raw percent accuracy contained in each data cell. The 

arc sine transformation, commonly used to stabilize variance, was also employed and gave 

essentially the same results. The large sample size available for analysis was expected to 

provide statistical significance even in cases when mean accuracy differed by only one or 

two percent. When conducting human response experiments, statistical significance based 

on such small differences in mean accuracy cannot be the sole factor used when 

determining significance of the independent variable effects or interactions. Therefore, 

practical significance must be considered when analyzing the data in this experiment. 

There was a significant sensor main effect (F (3,1624) = 69.5567, p = 0.0000). 

Figure 3.1 illustrates that subjects responded more accurately to fused color and ER than 

to I and FM. The boxplots show that the ER and fused color sensor types are similar in 

mean and interquartile range, and I2 and fused monochrome have lower means and larger 

interquartile ranges. Tukey's method of multiple pair-wise comparisons showed that all 

sensor comparisons were significant (refer to Appendices A and B). 

Analysis of the combined effect of the fused sensors was conducted following 

collation of the data into fused and non-fused sensor categories. There was not a 

significant sensor main effect when comparing both fused and both non-fused sensors, 

t (1838) = 0.4292, p = 0.6678. There was a significant sensor main effect when 

comparing only fused color and non-fused sensors, t (1378) = 3.754, p = 0.0008. In the 

case of fused color, the higher mean accuracy is expected due to fusion taking advantage 

of the better qualities of both component images (refer to Appendix B). 
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Figure 3.1. A significant main effect for sensor (F (3,184) = 110.0411, p = 0.0000) with 
accuracy as the dependent measure. The Box Plot shows the mean (dot) and interquartile 
range for sensor accuracy. 

There was a significant experience main effect (F (1,1624) = 5.2869, p = 0.0216). 

Figure 3.2 illustrates that experienced subjects responded more accurately than 

inexperienced subjects. The boxplots show that the experienced and inexperienced 

subjects have similar means and interquartile ranges. The actual mean accuracy was 

0.8285 and 0.8120 respectfully, which hardly differ in any practical sense. 

There was a significant orientation main effect (F (1,1624) = 14.4939, p = 0.0001). 

Figure 3.3 illustrates that subjects responded more accurately to upside-down than to the 

right-side-up scenes. The boxplots show that the upside-down and right-side-up images 

have similar means and interquartile ranges. The actual mean accuracy was 0.8065 and 

0.8340 respectfully, which hardly differ in any practical sense. 
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Figure 3.2. A significant main effect for experience (F (1,184) = 6.5387, p = 0.0114). The 
Box Plot shows the mean (dot) and interquartile range for experience accuracy. 
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Figure 3.3. A significant main effect for orientation (F (1,184) = 12.2592, p = 0.0006). 
The Box Plot shows the mean (dot) and interquartile range with respect to orientation 
accuracy. 
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There was a significant scene main effect (F (1,1624) = 151.5301, p = 0.0000). 

Figure 3.4 illustrates that subjects respond more accurately to scenes containing a road 

and least accurately to a general scene. The boxplots show that the means are quite 

different but the interquartile ranges are similar (except for road). Tukey's method of 

multiple pair-wise comparisons showed all scene comparisons are significant except the 

tree vs. sea comparison (refer to Appendices A and B). 

There was a significant SOA main effect (F (4,1624) = 4.1989, p = 0.0022). 

Figure 3.5 illustrates that subjects respond more accurately when SOA is 80 msec and 

least accurately when SOA is 0 msec. The boxplots show that the means are different 

with a consistent upward trend, and the interquartile ranges are similar for all SOAs. 

Tukey's method of multiple pair-wise comparisons showed only comparisons, 0 msec vs. 

60 msec and 0 msec vs. 80 msec, were significant (refer to Appendices A and B). 
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Figure 3.4. A significant main effect for scene category (F (1,1624) = 151.5301, p = 
0.0000). The Box Plot shows the mean (dot) and interquartile range with respect to scene 
accuracy. 
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Figure 3.5. A significant main effect for SOA (F (4,1624) = 4.1989, p = 0.0022). The 
Box Plot shows the mean (dot) and interquartile range with respect to SOA accuracy. 

There was a significant two-way interaction for scene by orientation (F (4,1624) = 

7.7538, p = 0.0000). Figure 3.6 illustrates that different scene categories reacted in a 

consistent manner for both orientations with the exception of those categorized as tree 

scenes (refer to Appendix C). In the case of the tree category, the upside-down image 

was easier to detect than the right-side-up image. 

There was a significant two-way interaction for sensor by orientation, (F (3,1624) 

= 5.0340, p = 0.0018). Figure 3.7 illustrates that an interaction exists for IR and FC by 

orientation (refer to Appendix C). In the case of IR and FC, the upside-down image is 

more accurately identified than the right-side-up image. Also, the IR and FC mean 

accuracy varies due to orientation and the fact that I2 and FM are constant. There was a 

no significant interaction between sensor and experience (F (3,1624) = 0.7033, p = 

0.5501). Figure 3.8 illustrates that no interaction exists for sensor by experience. 
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Figure 3.6. A significant interaction for scene by orientation (F (4,1624) = 7.7538, g 
0.0000). 
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Figure 3.7. A significant interaction for sensor by orientation (F (3,1624) = 5.0340, p. 
0.0018). 
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Figure 3.8. The experience by sensor interaction was not significant (F (3,1624) = 0.7033, 
E = 0.5501. 

There was no significant interaction between sensor and SOA (F (12,1624) = 

0.8922, p_ = 0.5545). Figure 3.9 illustrates that no interaction exists for SOA by sensor. 

There was a significant interaction between sensor and scene category (F (12,1624) = 

4.9095, ß = 0.0000). Figure 3.10 illustrates that IR and FC consistently performed better 

than FC and I2 (refer to Appendix C). However, the magnitude of the improvement was 

not consistent. 
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Figure 3.9. The SOA by sensor given interaction was not (F (12,1624) = 0 8922 ß 
0.5545). 
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Figure 3.10. The sensor by scene interaction was significant (F (12 1624) = 4 9095 o 
0.0000). 
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B. POST HOC ANALYSIS 

Post hoc analysis investigated the robustness of the experimental design. The 

experiment used 32 sessions, each consisting of five blocks. The blocks in any given 

session were randomized as to the SOA applied to the blocks (refer to Appendix D). Any 

significance of any of the five independent variables with mean accuracy would suggest a 

learning effect. The learning effect, if present, should produce a significant increase in the 

mean accuracy between the trial blocks. 

A "within-trial" design showed a significant effect for the total mean accuracy by 

trial (F (4,14665) = 18.8296, p = 0.0000). Figure 3.11 illustrates that the statistical 

significance correlates to a 7.35-percent improvement in mean accuracy and does not 

support practical significance that learning occurred. 

1004 

g80- 

g 
& 
5*60- 
2 
§ 

40- 

20- 

3 
Block 

Figure 3.11. A significant effect for block (F (4,14665) = 18.8296, p - 0.0000) with 
accuracy as the dependent measure. 
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Significance could not be shown for any of the independent variables when 

analyzed separately: SOA by block (F (4,14665) = 1.8396, p = 0.1182), experience by 

block (F (4,14665) = 0.7282, p = 0.5725), scene category by block (F (16,14665) = 

1.4198, p = 0.1217), orientation by block (F (4,14665) = 2.0148, p = 0.0895), sensor by 

block (F (1214665) = 1.2551, p = 0.2382). The failure of each independent variable to 

show statistical significance by itself further supports the conclusion that learning did not 

occur and helps validate the experimental design. 

36 



IV. CONCLUSIONS 

The purpose of this thesis was to develop and execute a new methodology to 

investigate the human ability to detect objects imbedded in a visual scene. The approach 

broke down the search and detection process into fundamental components, the first of 

which is determining the effects of image fusion on global scene perception. The thesis 

investigated the effect of sensor, scene, experience, orientation and SOA on the ability to 

accurately determine the scene context. 

The first major finding is that a significant sensor effect exists in determining scene 

context. The aggregate result shows that the IR scene provided a higher mean accuracy 

for overall scene comprehension than all other sensor formats, but fails to clearly establish 

the sensor format as consistently superior. The effect is biased by the sensor by scene 

interaction and supports previous target search and detection research (Buttrey et al. in 

preparation, Steele and Perconti 1997). 

To understand the possible reasons that the IR component performs better than the 

other component or either fused image, a detailed look at the 23 individual scenes must be 

conducted. The review of the scenes shows that IR provides an accuracy advantage in 

eleven scenes, while fused color provides an accuracy advantage in ten scenes and I2 

provides an accuracy advantage in two scenes. In real world environments the reduction 

in workload and increased information available from having only one display coupled 

with the loss of target ambiguity will result in the fused color being more consistent than 

using two separate images. 

The underlying factor affecting the ability of a sensor to outperform others is that 

the fused image performs as well as or better than either component image when, in 

addition to color, a greater number of "feature maps" are present in the scene. This 

finding supports the theory of Teichner et al (1979) and Wolfe (1994) that the presence of 

multiple features, or higher scene complexity, improves human visual preattentive 

processing. In this case, the more complex a scene, the higher the accuracy with which 

orientation can be preattentively determined. 
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Another major finding was that, based on statistical significance, the hypothesis 

that subject experience level has no effect on scene comprehension can be rejected. 

Practical evaluation of the results suggests that the means and variances for both novice 

and experienced subjects are the same. The actual values of mean accuracy vary less than 

one percent for IR and fused color and less than three percent for I2 and fused 

monochrome. The fact that the sample distributions are similar in mean and variance 

raises doubts about rejecting the hypothesis that experience has no effect. If the practical 

aspect of significance is used, then the second hypothesis cannot rejected. This supports 

Biederman's (1983) theory that prior expectancy and familiarity do not show a benefit in 

scene perception. 

The failure of experience to affect scene perception supports that the idea that the 

context of the scene is determined preattentively. Additionally, the length of the image 

presentation shows that the context of the scene is determined during the first visual 

fixation. Both of these show that a fused color image provides a subject with sufficient 

information to determine the scene context accurately during the first fixation. The 

subsequent failure of image fusion to consistently show a visual detection improvement 

(Krebs et al. 1997, Steele and Perconti 1997) suggests that this occurs during the guided 

search phase of visual detection. 

The shortcoming of this study that should be addressed in future research is the 

limitations of the image data base. The images used were never intended for visual search 

experiments and do not fully encompass variations in real-world environments. As a result 

the images used are not composed of controlled and predetermined feature maps. If 

images containing specific features identified by Triesman (1985) and Wolfe (1994) can be 

accurately obtained, then fusion techniques to improve the enhancement of the features 

can be exploited. This thesis provides a unique methodology which can be used in 

continuing research on global scene perception. 
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APPENDIX A. TUKEYS PAIRED COMPARISONS 

Sensor 
Combination 

Estimate Standard 
Error 

Lower 
Bound 

Upper 
Bound 

Significance 
(a = 0.05) 

FC vs FM 0.0563 0.0112 

FC vs II 0.1150 0.0112 

FC vs IR -0.0397 0.0112 

FMvs II 0.0588 0.0112 

FMvs IR -0.0960 0.0112 

II vs IR -0.1550 0.0112 

0.0275 0.0851 

0.0863 0.1140 

■0.0685 -0.0109 

0.0300 0.0876 

-0.1250 -0.0672 

■0.1840 -0.1260 

yes 

yes 

yes 

yes 

yes 

yes   .  _____ _____■ \J.  ±KJ^\J \J. -L-&-rW V J VU 

Tukey's method of multiple comparisons shows the mean accuracy for all two-way sensor 
comparisons is significant. 

Scene 
Category 

Combination 

Estimate Standard 
Error 

Lower 
Bound 

Upper 
Bound 

Significance 
(a = 0.05) 

Gen vs Man -0.1810 0.01500 -0.2220 -0.1400 yes 

Gen vs Road -0.2600 0.01410 -0.0298 -0.2210 yes 

Gen vs Sea -0.0586 0.01500 -0.0995 -0.0180 yes 

Gen vs Tree -0.8190 0.01390 -0.1200 -0.0441 yes 

Man vs Road -0.0788 0.01120 -0.1090 -0.0483 yes 

Man vs Sea 0.1220 0.01220 0.0889 0.1560 yes 

Man vs Tree 0.0989 0.01080 0.0694 0.1290 yes 

Road vs Sea 0.2010 0.01120 0.1710 0.2320 yes 

Road vs Tree 0.1780 0.00962 0.1510 0.2040 yes 

Sea vs Tree -0.0233 0.01080 -0.0529 0.0063 no 

Tukey's method of multiple comparisons shows the mean accuracy for two-way scene 
category comparisons is significant except for tree vs sea. 
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SOA 
Combination 
(milliseconds) 

Estimate 

0.0192 

Standard 
Error 

Lower 
Bound 

Upper 
Bound 

Significance 
(a = 0.05) 

0  vs 20 0.0125 -0.0534 0.0150 No 
0  vs 40 0.0229 0.0125 -0.0570 0.1130 no 
0  vs 60 -0.0346 0.0125 -0.0687 -0.0041 yes 
0   vs 80 0.0459 0.0125 -0.0800 -0.0117 yes 

20 vs 40 -0.0037 0.0125 -0.0378 0.0305 no 
20 vs 60 -0.0154 0.0125 -0.0495 0.0188 no 
20 vs 80 -0.0267 0.0125 -0.0608 0.0075 no 
40 vs 60 -0.0117 0.0125 -0.0459 0.0224 no 
40 vs 80 -0.0230 0.0125 -0.0572 0.0112 no 
60 vs 80 -0.0113 0.0125 -0.0454 0.0229 no 

Tukey's method of multiple comparisons shows the mean accuracy for two-way SOA 
comparisons of SOA 0 msec vs SOA 60 msec and SOA 0 msec vs SOA 80 msec to be 
significant. All other pairs cannot be rejected. 
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APPENDIX B. SUMMARY STATISTICS 

Category Factor Mean Accuracy Standard Error N Trial Images 

I2 
0.7522 0.2257 460 3680 

Sensor 
FM 

0.8845 

0.7899 

0.1410 

0.1946 

460 

460 

3680 

3680 

FC 0.8543 0.1587 460 3680 

Experience Experienced 0.8285 0.1840 920 7360 
Level Novice 0.8120 0.1957 920 7360 

Orientation 
Right Side Up 

Upside Down 

0.8065 

0.8340 

0.1912 

0.1880 

920 

920 

7360 

7360 

Tree 0.7679 0.1956 560 4480 

Man Made 0.8668 0.1392 320 2560 

Scene Road 0.9456 0.1022 480 3840 

Sea 0.745 0.1906 320 2560 

General 0.6859 0.2212 160 1280 

0 msec 0.7979 0.2004 368 2944 

20 msec 0.8132 0.1998 368 2944 

SOA 40 msec 0.8183 0.1952 368 2944 

60 msec 0.8312 0.1838 368 2944 

80 msec 0.8407 0.1670 368 2944 
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APPENDIX C. SIGNIFICANT INTERACTIONS 

General       Man Made Road Sea Tree 

Right Side Up 67.656 86.563 94.688 74.609 72.411 

Upside Down 69.531 86.797 94.427 74.297 81.161 

The scene by orientation interaction means. 

Fused Fused Image 
Color        Monochrome     Intensified 

Infrared 

Right Side Up       83.696 79.293 74.619 85.000 

Upside Down        87.174 78.696 75.815 91.902 

The sensor by orientation interaction means. 

General Man Made Road Sea Tree 

Fused Color 71.250 89.219 98.021 78.594 80.446 

Fused 
Monochrome 

70.313 84.688 94.167 69.688 70.536 

Image 
Intensified 

50.625 82.656 88.125 66.875 71.696 

Infrared 82.188 90.156 97.917 82.656 84.464 

The scene by sensor interaction means. 
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APPENDIX D. RANDOMIZED DESIGN 

SOA Block one Block two Block three Block four Block five 
(milliseconds) 

0 6 6 7 6 7 

20 7 7 6 6 6 

40 6 7 6 7 6 

60 6 6 6 7 7 

80 7 6 7 6 6 

The sequence of SOA's used in the experiment shown as number of times a specific SOA 
occurred in a given trial block over all sessions. 
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