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Abstract 

We demonstrate the use of "dual-frequency" coherence in detecting and 

characterizing seismic surface waves. Using a multitaper method, we calcu- 

late the coherence between different frequencies of one or multiple signals. 

We test the algorithm both on a variety of synthetic signals and on broad- 

band seismic data. Dispersive waves such as seismic surface waves are easily 

identified and we show that the method is robust in the presence of noise. 

Phase relationships between different frequencies can be extracted, allowing 

reconstruction of the original phase function. "Dual-frequency" coherence is 

useful in identifying overtones and frequency shifts between signals, features 

which are undetectable by standard coherence measures. We construct a fil- 

ter to extract only the coherent frequencies from a waveform and show that 

it significantly increases the signal-noise-ratio for dispersive waveforms. 
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Double-frequency coherence of random noise (left) and a sim- 

ple sweep signal (right). Each shaded matrix represents the 

coherence of a signal with itself calculated between all pos- 

sible frequency combinations. Shading represents coherency 

from 0.0 to 1.0, with black indicating high coherency. The 

scale is in fractions of the Nyquist frequency. Only part of 

the full matrix is shown. The power spectrum of the sweep is 

shown below and is plotted on the same frequency scale. ... 8 

(left) Comparison of the phase derived using dual-frequency 

coherence (solid line) and the theoretical phase (dashed line). 

The shaded area represents the frequencies of high coherence, 

(right) The full phase matrix showing the difference in phase 

between the frequency components for the sweep signal shown 

in Figure 1. The lower plot shows the first off-diagonal of the 

matrix after unwrapping. Integration of the first off-diagonal 

yields the phase function shown in the plot at left 10 
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(left) Dual-frequency coherence between two different signals: 

a fast sweep and a slow sweep. The slope of the zone of high 

coherence corresponds to the ratio between the frequency con- 

tent of the signals. The dashed diagonal line is added for 

reference. For comparison, a plot of the single (standard) 

coherence between the two sweeps is shown at bottom left. 

This plot clearly illustrates the advantage of dual-coherence 

over standard single coherence in identifying frequency de- 

pendencies in different signals, (right) Dual-coherence of a 

signal with higher-frequencies added (as might be produced 

by multi-pathing). Note the clear off-diagonal terms indicat- 

ing correlation between frequencies 12 

(top) Dual-frequency coherence plots for a large teleseism 40 

degree away as recorded by the stations AAK and EKS2 in 

Kyrgzystan. The seismogram is 1200 seconds long and has 

been decimated to 0.8 sps. Seismometer response is broad- 

band. The individual dual-frequency dual coherence plots are 

shown for both stations and the cross-coherence between the 

stations is shown at the upper left. Note the asymmetry of 

the plot showing coherence between AAK and EKS2. The off- 

diagonal terms in the auto-coherence plots demonstrates that 

the signals are non-stationary. •   14 



5 Coherence as a function of time and frequency for a syn- 

thetic signal consisting of a sweep buried in increasing white 

noise. The coherence is calculated over a series of overlapping 

windows which are averaged together. This plot is similar to 

a sonogram but displays coherence rather than spectral am- 

plitude. The coherence between adjacent frequencies only is 

plotted rather than all possible frequency combinations.    . . .   15 

6 (top) Coherence/time plots for a large teleseism recorded by 

station AAK in Kyrgyzstan. The surface waves show a clear 

signature on both the coherence and phase plots. The body 

waves also show distinctly on the phase plot.(bottom) Coher- 

ence/time plot for a magnitude 4 event 15 degrees away in 

Western China as recorded at station AAK in Kyrgyzstan. 

The surface waves are difficult to see in the raw data but are 

obvious in the coherence plot    17 

7 Dual-coherency filtering of the repeated sweep in noise wave- 

form shown in Figure 5. The original signal and a filtered 

version is shown at the bottom. Close-ups of the individual 

sweeps are shown in low noise and high noise backgrounds. 

The coherency threshold was set at 0.75, so all frequencies 

with a coherence to a frequency one Rayleigh resolution fre- 

quency of less than 0.75 were removed    19 
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Dual-coherency filtering of two events with differing amounts 

of multi-pathing. The Tibet event (right) is highly multi- 

pathed (Pavlis and Mahdi,1993) while the Ashkhabad event 

(left) shows little multi-pathing. At the top is the time series of 

the two earthquakes and the full dual-frequency coherence ma- 

trix. At the bottom we show unaltered and coherency filtered 

versions of the same seismograms. Note the coherency filtered 

seismogram resembles the original version while the coherency 

filtered multi-pathed event has been degraded greatly.    ....   20 
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1 Summary 

We demonstrate the use of "dual-frequency" coherence in detecting and char- 

acterizing seismic surface waves. Using a multitaper method, we calculate 

the coherence between different frequencies of one or multiple signals. We 

test the algorithm both on a variety of synthetic signals and on broadband 

seismic data. Dispersive waves such as seismic surface waves are easily iden- 

tified and we show that the method is robust in the presence of noise. Phase 

relationships between different frequencies can be extracted, allowing recon- 

struction of the original phase function. "Dual-frequency" coherence is useful 

in identifying overtones and frequency shifts between signals, features which 

are undetectable by standard coherence measures. We construct a filter to 

extract only the coherent frequencies from a waveform and show that it sig- 

nificantly increases the signal-noise-ratio for dispersive waveforms. 

2 Introduction 

We demonstrate the use of "dual-frequency" coherence in characterizing, fil- 

tering and detecting seismic surface waves. Standard coherency has long 

been used to evaluate the similarity between time series (e.g. Tick, 1966; 

Foster and Guinzy, 1967; Hinich and Clay, 1968; Vernon et al, 1991; Hough 

and Field, 1996) and is an estimate of the correlation coefficient between the 

Fourier components of two time series at a given frequency (Priestley, 1981). 

In contrast, "dual-frequency" coherence is an estimate of the correlation coef- 



ficient between Fourier components for all possible pairs of frequencies. Ldeve 

(1945) first defined dual-frequency spectra and described them in his 1963 

book (Ldeve, 1963). Because experience has shown that it is more convenient 

to use coherences than cross-spectra in the stationary case, we convert the 

dual-frequency spectra to dual-frequency coherences. 

We use the definition of Thomson (1982) to calculate the dual-coherence 

between different frequencies of the same or different signals. Coherency 

between different frequencies is high when the frequency components (ampli- 

tude and phase) of the two signals are correlated. We show in this paper that 

coherencies between different frequencies exist in seismic surface waves and 

that this coherence is useful in signal detection as well as in the identification 

of such features as multi-pathing and higher modes. 

An important implication of correlation between different frequencies is 

that it implies that the time series are non-stationary, either individually or 

jointly. Most methods of spectral estimation assume that the data is station- 

ary; however, much real data, especially seismic data, is not stationary, at 

least locally. This non-stationarity, if not accounted for, will adversely affect 

the reliability of the resulting spectral estimate (Thomson, 1993). Because 

spectral estimates are essential in many surface wave studies, it is important 

to develop methods capable of assessing and handling non-stationary signals. 

Dual-frequency coherency provides one method of evaluating the amount of 

non-stationarity. 

The dual-frequency coherence algorithm uses the multiple-taper approach 



of Thomson (1982) (also see Lanzerotti et al, 1986; Vernon et al, 1991; 

Percival and Waiden, 1993; Kuo et al, 1990; Park et al, 1987) to calculate 

the coherency. The multiple tapers supply the smoothing needed for the 

cross-spectral estimate, in contrast to the time-averaging commonly used 

in other coherency estimates (e.g. Welch's method [ Percival and Waiden, 

1993]). 

The strength of dual-frequency coherency is that it can identify frequency 

relationships that are invisible to standard coherency estimates (Vernon et 

al, 1995; Mellors et al, 1996). In particular, features such as harmonics and 

non-linear frequency translations (such as those produced by Doppler shifts) 

are immediately identifiable. Park et al (1993) used dual-frequency coher- 

ence to identify harmonics in times series of climate data. Dispersive signals, 

in which neighboring frequency components possess similar amplitude and 

phase, are also easily discerned. Consequently, seismic surface waves, which 

are highly dispersive, can be easily and effectively analyzed by this method. 

We extend the algorithm to compute coherency as a function of time and 

frequency ("coherogram") and show that this is useful in identifying spe- 

cific phases in the seismograms. Phase relationships between frequencies can 

be extracted suggesting that the method may have potential to determine 

dispersion curves. Finally, we construct a filter to extract the coherent fre- 

quencies by deleting non-coherent frequencies and converting back into the 

time domain. This filtering provides a simple and effective way to enhance 

the signal-to-noise ratio for use in a detection scheme.  This filtering does 



not assume any a priori knowledge of the signal (other than the fact it is 

dispersive to some degree). 

We demonstrate our technique using a variety of synthetic waveforms to 

illustrate the method and then we apply it to seismic data. 

3    Method 

The use of multitaper spectral estimates to calculate coherences was first sug- 

gested by Thomson (1982). Multitaper spectral estimates combine weighted 

FFTs from a number of differently tapered versions of a given signal to yield 

a single spectral estimate. 

Specifically, given x(t) with N data samples and a chosen time-bandwidth 

product W, compute the eigencoefficients yk(f)'- 

y*(/) = zV^WKe-'2^ (1) 
t=o 

for k = 0, l...(2NW - 1) where vlk)(N, W) is the kth Slepian sequence. The 

tapers are based on the prolate spheroidal series developed by Slepian (1978, 

1983) and are optimized to minimize leakage from outside the desired band. 

Individual tapers are orthogonal, and collectively define the time and band- 

width. The orthogonal tapers provide approximately independent estimates 

of the spectra, which can be used to construct error estimates (Thomson and 

Chave, 1991). 

The weights are adaptively determined using an iterative process for each 



time series. The resulting estimate, S(f) is a combination of all these factors: 

S{f)=K        E^4(f) () 

where dk are the weights of the each spectral estimate, \k are the eigenvalues 

associated with each taper, and yk are the discrete Fourier transforms of the 

tapered data. A is determined using 

A = Kf\^ (3) 
Jfc=0 

and K is the number of tapers. Multi-taper estimates are especially effective 

for time series which are either short or have a large dynamic range. The 

adaptive weighting gives minimum errors in a stationary sequence and the 

double orthogonality of the Slepian functions implies near optimality in non- 

stationary data. 

A cross-spectra £#(/) between two time series i and j is calculated using: 

jU) K tä^dtimHz^dtim1* 
Standard coherence (magnitude squared) is therefore: 

^2.m = _!MQf_ (5) 

This yields a coherence estimate between two different signals at a given 

frequency (e.g. Vernon et al, 1991). If only one taper (K = 1) is used, 

the coherence estimate is unity. The additional tapers provide a smooth- 

ing effect that negates the need for the time-frequency averaging commonly 



used in standard coherence estimates. To calculate the cross-spectra between 

different frequencies we modify equation (4) to: 

r{.   n     AEL^kdi(hM(h)y4(h)(yi(f2)) (6) 
iAfuh)" K   [Efro1 4(/i)2]> [Ä14(/2)

2l" 

Consequently, dual-frequency coherence between two different frequencies /i 

and /2 is: 

The coherence is calculated not only between two signals, but also between 

different frequencies. If /i = /2, the definition reduces to equation (5). An 

important feature of this definition is that the auto-dual-frequency coherence 

can be calculated, i.e. the dual-frequency coherence of a single signal with 

itself. The result is unity where /i = f2 but yields a value between 1 and 

0 elsewhere, which indicates the amount of coherence between different fre- 

quencies. Different frequencies are coherent if their amplitude and phase is 

similar. In a sense, dual-frequency coherence resembles a frequency domain 

cross-correlation. For a dispersive signal, coherence between neighboring fre- 

quencies is high. 

For the rest of the paper, unless specified otherwise, when we refer to 

coherency we mean dual-frequency coherency between different series and 

auto-coherency is coherence between two frequency band components of the 

• same signal. 



4    Results and Discussion 

Tests of the algorithm on simple synthetic signals illustrate the method. 

For all plots in this paper we use 12 tapers (K = 12) and a time-bandwidth 

product of 6.5. Figure 1 shows the auto-coherence of pseudo-random numbers 

r(t) generated by Matlab (Matlab, 1994) and of a sweep (chirp) signal with 

a = 0.1: 

/(*) = 100sin(27rf(/0 + ^P» + <"•(*)       0 ^ * ^ 600        (8) 

with fa = 0.0 and fb = 0.075. In both these cases we show the auto coher- 

ence.  The coherence plot of the random noise shows a thin diagonal line, 

demonstrating that the signal is coherent with itself at the a given frequency, 

but shows low coherence between different frequencies. For random noise, dif- 

ferent frequencies are uncorrelated and consequently the coherence depends 

on the degrees of freedom and therefore on K. In this case, the mean off- 

diagonal coherence is 0.0828. A diagonal line is evident for the sweep signal 

but it is wider, demonstrating that adjacent frequencies are highly coherent, 

as is expected for a sweep signal and also is a consequence of the ambiguity 

function.   Further away from the main diagonal the coherence is low.   At 

these frequency combinations the individual frequencies possess high power 

but the cross-spectra is low, creating a low coherence.  At the ends of the 

sweep frequencies high coherence is observed but the power of the signal is 

low and consequently the coherence at these frequencies is highly sensitive 

to changes in noise level. 
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Figure 1: Double-frequency coherence of random noise (left) and a simple 
sweep signal (right). Each shaded matrix represents the coherence of a signal 
with itself calculated between all possible frequency combinations. Shading 
represents coherency from 0.0 to 1.0, with black indicating high coherency. 
The scale is in fractions of the Nyquist frequency. Only part of the full matrix 
is shown. The power spectrum of the sweep is shown below and is plotted 
on the same frequency scale. 



The complex representation of the coherence also yields a phase <j) using 

the full complex form of the estimate (without the absolute values shown 

in equation (5)). The phase is the phase difference between the two fre- 

quencies, as the cross spectra multiplies one complex frequency multiplied 

by the conjugate of the other. The variance of the phase is inversely related 

to the coherence and contains useful information only where the frequencies 

are highly coherent. The phase plot of the auto-coherence shows a center 

diagonal with <f> — 0. The neighboring diagonal represents the (wrapped) 

phase difference between frequencies separated by one Rayleigh resolution 

f2 = fx + i. Reconstructing the original phase function is straightforward 

if the change in phase is not too large and the coherence is high. It is only 

necessary to unwrap and integrate the first off-diagonal. The resulting phase 

function will differ from the phase as determined by a direct FFT. Figure 

2 shows the high correspondence between the phase measured using dual- 

frequency coherence and the known phase for a sweep signal. 

A powerful feature of the dual-frequency coherence algorithm is the ability 

to identify relationships between different frequency components that are 

invisible to standard coherence estimates. Figure 3 shows two different sweep 

signals compared using dual-frequency coherence. One sweep signal is a 

frequency translated version of the other as might be caused by a Doppler 

shift or by two differing dispersion paths. We use the same function as before 

but with fb = 0.075 for the first sweep and fb = 0.050 for the second sweep. 

The dual-frequency coherence plot clearly shows the relationship between 
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Figure 2: (left) Comparison of the phase derived using dual-frequency co- 
herence (solid line) and the theoretical phase (dashed line). The shaded area 
represents the frequencies of high coherence, (right) The full phase matrix 
showing the difference in phase between the frequency components for the 
sweep signal shown in Figure 1. The lower plot shows the first off-diagonal 
of the matrix after unwrapping. Integration of the first off-diagonal yields 
the phase function shown in the plot at left. 
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the two signals. The signals are clearly coherent but at differing frequencies, 

ie 0.05 Nyquist is coherent with 0.06 Nyquist. The slope § of the zone is 

expected from the §|f§ relationship between the two sweeps. In comparison, 

standard "single-frequency" coherence shows very little similarity between 

these two signals even though they are simply frequency shifted versions of 

one another. The off-diagonal coherence indicates that these two signals are 

jointly non-stationary. 

Harmonics, which are correlated between frequencies, also show clearly. 

Figure 3 shows the same sweep signal but with a harmonic added: 

f(t) = 50sin(27rt(/a + ^göo^)) + 50sin((2.5)27ri(/a + ^^))   (9) 

for fa = 0.0 and 0 < t < 600. The harmonics appear as two off-diagonal 

lines indicating that a given frequency is coherent with itself and another 

frequency. The angle between the two lines corresponds to the ratio between 

the frequency content of the signals. 

To test the method on real data, we calculated the auto-coherence of 

a large teleseismic earthquake recorded by a broadband seismic station in 

Central Asia (AAK) (Mellors, 1995). Figure 4 shows the coherence and 

phase plots. In general, the plots resemble the plots of the sweep function but 

considerable off-diagonal terms are present, indicating significant correlation 

between different frequencies. The amount of correlation between different 

frequencies increases as the frequency increases. The off-diagonal structure 

also resembles the structure observed in Figure 3. This suggests that the off- 

11 
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Figure 3: (left) Dual-frequency coherence between two different signals: a 
fast sweep and a slow sweep. The slope of the zone of high coherence cor- 
responds to the ratio between the frequency content of the signals. The 
dashed diagonal line is added for reference. For comparison, a plot of the 
single (standard) coherence between the two sweeps is shown at bottom left. 
This plot clearly illustrates the advantage of dual-coherence over standard 
single coherence in identifying frequency dependencies in different signals, 
(right) Dual-coherence of a signal with higher-frequencies added (as might 
be produced by multi-pathing). Note ftie clear off-diagonal terms indicating 
correlation between frequencies. 



diagonal structure may be due to multipathing. Surface waves which have 

traveled a slightly different path will have slightly different dispersion than 

the initial path. The multipathing increases with frequency. 

The phase plot of the same signal also shows a smooth increase in the re- 

gion of high coherence. Integrating this will yield the relative phase function 

of the signal, as the constant phase term is lost. 

In large data sets, it is easier to use a time-frequency representation. For- 

mally, Thomson (1994) showed that one can express the usual time-frequency 

spectrogram as a one-dimensional Fourier transform of the dual-frequency 

spectra taken perpendicular to the /i = f2 diagonal. Computationally, it 

is easier to compute the spectra on different time blocks. For dispersive 

signals, much of the useful information lies in the frequency combinations 

very near the main diagonal so we calculate coherency only for frequencies 

separated by the Rayleigh resolution rather than every possible combination 

of frequencies. This both speeds the computation and increases the ease of 

presentation with large data sets. The coherence is calculated for a set of 

running windows over the entire data set. However, features such as harmon- 

ics which will show a high correlation in non-adjacent frequencies will not 

be evident. To display these as a function of time, it is necessary to identify 

the specific frequency combinations from the full coherence matrix (such as 

Figure 3) and plot those. Figure 5 shows a series of sweep signals buried 

in increasing amounts of noise. Each signal is 600 points long with a 1200 

point gap between signals. The auto-coherency is calculated over a series of 

13 
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Figure 4: (top) Dual-frequency coherence plots for a large teleseism 40 
degree away as recorded by the stations AAK and EKS2 in Kyrgzystan. 
The seismogram is 1200 seconds long and has been decimated to 0.8 sps. 
Seismometer response is broadband. The individual dual-frequency dual co- 
herence plots are shown for both stations and the cross-coherence between 
the stations is shown at the upper left. Note the asymmetry of the plot 
showing coherence between AÄK and EKS2. The off-diagonal terms in the 
auto-coherence plots demonstrates that the signals are non-stationary. 
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Figure 5: Coherence as a function of time and frequency for a synthetic 
signal consisting of a sweep buried in increasing white noise. The coherence is 
calculated over a series of overlapping windows which are averaged together. 
This plot is similar to a sonogram but displays coherence rather than spectral 
amplitude. The coherence between adjacent frequencies only is plotted rather 
than all possible frequency combinations. 

600 point running windows. We see that the coherent signal is immediately 

obvious and that the change in frequency (lower to higher) is also obvious. 

Figure 6 shows a similar auto-coherency/time/frequency plot for two seis- 

mograms of events recorded by station AAK in Kyrgyzstan. The top shows 

the same large earthquake as in Figure 4 and the bottom shows a smaller, 

regional event. The surface waves of the large event are obvious, as well 

as the body phases. The lower seismogram is a smaller regional event. Al- 

15 



though the event has a low signal-to-noise and is difficult to see in the raw 

time series, it is clearly apparent in the coherence plot. Only with filtering is 

the seismogram easily visible in the time series plot. This suggest that dual 

coherence may be an effective method to detect small events as well as to 

identify phases and features in the seismograms. 

Finally, the signal can be filtered to enhance the coherent frequencies. 

After calculating the coherence, we rebuild the signal keeping only the co- 

herent frequencies and rejecting frequencies with low coherence. Since noise 

is generally non-coherent and dispersive surface waves are very coherent, this 

is a powerful way to extract the useful signal from noise. We must choose a 

specific combination of frequencies to define the coherence and we again use 

adjacent frequencies. 

The procedure is straightforward. We calculate the coherence in the fre- 

quency domain over a series of overlapping windows, and then convert the 

signal back into the time domain, keeping only the frequencies that possess a 

coherence above a certain threshold. The resulting signal then only contains 

coherent energy. However, samples less than one window length from the 

end will have less overlapping than the rest of the signal. 

We tested the procedure on the same repeated sweep signal in noise as 

before. A window length of 600 points was used with the time windows 

overlapping by 10, so that each point in the interior is the average of 60 

windows. A range of cutoff coherence thresholds were tested. A threshold 

of 0.5 rejects all frequencies whose coherence with the neighboring frequency 

16 
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Figure 6: (top) Coherence/time plots for a large teleseism recorded by 
station AAK in Kyrgysstan. The surface waves show a clear signature on 
both the coherence and phase plots. The body waves also show distinctly 
on the phase plot.(bottom) Coherence/time plot for a magnitude 4 event 15 
degrees away in Western China as recorded at station AAK in Kyrgyzstan. 
The surface waves are difficult to see in the raw data but are obvious in the 
coherence plot. 
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is less than 0.5. A threshold of 0.0 retains all frequencies and reproduces 

the original signal except for the one window length edge effects referred to 

above. A threshold of 1.0 removes all frequencies and produces a zero signal 

(we weight the first frequency to zero). 

The results (Figure 7) are good. Using a cutoff of 0.8, the noise is mostly 

removed but the signal remains. Noise within one window length of the signal 

that lies within the band of coherent energy is retained, causing a smearing 

of the signal. Note that it is impossible to extract the signal with a band- 

pass filter as both the noise and the signal are broadband. The reproduction 

of the signal is not perfect, as the amplitude spectra of coherent signals is 

affected by noise lying within the coherent band. With higher noise levels 

(Figure 7), the signal can still be recovered but the distortion of the recovered 

signal increases. The amount of increase in the signal-to-noise ratio depends 

on a number of factors including window length, amount of offset, and cutoff 

threshold, all of which depend on characteristics such as sample rate and 

noise level and therefore should be tuned for a particular data set. Two 

important features should be noted; one, an average stationary signal, which 

is incoherent at different frequencies, is greatly reduced and two, this filter 

requires no a priori knowledge of the signal. 

5    Conclusions 

We have shown that dual-frequency coherence is an effective method of ana- 

lyzing signals. Although we have shown only seismic data, we believe that it 
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Figure 7: Dual-coherency filtering of the repeated sweep in noise waveform 
shown in Figure 5. The original signal and a filtered version is shown at the 
bottom. Close-ups of the individual sweeps are shown in low noise and high 
noise backgrounds. The coherency threshold was set at 0.75, so all frequencies 
with a coherence to a frequency one Rayleigh resolution frequency of less than 
0.75 were removed. 

19 



Ashkhabad event 

power spectrum 

1e+06 

100-f 

auto-coherence 

0.00 
0.00        0.05        0.10        0.15 

frequency (Nyquist) 

Tibet event 

power spectrum 

T r 

auto-coherence 

T™ "~~n T 
0.00        0.05        0.10        0.15 

frequency (Nyquist) 

original signal 

dual-coherency filtered 

 ~*M*t)|l4#|^  

original signal 

^l'WlfjftfMyi'tW 

dual-coherency filtered 

•w^ itltfWk*- 

Figure 8: Dual-coherency filtering of two events with differing amounts of 
multi-pathing. The Tibet event (right) is highly multi-pathed (Pavlis and 
Mahdi,1993) while the Ashkhabad event (left) shows little multi-pathing. At 
the top is the time series of the two earthquakes and the full dual-frequency 
coherence matrix. At the bottom we show unfiltered and coherency filtered 
versions of the same seismograms. Note the coherency filtered seismogram 
resembles the original version while the coherency filtered multi-pathed event 
has been degraded greatly. 



may possess a wide range of applications. In the following section we present 

some possible applications with selected examples. 

Signal detection. The coherency filter shows promise as a regional seismic 

event detection algorithm. For small shallow events at regional distances, 

the surface waves are the largest part of the wavetrain and that is exactly 

the section of the waveform that dual-frequency coherence is most suited for 

detection. In addition, it is possible to simultaneously detect and characterize 

a signal. The major difficulty has been that microseisms are also coherent 

over a small frequency band, so for small events the seismograms tend to be 

dominated by microseismic signals. We plan to test adaptive version of the 

code which will first tune over sections of data with only noise and selectively 

eliminate the frequencies with coherent "noise" such as microseisms. 

Signal characterization. As shown in Figure 2, estimates of phase rela- 

tionships can be made from the dual coherence measurements. The ability of 

dual-frequency coherence to identify harmonic-like signals and signals with 

frequency translations suggest that it may be an effective method of identi- 

fying surface wave multi-pathing, as the surface wave packets arriving from 

the same source but with slightly different paths will show differing disper- 

sion. We test this idea by using two events that were previously shown to be 

multi-pathed on the basis of array studies (Pavlis and Mahdi, 1993). Figure 

8 show these two events. The Ashkhabad event has very little multipathing, 

according to Pavlis and Mahdi (1993), which is expected as its path was 

largely across relatively undisturbed platform.   The Tibet event showed a 
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high degree of multi-pathing as it traveled through several different terrains 

(Tarim Basin and Tien Shan). The coherency filter results reflect this. The 

single-path event shows a single relatively high amplitude wavetrain, indicat- 

ing that the waveform was smoothly coherent across a range of frequencies. 

The multi-pathed event shows a much more ragged set of waveforms indicat- 

ing that the wavetrain is not extremely coherent. The non-coherent arrivals 

due to the interfering wave packets have been largely filtered out. 

Waveform comparison. Dual-frequency coherence also offers an easy 

method of comparing two signals, especially ones that may be fairly sim- 

ilar. Small frequency and phase shifts will be readily apparent. With a 

time/coherence plot, it is simple to test exactly which sections of the signal 

show a misfit, in both the frequency and time domains. 

Filtering. The filtering shown in this paper represents the simplest ver- 

sion. More elaborate versions, using variable weighting for example, should 

give even better performance. 

The other important point of this paper is that the surface wave seis- 

mograms appear to have significant non-stationary component. This has 

important implications for any surface wave analysis that depends on tech- 

niques that assume stationarity of the signals. 
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