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Abstract 

HEATHER M. ALEXANDER 
Captain, United States Air Force, Biomedical Sciences Corps 

ERROR TYPES AND RELATED ERROR DETECTION 
PROCESSES IN THE AVIATION DOMAIN 

1998 

Number of pages: 68 (including Bibliography) 

Degree: Master of Science in Psychology 

University of Illinois at Urbana-Champaign 

Human error has been identified as a contributing factor in 75-80% of all aviation 
accidents. To date, most efforts to improve flight safety have focused on error 
prevention. A different approach that has received less attention is to avoid the negative 
consequences of erroneous actions and assessments by supporting their timely detection. 
In this study, aviation incidents were analyzed in terms of the type of error involved 
(errors of omission and commission; slips, lapses, and mistakes), the performance level at 
which the error occurred (skill-, rule-, or knowledge-based performance), and the relation 
between error types and error detection processes that prevented these incidents from 
turning into accidents. The majority of reported errors were lapses, i.e., failures to 
perform a required action, and mistakes, i.e., errors in the formation of an intention. 
Relatively few slips, i.e., inappropriate executions of intended actions, were reported. 
Slips appear to be detected and corrected by the pilot before they result in an unsafe 
situation that is worth reporting. Lapses and mistakes, on the other hand, are more 
difficult for the pilot committing the error to detect and, in most cases, required 
intervention by air traffic control. A large percentage of lapses resulted from inattention, 
either due to some distraction in the cockpit or due to multiple competing demands. 
Mistakes, on the other hand, frequently occurred as a consequence of some 
misunderstanding between pilots and air traffic controllers concerning clearances and 
intentions. Most lapses were detected incidentally based on routine checks of aircraft 
settings and performance, whereas errors of commission, which include both mistakes 
and slips, were detected equally often based on monitoring for the immediate outcome of 
an action and by routine checks. These findings indicate the need for more effective 
support of error detection, particularly in the case of lapses and mistakes. This goal may 
be achieved through enhanced feedback that captures the pilot's attention in case of a 
mismatch between intention and action, through improved air-ground coordination in the 
interest of shared knowledge of intent, or through procedures that minimize the potential 
for distractions on the flight deck. 
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Introduction 

There is widespread concern in the aviation industry that the expected growth in 

air traffic during the next decade may lead to an average of one major airplane accident 

per week unless the current, already low accident rate is reduced even further (Schiavo, 

1998). This dire prediction calls for all parties in the aviation industry as well as 

researchers in the area of human factors to explore new options for improving safety. 

Given that 75-80 % of all aviation incidents and accidents are viewed as the result of pilot 

error, one promising approach appears to be investments in a better understanding of the 

reasons for and possible countermeasures to erroneous actions and assessments. 

There are three different ways to reduce the frequency or consequences of error: 

error prevention, error detection, and error tolerance. The prevention of errors through 

improved training, design, and procedures has been the focus of research and 

development activities for a long time. One example of an error prevention mechanism is 

limiting functions that do not allow an undesirable or unsafe action to occur or continue. 

It is important to keep in mind, however, that it is not possible to eliminate, or prevent, 

completely the occurrence of errors. Therefore, additional steps need to be taken that 

support operators in detecting and recovering from an error if and when it occurs. 

Supporting error recovery requires systems that are error-tolerant, i.e., that 

immediate and irreversible negative consequences are avoided by allowing the operator to 

modify his or her initial input or action. For example, some word-processing systems are 

error-tolerant as they create a temporary back-up copy of a file that the operator can 

access if he/she inadvertently deleted the file. Error tolerance requires that the operator 

detects that an error was made in the first place. 

In most cases, error detection is based on the realization that (the outcome of) an 

action is different from the intended or expected one. An operator may become aware of 

an error through a wide range of mechanisms and sources. Another individual may point 

out the error, or the operator may detect the (undesired outcome of an) action him/herself 

based on a check of the progress towards a goal. Checks may occur as part of routine 

behavior or due to a suspicion that something may not be correct. Something may 



remind the operator of an action he/she forgot to perform, or a system may alert the 

operator to a problem through an alarm or message. Once an operator detects that an error 

has occurred, he/she can begin the process of identifying and trying to correct the error. 

To date, the research and literature on human error has focused primarily on the 

identification of factors contributing to human error and on the development of different 

error classification schemes (Reason, 1990). Little empirical data exist on (the 

effectiveness of) error detection mechanisms and their relation to various error types and 

performance levels. Numerous questions deserve further investigation, including: 

• What is the relationship between error types and error detection processes? 

• What are the factors that cause detection failure, and how can error detection be 

enhanced? 

• What forms the basis of the reference mechanisms against which actions or 

their consequences are checked? 

• How does self-detection differ from detection of errors by other people? 

• What are the group dynamics of error detection for real, complex systems 

where knowledge is distributed? 

The goal of this thesis is to provide insight into the above questions based on an 

analysis of incident reports from the aviation domain. This domain was selected because 

it represents a rich source of information on errors in a highly complex, event-driven real- 

world environment. In aviation, many competing cognitive demands are placed on 

various operators (e.g., pilots, air traffic controllers) who need to coordinate their 

activities in the interest of safe and efficient flight operations. These individuals are 

highly constrained by procedures and regulations to help avoid errors that can have 

disastrous consequences for a large number of people. Still, errors occur and sometimes 

go unnoticed leading to incidents and accidents. 

To examine the above questions we will analyze incident reports from the 

Aviation Safety Reporting System (ASRS). This methodological approach was chosen 

because ours is one of the first studies concerning error detection in the real-world 



environment. For that reason, we are interested in exploring the entire range of naturally 

occurring error types and detection mechanisms. Findings from this work can provide 

input and guidance for future more controlled studies of error detection in simulated 

environments. In these controlled environments scenarios are designed to investigate 

specific errors and confirm predictions from earlier analysis and exploratory empirical 

work. 

This study may also confirm findings from earlier research on error detection 

which has been conducted, for the most part, in the context of very specific, isolated, self- 

paced tasks that were performed by individuals in much simpler and less risky domains. 

It is not clear that the results of this earlier work transfer to environments such as aviation 

where the nature of errors and error detection mechanisms may be dissimilar due to 

different demands and constraints. 

This thesis will address a number of questions related to human error. First, the 

nature and frequency of errors involved in the reported incidents will be examined. The 

phenotype or surface appearance of these errors and their outcome in aviation-specific 

terms will be described. Errors will be analyzed in terms of domain - independent 

characteristics and the cognitive stage at which they occur - slips at the level of 

execution, lapses related to breakdowns in storage, and mistakes involving errors in 

intention formation. Errors will also be classified as errors of omission which are 

equivalent to lapses and errors of commission which include slips and mistakes. This will 

allow us to compare the usefulness of different error categorization schemes for 

understanding, predicting and supporting error detection. Finally, errors will be analyzed 

in terms of the level of task performance at which they occur - skill-, rule-, or 

knowledge-based performance. The role and frequency of possible contributing factors to 

errors such as time pressure, distractions, or a lack of system understanding will be 

explored. Next, this research will examine the relationship between the different error 

types and the processes leading to their detection before the reported incident could turn 

into an accident. Questions addressed in this context are who is detecting the error and 

what mechanisms/information appear most effective for detecting the various error types. 



Finally, this research will examine whether the ongoing introduction of increasingly 

advanced automated systems to the aviation domain has an impact on the nature and 

frequency of errors and on related error detection mechanisms. 

A number of predictions concerning the above issues can be made based on earlier 

research. For example, it is anticipated that skill-based errors and commission errors 

which, includes slips, are detected rapidly and effectively by the operator committing the 

error since they are more likely to result in an observable outcome or feedback that is 

different from the well-defined outcome the operator is anticipating and monitoring for 

(Reason, 1990; Seilen, 1990). In contrast, the detection of errors of omission and of 

problem solving errors, or mistakes, is expected to require external intervention. In most 

cases, errors of omission fail to produce observable changes that can be compared to 

intentions. And, in the case of problem-solving tasks, the expected outcome is not always 

well-defined. The following sections will discuss in more detail the above mentioned 

error classification schemes, possible error detection mechanisms, and the hypotheses 

guiding this research. 



Error Types and Error Detection Mechanisms 

The Phenotvpe and Genotype of Error 

Accidents and incidents are often investigated and reported in terms of their 

phenotype, i.e., in terms of their surface features and manifestation in domain-specific 

language (e.g., controlled flight into terrain, altitude deviations, or runway incursions). 

Classifying errors based on their surface appearance provides insight into the frequency 

of certain outcomes but it fails to identify common underlying mechanisms and therefore 

runs the risk of suggesting an unwieldy number of error categories (Hollnagel, 1993). 

In order to understand and be able to mitigate (the effects of) errors, it is important 

to identify deeper and more general characteristics of observed difficulties - the genotype 

of error. Identifying lawful factors that shape the likelihood and nature of errors and their 

detection is a prerequisite for being able to predict, prevent, and manage them. In this 

research, we will therefore focus on the analysis of errors in terms of domain-independent 

categories that are related to their underlying cognitive mechanisms or the associated 

performance level. 

Violations and Errors 

One important distinction between different kinds of unsafe acts is the one 

between violations and errors. Violations are the "deliberate deviation of actions from 

safe operating procedures" (Reason, 1995). In other words, the act of committing a 

violation is intentional and performed for what appears to be a justifiable and necessary 

reason at the time. Violations tend to occur in a social context involving specific 

motivational factors such as organizational pressures. 

Errors, on the other hand, are unintended actions. They are most often related to 

breakdowns in information processing rather than driven by motivational factors. A 

number of definitions of the term error have been proposed. For example, human error 

can be considered, ".. .a specific variety of human performance that is so clearly and 

significantly substandard and flawed when viewed in retrospect that there is no doubt that 



it should have been viewed by the practitioner as substandard at the time the act was 

committed or omitted" (Woods et al, 1994). Reason (1990) defines human error as, "a 

planned sequence of mental or physical actions that fail to achieve the intended outcome, 

and when failure cannot be attributed to intervention by some chance agency". Reason 

integrates many of the different attempts to define human error by stating that "human 

error covers a wide variety of aberrant behaviors, where each type involves different 

psychological mechanisms, features in different parts of the system and demands 

different measures" (Reason, 1995). 

Since the focus of this research is error detection, violations will not be included 

in this study. They are deliberate actions that may be inappropriate but do not require 

detection support. Our analysis will focus on errors exclusively. 

Active and Latent Errors 

Reason has introduced an important distinction between two different types of 

errors ~ active and latent errors (Reason, 1990; Maurino, 1995). Latent errors or failures 

result from actions by people at the "blunt end" of a system (such as designers or 

managers) and may lie dormant in a system for an extended period of time until they 

combine with other factors to breach the system's defenses and create a problem. The 

detection of latent failures is primarily the goal and responsibility of software validation 

and system certification. 

Active errors, on the other hand, involve some action or assessment by an 

operator "at the sharp end" (e.g., pilots, controllers). The effects of the errors tend to be 

felt almost immediately. These errors will be the focus of our research since their 

consequences can be mitigated by supporting operators in early, effective error detection. 

Errors of omission and commission. Active errors can take the form of errors of 

omission and errors of commission. Omission errors are characterized by the failure to 

perform some required action. An operator may omit a step in a task, or omit the entire 

task. Commission errors, on the other hand, involve an operator who performs an action, 

but performs it in an inappropriate manner or at an inappropriate time. Commission errors 



can take a wide variety of forms, including selection errors, sequence errors, and time 

errors. Selection errors occur when the operator chooses the wrong or inappropriate 

mechanism or tool for execution of the task. Sequence errors are errors in the order of 

execution of the individual actions required to attain the task goal. And time errors are 

errors in the time planned, or allotted, for completion of the task. 

The omission-commission distinction is domain-independent but still does not 

take into account underlying or contributing psychological mechanisms. It is relevant in 

the context of this research since it has implications for the likelihood and form of error 

detection. In general, errors of commission are considered to be easier and faster to detect 

by the operator him/herself based on progress checks following an action. In contrast, 

errors of omission may go undetected since, in the absence of an action, monitoring for 

any changes or effects is not likely to occur. In most cases, the detection of an error of 

omission is expected to require an external source or agent. 

Slips, lapses, and mistakes.  Norman (1981) and Reason (1990) have proposed 

another, partially overlapping, classification of active errors. They distinguish between 

slips, lapses, and mistakes. Mistakes are errors in the formation of an intention or the 

choice of a method for achieving a goal, and are related to a breakdown in the planning 

stage. Slips and lapses, on the other hand, are errors in the execution of an intention. Slips 

occur when an intention is executed in an inappropriate manner whereas lapses represent 

the failure to perform some required action. Slips occur when there is a breakdown in the 

execution stage, while lapses are related to breakdowns in the storage stage. 

Slips can be broken down further into description errors; actuation or triggering 

errors; and capture errors. Description errors result from the operator working at a level 

of abstraction that is higher than necessary for the task at hand. As an example, a slip can 

result in confusion of one control knob for another. Actuation or triggering errors are a 

failure of the operator to appropriately activate a necessary action including unintended 

activation, or loss of activation, of a schema. An example is failing to shift task goals 

from a primary task to a critical secondary task in a timely manner, or correctly timing 

the action but performing it in a reversed manner. Capture errors result from faulty 



triggering of active schema, often as a result of habit intrusions. An example of a capture 

error is a pilot who is use to flying with a flight engineer on board and who turns around 

to communicate or delegate a task to the flight engineer when, in fact, his/her current 

aircraft does not have a flight engineer (Thompson, 1980; Norman, 1981). 

Mistakes are deficiencies or failures in the judgmental and/or inferential processes 

involved in the formation of a plan or intention. They can also involve failures in the 

specification of the process or method by which to achieve the intended outcome. It is not 

relevant for the determination of a mistake whether the actions undertaken by the operator 

are appropriate and successful. 

Note that there is an overlap between the first error classification - errors of 

omission and errors of commission - and the latter distinction between slips, lapses, and 

mistakes. Slips and mistakes can be considered errors of commission whereas lapses are 

equivalent to errors of omission. The distinction between slips and mistakes provides a 

more detailed account of the mechanisms underlying the different types of error of 

commission - an error in intention formation vs. an error in the execution of an intention. 

Detection of these two different kinds of errors of commission is likely to occur via 

different mechanisms and may not be equally likely. The following figure provides an 

overview of the relation between the different error forms that we have discussed up to 

this point, and the performance levels to be discussed next. 

Error   Types Performance   Levels 

O m is s io n  ►-   Lapse v. 

U niitended   A ctions   ' Skill-Based 

C om m ission —»-S lip 

R ule-B ased 

V io la tio n s 

Figure 1: Depiction of Unsafe Acts (adapted from Reason, 1990) 



Errors At Different Performance Levels 

Note that figure 1 lays out not only different kinds of errors but also illustrates 

their relation to three different levels of performance which were first introduced by 

Rasmussen and Jensen (1974). Based on their research on supervisory control in 

industrial installations, Rasmussen differentiates between skill-, rule-, and knowledge- 

based performance. 

Skill-based performance takes place in the case of highly practiced routine 

actions.   These actions are carried out in an automatic fashion and are easy for the 

experienced operator to perform. The actions tend to occur rapidly and without 

intentional effort. Stored action and perception patterns which are acquired through 

training and experience are driving performance with errors occurring as a result of 

variability offeree, space, or time coordination. 

Rule-based behavior requires more conscious effort. It involves the application of 

stored solutions to familiar problems. These solutions take the form of "if A (state), then 

B (diagnosis/remedial action)". Errors at the rule-based level are typically associated 

with a misclassification of the situation, which then results in the misapplication of a 

good rule or the correct application of an inadequate rule due to the incorrect recall of 

procedures. 

Performance at the knowledge-based level requires the greatest amount of 

conscious cognitive effort. This effort is directed at solving a novel problem for which no 

stored rules or procedures exist. Instead, a solution must be worked out by the 

operator(s) on-line. Errors at the knowledge-based performance level are the result of 

cognitive resource limitations and incomplete or incorrect knowledge of the situation 

(Reason, 1990). 

Building on Rasmussen's work, Reason (1990) related the three earlier described 

error types - slips, lapses, and mistakes ~ to these three performance levels. Slips and 

lapses occur at the skill-based performance level while mistakes are associated with either 

rule- or knowledge-based behavior. Skill-based errors, such as slips and lapses, occur 

while the operator is engaged in routine activities while rule- and knowledge-based 

mistakes take place once an operator engages in problem-solving behavior. 
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The likelihood of error detection is different for performance at the three different 

levels. Reason (1990) predicts that errors at the skill-based level (slips and lapses) are 

detected rapidly and effectively while the detection of rule- and knowledge-based 

mistakes is more difficult and often only achieved through intervention by some external 

source or agent. 

Error Detection Sources and Mechanisms 

Defenses in Depth. For complex high-risk systems, one important design 

principle is to implement several layers of protective mechanisms to ensure that negative 

consequences of errors are avoided, prevented, or deflected. This principle is referred to 

as "defenses-in-depth". It implies that several independent events have to coincide and 

several layers of system protections have to be penetrated before an error can result in an 

accident with disastrous consequences. In the context of this research, we can think of 

these layers as representing different error detection sources and mechanisms. 

On the commercial flight deck, the first layer of defense is the pilot who can 

detect an error based on his/her own actions and their outcome or through various 

required checks. Should the pilot fail to detect the error, there is at least one other 

crewmember in the cockpit who may detect the error. If neither crewmember detects the 

error, the crew on another aircraft may notice and point out or address the problem. And 

finally, other remotely located operators may come into play. These operators include 

ground personnel such as dispatchers or air traffic controllers (see Figure 2). 
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Operator Committing the Error 

Other Crewmember 

Gaps or weaknesses in 
the defenses 

Other Crew on Different 
Aircraft 

ATC/Other 
Ground 

Accident 
Trajectory 

Figure 2: Defenses-in-Depth (adapted from Maurino, 1995) 

So far, we have discussed possible sources of error detection - who detected the 

error?. It is also important to examine how or based on what information an error was 

noticed. Error detection can be based on knowledge-based information search or on data- 

driven attention capture. In the former case, an operator will search for information to 

confirm that the intended (outcome of an) action was indeed achieved. Error detection by 

the operator him/herself can occur prior to the execution of the erroneous action based on 

self-monitoring, i.e., based on the detection of a mismatch between stored representations 

of errors and the anticipated performance. This process occurs only in the context of well- 

known tasks and circumstances. In other words, it takes place in the context of skill-based 

performance (Seilen, 1990). 

Error detection at a later stage occurs on the basis of feedback from overt actions. 

It involves three basic components: a) feedback regarding the actions or outcome of 

actions; b) an anticipated result or reference value for comparison; and c) a monitoring 

system that compares the feedback to the reference. 
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Error detection can also occur as a result of some other agent or some salient 

information in the operator's environment capturing his/her attention and alerting the 

operator to the problem. This alerting mechanism can be as simple as an alarm signal or 

a forcing function, or it can involve a highly intelligent system that attempts to infer pilot 

intent and compare it against the pilot's actions or input to determine if those 

actions/input are appropriate (Wickens, 1993).   Data-driven attention capture may 

become increasingly important with the introduction of more and more independent and 

coupled automation which can take (possibly unanticipated) actions on its own (Sarter 

and Woods, 1995; Sarter, Woods, and Billings, 1997). To date, very little empirical 

research exists on the effectiveness of different error detection mechanisms and on their 

relation to different error types. 

Overview of Empirical Research On Error Types and Detection. Most research 

oh error detection has been conducted in laboratory settings and has looked at specific 

tasks such as typing (Rabbitt, 1978); reading comprehension (Kroll and Ford, 1992); 

go/no-go tasks with event-related brain potentials (Scheffers, et al., 1996); partial 

response (Coles, et al., 1995); speech (MacKay, 1992); choice-response (Rabbitt and 

Phillips, 1967); statistical problem solving (Allwood, 1984); visual search (Rabbitt, et al., 

1978); and use of a computer database (Rizzo et al., 1987). The small number of studies 

that were performed in the context of real-world operational environments include 

nuclear power (Woods et al., 1987); maritime (Van Eekhout and Rouse, 1981); aviation 

(O'Hare et al., 1994; Wiegmann and Shappell, 1997; Degani et al., 1991); and hospitals 

(Barker, 1962). 

Some of the above studies provide insight into some aspect of error detection, but 

their focus tends to be different from our areas of interest. For example, the study 

conducted by Scheffers examined event-related brain potentials in the context of errors 

made in a choice reaction task. Coles' research focused on the relation between the force 

of the response output and the level of uncertainty regarding that response. And Rabbitt's 

work examined the relation between the speed and accuracy of error correction. These 

studies investigated error detection and correction in a controlled environment that was 
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designed to limit the range and expression of possible errors and error detection 

mechanisms. Tasks were mostly self-paced and relatively simple with no, or few, 

competing task demands. In that sense, findings from those studies are of limited 

relevance to our objectives. 

Research by Allwood (1984) provided the basis for many later studies on error 

detection and classification. The focus of Allwood's study was self-detection of errors. 

Sixteen subjects were instructed to think aloud while solving two statistical problems. 

Allwood found that, overall, 69% of the errors were detected. These errors were 

categorized as execution errors (62%), solution method errors (21%), skip errors (9%), 

higher level mathematical errors (5%), and other errors (2%). The execution errors in this 

study are equivalent to slips, solution method errors to rule-based errors, and higher level 

mathematical errors to knowledge-based mistakes. 

The five categories of errors that were observed in this study were detected by 

means of three different mechanisms. Direct Error Hypothesis (DEH) behavior occurred 

when subjects suddenly detected a real or suspected error. This behavior did not always 

occur immediately following the error but could occur later in the process. Error 

Suspicious (ES) behavior took place when the subject noticed some result that was 

strange or unexpected. Some property or outcome was questioned without directly 

identifying it as an error. The third behavior was Standard Check behavior (SC) and was 

initiated by the subject independent of observing any suspicious outcome. 

Overall, Allwood found that subjects in his study detected 87% of the execution 

errors (which are similar to Reason's slips) and 52% of the solution method errors (which 

are equivalent to mistakes). Direct error hypothesis behavior led to the detection of 64% 

of the execution errors and 23% of the solution method errors. Error suspicious 

evaluation behavior was involved in the detection of 22% of the execution errors and 

26% of the solution method errors. A standard check led to detection of 2% of the 

execution errors and 5% of the solution method errors. 

Based on the results of this study, Allwood argues for the existence of two basic 

types of error detection - a sudden direct detection method and detection by means of 

more elaborate processes. The sudden direct method corresponds to the standard check 
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(SC) behavior. The more elaborate method is assumed to be the result of an observed 

mismatch between actual and expected result of an action. The elaborate method involves 

detection arising from a DEH episode, i.e., action-based detection, or detection based on 

an ES episode, i.e., outcome-based error detection. In summary, the two major detection 

categories identified in this study are either self-detection or outcome-based detection. 

Allwood's study also suggests that omission errors are difficult to detect for the 

individual committing the error. 

Another group of investigators further explored error detection using Allwood's 

error detection categories. Rizzo, et al. (1987) investigated the relationship between error 

types and patterns of error detection. The primary focus of their work was the cognitive 

processes underlying self-detection of errors. The study categorized observed behaviors 

and errors according to the skill-, rule-, and knowledge-based performance levels 

described by Rasmussen and Jensen (1974) and according to the error types proposed by 

Norman (1981) - slips, lapses, and mistakes. These were related to the error detection 

behavior patterns proposed by Allwood - Direct Error Hypothesis (DEH), Error 

Suspicious (ES), and Standard Check (SC). 

Sixteen subjects were asked to think aloud while solving problems using a 

database system under two experimental conditions. During the course of the experiment 

the subjects were expected to detect, locate, and combine items in the database. In the 

first condition, the level of task complexity was varied over four experimental sessions. 

These sessions required consistent use of database manipulations that were expected to 

become automatic with increasing experience on the task. This shift towards skill-based 

behavior, was expected to result in fewer knowledge-based errors but more slips in the 

later sessions. In the second condition, the subject was required to find an item in the 

database. The item changed in each of the four sessions, but the record containing the 

item remained the same. Both conditions were designed to test the effect of practice as a 

function of attention allocation and the relationship between error types, patterns of error 

detection, and psychological mechanisms of detection. 

Overall, the subjects in this study made 1277 errors and detected 1097 of those 

errors. The authors found that the subjects' error detection performance improved with 
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practice as their ability to use feedback and to specify intentions increased. The 

following tables summarize observed error types and associated detection mechanisms in 

this study. 

Slips/Lapses Mistakes - Rule Mistakes - 
Knowledge 

Direct Error 
Hypothesis 

72% 42% 15% 

Standard Check 7% 9% 10% 
Error Suspicious 4% 35% 57% 
Undetected 16% 14% 18% 

Table 1: Condition I Results 

Slips/Lapses Mistakes - Rule Mistakes - 
Knowledge 

Direct Error 
Hypothesis 

82% 82% 29% 

Standard Check 5% 3% 2% 
Error Suspicious 4% 10% 37% 
Undetected 5% 6% 32% 

Table 2: Condition II Results 

The largest number of errors in both conditions were slips which were most often 

detected by means of DEH behavior. A large number of slips went undetected which 

Rizzo et al. explained by the distance between the level of specification of intention and 

the level of execution of the action. When an individual is performing at a knowledge- 

based level, large portions of attentional resources are directed to plan execution. This 

artentional demand makes the action prone to slips. The likelihood of detection of slips is 

considered the result of a trade-off between available resources and distance between 

levels of specification and action (Rizzo et al., 1987). Most rule-based mistakes were 

detected by means of DEH and ES behavior. 
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The detection of knowledge-based mistakes was particularly difficult for subjects 

in this study. For the most part, they were detected based on ES behavior. 18% of the 

knowledge-based mistakes in condition I and 32% of those errors in condition II were not 

detected at all. 

Another study of error self-detection was conducted by Seilen (1990) who asked 

seventy-five subjects to report all errors they committed throughout the day, and how 

they detected them. Two questions served as an initial basis for grouping the observed 

results: a) "What kind of information serves as the basis for detection?"; and b) "With 

what is this information compared?". Seilen categorized the reported errors as slips, 

mistakes, and lapses. Lapses accounted for 26.2 % of all observed errors and were 

detected based on reminding or retrieval of information from memory through external 

associations, unsatisfied goal states, internal associations, or mental review. The author 

determined that the detection of lapses is fundamentally a different process from the 

detection of slips and elected to not discuss lapses further in her study. Only 15.6% of all 

errors in this study required another individual to intervene. Overall, Seilen described 

four different mechanisms that led to detection of the reported slips and mistakes. 

When the individual realized the occurrence of an error based on the perception of 

some aspect of the erroneous action itself, the detection was termed action-based 

detection. Action-based detection accounted for 11.2% of the data and occurred in the 

context of routinely executed habit patterns that required only minimal cognitive effort. 

Detection was dependent on perceiving the mismatch between the action plan and the 

executed action. This type of slip detection required evaluation with higher level goals 

and intentions. It was not always possible to immediately identify the specific error, even 

though there was an awareness that an error had occurred. Feedback is required for 

action-based detection and involves multiple forms. Detection of these errors could occur 

before, during, or immediately after committing the error. 

Outcome-based detection occurred in 39.5% of all errors. This detection method 

is based on the observation of perceptual or conceptual violations of what the individual 

expected. Detection could also be the result of a comparison to a familiar error pattern or 

of the failure to achieve a goal state. A mismatch between the intention and action was 
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not always initially strong enough, or sufficiently monitored, to signal an error. The 

intention itself might also be wrong, therefore no mismatch between the action plan and 

executed action existed. In both cases, the action taken was not detected as being in error. 

Instead, it was the result or outcome of the action that was the triggering cue. 

According to Seilen, an individual must be aware that the expected and actual 

outcomes are different in order to detect an error. This can only occur when plans and 

actions carry expectations about their outcomes, these outcomes are observable, the state 

of the world is sufficiently monitored, and the individual relates expectations to their 

observations. 

In Sellen's study, limiting functions led to the detection of 7.6% of all errors. 

Limiting functions can result in error detection when constraints of the external world do 

not allow the initiation or continuation of a planned erroneous action. 

A small number of empirical studies has looked at error detection in operational 

settings, including hospitals, plant and ship control rooms, and aviation. One of the 

earliest operational studies was conducted by Barker (1962) who investigated errors of 

medication administration by nurses. A combination of approaches was used including 

observations, self-report questionnaires, and evaluation of incident report records. The 

study compared the frequency of reported errors in an incident database to observed 

incidents. 

The 93 observed errors were grouped into six medication error categories 

according to their phenotype. The first category was omissions (37%) described as any 

medication dose that was not given by the time the next does (if any) was due. The next 

category was wrong dosage either above (8%), or below (13%), the correct dosage by 

more than five percent. The third category was extra dosage given (10%), which was any 

does given in excess of the total number of times ordered by the physician. Unordered 

drug given (18%) was administration of any medication not ordered for that patient. 

Fifth, the wrong dosage form (4%) was any dosage form that was not included in the 

generally accepted interpretation of the physician's orders. The sixth category was wrong 
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time (10%) which was any drug given 30 minutes, or more, before or after it was ordered 

up to the time of the next does of the same medication. 

Overall, this study concluded that undetected errors were much more prevalent 

than believed. Some of the medication administration problems stemmed from a lack of 

a built-in cross-check procedure. Errors were easily compounded through the use of a 

medication card to update patient records. With the use of the card system, there were no 

further comparisons to the original physician orders. In addition, complications displayed 

by patients as a result of inadequate medication were attributed to the patient illness, non- 

responsiveness, placebo effect, or medication reaction. By extrapolation of the error 

observation period to a full year, the investigators estimated that approximately 51,000 

errors occurred during a year, compared to 36 actual filed reports. 

An interesting finding of this study is that all 93 medication errors were detected 

by the researcher's confederate. The nine observed nurses in this study failed to notice 

their errors and consequently did not report them. In one case, a nurse committed 8 errors 

and was not aware of any of them. The author concluded that there is a particular 

tendency to miss and therefore under-report omission and timing errors. 

Van Eekhout (1981) conducted a more controlled study of 36 marine engineer 

officers in the simulator of a supertanker engine control room. Errors and error detection 

were studied by means of verbal protocols, computer logs of discrete events, interviews, 

observations, and questionnaires. Subjects had to handle failure or fault conditions. 

86 errors occurred with respect to five different sub-tasks - observation of system 

state, identification of fault, choice of goal, choice of procedure, and execution of 

procedure. The errors were classified as incomplete execution of procedures (27%), 

which included omission and out of sequence steps; inappropriate identification of the 

failure including both false acceptance and false rejection (26%); and incomplete 

observation of the state of the system prior to forming a hypothesis of the cause of the 

observed symptoms (13%). Overall, this study indicated a high frequency of omission 

errors as well as mistakes and further supports the notion that operators sometimes miss 

an error due to a partial overlap between their expectations and their observations. In 
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other words, they tend to complete a task given the available confirmatory evidence 

without searching for or attending to additional (possibly contradictory) information. 

More directly related to our work are two studies that used incident databases and 

explored errors and error detection in the aviation domain. Wiegmann and Shappell 

(1997) used a database of U.S. Navy and Marine Corps aviation accidents, and Degani et 

al. (1991) used the Aviation Safety Reporting System (ASRS) as a source of data. 

The goal of Wiegmann and Shappell's (1997) study was to explore how well three 

different information and human error taxonomies could be applied to the analysis of an 

existing database. The study used the four-stage model of information processing 

proposed by Wickens and Flach (1988), the model of internal human malfunction derived 

by O'Hare (1994), and Reason's (1990) model of unsafe acts. Wiegmann and Shappell 

found that they were able to classify 86.9% of the observed errors using the information 

processing model, 91.3% using the model of internal human malfunction, and again 

91.3% using the model of unsafe acts. 

Of particular interest was the distribution of errors within the different 

taxonomies. For the four-stage model of information-processing, errors in response 

execution were the most frequent (45.5%), followed by decision or response selection 

errors (29.5%). For O'Hare's model, procedural errors were the most frequent (39.5%), 

followed by diagnostic errors (21.7%). And finally, using the model of unsafe acts, 

Wiegmann and Shappell found that intended actions accounted for 74.5% of errors with 

the largest percentage of those being mistakes (57.1%). 

Weigmann and Shappell also examined what error types were most often involved 

in major (cost of $1,000,000; total loss of aircraft; or fatality) verses minor (cost between 

$10,000 and $200,000; or loss of one workday) accidents. Both types of accidents were 

associated most frequently with response execution. Decision or response selection errors 

were more frequently associated with serious accidents (34.8%) than with minor 

accidents (24.6%). Major accidents most often involved goal (15.1%) and strategy 

(14.3%) errors while minor accidents were again more often associated with procedural 

errors (44.9%). And finally, both major and minor accidents most often involved 
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mistakes (57.9% and 54.9%) - an important finding for the context of our study since it 

suggests the need for improved support of mistake detection. 

Degani et al. (1991) used the ASRS database to compare errors and error 

detection on traditional aircraft with those on modern automated flight decks. The study 

investigated who was responsible for error detection and what subsystem or information 

enabled error recovery. The investigators found that many sources of information were 

used to detect reported altitude deviations with the majority (180 out of 371) being 

detected by Air Traffic Controllers (ATC). Of the remaining incidents, the crews on the 

automated flight decks were more likely to detect an altitude deviation (approximately 

100 out of 186) than those on the conventional aircraft (approximately 70 out of 185). In 

both cockpit types, the pilot flying was more likely to detect the deviation than the pilot 

not-flying (104 verses 77). They found that ATC, the altimeter, and the outside scene 

were the three most frequent triggers that there existed an altitude deviation. 

This study did not address some important aspects of error detection. For 

example, it did not determine the performance level at which the crew was functioning 

when the error occurred. In addition, only altitude deviations were investigated. 

Summary 

Human error has only recently become a topic of interest in its own right. For 

decades, it has been studied only as a means to an end, as a way to understand normal 

cognitive functioning. Today, errors are being studied extensively, and numerous error 

classification and performance level schemes have been developed. Still, the area of error 

detection has received very little attention. This research is an attempt to make progress 

in our understanding of the relationship between errors and error detection mechanisms 

and of possible ways of better supporting error detection in the interest of further 

increasing safety in a variety of domains. 

What is known to date is largely based on the work reviewed in the preceding 

sections. Norman has advocated the distinction between slips, lapses, and mistakes which 

Reason related to skill-, rule-, and knowledge-based behavior. Reason suggests that skill- 

based errors - slips and lapses- occur frequently and are detected by the individual 
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quickly and effectively. Errors related to problem solving (i.e., rule- and knowledge- 

based mistakes), on the other hand, tend to require intervention by an external source. 

Daily occurrence of problem solving behavior is less frequent than routine actions, and 

therefore, there are fewer opportunities for mistakes. 

Sources of error detection include feedback from an action, self-monitoring, 

comparison of an outcome to an intention, environmental cues such as limiting functions, 

and the intercession of another individual. Error detection behavior has been categorized 

as direct error hypothesis, standard checks, and error suspicious. 

Several studies have investigated the frequency of different types of errors and 

how these errors are detected. All wood as well as Rizzo et al. found that subjects were 

able to detect one type of execution error - slips - quite frequently while mistakes were 

more difficult to detect. Seilen studied everyday errors in an attempt to broaden the 

expression of errors. She chose to discount lapses in the evaluation because the detection 

of lapses was considered fundamentally different from the detection of slips and 

mistakes. For those errors, slips and mistakes, detection based on outcome was found to 

be the most frequent detection mechanism. This study by Seilen represents a useful 

starting point for the exploration of error detection in complex domains. Barker's and 

Van Eekhout's research indicate a high frequency of omission errors, or lapses, and of 

mistakes in complex operational environments. 

The aviation database studies provide a basis and direction for comparison with 

the work performed in this study. Wiegmann and Shappell's study successfully 

demonstrated the applicability of different models and categorizations of error to an 

existing database. They found that accidents most often involved mistakes. Degani et al. 

found that an external agent, ATC, was required to detect errors leading to altitude 

deviations. The study did not explore the relationship of the errors to performance level, 

nor were the errors related to general error types to allow direct comparison with other 

studies. 
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Predictions 

Based on existing theories and models of human error and error detection (e.g., 

Reason's GEMS model) and the findings from the above discussed studies, a number of 

predictions can be made. These predictions concern expected error types, their relation to 

error detection sources and mechanisms, and the possible impact of modern technology 

on the nature and detection of errors such as the ASRS incidents that are being analyzed 

in this research, and that call for improved detection support. 

Expected Frequencies of Different Errors Types in the ASRS Database. We can 

think of the ASRS database as a collection of reports describing episodes in which error 

detection was successful in the sense that an accident was prevented. At the same time, 

error detection occurred fairly late - late enough to lead to a potential or actual violation 

of regulations which is the reason these incidents were reported. This suggests that most 

reported cases will involve deviations from ATC-assigned or regulated limits and targets 

(e.g., altitude deviations). It also means that, in terms of the underlying problems, we can 

expect a relatively large percentage of errors in the ASRS database (relative to the 

likelihood of their occurrence) to be lapses/errors of omission and mistakes which are one 

form of error of commission. Earlier research has shown that another form of commission 

error - slips, tend to be detected (and corrected) rapidly and effectively by the operator 

committing the error before any violations and thus detection by ATC can occur (e.g., 

Smith, (1979)). Consequently, slips may be less likely to find their way into the ASRS 

database. Finally, skill-based errors will probably be the most frequently reported error 

type since all actions tend to have skill-based components for the implementation of any 

control directive (Reason, 1990). Thus, there are far more opportunities for this type of 

error to occur. 

Most skill-based errors that appear in this database are expected to be associated 

with attentional failures. Since the expected outcome associated with skilled-based 

performance is very clearly specified, the failure to notice a discrepancy between desired 

and actual outcome is likely to result from a failure to attend to the corresponding 

feedback in the first place. 
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The Relation Between Error Type and Error Detection Likelihood/Mechanism. 

The detection of both lapses/errors of omission and mistakes is difficult for the operator 

committing the error (Van Eekhout, 1981; Rizzo et al., 1987) and is therefore likely to 

require some external intervention. In the case of mistakes, Air Traffic Control (ATC) 

and the other crewmember are expected to be the most frequent source of error detection 

because pilots, for the most part, do not form their own intentions. Instead, goals and 

targets are given to them by ATC. Earlier research has shown that air-ground 

communication of these goals and targets often breaks down (Monan, 1986; Beaty, 

1995). Misunderstandings between ATC and the pilot can lead to misperception of 

controller intent. It is impossible for the pilot who is acting in accordance with the 

(assumed) controller intent to detect the mismatch between his/her actions and the 

controller's actual goals. ATC, however, knows about both intended and actual aircraft 

behavior and can therefore detect an error and point it out to the pilot. The other 

crewmember may also catch the error based on his/her ability to listen in on ATC 

communication and thus realize the other pilot's mistake. 

The detection of lapses/errors of omission is expected to require salient system 

feedback that either captures the pilot's attention in the absence of information search or 

that "pops-out" when the operator performs a check on progress toward his/her goals. In 

addition to basic, clearly indicated flight parameters, this feedback may take the form of 

forcing functions, which do not allow the behavior to continue until the problem has been 

corrected, and/or alarms, which can capture the pilot's attention. 

New Technology And Error (Detection). Errors can not be considered 

independent of the context in which they occur since they are often the result of a 

mismatch between human, system, and/or task domain. This implies that changes in any 

one of those elements can change the nature and/or frequency of errors. For example, in 

the aviation domain, the last two decades have seen the introduction of many new highly 

automated systems to the flight deck. Research on pilot interaction with these new 
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systems suggests that this technology does, in fact, create the opportunity for new kinds, 

of and a different likelihood, of errors (Woods et al., 1994). 

One possible change in the type of errors is a shift towards errors of 

omission/lapses. This prediction is based on the fact that modern technology tends to 

operate at a high level of autonomy and authority. As a result, there is an increased 

likelihood that a system initiates an action without pilot input and, potentially, without 

pilot awareness. Consequently, the pilot may fail to notice if the machine action is 

inappropriate, and he/she may fail to intervene with the automation activities - an error of 

omission. On conventional aircraft, such errors are much less likely since systems on 

these airplanes are for the most part reactive in nature, i.e., they do not take an action 

unless and until it is explicitly commanded by the pilot/crew. Consequently, one could 

expect to see a much higher percentage of errors of commission. 

One can also expect to see a larger percentage of mistakes on automated aircraft. 

Mistakes refer to both errors in the formation of an intention and to the inappropriate 

choice of a method for achieving a goal. The latter case may be more likely on modern 

aircraft since automation technology has increased the number of options available to 

pilots in order to achieve the same goal. For example, some automated aircraft provide 

the pilot with five or more different modes for changing altitude. This increased number 

of options affords more opportunities for choosing the wrong method or stategy and thus 

making a mistake. 

Finally, on conventional aircraft, the pilot-flying alone was in charge of 

maintaining the intended or ATC-given flight path. On more automated aircraft, however, 

the pilot-not-flying has taken over some of the tasks involved in flight path management. 

For example, many airlines require the pilot-not-flying to set the altitude target for the 

automation. This implies that are more opportunities for the pilot-not-flying on modern 

aircraft to commit errors that may lead to deviations from, and violations of, ATC 

clearances. A related prediction associated with modern technology aircraft is that it can 

be more difficult for a pilot to detect an error made by the other crewmember. This 

prediction is based on the fact that both pilots can interact with the automation and set up 
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the system without the other crewmember necessarily being able to or being supported in 

observing the input to the automation. 

In order to examine the accuracy of our predictions concerning error types, error 

detection, and the impact of automation technology on both factors, we analyzed ASRS 

incident reports to identify a) the genotype of error underlying the reported problem; b) 

the performance level at which the operator was functioning; and c) the cue or 

mechanism that led to the detection of the error. We also compared incident reports filed 

by pilots flying conventional aircraft versus highly automated airplanes with respect to 

the above issues. 
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Methods 

ASRS Incident Data Base 

The data that were analyzed in the course of this research were obtained from the 

Aviation Safety Reporting System (ASRS). ASRS was established as a joint cooperative 

program between the Federal Aviation Administration (FAA) and NASA in 1975. The 

ASRS mandate is to identify and report deficiencies in the National Aviation System 

(NAS), contribute to formulation of NAS policy, and support aviation human factors 

research. The ASRS data base consists of voluntarily submitted aviation incident reports. 

Incidents are defined as an occurrence or condition that is, or is potentially, unsafe. An 

incident does not involve personal injury or significant property damage (Chappell, 

1994). 

ASRS reports may be filed by anyone involved in, or observing, a situation in 

which aviation safety actually was, or could have been, compromised. The major 

incentive for filing a report is that none of the submitted information is used against the 

individual for enforcement actions. Additionally, fines and penalties are waived, subject 

to certain limitations, for unintentional violations of federal aviation regulations. The 

reporter must submit the information to the ASRS within ten days of the incident to be 

eligible for a waiver. 

Since the inception of the program in August 1975, more than 300,000 incident 

reports have been submitted. While commercial aviation pilots file approximately 70% 

of the reports, flight attendants, air traffic controllers, mechanics, and ground personnel 

are also encouraged to submit reports. Each report that is submitted to ASRS is evaluated 

by at least two subject matter experts, pilot or air traffic controller, for safety issues. 

Once analyzed, the reports are de-identified before being entered into the database. This 

allows for confidentiality of the reporter and the organization with which they are 

affiliated. Once the reports have been reviewed and de-identified, they are made 

available to outside researchers and other interested persons upon request. 
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The type of information that is available in the database includes several key 

components related to the incident. First, the reporter is asked for some background 

information, including: 

• Who reported the incident and what is the background of the reporter (e.g., total 

flying time, ratings) 

• Type of aircraft involved in the incident 

• Conditions in which the incident occurred (e.g., weather, airspace, location) 

• Air traffic control facility involved in the incident 

• Operator and mission of the flight 

• Flight plan, flight phase, and control status of the flight 

The reporter is then asked to provide a detailed description of the event. This outline 

should include information on what caused the problem in his/her opinion, what could be 

done to prevent its reoccurrence or correct the problem, how it was discovered, 

contributing factors, corrective actions, perceptions, judgments, decisions, and actions 

(see ASRS Reporting Form, Appendix A). 

The use of incident data for studying human error involves a considerable number 

of benefits and serves a variety of purposes. It can further support and expand on 

findings from simulator studies and provide guidance for more controlled studies. For 

example, Orasanu and Fischer (1997) used ASRS reports in conjunction with a simulator 

study to investigate decision-making by aircrews. Their reason for using the incident data 

was to explore decision events that may not have been part of, or evolved during, the 

missions the crews were experiencing in the simulator. The ASRS data did, in fact, yield 

three additional types of decision processes that were not observed in the simulator. 

Chou, Madhavan, and Funk (1996) used ASRS reports to support the results of an 

analysis of National Transportation Safety Board (NTSB) accident reports and to provide 

directions for a follow-up simulator study. The focus of their work was cockpit task 

management (CTM) and its contribution to flight safety. The ASRS reports helped to 

avoid biases due to the limited set of accidents in the NTSB study, and they provided 
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further operational support for the importance of certain factors such as the criticality of 

flight into terminal areas, that were subsequently confirmed in a controlled, simulated 

environment. 

Incident data are a rich source of information regarding reasons for, and 

conditions favoring, a wide range of errors and error detection mechanisms in real-world 

operational environments. Incident data can be used to examine hypotheses about human 

error that were developed in more controlled laboratory settings. The voluntary and 

confidential nature of the reporting system used in this study promotes operators' candid 

disclosure of all factors and aspects related to the incident without fear of retribution. 

Incident databases can be used to identify trends in the nature and severity of errors that 

evolve over longer periods of time. And finally, incident reports have high ecological 

validity - they represent reports of naturally evolving situations that occur and tend to be 

reported in the context of a real-world environment by highly experienced practitioners in 

that domain (Chappell, 1994). 

Like any other form of research data, incident reports also involve some 

limitations. For example, there is an inherent possibility of biases regarding the type of 

pilot who will file a report, and the type of incident that will be reported (Wickens and 

McCloy, 1993). Pilots who have more to "lose" from not reporting an incident (such as 

commercial pilots who may lose their license and thus their source of income), are more 

likely to file a report to gain immunity than, for example, general aviation pilots who are 

flying for entertainment purposes only. Incidents that resulted in an observable deviation 

or violation (e.g., altitude deviations) are more likely to be reported than errors that were 

detected and corrected before leading to a problem. And the total number of reported 

incidents in the database probably underestimates the actual frequency of problems and 

errors since it is far more likely that an operator will not report an incident as opposed to 

an operator fabricating an incident that did not occur (Wickens and McCloy, 1993; 

Wickens, 1995). 

Another potential problem is that operators reporting an incident are not 

necessarily trained in psychological constructs and may leave out important information. 

As a result, researchers sometimes have to infer what happened and what the 
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chronological flow of events were in the incident in order to gain valuable insight into the 

behavioral and contextual setting within which the operator was functioning (Harle, 

1994). Also, retrospective reports are rarely completely accurate in terms of exact details 

and the chronological flow of events (Loftus, 1979). 

Selection Criteria For Limiting The Database 

The entire ASRS database contains over 307,000 incidents. However, complete 

detailed reports are available for only 58,021 incidents that occurred between January 

1988 and May 1996. From these reports, the following selection was made. The mission 

profile was limited to commercial passenger flights since safety improvements in this 

area can be considered particularly important. Changes can save lives and improve the 

public's perception of this mode of transportation. Given that one of our interests was a 

comparison between conventional and highly automated aircraft, eleven aircraft types 

were selected which included six advanced technology aircraft (Airbus A-320, 

McDonnell-Douglas MD-11, Boeing B-737-300, B-757, B-767, and the B-747-400) and 

five conventional aircraft that do not involve high levels of automation (the McDonnell- 

Douglas MD-80, the DC-9, the DC-10, the Boeing B-737-200, and the B-747-200). 

These aircraft were chosen since they represent pairs that differ only in terms of their 

level of automation while aircraft size and routing are comparable. The pairs are B-737- 

200 and B-737-300, DC-10 and MD-11, B-747-200 and B-747-400, DC-9/MD-80/A-320, 

and the B-757 and B-767. 

In our data analysis, we started with the most recent incidents (May 1996) and 

worked backwards to the last month in the database (January 1988). Overall, 1091 

reports fit our profile and were reviewed. Of these, only 245 reports (22%) could be 

included in the final data analysis. The number of incidents that we were able to include 

for each aircraft is shown in table 3. 
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Aircraft Number Aircraft Number 

B-737-200 37 B-737-300 37 
DC-10 11 MD-11 5 
B-747-200 6 B-747-400 3 
DC-9/MD-80 36/34 A-320 24 
B-757 26 B-767 26 

Table 3: Aircraft Type and Number of Incidents Included in Data Analysis 

The remaining reports were excluded for the following reasons: a) Reports that 

did not involve a specific operator error were eliminated. These included general 

problems or warnings such as a poor lighting system or difficulty understanding a 

controller at a particular airport; b) Reports of incidents that were beyond the reporter's 

control (e.g., bird strike, mechanical problem) were also eliminated; c) Incidents 

resulting from intentional violations were not of interest since they do not require or 

involve the detection of an error; d) Reports that were filed regarding another aircraft or 

filed by an individual who was not a member of the cockpit flight crew were eliminated 

since it was not possible to reliably determine whether those reports accurately reflected 

what had happened in the incident; e) Finally, a large number of reports had to be 

excluded since they did not explicitly state the factors or mechanisms that led to the 

detection of the error. 

Data Analysis 

The remaining ASRS reports were analyzed using a form that we designed 

specifically to gather information concerning the questions raised in the introduction to 

this document (see Data Analysis Form, Appendix B). This form captured the following 

aspects of the incident: 

•    Who committed the error 
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• Who detected the error 

• A brief description of the incident 

• Error phenotype 

• Classification of the error 

■ Error of omission or commission 

■ Slip, mistake, or lapse 

• Type of task performance level at which the error occurred 

■ Skill-, rule-, or knowledge-based 

• Contributing factors, (e.g., inattention; time pressure; distraction) 

• Error detection source and mechanism (e.g., self/other operator/ATC; 

routine/suspicious check; limiting function, etc.) 

Several passes through the database were made. Each incident was first analyzed 

to determine whether it involved an omission or commission error. The same report was 

then reviewed to determine if the erroneous action was a slip, lapse, or mistake. Finally, 

the error involved in the incident was analyzed to determine the performance level at 

which it occurred - - skill-, rule-, or knowledge-based behavior. These categorizations 

were performed independently of each other. We chose to analyze the data using the 

various classification schemes because some of the categories in one scheme (e.g., 

commission error; mistake) include more than one kind of error from a different scheme 

(e.g., slips and mistakes, and rule- and knowledge-based errors respectively). Use of only 

one scheme could have hidden interesting differences and effects. 

The following are abbreviated examples of slips, lapses, mistakes, and of skill-, 

rule-, and knowledge-based errors from our database: 

Slip: During the approach, the aircraft was cleared to descend to and maintain 

8,000 feet. Even though the Captain understood the clearance and meant to set 8,000 feet 

in the altitude alert window, he inadvertently entered 3,000 feet - - a slip. 
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Lapse: The aircraft was cleared to climb to 10,000 feet. During the climb the 

Captain, who was the pilot flying, became distracted by the actions of the First Officer 

and failed to level-off at the assigned altitude although he had intended to - - a lapse. 

Mistake: This was the second landing for the Captain after initial orientation. He 

was trying to avoid flaring too early and was therefore waiting for the 30 and 20 foot 

callouts by the automation. He did not realize that these callouts do not occur if the 

aircraft descends through the altitudes too quickly. The result was a very hard landing. 

This is an example of a mistake where the pilot's intention was inappropriate for the 

given situation. 

Skill-based Error: Both the slip and lapse examples above are errors involving 

skill-based behavior. In each case, the operator is performing a routine activity in a 

familiar situation, but the execution has broken down. Their intentions are appropriate; 

however, they error in the execution of those intentions. 

Rule-based Error: The mistake above is also an example of a rule-based error. In 

this case, it involves the misapplication of a good rule. The rule is to wait for the 20 foot 

callout before initiating the flare, but in this case the rule is applied in the wrong context. 

Knowledge-based Error: The Captain determined that the approach was unstable, 

and he initiated a go-around. The flight directors were off, and the aircraft was at an 

altitude below 100 feet. In those conditions, the automation disconnects the autothrust 

when a go-around is initiated. The Captain, who did not know about this aspect of 

system behavior, did not select climb thrust and re-engage the autothrust system. As a 

result, the aircraft was still at full thrust as he began to level-off. The aircraft oversped, 

and the crew initiated a late turn back due to excessive airspeed. In this case a novel 

situation is encountered, and a lack of knowledge and understanding of the system leads 

to the error. 
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Once the incident had been analyzed in terms of its underlying error types and 

performance level, the error detection source and mechanism/cue was determined. We 

first identified who detected the error: the operator committing the error, the other 

crewmember, ATC, or ground personnel. Next, we determined the mechanism or cue 

that led to error detection. The mechanisms/cues included: 

Routine checks: At several points during the flight, the Captain performed cross- 

checks of the settings in the Flight Management System. During one of those regular 

checks, he realized they would not make a crossing restriction. 

Suspicious checks: The First Officer began to doubt the validity of the position 

report that the crew had given to ATC. He began to investigate the situation and found a 

problem with the clock setting. 

Alarms: The pilot was hand-flying the airplane during the final descent when he 

diverted his attention to check the taxiway he was going to use. The altitude alert 

sounded as the aircraft descended below the set altitude. 

Limiting functions: The First Officer tried to enter a new restriction in the Flight 

Management System. The system would not accept the information. After another 

attempt the First Officer discovered he was trying to use an incorrect mode. 

Outcome of an action unrelated to aircraft performance/behavior: The pilot tried 

to preselect a radio frequency on the second radio channel. He inadvertently changed the 

frequency of the active channel, and the crew noticed the error when the active channel 

suddenly went quiet. 

Aircraft performance/behavior: The Captain continued to hold the airspeed 

recommended by the Flight Management System even when he disconnected the 
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autopilot to initiate a turn for the approach. Since the airspeed was too slow for that 

maneuver, the aircraft began to buffet as it approached a stall 

Each incident report was independently analyzed by two researchers. Any 

discrepancies in their analyses were resolved through discussion until an agreement was 

reached. Non-parametric statistical analyses were performed for the entire sample of 

incidents and for the comparison between conventional and highly automated aircraft. 
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Results 

Frequencies of Different Error Phenotypes and Genotypes In ASRS Database 

The phenotype of reported incidents. All 245 incidents were divided into six 

different categories based on their phenotype or observable outcome. There were 88 

(35.9%) altitude deviations, 79 (32.2%) course or heading deviations, 25 (10.2%) taxi 

errors or runway incursions, 10 (4.1%) airspeed deviations, 11 (4.5%) failures to obtain a 

clearance prior to take-off or landing, and 32 (13.1%) other errors such as improper fuel 

load, improper use of a system, or not retracting/extending equipment when required (see 

Figure 3). 
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Figure 3: The Phenotype of the Reported Incidents 
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The above data allow for a comparison with existing accident and incident 

statistics and with findings from earlier research that focused on the surface appearance 

of errors. However, they do not provide insight into the mechanisms underlying the 

observed problems. To illustrate the importance of going beyond the phenotype, we 

selected the two most frequently reported problems, altitude and heading or course 

deviation, and are showing their underlying error types in table 4. These data illustrate 

that it is inappropriate to analyze incidents in terms of their surface appearance only. The 
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development of effective countermeasures to error and of error detection support requires 

knowledge about the underlying cognitive mechanisms and error forms. 

Slips Lapses Mistakes 
Altitude Deviation, 
n = 88 

17(19.3%) 42 (47.7%) 29 (32.9%) 

Heading/Course 
Deviation, n = 79 

23 (29.1%) 26 (32.9%) 30 (37.9%) 

Table 4: Different Error Types Underlying Reported Incidents 

The genotype of reported incidents.   Our first expectation regarding the nature of 

errors reported in the database was a high frequency of omission errors and, 

correspondingly, a high frequency of lapses. We also expected that, while most errors 

would occur during skill-based behavior, a relatively high number of mistakes (relative to 

opportunity for error) would be observed. 

For our overall sample of ASRS reports, we found that lapses were indeed the 

most frequent error type, followed by mistakes.   There were 49 (20.1%) slips, 101 

(41.4%) lapses, and 94 (38.5%) mistakes (see Figure 4). The frequency of error types 

differed significantly, %2 (2, N=244) = 19.58, p< .001. 
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Figure 4: Frequency of Slips, Lapses, and Mistakes 
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As expected, the majority of errors occurred at the skill-based performance level. 

There were 185 (75.8%) skill-based errors, 35 (14.3%) rule-based errors, and 24 (9.8%) 

knowledge-based errors (see Figure 5). The difference in error type distribution was 

again significant, %L (2, N=244) = 198.94, p< .001. 
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Figure 5: Frequency of Skill, Rule, and Knowledge-Based Performance Errors 

Finally, we found a marginally significant difference in the frequency of omission 

versus commission errors across all aircraft, %2 (1, N=245) = 3.92, p< .05. There were 

107 (43.7%) omission errors and 138 (56.3%) commission errors (see Figure 6). Note 

that commission errors include both slips and mistakes. 
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Distractions and competing demands as major contributors to skill-based errors. 

Previous research has suggested that one major contributor to errors at the skill-based 
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level is some form of attentional failure, often due to distractions or capture of some other 

task (Reason, 1990). Our data confirm this hypothesis - attentional problems did, in fact, 

contribute to 167 of the reported errors. In 86.9% of the omission errors, inattention was 

explicitly discussed as a contributing factor, while fewer commission errors (53.6%) were 

associated with attentional problems (see Figure 7). When we break down further the 

omission and commission errors, we find that 89.1% of all lapses and 79.6% of all slips 

were related to attentional failures (see Figure 7), whereas only 39.4% of the mistakes 

involved inattention to the task at hand. 
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Figure 7: Percentage of Errors Related to Inattention 
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For the 129 skill-based errors that involved inattention as a contributing factor, 

the three most common sources of distraction were: 

• difficulty handling equipment (malfunction, unfamiliarity) - 22 cases 

• interruption (e.g. by flight attendant, jumpseat rider) - 20 cases 
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•    competing demands and time pressure - 20 cases 

Table 5 compares the slips and lapses in terms of how often they involved the above 

factors. 

Slips Lapses 

Difficulty handling 
equipment 

9 13 

Interruption 0 20 
Time pressure 7 13 

Table 5: Most Frequent Underlying Reasons For Inattention Related to Slips and Lapses 

Note that only lapses were caused by interruption, whereas difficulties with handling 

equipment and time pressure played a role in both types of skill-based error. 

The Relationship Between Error Type and The Likelihood/Source of Error Detection 

We first analyzed the 245 incidents in terms of who detected the error. We found 

that 54 (24%) errors were detected by the operator him/herself, 118 (52.7%) by Air Traffic 

Control (ATC), 42 (18.8%) by the other crewmember, and 10 (4.5%) by ground personnel 

such as maintenance or dispatch (see Figure 8). There was a significant difference in the 

frequency of the error detection source, %2 (3, N=224) = 110.00, p< .001. 
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For errors of omission and commission, we found that ATC detected the majority 

of both kinds of errors (see Table 6). There was no significant difference between the 

detection sources for omission and commission errors. 

Omission Commission 

Operator Who Committed 
The Error 

22 (24.4%) 23 (17.8%) 

Other Crewmember 16 (17.8%) 29 (22.5%) 
ATC 47 (52.2%) 73 (57.4%) 
Other Ground Personnel 5 (5.6%) 3 (2.3%) 

Table 6: Detection of Omission and Commission Errors 

Earlier research (e.g., Reason, 1990) suggests that skill-based errors are detected 

rapidly and effectively by the operator committing the error. This may be too broad a 

prediction however. Skill-based errors include both slips and lapses, and lapses were 

found to be difficult to detect in earlier studies (Van Eekhout, 1981; Rizzo et al., 1987). 

To examine this, we identified who detected slips, lapses, and mistakes verse skill-, rule- 

and knowledge-based errors. 

ATC detected the majority of all slips, lapses, and mistakes in the database (see 

Table 7). There was again no significant difference in the source of error detection 

between slips, lapses, and mistakes. 

Slip Lapse Mistake 
Operator Committed 
The Error 

6 (14.0%) 22 (25.9%) 17(18.9%) 

Other Crewmember 11(25.6%) 14 (16.5%) 20 (22.2%) 
ATC 26 (60.5%) 44 (51.8%) 50 (55.6%) 
Other Ground 
Personnel 

0 (0%) 5 (5.8%) 3 (3.3%) 

Table 7: Detection of Slips, Lapses, and Mistakes 
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With respect to the performance level, ATC detected almost 60% of the skill- and 

rule-based errors each, while the operator committing the error detected 50% of the 

knowledge-based errors (see Table 8). The difference in proportion between the source 

of detection for skill-, rule-, and knowledge-based errors was significant, %2 (6, N=216) = 

18.02, p< .006. 

Skill-Based Rule-Based Knowledge-Based 
Operator Committed 
The Error 

31 (18.9%) 3 (10.3%) 12 (50.0%) 

Other Crewmember 31 (18.9%) 9(31.0%) 5 (20.8%) 
ATC 96 (58.5%) 17 (58.6%) 6 (25.0%) 
Other Ground 
Personnel 

6 (3.7%) 0 (0%) 1 (4.2%) 

Table 8: Detection of Skill-, Rule-, and Knowledge-Based Errors 

Next, we examined what cue or information supported error detection. We were 

not able to determine the cues used by ATC or ground personnel from the information 

available in the ASRS reports. However, for the 120 incidents where the operator 

committing the error or the other crewmember detected the error, we could identify the 

detection cue. Outcome of an action unrelated to aircraft performance/behavior was the 

basis for detection in 27 incidents (22.5%), routine checks in 37 cases (30.8%), 

suspicious checks in 18 incidents (15.0%), aircraft performance/behavior in 17 events 

(14.2%), some limiting function in 5 cases (4.2%), and alarms were involved in 16 

incidents (13.3%) (see Figure 9). The difference in the frequency of identified detection 

cues was significant, %2 (5, N=120) = 29.60, p< .001. 
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Figure 9: Cues/Mechanisms Involved in Error Detection 

A more detailed analysis was performed to determine whether certain 

cues/mechanisms are particularly effective in the detection of different kinds of errors 

(see Table 9). No significant difference was found between the frequency distributions of 

detection sources for errors of omission and errors of commission. However, we found 

that not all sources of detection were equally prevalent within the group of errors of 

omission, {yl (5, N=38) = 33.68, p< .001), and the group of errors of commission (%2 (5, 

N=52) = 26.46, p< .001). Routine checks (50%) were found to be the most frequent 

detection mechanism for omission errors, while the two most frequent sources of 

detection for errors of commission appear to be the outcome of an action unrelated to 

aircraft perfornwu^ehavior (32.7%) and routine check (28.8%). 
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Omission Commission 

Outcome of action (not 
related to aircraft perform.) 

6(15.8%) 17 (32.7%) 

Routine check 19 (50.0%) 15 (28.8%) 
Suspicious check 6(15.8%) 10(19.2%) 
Aircraft 
performance/display 

4 (10.5%) 8 (15.4%) 

Limiting function 2 (5.3%) 1 (1.9%) 
Alarm 1 (2.6%) 1 (1.9%) 

Table 9: Detection Mechanism/Cue for Omission and Commission Errors 

No significant difference was found between the frequency of distributions of 

detection sources for slips, lapses, and mistakes. Among the detection cues for slips, we 

did not find a significant difference, however, the detection cues among the lapses (%2 (5, 

N=36) = 27.66, p< .001), and mistakes {yl (5, N=37) = 22.51, p< .001) were 

significantly different. The most frequent detection cue for lapses was a routine check 

(47.2%), while the outcome of an action unrelated to aircraft performance/behavior 

(35.1%) and routine check (32.4%) were the most frequent detection cues for mistakes 

(see Table 10). 

Slip Lapse Mistake 

Outcome of action 
(not related to 
aircraft perform.) 

4 (23.5%) 6 (16.7%) 13 (35.1%) 

Routine check 5 (29.4%) 17 (47.2%) 12 (32.4%) 
Suspicious check 4(23.5%) 6 (16.7%) 6 (16.2%) 
Aircraft 
performance/display 

4 (23.5%) 4(11.1%) 4(10.8%) 

Limiting function 0 (0%) 2 (5.6%) 1 (2.7%) 
Alarm 0 (0%) 1 (2.8%) 1 (2.7%) 

Table 10: Detection Mechanism/Cue for Slips, Lapses, and Mistakes 

Finally, we evaluated the detection mechanisms for skill-, rule-, and knowledge- 

based performance. No significant difference was found between the frequency 
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distribution of detection sources for skill-, rule-, and knowledge-based errors. However, 

there was a significant difference among the error detection cues/mechanisms for skill- 

based errors, (%2 (5, N=60) = 41.00, p< .001). Routine checks appeared to be the most 

frequent detection mechanism (43.3%) in cases of skill-based errors, while the outcome 

of an action not related to aircraft performance/behavior (30.8%) and a routine check 

(30.8%) were equally frequent for rule-based errors. Knowledge-based errors were 

detected most frequently by the outcome of an action not related to aircraft 

performance/behavior (41.2%) (see Table 11). 

Skill-Based Rule-Based Knowledge-Based 

Outcome of action 
(not related to 
aircraft perform.) 

12 (20.0%) 4 (30.8%) 7 (41.2%) 

Routine check 26 (43.3%) 4 (30.8%) 4 (23.5%) 
Suspicious check 11(18.3%) 3 (23.1%) 2(11.8%) 
Aircraft 
performance/display 

8 (13.3%) 2(15.4%) 2(11.8%) 

Limiting function 2 (3.3%) 0 (0%) 1 (5.9%) 
Alarm 1 (1.7%) 0 (0%) 1 (5.9%) 

Table 11: Detection Mechanism/Cue for Skill-, Rule-, and Knowledge-Based Errors 

The Impact of Modern Automation Technology on Error Forms and Error Detection. 

Error forms. The following analysis compares those reports in our sample that 

were filed by pilots on conventional (n=124) versus on automated aircraft (n=121). We 

first examined our hypothesis that omission errors are more likely on automated aircraft 

than on conventional aircraft. There were 42 (46.7%) omission errors on the conventional 

aircraft and 48 (53.3%) on the automated aircraft. On the automated aircraft, there were 

65 (41.9%) omission errors and 90 (58.1%) commission errors. No significant difference 

between commission and omission errors was found (see Figure 10). 
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Figure 10: Errors of Omission and Commission on Automated Versus Conventional 
Aircraft 

Similarly, no significant differences were found for the distribution of slips, 

lapses, and mistakes nor for errors at different performance levels (see Figures 11 and 

12). There were 17 (19.1%) slips, 40 (44.9%) lapses, and 32 (36%) mistakes on the 

conventional aircraft. On the automated aircraft, there were 32 (20.6%) slips, 61 (39.4%) 

lapses, and 62 (40%) mistakes. 
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Figure 11: Slips, Lapses, and Mistakes on Automated Versus Conventional Aircraft 

There were 67 (75.3%) skill-based errors, 14 (15.7%) rule-based errors, and 8 

(9%) knowledge-based errors on the conventional aircraft. Pilots reported 118 (76.1%) 
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skill-based errors, 21 (13.5%) rule-based errors, and 16 (10.3%) knowledge-based errors 

on automated aircraft. 
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Figure 12: Skill, Rule, and Knowledge-Based Errors on Automated Versus 
Conventional Aircraft 

It is possible that the effects of automation become visible only for errors related 

to flight path control (e.g., altitude, heading) since this is the primary purpose /domain of 

systems such as the Flight Management System. We therefore compared automated 

versus conventional aircraft with respect to those tasks only. But again, no significant 

difference was found between the frequencies of different error types. 

Who is committing errors on different flight decks. Our next prediction was that 

the pilot not-flying on automated aircraft has more opportunities to commit errors related 

to flight path control than the pilot not-flying on conventional aircraft. Overall, the pilot 

flying was found to commit the majority of errors on both the conventional and the 

automated aircraft (see Figure 13). However, as anticipated, the pilots not-flying (n=33) 

on automated aircraft commit more errors than those on conventional aircraft (n=10), %2 

(1,N=43) = 12.30, p< .001. 
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Figure 13: Error Committed, by Flight Crew Position 

In particular, we found that the pilot not-flying on the automated aircraft 

committed considerably more commission errors (%2 (1, N=29) = 5.83, p< .016), slips 

(X2 (1, N=14) = 7.14, p< .008), lapses (y2 (1, N=l 1) = 4.45, p< .035), and skill-based 

errors (%2 (1, N=29) = 5.83, p< .016) than the pilot not-flying on conventional aircraft. 

This finding appears to be reversed for the pilot flying (see Tables 12,13, and 14). 

However, in this case, the differences were not significant. 

Pilot Not-Flying Pilot Flying 

Conventional Automated Conventional Automated 
Omission 6 7 33 31 
Commission 8 21 45 33 

Table 12: Frequencies of Omission and Commission Errors By Crew Position 
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Pilot Not-Flying Pilot Flying 

Conventional Automated Conventional Automated 

Slips 2 12 19 7 
Lapses 2 9 32 27 
Mistakes 4 9 28 25 

Table 13: Frequencies of Slips, Lapses and Mistakes Committed By Crew Position 

Pilot Not-Flying Pilot Flying 

Conventional Automated Conventional Automated 

Skill 8 21 66 50 
Rule 0 4 7 10 
Knowledge 1 3 2 4 

Table 14: Frequencies of Skill-, Rule- and Knowledge-Based Errors Committed By 

Crew Position 

Detection of errors by the other crewmember on highly automated aircraft. Due 

to problems with observing the actions of other crewmembers on highly automated 

aircraft, we expected that the other crewmember (the crewmember who did not commit 

the error) would be less likely to detect an error. Our data suggest, however, that the 

opposite is the case. The other crewmember detected a greater percent of errors on the 

automated aircraft than on the conventional airplane, %2 (1, N=33) = 10.93, p< .001(see 

Table 15). 

Conventional (n=124) Automated (n=121) 
Errors detected by the other 
crewmember 

7 (5.6%) 26(21.5%) 

Table 15: Frequencies of Errors Detected By the Other Crewmember 
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Discussion 

There is growing concern in the aviation industry that the anticipated growth in air 

traffic will lead to an increased number of accidents. Since human error is cited as a 

contributing factor in the majority of aviation accidents, one promising avenue towards 

lowering the accident rate is to invest in a better understanding of the nature of, 

underlying reasons for, and potential countermeasures to erroneous actions and 

assessments. While it is not possible to completely eliminate errors, operators can be 

supported in detecting and recovering from them in time to avoid catastrophic 

consequences. One source of information about human error and error detection is 

incident reports which describe precursor events that did not result in accidents since they 

occurred in an error-tolerant environment, or were detected in time to prevent severe 

consequences. Investigators have, for years, argued the importance of incident 

investigation as a method of exploring, and possibly preventing, accidents (Fitts and 

Jones, 1947; Heinrich, 1980; Diehl, 1991). In this study, we analyzed incidents reported 

to the Aviation Safety Reporting System in terms of their underlying error types 

(omission/commission errors and slips/lapses/mistakes) and performance level (skill-, 

rule-, or knowledge-based). We then examined how these errors were detected - both in 

terms of the source of detection and the cue or mechanism involved. Finally, the potential 

impact of modern automation technology on the nature of errors and error detection was 

explored. 

The Frequency of Different Error Phenotvpes and Genotypes 

We found that, when analyzed in terms of their phenotype or surface appearance, 

altitude and heading/course deviations were the most frequently reported problems (see 

Figure 3). This confirms findings from earlier research. For example, O'Hare (1990) 

reported a large number of directional (heading/course) deviations, especially for the 

take-off and descent phases of flight. Monan (1986) found that altitude and heading 

deviations were the most frequent outcome in his study of miscommunication and 

misunderstandings between pilots and air traffic control. And Degani et al. (1991) 
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focused on altitude deviations in their study because of the high frequency of these 

incidents in the ASRS database. The large number of altitude-related difficulties may 

reflect the absence of vertical situation displays on current flight decks. 

Analyzing incidents and accidents in terms of their surface appearance alone can 

be inadequate, however. As illustrated by our data (see Table 4), seemingly homogenous 

groups of incidents may involve very different underlying errors. For example, 19.3% of 

the altitude deviations included in our sample turned out to be related to a slip while 

46.6% of the altitude deviations involved a lapse, and 32.9 % were the result of a mistake. 

Identifying these underlying errors is important since they call for different 

countermeasures and involve different detection mechanisms and probabilities. 

For the most part, our hypotheses regarding the frequencies of error types in the 

database were confirmed. Most incidents involved lapses and mistakes (see Figure 4) 

which are quite difficult to detect and therefore likely to remain unnoticed long enough to 

result in some problem or violation. Slips, on the other hand, were expected and found to 

be involved in only 20.1% of the incidents. They tend to be detected fairly rapidly 

(Reason, 1990) and are therefore unlikely to make their way into the ASRS database. 

This assumption is supported by Smith's (1979) and Barker's (1962) findings that far 

more errors occur in a variety of domains, than are ever reported since the errors are 

corrected immediately. Our data confirm earlier findings by Wiegmann and Shappell 

(1997), and Woods (1987), and suggest a considerable need for better support of 

detection of lapses and mistakes. Currently, many of these errors are caught by the final 

layer of defense in the overall system - a situation that is not desirable. 

As expected, most reported errors occurred when the pilot was operating at the 

skill-based performance level (see Figure 5). This can be explained by the fact that 

"virtually all adult actions ... have very substantial skill-based components." (Reason, 

1990). In other words, there are far more opportunities for skill-based errors and thus the 

absolute number of those errors can be expected to be high even though the ratio of error 

to opportunity may be lower than that for rule- and knowledge-based errors. 

Note that the classification of errors as skill-, rule-, and knowledge-based is 

problematic. Like the category of errors of commission, skill-based errors include two 
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very different error types - slips and lapses. Our expectations for these two error types 

were different. We anticipated relatively many lapses but few slips. When looking at 

errors at the performance level, however, this difference is not visible as both error types 

fall under the label "skill-based". This affects the interpretability of earlier findings. For 

example, averaging over a number of studies by Allwood (1984), Bagnara et al. (1987), 

and Rizzo et al. (1987), Reason (1990) points out that 86.1% of all skill-based errors in 

those studies were detected by the operator. This does not provide any insight into 

whether slips or lapses are equally likely to be detected. Allwood's study in particular 

demonstrates that skill-based errors can not all be claimed as readily detectable (Reason, 

1990). 

We decided to use the skill-, rule-, knowledge classification in our data analysis 

despite the above shortcoming because it also involves a potential benefit. It allows us to 

distinguish between different types of mistakes in our database. Mistakes can take the 

form of rule- or knowledge-based errors - two types of error that occur at different levels 

of performance and may therefore differ in terms of their likelihood and ease of detection. 

With one exception (see Table 8), however, no significant differences were found 

between the two error types. The one exception involves a significant difference between 

the frequency distributions of the sources of error detection for rule- and knowledge- 

based errors. Air traffic control was the most frequent source of error detection for rule- 

based errors whereas the pilot committing the error most often detected knowledge-based 

errors. This way may be related to Reason's (1990) claim that rule-based errors are of the 

"strong-but-wrong" kind. In other words, the operator making a rule-based error tends to 

be quite convinced of the appropriateness of his/her actions since the actions are based on 

pre-existing, well-established rules. Therefore, he/she fails to check for contradictory 

evidence. In contrast, knowledge-based errors occur during on-line problem solving 

based on a trial-and-error approach that is more likely associated with some degree of 

uncertainty. This uncertainty may cause the operator to more actively search for 

information on whether or not their actions were successful in achieving the desired goal 

or solution. Consequently, knowledge-based errors may require external intervention less 

often than rule-based errors. 
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The results presented in table 11 suggest another trend related to the detection 

mechanisms/cues associated with these two error types. Knowledge-based errors appear 

to be detected most often by the outcome of an action unrelated to the aircraft 

performance/behavior whereas rule-based errors are detected equally often based on 

action outcome unrelated to aircraft performance/behavior and routine check. 

Breakdowns in skill-based performance are assumed to result most often from 

attentional failures due to inattention, i.e., failing to make a necessary check, or 

misallocation of attention, i.e., making an attentional check at an inappropriate point in a 

routine sequence (Reason, 1990). This assumption was confirmed by our data (see Figure 

7) which show that a considerable number of slips and lapses (89.1% and 19.6%, 

respectively) - the two error forms at the skill-based level - involved attentional problems. 

These were related to difficulties with handling unfamiliar or malfunctioning equipment 

or to competing demands in high-tempo operations. Lapses also involved interruptions of 

a task by someone on the flight deck. These findings (see Table 5) suggest possible areas 

for further investigation and possible ways of reducing the number of skill-based errors. 

For example, distractions and interruptions may be reduced by enforcing stricter rules for 

sterile cockpit operations. And more effective use of cockpit resource management may 

help minimize attentional problems due to excessive competing demands on one operator 

(Chou, et al., 1996; Rouse and Morris, 1987). Distractions and inattention have been 

identified before as major contributing factors to errors in earlier studies of air traffic 

control (Maurino, 1995), daily activities (Seilen, 1990), and civil aviation (Farmer, 1994). 

In summary, while most accident analyses to date focus on the phenotype or 

surface appearance of error, we have shown that this approach is of limited use when 

trying to understand and address human error. Instead, the analysis of the genotype of 

error is critical to identify common underlying problems and develop corresponding 

countermeasures. In our study, lapses and mistakes were found to be the most frequent 

type of error. This is in line with the assumption that these errors are the most difficult to 

detect and require better support of operators. A comparison of the different error 

classification schemes used in our analysis suggests that the most appropriate approach 
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may be to use the distinction between slips, lapses, and mistakes - a scheme that was 

used in several earlier studies (e.g., Reason, 1990; Wiegmann and Shappell, 1997; 

Seilen, 1990) -, and to supplement this approach by further analyzing mistakes in terms 

of the performance level at which they occur - rule-based or knowledge-based errors. The 

commission-omission distinction and the skill-based performance level involve the 

problem that one single category (errors of commission and skill-based errors) covers two 

very distinct error types (mistake and slip versus slip and lapse) and thus may mask 

important differences between them. 

The Relationship Between Error Type and the Likelihood/Source of Error Detection 

We expected ATC to play a critical role in the detection of most of the errors in 

our database, with the exception of slips which are assumed to be detected by the operator 

him/herself (Reason, 1990). Our expectation was confirmed (see Figure 8) - in fact, as 

shown earlier by Degani et al. (1991), ATC detected the majority of all types of error. 

This does not, of course, mean that ATC is the most efficient source of error detection. It 

merely reflects the fact that ASRS reports tend to be filed to gain immunity for violations 

that were observed by the controller. It is still interesting to see that such a considerable 

number of errors goes unnoticed for a long period of time and requires intervention by the 

last layer of defense in the system (Reason, 1990; Maurino, 1995, Woods et al., 1994). 

This indicates the need for better cockpit based decision support to ensure that errors, 

and, in particular, lapses and mistakes, are detected early on before they can lead to a 

potential threat or become difficult or impossible to recover from. 

This finding raises a number of important issues. In the current air traffic system, 

pilots do not form their own intentions. Rather, their goals and targets are provided to 

them by the air traffic controller via clearances and requests. It is well known that 

numerous breakdowns occur in the communication between air and ground (Monan, 

1986; Cushing, 1994) which can result in a misunderstanding about intentions. If pilots 

misunderstand the controller's clearance, it is impossible for them to detect their resulting 

erroneous actions since these actions are in accordance with the (misunderstood) 

clearance. And the pilot does not have enough information about the overall traffic 
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situation to infer that the clearance may have been misunderstood. In other words, in the 

current system, ATC (or possibly the other pilot who can listen to ATC communication) 

is the most likely source of error detection. However, this situation may change and needs 

to be carefully considered in the current plans for future air traffic management 

operations where pilots are expected to be allowed to change their flight path without 

permission from the ground. This means that ATC may no longer have information about 

pilot intent and can not, therefore, evaluate the appropriateness of pilot actions. Pilots, on 

the other hand, would/will have a reference - their own intentions - that they can compare 

their actions against. However, they may not have the information necessary to evaluate 

the appropriateness of their intentions given the overall traffic configuration. Thus, error 

detection will become more challenging, and the last layer of defense - ATC - may 

become much less effective. 

We were surprised to find the pilots detecting many of their own knowledge- 

based errors (see Table 8) since the existing literature (Reason, 1990; Woods, 1987; Van 

Eekhout, 1981) suggests that breakdowns in on-line problem solving are the most 

difficult to notice. The other crewmember detected approximately the same overall 

percentage of errors as the pilot committing the error. However, the other crewmember 

was somewhat more effective in noticing errors of commission, i.e., slips and mistakes, 

while the pilot committing the error detected more of the lapses and errors of omission. 

Based on the existing literature (Reason, 1990; Seilen, 1990) we expected that the 

operator committing the error would fail to detect lapses. Instead, our data suggest the 

opposite - - the operator him/herself was quite successful in detecting their own lapses 

and errors of omission (see Tables 6 and 7) but they did not necessarily do so in a timely 

manner. Since the operator is less likely to monitor for changes and progress when 

he/she has not executed any action (as in the case of errors of omission) they are likely to 

"catch" their error only when performing a routine evaluation of the aircraft and system 

state(s). 

This assumption regarding routine evaluations seems to be confirmed by our 

finding that a routine check was the most frequent source of error detection for errors of 

omission or lapses (50% and 47.2% respectively, see Tables 9 and 10. In other words, 
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while these errors are not detected immediately based on active expectation-driven 

information search, they are eventually caught as a result of a routine check. This 

explains why these errors went unnoticed for a relatively long time and resulted in some 

violation that required reporting. The monitoring process of the operator may in fact 

breakdown because the errors take familiar, and high-frequency forms such that they are 

"disguise(d) -by-familiarity" (Reason, 1990). For slips and mistakes, the picture is not as 

clear. Slips were detected almost equally often by a routine or suspicious check, by the 

outcome of the action unrelated to aircraft performance/behavior, or based on aircraft 

performance/display. If a check alone were sufficient to detect slips we would expect that 

this would be the most frequent detection mechanism, however, detection also depends 

upon the availability of cues that the action has in some way diverted (Reason, 1990). 

Detection of mistakes may in fact be impeded by limited information, and the tendency of 

individuals to accept only partial agreement between the actual state of the world and 

their intentions (Reason, 1990). The most frequent detection cues or mechanisms for 

mistakes were the outcome of an action unrelated to aircraft performance/behavior and 

routine checks. Detection of knowledge-based errors based on the outcome of an action 

unrelated to aircraft performance/behavior (see Table 11) suggests that these errors are 

detected once the individual is able to make a comparison between their implemented 

solution and the intended outcome. Our findings are thus different from those obtained in 

previous studies (e.g., Seilen, 1990; Allwood, 1984, or Rizzo et al, 1987) which found 

that slips were abruptly detected by a check, while mistakes were detected by the 

unexpected outcome of an action. Mistakes were detected based on routine progress 

checks. This difference may be explained by the fact that these studies are not 

comparable with the present study because they either focused on a subset of errors only 

(see Seilen who excluded lapses from her study) or because they involve tasks and 

environments that are very dissimilar from the ones in our study (see Seilen who studied 

everyday errors or All wood who investigated statistical problem solving). 

The field of aviation differs in various ways from other domains that were 

examined in earlier studies (e.g., Seilen, 1990; Allwood, 1984). Aviation is characterized 

by a much higher level of complexity, dynamism, and risk. Operators have to operate 



56 

highly sophisticated equipment to perform their tasks. The tasks tend to be event-driven 

rather than self-paced. And breakdowns in performance affects not only the pilot but 

potentially a large number of people on the aircraft and on the ground. Also, operators in 

the aviation domain are highly trained to perform their tasks. The aviation domain is 

highly regulated, and the pilots' actions are often determined as well as monitored by 

some external agent such as ATC. These domain characteristics can be expected to affect 

the nature of errors and error detection processes. Mistakes may be more frequent since 

intentions are not always formed by the operator him/herself but rather determined by 

some other agent. Miscommunication between the two agents can result in inappropriate 

goals and thus actions. The event-driven nature of aviation operations affords less pre- 

planning and thus tends to result in more situations involving time pressure and 

competing demands. This, in turn, can result in more slips and lapses due to distractions 

and overload. At the same time, error detection by the individual may be more common 

in other domains where there are fewer layers of defenses. In aviation, a large number of 

players monitor each other closely to avoid costly errors and their potentially disastrous 

consequences. 

The Impact of Modern Automation Technology on Error Forms and Error Detection 

Numerous authors (e.g., Woods et al., 1994) have suggested that the nature of an 

artifact such as modern automation technology has an impact on the nature and likelihood 

of errors. Since the aviation domain has seen a considerable change in terms of flight 

deck and aircraft technology from conventional to highly advanced glass cockpit aircraft, 

we were interested in exploring the impact that this technology change may have on the 

nature of, and reasons for, problems. One prediction was that omission errors/lapses 

would be more frequent on advanced aircraft in the sense that these aircraft are far more 

independent and can perform actions on their own. As a result, pilots may be more likely 

to miss undesired changes and events and fail to intervene with those activities - an error 

of omission (Sarter and Woods, 1995, 1997; O'Hare, 1990; Wiener; 1988). However, no 

significant differences between conventional and automated aircraft were found (see 

Figures 10, 11, and 12). This was true even when we limited our analysis to errors that 
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were related to flight path control - the major domain of the core of flight deck 

automation, the Flight Management System. The absence of the expected effect may be 

explained in a number of ways. It is possible that the frequency of errors of omission 

does, in fact, increase but that, at the same time, the changed role of the pilot from active 

to supervisory control supports him/her in the detection of these errors. The net effect 

would be that the number of omission errors that are reported to the ASRS does not 

increase. It is also possible that pilots on conventional aircraft simply need to perform 

more actions which affords a larger number of omissions. This interpretation may 

account for the findings shown in figure 11 which suggest a slight shift towards more 

lapses (as compared to slips and mistakes) on the conventional aircraft. Clearly, 

additional work is needed to examine these trends and possible explanations in more 

detail. 

Another prediction related to automated versus conventional aircraft appears to be 

confirmed by our data. The pilot-not-flying on the automated aircraft commits relatively 

more errors (see Figure 13), in those cases where we could identify who was the source of 

the error. This can be explained by the fact that the roles and responsibilities of the pilot- 

flying and the pilot not-flying have changed with the addition of more automation to the 

flight deck. While control of the flight path on conventional aircraft is under the control 

of the pilot-flying, this task is shared between the two pilots on the modern flight deck 

where the pilot not-flying is responsible for entering some of the data (in particular, the 

target altitude which is the problem in many of the reported incidents) into the Flight 

Management System. This affords more slips or skill-based errors - as evidenced in our 

data (Tables 13 and 14, respectively) - but not necessarily more mistakes since the pilot- 

not-flying is not engaged in problem-solving activities related to the automation. 

On automated flight decks, the crewmember not committing the error is more 

effective in detecting errors than the crewmember not committing the error on 

conventional flight decks (see Table 15). This is opposite to our prediction which was 

based on the assumption that it has become more difficult for both crewmembers to 

observe all activities - and thus notice erroneous actions or inputs - by their colleague 

(e.g., entries to the Flight Management System). However, our finding can help support 
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Degani et al.'s finding (1991) that, overall, flightcrews on automated aircraft detect more 

altitude deviations than their counterparts on conventional aircraft. This may be due to 

additional displays of the target altitude on automated aircraft. It is not clear whether the 

other crew member, in fact, detects more errors on automated flight decks or whether 

delayed detection by the other crewmember leads to more reports to the ASRS database. 

Concluding Remarks 

The results of this work highlight the necessity to better support operators in the 

detection of errors, in particular in the detection of lapses and mistakes. Currently, ATC 

serves as the last layer of defense and thus prevents many incidents from turning into 

accidents. Earlier detection of errors is desirable to ensure that errors can indeed be 

corrected before they combine with other circumstances to create a problem or even a 

catastrophic outcome. Also, it is not clear that ATC will be available and effective as a 

last layer of defense in the envisioned air traffic management system where pilots have 

more flexibility in choosing their flight paths without permission from the ground. 

One way of better supporting error detection is through improved feedback which 

appears particularly important in the case of lapses or errors of omission where, given the 

absence of an action, the operator fails to actively search for information and the currently 

available feedback is not always salient enough to capture his/her attention and point out 

the problem. This seems to be confirmed by our finding that routine checks were most 

often the source of error detection. In other words, errors were detected eventually but not 

necessarily as soon as possible. 

Another important challenge is to better support shared knowledge of intent 

among operators. This is suggested by our findings that ATC detected the majority of 

mistakes, i.e., errors in intention formation. In the current system, ATC sets goals for 

pilots which are often misunderstood by the crew (Monan, 1986). As a result, there is a 

mismatch between actual and assumed controller intent. Since error detection tends to be 

based on a comparison of intention and action, the pilot has no chance to detect these 

errors - - his/her actions are in accordance with the assumed controller intentions. Only 

ATC knows that the observed aircraft behavior does not match the given clearance. One 
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possible way of improving the situation may be the introduction of digital communication 

which will allow for the uplink of controller clearances to the flight deck (Wickens et al., 

1997). Pilots may still misread the displayed or printed messages; however, the clearance 

is available for later reference and may even be available to the aircraft automation which 

could compare clearance and aircraft behavior and indicate discrepancies to the pilot. 

Another important step that is suggested by our data is to minimize factors that 

can lead to inattention (see Table 5). This may be achieved by means of improved task 

and resource management to minimize competing demands and by even stricter "sterile 

cockpit" policies to avoid distractions by flight attendants or cockpit observers. 

Finally, it seems important to investigate in more detail the impact of automation 

technology on the nature and detection of errors. Numerous authors have proposed that 

the design of an artifact shapes the form and likelihood of error (e.g., Woods et al., 1994; 

Reason, 1990). This assertion was only partially supported by our data (see Tables 12-14 

and Figure 13) which suggest that the new role of the pilot-not-flying on the automated 

flight deck affords more opportunities for committing errors. This appeared to be 

counterbalanced, however, by the observed increased likelihood of error detection by the 

pilot not committing the error. It is possible that the use of different error classification 

schemes or a more in-depth process analysis of incidents will reveal additional 

differences between erroneous actions and assessments on conventional versus automated 

aircraft. Awareness and a better understanding of those differences is critical given our 

goal is to reduce the accident rate in the future air traffic environment which will most 

likely be dominated by advanced technology aircraft. 

Finally, we would like to emphasize the need for collecting more systematic data 

on error detection mechanisms and failures. Despite the importance of supporting error 

management, very little research has been conducted in this area, and data from 

operational environments are limited. In particular, we think that the ASRS database 

could provide important insights into error detection. However, currently, reporters are 

not encouraged to provide detailed information about the processes leading to the 

detection of an error. 
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A. ASRS Reporting Form 

DO NOT REPORT AIRCRAFT ACCIDENTS AND CRIMINAL ACTIVmES ON THIS FORM. 
ACCIDENTS AND CRIMINAL ACTIVITIES ARE NOT INCLUDED IN THE ASRS PROGRAM AND SHOULD NOT BE SUBMITTED TO NASA. 

ALL IDENTITIES CONTAINED IN THIS REPORT WILL BE REMOVED TO ASSURE COMPLETE REPORTER ANONYMITY. 
(SPACE BELOW RESERVED FOR ASRS DATE/TIME STAMP) 

IDENTIFICATION STRIP:Pte3se fill in all blanks to ensure return of strip. 
NO RECORD WILL BE KEPT OF YOUR IDEUTITY.This section will be returned to you. 

TELEPHONE NUMBERS where we may reach you for further 
details of this occurrence: 

HOME 

WORK 

. Hours 

Hnurs 

uaiuip 

AnDRF^'PO BOX 

ri-rv STATE ZIP 

TYPE OF EVENT/SITUATION 

DATE OF OCCURRENCE _ 

LOCAL TIME (24 hr. clock). 

PLEASE FILL IN APPROPRIATE SPACES AND CHECK ALL ITEMS WHICH APPLY TO THIS EVEMT OR SITUATION. 

o Captain 
o First Officer 

o pilot flying 
o pilot not flying 

o Other Crewmember 

total 

last 90 days _ 

time in type _ 

_hrs. 

_hrs. 

hrs. 

o student o private 

o commercial oATP 

o instrument oCFI 

o multiengine OF/E 

o 

OFPL 
radar       
non-radar . 
supervisory 
military   

o Developmental 

 yrs. 
 yrs. 
 yrs. 
 ys. 

o Class A (PCA) 
o Class B fTCA) 
o Class C (ARSA) 
o Class D (Control Zone/ATA) 
o Class E (General Controlled) 
o Class G (Uncontrolled) 

o Special Use Airspace 
o airway/route  
o unknown/other  

o VMC      o ice 
o IMC       o snow 
o mixed    o turbulence 
o marginal otstorm 
o rain       o windshear 
ofog        o  

o daylight o night 
o dawn o dusk 
ceiling    feet 
visibility   miles 
RVR     feet 

Type of Aircraft 
(Make/Model) 

Operator 

Mission 

Flight plan 

Flight phases at 
time of occurrence 

Control status 

(Your Aircraft) 
oEFIS 
o FMS/FMC 

o air earner 
o commuter 

o military 
o private 

o corporate 
o other  

o passenger 
o cargo 

o training 
o pleasure 

o business 
o unk/other_ 

OVFR 
olFR 

o SVFR 
o DVFR 

onone 
o unknown 

otaxi 
o takeoff 
ociimb 

o cruise 
odescent 
o approach 

o landing 
o missed apch/GAR 
o other  

(Other Aircraft) 

o local       o center 
o ground    o FSS 
o apch       o UNICOM 
o dep o CTAF 
Name of ATC Facility: 

oEFIS 
o FMS/FMC 

o air earner 
o commuter 

o military 
o private 

o corporate 
o other  

o passenger      o training 
o cargo o pleasure 

o business 
o unk/other_ 

o VFR 
olFR 

o SVFR 
o DVFR 

onone 
o unknown 

o visual apch     o on vector       o on SID/STAR 
ocontrolled       onone o unknown 
o no radio o radar advisories 

otaxi 
o takeoff 
ociimb 

o cruise 
odescent 
o approach 

o landing 
o missed apch/GAR 
o other  

o visual apch     o on vector       o on SID/STAR 
ocontrolled       onone o unknown 
o no radio o radar advisories 

If more than two aircraft were involved, please describe the additional aircraft in the "Describe Event/Situation" section. 

Altitude o MSL   o AGL 

Distance and radial from airport, NAVA1D, or other fix. 

Nearest City/State 

Estimated miss distance in feet horiz        vert    

Was evasive action taken?                               ° Yes o No 

Was TCAS a factor?                           °TA     o RA o No 

Did GPWS activate?                                        oYes oNo 

NASA ARC 277B (January 1994) GENERAL FORM Page 1 of 2 
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

NASA has established an Aviation Safety Reporting System {ASRS) to 
identify issues in the aviation system which need to be addressed. The 
program of which this system is a part is described in detail in FAA 
Advisory Circular 00-46C. Your assistance in informing us about such 
issues is essential to the success of the program. Please fill out this form 
as completely as possible, enclose in an sealed envelope, affix proper 
postage, and and send it directly to us. 

The information you provide on the identity strip will be used only if NASA 
determines that it is necessary to contact you for further information. 
THIS IDENTITY STRIP WILL BE RETURNED DIRECTLY TO YOU. The 
return of the identity strip assures your anonymity. 

AVIATION SAFETY REPORTING SYSTEM 

Section 91.25 of the Federal Aviation Regulations (14 CFR 91.25) 
prohibits reports filed with NASA from being used for FAA enforcement 
purposes. This report will not be made available to the FAA for civil 
penalty or certificate actions for violations of the Federal Air Regulations. 
Your identity strip, stamped by NASA, is proof that you have submitted a 
report to the Aviation Safety Reporting System. We can only return the 
strip to you, however, if you have provided a mailing address. Equally 
important, we can often obtain additional useful information if our safety 
analysts can talk with you directly by telephone. For this reason, we have 
requested telephone numbers where we may reach you. 

Thank you for your contribution to aviation safety. 

NOTE: AIRCRAFT ACCIDENTS SHOULD NOT BE REPORTED ON THIS FORM. SUCH EVENTS SHOULD BE FILED WITH THE 
NATIONAL TRANSPORTATION SAFETY BOARD AS REQUIRED BY NTSB Regulation 830.5 (49CFR830.5). 

Please fold both pages {and additional pages if required), enclose in a sealed, stamped envelope, and mail to: 

r"—yt NASA AVIATION SAFETY REPORTING SYSTEM 
\jC POST OFFICE BOX 189 
*      ^ MOFFETT FIELD, CALIFORNIA 94035-0189 

Keeping in mind the topics shown below, discuss those which you feel are relevant and anything else you think is important Include what you believe really caused the 
jroblem, and what can be done to prevent a recurrence, or correct the situation. (USE ADDITIONAL PAPER IF NEEDED) 

CHAIN OF EVENTS 
- How the problem arose - How it was discovered 
-Contributingfactors - Corrective actions 

|Page 2 of 2|   .    HUMAN PERFORMANCE CONSIDERATIONS 
- Perceptions, judgments, decisions     - Actions or inactions 
- Factors affecting the quality of human performance 
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B. Data Analysis Form 

ASRS Data Collection 

Incident Number: 

Aircraft Type:   Conventional 
  Automated 

Which crew member committed the error? 

 PF  Captain 
 PNF  First Officer 

Other 

Which crew member detected the error? 

PF  Captain 
' PNF  First Officer 
Other 

Short Summary of the Incident: 

Error Phenotype: 

Altitude Deviation (how much:  ) 
Heading/Course Deviation (how much:  ) 
Speed Deviation (how much:  ) 
Runway Incursion 
Other 

Error Classification: 

Omission (fails to take required action) 
Commission (performs inappropriate action or performs action 

inappropriately) 

(con't) 
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Slip (performs intended action inappropriately) 
Lapse (forgets to take intended action) 
Mistake (deficiency in intention formation, or means to achieve goal) 

Performance Level: 

Skill-based performance (routine task - highly practiced) 
Rule-based performance (solving a problem for which a solution/rule 

exists/is known) 
Knowledge-based performance (encountering a novel problem/situation ■ 

on-line problem-solving by trial and error) 

Contributing Factors: 

Lack of knowledge/understanding 
Inattention 
Distraction 
Time Pressure 
Competing Demands/High Workload 

Detection of Error (indicate the sequence if more than one applies): 

Who detected the error? 

Operator who committed the error 
Other crewmember 
Air Traffic Control 
Other Ground Personnel 
Other 

Detection Cue/Mechanisms: 

Outcome of an action (other than aircraft performance) 
Routine check 
Suspicious check 
Limiting function 
Alarm 
Aircraft performance/displays 
Other 
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