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ABSTRACT 

In the network interdiction problem, an interdictor destroys a set of arcs in a 

capacitated network through which an adversary will maximize flow. The interdictor's 

primary objective is to use his limited resources to minimize that maximum flow, but other 

objectives may be important. Therefore, we describe algorithms for enumerating near- 

optimal interdiction sets in planar networks so that these sets may be evaluated with 

respect to secondary criteria, e.g., safety of attacking forces, collateral damage, etc. Our 

algorithms are based on enumerating near-shortest paths or cycles in the dual of a planar 

network; they find a single optimal interdiction set in pseudo-polynomial time. We 

implement one algorithm applicable to s-t planar networks (s and t must lie on the 

perimeter of the network) and solve problems with up to 800 nodes and 1274 arcs. An 

example of computational results on that largest network is: The algorithm enumerates all 

19 solutions that are within 50% of optimal in 0.15 seconds on a 300 mHz Pentium II PC. 

We also propose, but do not implement, a somewhat less efficient extension of this 

algorithm to solve problems on general planar networks. 
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EXECUTIVE SUMMARY 

This thesis develops a computer program to aid in effectively allocating limited 

resources to disrupt the maximum achievable flow of a single commodity in an 

adversary's planar, capacitated network. The network might be a transportation or 

pipeline network moving, respectively, war material or oil. The interdictor might be 

attacking the network with cruise missiles or aerial sorties. 

Researchers have studied the network interdiction problem over many years, 

motivated originally by the desire to decrease an enemy's ability to wage war through 

reducing its ability to resupply. More recently, the U.S. government's attempt to curb the 

flow of illegal drugs into the country has driven advances in network interdiction 

techniques. These techniques focus on finding and implementing an optimal attack 

strategy on the network. However, an interdictor may be faced with a very complicated 

set of constraints, or at least a long list of desired qualities of an interdiction decision. 

For instance, the interdictor may be concerned about the safety of his attacking forces, or 

unnecessary collateral damage, etc. So, instead of trying to provide the single best 

solution with respect to a long list of criteria, we may prefer to provide the interdictor 

with a set of near-optimal solutions (with respect to some simple criterion such as 

maximum flow), and let the interdictor subsequently evaluate each of the candidate 

solutions in regard to the more complicated, perhaps even non-quantifiable criteria. 

We address this void in the research by proposing two algorithms that enumerate 

near-optimal strategies. These algorithms build upon previous work in the field of 

network interdiction, and are divided into several sub-algorithms that incorporate typical 

"network techniques." 
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The first interdiction algorithm is applicable only to planar networks where both 

the sink and source lie on the outer perimeter of the network. Its first sub-algorithm 

constructs the dual network from the primal network. The dual is then expanded to deal 

with the consumption of varying, integral amounts of interdiction resource. The second 

solves the interdiction problem by finding a shortest path from the expanded dual source 

node to the closest expanded dual sink node. It does this by working backward from all 

the expanded dual sink nodes. In doing this computation, it also computes the shortest 

path distances from each expanded node to the closest expanded instance of the sink 

node. Using these distances, the third sub-algorithm enumerates near-optimal paths in 

the expanded dual network; these paths correspond to all of the near-optimal solutions of 

the network interdiction problem on the original network although some duplicates are 

created. These duplicates are easily culled. 

We implement this algorithm and solve problems with up to 800 nodes and 1247 

arcs. Representative computational results on this largest network are: The algorithm 

enumerates all 19 solutions that are within 50% of optimal in. 15 seconds on a 300 mHz 

Pentium II PC. 

The second interdiction algorithm we propose, but do not implement, is an 

extension of the first. It does require that the network be planar, but the source and sink 

nodes need not He on the outer perimeter of the network. The algorithm should still be 

reasonably efficient: Computational complexity should increase, in practice, by a factor 

no larger than 2m, where m is the minimum number of arcs among source-sink paths. 



I. INTRODUCTION 

This thesis develops a computer program to aid in effectively allocating limited 

resources to disrupt the maximum achievable flow of a single commodity in an adversary's 

planar, capacitated network. 

A. THE NETWORK INTERDICTION PROBLEM 

In the "network interdiction problem," an "interdictor" tries to minimize the 

maximum possible flow of a single commodity from a source node to a sink node in a 

capacitated network by efficiently using his limited assets to "interdict," i.e., break 

network arcs; the network user subsequently maximizes flow, subject to arc capacities, 

flow balance constraints and the fact that interdicted arcs are unusable, i.e., have zero 

capacity. Researchers have studied the network interdiction problem over many years, 

motivated originally by the desire to decrease an enemy's ability to wage war through 

reducing its ability to resupply (Wollmer 1964, Preston 1970). More recently, the U. S. 

government's attempt to curb the flow of illegal drugs into the country has driven 

advances in network interdiction techniques (Steinrauf 1991, Wood 1993). 

The network interdictor is concerned with finding and implementing an optimal   • 

attack strategy on a network. Models in the literature have defined "optimal" to mean 

minimizing the maximum flow subject to the number of arcs destroyed being limited to a 

specified number, or subject to other simple constraints. However, an interdictor may be 

faced with a very complicated set of constraints, or at least a long list of desired qualities 

of an interdiction decision. Instead of trying to provide the single best solution with 

respect to a long list of criteria, we may prefer to provide the interdictor with a set of 

near-optimal solutions (with respect to some simple criterion such as maximum flow), and 
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let the interdictor subsequently evaluate each of the candidate solutions in regard to the 

more complicated criteria. Specifically, enumeration of near-optimal strategies, which we 

also call "partial enumeration," provides another degree of freedom for choosing a good 

attack strategy. For instance, the interdictor may not want to implement a strategy that 

isolates a specific node by destroying all adjacent arcs. In addition, the interdictor may be 

concerned about the safety of his attacking forces, or unnecessary collateral damage, etc. 

However, these strategies may be optimal in the simple, mathematical sense. Through 

partial enumeration, a strategy may be revealed that does not directly isolate the node, yet 

is within a few percent of being optimal with respect to a simple criterion - and the 

modest loss in "optimality" may not be critical to the interdictor's objectives. We will 

therefore explore techniques that will allow for the enumeration of near-optimal 

interdiction solutions. 

B. BACKGROUND 

Most work on the interdiction of flow networks is based on the max flow - min cut 

theorem, which states that the maximum flow in a capacitated network is equal to the 

capacity of the minimum capacity cutset (Ford and Fulkerson 1962). The network 

interdiction problem is then a problem of finding an attack strategy that minimizes the 

minimum capacity cut in the after-interdiction network. 

Steinrauf (1991) and Wood (1993) both use mathematical programming 

techniques to solve this network interdiction problem To illustrate their methods, let G = 

(NA) be a directed network with node set N and arc set A, where an arc is an ordered pair 

OV) with ij e N. Each arc (ij) has an associated capacity uy and an interdiction resource 

expenditure r,> The decision variables areXy, the amount of flow the network user will 
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transport along the arc, and %, a binary variable equal to 1 if the interdictor chooses to 

interdict the arc, and 0 otherwise. The network interdiction model can then be formulated 

as 

min   max   x« 
y^V x 

S.t.        ^JC,-     -        ^Xjs    -     X*    =     0 
j:(s,j)eA KJfleA 

£**   -     £j&   =   0   VieN-s-t        (1) 
j:(i,j)sA j-UfeA 

2_,X*J     ~ y_,Xj'     +     Xts     =     0 
j:(t,j)eA j:U,t)eA 

0<xij <uu(l -jfi)   V(U)€A 

wherer = {#:#e{0,l}V(ij)eA, ]T  jnjj{j<R}. Note that by setting ftj = 0 V(i'j) e A, 

the inner maximization reduces to the standard maximum flow model. Our basic model is 

identical to this except that we assume arcs are undirected and the network must be 

planar. Wood also shows that by taking the dual of the inner maximization and 

linearizing, the above model can be converted into an integer program so that the problem 
' -    rr-. 

can be solved using standard integer programming techniques. 

The mathematical programming approach described above is very general For 

instance, it can handle directed, undirected planar, and non-planar networks as well as 

multiple sources, sinks and resource types. However, the resulting models can be hard to 

solve (Cormican, 1995) and adding a partial enumeration capability could be difficult. 

Consequently, we base our techniques on simpler "network algorithms." These are 

algorithms, like shortest path algorithms, that work directly with network data structures 

rather than linear or integer programming algorithms that operate on an algebraic 

description of the problem. 



Wollmer (1964) develops a network algorithm that finds the n arcs that, when 

removed from an undirected planar network, minimize the maximum flow. This algorithm 

makes use of a modified topological dual of the primal network (for a detailed discussion 

of the topological dual, see Ahuja, et al. 1993, pp. 262-265) where a new arc of zero 

length is added in parallel to each dual arc. Using a dynamic-programming method, the 

algorithm then calculates the shortest path through the modified dual network, traversing 

at most n arcs of zero length. The zero-length arcs correspond to those that should be 

interdicted in the primal network to minimize the maximum flow. Though Wollmer's 

algorithm solves the problem in polynomial time, it is limited to an s-t planar network, and 

it assumes that the dual is given and that every arc has an interdiction cost of one unit. 

(An "s-t planar network" has its source node s and sink node t on the periphery of the 

region enclosed by the network; s and t are positioned arbitrarily in a "general planar 

network.") 

Phillips (1992) removes some of Wollmer's limitations and solves a variant of the 

network interdiction problem for undirected general planar networks with non-equal arc 

interdiction costs. She describes, but does not implement, three pseudopolynomial-time 

network algorithms that utilize dynamic programming. By introducing an error parameter 

e > 0, she shows how a solution within 100e% of optimal can be returned in polynomial 

time. 

C. PROPOSED ALGORITHMS 

We propose two specialized network algorithms that enumerate near-optimal 

network interdiction solutions. The first algorithm applies to undirected s-t planar 
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networks, and the second to general undirected planar networks. We implement the first 

algorithm but not the second. 

Our algorithm for undirected s-t planar networks provides a stand-alone tool that 

takes as its input the adversary's capacitated transshipment network along with arc 

capacities u;j, interdiction costs ri}, and a description of the embedding ofthat network in 

the plane. It then constructs the s-t dual network using an algorithm motivated by 

Bhaskar and Sahni (1988) for finding a rectangular dual of a planar triangulated graph. 

Our algorithm then solves for the optimal interdiction using an extension of Wollmer 

(1964). Finally, the algorithm enumerates near-optimal paths in an expanded dual network 

using a dynamic-programming technique similar to Byers and Waterman (1984) for 

finding near-optimal paths in a standard shortest path problem. Some duplicate solutions 

are created, but these are easily culled. 

Our proposed methods are not as easy to generalize as the mathematical 

programming models of Steinrauf and Wood. However, we believe that the better speed 

at which such specialized algorithms as ours are likely to run, and the value of the 

enumerated near-optimal solutions, make them worth consideration. 

D. THESIS OUTLINE 

The remainder of this thesis is organized as follows. Chapter II gives essential 

definitions and notation. Chapter m develops the algorithm for s-t planar networks. 

Chapter IV shows how to extend the methodology to general planar networks but does 

not implement this extension. Chapter V investigates the performance of the algorithm of 

Chapter III on randomly generated networks of various sizes, and Chapter VI provides 

conclusions and recommendations for further research. 





H. DEFINITIONS AND NOTATION 

A. PRIMAL NETWORK 

The network we wish to interdict is an undirected planar network with a source 

node s and sink node t. We will represent this network by G = (Af,A), and refer to it as the 

"primal network." N is the set of nodes, and A is the set of arcs (ij) which are unordered, 

distinct pairs from//. We assume that the network is embedded in the plane, that all node 

positions are known, and that all arcs are non-crossing straight line segments with positive 

length. Each arc (ij) has an associated integer capacity Uy and an integer interdiction 

"cost" Tij, i.e., a resource expenditure required to reduce flow capacity to 0 with 

probability 1. The network interdictor has an integer amount of resource R available for 

interdiction of this network. Note that any arc (ij) can be denoted "uninterdictable" with 

The network user is trying to maximize the flow of a single commodity from s to 

the t in the primal network. (The inner maximization of Equation (1) with all yy- = 0.) This 

model is also valid for a capacitated undirected network if we make the following 

transformation to the undirected network: Replace every undirected arc (ij) by two 

symmetric directed arcs (ij) and (j,i), each with capacity uy, where My- is the capacity of 

the original undirected arc (e.g., Ahuja, et al. 1993, p. 168). 

B. DUAL NETWORK 

An undirected planar network G = (N,A), with a given embedding in the plane, has 

associated with it a unique undirected planar network G* = (N*A*)- G* is referred to as 

"the dual network." Each dual arc (i*j*) uniquely intersects a primal arc, so that |A*| = 



|A|. The number of dual nodes \N*\ is equal to the number of "faces" in the primal 

network. A "face" is a region defined by the arcs in a network, the unbounded region 

being the "outer face" (e.g., Lawler 1976, p. 33). For example, the sequence of nodes 1- 

2-6-5-1 in Figure 1 defines a face of G, and the sequence of nodes 1-2-3-4-8-7-6-5-1 

defines the outer face of G. 

The dual network for a general undirected (primal) network is constructed by 

placing a dual node in each face of the primal network, including the outer face, and then 

connecting dual nodes in adjacent faces with dual arcs. For our purposes, we will also 

assign "length" Ui*j* = Uy-and resource r«*,-* = r*, to the dual arc (i*J*) if it intersects primal 

arc (ij). An example of this construction is shown in Figure 1. We will refer to this 

network as the "general dual network." Although the primal network's arcs can all be 

straight line segments, the dual arcs need not be. 

i KM.J-&--^----cf>       - i i 
I \ S       \     ***** AON / '      » J \ / * **■».. iP'?)x '       i 

\   fuAiwf fV"f // ^_1 -' 6       \   7    \     8    /    j 

  Primal arc    X S 

1— Dual arc ^ '* 
#   Primal node 

O   Dual node 

Figure 1. General Dual Network. General planar network 
and its dual Primal arc labels are (Uijfij). 



When the primal network is s-t planar, we add an artificial arc from s to t to create 

an additional face. The dual network is then constructed by placing the dual source node 

s* in this additional face, the dual sink node t* in the outer face, and by constructing arcs 

as in the general case but with the omission of the arc (s*,t*). This construction is shown 

in Figure 2. We will refer to this network as the "s*-t* dual network." 

/ / \ 
' / I 

s '1*2* 

/V        **/<r~- 
4 \ 5 i     6     ; 

\ \ 
i 

i 
i 

ms 

**--  .c* 

Artificial Are 

Figure 2. An s*-f* Dual Network. An s-t planar network 
and its dual Primal arc labels are (My,r,y). 

The general dual network is of interest because of the one-to-one correspondence 

between s-t cutsets in the general primal network and simple cycles with odd parity in the 

dual network (e.g., Phillips 1992). A "cycle" is a path that begins and ends with the same 

node, and a "simple cycle" is a cycle which has no repeated nodes except the first. If we 

define P as the set of arcs in any simple path (no nodes may repeat) from s to t in the 

primal network, and P* as the set of corresponding arcs in the dual network, "parity" is 



defined as the number of arcs from the set P* that are traversed in a dual cycle. By the 

Jordan curve theorem, a cycle separates nodes s and t if and only if it has odd parity 

(Phillips 1992). Therefore, identification of a minimum capacity s-t cutset in G becomes a 

problem of finding a shortest (in terms of the lengths Ui*j*) simple cycle in G* with odd 

parity. 

For s-t planar networks, a simple cycle with odd parity reduces to an s*-f* path in 

the s*-t* dual network (e.g., Ahuja, et al. 1993, p. 263). In terms of the s*-t* dual 

network, identification of the minimum capacity s-t cutset becomes the problem of finding 

a shortest path in G* from s* to t* with respect to arc lengths Ui*r. 

C. EXPANDED DUAL NETWORK 

We now modify the dual network so that we can use a shortest path algorithm to 

solve the network interdiction problem We call the modified dual network the "expanded 

dual network" and denote it as GE = (A^^4E). (The expanded dual network is an 

abstraction, and need not be created when actually solving the problem) In addition, the 

modification varies slightly depending on whether the dual network is an s*-t* dual or a 

general dual. We will discuss the expanded s*-t* dual network first and then build upon 

that description for the expanded general dual network. 

1. Expanded s*-f* Dual Network 

Given that an interdictor has R units of resource available for interdiction, the 

expansion creates R +1 "expanded nodes" for each dual node. Each expanded node is 

identified by an ordered pair {i*,r} where i* is the original dual node label and 

r € {0,...,/?} is the level of resource expenditure. Starting from any expanded node {i*,r}, 

there are two options given an incident arc (i*J*) in the s*-t* dual network: 
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(a) Traverse the "expanded arc" ({i*,r},{j*,r}), whose length is Ui*j*, to the node {j*,r}; 

this is equivalent to leaving the corresponding primal arc intact; or (b) if r + r,*,-* < R, 

traverse the expanded arc ({i*,r},{j*,r + r,*j*}), whose length is 0, to the node {j*,r + 

ri*j*}; this is equivalent to interdicting the corresponding primal arc (Wollmer 1964). An 

example of a simple s*-t* dual network and the corresponding expanded s*-t* dual 

network with R = 1 is shown in Figure 3. The network interdiction problem in terms of 

the expanded s*-t* dual network reduces to finding the shortest of the shortest (distance) 

paths from {s*,0} to {t*,r} for re {0,...^}. 

11 



(a) 

G>) 

Figure 3. Illustrating the expanded s*-t* dual network: (a) a simple s*-f* dual network 
with arc labels («;«/*,?>,■*); (b) the associated expanded s*-t* dual network for R = 1 and 
arc labels Ui*j*. 
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2. Expanded General Dual Network 

The expanded general dual network is a simple extension of the expanded s*-t* 

dual network. The extension creates two new nodes for every expanded s*-t* dual node, 

one for odd parity and one for even. If an arc (i*j*) e P*, then its parity is 1; otherwise 

an arc's parity is 0. We then define the parity of a path to be the exclusive-OR of the 

parities of the arcs it contains. An expanded general dual node is identified by an ordered 

triple {i*,r,p} where/? is the (binary) parity. 

Starting from any expanded network node {i*,r,p}, there are four general options 

given an incident arc (i*j*) in the dual network: 

(a) If (i*j*) € P*, traverse the expanded arc ({i*,r,p},{j*,r,p}), whose length is «,-*/*, to 

the node {j*,r,p}; this is equivalent to leaving intact the corresponding primal arc (ij) 

eP; 

(b) If (i*j*) € P* and r + />j*</2, traverse the expanded arc ({i*,r,p},{j*,r + />/*,/?}) 

whose length is 0 to the node {j*,r + rt*j* ,p); this is equivalent to interdicting the 

corresponding primal arc (ij) g P; 

(c) If (i*j*) € P*, and letting p' denote the parity opposite to p, traverse the expanded 

arc ({i*,r,p},{j*,r,p 1), whose length is Ui*j*, to the node {j*,r,p 0; this is equivalent to 

leaving intact the corresponding primal arc (ij) e P; 

(d) Or, if (i*J*) e P* and r + r,*/* < R, traverse the expanded arc 

({i*,r,p},{j*,r + ri*j*,p1) whose length is 0 to the node {j*,r + n*r ,p \, this is 

equivalent to interdicting the corresponding primal arc (ij) e P; 
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The network interdiction problem, for a general planar network, is therefore the 

problem of finding the shortest of the shortest (distance) paths in the expanded general 

dual network from {z*,0,0} to {i*,r,l} over all i* e N* and over all r e {0,...^} (Phillips 

1992). 
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m. INTERDICTION ALGORITHM FOR s-t PLANAR NETWORKS 

This chapter describes our network interdiction algorithm for to s-t planar 

networks. The algorithm consists of a main program that calls three procedures or "sub- 

algorithms." The first sub-algorithm constructs the dual network from the primal 

network. The second solves the interdiction problem by finding a shortest path from 

expanded node {s*,0} to the closest expanded node of the form {t*,r} by working 

backward from nodes {t*,r} for r e {0,...,i?}. Simultaneously, it also computes the 

shortest path distances f(j*,r) from each expanded node {j*,r} to the closest expanded 

instance of t*. Using the values f(j*,r), the third sub-algorithm enumerates near-optimal 

paths in the expanded dual network; these paths correspond to all of the near-optimal 

solutions of the network interdiction problem on the original network; some duplicate 

interdiction solutions may be generated, but these are easily culled. We first describe the 

data structures used by the sub-algorithms and state assumptions regarding input data. 

A. DATA STRUCTURES 

We assume that the primal network is embedded in the plane so that no arcs cross. 

We assume that all node positions are known, and that all arcs are straight line segments 

with positive length. The input file contains the number of nodes, the Cartesian 

coordinates of each node, and for each arc (ij) the associated values i, j, Uij, and r,y. 

We utilize three main data structures to implement our interdiction algorithm. The 

first of these is a network data structure used to store the primal network; this is the 

"primal data structure." This data structure uses an array of linked lists, one list for each 

primal node. The linked list for each node i contains a record for each adjacent node/ 

sorted by increasing 6,y; 8y is defined as the angle in radians measured clockwise from the 
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positive y-axis to the arc (ij) with the Cartesian coordinate system centered at node i. 

Using Figure 1 (in Chapter II), two examples are: Q]2 = %/2 radians, and Q26 = % radians. 

Each record in the linked list for node i contains a field for the adjacent node number;, the 

associated arc number, 6y, uij, rtJ, and a pointer to the next adjacent node or a null pointer 

if there are no more adjacent nodes. For an example of a primal data structure, see Figure 

4. The primal data structure is filled with data from an input file. 

.--Q1* 

(1,1) 

  Primal arc 
    Dual arc 
£    Primal node 
O    Dual node 

(a) 

Mode Array of records 

|AdjNodcIisT 

/—-* Ad. NcKST- 

\       Ti^i»«iyj 

AriiNoHeA 

AdiNode = jT 
Arrfs? 
Tt.^.^i/1 

mt AdirJöd. 

Nil 

| AdjNodclisl 

MiNo<le = r 
&Tr.*=t 

•""-»=""" 
n„ = 1 

Adifede'A 

(b) 

Adi Node = 5~ 
Are #=4 
Thrt».a71 

m Adi Node A 

Nil 

Figure 4 The primal data structure. The first node is s and the last is t. (a) an s-t 
(primal) network with arc labels {u^rtj) and the associated dual; 
(b) the associated primal data structure for nodes s and t. 
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The second data structure exploits the fact that each arc in the primal network has 

associated with it a unique arc in the dual network; this structure is the "arc data 

structure." Its purpose is to allow quick output of a solution in terms of the primal 

network despite the fact that the solution was obtained by manipulation of the dual 

network. The arc data structure consists of an array of records with one record for each 

primal arc (ij), each record containing a field for i,j, uij, nj, and the dual nodes i*,j*, 

which correspond to the crossing dual arc (i*J*). The first four fields are filled with 

primal network data from the input file, and the last two are filled as the dual network is 

created. 

The third data structure is identical to the first except that it is filled by reading the 

dual network from the arc data structure detailed above once the dual has been created by 

our dual-finding algorithm; this structure is the "dual data structure." Although we do not 

create an explicit representation of the expanded dual network, we do need to store node 

information for that network, namely, the values f(j*,r). This is done in a two-dimensional 

array with R |N| elements. 

B. DUAL-FINDING ALGORITHM 

The first sub-algorithm in our network interdiction algorithm constructs the dual 

network. Discussion of the topological dual of a planar network is ubiquitous in the 

network literature (e.g., Ahuja, et al.y 1993, pp. 262-265, Lawler, 1976, pp. 32-36). 

However, we are unable to locate in the literature an algorithm that constructs the dual of 

a planar network. Bhasker and Sahni (1988) do describe an algorithm to construct the 

dual of a planar triangulated network. Unfortunately, the triangulated assumption is too 

restrictive for our work as it requires: Every face is a triangle, all internal nodes have 
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degree > 4, and all cycles that are not faces have length > 4. However, their algorithm 

does provide a starting point, and given this starting point and O'Rourke's (1994) brief 

discussion, we are able to derive an algorithm to construct the dual of an s-t planar 

network. 

Given an s-t planar network (as in Figure 5(a)), it is easy to construct the dual (Figure 

5(b)) using the techniques discussed in Chapter II. 

A (103,3) y^sp (102,2) 
A (103,3) {     I ß (102,2) 

5(106,2)       £(100,2) 
?* 

C(10UX^(1Q4>2)    C(10U)L)F (104,2) 

(a) (b) 
Figure 5. An s-t primal network (a) and 
its dual (b) with arc identifiers "/," and 
arc daxalfajfij). 

The key element in constructing the dual is to recognize a face in the primal network. As 

each inner face corresponds to a cycle containing no subcycles, the algorithm must identify 

these special cycles. Our algorithm operates as follows. 

Since each arc lies on the perimeter of two faces, a new directed network G'is 

constructed from G by replacing each arc (ij) with two directed arcs in anti-parallel, (ij) 

and (j,i). In addition, we create two artificial directed arcs, (s,t) and (t,s). These arcs 

represent the artificial arc (s,t) that wraps around G and is used in creating the s*-t* dual. 

See Figure 2 in Chapter n. Starting at s, a directed path is then traversed in G'under the 

constraint that doubling back is disallowed, i.e., the arc (j,i) can not be added to the path 
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immediately after traversing arc (ij). When an arc (ij) is traversed to reach a new node/, 

the next arc traversed (j,k) must form the sharpest possible angle, in a clockwise direction, 

with (ij). (At a junction, always take the sharpest turn to the right that is available.) 

When some node i is repeated in the path, a special cycle, i.e., a face, has been identified. 

All arcs in that cycle are deleted, and the search is continued from i. If i has no incident 

arcs remaining, a node with incident arcs is identified and the search is restarted from 

there. Once all arcs in the network have been deleted, all faces have been identified. 

To implement the algorithm, we utilize the primal data structure which stores each arc 

twice. We do not actually wait until a cycle has been identified to delete arcs, but rather, 

we delete them as they are traversed. (The current path is stored in a stack, so nothing is 

lost by immediately deleting arcs.) The algorithm continues to look for faces until no arcs 

remain. For example, the dual of the primal in Figure 5(a) would be found as follows. 

Beginning at s (s = 1), the algorithm first traverses to node 2, then to node t, then to node 

3 and then back to 5. As this completes a path from s to s, a face is found which encloses 

dual node 2*. The algorithm then looks for the next face. Since s has untraversed 

incident arcs, and since it is where the cycle was identified, the search restarts from there- 

traverses to node 3, then to node t, then to node 4, and back to node s locating the second 

face, i.e. dual node 3*. The algorithm continues to return to node s until all incident arcs 

have been deleted from it. The algorithm then increments to the next nodey = 2 until all 

incident arcs have been deleted from it, then to j = 3, etc. When no primal arcs remain, all 

the dual network nodes have been located. 

The dual construction is completed by creating the dual arcs in a process that exploits 

the one-to-one correspondence between primal and dual arcs. We utilize the arc data 
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structure which stores i,j, ui}, nh i*, and;* for each of these arc pairs. The first four items 

we assume are given, the last two we define as the dual nodes are found. For example, 

when we have identified a face (which corresponds to dual node k*) with primal arcs (j0, 

*'i), (»1. h),..., («Vi, i"o), we set /* = k*, or;'* = k* if/* is already specified, for each arc in 

the path identifying the face. 

1. Assumptions 

The algorithm closely follows the discussion above, but there are a few details that 

should be expanded. In order to construct the dual network, it is vital for us to know the 

location of both s and t in G. Without this information we would be unable to construct 

the artificial arc which wraps around G and connects s to t. By definition of an s-t planar 

network, both s and t lie on the outer perimeter of the network. Since s and t lie on the 

outer face of G, there exist angles Qst and 9„ respectively, such that a line segment with 

origin at s (at t) and extending at an angle of 9« (0„) does not intersect G. Clearly, these 

line segments can be joined into an artificial arc (s,f) which bends around G without 

intersecting it. Our algorithm assumes that Qst and Qts, as described, are given as inputs. 

The pseudo-code for the algorithm follows. It uses ^ s Qß - 6y. (For example, 

§,26 is 7C/2 radians in Figure 1 in Chapter H) 
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2. Pseudo-Code for Dual-Finding Algorithm 

Procedure: FINDDUAL(G) 
Input:     An undirected planar network G = (Nji) in adjacency-list form. 

(Arcs incident to each node are sorted by increasing 6y.) 
Arc[A] /* an array of records containing i,j, uij, rij */ 

Output: G* = (JV*,A*), the dual network associated with G 
in adjacency list form; 

{ 
Add artificial arcs (s,t) and (t,s) to G; 
Mark all i e N as "offcycle"; 
DualNodeCounter <- 0; 
For m = 1 to N { 

ii—m; 
Push / on top of stack S; 
Mark i as "oncycle"; 
While / still has an incident arc { 

Select an arc (ij) which maximizes $ s.t. cp < TC radians; 
If no such arc exists, choose the first arc in adjacency list; 
Delete arc (ij) from the adjacency list; 
If j "oncycle" /* face found */ { 

DualNodeCounter= DualNodeCounter+1 
Pop all nodes from S until top of S = j; 
Mark all nodes popped as "offcycle"; 
For each arc (ij) that was "oncycle" { 

Arc[(iJ)].i* <r- DualNodeCounter; 
} 
i <-;"; 

} 
else { 

Pushy on top of stack S; 
Mark/ as "oncycle"; 

} 
}/* j has no more adjacent nodes */ 
Pop i from S; 
Mark i "offcycle"; 
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3. Complexity Analysis 

Each arc (ij) is "selected" once, and this selection process, assuming bounded 

degree, takes 0(|1|) time. Therefore, there is OQA\) total work associated with selecting 

arcs. Once an arc is selected, there is only 0(|1|) additional work, so the complexity of 

this algorithm is <9(|A|). Without the assumption of bounded degree, the complexity is 

0(\N\\A\) 

C. DUKSTRA'S SHORTEST PATH ALGORITHM 

The second sub-algorithm now computes the optimal solution to the interdiction 

problem This solution corresponds to the shortest of the paths in the expanded dual 

network from the expanded node {s*,0} to nodes of the form {t*,r}. We accomplish this 

by working backward in an implicit representation of the expanded dual network using a 

binary-heap implementation of Dijkstra's shortest path algorithm (e.g., Ahuja, et al. 1993, 

pp. 115-116). The shortest path distance from any instance t* to itself is 0, so the "reverse 

shortest path distance"/(?*,r) is initialized to 0 for all r, and the heap is initialized with all 

of these expanded nodes as starting nodes. In computing the optimal interdiction solution, 

the algorithm also computes the shortest path length from every expanded dual node 

{/*,/*} to the closest expanded instance oft*. We denote these distance as/(/*,r), and the 

shortest path length (optimal solution value) as/* =f(s*,0). 

Importantly, the shortest path distances/(/*,r) are exactly what is needed for the 

partial-enumeration sub-algorithm. 

The algorithm proceeds in an obvious manner except that the existence of 

expanded arcs is checked on the fly: Suppose that the algorithm has just removed 
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expanded node {j*,r} from the heap and must scan arcs incident to this node. For each 

arc (i*J*) in the regular dual network, the expanded dual arc ({i*,r},{j*,r}) with length 

Ui*f will typically exist and may be scanned since it corresponds to not interdicting some 

primal arc (ij) and not consuming any resource. (An exception occurs when /*= s* and r 

> 0.) On the other hand, the expanded arc ({i*,r -r,-*j* },{j*,r}) cannot exist and will not 

be scanned if r - r,*/» < 0, or r - n*j* > 0 and /* = s*. 

The complexity of a binary-heap implementation of Dijkstra's algorithm is 

0([A|log|N|) (e.g., Ahuja, et al. (1993), p. 116). Our modification essentially runs on the 

expanded dual network which has R\N\ nodes and 2R[A\ arcs. Therefore the complexity of 

our algorithm is pseudo-polynomial. We do not include pseudo-code for the algorithm 

since it is straightforward. 

D. PARTIAL-ENUMERATION ALGORITHM 

The third sub-algorithm is based on Byers and Waterman (1984). Their algorithm 

enumerates all s-t paths within a prescribed distance of the optimal path length from 

source to sink in a directed acyclic network. They modify a (total) path-enumeration 

algorithm (which is just a modified depth-first search) to locate these paths, and a push- 

down stack to store all current valid paths. (The algorithm is related to an "A* search," 

e.g., Hart, et ai, 1968.) We modify this algorithm to work on an implicit representation 

of the expanded dual network. 

The partial-enumeration sub-algorithm finds near-optimal solutions by traversing all 

paths from {s*,0} to {t*,r},for r e {0,...,R} that are within 100e% of optimal Let S{,V} 

denote any simple path from {s*,0} to {i*,r}, define d(S{i*>r)) as its length, and define 
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R(S{i*s)) as the total resource expended to traverse S{lV}. R units of resource are assumed 

available for interdiction. 

Given a partial path S{,-* r}, the algorithm determines if 

d (S{lV}) + Ui*j* +/(/V) < (1 + e)/*. (2) 

If it is, the algorithm feasibly extends the path S{,VJ by adding the uninterdicted arc (i*j*) 

and continues the search from {j*,r} with partial path Sov). This is equivalent to 

traversing the arc ({/*,/-},{j*,r}) in the expanded dual network. If it is not, the algorithm 

determines if 

£(S{/V})+ »,*</? and, (3) 

d(S{i*,r)) +f(j*,r + »,-*) < (1 + e)/*.      (4) 

If those conditions are met, the algorithm extends S{(-V) by adding the interdicted arc and 

continues the search from {j*,r + rt*r} with partial path Sy*^  ,. This is equivalent to 

traversing the arc ({i*,r},{j*,r+ r^}) in the expanded dual network. The algorithm 

continues this recursion until all near-optimal paths have been enumerated. This method 

can produce the same interdiction set more than once because it enumerates s-t cuts in G 

that may not be minimum Consequently, duplicate, non-minimum solutions must be 

culled. 

As an example, consider the network illustrated in Figure 5, when we set R = 3 and 

e = .06. We obtain an optimal solution of value 100, two near-optimal solutions and three 

duplicates; all six "solutions" are listed in Table 1. 
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Arcs Crossing Optimal and 
Near-Optimal Cutsets 

Residual s-t 
Maximum Flow 

(1,4)' (3,5) (2,5)' 100 
(1,4)' (1,3)' (2,5) 102 
(1,4)' (3,5)' (2,5) 102 
(1,4)' (1,3)' (1,2) duplicate 103 
(1,4)' (3,5)' (1,2) duplicate 103 
(1,4)' (1,3) (2,5)'duplicate 106 

Table 1. Solution for primal network shown in Figure 5 
with s = 1, t = 5,R = 2 and e = .06. The notation (i,f) indicates 
that the arc is not interdicted; and (i,j)' indicates that it is. 

We demonstrate how the last solution was completed assuming that S{i*<r) = {{s*,0}, 

{3*,1}}, so that d(S[i*,r]) = 0 and R(S{i*^) = 1: 

(a) The algorithm will traverse to {2*,1} via the uninterdicted arc B if formula (2) is true. 

As 0 + 106 + 0 < (1 + .06)100 the algorithm does add the node {2*,1} to the path. 

(b) The algorithm will traverse to {t*,l} via the uninterdicted arc A if formula (2) is true. 

As 106 + 103 + 0 > (1 + .06)100 the algorithm cannot add the node {t*,l} to the 

path. 

(c) The algorithm will traverse to {t*,4} via the interdicted arc A if (3) and (4) are true. 

As 1 + 3 > 3 the algorithm cannot add the node {t*,4} to the path. 

(d) The algorithm will traverse to {t*,l} via the uninterdicted arc D if formula (2) is true. 

As 106 + 102 + 0 > (1 + .06)100 the algorithm cannot add the node {t*,l} to the 

path. 

(e) The algorithm will traverse to {t*,3} via the interdicted arc D if both formulas (3) and 

(4) are true. As 1 + 2 < 3 and 106 + 0 + 0 < (1 + .06)100 the algorithm does add the 
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node {t*J} to the path. Because this is a sink node, the algorithm outputs the path in 

terms of the primal network as shown in the last row of Table 1. The path is shown in 

terms of the dual in Figure 6. 

(f) Because every arc incident to {2*,1} has been investigated, the algorithm now 

backtracks to node {3*,1} and continues investigating uninvestigated arcs. 

(jS)-.. 
\D 

Uninterdicted 
Interdicted 

Figure 6. Illustrating a solution 
as a dual path with arc labels /. 

Let 5 be a stack that stores pairs </'*,&> where;'* is a node on the path being 

enumerated and b indicates the status of the arc, say (/*,/*), that reaches/* on the current 

path from s*: b=\ implies that the corresponding primal arc (ij) is interdicted; otherwise 

b = 0. The pseudo-code for the algorithm follows. 
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1. Pseudo-Code 

Procedure: ENUMERATE^*,/,/*, e) 
Input: Dual network G *= (N*A*) in adjacency list form, flj*,r) V i*e N,J* and e; 
Output: All solutions to the network interdiction problem with capacity (1 + £]/*; 
{ 

Mark all i*e N* - s* as, "off path"; Mark s* as "on path"; 
Mark all (i*J*) e A* as "untraversed"; 
5<-0; 
Push <s*,-l> on top of stack 5; /* "-1" indicates undefined */ 
/* (S, <t*,b>) will be an encoding of the dual path from s* to t* along with the status of the 
arcs on that path */ 
ACS,,.,») <-0; 
WhileS*0 { 

<i*,b> <r- top of S; 
While not all arcs out of /* are "traversed" { 

Select an "untraversed" arc (i*J*); 
If;'* is "off path" { 

If d (5„v)) + Ui*? +ßj*,r) < (1 + e)/* { 
/* arc is not interdicted */; 

If j* = t* { PrintCS, <t*,0>)}; 
else {Push <j*,0>onS; 

Mark j* as "on path"; 
i* <-;■*; 

} 
} 
else { 

If R(ßlr,i) +n.J. < R{ 
Ifrf(5(,v})+y(/'V + r^)<(l + eF { 

/* arc is interdicted */ 
If j* = f* {Print(S,<f*,i>)}; 
else { Push <j*,l> on 5; 

Mark j* as "on path"; 
i* <-j*l 

} 
} 

} 
} 
If arc has been interdicted { Mark (i*,j*) as "traversed"; } 

} 
} 
/* all arcs out of i* have been "traversed" */ 
Mark all arcs out of /* as "untraversed"; 
Markkas "off path"; 
Pop <i*,b> from S; 
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2. Complexity Analysis 

It is easy to construct a planar network so that its dual has 0(2M) paths between 

two nodes s* and t*. If most of these paths correspond to candidates for near-optimal 

solutions to the network interdiction problem in the primal network (and this can be 

arranged), then any algorithm to enumerate these paths must be exponential. As each path 

in the expanded dual network might take 0(R\A\) work to find, the complexity of the 

partial-enumeration algorithm could be 0(/?|A|2M). In practice, the run time is strongly 

dependent on e and the number of paths enumerated. If e is not too large, and only a few 

near-optimal paths exist, the algorithm is quite efficient. In practice e could be 

incrementally increased from a very small value until the number of near-optimal paths 

becomes suitably large, but still manageable. 

We perform culling of duplicate solutions off-line using a spreadsheet sort and do 

not include it complexity. Clearly, this procedure could be performed efficiently using a 

has function and table as candidate solutions are generated. 

In Chapter V we will provide computational results for the interdiction algorithm 

described in this chapter. Before we do that, however, we describe an algorithm to solve 

the interdiction problem on non s-t planar networks. 

28 



IV. ALGORITHM FOR GENERAL PLANAR NETWORKS 

This chapter describes, but does not implement, our network interdiction algorithm 

applicable to general s-t planar networks (i.e., planar networks where s and t do not 

necessarily lie on the perimeter of the network). We propose four sub-algorithms: The 

first conducts a breadth-first search to identify a simple path P between s and t in the 

primal network. The second constructs the (general) dual network from the primal 

network. The third sub-algorithm, a variant of Dijkstra's algorithm, operates on an 

expanded dual that incorporates parity, i.e., the number of times that a path crosses P. To 

solve the interdiction problem, this sub-algorithm must be called once for each dual arc 

(i*J*) in a special subset of dual arcs. A set of restricted optimal values /VJ.) is 

computed in this way so that the global optimum is/* = min,,*^)/*^«./*)- The fourth sub- 

algorithm performs enumeration much as in the previous chapter, but must be called for 

each special arc (i*J*) with/*(,*,/*) <(l+e)/*. Also, before each enumeration call, the third 

sub-algorithm must be rerun to compute f^*r) (j*,f,p) that denotes the length of the 

shortest path from expanded node {j*,r,p} (p is parity) to the closest node {i*,r,l} for 

re {0,...,/?}. 

A. BREADTH-FIRST SEARCH 

The identification of a minimum capacity s-t cutset in a non-s-f-planar network is 

equivalent to finding the shortest simple cycle in the dual network with odd parity. Here, 

parity counts the number of times the cycle crosses a specified, simple s-t path. (See 

Chapter H) Our interdiction algorithm is similarly dependent on finding cycles of odd 

parity. Any simple path between s and t will do for counting parity, but for efficiency's 
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sake we prefer a path with a minimum number of arcs. We identify such a path in 0(\A\) 

time using a standard breadth-first search (e.g., Cormen etal, 1992, pp. 469-475). 

B. DUAL-FINDING ALGORITHM 

Constructing the dual of a general planar network is identical to constructing the 

s*-i* dual as described in Chapter HI except: No artificial arc (s,t) is added to G and thus, 

the directed arcs (s,t) and (t,s) are not added to G' (the directed network used in 

constructing the dual G*). 

C. A MODIIFTED DIJKSTRA'S SHORTEST PATH-ALGORITHM 

The third sub-algorithm, a variant of Dijkstra's shortest path method, will be called 

multiple times to solve the interdiction problem and to help enumerate near-optimal 

solutions. The optimal solution to the interdiction problem corresponds to the shortest 

possible path from some expanded node {/*,0,0} to a node of the form {i*,r,l} for 

re {0,...,#}. We could call the shortest path algorithm for each i* e N* to solve the 

interdiction problem optimally, but the search can be limited further, as described next. 

An optimal interdiction solution corresponds to a cycle in the dual that crosses 

path P an odd number of times. We may view the optimal cycle as starting at some dual 

node i*, immediately traversing dual arc (/*,/*) that crosses arc (iJ)eP, and then 

eventually returning to i*. Thus, we could solve the interdiction problem by examining all 

shortest cycles that immediately cross from one side of P to the other: 
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For each dual arc (i*J*) crossing P: 

Find a shortest path from {/*,0,0} that traverses an expanded 

instance of (i*J*) to a node of the form {/*,r'l} and eventually 

returns to a node of the form {i*,r,l} for re {0,...,/?}. 

The global optimum corresponds to the shortest shortest path found. Let A** 

denote the special set of arcs from which we initiate the modified shortest path algorithm, 

as above. We would normally expect that \A**\«\N*\, so significant efficiency should be 

gained by limiting the shortest path searches as described. 

The shortest path algorithm must also be modified to consider only certain arcs 

leaving the source node which is {/*,0,0}in this case. This modification is trivial: 

From{£*,0,0}, scan only "allowable" arcs whose head nodes are of the form {j*,r,l}. 

Actually, as in the s-t planar case, the shortest path algorithm will be working backwards 

in the expanded network to reach {/*,0,0}. Therefore, the shortest path search is started 

simultaneously from nodes of the form {i*,r,l} and initially scans arcs entering from nodes 

{/V,0} only. 

Our choice for a shortest path algorithm is the modified version of Dijkstra's 

method that operates on the (implicit) expanded dual network, as in Chapter m, but is 

modified further. The algorithm must be adjusted to compute parity properly and to 

implement the special scanning rules described above. The scanning rules are 

straightforward to implement; handling parity needs more explanation. 

Like our original shortest path algorithm, this one works backwards, in this case 

fromnodesoftheform{f*,r,l}forre{0,...^} to node{f*,0,0}. The algorithm minimizes 
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/cv) (h*f,p) which is defined as the shortest path distance from expanded node {h*,r,p} 

to the closest node of the form {i*,r'l}. (We use h* and k* as a generic nodes here to 

avoid confusion with the nodes i* and/* used in the previous paragraph.) The algorithm 

handles parity as follows: Suppose the algorithm is scanning the two expanded arcs, which 

correspond to a dual arc (h*,k*), entering the expanded node {k*,r,p}. If (h*,k*) does 

not cross the path P, the algorithm determines if /(,V) (h*,r,p) and/(,V) (A*,r-rÄ*pj>) are 

to be updated. (We have scanned the implicit expanded arcs ({h*,r,p},{k*,r,p}) and ({h*, 

r-^h*^,p }, {k*,r,p}).) If (h*,k*) crosses P, the algorithm determines if fo*j*)(h*,r,l-p) 

and/«.,,*) (^s-r^^l-p) are to be updated. (We have scanned the implicit expanded 

arcs ({h*,r,l-p}, {k*,r,p}) and ({/**, r-rh*^l-p}, {k*,r,p}).) 

We denote the optimal solution value determined for arc (i*J*) e A**, as above, 

ty/W) and let/* = min^)/*^). So,/* is the optimal solution value to the network 

interdiction problem on G. We will call the shortest path algorithm again, multiple times, 

from within the enumeration algorithm described next. 

D. PARTIAL-ENUMERATION ALGORITHM 

The fourth sub-algorithm differs from the enumeration algorithm detailed in 

Chapter m in that it must be called for each arc (i*J*)eA**. For each such node, it 

begins by calling the third sub-algorithm to compute the values/(iV) (h*,r,p). Once these 

values are obtained, the algorithm searches the expanded network - arcs are generated on 

the fly, of course - looking for paths from {i*,0,0} to {i*,r,l} that are within 100e% of 

optimality. This procedure is identical to the partial-enumeration algorithm in Chapter in 

except that it must account for node parity, just as the shortest path algorithm does. 
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We conjecture that the work performed by both the shortest path and partial- 

enumeration sub-algorithms might be reduced if those procedures could be started from a 

set of arcs that is a proper subset of A**. Suppose we have just identified an optimal 

cycle that starts at (h*,j\*) e A** and then recrosses P twice using OVSyVO e A** and 

0*3*, 7*3*) e A**, say. (It must cross P an odd number of times.) Then, we need not begin 

a search for an optimal cycle starting with (i2*, j2*) or (/3*, j3*) since the cycle we just 

described would just be found again. Thus, the number of calls of Dijkstra's sub- 

algorithm for computing/* could definitely be reduced. In this solution, it may also be 

possible to reduce the number of calls to the enumeration sub-algorithm, but this is less 

certain and needs further investigation. 

Culling of candidate near-optimal solutions is performed the same way it is for s-t 

planar networks. 
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V. COMPUTATIONAL RESULTS FOR THE INTERDICTION ALGORITHM 

In this chapter we demonstrate the operation of our interdiction algorithm for s-t 

planar networks on four randomly generated problems. The purpose is to demonstrate 

accuracy and efficiency, and potential usefulness to an analyst in choosing a network 

interdiction strategy. We run the algorithm on a small network to illustrate what an 

enumeration output looks like and to allow the reader to verify correctness. We run the 

algorithm on three large networks of varying size to demonstrate computational efficiency, 

and thus the potential for solving large, real-world networks. 

A. ALGORITHM IMPLEMENTATION AND NETWORK GENERATION 

Our algorithm is coded and compiled using the Borland C++ Builder 3 and run on 

a 300 mHz Pentium II PC. We also devise a C++ program to randomly generate a planar 

grid network. For an input value n, the program generates an n by In grid network. All 

arcs between adjacent nodes on the perimeter of the network are added; this defines the 

outer face. In addition, all other nodes that are adjacent horizontally are connected by 

arcs. The program then completes the network by randomly constructing about 60% of 

the vertical arcs in the interior. The program randomly assigns ryand % uniformly in 

ranges specified by the user. It then writes this data to an output file that the interdiction 

algorithm can read. An example of a randomly generated network forn = 3, My e 

{95,..., 104}, and ry- € {1,2} is shown in Figure 7; this is also the network we will refer to 

as the "small network." 
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(104,1) (102,2) (96,2)      (100,2) (102,2) 

Figure 7. Small Network. The primal network 
generated for n = 3, s = 1, r = 18, and arc data (i^). 

B. COMPUTATIONAL RESULTS FOR THE SMALL NETWORK 

Utilizing the primal network depicted in Figure 7, we run our interdiction 

algorithm for R = 2 and e = .05, and R = 2 and e = . 10, where 5 is node 1, and t is node 

18. The time to run both problems is negligible. The output from the algorithm is shown 

in Tables 2 and 3. (No duplicates are generated in this case.) 

Arcs Crossing Optimal and 
Near-Optimal Cutsets 

Residual 1-18 
Maximum Flow 

(1,7)' (1,2) 95 
(13,14)' (7,8)' (1,2) 95 
(7,13)' (7, 8)' (1,2) 95 
(1,7) (1,2)' 99 
(15,16) (9,10)' (2,3)' 99 
(15,16) (9,10)' (3,4)' 99 

Table 2. Output for the small network with R = 2 and e = .05. 
The notation (/,/) indicates that the arc was not interdicted, 
and (ijY indicates that the arc was interdicted. There are six 
interdictions within 10% of the maximum interdiction. 
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Arcs Crossing Optimal and 
Near-Optimal Cutsets 

Residua] 1-18 
Maximum Flow 

(1,7)' (1,2) 95 
(13,14/ (7,8)' (1,2) 95 
(7,13)' (7, 8)' (1,2) 95 
(1,7) (1,2)' 99 
(15,16) (9,10)' (2,3)' 99 
(15,16) (9,10)' (3,4)' 99 
(7,13)' (7,8) (1,2)' 101 
(13,14)' (7,8) (1,2)' 101 
(17,18)' (12,18) 102 
(13,14) (7,8)' (1,2)' 103 
(14,15) (9,10)' (2,3)'duplicate 103 
(14,15) (9,10)' (3,4)'duplicate 103 
(7,13) (7,8)' (1,2)'    duplicate 104 
(17,18) (12,18)' 104 

Table 3. Output for the small network with R = 2 and 8 = .10. 
The notation (ij) indicates that the arc was not interdicted, 
and (ij")' indicates that the arc was interdicted. 

The potential usefulness of our algorithm can quickly be seen in the results shown 

in Table 2. There are three optimal solutions shown. However, had we not enumerated 

near-optimal solutions, only one of these would have been found. In addition, through 

partial-enumeration we identify three near-optimal solutions for e = .05, and 8 near- 

optimal solutions for e = .10. This could provide an interdictor with a wide choice of 

good strategies strategies to employ that also satisfy secondary or tertiary objectives. 

C. COMPUTATIONAL RESULTS FOR THE LARGE NETWORKS 

Here we generate three large networks and run our algorithm on each. We choose Uy 

€ {40,...,60} and fy e {1,2} for each of these networks. We also choose to make all 

vertical arcs, and three quarters of the horizontal arcs on the outer face uninterdictable 
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(Tij = eo). This allows us to run our algorithm for higher values ofR without completely 

disconnecting s and t. For the first large network (LN1), we set n = 10, which creates a 

10 x 20 network with 200 nodes and 315 arcs. The second large network (LN2) is 

generated by setting n = 15, which creates a 15 x 30 network with 450 nodes and 700 

arcs. For the last large network we set n = 20, which generates a 20 x 40 grid network 

with 800 nodes and 1247 arcs. We run the algorithm for R = 3, 5 and 10 for all problems. 

Computational results are summarized in Tables 4, 5 and 6. We do not include 

results for the dual-finding algorithm or Dijkstra's algorithm because those run times are 

negligible, less than 0.06 seconds in any case. Off-line culling of duplicate solutions is not 

accounted for in the run time either; there are typically very few duplicates generated. 

The number of near-optimal solutions excludes one that is considered "the optimal 

solution." 

Enumeration 
(sees) 

Total Time 
(sees) 

Near-optimal 
Solutions 

e R=3 R=5 R=10 R=3 R=5 R=10 R=3 R=5 R=10 

.05 .00 .00 .00 .02 .02 .03 0 0 0 

.10 .00 .00 .05 .02 .02 .08 0 0 18 

.20 .00 .00 .28 .02 .02 .31 0 0 135 

.50 .00 .00 .44 .03 .02 .47 1 1 227 
1.00 .01 .01 .61 .03 .04 .64 4 9 323 

Table 4. Computational Results for LN1. Solving the network interdiction 
problem within 20% of optimal on network LN1, with 10 units of interdiction 
resource, enumerates 135 near-optimal solutions in 0.31 seconds. Duplicate 
solutions have been eliminated. 
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Enumeration 
(sees) 

Total Time 
(sees) 

Near-optimal 
Solutions 

e R=3 R=5 R=10 R=3 R=5 R=10 R=3 R=5 R=10 

.05 .00 .00 .35 .05 .07 .42 0 5 239 

.10 .00 .00 .35 .05 .07 .42 0 5 239 

.20 .00 .00 .35 .05 .07 .42 0 5 239 

.50 .00 .01 1.00 .05 .07 1.06 1 12 649 
1.00 .02 .04 1.33 .07 .09 1.39 9 39 855 

Table 5. Computational Results for LN2.. Solving the network interdiction 
problem within 100% of optimal on network LN2, with 5 units of interdiction 
resource, enumerates 39 near-optimal solutions in 0.09 seconds. 

Enumeration 
(sees) 

Total Time 
(sees) 

Near-optimal 
Solutions 

e R=3 R=5 R=10 R=3 R=5 R=10 R=3 R=5 R=10 

.05 .01 .01 .03 .10 .10 .15 1 1 17 

.10 .01 .01 .03 .10 .10 .15 1 1 17 

.20 .01 .01 .03 .10 .10 .15 1 1 17 

.50 .01 .01 .03 .10 .10 .15 3 3 19 
1.00 .00 .01 .09 .09 .11 .20 6 10 62 

Table 6. Computational Results for LN3.   Solving the network interdiction 
problem within 50% of optimal on network LN3, with 10 units of interdiction 
resource, enumerates 19 near-optimal solutions in .15 seconds. 

The ranges for |N|, \A\ and R are too small to result in appreciable run times for the 

dual-finding and Dijkstra sub-algorithms on these problems. (Of course, the dual-finding 

sub-algorithm is independent of/?.) As expected, the run time for the enumeration sub- 

algorithm increases dramatically as the number of near-optimal solutions increases and as e 

increases. However, that sub-algorithm is still quite efficient, even for large values of e. 
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As a whole, our interdiction algorithm has proven reasonably efficient, running in 

less than a minute for each of our examples. It appears that the algorithm would prove an 

efficient tool for somewhat larger networks, and larger values of R, especially on a faster 

computer. The value of e will probably be the limiting factor, and this suggests a strategy 

controlling the run time and sheer volume of alternate interdictions by successively 

increasing e, cautiously, for larger problems. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This thesis has presented specialized network interdiction algorithms to solve the 

network interdiction problem optimally on planar networks, and also enumerate near- 

optimal solutions. The basic problem is to minimize the maximum flow in a capacitated 

network by destroying arcs using limited resources. We propose two distinct algorithms 

for the problem, the first algorithm being applicable to s-t planar networks (s and t must lie 

on the perimeter of the network), and the second to general planar networks. 

The first algorithm takes as its input an adversary's primal network embedded in 

the plane, constructs the dual network, and then utilizes a variant of Dijkstra's shortest 

path algorithm on an expanded version of the dual to solve the interdiction problem 

optimally. The dual is expanded to deal with the consumption of varying, integral 

amounts of interdiction resource. Using the expanded dual network, the algorithm then 

enumerates all solutions within 100e% of optimal using a modified path enumeration 

algorithm. The algorithm has been implemented and computational results show that the 

methodology is quite efficient. A significant drawback to the algorithm is that it requires 

the network to be s-t planar. We therefore propose an extension of the algorithm to 

handle general planar networks. 

The second, more general algorithm is a fairly straightforward modification of the 

first except that: (a) The algorithm effectively searches for cycles in the dual network 

rather than paths, (b) it must keep track of the number of times (odd or even) that a cycle 

has crossed a specified s-t path, and (c) the shortest path and enumeration sub-algorithms 

must be called once for each arc on that s-t path. Though we do not implement it, the 

algorithm should still prove reasonably efficient as it should require (roughly) no more 
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than 2m times more work than the first algorithm, where m is the minimum number of arcs 

among s-t paths. A suggested modification may further reduce the factor of 2m. 

Further development of the algorithms we have proposed is warranted. The 

second algorithm for general planar networks should be implemented and tested. An 

efficient planarity testing and embedding algorithm (Hopcroft and Tarjan, 1975) should be 

added as a "front end" to these algorithms: Some networks may be planar and susceptible 

to our techniques, but no planar embedding is customarily provided. An automatic 

mechanism for culling duplicate candidate solutions should be appended to our code, also. 

We believe that a sorting procedure employing a hash function would be quite efficient 

and could be applied as candidate solutions are generated (and duplicate solutions never 

presented to the user). Modest modifications to the enumeration algorithm could 

eliminate some of the duplicates, too. 

When a network is non-planar, our methodology is not directly applicable. 

However, if deleting only a few nodes would yield a planar graph, we conjecture that there 

is some way to extend our methods to fit this situation. The problem of finding the 

minimum number of nodes or arcs whose deletion yields a planar graph is NP-complete 

(e.g., Garey and Johnson, 1979, p.195). However, efficient methods exist for finding 

maximal planar subgraphs that are often close to being maximum (Cai, et al., 1993). So, 

identification of nearly planar networks should not be an insurmountable stumbling block 

to extend our methods to such networks. 
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