
Naval Research Laboratory
Washington, DC 20375-5320

NRL/IFR/5510--98-9881

Comparing Simplification Procedures
for Decision Trees on an Economics
Classification

DAVID W. AHA
LEONARD A. BRESLOW

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

CDC

May 11, 1998

Approved for public release; distribution is unlimited.

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 11, 1998 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Comparing Simplification Procedures for Decision Trees on an Economics Classification PN - 55-6470
PE - 62234N

6. AUTHOR(S) TA - T128

David W. Aha and Leonard A. Breslow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory NRIFRI551O--98-9881
Washington, DC 20375-5320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Several commercial case-based reasoning (CBR) shells now use decision trees to index cases, including ReMind (Cognitive
Systems, Inc.), Kate (AcknoSoft), and The Easy Reasoner (The Haley Enterprise). These trees serve to expedite case retrieval and to
generate comprehensible explanations of case retrieval behavior. Unfortunately, induced trees are often large and complex, reducing
their explanatory power. To combat this problem, some commercial systems contain an option for simplifying decision trees. How-
ever, while many methods for simplifying decision trees exist, they have not been systematically compared and most have not been
applied to case retrieval. This report builds on our previous survey and initial empirical comparison of tree simplification procedures.
In this report, we compare them on a specific, challenging task that is the focus of an existing CBR effort. We examine which tree
simplification procedures are useful for this task and suggest which ones should be included in a commercial CBR tool.

14. SUBJECTTERMS 15. NUMBER OF PAGES

Case-based reasoning Classification 22
Simplifying decision trees Decision trees 16. PRICE CODE
Indexing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-550 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS

1. INTRODUCTION .. 1

2. TA SK .. 2

3. TREE INDUCTION .. 2

4. TREE SIMPLIFICATION PROCEDURES .. 4

4.1 Controlling Tree Size ... 4
4.2 M odifying the Space of Index Tests ... 5
4.3 M odifying the Search for Index Tests ... 5
4.4 Reducing Data Set Size ... 6
4.5 Alternative Data Structures .. 6

5. EMPIRICAL COMPARISON .. 7

5.1 Initial R esults .. 7
5.2 Results with Parameter Tuning .. 10

6. D ISCU SSION ... 12

7. CONCLUSION .. 14

8. ACKNOW LEDGM ENTS ... 14

REFERENCES ... 14

APPENDIX - Default and Tuned Parameter Settings ... 17

iii

COMPARING SIMPLIFICATION PROCEDURES FOR DECISION TREES
ON AN ECONOMICS CLASSIFICATION TASK

1. INTRODUCTION

Our research was inspired by a problem that occurred when applying a commercial case-based reasoning
(CBR) tool to reason with a large proprietary database on economics. CBR is a popular artificial intelligence
problem solving methodology that implements a form of computational analogy, where cases are commonly
thought of as (problem,solution) pairs. The case-based reasoning problem-solving cycle can be defined by
the following four steps (Aamodt and Plaza, 1994):

"* Retrieve: Given a new problem, retrieve a set of cases from a given case library whose problems are
similar to the new problem.

* Reuse: Attempt to apply the solutions of one or more of these stored cases to the new problem.

"* Revise: Based on feedback from the reuse step, adapt the retrieved solution(s) so that they correctly
solve the new problem.

"* Retain: Store the new problem and its (revised) solution as a new case in the case library.

Commercial off-the-shelf (COTS) CBR tools often represent cases as (feature,value) pairs, where a
feature might have either symbolic (e.g., blue, black, red) or numeric values. Most of these tools implement
only the case retrieval step and are restricted to classification tasks, where solutions are simply class labels.
Classification involves predicting the class label of a new problem given a library (i.e., data set) of stored
cases. An important dependent measure on the quality of a classifier is its classification accuracy, the
frequency with which its class predictions are correct.

Several COTS CBR tools implement a fast technique for retrieving cases that involves indexing them
into a hierarchical data structure called a decision tree. Nodes in these trees reference a feature of the cases,
while branches are annotated with potential values for the corresponding node's feature. The leaves of these
trees typically contain a small number of cases from which a classification decision can be quickly generated
or cached. The problem that we address in this report is that, while several CBR COTS tools use decision
trees to index cases, they lack procedures to simplify decision trees. Not surprisingly, the trees they generate
are large and difficult to comprehend, which is unacceptable to many users.

We surveyed the literature for algorithms that simplify decision trees and created a categorization frame-
work for them (Breslow and Aha, 1997a). We also obtained and installed copies of at least one procedure
for each of our framework's subcategories, allowing us to compare them empirically on benchmark classi-
fication tasks (Breslow and Aha, 1997b). Our objective was to improve our understanding of the conditions
for which each approach is preferred, where the dependent variables were the complexity of the indexing
structure (usually a tree) and its classification accuracy. The results were useful because we found several

Manuscript approved November 13, 1997'

2 Aha and Breslow

expected tradeoffs and a few surprises that motivate further investigation. We can use these results to recom-
mend which simplification procedures to include in a commercial CBR tool and to determine the conditions
in which each might prove useful, so that the user can select among them. However, the data sets used in
our comparison study were comparatively simple and did not closely resemble those used for commercial,
scientific, or government applications. This report addresses this concern. Section 2 briefly describes the
complex economics task. In Section 3, we introduce the subject of decision tree induction. Section 4 re-
views our framework for categorizing tree simplification procedures and details one example from each of
its subcategories. In Section 5, we empirically compare these procedures on the economics data set. We
discuss the implications of our results in Section 6, where we also propose which simplification procedures
should prove useful in a CBR tool when tackling complex data sets. Section 7 concludes with a summary
and our goals for future research.

2. TASK

The economics data set used is a proprietary data set owned by Evidence-Based Research, Inc. We
cannot describe some details of this data set nor make it publicly available. However, we can characterize it
more generally and report our results.

The tree simplification procedures we surveyed primarily target classification tasks. Although this eco-
nomics data set can be used for many purposes, this report describes its use in a classification task. Two
versions of the economics data set exist: symbolic and numeric versions. Our study is limited to the sym-
bolic version. Cases in this version are described by 222 features, including a class variable specifying each
case's economic classification. There are three classes. All of its features have symbolic values, except for
one continuous feature.

The symbolic economics data set contains many irrelevant features, defined as features whose values
are the same across all cases or are unique to each case. By this definition, there are 28 irrelevant features in
this database. We removed them before conducting the empirical study described in Section 5. This reduced
the number of features from 222 to 194, including the class variable. Several of the removed features had
the value unknown for all cases in the data set. After removing these features, the total number of unknown
values was reduced from 56,952 (26.3% of the database's values) to 32,552 (18.1%).

Although this preprocessing eliminated several useless variables, there is room for further preprocessing.
Several of the remaining features can be encoded more intelligently for use in a CBR tool, but we leave that
for future studies.

3. TREE INDUCTION

Section 4 assumes some familiarity with how decision trees are induced. This section introduces a
generic top-down induction of decision trees (TDIDT) algorithm. Readers familiar with these issues might
want to skip this section.

Comparing Simplification Procedures for Decision Trees 3

Inputs: C: Set of training cases
I: Set of index tests
eval0: Test evaluation function
stop(): Stopping condition
post-processo: Post-processing routine

Other Variables:
T: The induced tree
bestO: The best index test at a node as judged by eval0
P: The partition of cases into subsets by applying best(C)
V: Vector of values returned by best(C) (one per subset of P)
N: A node in T

TDIDT (C,I, eval() ,stop () ,post-process() =

T = induce-tree(CI, eval() ,stop())
return post-process (CI,T)

induce-tree(C,I,eval() ,stop()) =

{best(), P, V} : = best-test.and.partition (C, I, eval0)
IF (stop(P) = TRUE)
THEN N := create-leaf-node(C)
ELSE N : create-internal-node (C,besto)

FOR j := 1 TO lv DO
subtree(NV:) induce-tree (Pj, I, eval0, stopo)

return N

Fig. 1 - A generic TDIDT algorithm for inducing classification trees

Decision trees are typically induced using a recursive partitioning algorithm on the cases. That is, the
set of training1 cases is repeatedly subdivided. The induced tree can classify a test case by traversing from
its root to a leaf to yield a classification prediction. Figure 1 displays pseudocode for a generic TDIDT
algorithm. These algorithms usually have five inputs:

1. Training set: A set of training cases, where each case is typically represented by a set of feature-value
pairs plus a class label.

2. Index tests: These functions split (or partition) a group of cases at a node into two or more subsets,
where each is represented by a child node. Index tests frequently are simple tests on the value of a
feature. An index is the combination of an index test and one of its possible values (i.e., represented
as a child node).

3. Test evaluation function: This evaluates the quality of the splits created by alternative index tests.
The objective is to select the test leading to the "best" split (i.e., with highest evaluation). For classi-

'We distinguish training and test cases; the former are used to induce the decision tree, while the latter are used to evaluate its
performance (e.g., classification accuracy).

4 Aha and Breslow

fication tasks, an ideal split produces child nodes so that all the cases in a given child are in the same
class.

4. Stopping condition: This function determines when to discontinue tree expansion.

5. Post-processing routine: This routine performs tree-simplification after the tree generation process
terminates. Post-pruning methods are examples of post-processing routines.

This generic TDIDT algorithm recursively splits the set of training cases into subsets. To select a split, it
evaluates the quality of each possible split obtained by applying each index test and selects the "best" one
according to the test evaluation function. Tree expansion is terminated whenever the stopping criterion is
satisfied. The post-processing routine inputs the tree and attempts to improve it along some measures (e.g.,
reduce its size).

We use C4.5 Release 7 (C4.5 R7) (Quinlan, 1993), without post-pruning, as the baseline procedure in
our experiments. It is a frequently used TDIDT algorithm whose index tests consist of testing only a single
feature value.2 It uses an information theoretic (i.e., gain ratio) test to evaluate the quality of splits. It stops
growing the tree when the size of a given set of cases is fewer than a predetermined number.

4. TREE SIMPLIFICATION PROCEDURES

Figure 2 summarizes our framework for tree simplification procedures, which is detailed in Breslow and
Aha, 1997a. Each subcategory of the framework is annotated with at least one example tree simplification
procedure, namely the one tested in Section 5.3 The rest of this section summarizes these categories and
example algorithms.

Simplifying Decision Trees

Control Tree Size Modify Space of Tests Modify Search for Tests Reduce Dataset Alternative Data Structure

Preprn Data-driven I(rn-Ks) Feature selection Rules'

grepru(ý Selection measures.

-in(2 (LMDT, XotN) DiscretizationTF (SET-Gen) (C4.5 Rules)

Post-pruning Hypothesis-driven (C4.5 RB) Case selection Decision grapI s
(C4.5 R7, rTl-GR) (FRINGE) Lookahead search (RC4.5) (INUC)

(LFC)

Fig. 2 - A framework for tree-simplification procedures

4.1 Controlling Tree Size

The first of the five categories consists of procedures that explicitly control tree size. It includes two
types of pruning algorithms. First, pre-pruners terminate node expansion unless the estimated quality of the

2We're assuming here that C4.5's attribute subset grouping option is not being used. (See Section 5.1.1 for more details.)
3We later explain that three of these could not be included in our study. (See Section 5 for details.)

Comparing Simplification Procedures for Decision Trees 5

best split exceeds a predetermined threshold determined by the stopping condition. Although procedures
implementing this approach can be relatively efficient, they tend to overprune, terminating tree expansion
too early. This can occur when specific combinations of indices (i.e., along paths of the complete tree) have
high quality, but they individually do not exceed the predetermined threshold. Nonetheless, we selected a
pre-pruner named T2 (Auer et al., 1995) for our experiments because (1) it performed well in comparison
studies and (2) it is an extreme foil for our baseline (i.e., C4.5 R7 without post-pruning) in that it limits
trees to a depth of 2.

Second, post-pruners simplify trees in a post-processing stage. They are intended to increase noise
tolerance, prevent overfitting, and eliminate small disjuncts (i.e., leaves with few cases), all in the hope of
improving classification accuracy on test sets and yielding more comprehensible trees. We selected C4.5
R7's error-based pruning (EBP) method, which Esposito et al. (1995) found to yield high-accuracy trees,
although it tends to underprune. We also selected a variant of M, ITI-GR (Utgoff, 1995), which uses gain
ratio to select tests and the minimum description length (MDL) principle to guide post-pruning. It is an
intuitively appealing approach that has not yet been extensively tested. See Mingers (1989) and Esposito et
al. (1995) for comparison studies on post-pruning algorithms.

4.2 Modifying the Space of Index Tests

Tree simplification procedures in the second category modify the set of possible index tests. Most early
algorithms were limited to univariate tests, where each node tests the equality of one feature to one value
or an inequality on a numeric feature's value. In contrast, multivariate algorithms allow tests on multiple
features, multiple values per feature, or both. They target the subtree replication problem by clustering cases
that univariate tests would otherwise separate. Multivariate algorithms often induce trees with fewer nodes,
but multivariate tests are more complex and have higher computational complexity because they search a
larger space of index tests.

One way to distinguish multivariate algorithms is by whether they use the previously induced decision
tree to generate new combinations of features that can be used in multivariate index tests in the subsequent
tree-induction iteration. We call these algorithms hypothesis-driven because the tree represents a hypothesis
of the true concept description. One such algorithm is FRINGE (Pagallo and Haussler, 1990), variants of
which have been shown to solve the subtree replication problem for several benchmark tasks. We obtained a
recent version of FRINGE but did not use it because it is limited to binary attributes and binary classification
tasks.

We refer to all other multivariate TDIDT algorithms as data-driven because they rely solely on the data
for guidance. In this subcategory, we selected two promising algorithms. The first is LMDT (Brodley and
Utgoff, 1995), which targets numeric features by training perceptrons at each node. The second, XOFN
(Zheng, 1995), targets symbolic features. Its tests evaluate conjunctions of an arbitrary set of feature-value
pairs. XOFN reduced tree size and increased accuracy, compared with other multivariate approaches that
target symbolic features.

4.3 Modifying the Search for Index Tests

The third category of tree simplification procedures includes algorithms that modify how they search
for index tests. It consists of three subcategories: algorithms that use an alternative function for evaluating

6 Aha and Breslow

splits, discretize continuous data, or automate lookahead. In the first subcategory, we selected a variant of
ITI, named ITI-KS, that differs from ITI-GR only in its use of Kolmogorov-Smirnoff distance rather than
gain ratio to evaluate the quality of splits. Utgoff and Clouse (1996) found that it consistently produced
smaller trees than did gain ratio, without sacrificing accuracy.

For the second subcategory, we selected C4.5 Release 8 (R8) (Quinlan, 1996), which discretizes con-
tinuous features before induction. It uses an MDL approach to penalize continuous features having many
values among the training instances, thereby counteracting gain ratio's bias favoring splits on features with
many values. Quinlan found that R8 often increased accuracy and reduced tree size relative to R7 for tasks
with many continuous features. However, our task has only one continuous feature (out of 194 features), so
we cannot expect it to greatly outperform C4.5 R7 here and only investigate whether it substantially reduces
speed on this economics prediction task.

For the final subcategory, we selected LFC (Lookahead Feature Construction) (Ragavan et al., 1993).
Lookahead procedures evaluate the quality of a given split using information on the quality of subsequent
splits. This can be expensive, so LFC constrains lookahead, using a branch-and-bound search. LFC caches
the results of lookahead by generating multivariate features, as described in Section 4.2. Ragavan et al. re-
ported that LFC performed well compared with other TDIDT algorithms on a few benchmark data sets, and
that both lookahead and constructive induction are needed for it to perform well on tasks involving feature
interactions. Unfortunately, we were unable to test it on the economics prediction task because the LFC
implementation we obtained is restricted to binary classification tasks.

4.4 Reducing Data Set Size

Methods in the fourth category reduce the database, either through feature selection or case selection.
This has been shown to dramatically reduce tree size. We selected one example from each subcategory.
SET-GEN (Cherkauer and Shavlik, 1996) performs feature selection, using a genetic algorithm to search
the space of feature subsets. In contrast, Robust C4.5 (RC4.5) (John, 1995) implements an iterative case
selection procedure. That is, it induces a tree, post-prunes it, discards cases that are misclassified by it, and
iterates unless the new tree correctly classifies all of the remaining cases. Both algorithms performed well
compared with C4.5 R7, but have not been compared with one another.

4.5 Alternative Data Structures

Algorithms in the final category transform a decision tree to an alternative data structure. Alternatives
include rule sets and graphs. C4.5 RULES (Quinlan, 1993) is a promising simplification method that trans-
forms trees to rules. It tends to greatly reduce the complexity of the concept description and often increases
test accuracy (e.g., Perez and Rendell, 1995). However, Daelemans et al. (1997) reported that C4.5 RULES
is prohibitively slow when transforming large (i.e., > 30,000 nodes) decision trees induced by C4.5. We did
not expect to have trees of this size in our investigation of the economics data set and thus included C4.5
RULES in our experiments.

Some researchers have also developed promising algorithms for inducing decision graphs. For our ex-
periments, we selected INDUCT (Gaines, 1996), which induces exception directed acyclic graphs (EDAGs).
EDAGs have several interesting properties. In particular, they relax two key constraints on tree induction.
First, they do not require that the union of the cases among a node's children nodes equals the parent's set

Comparing Simplification Procedures for Decision Trees 7

of cases. Instead, the union need only be a subset of the parent's cases, which means that some cases will
find their classification predictions at the parent node. Second, a case's feature values may satisfy more
than one branch from a node, and these cases must find their classifications by traversing multiple paths.
Gaines (1995; 1996) describes a method for translating decision trees to EDAGs and some promising EDAG
applications for yielding simpler indexing structures.

5. EMPIRICAL COMPARISON

We compared the selected suite of algorithms on the symbolic economics data set using a 10-fold cross-
validation strategy. That is, we (randomly) split the data set into ten equal-sized subsets (folds) and, for each
fold, tested each algorithm once by using the other nine folds as the training set and the targeted fold as the
test set. Thus, all cases are included in the test set on nine of the ten folds, and each algorithm was given
identical training and test sets. Our dependent measures were accuracy on the test cases, data structure size,
and speed. We tested the algorithms in two modes: the first uses default parameter settings (see Section 5.1)
and the second attempts to tune the parameter settings (see Section 5.2).

Data structure size was measured differently for different algorithms. We defined the size of univariate
trees as their number of nodes. For multivariate trees, we summed the number of features used at internal
nodes with the number of leaves. For C4.5 RULES, we counted the number of rule conditions.

Our intention was to test 13 decision tree simplification algorithms from the 11 subcategories of our
framework (see Fig. 2). Unfortunately, we tested only ten. The three not included in our study are FRINGE,
LFC, and INDUCT. Our FRINGE implementation is restricted to Boolean features, and we plan to contact
other researchers in search of a more robust variant. The LFC implementation we obtained is restricted to
binary classification tasks, which prevented us from running it on the ternary classification task defined by
the economics data set. Finally, we have, unfortunately, not yet obtained INDUCT even after multiple
requests.

5.1 Initial Results

This subsection describes the algorithms' initial results when tested on the economics data set using
the 10-fold cross-validation methodology, outlined at the beginning of this section. In this case, they were
tested without tuning their parameter values. Instead, their default parameter value settings were used. The
Appendix describes these settings in detail.

We divide this section into three subsections, one per dependent measure, and also compare the results
to those of C4.5 R7, the benchmark algorithm, without any tree simplification. We write the standard
deviation results in parentheses, after specific dependent measure results.

5.1.1 Accuracy

Figure 3 displays the average accuracies for the ten algorithms tested when using only default parameter
value settings. The vertical dashed lines distinguish the five categories of our framework (see Fig. 2), and
each average accuracy point is shown with a vertical bar denoting its standard deviation. For purposes of
brevity, we used the abbreviations "C4R7" ("C4R8") to denote C4.5 R7 (C4.5 R8), "ITI-GR" ("rn-KS") to
denote the variant of ITI using the gain ratio (Kolmogorov-Smirnoff) selection measure, "SGen" to denote

8 Aha and Breslow

Alternative
Control Modify Space Modify Search Reduce Data

Tree Size for Tests for Tests Data Set Structure

I T I a Ii

-.U I I II I I I I

C, I T

T2 4R7IT-RLT Xof T I-K 48Se ue

<It) T

< IO

I.I
aq a

SE-E,"C"t eot ROUS I45 an Rls todnt I45RLS Tebsln loih

0) I

fetroosrcinrte hnslcin ti d ifiut if noInar tcopral rithstaueprm

r_ _ _

anohi lasdtm caIemc rae.RBS C4. aloprom aIyeo aaee igi hti

T2 C4R7 ITI-GR LMDT XofN ITI-S C4R8 SGen R04 Rules
Algorithm

Fig. 3 - Average 1p0-fold CV accuracies (no parameter tuning)

SET-GEN, "RC4" to denote ROBUST C4.5, and "Rules" to denote C4.5 RULES. The baseline algorithm
(C4.5 R7, without pruning) recorded an average accuracy of 99.3% (0.8%), as shown in Fig. 3.

Among the algorithms tested, SET-GEN had the highest average 10-fold CV accuracy on the symbolic
economics data set (99.7%). This performance comes at a cost: SET-GEN actually performs a type of pa-
rameter tuning (i.e., feature selection). LMDT also performs a similar type of feature tuning but involving
feature construction rather than selection. It is difficult, if not unfair, to compare algorithms that tune param-
eters vs others that do not automatically tune parameters; the accuracies of the former will often be higher,
and their elapsed time can be much greater. ROBUST C4.5 also performs a type of parameter tuning in that it
performs case selection, and the others also perform various forms of what could be called parameter tuning
in their tree simplification procedures but to lesser degrees. Thus, we have strong motivation for repeating
this experiment such that all the algorithms automatically tune their parameter settings (see Section 5.2).

One reason for SET-GEN'S comparatively high accuracies is that this economics data set probably
contains many features that are irrelevant for predicting the target concept. Thus, accuracy improvements
might result from discarding these features. Likewise, C4.5 RULES yields accurate classifiers here. We
postulate that its transformation of trees to rules allows it to focus on specific feature relationships that are
not as easily isolated in a monolithic decision tree. Specifically, where a tree algorithm must either retain or
discard all subpaths below a node, a tree-to-rules translation algorithm can selectively retain and then prune
entire paths in the tree, each path representing a rule.

T2 had the lowest average accuracy (89.5%). It was fooled into selecting symbolic features that have
a large number of values per feature. This is a well-known problem with naive index selection algorithms
(Fayyad and Irani, 1992), and it has been addressed in several algorithms (e.g., Quinlan, 1993). The key is to
remove the index test evaluation function's bias for splits that favor features with the largest number of sym-

Comparing Simplification Procedures for Decision Trees 9

Altemative
Control Modify Space Modify Search Reduce Data

STree Size for Tests for Tests Data Set StructureW
0-0

IO-

SI l I I I I I I

T2 C4R7 ITI-GR LMDT XofN ITI-KS C4R8 SGen RC4 Rules
Algorithm

Fig. 4 -Average 10-fold CV data structure sizes (no parameter tuning)

bolic values. (We test a variant of this idea in Section 5.1.2.) However, it appears that this implementation
of T2 is highly susceptible, which makes it a poor choice for inclusion in a CBR tool. The ITI-KS variant
also performs rather poorly but for a different reason: ITI failed to locate predictive features in general,
suggesting that it is struggling to locate good features in this high-dimensional task.

5.1.2 Size

Figure 4 displays the percent average sizes, relative to the baseline algorithm, for nine of the ten algo-
rithms tested, when using only default parameter value settings. The baseline algorithm's (C4.5 R7, without
pruning) average size was 160.3 (18.2). The result for T2 is missing because it always generated a tree of
size 886, equal to the training set size. This is surprising because T2 was designed to yield small trees. In
contrast, the ITI variants do yield small trees, but their zero standard deviations show that they always yield
the same tree, independent of the fold.

The problem affecting T2's accuracies can be partially eliminated by removing one of its selected fea-
tures that caused it to perform poorly. That feature, which encodes a date value, is not particularly infor-
mative for classification. However, when combined with one other variable that is predictive, it uniquely
identifies each case in the economics data set. This causes T2 to yield leaves containing only one case.
By removing the date feature, T2 induces the same tree across each fold, but it is comparatively smaller
(i.e., with "only" 112 nodes) and has perfect test set accuracy. It might prove useful to incorporate a feature
selection front-end for T2.

10 Aha and Breslow

• •Alternative
.o " Control Modify Space Modify Search Reduce Data

Tree Size for Tests for Tests Data Set Structure

W

- -

<

og
Ho

T2 C4R7 ITI-GR LMDT XofN ITI-KS C4R8 SGen RC4 Rules
Algorithm

Fig. 5 -Average 10-fold CV computation speeds (no parameter tuning) on a logarithmic scale

5.1.3 Speed

Figure 5 summarizes the real time elapsed, in minutes, for each algorithm to complete the 10-fold CV
experiments.4 The majority of algorithms are reasonably fast, requiring fewer than 10 min to complete all
folds for this moderately-sized data set. However, T2 is somewhat slower because it attempts to locate a
near-optimal tree of a given size, albeit small in depth. LMDT, XOFN and SET-GEN perform far more
expensive searches for feature combinations (LMDT, XOFN) or for feature subsets (SET-GEN) and so are
extremely slow on this task (note the log scale in Fig. 5). For example, LMDT required 1713 min (i.e.,
about 28.5 h) to complete a single fold, when tested on this high-dimensionality task. To achieve practical
running times on high-dimensional tasks, the implementations for these algorithms need to be modified to
reduce the size of the space they search for feature subsets.

It is instructive to compare these speeds with those recorded, when the algorithms automatically tune
their parameters, which is necessary to obtain simpler and more accurate decision trees for a broad range of
tasks. We discuss this further in Section 5.1.3.

5.2 Results with Parameter Tuning

This subsection describes the algorithms' results under the same conditions as Section 5.2, except that
algorithm parameters are automatically tuned for each fold. Parameter tuning focused on maximizing clas-

4These experiments were run on lightly loaded SPARCstation 20's. All implementations are in C. We did not attempt to equate
their coding efficiency.

Comparing Simplification Procedures for Decision Trees 1I

sification accuracy. We explored a few values for each parameter in a factorial design study and selected sets
of parameter values that optimized accuracy. Details of this tuning process can be found in the Appendix.
We again describe results for three dependent measures: accuracy, data structure size, and speed.

Unfortunately, we report tuning results for only four of the ten algorithms. Because the implementations
for ITI and T2 do not have any obvious parameters, they were not included in this second experiment.
Furthermore, the current implementations for SET-GEN, XOFN, and LMDT are prohibitively slow for
studies involving (additional) tuning of their parameter settings, at least for this economics data set. Thus,
these were also not included here.

5.2.1 Accuracy and Size

The remaining algorithms are all variants of C4.5 (Quinlan, 1993). Three of them, namely C4.5 R7,
C4.5 R8, and ROBUST C4.5, had highly similar behavior. For a given fold, they all induced the same
unpruned and pruned tree.5 The average size of these trees, when counting only the number of nodes, was
23.8 (3.2) and 19.9 (0.3) nodes, respectively. Each of these induced trees had 100.0% accuracy on their
test sets (i.e., across all ten folds). The remaining algorithm, C4.5 RULES, recorded an average accuracy
of 99.0% (0.8) and average size of 44.1 (8.2). Thus, tuning produced only most modest gains in its already
strong performance.

One of the parameters that was tuned for the C4.5 variants concerns whether the algorithm may split
cases by grouping values of symbolic features into subsets. This yields a multivariate index test of the
form if this case's value for this feature is in the following subset, then traverse this subtree. Whereas the
default value for this parameter disallows multivariate index tests (no grouping), parameter tuning resulted
in using multivariate index tests (grouping). When using multivariate tests, we should measure the size of
the induced trees as we do for the other multivariate algorithms (LMDT, XOFN), taking into account the
complexity of the node definitions as well as the number of nodes. Using this definition of size, the three
C4.5 decision tree variants all yield trees whose average (pruned) size is 217.9 (or 216.1 for ROBUST C4.5),
with a standard deviation of 6.8. These trees are huge. However, some of the features (e.g., date) always
selected by these variants could be transformed to a numeric value, which would reduce the tree sizes to
an average size of 97.9. This is much closer to, for example, the average size of the trees induced by C4.5
R7's when using the default parameter settings (i.e., 70.7), and intelligent feature engineering could further
reduce its size.

In summary, the values selected for cross-validation tuning allowed these C4.5 variants to locate trees
with perfect or near-perfect test set accuracy, although parameter tuning did not greatly benefit C4.5 RULES.
These results demonstrate how parameter tuning can improve predictive performance by allowing the induc-
tion algorithms to explore a much larger space of decision trees than explored when using only the default
parameter values. We advocate using automated parameter-tuning methods in any CBR tool that attempts
to simplify decision trees.

5.2.2 Speed

Table 1 summarizes the speed, in number of minutes, required to run the 10-fold CV studies of these
four tree-simplification procedures. As can be seen, even the fastest of these methods (C4.5 R7) still

5Unfortunately, we cannot show example trees and rule sets due to the proprietary nature of the economics data set.

12 Aha and Breslow

Table 1 - Average 10-Fold CV Speeds (elapsed real-time minutes) (parameter tuning)

Algorithm Elapsed Time

C4.5 R7 566.1

C4.5 R8 805.3

ROBUST C4.5 1195.8

C4.5 RULES 957.7

required an average of almost one hour per fold when tuning parameters on this data set for the parameter
tuning procedures described in the Appendix. This is in stark contrast to the amount of time they required
when running only with their default parameter settings, when these algorithms required a sum of barely ten
minutes. However, even the slowest elapsed time recorded here, by ROBUST C4.5, is much faster than the
three slowest algorithms included in the previous experiment (e.g., where SET-GEN required 2353.2 elapsed

minutes).

6. DISCUSSION

Empirical comparisons of tree-simplification procedures have usually involved a small number of tree-
simplification procedures because they typically focussed on only one category of procedures (see Fig. 2).
Those studies, which we surveyed in Breslow and Aha, 1997a, did not compare approaches across all of
these categories. In Breslow and Aha (1997b), we compared procedures across all of these categories on
eight data sets. However, we chose common benchmark data sets that did not greatly tax the simplification
procedures. The purpose of this report is to focus on our sponsor's data set, which inspired our research on
procedures for simplifying decision trees. While it presents a more challenging classification task than the
earlier benchmark data sets, it is, unfortunately, not available for public disclosure. While we believe our
results should extend to data sets with similar characteristics (e.g., high dimensionality, sparse data set), we
do not test this hypothesis here and instead leave this for future research.

In the initial experiments reported here, the best-performing algorithm was C4.5 RULES; it recorded
high accuracies, had moderately low size requirements, and runs reasonably quickly. These results occurred
without parameter tuning, which indicates that C4.5 RULES is a robust algorithm. We are not aware of
any commercial CBR tool that uses an explicit rule set to index cases. This seems a promising approach,
although C4.5 RULES is known to be prohibitively slow when the induced decision trees are huge (e.g.,
Daelemans et al., 1997). Transforming trees to graphs for challenging data sets also warrants investigation.

In contrast, algorithms whose search costs are closely tied with the dimensionality of the prediction
task are not practical for high-dimensional tasks, such as the economics data set. This includes LMDT,
XOFN, and SET-GEN, although some variants of these algorithms might prove useful if they can improve
the efficiency with which they perform feature selection. 6 Likewise, T2 needs help when working with
high-arity features and could benefit from a good feature selection algorithm. (T2 also struggles when the
classification task involves more than four classes (Quinlan, 1996).)

6For example, Aha and Bankert (1996) describe how simple variants of popular sequential feature selection algorithms can
drastically increase the efficiency of feature selection for a high-dimensional task and can (sometimes) simultaneously improve
performance.

Comparing Simplification Procedures for Decision Trees 13

Evaluating algorithms using only their default parameter settings often does not provide adequate insight
into how well they might perform on a given problem. We tested only four of the algorithms while varying
their parameters. Three others have no relevant parameters, while an additional four are so slow that they
prevented us from testing them under these conditions. The tuning experiments revealed that the accuracy of
the C4.5 variants is enhanced by using multivariate tests on symbolic features, allowing them to locate trees
with perfect or near-perfect predictive accuracy. These trees are similar to the one T2 located in the first
experiment because both select the same features in the first two levels of their respective trees. However,
where T2 generates one branch for each possible value, C4.5 does not, yielding a much smaller tree when
counting only the number of nodes. This suggests that T2 could greatly benefit from using multivariate
splits, at least under some situations (e.g., when working with highly predictive symbolic features that have
many possible values). The improved accuracy resulting from multivariate tests in C4.5 comes at a price of
increased tree complexity.

While our previous empirical study (Breslow and Aba, 1997b) focussed on a moderate number of rather
simple data sets, this report is complementary because it focuses instead on a more complex data set. To-
gether, they begin to suggest which approaches might be useful for inclusion in a CBR tool, although further
studies are warranted (e.g., this study is practically useless for studying C4.5 R8 since its behavior differs
from R7 only when using continuous features). In particular, we have some suggestions for CBR tools:

1. Controlling tree size: C4.5 variants, which post-prune, are particularly useful due to their relatively
fast speeds, although this might simply reflect the maturity of their implementation. We strongly
advocate including an efficient post-pruner in a CBR tool. In contrast, we have not yet found evidence
showing that pre-pruners are practical tree-simplification approaches.

2. Multivariate trees: XOFN, although built on C4.5, is not a practical implementation of approaches
that modify the space of indices. In contrast, C4.5's subset grouping option for index tests worked
well. While multivariate trees have great potential use, care is required in defining the space they ex-
plore. Practitioners might want to consider designing multivariate approaches, so that they iteratively
explore more constrained spaces of index tests.

3. Case selection: Like C4.5 R7, its variant that performs case selection (i.e., ROBUST C4.5) is also
relatively efficient and should substantially reduce trees that contain several "small disjuncts" caused
by noise.

4. Feature selection: This is warranted for practical applications, as demonstrated by SET-GEN's high
accuracy in the first experiment. However, efficiency improvements are required before these search-
intensive algorithms can solve high-dimensional tasks at practical speeds. We advocate conducting
parameter-tuning studies to assist in locating more concise indexing structures.

5. Alternative data structures: C4.5 RULES performed particularly well, without parameter tuning, in
terms of accuracy, size, and speed (i.e., at least, for the trees induced for this economics prediction
task). While we have not yet tested other approaches in this category, such as decision graphs, sev-
eral published results suggest that they are worthwhile and should be seriously considered for CBR
indexing structures.

14 Aha and Breslow

7. CONCLUSION

This report empirically compared a suite of tree-simplification procedures on a somewhat complex (e.g.,
high dimensionality) classification task. Our interest was in determining how tree-simplification procedures
scale. We found that several of the more elaborate approaches or, at least, their available research imple-
mentations, do not scale as well as some of the simpler approaches. Section 6 summarizes our observations
and suggestions for which to include in CBR tools. We plan to further evaluate some selected approaches in
commercial CBR shells.

This report focuses on an empirical study of tree-simplification tools for classification tasks. Although
many tasks can be solved using a classification perspective and attribute-value representations, we are more
interested in pursuing synthesis tasks (e.g., problem-solving, planning), and in using more expressive case
representations.

Towards these goals, one of our next research objectives is to see how these tree-simplification algo-
rithms compare in the context of graph-structured case representations. In this context, Messmer and Bunke
(1995) have recently developed an algorithm that solves a constrained subgraph isomorphism problem in
polynomial time, after first generating a decision tree whose size is exponential in the size of the graph-
structured cases. Although the authors introduced two methods for pruning their decision trees to combat
this problem, these methods either significantly increase retrieval times or do not guarantee subgraph iso-
morphism detection. We plan to examine whether some of the tree-simplification procedures we studied can
reduce tree size without sacrificing polynomial retrieval properties.

Another objective involves studying the use of these tree-simplification procedures for anytime adap-
tation in CBR planning problems, where the environment must be continually monitored to both select
goals and to dynamically revise retrieved plans at any point during their execution process. We anticipate
studying this in the context of crisis response planning, working closely with members of the Stanford Uni-
versity team who have recently been awarded a large MURI grant for studying this topic. Assuming that
crisis response planning tasks benefit from graph-structured case representations, we envision that these two
research objectives will merge.

8. ACKNOWLEDGMENTS

Many thanks to Grace Scarborough and Evidence-Based Research, Inc., who collected the economics
data, designed the database, and provided it to us for this comparative evaluation. We also thank Patrick Har-
rison, the leader of NCARAI's Decision Aids Group, who specifically encouraged this work and supported
our progress throughout the course of this project. Finally, a thank you to everyone who supplied software
and assisted with its use, including Gunnar Blix, Carla Brodley, Kevin Cherkauer, Rob Holte, George John,
Ross Quinlan, Jude Shavlik, Paul Utgoff, Ricardo Vilalta, and Zijian Zheng. This research was sponsored
by the Office of Naval Research and the Office of Research and Development.

REFERENCES

Aamodt, A. and E. Plaza (1994), "Case-Based Reasoning: Foundational Issues, Methodological Variations,
and System Approaches," Al Communications 7, 39-59.

Comparing Simplification Procedures for Decision Trees 15

Aha, D.W. and R.L. Bankert (1996), "A Comparative Evaluation of Sequential Feature Selection Algo-
rithms," in Artificial Intelligence and Statistics V, (Springer-Verlag, New York), pp. 199-206.

Auer, P., R.C. Holte, and W. Maass (1995), "Theory and Applications of Agnostic PAC-Leaming with
Small Decision Trees," Proceedings of the Twelfth International Conference on Machine Learning,
Tahoe City, CA, pp. 21-29 (Morgan Kaufmann, San Francisco, CA).

Breslow, L. and D.W. Aha (1997a), "Simplifying Decision Trees: A Survey," Knowledge Engineering
Review 12, 1-40.

Breslow, L. and D.W. Aha (1997b), "Comparing Tree-Simplification Procedures," Proceedings of the Sixth
International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, pp. 67-74 (Un-
published).

Brodley, C.E. and P.E. Utgoff (1995), "Multivariate Decision Trees," Machine Learning 19, 45-77.

Cherkauer, K.J. and J.W. Shavlik (1996), "Growing Simpler Decision Trees to Facilitate Knowledge Dis-
covery," Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, Portland, OR, pp. 315-318 (AAAI Press, San Mateo, CA).

Daelemans, W., A. van den Bosch, and T. Weijters (1997), "IGTree: Using Trees for Compression and
Classification in Lazy Learning Algorithms," Artificial Intelligence Review 11, 407-423.

Esposito, F., D. Malerba, and G. Semeraro (1993), "Decision Tree Pruning as a Search in the State Space"
Proceedings of the Sixth European Conference on Machine Learning, Vienna, Austria, pp. 165-184
(Springer-Verlag, Heidelberg, Germany).

Fayyad, U.M. and K.B. Irani (1992), "The Attribute Selection Problem in Decision Tree Generation"
Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, pp. 104-110
(AAAI Press, San Mateo, CA).

Gaines, B.R. (1995), "Structured and Unstructured Induction with EDAGs," Proceedings of the First In-
ternational Conference on Knowledge Discovery and Data Mining, Montreal, Canada, (AAAI Press,
San Mateo, CA).

Gaines, B.R. (1996), "Transforming Rules and Trees into Comprehensible Knowledge Structures," Ad-
vances in Knowledge Discovery and Data Mining (MIT Press, Cambridge, MA).

John, G. (1995), "Robust Decision Trees: Removing Outliers in Databases," Proceedings of the First
International Conference on Knowledge Discovery and Data Mining, Mohtreal, Canada, pp. 174-
179 (AAAI Press, San Mateo, CA).

Messmer, B.T. and H. Bunke (1995), "Subgraph Isomorphism in Polynomial Time," Technical Report
IAM 95-003, University of Bern, Institute of Computer Science and Applied Mathematics, Bern,
Switzerland.

Mingers, J. (1989), "An Empirical Comparison of Pruning Methods for Decision Tree Induction," Machine

Learning 4, 227-243.

Pagallo, G. and D. Haussler (1990), "Boolean Feature Discovery in Empirical Learning," Machine Learn-
ing 5, 71-100.

P6rez, E. and L.A. Rendell (1995), "Using Multidimensional Projection to Find Relations," Proceedings of
the Twelfth International Conference on Machine Learning, Tahoe City, CA, pp. 447-455 (Morgan
Kaufmann, San Francisco, CA).

Quinlan, J.R. (1993), C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, CA).

16 Aha and Breslow

Quinlan, J.R. (1996), "Improved Use of Continuous Attributes in C4.5," Journal of Artificial Intelligence
Research 4, 77-90.

Ragavan, H. and L. Rendell (1993), "Lookahead Feature Construction for Learning Hard Concepts," Pro-
ceedings of the Tenth International Conference on Machine Learning, Amherst, MA, pp. 252-259
(Morgan Kaufmann, San Francisco, CA).

Utgoff, P.E. (1996), "Decision Tree Induction Based on Efficient Tree Restructuring," Technical Report
95-18, University of Massachusetts, Department of Computer Science, Amherst, MA.

Utgoff, P.E. and J.A. Clouse (1996), "A Kolmogorov-Smirnoff Metric for Decision Tree Induction," Tech-
nical Report 96-3, University of Massachusetts, Department of Computer Science, Amherst, MA.

Zheng, Z. (1995), "Constructing Nominal X-of-N Attributes," Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 1064-1070 (Morgan Kaufmann,
San Francisco, CA).

Appendix

DEFAULT AND TUNED PARAMETER SETTINGS

This Appendix lists the parameter settings used to test the algorithms in the experiments described in
Section 5. The order corresponds roughly to the left-to-right ordering shown in the framework displayed in
Fig. 2.

The algorithms tested in Section 5 were run in two modes. In the first mode, default settings were
used for its parameters. In the second mode, each algorithm's parameter settings were automatically tuned
using a 10-fold cross validation process. In this case, we used the entire data set to locate these settings
using a factorial design on a small number of independent variables (i.e., parameters). That is, we tested
the algorithm using all combinations of parameter settings (each combination tested with 10-fold CV), and
retained the combination that yielded the highest accuracy. These parameter settings were then used in the
10-fold CV studies whose results are described in Section 5.1.

The following tables describe the default parameter settings (italicized), the range of values examined
per parameter during the parameter tuning study, and the best parameter settings found while tuning (bold-
faced). We do not include a boldfaced value for parameters that were not tuned.

Two minor points should be noted. First, the tuned stopping criterion/weight for the three C4.5 variants
was 1 for ROBUST C4.5 and 10 for both C4.5 R7 and C4.5 R8. Second, no testing is the system default
for C4.5 RULES for the rule condition confidence level parameter, but we used 0.25 because we want to
simplify the induced data structures.

Table Al - Parameter Settings for T2 (Auer et al., 1995) (not tuned)

Parameter Notation Value Selected
Tree size -x 2-level tree

Number of splits at bottom nodes -i x Number of classes +1

Table A2 - The C4.5 Variants (R7, R8, Robust) (Quinlan, 1993; 1996; John, 1995)

Parameter Notation Values Tested
Pruning confidence level -c x {1,3,5,10,15,25,35,45}
Attribute grouping -s {grouping, no grouping}

Stopping criterion/weight -m x {1,2,3,4,5,10,15,20}
Test selection measure -g Gain ratio
Windowing: number of trees -t X' No windowing

17

18 Aha and Breslow

Table A3 - The ITI Variants (Utgoff, 1995; Utgoff and Clouse, 1996) (not tuned)

Parameter Notation Value Selected
Error correction mode -e Not used

Direct metrics -E -M -N Not used

Non/Incremental mode -f/-i Nonincremental

Selection measure -G or -K -G for ITI-GR, -K for ITI-KS

Table A4 - LMDT (Brodley and Utgoff, 1995) (not tuned)

Parameter Notation Value Selected
Anneal rate -a 0.995
Features elimination -k DSBE elimination

Test selection measure -y Gain ratio

Zero weights after each elimination? -z No

Table A5 - XOFN (Zheng, 1995) (not tuned)

Parameter Notation Value Selected
X-of-N's as nominal features -T x When constructed, for tree building

Pruning confidence level -c x 25

Attribute grouping -s No grouping

Stopping criterion/weight -m x 2

Test selection measure -g Gain ratio

Comparing Simplification Procedures for Decision Trees 19

Table A6 - SET-GEN (Cherkauer and Shavlik, 1996)

Parameter Values Tested
Pruning Confidence Levels Per Fold

Fold 1 .05,. 15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 2 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 3 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 4 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 5 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 6 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 7 .05,. 15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 8 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 9 .05,.15,.25,.35,.45,.55,.65,.75,.85,.95

Fold 10 .05,. 15,.25,.35,.45,.55,.65,.75,.85,.95

Population size 100

Number of children 4900

Genome size 193

Accuracy weight 0.75
Proportion children made by delete-feature 0.33

Proportion children made by mutation 0.33

Crossover rate 0.10

Mutation rate 0.10

Table A7 - C4.5 RULES (Quinlan, 1993)

Parameter Notation Values Tested
Attribute redundancy ratio -r {.8,.9,1.0,1.1,1.2,1.3,1.5,2.0,2.5,3.5}

Rule condition confidence level -F jNo testing,.01,.05,.10,.15,.25}

Pruning confidence level -c x {.01,.03,.05,.10,.15,.25,.35,.45}

