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ABSTRACT 

This report focuses on fundamental theoretical issues relevant to the capabilities, performance, 
and limitations of artificial neural networks. 

For static (feedforward) networks, subjects of investigation included the study of error sur- 
faces for least squares fitting, VC and other learning dimensions, representability questions, and 
function approximation. For dynamic (recurrent) nets, covered are questions dealing with para- 
meter identification and modeling, realizability and other systems-theoretic issues, theoretical 
computational capabilities, and learning-theoretic issues. 
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1    Introduction 

This project focused on theoretical issues regarding capabilities, performance, and limitations of 
"neural computation." (Artificial) neural networks are structures inspired by the way biological 
nervous systems process information. They consist of a large number of highly interconnected 
relatively simple processing elements or "'neurons" whose collective behavior is interpreted as a 
computation, typically involving tasks of classification, function evaluation, systems simulation, 
or control. Most often, neural networks are designed by numerical parameter-fitting routines, 
such as gradient descent, which are in part appealing because of their analogies to "learning" in 
biological systems by means of adjustments to (excitatory or inhibitory) synaptic connections. 
Much research carried out by AFOSR contractors and Air Force labs concerns the use of neural 
network techniques when dealing, among others, with problems of fault detection and classifica- 
tion (in particular, for reconfigurable aircraft), design of controls valid over large flight envelopes, 
and precision laying of composites on aircraft structures. Unquestionably, there is a demand for 
basic theoretical foundations for the analysis and comparison of different models and algorithms. 
This work concerns the development of such foundations. 

The area of neural computing has seen several periods of high interest and expectations, 
since at least the late 1940s, separated by periods of reaction to exaggerated claims by some 
of its proponents. During the times of less activity, there was nonetheless a continued research 
effort by major researchers such as Kohonen and Grossberg all along, but the latest resurgence 
in interest was due in large part to the two independent developments, namely the introduction 
and study of: 

1. classes of functions defined by feedforward nets or "multilayer perceptrons" with sigmoidal 
activations, which are dense (in various spaces of real-valued vector functions), could in 
principle be fit to data through nonlinear optimization, and may be evaluated by finely- 
grained parallel computation, and 

2. classes of dynamical systems called feedback or recurrent nets, which also possess approx- 
imation properties (now with regards to classes of dynamical systems), parametric forms 
suitable for optimization, and parallel computation characteristics. 

The first line of work was popularized by the Rumelhart and McClelland "PDP" books, while the 
second was heavily influenced by a technique for associative memory storage and retrieval due 
to Hopfield. The catalyst for both was the contemporaneous availability of low-cost computing 
power (for simulations and implementations) made possible by microprocessor technology, in 
amounts which were unimaginable when similar ideas had been considered in the past. 

1.1    Main Motivation for This Work 

Many practical successes of the associated technologies have been claimed in both the engineering 
and popular press. A fair amount of research exists by now on theoretical issues for neural 
networks, though papers are scattered in various journals. The "NeuroCOLT" project in Europe 
is one excellent source of material which is available online, as well as references. (See also the first 
Pi's Web pages, and references later and in cited papers, for further pointers to the literature.) 
There are several textbooks dealing with theoretical issues concerning neural networks, such as 
the one recently published by Vidyasagar, but a great deal of basic questions are still poorly 
understood. 
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1.2 Another Motivation 

There is another motivation as well which underlies the work reported here. This arises from 
an issue that has come up in many domains -including computer, communications, and control 
engineering- concerning the interface between on the one hand the continuous, physical, world 
and on the other hand discrete devices such as digital computers, capable of symbolic processing. 
Lately the term "hybrid" systems has become popular in this context. 

For instance, classical control techniques, especially for linear systems, have proved spectac- 
ularly successful in automatically regulating relatively simple systems; however, for large-scale 
problems, controllers resulting from the application of the well-developed theory are used as build- 
ing blocks of more complex systems. The integration of these systems is often accomplished by 
means of ad-hoc techniques that combine pattern recognition devices, various types of switching 
controllers, and humans -or, more recently, expert systems- in supervisory capabilities. This has 
caused renewed interest in the formulation of mathematical models in which the interface between 
the continuous and the symbolic is naturally accomplished and system-theoretic questions can be 
formulated and resolved for the resulting models. Successful approaches will eventually allow the 
interplay of modern control theory with automata theory and other techniques from computer 
science. This interest has motivated much research into areas such as discrete-event systems, 
supervisory control, and more generally "intelligent control systems". As an illustration of the in- 
terest level this subject attracts, suffice it to say that a recent workshop at Rutgers, co-sponsored 
and cofunded by the Pis' Center for Systems and Control (SYCON), was attended by well over a 
hundred researchers in hybrid systems (only a subset of those who applied, being constrained by 
space and funding limitations), and resulted in a lively exchange of ideas, reflected in the extens- 
ive proceedings volume [6]. (The Pis are actively involved in organization activities for further 
hybrid systems meetings, including membership in the Grenoble 1997 program committee.) 

The present work has as one of its underlying objectives the analysis of neural networks as a 
paradigm in which to understand hybrid systems issues. Other paradigms could be used as well; 
it so turns out that neural nets appear to be a particularly appealing and very mathematically 
natural class of nonlinear systems, as will be explained in the report. 

Similarly, in numerical analysis and optimization, much activity has taken place in the realm 
of continuous algorithms. Included here are such areas as differential-equation implementations 
of "interior methods" for linear and nonlinear programming, the use of flows on manifolds to 
solve eigenvalue and optimization problems (in particular the work of Brockett and his school), 
and the Blum-Shub-Smale approach to "real valued" algorithms. All these deal in one way or 
another with the power of "analog computing" to solve problems that can also be attacked with 
discrete/symbolic techniques. Again, we view the neural net paradigm as one in which to explore 
the interface between "digital" and "analog" modes of computation. In fact, work by one of the 
Pis and one of his students has succeeded in formulating a new computer-science approach to 
these issues and has been reported upon to the general scientific community (Science. April 28, 
1995). 

1.3 Neural Networks 

The term "neural network" tends to be applied loosely, making the area too broad and ill-defined. 
For a mathematical study, especially when providing comparative results, precise definitions 
are required. For purposes of this report, therefore, we adopt the most popular paradigm: 
(artificial) neural nets are systems composed of saturation-type nonlinearities, linear elements, 
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and optionally dynamic components (integrators in continuous time, delays in discrete time). 
When restricting attention to these, while still a huge subject, the scope leaves out a variety of 
topics sometimes included, such as "radial basis" networks or multiplicative effects (high-order 
networks); many of our results and reported ideas do apply to such more general classes as well 
(for instance, those on VC dimension, the estimates on classification of sets in general position, 
results on impossibility of feedback control when using certain architectures, and so forth), but 
by narrowing-down the area we can focus our discussion better. There are two basic types of 
networks: feedforward and feedback, introduced next. 

Feedforward Networks 

This model consists of feedback-free interconnections of basic units, or "neurons". Each unit 
operates on some linear combination of the outputs of other units and signals arising from outside 
the network (the environment). The output produced by each unit has an intensity that is a 
nonlinear function of this aggregate input, and it is transmitted to other neurons. A subset of 
the outputs, or a set of linear combinations of these outputs, represents the output of the network 
as a response to the inputs from the environment. In this manner, a neural network determines 
an input/output mapping. When viewing the linear combination coefficients as parameters to be 
"tuned" or adjusted, networks play the role of parametric families of functions. 

An often-mentioned engineering justification for the use of neural networks lies in their distrib- 
uted character, which in principle allows a degree of fault tolerance. Moreover, direct hardware 
implementations of neural networks exploit their inherent parallelism, and often run orders of 
magnitude faster than software simulations. Most major chip manufacturers have offered neural 
net chips, and various complete neurocomputers are commercially available. As one example of 
direct AF interest, an 8,000-neuron chip developed by AAC (Accurate Automation Corporation) 
has been reportedly used to control a subscale model of the the USAF unmanned 5.5 Mach 
"waverider" (cf. Aviation Week & Space Tech, April 3, 1995, pp. 78-79). 

Also motivating the use of nets is the belief that in some sense they are an especially appropri- 
ate family of parameterized models, as opposed to, say, finite Fourier series or splines. Numerical 
and statistical advantages are said to include excellent capabilities for learning, adaptation, and 
generalization. We do not argue the case for or against this belief here. Notwithstanding some 
popular claims to the contrary (for instance, supported by the rate of approximation results re- 
viewed in the report), we feel that the situation is still very unclear regarding the relative merits 
of using neural nets. Nevertheless, since techniques based on neural networks play a role as part 
of the general set of tools in estimation, learning, and control, a deeper understanding of the topic 
is a prerequisite to theoretical comparisons. 

Feedback Nets 

Recurrent neural networks are those which include dynamic elements (delay lines or integrators, 
in discrete and continuous time scales respectively), in contrast to feedforward, nets, which only 
contain static units. Their behavior is described by means of systems of difference (in discrete 
time) or differential (in continuous time) equations. 

Part of this report focuses on such dynamic networks, whose interest arises from the many 
applications in which input data is a function of time. For example, the inputs fed into a 
speech recognition system might be sequences consisting of windowed Fourier coefficients and 
signal levels at each instant; as another example, in control problems the inputs to a regulator 
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might be time-dependent measurements of the plant being controlled as well as the successive 
coordinates of a path to be tracked. It is desirable to make use of the information implicit in 
the correlations and dependencies that exist among the inputs at different times, and this can 
be achieved by considering models which consist of dynamical systems, of which recurrent nets 
provide a particularly rich subclass. 

Recurrent networks are among the models considered by Grossberg and his school during 
the last twenty or more years, and include the networks proposed by Hopfield for associative 
memory and optimization. They have been employed in the design of control laws for robotic 
manipulators (Jordan), as well as in speech recognition (Fallside, Kuhn), speaker identification 
(Anderson), formal language inference (Giles), and sequence extrapolation for time series pre- 
diction (Farmer). In both the areas of signal processing and control, recurrent nets have been 
proposed as generic identification models or as prototype dynamic controllers. In addition, as dis- 
cussed later, theoretical results about neural networks established their universality as models for 
systems approximation as well as analog computing devices. Special purpose chips are being built 
to implement recurrent nets directly in hardware, just as done for feedforward nets; for instance, 
Hitachi's Wafer Scale Integration chips have been designed to implement Hopfield nets with over 
500 neurons and 30,000 synaptic connections. Electrical circuit implementations of recurrent nets, 
employing resistively connected networks of nonlinear amplifiers, with the resistor characteristics 
used to reflect the desired weights, have been suggested as analog computers, in particular for 
solving constrained optimization problems and for implementing content-addressable memories. 

1.4 Learning Theory and Other Methodologies 

We wish to study the question what are special properties of neural networks? (as models 
for functions or for dynamical systems). It is extremely difficult to answer directly questions 
such as "how do nets compare with Fourier expansions?" — obviously, if the task involves 
periodic signals, it would be innapropriate to use neural networks, but if one has data that is 
partitioned naturally by affine subspaces, networks may be more indicated. It is more reasonable 
to search for a theoretical understanding of properties of nets according to various accepted 
quantifiable criteria, such as rates of approximation, learning-theoretic (VC, Pollard) dimensions, 
metric entropy of associated function spaces, interpolation and extrapolation ("generalization") 
measures, pattern classification power, and so forth. This is why we focused much of our work 
on questions arising from a learning-theoretic framework that allows the formulation of such 
questions. This framework leads to posing mathematical problems whose solution requires tools 
from areas as diverse as approximation theory, stochastic processes, or analytic function theory. 

Other questions about networks lead to issues of a system-theoretic character, such as de- 
ciding if there are redundant internal states in a feedback net (controllability, observability) or 
if parameters can be identified from input/output data. For these problems, tools from control 
theory are natural. 

1.5 Scope and Organization of the report 

The main subtopics of our research can be organized roughly into these broad categories: 

• Static ("Feedforward") Nets for Classification and Function Approximation 

- Critical Points of Error Function 

- VC Dimension Bounds 
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- Classification of Inputs in General Position 

- Uses for Implementation of State-Feedback Control 

o Single vs Multiple Layers 
o Control of Linear Systems with Saturation: Continuous and Discrete Time 

- Function Approximation 

• Dynamic ("Feedback^ or "Recurrent") Nets for Systems Modeling 

- Sample Complexity for Identification 

- Parameter Identification and System-Theoretic Aspects 

- Nets as Models of Analog Computing 

- Hybrid Systems: Piecewise Linear 

We did not organize this report precisely according to this outline of scope, however. We prefer 
to follow a more natural discussion, introducing subjects according to their motivation (structure, 
learning, feedback control, etc). Thus, the first part of this report, Section 2, provides a brief 
introduction to neural networks, learning theory, construction of feedback, dynamical systems 
questions, computability, and other ingredients of the work. We attempt to give as few technical 
details as possible while still conveying the main issues, results, and problems. 

Given the range of subjects treated, and the different methodologies employed in each, lack of 
space prevents giving details on all subtopics. Thus we have chosen only a few selected subtopics, 
especially those represented in very recent work and hence possibly less easily available to readers, 
to be explained in somewhat more detail, in the last part, Section 3. Overall, however, most 
of the discussion in this report is informal, with references to the literature for precise technical 
points. The Web page 

http://www.math.rutgers.edu/~sontag/ 

provides access to a substantial number of papers by the Pis, and these may be consulted for 
many more details and a mathematically rigorous presentation. 
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2    Overview 

In this part of the report, we discuss the model of neural nets, and we explain in gen- 
eral terms the types of problems considered. The next part has some further technical 
details on selected subtopics. As mentioned earlier, the Web page found at the URL: 
http://www.math.rutgers.edu/sontag/ provides access to a substantial number of papers 
by the Pis. to be consulted for details and a mathematically rigorous presentation. 

We first discuss the model in informal terms. 

Feedforward (Static) Nets 

A feedforward neural network is an interconnection of basic processors of a certain particular 
form. 

inputs 
affine 

combination 
-•-0—*- output 

As discussed in the introductory section, we restrict attention here to the standard paradigm in 
which each processor is a "first order neuron," though many of our results apply to more general 
models. A first-order neuron is a device with multiple inputs and a single output channel; it 
integrates its inputs according to "synaptic" weights (positive values of weights correspond to 
excitatory connections and negative values to inhibitory ones, in the biological analogy), and, with 
an intensity that is a function of the aggregate value obtained from this combination of signals, it 
"fires" its response signal. The inputs to each neuron are, themselves, outputs from other neurons 
or signals originating from outside the system (inputs to the network). The output signal that a 
neuron produces is broadcast to the rest of the system. Some set of linear combinations of signals, 
or as a special case just the outputs of a designated set of "output neurons," is interpreted as 
the output signal produced by the whole network. 

Mathematically, the output produced by each individual neuron in the network has the form 
a(ao + aiUi + ... + OmUm), where (ui,....itm) are the inputs to that neuron. The transformation 
a : 1 -4 R is called the "activation function" Sometimes one assumes that all the activations 
are the same, equal to a fixed a\ when this happens, we'll say here that the net is homogeneous. 
The coefficients a* of the affine combination of inputs that is computed by each neuron are often 
called "weights" or "programmable parameters" (a0 is sometimes called the "bias"), and are in 
general different for each processor in the given network. 

The interconnection structure can be formally specified in terms of a graph whose nodes are 
the neurons, or equivalently in matrix theoretic terms. Once that this interconnection structure, 
the activation functions a for each neuron, and the values of the weights have been fixed, the 
behavior of the network, as a device transforming external inputs to outputs, is well-defined. 

For example, the left part of Figure 1 provides a "block diagram" for a static net which 
computes the function y = 2a4f3cri(5ui-U2)+2a2(ui+2u2+l)+lJ+5o-3^-3a2(ui+2u2+l)-l) . 

(Ignore both the right diagram and the dotted line for now.) There are four neurons, with 
activations a{, i = 1,2.3,4, two external inputs u\ and u2. and the scalar output y of the network 
is a linear combination of the outputs of two of the neurons; the numbers 2,3,..., -1 are the 
weights of the network. 

The Activation Function 

There are several choices for a that are typical in theory and applications. 
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Figure 1: Examples of one Feedforward and one Recurrent Net 

S1^ 7T .       -   tanh 

Figure 2: Different Functions a 

The first is the "sign" function, sign (i) = x/\x\ (zero for x=0), or its relative, the hardlimiter, 
threshold, or Heaviside function H(x), which equals 1 if x > 0 and 0 for x < 0 (in either case, one 
could define the value at zero differently; results do not change much). In order to apply various 
numerical techniques, one often needs a differentiable a that somehow approximates sign(x) or 
H{x). For this, it is customary to consider the hyperbolic tangent tanh(i), which is close to the 
sign function when the "gain" 7 is large in tanhfrx). Equivalently, up to translations and change 
of coordinates, one may use the standard sigmoid 

ff8(x)  = 

Also common in practice is a piecewise linear function, 

ir(x) = 
ifx<-l 
ifx>l 
otherwise. 

(1) 

(2) 

This is sometimes called a "semilinear" or "saturated linearity" function. 

Feedback (Dynamic) Networks 

When studying feedforward nets, there is no need to introduce an explicit concept of time. 
Outputs may be understood either as being produced instantaneously, or after a fixed processing 
delay, but mathematically it makes no difference: in either case, the behavior of the network can be 
interpreted as a mapping from input values to output values. We always think of feedforward nets 
as computing functions between finite-dimensional input and output spaces. As an illustration, 
the network that was shown in the first example in Figure 1 induces a mapping R2 -»■ E. 

. When interconnection graphs have cycles, in contrast, it is in general impossible to define the 
behavior of a network solely in static terms, since there may arise algebraic inconsistencies. This 
is illustrated by this simple network: 

u-K+)-K2)- 
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with for instance a(x) = x, for which the output y is undefined if u is a nonzero input. One 
must explicitly introduce a processing delay and understand the behavior as an iteration, starting 
from some initial state. In graphical terms, a way to represent this situation is by adding to the 
definition of networks, besides neurons as described earlier, also dynamic elements, namely unit 
delays. 

U-K+ unit 
delay y 

For instance, in this example, if the each initial value of y is t/o, then after one step one has y equal 
to <T(J/O+U(0)), where u(0) is the input at "time 0", after two steps one has a(a(yo-ru(0))+u{l)), 
and so forth. In this manner, the behavior of a network is described by a system of difference 
equations — one equation for the state of each neuron — which are forced by the external inputs. 
One obtains discrete-time systems in the sense standard in system theory (see e.g. [5]). 

An alternative way to model feedback nets is to use a continuous time scale and, accordingly, 
systems of differential instead of difference equations. This alternative corresponds to thinking of 
neurons as capacitors. It can be represented by using integrators as dynamic elements, and gives 
rise to continuous-time systems in the sense of system theory. As a simple example, consider the 
right part of Figure 1. The behavior of this net is described by the following system of differential 
equations: 

±i(t)   =   ai(2xi(t) + x2(t) - ui(t) + U2{t)) (3a) 

x2(t)   =   a2( - x2(t) + 3u2(t)) (3b) 

y{t)   =   xx(t), (3c) 

where the dot indicates derivative with respect to time, a\ and o2 are two activation functions, 
the input to the system is given by the vector u(t) = {ui(t),u2(t)), and the output at time t is 
the current value of xi. (We usually omit arguments "*".) 

One speaks of (discrete or continuous time) feedback, recurrent, or dynamic nets when dy- 
namic elements are included. 

One way to associate an input/output behavior to a dynamic net, given a specified set of 
initial conditions, is by looking at the last output that results after a finite-length input has 
been presented. For instance, in the above example, suppose that we fixed the initial state 
as xi(0) = X2(0) = 0. Then, given any input u{t) = {u\(t),u2(t)) defined for t € [0,T], we 
may solve the system of differential equations (3) with u(-) substituted into the right-hand side. 
(More precisely, one should assume, for instance, that a satisfies a globally Lipschitz continuity 
condition, so that solutions are indeed defined for alH € [0,T], and that the input components 
are in £°°(0,oo).) In this way we obtain a state trajectory (xi(t),x2{t)). We may then read-out 
the output y(T) = x\(T) and interpret it as the output of the network in response to the forcing 
function u. 

2.1    Definitions: Feedforward Nets 

By an (m, n)-layer we mean a triple 
(A, a, a) (4) 
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consisting of a matrix A G Rnxm, a vector a € A", and a diagonal mapping 

Xi \ /<7l(Xl)\ 

^ : 
\cr„(a;n)/ 

(5) 

where ai,...,cr„ are maps R ->• R The mapping induced by the layer E = {A,a.a) is the 
function 

¥>= :   Rm -> R" : u ^ er (Au + a) (6) 

The component maps o\,...,on are the activations of the layer. If it is the case that all the C{ 
are equal to a fixed function a, we say that the layer is homogeneous with activation a and write 
also <?(") instead of er. 

Let k be a positive integer. A k-hidden layer net is a k + 1-tuple (E1,..., E*+1) of layers, 
where Efc+1 is homogeneous with identity activation o{x) = x. The mapping induced by the net 
(E1,..., Efc+1), where each E' is an (n;_i,nj)-layer, is the composition 

V^ ^' : Rm->RP 

where m = no and p = rik+i- The integer n := n\ +... + n* is the number of neurons of the net. 
The spaces Rm and RP are called, respectively, the input and output spaces of the net. (The layers 
E1,..., Efc are often called hidden layers to reflect the fact that the signals in the intermediate 
spaces are not part of inputs or outputs and in that sense they are "hidden" from the external 
environment.) The activations of the net are the activations of the layers E1,..., Efc. We say that 
the net is homogeneous with activation a if all the activations of the layers E1, i = 1,..., k are 
equal to the fixed function a. Obviously, a vector mapping / : Rm -> Rp is induced by some net 
with activations belonging to a given set S if and only if each of its components fi : Rm -> R is 
induced by some net with activations from this set 5. Thus one often studies only scalar-output 
nets. 

As an illustration, take again the diagram in the left part of Figure 1, ignoring both the right 
diagram and the dotted line for now. This is a pictorial representation of a 2-hidden layer net 
whose (2,2)-layer E1 is defined by 

■*-tt7J ■■•-(!)■•- (S): 
while the (2,2)-layer E2 is defined by 

-(!i) —(iO"-(S) 
and the (2, l)-layer E3 has A = (2    5) and a = 0. The mapping induced by this net is 

R2 -> R : u !-»• 2CT4(3<7I(5UI - u2) + 2a2{ux + 2u2 + 1) + l) + 5CT3( - 3<T2(UI + 2u2 + 1) - l) . 

2.1.1    Particular Case: Single-Hidden Layer Nets 

A particular case, which appears often in the discussions to follow, is that of homogeneous, 
scalar-output, single hidden layer nets (just 1HL from now on). A function / can be expressed 
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as the input/output mapping induced by a 1HL net with activation a if and only if / belongs to 
the affine span of the (multivariate) dilations and translates of a: 

/(it) = co + ]T Ci<j(AiU + at) = Ca{n){Au + a) + CQ , 7) 
i=l 

where we have taken E1 = (A, a, ffW), E2 = (C,co,id), and we are denoting by A{ the ith 
row of the matrix A. a = col(ai,... ,an), and C = (ci,...,Cn). Letting A = (a^) and u = 
col(ui....,um). the corresponding 1HL net may be represented diagrammatically as in Figure 3. 

Figure 3: Homogeneous Scalar-output One Hidden Layer (1HL) Net 

The interest in 1HL nets, besides their simplicity and their resemblance to related mathemat- 
ical constructs (functional expansions of various types, wavelets, etc) is due in large part to the 
density properties, of functions computed by 1HL nets, with respect to various spaces (continu- 
ous functions, Lp spaces, p < oo, Sobolev spaces under additional differentiability hypotheses). 
It is by now well-known, thanks to the pioneering work of Cybenko, Hornik, White, Leshno, and 
others, that 1HL networks have these universal approximation properties, assuming very little on 
the activation a besides it not being polynomial (for simple proofs, which apply to restricted yet 
quite general activations, see [32]). 

Of course, one should not read too much into this universality property, since better rates 
of convergence in function approximation, or better classifiers for pattern recognition, or better 
feedback control laws, may be obtainable with more complex networks than 1HL ones. (As an 
analogy, polynomials are dense iri spaces of continuous functions but they are not necessarily the 
right choice in approximation problems, where other families of functions, such as splines, are 
often preferred.) This has been remarked often in the literature; see for instance [10]. 

In fact, two-hidden layer nets turn out to be more appropriate, from a theoretical standpoint, 
for certain problems. For instance, the characteristic function of a square in the plane can be 
easily approximated by the output of a homogeneous two-hidden layer net (with various types 
of a), but good approximations using 1HL nets require many terms (no matter what a). A basic 
problem is that uniform approximation of discontinuous functions is in general impossible using 
1HL nets; technically, there is no density on L°°, even on compact subsets; as a matter of fact, an 
even stronger negative result holds regarding the impossibility of constructing sections of certain 
coverings, as discussed in [10]. This has serious implications in solving inverse problems, such as 
inverse kinematics computations in robotics, and indeed has been noted experimentally by many 
authors. The same problem appears in control applications, as explained later. 
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2.2    Definitions: Feedback Nets 

By an n-dimensional, m-input, p-output recurrent net we mean a quadruple (A.B,C, cr) con- 
sisting of three matrices A € R"xn. B G Rnxm, C € Rpxn and a diagonal mapping a as in 
Equation (5). An initialized recurrent net is a 5-tuple 

E = {A,B,C,x°,cr) (8) 

consisting of a recurrent net {A, B. C, cr) together with a vector x° e Rn. The (discrete or 
continuous time) system induced by the net (8) is the set of n coupled (difference or differential, 
respectively) equations, plus measurement function:      . 

x(t + l)[orx(t)] = cr(Ax{t) + Bu(t)) ,  x(0) = x°,    y(t) = Cx{t). (9) 

The component maps o\,... ,-<rn of cr are the activations of the net. If it is the case that all the 
Oi are equal to a fixed function er, we say that the net is homogeneous with, activation a and 
write also 5^ instead of cr. The spaces Rm, R", and Rp are called respectively the input, state, 
and output spaces of the net. 

As an illustration, take again the diagram in the right part of Figure 1. This is a pictorial 
representation of the 2-dimensional. 2-input, single-output recurrent net defined by 

*-a'i.).'-(".1 iW"»-'-® 
and inducing the system (3). 

In the present context, one interprets the vector equations for x in (9) as representing the 
evolution of an ensemble of n "neurons," where each coordinate Xi of x is a real-valued variable 
which represents the internal state of the zth neuron, and each coordinate u,. i = 1,..., m of u 
is an external input signal. The coefficients Aij,Bij denote the weights, intensities, or "synaptic 
strengths," of the various connections. The coordinates of y(t) represent the output of p probes, 
or measurement devices, each of which averages the activation values of many neurons. Often 
C is just a projection on some coordinates, that is, the components of y are simply a subset 
of the components of x. Several motivations for the study of recurrent nets are mentioned in 
sections 1.3 and 2.4. 

The linear systems customarily studied in control theory are precisely the homogeneous re- 
current nets with identity activation and z° = 0. This formal analogy to linear systems, for 
which a very detailed theory has been developed (see e.g. the textbook [5]) turns out to be very 
fruitful, as we shall explain later. 

One also writes (9) simply as Ax = er{Ax + Bu), x(0) '= x°, y = Cx. where Ax = x+ 

(time-shift) or Ax = x (time derivative) in discrete or continuous time respectively. Figure 4 
gives a "block diagram" of (9). 

To each initialized recurrent net {A, B, C, x°, cr) we associate a discrete time and a continuous 
time input/output behavior. Assume given a sequence u = u(0),..., u{k — 1) of elements of the 
input space Rm. One may iteratively solve the difference equation (9) starting with x(0) = £, 
thereby obtaining a sequence of state vectors x(l),... ,x(k). In this manner, each initialized 
recurrent net induces a mapping, on inputs of fixed length k, 

A*  :  (Rm)*-»Rp : u^y{k) = Cx{k) (10) 
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Figure 4: Recurrent Net 

which assigns to the input u the last output produced in response. Sometimes one also introduces 
AE : (Jjk (Km)fc -*• Rp on all possible sequences by letting the restriction of AE to (Em)fc be A*. 
In continuous time, analogous maps are defined on inputs u : [0, k] -» Rm, through solution of 
an initial value problem with x(0) = £. This requires certain technical hypotheses (for instance. 
Lipschitz continuous activations, and inputs that are measurable and locally integrable) which 
we do not need to discuss here; see [5] for the precise definitions. 

Several variations of the above model can be found in the literature, such as systems of the 
following form: 

x = —Dx + a {Ax + Bu),    y = Cx, 

where D a diagonal matrix (for "Hopfield nets" one picks in addition A symmetric) and A, B. C 
are as before. Observe that, if D has negative entries, and if the activations are bounded, all 
solutions x(t) in this equation are bounded (because the linear term dominates, for large x); it 
is this stability property that makes the variation appealing in applications. In other variants, 
the input term Bit may be outside the nonlinearity. The paper [14] showed how, at least for 
certain problems, it is possible to transform among the different models, in such a way that once 
that results are obtained for (9), corollaries for the variants are easily obtained. Thus, here we 
restrict attention to the simpler form (9), which has the advantage of requiring one less object 
(no need for the matrix D) for its specification. 

One may broaden the notion of initialized recurrent net by allowing "biases" or "offsets". i.e. 
nonzero vectors dGR" and e € IP in the update and the measurement equations respectively. 
These equations would then take the more general form x+ = a(Ax+Bu+d), y = Cx+e. Despite 
the fact that biases are useful, we do not need to include such an extension in the formal definition. 
This is because the input/output behavior of any such net also arises as the input /output behavior 
of a net in the sense defined earlier (zero biases), with state space Rn+1 and same activations. 
The simulation is achieved by means of the introduction of an additional variable z whose value 
is constantly equal to a nonzero number ZQ in the range of one of the activations, say er, in such a 
manner that the equations become x+ = <r{Ax + zd' + Bu), z+ = cr(aoz), y = Cx + ze', where a0 

is chosen so that cr(aozo) = zo and d', e' are so that zod' = d and z^e' = e (if the only activation 
is a = 0, there would be nothing to prove). 

2.3    Architectures 

Roughly, by an "architecture" one means a choice of interconnection structure and of the activ- 
ation functions a for each neuron, leaving weights and initial states unspecified, as parameters. 
One may also stipulate that the initial state, or just certain specific coordinates of it, should 
be zero (as with linear systems in control theory). Once than the architecture is fixed, feedfor- 
ward neural networks provide parametric families of functions, alternatives to more traditional 
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parametric sets of functions such as polynomials, splines, rational functions, finite Fourier expan- 
sions, or wavelets, and of potential use in areas such as function approximation and interpolation. 
Similarly, feedback networks with a fixed architecture provide parametric classes of dynamical 
systems, and as such, universal models for identification and adaptive control. We formalize the 
notion of architecture by means of incidence matrices, employing binary matrices in order to 
specify the allowed interconnection patterns and initial states. 

By an (m. n)-layer architecture we mean a triple 

(I,J,<r) (11) 

consisting of a matrix I € {0, l}nxm, a vector J G {0, l}n. and a diagonal mapping a as in 
Equation (5). As before, we call the component maps o\,...,on the activations of the layer 
architecture.   Let Jfc be a positive integer.   A k-hidden layer net architecture is a k + 1-tuple 
A = (£* ,£k+1) of layer architectures, where £fc+1 is homogeneous with identity activation 
a{x) = x. As earlier, we say that the architecture is homogeneous with activation a if all the 
activations of the layers £*, i = 1,..., k are equal to the fixed function a. A net with architecture 
A is an instantiation obtained by choosing values for the nonzero entries, that, is, any fc-hidden 
layer net (H1,..., S*+I) which is so that, for every i = 1, k + 1 the following property holds: 
if Sl = (A. a, tr) and £' = (/, J, a'), then tr = a' and the entries of the matrix and vector satisfy 
Afu, = 0 whenever 1^ = 0 and a^ = 0 whenever Jß = 0. 

Let A = (£*,..., £*+1)> where C is an (nj_i,rii)-layer (/', J\a1). We again call the integer 
n := m -i- ... + njt the number of neurons. Suppose that the binary matrix /' has exactly Aj 
nonzero entries and the binary vector J* has exactly m nonzero entries. Then we say that the 
number r := \\ + ... + Afc+i + ni + ...+ fik+i is the number of parameters or weights of A. and 
call Er the parameter or weight space, and, as before, lm and Rp the input and output spaces of 
A. Order the indices of the nonzero entries of the P's and J*'s in any fixed manner, for instance 
by listing the nonzero entries of I1 row by row, then those of J1, and so on up to Jk+1. These 
indices are in one-to-one correspondence with the coordinates of vectors in Er. In this manner, 
one may view the architecture A as inducing a mapping 

fA : 3r x f -> RP 

where /(p. •) is the mapping induced by the net (S1,..., £*+1) that would result if we substituted 
the parameters p into the nonzero entries. We denote by 

?A ~ {fA(Pr),peRr} (12) 

the class of functions lm -»• KP thus associated to the architecture A. 

As an example, the diagram in the left part of Figure 1 is a net with architecture (£\ £2. £3), 
where £l has 

'-(i !)•'-(!)■•-(::)■ 
(we used a dotted arrow in Figure 1 to exhibit a bias that is necessarily zero, due to the zero 
entry in J), £2 has 

"GO ■'-(!) ■--(::)• 
and layer £3 has / = (1    1) and J = 0. The mapping induced by this architecture is 

fA : a12 x R2 -»• R 
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where /(p, u) equals: 

Pll<T4fp6ffl(Pl"l +P2«2) +P7^2(P3«1 +P4«2 + P5) +P9) + Pl2CT3(p8CT2(P3"l + P4«2 + Pö) + Pio) 

and TA is the set of functions /(p, •) obtained for each fixed choice of the parameter vector p. 

We next define similar notions for the feedback case. By an n-dimensional. m-input. p-output 
recurrent architecture we mean a 5-tuple 

A = (a,ß,~f,S,v) (13) 

consisting of three matrices a G {0,l}nxn, ß G {0,l}nxm, and 7 € {0,l}Pxn, a vector £ G 
{0, l}n, and a diagonal mapping tr as in Equation (5). 

An initialized recurrent net with architecture A is an instantiation obtained by choosing values 
for the nonzero entries, that, is, any initialized recurrent net (A, B,C,x°,cr') such that a = a1 

and the entries of the matrices and vector satisfy Aij = 0 whenever a^j = 0, Bij = 0 whenever 
ßij = 0, Cij = 0 whenever 7^ =0, and x -1 = 0 whenever £,=0. 

We say also here that the component maps <TI,...,<7„ of tr are the activations of the net, 
which is homogeneous with activation a if all <7j are equal to a fixed function a. The spaces Rm, 
Rn, and W are respectively the input, state, and output spaces of the architecture. Suppose that 
the binary matrices a, ß, and 7 and the vector £ have exactly K, A, p, and v nonzero entries 
respectively; then we call the number r := K + A + p + u the number of parameters or weights 
of A, and call Rr the parameter or weight space. Arrange the indices of the nonzero entries in 
any fixed manner, for instance by listing their nonzero entries row by row, for a, ß, 7, and £ 
in that order. These indices are in one-to-one correspondence with the coordinates of vectors in 
Rr. In this manner, one may view the architecture A as representing a parameterized system 
(in continuous or discrete time) Ax = a {ax + ßu), x{0) = f, y = 71 where, by substituting the 
parameters p G Rr into the nonzero entries of (a,/3,7,£), every possible initialized recurrent net 
E = A{p) with architecture A results. 

For example, the diagram in the right part of Figure 1 is a recurrent net with architecture 
A, where 

and the (continuous-time) corresponding parameterized system (with parameter space R7) is 

±i{t)   =   ai(pixi(t) + P2X2(t) + p4«i(0 + PsM*)) (14a) 

±2(0   =   o2{pzx2{t) ■¥ p&u2{t)) (14b) 

y(t)   =   pjxiit). (14c) 

Recalling the notations in Equation (10), for each recurrent architecture A and each k > 0, 
we may introduce the set 

TAM :=  {A£,E = .A(p),pGlRr} (15) 

of mappings (R^)k -» lp. Elements of this set are the input/output mappings induced on inputs 
of length k by each possible initialized recurrent net with architecture A. 
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2.4    A General Framework for Learning 

In this section, we briefly review a formulation of the problem of learning. Our purpose in doing 
so is to motivate, and to set the stage for a description of, some of our main lines of research. 
We chose to base the discussion in terms of the paradigm currently popular in computational 
learning theory (COLT), a formulation which also appears, in a slightly different form, in related 
statistics areas of parametric and nonparametric estimation. (The COLT area, considered part 
of theoretical"computer science, is one of considerable activity at present, as evidenced by the 
profusion of papers and conferences on the subject.) The language to be introduced affords 
a way to systematically explore the capabilities of neural networks in the context of a precise 
mathematical formalism, but alternative formulations of the same fundamental questions are also 
possible, based on other methods from statistics and numerical analysis. 

The questions that we deal with can informally be described as concerning the choice of 
suitably "good" responses (outputs) to given stimuli (inputs). In applications, this may translate 
into tasks as diverse as: in state feedback control problems, finding a control that produces 
a desired action as a function of the current state; in OCR algorithms, guessing the correct 
character given a digitized image of a letter: or in market analysis programs, deciding whether to 
buy or sell a stock based on a time-window of price data. "Learning" comes into the picture if we 
assume that, as part of a preliminary "training" phase, we were supplied with a representative 
sample of such "good" responses, and our goal is to form associations which allow us to produce 
good responses for future inputs, including of course inputs which were not seen exactly during 
the training period (we haven't seen all possible apples and oranges, yet can reliable distinguish 
between them). It is this last quality of generalization (interpolation/extrapolation in an abstract 
sense) that makes the problem interesting: otherwise we could just in principle simply store all 
training data, and use efficient database retrieval methods for finding appropriate responses. One 
could say that, in some implicit sense, the goal of a learning system is to extract decision rules 
from training data, although the formalization to be discussed next does not make rule-extraction 
explicit. 

Of course, the problem of generalization is not well-posed unless we make some prior as- 
sumptions about what the "good" input/output pairs are. In numerical analysis, such prior 
assumptions take the form of smoothness constraints; in classical statistics one postulates e.g. 
normality of distributions. The general approach in learning theory is to postulate that there is 
a probability distribution P on input/output pairs (u, y) which generates the "good" pairs, in 
the sense that the desirable responses for a given u are those y for which the probability of y 
given the observed u is in some sense maximized. The distribution P may be unknown, but it 
will be assumed to be a member of a fixed class of distributions V (e.g.. normal distributions 
with different means and standard deviations, uniform distributions with different supports, or 
even the set of all probability measures with respect to a fixed <j-algebra). The most important 
assumption is one of stationarity: both the training samples and the data seen in the future 
(testing data) are assumed to be randomly drawn according to the same P. 

This general idea includes many cases of interest. A most important special case is that of 
function learning, in which the "good" pairs are those that belong to the graph of an unknown 
"target" (or "oracle," or "teacher") function h, whose behavior the learner attempts to.emulate. 
We assume that inputs u are generated randomly according to a probability distribution PQ, 

and for each input so generated, the target value y = h(u) is provided to the learning system. 
(At this level of abstraction, function learning includes systems identification, in which case h 
would represent a plant to be identified from its responses h{u) to, for instance, white noise 
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inputs u.) This fits in the above setting roughly as follows. There is a natural probability Ph 

induced on pairs {u.y): {u,y) has the same probability as (u,h(u)), and has zero probability 
otherwise. Estimating Ph. amounts to learning h. A related example is that in which the learner 
only has access to noisy measurements of h(u); in that case, one may in an obvious manner 
induce a probability on pairs (u, y) which incorporates the effects of noise. (Of course, we are 
being extremely informal right here, for instance because what we just said is not correct for 
continuous domains, where one must argue in terms of probabilities with respect to suitable a- 
algebras: the purpose is to explain intuitively the basic definitions. Much more discussion can 
be found in standard texts in machine learning and learning theory, including explanations of 
relations to Bayesian analysis and classical statistical techniques.) 

In evaluating performance of a learning system, one has to allow for the facts that. (1) 
accidentally, training data may not have been rich enough, as a sample, to identify the unknown 
distribution, which means that our confidence in future predictive behavior can never be perfect, 
and (2) even if the training data was indeed representative, that it may well be the case that a 
new, unseen, input to be responded to may itself be an "outlier" with respect to typical inputs, 
so our prediction may not be totally accurate. These two potential sources of uncertainty give 
rise to the notion of "probably approximately correct" learning, in which the goal is to be able to 
provide, with high confidence, a reasonably accurate response to future inputs. (Two numbers in 
the range [0.1], typically denoted by e and 8, appear in all formulations, to denote respectively 
these accuracy and confidence levels.) 

2.4.1    PAC Learning 

We now review briefly the basic "agnostic PAC learning" formalism. Two sets U and y are 
given, the sets of input and output values respectively. Although the theory can be derived in 
more generality, we will assume here that U is a complete separable metric space (typically, in 
any case. U is a closed subset of an Euclidean space) and that y is a compact subset of R 
(far more general outputs could equally well be considered, but notations become slightly more 
involved). Also given is a family of Borel probability measures V on U x y and a family T of 
Borel measurable maps / :U -> y. 

By an identifier we mean a map (p : fi -► T, where we are denoting by Q the set of all finite 
sequences u = (ui,yi),..., {us,ys) of elements of U x y (with varying lengths s). We write the 
value of <p on a sequence was^; thus tpu is itself a function U —► y. 

As discussed in previous paragraphs, the role of a P G V is to represent the distribution of 
input/output data to be learned, while an element / G 7 describes the function used by the 
learner to fit the data. In our discussions. T will usually be the class TA (cf. Equation(12)) 
consisting of those mappings f(p, •) associated to the possible nets with a given architecture A. 
The elements of T are often called hypotheses. Thus an identifier is a method of assigning a 
candidate hypothesis / G T based on the training data w that has been observed in the past 
(we prefer not to use the term "algorithm" for <p, since this term connotes computability, and 
we wish to separate questions of computability from information-theoretic concepts). We next 
quantify the performance of identifiers, assuming that the training and test data is being drawn 
according to a distribution P G V. 

Assume that a probability P G V has been chosen. The error of the identifier <p with respect 
to the probability measure P and the (training) sequence v G ft is defined as the expectation 
(with respect to P) of the squared error ("risk"), on test data, of the function produced by the 
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identifier: 
Err (P,p,i/) :=   /     {y - yu{u))2dP{u,y). 

Juxy 

(We use squared-error for simplicity of exposition, but more arbitrary loss criteria could be 
employed as a definition.) In a special case of wide interest, that of binary classification problems, 
the output value set y consists just of two elements {0,1}; in that case, the expression Err (P,tp,v) 
simply represents the probability y -^ fv{u) of misclassification. 

The best achievable performance (lowest possible error) among all f € T, if the test samples 
are distributed according to P, is: 

Err_(P) :=   inf /     (y - f(u))2 dP(u, y). 

Since <p„ 6 T, Err (P) < Err (P,<p,i/), for all identifiers <p and all training data v. A measure 
of merit for any given ip can be formulated in terms of the gap between these numbers: we ask 
that, for most training instances, the gap be small. More precisely, an identifier <p is said to 
be probably approximately correct (PAC) with respect to the family of probabilities P and the 
hypothesis class T, if for each e > 0 and each 6 > 0 there is some integer s = s{e,6) such that, 
for every P € P, " 

Ps{En{P,<p,v)<En.{P)+e} > 1-6. (16) 

Note that the probability on training samples v is being understood with respect to the in- 
duced measure P1 on the product space (W x ^)5. In other words, one is asking that the event 
"|Err(P,<p,i/) - Err_(P)| < e" becomes almost sure as s -» oo, uniformly on P G P. If (p is 
PAC, we may define a function s : R>o x K>o -> Z by letting s{e,6) be the smallest integer for 
which equation (16) holds for all P G V; this function is often called the sample complexity of <p. 

If a PAC identifier exists, we say that (P,T) is PAC (or uniformly) learnable. The most 
desirable special case is that in which V is the family of all (Borel) probability measures; if 
(V, T) is PAC learnable with this P, one says simply that T itself is PAC learnable. 

From the work of Vapnik, Pollard, Haussler, and others, there follows a simple yet powerful 
sufficient combinatorial condition for PAC learnability of T: if T has finite pseudo-dimension, 
then it is PAC learnable. (We review in Section 3.2 the meaning of pseudo-dimension, and in 
particular the notion of Vapnik-Chervonenkis dimension. They characterize the richness of T as 
a class of functions, expressed in terms of discrimination power.) Furthermore, in that case it is 
possible, at least in principle, to design an identifier using the most "naive" approach of fitting 
an / G T as well as possible to the observed data, and then using this /for prediction. We make 
this precise next. 

Given a sample u = (uj, y\),..., (us,ys), for each possible function / € T we may consider 
the quantity 

Emp (f,u) := J2(f(ui)-yi)
2 

which represents the "fitting error" or "empirical risk" that / makes on the given sample. Con- 
sider also, for this same sample, the smallest possible error achievable using the given hypotheses 
class: 

Emp(i/) :=   inf Emp (/,i/). (17) 

Note that the calculation of Emp(i^), for observed training data i/, as well as the finding of an 
element / € T which provides a near optimal value (i.e., so that Emp (/, v) — Emp (v) is small), 
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constitutes an optimization problem over T. When T is specified in terms of a a finite number 
of parameters (such as the adjustable weights in a neural network), this becomes a problem of 
finite-dimensional optimization. With these notations we can state the by-now classical results: 

If the pseudo-dimension d of T is finite, then: 

1. there is an identifier with sample complexity 

where c is a constant* that depends on y, and 

2. such an identifier can be obtained by empirical risk minimization: to achieve the error 
estimate in Equation (16), for a given 6, e, and given the sample v = (ui, y\),.... (u5, ya) 
with length s>s(e,S), it is enough to find any function f e T with the following property: 

Emp(/,i/)<EmpM + |/ (18) 

and to define ip„ to be this function f. 

(Even more interesting, this almost-minimization may be performed by a probabilistic al- 
gorithm, in that it is enough that the almost-optimality estimate in (18) hold with high probabil- 
ity.) Through empirical risk minimization, the theory of PAC learning makes contact with, and 
provides an elegant generalization of, classical questions regarding the uniform convergence of 
empirical means of random variables and. more generally, probabilities of sets, and in particular 
the Glivenko-Cantelli Lemma. 

It should be emphasized that the finiteness of pseudo-dimension is merely a sufficient, not 
a necessary, condition, and that much research nowadays concerns the development of weaker 
conditions for learnability (viz. the area of "fat shattering"). However, as we shall see. it is a 
very useful condition, and, moreover, in the special case of binary valued outputs, which is the 
case of interest in pattern recognition and classification, the condition turns out to be necessary 
as well. 

2.4.2    Subproblems 

The above discussion leads to the following general questions, for any given T and V: 

Ql How large can the errors Err (P) be? 

Q2 Does T have finite pseudo-dimension? 

Q3 Is it computationally feasible to find Emp (u)? 

Q4 What are the properties of the error function being minimized in (17)? 

The first question characterizes the minimum potentially achievable error, no matter how 
many samples are seen or how powerful an algorithm is used: the smaller Err_(P), the more 
useful is the estimate in Equation (16). It leads to function approximation (of densities, if the 

* A far more explicit estimate is known, but we absorb many constants into c in order to exhibit the dependence 
on d,e,6 as simply as possible; we also must assume that e is small enough, e.g. e < 1/2. 
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P's are described in such terms) by elements of T. The line of work in the PI papers 44] and 
[21; was motivated in this manner; see Section 3.3.1 of the report. The second question, whose 
answer helps determine if it is possible to learn at all (using finite samples) is more combinatorial 
in nature, and in particular the study of lower bounds relies on finding explicit constructions to 
implement a large variety of functions. In this direction, relevant PI work is represented by [8], 
[111. [39". [53], [25], and [26] as well as related results for recurrent nets to be mentioned later: see 
Sections. 3.2.1 and 3.2.3 of the report. The third question is of a computational complexity nature 
(NP-completeness), and its study, at least for certain activations, requires simple techniques from 
combinatorics and discrete mathematics. Relevant PI work is exemplified by [48] and [20]; see 
Section 3.5 of the report. Finally, the last question, whose answer impacts the performance of 
numerical algorithms based on gradient descent (so-called "backpropagation"), leads to issues 
of Morse theory, stratifications of subanalytic sets, model theory on logic, as well as elementary 
analysis. Among PI work in this direction are the references [7], [9], [50], [22]; see Section 3.1 of 
the report. 

Section 3 of the report discusses some of these issues in more detail, though space constraints 
do not allow a technical development and the references should be consulted. 

2.4.3    Learning and Recurrent Nets 

As explained in the introduction to this report, in many applications involving pattern classifica- 
tion or learning, input data arrives naturally as a time series. Inputs fed into a speech recognition 
system are often sequences consisting of windowed Fourier coefficients and in control problems 
inputs to a regulator may be sequences of measurements of the plant being controlled as well as 
the successive coordinates of a path to be tracked. Under these circumstances, a learning system 
should exploit the information inherent in the correlations and dependencies that exist among the 
terms of the input sequence. One way to take into account this additional structure is through 
the use of hypotheses classes which consist of dynamical systems. Kaiman filtering, which relies 
on linear dynamical systems for extracting information (filtering of noise) from a stream of data, 
is perhaps the most successful known example of an application of this principle. 

In the notations and terminology established earlier, and for concreteness dealing with the 
discrete-time case, the inputs u, elements of the set U, are now finite sequences (which, depending 
on the problem being studied, could be of a fixed length, or of varying lengths). We assume that 
the output space is R. The hypotheses classes T consist of systems which start from a fixed initial 
state, evolve according to internal dynamics forced by the external input sequence u = u\— , u*, 
and produce real-number outputs yt, t = 1,... as a result. In a learning context, we will always 
view the last output, produced after presentation of the complete sequence u, as the output value 
/(u) assigned by the hypothesis / G T to the input sequence u. 

U = Ul ...Uk 
dynamical 

system 

Vk+i 

Intuitively, by limiting the memory and power (dynamic order, number of adjustable para- 
meters) of the elements of T, and analyzing behavior for longer and longer input sequences, one 
is able to focus on the properties that truly reflect the dependence of f(u) on long-term time 
correlations in the data. Although this paradigm is inspired by the use of finite automata for the 



2   OVERVIEW 20 

recognition of languages, or the use of recursive least squares techniques in statistical problems, 
the interest here is in nonlinear, continuous-state, dynamical systems. In particular, we employ 
(scalar-output) recurrent networks and study classes such as pA.k, introduced in Equation 15. 
which consist of those mappings (Rm) -¥ R induced on inputs of length k by each possible 
initialized recurrent net with architecture A. 

The questions Q1-Q4 posed above for static nets can also be asked, when suitably interpreted, 
for dynamic networks. Question Ql leads to the topic of approximation of dynamical systems by 
recurrent nets. Work described in the PI papers [37] and [32] deals with this issue, mentioned 
in Section 3.4 of the report. Question Q2 has been researched in the recent PI papers [52], [24], 
and [27], while Q3 is touched upon in the first two of these references, and both are mentioned 
in Section 3.2.2. 

2.5    Feedback Control Questions 

Not all of our research in the neural network area deals with questions motivated by learning 
and generalization. A very different line of work of ours, which has achieved many important 
results yet needs further development, concerns the exploration of the capabilities of networks as 
controllers for nonlinear systems. 

2.5.1    State-Feedback Control 

Nonlinear control is often mentioned as one of the most promising areas of application for neural 
networks. We start with standard paradigm: a system of controlled differential equations 

x = /(x,u), (19) 

evolving in a manifold, where the right hand side is interpreted as a set of vector fields paramet- 
erized by the inputs (see e.g. [5] for precise definitions). Assume that XQ is an equilibrium state 
(/(io>"o) = 0 for some control value no); then one of the most basic control questions regards 
the existence of a feedback mapping u = k(x), with k(xo) = uo, which renders the equilibrium xo 
of the closed loop system x — f(x, k(x)) globally asymptotically stable. Most of the neurocontrol 
literature attempts to find such a feedback in the form of a neural network. (Of course, more 
complex control objectives are often posed, such as tracking with internal stability or model 
reference adaptive control, but we use stabilization, which is always a first design objective, to 
understand the problems in the "cleanest" possible setting.) 

Very often, the stated objective is to obtain feedback laws implementable by nets of a special 
form, namely 1HL nets (recall Figure 3 and Equation (7)). This simple structure with clearly 
identifiable and tunable parameters is appealing from an adaptive control point of view. Moreover, 
the universality results for function approximation would seem to indicate that such networks 
are always sufficient. However, this is very misleading. It turns out that 1HL nets are not 
"universal" enough for the implementation of controllers, in a precise sense reviewed later. This 
was first pointed out in the paper [10], which also gave a general theorem showing that two 
hidden layers (and discontinuous activations) are sufficient. (The contribution was awarded a 
citation as an outstanding paper in the IEEE Transactions on Neural Networks). Intuitively, the 
reason for this apparent contradiction is that control problems are essentially inverse problems 
(one must solve for a trajectory satisfying certain boundary conditions). For such, as pointed 
out in subsection 2.1.1, more general types of networks are needed. 
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For an intuitive understanding of how this obstruction might occur, consider the following 
situation. Suppose that the objective is to globally asymptotically stabilize a planar system with 
respect to the origin using controllers u=k(x) implementable by 1HL nets. It is easy to give 
examples for which there is no continuous feedback law that will achieve stabilization, even if 
the original system is very simple. Since its response is continuous, no 1HL net with continuous 
activations would be able to accomplish the stated objective. But what about allowing discon- 
tinuous a such as Heaviside activations? (We ignore for now questions of possible nonexistence 
of solutions for ode's with discontinuous right-hand sides; the problem will be even more basic.) 
It turns out that even then it may be impossible to stabilize. Indeed, assume that we know some 
discontinuous feedback law ko{x) which stabilizes. It would appear that one can then obtain 
k(x) simply by approximating ko. However, as mentioned in subsection 2.1.1 and citing [10]), it 
is impossible in general to approximate a discontinuous ko uniformly by 1HL functions. But a 
weak type of approximation may not be enough for control purposes. For instance, it may be 
the case that for each approximant ko there is a small region T encircling the origin where the 
approximation is bad, in the sense the vector field f{x,ko(x)) must point transversally outward 
everywhere on I1, thus introducing an obstacle or "barrier" to global stabilization. 

A precise result in given in the paper [10] for discrete-time systems (applicable to continuous- 
time via sample-and-hold control). That paper exhibits explicit examples of systems which are 
otherwise stabilizable but such that every possible feedback implementable by a 1HL net would 
fail, as any closed-loop system obtained in that way must give rise to a nontrivial periodic orbit. 
On the other hand, it also shows that if a system is stabilizable in any manner whatsoever, then 
it can also be stabilized using two-hidden layer nets. 

To summarize, if stabilization requires discontinuities in feedback laws, it may be the case 
that no possible 1HL net stabilizes. Thus the issue of stabilization by nets is closely related to 
the standard problem of continuous and smooth stabilization of nonlinear systems, one that has 
attracted much research attention in recent years. Roughly, there is a hierarchy of state-feedback 
stabilization problems: those that admit continuous solutions, those that don't but can still be 
solved using 1HL nets with discontinuous activations, and more general ones (solvable with two 
hidden layers). It can be expected that an analogous situation will be true for other control 
problems. (Perhaps the reason that experimental neurocontrol papers have reported successes 
while using 1HL nets is that they almost always dealt with feedback linearizable systems. In 
the context of nonlinear systems, feedback linearizable ones constitute extremely restricted class, 
but they do admit continuous stabilizers, so the theoretical obstructions just discussed are not 
relevant.) 

2.5.2    Saturated Linear Systems 

The above limitations of 1HL nets in control notwithstanding, 1HL nets can be shown to be 
perfectly suited to certain control problems. One line of work by the Pis deals with the use of 
networks for the control of linear systems subject to actuator saturation. This is the situation 
modeled by equations of the following type: 

x = Ax + Bo~(u) 

where A and B are as usual in linear control theory and a is a saturation such as tanh or -K. 

It is often said that saturation is the most commonly encountered nonlinearity in control engin- 
eering, so the development of techniques for the control of such systems is obviously of great 
interest. Our work starts with the result by Fuller, around 1970, that it is in general impossible 
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to globally stabilize the origin of such systems by means of linear feedback u=Fx -for a more 
general result along those lines, see [4]- even if the system is open-loop globally controllable to 
the origin. This suggests the obvious question of searching for nonlinear feedback laws u=k{x) 
that achieve such stabilization, and in particular for nicely behaved and easily implementable 
controllers (in contrast to optimal control techniques, which result in highly irregular feedback). 
In 1990 we proved that smooth stabilization is always possible. Motivated by our paper. Teel 
in 1992 showed that single-input multiple integrators can be stabilized by feedbacks which are 
themselves compositions of linear functions and iterated saturations. We were able soon after 
to extended Teel's result to arbitrary systems as above which are open-loop asymptotically con- 
trollable (equivalent^, the rank of the matrix [XI - A,B] is n for all purely imaginary A, and A 
has no eigenvalues with positive real part). More recently, we showed that one can always use 
1HL nets for implementing such feedback; see [18]. The more recent work [29] extended these 
results to discrete time systems. As an example, the paper [43] developed an explicit design 
concerning a longitudinal flight model of an F-8 aircraft, with saturations on the elevator rate, 
and tested the obtained controller on the original nonlinear model. We chose the F-8 example 
since all parameters and typical trim conditions are publicly available, and the model has been 
often used as a test case for aircraft control designs. The procedure we followed consisted of 
first linearizing about an operating point and then constructing a globally stabilizing controller 
for the resulting linearization, with respect to this given trim condition, following the steps in our 
papers. Finally we proceed to compare the performance of the controller -applied to the original 
nonlinear airplane model and starting reasonably far from the desired operating point- with the 
"naive" controller that would result from applying a linear feedback law which would stabilize 
in the absence of saturations. The objective of the work was to show that the calculations in the 
abstract proofs can indeed be carried out explicitly (though this an extremely simple case com- 
pared to the generality of the results in our papers) and moreover, to study the performance of 
the resulting controller when used for the original, nonlinear, model. Although it turned out that 
our design provided unacceptable performance, the improvement with respect to linear feedback 
was remarkable, and we consider the results to be encouraging and indicating the usefulness of 
further work along this direction. 

2.6    Recurrent Nets as Dynamical Systems 

So far we have introduced in this overview several questions related to the areas of learning and 
of control. The former area provides a methodology for the study of different aspects of both 
feedforward and recurrent neural nets, and leads to the study of questions Q1-Q4 on approxim- 
ation, learning dimensions, error surfaces, and computational complexity. Feedback control is 
an important application area, and leads to asking about the existence of networks implement- 
ing regulation laws with particular properties. We now look at third area, namely the study of 
properties of recurrent networks as dynamical systems with inputs and outputs. This leads to 
questions of observability, minimality, identification, and computational power. It turns out — 
perhaps surprisingly given the universal approximation properties possessed by recurrent nets 
— that such questions can be treated successfully to a large extent, in contrast to other classes 
of nonlinear systems more classically considered. 

Observability, Identification 

Recall (see e.g. [5]) that two states of a system are distinguishable if it is possible to tell them 
apart on the basis of input output experiments. The Pis wrote many papers since the late 1970s 
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on such issues: references can be found in the ICM invited paper [35]. Observability means that 
every pair of distinct states must be distinguishable. Unobservability constitutes a fundamental 
limitation to the existence of an unbiased estimator of the internal states of a network. And from 
a synthesis rather than analysis point of view, the study of observability is one half of the study of 
redundancy: if there are indistinguishable states, one may in principle eliminate the redundancy 
and build a smaller network which achieves exactly the same performance objectives as specified 
in terms of input/output behavior. (The other half relates to the study of reachability.) 

A formalization is as follows. An n-dimensional recurrent net E = {A, B. C. a) is observable 
if for each distinct £ e ln and £' e 1" it holds that 

A     ^A 

(where E,£ is the initialized recurrent net with initial state £)• M°re precisely, one should define 
discrete-time or continuous-time observability, since the definition of the input/output mapping A 
depends on the interpretation of the equations as difference or differential equations respectively. 
It turns out, interestingly, that there is a common algebraic characterization that applies in both 
cases. Assume that B satisfies this generic property: no row is identically zero and 

for each i ^ j, there exists some k such that |6,,jt| ^ |fejjt| , (20) 

and that {A,B,C.<r) is a homogeneous net whose activation is the standard sigmoid in Equa- 
tion (1). Let Oc{A, C) be the largest A-invariant coordinate subspace included in ker C, where by 
a coordinate subspace we mean any subspace of ln invariant under all the coordinate projections 
7Tj : Rn -> !n, -Kit) = Sijei (ej,i = 1,... ,n denote the canonical basis elements in ln). It was 
shown in [15] that (A, B, C, er) is observable if and only if ker A fl ker C = Oc (A, C) = 0. This is 
a very simple characterization, easy to check algorithmically. One obtains as a corollary, under 
the above assumption on B, that the net is observable if the pair of matrices {A, C) is observable 
in the usual linear-algebraic sense (cf. [5]). 

We have also studied in the past, and intend to continue, work on parameter identifiability, 
that is to say, the possibility of recovering the entries of the matrices A. B. and C, and, for 
initialized systems, also the initial state, from the input/output behavior of the net. Assume that 
we restrict attention to homogeneous nets that satisfy the following conditions. The activation a 
is infinitely differentiable around zero, and satisfies the following mild noniinearity assumption: 
cr'(0) ^ 0 and cr(')(0) # 0 for some q > 2. (So for analytic functions, we are just asking 
that a be nonlinear and nonsingular at zero.) Furthermore, we assume that B satisfies (20) 
and no entry of B vanishes, and that the triple of matrices (A,B,C), A € i?nxn, B € Rnxm, 
C € Rpxn is canonical. (That is, observable and controllable, as in [5], section 5.5; this is a 
generic set of triples, in the sense that the entries of those which do not satisfy the property 
form a proper Zariski-closed subset of R"2+n™+nP.) Then, in [14], a general result was proved, 
which in particular implies that if E = {A, B, C,0, a^) and E' = (A', B', C. 0, d\{n)) have same 
input/output behaviors A's, then a = a' and the two triples of matrices are sign-permutation 
equivalent meaning that there exists a nonsingular matrix T such that T~lAT = A',T~1B = 
B',CT = C", and T is a permutation matrix. That is, the two networks are exactly the same 
except for a relabeling of neurons. 

This is a rather surprising result, which says that "function (input/output behavior) de- 
termines form (internal structure)". We recall that for linear systems the analogous result is 
far weaker, and only allows concluding equivalence modulo GL{n, 1) as opposed to modulo a 
discrete group (cf. [5]).   The proof starts with the obvious idea of considering the parameters 
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as extra constant states and computing the observables for the extended systems; this involves 
considering iterated Lie derivatives of observations under the vector fields defining the system and 
is a routine approach in nonlinear control. However, and this is the nontrivial part, extracting 
enough information from these Lie derivatives is not entirely easy, and the proof centers on that 
issue. Moreover, if the activation is analytic, the response to a single long-enough input function 
is theoretically enough for identification of all parameters, in analogy to the use of impulse- 
responses in linear systems theory. More recent work showed that, under additional assumptions 
on the activation (conditions which are satisfied when a is the standard sigmoid, for example), 
one can obtain analogous results even for nonzero and distinct initial states (and one concludes 
that these states are also in the same orbit under the group action described above); see [41] for 
preliminary work (a full paper is still under preparation, as we wish to obtain as general a result 
as possible). 

A related area is that of what we call Fourier-recurrent neural networks. These are networks 
with activations from the set {sin x, cos x}. (More precisely, we prefer to equivalently use complex 
state variables and the activation e'1, but this is just a question of mathematical convenience.) In 
the paper [23], we presented a closed-form procedure, not involving any nonlinear optimization, 
for the identification of the entries of A, B. C and the initial state for such nets. The procedure 
is based on Hankel-matrix techniques that are classical in the context of linear recurrences and 
their multivariable extensions developed in control theory (see a detailed discussion in Chapter 
5 in [5]) as well as in many other areas such as, coding theory, for decoding BCH codes, and in 
learning theory, for sparse polynomial interpolation. 

Computational Abilities; Computational Complexity 

The last general subject that we wish to mention in this report deals with questions that are 
somewhat more abstract and are framed in the language of theoretical computer science. The 
topic is the exploration of the ultimate capabilities of recurrent nets viewed as analog computing 
devices. This area is a fascinating one, but very difficult to approach. Part of the problem is 
that, much interesting work notwithstanding, analog computation is hard to model, as difficult 
questions about precision of data and readout of results are immediately encountered -see the 
references in our papers cited below. 

In a series of papers y one of the Pis and [17], as well as the April 28, 1995 issue of Science, 
and the "handbook" article [34]), we took the point of view that artificial neural nets provide an 
opportunity to reexamine some of the foundations of analog computation from the new perspective 
afforded by an extremely simple yet surprisingly rich model, in a context where techniques 
from dynamical systems theory interact naturally with more standard notions from theoretical 
computer science. For recurrent nets with activation the piecewise linear function ir in Equation 2, 
we derived results on deterministic versus nondeterministic computation, and related the study 
to standard concepts in complexity theory. Perhaps the previous work closest in spirit is that on 
real-number-based computation started by Blum, Shub, and Smale ("BSS" model). In contrast 
to that line of work, however, recurrent nets do not incorporate discontinuous (and hence highly 
nonrobust), infinite precision "if-then-else" decisions, nor can discrete results be read out of the 
system through infinite precision measurements. Thus recurrent nets are more restricted than 
the BSS model. 

One of the most unexpected conclusions was that, at least within the formalism of analog 
computation proposed there, recurrent neural nets (with activation IT) are a universal model, in 
much the same manner as Turing machines are for classical digital computing.   It was shown 
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that no possible -'analog computer" -in a sense precisely defined- could ever have more power 
-again in a precisely denned sense- up to polynomial time speedups. Particularly satisfying the- 
oretically is the fact that the most natural categories for the values of weights correlate perfectly 
with different natural subclasses of computing devices, and can be summarized in an extremely 
elegant fashion: integer weights correspond to finite automata, rational to Turing machines, 
and real to arbitrary "P/poly" computation (the well-studied Karp-Lipton class consisting of 
nonuniform polynomial-size circuits or equivalently sparse-oracle Turing Machines). (Further- 
more, we showed in [38] how to characterize computations by networks having weights in certain 
Kolmogorov-complexity definable classes in between rationals and reals.) 

Another unanticipated -and intriguing- conclusion was that the class NP of nondeterministic 
polynomial-time digital computation is not included in what can be computed in polynomial 
time with analog devices (this is proved under standard assumptions of the "P^NP" type). Thus 
the solution of combinatorial problems using analog devices may be subject to the same ultimate 
computational obstructions, for large problem sizes, as with digital computing. 

The work on computation capabilities turns out to be relevant to the study of "hybrid" control 
systems which combine automata and linear systems, or saturation devices in feedback loops. For 
example, the problem of determining if a dynamical system x(t + 1) = a^n\Ax(t)) ever reaches 
an equilibrium point, from a given initial state, is shown to be effectively undecidable (at least 
for cr=7r) as a consequence of the established universality. (In Hopfield-type nets, when dealing 
with content-addressable retrieval, the initial state is taken as the "input pattern" and the final 
state, if there is convergence in finite time, as a class representative.) The implications of this 
result to various questions in control theory and in particular hybrid systems are discussed in 
some detail in the papers [51] and [36]. 
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3    Some More Details 

In this part of the report, we have chosen to provide some more details on a few selec- 
ted subtopics, especially those represented in very recent work and hence possibly less eas- 
ily available. Once more we remind the reader that the Web page found at the URL: 
http://www.math.rutgers.edu/sontag/ provides access to a substantial number of papers 
by the Pis. to be consulted for details and a mathematically rigorous presentation. 

3.1    Error Functions 

Here we deal with question Q4: "what are the properties of the error function being minimized 
in (17)?". for hypotheses classes of the form T = TA- This is motivated in our development 
by the risk minimization solution of the learning problem, but it is of course what is done ex- 
perimentally, not necessarily with any theoretical justification, in standard neural net practice: 
given a parametric form, find parameters so that the error on the training data is minimized. 
Numerical algorithms based on gradient descent (so-called "backpropagation") are usually em- 
ployed for the minimization. Thus it is necessary to study the points at which the derivative 
of this error function may become zero, and more particularly the location of possible local but 
nonglobal minima. Among PI work in this direction are the references [7], [9], [50], [22]. We now 
summarize some facts from the last of these papers. The emphasis of this past work was on 1HL 
nets, which, as discussed in Section 2.1.1, are those most commonly found in applications. 

By a 1HL architecture we mean an homogeneous, scalar-output, single hidden layer architec- 
ture with fully connected layers, that is, A = (Ll,C2) and P and J', i = 1,2 are both matrices 
with all entries equal to one. If A has n neurons and activation a, then the nets with archi- 
tecture ,4 are precisely the possible 1HL nets with n neurons and activation a. These compute 
functions as in Equation (7), can be represented diagrammatically as in Figure 3, and the para- 
meter space has dimension r = n(m + 2) + 1, where p G Rr represents the scalars Co,..., c„ and 
oj, o„, and the m-row vectors Ai,...,An. For purposes of this discussion, we will assume 
that a{x) = tanh(i) (or up to rescalings, the standard sigmoid), which is the activation most 
commonly used in experimental work, and we assume that n has been fixed. (The study of 
good choices for n leads to "structural risk minimization" studies, about which we do not have 
anything to contribute at this time.) 

There are portions of the parameter space that give rise to degeneracies. For instance, if one 
coefficient Cj (i ^ 0) vanishes, then the input/output function / is independent of the values of 
the corresponding A{ and a*. If some Ai = 0 then the corresponding term is constant and can be 
absorbed into CQ. If for two different i ^ j it is the case that Ai = Aj and ai = aj, then the terms 
corresponding to i and j can be combined, and only the sum Ci + Cj is relevant, resulting also 
in a loss of dimensionality. Similarly, since tanh is an odd function, if (Ai. ai) = —(Aj,a,j) then 
terms can be combined as well. Thus a more natural parameter space is the subset consisting of 
all the di's, Cj's, and Ajj's for which these exceptional situations do not occur. We will restrict 
attention to parameters in this subset. 

Assume given a training or regression data set ("labeled sample") v — (ui,yi),..., (us,ys), 
where we interpret the it,:s as input vectors ("regressors" in statistical terms) and the scalars 
j/i's as targets or response vectors desired for the respective Uj's. The (regression) problem is 
that of minimizing (typically by means of steepest descent or other local search techniques) the 
quadratic loss, error, or "risk" Emp (/, v) over all / = /(p, •) € TA, that is to say, over all p G Rr. 
We write E"(p) instead of Emp (f(p, •), v) in order to emphasize the dependence of this quantity 
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on the parameters, once that the labeled sample has been fixed. Thus, the problem is to study 
the function 

,2 

with domain the above parameter set. 

2f=i 

Critical Point Analysis 

It has been often remarked that, even for extremely simple cases (such as n=l and supposing that 
the inputs are binary vectors) there arise critical points associated to non-global local minima, 
and thus the study of the set of critical points of E" has been frequently put forward as a research 
topic. In this context it has also been observed several times that —as with other least-squares 
problems— pathological behavior will depend heavily on the training sets not being in "general 
position" in appropriate senses of probability or topological density. In the paper [22] we obtained 
several characterizations of the critical set. 

One of the main results given in that paper was that the set of critical points is finite, and 
in particular less than 28^sn^ (assuming that there are enough samples to make the problem not 
underdetermined, specifically that s > 2n(m + 2) + 3, and for generic regression data). If the 
number of samples scales linearly on the number of nodes n, and assuming a constant input 
dimension, an upper bound of the type 

2cn4 

results. A lower bound of the type 2c'nlogn also holds, due to symmetries in the problem: any 
exchange among the n terms in the sum preserves /. 

We review next the organization of the proof, to illustrate the types of techniques used. We 
first showed that analytically parameterized classes of functions can be identified generically on 
the basis of just 2r + 1 samples, if r is the number of free parameters. This part of the paper 
depended on basic facts about real-analytic functions, all consequences of the basic stratification 
theorems for subanalytic sets due to Hironaka. Lojasiewicz, and others (see [1] for an introduction, 
with complete proofs, to the needed results on stratification theory). We then studied critical 
points for least-squares error criteria: this step relied upon elementary differential topology, 
basically the elementary Morse theory found in most textbooks, but applied only after yet another 
application of analytic set theory. We then showed, for generic analytic problems, the countability 
of the set of functions giving rise to critical parameter values, and a refinement showing that this 
set is in fact finite, provided that the parametric class of functions be definable logically in terms 
of the exponential and certain other special analytic functions; this was based on the recent work 
in logic, dealing with o-minimal logical theories, due to Wilkie, Maclntyre. van den Dries, Miller, 
Gabrielov, and others. Finally, we specialized to single hidden layer networks, where one can use 
results on determination of parameters (as given in [31]) in order to obtain finiteness of the set 
of critical parameters. Once that finiteness is known, one may use Khovanskii estimates on Betti 
numbers for sets defined by exponential/algebraic expressions in order to bound the number of 
connected components, since the set in question is now known to be an embedded submanifold, 
and this bound is of course just the number of points, giving the estimate mentioned above. 

Convergence to True Parameters 

In the above context of minimization of the a loss criterion, one needs to understand the conver- 
gence of gradient descent procedures (and of related "on line" methods, which only approximate 
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the gradient by considering one term at a time). In this context, we mention that in general 
the existence of nonglobal local minima means of course that no global convergence may be ex- 
pected. For a special case treated in [9]. it is possible to show that gradient descent converges 
globally (we omit the details here) but in the general case the existence of such obstructions is 
unavoidable. Local convergence will hold if the number of inputs is large enough (the bound given 
above is sufficient), and in that case one may ask the following question: if the training data was 
indeed generated by a 1HL net (seen as a "black box"), does gradient descent lead to the true 
parameters? This issue, for the generic parameter space mentioned above, was posed (in slightly 
different language, but the same mathematical problem) in the late 1980s by Hecht-Nielsen. A 
positive answer follows from the results presented in [2], for the special case of the activation 
tanh. The more recent work [31], mentioned above, extended this to a wide class of real-analytic 
functions, using complex-variable techniques rather than the asymptotic analysis of [2]. 

3.2    Estimation of Learning Dimension 

Here we deal with question Q2: "does T have finite pseudo-dimension?", for hypotheses classes 
of the form T = TA- Recall the PAC learning formulation discussed in Section 2.4.1: a set of 
labeled training samples is provided, and a network must be obtained which is then expected 
to ("probably and approximately") correctly classify previously unseen inputs. In this context, 
a central problem is to estimate the amount of training data needed to guarantee satisfactory 
learning performance, and this in turn leads to the search for pseudodimension estimates. 

We first define the special case of VC dimension, and then pseudo- (or Pollard) dimension. 
The concept of VC dimension is classically defined in terms of abstract concept classes; we review 
that first and then interpret in terms of functions. As in Section 2.4, we are given an input set 
U. Assume also given a family of subsets C of U, called the set of "concepts." A subset UQCU 

is said to be shattered (by the class C) if for each subset B C UQ there is some C G C such that 
B = Cf)Uo. The VC dimension is then the largest possible positive integer n (possibly +00) 
so that there is some UQ C U of cardinality K which can be shattered. An equivalent manner 
of stating these notions, somewhat more suitable for our purposes, proceeds by identifying the 
subsets of i/o with Boolean functions from UQ to {0,1}: to each such Boolean function 4> there 
is an associated subset, namely {x e UQ\<(>{X) = 1}, and conversely, to each set B C X one 
can associate its characteristic function <$>B defined on the set UQ. Similarly, we can think of the 
sets CeCas Boolean functions on U and the intersections Cf\Uo as the restrictions of such 
functions to UQ. Thus we restate the definitions now in terms of functions. 

Given the set U, and a subset UQ of U, a dichotomy on UQ is a function 6 : UQ —► {0,1}. 
Assume given a class T of functions U —► {0,1}, to be called the class of classifier functions. The 
subset UQ C U is shattered by T if each dichotomy on UQ is the restriction to UQ of some </> € T. 
The Vapnik-Chervonenkis (VC) dimension vc {T) is the supremum (possibly infinite) of the set 
of integers K for which there is some subset UQ C U of cardinality K which can be shattered by 
T. 

By abuse of terminology, when T is a class of real-valued functions (as with maps TA induced 
by fixed neural architectures), by vc (F) one means vc {U{T)), where U{T) = {Ho/,/6f}, 
and H is the Heaviside function introduced earlier. Thus vc {?) quantifies the amount of training 
data needed for reliable prediction when using functions in T as classifiers: a positive output 
means "accepted" and a negative output to "rejected". This is consistent with the standard 
use of neural networks as classification machines. For binary-valued hypotheses classes, the VC 
dimension provides tight estimates (as opposed to merely upper bounds) of the sample complexity 
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discussed in Section 2.4.1. assuming we are interested in learning with respect to the class of 
all possible (Borel) probability measures: under certain simple nontriviality assumptions and for 
0<e < 5, 

s{e,6) > max { — In QVvc(.F)(l-2(e(l-£) + <*))} . 

Together with the upper bounds reviewed earlier, this says roughly that sample complexity is 
proportional to VC [T). 

One may also define a measure useful for learning real-valued functions, as discussed in 
Section 2.4.1. The notion of pseudo-dimension is used in the framework developed by Haussler 
and based on previous work by Vapnik, Chervonenkis. and Pollard. Given a class of functions 
T from U to y, we may introduce, for each /6f, the function 

qf : It xy-> {0,1}  :  (x,y) K+ sign (/(a:) - y) 

as well as the class FQ consisting of all such qf. The pseudo-dimension of T is the extension of 
VC dimension to non-binary function classes given by the formula PD(.F) := vc (FQ). We will 
focus here on VC dimension questions, that is, binary classification, but many of our results (the 
upper bounds by analogous proofs, and the lower bounds as corollaries) apply also to pseudo- 
dimension estimates. (One should observe that, in contrast to the binary case, finiteness of 
pseudo-dimension is merely a sufficient, not a necessary, condition, for learnability. On the other 
hand, the actual proofs provide also lower bounds for so-called scale-sensitive dimensions, which 
for the continuous output case do provide necessary conditions. Another important observation 
is that boundedness of the output space is a requirement in the connection between pseudo- 
dimension and PAC learnability, which means that results must either assume a "squashing" of 
the output, or consider bounded loss functions such as |yi — J/2I  /(l + I2/1 ~ 2/21 )•) 

3.2.1    VC Dimension for Feedforward Nets 

The well-known work of Cover in 1968 and Baum and Haussler in 1989 dealt with the compu- 
tation of vc (T) when the class T consists of networks built up from hard-threshold activations 
and having r weights: they showed that vc {T) = 0(r log r). Conversely, Maass showed in 1993 
that there is also a lower bound of this form. It would appear that this definitely settled the 
VC dimension (and hence also the sample size) question. However, that estimate assumed an 
architecture based on hard-threshold (Heaviside) activations. In contrast, the usually employed 
gradient descent learning algorithms ("backpropagation" method) rely upon continuous activa- 
tions, that is, neurons with graded responses. As pointed out in [8], the use of analog activations, 
which allow the passing of rich (not just binary) information among levels, may result in higher 
memory capacity as compared with threshold nets. This has serious potential implications in 
learning, essentially because more memory capacity means that a given function / may be able 
to "memorize" in a "rote" fashion too much data, and less generalization is therefore possible. 
Indeed, the paper [11] showed that there are conceivable (though not very practical) neural ar- 
chitectures with extremely high VC dimensions. Thus the problem of studying vc (JF) for analog 
networks is an interesting and relevant issue. Two important contributions in this direction were 
the papers by Maass in 1993 and by Goldberg and Jerrum in 1993. which showed upper bounds 
on the VC dimension of networks that use piecewise polynomial activations. The paper [39] intro- 
duced techniques from model theory and analytic function theory to show that the VC dimension 
is finite for large classes of activations (including the standard sigmoid, in particular), and follow- 
ing along this direction a paper by Maclntyre and Karpinski recently succeeded in establishing 
an explicit upper bound for the standard sigmoid as well as other Pfaffian activations. 
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Goldberg and Jerrum established for piecewise polynomial activations an upper bound of 
0(r2), where, as before, r is the number of weights. However it was an open problem in a 1994 
survey by Maass if there is a matching r2 lower bound for such networks, and more generally for 
arbitrary continuous-activation nets. It could have been the case that the upper bound 0{r2) is 
merely an artifact of the method of proof, and that reliable learning with continuous-activation 
networks is still possible with far smaller sample sizes, proportional to 0{r log r). 

But this is not the case, and in the papers [25], [53] we answered Maass' open question in the 
affirmative. As in [11], we say that the activation a : R -> R is sigmoidal. or a sigmoid. if: (1) a is 
differentiable at some point XQ where cr'(io)^0 and (2) limx-j—oo a(x) =,0 and lim^+oo CT(I) = 1 
(the limits 0 and 1 can be replaced by any distinct numbers). (Note that the first condition rules 
out the Heaviside activation). Then there are architectures with arbitrary large numbers of 
weights r and VC dimension proportional to r2. The proof relies on first showing that networks 
consisting of two types of activations, Heavisides and linear, already have this power. This is a 
somewhat surprising result, since purely linear networks result in VC dimension proportional to 
r, and purely threshold nets have, as per the results quoted above, VC dimension bounded by 
rlogr. The desired result on continuous activations is then obtained, approximating Heaviside 
gates by cr-nets with large weights and approximating linear gates by «r-nets with small weights 
(sigmoids are "locally linear and globally thresholds"). A number of variations, dealing with 
Boolean inputs, or weakening the assumptions on c, are also discussed in [25], whose last section 
also describes an interpretation of the results in terms of threshold-only networks with "shared" 
weights. Our result applies, as a very special case, to the standard sigmoid 1/(1 + e~x). 

3.2.2    VC Dimension for Recurrent Nets 

We explained in Section 2.4.3 the interest in hypotheses classes whose inputs ueWare themselves 
finite sequences, and specifically we wish to look at classes T^,k (see Equation (15)) consisting 
of those mappings (R"1)* ->• R induced on inputs of length k by the possible initialized recurrent 
net with a given architecture A. We now describe some results from the papers [24] and [27]. 
In all our results, we will take the number of input components m = 1, for simplicity, and we 
consider only homogeneous (all activations equal) architectures. We assume we are working in 
discrete time and interpret Equations (9) as difference equations. By a-architecture, we mean 
an architecture where all activations are the same function a : R -» R (The choice of m = 1 
makes our lower bounds more interesting. It is fairly easy, though notationally somewhat more 
cumbersome, to extend the upper bounds to vector inputs. The same can be said about the 
homogeneity assumption.) 

Given any n-dimensional architecture A with m = p = 1, and any k > 0, we denote 
vc {A, k) = vc (^\4,t) and refer to this quantity also as the "VC dimension of A when receiving 
inputs of length k". We write r for the total number of parameters in the architecture. 

We are particularly interested in understanding the behavior of vc (A, k) as k ->■ oo, for 
various recurrent architectures, as well as the dependence of this quantity on the number of 
weights and the particular type of activation being used. 

The first case of interest is that in which a is the identity. This means that one is using linear 
dynamical systems as learners in the sense of PAC theory (or, for VC dimension, the sign of 
the output of such a system, which represents the simplest possible quantization of the output 
signal). Comparing with classical "perceptrons", the maps in T^k represent in this case inner 
products with a separating vector in Rfc that is the impulse-response of a recursive digital filter 
of order n. Seen in this context, the usual perceptrons are nothing more than the very special 
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subclass of "finite impulse response" systems (all poles at zero); thus it is appropriate to call 
the more general class "recurrent" or "IIR (infinite impulse response)" perceptrons. One may 
reliably predict, for given accuracy and confidence parameters, on the basis of 0{k) samples, 
but this is too conservative if there is reason to believe that the data may be linearly separable 
by a low-dimension dynamical system, that is, if we are interested in learning using the above 
hypothesis class and A: » n. Roughly speaking, the main result in [24] was that the number 
of samples needed is proportional to the logarithm of the length A: (as opposed to k itself, as 
would be the case if one did not take advantage of the recurrent structure). The upper bounds 
are obtained using simple arguments from algebraic geometry, while the lower bounds involve an 
apparently result on dual VC dimensions, for which we needed to develop the theory. The main 
result, for the non-sparse case in which we assume that all entries of the matrices are parameters 
(actually, the parameter space is redundant, and one may assume, using appropriate canonical 
forms, that r = 2n), is, more precisely, as follows. We write vc (n, k) instead of vc (A k), where 
A is the architecture being discussed. Then: 

max in,n[log([ J)J [ < VC(n,fc) < min{fc, 20n + 4nlog(fc -n-t-1)} 

Observe that this means, in particular, that when k > max{n2,32} it holds that |logA; < 
vc{n,k) < 8nlogA:. 

By a threshold recurrent architecture we mean a homogeneous one with a = H. Our main 
results in [27], ignoring multiplicative constants, say roughly the following: (1) For architectures 
with activation a = any fixed nonlinear polynomial, the VC dimension is « rk, and the lower 
bound holds for any sigmoidal activation (but there are no possible upper bounds that hold for 
arbitrary sigmoids). (2) For architectures with activation a = any fixed piecewise polynomial, 
the VC dimension is between rk and r2k. (3) For architectures with activation a = rl (threshold 
nets), the VC dimension is between rlog(A;/r) and min{rfclogrfc,r2 + rlogrA;}. (4) For the 
standard sigmoid cr(x) = 1/(1 + e~z), the VC dimension is between rk and r4k2. Upper bounds 
are obtained by a combination of "unfolding" (and application of bounds known for feedforward 
nets) and ad-hoc results. The lower bounds are obtained by means of explicit examples of 
architectures which perform various bit-decoding operations on weights. In the sigmoidal case 
one uses again the "locally linear and globally threshold" property. It is possible to generalize 
the lower bound that holds in the sigmoidal case to even more arbitrary activations. Let a 
be a function which is twice continuously differentiable function in an open interval containing 
some point XQ where CT"(XO)#0. The VC dimension of recurrent architectures with activation a, 
with r weights and receiving inputs of length k, is also Q(rk). The construction in this case is 
based on ideas from symbolic dynamics, essentially using a chaotic-type system to decode weight 
information and hence affect the progress of the computation. 

It is interesting to contrast the situation with the one that holds for feedforward nets. For 
the latter, it holds, in general terms, that linear activations provide VC dimension proportional 
to r, threshold activations give VC dimension proportional to rlog(r), and piecewise polynomial 
activations result in VC dimension proportional tor2. 

3.2.3    Other Dimensions 

As we discussed, for feedforward nets the VC dimension grows in general at least as fast as the 
square r2 of the number of adjustable weights r. This fact can be seen as optimistic (relatively low 
sample complexity), but the bound is more pessimistic than some experimental data would seem 
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to indicate. It is essentially impossible to design experiments for testing PAC learning, because 
of the need to estimate prediction confidence for large families of distributions; most experiments 
deal with specific distributions. Because of this, the first PI was asked, at the end of his plenary- 
talk presentation of the results from [25] and [53] at NIPS'95, if it was not possible that sets of 
input patterns which can be shattered are all in some sense "special" and that if we ask instead, 
as done in the classical literature in pattern recognition, for the shattering of all sets in "general 
position" (as in Cover's work on capacity of perceptrons), then an upper bound of 0(r) might 
hold. After further research, we produced the paper [26], which answered this in the affirmative. 
We established a linear upper bound for arbitrary sigmoidal (as well as threshold) neural nets 
for what we may call a "generic shattering dimension". We omit the details here, but wish to 
emphasize that one major direction for future work is that of investigating the relevance of our 
generic shattering dimension to variations of PAC learning, when one weakens the requirement 
that generalization capabilities must hold with respect to all possible input distributions. (The 
upper bound is also useful in the very different context of understanding computational abilities; 
as an illustration of this fact, we mention that our main result, announced electronically, was 
immediately employed by Maass in a new paper contrasting the computational power of spiking 
neurons with that of sigmoidal neural networks.) 

3.3    Approximations 

Here we deal with question Ql: "How large can the errors Err (P) be?", for hypotheses classes 
of the form T = T^. Recall that this question characterizes the minimum potentially achievable 
error, no matter how many samples are seen or how powerful an algorithm is used. The smaller 
Err(P), the more useful is the estimate in Equation (16). Take the case when the underlying 
probability densities in the general learning paradigm are induced from input output data of 
the form (u,g(u)), where g is an unknown target function whose behavior we are attempting 
to emulate by means of hypotheses / € T. In that case, we are led to questions of function 
approximation. With reasonable prior assumptions on the possible g's, one tries to obtain good 
estimates of the best possible approximation error inf/g^- ||p — /||, for various function space 
norms on T. That is, one wants to study the distance to T of elements g which satisfy the prior 
assumptions. 

3.3.1    Feedforward Nets 

In the neural nets literature, one finds a claim to the extent that approximations by means of (1HL) 
neural networks may require less parameters than conventional techniques. What is meant by 
this is that approximations of functions in certain classes (defined typically in harmonic analysis 
terms or, say, the unit ball of a Sobolev space W£) to within a desired error tolerance can be 
obtained using "small" networks. In contrast, the argument goes, using for instance orthogonal 
polynomials, splines, or Fourier series, would require an astronomical number of terms, especially 
for multivariate inputs. Unfortunately, this claim represents a misunderstanding of the very nice 
results obtained by Andrew Barron and Lee Jones during the last few years. Their results apply 
in principle also to give efficient approximations with various types of classical basis functions as 
long as the basis elements can be chosen in a nonlinear fashion (just as is the case with neural 
networks). For instance, splines with free (rather than fixed) nodes, or trigonometric series 
with adaptively selected frequencies, will have the same properties. What is important is the 
possibility of selecting terms adaptively, in contrast to the use of a large basis containing many 
terms and fitting these through the use of least squares. Thus, the important fact about these 
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results is that they emphasize that nonlinear parameterizations may require less parameters 
than linear ones to achieve a guaranteed degree of approximation. (Abstractly, this is not so 
surprising: for an analogy, consider the fact that a even a one-parameter analytic curve, based 
on ergodic motions, can be used to approximate arbitrarily well every element in an Euclidean 
space ld, but no (d— l)-dimensional subspace can do so.) For an exposition and a precise theorem 
comparing rates of approximation by such neural net and nonlinear adaptation approaches vs. 
rates obtainable with classical approximation techniques, the reader may wish to consult the 
paper [3]. (Constraints on nonlinear adaptation procedures also exist, and are based on the 
theory of nonlinear iV-widths, but we do not discuss that subject here.) The paper [21] dealt 
with some of these questions regarding rates of approximation, and we review some of the setup 
now. 

The subject of that paper concerns the problem of approximating elements of a Banach space 
X - typically presented as a space of functions - by means of finite linear combinations of 
elements from a predetermined subset S of X. In contrast to classical linear approximation 
techniques, where optimal approximation is desired and no penalty is imposed on the number 
of elements used, we are interested there in sparse approximants. that is to say, combinations 
that employ few elements. In particular, we are interested in understanding the rate at which 
the achievable error can be reduced as one increases the number allowed. Such questions are of 
obvious interest in areas such as signal representation, numerical analysis, and neural networks. 
In that latter context, if we wish to study approximations by input/output maps of 1HL networks 
with n hidden units, one must consider linear combinations of n-element subsets of 

S = {g:Rm ->R\3A€Rm,aER, \g(u) = ±a{A -u + a)}, 

where a : E —► R is the activation of interest. 1HL approximations are of interest because of the 
results which insure that, for each compact subset M of Km, restricting elements of S to M, the 
closed linear span of 5 is all of C°(M) (under extremely weak conditions on a\ being locally 
Riemann integrable and non-polynomial is enough). 

Rather than arbitrary linear combinations Y,i °i9ii with Cj's real and g^s in 5, it turns out to 
be easier to understand approximations in terms of combinations that are subject to a prescribed 
upper bound on the total coefficient sum Y,i |cil- After normalizing S and replacing it by SU-S, 
one is led to studying approximations in terms of convex combinations. This is the focus of [21]. 
To explain the previous results and new contributions, we first introduce some notation. Let X be 
a Banach space, with norm || • ||. Take any subset S Q X. For each positive integer n, we let co„5 
consist of all sums YA=I°i9u with gi,...,gn hi S and reals c* € [0,1], £jc,- = 1. The distance 
from an element / € X to this space is denoted \\conS — f\\ := inf {\\h — f\\,h e con5}. Let <f> 
be a positive function on the integers. We say that the space X admits a (convex) approximation 
rate <f>(n) if for each bounded subset S of X and each / G coS, ||co„5 — /|| = 0{<f>{n)). Jones 
and Barron showed that every Hilbert space admits an approximation rate <j>(n) = l/y/n. One 
of our main objectives in [21] was the study of such rates for non-Hilbert spaces. (Barron in 
1992 did show that the same rate is obtained in the uniform norm, but only for approximation 
with respect to special classes of sets S.) Spaces IP with p equal to or slightly greater than one 
are particularly important because of their usefulness for robust estimation, and there have been 
experimental results for regression with neural networks, showing the superiority of IP (p <S 2) 
to L2 in that context (see [21]). 

Another issue of interest is as follows. Jones considered the procedure of constructing ap- 
proximants to / incrementally, by forming a convex combination of the last approximant with a 
single new element of S; in this case, the convergence rate in L2 is interestingly again 0(l/y/n). 
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Incremental approximants axe especially attractive from a computational point of view. In the 
neural network context, they correspond to adding one "neuron" at a time to decrease the resid- 
ual error. We next define this concept precisely. Again let X be a Banach space with norm 
|| • ||. Let SQX. An incremental sequence (for approximation in coS) is any sequence 
/i, /2,... of elements of X so that f\ G S and for each n > 1 there is some gn € S so that 
/n+i € co ({/„,<?„}). We say that an incremental sequence f\,fi,... is greedy (with respect to 
/ G co5) if ||/n+1 - /|| = inf {\\h - /|| | h e co ({/„.<?}) ,geS}, n = 1,2,.... The set S is gen- 
erally not compact, so we cannot expect the infimum to be attained. Given a positive sequence 
c = (ei, (-21 • ■ •) of allowed "slack" terms, we say that an incremental sequence /i, /2, ■ • • is e-greedy 
(with respect to/) if ||/„+i -/|| <mi{\\h-f\\ \ h e co{{fn,g}) ,g 6 S} + en , n = 1,2,.... 
Let <f> be a positive function on the integers. We say that 5 has an incremental (convex) scheme 
with rate (p(n) if there is an incremental schedule e such that, for each / in coS and each e-greedy 
incremental sequence /i, /2,..., it holds that ||/n - /|| = 0(<f>(n)) as n -> -t-cc. Finally, we say 
that the space X admits incremental (convex) schemes with rate <f>{n) if every bounded subset S 
of X has an incremental scheme with rate (f>{n). The intuitive idea behind this definition is that 
at each stage we attempt to obtain the best approximant in the restricted subclass consisting 
of convex combinations (1 — An)/n + Xng, with An in [0,1], g in S, and fn being the previous 
approximant. It is also possible to select the sequence Ai, A2,... beforehand. We say that an 
incremental sequence /1, /2, • • • is e-greedy (with respect to /) with convexity schedule Ai, A2,... 
if||/n+i-/ll<inf{||((l-An)/„ + Anff)-/|||5G5} + e„,  n = l,2,.... 

The main objective of the paper [21] was to analyze both optimal and incremental rates 
in broad classes of Banach spaces, specifically including LP, 1 < p < 00. It is a triviality 
that optimal approximants to approximate functions always converge. However, the rates of 
convergence depend critically upon the structure of the space. In some spaces, like L1, there 
exist target functions for which the rate can be made arbitrarily slow. In Banach spaces of 
(Rademacher) type t with t > 1, however, a rate bound of 0(n~l+llt) is obtained. For LP spaces 
these results specialize to these ("no" means that the approximants do not always converge): 

p 1 (1.2) [2,oo) 00 

optimal 
incremental 

1 
NO 

n-i+i/P 

„-1/2 
1 

NO 

Particular examples of IP spaces are given to show that the orders given in our bounds 
cannot in general be sharpened. In the incremental case, a particularly interesting aspect of the 
results is that the new element of S added to the incremental approximant is not required to 
be the best possible choice. Instead, the new element can meet a less stringent test, and the 
convex combination of the elements included in the approximant is not optimized. Instead a 
simple average is used. (This is an example of a fixed convexity schedule. Thus, our incremental 
approximants are the simplest yet studied, simpler even than those of Jones. Nonetheless, the 
same worst-case order is obtained for these approximants on LP, 1 < p < 00, as for the optimal 
approximant. In more general spaces, the incremental approximants may not even converge. 
However, if the space has a modulus of smoothness of power type greater than one,-or is of 
Rademacher type t, then rate bounds can be given. The results are based on explicit constructions 
as well as use of the rich theory developed by Lindenstrauss on smoothness moduli and by Ledoux, 
Talagrand, and others on probability in Banach Spaces. 
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3.4 Recurrent Nets 

One can ask similar approximation rate questions for recurrent nets. Recurrent nets provide 
universal identification models, in the sense that continuous- or discrete-time systems E of the type 
x [ or x+ ] = f(x. u) ,y = h(x) (under standard smoothness assumptions), can be approximately 
simulated by the behavior of a recurrent network. This was explained in [37]. By approximate 
simulation we mean as follows. In general, assume given two systems E and £ as above, where 
tildes denote data associated to the second system, and with same number of inputs and outputs 
(but possibly fi ^ n). Suppose also given compact subsets K\ C lRn and ^ C E"1, as well 
as an e > 0 and a T > 0. Suppose further (this simplifies definitions, but can be relaxed) 
that for each initial state xo € K\ and each measurable control u(-) : [0, T] —► Ki the solution 
(f>(t,xo,u) is defined for all t e [0,T]. The system E simulates £ on the sets Ki,K2 in time T 
and up to accuracy e if there exist two continuous mappings a : Rn -> ln and ß : ln ->• Rn 

so that the following property holds: For each io £ K\ and each u(-) : [0,T] ->■ K2, denote 
x(t) := (l>(t,xo,u) and x{i) := (j>(t,ß(xo),u); then this second function is defined for alK € [0,T], 

\\x{t) — a(x(t))\\ < e, and h(x(t)) — h{x{t)) < e for all such t. Assume that a is a universal 
activation (dilates and translates of a are dense on continuous functions with the compact-open 
topology). Then, for each system E and for each K\, K2, e, T as above, there is a a-sysiem 
E that simulates E on the sets K\,K<i in time T and up to accuracy e. Thus, recurrent nets 
approximate a wide class of nonlinear plants. Note, however, that approximations are only valid 
on compact subsets of the state space and for finite time, so that many interesting dynamical 
characteristics are not reflected. This is analogous to the role of bilinear systems, shown to be 
universal in analogous fashion in Sussmann's well-known 1975 paper. As with bilinear systems, 
it is obvious that if one imposes extra stability assumptions ("fading memory" type) it will be 
possible to obtain global approximations, but this is probably not very useful, as stability is often 
a goal of control rather than an assumption. 

3.5 Computing Risk Minimizer 

Here we deal with question Q3: "Is it computationally feasible to find Emp_(i/)?", for hypotheses 
classes of the form T = Tj^. That is to say, given a cost function involving fitting an architecture 
to training data, what are the theoretical limitations of finding the value of the least error, and/or 
actually finding the minimizing parameters? 

The approach we took in [20] originated with the work of Judd, Blum and Rivest, Lin and 
Vitter, and others. Judd observed that gradient descent techniques used in practice for the 1HL 
problem seem to be subject to a "curse of dimensionality". For the simpler case of linearly 
separable data, the perceptron algorithm and linear programming techniques help find a network 
- with no "hidden units" - relatively fast. Thus one may ask if there exists a fundamental barrier 
to training by general feedforward networks, a barrier that is insurmountable no matter which 
particular algorithm one uses. The simplest version of this is to ask about the tractability of the 
training problem, that is, of the question: "Can we determine if Emp (u) = 0? or in equivalent 
terms: "Given a network architecture (interconnection graph as well as choice of activation 
function) and a set of training examples, does there exist a set of weights so that the. network 
produces the correct output for all examples?" 

The simplest neural network, i.e., the perceptron, is a network that consists of one threshold 
neuron only. It is easily verified that the computational time of the loading problem in this 
case is polynomial in the size of the training set irrespective of whether the input is analog or 
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binary. This can be achieved via a linear programming technique. We showed that, for 1HL 
networks employing a simple, piecewise linear activation function, and just two hidden units, the 
training problem is NP-complete. Recall that if one establishes that a problem is NP-complete 
then one has shown, in the standard way done in computer science, that the problem is at least 
as hard as most problems widely believed to be hard (the "traveling salesman" problem, Boolean 
satisfiability, and so forth). This shows that, indeed, any possible neural net learning algorithm 
based on fixed architectures faces severe computational barriers. Our results generalized those of 
Blum and Rivest. which only proved a similar NP-completeness conclusion for networks having 
the same architecture but differing from ours in that the activation functions are all of a hard 
threshold type. 



4   REFERENCES 
O i 

4    References 

1. Sussmann, H.J., "Real analytic desingularization and subanalytic sets: an elementary 
approach," Trans. Amrr. Math. Soc. 317 (1990): 417-461. 

2. Sussmann, H.J., "Uniqueness of the weights for minimal feedforward nets with a given input-output 
map," Neural Networks, 5 (1992): 589-593. 

3. Sussmann, H.J., "On the use of neural networks in. the analysis of nonlinear systems: realiza- 
tion, approximation, and feedback control," in Proc. Congres Satellite du Congres Europeen de 
Mathemattques on "Aspects Thioriques des Riseaux de Neurones, Paris, July 2-3 1992. 

4. Sussmann, H.J., and Y. Yang, "On the stabilizability of multiple integrators by means of bounded 
feedback controls," Proc.  30th I.E.E.E. Con/.  Decision and Control, Brighton, UK (1991), pp. 

The following references all have Sontag as (co)author: 

5. Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, New York, 

6. (With R. Alur and T.A. Henzinger) Hybrid Systems III. Verification and Control, Springer Verlag 
Berlin, 1996. 

7. (with H.J. Sussmann) "Backpropagation can give rise to spurious local minima even for networks 
without hidden layers," Complex Systems 3(1989): 91-106. 

8. "Sigmoids distinguish better than Heavisides," Neural Computation 1(1989): 470-472. 
9' iniQto1^Ho^USSmann)  "BackPr<>pagation separates where perceptrons do,"  Neural Networks, 

10" "!,!edbackstabilizationusin<5two-hidden-layernets," IEEE Trans. Neural Networks 3(1992): 981- 

11. "Feedforward nets for interpolation and classification," J. Comp. Syst. Sei. 45(1992): 20-48. 
12' Jj1* H* Sie6elmann) "Turing computability with neural nets," Appl. Math. Lett.  4(6)(1991): 

77-80. 

13' sTagg^V^rikT"6" SyStemS *** Sign-°bservati0ns'" SIAM J- Cont">l ™<* Optimization 
14' Ü!^™ Albertirii) "For ne"ral networks, function determines form," Neural Networks 6(1993)- 

975-990. ' 

15' 22^994)^244 "State °bserVabUity " recurrent neural networks," Systems & Control Letters 

16' i«^5' SiegeImann) "0n ^e computational power of neural nets," J. Comp. Syst. Sei. 50(1995): 

17' mtl^V 3g3lI360n) "Anal°g COmputation' neural networks> and circuits," Theor. Comp. Sei. 

18. (with HJ. Sussmann and Y. Yang) «A general result on the stabilization of linear systems using 
bounded controls," IEEE Trans. Autom. Control 39(1994): 2411-2425. 

19. (with R Koplon and M.L.J. Hautus), "Observability of linear systems with saturated outputs," 
Linear Algebra and Applies. 205-206(1994): 909-936. 

20. (with B. DasGupta and H.T. Siegelmann) "On the complexity of training neural networks with 
continuous activation functions," IEEE Trans. Neural Networks 6(1995): 1490-1504. 

21. (with C. Darken, C, M. Donahue, and L. Gurvits) «Rates of convex approximation in non-Hübert 
spaces,   Constructive Approximation 13(1997): 187-220 



4   REFERENCES 38 

22. "Critical points for least-squares problems involving certain analytic functions, with applications 
to sigmoidal nets," Advances in Computational Mathematics (Special Issue on Neural Networks) 
5(1996): 245-268. 

23. (with R. Koplon) "Using Fourier-neural recurrent networks to fit sequential input/output data," 
Neurocomputing 15(1997): 225-248. 

24. (with B. Dasgupta) "Sample complexity for learning recurrent perceptron mappings," IEEE Trans. 
Inform. Theory 42 (1996): 1479-1487. 

25. (with P. Koiran) "Neural networks with quadratic VC dimension," J. Comp. Syst. Sei. 54(1997): 
190-198. 

26. "Shattering all sets of k points in 'general position' requires (k — l)/2 parameters," Neural Com- 
putation 9(1997): 337-348. 

27. (with P. Koiran) "Vapnik-Chervonenkis dimension of recurrent neural networks," Discrete Applied 
Math., to appear. 

28. (with P. Koiran) "Vapnik-Chervonenkis dimension of recurrent neural networks," in Proc. Third 
European Conf. Computational Learning Theory, Jerusalem, March 1997, to appear. 

29. (with H.J. Sussmann and Y. Yang) "Global stabilization of linear discrete-time systems with 
bounded feedback," Systems and Control Letters, 30 (1997): 273-281. 

30. (with H. Siegelmann and L. Giles) "The complexity of language recognition by neural networks," 
in Algorithms, Software, Architecture (J. van Leeuwen, ed), North Holland, Amsterdam, 1992, pp. 
329-335. 

31. (With F. Albertini and V. Maillot) "Uniqueness of weights for neural networks," in Artificial 
Neural Networks for Speech and Vision (R. Mammone, ed.), Chapman and Hall, London, 1993, 
pp. 115-125. 

32. "Neural networks for control," in Essays on Control: Perspectives in the Theory and its Applica- 
tions (H.L. Trentelman and J.C. Willems, eds.), Birkhauser, Boston, 1993, pp. 339-380. 

33. (with B. DasGupta and H.T. Siegelmann) "On the Intractability of Loading Neural Networks," in 
Theoretical Advances in Neural Computation and Learning (Roychowdhury, V. P., Siu K. Y., and 
Orlitsky A., eds.), Kluwer Academic Publishers, 1994, pp. 357-389. 

34. "Automata and neural networks," in The Handbook of Brain Theory and Neural Networks, M.A. 
Arbib. ed., M.I.T. Press, 1995. 

35. "Spaces of observables in nonlinear control." in Proc. Intern. Congress of Mathematicians 19941 
Volume 2, Birkhäuser Verlag, Basel, 1995, pp. 1532-1545. 

36. "Interconnected automata and linear systems: A theoretical framework in discrete-time," in Hybrid 
Systems III: Verification and Control (R. Alur, T. Henzinger, and E.D. Sontag, eds.), Springer, 
NY. 1996, pp. 436-448. 

37. "Neural nets as systems models and controllers," in Proc. Seventh Yale Workshop on Adaptive 
and Learning Systems, pp. 73-79, Yale University, 1992. 

38. (With J.L. Balcäzar, R. Gavaldä, and H. Siegelmann) "Some structural complexity aspects of neural 
computation," in Proc. 8th Annual IEEE Conf. Structure in Complexity Theory, San Diego, May 
1993. pp. 253-265. 

39. (With A. Macintyre) "Finiteness results for sigmoidal 'neural' networks," in Proc. 25th Annual 
Symp. Theory Computing, San Diego, May 1993, pp. 325-334. 

40. (With F. Albertini) "Identifiability of discrete-time neural networks," Proc. European Control Con- 
ference, Groningen, June 1993, pp. 460-465. 

41. (With F. Albertini) "Uniqueness of weights for recurrent nets," Systems and Networks: Math- 
ematical Theory and Applications, Proc. MTNS '93, Vol. 2, Akademie Verlag, Regensburg, pp. 
599-602. 

42. (With H. Siegelmann) "Analog computation via neural networks," in Proc. 2nd Israel Symposium 
on Theory of Computing and Systems (ISTCS93), IEEE Computer Society Press, 1993. 



4   REFERENCES 39 

43. (with Y. Yang) "Stabilization with saturated actuators, a worked example: F-8 longitudinal flight 
control." Proc. 1993 IEEE Conf. on Aerospace Control Systems, Thousand Oaks, CA, May 1993, 
pp. 289-293. 

44. (with C. Darken, C, M. Donahue, and L. Gurvits) "Rate of approximation results motivated 
by robust neural network learning," in Proc. Sixth ACM Workshop on Computational Learning 
Theory, Santa Cruz. July 1993. 

45. (with F. Albertini) "State observability in recurrent neural networks," Proc. IEEE Conf. Decision 
and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pp. 3706-3707. 

46. (with H.J. Sussmann and Y. Yang) "A general result on the stabilization of linear systems us- 
ing bounded controls," Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE 
Publications, 1993, pp. 1802-1807. 

47. (with R. Koplon) "Sign-linear systems as cascades of automata and continuous variable systems," 
Proc. IEEE Conf. Decision and Control, San Antonio, Dec. 1993, IEEE Publications, 1993, pp. 
2290-2291. 

48. (with B. DasGupta and H.T. Siegelmann) "On a learnability question associated to neural networks 
with continuous activations," Proc. 7th ACM Conference on Learning Theory, 1994, pp. 47-56. 

49. (with R. Koplon) "Techniques for parameter reconstruction in Fourier-Neural recurrent networks," 
in Proc. IEEE Conf. Decision and Control, Orlando, Dec. 1994, IEEE Publications, 1994, pp. 213- 
218. 

50. "Critical points for neural net least-squares problems." in Proc. 1995 IEEE Internat. Conf. Neural 
Networks, IEEE Publications, 1995, pp. 2949-2954. 

51. "From linear to nonlinear: some complexity comparisons," Proc. IEEE Conf. Decision and Control, 
New Orleans, Dec. 1995, IEEE Publications, 1995, pp. 2916-2920. 

52. (with B. Dasgupta) "Sample complexity for learning recurrent perceptron mappings," Advances 
in Neural Information Processing Systems 8 (NIPS95) (D.S. Touretzky, M.C. Moser, and M.E. 
Hasselmo, eds.), MIT Press, Cambridge, MA, 1996, pp. 204-210. 

53. (with P. Koiran) "Neural networks with quadratic VC dimension," Advances in Neural Information 
Processing Systems 8 (NIPS95) (D.S. Touretzky, M.C. Moser, and M.E. Hasselmo, eds.), MIT 
Press. Cambridge, MA, 1996, pp. 197-203. 

54. (with H.J. Sussmann) "Complete controllability of continuous-time recurrent neural networks," 
Systems and Control Letters 30(1997): 177-183. 



j fifi.fi ^ 

MATHEMATICAL THEORY OF NEURAL NETWORKS 

AFOSR-94-0293 

Progress Report, 1 Sept 1997 (for 1 Oct 1996 to 30 Jun 1997) 

Eduardo D. Sontag 
Hector J. Sussmann 

SYCON - Rutgers Center for Systems and Control 
Department of Mathematics, Rutgers University 

New Brunswick, NJ 08903 



1    Objectives 

This project focuses on fundamental theoretical issues relevant to the capabilities, performance, and 
limitations of artificial neural networks. 

2 Status of effort 

Work continued on all major subareas of the project, and substantial progress was achieved in many of 
them.1 

Among the main new contributions are the derivation of tight bounds for the sample complexity of 
learning recurrent nets, both in continuous and discrete time, the start of a computational complex- 
ity study of hybrid system equivalence, and the complete characterization of reachability for states of 
recurrent nets. 

3 Accomplishments/New Findings 

The object of this project is to explore theoretical issues regarding capabilities, performance, and limit- 
ations of "neural" and other alternative models of computation and control. Much research carried out 
by AFOSR contractors and Air Force labs concerns the use of neural network techniques when deal- 
ing, among others, with problems of fault detection and classification (in particular, for reconfigurable 
aircraft), design of controls valid over large flight envelopes, and precision laying of composites on air- 
craft structures. Unquestionably, there is a demand for basic theoretical foundations for the analysis and 
comparison of different models and algorithms. This work concerns the development of such foundations. 

3.1    Identification 

The question of "identification" or "learning" has to do with the development of algorithms, and basic 
associated theoretical notions, for the fitting of models, in particular to time-structured data. Typically, 
there is a "training" phase, in which a learning system is presented with a representative sample of 
labeled input/output pairs, and the goal is to form associations which result in good responses for future 
inputs, including of course inputs which were not seen exactly during the training period. Most of our 
work deals with the PAC (or uniform-convergence of empirical means) estimates, pioneered by Vapnik, 
Valiant, and others. In particular, we have concentrated on estimates of sample complexity (amount of 
data needed for reliable generalization). 

Following up on our previous breakthroughs on lower bounds for VC dimension of feedforward nets (2, 
4), we have now obtained tight bounds for recurrent networks as well (see 9, 10). Ignoring multiplicative 
constants, the main results say roughly the following: (1) For architectures with activation any fixed 
nonlinear polynomial, the VC dimension is proportional to both the number of parameters in the model 
and the length of inputs in a given window; (2) For architectures whose activation function is any 
fixed piecewise polynomial, the VC dimension is at bounded by the square of the number of parameters 
multiplied by the length of inputs; (3) For architectures whose activation function is the standard sigmoidal 
tanh, we have upper bounds logarithmic in input length and of fourth order in number of parameters (but 
lower bound is only quadratic in number of parameters, and one of our research directions is to narrow 
this gap). These bounds should form the basis of an approach to learning time-series data, and during 
our lectures and visit to the special semester at the Newton Institute, this direction for further research 
was discussed with several of the leading researchers in the area. Two students have been working in 
this project, and its relations to systems identification. 

'The Web site http://www.math.rutgers.edu/~sontag/ can be consulted for up to date versions of (p)reprints. 



3.2 Dynamics of Recurrent Nets, and Systems with Saturations 

A major success was the work 5, in which we were able to provide a characterization of transitivity 
(complete controllability) for recurrent nets. Follow-up work is trying to weaken the assumptions, hence 
enlarging the class of models to which the result applies. (In particular, current work has resulted in an 
extension of the results to the model, also of great interest, in which the right-hand side depends linearly 
on sigmoidal values; a paper with a graduate student is in preparation.) 

The paper 3 provided a general result reagarding stabilization of linear systems with saturated ac- 
tuators, in the form of feedforward nets, extending our previously-reported results for the continuous 
case. We are now studying (with Z. Lin) extensions of these techniques to account for disturbances, 
concentrating first in the continuous-time case. 

The question of stability of recurrent nets is still very much open, and is the subject of current efforts, 
including work by graduate students and postdocs partially supported by the project. We have had 
preliminary success with the two-dimensional problem, but even that case has so far defied a complete 
solution. 

3.3 Hybrid Systems 

Systems combining discontinuous and continuous components are becoming the object of serious interest 
in the context of control and computing. We have continued our work on analog computing and on 
piecewise-linear systems, and in particular we have just obtained, with B. Dasgupta, a polynomial time 
algorithm to check equivalence (a paper will be prepared for submission during the next few months). 

4 Personnel Supported 

Partial summer support for: Pis, graduate students (P. Kuusela, M. Krichman, M. Hasson, Y. Qiao, and 
S. Koskie), and postdocs (B. Dasgupta and Z. Lin). 

5 Publications (all with Sontag as coauthor) 

List of peer-reviewed publications appeared, submitted, and/or accepted during period 1 Oct 1996 to 30 
Jun 1997. 

1. (with C. Darken, C, M. Donahue, and L. Gurvits) "Rates of convex approximation in non-Hilbert 
spaces," Constructive Approximation 13(1997): 187-220 

2. (with B. Dasgupta) "Sample complexity for learning recurrent perceptron mappings," IEEE Trans. 
Inform. Theory 42 (1996): 1479-1487. 

3. (with H.J. Sussmann and Y. Yang)  "Global stabilization of linear discrete-time systems with 
bounded feedback," Systems and Control Letters, 30 (1997): 273-281. 

4. (with P. Koiran) "Neural networks with quadratic VC dimension," J. Comp. Syst. Sei. 54(1997): 
190-198. 

5. (with H.J. Sussmann) "Complete controllability of continuous-time recurrent neural networks," 
Systems and Control Letters 30(1997): 177-183. 

6. "Shattering all sets of k points in 'general position' requires (A; - l)/2 parameters," Neural Com- 
putation 9(1997): 337-348. 



7. "Some learning and systems-theoretic questions regarding recurrent neural networks," in Proc. 
Conf. on Information Sciences and Systems (CISS 97), Johns Hopkins, Baltimore, MD, March 
1997, pp. 630-635. 

8. (with R. Koplon) "Using Fourier-neural recurrent networks to fit sequential input/output data," 
Neurocomputing 15(1997): 225-248. 

9. (with P. Koiran) "Vapnik-Chervonenkis dimension of recurrent neural networks," Discrete Applied 
Math., to appear. 

10. (with P. Koiran) "Vapnik-Chervonenkis dimension of recurrent neural networks," in Proc.   Third 
European Conf. Computational Learning Theory, Jerusalem, March 1997, to appear. 

6    Interactions 

Major interactions (Sontag unless otherwise stated) included: 

• 1997 Conference on Information Sciences and Systems, Johns Hopkins University, 3/97 (2 talks: "A 
remark on robust stabilization of general asymptotically controllable systems" and "Some learning 
and systems-theoretic questions regarding recurrent neural networks") 

• Neural Information Processing conference, Snowmass, CO, 12/97. (1 hour talk in workshop "Sys- 
tems Theory and Nonlinear Dynamics in Neural Networks": recurrent networks, and 1/2-hour talk 
in worksop "Modeling Error Surfaces": local minima in feedforward nets) 

• UC Santa Cruz, 5/97 (Colloquium: hybrid techniques in control) 

• UC Santa Barbara, 5/97 (2-hour talk: input to state stability and related notions, and also 1-hour 
talk: recurrent neural networks). 

• Princeton Applied Mathematics 3/97 (Colloquium: recurrent neural networks) 

• Princeton Mechanical and Aerospace Engineering 2/97 (Colloquium: nonlinear feedback design) 

• Isaac Newton Institute programme on "Neural Networks and Machine Learning", Cambridge Uni- 
versity, August 1997 (3 hours of lectures:n VC dimension and learning theory) 

• AMS 1997 Summer Research Institute "Differential Geometry and Control", Boulder, June/July 
1997 (1-hr invited lecture: nonlinear stability) 

• Applications and Science of Artificial Neural Networks Conference, SPIE's 1997 International Sym- 
posium on Aerospace/Defense Sensing and Controls, Orlando, April 1997 (expository talk: recur- 
rent neural networks) 

• SUNY- Stony Brook Engineering College Seminar, 3/97 (Colloquium: feedback stabilization of 
nonlinear systems) 

• (Sussmann:) Kyoto University, 12/96 (colloquium talks) 

• (Sussmann:) 35th IEEE Conference on Decision and Control (CDC), Kobe, 12/96. 

• (Sussmann:) Tokyo University, 12/96 (Colloquium talk on recurrent networks) 

• (Sussmann:) Weizmann Institute, Rehovot, Israel, 12/96. 

• (Sussmann:) Technion, Haifa, Israel, 12/96, Conference "Singularities and Control Theory". 

• (Sussmann:) University of Florida, 3/97, IFIP Conference on Optimal Control: Theory, Algorithms 
and Applications (article in SIAM News described Sussmann's talk). 



• (Sussmann:) INSA (Institut National de Sciences Appliques), Rouen, Prance, 5-6/97, various sem- 
inar talks. 

• (Sussmann:) Summer Research Institute of the American Mathematical Society, on "Differential 
Geometry and Control", Boulder, 7/97, co-organizer and lecturer. 

Other relevant conference-related activities: Program Committee, Int. Workshop on Hybrid ahdReal- 
Time Systems, Grenoble, March 1997. 

Current Editorships (Sontag): Associate Editor, Journal of Computer and Systems Sciences; Associ- 
ate Editor, Neural Networks; Associate Editor, Neurocomputing; Member of Board of Advisors, Neural 
Computing Surveys; Associate Editor at Large, IEEE Transactions in Automatic Control; Associate Ed- 
itor, Dynamics and Control; Associate Editor, Control: Theory and Advanced Technology, Mita Press; 
Associate Editor, SMAI Electronic Journal on Control, Optimization and the Calculus of Variations; Co- 
Editor of book series, Communications and Control Engineering; (Co-)Editor, Mathematics of Control, 
Signals, and Systems. ' 

7 New discoveries, inventions, or patent disclosures 

None. * 
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