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Abstract 

A new algorithm is presented for Automatic Target Recognition (ATR) using High 

Range Resolution (HRR) profiles as opposed to traditional Synthetic Aperture Radar 

(SAR) images. ATR performance using SAR images degrades considerably in case of 

moving targets due to blurring caused in the cross-range domain. ATR based on HRR 

profiles, which are formed without Fourier transform in the cross-range, is expected to 

have superior performance for moving targets with the proposed method. One of the 

major contributions of this project so far has been the utilization of Eigen-templates 

as ATR features that are obtained via Singular Value Decomposition (SVD) of HRR 

profiles. SVD analysis of a large class of HRR data revealed that the Range-space 

eigenvectors corresponding to the largest singular value accounted for more than 90% 

of target energy. Hence, it has been proposed that the Range-space Eigen-vectors 

be used as templates for classification. The effectiveness of data normalization and 

Gaussianization of profile data in improving classification performance is also stud- 

ied. With extensive simulation studies it is shown that the proposed Eigen-template 

based ATR approach provides consistent superior performance with recognition rate 

reaching 99.5% for the four class XPATCH database. 

This research project is being conducted in direct collaboration with the Sensors 

Directorate's ATR Assessment Branch, Wright Laboratories, Wright-Patt AFB, Day- 

ton, Ohio, where it is being monitored by Dr. Rob Williams. A primary objective of 

this collaborative effort is to complement and augment various other ongoing research 

activities being conducted or supported by the Wright Labs ATR research team. 
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Chapter 1 

Introduction and Executive 
Summary 

As originally proposed, the primary objective of this project has been to develop al- 

gorithms for advanced air-to-ground Automatic Target Recognition (ATR) capability 

utilizing High Range Resolution (HRR) profiles. One of the current priority research 

initiatives of the Model-Based Vision Lab at USAF Wright Laboratory (WL) is to 

develop an advanced air-to-ground High Range resolution (HRR) Automatic Target 

Recognition (ATR) program. The ultimate program objective is to transition mature 

HRR-ATR technology into operational Air Force airborne attack and surveillance 

platforms. The new HRR-ATR technology will be integrated into a system approach 

and it is expected to vastly enhance Air Force's ability to detect, recognize, as well as 

identify time-critical military targets. The HRR-ATR technology would rely on pro- 

cessing high resolution 'Range Profiles', as distinguished from traditional SAR-ATR 

that utilizes SAR image data. The ATR performance with HRR is expected to be 

superior for Moving Targets which cause blurring in SAR data that makes recogni- 

tion a difficult task. In this project, ATR algorithms based on HRR profiles are being 

developed initially for stationary targets for baselining purposes prior to transitioning 

to more critical moving targets. Research on HRR-ATR is at the stage of inception 

and a multifaceted approach would be essential in order to harness recent advances 



from multiple disciplines. 

The proposed research is being conducted in direct collaboration with Sensors Di- 

rectorate's ATR Assessment Branch, Wright Laboratories, Wright-Patt AFB, Dayton, 

Ohio, where it is being monitored by Dr. Rob Williams. A primary objective of this 

collaborative effort is to complement and augment various other ongoing research 

activities being conducted or supported by the Wright Labs ATR group. 

1.1    Status of Effort 

In the past year, the major emphasis of work on this project have been devoted to 

three areas, as summarized below, 

• HRR Profile Data Characterization : At the initial stage, characterization 

of the HRR-profile of XPATCH simulated data has been conducted including, 

correlation analysis, histogram analysis, Chi-square and Bispectrum-based tests 

of Gaussianity, Sector size analysis, Eigen analysis of HRR data, etc. The 

insights accumulated during the characterization study have been incorporated 

systematically while developing the ATR algorithms. Recently, a comprehensive 

measured database of Moving/Stationary Target classes (MSTAR) has also been 

made available, and we are currently conducting characterization studies on this 

new set of targets. 

• Classification using Eigen-Templates : For this part of the project, Eigen- 

template based ATR is being developed as a new paradigm in ATR research. 

Data Characterization studies with a large class of XPATCH-simulated data 

indicated that the Eigen-vector corresponding to the largest Singular Value con- 

tains the majority of information about the target under consideration. Based 

on this crucial observation, we have focused on using the range-space eigen- 

vector corresponding to the largest singular value for each sector as 'Eigen- 



Template' and developing a comprehensive ATR algorithm. In our work so far 

with eigen-templates for classification using XPATCH database (consisting of 

four target classes : Ml Tank, T72 Tank, School Bus and Fire Truck), we have 

observed significant and consistent improvement in classification performance 

when compared with ATR using Mean-templates. Specifically, with single ob- 

servation profile for conducting ATR we have obtained greater than 99 percent 

classification rate for all targets classes available in the simulated XPATCH 

database. Currently, we are working on extending this algorithm for Measured 

data and Moving Targets (MSTAR). For these later target classes, some form 

of sequential processing using more than one observation profile may be neces- 

sary. Furthermore, the power of some targets may be distributed among more 

than the largest singular value and more than one eigenvector may be more 

appropriate for template formation. 

• Clutter Suppression using Singular Value Decomposition (SVD) : A 

critical problem faced in ATR is clutter noise that corrupt the SAR images and 

HRR profiles. At the initial stage of this project we were conducting our baseline 

work using simulated XPATCH database, which is mostly clutter-free. However, 

we are in the process of transitioning to measured database (MSTAR) which 

does have clutter problem. We plan to address the clutter suppression issue 

using Eigen-filtering approach, which has been found to be highly successful in 

many other fields for noise suppression. This approach involves finding a set 

of orthonormal basis which best describes the subspace occupied by the signal, 

i.e., the signal subspace. The remaining orthogonal subspace span the clutter 

subspace. Our preliminary work with MSTAR data indicate that more than 

90 percent energy is accounted for by less than 5 percent of singular values 

constituting the Signal Subspace. Hence, we do expect that eigen-filtering will 



be very effective for clutter/noise suppression in HRR data. 

1.2    Background 

The present era of limited warfare demands precision strikes for reduced risk and cost- 

efficient operation with minimum possible collateral damage. In order to meet such 

exacting challenges, Automatic Target Recognition (ATR) capability is becoming 

increasingly important to the Defense community including the USAF, in particular. 

The overall goals of ATR is to analyze image data using digital computers in order 

to detect, classify and recognize target signatures automatically, i.e., with minimum 

possible human.assistance. The image data for processing may be generated by one 

of many possible imaging sensors including radar, optical, infrared or others. ATR 

is considered to be one of the most challenging among current research problems 

because the ATR developers have little control over the possible target scenario and 

the operational imaging conditions [1, 7, 22, 39]. Also, compared to the diversity 

of possible images during operations, only a relatively smaller subset of images may 

be available at the development or training stage. Furthermore, the operational 

ATR may have to deal with intelligent adversary attempting to defeat the system, 

as opposed to a more controlled environment during development. However, recent 

advances in superior sensor technologies and sensor simulation tools that allow wider 

classes of target scenarios available at the ATR developmental stage, higher resolution 

imaging based on super-resolution techniques [19, 18, 30, 33, 32, 38], increasingly 

faster and superior computing hardware, and appropriate advanced ATR strategies 

[1] are all expected to be beneficial for achieving improved performance from the 

evolving ATR methodologies. 

Traditionally, air to ground acquisition of ground target information is catego- 

rized into two general areas: Moving Target Indication (MTI) and Synthetic Aper- 



ture Radar (SAR) [6, 10, 17, 29, 40]. The original purpose for developing these radar 

technologies had been to achieve all-weather and all day/night imaging, i.e., to tran- 

scend traditional photographic camera based imaging that must rely on sunlight and 

is susceptible to clouds, fog or precipitation. Both MTI and SAR are active Doppler 

systems that transmit and receive electromagnetic waveforms in the microwave bands 

that have superior penetrating capabilities than visual frequency bands. These radar 

technologies are being researched and developed over more than four decades now 

and both concepts have some share of strengths and weaknesses. MTI is a mature 

radar technology that allows airborne sensors to survey large areas of land and it has 

coarse target detection and range determination capabilities. It makes use of tar- 

get movement for image formation and hence, it is highly effective for distinguishing 

moving targets from ground clutter. However, a major drawback of the MTI technol- 

ogy is its lack of any target recognition capability. On the other hand, SAR's ability 

to image ground targets with range and cross-range information gives it very good 

target recognition and identification capabilities, although its tremendous processing 

requirements prevent it from being used as a wide area surveillance technology [5, 7]. 

1.3    Motivation : HRR vs. SAR 

The High Range Resolution (HRR) technology is a potential target recognition ca- 

pability that promises to bridge the gap between the wide area surveillance target 

detection capabilities of MTI and the very narrowly focused target identification ca- 

pabilities of SAR. Almost all existing SAR based ATR algorithms process detected 

SAR images in the azimuth (cross-range) vs. range domain, that are formed via 2- 

D FFT of original 'complex phase history'. Fig. 1 shows the data formation block 

diagram for both SAR images and HRR profiles. 



Complex Phase History ■ Eigen Template 

Figure 1.1: Eigen Template Generation 

Compared to SAR-based ATR, developments using HRR data has so far been 

limited and is at an early stage. This is primarily because SAR-ATR's inherent capa- 

bility to make use of both cross-range as well as range information, which can provide 

an overall depiction of the shape of a stationary target and its relative location in 

a scene. The range-azimuth information in SAR-images is very much analogous to 

'still' photographic images and hence, SAR's usagejn early ATR development is only 

obvious and intuitively appealing. However, it is also a common knowledge that 

the quality of still photography requires the objects to be in a standstill condition 

throughout the duration the camera lens is open. Otherwise, the quality of the devel- 

oped pictures degrades due to the blurring effect caused by moving objects. This is 

exactly what can occur in case of SAR images when the targets to be identified are not 

stationary, making recognition or classification by ATR algorithms definitely a more 

arduous task. The primary motivation for HRR-based ATR to be undertaken in this 

project is to overcome this potential limitation of traditional SAR-ATR algorithms. 

However, for baselining purposes, stationary targets would also be considered at the 

preliminary stage of ATR development. Once a good understanding of stationary 

HRR-ATR is in place, the scope would be broadened for transitioning to Moving 

target ATR. 

The HRR concept infuses an entirely new paradigm into SAR-ATR and its pri- 

mary effectiveness and advantage are expected to be for recognition of moving targets. 

It may be noted that the cross-range information in SAR-images is produced by the 

Fourier Transform operation over a set of range profiles taken from a number of as- 



pect angles. However, when a target has movement the SAR image would be blurred 

in the cross-range domain. Clearly, the information content of a signal or image does 

not change due to Fourier transformation, i.e., the Range profiles contain exactly the 

same information on the target as does a SAR image or the complex phase history. 

Each individual Range profile also contains the appropriate (correct) range informa- 

tion for that specific angle. Hence, the key objective of the proposed research would 

continue to be to explore innovative ways to exploit the Range profiles directly (with- 

out the Fourier Transformation over aspect angles) in order to maximize information 

extraction for developing HRR-based ATR algorithms. Finally this exercise would be 

done by using raw MSTAR data and then the moving target data. 
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Chapter 2 

SAR Overview 

2.1      A Review of ATR 

The present era of limited warfare demands precision strikes for reduced risk and cost- 

efficient operation with minimum possible collateral damage. In order to meet such 

exacting challenges, Automatic Target Recognition (ATR) capability is becoming 

increasingly important to the Defense community. The overall goals of ATR is to 

analyze image data using digital computers in order to detect, classify and recognize 

target signatures automatically, i.e., with minimum possible human assistance. The 

image data for processing may be generated by one of many possible imaging sensors 

including radar, optical, infrared or others. ATR is considered to be one of the most 

challenging among current research problems because the ATR developers have little 

control over the possible target scenario and the operational imaging condition [1, 7, 

22, 39]. Also, compared to the diversity of possible images during operations, only a 

relatively smaller subset of images may be available at the development or training 

stage. Furthermore, the operational ATR may have to deal with intelligent adversary 

attempting to defeat the system, as opposed to a more controlled environment during 

development. 

Traditionally, air to ground acquisition of ground target information is catego- 

rized into two general areas: Moving Target Indication (MTI) and Synthetic Aper- 

9 
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ture Radar (SAR) [6, 10, 17, 29, 40]. The original purpose for developing these radar 

technologies had been to achieve all-weather and all day/night imaging, i.e., to tran- 

scend traditional photographic camera based imaging that must rely on sunlight and 

is susceptible to clouds, fog or precipitation. 

2.2    Moving Target Indicator (MTI) 

Most surface and airborne radar systems operate in an environment where the clutter 

return obscures targets of interest [27]. If the target is moving relative to the clutter 

it is possible to filter out the undesired clutter return by exploiting the differential 

doppler frequency shift produced by relative target to clutter radial motion. Systems 

following this principle are called Moving Target Indicator (MTI) radars. 

MTI has the capability to detect target reflections [28] having differential radial 

motion with respect to the clutter. The clutter causing background may be either 

terrain, sea, weather or chaff [24, 35]. MTI's are operated with either fixed based or a 

moving platform such as an aircraft or a satellite. Considering detection of low flying 

aircrafts, i.e. the radar is surface based, flying over terrain through possible weather 

disturbances. In such an event, MTI rejects the returns from terrain and weather 

while retaining the return from the aircraft. This property gives it good detection 

capabilities for air borne targets. In cases where the target is surface based, as in 

Air to Ground ATR application, the ground clutter are stronger than the expected 

target return. The ground clutter extend out to a range where terrain features that 

cause the clutter are masked due to earth's curvature. In such cases, the ground 

clutter extends to the full operating range of the radar. This makes MTI without any 

recognition capabilities. 

MTI is a mature radar technology that allows airborne sensors to survey large 

areas of land and it has coarse target detection and range determination capabilities. 
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It makes use of target movement for image formation and hence, it is highly effective 

for distinguishing moving targets from ground clutter. However, a major drawback 

of the MTI technology is its lack of any target recognition capability. 

2.3    Synthetic Aperture Radar (SAR) 

Although the major emphasis of this project is to utilize HRR profiles, as described 

in the previous chapter, it may be pointed out here that data collection as well as 

most of the front-end processing for HRR is identical to that of SAR. Hence, in this 

Section, SAR image formation is described in considerable detail. 

Figure 2.1 shows the side-looking radar system wherein an aircraft carries on- 

board a SAR imager [17, 13] illuminates a patch of ground having a target with 

certain surroundings. The beam of the radar looks out to the side of the aircraft, in 

a direction orthogonal to its flight path. This direction of radiation propagation is 

referred to as the Range direction and the direction parallel to flight path is called 

the Cross-range direction. During the aircrafts movement, it periodically transmits 

pulses of microwave energy which impinge on the patch containing the target. Each 

of these pulses is subsequently reflected back to and received by the radar, where 

demodulation is performed. The assemblage of data collected and pre-processed in 

this manner is called a phase history and is passed on to the processor for image 

reconstruction. The processor could either be located on the ground or on board the 

flying aircraft. This processor gives out as output the electromagnetic reflectivity of 

the illuminated ground patch. The reflectivity is a two-dimensional function having 

dimensions as Range and Cross-range. 

Figure 2.2 shows the SAR mechanization block diagram with digital signal proces- 

sor [13]. Figure 2.6 shows the synthetic SAR images of the four XPATCH target types 

viz. Ml tank, T72 tank, School bus and Fire truck respectively. Here the magnitude 
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of the reflected energy can be clearly seen. Although a SAR picture looks entirely 

different from an optical photograph, the key features are easily recognizable. SAR is 

coherent radar that employs signal processing and motion compensation to provide 

a high spatial resolution estimate of the scenes reflectivity, also commonly known as 

radar cross section (RCS). Motion sensors are used to measure platform flight char- 

acteristics so that non ideal flight path generated phase errors can be removed during 

image formation processing. Platform or target motion creates scene aspect varia- 

tions, leading to a differential doppler signature of scatterers in the antenna footprint. 

The doppler signatures are subsequently exploited to achieve enhanced Cross-range 

resolution. Doppler frequency is l/27r(d<^/dt), where <f> = ATTK/X. This is the fun- 

damental behind SAR imaging concept (also commonly known as Range/Doppler 

imaging). 

FLIGHT PATH 

RADAR BEAM 

Figure 2.1: Side looking radar system geometry 
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Figure 2.2: SAR Mechanization Block Diagram with Digital Signal Processor[13] 

2.4    Concept of Synthetic Aperture 

The fundamental behind image resolution by the concepts of image processing is the 

size of the antenna. In ATR applications, it is not feasible to carry huge antennas on 

the aircraft and therefore SAR is used. Resolution in Cross-Range can be obtained by 

using this concept. Considering Figure 2.5, in the previous section it is mentioned how 

resolution can be obtained in cc-direction. As the aircraft moves, it transmits another 

pulse, say at an angle 0 with the antenna still aiming at the center of the ground. 

In Figure 2.5, (x,y) are the cross-range and range at angle 0, obtained by rotation 

of (x,y) axes. This linear transformation is orthonormal and the transformation and 

inverse transformation are given by [14] 

x   =   x cos 6 — y sin 6 

y   =   x sin 6 + y cos 8 
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x   —   x cos 6 + y sin 0 

y   =   — xsin6 + ycos9 (2.1) 

Generalizing the integrated reflectivity function, pe(y), of two-dimensional microwave 

reflectivity density function, g(x,y), for angle 0 [14] 

Pe(y)   =    /    g(x{x,y),y(x,y))dx 

rL 
=    /    g(x cos 0 — y sin 6, x sin 0 + y cos 0) dx (2.2) 

*/—Z/ 

The return signal is given by [14] ; 

r.(0   =   A1i?e{/%ö(^(.-^±l^l)^} 

=   A1Relj\e(y) exp[i[w0(i - r0 - r(y)) + a(< - r0 - r(y))2]] dy 1(2.3) 

The return is analogous to SAR return at 6=0 [14] 

rc{t) = Axj   pe(y)exp 
J —J_i 

2« cos ib . n   , .. y       y-(a;o + 2a(* - r0)) ^ (2-4) 

From equations (2.3 and 2.4), po(y) can be obtained by range compression. 

It can be seen that A0 contains enough information to reconstruct the reflectivity 

density function, g(x, y). From the fundamentals of SAR imagery, it can be seen that 

the cross-range resolution is only a function of wavelength, A, and A0. The size of A0 

in turn is the diversity of angles from which the pulses are transmitted and received. 

The standoff range of the platform are unimportant provided that the data spanning 

the angular interval are collected. Thus, the beneficial effects of the large antenna 

can be synthesized via data processing giving fine cross-range resolution independent 

of the operating range even with a small antenna, as in SAR. This path over which 

the aircraft flies is referred to as the synthetic aperture. 
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2.4.1    Advantages of SAR 

4 
The reasons for using SAR images over optical ones are summarized below. 

• It is able to image a surface with very fine resolution of a few meters to coarse 

resolution of a few kilometers. 

• It can provide imagery to a given resolution independently of altitude, limited 

only by the transmitter power available. 

• A number of fundamental parameters such as polarization and look angle can 

be varied to optimize the system for a specific application. 

• Imaging is independent of solar illumination (availability or angle) because the 

system provides its own source of illumination. 

• It can operate independently of weather conditions if sufficiently long wave- 

lengths are chosen. 

• It operates in a band of electromagnetic spectrum different from the bands used 

by visible and infrared (IR) imagers. 

2.5    Types of SAR: 

There are primarily two types of SAR viz. Stripmap SAR and Spotlight SAR. 

Stripmap and Spotlight SAR modes are different in two ways [4]. The first dif- 

ference concerns the factors that limit the azimuth resolution and and scene coverage 

in two modes. In Stripmap mode, Figure 2.3, antenna beam-width limits azimuth 

resolution and data collection length determines azimuth scene coverage. In Spotlight 

mode, Figure 2.4, the data collection length limits azimuth resolution and antenna 

beam-width determines maximum scene coverage in azimuth. The second difference 

involves the reference function or motion compensation signal that each mode uses 
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in the radar receiver. While Stripmap and Spotlight modes can transmit and receive 

similar signals and perform a similar range-dechirp operation, the spotlight receiver 

removes the azimuth chirp characteristic from all scatterers whereas the Stripmap 

receiver preserves it. Figure 2.3 represents a Stripmap SAR wherein the Cross Range 

is normal to the line of sight and apparent rotation axis of target. 

Cross Track 

Along Track 

Figure 2.3: Stripmap SAR 

(j> = 3dB Antenna Beamwidth 

D = Physical Aperture Diameter 

L = VT 

T = Coherent Processing Time 

V = Platform Velocity 

D 

The quality of stripmap SAR can be exploited by compensating for the Range 

difference to a Central Reference Point (CRP) prior to image formation. The disad- 

vantage of stripmap SAR is the theoretical limitation in the y-resolution.  Another 
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disadvantage is that for non-ideal flight paths, complex phase errors are created which 

must be removed. 

Spotlight SAR [14, 41] eliminates the limitations placed on the Cross-Range res- 

olution by the physical aperture dimension by continually tracking the CRP, hence 

allowing the integration time to be increased [41]. Based on certain observations, con- 

clusions can be obtained. Firstly, the ability to achieve high Cross-Range resolution 

is limited by the migration of scatterers into neighboring resolution cells. Secondly, 

even a Cross-Range resolution of 1 ft can require large angular aperture (~ 10°), 

resulting in significant blurring due to scatterer migration. This becomes evident at 

low frequencies since a large coherent processing angle is required for a given Cross- 

Range resolution ( AR = -^h ). Thirdly, the image blurring becomes significant as 

the migration of scatterers approaches the desired resolution. All these factors make 

recognition hard for moving targets. In case of HRR profiles, all the information in 

range is still present, but the cross-range blurring is not present. 

Cross Track 

Along Track 

Figure 2.4: Spotlight SAR 
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Figure 2.5: Concept of Synthetic Aperture [14] 



Chapter 3 

HRR data generation and 
Preprocessing 

The HRR-ATR technology relies on processing high resolution 'Range Profiles', as 

distinguished from traditional SAR-ATR that utilizes SAR image data. The ATR 

performance with HRR is superior for Moving Targets which cause blurring in SAR 

data that makes recognition a difficult task. 

Currently, Automatic Target Recognition (ATR) is performed primarily using 

Synthetic Aperture Radar (SAR) [20, 21] images. ATR using SAR images performs 

poorly in case of moving targets due to blurring caused in the cross-range domain, 

as discussed in previous Chapters. Moreover, there are considerable savings in front- 

end processing in producing HRR profiles which require only 1-D FFT operation, as 

opposed to SAR's use of 2-D FFT (see 3.2). The processing factor becomes significant 

in case of on-line processing because in order to produce a single SAR image, radar 

returns must be generated over a relatively large sector angles (2 to 2.5 degrees). With 

HRR profiles, only a relatively small number of angles would be sufficient to perform 

ATR. Figure 3.2 shows the process of generating HRR profiles from Complex Phase 

History (CPH). As shown in the figure, SAR image can be obtained from the HRR 

profiles by taking Fourier transform in the angle-domain to produce the cross-range 

information. 

21 
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The Range Swath to be imaged is defined a-priori based on Altitude and depres- 

sion angle of radar. This makes a fixed sampling window. The two primary HRR 

waveforms for SAR systems are the Frequency stepped and Linear Frequency mod- 

ulation. The Range resolution ( AR ) is determined by the radar RF bandwidth. 

Thus, the resultant received signal ( Y(TJ) ) in each Range gate would be [41] 

Y(Ti) a 
N 2 

where cr; is the RCS of elemental scatterers in Range gate, J?,- is the Range to 

scatter and N is the number of scatterers in a Range gate. 

The chapter is organized as follows 

First, the optimum sector size is determined based on correlation analysis. Then 

the effect of Power-transform coefficient, in pre-processing stage, on the ATR effi- 

ciency is explored. Finally, it is shown that Normalization after Power-transform 

improves ATR results (Figure 4.17). The effect of changing sequence of different 

pre-processing operations on ATR performance is also discussed. 

3.1    HRR Profile Data Characterization 

3.1.1    Correlation analysis and Sector size determination 

Prior to developing an ATR algorithm, a decision must be made regarding how the 

Template or Feature set Library should be formed using the Training data set. This is 

an important computational trade-off issue. If large number of independent templates 

are formed using relatively short training data sectors, Classification performance 

should be enhanced. However, a possible drawback of this approach is that the on-line 

ATR decision process would be more time intensive. On the other hand, if template 

library is made too short to achieve fast ATR decision, classification performance 

may deteriorate.   For the synthetic XPATCH database a compromise was reached 
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Correlation Drop 

1.5 

Figure 3.1: Correlation Drop for the 59th look for Ml tank an 120° - 125° sector 
within 3° looks 

based on correlation analysis. The correlation study, as in Figure 3.1, indicated that 

data-correlation drops significantly after about 2.5° in correlation lag, 1.25° on each 

side in figure 3.1. This analysis matches spot-light made collection of training data 

simulated by XPATCH. Hence, in our ATR algorithms training templates were formed 

with each 2.5° non-overlapping sectors. If the sector size is decreased from figure 3.1, 

the number of sectors would increase, which will increase the computation time. On 

the other hand, if the sector size is increased, due to lack in correlation, the ATR 

performance would be affected. 

3.1.2    Creation of HRR profiles 

Once the decision on the sector size has been taken and the Complex Phase History 

(CPH) is broken down into these sectors, the next step involves obtaining the HRR 

profiles for each sector. Figure 3.2 depicts the process of generating detected HRR 

profiles (Range vs. Angle) and SAR image (Range vs. Cross-range) from raw Complex 

Phase History (Frequency vs. Angle). Figure 3.5 shows the power-transformed HRR 
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profiles of the four targets, Ml, T72, FT and SB. 

W 
Detected SAR Profiles 

PTHRR Profiles 

Figure 3.2: HRR and SAR Profile Generation 

3.1.3    Power Transform operation 

HRR-data used in this project for developing ATR algorithms is known as the 

Detected-HRR because it is formed using the absolute value of the Complex HRR 

data obtained via 1-D FFT of Complex Phase History. Detected HRR is positive 

valued and tend to be Rayleigh distributed for which optimum detection/estimation 

results are not straight-forward. Gaussian Distribution, on the other hand, can have 

clear advantage because many commonly used detection/estimation algorithms can be 

shown to possess optimality properties for the Gaussian case. In Pattern Recognition 

context, Fukunaga [9] has shown that it is advantageous to convert the distribution 

to a normal-like one by using a transformation such as: 

Y = X\       (0 | t» i 1) (3.1) 

According to Fukunaga, the input distribution of input X, gets converted to a 

normal distribution of output Y. Let M be the Expected vector and J2 the covariance 
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matrix of X. Then, the normalized distance of X from M is given by [9] distribution 

of X with the matrix J2, the normalized [9] t 

<f = {x- M)TY, x {X -M) = ZTZ = J2 A (3-2) 

where Z = AT(X — M) and A is whitening transformation. Since the expected 

vector and covariance matrix of Z are 0 and / respectively, Zj's are uncorrelated, 

E{zi}—0 and Var{z,-}=1. The expected value and variance of cP are 

E{d2}   =   nE{z2} = n (3.3) 

Var{d2}   =   E{(d2)2}-E2{d2} 
n n     n 

=   J2E{zt} + EEE{zlz2}-n2E2{z2} (3.4) 

If z2,s are uncorrelated, i.e z,-'s are independent, and -E{^f} is independent of i, the 

variance can be simplified to 

Varid2} = nj (3.5) 

The 7 for such a function, in equation (3.5) can be written as 

7   =   E{zt}-E{z2} = E{zf}-l (3.6) 

A gamma density function is of the form [23] 

f(k) = Gkße-aiku(k) (3.7) 

where u is the unit step function. In equation (3.7), numbers ß and a; are positive 

and G can be obtained from 
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/•CO 

/    Gkße~aik dk = 1 (3.8) 
Jo 

Solving equation (3.8), we get 

««+1 

G = WTT) (3'9) 

/■CO 

where       r(/3) = /    f~le~l dl (3.10) 

It is known that the sample variance cu = 1/(N — l)J2k=i(xik — "^i)2 for a normal 

Xi has a gamma distribution. The gamma distribution for cu can be obtained by 

equation (3.7) as 

ß+i 

UM = ^j^Yfe-">ku{k) (3.11) 

where 

N - 1 
ß + l = -L-^ (3.12) 

«t = -^— (3-13) 

and T, from equation (3.10), is the gamma function. In equations (3.3) and (3.5), 

only the first two moments of d2 are shown. However, if z,-'s are normal, the density 

function of d2 would again be gamma density and can be obtained by using equation 

(3.7) as 

'*<"=¥iwm^e'"Me) (3-14) 

In equation (3.14), ß = n/2 - 1 and a = 1/2. For equation (3.14), £{d2}=2±I=n 

and Var{d2}=^^=2n. These values when compared with equations (3.3) and (3.5), 
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give 7=2.  Since Z is a linear transformation on X, Z is normal given X is normal 

for this value. 

Y of equation (3.1) will be normal by making 7 of equation (3.5) close to 2. Here, 

7j, = E{(y — y) } — E2{(y — y) } fa 2, under the condition -E{(y — ?/) }=1, where 

?/=-£{?/}. X in equation (3.1) has a gamma density function as shown in equations 

(3.7) and (3.11). Based on this, the moments of Y would be 

/-yP + l fOO 

1   T(ß + l+mv) 
ö™     T(ß + 1) 

(3.15) 

Finding *yy, we get 

=    E{(y-y)4}-E*{(y-y)2} 
ly EH(y-y)2} 

E{y*} - AE{y3}E{y} + 6E{y*}E2{y} - SE*{y} 
[E{y2} _ E2{y}f (3.16) 

Using (3.15) in (3.16), jy turns out to be a function of ß and v only as a's 

of numerator and denominator cancel out. It is realized, from figure 3.3 that for 

a particular fixed value of v, jy can be fixed for a wide range of ß. As we lower 

v, irrespective of value of ß, the 7^ settles around 2, which is the requirement for 

normality. The class separability, in turn recognition, can be done more easily by 

doing this transformation as Y in (3.1) is normal. The design of the classifier also 

becomes easier, because a standard quadratic classifier could be used rather than a 

designing a complicated classifier, as shown in Figure 4.16. The important property 

of this transformation is that the correlation coefficients are more or less unaffected 

as shown next. The Taylor series expansion of equation (3.1) gives [9] 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3.3: Variation of 7 with v for; (a) ß = -0.9 (b) ß = -0.5 (c) ß = 0 (d) ß 
1 (e) ß = 4 [9] 

Vi 

Ni 

Vi 

Pli + VfiVSi     (Xi - fa) 

/«*.• 

PyiVj    — 
E{(Vi - HIM ~ Plj)} 

y/iwlT1)2*2*^1)2^ 
—       Px{Xj 

(3.17) 

(3.18) 

(3.19) 

The result is valid for all first order approximations, as our case. The lower the 

value of v the better is the chance to design a good linear classifier. This comes from 

two facts. Firstly, considering equation (3.17), in an exponential distribution, ß=0 

and E2{x} = Var{x}, the second order approximation of equation (3.18) becomes 

H = »l + v-^r^»r2E{(* - M2} 



1 + 
v(l — v) 

& 
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(3.20) 

If (3.20) is calculated for lowering v, then (3.20) tends more to (3.18), as desired 

in a first order approximation. Secondly, in general, for normal distributions, for a 

two vector case, the Bhattacharya distance is given by [2] 

£(1/2) = i(M2 - Mxf E1 + E2 (Ma-MO + ^ln 
E,+E, 

2 

^lEiHEa 
(3.21) 

The term #(1/2) is called the Bhattacharya distance. It is the optimum solution to 

the popularly known Chernoff bound for calculation of upper bounds in Bayes error. 

In (3.21), the first term represents the class separability due to their mean-difference 

while the second term gives the class separability due to covariance difference. It 

comes to light that the weight of first term of the Bhattacharya distance dominates 

as we further lower v. The theory was realized in table was lowered from 0.4 to 0.08, 

more number of vectors passed the Pearsons chi-square test for normality. 

3.1.4    Effect of Template and Observation data Normaliza- 
tion 

In case of HRR profiles, the crucial information on the differences between various 

target classes are contained in the respective range profile structures. The relative 

amplitudes in the range profiles depend on the strengths of the radar returns from the 

scattering centers and the relative positions of the scattering centers of a particular 

target. However, the total template energy of one target may be significantly stronger 

than other classes, due to amplification or attenuation during data collection. In 

that case, the signal strength (or energy) and not the relative variations in range 

profile structures may dominate and overwhelm the ATR decision process. Figure 3.4 

depicts a possible scenario where un-normalized templates for four target classes are 
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represented by the blobs. The lines connecting the centroids of the blobs to origin 

represent the energy whereas the blobs themselves and- the angles made with the axes 

signify the variations in scattering returns for different targets. For this assumed but 

typical scenario, T72 appears to dominate due to its total signal energy whereas the 

School Bus profile has the least energy. If ATR decision is made by correlating these 

templates with an observed range profile to look for a maxima (i.e. Match Filtering), 

T72 will tend to dominate regardless of the actual target producing the observation 

profile. 

(a) (b) 

Figure 3.4: Effect of Normalization on target recognition, (a) before Normalization 
(b) after Normalization 

The scaling problem depicted in Figure 3.4(a) is usually resolved using some form 

of least-squares (LS) algorithm using a linear model [42]. However, the linear model 

assumption appears to be ad hoc and is not necessarily unique, depending possibly on 

data type which in turn may affect classification performance. Instead, it is proposed 

to use normalized templates, as depicted by Figure 3.4(b), where the template pro- 

files for all targets are normalized to have same length (i.e., energy), while preserving 

their angular separations and relative variations in scattering returns as represented 
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by the blobs. If an observed profile is to be compared with these templates to make an 

ATR decision, then simple matched filtering (MF) will be sufficient for the purpose. 

It may be noted here that normalization of templates can be performed off-line and 

furthermore, MF requires less on-line processing than LS because no matrix inver- 

sion is necessary. It is observed (Figure 4.17) that this technique works very well if 

recognition is done by matched filtering. Extensive simulation performed for this the- 

sis indicate that both power-transform operation followed by the data normalization 

yield the best overall classification performance (Figure 4.16). 
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(a) M1 Tank (b) T72 Tank 

20 40 
Angle 

20 40 
Angle 

60 

(c) School Bus (d) Fire Truck 

Angle 
20 40 

Angle 

Figure 3.5: Power transformed HRR profiles for (a) Ml Tank (b) T72 Tank (c) School 
Bus (d) Fire Truck, 60-62.5° template, v = 0.08 



Chapter 4 

Feature Extraction, Clutter 
Suppression and Classification 

The goal of feature extraction is to transform from a n-dimensional feature space to 

a smaller ra-dimensional feature space such that most of the information is retained 

after the mapping. The axis which defines this new co-ordinate space, m, is called the 

feature space [36, 37]. The primary advantage of doing this "mapping transformation" 

is to reduce the dimensional space of the data, in turn decreasing computation. This 

procedure also reduces clutter effects, which can give highly misleading results at 

the recognition stage. Optimal feature set can be interpreted as a set in which if 

any further feature is added, the information content does riot increase. Optimal 

feature set can also be defined as a set of features which do not increase the minimum 

probability of error in all events. The HRR profiles usually have clutter in them and 

in this chapter a new approach has been proposed for extracting best features that 

also has the inherent capability to suppress clutter at the same time. The probability 

of error is minimized to obtain this optimal feature set. 

The previous approach for feature extraction is mean-based [42]. This approach 

works well other than the cases where the mean vector of the classes come near to 

each other or the variance becomes large. A new approach using the technique of 

Eigen-analysis is used to obtain the feature set.  This technique gives classification 

33 
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rates as high as 99.5%. 

4.1    Mean-Based Feature Extraction 

The mean-based approach for HRR Template formation is via averaging of the range 

profiles over a section of contiguous aspect angles and these are called Mean-Templates 
A ': 

[42]. Let Y=[yi y2  ...  VM]
T
 be an N x M matrix containing power transformed 

range profiles of the "Training" data set, at M angular looks containing N range 

gates each. The mean template can be formed as, 

A        1 M 

M 
(4.1) 

t=i 

Figure 4.1: A typical case where mean-based classifier performs well [37] 

If the mean vector is large compared to the variances, as in Figures 4.1 and 4.2 

then according to [37], the optimal features chosen will be in the general direction of 

the mean-vector. The correlation matrix, in such an event, is strongly influenced by 

the mean as shown in equation (4.2). The covariance matrix*' K, can be written as 

[37] 
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M1 Tank 

Meant 

Mean - Standard deviation 
Mean + Standard deviation 

Figure 4.2: Variation of Range profile formed using mean-based approach with the 
Standard deviation for Ml Tank, 60° - 62.5° sector, u=0.08 

=   £{yyr}-/^T (4.2) 

In equation (4.2), E{yyT} is the correlation, given by R. Equation (4.2) follows 

to 

R = K + nn7 (4.3) 

4.2    Eigen-Template Features from Singular Value 
Decomposition (SVD) 

Singular Value Decomposition (SVD) is a very effective and robust tool for decom- 

posing any matrix into orthogonal basis spaces. SVD analysis of HRR data revealed 

significant underlying properties about the target classes under consideration. SVD 

projects the information content of a matrix onto its orthogonal basis spaces.   Let 



36 

i4 

Eigen value distribution 
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Number of Eigen values 

Figure 4.3: Distribution of Singular values for XPÄTCH target T72, 60° -62.5° sector, 
t>=0.08 

Y be an N x M matrix containing power transformed range profiles at M angular 

looks containing N range gates each. The SVD operation would produce a basis 

decomposition into three matrices, 

where, 

Y   s=^   UAVT (4.4) 

A 
U   =   EV[YYJ] 

un    • • •    u1N 

urn    ■ • ■    UNN _ 

uj   u2   ...   uN I eIR*x* (4.5) 

*n 
\22 

A 

0 

0 

0 

eIR- JVxAf (4.6) 
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A Typical Eigen Template 
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Figure 4.4: A Typical Eigen template for XPATCH target T72, 60° - 62.5° sector, 
u=0.08 

EV[YTY] 

"ii    • • •    I>IM 

UM\ UMM 

=    [ V!   v2   • • •   vM]e IRMxM (4.7) 

where, EV[-] denotes the operation "Eigenvectors of". For Range vs. Angle HRR 

data, the left eigenvectors in U span the orthogonal basis space in the range domain 

while the right eigenvectors in V span the angle space. A is a diagonal matrix con- 

taining M (or N, depending on which is larger. N > M is assumed here implicitly) 

singular values in decreasing order, i.e. An > A22 > • • • > \MM, with A;; represent- 

ing the weights associated with the i-th eigenvector. Larger singular values imply 

significant contribution of that particular eigenvector in forming the target signal. 

Hence those are denoted as "signal subspace" eigenvectors. Interestingly, the range- 

space in U and angle-space eigenvectors in V appear in decoupled form after the SVD 

transformation is applied to Y, as shown in (4.4). 
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The primary focus of this project so far has been to exploit the information con- 

tained in the decoupled range basis space vectors in U to perform ATR. The basis 

spaces associated with the larger singular values correspond to the underlying signal- 

subspace, whereas those corresponding to the smaller singular values correspond to 

the "noise or Clutter subspace" [30]. In order to suppress noise, one simply uses 

the projection of the received signal onto the signal subspace in a process known 

as Eigen-Filtering. In particular, only 1 out of more than 100 singular values were 

found to account for more than 90% of energy. Figure 4.3 illustrates this fact where 

the singular values for the XPATCH data type is shown. As observed, only 1 Eigen 

value (An) makes up more than 90% of the total energy of the distribution. It was 

also noted that the left eigenvector (ui) corresponding to the largest singular value 

(An) possessed all the characteristics of a range profile (because it is the maximized 

projection). This approach of utilizing range-space eigenvectors as templates appears 

to be new in HRR-ATR. 

4.2.1    Optimal Feature Selection [37] 

In this section it is demonstrated that the eigenvectors corresponding to the larger 

eigenvalues of correlation matrix constitute the optimum feature set in the mean- 

squared error sense. Consider finding features for a random vector y of dimension n 

by a linear combination of m < n vectors from some orthonormal basis, Ui, u2, ..., 

y = Mi + /2u2 + • • • + fmum 

=   Um/       where, (4.8) 

fi   =   ufy (4.9) 
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are the coefficient to be optimized by minimizing the Mean-Squared Error (MSE). 

Since u/is an orthonormal basis, the residual error is [37] 

= y-y 
n 

=     E   fiui 
j=m+l 

In order to minimize MSE 

£[|y-y|2] 

E[eTe] 

E E tä 
i=m+l 

E   fiui 

where using (4.9) 

=. E m 
j=m+l 

Thus,       E[f]]   =   uj£[yyrK = ujRUj 

where R is the correlation matrix of y. Using equation (4.13) in (4.12), 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

£= E uJRu; 
j=m+l 

Equation (4.14) is met under the constraint that 

(4.14) 

UJUJ = 1       j = m + l,--- ,n (4-15) 

The above problem, minimizing (4.14) under the constraint of (4.15), can be solved 

using Lagrange multipliers Xj and minimizing, 
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e= E uj"Ru,-+ E M*-UJU;) (4-16) 
j=m+l j=m+l 

The condition for the minimum in equation (4.16) becomes 

^- = 2(RUj - A.-U,-) = 0,        j = m + l,---,n (4.17) 

From equation (4.17), Uj must be the Eigen vectors of R. Under this condition and 

using equation (??), equation (4.14) reduces to [12] 

n 

(=   E   A; (4-18) 
j=m+l 

Thus, the eigen vectors corresponding to the m largest Eigen values constitute the 

"optimal feature set" in the minimum mean squared error sense. 

It may be noted here that when dealing with measured range profile data available 

for training, the correlation matrix R has to be estimated because it is impossible to 

know the theoretical R. If matrix Y contains the training profiles, the range-space 

correlation matrix can be estimated as, 

R=YYr. (4.19) 

It may be recalled from (4.4)-(4.5) that the left eigen-vectors (U) produced by SVD 

are the eigen-vectors of R. This discussion clearly illustrates that the left (or range 

space) Eigen vectors in U can indeed be used as optimal template features for distin- 

guishing classes/targets. The number of u's to be chosen for classification depends 

on the distribution of A. 

4.2.2    Advantages with Eigen-Template based ATR 

There are several key advantages in using eigen-templates as target features. Firstly, 

from minimum Mean-Squared Error context it has been theoretically shown above 
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that the eigen-vectors of the correlation matrix corresponding to the larger singular 

values are the optimal choice for feature selection. It may be observed from (4.5) that 

the range-space (or left) eigen vectors produced by the SVD operation are indeed 

found from the correlation matrix of the training data. Secondly, Eigen-template 

formation via SVD involves finding a set of orthonormal basis vectors that best de- 

scribe the sub-space projection of the target space. Furthermore, according to [37], if 

the range-profile vectors y are Gaussianly distributed, then the eigenvectors selected 

as features maximize the entropy or information in the underlying distribution. As 

discussed the next Chapter, the Power Transform operation is applied for Gaussian- 

ization of the range data. Hence, according to [37], since the1 basis eigenvectors are 

chosen for which the singular values (i.e., the variaffces) are the largest, the directions 

specified by the eigenvectors are also the ones for which the vector is "most random" 

having the maximum entropy. 

The SVD operation in numerically robust and it inherently decouples the target 

basis space (corresponding to the large singular values) from the noise or clutter sub- 

space (corresponding to smaller singular values). Furthermore, the range-space eigen- 

vector corresponding to the largest singular value contains the maximum orthogonal 

projection—i.e. information—from the range space of the target-sector under con- 

sideration. In addition, range-space eigen-templates produced by the SVD operation 

for all target classes are automatically normalized to the length of unity, regardless 

of the signal strength of radar return. Hence, it can be concluded that information 

on the differences between target classes is contained within the amplitude variations 

in the range profiles. 

Another advantage of the normalized eigen-template based approach is that 

Matched filtering (or location of maximum correlation) gives the optimum result, 

no on-line least-squares matrix-inverse operation is necessary to account for scaling 
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and/or dc-shift [42] and Matched Filtering requires Normalized inputs [34]. It may 

also be emphasized here that Eigen-templates are formed off-line using training data 

and no on-line Eigen-decomposition is necessary. In work with Eigen-template based 

classification using the XPATCH database, significant and consistent improvement 

was observed when compared with ATR using Mean-templates. The results are sum- 

marized in Chapter 6. 

4.3    Clutter Suppression Capability of SVD 

One of the critical problems faced in ATR is Clutter noise that often corrupt the 

SAR images or HRR profiles. Noise suppression is a common problem faced in many 

different fields of radar, sonar, speech, image etc. [26]. In various radar and sonar 

applications, SVD has been found to be highly effective for noise suppression and 

also for improved estimation of underlying system parameters, etc. SVD or Eigen- 

Decomposition (also known as Karhunen-Loeve Transformation or Principal Compo- 

nent Analysis) has also been used for improved pattern recognition [3, 12]. The SVD 

operation projects the information content in a HRR profile matrix into orthogonal 

basis spaces. The basis spaces with larger (or, dominant) singular values correspond 

to the underlying "signal-subspace" whereas those corresponding to the smaller sin- 

gular values would correspond to the "noise-subspace" (or, in case of SAR or HRR 

profiles, this will also include "clutter subspace"). Hence, in order to suppress or 

"get rid of" noise, a common approach has been to re-construct the original matrix, 

albeit after "zeroing-out" most of the "noise subspaces" - this approach is sometimes 

known as, "Eigen Filtering" or "Subspace Filtering" [3, 26]. Any ATR/D then can 

be accomplished using this Eigen-filtered HRR profile or SAR image, as the case may 

be. As described in section 4.2 and shown in figures 4.5 and 4.6, SVD analysis of 

HRR profiles for both XPATCH and raw MSTAR data indicated significant energy 
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contributions from a very small number of signal-subspace vectors. Figures 4.3 and 

4.5 show that only 1 eigen value accounts for more than 90% of the distribution power 

for both data types. 

c ) 1— 
Eigen value distribution 
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Figure 4.5: Distribution of Singular values for MSTAR data set, Target type: T72- 
132, Elevation: 17°, Aspect: 36.79°, v = 0.2 
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Figure 4.6:  A typical Eigen template for MSTAR data set, Target type:  T72-132, 
Elevation: 17°, Aspect: 36.79°, v = 0.2 
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For a HRR profile matrix Y 

M 

Y = 5>u,-vf (4.20) 

Equation (4.20) represents the eigen reconstruction using optimal features, which 

in turn depends on the dominant singular values. For both XPATCH and MSTAR 

database HRR profiles, An accounted for more than 90% power of the distribution, 

as shown in figures 4.3 and 4.5. 

Figures 4.7, 4.9, 4.11 and 4.13 show the HRR reconstruction using only first sin- 

gular value of the distribution for XPATCH targets Ml, T72, SB and FT respectively. 

It is known for the data that the target is centered and in these figures all the use- 

ful information in the original HRR image is retained whereas the clutter appears 

to have been suppressed. In figures 4.8, 4.10, 4.12 and 4.14 reconstruction is done 

using 3 Singular values, the useful signal information content is not changed much 

but clutter also appears to be present. It is a known fact thatlf all the Eigen values 

are considered for reconstruction, the profile can be re-obtained. It can be clearly ob- 

served here that if appropriate number of eigen values are taken, in our case 1, then 

clutter can be easily suppressed by the eigen filtering technique. Figure 4.15 shows 

the HRR profile reconstruction using only first Eigen value of the original HRR profile 

for MSTAR data set. As is evident, the noise spikes reduce and this may tend to 

improve ATR performance. The target is known to be in the center of the original 

image and around it is the possible clutter caused due to surroundings etc. The dif- 

ference between original and reconstructed HRR profile is minimum in the center, 

thereby illustrating that the maximum information of the target is being restored, 

whereas the clutter, caused to the surroundings, may be suppressed. 
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Figure 4.8: HRR Image Reconstruction using An through A33 for XPATCH data set, 
Target type: Ml, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) HRR 
Image after Eigen Filtering (c) Clutter 
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Figure 4.9: HRR Image Reconstruction using only An for XPATCH data set, Target 
type: T72, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) HRR Image 
after Eigen Filtering (c) Clutter 
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Figure 4.10: HRR Image Reconstruction using only An through A33 for XPATCH 
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Figure 4.11: HRR Image Reconstruction using only A1: for XPATCH data set, Target 
type: SB, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) HRR Image after 
Eigen Filtering (c) Clutter 
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Figure 4.12: HRR Image Reconstruction using only Au through A33 for XPATCH 
data set, Target type: SB, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) 
HRR Image after Eigen Filtering (c) Clutter 
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Figure 4.13: HRR Image Reconstruction using only An for XPATCH data set, Target 
type: FT, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) HRR Image after 
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Figure 4.14: HRR Image Reconstruction using only An through A33 for XPATCH 
data set, Target type: FT, Sector: 60° - 62.5°, v = 0.08 (a) Original HRR Image (b) 
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Figure 4.15: HRR Image Reconstruction using only An for MSTAR data set, Target 
type: T72-132, Elevation: 17°, Aspect: 36.79°, v = 0.2: (a) Original HRR Image (b) ; 
HRR Image after Eigen Filtering (c) Clutter 

4.4    Target Classification 

Given observed (or, test) range profile(s) of an unknown target, the ultimate objective 

of classification is to determine which target class it belongs to. This is accomplished 

by comparing the observed profile with all the available templates, which are assumed 

to have been formed beforehand using training data set. Two methods for recognition 

have been considered in this project, namely, Least Squares and Matched Filtering. 

Although these are standard techniques, brief discussions follow for completeness' 

sake. 

4.4.1    Classification using Least Squares 

For a given observation (or test) profile, the best template match is found in this case 

by minimizing the mean squared error (MSE) between the given test profile and its 

linear model using the template.  Consider a test profile, a, and a template, m, of 
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equal sizes Ixl. The linear model assumes that the observation (or test) profile can 

be modeled from the template by scaling and dc-level shifting as given by 

ä   =   z1+mz2 (4.21) 

1   m 
*2 

(4.22) 

=   Jz (4.23) 

where, Z\ and z2 represent the dc-level and scaling factor, respectively. These un- 

known constants are found for each template under consideration by minimizing the 

following squared error, 

min||e||' = Ha-all" (4.24) 

The solution to this least square problem is given by, 

z   =   J#a        where,    3* = (JTJ)_1JT (4.25) 

There are various ways to solve (4.25). Here, the problem was solved using the method 

of QR decomposition such that J = OP. From the property of QR-decomposition, 

O
T
O = I and substituting in (4.25) 

z = P#Oxa ■ (4.26) 

Once the estimate z, is obtained, the estimated profile is can be found as, 

ä = Jz (4.27) 

Using this a, the optimum MSE between the test profile and the estimated model 

(||e||2 = ||a — a||2) is calculated for each template in the training data set. The 

template having the minimum MSE is chosen as the matched target. 
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4.4.2    Matched Filtering 

Let, H0, H\, H2 and H3 represent hypotheses that one among the four targets (Ml, 

T72, FT and SB) in the XPATCH database is present. Let, the observation (or, 

test) and template profiles be denoted again by a = [üI,ü2, • • • , a/v] and m; = 

[mn, ™>i2, • • • 5 i^iN]  , respectively. Each Hypothesis may then be represented by, 

Hi   :   a = rrii + v       » = 1,2,3,4 (4.28) 

where, v represents the noise or clutter samples, which are assumed to be zero mean, 

gaussianly distributed and white for this discussion. Clearly, 

E{&\Hi}   =   na (4.29) 

var{ak\Hi]   =   ^ (4.30) 

/(al#0   =   ~rWexV V7rA'o 
Efc=i (a* - mik) 

(4.31) 
No/2 

The MAP decision rule will involve choosing the hypothesis Hi for which the a pos- 

teriori probability P(Hi\a) is maximized. Using Bayes' rule, the decision rule then 

becomes 

Accept Hi for which P(Hi)f(a\Hi) is maximized. 

Assuming all the 4 targets are equally likely, this decision rule is equivalent to choosing 

Hi for which this decision rule is equivalent to choosing Hi for which f(a.\Hi) is 

maximized, which in turn, is equivalent to choosing H if 

N 

J2(ak-mjk)2       j = 1,2,3,4 (4.32) 
k=i 

is minimized when j—i.  Equation (4.32) is the Euclidean distance between the 

test profiles a and the templates, rrij, so that the rule chooses the template closest to 
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the test profile. If all templates, mi(n), have equal energy i.e. they are Normalized 

(i.e., mjmj = 1 Vj), then the problem of minimizing over i in (4.32) reduces to the 

following decision rule: 

N 

Accept Hi for which Ij = ^ a^m^       j = 1,2,3,4 (4.33) 
fc=i 

is maximized when j — i.  Equation (4.33) is a simple implementation of matched 

filter as a correlation classifier.  The decision determines the target type for which 

the correlation between with a given observation (or test) profile is maximized.  If 

the test profile vector and template are represented as a and m respectively, then the 

correlation between them can be considered as the output of a linear filter. In practice, 

a given a is correlated with all the templates, m's in the training database. If a and 

all the m,'s are not aligned, the correlation may have to calculated with various lag 

values and the maximum correlation among all lags for each target type is obtained. 

For each target there are a large number of templates at different aspects. Hence, the 

maximum correlation value among all templates for each target is determined. This 

process is repeated for all target classes, with each class being assigned its maximum 

correlation out of all lags for all aspect angles. Finally, The target class having the 

maximum correlation value among all classes is termed the matched target class. In 

our simulations with XPATCH database, correlation lag values up to ±4 were used 

because for this simulated data set is reasonably well aligned.   This shift may be 

increased for measured data, if necessary. 

The figures below compare various ATR performances, in terms of detection and 

error probabilities, for combination of Normalization (N), Matched Filtering (MF) and 

Least-Squares (LS) using either eigen-templates (denoted by SVD) or mean-templates 

(MEAN) for several Power Transform (PT) coefficients.   Figure 4.16 clearly shows 

that performance of eigen templates with matched filtering used as classification is 

better than mean-templates when used with Least-Squares for classification. Figure 
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4.17 shows that performance with Mean-templates improve considerably if normalized 

data is used with Matched Filter as classifier. 
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Figure 4.16:   Probability of Error and Probability of Detection for v = 0.08, 0.1 
and 0.2 respectively for cases (a) Classification: PT+N+SVD+MF (b) Classification: 
PT+MEAN+LS 
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Figure 4.17: Probability of Error and Probability of Detection for v = 0.08, 0.1 and 
0.2 respectively for cases (a) Classification:  PT+N+MEAN+LS (b) Classification: 
PT+N+MEAN+MF (c) Classification: N+PT+MEAN+LS 



Chapter 5 

Tests for Gaussianity 

As shown in Figure 3.2, Detected-HRR data are formed using absolute value of the 

Complex HRR data. Hence, Detected HRR is positive valued and tend to be Gamma 

or Rayleigh distributed for which optimum detection and estimation results are not 

usually straight-forward. On the other hand, many commonly used detection and 

estimation algorithms possess optimality properties for the Gaussian case [16]. As 

discussed in Chapter 3, it has been shown in [9] that certain distributions can be 

converted to close to normal by using a nonlinear mapping known as Power Transform 

(PT) of the data defined as, 

Y = X\        (0 < v < 1) (5.1) 

where, v denotes the PT-coefficient. It has also been shown in [9] that the Gaussianity 

property of Y enhances with reduction in the value of the PT-coefficient v Theoretical 

properties of the Power Transform mapping were thoroughly addressed in Chapter 

3 (see section 3.1.3). In this Chapter we conduct numerical analysis on the HRR 

training data for testing the Gaussianity properties in order to determine appropriate 

values of v so as to achieve improved ATR performance. 

55 
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5.1    Tests for Gaussianity 

Two types of Tests were conducted to obtain the optimum value of the PT-coefficient, 

Chi-square Analysis [8, 11] and Bispectrum Analysis [25]. Chi-Square is a standard 

test for Gaussianity, whereas the Bispectrum based test exploits an important prop- 

erty of Gaussianity distributed random variables that their third-order moment as 

well as Bispectrum are theoretically zero [25]. Both tests were conducted for a set 

of values of v over an ensemble of HRR realizations [42]. The decision whether a 

realization is Gaussian or not was based on some pre-determined thresholds [8, 25]. 

Both tests indicated that the detected HRR data tend to be more Gaussian as the 

value of v is lowered, as predicted theoretically by Fukunaga. In Chi-square tests 

with XPATCH-HRR data, the optimum value of v was found to be 0.08, as depicted 

by Figure 5.1. This result was also corroborated by the Bispectrum based test. 

5.1.1    Chi-Square Goodness-of-fit test for Normality 

The goodness-of-fit tests are omnibus techniques that detect differences in kurto- 

sis, location, skew, dispersion and so on. These statistic are often characterized as 

estimation-free or non-parametric. In case of Pearsons chi-square these are different 

as the marginal relative frequency fj/N is used to predict the probabilities P(XJ). The 

conditions that the distribution of any Pearsons chi-square statistic is approximated 

by X2(k) are 

1. Each observation must fall into one and only one cell. In goodness-of-fit tests 

this means that the C columns define mutually exclusive categories 

2. The N observations are independent of one another 

3. The sample size N is large 
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The test is highly versatile and does not demand much exacting assumptions. In 

order to avoid the problem of normal distribution curve where there is small propor- 

tion of area under the tails, we define intervals associated with equal proportions of 

area under the normal curve. Each of these C cells are defined in such a way that 

each interval has a probability of 1/C under the normal curve. Given a vector to be 

tested for normality, the test can be summarized as follows [8] 

1. Calculate the estimated mean and variance, fj, and er2 respectively for that 

vector. 

2. Choose C, the number of intervals, based on the conditions enumerated above. 

3. Find the z values from the Cumulative probabilities for the standard normal 

random variable table corresponding to the upper limit of each interval. For 

the first interval, V[z) = 1/C; for the second interval, V(z) = 2/C; and so on. 

The last interval (like the first interval) is open ended. Here V is the cumulative 

probability. 

4. Calculate the x-values of the class limits using // and cr2 calculated in step 1 

and z value calculated in step 3 and substituting in equation (5.2). 

x = n 4- za (5.2) 

5. Based on the value of x found from equation (5.2), calculate the density function 

or in turn frequency distribution in these intervals. This observed frequency 

distribution is called fj. 

6. Calculate the expected frequencies. Every interval is associated with the same 

proportion (1/C), so the expected frequency in every interval is 

F = N/C (5.3) 

where N is the total number of observations, the length of the vector here. 



7. Pearsons %2 is calculated using equations (5.4) and (5.5). 
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Fj = NPj (5.4) 

~2 _ y^ [fj     Fj) 

3 
Fi 

(5.5) 

8. Based on the value of x2(&), found from step 7, and k, where k is the degrees 

of freedom, the cumulative probability is found, p. Here, k = C — 3 as fi and 

a2 are estimated mean and variance of the vector. 

9. Based on the data analysis, a threshold value is decided. 

10. If 1 — p is less than the threshold, then the signal is accepted as normal, else 

the normal hypothesis is rejected. 
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Figure 5.1: Probability of passing the Chi-Square test 
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5.1.2    Bi-spectrum Analysis 

The theory of Bispectrum Analysis exploits an important property of Gaussianly 

distributed random variables that their third-order moment as well as Bispectrum 

are theoretically zero [31, 25]. It is shown below that this is true for all Gaussianly 

distributed random variables. Considering a multivariate Gaussian density function 

having a joint characteristic given by [31] 

*x(wi, W2, • • •, wn)   =   E {exp [j(u>iXi + u2X2 + • • • 0JnXn))} 

=   exp, j/gu - -wTSxu; 

where uiT = (iox,U2, • ■ ■ ,u>n). The third moment of X can be obtained by 

(5.6) 

E{XuX2,X3} = m/^<^        at   W = 0 (5.7) 
OU>\ OU>2 OL03 

v       ' 

Taking fj,x
T = 0 in equation (5.6), 

*x(wi,c*,W3)   =   e~^T^ (5.8) 
1 1 

=   1 - -u;T£xu> + -(u;TSxa;)2 + • • • (5.9) 

Equation (5.9) represents the Taylor series expansion of (5.8). The higher order terms, 

having sixth and higher power of w, are neglected. It is to be noted from (5.9) that 

the only non-zero term would be a term proportional to u>iU>2U)3, after taking partial 

derivative of (5.9) and setting Wi = u>2 = co3 = 0. The only non-zero term would come 

from the third term in (5.9) containing, 

(CJ
T
SXO;)     =   {aituil + a22^l +cr33ul + 2a12ujiUJ2 + 2(7i3u>iU)3 + 2a23UJ2^3\o.l0) 
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The first three terms in (5.10) include the cof terms. Hence, these are always zeros 

when uVs are set to zeros. All other terms also contafoi at least one higher power of 

u;,-. Clearly, the right hand side of (5.9) has no terms with LüIU2U>3. Hence, the right 

hand side of equation (5.9) must equal to 0. The Bispectrum test for Gaussianity 

utilizes this unique property of Bispectrum which is true for any gaussian process. 

The test for Gaussianity is based on the theory of oscillatory stochastic processes, 

and as shown by Priestley and Subba Rao [25], it is closely related to the test for 

non-stationarity of a time series. 

Let {Bk} have a linear representation 

Bk X)    ttrek- (5.11) 

where {e^} is a sequence of i.i.d random variables.  The auto-covariance function is 

defined as 

R(s)   =   E[BkBk+s] 

E X)    arek- 
oo 

-r |   |     X)    ar'ek+s-r' 

r     T> 

As efc's are independent, equation (5.12) reduces to 

(5.12) 

R(a) = a2 

The third order central moment of {Bk} is 

oo 

/ j    ttrQr+s 
,r=—oo 

(5.13) 

C(ki,k2)   =   ElBkBk+^Bk+ki] 

==     / j / j / j Q-TxQ.r2dr3llj[ek—ri ek+ki —ri^-fc+fe —7-3] 
r\    T2    7-3 
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"=     fl(52arar+kiar+k2) (5.14) 
r 

H{w) is defined as the transfer function of equation (5.11) of the type 

oo 

H(w)=   £  are-
iTW (5.15) 

r=—oo 

Then the spectral and Bi-spectral density functions [15] for {Bk} are 

1 oo 

27r S=-oo 

,2 

27r,#Hr (5.i6) 

/(wx,W2) = ^HiujHMHi-u-L -u2) (5.17) 

Based on this, Bij can be defined as 

/^2 

2TT<72 
(5.18) 

i.e. Bij is independent of o>; and ujj. Based on this theory, the following hypothesis 

is defined 

1. Ho : f(cüi,uij) = 0, for all a;,- and OJJ; and 

2. ,ffi : Bij is constant for all w,- and a>j 

Acceptance of Ho is only consistent with linearity and // = 0. Acceptance of Hi 

and rejection of Ho implies that the process is not Gaussian but consistent with being 

linear. A test vector is taken and on the basis of the above equations, the Hotelings 
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T2 value is obtained and using the hypothesis, it is decided whether a vector has 

normal density or not. 

Simulation results on both Chi-square and Bispectrum-based tests for Gaussianity 

are included in the next Chapter. 



Chapter 6 

Simulations 

6.1    HRR profile generation 

The four target XPATCH database contains simulated radar returns at 100 frequen- 

cies per look-angle with angular resolution between adjacent looks being 0.04°. Hence, 

encompassing the entire 360° of look angles, the XPATCH generated CPH matrices 

are of size 100 x 9000 for each target. The test profiles as well as the templates were 

obtained from this matrix. As the test profile could be corresponding to any aspect 

angle, every 20th Angle was retrieved in the form 1,21,41, •• •, and stored as the test 

profiles in CPH mode, matrix A of size 100 x 425, where 100 and 425 represent the 

number of Range gates and Angles or looks respectively. The remaining matrix was 

divided into 144 non-overlapping sectors with each sector encompassing 2.5° of look 

angles, each sector being of size 100 x 59, where 100 and 59 are the Range gates and 

looks within a single sector. 

Each one of these 144 sectors has to be converted from the CPH to the HRR 

profiles. As shown in Figure 3.2, HRR data (Range vs. Angle) is formed by performing 

1-D FFT in the frequency domain to generate the range information. This process 

involves taking the Fourier transform of all the Range profiles independently. At this 

stage the HRR profile for a sector is available, denoted by X. 
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Figure 6.1: ATR algorithm block diagram 

6.2    Preprocessing 

Figure 6.1 shows the three different possible combinations of Pre-processing, viz. 

1. Power transform only (PT) 

2. Power transform followed by Normalization (PT+N) 

3. Normalization followed by Power transform (N+PT) 

The following explanation is for case 2 above however the other two cases can be 

obtained by either neglecting the Normalization process or changing the sequencing 

of events. 
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The power transform of X, size 100 x 59, can be done by taking each and every 

Range profile and applying Equation (3.1) on it. The value of v in equation (3.1) is 

found through the Gaussianity tests explained below. 

6.2.1    Test of Gaussianity 

In Chapter 5, the test of Gaussianity were discussed, wherein the objective was to 

find a value for v in equation (3.1) such that maximum vectors have normal density 

function after application of Equation (3.1) on them. The Chi-square and Bispectrum 

based tests were performed on the power transformed HRR profiles of XPATCH data 

to obtain the optimum value of the power transform coefficient v. 

Chi-square test for Normality 

The data was Fourier transformed to form the HRR profiles, after formation of sectors, 

as discussed in section 6.1. The Chi-square Analysis was done over 14400 vectors, as 

each sector has 100 Range gates and 144 sectors are available per target. The result 

in Table 6.1 was obtained for various power-transform coefficients. The threshold was 

set to 0.05 for all analysis. As observed, the best value of power transform coefficient 

is 0.08. The same is felt from Figures 4.16, 4.17 and ATR Pe and PD values. This was 

also realized from Figure 3.3, wherein more Gaussianity was expected by lowering v, 

which is evident through Table 6.1 

Bispectrum Analysis 

Based on the theory explained in section 5.1.2, the Hoteling's T2 value was computed. 

Bispectrum analysis is highly computational and this is a major drawback with it. 

Considering this issue, instead of performing the test over 14400 vectors, a smaller 

ensemble of 20 vectors was chosen and Hoteling's T2 value was computed for profiles 

that were power transformed with v = 0.08, 0.1 and 0.2. Instead of fixing a threshold 

in case of Bispectrum, the ratio of the Hoteling's T2 value was taken for different power 
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Power 
Transform 
Coefficient 

Total Tests 
(Range Gates 

X 

Sectors) 

Ml T72 SB FT 

0.4 14400 11717 11753 11801 11449 
0.2 14400 12257 12298 12175 12174 
0.1 14400 13061 13119 12933 12985 

0.08 14400 13207 13259 13087 13185 

Table 6.1: Comparison of Gaussianity results for various Power transform coefficients 

transform coefficients. The main analogy behind it was the more the Gaussianity, the 

lower the Hoteling's T2 value. 

7 = 

7 

ml value with v = 0.08 
T2 value with v = 0.1 

rp2 value with v = 0.08 

(6.1) 

(6.2) 
T2 value with v = 0.2 

As seen in figures 6.2 and 6.3, the ratio of there corresponding T2 values, 7 of (6.1) and 

(6.2) respectively, showed that more vectors being Gaussian for v = 0.08 as "compared 

with 0.1 and 0.2. Although it was not possible to carry out this test on all vectors, 

the results in figure 6.2 and 6.3 indicate relatively consistent better performance with 

u=0.08. Hence, the optimum value of v for good ATR results was chosen as 0.08. 

After performing the power transform operation, power transformed HRR profiles 

are obtained, denoted by Y (size 100 x 59). The process of Normalization is carried 

out similarly by taking each and every Range profile and setting the length, or norm, 

of the vector to unity as shown in (6.3). 
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Figure 6.2: Ratio of Hoteling's T2 test for v = 0.08 to v = 0.1 

ynormalized 
yunnormalized 

(6.3) 
yjy2 + y22 + --- + yl 

These operations do not affect the size of the matrix Y (100 x 59). 

6.3    Feature extraction 

Following the Pre-processing stage is the Feature extraction, which can be either 

mean-based or Eigen based. The two basis for feature extraction can be implemented 

as 



25 

0.5 

5 10        15        20 

68 

5        10        15        20 

0.5 

5 10        15        20 15        20 

Figure 6.3: Ratio of Hoteling's T2 test for v = 0.08 to v = 0.2 

Mean Based: Currently, one of the most common approaches for HRR Tem- 

plate formation is via averaging of the range profiles over a section of contiguous 

aspect angles and these are called Mean-Templates [42]. In this case, Power 

Transform with PT coefficient v = 0.2 had been applied to the detected HRR 

profiles before forming the mean templates. However, the template vectors for 

all classes were not normalized to the same length. Since the Mean-Template 

energies may vary between target classes, ATR decisions are based on a Linear 

LS fit, with associated drawbacks. 

This approach is fairly straight forward and can be done by taking mean of the 
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matrix Y over all the look angles available.  Y has 59 look angles and when 

averaged over these, it gives us the optimal feature, denoted by t, size 100 X 1. 

• Eigen Based: The theory of SVD, of decoupling the matrix into Range and 

Angle space orthogonal matrices, is brought to use. The SVD of Y gives us 

three matrices viz. U, A and V, as shown in equation (4.4). In section 4.3.1, 

it has been shown that the Eigen vectors corresponding to the m largest Eigen 

values be used for classification. Figures 4.3 and 4.5 show that for XPATCH 

and MSTAR database An makes up for more than 90% power of the entire 

distribution. Based on these facts, Ui, corresponding to An, was used as the 

optimal feature. For simplicity, Ui is denoted as t, size 100 x 1 in the later 

discussion. 

The feature selection, either mean based or Eigen based t, for a sector has been 

obtained. The same is performed on all the 144 sectors with each sector rendering 

a vector of length 100. With the completion of the feature extraction stage, T, a 

100 x 144 size matrix is available which is referred to as the templates matrix. The 

same is done for all the 4 targets. 

The test profiles are created using the 100 x 425 matrix A obtained as described 

in section 6.1. using similar operations of HRR generation, Power transform and 

Normalization. A very important fact stands that the sequencing of events in Pre- 

processing of templates and test profiles must be exactly the same. As the process 

of HRR profile generation, power transform and Normalization have no affect on 

the matrix size, A would still be of size 100 x 425. The matrix A, is nothing else 

but 425 different test profile vectors, or Range profiles, from different and equally 

separated aspect angles bunched together. The same happens with all the 4 targets. 

The important thing to be noted here is that there is no need for SVD in generating 

the test profile matrix. This is an important factor as the method involves minimum 
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on-line computation time. Templates are made off-line, so SVD operation there is 

acceptable. 

The above operation gives the test profile matrix A, one to be recognized, and 

the template feature set library, T. 

6.4    Recognition 

The above system comes to the Recognition stage which can be done by either 

Matched Filtering technique or Least Squares explained in Chapter 4. Each one 

of the 425 test profile is taken and matched, in turn correlated within a shift of ±4, 

with every template, for all targets (144 * 4). The template type, either Ml, T72, 

FT or SB, giving the best match , or highest correlation value, is taken as the target 

recognized. 

6.4.1    Confusion Matrix 

Confusion matrix summarizes the classifier performance. Confusion matrix can be 

generated here by taking all test profiles into consideration. The test profile of a 

particular target type is chosen and based on the classifier, it is recognized as either 

one of the four targets. Table 6.2 shows the organization of a confusion matrix. Based 

on table 6.2, Pe and PD are given by 

p* = EEmw^lG) (6-4) 

PD   =   EEWWilG-) (6-5) 
«=i 

where C,- stands for Ml, T72, FT and SB for i = 1, 2, 3 and 4 respectively. As can be 

inferred from (6.4) and (6.5), if a test profile fails to match a template of the same tar- 

get type, it accounts to Probability of error whereas if it does match, then it accounts 
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to the Probability of Detection. In order to minimize Probability of error, in turn 

maximize Probability of Detection, various tests were conducted which are described 

in Chapter 6. Across a row of a confusion matrix, the conditional probabilities must 

equal to 1. Table (6.2) describes the probability factors in a confusion matrix. 

Classification Ml T72 FT SB 
Ml P(M1\M1) P(T72\M1) P(FT\M1) P(SB\M1) 
T72 P{Ml\T72) P(T72\T72) P(FT\T72) P(SB\T72) 
FT P(Ml\FT) P(T72\FT) P(FT\FT) P(SB\FT) 
T72 P{Ml\SB) P{T72\SB) P(FT\SB) P(SB\SB) 

Table 6.2: Confusion Matrix, C, Organization 

6.5    ATR Performance Comparison 

Figures 6.4 and 6.5 show the ATR results using Mean templates in terms of Probabil- 

ity of Error (Pe) and Probability of Detection (PD). The plots show the results with- 

out and then with template normalization, respectively, using Least-Squares (LS). 

Clearly, if LS is used normalization has very little effect. However, if Matched Filter- 

ing (MF) is used with normalized mean templates, the results improve significantly 

as shown by Figures 6.4(c) and 6.5(c). Figures 6.6 and 6.7 show the corresponding 

results using Eigen Templates. Once again, LS performs poorly regardless of normal- 

ization, whereas performance with MF is superior with normalized templates. Figures 

6.4, 6.5, 6.6 and 6.7 demonstrate that ATR performance improves (i.e., Pe reduces 

and PD increases) as the PT coefficient v is reduced. It may be noted that Matched 

Filter performs quite poorly without normalization for both Mean and Eigen tem- 

plates and hence, those results are not included here. According to Figures 6.4, 6.5, 

6.6 and 6.7, the best results using Eigen and Mean templates are the ones which use 

Matched filtering with normalized templates. In Figures 6.8 and 6.9, these two cases 
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are compared separately to show that the performance of the eigen-based approach 

is superior than that of the Mean-based technique. 
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Figure 6.4: Pe using Mean Templates, (a) Least Squares without Normalization (b) 
with Normalization (c) Matched Filter with Normalization, v = 0.08, 0.1 and 0.2 for 
all cases. 
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Figure 6.5: PD using Mean Templates, (a) Least Squares without Normalization (b) 
with Normalization (c) Matched Filter with Normalization, v = 0.08, 0.1 and 0.2 for 
all cases. 
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Figure 6.6: Pe using Eigen Templates, (a) LS without Normalization (b) with Nor- 
malization (c) MF with Normalization, v = 0.08, 0.1 and 0.2 for all cases. 
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Chapter 7 

Summary and Future Work 

7.1    Conclusion 

A new approach using High Range Resolution (HRR) profiles to recognize time critical 

military targets is considered in this project. In order to overcome the limitations of 

Synthetic Aperture Radar (SAR) image-based ATR in recognition of moving targets, 

the HRR scheme, studied as part of this project, can be used to obtain superior 

recognition rates. HRR-ATR also offers considerable computational savings when 

compared with SAR-ATR scheme. Most results described in this report were based 

on XPATCH database, although some results with the new MSTAR data set is also 

included. 

This report includes details of how HRR profiles are created and pre-processed to 

achieve superior ATR performance. For large number of target classes with signifi- 

cantly large number of templates, considerable on-line processing may be necessary 

for classification. As a trade-off, range profiles are divided into sectors where the 

sector-sizes are decided based on the correlation drop between sector to sector. From 

sector size simulation study of XPATCH data, it was shown that a sector size of 2.5° 

is appropriate for limiting computation while achieving excellent ATR performance. 

Many commonly known estimation and detection algorithms for ATR work best or 

are computationally simple for gaussian signals. HRR profiles being positive valued, 

80 
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these tests are described in details and they show that for v = 0.08 is range profiles 

are mapped to be most gaussian-like. To verify the results of these studies, various 

values of Power transform were tested in ATR Simulations in Chapter 6. For the 

4-targets XPATCH database, so far the highest achievable ATR efficiency was found 

to be about 99.5% using Eigen-templates in conjunction with Matched Filtering with 

Power Transformed (with a coefficient value of 0.08) and normalized profile data. 

In this project we have also conducted preliminary study of effectiveness of SVD 

for removal of clutter from a HRR profiles as well as SAR images. It has been shown 

that Eigen filtering technique, i.e., reconstruction after zeroing out small singular 

values, which correspond to noise or clutter, can be highly effective removing clutter. 

7.2    Future Work 

The algorithms proposed in this thesis are made with the objective to achieve high 

ATR/D for moving targets. At the present stage, the algorithms have been tested for 

stationary synthetic XPATCH database and to some extent with measured MSTAR 

data set. Although the HRR-ATR algorithms have been developed initially for sta- 

tionary targets (XPATCH) for base-lining purposes, once moving target data is avail- 

able the algorithms need to be modified and tested for those or any other database 

to test their effectiveness. Recent advances in superior sensor technologies and sensor 

simulation tools that allow wider classes of target scenarios available at the ATR 

developmental stage, higher resolution imaging based on super-resolution techniques 

[19, 18, 30], increasingly faster and superior computing hardware, and appropriate 

advanced ATR strategies [1] are all expected to be beneficial for achieving improved 

performance from the evolving ATR methodologies. 

Eigen-templates as features need to be applied for Measured data and Moving 

Targets (MSTAR) once more datasets are made available.  For measured data with 
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considerable presence of clutter, some form of sequential processing using more than 

one observation profile may be necessary. Sequential computation of eigen-vectors 

to extract appropriate information from observation profiles also need to be studied. 

Furthermore, the energy of some targets may be distributed among more than the 

largest singular value and more than one eigenvector may be more appropriate for 

template formation for some targets to achieve reasonable ATR results. The proposed 

eigen-filter based clutter removal technique has shown considerable promise and it 

needs to be studied further. 
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