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Overview 
This report covers aspects of using optical sampling techniques to sample rf and microwave signals 
for subsequent digitization and processing. 

In Part I, we consider the required temporal jitter and required laser pulsewidths to achieve 
Nyquist sampling of a 10 GHz bandwidth signal at 10 bits of resolution. The 15.5-fs jitter requirement 
is more severe than the 2.4-ps laser pulsewidth requirement and presents a significant challenge to find 
a pulsed laser with less jitter than this. After performing a literature investigation, it was found that 
actively modelocked fiber lasers achieve operating performance close to that desired. In particular, 
the Naval Research Laboratory has produced a "sigma" fiber laser for high data rate communications 
that has a picosecond pulsewidth and a temporal jitter on the order of 100 femtoseconds. We have 
built a sigma laser at the Naval Postgraduate School to investigate its performance and to seek 
ways to reduce the jitter through cavity stabilization and improved modelocking. Measurement 
of picosecond pulse widths and femtosecond jitters is a nontrivial task. The report reviews opto- 
electronic measurement techniques that have been developed. Measurements on the NPS sigma laser 
are in the initial stages. 

In Part II, we consider optical architectures that can be used to reduce the stringent requirements 
on the sampling source. The signal processing techniques can be divided into optical oversampling 
(relative to the Nyquist sampling rate) and optical undersampling methods. 

• In optical oversampling methods the extra data that is recorded by the sampling method 
can be used to increase the bit resolution of the digitizer or, equivalently, to increase the 
signal-to-noise ratio of the sampled signal. In particular, a novel photonic sigma-delta digital 
convertor has been developed and studied. This implementation uses optical delay lines as 
accumulators to produce the digital output. Simulation results for these optical accumulators 
are included in this report, as is detailed information on the use of optical delay lines used as 
fiber lattice structures. This section also includes complete simulation results for a first-order 
optical sigma-delta convertor and preliminary simulation results for a second-order convertor. 

• Undersampling the signal does not work if only a single channel is used. Undersampling in a 
set of parallel channels, however, allows the integration of the additional information into a 
wider bandwidth and more resolution than can be achieved by any single channel. Handling the 
parallel information using the Symmetrical Number System (SNS) is shown to be equivalent to 
the Discrete Fourier Transform technique for finding the spectral content of a signal. A parallel 
optical processing architecture is explored that implements a two-channel undersampling DFT 
receiver based on SNS processing. 

Additionally Part II considers the amelioration of jitter effects through signal processing. Jitter 
manifests itself as nonuniform sampling of the signal; techniques have been developed in the signal 
processing literature to predict the effects of these nonuniformities. Simulations are shown to verify 
the prediction of performance using low frequency values that were easily computed. 
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Part I 

Laser Sampling and Jitter Effects 

1    Introduction 

Analog-to-digital converters (ADCs) that can digitize a wide bandwidth portion of the rf spectrum 
(e.g., a 10 GHz band) with sufficient accuracy (e.g, 10 bits) have been a long-sought goal. Such 
ADCs typically begin with a sampling of the rf signal with narrow pulses at a sampling frequency, 
fs. This sampling frequency must be greater than or equal to twice the highest frequency contained 
in the wave, fm, i.e., 

/. > Vm ■ (1) 

(The Nyquist sampling frequency fN is obtained when the equality is used, fN = 2/TO.) If our 
representative 10-GHz-wide signal is a baseband signal (i.e., its lowest frequency is close to zero), 
then its Nyquist sampling frequency is 20 GHz. (The Nyquist sampling rate is 20 gigasamples/s 
[GS/s].) After the sampling has been accomplished, processing digitizes the sample. In Part I of 
this report, we investigate the performance of optical pulse trains used as sampling waveforms and 
do not concern ourselves at this time with the digitization of the sample. 

The performance requirement of an optical ADC has been studied by Taylor [1]. He derived 
expressions for both the maximum pulse width that the sampling pulse can have, as well as the 
maximum sample-time uncertainty (or "jitter") that the sampling waveform can have. His deriva- 
tions are repeated in Appendix A of this report. 

The sampling waveform will not be perfectly periodic. Each pulse that should arrive at time U 
will have a small timing error of St. This St is the jitter of the pulse train. This jitter will cause 
the sample to be taken at a slightly different time than desired. Sampling at the incorrect instant 
of time leads to an error in the measured voltage. Taylor [1] shows that the maximum jitter that 
can be tolerated without incurring a error greater than one-half of voltage level corresponding to 
one least-significant bit is given by 

^max - 2N+^fm 
= 2Vfo ' (2) 

where Stma,x is the maximum jitter, N is the number of bits in the digitized output, fm is the 
highest frequency in the signal, and fN is the Nyquist sampling rate for the signal (fN = 2/m). 
For our representative 10-bit, 10-GHz-bandwidth ADC, the Nyquist rate would be 20 GS/s and the 
maximum allowable jitter is 15.5 fs. This jitter requirement is challenging to meet. Figure 1 shows 
curves for ADCs with 8-bit, 10-bit, 12-bit, and 14-bit resolutions as a function of the pulse sampling 
rate. In these curves, a Nyquist sampling rate was assumed (e.g., our 10-GHz wide signal would 
require a 20 GHz sampling frequency). We see from the figure that sampling rates higher than one 
GHz require sub-picosecond timing jitter. 

Similarly, Taylor [1] considered the maximum pulse width (or interaction time) that the sampling 
pulse can have. During the sampling width, the measured voltage can be changing. Assuming that 
the sampling process computes the average of the voltage during the sampling pulse width rather 
than the instantaneous value at time U, Taylor found that the maximum sampling pulse width, AT, 
is 

AT< ^L=. (3) 
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Figure 1: Maximum allowed laser jitter vs. pulse repetition frequency in ADCs for 8-, 10-, 12-, and 
14-bit converters. 
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Figure 2:  Maximum allowed AT (laser pulse width plus optical propagation time in modulator 
electrodes) vs. pulse repetition frequency for A-to-D converters for 8-, 10-, 12-, and 14-bit convertors. 

Our representative 10-GHz, 10-bit ADC would require that ATmax = 2.4 ps. Modelocked lasers are 
available that produce outputs below this duration, so the pulse width is a lesser constraint than 
the jitter requirement. 

Figure 2 shows a plot of the pulse width requirement vs. the sample rate for ADCs with 8-bit, 
10-bit, 12-bit, and 14-bit resolution. We note that gigahertz sampling frequencies generally require 
pulse widths several picoseconds or less. 

-- Modelocked laser technology offers the promise of being able to generate high-frequency pulse 
trains with small amounts of jitter. We now turn our attention to the technology of modelocked 
lasers. 

2    Modelocking Techniques 

Modelocking allows the user to obtain a train of ultrashort pulses from a laser. The concept is to 
lock the phases of many modes together to produce this pulse train. 

• Passive modelocking: In passive modelocking the pulse train builds up from the noise (if the 
laser is self-starting) and the pulse amplitude and width adjust themselves to an equilibrium 
condition after a startup transient. The laser incorporates an element whose transmissivity 
(or phase response) is a nonlinear function of the light amplitude passing through it (e.g., a 
nonlinear optical mirror (NOLM) or a Kerr-effect polarization-rotating element). Both ampli- 
tude and phase modelocking can be accomplished. The pulse repetition rate of the pulse train 
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is determined by the mode spacing of the optical resonator; this implies that the resonator 
length is inversely proportional to the repetition frequency. One disadvantage of passive mod- 
elocking is that high repetition frequencies require an impractically small resonator length for 
fiber lasers (e.g., a 1 GHz repetition frequency requires approximately a 10-cm fiber resonator 
length). Hence, high pulse rate lasers use active mode-locking. 

Active modelocking: In active modelocking, an amplitude- or phase-modulating element is 
included within the resonator and the losses (or phase) are modulated at close to the desired 
repetition rate (which must be a fundamental or harmonic of the resonator frequency). The 
modulation may be sinusoidal and modest modulation depths will suffice (i.e., modulation 
depths of 1 are not required). Active modelocking, therefore, allows harmonic modelocking 
where there are an integer number of pulses within the resonator, rather than just one as in 
passive modelocking. This, in turn, allows operation at high repetition rates with resonators 
of adequate length to achieve the combination of desired properties of gain, dispersion, and 
pulse compression. 

3    Laser Configurations 

Several fiber laser configurations work as modelocked lasers. In addition, various diode and solid- 
state lasers have also been modelocked to produce short pulses with low jitters. 

• Figure-eight laser: Figure 3 shows a conceptual diagram of a "figure-eight" laser [2]. This laser 
couples a fiber ring on the left side with a "nonlinear amplifying loop mirror" (NALM) [3] on 
the right side. The NALM consists of the 50:50 optical coupler and the erbium-doped fiber 
amplifier (pumped by an appropriate pump laser, here shown as a 980-nm diode laser). This 
combination has a nonlinear reflectivity whose reflection coefficient is a function of the incident 
optical power. The left loop is a conventional fiber with an isolator to make the optical flow 
unidirectional through the ring and an 80:20 coupler to extract a portion of the light. 

Polarization 
controller 

Optical [{] 
isolator l|l 

Erbium-doped 
fiber 

Output 980 yum 
pump 

Figure 3: Conceptual layout of a figure-eight laser. (After [2].) 
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Figure 4 shows a variation of the figure-eight laser that is called a "sigma laser" (or "cr 
laser") [4-7]. This laser uses a double pass through the amplifying fiber to increase the light 
intensity. The polarization of the light is controlled and rotated 90° by the Faraday mirror at 
the end, so that the polarizations of each pass are orthogonal to each other (thereby removing 
the birefringence effects that would otherwise be present on an unpolarized beam). 

r 
10 GHz   V 

synthesizer 

Moch-Zehnder 
modulator 

90° splice 

Polarizing, 
beamsplitter      Pump 

Erbium 
fiber 
plfier 

Dispersion- 
compensating 

fiber Fiber-coupled 
Faroday mirror 

.On 
Soliton 

propagation 
fiber 

Output 

Figure 4: Conceptual layout of the NRL "sigma-laser" (or "a-laser"). (After [8].) 

• Ring laser: Figure 5(a)a illustrates a passively modelocked ring laser that incorporates a 
section of positive dispersion fiber (this fiber also provides the gain) and a negative dispersion 
fiber [9-11]. The modelocking is an additive-phase modelock. This laser configuration provides 
a pulse compression capability. Figure 5(b)b shows the pulses out of the ring laser. Since this 
laser is passively modelocked is unsuitable for generating the multi-gigahertz pulse train that 
we desire. 

4    Pulse Shortening and Resonator Stabilization in Mode- 
locked Lasers 

4.1    Pulse Shortening 

A key concept in the production of ultrashort pulses from modelocked lasers was the realization 
that a section of pulse-compression fiber could further shorten the output pulses from the laser. 
This pulse-compression fiber is usually a piece of dispersion compensating fiber with a negative 
dispersion (i.e., a dispersion with the opposite sign of that in the dispersion-shifted fiber and gain 
fiber). The required minimum amount of dispersion to achieve pulse compression is £>n,crit = 0.652 
where Dn = ßiLjDg. Here, /% is the chromatic dispersion coefficient per unit length, L is the 
fiber length, Dg is the gain dispersion (given by Dg = g/£l2g with g being the saturated gain of 
the laser medium [typically g = 0.1] and Qg being the gain bandwidth) [12]. In the NRL sigma 
laser, ß^L « 0.5 ps2, and the gain dispersion, Dg, is approximately 0.004 ps2. For these values, Dn 

(= ß2L/Dg) is approximately 100, well in excess of the minimum required value. 
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(a) Conceptual layout of a fiber ring 
laser incorporating pulse compression. 
(Erom [9].) 

(b) Pulses out of ring laser utilizing pulse 
compression. The outer pulse is taken af- 
ter erbium fiber segment and represents 
the maximum pulse width. The inner 
pulse is taken after 169 cm of negative- 
dispersion output coupling fiber and rep- 
resents the minimum pulse width attained 
with this laser (77 fs). (Prom [9].) 

Figure 5: Ring laser with both positive and negative pulse dispersion and output pulse autocorrela- 
tion measurements. (From Ref. [9].) 

Without any pulse compression, the predicted pulse shape is Gaussian with a width, ra, of [12,13] 

fD 
Ta = (4) 

where Ms is the modulator strength (given by Ms = Mu^/2 with M being the modulation depth of 
the modelocking modulator and % being the modulation frequency). The full-width, half-maximum 
(FWHM) pulse with is TFWHM = l-66ra. 

With the addition of a pulse-compression fiber, the maximum possible reduction in pulse width, 
■Rmax, is [12] 

■Rmax = 0.943 K9*o/2)2 
DgMs 

(5) 

where $o is the phase shift incurred by the pulse per round trip through the resonator (as given by 
<&o = \D\/T

2
 with \D\ being the intracavity dispersion per round trip and r being the pulse width). 

The typical value of $o is 0.1 [12] and T is then found from r = y/\D\/$0- Equation 5 reduces to 

Rr, 1.37,4/ -f- = 1.37 ^/I>I. (6) 

where £>/ is the fiber dispersion (Df = feL). For the previous values of Df = 0.5 ps2 and Dg = 0.004 
ps2, we find J?max = 4.5. 
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The minimum pulse width achieved is  [12] 

(7) 

The necessary required amount of normalized negative dispersion to achieve this minimum pulse 
width is [12] 

(8) 

These equations allow us to predict the minimum pulse length that can be achieved and to calculate 
the required amount of negative dispersion required to achieve this minimum pulse width. Because 
of the 12th root dependence of the pulse shortening, the shortening depends primarily on the gain 
bandwidth fiff. 

4.2    Resonator Stabilization 

Changes in cavity length become changes in pulse position. [14] The resultant timing jitter, dt, is 
related to the change in cavity length, dl, by 

where L is the cavity length (or perimeter of a ring laser) and fm is the modulation frequency. 
For example, to achieve a 2-ps jitter at a modulation frequency of 1 kHz for a ring laser of 3 m 
(corresponding to a 100 MHz repetition rate) requires that the optical path be controlled to within 
0.2 fim, setting the standard of having a cavity control system with a bandwidth of several kilohertz 
and a submicron positional accuracy. Most of these control systems are based on a piezoelectric 
expander driven in an electronic feedback loop. The resonator stabilizer used in the NPS sigma 
laser is described in more detail in a later section. 

5    Laser Performance Measurements 

Typical measurements of the output pulse train include: 

temporal pulse characteristics (pulse repetition frequency [PRF] and pulse width) • 

• the RF spectrum of the pulse train (fundamental and harmonics, phase noise [jitter] and 
amplitude noise of source) 

• optical spectrum of source (wavelength, spectral width, and symmetry of spectrum) 

5.1    Pulse Repetition Frequency 

The PRF of the laser pulse train is measured by applying the output of a fast photodetector to an 
electronic spectrum analyzer and measuring the center frequency of the lowest harmonic observed 
(i.e., the modelocker modulation frequency). 
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5.2    Autocorrelator Measurement of Pulse Width 

Because of the limited speed of modern detectors, amplifiers, and oscilloscopes, it is not possible 
to measure directly the pulse width. Instead, the pulse width is measured with an autocorrelation 
measurement. As shown in Fig. 6, the optical pulse is split in to two pulses and the replicas 
are passed through a nonlinear crystal from opposite ends. In the region where the pulses overlap, 
second-harmonic generation occurs. The doubled-frequency light is detected with a sensitive, filtered 
photomultiplier tube and a trace is built up on a sampling oscilloscope as the delay is changed. Since 
the pulses are replicas of the input pulse, the trace records the autocorrelation of the pulse train. 
The width (FWHM) of the autocorrelation is recorded and the pulse width of the optical pulse 
is computed from this measurement, based on either a Gaussian-shaped pulse (little or no pulse 
compression) or a pulse shape that follows the square of the hyperbolic-secant (maximum pulse 
compression). The product of the measured width and the spectral linwidth (the time-bandwidth 
product) can be used to determine the pulse shape. A value of 0.44 or longer indicates a Gaussian 
pulse and a value of 0.32 indicates a sech2 shape. Values between these extremes indicate a hybrid 
wave and that more pulse compression could be achieved. Appendix B contains more information 
about the autocorrelation measurement. 

Input 
light 

pulses 

Beamsplitter 

I \ Movable 
stage 

V (variable 
delay) 

Second 
harmonic 

generating 
crystal 

0 
Output 
signal 

Photomultiplier 
(filtered) 

Figure 6: Optical autocorrelator for use in measuring pulse width of short optical pulses. 

5.3    Laser Wavelength and Spectral Width 

An optical spectrum analyzer is used to measure the laser wavelength and the spectral width of the 
optical source. It also shows whether unexpected wavelengths are lasing and indicates whether the 
source spectrum is symmetrical or not. 

5.4    Jitter Measurement 

The measurement of the laser jitter is difficult in the time domain. Since we are unable to resolve 
the pulse, it is not possible to resolve its position to the femtosecond accuracy that is required. Con- 
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sequently, jitter measurements are done by computations based on measurements in the frequency 
domain [15-18]. The pulse train from the laser is applied to a fast photodiode and the output is 
applied to an electronic spectrum analyzer. The current from the detector, I(t) is [17] 

oo 

J(t) = PT[1 + N(t)}   Y,  6(t-nT- J(t)) , (10) 
7X= —OO 

where P is the average power in the pulse train, T is the (ideal) pulse period, N(t) is the normalized 
laser pulse amplitude fluctuation, 6(t) is a Dirac delta function, and J(t) is the random fluctuation in 
the pulse arrival time (or jitter). The spectrum analyzer displays the power spectral density, 5p(w), 
integrated over the analyzer's resolution bandwidth. The power spectral density is the Fourier 
transform of the statistical autocorrelation function of I(t) [17], or 

Sp{u) = F {I(t)*I(t)}, (11) 

where T {■} indicates the Fourier transform operation and * indicates the correlation operator. Using 
the identity that 

oo .       oo 

£  8{t-nT-J{t)) = -   Y,  exp(jno;L(l-J(i))) (12) 
n=—oo n=—oo 

and expanding to the first order in J(t), we find [17] 

oo 

Sp(oj) = P2   Y  2TT6(üJ-mjL) + SN(üJ-wL)+n2ujlSj(uj-najL). (13) 
n=—oo 

Here SN(U>) is the amplitude noise spectral density, Sj is the phase noise (jitter) spectral density, 
and wj, is the (ideal) pulse repetition rate (wj, = 2-K/T). Hence, we see that the spectrum will 
consist of a set of lines at the PRF of the pulse train, &i, and its harmonics. Each line will be 
accompanied by a series of amplitude noise sidebands, SN(TIU>I,) and phase noise (i.e., jitter) side- 
bands, n2<jj\Sj{nu>L) (where n is value of the harmonic of the PRF). At the fundamental frequency 
the amplitude noise spectrum will dominate the phase noise and SN(U>) can be measured. Figure 7a 
shows a representative spectrum. The line consists of relatively narrow laser spectrum atop a wider 
pedestal due to the noise spectrum. At harmonics of the fundamental there are similar, weaker 
lines centered on the harmonic of the fundamental frequency. As shown in Figure 7b, the noise is 
a mixture of amplitude and phase noise (jitter). At a high enough harmonic, the phase noise will 
dominate the amplitude noise due to its multiplier of n2o»£. (The test for dominant phase noise is 
to compare the noise profiles of two harmonics to ensure that the there is this r?w\ behavior.) 

In a parallel approach, Rodwell et dl. [16,18] models the pulse train out of the laser as a set of 
noisy, jittery Gaussian shaped pulses (as would come out of a conventional modelocked laser without 
any pulse compression), given by 

°° 1 r i 
P(t) = PT[l + N(t)}   Y,   7§^= exp [(« -nT- J{t)f /2c*] . (14) 

n=—oo  * J 

The power spectral density, SP(üJ), of this pulse to the second order of nu>L<Tj is 

5PM«P2e-w'-'    E~=-oo    [(1-«M*J) 2*% -nwL) (15) 

+ (1 - n2w2
L<72) SN{CJ - najL) + n2cj2LSj{u)] . 
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Figure 7: Conceptual spectrum of laser pulse train at (a) the PRF fundamental and (b) the n-th 
harmonic of the PRF frequency. In part (b) the dotted curve shows the amplitude noise effects 
without any jitter; the solid curve is the combined effects of amplitude and jitter noise. The jitter 
noise dominates. 
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Again, the spectrum is a series of lines at harmonics of uL plus a series of amplitude-noise sidebands, 
SN(u-nuL) and phase-noise sidebands, n2u\Sj{u-nwL). Once again, the low order harmonics are 
dominated by the amplitude noise sidebands and the higher order harmonics are dominated by the 
phase-noise sidebands due to their n2uL weighting factor. Modelocked lasers with pulse compression 
technology to shorten the pulse produce soliton-shaped waves with a sech2(£) power dependence. 

The measurement of laser stability is similar to the measurement of microwave stability and has 
borrowed techniques from that area. The measurement techniques for finding SN(w) and Sj(u) are 
illustrated in the figure. The user sets up the spectrum analyzer to measure the spectrum with a 
dB vertical scale. For each offset frequency, the sideband is measured in so many dB below the peak 
value of the spectrum (the units are, thus, "dBc" or "dB relative to the carrier"). To be precise, the 
measurement bandwidth of the spectrum analyzer should be specified. 

Once Sj(u) is determined, the root-mean-squared (rms) value of the jitter (over the frequency 
range extending from u>low to uhigh is computed from 

,  M       /«"high 

aj = y/< J2(t) > = J- Sj(u)düj. (16) 
V   ^ •'"'low 

The limit on the lower frequency is linked to the upper limit on the observations duration. [16]. The 
change in the laser timing over a duration, AT, is given by the weighted integral of the timing jitter 
spectral density, 

< (J(t + AT) - J(t))2 >= - /    Sj(w) (1 - cos(u; AT)) du. 
"if Jo 

(17) 

The (1 - cos(o; AT)) term in the integral varies as (wAT)2 for w AT -C 1 and, so, the jitter com- 
ponents for frequencies less than wiow = 2n/2AT contribute little to the changes in laser timing 
jitter over the observation duration, AT. Hence, we can use 7r/2AT as the value of w]ow in the jitter 
evaluation integral. For example, integrating from /Iow = 0.25 Hz is appropriate for evaluating jitter 
that occurs during an experiment of 1 s duration. 

The rms amplitude noise is similarly found as 

  /l      /""hiEh 
aN = y/< N*(t) > = ./-/        SN(u) dw. (18) 

V ^ •'"W 

An alternative notation is also used [17]. The peak power at the harmonic frequency can be called 
the carrier power, Pc. The jitter in the frequency range from /iow to /high is 

o-j [/low, /high] = 2^ Y -y-» (19) 

where 
/•n/i+/high 

fab = 2/ -%ldf, (20) 

where B is the resolution bandwidth of the spectrum analyzer measurement, n is the harmonic 
number of the measured sideband, and /L is the laser PRF. 

Generally, the laser intensity noise is greater than the shot noise power in the detector.  This 
excess noise, SN(W), can be stated in terms of dB above the shot noise power at a given photocurrent 
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(usually assumed to be 1 mA). At the photodetector, the ratio of the shot noise power, PShot, to the 
carrier power is 

| = f, (21) 

where IQ is the dc photocurrent from the detector and q is the value of the electron charge. 
The National Institute of Standards and Technology has defined the single-sideband phase noise 

spectral density of the source, which is Ln(w) = n2w\Sj(u)), so measurement of S{u>) from the n-th 
harmonic of the PRF allows calculation of Ln(ui). The parameter £(/) (= Lu>/2ir) is the ratio 
of the power in one phase modulation sideband (in a 1 Hz bandwidth located at an offset of / 
Hertz from the center) to the total spectral power at the center. Following the terminology used 
in the microwave literature, the values of £(w), SJ(OJ) and 5^(w) are given in dB. For example, 
L(100 Hz) = £(200TT radians/s) = xlO-10 s is the same as £(100 Hz) = -100 dBc(l Hz), where 
"dBc" is "dB relative to the carrier" and the 1 Hz value in the parentheses indicates the measurement 
bandwidth. Frequently L(f) is plotted instead of showing the laser's rf spectrum. Figure 8 shows a 
representative plot of £(/) for two non-fiber lasers. 

i inn      i 

Passively Mode-Locked 
Ti:Sapphire Laser 

Frequency (Hz) 

Figure 8: Representative plot of £(/) from two modelocked lasers. The spectra are referenced from 
the fundamental frequency of the laser pulse train. From Ref. [19]. 

In cases where the harmonic value, n, is not large enough that the jitter noise totally dominates 
the amplitude noise, the spectrum of the jitter can be found by subtracting the single-sided power 
spectral density of the fundamental from that of the n-th harmonic [14], 

£,(/) = 10 log 
10L„(/)/10 _ 10ii(/)/10 

n2-l 
(22) 
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, The rms timing jitter is then found from 

I      /    /-/high 

aj = ^KTJ^ 10Lj(m°df- (23) 

5.5    Laser Jitter Measurement from Fundamental Spectrum 

NRL has used a method that interrelates the measurement of the amplitude fluctuations of the pulse 
train to the temporal jitter. The amplitude "jitter" can be defined as 

^=^V- (24) 
where y/\6A^ is the rms value of the amplitude fluctuations and A is the average amplitude. This 
jitter is found from [17] 

[PN 
OA = ^ (25) 

where 

PN = 2 t2±Ldf (26) 

is the power found in the noise "wings" of the fundamental spectrum and Pc is the power in the 
signal (at the center of the spectrum). The parameter B is the resolution bandwidth of the spectrum 
analyzer and the frequencies /low and /high are the cutoff frequency values described earlier. The 
timing jitter Oj is related to the amplitude jitter by [17] 

aj = ^UA = ^TZ (27) 

where T is the period of the pulse train (without any jitter) and n is the harmonic where the jitter 
has been measured. (The timing jitter can also expressed as a fraction of the period by finding 
GJ/T — aA/2nn.) NRL's measurement of their sigma laser found an amplitude jitter of 1.1% (or 
less) and a resultant timing jitter of 0.16 ps (or less). 

6    Measurement Results 

6.1    Measured Pulse Width Performance 

Figure 9 on the following page shows some measured pulsewidth results from various modelocked 
lasers. We observe from the figure that there is no problem meeting the pulse width requirements 
of a sampling system to handle a 10-GHz bandwidth, 10-bit system. Pulse widths on the order 
of one picosecond to one-tenth of a picosecond are readily available. The pulse width requirement 
becomes challenging for a 10-bit system at sample rates of about 100 GHz or larger. Table 1 shows 
the measured pulse width of the several modelocked lasers that were plotted in Fig. 9 on the next 
page. 
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Figure 9: Experimentally measured laser pulse width vs. pulse repetition frequency in modelocked 
lasers.  Also shown (solid line) is the theoretical curve for the maximum pulse width plus transit 
time of a 10-bit ADC system that is sampled at the Nyquist frequency rate of twice the value of the 
maximum frequency in the signal. 



Photonic Sampling of Signals 17 

Table 1: Measured pulse width of modelocked lasers. 

PRF 
(GHz) 

Pulse width 
(fs) 

A 

H 
Ref. PRF 

(GHz) 
Pulse width 

(fs) 
A 

(nm) 
Ref. 

0.082 1250 1064 [16] 0.082 1250 1064 (161 
0.03 430 1064 [20] 0.42 3500 1560 [211 
0.48 1260 1500 [22] 0.048 60 1064 [23] 

0.048 60 1064 [23] 0.016 150000 1550 [241 
10 320 1560 [25] 0.143 275 1563 [261 

300 75 1550 [27] 0.926 79000 1550 [271 
2 15000 1550 [28] 0.042 452 1550 [29] 

0.0833 2700 1534 [30] 0.48 700 1500 [311 
0.071 320 1543 [32] 0.8 2600 1550 [331 
0.21 98 1570 [34] 0.1 3000 1550 [351 
20 3000      j 1550 [36] 0.045 77 1550 [91 

1.25 26000 1500 [37] 1.25 26000 1500 [371 
0.5 820 1500 [5] 0.5 820 1500 [51 
110 650 1500 [38] 17.8 8000 [391 
10 1200 1564 [40] 10 2000 1552 [411 
10 170 1550 [42] 0.42 33000 1300 [431 
20 8400 1540 [44] 0.082 570 1300 [451 

0.017 4000 1555 [46] 0.463 700 1550 [471 
0.463 700 1550 [47] 0.042 290 1550 [481 
0.042 290 1550 [48] 6.3 3000 1550 [491 
1280 400 1550 [50] 20 1800 1550 [511 
0.442 2500 1510 [52] 0.442 2500 1510 [52] 

10 750 1550 [53] 10 2000000 1550 [541 
4 15000 1550 [55] 4 15000 1550 [551 

80 1000 1550 [56] 18.4 5200 1550 [7] 
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6.2    Measured Jitter Performance 

Figure 10 shows the experimentally measured jitter for some operational modelocked lasers. Gener- 
ally, few experimenters have measured the jitter of their lasers, so there are fewer data points than 
in the previous figure. We note that the jitter requirement for a 10-bit system is met only for pulse 
rates of approximately 1 GHz and lower. Higher sampling rates present a significant challenge to 
controlling the jitter in the pulse train, since jitters on the order of 10 femtoseconds or smaller are 
required. Table 2 shows the measured jitter of the modelocked lasers that were plotted in Fig. 10. 
(Few of the experiments have measured the jitter.) 

Sample rate (GHz) 

Figure 10: Experimentally measured laser jitter vs. pulse repetition frequency in modelocked lasers. 
Also shown (solid line) is the theoretical curve for the maximum jitter allowed for a 10-bit ADC 
system that is sampled at the Nyquist frequency rate of twice the value of the maximum frequency 
in the signal. 

7    NPS Sigma Laser 

Based on the performance achieved with the NRL sigma laser, we decided to build a version of 
this laser. With the aid of the NRL sigma laser team, a conceptual laser was designed as shown in 
Figure 11. The laser consists of two sections. The polarization-maintaining loop on the left is made 
of polarization-maintaining fiber components. The active modelocker (a Mach-Zehnder modulator) 
is in this loop, as is the output coupler.  The circulation in the loop is unidirectional (clockwise) 
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Figure 11: Design concept for NPS sigma laser. 



20 Photonic Sampling of Signals 

Table 2: Measured jitter performance of modelocked lasers. 

Year PRF (MHz) Pulse width (s) A (nm) Jitter (fs) Ref. 

1989 82 1.25E-12 1064 3.00E+02 [16] 
1991 48 6.00E-14 1064 1.10E+02 [23] 
1993 1250 2.60E-11 1500 6.30E+01 [37] 
1994 500 8.20E-13 1500 5.00E+02 [5] 
1995 463 7.00E-13 1550 6.00E+02 [47] 
1995 42 2.90E-13 1550 1.44E+02 [48] 
1995 442 2.50E-12 1510 1.60E+03 [52] 
1996 4000 1.50E-11 1550 2.00E+03 [55] 

as determined by the isolator that is incorporated in the loop. One of the splices (just below the 
modulator) is a 90° splice that aligns the fast axis of the fiber on one side with the slow axis of 
the fiber on the other side; the other splices are 0° splices. A polarization-maintaining beamsplitter 
interconnects the polarization-maintaining loop with the gain section of the laser. The gain section 
of the laser consists of an erbium-doped fiber gain section (pumped with two 980-nm diode pump 
lasers), an isolation filter to remove the pump wavelengths, the length-stabilization element that 
reduces jitter (described later), a section of dispersion-shifted fiber to provide the required nonlinear 
interaction, a length of dispersion-compensating fiber to perform pulse compression, and a Faraday 
mirror to rotate the linear polarization of the reflected beam by 90° from the incident beam. 

Components for the laser were selected from commercial vendors. The laser has been built 
and initial lasing has recently been achieved. Preliminary measurements of the laser's operating 
characteristics are currently being performed. 

7.1    Resonator Stabilization 

As described earlier, the primary cause of jitter is fluctuations in the length of the laser resonator 
due to environmental effects. Electronic feedback techniques have been developed to cancel these 
fluctuations [14,16,18]. As shown in Figure 12, the laser output is detected with a fast photodiode; 
the resulting voltage is amplitude limited, and applied to a double-balanced mixer acting as a phase 
detector. The phase of the laser signal is compared with a high-stability electronic reference and an 
error signal is generated. Integration of the error signal converts the phase-error to a frequency-error 
signal that is amplified and applied to a piezoelectric ring. This ring has about 60 meters of the 
dispersion-shifted fiber wrapped around it. As the ring expands and contracts in response to the 
error signal, the optical resonator length changes, causing a corresponding frequency shift in the 
laser output. The expansion and contraction of the ring will cancel any contraction or expansion of 
the resonator, thereby keeping the laser PRF constant. 

8    Summary of Laser Sampling Performance Measures 

In this part of the report, we have presented information about the use of modelocked laser to 
provide the sampling source for optical sampling of high frequency signals. We have shown that 
these lasers are capable of achieving the pulse width requirements for a sampling system and are 
close to achieving the jitter requirements.   These lasers incorporate an active mode locker with 
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Figure 12: Resonator stability circuit for NPS sigma laser. 

devices that induce a soliton-like wave within the laser. With the addition of pulse-compression 
devices, the pulse width is narrowed to the picosecond and subpicosecond regime. The jitter of 
the wave is controlled through the incorporation of resonator stabilization circuitry to control the 
laser resonator length to counter the environmental effects. The combination of low jitter and high 
pulsing frequency has best been achieved by the sigma laser designed at NRL for high data-rate 
optical communications. With the aid of the NRL team, we have designed and built a sigma laser 
in order to measure its performance and to serve as a testbed to explore techniques for lowering 
the measured jitter. We have also identified and described techniques for measuring the optical 
performance of these short-pulse, low-jitter pulse trains. 
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Part II 

Optical Signal Processing 

9    Design of Optical Oversampling Architectures 

9.1    Introduction 

9.1.1 Advantages of Oversampling Microwave Signals 

Optical sampling of a microwave signal at the Nyquist rate (sampling rate equal to twice the band- 
width of interest) has the advantage of a low sampling rate. Disadvantages, however, include the 
need for high-accuracy analog anti-aliasing circuits to filter the signal before sampling. The filter 
circuits serve to attenuate the high frequency noise and out-of-band components that alias into the 
signal (anti-aliasing filter). These anti-aliasing filters are vulnerable to noise and interference which 
corrupt the signal-of-interest (SOI). Also, fine-line VLSI technology is better suited to fast digital 
architectures rather than precise analog architectures making the filter fabrication process difficult. 

When a signal is oversampled (sampling rate greater than twice the bandwidth of interest), 
the resolvable bandwidth is traded off for a higher precision representation of the signal in the 
digital domain. Oversampling is attractive for many systems in that the analog anti-alias filtering 
requirements are relaxed. Oversampling architectures are especially tolerant of circuit non-idealities 
and component mismatch and as such do not require high precision circuits. Also, with the low 
operating voltage requirements of the post-detection digital processors (e.g., 3 V), analyzing the 
signal in discrete quantization levels is becoming more difficult, making oversampling an attractive 
alternative. Specifically, an oversampling architecture (or "sigma-delta" modulator [or SAM], as it 
is commonly referred to) consists of an analog filter in a feedback loop. Together with the filter, 
the feedback loop acts to attenuate the quantization noise at low frequencies while amplifying the 
high frequency noise. Since the signal is sampled at many times the Nyquist rate, a digital filter can 
be used to remove the high-frequency quantization/modulation noise without affecting the signal 
band. The concepts of oversampling have grown from pulse code modulation theory and an excellent 
history of this development is given in Ref. [57]. 

9.1.2 Integrated Optical Processing 

Integrated optical components offer a number of advantages over their electronic counterparts. These 
advantages include large bandwidth, use of optical sources for high-speed sampling, low power 
consumption, improved reliability, and insensitivity to vibration and electromagnetic interference. 
Since all-electronic EA modulators require oversampling, their applicability is mainly limited to 
low and moderate signal frequencies. The use of optical integrated components in conjunction with 
high-speed laser pulse sampling methods provide an attractive solution to the otherwise bandlimited 
all-electronic EA architecture. 

In Part II, Section 9.2 of this report, the advantages of oversampling are reviewed and the 
performance of both first-order and second-order EAMs are presented. Two important optical 
oversampling schemes are then presented in Section 9.3. The first is based on using integrated optical 
Mach-Zehnder interferometers, fiber lattice structures and mode-locked laser sampling methods. The 
second approach described uses free-space bulk optic components and employs multiple quantum well 
and self electro-optic components. Both of these approaches have shown good promise of extending 
the SA modulation into the very high frequency (VHF) region and beyond. 
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9.2    EAM Design 

9.2.1    Signal-to-Noise Relationships 

To understand the consequences of oversampling, we start with the development in [57] and ad- 
dress the basic properties of quantization. Figure 13 shows an example of a uniform multi-level 
quantization characteristic and a two-level quantization of an input signal x. The quantized signal 

y = Gx + e 

\N* 
;^\ 

Input Range = ± 6 
Input 

Range 

Figure 13: a) An example of a uniform multilevel quantization characteristic that is represented by 
linear gain G and error e, b) For two-level quantization the gain is arbitrary. (Adapted from [57]). 

is y = Gx + e, where G is the gain, x is the input signal, and e is the quantization error. In the 
two-level quantizer the gain G is arbitrary. If the quantization error has equal probability of lying 
anywhere in the range ±qs/2, the mean square quantization noise power is 

"qns 
Is J-qs 

Is 12 

/2 
e2de = h. 12 '  (28) 

If a one-sided representation of frequencies is employed where all power lies 0 < / < oo, and the 
quantized signal is sampled at /s = 1/T, all the quantization noise folds into 0 < / < /s/2. The 
spectral density of the sampled noise is then 

eqns{J) z 

and quantization noise power density is 

-gns 
2\1/2 i— —        = eansV2T tqns ' 

2e2 

„2   s(/) = *s«L 
^qns\ 

fs 

(29) 

(30) 
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If an oversampling ratio (OSR) is defined as 

Q qR ^  f*  _.     1     ._ Sampling Frequency 
2/o      2/oT NyquistRate [i ' 

where /0 is the highest frequency component of interest (0 < / < /0), the noise power falling into 
the signal band 

rfo 

Jo «-(/)#=4« m=^- (32) 
Therefore, oversampling reduces the in-band rms quantization noise voltage no by the square root 
of the oversampling ratio. That is, each doubling of the sampling frequency decreases the in-band 
noise by 3 dB (increasing the resolution by 1/2 LSB). 

Figure 14 on the next page shows the spectrum for e\ns (flat) and illustrates what happens to the 
inband quantization noise power when the signal is oversampled. Figure 14a shows the normalized 
inband quantization noise power for 0 < / < fs/2 {e2

qns = 1) where the signal is sampled at the 
Nyquist rate. In Fig. 14b the signal is oversampled by a factor of 4 reducing the inband quantization 
noise power to e*ns = 1/4. l Putting the oversampled signal through a LPF with a 3 dB bandwidth 
of fs/2, the quantization noise density within the signal band is reduced by a factor of 4. 

The signal-to-noise ratio (SNR) for an n-bit system with bandwidth fsig can be expressed as [58] 

(33) 
sig 

SNR = 2n~1Vs JJi 
y  fs; 

where fs is the sampling frequency. In dB, we have 

5JVrÄ = 6.02n-1.25 + 101og(^-J dB. (34) 
\ fsig J 

If, for example, a four-times oversampled system is considered, then fs/fsig = 8 and 

SNR = (n + 1)6.02 + 1.76 dB. (35) 

That is, the SNR increases by 6 dB or 1-bit as expected. 

9.2.2    First-order SA Modulator 

The efficiency of the oversampling operation can be increased by including an analog noise shaping 
filter H(s) in a single feedback loop. A block diagram of a general first-order SA configuration is 
shown in Figure 15 on page 27. The output of the analog noise shaping filter H(s) is quantized by 
an analog-to-digital (A/D) converter with n > 1 bits. The quantized output from the A/D is fed 
back to a n-bit digital-to-analog (D/A) converter to be subtracted off from the input signal. This 
feedback loop forces the average value of the quantized signal j/j to track the input signal. 

The response of a first-order SA that uses a multi-level A/D is shown in Fig. 16 on page 27 [57]. 
Also shown is the input signal ramp. The square waves, with their various duty cycles (limit cycles) 
are representative of the quantized output. Note that the width of the top and bottom portions of 
the square wave (duty cycle) indicate where the input signal lies. For example, when the input lies 
at the center of the limit cycles, the width of the square wave at the top and bottom are equal (50% 
duty cycle). 

1Note the sampling operation introduces replicas of the frequency spectra at multiples of the sampling frequency. 
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Figure 14:  In-band quantization noise power density with a) Nyquist sampling, b) oversampling 
factor of 4, and c) output of a LPF with 3 dB bandwidth of /s/2. 
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Figure 15: Block diagram of a general first-order EM configuration. 

Figure 16: Response of a first-order multilevel SA [57]. 
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The first-order EA configuration in Fig. 15 is difficult to analyze due to the nonlinear A/D 
component. With a sampled data noise model, the A/D component is removed and is replaced by 
the addition of the corresponding quantization error. The noise shaping filter is also replaced by the 
sampled data equivalent H(z). The corresponding first-order sampled data noise model is shown in 
Fig. 17. The signal transfer function (xi to j/j) is [59] 

*.-^e *»yt 

Figure 17: First-order sampled data noise model. 

STF = 
H{z) 

1 + H{z) 
(36) 

The STF is designed to have a flat response in the signal band. The noise transfer function (e*, to 
V%) is 

NTF = TTWy ^ 
The NTF is designed to have a high attenuation in the signal band. The Z transform of the quantized 
output signal is then 

r«=(TT%))^)+(iTk))£(2) 

or 
Y{z) = STF(z)X(z) + NTF(z)E{z) 

The power spectrum of the white quantization noise ej is [59] 

Xnnif) — Run {z)\z-ej2-nf0/fs 

(38) 

(39) 

(40) 

where Rnn(z) is the z-transform Z {ree(k)} where ree(k) is the autocorrelation of the noise et. From 
linear systems theory 

Rnn(z) = e2
qnsNTF(z)NTF(z-1). (41) 

As an example, a first-order sampled data EA modulator using a single delay accumulator for H(z) 
is shown in Fig. 18 on the facing page. The accumulator output is 

and the quantized signal is then 

Wi = Xi-i - d-l 

Vi = Xi-t + (e* - a-i). 

(42) 

(43) 
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Figure 18: Sampled data first-order AS modulator using a single delay accumulator. 

Note that this architecture differentiates the quantization error (modulation noise) while the input 
signal Xi-i is unchanged. The signal and noise transfer functions for the first-order SA shown in 
Fig. 18 are 

STF{z) = z~l 

and 
NTF(z) = (1 - z-1). 

The power spectrum of the output quantization noise is then 

Xnn(f) = e2
qns(l-Z-I)(l-Z)\^ej iTf/ts 

or 

•Xnn(/) = 4e2    sin2 
"qns •""    I    r 

\ Js 

The quantization noise power in the signal band (-/0 to /0) can then be calculated as 

2   ff° nl 2    fTo 

= T Xnn(f)df. 
Js Jo 

Substituting (46) gives 

"°4f°4e-rf(f>d/ 
or 

9 °    9   9 3        „3 

fs) ZeqnS\fs)     ' 
In terms of the oversampling ratio 

nl = -elns{OSR) -3 

The RMS value of noise voltage in the signal band is 

nQ = eqns-^=(2f0T)^2 

or 
n0 = eqns-^={OSR)-3/2. 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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Figure 19: RMS spectral density. (Adapted from Ref. [57]). 
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This result indicates that each doubling of the OSR reduces the noise by 9 dB (+1.5 bits extra 
resolution). The RMS spectral density shown in Fig. 19 on the facing page shows the behavior of 
the STF and the NTF filter functions. Note the quantization error remains fiat up to fs/2. 

Figure 20 on the next page shows a first-order single-bit EM. A block diagram is shown in Fig. 20a. 
In this configuration, the A/D is replaced by a single comparator with matching threshold voltage 
VT- A quantizer with only two levels ±qs/2 is employed so as to avoid the harmonic distortion 
generated by step-size mismatch in multi-bit quantizers [60]. Figure 20b shows the comparator 
output and the sampled input. Figure 20c shows the output of the accumulator stage [61] output, 

9.2.3    Second Order AS Modulator 

The block diagram of a second-order sampled data SAM is shown in Fig. 21. In this configuration 
two accumulators are used. The second accumulator (before the quantizer) must have the delay in 
the feedforward path for stability. The output of this architecture is 

Vi = Xi-i + (ef - 2ej_i + ei_2) (54) 

and the noise transfer function is 
NTF=(l-z-1)2 . (55) 

The power spectrum of the output quantization noise is 

*»»(/) = 4,. (1 - e-i"T)2 (1 - e**3')2 (56) 

or 

*nn(/) = 16e2
nssin4(-M . (57) 

The in-band quantization noise power (—/o,/o) is then 

The RMS value of noise voltage in the signal band is 

(58) 

7T2 

n0 = eqns-j=(2f0T)5'2 (59) 

or 
7T2 

no = eqns-= {OSR)~5/2 . (60) 
v5 

That is, the noise falls 15 dB for every doubling of the sampling frequency (+2.5 extra bits). 
In Fig. 22a a single bit second order architecture is shown and in Fig. 22b the comparator output 

for this system are shown along with the input signal [61]. The accumulator outputs are shown in 
Fig. 22c. Note how the limit cycles are much better behaved compared to the first-order system. 

9.2.4    L Stable Loops 

In general, for L stable loops 

no = eqns-j==={2f0T)L+V2 (61) 
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Figure 20: First-order single-bit EA showing (a) block diagram, (b) comparator output, and (c) 
accumulator output. 
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Figure 21: Block diagram of a second-order all-electronic EAM. 
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Figure 22: Second-order single-bit SA showing (a) block diagram, (b) comparator output, and (c) 
accumulator output. 
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Table 3: EA Resolution Summary for OSR = 2. 

SNR Added 
OSR = 2 Increased By: Resolution 
Oversampling 3 dB 0.5 LSB 
First-order 9 dB 1.5 LSB 
Second-order 15 dB 2.5 LSB 
L-order 3(2L +1) L + 0.5 LSB 

and the noise falls 3(2L + 1) dB for every doubling of the sampling rate (L + 1/2 extra bits) [57]. 
The circuits for these higher-order modulators, however, are difficult to stabilize. 

A summary of these results is shown in Table 3. In Fig. 23, the RMS noise as a function of the 
oversampling ratio for L = 0,1,2 and 3 is shown. Note that when 1 < OSR < 2, the SNR for the 
L = 0 case is better. 
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Figure 23: RMS noise that enters the signal band [57]. 

Before introducing the integrated optical EA modulator designs, a more general block diagram 
of a second-order single-bit EA is shown in Fig. 24 on the facing page. Here the accumulators H\ 
and Hi contain gain variables A and C and leakage variables B and D. Small deviations (from 
unity) in the gain variables A and B have little effect on the overall performance of the EAMs. The 
DC gain of the second accumulator is H2(0) = 1/1 - D. If the DC gain of the accumulator is at least 
equal to the OSR the increase in the baseband noise is less than 0.3 dB [57].  The corresponding 
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transfer functions are 

Hi(z) = H2{z) 
Cz -i 

l-Bz~l "'x~'     l-Dz-1 

This general form will be useful when discussing the optical SAM designs in the next section. 

First Accumulator Second Accumulator 

r 1 

(62) 

Figure 24: Block diagram of a second-order SA modulator with variable gain accumulators. 

9.3    Integrated Optical EAM Design 

9.3.1    First-Order Integrated Optical SAM 

A block diagram of a first-order integrated optical SA modulator is shown in Fig. 25(a). In the 
integrated optical design, laser pulses from a high-speed mode-locked laser (See Part I) are used 
to oversample the rf signal. To gain a better understanding of the design, the integrated optical 
components are described below and their functionality within the modulator is detailed. 

Mach-Zehnder Interferometer 
The Mach-Zehnder interferometers (MZIs) are used to efficiently couple the wideband rf signal into 
the optical domain. They also serves to subtract the electrical feedback signal from the input antenna 
signal. Figure 26 on the next page shows a schematic diagram of an MZI. The input pulse is split 
into equal components, each of which propagates over one arm of the interferometer. If the optical 
paths of the two arms are equal and if no phase shift is introduced between the interferometer arms, 
the two components combine in phase at the output and continue to propagate undiminished. For 
the current design, a three-electrode configuration is used to achieve a push-pull phase change. The 
push-pull effect increases the phase change efficiency of the device [62]. This configuration is utilized 
to subtract the comparator feedback signal from the applied rf input voltage. To take advantage of 
this push-pull configuration, the feedback voltage polarity from the comparator must be reversed. 
The transfer function of the MZI can be expressed as [62] 

= -fin|| + |cOs[A^)+Ö]| 

where Im and Iout are the input and output light intensity, respectively, and 

(63) 

(64) 

is the voltage-dependent phase shift and is a function of the effective index of the optical guide 
ne, the pertinent electro-optic coefficient r, the inter electrode gap G, the electrical-optical overlap 
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Figure 25: First-order integrated optical EAM, (a) Block diagram,(b) the comparator output, and 
(c) the comparator input using ideal if12. 
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Figure 26: Schematic diagram of a MZI in a push-pull configuration. 
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parameter T, and the free-space optical wavelength A. The modulation voltage, v = VT{ - VFB, serves 
to subtract the feedback voltage VFB from the antenna rf voltage Vrf. 

In the first-order SAM, two interferometers are used to couple the rf signal. One interferometer 
provides the magnitude to be accumulated. The other interferometer is used to determine the 
direction of accumulation (accumulate up or accumulate down). Figure 27 plots the transfer functions 
for both interferometers. Both MZIs map the input signal to a normalized output intensity between 
0 and 1 (light intensity cannot be negative). The transfer functions are the same except for the 
dc bias voltage resulting in the phase shift 6. For the MZI generating the magnitude of the signal, 
6 = n. For the MZI controlling the direction of accumulation, 6 = —7r/2. 

-1       -0.5        0        0.5        1 
Normalized Input Signal (Volts) 

1.5 

Figure 27: Transfer functions for the MZIs. 

From the transfer functions, the output values from the magnitude MZI range from 0 to 0.5 for 
input signal between +1 volts and -1 volts and are symmetric about the input value of zero. The 
normalized comparator threshold voltage for the direction circuit is normalized at VT = 0.5 V. The 
detected intensity from the direction MZI is compared to the normalized threshold to determine 
whether the intensity from the magnitude MZI should accumulate up or down. The accumulator 
comparator voltage polarity is used to direct the fiber lattice direction of accumulation. The recir- 
culating fiber lattice structure accumulates downward if the output of the direction interferometer 
is less than 0.5 and upward for values greater than 0.5. Thus the direction interferometer, detector, 
comparator, and optical fiber lattice filter structure serve to function as an accumulator. 

In applying optical integrated components to a EA architecture the first-order model is simulated. 
A computer simulation of the transfer function is shown in Fig. 25(b) using the interferometer 
model [63]. The accumulator H\2 is modeled as an ideal accumulator. The simulation demonstrates 
the difference in the accumulator inputs when using a Mach-Zehnder interferometer is used to couple 
the antenna voltage and the feedback signals. 

9.3.2    Second-Order SAM 

The block diagram for a second-order integrated optical SAM is shown in Fig. 28 on the next page. 
Again, the two accumulators are modeled as ideal [63]. Simulation results for the second-order 
integrated optical SAM are plotted in Fig. 28b for 200 sampled-data values. The average value of 
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Figure 28:  Second-order integrated optical SAM. (a) Block diagram, (b) simulation results with 
ideal H\2 and H21 and (c) intermediate signals at inputs to Magnitude MZIs. 



Photonic Sampling of Signals 39 

the quantizer output can be seen to track the average value of the ramped input, similar to that 
shown in Fig. 21 on page 33. The output of the interferometer can be seen to oscillate about the 
ramped input. Figure 28c plots the intermediate signal values at the input of the magnitude MZIs 
in the accumulator stages. These results compare favorably to those of the all-electronic design 
and demonstrate the feasibility of using the Mach-Zehnder interferometer to subtract the feedback 
signal from the antenna voltage. In the next section, an investigation into using fiber lattice filter 
structures to function as accumulators within the integrated optical SAM is described. 

9.4    Fiber Lattice Structures 

In this section, the optical fiber lattice accumulators that are used in the integrated optical EAM 
are examined in more detail. Models are designed and tested. The accumulator models are then 
used within the optical EAM to investigate the performance. [64] 

9.4.1    Transfer Functions 

Fiber optic signal processing devices can be constructed to perform various functions, including 
convolution, correlation, matrix operations, frequency filtering, pulse train generation, and matched 
filtering. Fiber lattice structures described and used in this report depend on the time-domain matrix 
multiplication capability. A fiber lattice structure can be constructed with a pair of voltage-controlled 
directional couplers, and intra-coupler single-mode optical fiber. A two-state optical amplifier is 
added in the feedback to enable the accumulation. The use of optical amplifiers in fiber delay line 
niters provides an enhanced flexibility and have recently gained considerable attention [65,66]. 

The general form of the fiber lattice structure is shown in Fig. 29. The inputs are X\ and X2, 
the outputs are Y\ and Y<i- The blocks a\ and a0 are the directional couplers. The lines connecting 
the input and output to the directional couplers are optical fiber. The gain block G represents an 
optical fiber amplifier. A feedback delay is represented by the z~l block. Although both Xi and 
X? are inputs, they are not used simultaneously. Likewise, only one output is used for a particular 
input. The transfer functions from either input port to either output port are known. The transfer 
functions of interest here are those from the input Xi to output Y^ and from input Xi to output 
Y1. 

Figure 29: General fiber lattice structure. 
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The transfer function from Xi to Y2 is designated H2i(z) [67,68]. The specific fiber lattice 
structure for #21(2) is shown in Fig. 30. The input signal, Xi, is inserted into A of directional 
coupler ai. The energy entering the directional coupler either couples to the adjacent waveguide 
(D), remains in the original waveguide (C), or combines with the energy from the feedback as 
determined by the coupling ratio of directional coupler 01. Energy is inevitably lost to D with 
the H2\(Z) fiber lattice structure. An example will illustrate this fact. If a coupling ratio of 0 (a 
bar-state) is used in order to avoid any energy from A transferring to D, the same coupling ratio 
will apply to energy arriving at B. Consequently, all energy at B will transfer to D. 

Figure 30: H2i (z) fiber lattice structure. 

Energy from B (cross-state) and A (bar-state) add coherently before arriving at C. Upon entering 
C of directional coupler ao, energy will be divided according to the coupling ratio of that directional 
coupler. Energy that is in bar-state will arrive at the output (E). Cross-state energy will couple 
to the adjacent waveguide and arrive at F. This energy will undergo both optical gain and delay. 
The optical gain is performed with either a doped fiber with an optical pump or a semiconductor 
laser amplifier. The delay is dependent on the period of the pulsed laser used for sampling. A 
one-period delay was used in the testing section (as the sampling frequency increases, the length of 
fiber necessary for a one period delay is shorter). Finally, this energy returns to B. 

Mason's gain rule and block diagram simplification generates the transfer function #21(2) and 
is depicted in Fig. 31 on the next page (the input and output are double blocked in this figure). 
The 1 - ai and 1 — ao blocks represent the bar-states, while the ai and the oo blocks represent 
the cross-state or coupling ratio. The energy lost to D is not shown to avoid clutter. The transfer 
function is 

That is, the H2i(z) fiber lattice structure is a first-order all-pole system and has one zero at the 
origin and one pole at z — aoajG. This fiber lattice structure is stable as long as the pole remains 
inside the unit circle. This is assured when a0aiG < 1. Since both a0 and ai are ratios and therefore 
are less than 1, the pole will remain inside the unit circle when G < I/00O1. Additionally, the gain 
of the optical amplifier G > 1. These two limits serve as a check of the results obtained in the 
testing section. One observation supported later by testing results is that the coupling coefficients 
are interchangeable in H2i. 

The transfer function from X2 to Yi is designated Hi2{z) and has the delay and the amplifier 
in the feedforward path (see Fig. vreff7). The specific fiber lattice structure for Hu(z) is shown in 
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Figure 31: Generation of #21 (z) fiber lattice structure. 
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Fig. 32. The input signal is inserted into directional coupler a0 at A. Cross-state energy is lost to B 
(similar to that lost to D of Fig. 30 on page 40 H21(z)). Bar-state energy is summed with cross-state 
energy from F and arrives at C before undergoing the amplification and delay. Energy arriving at D 
is divided according to the coupling ratio of directional coupler ai. Bar-state energy will arrive at 
the output (E). Cross-state energy will couple to the adjacent waveguide, arrive at F and continue 
on to directional coupler üQ. 

Figure 32: Hn(Z) fiber lattice structure. 

Similar to before, the Hi2(z) transfer function is generated using Mason's gain rule and block 
diagram simplification. The result is shown in Fig. 33 on the facing page. The energy lost to B is 
not shown to avoid clutter. The transfer function is 

,_,_(l-a0)(l-a1)Gz-1 

(66) 

The Hi2(z) fiber lattice structure is a first-order pole-zero system and has the same pole as the 
H2i(z) fiber lattice structure but has no zeros. Another difference is the optical gain in the feed- 
forward path. This results in a more rapid accumulation and is discussed further in the testing 
section. The limitations on the optical gain, hence the pole location, are the same as before and can 
be summarized as 1 < G < l/a0a,i. Again, the coupling coefficients can be interchanged without 
affecting the transfer function. 

9.4.2    Testing of Fiber Lattice Models 

Both fiber lattice models were developed with MATLAB Simulink software [64]. The model for the 
H21(z) fiber lattice structure is shown in Fig. 34 on the next page. A modified Simulink model of 
the Hi2(z) fiber lattice structure is shown later. The directional coupler blocks include the cross and 
bar-states shown in Fig. 31 on the preceding page. The Xi block continually repeats a programmed 
sequence. For example, a pulse train input is simulated with a constant value repeated at a 1 sample 
per second rate. The feedback delay block is variable, but was fixed at 1 sample per second rate. 
The feedback delay block is variable, but was fixed at 1 second for the tests performed. 

The first test determines the required optical gain in order for Y2 to increase monotonically across 
a range of coupling ratios. If the optical gain is too low, the fiber lattice structure saturates and 
settles at a fixed value after the typical overshoot and settling typically associated with damped 
control systems. If the optical gain is too high, the fiber lattice structure experiences exponential 
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Figure 33: Generation of if 12(2) fiber lattice structure. 
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gain because the pole is outside of the unit circle. An optical gain that results in a monotonically 
increasing response is in between these two extremes. An example of all three values of G is shown 
in Fig. 35. In Fig. 35, the directional coupler ai was programmed for a 0.6 coupling ratio, while 
directional coupler a0 had a 0.3 coupling ratio. At these coupling ratios, the G necessary for a 
monotonically increasing response is 5.555. 

20 30 
Sample Time 

Figure 35: Tuning for monotonically increasing response. (From [64].) 

The pole location corresponding to this gain and these coupling ratios is a0a,iG = 1. Although a 
pole at z = 1 is stable, an increase in either coupling ratio or in G will quickly result in instability. 
Conversely, a decrease in either coupling ratio or G will quickly result in saturation and settling. 
The sensitivity of the #21(2) fiber lattice structure is demonstrated by the small difference in G 
used in Fig. 35 for the exponentially increasing response and the saturated response. The value of 
G is 5.72 and 5.4 for the exponentially increasing response and the saturated response, respectively. 
Similarly, the poles for these responses are at 1.03 and 0.972, respectively. These characteristics hold 
for all values of coupling ratios and G when the product a0a,iG ~ 1. Table 4 on the next page lists 
the G necessary for a range of ai versus ao coupling ratios in order to get a monotonically increasing 
response. This table is a Toeplitz matrix. This means that, for a fixed G, the combination of a0 = X 
and ai = Y (0 < X < 1 and 0 < Y < 1) results in the same accumulation rate as a0 = Y and 
a\ = X. This fact reinforces the earlier observation that the coupling coefficients in the transfer 
function are interchangeable. Table 4 and the characteristics discussed above apply to the Hi2{z) 
fiber lattice structure also. 

Although the optical gain necessary to drive either fiber lattice structure to a monotonically in- 
creasing response is the same, the accumulation rate is different. The Hi2(z) fiber lattice structure 
accumulates faster because of the optical gain in the feed-forward path. To characterize the accu- 
mulation rates of each fiber lattice structure, the sample time necessary to reach an absolute gain 
of 100 was measured. The Hi2{z) and H2i(z) fiber lattice structures testing results are contained 
in Tables 5 and 6, respectively. Both tables are again Toeplitz matrices. Data from Tables 4, 5, and 
6 were used to generate Figs. 36(a), 36(b), and 36(c), respectively. 
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Table 4: Optical Gain: Monotonically Increasing Response. (Prom [64].) 

0.1 

0.1 0.2 
Coupling 

0.3        0.4 
Ratio 

0.5 
ao 
0.6 0.7 0.8 0.9 

100 50 33.33 25 20 16.66 14.28 12.5 11.1 
0.2 50 25 16.65 12.5 10 8.33 7.15 6.25 5.55 

Coupling 0.3 33.33 16.68 11.11 8.33 6.67 5.55 4.76 4.166 3.703 
Ratio 0.4 25 12.5 8.34 6.25 5 4.166 3.57 3.125 2.78 

ai 0.5 20 10 6.68 5 4 3.333 2.85 2.5 2.22 
0.6 16.66 8.33 5.55 4.17 3.33 2.78 2.38 2.08 1.85 
0.7 14.28 7.14 4.76 3.57 2.86 2.38 2.04 1.785 1.587 
0.8 12.5 6.25 4.16 3.125 2.5 2.08 1.785 1.563 1.388 
0.9 11.1 5.56 3.7 2.78 2.22 1.852 1.588 1.389 1.234 

Table 5: #12(2) Accumulation Rate: Monotonically Increasing Response. (From [64].) 

0.1 

0.1 0.2 
C 

0.3 
ouplin 

0.4 
gRati 

0.5 
0, ao 

0.6 0.7 0.8 0.9 

4.76 3.45 2.70 2.22 1.82 1.49 1.17 0.88 0.54 
0.2 3.45 2.38 1.85 1.49 1.20 0.96 0.75 0.54 0.31 

Coupling 0.3 2.70 1.85 1.41 1.11 0.89 0.70 0.53 0.38 0.21 
Ratio 0.4 2.22 1.49 1.12 0.88 0.69 0.54 0.40 0.27 0.12 

ai 0.5 1.82 1.20 0.89 0.69 0.54 0.41 0.29 0.20 0.097 
0.6 1.47 0.96 0.71 0.54 0.40 0.32 0.21 0.14 0.072 
0.7 1.17 0.75 0.53 0.40 0.32 0.21 0.14 0.086 0.036 
0.8 0.88 0.54 0.37 0.27 0.20 0.12 0.10 0.07 0.03 
0.9 0.53 0.32 0.18 0.16 0.09 0.07 0.036 0.03 0.025 

Table 6: #21(2) Accumulation Rate: Monotonically Increasing Response. (From [64].) 

0.1 

0.1 0.2 
C 

0.3 
oupling 

0.4 
Ratio, 

0.5 
ao 

0.6 0.7 0.8 0.9 

0.471 0.437 0.397 0.358 0.314 0.270 0.204 0.153 0.079 
0.2 0.437 0.403 0.370 0.330 0.289 0.243 0.195 0.138 0.077 

Coupling 0.3 0.397 0.370 0.333 0.298 0.262 0.221 0.175 0.125 0.068 
Ratio 0.4 0.358 0.330 0.298 0.266 0.232 0.196 0.149 0.107 0.059 

ai 0.5 0.314 0.289 0.262 0.232 0.201 0.165 0.129 0.091 0.043 
0.6 0.270 0.243 0.221 0.196 0.165 0.140 0.108 0.068 0.042 
0.7 0.204 0.195 0.175 0.149 0.129 0.108 0.086 0.063 0.031 
0.8 0.153 0.138 0.125 0.107 0.091 0.068 0.063 0.051 0.023 
0.9 0.079 0.077 0.068 0.059 0.053 0.042 0.031 0.023 0.020 
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Table 7: Hi2(z) Optical and In-Line Gain Necessary for Steady State Response. (Prom [64].) 

0.1 

0.1 0.2 
C 

0.3 
oupling 

0.4 
; Ratio, 

0.5 
ao 

0.6 0.7 0.8 0.9 
1.1 1.16 1.235 1.325 1.436 1.587 1.8 2.145 2.873 

0.2 1.16 1.22 1.285 1.36 1.462 1.59 1.772 2.05 2.585 
Coupling 0.3 1.235 1.285 1.338 1.407 1.49 1.597 1.74 1.95 2.315 

Ratio 0.4 1.325 1.36 1.407 1.46 1.523 1.603 1.705 1.847 2.067 
ai 0.5 1.436 1.462 1.49 1.523 1.562 1.609 1.667 1.742 1.844 

0.6 1.587 1.59 1.597 1.603 1.609 1.617 1.626 1.637 1.65 
0.7 1.8 1.772 1.74 1.705 1.667 1.626 1.582 1.534 1.483 
0.8 2.145 2.05 1.95 1.847 1.742 1.637 1.534 1.434 1.339 
0.9 2.873 2.585 2.315 2.067 1.844 1.65 1.483 1.339 1.216 

Table 8: Hi2(z) Optical Gain Necessary for Steady Accumulation Down. (From [64].) 

0.1 

0.1 0.2 
Cou 

0.3 
pling ] 

0.4 
rtatio, 

0.5 
ao 

0.6 0.7 0.8 0.9 
1.0 1.0 1.219 1.2 1.3 1.4 1.55 1.85 2.5 

0.2 1.0 1.06 1.2 1.2 1.35 1.4 1.5 1.8 2.3 
Coupling 0.3 1.219 1.2 1.2 1.25 1.35 1.45 1.5 1.8 2.15 

Ratio 0.4 1.2 1.2 1.25 1.3 1.35 1.45 1.5 1.7 1.95 
ai 0.5 1.3 1.35 1.35 1.35 1.4 1.5 1.55 1.65 1.78 

0.6 1.4 1.4 1.45 1.45 1.5 1.5 1.55 1.57 1.6 
0.7 1.55 1.5 1.5 1.5 1.55 1.55 1.5 1.48 1.47 
0.8 1.85 1.8 1.8 1.7 1.65 1.57 1.48 1.42 1.33 
0.9 2.5 2.3 2.15 1.95 1.78 1.6 1.47 1.33 1.21 
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As shown in Fig. 36, the accumulation rates for both fiber lattice structures decrease as either 
coupling ratio increases. The reason for this is again related to the pole located at üQüIG. If either 
a0 or ax increase, there is a proportional decrease in G for this test. Since G is lower each time 
through the feedback, the energy arriving back at directional coupler Oi will be proportionally lower. 
From there, the bar-state energy will go to the output for the #12(2) fiber lattice structure. For 
the #21 (z) fiber lattice structure, the decreased energy enters cross-state while combining with the 
bar-state input energy. This energy arrives at directional coupler ao before entering bar-state to the 
output. Either way, the energy at the output decreases with a lower G. 

Figure 36: (a) Optical gain vs. ai, (b) Ü2i(z) accumulation rate vs. a1( (c) #12(2:) accumulation 
rate vs. a\. (From [64].) 

At the higher coupling ratios neither fiber lattice structure accumulates rapidly. The reason for 
the fall-off is that, as the coupling ratio increases, either the energy is permanently lost (i.e., D in 
Fig. 30 on page 40 or B in Fig. 32 on page 42) or the energy avoids the output (i.e., path CF in 
Fig. 30 or path DF in Fig. 32). Conversely, the accumulation rates are highest at the lower coupling 
ratios. At the lower coupling ratios, less energy is lost at the outset of accumulation (i.e., D in 
Fig. 30 is avoided) and more energy is directed toward the output (i.e., path CE in Fig. 30 or DE in 
Fig. 32). However, for the H2i(z) accumulator a perfect bar-state will experience no accumulation at 
all because no energy will be crossed into the feedback loop to be increased by the optical amplifier. 
In fact, the output will be identical to the input. 

To show "real-time" results and characteristics of a fiber lattice structure accumulating H12 {z) 
fiber lattice structure was modified as shown in Fig. 37 on the next page. It was modified with 
the addition of a front-end optical amplifier, labeled "In-Line Gain (ILG)", and a comparator to 
drive the accumulation up or down. The comparator is modeled by a relay and a switch. When the 
control signal, simulated by the driver block, is greater than the threshold, the relay latches. The 
latches cause the switch to flip between the two optical gains. The greater G, labeled "Accum Up", 
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is for accumulating up and will be selected when driver is greater than the threshold. The other G 
is for accumulating down. The ILG is incorporated now because it is easier to tune the fiber lattice 
structures without the rest of the circuitry included in the SA modulators. 
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Figure 37: Modified Simulink model of #12(2) fiber lattice structure. (Prom [64].) 

The ILG plays a critical role in the #12(2) fiber lattice structure accumulation rate because it 
is in the feed-forward path. Input X2 is amplified before any coupling ratio divides the intensity 
among different ports. The sensitivity of the #12(2) fiber lattice structure to changes in ILG and 
the accumulation dependence on the comparator signal are shown in Fig. 38 on the facing page. 
The three curves were generated by fixing everything in Fig. 37 except the ILG. The coupling ratios 
used were a0 = 0.4 and ai = 0.5. The Accum Up G used was that for a monotonically increasing 
response in Table 4 on page 45. The Accum Down G was chosen to generate a smooth curve when 
accumulating down. Choosing an Accum Down G a few tenths less than the Accum Up G generally 
gives good results. 

As expected, the accumulation rate is proportional to ILG. This is evident not only in the initial 
rise from 0, but also in the rise and fall of the oscillating accumulation when the comparator is 
systematically switching between Accum Up G and Accum Down G. The relationship between the 
accumulation direction and the value of the comparator can be seen by comparing the pulses on the 
bottom of the plot with the peaks and valleys of the oscillations. Also, the value about which the 
three accumulations oscillate is proportional to ILG. For example, with ILG = 2 the accumulation 
oscillates about a relative gain of 175. The accumulation with ILG = 3 oscillates at approximately 
265, or 3/2 greater than the accumulation with ILG = 2. 

When the accumulation first begins, it appears that the first comparator transition from 1 to 0 
is ignored because the accumulation continues up. Had Accum Up G been set to Accum Down G 
at the onset, the accumulation would have increased to a level above the level achieved when the 
comparator switched. Consequently, the accumulation continues up. When the second comparator 
transition occurs, the value is greater than the Accum Down G could support; therefore the fiber 
lattice structure accumulates down as desired. This apparent error is eventually corrected in time. 

To show the H12(z) fiber lattice structure dependence on the Accum Down G, the ILG was left 
at 3 and everything else was fixed.  A test run with Accum Up G == 4.8 (instead of 5) results in 
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Figure 38: Effect of in-line gain on accumulation rate. (From [64].) 

the fiber lattice structure saturating. Lower values result in a lower saturation value; therefore, 
the accumulator oscillates at lower values as seen in Fig. 39 on the next page. The Accum Down 
G was set to the Accum Up G for reference only. As the Accum G decreases, the #12(2) fiber 
lattice structure settles at a lower value. Although the change in Accum Down drastically affects 
the magnitude of the steady-state response, the oscillations about the plateau are roughly the same 
magnitude. One difference between varying the ILG and the Accum Down G is that the relative 
gain rate decreases proportionally to the ILG (see Fig. 38). The relative gain rate between peaks 
and valleys of Fig. 39 on the next page are approximately the same. 

The final test generates the coupling coefficients, ILG, and Gs required in order for the Hi2(z) 
fiber lattice structure to follow a signal. In other words, if Z% is a step input, Y\ is the steady-state 
response that settles at the input value. The ILG, Accum Up G, and Accum Down G versus coupling 
ratios ao and ax data are in Tables 8 and 7 on page 46. To simplify the implementation, the #12(2) 
fiber lattice structure was tuned with ILG equal to the Accum Up G. As mentioned before, good 
results can be generated with Accum Down G a few tenths less than the Accum Up G. 

In summary, the fiber lattice structures discussed have one distinguishing characteristic and many 
common characteristics. The single difference between them is the accumulation rates as shown in 
Fig. 36 on page 47 and Tables 4, 5, and 6. The #12(2) fiber lattice structure accumulates more 
rapidly than the H21 (z) fiber lattice structure for a given set of coupling ratios and Gs. The type of 
accumulation can be determined simply by knowing the pole position given by CLOCLIG. If aoaiG < 1, 
the fiber lattice structure will saturate; conversely, if aoOiG > 1, the output from the fiber lattice 
structure will grow exponentially. Monotonically increasing response will occur when the single pole 
is between the two extremes, which occurs when aoajG = 1. 

The resiliency of the fiber lattice structure is further demonstrated by the fact that the coupling 
ratios are interchangeable between both directional couplers.  This characteristic is shown by the 
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Figure 39: Effect of reducing Accumulate Down G. (From [64].) 

tables. All of the tables are Toeplitz matrices. Tracking a signal with varying amplitude or frequency 
is as simple as controlling the optical gains and/or the voltage-controlled coupling ratios. 

In the next section the fiber lattice structures are inserted into the sigma-delta modulators. 
Although a first-order sigma-delta modulator is inherently unstable and unreliable, replacing the 
ideal transfer function with a fiber lattice structure will serve as a proof of concept for optical 
accumulation. The Hu(z) fiber lattice structure is used because it inherently has a wider range 
of accumulation rates available. Inserting both fiber lattice structures into the second-order sigma 
delta modulators results in more reliable and stable output. 

9.4.3    First-Order Optical SAM Using Fiber Lattice Accumulator Model 

The optical amplifier preceding the fiber lattice structure plays the same role as the ILG discussed 
in Fig. 29 on page 39. The laser pulses that are input to both MZIs sample the signal due to the 
voltage difference between the antenna RF and the electrical feedback signals. 

The #12(2) fiber lattice structure inherently has a wider range of accumulation rates; therefore, it 
is the more appropriate choice for the first-order sigma-delta modulator. Any particular combination 
of values of coupling ratios, ILG, and G can be pulled from Table 7 on page 46 and Table 8 on page 46 
to demonstrate the validity of the ideal results. The ideal case did not account for either the effect 
of the optical amplifier in the feedforward path or the influence of the magnitude MZI. Instead of 
the magnitude MZI, the normalized directional MZI output was manipulated to closely follow the 
expected characteristics. The lack of an optical amplifier in the feedforward path was compensated 
by a front-end amplifier of 50. Regardless of these differences, the expected results closely follow 
those presented here for the same coupling ratios. 

A ramp signal from -1 V to +1 V is input to both MZIs (see Fig. 40a). The output of the 
Hi2(z) fiber lattice structure and the output of the sigma-delta modulator are shown in Figs. 40b 
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and 40c, respectively. These results can be compared to similar results from the ideal case in Fig. 41 
on the next page. In part (a) of both Figs. 40 and 41 is the identical ramp input. In Fig. 40b, 
the Hx2{z) fiber lattice structure accumulates until the comparator threshold of 0.5 V is exceeded. 
Sometimes there appears to be a lag between penetrating the threshold and the threshold value 
being subtracted from the MZIs, thereby reducing the Hi2(z) fiber lattice structure output. This 
is more a shortfall of the discrete nature of the simulation and the rapid rate of accumulation than 
a lagging modulator. Once the comparator threshold is breached, the threshold value is subtracted 
from the next sampled data input at the MZIs before propagating through the modulator again. 
The accumulation is more rapid between sample times of 70 and 180 than at other times. This is 
a function of the difference between the input and feedback signals. As the difference approximates 
the 0 value, the threshold is approached and exceeded more often. In Fig. 41b, the ideal case, the 
magnitude of the Hi2(z) transfer function output is greater than that generated in Fig. 40b. This 
is a direct result of the extreme front-end gain of 50 combined with the lack of accounting for the 
optical amplifier in the feedforward path of the #12(2) fiber lattice structure. The patterns are 
similar due to the dependence on the frequency of threshold crossings not the magnitude between 
the crossings. 

200 

200 

200 

Figure 40: Optical first-order sigma-delta (a) ramp input, (b) #12(2) fiber lattice structure output, 
and (c) first-order sigma-delta modulator output. (From [64].) 

The first-order sigma-delta modulator output shown in Figs. 40c and 41c is generated with a 
quantizer level of 0.7 volts. This means that when the comparator threshold is penetrated, a 0.7 V 
or a —0.7 V signal is generated. When the signal input to the comparator is between the quantizer 
values, the value of the output signal can be approximated by the weighting of the output. For 
example, if the discrete output in a given period is high 10% of the time, the magnitude of the signal 
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200 
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Figure 41: Ideal first-order sigma-delta (a) ramp input, (b) #12(2) transfer function output, and (c) 
first-order sigma-delta modulator output. (From [64].) 
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> being quantized is the lower quantizer level (-0.7 V here) plus 10% of the difference between the 
values, or 1.4 V. The value of the signal at the end of this period of time is approximately -0.56 V. 

The accumulation in Fig. 40 on page 51 is not as symmetric as Fig. 41. This is due to the 
influence of the G used for accumulating down, Accum Down G, shown in Fig. 42. Figure 42b is 
the same as Fig. 40c and is a result of Accum Up G and ILG equal to 1.74 and Accum Down G 
equal to 1.5. Figures 42a-d were generated by fixing everything except the Accum Down G. As 
the Accum Down G decreases, the accumulation rate slows down. This is shown by both the delay 
before the signal is discretized and the weighting of the discrete signal. For instance, in Figure 42(d) 
when the input signal is equal to 1, which occurs at the 200th sample, the discrete output is idling 
about 0. This corresponds to a value of 0. Conversely, with the other three Accum Down Gs the 
discrete output is latched to the resolution of the comparator. This means that the signal is at least 
0.7 V. Since the input signal is symmetric, it appears that an Accum Down G of 1.62 gives the most 
accurate results. 
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Figure 42: Effect of Accum Down G on first-order sigma-delta modulator output (a) Accum Down 
G = 1.62, (b) Accum Down G = 1.5, (c) Accum Down G = 1.38, and (d) Accum Down G — 1.26. 
(From [64].) 

Since the accumulation improves as the Accum Down G approaches that of the Accum Up G, 
it appears that the situation when Accum Down G equals the Accum Up G might generate better 
results. As shown in Fig. 43 on the following page, the Hx2{z) fiber lattice structure and the 
discrete output appear to closely follow the ideal results presented by Ying [63] in Fig. 41 on the 
preceding page. For a constantly increasing signal like the ramp signal used, removing the Accum 
Down G seems to be a valid answer. Although that is true, real-world signals vary in frequency 
and magnitude, thus the need to have two different optical amplifications, Accum Up G and Accum 
Down G. 
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200 

200 

Figure 43: Accumulation with Accum Up equal Accum Down (a) Hi2(z) output, (b) discrete output. 
(From [64].) 

Another input signal of interest is a dc signal. An accumulation should result in a discrete output 
known as pattern noise [69]. An input of 0.43 V was inserted in place of the ramp signal used before. 
The same coupling ratios, Accum Up G and Accum Down G, as used in Fig. 40 on page 51 were 
used to generate Fig. 44. A change in the ILG was necessary because the accumulation rate of the 
fiber lattice structure was 0.53 for a0 = 0.3 and a» = 0.7 (see Table 5 on page 45). The ILG was 
increased by the inverse of the accumulation rate, thus making it equal to (0.53)-1 or 1.887. 

200 

Figure 44: First-order sigma-delta discrete output with 0.43 V input. (From [64].) 

As shown in Fig. 44, the discrete output is weighted towards the higher resolution, 0.7 V. The 
mean of the discrete output is 0.42 which approximately equals the input. The input is shown as a 
straight line near 0.42. 
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9.4.4    Second-Order Sigma-Delta Modulator with Fiber Lattice Accumulator Model 

The i?2i(z) fiber lattice structure is placed in the first stage; the #12 (z) fiber lattice structure is 
inserted into the second stage. Besides this, the difference between the first-order and the second- 
order is subtle. The first-order output comparator is removed and placed at the output of the 
second-order modulator. The feedback is compared to a signal in two places, one being the input 
into the second-order sigma-delta modulator and the other being the output of the first stage. The 
combination of the two fiber lattice structures should be a damped and more stable modulator when 
compared to the first-order sigma-delta modulator. 

Preliminary results are shown in Fig. 45. These results were obtained by setting all coupling 
coefficients to 0.5, and the front-end gain of the second accumulator to 2. The Accum Up G of the 
H2i{z) fiber lattice structure is that for a monotonically increasing response in Table 6 on page 45. 
For these coupling coefficients this value is 4. The Accum Down G was set at a few tenths less at 
3.8. For the H\2(z) fiber lattice structure, the Accum Up G and Accum Down G used are found in 
Tables 7 and 8. The front-end gain was not set to that in the table because the accumulation was 
too rapid but was instead set to a lower value of 2. 

200 

200 

200 

Figure 45: Second-order sigma-delta accumulation (a) #21(2) output, (b) #12 (z) output, and (c) 
modulator output. (From [64].) 

The damping effect of the #21(2) fiber lattice structure on the modulator can be seen in Fig. 45a. 
Once the first stage, i?2i(z), begins accumulating the second stage, #12(2), follows suit. The 
second stage and output quickly achieve a 50% duty cycle, meaning every other sample results 
in an accumulation that penetrates the threshold. The rest of the time oscillations continue with 
the mean of the idling pattern weighted toward the higher resolution of the output comparator. 
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Further fine tuning of the second-order sigma-delta modulation is necessary. The accumulation 
in this example is too rapid, but the outputs shown are symmetrical and convergent. Slower accu- 
mulation can be achieved with higher coupling ratios and lower optical gains. This example simply 
demonstrated that the second-order optical implementation of the second-order sigma-delta modu- 
lator is complete and accumulation characteristics are at least comparable to first-order results at 
this time. 
. In summary, the first-order results presented closely resemble the ideal results known a priori. 
One negligible difference between the ideal and the first-order sigma-delta with the fiber lattice 
accumulator was in the amplitude of the Hi2(z) accumulator output. This was due to a large front- 
end gain in the ideal case, but proved to be of little concern because the comparator only checks for 
threshold crossings, not the magnitude reached between crossings. 

The lower optical amplifier value, Accum Down G, in the feedback determines when accumulation 
begins. When Accum Down G equals Accum Up G, the discrete output is symmetrical and looks 
like an attenuated ideal case. However, this holds only for the particular ramp input signal used. A 
difference of a few tenths between the Accum Up G and Accum Down G generally gives good results. 
A minor change in the optical gain is all that is necessary for the mean of the discrete output to 
equal a dc input. 

Finally, the optical model of the second-order sigma-delta was shown, and preliminary results 
shown. Further study is necessary to understand how to fine tune the second-order sigma-delta 
modulator. 

9.5    Free-Space S-SEED EAM Designs 

Two additional implementations of optical oversampling being researched (interferometric and non- 
interferometric) are based on error diffusion and interpolation coding and use symmetric self-electro- 
optic effect devices (S-SEED). [70-72] In error diffusion coding the large error that is associated 
with a single sample is diffused over many subsequent samples. The error to be diffused is usually 
generated by a binary quantizer (single-bit) with a linear filter in a feedback structure. Figure 46 on 
the facing page shows the block diagram of a generalized recursive error diffusion modulator. Here, 
H(z) represents the z transform of a causal, unity gain filter that ensures complete diffusion of the 
error signal en and z-1 is a unit sample delay. In the simplest case of first-order error diffusion, 
H{z) = 1 and the architecture of Figure 46 can be equivalently represented as the traditional single- 
loop SA modulator as discussed in the Section 9.2. 

The input to the modulator, x(n) is generated by oversampling the analog input signal x(t). 
The difference between the modulator input and a delayed version of the quantizer error en-i is 
quantized by the binary quantizer, where the quantizer error is defined as the difference between 
the output and the input to the quantizer, en = q(un) - un. For H(z) = 1 the nonlinear difference 
equation describing this modulator is [70] 

un = xn-en-1 = xn + Un-i - g(un_j) (67) 

for n = 1,2, • • •,. Since un = xn — en the above equation can be written as 

q(un) = xn + en- en_i (68) 

which shows the discrete time derivative of the error signal as discussed in the previous section. 
A first-order bulk-optic implementation is shown in Fig. 47 on the next page [70]. In this bulk- 

optic implementation, the quantities are optical signals represented as complex field amplitudes. 
The coherent reference, lens, and slit arrangement provide for interferometric phase detection which 
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Quantizer 

x(nT) 

Figure 46: Block diagram of recursive error diffusion modulator. (From Ref. [70].) 

is required for the zero threshold detection in the binary quantizer. The binary quantizer is imple- 
mented'by a multiple-quantum well symmetric self-electro-optic effect device (S-SEED). The two 
slits in the phase detector are positioned to select the 0 and n maxima of the interference pattern. 
The S-SEED provides the binary quantization function as well as the optical gain necessary to over- 
come system losses. The photon energy is selected such that dS/dV < 0 and the operating point 
is unstable, thereby providing bistability. Here S is the responsivity and V is the applied voltage. 
The threshold is set by the external voltage VQ and the ratio of the two input power levels PJNI and 
P/JV2 (integration of the optical pulse amplitude). Further details on this interferometric approach 
can be found in [70]. 

Coherent Phase 
Detection 

S-SEED 

x{pT)   u(nT) 

► <J("T) 

Figure 47: First-order interferometric error diffusion modulator. (From Ref. [70].) 

The non-interferometric optical modulator is shown in Fig. 48 on the following page [70]. In 
this implementation x'n is the unipolar modulator input that is generated by sampling x(t) and then 
biasing xn by 3qs/2 to insure that x'n > 0 (non-negative signal operation within the modulator). In 
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this approach, two SEED devices are used to implement a non-interferometric optical subtraction. 
These two SEEDs are operated at a photon energy such that dS/dV > 0 and the operating point is 
stable. In this mode, the optical absorption of the SEED can be shown to be directly proportional to 
the current in the electronic bias circuit. The S-SEED is again used to provide binary quantization 
and optical gain but, in this configuration, the threshold is set by the external voltage VQ and the 
ratio of u'n and the optical reference. 

xinT)      Sff   «'0«fl BS< *-^P K- 

APD, 

A 

A/2- 

Clock - 

Reference 

S-SEED 

PD. Ä 
>C2 

q'(nT) 

I      ^BS2    q'jnT) 

1     ,. 
SEED 

M, 

Figure 48: First-order non-interferometric error diffusion modulator. (From Ref. [70].) 

The above techniques have the advantage of requiring only optical threshold and arithmetic oper- 
ators' and common optical components. Secondly, these architectures are also conveniently operated 
in conjunction with high speed optical sampling techniques using mode-locked laser sources (see 
Part I). S-SEED switching speeds are as fast as 3 ps and require low operating energy. Finally, these 
architectures may also be extendable to higher order designs but may still suffer from vibrations, 
etc., due to bulk-optic design. 

10    Optical Undersampling DFT Receivers 

10.1    Introduction 

For wideband considerations where oversampling the signal is not an option, the pulse repetition 
frequency of the mode locked laser is usually governed by the Nyquist criteria. The Nyquist criteria 
assumes that the input signal is bandlimited (0 < / < fs/2) before being sampled. The Nyquist 
theorem, however, only places a limitation on the information that can be derived from a single set 
of sampled data. That is, a single set of digitized data limits subsequent analysis to an fs/2 band- 
width unless there is additional information available. With additional information, the frequency 
components / > fs/2, which appear ambiguously due to undersampling, may be resolved. 

There are several advantages to an optical undersampling receiver. Among these is the reduction 
in sampling speed necessary from the detectors. The receiver design presented in this section uses 
a CW laser eliminating the requirement for high-bandwidth pulsed-lasers. The main problem in 
an undersampled system is identifying the frequencies present (resolution of the ambiguities). One 
particular approach exploits the relationship between the discrete Fourier transform (DFT) and the 
symmetrical number system (SNS) to resolve all the ambiguities exactly [73]. The DFT naturally 
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encodes the frequency information of a signal in a format that is in the same form as the SNS. 
Consequently, aliases that result from undersampling a signal can be resolved exactly using r > 2 
channels. Using the SNS properties of the DFT, the undersampling aliases can be easily resolved to 
a much greater extent than previously possible. In Section 10.2 we detail the relationship between 
the DFT and the SNS. We then present in Section 10.3 an optical undersampling DFT receiver 
concept for identifying a single (wideband) frequency. 

10.2    The DFT and SNS Relationship 

Consider a single-frequency signal sampled at two different sampling frequencies. Digital uniform 
sampling of an analog waveform with frequency / produces a discrete spectrum that is symmetrical 
about the sampling frequency fs/2. Assume for this system that the two sampling frequencies are 
fsi = 10 and fS2 = 11. After sampling, an analog input signal x(t) becomes a discrete sequence 
x(nT). This periodic sequence has a digital frequency given by CJ = 2ir(f/fs). A signal with digital 
frequency 0 < w < n is indistinguishable from a signal with digital frequency rm < w < (n + l)-7r, 
n = 1,2,3, • • •, which is an effect known as aliasing. 

The digital frequency of a sampled sinusoid can be mapped into the z-domain as shown in 
Fig. 49a. For simplicity, assume as sinusoid x(t) = 2 cos2n ft, and after sampling 

x(n) = 2cosom = ejun + e ■jwn (69) 

If / = /s/4, this corresponds tow = w/2. If / = /s/2, w = ir. Since the signal is real, the signal 
poles appear in complex conjugate pairs on the z-plane. For frequencies between fs/2 and fs, the 
frequencies map back to their conjugate on the upper half of the complex plane. If the frequency is 
increased beyond fs, a full trip is made around the unit circle, and the mapping repeats. Figure 49b 
illustrates the mapping with each triangle representing a full rotation around the unit circle in the 
z-plane. The abscissa represents the input analog frequency, whereas the ordinate represents the 
digital frequency mapping. Note that an infinite number of analog frequencies will map into each 
digital frequency 0 < w < 7r. 

Recall that the DFT is given by 

JV-l 

X(k) = Y, x{n)e-tt2*nk'N)       k = 0, • • •, N - 1. (70) 
n=0 

Application of the DFT to x{n) yields a discrete spectrum, where |X(fc)|2 is the energy contained 
in the signal at each digital frequency u = 2nk/N. The discrete spectrum X(k) has N indices with 
the digital frequency of each index given by 

U'^iV'     ,27r   N   ,2?r      N      ' 
^M,^"1' 

N N 
for N even (71) 

and 

0,2n-,...,2n       ^       ,2TT       ^       ,...,27r-^-,27r—— for N odd       (72) 

The analog frequency corresponding to each index is obtained by multiplying each value by fs. Since 
signals with digital frequencies in the range 7r < u < 2ir are indistinguishable from signal with digital 
frequencies 0 < w < ir, the digital frequency of each index can also be written as 

0 2*1... 2TW2) 2T(iV/2-2) 
■27r!'24 for N even (73) 
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Input Analog Frequency 

(b) 

Figure 49: (a) 2-plane mapping of an input analog signal, (b) sampled frequency output. 
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and 

°'24>' ..Äki""1 
N N "■2424 for N odd (74) 

where [x\ represents the greatest integer less than or equal to x. More simply, the spectrum X(k) 
resolves into N integer indices, and incoming signals will map into unique 

0 1...  1». U'  '     '2' 2 
!,•••,2,1 

and 
N     N 

0,l,"-,LyJ,LyJ,---,2,l 

for N even 

for N odd. 

(75) 

(76) 

That is, since frequency indices greater than N/2 are redundant for real signals, the highest unaliased 
frequency that can be observed corresponds to the N/2 index. Prom the above discussion, it is clear 
that the DFT maps real signals naturally into the symmetrical number system [74]. In this case, 
the modulus described in Ref. [74] is the sampling frequency /s. The number of indices N is given 
by N = /27z,, where TL is the total sampling time. 

Figure 50 on the next page illustrates the DFT mapping for two channels, where /sl = 10 and 
fS2 = 11 for input frequencies / = 0 to 23. In this case, TL = 1 so that Ni = 10 and N2 = 11. In 
the figure, the abscissa corresponds to the incoming frequency, whereas the ordinate corresponds to 
the bin into which the signal is resolved. Table 9 on page 63 displays the input frequency and the 
resulting DFT bin for each sampling frequency. Note that frequencies resolve as described in Eqs. 75 
and 76. By considering both channels, it is possible to unambiguously resolve signal frequencies in 
the dynamic range determined by the SNS (0 < / < 15). The dynamic range of the receiver is 
determined by the collection of pairwise relatively prime moduli. 

Theorem 1: Let mi, • • •, mr be pairwise relatively prime moduli, and let Ao, Ai, A2, ■ ■ ■ be vec- 
tors formed by the symmetrical number system given by Eqs. 75 and 76. 

a) If one of the moduli (mi) is even, then the dynamic range of the system is 

3 n 
£=2 

M = min ^ ™p JJ mh +  JJ  mit 

t=j+i 
(77) 

where j ranges from 2 to r—1, and mi2,mi3, ■ ■ ■, m», range over all permutations of {2,3, • • •, r}. 

b) If all of the moduli are odd, then the dynamic range of the system is 

M = min I - JJ mu + -  JJ  mu 

1=1 *=7 + l 
(78) 

where j ranges from 1 to r—1, and m^, m,2, ■ • •, m;, range over all permutations of {1,2, • • •, 7-}. 
As an example, let mi = 4, m^ = 3, and mz = 5. We must minimize the set of values 

rmi mi mi 1 
{— + m2-mii, —m2+m3, —m3 + m2 j = {17,11,13}. (79) 

The dynamic range is the minimum value of this set (i.e., 11), as we verify from Table 10. 
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Figure 50: DFT mapping for input frequencies / = 0 to 23 for (a) /5l = 10 and (b) fs2 = 11. 
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Table 9: Input Frequency and Resulting DFT Bins for Two Channel Example 

Input 
Frequency DFT Bins 

/ /. = 10 /. = 11 
0 0 0 
1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 4 5 
7 3 4 
8 2 3 
9 1 2 

10 0 1 
11 1 0 
12 2 1 
13 3 2 
14 4 3 
15 5 4 
16 4 5 
17 3 5 
18 2 4 
19 1 3 
20 0 2 
21 1 1 
22 2 0 
23 3 1 

Table 10: Integer Values for the mi = 4, m^ = 3, and m^ = 5 Example 

0 1 2 3 4 5 6 7 8 9 10 11 12 
mi = 4 0 1 2 1 0 1 2 1 0 1 2 1 0 1 
7712 = 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 
7713 = 5 0 1 2 2 1 0 1 2 2 1 0 1 2 2 
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10.3    Optical DFT Receiver 

It is well known that optical devices exist that can compute a two dimensional (2-D) Fourier trans- 
form or its inverse in unit time. Optical-computing technology offers new challenges to algorithm 
designers since it can perform an n-point discrete Fourier transform (DFT) operation. A one- 
dimensional (1-D) n-point DFT operation (or its inverse) can be computed efficiently using a series 
of n 2-D DFTs. The assumption that the 2-D DFT can be computed in unit time is appropriate for 
many thin (linear) optical filters. The spherical lens generates the Fourier transform of an image in 
analog form. A DFT gate can be implemented with such a lens-based optical device. The resulting 
analog image only needs to be discretized in both space and amplitude to interpret it as an n-point 
DFT. Further details on the optical DFT are given in Ref. [75], [76]. 

Figure 51 shows the block diagram of a two-channel undersampling optical DFT/SNS receiver 
concept with channel moduli 7na and m2. The antenna signal is efficiently coupled into the optical 
domain using a guided-wave wideband interferometer. The antenna signal is used to frequency 
modulate the CW laser light. The light is split into two channels by a polarizing beam splitter. To 
translate the frequency information into the spatial domain the polarized light is sent to two separate 
diffraction gratings. The diffraction grating is an optical component that serves to periodically 
modulate the phase or the amplitude of the incident wave and is usually made of a transparent 
plate with periodically varying thickness or a periodically graded refractive index. Considering a 
diffraction grating whose thickness varies periodically with period A, the incident light (A < A) 
traveling at an angle 6i with respect to the direction of propagation is diffracted into several plane 
waves at small angles given by 

A 
ei = Oi + Qj 

q € {0, ±1, ±2, • • •, } where q is called the diffraction order. 

(80) 
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(0 

Figure 51: Block diagram of a two-channel optical undersampling DFT/SNS receiver. 

The diffraction grating shown in Fig. 52 on the facing page translates the frequency information 
into the spatial domain. This spatial distribution is then collimated into the Fourier transform 
processor that computes an mi-point DFT. The r moduli m* must be pairwise relatively prime. After 
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computation of the mrpoint DFT and the m2-point DFT, the light impinges on a corresponding 
number of 1-D spatially distributed detector-threshold gates. Each detector-threshold gate within 
the array has a zero output voltage unless the light intensity crosses a threshold. The positive 
output detector number (ax channel 1 and a2 channel 2) corresponds to the DFT bin of the analog 
frequency. These bin numbers are then used to resolve the incoming frequency. A major advantage 

Figure 52: A diffraction grating directs two wavelengths Xi and A2 into two directions 6ly 02 (spec- 
trum analyzer). 

of this optical DFT receiver is that only a few DFT coefficients (detector-thresholds) are required 
to resolve the ambiguous spatial frequencies. Resolution of the undersampled frequency is achieved 
by recombining the results of these low precision suboperations (detector-threshold gates ai and a2) 
using an SNS-to-decimal algorithm [73]. Further investigation into the feasibility of an optical SNS 
DFT receiver is currently underway. 

11    Non-Uniform Sampling Jitter 

11.1    Spectrum Representations of Non-Uniformly Sampled Signals 

Non-uniform sampling theory can be used to describe several important characteristics of jitter. By 
using asynchronous spectral averaging, this section develops expressions for the signal-to-noise ratio 
along with the expected noise floor. To start, let 

9(t) £1 G«(«) (81) 

be the Fourier transform of a time domain analog signal g(t) where the subscript a represents the 
analog transform of a signal that is bandlimited (-1/2T, 1/2T) [77]. The analog signal g(t) is 
non-uniformly sampled with overall period MT as shown in Fig. 53 on the next page. The sampled 
data sequence is treated as if it were obtained by sampling another function g(t) (also band limited) 
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at a uniform rate (1/T). The goal is to find the digital spectrum of g(t) in terms of Ga{w). Let the 
original sampled data sequence be represented by [78] 

S=\g(to),9{h),---,9{tm)---g(tM),9(tM+i),---] ■ 

Decomposing S into M subsequences we have 

So   =    [5(*O),5(*M),5(*2M),---] 

(82) 

[s(*m), 9(tM+m), 9{t2M+m), • • '] (83) 

SM~1     =     [5(*M-l)>p(*2M-l))p(*3M-l),-"] 

obtained by uniform sampling g(t + tm) at a rate of 1/MT. 

Figure 53: Non-uniformly sampled data sequence. 

To reconstruct S, M — 1 zeros are inserted between the samples in all sub-sequences Sm for 
m = 0 to M - 1. That is, 

Sm = [g{tm),0,-■ ■ ,{M - 1 zevos),g(tM+m),0,0,- ■ ■} ■ 

Second, Sm is shifted m positions to the right for m = 0 to M — 1, i.e., 

Smz~m = [(m zeros),g(tm), (M - 1 zeros), g(tM+m), 0,0, • • •] . 

Third, all of the sub-sequences are summed up to obtain the original sequence S 

Af-l 

s=Es» 

(84) 

(85) 

(86) 
m=0 

The digital spectrum of S can be represented by the summation of those spectrums of Smz m for 
m = 0 to M - 1. That is, 

m=0 
\MT EG« 

,fc=—oo 
\MT) 

ej[w-fc(27T/Mr)]t„ o-J""07, (87) 
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Now we let 

Solving for tm we have 

mT-tr, 
I'm — 

tm = mT- rmT 

(88) 

(89) 

where rmT is the sampling time offset encountered at the mth sample (rm means that the mth 

sample is delayed). Now we can rewrite Gi(u>) as 

M-l 

G2(w) = (~)   E   ( ji E e-^-kV*'MT^Te-ikm^M j Ga 
k=—oo  \        m=0 

w - K I  I 
\MTJ 

(90) 

where Gi, (?2 are now general representations of the digital spectrum of a non-uniformly sampled 
signal. 

These expressions can also be used to describe the behavior of uniformly sampled signals, 
g(mT) [78]. That is, vm = 0 and tm = mT. If we substitute mT for tm in Gi(w) or rm = 0 
in (?2 we have 

1      00      /      M-l \ 

GM-i E NJ X>"ifcm(2,r/M) c 
«=—00  \        m=0 

\MTJ 

Note in above 

and therefore 

M-l 

E 
m=0 

V^ e-jkm{2*/M) _ f M; 
"I   0; 

forfc = 0,M,2M 
otherwise 

fc=—00 

(91) 

(92) 

(93) 

which is the well known digital spectrum representation of a uniformly sampled signal. 

11.1.1    Specific Case 

As a specific case, the digital spectrum of non-uniformly sampled sinusoid is examined. Consider a 
sinusoid e>Uot with frequency /Q. The spectrum is 

G0(w) = 2ir6(u> — WQ) . 

Substitution into G^w) gives 

M-l     00 

MT) CM = filEE ™ "-" °-k[wf) 

(94) 

e-J>m2ir/o//3e-ifcm(2ir/M) _ /gg\ 

m=0 /:=—00 

If we now define a sequence A(k) k = 0,1,2, • • ■, M — 1, M, • • • by 

M-l 

M 
A(k) = E 

m=0 L 

J_e-J>m2ff/o//s jfcm(27r/M) (96) 
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(periodic on k with period M) then we can rewrite G(w) above as 

i     °° r / o    \ 

fc=—oo "- * ' 

(97) 

(periodic on w with period 2-K/T = 2nfs). In summary, G(w) and A(fc) are the complete spectral 
•representations of a non-uniformly sampled sinusoid. 

11.1.2    Properties 

1) One period of the spectrum comprises M line spectra uniformly spaced with neighboring s 
separated by fs/M as shown in Fig. 54. 

2) For rm small \A{k)\ « \A(M - k)\. 

3) A(k) = 0,1, • • •, M - 1 is the DFT of the sequence 

e-jrm2^f0/h ^     m = o, 1, • • •, M - 1. (98) 
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1 period of G(/): Af line spectra 
(uniformly spaced) 

Figure 54: Line spectra at integer multiples of the sampling frequency. 

11.1.3    Signal-to-Noise Ratio 

To develop the expression for the SNR we show Parseval's relationship for the DFT given as 

M-l M-l 

£l*(»)|2 = T7El*(*)|2- 09) 
n=0 1V1   fc=0 

By Parseval's theorem, the sum of the square of \A(k)\ is equal to M times the sum of the square of 

_p-J>m27r/o//s 

M 
(100) 
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which is 1. That is, 

This gives the S/N as 

M-l 

E i^)i2 
fc=0 

wo)r s 
— = 10 log . - -, dB. 

(101) 

(102) 

11.1.4    Independent Random Sampling 

The jitter is now considered to be the result of independent random sampling. For independent 
random sampling rm, m = 0,1, • • ■ ,M — 1 are M — 1 independent identically distributed random 
variables (iid R.V.). The relationships 

M-l 

J2\A(k)\2 = l 
k=0 

and 

l-ioicf  |A(0)I
2 N &\l-\A(0)\\ 

dB 

(103) 

(104) 

still hold for each realization of the random sequence rm. Hence, for expected S/N we need only to 
replace |A(0)|2 by E{A(0)A*(0)}. Assume am = rmf0/fs, m = 0,1,2, • • • ,M - 1 be M iid R.V. 
with probability density function p(a), and characteristic function <&(w) = E{ejua}.2 From 

M-l 

A(k) = J2 
m=0 L M 

,-jrm2irfo/fs -jkm(2ir/M) (105) 

2 M-l M-l 

the signal power is [78] 

/  *   \ ziva—liw —i 

E{A(O)A*(O)} = (±\ \r,T,E{e~S2'lam~an)} 
^       '     m=0 n=0 

=    |$(27r)|2 + ^:[l-|$(27r)|2] . 

(106) 

The S/N is then 

1   -   wiaJ   E{A(0)A*(0)} 
N    ~   m°g{l-E{A(0)A*(0)}] dB 

= loiogi (^-im^i'+i^ | dB. 
(M-l) [I-|$(27T)|

2 
(107) 

For a brief review of characteristic functions see Appendix C. 
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If we assume am is uniformly distributed between —a/2 to a/2 (uniform sampling), 

(108) 

(109) 

(110) 

and 
$(2TT) = e-2*'*2. (Ill) 

The question we would like to answer is how does the S/N behave near the origin if am, m = 
0,1,2,■ • -,M — 1 has a normal distribution? This normal approximation is a good noise model 
for sampling jitter. First we substitute e2n a for |$(27r)| in the above expression where a is the 
standard deviation (s.t.d.) of am = (rmfo)/fs- Then a Taylor series expansion of the log function 
argument is constructed retaining only the first significant term [79] 

p(a) 
_ 1 

a 

and 

$(2TT) = 
sin (TO) 

■Ka 

If am is normally distributed (fi = = 0, °), 
p(a) = e -a

2/2<r2 

I = 20 log Wh.('<iyfc-)dB. (112) 

! = 201og(i)+201og(£)_10log 4*2 (*-1)" 

To investigate the noise floor, we take a sinusoidal waveform of record length N and an FFT of 
size N. Then we measure the S/N. We can use the result above to derive the s.t.d. ar of the clock 
jitter rm as 

dB. (113) 

where we have substituted a = crrfo/fs and brought the \/l2 to the last term. In a practical 
environment, other factors such as harmonic distortion, DC offset, and the stochastic nature of 
clock jitter may shift the SNR and obscure the measurement result. The solution here is to use 
asynchronous spectral averaging as shown in Fig. 55. Since we measure the S/N floor ratio, we need 
to adjust the above equation as follows 

f(floor) = 201og(sl-)+201og(i)+10Iog(5|-) dB. (114) 

Note that the (N — 1)/N term is dropped (« 1). Also, the factor of N accounts for the fact that 
the noise power of the jitter is uniformly distributed among all N frequency bins. The factor of 2 
is the adjustment for the conversion between the sinusoid and the complex exponential e5"0'. EB is 
the adjustment for the window function used in the FFT. 

11.1.5    Simulation Results 

In order to verify the expressions above a simulation was used [79]. A four-term Blackman-Harris 
window (EB = 2) with sampling frequency fs = 20 MHz, and signal frequency /o = 9,135,780 
Hz is used with N = 256 and where ar = 0.001 (0.1%). The results are shown in Fig. 56 on the 
next page. From Eq. 114, the S/N(Q.OOT ratio) = 69 dB which agrees closely the simulation results. 
Using the same degree of sampling uncertainty, the simulation results are now run with N = 512, 
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Figure 55: Asynchronous spectral averaging. 
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Figure 56:  Simulation results using a four-term Blackman-Harris window (Eß = 2), a sampling 
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frequency of 20 MHz, N=1024, /0=9,135,780 Hz and oT =0.001. (From [79].) 
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and N = 1024. The predicted noise floors are -72 dB and -75 dB, respectively. Simulation results 
are shown in Fig. 57 on the preceding page and Fig. 58 on the facing page, respectively, and show- 
close agreement with the predicted values. Using the simulation with /0 = 4,567,890 Hz, the 
noise floor is predicted to be —81 dB (as verified in Fig. 59). Changing the jitter component with 
ar = 1.0%, the noise floor is predicted to be -55 dB. Figure 60 show the simulation results for this 
case and, again, shows good agreement with the predicted results. 
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Figure 59:  Simulation results using a four-term Blackman-Harris window (EB — 2), a sampling 
frequency of 20 MHz, N=1024, /0=4,567,890 Hz and ar =0.001. (From [79].) 
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The question is: with so many noise sources present, how does one utilize these results? To 
determine if clock jitter is the dominant source, two input frequencies are used where one is half of 
the other and perform spectral averaging. If the noise floor drops by 3 dB when the input frequency 
is reduced by one-half, then the jitter is dominant. If the noise floor does not move at all, then other 
noise sources (thermal, quantization) are far more significant. 

11.1.6    Other Jitter Models 

Other models for estimation of jitter have been proposed. The model described in Ref. [80] assumes 
the total jitter is composed of sampling circuit jitter, analog input signal jitter, and sampling clock 
jitter. Using this model, the jitter is broken up into three components. To evaluate the model 
a precise method for measuring jitter is devised. The method does not require precise delay ad- 
justments between the analog input signal and the sampling clock, because it is based on sampled 
sine-wave SNR calculations. The accuracy and speed limitations of converters are also discussed 
and it is shown that the jitter suppression bandwidth is important for the design of high-precision, 
high-speed converters. Further work by [81] has shown that measuring the SNR of jittered sinusoids 
agrees more accurately with simulations when the sinusoid is described by two complex exponentials 
rather than by one complex exponential. This work also shows that the amplitude statistics are very 
sensitive to the Taylor series approximation used. 

Due to the interest in higher order spectra, investigation of the effect of sampling jitter on 
the discrete higher-than-order-two spectra has also been reported [82,83]. In this work results 
concerning the bispectrum (third order spectrum) are reported. Expressions for the bispectrum of 
sampled data under the assumption that the timing errors are independently identically distributed 
random variables. It is shown that, while the discrete bispectrum of a uniformly sampled third order 
stationary signal is zero in a triangle that is a proper subset of the principal domain, it differs from 
zero in the presence of jitter. Exploiting this effect, a test for the detection of sampling jitter and 
estimating it variance is presented. Also the application of the Dirichlet transform has been used 
in the analysis of nonuniformly sampled signals [84]. The Dirichlet transform is well suited to the 
analysis of nonuniform samples since the spectrum preserves information about sampling instants 
because a nonuniformly sampled signal is not treated as a sequence of samples but as a function 
of the sampling instants (unlike the Z-transform). This work presents the basic properties of the 
Dirichlet transform and the inverse Dirichlet transform in the analysis of nonuniformly sampled 
signals. 

11.2    Reconstruction of Signals from Nonuniform Samples 

The ability to recover the original signal from the nonuniform optical samples can help relax the 
requirements on the mode-locked laser sampling jitter. Reconstruction of a lowpass signal from the 
samples containing jitter (nonuniform samples) can be accomplished using iterative techniques [85- 
88]. Given the nonuniform samples xs(t) = £7 x(tj)<5(i -1/) where {tk} is a stable sampling set, 
the following iterative method will recover the band-limited finite energy signal x(t) from xs(t), i.e., 

xk+i(t) = XPSx(t) + {P- XPS)xk(t) (115) 

where X,x(t) and xk(t) are a convergence constant, the original finite energy signal and the kth 
iteration, respectively. P and S are respectively, the band limiting and ideal nonuniform sampling 
operators. PSx(t) is the lowpass filtered version of the ideal nonuniform samples which is known. 
This process will converge to a stable point which is equal to the desired signal x. The iterative 
method can also be implemented in a feedback system as discussed in [87]. Recovery of a bandpass 
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signal from a set of nonuniform samples is discussed in [88]. If the nonuniform sampling set {tk} 
satisfies certain conditions, then the nonuniform samples of the complex extension of a bandpass 
signal xc(t) = A(t)ej^t+41^ where A(t) is the envelope and u>c = 2vr/c is the central frequency of 
the bandpass signal uniquely determines the bandpass signal. The Lagrange interpolation formula 
is 

xc(t) = £ xc(ife)e^-<<=)^(*) (116) 
k 

where ipk(t) is the Lagrange interpolation function [85]. These methods are currently being studied 
for direct application to the optical sampling methods described. 

11.3    Summary of Optical Signal Processing 

When sampling wideband signals with optical pulses, a number of constraints are placed on the laser 
performance such as the pulse repetition frequency (PRF), the optical pulse width and the variation 
in sampling time (or jitter). The hardest specification to meet with these types of sampling lasers 
is the jitter requirement. To amplitude analyze the amplitude modulated laser pulse into a number 
of quantization levels, extremely small jitter times must be achieved (e.g., 50 fs). In Part II, several 
algorithms and optical signal processing concepts have been described that attempt to relax this 
stringent jitter requirement. Both integrated and bulk optic oversampling architectures have been 
investigated. Oversampling architectures integrate out the errors resulting from sampling jitter and 
take advantage of the availability of high PRF lasers. To investigate the detection of frequencies 
that are above the Nyquist rate fs/2, an optical DFT 2-channel receiver has been investigated. 
This optical receiver concept explores the relationship of the optical DFT and the symmetrical 
number system in resolving the frequency ambiguities that arise due to undersampling a wideband 
signal. Finally, non-uniform sampling theory has been investigated in order to estimate the jitter 
component present in the spectrum of a sampled signal. Relationships are given for estimating the 
jitter from both the magnitude and magnitude squared spectrum. An investigation into a set of 
iterative algorithms to remove the jitter from the samples has also been initiated. 
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Part III 

Appendices 

A    Review of Derivations 

The following derivation is taken from Ref. [1]. 

A.l    System Jitter 

We want to find the error due to a mislocation of the sampling time. Suppose that a sampling pulse 
is expected at time ti+i = tt + At, but, instead, it arrives at ti+1 =U + At' = U + At + 6t. Suppose, 
also, that we are trying to sample a sine-wave signal of the form V = Asin(27r/mt). (The frequency 
fm is going to be the maximum frequency in the signal.) An error voltage will result, given by 

SV = A {sin [(2xfm(U + A*')] - sin [(27r/m(t, + At')]} . (117) 

For small values of St, this reduces to 

SV = 27r/m A St cos [2nfm(ti + At)} . (118) 

The maximum magnitude for this error voltage is 

\SVmax\ = 2nfmA Stmax. (119) 

We note that Stmax is the maximum timing error that is expected. 
We require that the voltage error in the ADC be less than one half of the voltage corresponding 

to the least significant bit of the convertor, i.e., 

,_,     , ^ AV     1 (2A\       A ,     x l^maxl < — = - ^j = — . (120) 

Hence, we want to ensure that the timing error is 

St^K^l-j-. (121) 

This is Eq. 2 in this report. 

A. 2    System pulse width 

The maximum error due to the finite pulse width of the sampling pulse, AT, is also obtained by 
considering a voltage signal of the form V = Asin(2Trfmt). The error in the voltage at a sampling 
time U is 

sv =  fU+iAT/2) Asm(27rfmt)dt_AM277fmti) (122) 

Jti-(AT/2) AJ 

where AT is the duration of the interaction (i.e., the duration of the optical pulse plus the optical 
transit time of the modulator's electrodes). A Taylor expansion for the sine wave about U is 

sin 2-Kfmt) = sin(27r/mti) + 27r/m cos(27r/mii) (t - U) + (^fm)2cos(27rfmti)(t-ti)
2 +  ^   ^ 
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Inserting the expansion into Eq. 122 and evaluation of the integral gives (to the lowest order of AT), 

6V = (2^fm^T)2Asm(2nfmti) 

The maximum value of this error is 

«,__**&£ffid. (125) 

requiring that the maximum error be less than one-half of AV/2 gives 

AT <  .3        . (126) 

This was introduced as Eq. 3 earlier in this report. For example, if N = 6 and fm = 300 MHz, then 
8T < 325 ps. For a lithium-niobate modulator (n = 2.18) and the transit time is 73 ps per cm of 
modulator electrode. If this length were 3.4 cm, the transit time is 247 ps, so the pulse width would 
be 78 ps (= 325 - 78 ps). 

B    Review of Autocorrelator Measurements 

The following section summarizes the use of an optical autocorrelator to estimate the pulse duration 
of a short pulse. It follows the treatment found in Ref. [89]. Figure 6 show the layout of the 
correlator. The key is in the generation of the second-harmonic component in the crystal. If an 
optical pulse of the form 

ei(t) = RelE^ty"*), (127) 

is incident on a nonlinear crystal, it generates an output pulse e2(t) at twice the frequency, given by 

e2(t) = MEiity^*] oc Re[El{t)ej2ut]. (128) 

In our correlator, we will have two pulses present, one original pulse and one pulse that is advanced 
(or delayed) by r seconds due to the path length delays of the interferometer. Here, 

nAL 
r=—, (129) 

where n is the index of the path difference (frequently air), AL is the path difference between the 
two paths in the interferometer, and c is the vacuum speed of light. Hence, we find the total wave 
in the crystal, -Etotai, as 

£totai = Re {[£i(*) + £i(i - r)e-^T]eJwt} = MEtet*®***] (130) 

and, so, we find that 
£totai(*) = Ei(t) +El(t- r)ejuT . (131) 

According to Eq. 128, the amplitude of the second-harmonic is proportional to the square of the 
amplitude of the total incident wave, so 

E2{t)    a    [E^ + Exit-^e-^]2 

= El{t) + E2(t - T)e~j2"T + 1EX(t)Ej(t - T)e~j"T (132) 
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The output of the crystal, e2(i) = Re[E2(t)ej2iJt], is incident on a photomultiplier (with an 
optical filter to block any residue of the incident light). The output current of the detector, id(i), is 
proportional to the intensity of the incident light, or 

id(t) oc E2(t)EZ(t) = [Bi(t)^(t)P + [jBi(t-T)£J(t-T)]2+4£1(t)fiI(t)E,(t-r)JEI(t-T) + «(t)l 

(133) 
where the s(t) term contains terms with coswt and cos2a>£ dependencies. Since these terms are 
oscillating at optical frequencies, the detector is unable to keep up them and they drop out due to 
the integrating effect of the detector. The temporal (t) scale of the other three terms is on the order 
of the pulse width (picoseconds at most for our modelocked lasers). The detector will integrate out 
this time behavior, leaving only the delay time, so 

id{t) c« I2(t) > + < I2(t - r) > +4 < I(t)I{t -T)>, (134) 

where the brackets indicate time averaging and the intensity of the wave is defined as I(t) = 
Ei(t)Eit. We note that shifting the square of an intensity does not change its average value, so 
< I2{t) >=< I2(t -T>. Using this and dividing both sides of Eq. 134 by < I2(t) > gives 

i'd{t) = l + 2G^\r), (135) 

where G^{T) is the second-order correlation of the intensity pulse, denned by 

r(2) M _ < I(t)I(t - T) > 
G    (T)=       <P{t)>       ■ <136) 

If r is zero, we note that G(2)(0) = 1 and id(0) = 3. If r is large, we expect G^
2
\T) to be zero and 

id(r) to be 1. Hence, if the input pulse is an ideal square pulse of coherent light, then the ideal 
autocorrelation would look like Fig. 61a. The autocorrelation peak is 3 and the curve trails off to a 
pedestal with a value of 1. 

It is useful to determine the expected response from a series of partially coherent pulses (e.g., a 
set of pulses from a laser operating with a large number of independent modes). We still have that, 
when r = 0, G^2\0) = 1. When r exceeds the coherence time of the source, we have 

GW{T)=<I(t)I(t-T)>  =  <I(t)>2 

since I(t) and I(t — r) are uncorrelated. In order to find < I2(t) > we recognize that, for truly 
incoherent light, we can replace the time averaging by ensemble averaging, i.e., we have 

<I2{t)>= [   p(I)I2d (138) 
Jo 

where p(I) is the intensity probability distribution so that p(I) d is the probability of finding an 
intensity between I and I + d. For incoherent light, p(I) = er/<J>/ < I > [89]. Substituting this 
into Eq. 138 gives the result that 

< I2(t) >= 2 < I(t) >2 . (139) 

Using this in Eq. 135 gives 

^incoherent (T > 0) OC 1 + 2^' = 2 . (140) 
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id« 

(a) 

(b) 

(0 

Figure 61:  Representative autocorrelation curves,   (a) Ideal square coherent pulse,   (b) Partially 
coherent pulse, (c) Representative coherent pulse, showing location of pulse width measurement. 
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I(t) *o/To 
rect(t/to) 

e,p{-^} 
sech2 (^p) 

1 

2 

Table 11: Ratio of autocorrelation width to intensity pulse width for three standard mathematical 
representations of optical pulses. 

Hence, the autocorrelation curve for a weakly coherent source looks like that in Fig. 61b. While the 
value at zero delay is still 3, the curve rapidly falls off to a pedestal value of 2 (rather than the value 
of 1 achieved by coherent light. 

The determination of the pulse width of the original pulses, To from the measured width of the 
autocorrelation curve, fo, can be determined from Eq. 137 on page 79. (Note that the width of the 
autocorrelation curve is taken as the full-width at the half-maximum values disregarding the value 
of the pedestal. Table 11 [89] shows value of t0/ro for three "standard" waveforms. The first wave 
is an ideal square pulse with zero rise and fall times and a width of TQ; it is not reached in practice, 
but is used because it simplifies computations and represents the ideal limit for a modelocked pulse. 
The second wave is a pulse with Gaussian temporal shape; it represents a good approximation to the 
output from modelocked lasers that do not implement any pulse compression or soliton generation. 
The third standard wave represents the ideal output of a soliton laser; it is a good approximation to 
modelocked lasers that implement pulse compression techniques within their operation. Obviously 
there is some ambiguity in choosing which waveform to use to determine the ratio of widths. If the 
user does not want to choose a pulse shape, some curve-fitting techniques can be used to match the 
autocorrelation curve to the theoretical autocorrelation of the curves. 

C    Characteristic Functions 

Recall from the probability theory that the characteristic function for a continuous random variable 
is defined as 

*(w)= /    f(x)ejuxdx. 
J—oo 

(141) 

This is the Fourier transform with the sign of u reversed. Also note that the original function 
can be recovered as 

which is the inverse Fourier transform with the sign of x reversed. Also, 

/oo 
f(x)e-juxdx. 

-oo 

(142) 

(143) 

The characteristic function has essentially the same properties as the Fourier transform and has a 
maximum at the origin because f(x) > 0. 

I*(w)| < $(0)    =    1 

*(w)    =   E{e?"x) 

(144) 

(145) 
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If y = ax + b then 
$y{cj) = ejb»E{ejaux} (146) 
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