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Preface 

The third workshop on Virtual Environments took place on February 19-20 in 
conjunction with the annual IMAGINA conference in Monte Carlo. The workshop 
asked for contributions to cover coexistence, communication and collaboration in 
Virtual Environments. Nineteen contributions were selected by an international 
programme committee which additionally invited J. Nomura (MEC, Japan) and J. Kent 
(SGI, US) for talks on applications of virtual environments in Japan and to discuss the 
VRML relationship to virtual environments. 

Revised versions of the workshop presentations are included in this book. The first 
group of four papers from Austria, the UK, Germany and Sweden discusses VE system 
design and architecture issues as well as experience with novel programming style for 
virtual worlds. Mixed reality in a teleconferencing and in a telepresence experiments 
are reported from Germany and from Sweden. 

An algorithm session introduced to several techniques for virtual environments, 
such as the quick elimination of polytopes from Hongkong, camera based tracking and 
morphing from Germany. On the second workshop day, human actors and crowd 
simulation were presented by Swiss and French reseachers. 

A further workshop session dealt with modeling aspects in virtual environments. 
Work based on B-spline modeling (UK) and the impact of concurrent multi-user 
modeling (France) were demonstrated. 

The final paper session of the workshop included papers from various application 
areas, such as a surgery support system (Japan), the distributed virtual reality lab which 
is a UK research initiative, applications in geographic information systems (Nether- 
lands), in engineering (Switzerland) and in virtual housing systems (Japan). 

Around fourty workshop participants discussed the contributions very heavily 
during the two days. 

As a conclusion, we can say that with its third workshop Eurographics has 
established the VE workshop as an annual event which serves as a forum for 
information exchange in VE research in Europe. In all of the 3 workshops, major 
European VE research labs were presenting and discussing their advance results. 

The workshop itself and its preparation was sponsored by ONR - Office of Naval 
Resarch (US), EDF (France), INA-IMAGINA (France), CEA (France) and GMD 
(Germany). 

The workshop secretary was provided by Tatjana Neiss from IGD Germany. At this 
place we would like to thank all - the sponsors, the secretary and the local organization. 
Without their contributions the workshop would not have taken place. 

The seventh workshop on Visualization in Scientific Computing took place on April 
23-25 in Prague (Czech Republic). It was for the first time that an event like this was 
held in Central and Eastern Europe. One of the workshop's results was the impulse for 
the promotion of Scientific Visualization in this region. Papers submitted for this 
workshop were evaluated by an international programme committee. 



VI 

Besides papers accepted for presentation also two invited lectures were given: 
G. Nielson (USA): Multiresolution Modelling in Scientific Visualization and 
V. Hlavac (CZ): Computer Vision and Scientific Visualization. In both lectures new 
views on some topics in Scientific Visualization were given. 

For these proceedings twelve papers were selected. Revised versions of these 
papers are included in this book. The papers can be divided into four groups: Volume 
Rendering, User Interfaces in Scientific Visualization, Architecture of Scientific 
Visualization Systems, and Flow Visualization. The papers in the first group are papers 
from Italy, Germany, Slovakia, and the Netherlands. The main stress was put on the 
speeding up of volume rendering algorithms and on their better accuracy. The second 
group of papers contains papers from Germany dealing with proper use of elements and 
methods in the field of User Interfaces specific for Scientific Visualization applica- 
tions. Innovative research from Fraunhofer Institute describes the use of VR tech- 
niques in the field of Scientific Visualization. Papers from the Netherlands, Czech 
Republic and the United Kingdom forms the third group of papers targeted to 
Architecture of Scientific Visualization Systems. The last group contains results from 
research in traditional area of Scientific Visualization - Flow Visualization. Improved 
techniques for this area were presented. All papers presented set up a very good base 
for discussions in which all 40 workshop participants took part. 

Besides the authors we want to thank the Programme Committee that had to 
evaluate in a short time the papers submitted. The organization of the workshop could 
not have been manageable without the help of the Department of Computer Science 
and Engineering at Czech Technical University in Prague and the Czech ACM 
Chapter. Special thanks should be expressed to Petr Felkel, Jan Vorlicek, Bozena 
Mannova, Jiri Zara, and Bedrich Benes. Without their help both the Workshop and the 
book would not have come into life. 

Martin Göbel, Jacques David, 
Pavel Slavik, Jarke J. van Wijk 
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Optimizing Communication in Distributed Virtual 
Environments by Specialized Protocols 

Dieter Schmalstieg, Michael Gervautz, Peter Stieglecker 
Institute of Computer Graphics, Vienna University of Technology 

schmalstieglgervautzlstieglecker@cg.tuwien.ac.at -http://www.cg.tuwien.ac.at/ 

Abstract. A successful implementation of a distributed virtual environment 
should be built on a strong network layer. The network as a constrained 
resource must be used efficiently, and also the structure of communication 
should allow to select those features that are needed without having to 
support needlessly complicated protocols. Therefore we designed a set of 
specialized protocols tailored for dedicated tasks of communication in 
virtual environments. The combination of these protocols yields the desired 
communication functions without introducing much overhead. In particular, 
it is possible for participants with varying degrees of capability to use the 
virtual environment and to communicate with each other. 

1 Introduction 
The restrictions that are most hard to overcome in distributed virtual environments 
are the need for consistency, and constrained network bandwidth. It is because of 
these restrictions that virtual environments either focus on rich interaction 
[Carl93, Snow94, Bric94, Brol95] or on large-scale distribution [Mace94], but not 
both. 

Our goal is to develop a distributed virtual environment in which users can 
participate and contribute content. We favor a client-server based approach, that 
lets users run client software and connect to servers over a network [Schm95]. 
Such a scheme will separate the participants from the providers of the VE 
infrastructure. Users can use the VE with inexpensive desktop machines, and do 
not have to be responsible for setting up the VE infrastructure. This is important if 
a large, loosely coupled user community is to be supported. In particular, the 
simulation of the environment is independent of the presence of users - the VE 
exists even if no user is currently present. The server provides consistency, 
concurrency control and persistence, that are otherwise hard to accomplish. 
Scalability is achieved by localizing the simulation: every server is responsible 
for a region in the virtual universe, and maintains a loosely coupled connection to 
its neighbors. Inside the server's region, the influence of objects is also localized 
to a relatively small area of interest. 

Simulation kernel. Our virtual environment consists of actors. An object- 
oriented hierarchy allows diverse actor types representing different levels of 
"intelligence". Pure static actors serve as "decoration" of the scene (walls, trees 
etc.) and have no built-in behavior. Such actors can be extended to include key- 
framed, deterministic animation (e.g. a clock with moving hands). A more 
sophisticated class of actors exhibits behavior that is formulated in an interpreted 
scripting language. Behaviors are triggered by messages  that are exchanged 



between actors. As messages are exchanged, the simulation progresses. 
Modifications to the internal state of the actors, in particular their visual 
representation, are reflected in the virtual environment. The most powerful actor 
type is controlled by an external application. 

Multiple levels of participation. The separation of server and clients allows 
multiple levels of participation, dependent on the type of client that is used: 

An observer can only explore the VE, but cannot interact with any objects. 
The client may limit its display to a pure walk-through (only considering static 
geometry), or also request the dynamic changes of the visual artifacts, that are 
created by the simulation. Nothing an observer does affects the VE. 

A participant may introduce his own avatar and use it to fully interact with 
the simulation, its autonomous agents and other avatars. His actions modify the 
dynamic state of the VE; they are distributed to other clients and stored 
persistently in the database. 

An author may contribute his own content to the virtual environment. He 
may create and destroy objects, and even more importantly create new types of 
objects with their own behavior, that can continue to exist as autonomous agents 
without the user's aid. 

This hierarchy of participation is similar to the one found in conventional 
MUDs (text-based multi-user games) that can in many respect be seen as VEs 
without a visual component. 

To maximize flexibility, we also allow applications to function as clients. 
While most behaviors of objects in the VE can be formulated using our scripting 
engine, the most interesting behaviors are too complex or computationally 
demanding for scripts. Therefore an interface is provided to allow external 
applications to "remote control" objects in the VE. Because the only restriction 
for an application client is that it complies to the network protocols we use, any 
application can be made to cooperate with the VE. 

Overview of the protocols. The requirements we have for our system are 
diverse and demanding. A single unified framework for communication that 
incorporates every form of information exchange into a single protocol is not 
sufficient. Instead, we define a set of highly specialized protocols that 
complement each other and can be tailored for the task. 

Protocol 
Connection 
management: 
Avatar control: 
Geometry: 

Animation: 
Simulation: 

Interaction: 
Authoring: 

Responsible for 
login, logout, protocol negotiation, user migration 

navigating the user's representation through the VE 
transmitting geometric description of the objects in the VE to the 
client 
transmitting changes in the visual database of the VE to the client 
exchanging messages  concerning the ongoing simulation  among 
actors and between actor and client 
letting the user interact with objects in the VE and other users 
managing modifications to the structure of the VE, such as object 
instantiation and deletion, creation of new object types and 
configuration of external applications  

Table 1. Overview and characterization of the protocol framework 



This approach allows us to exploit domain-specific properties for efficiency, 
assign network access to the protocols for an optimal bandwidth usage, and 
combine protocols as needed by the different levels of participation. 

Some protocols (such as the one that builds a network connection to the VE) 
must obviously be spoken by all types of clients, while others can be used or 
neglected at the client's disposal. They will, however, determine the client's 
capabilities. Table 1 gives an overview of the protocols we use and their scope: 

2 Connection management protocol 
Connection management provides fundamental networking functions on which the 
distributed environment is built. It handles the login and logout process of users 
and authentication. It also allows the user to migrate from server to server, in 
which case the network connection is transiently passed on. Client and server 
software negotiate the range of protocols used for communication. 

3 Avatar control protocol 
The avatar control protocol is concerned with the control of the virtual 
representation of the user. The user may upload his own avatar representation, or 
else decide to use a default representation. He may also transiently switch to an 
alternate avatar representation, if the situation or application demands it (e.g. for 
participating in a game). 

The avatar control protocol's task is to determine where the user is and what 
he can see. The protocol is extremely simple because it only needs to be able to 
communicate transformation matrices. The avatar control information is sent from 
the participating client to the server, and then distributed to all relevant clients. 
High performance regarding this protocol is of extreme importance for high 
fidelity interaction among a large group of users. We therefore chose to isolate 
the task in a separate protocol to have room for optimizations, that can be based 
on proximity [Benf93], visibility [Funk95], dead reckoning [Mace94] or fidelity 
channels [Sing95]. 

Other control commands concerning the avatar (object manipulation etc.) 
are part of a more general protocol, the interaction protocol. 

4 Geometry protocol 
Detailed models consume a lot of network bandwidth, so usually network 
transmission is either avoided [Zyda92], or image generation stalls until 
transmission is complete (such as current VRML browsers do [Hard95]). Our 
approach differs in trying deliver the model data "just in time" for display. 

The overall geometric database held on the server is much larger than the 
client's area of interest (AOI, comparable to the "aura" [Benf95]). Models 
contained in the AOI are held in a geometry cache (local memory) for immediate 
display [Fig. 1]. If an object is no longer in the AOI, it will eventually drop out of 
the cache. Prefetching of objects that approach the AOI compensates for network 
delays. 

This strategy can still fail if too many and too complex objects are in the 
user's AOI. We therefore incorporate a level-of-detail (LOD) method: Objects are 
modeled at multiple resolutions, and the appropriate resolution is selected at 
runtime based on heuristics [Funk93]. We extend this method to work with our 



distributed protocol along the lines of [Funk92] by transmitting single LODs 
instead of objects. This has several advantages: If the object can be represented 
by a coarse approximation (normally if seen at a distance), only the coarse model 
has to be transmitted, which saves transmission time and client memory. 

Server 

Client 2 

Fig. 1. A server maintains a geometry database of objects (small white circles), and also 
represents clients (small black circles) and their corresponding AOIs (large circles) 

Assuming hierarchically modeled objects, transmission can be incremental (a 
finer LOD is based on the next coarser LOD), which also saves bandwidth. 
Finally, if timing constraints cannot be met (i.e. the desired LOD is not delivered 
in time), a coarser LOD can be used instead, to keep image generation from 
stalling (at the expense of degraded image fidelity). 

Because the client requests the geometry at his disposal, the sophistication 
of the LOD strategy is up to the client. The server only needs to inform the client 
about any activity in his AOI. We use the VRML format for our protocol, but are 
developing a custom compressed variant to reduce the sizes of transmitted 
models. 

5 Animation protocol 
The animation protocol communicates dynamic changes in the scene. The nodes 
of the hierarchical scene graph we use consist of attributes, dependent on the 
node type. If an attribute is modified, the modification can be encoded by 
specifying the object ID, name of the attribute, and the new value. 

To make the transmission efficient, updates for a particular client are 
collected and sent at regular intervals. For a particular modified attribute, only 
the most recent value is sent. Dependencies in the scene graph can be exploited 
by specifying attributes as functions of one or more parameters. Many attributes 
can depend on the same parameter, which provides a compact and powerful 
interface for simulation updates, and also drastically reduces the number of 
updates that must be transmitted. Parameters can also depend on time, so that 
self-contained key-framed animations can be constructed. The principle has been 
known in computer animation for quite a long time [Magn83]. Parameters are 
built as an extension of SGI's Open Inventor engines [Stra92]. 



6 Simulation protocol 
A uniform mechanism is needed to allow external programs (either clients or 
external applications) to talk to an actor living on the server. The protocol can 
automatically be built from the actor's method list Method invocations with 
appropriate parameters are used as remote procedure call stubs. We use this 
protocol for three purposes: 

1. to let actors exchange messages within the server, 
2. to let external applications or users send control messages to actors, and 
3. to let remote-controlled actors pass on all received messages to an external 

application. 

While these three ways of usage are semantically very different, the protocol 
syntax is identical. 

7 Interaction protocol 
The interaction protocol addresses several requirements: 

• For interaction of actors and humans, the simulation protocol alone is not 
sufficient. We also need a description of the interaction style. 

• We do not want to require everybody to own the same type of I/O hardware 
(e.g. a position tracker or data glove). Instead, we aim at an abstract 
workplace characterization such as known from PHIGS [IS089]. The user 
interface should be dynamically created from an abstract characterization. 

• A client-server system suffers from the lag introduced by the relatively long 
round-trip an interaction message takes from client to server and back. We 
want to support local interaction for simple interaction tasks, that do not 
require the server's simulation capabilities (e.g. positioning in 3-D). 

To describe interactions, we use interaction rules similar to the dialogue manager 
presented in [Appi92]. Interaction rules specify how to map input events generated 
by the user to output, generating feedback both locally (tightly coupled) and 
globally (distributed via the server). An interaction rule consists of input and 
output specification: 

Input is characterized by the quality of interaction (e.g. positioning, 
selection, action-trigger), input dimension, input mode (discrete or continuous, 
absolute or relative), default and range values, importance (priority) and 
preconditions (to logically link multiple inputs together). 

Output is defined by (1) one or more simulation protocol stubs of the 
simulation protocol to call with the parameters from the input, and (2) direct 
feedback to the geometry of the actor (replicated at the client, so we use the 
animation protocol locally). Note that there is no one-to-one mapping between 
interaction rules and simulation protocol stubs. 

With a combination of simulation protocol stubs and interaction rules, we 
can decouple simple interactions from the server and run them locally with high 
fidelity, while interaction with the server's simulation is not restricted in any way. 



8 Authoring protocol 
A virtual environment should allow dynamic modification of all its components. 
While the modification of existing actors is handled by the simulation protocol, 
for creation and deletion of actors and actor types we introduce an authoring 
protocol. 

Actors are categorized by type. In our system Python - an object oriented 
interpreted language - is used to define actor types and to instanciate actors at the 
server. The authoring protocol allows the creation of a new actor class (actor 
type), the instanciation of a new actor of a specific type, and the deletion of an 
actor. New actor types require a description of the actor's geometry (specified in 
extended VRML), behavior (specified in a scripting language), and user interface 
(interaction rules). An actor can also be configured to cooperate with an external 
application that determines the actor's behavior (remote-controlled actor). 

All parts of the actor's description can be written using simple text files, that 
can conveniently be transmitted between sites and edited. The authoring protocol 
has no time-critical requirements. 

9 Tying the protocols together 
While the multitude of protocols we use is certainly more complex than a simple 
uniform protocol, the benefits make it worthwhile: 

Efficiency. Every protocol can use specific knowledge from the particular 
domain to tailor the protocol specifically for the task. This is important because 
network bandwidth is precious, and must be preserved as far as possible to allow 
scalability. Measures for efficiency include compact encoding of information, 
data compression, and the use of multiple low level networking standards (e.g. 
TCP vs. UPD) as needed by the protocol. 

Contention management. Because multiple protocol streams execute 
concurrently, conflictual situations may arise when multiple communication 
streams are competing for limited network bandwidth. In particular, if network 
performance degrades significantly, it is important to prefer those protocols that 
have tighter timing requirements. A priority mechanism can be used to resolve the 
problem (for example, transmission of animation has a very tight time window, 
while authoring is not really time-critical). 

Protocol combination. Protocols can be combined as needed by a client 
[Fig. 2]. 

An observer will only need to support the connection management protocol, 
avatar control protocol, and geometry protocol. Sending the avatar control 
protocol allows the observer to navigate the VE. This is sufficient for a simple 
walkthrough system. Optionally the observer can receive avatar control messages 
from other avatars, so that its environment is not static, or even the animation 
protocol for highly detailed animation. 

A participant subscribes to the same protocols as an observer, plus 
mandatory support for the animation protocol. The major difference to the 
observer is that the participant supports the interaction protocol. 

An author must at least run connection management and the authoring 
protocol. Usually the author will also run other protocols, so that the user can 
immediately see the effects of his work. 



An application will run connection management and a bi-directional 
simulation protocol: incoming simulation messages are passed on from the actor 
to the application for processing, and the reactions of the application are re- 
inserted into the server's simulation by also using the simulation protocol. An 
application may also choose to subscribe the geometry and possibly animation 
protocol (e.g., for collision detection). 

network of 
virtual environment servers 

fi} connection management 

(5) interaction 

@} geometry 

(7) authoring 

application 

(2) avatar control 

(4) simulation 

(6) animation 

application- 
client 

author 

walk-through 
client 

participation 
client 

observer participant 

Fig. 2 Different kind of protocols are needed for different kind of clients. 

Communication between servers naturally differs from communication between 
client and server, but basically re-uses the protocols already described. Beside 
connection management, server-server communication involves actor migration 
(sending a package containing actor and actor type, mostly the same as the 
authoring protocol), and the usage of the simulation protocol should actors wish to 
communicate over server boundaries. 

10 Implementation 
The possibility to combine protocols allows us to start with a subset of the full 
architecture, and extend it as needed. We have currently implemented a 
distributed system supporting communication for what is characterized above as 



an observer client. Such a systems supports navigation in a large virtual 
environment composed of static geometry (walkthrough) for multiple users that 
can also see each other. Of particular interest is the management of geometry 
data in the very large environment (details can be found in [Schm96]). Client and 
server software support three protocols: Connection management, avatar control, 
and geometry management. 

Connection management basically allows a client to connect 
(init_connection) and disconnect (kill_connection) while the environment is 
running. Upon log-in, the client receives a unique client ID, states his initial 
position and orientation and the size of his AOI, and uploads the user's geometric 
description (avatar) to be seen by other users [Table 2] (column labeled „Dir." 
indicates direction of message - from client to server or vice versa). 

Message Dir. Parameters 
init_connection c—»s client_id, position, orientation, AOI_data, 

avatar data 
kill_connection c—»s client id 

Table 2. Connection management protocol units 

Adding avatar control requires two additional protocol units [Table 3]: With 
update_client_position the client tells the server about its new position after if the 
user has moved. The server uses update_object_position to inform the client about 
movement activity in the client's current area of interest. Movement of both 
animated objects (if the server simulates objects' behavior) and of other users is 
transmitted to the client. 

Message 
update_client_pos 
update_object_pos 

Dir. Parameters 
position, orientation 
object_id, position, orientation 

Table 3. Avatar control protocol units 

Geometry management requires communication in two directions: The client 
decides it needs a particular piece of geometry and issues a request to the server 
(request_geometry). The unit of transmission is a single level-of-detail of a 
particular object. The server packages and sends the requested geometry data 
(transmit_geometry). Additionally, the client must know details about the objects 
in his AOI, so it can compute its needs and issue requests. This information is 
continually kept up to date by the server as the environment changes 
(transmit_object_info). Other necessary information includes: update of the client 
if an object is deleted (e.g. blown up; kill_object), and update of the server if the 
client decides to change the size of its AOI (e.g. if running out of memory; 
update_AOI). Table 4 shows the protocol units. 

Message Dir. Parameters 
request_geometry c—»s object_id, lod_no 
transmit geometry s—>c object_id, lod no, geometry data 
transmit_object info s—>c new_object id, object info data 
kill_object s—>c object_id 
update_AOI c—»s AOI data 

Table 4. Geometry management protocol units 



Our experiments show that the geometry management as provided by the protocol 
bring significant savings in the amount of consumed network bandwidth. Not only 
can a geometry database with well-designed levels of detail yield a net traffic 
reduction of 2-3 times, but also the peak network load is much lower, since the 
transmission of single levels of detail instead of complete objects (all levels of 
detail) tends to distribute the network load much better. 

11 Conclusion and future work 
We have presented a framework of protocols designed to be used for special 
communication needs in client-server virtual environments. They address 
simulation, animation, interaction and VE authoring, and can be combined as 
needed for multiple levels of participation in the VE. Separating these tasks in 
different optimized protocols leads to more efficiency in using the given 
bandwidth of today's computer networks. 
Our current implementation allows walkthrough and observation of large multi- 
user virtual environments by supporting connection management, avatar control 
and geometry management. Support for the complete communication framework 
as outlined in this paper is under development. The framework will also allow 
integration of new protocols, such as support for text or audio based participant 
communication, that we plan to include in a future project. 
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1   Introduction 

MAVERIK is a system under development which is designed to support large-scale in- 
dustrial and other applications of virtual reality. At the present time it is being used to 
investigate the development of new CAD interfaces, and for the modelling of buildings 
with integrated radiosity solutions. 

It also serves as a testbed for experiments with new algorithms in areas such as naviga- 
tion of complex environments, 3D manipulation and construction of models, and per- 
formance issues such as culling and level-of-detail techniques, customised for different 
applications. 

In developing MAVERIK we are also investigating architectural issues for VR software 
systems for large-scale applications. 

2   Background 

An earlier paper [1] set out a number of important issues for VR system design, some 
of which were investigated in the AVIARY system [2, 3]. In 1993 we began a collabora- 
tive project with CADCentre Ltd in Cambridge, to explore the potential of VR systems 
for the design of very large-scale process plants - structures such as oil refineries, North 
Sea oil rigs, chemical plants, and power generation plant. Preliminary results from this 
work have been reported elsewhere [4]. An early finding was that these models were 
so complicated that neither AVIARY, nor typical off-the-shelf or public-domain VR sys- 
tems, would be capable of handling them with anything approaching an acceptable frame 
rate. This led directly to the design and development of MAVERIK, reported here. This 
new system provides a vehicle for us to research a wide range of VR issues, including 
those outlined in the previous paper. 

In most VR and related graphics systems, the modus operandi is to import a model into 
the system, which stores the geometry and other data in a form optimised for the sys- 
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tern's own purposes; examples include dvS [5], DIVE [6], AVIARY, BrickNet [7], IRIS 
Performer [8], Inventor, VRML viewers, Superscape. With these systems it is relatively 
simple to implement a parser to import data and to produce a walk-through of the result- 
ing model. They also have programming interfaces which permit applications to create 
and modify objects at run time. Usually, simple manipulations, such as picking up an 
object and moving it are also supported. 

The difficulty with such an approach is to integrate application-specific knowledge in a 
way which gives the resulting virtual environment a 'realistic' behaviour. For example, 
consider carrying an object like a ladder through a restricted space such as a doorway. 
Not only must we have efficient methods for the user to navigate in the virtual envi- 
ronment, but he or she must also be able to manoeuvre the ladder past any obstacles. 
Performing such tasks efficiently requires customised algorithms which can directly ac- 
cess the data structures associated with the specific application - a CAD database for 
example. On the other hand, merely using a VR library, such as the MR Toolkit [9], 
gives insufficient support for a range of common features, such as picking, manipula- 
tion, navigation, and collision detection, so that too much work must be performed each 
time a new application is to be written. 

There are systems where this kind of behaviour can be provided, but again the data must 
usually be imported and restructured into the internal form required by the system itself. 
An example is the Jack software [10] which provides extensive support for simulation of 
human activities in virtual environments. Object-oriented systems with suitable class li- 
braries provide a rich environment for rapid prototyping [ 11 ]. But for large applications, 
with a substantial effort already invested, it is not practical to rewrite the code. Here, 
some middle way must be found to provide a common kernel of VR functions which 
are easy to interface to existing databases, CAD techniques and simulations. It is this 
problem that MAVERIK attempts to address. 

3   MAVERIK Components 

A fundamental feature of MAVERIK is its extensive use of callback functions to cus- 
tomise behaviour. Perhaps the best analogy for this is a window system, such as X, 
in which the core functions can be adapted for different applications by writing appro- 
priate callbacks. In some ways MAVERIK is like a window system, but manages 3D 
space rather than a 2D display. In order to avoid writing substantial amounts of new 
code for each application, MAVERIK supports a library of algorithms and techniques. 
Where these do not meet requirements, the defaults can be used as a starting point for 
customised versions. 

MAVERIK comprises a number of software components, written in ANSI standard C. 
Some of these are shown in Figure 1: 
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MAVERIK kernel 

Figure 1: MAVERIK software components 

SMS: which stands for spatial management system (data structures and associated al- 
gorithms). Spatial management lies at the heart of any VR system. It is required 
for tasks such as culling and level-of-detail processing, navigation, and collision 
detection. We have developed several different SMSs, including regular voxel 
(gridcell) structures [12], hierarchical gridcells (which include the subsets of K-d 
trees and octrees), and hierarchical bounding volumes. MAVERIK currently sup- 
ports bounding volumes, hierarchical bounding volumes, gridcells, and hierarchi- 
cal gridcells. 

Culling and level-of-detail processing: we have also developed a number of culling 
algorithms which depend on the different types of SMS. They are implemented 
so that the basic culling is performed in an application-independent manner, us- 
ing callback functions to perform the display of visible primitives. In MAVERIK, 
LOD processing is the responsibility of these application-dependent display call- 
back functions, but the culling algorithms can provide assistance with this. For 
example, the hierarchical bounding volume SMS can compute the projected sizes 
of bounding volumes, and this is then used as one parameter controlling detail. 
MAVERIK is designed to maintain other LOD parameters, such as rate of move- 
ment, and system 'stress'. A separate paper gives details of our experiments and 
a comparison of the performance of the different SMSs for this purpose [13]. 

Navigation: is used to move a participant around a VE. Movement may be constrained 
- for example to prevent walking through walls, to improve ease of control for 
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walking across flat surfaces such as floors, and moving up/down stairs. Naviga- 
tion also needs to be customisable for different applications. It requires access to 
model attributes which define, for example, surfaces on which a user may 'walk'. 
Navigation methods may also vary depending on the task being undertaken. Thus, 
unconstrained movement may be acceptable when designing and constructing a 
model, but not suitable when simulating movement of an end-user through a fin- 
ished design. 

Collision detection: is intimately linked with the SMS, which provides a rapid method 
for narrowing the search space in very complex models. Again, customisation for 
specific applications is provided via callbacks. CD also interacts with navigation. 
For example,'it may be possible to carry a ladder through a doorway, but only if 
it is held in a way which enables it to pass through the opening. 

Constraint-based manipulation: is responsible for allowing objects to be picked up 
and manipulated. Again, the SMS plays a central role, but customisation is nec- 
essary. It is part of our thesis that VR interfaces are quite difficult to use for con- 
struction tasks, unless manipulation and constraint rules are applied. For example, 
in the case of process plant design, the system must play the role of an intelligent 
assistant, checking that specific components can be joined, and accurately align- 
ing them. The rules which control this are associated with the particular appli- 
cation and this requires that the VR system be intimately coupled with the com- 
ponent database. It will not generally be easy to support such behaviour in sys- 
tems which import models and store them in an internal format. Our experience 
with PHIGS has demonstrated convincingly that maintaining a separate graphics 
database, while advantageous in many respects, results in a large duplication of 
code and a lot of housekeeping to keep the application and graphics models in 
step with each other [14]. 

Input processing: basic input processing - handling events such as head movement, 
3D sensor movement, and spoken input - is managed by MAVERIK. Again, call- 
backs can be registered (and re-registered to change behaviour) for these different 
types of input, and for actions such as 3D mouse button clicks. All coordinate data 
is converted into a single world coordinate system, although multiple modelling 
coordinate systems are supported. This permits convenient coordinates to be used 
for object definitions, and provides for some other interesting effects. For exam- 
ple, a user's virtual body may be defined in metres, whilst an application could 
use light years. The user can then grow or shrink by changing their body size. In 
the case of process plant design, the user may want to shrink a model, so that it 
appears as though on a table. Parts can then be assembled and disassembled with- 
out reaching over long distances. But the scale relationship between the user and 
environment may need to be reset to one-to-one to simulate navigation, or real 
maintenance procedures. 

Application code and data structures: provide the necessary functions to customise 
the behaviour of the other components, via callbacks. An application can elect to 
use a standard set of callbacks, or to provide its own way of doing things. 
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Parsing external file formats: generally, we regard the parsing of external file formats 
as an application-specific function. However, to help in prototyping applications, 
MAVERIK supports a range of parsers and filters. Currently, we can read file for- 
mats associated with the CAD applications, and the Manchester Scene Descrip- 
tion Language (MSDL) [15]. Filters allow us to convert between MSDL and other 
formats such as VRML, Inventor, Radiance, and DXF. Functions are provided for 
populating the SMS with different types of primitives, and a range of these is al- 
ready supported (see below). 

4   Objects 

In general, MAVERIK makes no assumptions about an application's data structures, but 
relies on the concept of objects within an application. All objects which MAVERIK is re- 
quired to handle are accessed via generic pointers. Processing is carried out via a generic 
callback mechanism within the kernel. The actual callback functions are specified by an 
application - much like the X Window system - although MAVERIK includes a useful 
set of defaults. 

To give a simple example, suppose that we wish to display a model comprising primi- 
tives such as polygons, boxes, cylinders, cones, toruses. MAVERIK provides a default 
set of data structures for storing these, methods for populating the SMS data structures, 
and for displaying them. It also provides different SMS techniques which link to the 
application-specific data via pointers. It makes no difference to the MAVERIK kernel 
whether the data is stored in a tree, a linear list, or some other format, provided that the 
callbacks registered with the kernel are customised for the selected method. Thus, if an 
application can be built easily using the default primitive types and functions, then al- 
most no programming is required. On the other hand, if complicated composite objects 
are needed then appropriate functions for handling these must be written. 

MAVERIK objects are divided into classes. A class is defined by an application, together 
with corresponding methods for kernel operations such as creating and destroying ob- 
jects, picking objects, and displaying objects of this class. Methods are created by reg- 
istering the appropriate callback functions. 

The system also allows objects to be inserted into different SMSs, and a distinction is 
drawn between static and dynamic objects. Parts of the environment which are dynamic 
will include moving objects (including those being manipulated by a user), and tempo- 
rary information such as toolkit widgets (menus, cursors etc.). MAVERIK handles these 
objects differently from static ones, which are assumed to make up the majority of the 
model. Static objects are inserted into one of the optimised SMSs, such as a hierarchy 
of bounding volumes. Such structures are essential for large models and provide the key 
for efficient culling, object selection, collision detection and navigation. An object's sta- 
tus can changed as required between the two states. Typically, objects will be static until 
they are required to move or change in some way, at which time they become dynamic 
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autonomous 
processes 

Figure 2: MAVERIK controller 

and are temporarily removed from the SMS. Once they stop changing - for example, if 
a user has picked them up but then puts them down again - they revert to being static 
and are reinserted into the SMS. 

An important tenet of MAVERIK is that it is not possible to design any individual com- 
ponent in a way which will work well for every application. Thus, all graphical display 
is handled via application-specific functions. This permits extensive optimisation. For 
example, when displaying a radiosity model, the hierarchy used in the radiosity solution 
is also used for level-of-detail display. 

5   Control Structure 

At the time of writing, MAVERIK programs have a simple global loop control structure, 
akin to the event processing loop of window systems like X. This has permitted us to 
get a prototype working quickly and to demonstrate its application to different environ- 
ments. However, the design of MAVERIK includes a threads-based parallel controller 
which will manage different tasks within the system, using management statistics to con- 
trol processing whilst meeting any real-time constraints. Pre-emptive thread scheduling 
is required. Figure 2 shows how the controller manages a series of lightweight pro- 
cesses responsible for head and hand tracking, display frame control, and processing 
of autonomous objects. Other threads can be associated with the software components 
mentioned previously. For example, some of our culling algorithms can be parallelised, 
and in this case multiple threads could be employed. The goal of the threads-based de- 
sign is to have an implementation which can migrate seamlessly from a uniprocessor 
workstation to a machine with multiple processors. 
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6   MAVERIK environment 

MAVERIK is being developed on standard workstations, primarily Silicon Graphics ma- 
chines. Current versions use the GL library, but we plan to migrate to OpenGL to provide 
portability to other machines. As an aside, it is worth commenting that we prefer to use 
OpenGL to Inventor, because the latter forces too many decisions upon us about how to 
structure our data, akin to our previously mentioned experiences with PHIGS. We are 
experimenting with caching of display code, but in general we use tuned, immediate- 
mode output. 

Our Advanced Interfaces Laboratory houses a Crimson/VGXT with videosplitter, and 
this is used to drive an Eyegen-3 head-mounted display, a large-screen Sharp stereo- 
scopic projection system, a Roland sound system, and to accept inputs from Division 
3D mice (Polhemus-based), and a speech recogniser. This, and other workstations, are 
connected to a KSR1 parallel machine and a Silicon Graphics Challenge multiprocessor, 
on which we develop our parallel threads-based algorithms. 

7   Applications 

7.1   Process plant design 

The design of process plants is expensive and multidisciplinary. We are exploring ways 
in which VR can be used to develop interfaces for interactive model building, and for 
reviewing designs. MAVERIK can be used with our large-screen stereoscopic projection 
system, in which mode it can be viewed by several people simultaneously, or with the 
HMD. Interaction is by means of the 3D mice. 

Figure 3 shows two views of a typical model. The upper one shows a more general view, 
and the lower one a closer position. The raw (binary) data file for this plant contains 5 
megabytes of geometric data. This geometry describes high-level primitives, such as 
pipes, valves, and vessels, each of which require many (10-20 polygons to display. 
With MAVERIK we have been able to build a walk-through of these plants and to exper- 
iment with different culling and level-of-detail methods. Changing between a gridcell 
and hierarchical bounding volume algorithm is transparent to the application, because 
it merely requires that a different SMS method is selected. The SMS is populated with 
pointers to data stored in the application's data structures and the culling algorithm auto- 
matically calls the application-specific display functions to generate the displayed prim- 
itives. The display functions are called only for those primitives within the view volume. 
The view volume is updated by MAVERIK, but how this is done depends on the selected 
navigation technique. This will be different if the HMD is used than when using the pro- 
jection system, as it takes account of the user's head movements as well as movement 
of the user's 'body' through the environment. 
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Currently we can achieve an average frame rate of 10 frames per second for the model 
illustrated here, and 6 fps for a larger model described by 19 megabytes of raw data [13]. 
Access to the application data structures is essential. We are developing new navigation 
methods which use application knowledge to constrain movements and provide a nat- 
ural means for moving through the environment, to climb stairs and ladders and avoid 
obstacles. 

7.2   Interactive radiosity 

The second application is the modelling of buildings, and incorporates work on paral- 
lel, interactive radiosity solutions [16,17]. The ability to link application data structures 
directly into MAVERIK means that the hierarchical data structures used for the radiosity 
refinement can also be used to display the results, and can be integrated into LOD selec- 
tion. The radiosity solver runs on a parallel computer and passes data to a walkthrough 
program implemented with MAVERIK. It employs a cell-to-cell visibility method simi- 
lar to that proposed by Teller et al [18, 19]. Each cell contains a list of portals through 
which other cells are potentially visible. Within each cell the objects are clustered into a 
hierarchy of bounding volumes. Thus, in this application, the culling method is adapted 
to take account of the cells. But for each cell the same culling methods are used as in 
the CAD application. Thus a different culling method is registered, but internally it calls 
the same method used by the CAD application. 

The display functions use the results of the radiosity computations directly for display. 
Because a hierarchical method is employed, the application data is arranged as a quadtree 
with SMS pointers to individual subtrees. Level-of-detail processing involves descend- 
ing the quadtrees to an appropriate level and the application-registered display function 
is optimised for this task. 

Figure 4 shows two examples of virtual environments for which a radiosity solution has 
been computed. The upper one is a view of a corner of our VR laboratory. The lower one 
shows a close-up of part of a larger model of a garage. We are undertaking a study with 
the Greater Manchester Police, on the use of VR for crime investigations, and for train- 
ing. (This garage was the scene of a murder.) Other current projects include modelling 
an Abbey, and modelling the Silicon Graphics Reality Centre at Theale near Reading, 
England, in collaboration with SGI. 
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Abstract. In terms of the required computing power, virtual environments are 
an expensive interaction model for human-machine communication, which is 
one of the reasons for distributing them. In this paper we present the MPSC 
(Modifier Presenter Sensor Controller) domain decomposition model for distri- 
buted virtual environments and its key concepts. The MPSC model establishes a 
logical concept for the integration of parallel rendering algorithms and paralleli- 
zed application modules into virtual environments. Beside the aspects of distri- 
bution and parallelization, this model serves additionally as a flexible research 
platform to explore various aspects of distributed virtual environments, inclu- 
ding those with multiple users. 

1 Introduction 
Distributed virtual environments for multiple users are an interesting research field in 
the computer graphics area, and several realization approaches have already been 
emerged [1][2][3][4][5]. The main characteristic of multi-user distributed virtual envi- 
ronments is, that more than one human user interacts in the virtual environment, and 
the components of the virtual environment are distributed over several computing 
nodes, which are connected by a network. 

In this paper we present the MPSC (Modifier Presenter Sensor Controller) model as a 
functional domain decomposition model for multi-user distributed virtual environ- 
ments. The MPSC model establishes a logical concept for the integration of parallel 
rendering algorithms and parallelized application modules into virtual environments. 
Beside the aspects of distribution and parallelization, this model serves as a flexible 
research platform to explore various aspects of distributed virtual environments, 
including those with multiple users. 

We observe two fundamental reasons or driving forces for the distribution of virtual 
environments. First, with the availability of long distance high bandwidth connections, 
the term distributed is often used, because the participating users in a virtual environ- 
ment are geographically distributed, and therefore the hardware components which are 
associated with these users, too. Second, the required computing resources for a virtual 
environment are not only high, but additionally they are heterogeneous. In the heteo- 
geneous computing field it is quite well known, that such problems must also be sol- 
ved within a heterogeneous computing environment [6]. The importance to integrate 
various maschines like graphics engines and parallel supercomputers as a hardware 
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platform for virtual environments was recently noticed by [1]. 

A look at the main cycle of an abstract multi-user virtual environment reveals, that 
there are three fundamental tasks which must be executed for each of the participating 
users. These three tasks are: 

• Rendering the current scene graph as fast as possible. 

• Handle the input events, which are generated due to the actions of the human 
user. The human users interact with virtual objects through input devices[7], 
which create these input events. 

• Modify objects in the scene graph in order to evolve the virtual environment. This 
requires some care in order to preserve the consistency of the system, i. e. several 
users should not access the same object in order to modify it at the same time. 

The critical components are the scene modification and the rendering, which suggests, 
that the scene modification and the rendering of a virtual environment can be distribu- 
ted too. Note, that the term distributed is used here in the sense of a parallelization, in 
order to cope with more complex virtual environments. Such a parallelization is nee- 
ded, because virtual environments are systems with a high degree of interactivity. This 
means, that at least 10 frames must be rendered per second, or in other words, the main 
cycle should not take more than approx. 100 milliseconds. This maximum main cycle 
length is the fundamental limitation for the complexity of the virtual environment. It 
limits both, the graphical complexity of the scene, and also the complexity of the 
modification algorithms in the virtual environment. Graphical complexity is usually 
measured with the number of graphical primitives which can be rendered per second. 
The complexity of the modification algorithms can be measured e. g. with the number 
of required floating point operations. If the scene modification and rendering are both 
performed on a standard graphics workstation, we observe, that the available graphics 
hardware is not very effectively used. This is, because the graphics pipeline will be 
idle as soon, as it is not feeded with data, which happens immediately during the scene 
graph modification. 

A naive approach to enhance performance is the dedicated use of the graphics work- 
station for rendering, and the use of another processor for modifying the scene. It is 
obvious, that the more human users interact in a virtual environment, the more compu- 
tations must be done. Such an architecture is not scalable and will therefore soon reach 
its limits. Especially when the scene modification, i. e. simulation, in these virtual 
environments becomes complex [8], the realtime requirements call for a parallel 
implementation on a scalable architecture of these simulations, e.g. on a distributed 
memory architecture. Some recent work towards this direction is e. g. the connection 
of a CAVE to a CM-5 for the dynamic steering of distributed scientific simulations 
[9]. 

A requirement of this approach is, that enough computing nodes are available, so that 
all needed computations are done in parallel. However, when the computing nodes are 
directly coupled to the users, the computing nodes must transfer their results to all 
users, a fact which limits the usability of this approach because of two reasons: First, 
not every computing node has independent output channels to the hosts, where the 
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scene is presented to the users. Second, each node must be able to handle all user rela- 
ted issues, e. g. the registering or withdrawal of a particular user, which reduces the 
time, that each node has available for computations. It is therefore necessary, to 
decouple the users from the modifying nodes with a controller instance, which leads to 
the MPSC model. 

2 The MPSC model 
The MPSC model as shown in figure 1, is a functional domain decomposition model 
of virtual environments into four different domains, i. e. each domain is characterized 
by the presence of a particular functionality. We call these four domains the modifier, 
presenter, sensor and controller domain. The presenter and the sensor domain together 
can be thought as a frontend which is associated with the human users, and the control- 
ler and modifier domain as the backend of the implementation of a virtual environ- 
ment. 

Conceptually, each domain consists of several independent nodes which in turn con- 
tain several components. The communication of these components requires the ser- 
vices of an appropriate connection network. The separation of the frontend and the 
backend favours the establishment of a natural security boundary and supports the use 
of this model for the implementation of virtual environments for security sensitive 
applications. However, the MPSC model proposes a logical decomposition, therefore 
it is possible to map components from different domains onto several processing nodes 
of the same parallel maschine. 

Oensor Presenter 
domain domain 

frontend 

backend 

Controller 
domain 

I 
Modifier 
domain 

Fig. 1. The MPSC domain decomposition model 

Presenter domain. The functionality of the nodes in the presenter domain is to present 
the virtual environment in a form which can be preceived by humans, in order to pro- 
vide a feedback to the users about their actions. This includes not only visual rende- 
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ring, but also auralization as well as haptic feedback [10]. Parallel rendering 
algorithms are supported by tagging objects for a particular distribution scheme. 
Another functionality of the presenter domain are not human, but virtual observers. A 
virtual observer is a software object, which "perceives" the scene or parts of it. 

Sensor domain. The input devices are located in the sensor domain, and the input data 
sets which are created in the sensor domain are transfered to the controller domain, 
where they are evaluated. The task of the sensor domain is therefore, to provide input 
data sets which are associated with a particular user. In analogy to the virtual obser- 
vers, there exist also virtual input devices, which are handled by virtual observers. A 
virtual observer with a virtual input device can be used, e. g. for collision detection. 
Every time, when objects of the scene which are observed by a virtual observer col- 
lide, the virtual observer notifies the controller domain by using its virtual input 
device. 

Modifier domain. The scene graph, which describes a particular virtual environment 
is not a static data structure, but a dynamic one, i. e. the scene graph reflects the state of 
a virtual environment only for a moment. The task of the modifier domain is therefore 
to provide appropriate objects, which modify the scene graph. Independent modificati- 
ons can be executed in parallel. 

Controller domain. Finally, the task of the controller domain is to connect the nodes 
in the sensor, presenter and modifier domain, and register dynamic components, e.g. 
the entering resp. withdrawal of human users into resp. from the virtual environment. 
The controller domain by itself is not monolithic, but consists of connected objects and 
components which communicate with each other in order to satisfy the above mentio- 
ned requirements. In what follows, we explore some key concepts, which characterize 
an implementation of a virtual environment under the MPSC model in more detail. 

2.1 Dual Scene Graph Traversal 
A particular virtual environment is described through a scene graph, consisting of 
heterogeneous node types. In order to support research in the area of high-level des- 
cription methods for distributed virtual environments, our strategy is to transfer as 
much functionality as possible from the system into the scene graph nodes. Especially, 
the scene desciption language is not static because a particular parser is used, but the 
nodes have the ability to read themself from a stream resp. write themself into a stream 
[11]. This enables the designer of a virtual environment to modify the scene descrip- 
tion and add new functionality to the system, just by creating new node types, or by 
deriving new node types from already existing ones. 

The semantics of the abstract scene graph node base class is extended, to allow not 
only the definition of objects, but also the declaration of dynamically created objects 
in other domains, which means, that the scene graph consists of definition nodes and 
declaration nodes. Objects which are derived from a definition node exist, as soon, as 
such a node is created. But objects, which are derived from a declaration node must 
first be linked with another dynamically registered object in order to be an active node 
in the scene graph. An implication of this mechanism is the dual scene graph traversal, 
as shown in the following figure 3. The term dual scene graph traversal means that the 
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scene graph is not only traversed in the presenter domain in order to render the scene, 
but also in the controller domain, with another functionality. This dual scene graph tra- 
versal is done in an asynchroneous manner. This means, that the frequency of the 
scene modification is another one as the frequency of the presentation, which is essen- 
tial to preserve the interactivity of a virtual environment. The result of the asynchrone- 
ous dual scene graph traversal in the MPSC model is similar to the effect, which is 
achieved by the decoupled simulation model [5]. 

Controller 
domain Presenter 

domain 

PDi>mTnivorsc(...): 

Fig. 2. Dual scene graph traversal 

The term dual scene graph traversal means that the scene graph is not only traversed 
in the presenter domain in order to render the scene, but also in the controller domain, 
with another functionality. Hence, the functionality in the controller domain is directly 
related to the functionality of the used node types in a particular virtual environment. 

When a new user enters an already running virtual environment, only the scene graph 
nodes, which are relevant to the rendering are transmitted from the controller domain 
to the host of the new user. The criterion, whether a node is relevant for the rendering 
depends upon if it is presentable. This technique avoids the traversal of nodes, which 
have no meaningful semantics for a rendering process. Also, the nodes in the presenter 
domain are updated by the controller domain incrementally, because even with high 
speed inderdomain connections, it is unreasonable to transfer the whole scene graph, 
only because a few scene graph nodes have changed. 

2.2 Parallel Scene Modification 
The virtual environment is modified, by modifying the objects of a scene graph. Under 
the MPSC model, all modifications (e.g. simulations) of the scene graph nodes are 
done in the modifier domain, which means, that each computing node in the modifier 
domain contains a number of modifier objects, which modify the scene graph nodes. 
These modifier objects are instances from classes, which are derived from an abstract 
modifier base class. In order to support research in the field of object behaviour in vir- 
tual environments, it is necessary, not to restrict the paradigm, how the behaviour of 
virtual objects is modeled and implemented. The more human users participate in a 
virtual environment, the more modification requests must be handled in the modifier 
domain.This leads to the natural conclusion, that the modifier domain is a first candi- 
date for the implementation on a scalable parallel architecture. No input or output 
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devices are needed in the modifier domain, but a high bandwidth connection to the 
controller domain is required. The MPSC model does not specify, how the nodes in the 
modifier domain communicate with each other, therefore it is outside the scope of the 
MPSC model, whether and how a modifier object implements its task in parallel. 
When a modifier object is instantiated, it must register itself in the controller domain, 
because only modifier objects, which are registered in the controller domain, are 
known. For example in the configuration of figure 3, four computing nodes exist in the 
modifier domain, and the three modifier objects Mj, M2 and M3 are registered and 
known in the controller domain. The modifier object M2 uses some supporting objects 
Xj, X2 and X3, which are unknown in the controller domain. 

Modifier 
domain 

node 

nodei 

Ksontrollcr 
domain 

Fig. 3. Modifier objects 

Modifier objects are represented in the scene graph through computation nodes1, and 
each computation node is linked to a proxy of a registered modifier object, because a 
computation node is also a declaration node. In order to support the portability of a vir- 
tual environment under various configurations, it is necessary, that the references to 
modifier objects through computation nodes in the scene graph are location transpa- 
rent. On the other hand, the modifier objects cannot inquire, which computation node 
resp. nodes in the scene graph is resp. are linked to their proxys. Therefore it is natural, 
that the data transfer from the controller to the modifier domain is driven from the con- 
troller domain. The communication peer in the modifier domain is not an modifier 
object, but a kind of a communication control object, which receives the input data, 
activates the modifier object and transfers the results back to the controller domain. 
Hence, the data transfer and the message passing is hidden for the modifier objects, 
and therefore transparent. In this sense, the controller domain can also be seen as an 
object request broker between the presenter and the modifier domain. 

2.3 User Categories 
We experience every day, that the behaviour of humans is not uniform, and a key con- 

1. Note: A computing node is a host in the modifier domain, whereas a com- 
putation node is an object in the scene graph. 
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cept of the MPSC model is to support non-symmetric virtual environments, where the 
users behave also non-uniform. Non-symmetric virtual environments have been build, 
e. g. in [12], but at the cost, that this feature dominates the design of the whole system 
architecture. A mechanism to model this non-uniformity are user categories. A human 
user has therefore not only a name under which he or she is registered, but also 
belongs to a user category. This allows to model very precise the roles and rights of 
each user category in a particular virtual environment. For example, a virtual environ- 
ment could give to a user of the participant category more rights than to an user of the 
observer category. 

The tool to describe the rights of user categories is the so called user node. With the 
help of an user node, an arbitrary subgraph is declared as a template for a particular 
user category. Whenever a new user of this category enters the virtual environment, a 
copy of such a template is activated, by inserting it in the scene graph. The number of 
children in an user node reflect directly the number of active users in the associated 
category, and an user node without children means, that at this moment there is no user 
of the associated category active. 

Presenter domain 

Controller domain 

template 

Fig. 4. User categories 

3 Requirements for a hardware platform 
Because the MPSC model is a functional decomposition model, a heterogeneous hard- 
ware platform is favoured for a particular implementation under this model. We 
already argued in this paper, that it is necessary, to parallelize the modifier domain, by 
using a scalable architecture, therefore we focus in this section on the controller, pre- 
senter and the sensor domain. The controller domain is central to the implementation 
of an virtual environment under the MPSC model and in order to avoid a bottleneck, 
the nodes in the controller domain require high bandwidth interdomain connections to 
the nodes in the modifier, presenter and sensor domain. The huge amount of graphical 
primitives in the visual representation calls for the use of high-end graphics worksta- 
tions for the presenter domain, but also parallel architectures with rasterizer hardware 
can be used for that domain as we will see in the example in the following section. 
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Compared with the interdomain connection between the controller and the presenter 
domain, the bandwidth of the connection between the sensor and the controller domain 
can be much smaller, because the the input data sets are normally small data packages 
and not high volume data sets. 

4 Example 
We implemented an application prototype for realtime visualization of particles in a 
flow field from automotive industry, on the MANNA [13] / VISA [14] architecture, a 
typical frame from the running system is shown in (see Appendix). It allows an user to 
place interactively particles in a flow field whose flow is visualized. The system runs at 
an interactive speed with more than 23 frames per second and can handle up to 5.000 
particles. The evaluation of the local velocity of the particles is done in a static flow 
field on a regular grid with trilinear interpolation and the integration of a particle trace 
is done by a fourth order Runge-Kutta method [15]. This evaluation in the modifier 
domain is parallelized over 10 MANNA nodes. In the presenter domain we have a Ten- 
derer, which is parallelized over 5 MANNA nodes [16]. One MANNA node serves in 
the controller domain and finally a workstation with a attached spacemouse represents 
a node in the sensor domain, as shown in figure 5. This configuration of the application 
prototype under the constraints of the MPSC model was found empirically, there is no 
support for automatic configuration. A classification of configurations for distributed 
flow field evaluation can be found in [17]. 
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Fig. 5. Functional decomposition of the application prototype 
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5 Conclusion 
In this paper we presented the MPSC domain decomposition model for distributed vir- 
tual environments. The illusion of reality in a virtual environment depends much on 
how real the behaviour of the objects in such an environment is modeled, and how 
good a human user can interact with this environment. Therefore high compute power 
and high graphics performance are required. It is very unlikely, that a monolithic archi- 
tecture can satisfy both requirements and therefore we must look for ways, how to 
implement virtual environments in a distributed way on heteogeneous machines. To 
realize virtual environments for multiple human users implicates, that also multiple 
modifictions are to be executed in parallel, a fact which favours the use of parallel 
architecures in the modifier domain. Therefore we had the following requirements for 
a functional domain decomposition model for distributed virtual environments: 

• It should split the resources into distinct natural computing domains with clear 
responsabilities, and thus serve as a guideline for the distribution and paralleliza- 
tion of the functionality of a virtual environment. Both, parallel rendering algo- 
rithms and parallelized application modules should be supported. 

• It should be applicable for a wide range of heterogeneous hardware plattforms 
from high-end graphics workstations to parallel shared or distributed memory 
architectures. The heterogenicity means that we want to use for example the high- 
end graphics of one machine for a node in the presenter domain and the compute 
power of another machine for the modifier domain. 

• Multiple users, which navigate and interact within the virtual environment, each 
one with its own view of the world should be supported. Also, research in the area 
of multi-user virtual environments, where the users are not uniform should be 
supported. 

• The paradigm, how the behaviour of the objects in the virtual environment is des- 
cribed, modeled and implemented, should be not restricted, in order to establish a 
flexible reseach platform for these fields. 

• Finally, it should be open enough, to add incrementally new functionality to the 
system. 

These requirements lead to the MPSC model, and by exploring it, we expect new 
results and insight in the intrinsics of functional distributed multi-user virtual environ- 
ments. 
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Abstract 

To build virtual environments with interesting behavior it is desirable 
to use a high level language suitable for complex symbolic computations. 
But languages such as Lisp, Prolog and Smalltalk do not support concur- 
rency, reactivity and real-time control which are vital for Virtual-Reality 
(VR) applications. However the new concurrent constraint programming 
paradigm in general, and Oz in particular support these requirements. 
Oz is designed to support multiple concurrent agents, which makes it 
well-suited for VR-applications. We have therefore implemented a basic 
interface between Oz and a toolkit for building distributed VR applica- 
tions, DIVE. Furthermore we have developed a object layer for supporting 
agent abstractions. We are using this to build a framework for Agent 
Oriented Programming (AOP) specialized for denning agents in virtual 
environments for simulations. The framework is used to develop a system 
allowing collaborative configuration of virtual battlefields and battle sim- 
ulations where the computer generated forces are controlled with spoken 
natural language. 

1    introduction 
DIVE [Hag96] (Distributed Interactive Virtual Environment) is a tool kit for 
building distributed VR applications in a heterogeneous network environment. 
DIVE allows a number of users and applications to share a Virtual Environment 
(VE) where they can interact and communicate in real-time. This virtual envi- 
ronment is a database of entities: graphical objects (views), and hierarchically 
organized abstract objects (DIVE objects). The database is actively replicated 
among all sites participating in a DIVE world. Each replica is controlled by 
an Application Process (AP) that manages the movement and interrelationship 
between the objects component parts and responds to interrupts generated by 

changes in the objects environment. 
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In order to implement interesting behaviors in a DIVE world, APs become 
quite complex programs. To handle this complexity it is desirable to use a 
higher level language. We have therefore implemented a basic interface between 
Oz [Smo95] and DIVE. Above this have we implemented an object layer (agent 
abstraction) to further aid in the developing of complex APs. The agents may 
have a graphical representation in DIVE worlds and a clock with which it can 
determine its behavior. First, we will give overviews of the DIVE system and the 
Oz programming language. Then we will describe the interface between them, 
the object layer, and some examples of usage. Finally we will present the work 
we are doing on a AOP framework for simulations and an application using it. 
and a discussion of future work. 

2 Overview of the DIVE system 

DIVE is an experimental platform for the development of virtual environments, 
user interfaces and applications based on shared 3D synthetic environments. 
DIVE is especially tuned to multi-user applications, where several networked 
participants interact over any network supporting IP protocols. 

DIVE is based on a peer-to-peer approach with no centralized server, where 
peers communicate by reliable and non-reliable multicast, based on IP multicast. 
Conceptually, the shared state can be seen as a memory shared over a network 
where a set of processes interact by making concurrent accesses and updates to 
the common memory. 

Consistency and concurrency control of common data (entities) is achieved 
by active replication and reliable multicast protocols. Update messages are sent 
by multicast so that all nodes perform all updates. To achieve consistency at 
the individual DIVE entity level, entitys may have locks that should be acquired 
by the manipulating process. The process that creates a DIVE entity initially 
acquires the lock. 

The peer-to-peer approach without a centralized server means that as long as 
any peer (AP process) is active within a world, the world along with its entities 
remains "alive". Since entities are fully replicated (not approximated) at other 
sites, they are independent of any particular site, and can exist independently 
of the creator. 

DIVE and the Oz interface can be obtained from 

http://www.sics.se/dive 

3 The Oz Language 

Oz is a concurrent constraint programming language designed for applications 
that require complex symbolic computations, organization as multiple agents, 
and soft real-time control. It is based on a new computation model for higher 
order concurrent constraint programming CCP, that provides a uniform founda- 
tion for functional programming, constraint and logic programming, and concur- 
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rent objects with multiple inheritance. From functional languages Oz inherits 
full compositionality, and from logic languages Oz inherits logic variables and 
constraints (including feature and finite domain constraints). Search in Oz is 
encapsulated and programmable, so it is easy to program e.g. one-solution, 
best-solution, all-solutions, and branch and bound strategies. 

DFKI Oz is an interactive implementation of Oz featuring a programming in- 
terface based on GNU Emacs, a concurrent browser, an object-oriented interface 
to Tcl/Tk, powerful interoperability features (sockets, C, C++), an incremental 
compiler, a garbage collector, and support for stand-alone applications. Perfor- 
mance is competitive with commercial Prolog and Lisp systems. 

Oz and DFKI Oz have been designed and implemented by the Programming 
Systems Lab of the German Research Center for Artificial Intelligence (DFKI) 
at. Saarbrücken. 

DFKI Oz is available for many platforms running Unix/X, including Spares 
and Unix-based PCs. DFKI Oz can be obtained free by anonymous ftp from 
ps-ftp.dfki.uni-sb.de, or through the WWW from http://ps-www.dfki.uni-sb.de/ 

4    ODI-DIVE Oz Interface 

The basic means to manipulate DIVE worlds from any Oz application is provided 
by dynamically linking an interface to the DIVE library, and the DIVE library 
itself. This provides an Oz module called DIVE. The DIVE module provides, 
among others, a set of Oz procedures that give access to the basic DIVE functions 
as move_object and deletejobject. 

4.1    The Object Layer 

Objects are the primary concurrent structuring concept of Oz. They combine 
data encapsulation through procedural abstraction with state and mutual ex- 
clusion. Objects can be seen as service providing agents. The services of an 
object are provided through methods and can be requested by sending messages 
to the object. Objects are created as instances of classes. Classes define meth- 
ods, attributes and features. The definition of a class may involve inheritance 
from other classes. Objects and classes are first-class citizens. They are created 
dynamically. Objects can be spawned as concurrent agents. 

The object layer is a hierarchy of Oz classes, with the initial class DiveObj. 
Each DiveObj object encapsulates a DIVE entity. The main components of the 
object layer are: 

• The DiveObj Class 

DiveObj is a class from which one may create agents that have a graphical 
representation in DIVE. The graphical representation is determined by a 
vr-file [AS94] or by an existing DIVE entity. The class has a number of 
methods with which the coupled DIVE entity can be manipulated. 
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DiveObj inherits from Time.repeat which ean be used to define the real 
time behavior of agents. 

• The CompositeObj Class 

CompositeObj is a class representing composite agent, i.e. CompositeObj 
is a specialization of DiveObj which have methods for creating and han- 
dling subagents. 

• The Class Library 

is a library of "useful" specializations of DiveObj and CompositeObj. 

• The ObjStore 

ObjStore is an object storing DiveObj objects providing methods for broad- 
casting messages to all existing DIVE agents or to a selected subset. 

4.2    A Small Example 

All it takes to make a multi-user football game in DIVE and Oz, some straight 
forward object oriented programming. 

class FootBallObj from StreamObj 
attr 

file:ball 
meth init 

«StreamObj  init» 
«registerCB( 

collision_signal 
proc{$ E> 

0 TId in 
{Dive.getTopmostAncestor E.id TId} 
{Dive.getOrientation TId 0} 
{self setOrientation(O)} 
{self roll} 

end 
end 

)» 
meth roll 

actions<-nil 
«addActions([ 

action(move(pnt(0.0 0.0 3.0))   100 4) 
action(move(pnt(0.0 0.0 2.0))   100 4) 
action(move(pnt(0.0 0.0  1.0))   100 4)])» 

end 
end 
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An object of this class is a concurrent object (agent). All messages coming to 
a concurrent objects are sequentialized so that only one at the time can change 
the state. A FootBallObj object reacts to a collision by taking the direction of 
the object which collided with it and setting its own direction to that. Then it 
will start to move, first quite fast and then slower until it stops.. 

5    A Simulation Framework 

For simulations etc. we are working on a framework for Agent Oriented Program- 
ming (AOP) [Sho93]. The term agent is used frequently these days. We use a 
loose definition of agents: an agent is any process with which other agents can 
communicate. With an intelligent agent we mean an agent that can to some rea- 
sonably complex symbolic reasoning, usually simulating human reasoning. AOP 
is one way of building intelligent agents. In AOP an agent is an entity whose 
state is viewed as consisting of mental components such as beliefs, capabilities, 
choices and commitments. These components are defined in a precise fashion 
and stand in rough correspondence to their common sense counterparts. The 
AOP execution model is quite simple. A clock sends time updates at regular 
intervals to the agents which first reads the current messages, and updates its 
mental state. Then executes the commitments for the current time, possibly 
resulting in further belief change. 

The basic Oz DIVE interface only support AOP by the addition of a clock to 
the objects, giving the means for temporalizing their operators, and the inherited 
features of a language supporting concurrent objects. To further support AOP 
we are developing a AOP simulation framework which basically consists of 

An Agent Class is a class from which AOP agents can be created. The agents 
are represented as concurrent objects with methods for handling requests, 
time ticks, and inform messages. An agents state contains attributes and 
a number of commitment rules which determines its behavior. When an 
agent receives a tick message it checks its commitment rules and triggers 
the rules that are fulfilled. A rule that is triggered usually does some 
computations and changes the state and may invoke some actions. There 
might also be inform rules, which states what must hold for a new value 
of an attribute. 

A Master Class is a class from which objects that controls a simulation can 
be created. Such an object works as the clock in in AOP. There are also 
methods for providing the agents and users with information about the 
simulation state. 

We are using this model for a project involving simulating military entities. 
The aim is a allow collaborative configuration of virtual battlefields and battle 
simulations where the computer generated forces are controlled with spoken 
natural language. 



36 

Figure 1: Configuring a battlefield 

5.1    Battlefield configuration 

Figure 1 is taken from this application in the battlefield configuration phase. 
Here the Chicken is used to configure a battlefield. This can be used for example 
by a lower officer located in the field to describe the situation to his commanding 
officer in the headquarter. The situation may be the actual one or a situation 
that the lower officer perceives as a good or probable one and wants to show and 
discuss with his commanding officer. He does this by configuring the battlefield 
by hatching eggs to military entities. The eggs makes this process simple and 
fast by presenting only valid alternatives for the military entities. "Dusty", the 
fish like agent sucking up a tank, has a "cut and paste" functionality which can 
be useful for rearranging the battlefield. He can suck up things and spit them 
out at different positions. The commanding officer may, for example, use him to 
move and regroup the entities to improve the situation. 

When the field is configured one can start an interactive simulation. 

5.2    Battle Simulation 

For the battle simulation application the general AOP classes are specialized 
to a number of application specific classes. The relationships between these are 
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Agent 

Agent 

Figure 2: The Simulation Architecture 

shown in figure 2 and some them are described below. 

BattleAgent Class is a specialization of the Agent class with numerous meth- 
ods for planning movements and actions. The agents state contains at- 
tributes like amount of ammunition, current health etc. It also contains 
a number of commitment rules which are common to all BattleAgents. 
Orders that are received are converted to commitment rules and actions. 
The conversion process is responsible to not create inconsistent rules or 
rules that does not work together. The agents may be organized hierar- 
chically and for that they have methods to handle subordinates. When an 
BattleAgent receives an order it hence creates a plan for fulfilling it. The 
plan includes adding commitment rules to itself but also directly issuing 
orders to its subordinates. It may even directly add commit rules to its 
subordinates. This violates the idea that the agents should be responsible 
for their state and should be avoided. When a plan is established the agent 
will commit to it as long as possible. If the plan becomes impossible to 
follow the agent discards the plan and tries to create a new. 

BattleMaster Class is a specialization of the Master class with methods for 
finding neighbors, enemies etc using the Map and the Navigator. 

TankAgent Class is a specialization of the BattleAgent class with commitment 
rules for simulating a tank such as rules for planning attacks on individual 
enemy entities, regrouping defending and for retreating. There are also 
rules for switching between those activities if the situation (state) demands 
it. There is for example a rule that says that if health is low the agent will 
switch from attacking to retreating. 
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CommanderAgent Class is a specialization of the BattkAgent class with 
some high order planning capabilities. For example, an order to take a 
location involves selecting targets for the subordinates and coordinating 
their attacks. 

To assist the agents in their planning there are some additional modules: 

Map is an array of cells with information on speed, protection and terrain type. 
The Map has methods for importing data from common GIS formats. The 
digital terrain is dynamic, it can be manipulated during the simulation. 

Navigator is a module that assists the agents in planning their movements. 
In order to complete their commitments, the agents need to move around 
in the terrain. The problem is to find a path which corresponds to their 
commitmentß. The Navigatorhas methods for finding paths given a weight 
function and a goal function. Examples of requests the navigator handles 
is: 

• Find a path from position A to B avoiding agents of nationality b. 

• Find a path from position A to position within X meters from B with 
maximum protection. 

• Find the fastest path from position A to some position a given dis- 
tance away. 

We have done two different implementations of the Navigator. One based 
on the A-Star algorithm which is a beam search algorithm for the problem 
of finding the shortest path in a graph. The A-Star algorithm is proven 
to be the fastest algorithm for this if lower bound of the distance from 
any node to the goal node can be found. However, the navigator does, 
as exemplified earlier, a lot more than finding the shortest path. We are 
not sure how our generalized A-Star algorithm compares to other algo- 
rithms for these other problems. We have therefore also implemented a 
different navigator using agent based planning where a group of agents 
strives to construct a solution. Each agent, called a tracker, performs a 
local search, based on adjacent positions on the map. A weighted function 
of the constraints from the navigation request gives a measure of success 
for an individual tracker. If the difference between the adjacent positions 
is small a tracker may split into two which concurrently will explore the 
paths. Visited positions and the measure of success is communicated to 
other trackers, which can avoid already visited positions. The search is su- 
pervised by a tracker handler which controls the number of active trackers 
and terminates the search after specific amount of time. The disadvantages 
with this navigator is that is more complex, harder to analyze and debug 
and the frequent spawning of new agents introduces some overhead. The 
advantage is that it is a very general algorithm. It is very easy to define 
new trackers with different heuristics to solve different path requests. For 
the types of requests we currently have the A-Star navigator is superior 
but in the future we may use both. 
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Strategie Planner is a planning module with knowledge of different attack 
strategies which will be implemented to assist the Commander Agents. 
Given the state of a agent and a target it will produce a coarse grain 
strategy. 

5.3     Controlling the Simulation 

Clicking on any of the entities involved in the simulation produces an interaction 
window in which commands can be typed. One can also ask for a control panel 
with which the entity can be controlled manually. When in manual mode the 
agent will not try to fulfill its commitments. 

We are also working on a speech interface where the commands can be given 
in continuous spoken natural language. This is done as an extension of the 
DIVERSE (DIVE Real time Speech Enhancement) [KBFJ95] project at SICS. 
The speech recognition and text processing is done using commercial tools. A 
resulting dependency graph is translated to a logical representation, which in 
turn is inspected for references to entities and objects and matched to the set of 
conceivable and possible actions. 

6 Future Work 

Currently distribution and communication is achieved through the DIVE layer. 
Another possibility is to get distribution at the Oz level. This can be pro- 
grammed today but a project called PERDIO is on the way to create a fully 
distributed programming system built on Oz, called Perdio in the following. A 
single Perdio program will be able to create multiple computations that spread 
over the network, and computations created by separate Perdio programs will 
be able to connect transparently. Perdio computations will be able to make use 
of persistent stores that can hold all data abstractions. It will be possible to 
access data structures without being aware of whether they are active in pri- 
mary memory or passive in secondary storage. Hopefully this will have a great 
impact on distributed programming in general and on distributed simulations in 
particular. 

The project is performed jointly by SICS and DFKI and the results will be 
successively incorporated in the Oz DIVE interface. 

7 Conclusion 

With this work we bring the power of a high-level language which supports 
object-orientation, concurrency, reactivity and real-time control to the develop- 
ment of VR-applications. The agent abstraction is one way of using this power. 
We showed how this can be used for interactive distributed simulations. 

We believe that this is a small but important step towards VEs with inter- 
esting behavior. 
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Abstract. A prototype immersive teleconferencing environment is described 
that allows small groups of people, although geographically separated, to 
meet as if face-to-face. The innovative features of the system include the use 
of wall-sized display surfaces, viewer tracking, subject-background separa- 
tion by means of computer vision techniques and real-time compositing of 
live video with synthetic backgrounds. Used in combination, these tech- 
niques give the illusion of a virtual meeting area being an extension in space 
of a real meeting room. 

1 Introduction 
The use of communication technology to gain visual and audio information from re- 
mote locations has been investigated for a long time. Research and development in the 
field was motivated by saving traveling costs, bridging distances in a short time and 
connecting several remote locations. 

In the mid-sixties the Picturephone was introduced to augment telephony with im- 
ages for attracting the visual senses. Within ten years it would replace voice telephone, 
that was the prediction. The euphoria accompanying the release of (traditional) video- 
conferencing systems in the early seventies led to comparable high expectations and 
forecasts, that again, were never reached. The factors responsible for the disparity be- 
tween forecasts and actual acceptance of these systems (see [ 1 ] for a detailed discussion) 
were identified as inadequate needs assessment methodologies and the portrayal of vid- 
eo conferencing as a direct replacement for face-to-face meetings. 

The more recent past has seen the advent of desktop videoconferencing motivated 
partly to overcome disadvantages of the early videoconferencing systems and partly to 
augment conferencing with groupware services. Desktop videoconferencing systems 
are certainly advantageous to earlier forms of videoconferencing by offering user-con- 
trolled, flexible conferencing services that are continuously available and can be access- 
ed from peoples' offices. The benefit within the context of cooperative work is attained 
by the integration of shared tools being available on the desktop. However, desktop vid- 
eoconferencing still suffers from several limitations: 

• the windows in which participants are displayed are small allowing, typically, only 
the presentation of faces, 

• there is no spatial coherence between participants at different sites, 

• as a consequence, more subtle forms of communication, such as gestures and body 
language in general, are lost; and to summarize 

• the vision of video conferencing as a replacement for face-to-face meetings had be 
abandoned. 

As a consequence projects were started that address the issues of body language, eye 
contact, gaze awareness and aim at more realistic face-to-face conferences. These sys- 
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tems - sometimes referred to as media spaces - often employ large displays and a so- 
phisticated setup of audio and video equipment (see e.g., [2][4][5]) in order to enable 
meetings and/or cooperation between remote participants. The conference systems are 
intended to be superior to desktop conferencing when full body viewing and the accom- 
panying subtleties of body language are an essential element of communication. 

The GMD project TELEPORT represents such a system focussing on the realistic 
representation of conference situations where participants are aware of other partici- 
pants' reactions, body expressions and gazes. It aims at establishing a natural and "im- 
mersive" teleconferencing environment where real and virtual environments are com- 
bined without the need for head-mounted displays or similar devices. TELEPORT is 
not intended to replace face-to-face meetings, but to offer an alternative when such 
meetings are difficult or impractical, due to lack of time, travelling costs or distances to 
cover. 

The paper is organized as follows. The next section describes related approaches to 
new types of conferencing that strive for increasing realism. Section 3 overviews the 
TELEPORT system and focuses on the actual setup, design issues and hardware and 
software used. Section 4 discusses different usage aspects and planned field trials. The 
paper concludes with a description of future work. 

2 Related Work 
The purpose of this section is to survey different approaches of conferencing as a re- 
placement for face-to-face meetings. Shared or common space, eye contact and gaze 
awareness are the general goals. However, the approaches differ in the means they em- 
ploy and in the degrees of reality and coherence they enable. Within this context we do 
not try to give a complete survey, but rather stress diverse directions of work. 

Video Window [3], a system developed at Bellcore, connects two remote rooms by a 
wide aspect ratio display (video window). People obtain the perception of looking 
through the window into an adjacent room. 

MAJIC (Multi-Attendant Joint Interface for Collaboration) [5] projects life-size im- 
ages of conference participants onto a large curved screen. The screen is semitranspar- 
ent, allowing a camera to be positioned behind the screen and a video beamer projecting 
the images of participants onto the front. Careful positioning of cameras and participants 
currently allows one user at each site to have eye contact with other participants. 

Panorama [7], a project within the European ACTS program, intends to establish 
3D-telepresence amongst conference participants. Autostereoscopic displays will be 
developed that spatially separate left and right eye view images, in order to avoid wear- 
ing glasses. In addition, the display system allows a user to move while observing 3D 
imagery. 

The GreenSpace project [6], funded by the Human Interface Technology Lab and 
the Fujitsu Research Institute, attempts establishing a "virtual common" for remote col- 
laboration by the use of visual, aural and tactile cues. Currently, faces of participants are 
scanned and corresponding data sent to connected sites. The heads of participants are 
positioned in a virtual scene and updated according to head (for viewing) and hand (in- 
teraction) movements. The ultimate goal is to construct a meeting space for large groups 
of people (a hundred and more). 

3 The TELEPORT Environment 
The TELEPORT environment was designed to overcome disadvantages of desktop 
videoconferencing and to establish realistic videoconference sessions bringing people 
together as if face-to-face. The main goals of TELEPORT are 
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• to demonstrate the use of wall-sized displays integrated in a working or living en- 
vironment. 

• to demonstrate an "immersive" teleconferencing environment without the need for 
head-mounted displays. 

• to develop an image segmentation system capable of extracting foreground objects 
(participants) from a controlled background while operating at near video rates 
(10-25 fps). 

• to analyze, test and validate user requirements in diverse areas, such as tele-teach- 
ing, tele-music and tele-architecture design. 

The TELEPORT environment consists of a room where one entire wall is equipped 
with a display surface serving as a "window" into a virtual extension ofthat room. The 
geometry, surface characteristics, furniture and lighting of the virtual extension are care- 
fully designed to closely match the real room to which it is attached (see Fig. 1). Confer- 
ence rooms and their extensions at different sites, however, may have different dimen- 
sions and appearance (furniture, wall paper, etc.). Into the virtual extension conference 
participants may be positioned in order to build a coherent meeting group. 

Fig. 1 A sketch of the TELEPORT system. 

When a teleconferencing connection is established, a 2 V2 D1 representation of the 
remote participant, obtained using video processing, is placed within the local partici- 
pant's virtual meeting area (Fig. 2). The viewing position of the local participant is 
tracked, allowing imagery appearing on the wall display to be rendered from the partic- 
ipant's perspective. The combination of viewer tracking, a wall-sized display, and real- 
time rendering and compositing, gives the illusion of the virtual meeting area being an 
extension in space of the real room. 

1. 2 V2 D representation refers to situations where 2D images can be positioned, scaled and 
rotated in a 3D space. 
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Fig. 2 Two TELEPORT environments connected over the network. 

3.1 Display and Display Room 
The display utilized in the TELEPORT project has to fullfil at least two requirements: 
First, it has to produce reasonably bright images even if the room in front of the display 
is lit. Second, the display should cover an entire wall of the display room. 

The display room covers an area of 3m times 3m and a height of 2.25m. It resembles 
a box of which one surface has been removed to allow people to enter or view the projec- 
tion from outside. The wall opposite of the missing wall is entirely covered by a display 
surface. The current setup is an office with a desk, chairs, light sources, speakers and a 
desktop camera (see Fig. 3 and Fig. 4) 

Fig. 3 The rendered room extension with a conference participant. 
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Fig. 4 The TELEPORT system in use. 

Behind the display surface a projection area is required to create the necessary dis- 
tance between projectors and display surface (appr. 5m). Even when using a mirror to 
cut in half this projection distance, the projection area has almost the size of the display 
area (office room). However, future display technology will hopefully reduce this addi- 
tional space. 

The environment also allows for stereoscopic rendering and viewing with passive 
glasses. However, a primary concern is that no special sensors need be attached or worn 
by participants for videoconferencing. Stereoscopic rendering is employed when the 
communication aspect of a session is dominated by the requirement to cooperate in a 3D 
space (see section 4). 

3.2 Subject Segmentation 
Subject segmentation extracts conference participants from a reference background. 
Currently the separation is performed by traditional chroma-keying of video, shot in a 
blue-room. Since it cannot be expected that conference participants have a blue-room 
at their disposal, we are working on real-time extraction out of a static background. A 
reference frame R is obtained by averaging a sequence of frames. Foreground objects 
in a frame F are extracted by computing for each pixel p the difference of RGB values 
between F and R. If the difference exceeds a given threshold then p is classified as fore- 
ground otherwise p is classified as background. 

Even though similar procedures have been proposed for identifying foreground ob- 
jects from outdoor video streams, the solutions are tuned for satisfying different set of 
requirements and take into account different environmental conditions. In our case en- 
vironmental conditions remain stable.The requirements which should be satisfied from 
the implementation of the segmentation procedure are: 
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• Process frames in real time. Rates less than 10 frames/sec becomes noticeable to 
the user. 

• Process frames with small delay. Delays greater than 250 msec becomes disturb- 
ing for the users. 

• Once the reference scene is chosen, it should be possible to separate foreground 
from background without making any further assumptions on background or fore- 
ground object properties. 

• The segmented images should be of good quality. More precisely, the number of 
pixels that could be incorrectly classified either as foreground or background 
should be small enough so as not to be noticeable to the user. 

The actual implementation of the segmentation procedure runs on an SGI Onyx ma- 
chine with four R4400 processors running at 150 Mhz and two graphics pipelines. An 
SGI Sirius board is used for digitizing the frames got from the camera. The size of 
frames is 720 x 576 pixels. Each frame is first reduced along its horizontal and vertical 
dimension according to reduction parameters entered by the user. Then each of the four 
processors processes different regions of the frame. More precisely, each processor 
computes the difference between the current frame and the reference frame, tries to de- 
tect shadowed regions for classifying them as background rather than as foreground, and 
finally applies a noise elimination function. The resulting frame is finally expanded to its 
original dimensions. 

Choosing a reduction factor of 4 along the vertical and horizontal dimensions we ob- 
tain a processing rate of approximately 8.33 frames/sec and a delay of 120 msec. Fig. 5 
shows the original frame (the reference frame is the same as that of Fig. 5 but without a 
person). 

Fig. 5 Frame to be segmented. 
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Fig. 6 shows the frame prior to the noise elimination step at the left and the frame re- 
sulting from the segmentation procedure at the right. We expect that a small upgrade of 
the hardware configuration described will allow us to satisfy our initial requirements. 

Fig. 6 Frame prior to noise elimination (left) and frame after the completion of segmen- 
tation (right). 

3.3 Viewpoint Tracking 
In order to achieve the correct perspective continuation of the rendered room the view- 
er's head (and approximately the viewer's eyes) have to be tracked. Ultrasonic and elec- 
tromagnetic sensors were tested to find the best fit to the application requirements, but 
also to the specific features of the display area (e.g., presence of metal, thickness of 
walls, etc.). We have yet to find a tracking system giving sufficient frequency and ac- 
curacy of tracking data to allow for rendering with negligible delay and jitter. In the 
future, additional methods of viewer tracking will be studied. 

3.4 Rendering and Compositing 
According to the change-viewpoint requests originating from the tracking system the 
virtual room extension is rendered in real-time (currently 12.5 or 25 frames per second 
with a RE2). Conference participants are positioned in this extension by using trans- 
parent video textures. The separated video foreground of participants is texture- 
mapped on a grid with the corresponding transparency channel. 

3.5 Hardware 
The wall display is constructed from a pair of commercially available high-luminosity 
video projectors configured for rear-projection. Two projectors (NEC 10-PGs) - to 
generate reasonable brightness even when the display room is lit - are mounted on the 
ceiling and beams reflected on a mirror before they reach the wall-sized display. For 
capturing the local participant a small Panasonic camera is positioned in front of the 
screen. The display room is additionally equipped with an audio surround system and 
microphone inputs. 

Since rendering and compositing introduces delay, an audio delay is used to assure 
lip synchronization. Currently, keying of the camera signal is performed by an Ultimatte 
System 7 keyer. Real-time rendering and compositing is performed on an SGI Onyx 
with two RealityEnginesII and Sirius video hardware. 

3.6 Connectivity 
A basic requirement for the operation of the TELEPORT is the availability of reliable 
high bandwidth communication networks such as ATM. However, since ATM net- 
works are not yet widely available and not all users of TELEPORT might have access 
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to broadband communication links, different options will be investigated and tested, 
e.g., internet, ISDN, VBN (a broadband network from German Telecom) and satellite 
links. This way we will be able to offer different alternatives for different applications, 
depending on the quality needed, operation costs, etc. 

4 Field Trials and Usage 
Concerning the usage of TELEPORT two directions have to be distinguished: The 
first addresses typical conferencing situations when participants should not be hindered 
by wearing any special devices and faces and eyes should not be occluded. The second 
direction comprises communication situations where people have to work in a shared 
distributed 3D environment. For these tasks the cooperation aspect and the possibility 
to view and manipulate objects in 3 dimensional space is considered to be more impor- 
tant than the loss of facial cues due to wearing glasses. Currently however, our work 
focuses on the videoconferencing aspects. 

Examples of videoconferencing scenarios where a TELEPORT environment could 
be used include distributed negotiation, remote medical consultation, communication 
for the physically disabled, long-distance learning and cultural exchanges such as dis- 
tributed rehearsing. 

Distributed rehearsing enables actors or performers on different sites to rehearse a 
production. These trials will be performed within the context of "Distributed Video Pro- 
duction" (DVP), a project funded by the European ACTS program. For example, a small 
group of musicians will use TELEPORT to conduct distributed rehearsals. 

5 Future Work 
Future development of TELEPORT will take place along two main directions: image 
processing and 3D modelling. We plan to continue testing various delta-keying heuris- 
tics with the goals of achieving segmentation at the video frame rate and a more robust 
performance (e.g., adaptation to lighting changes). We also aim to apply image pro- 
cessing techniques to subject, and possibly viewer, tracking. In particular we would 
like to track subject facial features in order to texture map live video onto 3D facial 
models. In the area of modelling, we plan to utilize pre-constructed 3D models of 
TELEPORT subjects. The models will be animated and rendered by combining a sen- 
sor-based motion capture system for overall body movement with the mapping of facial 
features from video. 
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Abstract. This paper describes a model for a complex human-machine 
system where a human operator controls a remote robot through the mediation 
of a distributed virtual environment with a language interface. The system 
combines speech controlled graphical immersive environments with the live video 
from a robot working in a real environment. The worlds are synchronized and 
updated based on operator selections, commands and robot actions. This system 
allows the user to have a powerful tool with a high level of abstraction to create 
and control autonomous robots, thus making possible the realization of single 
and possibly multiple real-world autonomous robot applications. 

1     Introduction 

In this paper we describe our current work to construct a high-level remotely op- 
erated robot system. Control is acehieved via a high-level interface supplemented 
by language and gesture control within a graphical immersive environment con- 
taining live video of the remote space where the robot is situated. 

The robot handles the perception-action of the human-machine system, the 
virtual environment is a model of the world knowledge of the system, and the 
interface, with both language and gesture interaction provides the tools for in- 
teraction thus manipulating the robot and the knowledge state of the entire 
system. 

The virtual model is is able to display the current status of the system's 
awareness of objects and available actions and to specify high-level tasks, such 
as point-to-point navigation and pick-and-place manipulation, while the robot 
has the basic physical and perceptual skills to perform low level navigation in 
the form of path-planning and obstacle avoidance, and some vision processing. 
At the same time, the interaction between the user and the robot system is on 
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a high level of abstraction facilitated by the combination of the use of a virtual 
environment, natural language and gesture interface. This releases the human 
operator from low-level tasks of robot control, and allows the operator to specify 
tasks in a high-level manner for possibly a number of robots. 

The applications for completely autonomous robots are manifold; however, 
in the world today mobile robot high-level task planning is difficult. To have 
a robot perform complex tasks requires guidance or guided instruction from 
a human aide or controller. Designing a system to support a human guide 
for robot learning involves complex design decisions on several levels: firstly, 
the human guide needs information on the physical surroundings of the robot; 
secondly, the guide needs to be given a reasonable rendition of the robot's current 
awareness of those surroundings; thirdly, the guide needs to be given a useful and 
understandable mechanism to interact with the model and the robot's knowledge 
representation in order to be able to specify objects, entities, and tasks for 
the mobile robot. The above requirements are achieved by using the interface 
described in here. 

This paper describes the framework we are using for the virtual and real world 
combination and demonstrates the principle which we are applying to performing 
remote tasks within a new immersive paradigm. This paradigm uses interaction 
mechanisms that will not limit the operator to low level manipulation. 

2    Example Scenario 
The human operator interacts with an immersive environment which represents 
a model of a remote real environment (see figure 2). In the virtual environ- 
ment the operator has access to a mobile robot physically situated in the remote 
real environment. The robot is a vehicle that has the ability to carry the op- 
erator through both the virtual and remote-real worlds. The interface between 
user and robot in the virtual world consists of a real-time video view of the 
robot's real world environment accompanied by an interface control panel (fig- 
ure in Appendix). The interface control panel consists of buttons, displays, and 
various data to aid the interaction. Some of the tools available can set robot 
speed, acceleration parameters, or command various image transforms. There 
are also additional displays that can give current real world robot and environ- 
ment state, i.e. battery supply or radioactivity level. The robot has the ability 
to move through the world and can be controlled on a high level of abstraction 
by the operator through the interface. The operator gives simple instructions to 
navigate, such as "go there" accompanied by a pointing gesture in the virtual 
world. Or, alternatively, the user might give a more sophisticated command, 
such as "move toward the doorway" accompanied by the context of the robot's 
current view. Because the virtual model is at least roughly synchronized to 
the real world and information about specific doors are contained in the virtual 
environment model, this command can quickly be translated into navigational 
commands for the robot base. 

One important difference in our model of robot control is that as the user 
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Virtual World Real World 

Figure 1: This figure shows the flow of information between the different system 
components. The solid lines indicate direct flow of information while the dotted 
lines indicate an indirect flow (see text). 

interacts with this robot control interface, the machine is permitted to say "I 
don't know." The robot does not have to make high-level decisions, instead it 
performs as well as it can and always has the ability to return to the user with 
questions. Allowing this degree of relaxation in autonomy releases the system 
from many of the hardest problems in AI while simultaneously allowing us to 
build machines that can perform useful tasks and providing a novel platform for 
further research in autonomous robotics, sensing, man-machine interaction, and 
virtual environments. 

For example, if our virtual model did not include a complete description for 
the real-world object that the user reference in the camera image, e.g. a book, 
then given a rough localization the robot could perform a vision process on the 
image to fit the right aspect ratios for a book at that distance and pose. When 
there is an ambiguity, the robot might ask "is this the book you mean?" while 
highlighting what it estimates to be the book boundary in the image. In some 
situations the robot might respond with a number of alternatives for the book 
including, among the alternatives, a box. These mistakes are, at least initially, 
allowed in the interface until visual recognition techniques have caught up with 
current needs. The selection of these alternatives would be part of the user-robot 
interaction. Thus the user would learn how to use the robot given its deficiencies. 
For future use, the user could segment out the book for future recognition and 
identification. The image texture of the book can also be used in the virtual 
world for aiding the identification by the operator and enriching the simulated 
environment, and also supplying visual features for the vision processes. 
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Figure 2: This figure displays a view of the immersive environment. It is a model 
of the laboratory space in which the robot is situated. In the center the virtual 
robot representation can be seen. On the robot sits a live camera view into the 
real world. 

3    Robots, Operators, and Interaction 

3.1 Autonomous Robotics 
It is easy to see how having the capability to send autonomous robots into haz- 
ardous and remote environments (e.g. space, sea, volcanic, mine exploration, 
nuclear/chemical hazards), would be useful. Robotics can be built to stand 
higher environmental tolerance than humans, they can be built to perform spe- 
cialized tasks efficiently and they are expendable. To this end there has been 
much research on fully autonomous robots that can navigate into an area, per- 
form actions such as taking samples, performing manipulations, and return the 
information to base controllers without human assistance. 

3.2 Teleoperated Robotics 
Relatively independently from research in autonomous robotics, on the other end 
of mobile robot research, the field of teleoperated robotics has worked on the 
human-machine interface to enable an operator to control a robot remotely in 
space [24], and battlefield[4] applications and even used simulated environments 
for predictive task planning[20]. Some researchers have tried to bridge this gap 
from both directions. An autonomous robotics group has taken a schema-based 
reactive architecture and used this as a base-level for teleoperated control. In 
their architecture the mobile robot performs simple navigation while the op- 
erator's commands can be situated in the system either as another behavior 
that influences navigation or as a more global process that manipulates sys- 
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tem parameters[2]. They have since extended this idea to allow the operator to 
control group behaviors in a multi-agent environment [3]. Other groups have rec- 
ognized the need for tele-operators to move away from low-level robot movement 
control. One effort has created a multi-level architecture for robots to provide 
higher level navigation functions such as path-planning and obstacle avoidance 
with operator guidance[10]. 

3.3 Immersive Interfaces 

Meanwhile, recent research in immersive virtual environments and human-computer 
interaction at SICS has worked on building a framework for natural interaction. 
One aspect of this work has been the study of interaction between agents, hu- 
man and others in a shared virtual environment [5]. Another aspect has been 
the building of mechanisms for human users to interact with the virtual envi- 
ronment [17]. We are using an immersive virtual environment as the interac- 
tion paradigm with the real world and the robot. Specifically our work is an 
application in the SICS Distributed Interactive Virtual Environment (DIVE) 
system[12]. 

3.4 Augmented Reality 

We incorporate on-board video from the robot into the virtual world. The video 
can subsequently be enhanced and augmented to communicate information to 
the operator. This is quite similar to work in Augmented Reality, which at is base 
is the concept of combining real world images (e.g. video) with graphic overlays. 
Augmented reality techniques have been demonstrated in a variety of practical 
applications. Examples of these are displaying graphical information in printer 
repair operations[15]. Or displaying information from a 3-D model base on a 
real world artifact [26]. Other applications include virtual tape-measurement 
on real scenes as well as graphical vehicle guidance[23], and enhanced displays 
for teleoperated control[22]. All of these separate applications are relevant for 
our robot application. Additionally the reverse operation can be performed, the 
virtual environment can also be augmented in a similar fashion by real-world 
images. 

4    Integrating Perception, Knowledge, and In- 
teraction 

There are four main distributed computational subsystems in the complete sys- 
tem. These are the robot system - the physical layer; the computer vision 
processing system - the perceptual layer; the graphical object database and ren- 
dering system - the knowledge model; the speech and language processing and 
the graphical object manipulation system - the interaction layer. The informa- 
tion that is passed around can also be viewed as flowing between the real and 
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"Select the grey marbles." 

Figure 3: An example where natural language commands have significant ad- 
vantage over "point and click." 

"Where is the paper about virtual reality and robotics I sent to the 
workshop in Monte Carlo last fall?" 

Figure 4: Try this with gestures. 

virtual worlds via the camera, the robot and the user. This flow of information 
can be visualized in figure 1. 

4.1    Physical competence: Robotics 
The robot exists in the real world. The robot is endowed with a basic model of 
the environment from an architectural-type drawing of the basic physical world 
structure and artifacts, and through movement and exploration, the robot has 
the ability to augment this model, with new objects, methods and descriptions 
that are more useful for comparison to its sensor data. 

The robot that we are using for this system is a Real World Interface B21 
robot with on-board processing and sensing. In this system this robot can per- 
form basic tasks such as navigate around obstacles, recognize objects to the best 
of its ability and take its high level commands from a human, thus displacing 
the artificial high-level planner with a human one. 

The robot can perform basic point-to-point navigation tasks and avoid basic 
obstacles while negotiating the indoor structured environment in which it is 
situated. 

Using the robot encoders and periodic self-localization such as described 
in [28, 21] to account for drift, the robot can synchronize with the model repre- 
sented in the virtual reality. Having access to a model of the environment as well 
as access to the operator's knowledge and assistance gives great leverage on the 
harder problems of robot navigation, such as localized sensor pitfall situations. 

This type of hybrid human-machine system will give the operator something 
we are calling virtual presence, where the operator is present by way of a machine 
proxy, or by way of a virtual rendition of the surroundings, dependent on the 
perspective we take. 
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4.2 Perceptual processing: Vision 

The robot sends the data it perceives to the vision processing system. The 
output from the vision processing system is sent further to the knowledge level 
of the system to be encorporated the virtual model of the world. 

General visual segmentation of real world images continues to be a hard 
problem. However in this situation we are assisted in this tasks by both having 
some knowledge of appearance (through saved images of the real world such as 
texture maps), approximate location and the user. In many instances this harder 
problem of visual segmentation breaks down to an easier problem of verification 
and fine localization. The user can also interact with the vision processing to aid 
in the segmentation, identification and localization. Using graphical interaction 
tools such as "snakes" (an interaction method that allows a user to roughly 
identify a region which then shrinks to surround the nearest edge) the user can 
be facilitated in performing hand segmentation of the image. These images 
that are cut out the environment are used for both identification by the vision 
processor on the video images as well as identification by the user within the 
virtual environment. This part of the system is work in progress. 

4.3 Knowledge model: The Augmented Virtual World 

The video from the camera flows from the real world to the virtual world. These 
images represent the real-world from a robot-centered perspective. The user 
sends commands to the robot via the interface, thus these commands are made 
by the operator interacting with the virtual world. The commands may be as 
simple as updating velocity and orientation or may also be higher-level and more 
complex involving path specification, navigational targets, and grasping tasks. 

The present interface takes video from the world and brings it into the virtual 
world which allows the possibility to superimpose graphics on video. Such an 
augmented reality interface can display information that may not be visible, but 
useful in the real world, thus augmenting the information present in the video 
channel with navigational aid information or nonvisual sensory data. It is also a 
convenient way of displaying to the operator what the current state of the system 
is: items in the environment could be graphically emphasized or deemphasized 
(dimmed), based on the needs of the operator, robot and task at hand. For 
example a book in the physical environment that is recognized and localized by 
the vision processor could be colored and emphasized for the operator to know 
that this object is known and could possibly be interacted with. If a object is 
not recognized, it is chance for the user to advise the system what the object in 
question is. 

In addition to this standard notion of augmented reality, we also have the 
power to perform the complement operation, embellishing the virtual environ- 
ment with real-world images. With the proper, possibly user-guided, feature 
extraction and image warping we can decorate the world with much of the rich- 
ness of the real world. Thus, objects that the operator needs to interact with can 
be visually more informative than the pure virtual reality system would allow 
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them to be. 
Thusly the virtual world represents the knowledge state of the robot. It is 

not intended to be perfect or complete. Within this framework many of these 
methods for real and virtual world interaction for both the user and robot are 
embedded and distributed in the world itself (see section 4.4.2). 

4.4    Interaction with the Operator 
The virtual world serves as the communication medium between the robot and 
the user. It is through the interaction of the robot with the virtual environment 
and the operator with the virtual environment that interaction between the 
operator and the robot can take place. Thus bi-directional communication and 
command specification is achieved via the virtual world. In complement to 
operator commands, the robot can make queries of the operator regarding task 
direction as well as update the environment with objects and model features 
discovered in the course of exploration. 

Our interface design is multimodal- meaning that it makes use of live video, 
3-D graphics, gestures, menu choice, speech, and text as input and output chan- 
nels. Language and graphics (or, indeed, any abstract and any analog manipu- 
lable representation) complement each other, in the sense that tasks of different 
types require different modalities [14], and that users have varying preferences 
for modalities or differing capacity to make use of them [16]. 

DIVERSE (DIVE Robust Speech Enhancement) is a speech interface to the 
virtual reality platform DIVE. DIVERSE is developed at SICS for use as a test 
system to experiment with multimodal interaction[17]. DIVERSE allows for 
spoken language control of operations that are normally carried out through 
direct manipulation in DIVE, such as transportation of objects, change of view, 
object creation, deletion, colouring etc, while still retaining the possibility to 
perform actions through direct manipulation whenever that is more suitable [16]. 

Interaction in DIVERSE is mediated through an animated agent to allow 
explicit modeling of the linguistic competence of the system, both in terms of 
output language and in terms of the gestures. 

4.4.1     Spatial model 

Inside the virtual environment that the DIVE system implements, there is a 
strong model of spatial interaction[7],[6]. This model provides a method of in- 
teraction for the operator, the robot, and the objects within the virtual and real 
worlds. In this section this spatial interaction model and the methods it suggests 
are described. 

Here we summarize key concepts which constitute the DIVE and DIVERSE 
model of interaction, the details for this model can be found in [6] and [17]. The 
goal of the spatial model is to provide a small but powerful set of mechanisms 
for supporting the negotiation of interaction across shared virtual space. The 
spatial model, as its name suggests, uses the properties of space as the basis 
for mediating interaction.   We briefly introduce the key abstractions of space, 
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objects, aura, awareness, focus, nimbus, and boundaries which define part of the 
spatial model, and the concepts of interlocutor and discourse compost which are 
central to the linguistic interaction. 

Aura is defined to be a sub-space which effectively bounds the presence 
of an object within a given medium and which acts as an enabler of potential 
interaction. Objects carry their auras with them when they move through space 
and when two auras collide, interaction between the objects in the medium 
becomes a possibility. It is the surrounding environment that monitors for aura 
collisions between objects. 

Once aura has been used to determine the potential for object interactions, 
the objects themselves are subsequently responsible for controlling these interac- 
tions. This is achieved on the basis of quantifiable levels of awareness between 
them. Awareness between objects in a given medium is manipulated via focus 
and nimbus, further subspaces within which an object chooses to direct either 
its presence or its attention. More specifically, if you are an object in space the 
following examples help define the concept: 

focus -the more another object is within your focus, the more aware you are of 
it; 

nimbus -the more another object is within your nimbus, the more aware it is 
of you. 

This notion of spatial focus as a way of directing attention and hence filtering 
information is intuitively familiar from our everyday experience (e.g. the concept 
of a visual focus). The notion of nimbus requires a little more explanation. In 
general terms, a nimbus is a sub-space in which an object makes some aspect of 
itself available to others. This could be its presence, identity, activity or some 
combination of these. Nimbus allows objects to try to influence others (i.e. to 
be heard or seen). Nimbus is the necessary converse of focus required to achieve 
a power balance in interaction. 

Awareness levels are calculated from a combination of nimbus and focus. 
Aura, focus and nimbus may most often be implicitly manipulated through fun- 
damental spatial actions such as movement and orientation. Additionally, aura, 
focus and nimbus may be manipulated through boundaries in space. Boundaries 
divide space into different areas and regions and provide mechanisms for marking 
territory, controlling movement and for influencing the interactional properties 
of space. 

Language usage adds some complexity to the interface. Using language pre- 
supposes a counterpart, and the design of the dialog will hinge on how the 
counterpart is conceptualized. There are several conceivable models of the in- 
terlocutor [16, 17]. For the present application the robot itself is a natural 
counterpart for most tasks - the experiments in DIVERSE so far have involved 
a separately rendered Agent to anchor the discourse communicative competence 
of the system. 

Determining what object an utterance refers to is non-trivial in the general 
case.   Using the agent we model the system's conception of the world and the 
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saliency of various objects by displaying a list of referents. This list - the dis- 
course compost - is composed by the system giving each object present in the 
discourse a saliency grade, based on recent mention, highlightedness, gestural 
manipulation by the user, and above all, visual awareness. So, primarily, if the 
agent has a high degree of awareness of an object, it is a candidate for reference. 
This effect declines rapidly when the agent becomes less aware of it. Secondly, 
users can manipulate or point at an object. An object which the user points at 
gets a high saliency grade, with a rapid decline after the pointing gesture has 
been completed. Thirdly, we keep track of which objects have been mentioned. 
Objects in the recent dialog history are likely to be referred to again. The evi- 
dence from these different sources is compiled in the compost to determine which 
objects are likely future referents. 

4.4.2    Methods 

We use the interaction model to create an interactive and informationally rich 
immersive environment that stores the methods to aid the robots interaction 
in the real world. The concepts of aura, nimbus, focus are key to the way the 
robot interacts with the virtual and real worlds. Using the concepts of spatial 
boundaries and auras we can define interaction mechanisms and methods for 
sharing information between the robot and the environment. 

For example using the concept of object aura we can define a means of trans- 
ferring information for navigation and object identification. If the robot's aura 
collides with an object's aura that object may then open up a channel, i.e. the 
robot focuses and the object projects nimbus, thus enabling the object to pass 
information to the robot that would be pertinent to the mutual interaction. In 
this way each object stores information and methods about itself. This infor- 
mation can include: 1) object identification, 2) object function, 3) navigational 
approach method, 4) grasping method, 5) recognition method. 

These last three types of information deserve special mention. An object 
may store the actual methods in which to perform a local interaction such as 
recognition. Given that the position of the object and the position of the robot 
are well known these methods can be rather specific. 

Likewise, using the boundaries in space, various locations in the environment 
may store information and methods regarding navigation. For example there 
may be certain areas of the environment where great care must be taken, so 
crossing a boundary could then act like entering a 'speed control zone' and thus 
negotiate control for the robot's velocity. Similarly there could also be areas in 
the environment where certain configurations or specific paths should be avoided 
or taken. Crossing a boundary into such an area would open up a channel to 
transfer specific navigational commands to the robot. 

Using this model of interaction unweights the robot control process from 
the need to have knowledge about the entire environment at all times. Using 
this spatial model we are distributing the processes and specific information 
throughout the environment. Also using the virtual world as a knowledge model 
in this way it makes it less necessary for a robot to have much knowledge about 
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a new environment before actually entering it. Thus when the robot crosses the 
boundary into a new environment the new environment would contain all the 
necessary global information regarding that world. 

4.5    How Do We Actually Tell The Robot What To Do? 

Hitherto, controlling and manipulating a virtual or augmented reality has mainly 
been through direct manipulation, an interaction paradigm based on immediacy 
of control and tightly linked feedback between action and effect. Direct manip- 
ulation interfaces are generally share three main characteristics of 1. continuous 
representation of the object of interest, 2. physical actions or labeled button 
presses instead of complex syntax, and 3. rapid incremental reversible opera- 
tions, whose impact on the object of interest is immediately visible [27]. 

These characteristics have usually been seen as standing in contrast to com- 
mand based interfaces that build on more expressive forms of input such as 
formal command languages or human languages. While Shneiderman's points 
certainly have been understood äs a justification for a completely analog inter- 
face representation such as pictures and graphs, and analog operations such as 
gestures, points one and three do not in fact in any way contradict the possibility 
of using text or other language input - indeed, any interface at all, be it language 
based or point-and-click based would do well to follow the principles. We will 
use language, in our case speech or typewritten text, as one of the mechanisms of 
interaction, thus relaxing the constraints posed by Shneiderman's second point, 
but continuing to observe points one and three. Language, as we will show be- 
low, is necessary to manage the level of complexity following from instructing a 
robot. 

4.5.1     Why Charades Are Difficult 

Virtual reality offers the user intuitively useful means of selecting and manipu- 
lating objects in the vicinity, much as gestures do in real life. Cognitive concepts 
like "this" and "that" are easily defined and formalized in virtual reality. Human 
languages are by design a step beyond deixis or the simple acts of ostentation 
behind "this" and "that". They allow the user to refer to entities other than 
concrete objects, using arbitrary conventions: abstract concepts ("air", "battery 
charge", "algorithm"), actions ("running", "picking up"), objects that are not 
present ("the tool kit in the other room"), objects that are no longer present 
("my December salary"), objects that will be present ("Summer"), and objects 
and conditions that are impossible ("unicorn", "perpetuum mobile"), or objects 
with some specified property ("slow things"). 

Typical virtual reality tools constrain their users to the here and now, even if 
"here" and "now" may be defined differently than in physical reality. In figure 3, 
the reference to the grey marbles would be very difficult without the use of 
natural language. The idea that someone might want to refer to grey marbles 
if they are represented as in the picture ought not to be surprising: the concept 
of the set of grey marbles is not inherently complex. In figure 4, the reference 
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to an object which is not actually present will pose a difficulty, unless there is 
a way of referring to objects that are not visible by their temporal location or 
their content. Referring to "virtual reality", as in the example, without using 
human language will of course be a considerable challenge. 

The motive for including language in a robot-control interface is to add a 
level of abstraction to the system: to be able to specify goals on a higher- 
level than pointing at visible objects. This, of course, presupposes a level of 
representation abstract enough for symbolic reasoning: we have achieved this 
through the explicit model of the robot's real world knowledge in the virtual 
world. 

5    Conclusions and Future Work 

This paper describes the framework for including a human operator and a real 
robot in a remote environment in a virtual presence system. The virtual envi- 
ronment layer gives a natural level of representation for the world knowledge of 
the system; the robot is a natural repository for physical competence; the vision 
system for perceptual processing; and the multimodal interaction is an intuitive 
tool for control. 

Besides consolidating the framework into a complete system and improving 
the various modules in it, there are some natural openings to continue develop- 
ment. The perceptual module (grounded on the remote physical layer) should 
accommodate higher level processing of other sensory data, both human-like 
speech or sound recognition and placement and non-human, such as tempera- 
ture and other measurement interpretation; including renditions of information 
about various other actors and objects in the virtual environment; the interface 
must be capable of modeling more sophisticated knowledge that the robot learns 
- physical competence, among other things. 

In addition to having tight temporal and causal coupling between virtual 
and real environments, the operator could move around the virtual environment 
freely, without involving the robot, and specify tasks for the robot to perform. As 
the operator navigates through the virtual environment the operator can specify 
point-to-point navigational tasks as well as pick-and-drop manipulation tasks. 
These then turn into batch-like higher-level goals - or in essence, programs 
by high-level example - to be submitted at some later time for the robot's 
navigational path-finding and grasping systems. 

currsize 
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Abstract 

The problem of collision detection is fundamental to interactive appli- 
cations such as computer animation and virtual environments. In these 
fields, prompt recognition of possible impacts is important for computing 
real-time response. However, existing algorithms do not eliminate non- 
interfence objects efficiently. This paper presents a practical algorithm 
to quickly eliminate most non-interference convex polyhedra when their 
bounding boxes overlap. The idea is to search for a proper separating plane 
between two polyhedra and cache this plane as a witness for the next time 
step. Temporal and geometric coherences are exploited in this algorithm so 
that it runs in expected constant time. 

1   Introduction 

The problem of collision detection has been extensively studied in many 
fields. Most of the research makes use of rectangular bounding boxes or a hier- 
archy of them as the first step to quickly eliminate most non-interference objects. 
For n bounding boxes, a sweep and prune technique [1] can achieve an expected 
0(n + e) time by projecting the endpoints of three-dimensional bounding boxes 
onto the x, y, z axes and sorting them at each time instant. Other methods 
to reduce the complexity of testing the intersection of bounding boxes include 
spatial subdivision [3], octree [2], scheduling [4] and progressive refinement [14]. 

When the bounding boxes of objects overlap, usually an exact collision de- 
tection algorithm is called. In [5], a face octree is built for the faces of objects 
that intersect the overlapping region of bounding boxes to check for possible 
intersection. In [6] the rectangular box of an object is subdivided into cells with 
each cell containing a list of facets intersecting the cell. Intersection is done by 
considering only the facets in the overlapped cells. In [9], a data structure, called 
a "BRep-Index", is used for quick spatial access of polyhedra in order to localize 
contact regions between two objects. In [15], an expected linear time algorithm 
which computes the minimum distance and a separating plane of two objects is 
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proposed. In [11] separating planes for pairs of objects are found by the above 
expected linear time algorithm and cached [10] to yield a reply of non-collision 
most of the time using temporal coherence. However, it also takes linear time in 
the following time frame to test the validity of the cached separating plane. In 
[16], a sub-quadratic running time algorithm is proposed. When the motion is 
restricted to be translation only, the best theoretical time is 0(log2 n), using the 
hierarchical representation of convex polyhedra [12]. Other methods to detect 
collision include octree ([1], [7]) and BSP tree ([3]), where each triangular patch 
is bounded by an axis-aligned bounding box. In [17], the ideas of [1] and [8] are 
extended to deal with concave polyhedra. 

In [8], the closest points between pairs of convex polytopes are tracked. This 
method maintains a pair of closest features for each pair of convex polytopes 
and computes the Euclidean distance between the features to detect collisions 
based on Voronoi regions. The algorithm takes advantage of coherence and runs 
in expected constant time if the polytopes do not move swiftly. However, in 
most applications the closest features are not of great interest to the program 
when the polytopes do not collide. So it is not worth continuing to compute the 
closest features once it is known that a separating plane exists between the two 
polytopes. Moreover, this algorithm is complicated to implement. 

Our algorithm is not for exact collision detection. It eliminates efficiently 
most non-interference object pairs by looking for a separating plane between 
two polytopes. It does not have to compute the closest features and is simple to 
implement. Moreover, it considers polyhedral vertices only but not edges and 
faces as in [8] and it either terminates when it finds a separating plane or stops 
after a prescribed number of iterations when it cannot find a separating plane. 
Temporal and geometric coherences are exploited so that it runs in expected 
constant time empirically. In essence, our algorithm extends and combines the 
ideas of [1],[8], [15], [11]. 

2   The Algorithm 

2.1    The Algorithm Overview 

The basic idea of our algorithm is to eliminate non-interference polytopes 
quickly using the fact that two polytopes are separated if and only if there exists 
a plane such that they belong to opposing half-spaces of this plane [18]. This 
algorithm acts as an intermediate step between the bounding box routine and the 
exact collision detection routine. It can eliminate nearly all the non-interference 
polytopes before a usually time-consuming exact collision detection routine must 
be called. We propose to handle collision detection of convex polytopes in a 
large-scale virtual environment in four steps : 

1. Use spatial partitioning to eliminate non-interference objects that belong 
to different regions. 
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2. Within each region, use the sweep and prune technique [1] to quickly iden- 
tify object pairs whose rectangular bounding boxes overlap. 

3. Use our separating vector algorithm to eliminate non-interference objects 
whose bounding boxes overlap. Nearly all non-interference objects can be 
removed in this step to avoid further consideration. 

4. When step (3) fails to eliminate a pair of polytopes as non-interference, 
they probably intersect. Then an exact collision detection algorithm pro- 
posed by Gilbert [15] is used. The two supporting vertices found in step 
(3) are used for initialization in that algorithm. 

2.2    Searching for a proper separating vector 

To illustrate the idea of our algorithm, the 2D version is shown in Figure 
l(i), which shows two non-overlapping convex polygons P and Q. 

Definition: Let V denote the set of vertices of the convex polytope P. A sup- 
porting vertex of P in the direction S is u G V such that S ■ u > S • w for all 
we V. 

Note that a supporting vertex of polytope P in a direction S always exists but 
may not be unique. 

Initially a unit vector Si is chosen and a supporting vertex pi of P in the 
direction Si is found. Similarly, a supporting vertex qt of Q in direction -Si 
is found. Then the following criterion with i = 1 is used to test whether P and 
Q collide. P and Q do not collide if 

Si • (q; - pi) > 0 (1) 

for some direction Si, where pi and qi are supporting vertices of P and Q in the 
direction Si and -Si respectively. This is based on the following lemma. 

Lemma 1: Given a direction S, let p be a supporting vertex of polytope P in 
the direction S and q be a supporting vertex of polytope Q in the direction -S. 
// S • (q - p) > 0, then P and Q do not intersect. 

Proof. Since p is a supporting vertex of P in the direction S, S - p > S ■ v 
for all vertices v in P. Similarly, S • w > S • q for all vertices w in Q. By 
the condition S • (q - p) > 0, we have Sw>Sq>Sp>Sv. Since 
Sq>Sp=>Sq> S-(p + q)/2>S-p, wehaveS-w> S-(p + q)/2> Sv. 
Hence the plane with normal S and containing the point (p + q)/2 separates P 
and Q properly; that is, they belong to the opposing half-spaces of this plane.G 

A vector S is called a separating vector of the two polytopes if it is the normal 
vector of a separating plane of the two polytopes. Note that the vector pointing 
from the closest point of P to the closest point of Q is a separating vector of the 
two polytopes. 

If condition (1) does not hold, P and Q may still not collide. Then we find 
another direction S2 based on Si and supporting vertices p2 and q2 of P and 
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Q, respectively, in this new direction S2. 
following expression with i = 1. 

The direction S2 is defined by the 

Si i+i (((qi - Pi) x s0 x (<u - P0> (2) 

where (x) denotes a;/||x||. Note that Si+i is perpendicular to the vector q; - Pi 
(see Figure l(iii))- 

The vector Si+a is chosen by Eqn. (2) because a separating vector is most 
likely to be in this direction. Moreover, in Section 3 we will prove that this 
direction Si+i is guaranteed to be closer to any separating vector of P and Q 
than Si is, provided that P and Q do not collide. 

To locate p2 and q2, it is sufficient to use local search since the polytopes are 
convex. Thus this searching step takes expected constant time due to geometric 
coherence. Details of this local search is given in the next section. Once p2 

and q2 are found, condition (1) is tested again. If S2 • (q2 - b2) > 0 then the 
procedure returns non-colliding pairs P and Q. If condition (1) fails, the above 
procedure is repeated. 

(i) 
(ii) (iii) 

Figure 1: Searching for separating vector (i) idea (ii) in 2D (iii) in 3D. 

If the procedure cannot determine a proper separating plane after k iterations 
for some prescribed Jb, it is most likely that P and Q intersect. In this case an 
exact collision detection routine proposed by Gilbert [15] is called with initial 
vertices pk and qk for P and Q, respectively. These special initial vertices 
guarantee that Gilbert's algorithm can terminate quickly because they are very 
close to the actual closest vertices between the two polytopes. Thus the effort 
spent on finding pk and qk is not wasted. 

Experimental results show that, with k = 3, more than 95% of non-colliding 
polytopes are eliminated by this algorithm before a time-consuming exact colli- 
sion detection routine has to be called and this performance is almost indepen- 
dent of the number of vertices of polytopes. 

2.3    Searching for a supporting vertex 

The searching algorithm outlined in [1] is used to find the supporting vertex. 
Basically, the current vertex is compared to the neighboring vertices to see if its 
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dot product with S is the largest. If not, this vertex is replaced by a neighboring 
vertex with the largest dot product with S, and the process is repeated. This 
local search can find a supporting vertex eventually due to convexity. To speed 
up the searching process, we use a timestamp for each vertex to remember which 
vertices have already been considered. This timestamp is a counter which incre- 
ments by one every time the local search is performed. When searching for the 
new supporting vertices, a vertex is ignored if its timestamp matches the current 
timestamp. Otherwise the dot product is evaluated and its timestamp is set to 
the current timestamp. 

When searching for a supporting vertex of a polytope, the vector Si is trans- 
formed to the local coordinate system of the polytope by the inverse of the 
rotation matrix of the polytope. After a supporting vertex is found, the ver- 
tex is transformed back to the world coordinate. Hence only two coordinate 
transformations are required for each search. This searching process runs in ex- 
pected constant time because of the temporal and geometric coherences and the 
convexity of poLytopes. 

2.4 Choosing the initial searching direction 

When the bounding boxes of two polytopes overlap for the first time, there 
are three cases in general (see Figure 2). In each of these cases, an initial 
searching direction Si is chosen to be the normal vector of the plane formed 
by some contact points between the two bounding boxes. This vector is chosen, 
instead of the direction of the line connecting the two polytopes' centers, because 
the separating vector is most likely to be in this direction when the two bounding 
boxes of polytopes overlap for the first time. For the less likely case where 
one bounding box is completely contained inside the other, the line segment 
connecting the two bounding boxes' centers is chosen. 

Although the above method gives a good estimate of a separating vector, for 
polytopes with a small number of vertices, the line segment connecting the two 
polytopes' centers may be a better choice. That is because both methods may 
end up with the same supporting vertices pi and qj for simple polytopes, and 
the overhead of computing the initial searching direction as in Figure 2 may be 
large. 

2.5 Caching 

In each time frame, the separating vector and the two supporting vertices 
found are cached. If the polytopes collide in this time frame, the separating 
vector and the two supporting vertices of the last time frame in which polytopes 
do not collide are cached. The previous separating vector is used as the initial 
searching direction Si in the next time frame. Since the objects do not move 
swiftly in a virtual environment, this vector is likely to be a separating vector in 
the current time frame. Similarly, the supporting vertices found in the previous 
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Figure 2: Three cases to find the initial separating vector 

time frame are used to search for the new supporting vertices in the current time 
frame. Due to temporal and geometric coherences this searching step runs in 
expected constant time. 

2.6    Preprocessing 

When for the first time bounding boxes overlap, an arbitrary vertex can be 
used to start the searching algorithm to find the supporting vertex. To be more 
efficient, we precompute supporting vertices in various directions and store them 
in a 2D table. Given a supporting direction, this initial vertex can be retrieved 
in constant time from the array. The larger is the size of this 2D table, the closer 
is this initial vertex to the true supporting vertex and, the more quickly does 
this searching algorithm perform. 

3   Proof of Convergence 

Lemma 2 : Given a unit vector Si, let pi and qi be the supporting vertices of 
polytopes P and Q in the direction Si and -Si respectively. Suppose that P and 
Q do not collide and w is any separating vector of P and Q. //Si • w > 0 and 

Si • (qi - Pi) < 0, then 

Si+i-w > Si-w > 0,     i- 1,2,. (3) 

where Si+i is defined as in Eqn.(2). 

Proof. Let r; = (qi - pi), where (x) = z/||a:||. Then we have ri • Si < 0. 

Si+i • w    =    ((ri x Si) x ri) • w 
=    (Si - (ri ■ SOn) ■ w 
=    ((Si-w)-(ri-Si)(ri-w))/i:i 

where Lj = ((n x Si) x rä) • ((n x Si) x n) = 1 - (S; ■ r;)
2. 

Because for any separating vector w, (q'-p')-w > 0 for any point p'GP.q'GQ, 
ri • w > 0. Since ri • Si < 0, 
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Li(Si+1 • w) - Si • w = -(ri • Si)(ri ■ w) > 0 

So 
£,-(Si+i-w)>Si-w. (4) 

Since 0 < L{ < 1 and Si w > 0, we have, by induction, Si+1 w > Si w > 0.    O 

Hence if the two polytopes do not collide and Si is not a separating vector, 
then Si+i given by Eqn.(2) is closer to any separating vector than Si is, since 
by Lemma 2 the angle between Si+i and w is smaller than the angle between 
Si and w. Choosing the initial vector to be the line segment connecting the two 
polytopes' centers ensures that Si • w > 0. We also assume that the polytopes 
do not move swiftly so that the condition Si • w > 0 holds for the cached vector 
Si, which is the supporting vector of the previous time frame. 

Another property of the algorithm is that if the pair pi and qi appear in two 
consecutive steps, then P and Q do not collide, as indicated by the following 
lemma. 

Lemma 3: If Si ■ (qi - Pi) < 0 and pi+i = Pi, qi+i = qi, then Si+i • ri+i > 0, 
i.e. P and Q do not collide. 

Proof. Let r{ = (qi - Pi) and ri+i = (qi+i - pi+i), we have r; = ri+i. 

Si+i • ri+i    =    Si+i • ri 
=    ((ri x Si) x ri) • n 
=    (Si - (ri • Si)ri) • r; 
=   (fr-n)-fa. sOfa-n))/Li 
=   0 

where L? = l-(Si-ri)2. 

Hence we have Si+i • (qi+i - pi+i) = 0. This means that P and Q do not 
overlap. Note that P and Q may touch each other in this case but we consider 
the touching case as non-collide. □ 

4   Experiments 

Experiments have been carried out to investigate how the number of search- 
ing steps k is related to the percentage of non-interference objects eliminated by 
this algorithm. The simulation uses 100 polytopes of the same size moving in a 
closed environment for 1000 frames. Each object has its translational velocity 
equal to 5% of its radius and rotational velocity of 10 degrees per time frames. 
A precomputed table for the supporting vertex of size 8x16 is used. When there 
is a collision between two polytopes, their rotational and translational velocities 
are reversed. Three different types of polytopes are used: an ellipsoid, a long 
thin rod and a fiat circlular plate. Points are randomly sampled on the surface 
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of these objects to give the vertices of the polytope; the number of vertices is 
indicated in Fig.3. Fig.3(i) shows that, when k = 3, more than 90% of pairs of 
non-interference objects with overlapping bounding boxes are reported as non- 
interference by this algorithm. In the case of ellipsoids, this figure increases to 
99%. This collision test is called only when the tightest rectangular bounding 
boxes of two polytopes overlap [1]. 

However, we have found some cases where supporting vertices found during 
the searching step repeat themselves alternately between two pairs of fixed ver- 
tices, though the two polytopes do not collide. As a result, this algorithm does 
not guarantee that a separating vector can be found in a finite number of steps. 

We also compared our algorithm with the closest features tracking algorithm, 
which is the fastest algorithm so far [1]. The comparison is carried out under the 
following conditions : (1) different number of polytopes; (2) different speeds for 
translational movement; (3) different speeds of rotational movement. The exper- 
iments are carried out by using our algorithm to replace the lowest layer of the 
LCOLLIDE[l] source code which detects collision between two polytopes using 
the closest features tracking algorithm. The simulation is done on SGI/Reality 
Engine and there are 100 polytopes in the environment. The shape of an ellip- 
soid is used. Fig.3(ii) shows the simulation time with different no. of polytopes 
and different complexity of polytopes in the environment. The results show that 
our algorithm is much faster in all cases. In Fig.3(iii), when the translational 
velocity is changed from 2% to 20% of object radius per time frame, the sim- 
ulation time of our algorithm increases slightly, while the simulation time for 
the closest features tracking algorithm increases substantially. That is because 
when the translational velocity increases, the closest features tracking algorithm 
needs more time to locate the closest points between polytopes. Moreover, the 
LCOLLIDE library needs to call another linear programming algorithm for ex- 
act collision detection every time when there is a recycling of features. Similarly, 
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when the rotational velocity is increased from 5 degrees to 40 degrees per time 
frame we can see (Fig.3(iv)) that our algorithm takes only a little longer time 
while the closest features tracking algorithm takes substantially longer time to 
finish. 

5   Conclusion 

We have proposed an efficient algorithm to quickly eliminate non-interference 
polytopes in virtual environments. This algorithm closely integrates the bound- 
ing box algorithm and the exact collision detection algorithm and serves as an 
additional layer between them. Nearly all non-interface polytopes can be elimi- 
nated before a usually more time-consuming exact collision detection algorithm 
is called. This algorithm is fast and simple to implement. With caching, pre- 
processing and local searching, this algorithm takes advantage of coherence to 
run in empirically expected constant time. 
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Abstract. In virtual studios, most of the setting is not constructed in reality but generated 
synthetically by a graphics computer and mixed into the camera image. A convincing mixing 
requires very precise coordination of the real camera with the graphics pipeline, especially in the 
case of camera moves. This process is called camera tracking. 

The paper describes an image-based algorithm for camera tracking. The algorithm uses real world 
reference points which are identified interactively in the first image and tracked in the image 
sequence in real-time. Based on these measurements, the camera data is calculated. The most 
demanding task is the smoothing of measurements and camera data to achieve stable and coherent 
camera moves. Kaiman filtering methods are used to eliminate jitters from the calculated camera 
data. 

Keywords. Virtual studio, visual effects, synchronization, image processing, Kaiman filtering, 
camera tracking. 

1 Introduction 

In the last years, computer graphics has been successfully applied for enriching movies. Several 
movies have been produced that integrate computer-generated animations with real scenes. "Jurassic 
Pare" is a well known and often cited example. Animations in such movies have been generated by 
highly specialized artists and computer scientists who spent a lot of time on the careful design and 
compilation of individual scenes. The integration is usually performed individually frame by frame. In 
a static situation where the camera settings (position, pan, tilt, roll, zoom) and the lighting conditions 
remain unchanged, the setting of the graphics pipeline and the surface attributes have to be established 
only once for all frames. If camera settings or lighting conditions are allowed to change dynamically, 
the synthetic objects have to be generated differently for each individual frame. 

In contrast to the above interactive approaches, recent activities favor real-time integration of 
synthetic computer graphics and video. Real-time implies that the integration has to be performed 
automatically on the fly in a time close to the video frame rate (j^5 sec). This prohibits manual 
assistance—with the possible exception of the initialization phase. The current settings of camera and 
lighting have to be recorded on-line and transformed into a corresponding setting of the synthetic 
camera and the synthetic world. The changes have to take effect immediately. 

There are a number of interesting application scenarios for these techniques [Kansy et al. 1995, 1996], 
mainly in virtual studios currently introduced into the TV industry. Rather than building different 
studios with characteristic settings for each single TV show, the video will be captured in front of a 
blue background which can be replaced with any desired synthetic background. Blue screen 
technology is currently used extensively in studios. It allows the use of hopefully less expensive 
virtual settings and could re-use one real studios for different shows by changing the set with one 
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Fig. 1. View into the virtual studio Fig. 2. Merge of real and virtual scene 

computer command. Figure 1 shows a look into a virtual studio from the camera perspective. The blue 
background can be automatically replaced by any synthetic image (Figure 2). 

Usually, the camera is static: it does not change its position, zoom, and other camera parameters. The 
benefits of a real three-dimensional background, however, can be exploited only when the camera 
setting is allowed to change arbitrarily. For a realistic result, the camera parameters have to be tracked 
precisely such that no distortion between real and synthetic image becomes visible. The three- 
dimensional background has to be rendered in real-time to be coherent with the real scene. 

Virtual props extend the classical props used in theater: they are synthetic objects included into the 
video image and share the capabilities of real props and computer controlled items. Props close to real 
items have to be positioned very precisely to avoid the impression of a relative movement (floating 
effect). In a medical discussion, a three-dimensional and partly transparent heart could be integrated 
into the scene. In an outdoor setting, synthetic objects could be inserted into a landscape, e.g., a bridge 
into a valley or a new building into a city view. In all these cases, the viewing parameters of the 
camera may vary and have to be tracked in real-time such that real and virtual objects move 
coherently without visible delays. 

2 State of the art 
The settings of the real camera can be measured directly by putting sensors on the camera. One of the 
first sensor system was the Ultimatte Memory Head; currently one can choose among several different 
sensor systems [Sommerhäuser 1966]. However, sensor systems imply special equipment which is 
expensive, clumsy, and not available everywhere—for instance not outside of studios. The precision 
of the sensors is a limiting factor which restricts the allowable camera moves. For instance, the camera 
typically does not change its place during one shot. 

Within the RACE II project MonaLisa, the ELSET system has been developed with a real-time 
camera tracking server [Routsis et al. 1994] where the setting of the real camera is determined solely 
by analyzing the video image. For each frame, pattern recognition in the video is performed to derive 
the current view direction and the zoom factor of the camera. The camera position cannot be 
calculated by this system and, therefore, the camera has to remain at a fixed position. 

The aim of our work [Kansy et al. 1995, 1996] was to develop a scheme where the camera is allowed 
to move freely without restrictions and, even, to support shoulder cameras. It was clear that only an 
image-based approach could provide sufficient precision because it allows for a feed-back from the 
camera image and, hence, can position objects with pixel precision and maintain this precision over 
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long camera moves. To calculate the camera position, it is necessary to recognize a three-dimensional 
structure within the images. Standard algorithms [Bogart 1991] require at least four reference 
positions with known world coordinates within each frame, to calculate all seven geometric camera 
parameters (i.e., camera position (3 coordinates), camera orientation (3 angles), and the zoom factor). 
The reference positions have to be spread over all dimensions of the three-dimensional space to allow 
the calculation. 

The need for known reference points in the video image is not a big problem in a virtual studio where 
respective reference structures can easily be provided within the blue background or by furniture 
within the studio. On the contrary, such reference points can provide additional functionality as they 
can be used as anchor points for precise positioning of synthetic objects within the video scene 
relative to real objects. 

The Israelian company ORAD [ORAD 1995] is developing a competing product called "ORAD's 
Virtual Set". Their prototype system provides a "virtual set solution that enables moving the cameras 
or even using a shoulder camera." It is based on a careful chosen pattern of light blue stripes on the 
dark blue wall rather than individual points and uses the new DSP processors TMS320C80 (MVP) of 
Texas Instruments for analysing the pattern and deriving the seven geometric camera parameters. The 
pattern on the wall is automatically removed when the synthetic scene overwrites all blue portions in 
the real scene. However, different blues in the blue screen limit the quality of the merged image. 

Finding a three-dimensional reference structure within the video is only one part of the solution. The 
camera image tends to jitter especially during camera moves; as a consequence, the reference structure 
will jitter also; finally, the calculated camera parameters tend to exaggerate the jitter of the reference 
structure. For a virtual studio, this jitter is not tolerable as the human eye immediately recognizes even 
slight differences in the movement of the real and the virtual world. Standard smoothing techniques 
like least square fit, by far, are not sufficient to suppress the jitter. Kaiman filtering seems to be the 
most appropriate technique to smooth the statistically disturbed measurements of the reference 
structure and to control the calculated camera moves. This paper reports about the current state of our 
work. 

3 The CaTS camera tracking system 
We have implemented a unique camera tracking system CaTS which uses objects in the scene with 
known geometry for calculating the geometric camera parameters in real time. Figure 3 shows the 
components of the CaTS system. 

□H Ultimatte 7 
video mixer 

T 

1 
Sirius 

T  
SGI Onyx 

i 
camera     |  3DK 

tracking    j  studio 

I sinus" 

Fig. 3. Configuration of the CaTS camera tracking system 
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A camera within the virtual studio captures the scene before a blue background. The video signal is 
sent to two destinations: a Sirius board and a video delay unit. 

The Sirius board transfers each frame in the video signal into the memory of a multi-processor SGI 
Onyx computer. To be more precise, the video signal transfers one frame as two fields: one field 
containing all odd-numbered lines and the other the even-numbered lines of the video frame. One 
processor of the Onyx processes the image, identifies the position of the given reference objects, and 
calculates the camera parameters. The camera parameters are then used by the rendering process (3DK 
studio) to generate the synthetic scene. 

Currently, no special image processing or pattern recognition board is used which limits the 
recognition process to simple point and edge detection. This is a weak point in the current CaTS 
implementation. The quality of the derived position data would benefit from image enhancement and 
edge detection processes. Figure 4 shows a magnified view of a black dot with dissolving pixels and 
widely varying colour values which illustrates the difficulty of assigning a unique position to the dot. 
It is planned to replace this part of the system by specialized processors. 

Figure 5 shows the edges of a desk during a pan action which shows that the two fields of even- or 
odd-numbered lines belong to different points in time and, hence, define different images. This figure 
illustrates that it will be better to base the object tracking and position finding on fields rather than full 
frames. 

Fig. 4. The dissolving pixel image of a black dot. Fig. 5. Edges of a desk during camera pan 

The camera parameters are written to shared memory where they can be retrieved by the rendering 
process which occupies two further processors. The synthetic background is generated independent of 
the tracking process and uses always the most recent camera parameters in shared memory. 

The processing of the image data within the computer consumes time. To achieve high video quality, 
the CaTS system operates with 50 Hz frequency, i.e., with the field rather than the frame rate of the 
video signal. The tracking and the rendering process consume less than 20 msec each. This means that 
they can keep pace with the incoming video signal. Figure 6 shows that the synthetic background is 
ready to be mixed with the video signal with 3 fields delay. Additional hardware-specific delays 
extend this value to a typical 4 frame delay (i.e., 160 msec). The video signal has to be delayed by this 
amount to allow the synthetic background to be mixed with the appropriate video image. The blue 
screen mixing is performed using a Ultimatte 7 which generates the final video signal for storage, 
display, or dissemination. 
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Fig. 6. Delay between original video signal and synthetic background by tracking and rendering 

4 Calculation of camera data 

To calculate the geometric camera parameters eye joint, pan, tilt, roll, and zoom, the positions of 
some reference points must be known in real world together with their corresponding screen points in 
the video frame (see Fig. 7). The positions of the reference points in world coordinates (wpts) have to 
be measured carefully. With permanent reference points in a studio or a fixed set up of real objects, 
this measurement can be done precisely. The positions of the corresponding screen-points (scrpts) 
within the first image are identified interactively, e.g., by mouse clicking on their images. 

eye point 

refence points 

Fig. 7. Projection of four reference points (wptl-4) onto a screen 

Using standard mathematical methods, the camera parameters cam = (eye_point, pan, tilt, roll, zoom) 
are calculated from four or more reference points. For this calculation we use Bogart's algorithm 
published in the Graphics Gems [Bogart 1991]. A slight adoption of Bogart's C-package, in sequel 
called BOGART, works as shown in Fig. 8. Note that BOGART delivers besides the projection map h 
also its jacobian H (used below to calculate the covariance matrix of the sensor data bogcam). 

Digital image processing algorithms exist for 3D reconstruction of scenes from different views. They 
allow the calculation of both, the positions of the reference points and the camera parameters. These 
combined algorithms include direct [Faugeras 1993] as well as iterative approaches [Azerb 1993; 
Broida 1986] using the well known Kaiman Filter described below. However, as precision is a crucial 
point for camera tracking, these combined methods may be used only in a preprocessing step for 



79 

bog_cam 

Fig. 8. The BOGART algorithm calculates camera data from world points and their image on 
screen 

getting the world coordinates of a set of reference points. According to our experiences, they are not 
sufficient precise for calculating camera data. 

Having calculated the camera position at the start point, the video camera can be moved and the 
camera settings be changed. The reference points are automatically tracked in real-time in all 
subsequent frames. In a production system, this task would be performed by a specialized chip. 
Currently, the video signal is grabbed into computer memory and simple colour tests are performed in 
the neighborhood of the previous positions to find the new positions of the reference points in the new 
frame. For each step, we use again BOGART to get data bogcamk used as measurement data used for 
further processing by Kaiman filtering. 

The jittery video signal leads to errors in the reference points which generates unstable transformation 
parameters. This affects especially parameter changes with similar effect like moving the camera 
closer to the scene versus zooming. By choosing more than the minimum number of reference points, 
the stability can be increased. Additional reference points also make the algorithm to a certain extent 
immune against single reference points leaving the image area. Nevertheless, the camera data 
achieved by this reconstruction process have to be filtered considerably to achieve the precision 
required by our application. This filtering is performed by a specific Kaiman filtering technique 
described in the sequel. 

5 Kaiman filtering 
For a detailed description of the mathematical basis of Kaiman filtering and its various uses we refer 
to the respective literature [Chui et al. 1987; Lewis 1992; Meditch 1969]. 

Mazuryk and Gervautz [1995] applied Kaiman filtering to a scenario similar to our setting: head 
tracking in a virtual environment. It is their aim to calculate stable transformation parameters for 
generating the virtual environment appropriate to the current head position and looking direction. For 
this application, only position and orientation of the head is needed, zoom is not a concern. 
Furthermore, not precision but consistency and timeliness is crucial to give people within the virtual 
environment a reliable and immediate feed back. We are aiming at a seamless integration of virtual 
and real worlds where precision and coherence are very important whereas a fixed delay of, say, 3 
frames is admissible even for a live TV show. Video delays are available to retain the video signal for 
some frames until the virtual world has been produced. 

Kaiman filtering is based on linear stochastic system theory. With Kaiman filtering, a predicted 
system state XM is corrected by using measurements yk+l which are noisy, resulting in a final value 
xk+l (see below). The state-space description is given by 

(1) \xk+wk 

(2)     yk = Ckxk+vk 
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where 

Xk state vector at time tk (i.e., ktn iteration) 

yk state vector measurement at time tk 

Wk process noise vector 

vk measurement error 

Ak transition matrix between states Xk and Xk+l in the absence of noise 

Ck relation between measurement and state Xk 

Kaiman filtering requires for each step an estimate of the error covariance matrix Qk to represent the 
process noise wk as well as an estimate of the error covariance matrix Rk representing noise in 
measurements vk. Together with an error estimation P0 at start time (in our case set to the zero 
matrix), the algorithm is defined by [Chui, Chen 1987]: 

(3) Pk=\.xPk-X-x+&-i 

(4) Sk = CkPkCk
T + Rk 

(5) Kk = Pk.Ck
TSk~

l 

(6) Pk={l-KkCk)PkAk
T + Qk 

(7) xk = Axk_x 

(8) xk=xk + Kk(yk-Ct-xk) 

The term 

(9) yk-c-xk 

is called innovation. 

In our case, we have modeled the system as a simple kinematic model with constant velocity as 
follows: 

The system state vector consists of the camera position and the velocity vector 

(10) xk= (camk, cämk )T 

Matrix Afr predicts the camera data (with constant velocity) and is defined by: 

7    Arl 
(11)    A 

O    I 

The vector of measurements y^ contains the camera position data delivered by the BOGART 
algorithm: 

(12)    yk=bog_camk 

Note: We do not use the original measurements, i.e., the found screen points, in the Kaiman filtering 
but interpret the BOGART algorithm as a sensor which delivers for each time tk a measurement of the 
camera position. Thus, the nonlinear relation between measurements in the image and the camera data 
are moved completely into the BOGART algorithm. 
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Now, when relating only on position data, C becomes 

(13) C = [I    O] 

and the innovations are given by 

(14) innovation = yk- Ckxk = bog_camk - (camk_x + cäm^At) 

Thus, the innovation measures the difference between camera extrapolation and camera measure- 
ment. 

The covariance matrices Qk and Rk are established as follows: We determine by experiment Q = Qk 

as diagonal matrix with a constant value qj for the variances of the extrapolated camera position data 
and q2 = 10 ■ #, as the variances of the extrapolated camera velocity. The measurement noise Rk can 
be calculated by using the pseudo inverse of the jacobian matrix /fyused by the BOGART algorithm 
from (uncorrelated) variance of the screen points. 

Figure 9 shows a camera move from frame 120 to 200 which represents a pan from 0 to -8 degree. The 
single tracks represent the camera data delivered by the BOGART algorithm. Figure 10 shows the 
same sequence with camera data filtered by the Kaiman filtering. 

Fig. 9. Seven camera parameters 
as calculated by the BOGART algorithm 

Fig. 10. Seven camera parameters 
smoothed by the Kaiman filtering 

6 Adaptive filtering 
The integration of graphics into video requires a high precision and stability of the camera data, as the 
human eye immediately notices slight shifts and uncorrect moves within the combined image. 

The above Kaiman filtering is sufficient only for smooth camera movements. Sudden changes in 
speed and direction will lead to the well known overshooting effect. The following Figures 11 and 12 
show a sudden change of zoom factor which leads to an unmotivated temporary change of tilt angle. 
This problem is well known in practical applications of Kaiman filtering. To avoid it, we use adaptive 
filtering, a strategy often used in practical applications and described in our special one as follows. 

In many cases, including our own, the errors Qk and Rk are (partly) unknown and changing in time. 
Therefore, these data have to be adaptively optimized due to heuristic criteria. This leads to adaptive 
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Fig. 11. Camera parameters for zoom 
as calculated by the Bogart algorithm 

Fig. 12. Camera parameters for zoom 
smoothed by the Kaiman filtering 

filtering, a strategy which can be described in our case as follows. When the camera is moving 
smoothly, we keep Qk as small as possible. This will effect in a small value for K giving the 
extrapolated value Xk+l more weight, and is thus resulting in a good smoothing effect (nearly constant 
velocity) (cf. (8)). Problems with this strategy generating overshooting effects such as illustrated in 
Fig. 12 may arise after a certain number of steps or suddenly, when the camera is jerked vehemently. 
Fortunately, upcoming overshooting effects can be detected by an indicator. In these cases, the 
difference between camera extrapolation and camera measurement, i.e. the innovation (cf. (14)) 
exceeds a certain limit. As soon as this happens, a higher value for Qk is selected resulting in Kk 
closer to identity matrix /. This then leads to a result in (8) with a filtered camera position closer to 

yk =bog_camk. 

Note: We apply the above strategy, but measure the amount of the innovation in a slighty other way as 
is described in [Bar-Shalom, Fortmann 1988]. Instead of evaluating the criterion 

(15) innovation,, > e0 

we use a better suited definition called normalized innovation squared. Its value requires Sk'
[ 

(calculated by inverting (4)) and leads to a selection criterion for Kk depending on ckecking whether 
an empirically defined boundary El will be exceeded by 

(16) innovationk Sk innovation > e,. 

7 Implementation aspects 

Kaiman filtering, in general, requires matrix inversion at runtime to calculate Kk- When the values of 
Qk and Rk are estimated by constant values, Kk can be precalculated. Under slight conditions, Kk 
converges against a constant value resulting in steady-state filtering [Chui, Chen 1987]. To be able to 
apply adaptive filtering, we precalculate and store for different values of Q' a complete sequence of 
S'~ (used in (16)) and K' with 0<...< K' < KM <.../. Starting with a rather small K* to 
achieve good smoothness, we check at each step (16) and decide which precalculated K should be 
selected for further processing. In this way, a adaptive filtering is possible without any costly matrix 
inversion at runtime. What should be finally noted is that the measurement error Rk is not really a 
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constant matrix because the jacobian Hk is depending on the position of the camera. But we have 
made the experience that for a normal video recording, a constant value Rk = R will be a sufficiently 
good choice for evaluating term (4) above. 

We have performed experiments with many modifications of the above mentioned filtering procedure. 
In particular, we have selected a higher degree of the kinematic model (constant acceleration model, 
thus extending (11)), but with no real improvements of the final result. 

8 Future work 
Currently we implement an extension of Kaiman filtering called fixed-lag smoothing described by 
[Meditch 1969]. With this approach, the live video is delayed by a fixed timelag (ca. 3-5 frames). This 
allows to look into the future to anticipate sudden changes within a camera move. With this approach 
we hope to master problems which may occur when recording scenes with shoulder cameras. The 
price to pay for such a procedure is a delay which may sum up to about 5-8 frames. 

The performance of the overall system is dictated by the requirements of the TV application: precisely 
25 images per second have to be generated. Considering the field mode of TV, 50 images per second 
are required. The calculation of the camera parameters and the Kaiman filtering as described above are 
non-critrical processes which could even keep pace with 100 images per second on an SGI Indigo 
computer. The limiting processes are the recognition and measurement of reference objects in each 
image and the high quality rendering of the virtual world which has to be done within 20 msec each to 
keep in pace with the video signal. As a consequence, currently only simple reference objects are 
supported which can be located fast enough. It is intended to use signal processors in future versions 
which would allow to recognise and locate more complicated and natural reference objects. The 
virtual world is designed such that it can be rendered within the given time frame. By adding powerful 
graphics boards to the system and distributing the task over several CPUs, the complexity of the world 
in terms of polygons and lighting effects can be increased. 
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Abstract: This paper describes the principles and problems of 3d-morphmg in real-time 
applications. Several known morphing-algorithms will be discussed and a new algorithm will 
be presented, which works on arbitrary polyhedra. Furthermore this paper presents 3d- 
morphing as an application for smooth transition between different level-of-detail (LOD). 

1 Introduction 

First generation virtual worlds consisted of mostly static scenarios where only limited 
interaction was possible. This was due to limited processing power and lack of 
sophisticated systems. The traditional way to experience these worlds was by walk- 
throughs or fly-bys. The objects were also static, so human explorers of these worlds 
soon became bored. 

Today available graphics and computation hardware allow virtual worlds to 
potentially react to user actions quite well, as well as to comprise interesting dynamic 
objects or artificial creatures, including their special behavior and emotional 
expression. One possibility to realize a living world is by transforming (morphing) 
objects, e.g. a friendly character turning into a menacing, outraged sorcerer. 

An important technique to conquer complex scenarios, especially when viewed from a 
bird's position, is level-of-detail. Many different algorithms exist which are optimized 
for certain object features [2]. Morphing can provide a smooth transition between two 
levels-of-detail of an object. 

Morphing can be used for design-studies to combine different features of different 
objects. It is also possible to determine the development of a shape in the future by 
means of parameter extrapolation, e.g. to predict the shape of a next-generation car 
[5]. Another application is the visualisation of the evolution of the human race [9]. 
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2 Morphing 

The lay audience has become aware of the possible effects and benefits of morphing 
in the entertainment sector. Well known examples are Michael Jackson's music video 
"Black and White" [4] and films like "Indiana Jones 3: The Last Crusade" and 
"Terminator 2". Whereas "Terminator 2" has been realised using 3D-morphing, the 
others have been realised using 2D image-based techniques. 

The advantages of 3D-morphing compared to 2D-morphing are: 
• 3D-morphing is independent of camera position and light sources. Thus a scene 

object has to be modeled only once and then different camera and light positions 
can be applied. When using 2D-morphing for every change in camera/light 
position the morphing has to be recalculated. 

• 2D-morphing can't handle shadows, lights and invisible objects correctly because 
of the lack of spatial information. 

2.1 Principles and Problems 

Two objects (source and destination) are needed to apply 3D-morphing. With a 
morphing algorithm a morph-object is generated which interpolates between these two 
objects. The difficult part is to set up a meaningful correlation between two totally 
different objects (with respect to number of points and faces, topology, visual 
attributes). The process of 3D-morphing can be subdivided into two steps: 
• In a preprocessing step the morph-object and a correspondence list have to be 

computed. The correspondence list contains information regarding which point 
and which face of one object will be mapped onto which point and which face of 
the other object. 

• At runtime the morph-object has to be constructed and displayed according to user 
actions or story requirements, e.g. by interpolating the vertices of the source and 
destination objects. This task has to be processed in real-time. 

3D-morphing also encounters several difficulties and problems: 
• Different numbers of faces and vertices of the two involved objects 
• Different topology of the objects 
• In-between morphs should resemble both objects (e.g. possible degeneration into 

several objects) 
• Potential degeneration of faces (to lines, points) 
• Coplanar in-between faces resulting in flickering display 
• Interpolation of textures might not be supported by the hardware 
• Different triangulation of faces resulting in shading flicker 
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3 Algorithms 

In [7] the PIP algorithm (Parametrized Interpolating Polyhedron) is described which 
generates morph-objects or PIPs and calculates the correspondence between the 
vertices. This algorithm can handle every kind of object and respects the topology of 
the involved objects. The basic idea is similar to blending between two objects by 
means of transparency. This 'blending' is done with the Minkowski-operator: 

PIP(A,B) = (l-t)A@tB 

A: source object 
B: destination object 
t: blending parameter, 0 .. 1 
©: Minkowski-operator 

The described algorithm generates the needed faces for the morph-object. These faces 
belong to one of the following types: 
• Faces, which evolve from a single point of object A to a face of object B. 
• Faces, which evolve from a face of object A to a single point of object B. 
• Faces, which evolve from an edge of object A to an edge of object B. 

To determine the vertex correspondence is simple (fig. 1). 

x 

. -■ 

$" 
EB 

Fig. 1. Edge to edge correspondence and vertex to face correspondence 

Unfortunately, this algorithm works only for polyhedra in 'general position', so that 
no faces of an object are parallel to an edge of the other object. A very simple but 
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effective approach to solve this problem is to slightly rotate one of these objects until 
'general position' is reached. For the interpolation step the original, unrotated objects 
are used. An advantage of this algorithm is that the face normals remain constant 
during the interpolation process. One of the major problems using this algorithm is 
that the morph object can have up to m*n faces, where m and n are the number of 
faces of the initial objects. 

Another approach is the NoTop algorithm ([8]), which ignores the topology of the 
initial objects. Here, only corresponding faces are specified. The correspondence is 
determined by the minimum distance between two faces. For this purpose, both 
objects are translated in the origin and scaled on the same bounding sphere. The 
maximum number of faces of the morph-object is m+n. This method is well suited for 
explosion effects, because the in-between morph often consists of a number of 
unordered and unconnected faces. The visual effect resembles the output of a particle 
system. 
Another algorithm suitable for VR applications is described in [10], which only works 
with polyhedra without holes. Basically the algorithm is divided in 3 steps: 
• Projection of the topologies of the initial objects onto a unit sphere. 
• Merging the two projected topologies. 
• Creating new initial objects by projecting the unified topology onto the inital 

objects using barycentric coordinates. 
The vertex correspondence is simple to determine, because the two new inital objects 
are topologically equal. The main disadvantage of this algorithm is the heavily 
increased complexity of the generated objects. See [10] for further details. 

Many other morphing algorithms cannot be used, because they work on data 
representations, which are not suitable for real-time applications. [5] works on a 
pseudo 3D representation and [3] only on implicite surfaces. [6] describes a method 
using the Fourier-transformation, which only works on solid models. [9] describes a 
way to define features on each object, which are then morphed into each other. So the 
appearence of the morph can be controlled. Unfortunately this algorithm works only 
with solid models. 

The interpolation step is straight-forward. Except for linear interpolation between two 
vertices and visual attributes also hermite curves and ease-in- / ease-out-functions 
result in special effects. 

3.1 Morphing for Level-of-Detail representations 

One of the major problems when using level-of-detail representations is the 
continuous, unnoticable transition from one level to another, e.g. depending on the 
distance to the viewer. A widely used technique in VR systems is simply switching the 
visibility between two levels of detail, which leads to a noticeable break/leap during 
the animation. 
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Another approach is blending in the transparency domain between two 
representations. The disadvantage of this solution is that two objects must be rendered 
simultaneously and their faces depth-sorted. Thus the "best" solution and smoothest 
transition is to apply 3D-morphing techniques (see fig. 2). 

LOD 1 visible 

distance viewer - object 

LOD 0 visible       morphing        LOD 1 visible 

distance viewer - object 

distance viewer - object 

Fig. 2. Different lod-techniques: switch, blend, morph 

The level-of-detail representations can be generated either by hand or by an algorithm. 
A common algorithm collapses a number of vertices into one unique point. Doing this, 
the number of vertices and faces of an object decreases. Because the lod algorithm 
implies this 'correspondence-step' between1 the vertices of two following levels, the 
difficult step of finding the vertex-correspondence is implicitly solved too (see fig. 3). 

See also [2] for a discussion of several lod algorithms. 

vertex-correspondence : 
1 =>a 
2=> b 

3=> c 
4=> d 
5=> d 
6=5 d 

lod (I lod 1 

Fig. 3. Vertex-correspondence using lod algorithms 

4 Morph Tool 

The implementation of the morphing capabilities is based on the real-time Tenderer Y. 
Y is the FhG's real-time rendering system applied in VR applications. It uses a 
hierarchical scene graph, level-of-detail, viewer, lights, environment (ambient, 
background colour, etc.) and callback nodes for user-defined actions. Y is based on 
OpenGL graphics library and includes multipipe culling and drawing and arbitrary 
windows. 

A GUI allows morphs to be created, saved, loaded and played back. Also different 
parameters can be set, e.g. ease-function, interpolation type (linear, hermite curve) and 
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number of steps between two initial objects. While the morph is played back, vertex 
position, texture coordinates, colors and normals are interpolated according to the 
specified interpolation-type. Unfortunately textures cannot be interpolated due to 
hardware-respective time constraints. 

The geometry of the initial and morph-objects can be stored in any standard data 
format (e.g. FHS, CGRG, Inventor), where the point order is not altered. The 
correspondence table and morph parameters are stored in a special morph-format (fig. 
4). 

MORPH simple_morph % name of the morph 
{ 

OBJECTS triangle 1 triangle2 %name of the intial objects 
MOBJECTS triangle3 %name of the morph-object 
LINEAR 50 %interpolation-type and num. of steps 
EASE 0.2 0.0 0.2 0.0 %ease-in 0.0-0.2, ease-out 0.8-1.0 

%start- and endspeed is 0.0 
CONSTFNORMAL %don't interpolate face-normales 
CORRESPONDENCE 3 %correspondence table follows 

(1,3) (3,1) (2,2) "^correspondence (index_l, index_2) 

Fig. 4. Example of morph data structure 

In the GUI the PIP and the NoTop algorithm are applicable, as well as the creation of 
morph-lod's based on the lod-algorithm described in [12]. The user can specify the 
initial objects by picking them with the mouse-cursor. In a dialog-window parameters 
can be set and the correspondence-calculation started (fig. 6). 

5 Results 

In the color section (see Appendix) a figure depicts the morphing of a torus into a 
beethoven bust, processed by the PIP algorithm. Another color figure presents an 
example of the NoTop algorithm, which transforms a Ficus Benjamini tree into a 
Beethoven-bust.. 

As discussed earlier, the main problem of the PIP algorithm is the possibly enormous 
number of faces of the morph-object, but practically the numbers are lower (table 1). 
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Table 1. Number of generated faces using the PIP algorithm 

initial objects number of 
faces of 

object A (m) 

number of 
faces of 

object B (n) 

max. number 
of faces 
(m*n) 

2 generated 
faces 

percent of 
max. number 

pyramid 
torus 

5 400 2000 537 26% 

torus 
beethoven- 

bust 

400 2.802 1.120.800 34.536 3,08% 

screwer 
hammer 

119 64 7616 720 9.5% 

Another important fact is how fast 3D-morphing can be performed. Our benchmarks 
are done on a SGI Onyx with 4xR4400 250 MHz and a Reality Engine2. For the 
interpolation step only one processor was used (see table 2). 

Table 2. Morph -benchmarks 

initial objects morph-object 
£ faces 

morph-object 
X points 

msec/frames without 
rendering 

msec per point 

screwer 
hammer 

720 2457 4.73 0.0019 

lod-chair 
lod-chair 

502 317 0.51 0.0016 

pyramid 
torus 

537 2144 2.91 00014 

apple 
tree 

8290 24870 65.93 0.0026 

A way to speed up the interpolation-process is by paralleling it. The speedup is shown 
in fig. 5. 

Speedup 

2.85 

.95 

1.00 

1 2 3 
Fig. 5. Speedup 

CPU 

Assuming the hardware platform described above and only one processor available for 
the interpolation, then for an application with 20 frames / sec. a morph-object with 
approx. 15000 points can be interpolated and rendered. 



92 



93 

6 Conclusion and Future Work 

3D-morphing is a powerful tool to either animate static VR scenarios (e.g. special 
effects or for artifical life scenarios) or to provide smooth transitions between different 
levels-of-detail of an object. 
When objects have multimodal attributes, e.g. in the visual or haptic domain, these 
attributes will also have to be considered for morphing in future. 

References 

1. Astheimer, P., Göbel, M.: Virtual Design II, an advanced VR development 
environment, in: M. Göbel (ed.): Virtual Environments, Springer, Wien, 1995 

2. Astheimer, P., Pöche, M.L.: Level-of-Detail Generation and its Application in 
Virtual Reality, in: Singh, G., Feiner, S.K., Thalmann, D. (eds.): VRST '94 
Proceedings, World Scientific, Singapore, August 1994, pp. 299 - 309 

3. Beier, T.: Practical uses for implicit surfaces in animation, Notes from ACM 
SIGGRAPH '90 Course 23 - Modelling and animating with implicit surfaces, 
pp. 20.1-20.11 

4. Beier, T., Neely, S.: Feature-based image metamorphosis, Proceedings of 
ACM SIGGRAPH *92, pp. 35 - 40 

5. Chen, S.E., Parent, R.E.: Shape Averaging and its applications to industrial 
design, IEEE Computer Graphics & Applications, Januar 1989, pp. 47 - 54 

6. Hughes, J.F.: Scheduled fourier volume morphing, Proceedings of ACM 
SIGGRAPH '92, pp. 43-45 

7. Kaul, A., Rossignac, J.: Solid-Interpolating Deformations: Construction and 
animation of PIPs, Proceedings of Eurographics 91, pp. 493 - 505 

8. Knöpfle, C: 3D-Morphing für VR-Anwendungen, diploma thesis (in german), 
FH Darmstadt, October 1995 

9. Lerois, A., Garfinkle, CD., Levoy, M.: Feature-based volume metamorphosis, 
Proceedings of ACM SIGGRAPH 95, pp. 

10. Kent, J., Carlson, W., Parent, R.: Shape transformation for polyhedral objects, 
Proceedings of ACM SIGGRAPH 92, pp. 47-54 

11. Reiners, D., Zachmann, G.: The Y System, Fraunhofer-IGD internal report 
1996 

12. Schaufler, G., Stürzlinger, W.: Generating multiple levels of detail from 
polygonal geometry models, Virtual Environments (Monte Carlo, MC), Jan. 
1995, pp. 53-62 

(    Editors'Note: SeeARp«ndi^p.3iif»^ 



Motor functions in the VLNET Body-Centered 
Networked Virtual Environment 

Igor-Sunday Pandzic1, Tolga K. Capin^, 
Nadia Magnenat Thalmann *, Daniel Thalmann^ 

ijMIRALAB-Cm 
University of Geneva 

24 rue de G6n6ral-Dufour 
CH1211 Geneva 4, Switzerland 

{Igor.Pandzic, Nadia.Thalmann} @cui.unige.ch 
http://cuisg 13 .unige.ch: 8100/HomePage.html 

^Computer Graphics Laboratory 
Swiss Federal Institute of Technology 

CH1015 Lausanne, Switzerland 
{capin,thalmann} @lig.di.epfl.ch 

http://ligwww.epfl.ch 

Abstract 

The participant's sense of presence within a Virtual Environment becomes an 
even more important issue within networked, multi-participant Virtual 
Environments. In such environments this issue extends to the perception of presence 
of others in the environment and the ability to communicate and interact with them. 
This interaction, as well as the interaction with the other objects in the environment, 
further increases the participant's own sense of presence. In the Virtual Life Network 
(VLNET) system we address these issues using a highly realistic human body model 
for participant representation together with the set of motor functions giving 
behaviors to these virtual actors and to other objects in the virtual world. 

Keywords: networked virtual environments, virtual humans, virtual life, computer 
animation, multimedia 

1. Introduction 

In the past few years we have seen an increasing number of research efforts for 
building networked Virtual Environments, and solutions were proposed for building 
toolkits for communication in networked virtual worlds [Amselam 95][Carlsson 
93][Macedonia 95][Singh 95], and special-purpose applications [Maxfield 95] 
[Stansfield 95][Gisi 94] [Broil 95]. 

Any Virtual Environment is supposed to give the user the sense of presence, i.e. 
the subjective state of awareness and involvement in a non-present environment. The 
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important factor for the sense of presence is the interaction with the environment. 
This interaction should be effected in an intuitive way and the objects in the virtual 
environment should behave in a natural, expected manner, thus diminishing the 
barrier between the user and the VE. In networked, multi-user VEs this question 
extends to the interaction with other participants in the environment. We can observe 
a mirror effect: the perception of presence of others within the VE together with the 
interaction and communication with them strongly increases our own sense of 
presence. A more realistic representation of participants and their behaviors is likely 
to reinforce this effect. 

There has been similar research to represent virtual humans in virtual 
environments [Granieri 95][Yoshida 95]. In the VLNET (Virtual Life Network) 
system we use a highly realistic-looking deformable body model for the participant 
representation together with the motor functions that generate a natural motion of the 
virtual body corresponding to the user's activities. W extend and generalize the 
concept of motor functions and use them to attach behaviors to any object in the 
scene. 

The following section discusses the issues of participant representation. Next we 
describe the use of motor functions for object behaviors and interaction with the 
environment. We present the network structure of the VLNET system and finally 
pass to the results and the conclusion. 

2. Representation of Participants 

The participant representation in a networked VE system has several functions: 

- convey the information of the participant's presence 

- identify the participant 

- visualize the participant's position and direction of interest 

- visualize the participant's actions 

- enable communication between the participants 

The user representation in VLNET is based on the HUMANOID articulated body 
model [Boulic 95], At the core of this model there is a skeleton structure resembling 
the anatomical structure of a real skeleton, consisting of a 3D articulated hierarchy of 
joints, each with realistic limits of movement. Through its 74 degrees of freedom 
(with an additional 30 degrees of freedom for each hand) this structure allows the full 
control of the body model. 

The body envelope (skin) is attached to the skeleton in the form of 16 deformable 
surfaces representing the body parts: head, pelvis, thorax, abdomen, left and right 
upper leg, lower leg, foot, upper arm, lower arm, and hand. As the skeleton is 
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animated, these surfaces follow the movement and are deformed appropriately at the 
seams to form a realistic-looking deformed body. 

Besides the realistic visual representation, the believable body model must 
incorporate the natural body motion corresponding o the user actions. 

Each user sees the virtual environment through the eyes of her body, and can 
control the movement of the body by various sensor devices (varying from spaceball 
and dataglove, to numerous sensors attached to body). In addition to her eye position, 
the user also has control of her virtual hand to interact with the environment (pick 
and reposition objects). We selected these two modes of control, as most 
conventional input devices sense position and orientation of the head (e.g. head- 
mounted displays) and the hand (e.g. dataglove). 

In the VLNET system, we provide a set of motor functions that are responsible 
for different human motion: walking motor for navigation, and arm motor for 
manipulation of objects. These motor functions are based on approximations coming 
from biomechanical experiments, and they attempt to consider different parameters of 
the motion they are responsible for, in order to give parametrized motion (for 
example step length in walking as a function of velocity). 

When the user navigates through the environment, the walking motor is used to 
perform a natural walking motion. The participant uses input devices (e.g. spaceball, 
dataglove with gesture interpretation) to update the eye position of the virtual actor. 
Based on this control, the incremental change of the eye position is computed and the 
rotation and velocity of the body center is estimated. The walking motor uses the 
instantaneous velocity to compute the length and duration of the walking cycle, from 
which it computes the joint angles of the body. The walking motor is based on the 
HUMANOID walking model [Boulic 90], guided interactively by the user or 
automatically generated from the given trajectory. Figure 1 (see Appendix) shows an 
example of the walking motion in real time. 

For object picking and the arm motion in general, the arm motor has to compute 
the joint angles of the arm based on the 6 degrees of freedom of the hand determined 
by user input. Figure 2 illustrates the complexity of the degrees of freedom of the 
joints in the arm. There are multiple solutions of joint angles reaching the same hand 
position, and the most realistic one has to be chosen. At the same time the joint 
constraints have to be taken into account. These considerations make the arm motor 
much more complicated then a simple inverse kinematics problem. For the arm 
motor we use the captured data obtained using sensors and stored into a precomputed 
table of arm joints. This table divides the normalized volume around the body into a 
discrete number of subvolumes (e.g. 4x4x4) and stores the mapping from 
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subvolumes into joint angles of the right arm. Figure 3 (see Appendix) shows an 
example of arm motion produced by this mechanism. 

shoulder_flexii 

elbow_flexion 

' shoulder_abduct 

shoulder_twisting 

wrist_pivot| 

elbow_twisting 

wrist flexion, 

Fig. 2. Degrees of Freedom for the Right Arm 

To enhance the usefulness of the virtual body as means of communication 
between participants, we try to provide within the virtual self the same means of 
communication that we use with our real body. Among those means of 
communication are gestures, body postures and the facial expressions. 

The users can select a posture for the upper body to express different emotions: 
tiredness, happiness, paying attention, etc. Currently, the user explicitly selects one 
emotion, using commands similar to smileys that are used commonly in text 
messages to express different emotions. The emotion motor sets the body joints at 
the vertebrae ending at the shoulders, based on this input. There is a need to define an 
emotion motor function that automatically recognizes the appropriate motion using 
data sensed from the real user.. This developed motor function is an introductory step 
to building an automatic emotion motor. Figure 4 (see Appendix) shows body 
postures for some example emotions set by this motor. 

Facial expressions are among the most important means of human 
communication, expressing intentions, thoughts and feelings. Therefore we include 
the facial communication in our multi-user virtual environment to enhance the 
communication between the users [Pandzic 94]. 
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We implement the facial communication by capturing the user's face using a 
camera and distributing it in real time to other users to be texture-mapped on the face 
of the virtual actor. Thus the virtual actor has the real moving face of the remote 
user. 

The original images captured by the camera are first processed to extract the 
subset of the image containing the user's face. This processing is based on a 
comparison with an initial background image (the requirement is that the background 
is static). The extracted facial image is compressed at each frame and distributed to 
other users. At the receiving side, an additional service process is charged with the 
receipt and decompression of the images. The main application gets the decompressed 
images through shared memory from the service process, decoupling the facial video 
frame rate from the application frame rate. 

The facial images are texture-mapped on a simplified model of a human head with 
attenuated features. This is a compromise between mapping on a simple shape (e.g. 
box, ellipsoid) which would give unnatural results and mapping on a full-featured 
human head model where more precise image - feature alignment would be necessary. 
The texture mapping is illustrated in figure 5 (see Appendix). 

3. Interaction with Virtual Environment and Object 
Behaviors 

It is expected that the participants feel a higher degree of presence if the 
environment reacts to their actions in a realistic way. For example, the user should 
be able to interact with the environment, reposition objects by picking them up with 
her virtual hand, and releasing them, making them fall. In order to pick up an object, 
the user moves her hand near the object and explicitly requests picking (e.g. by 
clicking spaceball button, closing dataglove). The objects stay picked until released 
explicitly by the user. 

Typically the VEs are created by bringing together different models, possibly with 
different scalings and even different formats. These models lack any corresponding 
interaction information between objects. This makes it difficult to manipulate the 
scene. A dynamics simulation with collision response would partly solve this 
problem. However, even for medium-sized environments this is a time-consuming 
solution, resulting in unwanted delays in the simulation. Also, this solution still 
wouldn't give the possibility of adding specific behaviors, such as hands of a watch 
showing time. Therefore, we adopt a solution which compromises between realistic 
appearance and goal-oriented behaviors. We propose three classes of motor functions 
that can be attached to the objects, and include efficient communication schemes. We 
present the classification in this section, and network issues for executing these 
motor functions in multi-user VEs, in the next section. 
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A set of behaviors can be associated dynamically with any object in the 
environment. The object behaviors are implemented as different motor functions 
which give them a means of interacting with the users and the other objects. The 
types of motor functions can be divided into 3 classes: 

• continuous motor functions: these functions require transformation update of the 
object regularly, within a specific period of time without any delay. For 
example, hands of a clock to show the time are in this category. 

• user-dependent motor functions: these functions depend on the user input. This 
can be an explicit user input (for example, request for changing servers, see 
below); or implicit input (for example, automatic door behavior driven by 

position of the user). 

• environment-dependent motor functions: these functions are dependent on the 
environment as well as the object itself. We define different built-in motor 
functions corresponding to this category: magnet, vertical displacement, 
horizontal displacement, axis alignment. Magnet allows to attach different 
objects to each other with a predetermined transformation matrix (e.g. the watch 
body and bracelet are always attached with one transformation). Vertical 
displacement is called when the object is released; and is used for making the 
objects fall until it collides with an object, simulating gravity. 

A subset of these behaviors can be added optionally to the objects during the 
scene creation. Different motor functions can be appended together to obtain more 
complex behaviors. For example, when an object is released; the vertical 
displacement motor is activated until a collision occurs with another object (e.g. 
table); after that the axis-alignment motor, that orients the object in a vertical 
position with respect to the collided object, becomes active. 

A motor function is attached dynamically to an object through a pointer to the 
motor function structure. This structure contains the necessary internal data of a 
particular motor function and the pointers to the subroutines to be executed in defined 
situations (e.g. the Update subroutine is executed in each time step, the Save 
subroutine is activated when the user saves the scene configuration to a file). When 
the subroutines are executed, they get as a parameter the pointer to the object to 
which the motor function is attached. Using this mechanism the user can dynamically 
attach motor functions to objects, change their parameters or detach them. 

4. Network Structure 

The communication is based on a client/server model as illustrated in figure 6. 
Each server handles one virtual world and is meant to run continuously, providing a 
permanent virtual world to which the VLNET clients can connect, a kind of virtual 

meeting place. 
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Fig. 6. Communication Architecture of the VLNET System is 
based on a client/server model with links between 
the servers 

When the client establishes connections with the server, the server first provides 
the scene description to the new client, including all the object files necessary to 
build and visualize the virtual environment. All the other clients are informed that a 
new user entered the virtual world. The user representation information (body 
description, face) is exchanged between all the users, passing through the server. This 
insures that each user can provide his own body and face description and thus be 
recognized by others. 

Once this initial information exchange is finished, all information exchange is 
done through the server using uniformly sized packets which are not more than the 
Maximum Transfer Unit of the protocol being used. The content of each packet is 
interpreted according to its type - new transformation of an object, body skeleton 
angles, grouping/ungrouping information, entry/exit messages etc. The packet is a 
data structure comprising a header which contains the message type and the sender id, 
and the body which is a union of data structures - one for each message type. All 
geometrical information is sent in absolute, rather then incremental values, insuring 
the coherence of the shared virtual environment even if a packet is lost. 

When a user quits her VLNET session, the server cancels her from the client list 
and informs all other clients, thus insuring that this user disappears from the 
environment. 

Links to other servers (i.e. other virtual worlds) can be established in a similar 
fashion as VRML or WWW links. These links can be attached to any object using a 
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specialized motor function. When the user approaches such an object (it makes sense 
to make it look like a door), she is disconnected from the current server and connected 
to another one following the link. This gives the user the impression of "walking 
into another world". The user can take any objects with her when going to a different 
world. The linking mechanism, providing the possibility to carry objects through 
different worlds and allowing virtual actors to walk freely through the worlds, actually 
provides a hyper-world consisting of multiple servers scattered across the network. 

The motor functions can be handled in different ways in the networked 

application. 

The simplest mechanism is to execute the motor function locally on each host. 
This is appropriate for motor functions that do not put much strain on the CPU and 
where there is no danger of loosing the coherence of the shared environment. Time 
dependent motor functions are generally handled in this way. 

The second way to handle the motor functions in a networked environment is to 
execute the function only on the host on which it has been triggered, and distribute 
the object position updates to other hosts. The standard communication packets are 
used for this distribution. This approach has two advantages: it distributes the 
processing, which is convenient for the more power-consuming motor functions, and 
it guarantees the coherence of the shared environment. This approach is used in 
general by the user- and environment-dependent motor functions (although some of 
them can be handled by the first, simple approach). 

An extension of this second approach is provided for the motor functions that 
need to communicate some function-specific data. To this end a general-purpose 
communication packet can be used by the motor function. As an example of this 
approach, we have implemented a virtual slide show. When a user changes the slide, 
the slide show motor function distributes the slide number to other hosts, insuring 
that everybody sees the same slide. 

5. Results 

We have built experimental worlds for different applications such as teleshopping, 
game-playing, architecture and medical education, and have made tests between 
multiple users located in Switzerland, Belgium, Singapore and Japan over the Internet 
or using ATM. Snapshots from some of these sessions are presented in figure 7 (see 
Appendix). The system was demonstrated at the Telecom 95 fair in Geneva with a 
teleshopping application running over a dedicated ATM connection with Singapore. 

6. Conclusion and future work 

In this paper we have presented the VLNET system which provides a shared 
environment with virtual humans and their interactions. The motor functions provide 
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powerful and efficient tools for increasing realism of body-centered interactions. In 
addition, they allow parallel animation of objects in the multiple-user VEs, 
improving the speed of interaction. 

Future work remains for including deformable objects in the shared environment. 
There is also a need to build an emotion motor that automatically recognizes the 
emotion of the real participant, and updates the body realistically corresponding to 
this emotion. Currently the motor functions are coded in software. However further 
research will continue building general motor functions by combining low-level 
motors or allowing external scripts to control the objects in the world. Our future 
work will also aim at the compatibility with the VRML standard. 
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Abstract 

We present here an immersive application specifically oriented to the visu- 
alisation of urban space dedicated to transportation. To the "usual" constraint 
of urban / architecture walkthrough, we add the dimension of rapid transit of 
large numbers of people and vehicles, which we manage by a dedicated tool of 
"crowd simulation", using statistical algorithms such as are used in the realm 
of physics. This enables us to have a fast and realistic simulation of a complex 
environment, to be used for urban assessment and planning, on a dedicated 
graphics-accelerated PC based workstation "Elysium". 

1    Introduction 
Various projects have recently improved the immersive impression in Virtual En- 
vironments. Some consist of enhancing the ergonomics of Virtual Reality devices 
while others try to get more image quality. The results are sometimes very impres- 
sive but there is still an enormous difference between Virtual Environments and 
real world, mainly due to the absence of life. In space management, the presence of 
crowd has much more importance than just enhancing immersion because it can be 
used as a conception tool: the presence of people will change the perception of the 
signs so that arrangement will be possible to improve their position, dimensions of 
corridors could be adjusted according to the expected pedestrian flow, organization 
of emergency planning could be simulated... The application that we present here 
consists of navigating in a full 3d geometry with movable objects and autonomous 
pedestrians. The next section presents the architecture of the application, and then 
each module is described in detail. We finish with a concrete application : the 
planning of a subway station. 

1 email: ascm@world-net.sct.fr 
2email: Pascal.Guilloteau@univ-mlv.fr 
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2    Program Architecture 

2.1 Presentation of the modules 

The application is made of four modules built around a main loop which includes 
all shared information. The main loop gets data from the input module and spreads 
the information to the others units that compute the valid position of the observer 
(navigation module), the positions of the pedestrians (crowd module), the modi- 
fications of the objects (movements, creation, destruction) , and finally send the 
updated positions to the graphics unit. 

These four modules are : 

• The input module 

• The navigation and interaction modules 

• The crowd simulation module 

• The graphics module 

2.2 Input / Output Module : Flexor, Voice, Network 

The input module scans various devices like the keyboard, the flexor (a kind of 
mouse with six degrees of freedom, buttons and sensors under the fingers). It also 
includes network facilities (used for a remote control, or a collaborative review), 
and the voice recognition (obviously the most natural way of communication for 
humans). 

2.3 Navigation Module :  Collision, Level of Detail, Visible 
Objects, Priority of Drawing 

The navigation unit manages the displacement of the user preventing him from 
passing through walls, objects or other persons, generates the list of visible objects 
and updates their priority of drawing [6]. A level of detail of the pedestrians ge- 
ometric model is managed by this module to accelerate the display rate when the 
user is in motion. This module will be described in section three. 

2.4 Crowd Simulation Module 

The crowd simulation module controls the movements of each individual of the 
crowd has it is described in section four. It communicates to the main module all 
information necessary for display : a list of the pedestrian positions and orientations 
(to determine the direction of sight) and the kind of individual with its associated 
geometry. This information can be updated at display frame rate or eventually at a 
lower rate (in this case intermediate positions and orientations are linearly interpo- 
lated). The main module may also communicate to the crowd module interactive 
modifications in the behaviors of various kinds of people. 

2.5 Graphics Module 

All objects are loaded in the memory of the graphic board at the beginning of the 
simulation, and thus the graphics module just has to send to the graphics unit the 
modified information during run time. This enables the graphics pipeline to run at 
full speed without the bottleneck of transmitting the whole 3D database for each 
frame - only short updates are sent. 
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3    Navigation and Interaction 

In the real world, moving and manipulating objects is very easy, but it exploits 
the natural human ability to perform many manipulations at the same time. So 
the idea is to try to interact as easily in the immersive world as we proceed in 
real life. It is common in Virtual Reality to change the viewpoint by tracking the 
positions and the orientations of the head, and to move objects by tracking the 
hand, but this would require that the user move as freely in the virtual world as 
he does in reality. As present immersive equipment does not allow that, we use the 
sensors under the fingers of the flexor to move forward and backward. The speed 
of marching is indicated by the pressure of the finger on the sensor. In this way the 
user can walk in a huge area without moving from his or her position, we just track 
the rotation of the head to compute the direction of sight. The user can also press 
the buttons of the flexor to rotate his viewpoint without turning his head so that 
problems with the helmet cable are avoided. 

In our system, more than a passive observer, the user can be part of the simu- 
lation. In this case, he is considered as a special pedestrian in the simulated crowd, 
let's say a "super-pedestrian" that can move in the scene according to user actions 
and create or erase objects in his visible area. His presence will nevertheless be 
interpreted like other autonomous pedestrian, for instance the people he encounters 
will avoid him just like if he was himself a part of the crowd. 

3.1 Metaphor of Navigation and Paradigm of Interactions 

The interface between the user and the computer is managed by the input mod- 
ule, which gets data from all the input devices. Different metaphors are available 
through this module depending of the current function of the user. When he nav- 
igates in the world, he can create an object at any time of the experiment (by the 
voice command for example), but at this moment he stop walking and puts the new 
created object at its valid place, by moving his hand in the three directions. The 
orientation of the object could be modified by rotating the hand along one of the 
three axes. 

3.2 Collision Detection 

The navigation of the user needs to be realistic, and take care of the presence of 
walls, objects, or pedestrians. The description of the scene is a hierarchical tree 
where each room and the bounding boxes correspond to a node of the tree, so we 
can easily know where the user is. With the bounding box of the room, we can 
compute collisions with his environment only in a smaller part of the tree, without 
travelling throught the whole tree. If the position of the user is not valid we keep 
the old one and add a noise to his position so that he can understand that he can't 
go forward. 

3.3 List of visible objects, and priority for rendering 

The hierarchical tree is also used to compute the invisible objects from the current 
point of view, and remove them from the viewing list to accelerate the rendering rate 
of the graphics board. But we need to know which node is visible from any other 
one (for example if a door is openned in a room, we can see outside). A database 
has been created before the experiment to simplify the computation, but there are 
different ways to automatically precompute this information [7]. The graphics card 
that we use in the implementation is a fast 3D one, supporting texture mapping, 
but doesn't have Z-Buffering facilities, so at definition time of the scene the designer 
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has to specify the priority of each object in each room. Then the program manages 
the problem when many rooms are visible at the same time. 

3.4    Low Level of Detail 

In the creation of a big scene, many pedestrians could be inside, so if there are one 
hundred people in the crowd, the graphics rate is not the same when there are ten 
faces, or three hundred faces for the representation of one pedestrian. So we use 
three levels of detail for the people depending of the action of the user. Full detail 
is automatically available when the user doesn't move, and we switch to low detail 
graphic representation of people when the user starts walking, or erase pedestrians 
if needed. We could imagine generalizing this method to all objects, or changing 
the detail as a function of the distance to the observer. 

4    Crowd Simulation 

A crowd is a complex dynamics system in which global evolution depends on the 
movements of a great number of actors that have various behavior patterns. There 
are two main ways to model crowd's movements, the first one is a global approach 
that consists of analyzing the global evolution of the crowd, modeling it as a contin- 
uous fluid. The second approach is to consider each individual of the crowd as an 
independent entity in a microscopic way. We present here a microscopic approach 
based on a physical model known as Particle Systems [1]. Particle Systems where 
first introduced by W.T. REEVES [3] to model natural phenomena like water, gases, 
fire, clouds... Such fuzzy objects are modeled as a collection of elementary dynamic 
primitives instances of a certain number of generic classes which define their physical 
properties (mass, color, lifetime, size...). The movements are computed according 
to the presence of external forces. The equations of motion for a particle of position 
P and velocity V with external acceleration A : 

V    =    V0+ f' A(t)dt 

P   =' P0+ fv{t)dt 

where 

P0 is the initial position and V0 is the initial velocity. 

P, V are integrated in [5] with Euler's method of integration : 

V(t + At)    =    V{t)+A{t)At 

P(t+At) = p{t) + n*)+n*+")* 

In crowd simulation we cannot be satisfied with such a simple physical based model 
for two reasons. First the interaction between people in the crowd is very important 
for the evolution of the system, and usual Particle System engines don't consider 
them. Secondly, the movements of individuals are not only produced by physical 
forces as they are described in solid mechanics. "Subobject System" are introduced 
in [4] as a generalization of Particle System to model flocks of birds, herds and 
schools. The particles are substituted by a geometrical shape with an orientation, 
and a behavioral model is associated to them. 
Behavior model is based on the perception/action model : each subobject is able 
to get information from its environment and adapt its reaction according to what 
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it perceives. Interaction between subobjects is described as a particular component 
of behavior consisting for each of them to look for the position of each other sub- 
object of the system and deciding if it has to modify or not its trajectory. The 
implementation that was used by Reynolds used a brute force algorithm with a 
0(n2) complexity that is not suitable in real-time simulation of great number of 
subobjects. We use the same kind of approach with different behavior patterns, 
considering that humans are different than animals, and apply a more efficient 
model of avoidance. We have implemented people interactions exploiting the fact 
that a collision may only occur between two people in a period of time At if the 
distance between them is smaller than a certain value r that can be computed by : 

r=V!At + V2At 

r is bounded by r' defined with : 

r' = 2Vma.xAt 

where 
Vmax = Maximum velocity of all people. 
We use a special data structure with a dynamic sorting of people so that we always 
maintain a list of possible collisions for a given person. We choose a person in the 
list with a heuristic function depending on the size of the people, their direction 
of walk and their speed. The other behavioral rules can be defined and associated 
to different kinds of individual so that we can simulate a crowd of heterogeneous 
people including groups. They are divided in two levels. The reflex reactions that 
enable people to physically avoid obstacles (walls or other persons) and a higher 
level behavior consisting of more intelligent pattern of behavior. This second level 
of behavior is modeled by a kind of transition network : We define several states 
for each kind of individual and determine transitions between them. The different 
kinds of transition are listed here : 

• Timing transition : the state changes after a certain period of time. 

• Visiting transition : the state changes when an individual has reached a certain 
point. 

• Density transition : the state changes when the local density of people has 
reached a certain threshold. Global transition : the state changes when a 
global event has been activated (for instance an alert). These few elementary 
transitions can model a complex behavior as a man trying to escape from a 
high density place (" Density transition ") and giving up after a few minutes 
realizing that he can't escape (" Timing transition "). In our model, the states 
are implemented, with analogy to solid mechanics, by a set of decision charges 
reacting to a set of decision fields. For more details see [1]. 

5    Example : Space Management for the metro sta- 
tion 'Grand Stade' 

We present here an application that we have created to illustrate these concepts. 
The application has been used in a project consisting of arranging a metro station 
to adapt it to an increasing traffic due to the construction of a stadium for the 
Soccer World Cup in 1998. Two points made that situation particularly suitable 
for our application . First, the teams that traditionally work on this kind of project 
are compound of various professions with various practices of work which have to 
work together in a very interactive way. Secondly, the steady flow of the traffic was 
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a constant preoccupation in this project as the metro would be one of the main way 
to reach the stadium. Our application answer to the first point by the concept of 
collective use of a virtual environment. The first plans of the station are integrated 
in the virtual environment so that it is immediately possible for the architects to 
navigate inside, and detect very soon errors of conception and validate the different 
ways of circulation for the public. Then the different teams can integrate their 
respective work interactively: the signs are added, several kind of covering can 
be proved, the advertising are installed in the most attractive points, the tickets 
machine can be moved to the most useful place,... However, it is hard to understand 
the real dimensions of an area if we don?t consider it in the operating situation, 
where the influence of the presence of the subway travelers is very important. The 
simulation of the presence of crowd will grant a better perception of the volumes 
and above all, will permit to verify that the dimensions and the geometry of the 
place are compatible with the expected pedestrian flows. 

The application has been developed on the 'Elysium', a full integrated Immer- 
sive Virtual Reality System from I.B.M. and Virtuality(U.K.), which includes a 
development toolkit, and all devices needed for an immersive experience: a helmet, 
trackers, sounds and a flexor (a kind of glove that is easier to use and very pow- 
erfull). In the final application we have implemented an ergonomic multi-modal 
interface with voice recognition and voice command that is used to select the kind 
of operation to proceed or a current object. Then the flexor is used to move the 
current object that can be a trash can, a maps of the subway network or a tick- 
ets machine. This kind of interface has proved to be sufficiently easy to use and 
intuitive, that no education is necessary to use it. We have also implemented net- 
work facilities to give the possibility to walk through the database from any other 
PC connected with visio-conference. The crowd simulation module has proven to 
achieve several goals : 

• Fill the space : architectural digital mock-ups look much more lively with a 
dense crowd in it. Besides, crowd bring to virtual digital mock-ups a dimen- 
sional unit, a kind of calibration of the space. 

• Studying the visibility of signs, advertisement, shops in presence of crowd. 

• Improving the traffic and the security. For example, the application has permit 
to detect that putting a map of the subway network just before the entry of 
an escalator would increase congestion of the traffic. 

In this particular implementation, the behaviors of the crowd are limited : some 
people are exiting from the subway wagons and reaching the exists or correspon- 
dences while other are arriving in the station, buying a ticket at the tickets machine 
and then walk in the corridors until they reach the wagons. An interactive modifi- 
cation of the position of a tickets machine is linked to a modification of the position 
of the associated goal and so results in a new behavior of the entering people. A 
more generic crowd simulation software called KINEMAWAY is actually developed 
by ArSciMed and will allow a fully control of the definition of the behavior of the 
crowd. 
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Abstract. Although single person virtual environment systems can aid 
the individual in particular aspects of work they do not address issues of 
interaction and collaboration between participants and how these can 
enhance productivity. We present a system for geometrical modeling which 
permits collaboration between designers at physically separated sites to 
build and modify objects composed of free-form surfaces. The system is 
immersive therefore allowing workers not only to be in the same 
environment as the objects they're designing, but to come together and 
interact in the same extended space. In this context higher levels of 
interaction between workers must be used to cooperatively design and 
modify complex objects. We realise the importance of appropriate 
behaviour and provide tools which are intuitive in their use. These tools 
enable the designer to use natural hand and body motion to sweep out 
complex surfaces and to interactively deform and reshape them. These 
objects can in turn be seamed together and used as components for more 
complex and higher level structures. 

Keywords. Collaborative virtual environments, distributed virtual 
environments, virtual reality, virtual classroom, information retrieval, 
geometrical modeling. 

1. Introduction 

This paper describes an application for multi-participant geometric design that is being 
constructed under the DEVRL project (Distributed Extensible Virtual Reality 
Laboratory). This project is a collaboration between four UK universities to establish 
a distributed virtual reality laboratory initially exploiting the Internet (in particular 
SuperJANET) as the communication channel for constructing multi-participant 
applications. The philosophy of the project as a whole, and its various applications 
are described in [1]. 
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In [2] we described an initial system for creating and modifying free-form geometric 
surfaces in immersive virtual environments. This was based B-Spline surfaces, and 
exploited an interaction model that we refer to as "body centred interaction" (BCI) [3]. 
This interaction model is designed in an attempt to maximise the sense of presence of 
individuals in immersive environments. In this new work we have extended the 
sophistication of the underlying geometrical model, and have correspondingly extended 
the application of the BCI paradigm. A major purpose of the work is to provide the 
ability for shared modeling, where a (small) number of designers simultaneously 
inhabit a virtual space for collaborative/cooperative work. This raises a number of 
interesting problems for the shared environments in which there is a high degree of 
interaction and necessity of collaboration between participants working together on 
complex objects. For instance, in creating a design what should be the relationship 
between the participants? Should it be hierarchical whereby each designer is able to 
modify his/her own segment of the design but the chief designer is able to affect 
changes to the whole design? How will the system deal with such a structure and how 
can communication be facilitated between the different groups. Since the mid 1980s 
such issues have been debated in Computer Supported Co-operative Work (CSCW) 
[4]. Investigations have been conducted using video and audio links where users can 
interact with a viewpoint from their own space. Now in the mid 1990s issues are 
being considered relating to participants whose viewpoints are from within the same 
extended virtual space. We note, however, that such issues are most effectively 
investigated using systems which are able to deliver immersive capabilities. 

In describing the UNISURF CAD system, Pierre Bezier distinguished three classes of 
surface design problem [5]: 

• Objects that require great accuracy, that are of major technical importance for 
the product being designed, such as turbine foils or boat hulls; 

• Objects that are used only as part of an assembly, for example, to separate 
other parts, and which do not require such great accuracy as the first; 

• Objects created by stylists, where their aesthetic appearance is the most 
important characteristic. 

In this research we restrict attention to the third type of design, only because it is 
recognised that with virtual environments available today, it is not feasible to create 
objects with the precise accuracy required for the first two. However, concepts that 
relate to the third type of design will invariably be relevant to the other two. Our work 
is also mainly focused towards immersive environments without precluding 
application to non-immersive desktop systems. We note, however, that given an 
environment which is capable of including participants as integral and embodied parts 
of the virtual world their productivity can become increased since there is less of a 
need to learn new and often inappropriate paradigms originally developed for desktop 
systems. The designers can be placed in the same space as the object they are creating 
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and are able to utilise natural movements of their body in creating the design. In 
addition they can relate more directly to the objects which are being modeled in terms 
of size and spatial characteristics. 

In Section 2 we briefly describe the deformable B-Spline surface model and its 
capabilities. In Section 3 we discuss how these capabilities are mapped to the 
interaction paradigm, and in Section 4 the particular collaborative aspects. 
Conclusions are presented in Section 5. 

2. Deformable B-Spline Surface 

For designers to effectively utilise a modeling system they must be aware of the 
properties and behaviour of the materials used in the system. The virtual materials 
must exhibit constant and repeatable deformations following a set of characteristics 
such as rigidity, cohesiveness, elasticity and plasticity. We assume that the properties 
of each surface will allow it to: 

• be deformed when a force or a set of forces is applied in an appropriate manner; 

• be split or broken into a set of component surfaces; 

• regain its previous shape after a deformation; 

• seam with other surfaces given appropriate adhesive and cohesive forces. 

In [2] we used a simple CAGD scheme based on B-Spline surfaces, represented by 
control points to create deformable surfaces. In order to change the surface the control 
points would have to be manipulated. As was pointed out, and as has been pointed out 
by others before, this does not provide for an elegant method for deforming a surface. 
If the surface is complex, there are too many control points to manipulate, and the 
relationship between the surface and the control points becomes non-intuitive. For a 
single bi-cubic Bezier patch we must deal with sixteen control points. Even in this 
simple case parts of the patch will occlude some control points and the spatial 
relationship between control points and the patch is difficult to understand. Given the 
capability of an immersive virtual environment system, however, a designer can 
become more aware of this relationship when in comparison to viewing through a 
desktop display without stereo. It nevertheless remains impractical for the designer to 
use direct manipulation of the control points to achieve a desired shape since the effect 
on the surface of manipulating a group of control points must be well understood [6]. 

In line with our theory of body centred interaction, direct manipulation of the surface 
became a goal. However, in order to provide an added sense of "reality" to the 
deformation process we opted for a mixed geometrical-physical model, the underlying 
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paradigm being that of the application of forces to a surface that would deform 
elastically as a result. In order to achieve this the method of minimising appropriate 
functionals was exploited, which is briefly described below. 

Let w(u,v) = [x(u,v), y(u,v), z(u,v)] be a B-Spline surface parameterized by u and v, 
and let f(u,v) denote the applied sculpting forces on it. The energy functional for 
surfaces was employed [7] shown in Eq. (1). 

E= jj[ciwu2+c2wv
2 + c3wuu

2 + c4wuv
2 + c5Wvv

2 

surface 

+C6W
U2V

2 +c7Wuv2
2 + c8WuV

2-2f^Mdv, (1) 

where the suffixes mean partial derivatives in respect to the parameters u and v. 

The integral (1) has the following advantages over the other functionals described in 
the literature [8, 9, 10, 11]: 

(a) Its minimisation leads to a linear system KuVKv = CuFCvT where V is the 
matrix of spline control points matrix, Ku and Kv are stiffness matrices, Cu and Cv 
are coefficients and F is the force matrix. As one can see the two dimensionality of 
control points and forces is preserved and due to this fact the system can be solved 
very efficiently. 

(b) Most of the functionals in the literature referenced above have two parameters to 
control the physical properties of the surface; resistance to stretching and to bending. 
Here it is also possible to control the hardness of the material thus affecting the degree 
of spread of the deformation across the material. 

(c) The new proposed fairness norm has two stiffness matrices, one in direction of the 
parameter u and another one for v. This gives users the opportunity to design 
nonisotropic materials, i.e. with different properties in the different directions. 

The following actions can be performed on the surface: 

• Applying a single force or a set of forces; 

• Deforming a curve embedded on the surface; 

• Deforming an area of the surface; 

• Moving a single point from the surface to a new position; 

• Moving a surface curve to a new target curve in the space. 
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3. Interactive Surface Creation 

One of the important aspects of our model for the enhancement of presence in 
immersive virtual environments (for example, [12]) is that there should be a strong 
correlation between sensory data (e.g., the visual input) and proprioception 
(correspondingly, the proprioceptive information generated by head movements). This 
match requires that the internal mental representation of the movement and disposition 
of a participant's body correspond to the sensory data generated by those body 
movements. So when, for example, proprioceptive feedback is generated as a result of 
an arm moving, then correspondingly the participant should see the arm move, and 
ideally hear the effect of the movement, and (even more ideally) feel any (virtual) 
objects with which the arm comes into contact as a result of this movement. The 
maximisation of this match between proprioception and sensory data is one of the 
dimensions that, in our model, increases the sense of presence that an individual has of 
being in the virtual environment. 

The concept in the BCI paradigm for interaction derives from this idea. BCI requires 
that appropriate whole body gestures be employed for the realisation of actions in a 
VE. For example, it is certainly possible to move through a VE by using a 3D 
mouse, or by making simple hand gestures. However, this reduces the match between 
proprioception and sensory data - since the visual flow does not match the 
proprioceptive information about movements of the body. Hence the idea of "walking 
in place" [12] to simulate real walking was used, and experimental studies confirmed 
that this method does, other things being equal, increase the reported sense of 
presence. 

Now this approach can also be used to carry out actions that are not possible in 
everyday life - such as creating surfaces out of nothing. The designer holds a virtual 
wand-like tool. As s/he sweeps out a shape in space the surface is correspondingly 
visually created as an interpolated surface through the space that has been swept out. 
The wand itself can be extended or retracted, and can be bent to various curved shapes - 
thus the shape of the surface to be swept out is itself variable, and under control of the 
designer (see Plate 1). This process is essentially transforming the kinetic energy of 
the designer into visible surfaces, making a relationship between body moves, and 
visual appearance - turning a sweeping gesture into something concrete. 

Having swept out a surface the designer can also deform it. This can be achieved in 
various ways: 

• selecting a point on the surface and applying a force. 

• marking out a curve on the surface, and applying a force to the interior of the 
curve. This is achieved by the designer using the wand to mark out the surface, 
and then specifying the force and the direction in which it is applied. Only the 
part of the surface inside this curve will be deformed. 
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• directly grabbing hold of part of the surface and moving it. 

At all times the designer has a virtual body representation - being able to see the trunk 
of the body, the left and right hands and the legs. In the current system, only the right 
hand is tracked, so that the left hand is immobile. However, we still make use of the 
left hand. Rather than the tools for creation and deformation of surfaces being available 
as 3D icons or "menu" items, a way of thinking appropriate to 2D interfaces, the 
designer always has the tools literally "to hand". Tools not in use can be placed in the 
left hand, and so are always quickly available during the design process. Plate 2 
illustrates the deformation of a flat swept out surface after applying a force to it. 

Since the geometrical representation of the surfaces is based on B-Splines, it is not 
difficult to seam surfaces together with a desired degree of continuity along the edge 
through appropriate interpolation of the control points at the joining edges. Where the 
number of control points on two edges differ a knot insertion algorithm can be used to 
equalise the number of points. This aspect of the work is being implemented at the 
time of writing. 

3.1    System Architecture 

The system is implemented on the DIVISION Provision 100 VPX (PixelPlanes) 
system under dVS 2.0.4. Although much faster than the ProVision200 used for our 
original system, this still has problems with updating the model fast enough for the 
kind of interaction that we would like. For example, when a force is applied we would 
like the surface to deform continuously (rubber band fashion) as the force is being 
defined. Unfortunately, the system cannot keep up with this so that it is necessary to 
first fix the force, and then the surface will jump to the new shape specified by the 
force. It is hoped that this problem will be resolved with a future version (dVS 3.1). 

The dVS operating system is based on a distributed client/server architecture. It 
consists of a set of independent modules or actors which provide a set of services in 
the environment. The actors are overseen by a director which maintains the distributed 
model database. Each actor has a local copy of the database with elements appropriate 
to it. For instance the visualisation actor would contain copies of model elements 
relating to visualisation and rendering such as the material properties of the surface. 
The collision actor in turn would contain data relating to object positions and 
bounding volumes. Each actor is free to modify its local database but updates to the 
global database are performed via the director. The system provides an application 
actor for user programming. Objects can be defined and modified at this user level and 
changes then relayed to the director for lower level processing. This, however, can be 
also be a source of bottlenecks in the system processing, manifesting itself in the 
form of reduced model update rates. In attempt to overcome this we have moved the 
model creation and manipulation  functions  from the user level   to   the   lower 
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visualisation level. In addition we are able to make some direct calls to the renderer 
level. However, we are still restricted from direct access to the polygons at the renderer 
level - something which is important in fast creation and manipulation of dynamic 
objects. 

Other dVS Modules 
Visualisation and Rendering Level 

User and Application Level 

Application 

V. 

ty \ 

0 
System dynamic object creation 

Spline intialisation and update 

Renderer 
Engine 

and Manipulation "*K Shadows 
Dynamic 

Fig. 1. The modeling architecture 

Figure 1 illustrates schematically the system model of dVS with the spline module at 
the visualisation level. At this level it is also possible to include other modules 
requiring fast dynamic modifications of polygons to aid model creation. In [13], for 
example, we have noted the importance of dynamic shadows on presence and spatial 
awareness. Depth cues obtained from shadows cast by the virtual body or tool onto the 
sculpted surface or, one surface onto another, can enhance spatial perception and 
increase model awareness. 

4. Collaborative Aspects 

The major focus of the DEVRL project is collaboration in shared environments. The 
DEVRL surface design system will allow several designers to create free form surface 
shapes in the same environment. The particular features that we are aiming for in this 
regard are that designers: 

• can pass surfaces between one another; 

• can merge the objects that they have created into one combined object; 

• can create shapes jointly - e.g., stretching surfaces by pulling at different 
edges, thus allowing them to collaboratively design objects in a novel way; 
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• can stretch surfaces around other objects (and around each other), thus creating 
a basic form of "virtual clothing". 

Imagine a virtual world consisting of one plane forming the ground. Our goal is that a 
group of designers can virtually "terraform" such a world - by deforming the ground 
plane itself, by creating new shapes and combining them together. 

There are significant problems in designing a system for effective collaboration in this 
context. Designers must be able to inform each other of their intentions: for example, 
when a designer grabs hold of a shape currently being held by another designer, is this 
an attempt to take the shape away or to stretch it, or for some other purpose? A 
secondary channel of communication, such as voice, appears to be essential. When 
several designers are simultaneously attempting to deform a shape, what is the 
protocol that decides how exactly the shape deforms? This is made easier with the 
method described in Section 2, since several forces can be simultaneously applied to a 
surface to deform it. But the precise interaction method to be used to allow the 
designers to accomplish this have not been decided as yet. 

5.   Conclusions 

At the time of writing the creation and deformation of surfaces by a single designer in 
the manner described in Section 3 has been implemented. Curved surface generation 
has been made capable in three ways: 

(a) creating a surface and applying a force (direction and magnitude) to deform it; 
(b) creating a surface and manipulating it by directly displacing its control points; 
(c) deforming the sweeping tool and then using it to create a curved surface. 

We have noted that point (b) is not the desired method of deforming parametric 
surfaces since it is non-intuitive. The system must provide for an elegant and direct 
procedure which can allow the designer to utilise real world processes which they are 
generally familiar with. Of course the designer can also be given appropriate 'magical' 
tools for enhancing the design, e.g. for smoothing and closing the model. 

Using dVS's facility for shared worlds across WANs it has been possible to have two 
participants simultaneously in the VE and able to see each other's actions. However, 
at the time of writing the work on full-scale collaborative design is in progress. 
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Abstract. Distributed virtual reality, thanks to newly proposed paradigms, 
offers interesting perspectives to virtual world modelling. Our main interests 
are in applications which allow users to edit and deform existing shapes. This 
paper presents a concurrent virtual world modelling application based on 
those ideas. Herein is shown how concrete manipulations of tools (such as a 
hammer) are transformed into free form deformations of existing shapes. We 
also present a first implementation based on VIPER (VIrtuality Programming 
EnviRonment) a generic distributed virtual reality development platform. 

1 Introduction 
First virtual reality (VR) applications were mainly architectural walk-through with 
symbolic representations of more complex elements (e.g. a cube instead of a house). 
As soon as basic virtual reality paradigms were defined, software designers turned 
their attention towards interactivity problems. 

Therefore, recently, proposed interfaces were improved thanks to technology 
advances (workstation power, new and reliable peripherals...) and virtual reality 
interactivity studies. Moreover, distributed virtual reality, adds multi-user 
interaction and co-operation to virtual environments. Those aspects are the main 
interests of our current works. 

We focus on distributed virtual reality applied to interactive world modelling. Our 
final objective is to offer high level metaphors for co-operative world modelling. 
We wish to provide users a set of tools used to interact in a virtual environment in 
the most natural way: they can model shapes by doing natural gestures they would 
make in a real situation (i.e. hammer an object, dig a hole...). 

In this paper we present an application where users model virtual worlds by 
interacting with modelling tools. Section 2 is an overview of VIPER [1], our generic 
distributed virtual reality programming platform. Section 3 presents the modelling 
application. Section 4 details the distribution of such an application based on 
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VIPER. Finally we conclude our paper with some perspectives on either our 
modelling application and VIPER. 

2 VIPER: a VR application programming environment 

Developing distributed virtual environments is a complex time consuming task. In 
order to develop such environments the programmer has to be proficient in network, 
graphics, device handlers and user interface programming. Moreover, network based 
programs are inherently more difficult to program and debug than sequential ones. 
In order to simplify this task, we have developed VIPER (VIrtuality Programming 
EnviRonment) which enables the rapid and easy development of distributed VR 
applications. 

2.1 The virtual environment model 

VIPER is aimed for the design of every application based on a virtual environment 
which can be modelled by exchanges (symbolised by stimuli) between entities, in a 
virtual universe (Fig. 1). 

Fig. 1. Virtual environment structure 

The entity paradigm allows uniform management of virtual worlds scenery, virtual 
objects and avatars (an entity which behaves as an interface between a user [2], an 
application [3, 4] or a robot and the virtual universe). Entities are autonomous and 
own a set of attributes and behaviours. They are conceptually grouped in families (a 
set of entities which own the same attributes and behaviours). Our system is best 
suited for homogeneous virtual environments (few families made of many 
instances). 

The purpose of this structure is to simplify the definition of distribution schemes. 
Autonomous entities lead to a perfect encapsulation of the behaviour and state of an 
entity, and therefore facilitates distribution of entities: such an entity can execute its 
behaviour on any site communicating with other entities through well defined 
stimuli. 

Interactions between entities, modelled by the stimulus paradigm (phenomenon or 
event perceptible by an entity), cross media, called stimuli spaces, which allow 
communications between many entities simultaneously. Each stimuli space is in fact 
a projection of the environment along a specific type of stimulus (3D shape space, 
sound space...). An entity receives perceptible stimuli (visible shapes, near 
sounds...) through sensors and acts on its environment through effectors (producing 
new stimuli) (Fig. 2). Sensors and effectors also manage interaction with the real 
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world (e.g. a glove and a tracker sensors which track user movements and a HMD 
effector which presents two images to an user). 

Effector ciiecior\     s- 

CEmjty>t> 

Stimuli 

Stimuli Space 

, Sensor 

.Entity, 

Fig. 2. Interaction model 

Each entity owns a set of behaviour components which modify its internal state (the 
set of its attributes) and commands actions to its effectors. Behaviour components 
are triggered by sensors (there is a time sensor which allows timed behaviours) or by 
other components. 

2.2 The software architecture of VIPER 

In order to better suit the structure of our applications, we have adopted an object 
oriented design for our system. Classical advantages of object oriented languages 
(encapsulation, reuse...) and most of all, inheritance are very interesting to model 
our entity families. The C++ programming language has been chosen because of its 
availability on most hardware platforms (from low-end PCs to multiprocessors). 

In order to simplify the developer task we decided to offer the programmer a set of 
generic classes of concurrent aggregates [5]. Those aggregates encapsulate object 
distribution mechanisms for their elements and remote access over a network. A 
number of distribution models used in distributed VR have been implemented into 
aggregate classes: active replication [4], replication on demand [6], topologically 
optimised distribution schemes [7, 1]... Virtual universes and stimuli spaces have 
been defined respectively as concurrent aggregates of entities and stimuli. 

The software architecture of VIPER consists in four layers (Fig. 3). 

Distributed Platform 

Concurrent 
Aggregates 

Virtual Environment 
distribution specification 

Virtual Environment 
specification 

CjJnicast Channsi> -*Klits)v 

: inherits from is client of 

Fig. 3. Layers and example classes of VIPER 

The two first layers are the kernel of VIPER: 

•   The first layer,  the distributed platform,  is composed of a  set  of sites 
(workstations, multicomputer...) which create a virtual machine based on a 
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message passing system like PVM [8] or RMP [9]. This layer encapsulates the 
communication system used by our system. VIPER requires that such a 
communication system provides reliable (even though unreliable communication 
can be used in some part of the system) point to point (unicasting) and group 
(multicasting) communications. 

• Using this layer, an object-oriented concurrent programming environment 
encapsulates data distribution and an SPMD (single program multiple data) 
model (cf. [5] for details). This layer proposes aggregates classes (also called 
parallel object classes). 

The two last layers are the API (Application Programming Interface) of VIPER and 
define two programming levels: 

• The third layer allows the definition of specific virtual environment distribution 
schemes. Distribution and remote access mechanisms can be chosen or redefined 
from a library of existing classes of parallel objects (from the second layer). 
Thus, the developer defines new stimuli spaces and new virtual universes. And 
therefore, he/she is able to optimise thoroughly his/her application. 

• Using the last layer, a developer can describe a virtual environment (entities and 
their interactions) as if his/her application was a sequential object oriented 
program. He/she defines new classes of entities (or stimuli, stimuli spaces, 
sensors, effectors) that inherit from existing ones. In fact, this programming level 
totally hides the distributed aspects of the application. 

3 An example application: multi-user world modelling 

The first application we have developed is a multi-user world modeller. In this part, 
we will describe the design and implementation of this application. 

We think that interactive world modelling can benefit a lot from distributed virtual 
reality in term of ergonomics, conviviality and efficiency (two or more users can co- 
operate to model a large virtual world). In order to better apprehend the problems of 
this domain, we have studied some existing multi-user modelling applications. 

The first application, we know of, is built over Shastra, an architecture for 
development of collaborative applications [10]. Several users can co-operate in 
order to smooth a polyhedral model. The session master (a specific user) distributes 
certain areas of the object to smooth to other users. However, those tasks are 
performed through a 2D classical GUI, which is not the best suited environment for 
3D manipulations. 

Within the Virtuosy project [11], a collaborative design application has been 
initiated in the domain of the fashion industry. This application allows several 
designers to visualise and modify clothes, negotiating and discussing their 
properties. Those designed objects are manipulated and changed in a 3D real-time 
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virtual environment. Moreover, animated mannequins wear those clothes and move 
in a realistic way. 

According to those studies and our previous application domain (declarative 
multimodal modelling) [12], we have decided to design an interactive multi-user 
world modelling application. 

We wish to introduce high level metaphors for co-operative world modelling. We 
offer users a set of tools used to interact in a virtual environment in the most natural 
way: they can model shapes by doing natural gestures they would make in a real 
situation (i.e. hammer an object, dig a hole...). Our aim is to make modelling more 
intuitive. Therefore our tools have a double role: their shape gives a hint on both 
their function (hammer, nippers...) and their use (to hammer, to pinch...). 

We have currently developed two deformation tools: a hammer and a hook which 
can be used to interactively deform surfaces (the user catch some part of an object 
with the hook and then move or rotate it to produce surface deformations). Tools are 
available on tables which exist in the environment. Of course, the user can also 
directly manipulate objects in order to move them, to arrange them... 

3.1 The mathematical model of deformations 
Let us describe first, the mathematical model used by our deformation tools. The 
deformation model we use, is called FFD (Free-Form Deformation) [13]. FFD 
deforming consists in enclosing an object (or a part of it) in a parallelepiped of 
clear, flexible plastic. The object is imagined to also be flexible, so that it deforms 
along with the plastic that surrounds it. 

oB^ O: Origin 
>■: Main Axis 

Fig. 4. An example of lattice 

Deforming consists in a number of steps. First of all, the parallelepiped is defined by 
providing its origin, main axes and the number of control points on each axis 
(Fig. 4). Then, we compute the object point co-ordinates in the lattice local 
co-ordinate system. Thereafter, every lattice deformation (moving one or many 
control points) can create an object deformation according to a Bezier or B-Spline 
interpolation. We illustrate this with an interpolation based on trivariate Bernstein 
polynomials: 

where (s, t, u) are local co-ordinates of the processed point (Pffd) and I\[k are 

control points after deformation of the lattice. 
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However it is, sometimes difficult to obtain specific effects (such as flattening a 
bump). We, therefore, decided to design a system which would mask completely the 
mathematical functions used to deform objects. 

We propose a set of tools based on this deformation model [14]. The only 
parameters of those tools are natural (the part of the object which is to be modified, 
the size of a hammer head...). Moreover, those high level parameters are a concise 
definition of the deformation which, when transmitted over a network, keep the 
bandwidth usage low. 

The lattice used to deform with a hammer is created as follows: as soon as the 
hammer head (in fact a point of the head) enters an object, a lattice is automatically 
generated according to hammer and object specific parameters. The lattice length 
and width are computed so that they closely enclose the hammer head (this allows 
us to perform a local, isolated deformation). The lattice depth and control point 
density are defined taking into account the object flexibility. This feature is not 
currently physically based and only acts as a deformation parameter. 

Then the lattice is oriented in relation to the hammer head trajectory (two last 
positions) and translated to the impact point. Lattice local co-ordinates of the object 
points are computed. The lattice is modified (according to the hammer head size and 
the speed of the blow) and the object deformed. 

3.2 Introducing modelling tools in VIPER 

Within VIPER all manipulations (grabbing, moving...) are modelled by exchanging 
orders (a subclass of stimuli) between entities within the framework of a specific 
stimuli space called an order space. Each virtual object has an order sensor which 
receives its given orders. Moreover, an entity has to have an order effector in order 
to manipulate other entities. An order is composed of: the id of the manipulated 
entities, the id of the manipulator, the type of order and specific parameters 
(depending on the order type). 
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Fig. 5. Extending VIPER with new classes 
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A modelling tool is an entity (in fact it is an object which is in turn an entity). It is 
manipulated by one or many entities and it, also, manipulates one or many entities. 
Therefore, a tool owns at least an order sensor (inherited from the object class) and 
an order effector which allows him to send manipulation orders (Fig. 5). 

For example, when a user manipulates a hammer so as to deform an object (Fig. 6), 
the user's avatar entity sends manipulation orders (grabbing, releasing) to a hammer 
entity. This entity analyses such orders and its surrounding environment (through a 
shape sensor) in order to detect any collision. Whenever a collision is detected, the 
hammer entity sends a deformation order to the hit object. As soon as the target 
object entity receives the deformation order, it builds a lattice (see section 3.1 for 
details), deforms it as required by the deformation order high level parameters (the 
last two hammer positions and the size of the hammer head) and then computes the 
new shape. 

Deformation 

Within the Virtual World  Within the VIPER model 
Fig. 6. Hitting with a hammer 

4 Application distribution 

We will now describe, the distribution of this application using VIPER. Showing 
how distributed virtual universes and distributed image spaces can solve groupware 
problems of the application. 

4.1 Managing distributed entities 
Within a Distributed VR application, obviously, the first distributed data are entities. 
This distribution is managed by distributed virtual universes (DVU). Each DVU is a 
concurrent aggregate of entities. It defines a naming function for entities (an entity 
Id is composed of its DVU Id followed by its creation site Id and a sequential 
number), a distributing function which tells where (on which site) each entity is 
stored and possibly some remote access functions for entities. 

The simplest class of DVU is the passive distributed virtual universe. This universe 
holds entities that cannot move from site to site. New entities can be added 
dynamically on specific sites and new sites can join the DVU. Avatars obviously 
belong to this type of universe. Such a DVU only provides a simple distribution 
function which extracts the site Id from an entity Id. 
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However, in order to better deal with the high latency of wide area networks, we 
have designed another type of DVU called the active distributed virtual universe 
(Fig. 7). This DVU tries to minimise the distance between interacting entities. For 
example, when an user manipulates a virtual object which happen to reside on a 
distant site, the DVU will as soon as possible move the virtual object entity to the 
manipulating user site. Such a DVU provides a distribution function (implemented 
by a replicated synchronised table which contains for each entity of the DVU: an 
entity Id and the Id of the site which currently owns the entity) and remote access 
methods used to send and receive entities (using point to point communication). 

•Sitel                 !     'Site 2 ■ Site 3                ! 

:•                  • • 

:    W    :   :^i ■ 

Immobile entities 

Movable entities 

Fig. 7. Distributed virtual universes 

4.2 Interactions between distributed entities 

As soon as two or more users enter the modelling space, a problem arises. Each user 
must see other users in order to interact with them. VIPER solves this problem with 
a distributed stimuli space, called the shape space, which uses an active replication 
distribution model. Each entity owns a shape which is composed of one or many 
geometric 3D shapes (which are used as different level of details or as multiple 
views of a same entity), a position, an orientation and a scaling factor in relation to a 
father object co-ordinate system (the shape space is a hierarchy of shapes). Each 
time an entity modifies its shape (movement, change of parent or deformation) the 
stimuli space replicates those changes on any site using a stimuli space dedicated 
communication group. Then each entity which owns a shape sensor can use this 
hierarchy in order to present a view of the world to its user (avatar) or to detect 
collisions with other objects (avatars, hammer entities...). 

It is important to note that all communications are hidden in the stimuli space and 
therefore an entity, as well as the programmer of the entity class, is not concerned 
with communication management. 

Direct interaction (i.e. when an entity manipulates other entities) in a distributed 
context is another problem: interacting entities may happen to reside on different 
sites. We have decided to model those interactions by exchanging orders (a new 
class of stimuli) between entities within the framework of a specific distributed 
stimuli space called the order space. We could have solved this problem with the 
previously exposed replicated stimuli space. However we can optimise the 
application by defining a new stimuli space which sends only orders to interested 
entity sites using point to point communications (Fig. 8). Indeed, as each entity Id 
can be translated to a site Id where the entity is stored (thanks to DVU distribution 
functions), we can only send orders to those sites. 
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Fig. 8. A distributed order space 

4.3 Access management 

In our application, access management problems may occur when two or more users 
want to access the same object in order to manipulate it. 

In the current version of VIPER, we state that a new deformation can be started on 
one object if and only if the lattice to create doesn't intersect with an existing lattice. 
For other manipulations (e.g. moving an object, rotating it), a manipulation can only 
be started if no other manipulations are being performed. 

5 Conclusion and future works 
We have implemented the ideas presented here within the context of a countryside 
modelling application (see Appendix). Users can do terrain modelling like digging 
lakes, growing hills... They can also place scenery elements (trees, houses...) on the 
terrain. Multi-user aspects are very interesting in this application, because they 
accelerate a lot large terrain modelling. 

Currently, we are improving the collaborative aspects of our modelling system. 
Indeed we are developing multi-user deforming tools (e.g. a tool to co-operatively 
bend, twist, stretch or flatten objects). These tools are based on the same 
mathematical model. However, in this case, multiple users are able to manipulate 
simultaneously the same lattice. 

We are also further developing VIPER with interpreted behaviours. Those 
behaviours will allow us to dynamically add behaviours to objects in our virtual 
world modelling application. Thus, using an enchanter's wand metaphor, users will 
be able to select objects and add interpreted behaviours to them. 

Moreover we intend to develop multimodal modelling (which will allow 
combination of voice and gestures to command orders) and general purpose tools 
(e.g. brushes to paint objects, connectors to allow hierarchical objects to be defined). 
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Abstract. We describe here a virtual reality simulated surgical support system and 
how to use a technology of virtual reality in medicine. We made a virtual 
operation room and 3D organs with cancer in a virtual environment. The simulated 
organ image was composed of approximately 15,000 polygons and the frame rate 
was about 10-15/sec. The system may be used to plan surgical procedures and to 
educate medical staff. We discuss here the purpose of the system, its current 
implementation, its current limitations and future applications. 

1. Introduction 

The Medical Virtual Reality (MedVR) Project is advancing in the National Cancer 
Center Japan. It is part of the Cancer Information and Supercomputing Programs: 
Supercomputing Projects for Integrated Research and Innovative Treatment (SPIRIT) 
which consist of several sub-projects, including an AI expert-consultation system, 
high-level medical image processing for diagnosis and treatment, genetic and molecular 
analysis, and cancer information services available through a nationwide network.[l] 
There are three goals in the MedVR program: (1) to develop a surgical edutainment and 
preoperative surgical planning support system in virtual space, (2) to develop a new 
diagnostic method using medical imaging, and (3) to improve the living conditions of 
in-patients with limited physical activity by providing them with a virtual experience. 
[2,3] The advantages of simulating surgical procedures using VR techniques include; (1) 
repeated practice of the surgical procedure and image training are possible, (2) the surgical 
procedure can be planned prior to the actual operation in individual patients with VR 
images modeled using the patient's preoperative CT or MR images, (3) objective 
evaluation of the procedure by a supervisor is possible, and (4) patients and their families 
can comprehend more precisely and adequately better understand the surgical procedure 
before and after the operation. (Fig. 1) 

Preoperative evaluation of surgical procedures is now evolving from surgical 
planning based on spatial relationships of planar or 3D images into simulated surgical 
training in a virtual environment. For the benefit of patients with cancer, we should 
evaluate the pros and cons of the virtual simulation of a surgical operation. Video and 
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high-definition TV (HDTV) have been used to aid discussion at surgical conferences. 
Both technologies have been valuable because the surgeon can reconstruct 3D images of 
the cancer and normal organs by observing planar CT or MR images. However, a surgical 
simulation which uses actual 3D photographs may be more effective, since delicate 
operative manipulations can be simulated and spatial relationships of internal organs can 
be more precisely recognized. We recently reported a surgical simulation support system 
and its prototype application for removal of brain tumors. [4] However, as we have used 
the system for presurgical planning for various cancers, it has become evident that the 
system is useful not only for presurgical evaluation for the removal of various cancers, 
but also for evaluating the effectiveness of the operative method after the surgery. To 
further improve the effectiveness of this simulation system, we have constructed an 
enhanced surgical conference system that can simultaneously employ 3D operative 
imaging and the virtual surgical simulation support system. The system is referred to as 
a virtual reality (VR> enhanced surgical conference system, and allows us to make a 
precise evaluation of delicate operative hand skills before and after surgery. Surgeons can 
simulate the surgery in a virtual environment before and after the operation, and can 
examine the operative procedure while watching a 3D image of the surgical manipulation, 
hi this report, we describe the configuration of a system that can provide an operative 
simulation using a virtual environment and actual 3D operative imaging simultaneously 
at a surgical conference. The clinical usefulness of this VR-enhanced surgical conference 
system is evaluated by analyzing the decision-making process of the surgeon regarding an 
operative procedure. 

2. System Configuration 

We mainly use Boom 3C for observation of the surgical simulation due to its high 
resolution and pseudo-colonization. A fastrak, a pointing device, is used as a tool in 
virtual space and represents surgical instruments such as a knife, bipolar coagulator, 
tweezers, air drill and so on. High-performance image processing Image data are drawn 
from an image database in which the data format is based on DICOM 3. 3D texture- 
mapping and isosurfacing are achieved by high-performance image processing with 
parallel AVS (Advanced Visualization Software) on a massive parallel supercomputer 
(SP2). The organ or cancerimage data is extracted from an image database composed of 
MR andCT slice images in DICOM 3 format with the use of CliPSS software. The 
volume of the 3D texture is limited to 128X128X64 and the shape data are limited to 
about 9000 triangles. FDDI switch and HIPPI switch were used to transport the 
enormous volume of image data from the image database to the high-performance WS. 
The background sounds during a surgical operation were edited with an Indigo II 
sound-server to increase the reality of the simulation. (Fig. 2) 

A VR image database uses an icon-based hierarchical file management system 
created by Indigo Magic. We can input a 3D organ image into the virtual surgical field 
from this image database very easily. We also use a switching system to exchange an 
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image of a 3D color video system and a virtual view of the surgical simulation support 
system. The 3D camera consists of right and left CDD cameras with a resolution of 
410,000 pixels, which can be enlarged six times. The camera has an electrically-driven 
zoom lens (F 1.2 ~ 22). The camera measures 65 x 25 x 130 mm and weighs 
approximately 3.5 kg. The simulation system presents virtual organs and cancers 
interactively using head-tracked display devices. In addition, the system allows 
interactive surgical procedures to be performed on a cancer model. The cancer model is 
generated from CT or MR images using a 3D texture method. Using this method, it is 
possible to visualize the internal structure of the organ as the simulated resection takes 
place. The hardware system is composed of three high- performance graphic workstations 
(two Onyx/RE2 and one Indigo-II Extreme) and a 3D video editing system. The software 
system for developing the VR environment is structured so that computations are 
distributed on the three workstations. Using the two Onyx computers to generate the 
image, the simulated system achieves frame-rates of 11- 12 frames/sec for monocular 
viewing and 6-7 frames/sec for binocular-stereo viewing of a scene with 15K visible 
triangles. The VR database is constructed for each patient after editing polygon images of 
the cancer and related organs from CT or MR images. The simulated environment for a 
patient is referred to as a virtual reality environment file (vef). The surgeon can select the 
individual vef for a patient from a menu window. The 3D images are stored on VHS or 
8-mm videotape. 

3. Methods 

3.1.   Analysis   of the surgical decision-making  process 

We attempted to analyze how a surgeon plans a surgery for a patient with cancer. The 
surgeon begins with a preoperative evaluation of the location of the cancer, the extent of 
infiltration and the presence of swelling lymph nodes or distant metastases using CT or 
MR images of the patient. The surgeon develops a preoperative surgical plan after 
considering the physical condition of the patient. For example, the surgeon evaluates 
whether the patient can stand an extended operation, and decides which procedure to 
perform based on this evaluation. This process is mainly based on the experience of the 
particular surgeon. At the lower level of such a knowledge base, there is medical 
knowledge generally obtained from medical textbooks. The surgeon's personal 
knowledge base is limited by his clinical experience and his medical education at medical 
school. The surgeon's knowledge is further reinforced by training and acquisition of 
knowledge from medical specialists with vast clinical experience. If a surgeon thinks that 
some surgical procedures exceedhis skill andhis personal knowledge, he or she may ask 
for an expertopinion from amore experienced surgeon. Thus, aconsultation is thought 
to expand surgical knowledge and to guide the surgeon to make proper decisions. In actual 
surgery, this process is repeated instantly and a decision is made quickly. A characteristic 
of an actual operation is that the surgeon is required to respond to operative problems 
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immediately. When a surgeon can not adequately respond to an operative problem with 
his or her personal experience and knowledge, it is often valuable to consult with other 
surgeons who have more experience with the particular procedure in progress. Based on 
this analysis, it is clear that there is a need for two types of surgical simulation. In one 
type, the goal is to make an accurate model of the cancer with precise spatial relationships 
for preoperative planning, without any interactive simulation. In the second type, the 
goal is to expand a surgeon's personal experience with various procedures through virtual 
surgery using an interactive surgical simulation, thus reducing the danger to patients. A 
virtual environment is very important in realizing both of these types of simulation. The 
purpose of the present system is to expand the knowledge base of surgeons through 
personal surgical experience using both a real 3D operative picture and virtual surgical 
images, and thus correct misconceptions that can easily develop during self-taught VR 
simulation. 

3.2.  Methodology 

Phase 1: The surgeon runs a preoperative surgical simulation (Simulation 1) when he 
plans an operation. (Fig. 3) 

The simulation can be used to construct a well-planned operation in virtual space. The 
surgeon can see 3D images of virtual organs and cancer, which are segmented from 
images using CliPPS software and isosurfaced using AVS, without any simulation of 
surgical manipulation. Both images can be observed from various angles during real-time 
rendering using Performer software. About 50,000 polygons are needed to generate an 
image of the desired quality. (Fig. 4) 
Phase 2: After reducing the number of polygons in the image, the model for surgical 
simulation begins to run in the virtual operation room. (Simulation 2). Surgeons can 
now interact with the virtual operation. Our system is insufficient to fully simulate the 
actual operation because small blood vessels and nerves around the cancer can not yet be 
drawn. We now use the presentsystem to evaluate the sequence and extent of the excision 
needed to remove the cancer. (Fig. 5) 
Phase 3: After surgeons are trained to perform the operation in a virtual environment, 
the actual operation is 3D-imagedin an operation room. Using the 3D stereo camera, we 
particularly concentrate on operative scenes which could not be examined preoperatively 
and on scenes of delicate surgical manipulations. At a postoperative conference, when 
surgeons wear shutter glasses and watch the 3D surgical picture, they can more easily 
appreciate the surgical skills used. In this way, their surgical knowledge can be enhanced. 
When surgeons want to examine a manipulation which was considered technically 
difficult during surgery and simulate other approaches to the operation, they can change 
to a surgical-simulation mode and simulate the surgical procedures with a 3D picture. 
Using this system, we expect that less-experienced surgeons will be able to learn various 
surgical skills more easily and expand their surgical knowledge base without performing 
many operations on actual patients. 
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4. Summary and Conclusion 

The actual usefulness of the current system is now being evaluated. The advantage 
of the present system is that it composes individual VR images by connecting images 
from an enormous image database based on preoperative CT or MR images using a 
supercomputer. These data are transmitted directly from the image database to the VR- 
producing system, and the parallel AVS with a supercomputer can compose VR images 
quickly. We have developed a surgical simulation support system particularly for cancer 
surgery for several reasons. First, spatial perception is of cardinal importance in cancer 
surgical operations to precisely determine the location of the tumor. Second, this system 
can provide a surgeon with a virtual operational field in a particular patient preoperatively. 
Third, with the use of this system, surgeons can train themselves to perform procedures 
in advance. Finally, this system can provide a virtual experience for trainees who have 
very limited opportunities to experience actual surgery to remove cancer. Our surgeons' 
initial impression is that the VR simulation alone is not sufficient to analyze actual 
operative procedures. However, by watching both the actual 3D pictures and the 
simulated surgical images, they can easily understand the details of the spatial position 
of the cancer and its relationship to normal structures. To further evaluate the usefulness 
of the present system , an objective evaluation must be carried out. We plan to 
systematically evaluate the number of operative cases, the time required for pre- and 
postoperative simulations, and the number of simultaneous evaluations using 3D 
imaging and VR simulation. (Fig. 6) 

In addition, we will record the operative methods, the operative time, bleeding 
volume, nature and extent of complications, duration of hospitalization and recurrence 
rate in subsequent actual operations. Such an evaluation of objective data is necessary to 
determine the advantages and disadvantages of this kind of system for analyzing various 
types of surgery. We think that this system will be able to enhance a surgeon's personal 
surgical experience. Medical science was once an art of learned experience. Medicine 
gradually became a science when it incorporated qualitative and quantitative methods. 
Surgery represents a practical aspect of clinical medicine. Qualitative analysis in 
medicine has made rapid progress through the introduction of various modalities of image 
diagnosis, and quantitative analysis of various pathophysiological conditions has been 
advanced by the development of various analytical equipment. However, medicine has 
failed to advance as apractical science because of the lack of proper tools. The technology 
of VRis expected to contribute to solving some, if not all, of these problems. It is often 
very difficult to perform cancer surgery. Surgeons must be experienced and well-prepared. 
Refined surgical technique is the most important factor in determining the outcome of the 
procedure. The present system was constructed to enhance a surgeon's knowledge through 
experiencing virtual surgery. At present, 3D imaging is used to evaluate endoscopic 
surgery and for diagnosis. Although this method is useful for simplifying the operation 
itself, it is not suitable for pre- or postoperative evaluation. If surgeons evaluate the 
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operation at a post-surgical conference using our system, a more detailed examination of 
the surgical manipulation can be performed in a VR environment. We are continuing our 
research and selecting proper disease examples for the system. We hope that the combined 
system will become a useful training and planning tool for clinical applications. 

Parts of this paper were submitted for the Health Care in the information Age on 
Medicine Meets Virtual Reality IV in 1996. 
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1. Introduction 

Collaborative Virtual Environments (CVEs) involve the use of distributed virtual reality 
to support interaction and collaboration between people. The concept of CVEs has 
emerged from two threads of research. First, the virtual reality community has begun to 
explore multi-participant VR, either as an extension to single user systems which 
exploit distributed processing architectures or for supporting specific collaborative 
activities such as multi-player games and battle simulations. Second, the Computer 
Supported Cooperative Work community has been developing notions of shared space 
through technology such as media spaces which have raised issues of social interaction 
and mutual awareness in computer systems. 

This paper describes the work of the project known as DEVRL, Distributed Extensible 
Virtual Reality Laboratory. The major purpose of this project is to investigate the 
formation of a distributed virtual reality (VR) laboratory to support research into CVEs. 
The principle objectives of the distributed laboratory are :- 

•     the development of a distributed hardware, software and networking infrastructure for 
constructing and evaluating CVEs over wide area networks; 

'This work has been sponsored by the UK's Engineering and Physical Sciences Research 
Council (EPSRC) 
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• demonstration of the potential of a variety of CVE applications; 

• conduct of experiments with three initial CVE applications in order to explore the 
issue of multi-participant presence and the underlying network requirements of 
CVEs and also the relationship between the two (i.e. how does network 
performance influence the sense of multi-participant presence). 

The paper presents a snapshot of DEVRL one year into the project and discusses 
progress towards each of these three objectives. Section two provides a brief overview of 
the current DEVRL infrastructure. Section three then describes each of our three 
demonstration applications: the virtual classroom, collaborative information retrieval 
and shared geometric design. Finally, section four introduces the issues of multi- 
participant presence and network requirements and outlines proposed experimental work. 

2. The DEVRL infrastructure 

We begin with a brief overview of the DEVRL infrastructure. At the core of DEVRL are 
three universities: University College London, The University of Nottingham and 
Lancaster University, each with an existing local VR laboratory. These three sites are 
separated by distances of several hundred kilometres. They are all connected via the UK's 
SuperJANET research network. At present, SuperJANET provides bandwidths of up to 
10 Mbs"1 using the SMDS protocol, although migration to ATM is planned within the 
next eighteen months, providing bandwidths of 55 Mbs-1 and upwards. 

Between them, the four sites provide access to a number of VR workstations including a 
ProVisionlOO VPX, one SGI ONYX RE2 and several Indigos and Indies. At present, it 
is possible to conduct experiments with over ten simultaneous participants spread across 
the three sites. The sites support immersive access (enabling three participant immersive 
applications to be run over the wide area) and one supports a projection interface. The 
software infrastructure is provided by a number of VR platforms including Division's 
dVS, DIVE and MASSIVE. 

Three CVE applications are currently under development (see below). However, some 
initial testing of the infrastructure has been carried out using the MASSIVE VR- 
teleconferencing system. MASSIVE has been used to hold a number of project meetings 
in distributed VR with several participants engaged in simultaneous graphical, audio and 
textual interaction. Some of these meetings have included participants from other non- 
core sites; the most notable having spanned five organisations in three countries (The 
UK, Sweden and Germany). The results of these early experiments with MASSIVE have 
been reported in [5]. 

3. The DEVRL applications 

Next, we describe the three CVE applications which are being developed for DEVRL. 
From the outset the DEVRL project has aimed to be informed by  the practical 
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difficulties   encountered  in   constructing   applications.   We   can   characterise   such 
applications on three dimensions: 

• The number of participants simultaneously engaged in the application as low (less 
than 10), medium (in the 10s) or high (in the 100s or more). 

• The complexity of the objects and their behaviours as low (representation of 
relatively static data), medium (representation of objects which change in response 
to a user interaction) or high (representation of objects which can dynamically 
change of their own volition). 

• The degree of interaction between participants as low (they see each other and can 
exchange information), medium (same as low, but they can be engaged in complex 
activities that must be visible to others), and high (same as medium, but users may 
engage in synchronised activities relating to high complexity objects in order to 
achieve a common task). 

Table 1 

A Characterisation of the DEVRL Applications 
Application Number of 

Participants 
Complexity   of 

Objects 
Degree of 

Interaction 
Virtual Classroom M H M 
Information Retrieval H L L 
Geometric Modelling L M H 

DEVRL is constructing three different CVE applications. These are the virtual 
classroom, a collaborative simulation for learning physics; collaborative information 
retrieval, a 3-D information visualisation which supports data sharing and chance 
encounters with other people; and geometric modelling, which supports collaborative 
and interactive design of complex geometric shapes. We may then approximately 
characterise these three applications as shown in Table 1. We now describe each of the 
three applications in turn. 

3.1. The Virtual Classroom 

The virtual classroom provides access to a number of interactive simulations of basic 
physical laws. A major advantage of virtual reality based simulation is that it is 
possible to support physical experiments which cannot be readily reproduced in real 
classrooms, such as the change in gravitational force exhibited by an object when its 
mass in changed. Another advantage is the possibility of providing users with 
viewpoints that are not normally possible in the real world, such as viewing the path of 
a projectile from the projectile's point of view. Each simulation is different in terms of 
both its functional and intended cooperative semantics. Physical simulations currently 
under investigation include gravitational, linear momentum and rotational momentum 
based experiments. The following paragraphs briefly describe the two of these which 
have been implemented to date, both as applications of DIVE. 
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Projectile simulation. A projectile application exists where a virtual cannon fires a 
virtual cannon ball into free space. The cannon ball is acted upon by a simulated 
uniform gravitational field, which pulls the flying ball down as it travels. During its 
flight the cannonball leaves a trail denoting its path. Users may alter the initial velocity 
of the cannon ball and the cannon's angle of elevation, from which it is fired. The 
experimental task involves two participants who must co-operate to hit a target using 
the cannon. The first user cannot see the target as it is obscured by a wall, which the 
cannon ball must clear. This user controls the cannon, allowing them to alter the initial 
speed of the cannon ball and its angle of elevation. The other user is 'strapped' behind 
the cannon ball and follows its trajectory. This user may freely look around the 
cannonball while the ball is in flight. It is the task of the moving user to tell the 
controlling user how far away from the target the cannonball landed, and between them 
the two users must derive the correct settings to hit the target. 

Centre of gravity. A 3D pivot application allows a number of spheres with differing 
mass to be moved on a hinged plane. This plane rotates about its centre in the X and Z 
axis. The plane automatically pivots to represent the sum of the moments exerted by 
each of the masses placed onto it. The aim of the experiment is to balance the plane so 
that it is flat. Each participating user may only move their allocated sphere and must 
work cooperatively to balance the plane. 

3.2. Collaborative Information Retrieval 

Our second application involves the construction of a shared 3-D information 
visualisation to allow users to browse, search and share on-line document repositories. 
Given the rapid spread of the World Wide Web, coupled with the recent emergence of the 
Virtual Reality Modelling Language (VRML), this application is being constructed as a 
front end to WWW. However, unlike VRML which currently only supports single users 
navigating relatively static 3-D scenes, our application provides a number of interactive 
and multi-user visualisations. At the time of writing, the following components have 
been developed as applications of the DIVE system with embedded links into the Web. 

Map tool. The map tool supports browsing of the WWW through the construction of 3- 
D graphs of a given region of the Web as defined by a starting node and an adjacency 
distance (i.e. a radius from this node expressed in terms of a number of links). The tool 
explores the Web within the defined region and then draws a 3-D graph using the Force 
Directed Placement algorithm [2]. Users may then navigate the resulting graph, 
selecting nodes in order to see summary details of the contents or further selecting them 
in order to launch Mosaic. 

Search tool. This tool is based on the previously reported VR-VIBE visualisation [3] 
and supports interactive searching of a document store through the manipulation and 
comparison of multiple search queries. A number of queries can be defined each 
consisting of several text keywords. These are positioned in a virtual space to form a 
spatial framework. Document icons are positioned within this framework according to 
the strengths of their relative attractions to each query (i.e. the more strongly an 
individual document matches an individual query, the closer it is placed to it). The size 
and shade of document icons also shows their overall attraction to all of the queries. 
Users may dynamically interact with the visualisation in a number of ways: selecting 
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documents displays summary details or launches Mosaic to view the document; raising a 
relevance filter removes all documents whose overall score falls blow a threshold value 
from the display; grabbing and dropping queries dynamically deforms the space; 
switching queries on and off also changes the space and, finally, new queries may be 
defined dynamically. As with the map tool, the visualisation in DIVE provides links for 
retrieving actual WWW documents. 

Awareness and communication support. In addition to DIVE's standard multi-user 
facilities , we have introduced a number of further communication mechanisms. First, 
both visualisations represent the presence of non-VR users as they wander across WWW 
information. Thus, a Mosaic user who happens to be accessing some of the pages that 
appear in either the map and search tools will be shown as a simple embodiment located 
next to the relevant document icon and their changes in location will be animated as 
they wander over the pages being visualised. Second, additional mechanisms are provided 
to request meetings with other people of to send them email. For example, on coming 
across some interesting information, it is possible to invite its author into the 
visualisation in order to discuss it as part of a virtual meeting. 

3.3. Geometric modelling 

Out third application builds on previous work in geometrical modelling in VR for 
single participants [11]. A single designer has the problem of constructing initial 
shapes, modifying them and seaming them together. In the context of an environment 
shared by several designers, each may design a part of the final product, and then merge 
the parts together. Designers and clients may evaluate the product and engage in 
collaborative modification of the combined shape. 

The underlying model uses a new method for deformable B-Splines based on 
minimising an energy functional [16]. This allows the application of forces to deform 
the shape very precisely and rapidly. Our specific approach is based on the notion of 
"body centred interaction" [12]. This builds on the notion that the match between 
sensory data and proprioception enhances the sense of personal presence. Therefore 
actions are based on appropriate mobilisations of the participant's whole body, rather 
than on interactive techniques borrowed from 2D display systems, or alternatively, a 
large number of individual hand gestures. This is based on the belief that immersive 
systems require their own repertoire of interaction techniques, and a new interaction 
paradigm. 

In a multi-participant environment there are difficult problems to overcome - if two 
designers have each grabbed a corner of a shape, does this signify a contest for control of 
the shape or a desire for them to simultaneously stretch (or even tear) it? At the time of 
writing single designers may create shapes which may be observed by others, but the 
collaborative aspects are not yet implemented. This application is discussed in the 
companion paper [15]. 
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3.4. DEVRL Town 

In order to promote awareness of our work and research into CVEs in general, we are 
constructing a project wide virtual environment called DEVRL Town. Eventually, 
several versions of DEVRL Town will be realised in DIVE, dVS, MASSIVE and even 
VRML (at least a limited single user version for the latter). DEVRL Town is obviously 
based on the metaphor of a virtual town and will provide a general source of project 
related information as well as a common project entry point for accessing the 
applications (as buildings within the town). We wish to encourage other researchers and 
projects to establish their own presence in DEVRL Town.2 

4. Experimental work 

So far, we have described the DEVRL infrastructure and applications. We conclude the 
paper by previewing the experimental work to be carried out in the later stages of the 
project. Clearly, there are no results to report at present. Instead, we concentrate of a 
detailed description of the issues to be explored and the underlying theory that will be 
driving this work. There are three components to our experimentation: 

1. developing and validating a theory of multi-participant presence - i.e. understanding 
the factors which affect people's sense of shared presence. 

2. developing and validating a model of network performance - i.e. understanding the 
kinds of network traffic generated by our applications and, conversely, predicting the 
effects of bandwidth and latency limitations on application performance. 

3. exploring the relationship between (1) and (2). More specifically, understanding 
how network and hence system performance affect notions of shared presence and 
also how users' actions (presumably influenced by the sense of shared presence) 
affect the underlying system performance. 

The following sections touch on each of these issues in turn. 

4.1. Multi-participant presence 

First we consider the notion of presence as applied to CVEs. 

Categories of Presence. In a shared virtual environment there are two related but 
conceptually different forms of presence: personal presence and shared presence. The first 
relates to the sense of "being there" in the VE, and has been explored in [1,6,7,8,10, 
13]. Personal presence itself has two manifestations: subjective presence relating to the 
individual's state of mind, which can be elicited to some extent through questionnaires, 
and interviews. The second is behavioural presence, where the individual acts as if they 

2 DEVRL town URL: 
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/devrl/town.html 
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were present in the environment, and exhibits behaviour concomitant with this. Again 
subjective and objective presence are logically orthogonal, but related in practice. 

Shared presence, to our knowledge not yet discussed in the literature, similarly has two 
aspects. For each individual: first, the sense of the presence of other individuals in the 
VE; and second, the sense of being part of an entity and a process which is more than 
just the "sum of the individuals", i.e., being present in a group and in the process which 
the group is unfolding during the course of the group meeting. Once again, we can 
separate the subjective and objective aspects of each of these: the subjective relating to 
each individual's state of mind, and the objective relating to the observable behaviour of 
each member of the group, and the overall group behaviour. By "overall group 
behaviour" we mean' such phenomena as the group as a whole gradually drifting 
spatially across a virtual room, without this being the conscious decision of any 
particular individual. 

Theories of Presence. Although there are no well-established fully worked out 
theories of presence, having some theoretical framework is essential in order to carry 
out meaningful experiments and take useful measurements. In previous work we have 
developed an approach to individual presence which is maybe the beginnings of an 
theory with some empirical backing, and a theory that leads to insights about interaction 
techniques within immersive virtual environments. This theory (most fully explained in 
[14]) is based on the notion of immersion, as a description of a technology, leading to a 
potentially quantifiable measure of the degree of immersion offered by a system, and the 
match between proprioception and sensory data. 

We postulate that personal presence is a prerequisite for shared presence. The following 
additional factors seem relevant: 

• The notion of a Virtual Body is perhaps even more important for shared presence 
than for personal presence. An individual requires some spatial, acoustic, and ideally 
tactile information to establish and maintain the presence of other individuals in the 
environment. 

• The static existence of others is almost certainly not enough, there must be a sense 
of the possibility of interaction and the exchange of information. 

• The representation of others is again crucial: It has been found that different 
individuals respond differently to the different modalities: visual, auditory, 
kinaesthetic. Some might find it easy to maintain the sense of presence of others 
with just crude visual representations of Virtual Bodies, and text interaction only. 
Others might require fully functioning Virtual Bodies. 

• Immersion: Almost all of our previous studies have been based on a visually 
immersive system. In this project with the use of the MASSIVE and DIVE 
systems we have the possibility of exploring non-immersive environments. 

Experimental approach. Progress was made in earlier work on understanding the 
factors that enhance personal presence by choosing a small number of parameters that 
were measured subjectively using experimentation: the sense of "being there", the sense 
of having been in the place  specified by the VE rather than having just seen images 



144 

depicting a place; and the extent to which the participant "forgets" that s/he is really in a 
laboratory wearing a HMD in favour of the virtual world [14]. There is an intention to 
develop a similar set of parameters for "subjective shared presence". The simplest types 
of questions to elicit this form of presence that we are currently exploring, and that will 
form part of our experimental strategy are of the form: 

• To what extent did you have a sense that you were in the same place as [person X] 
during the course of these events? 

• To what extent did you have a sense that [person X] was in the same place as you 
during the course of these events? 

• To what extent did you have a sense of the emergence of a group/community during 
the course of these events? 

• To what extent did you have a sense of being "part of the group"? 

There is similarly a need for a set of observable behaviours that can be compared as 
between the "real" and "virtual" worlds. 

• It is well known that in repeated real world meetings, people tend to arrange 
themselves around a desk, or spatially in a room, in approximately the same places, 
meeting after meeting. Does this recur with virtual meetings - do they arrange 
themselves in the same place relatively as in the real meetings, and also in 
subsequent virtual meetings? 

• Do virtual meetings unfold in the same way as real meetings? The same people 
speaking, in responding to the same kinds of events and information as tends to 
happen in real meetings? 

• In the course of events that require motor skills - passing objects around, playing 
physical games, etc., do the events unfold in the same kinds of ways? 

• Is there observable group phenomena which occurs whether or not the environment 
is virtual - for example where the group as a whole acts under the influence of some 
social gravity, and physically drifts spatially, without this being the conscious 
intention of any individual? 

We are currently designing a series of experiments to explore these parameters. 

4.2. The network requirements of CVEs 

Next we consider the networking issues raised by CVEs. DEVRL addresses two major 
networking issues: scale and synchronisation. The following paragraphs discuss each of 
these in turn, touching on some of the technical approaches that have been adopted by 
current distributed VR systems. 
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Scale. As the number of simultaneous inhabitants of CVEs grows beyond a few tens 
towards hundreds or thousands of people, so issues of scale will become paramount. We 
identify four distinct dimensions of scale: 

• Bandwidth - coping with increasing network traffic as the population and 
complexity of virtual worlds increases; 

• Computational - even if the network can deliver the information, techniques need to 
be developed to ease the computational load of processing it (especially rendering). 

• Perceptual - even if the information can be displayed, techniques need to be 
developed to help participants manage the cognitive load of understanding it (e.g. 
how would one follow a conversation involving several hundred people speaking all 
at once?). 

• Geographical - physical distance introduces its own constraints. In particular, the 
speed of light imposes a lower limit on network latency which may become 
significant over wide areas (even without the further delays introduced by switching 
and transmission technologies). 

A number of solutions have been proposed to deal with these issues. The use of multi- 
cast protocols has been widely discussed as a means of minimising network traffic (e.g. 
[9]). In addition, various spatial scoping mechanisms have been implemented in order to 
reduce both computational and network load by limiting mutual knowledge between 
objects to specific regions of space. These include the aura mechanism from the DIVE 
[4] and current MASSIVE [5] systems and the cellular spatial sub-division technique 
proposed for future versions of NPSNET and MASSIVE. Considering perceptual scale, 
distancing techniques provide a means of filtering out the detail of more distant and 
therefore less interesting objects. Of particular note is the generalised spatial model of 
interaction as implemented in the MASSIVE system, where the notion of mutual 
awareness, controlled through the further concepts of focus and nimbus, allows for 
flexible and extensible distancing between objects across media such as graphics, sound 
and text. 

Synchronisation. The issue of synchronisation concerns the degree to which 
different participants' versions of a shared virtual world need to be kept consistent and 
the mechanisms by which this can be achieved. This problem becomes apparent to end 
users when significant latencies occur in the system. However, it is important to be 
aware that the synchronisation issue is in fact always present. Indeed, relativity tells us 
that there is no absolute notion of synchronicity in the real world even if we don't 
perceive the consequences of this for everyday interactions. At the heart of the 
synchronisation issue is whether to enforce synchronisation or whether to allow different 
participants' world states to diverge under certain circumstances. Systems which take the 
former approach may be based on a centralised client-server model or may employ a 
distributed database locking model to keep different world databases in step with one 
another (see the DIVE system for an example of the latter). The impact of latency on 
such systems is likely to be an overall reduction in system performance and an increased 
perception of lag (in essence, everyone perceives the world at the rate of the slowest 
person). Such approaches may not work well over wide areas or in highly heterogeneous 
systems involving machines with radically different capabilities. 



146 

An alternative approach involves the use of predictive techniques. Instead of transmitting 
changes in position, objects exchange higher level models of behaviour which allow 
their positions and representations to be calculated independently at different nodes of the 
distributed system. Such techniques seem particularly suited to environments which 
contain objects whose behaviours are both constrained and predictable (e.g. the path of a 
missile or vehicle) and have been widely used in battle simulation systems (e.g. 
NPSNET). However, it is not clear what overhead might be incurred for less predictable 
environments. 

Experimental approach. The overall aim of the network level experimentation is 
therefore to construct and validate a predictive model of network traffic. Two factors need 
to be considered. First, the network traffic generated will be application dependent. 
Second, the network traffic generated will be closely tied to the number of simultaneous 
users and their on-going actions (e.g. how often to people move, talk etc.). As a result, 
we propose that network evaluation should proceed as follows: 

1. Each application and underlying system needs to be profiled. This involves 
conducting a formal analysis of communication protocols, resulting in a list of all 
possible application events and associated network messages combined with a 
discussion of the amount of traffic generated for each. 

2. User behaviour needs to be profiled. This means gathering statistics about patterns 
of usage allowing us to confidently predict the relative frequencies of the different 
events described in (1). This requires the construction and use of event logging tools 
for each application. 

The network traffic model arises as a combination of (1) and (2). Specifically, 

network traffic generated = traffic generated by each eventxfrequency of events occurring 

Once constructed, the model can be validated by comparing predicted traffic against 
actual measured traffic (using network monitoring tools) for different numbers of users. 

5. Summary 

This paper has provided an overview of the UK's Distributed Extensible Virtual Reality 
Laboratory Project (DEVRL). The paper has described initial results in relation to all 
three of the project's objectives, namely establishing a distributed infrastructure for 
testing CVE applications; constructing three examples of such applications; and 
conducting experiments with these applications in order to explore the issue of multi- 
participant presence and the effects of network latency and bandwidth constraints on their 
operation. 

At the time of writing the infrastructure has been established and tested through a series 
of virtual meetings and the three applications (the virtual classroom, collaborative 
information retrieval and geometric modelling) are under development. The next stages 
of the project will involve experimentation with these applications. 
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DEVRL is open to new participants who might want to test their own applications and 
systems over its infrastructure, take part in experiments or establish a presence in 
DEVRL Town. Please contact: devrl@cs.nott.ac.uk for more details. 
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Abstract. In order to achieve true 3D user interaction with geographic 
information, an interface between a virtual environment system and a 
geographic information system has been designed and implemented. This 
VE/GIS interface is based on a loose coupling of the underlying 
geographic database and the virtual environment system via a dynamic 
data-translator. This process monitors events initiated by the user in the 
virtual environment. Based on these events, appropriate queries are 
generated and sent to the geographic database. On the other hand, the data- 
translator receives GIS data as a result of queries, and converts these data 
into appropriate representations for the virtual environment. Moreover, 
the VE/GIS interface performs data-management tasks in order to 
efficiently utilize the limited amount of data that can be kept on-line in 
the virtual environment. To this aim, an object caching mechanism has 
been devised. The dynamic data-translator supports both explicit and 
implicit access to the geographic database. These concepts are illustrated 
in a virtual environment based user interface that provides basic 
interaction facilities for the intuitive exploration of geographic 
information. The approach chosen leads to a layered data management 
scheme where issues related to collaborative VE experiences, such as 
guaranteed performance, synchronization, concurrent access, and network 
traffic limitations, can be handled at an appropriate system level. 

1. Introduction 

1.1   Geographic   Information   Systems 

Geographic information systems (GIS) are defined as the common ground between 
information processing systems, e.g. traditional databases, and the many fields of 
expertise that use spatial analysis techniques. These spatial analysis techniques can be 
used as powerful tools to collect, store, retrieve, transform and display spatial data 
from the real world. In general, Geographic Information Systems (GISs) are designed 
to support 
1. the storage of large quantities of heterogeneous spatial data, 
2. database queries for the presence, location, and properties of various kinds of 

spatial objects, and 
3. a high amount of interactivity in query composition and processing, as well as 

handling access to the database. 
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Fig. 1. The GEO++ user interface. 

In order to provide this support user interfaces for GISs until now have relied on 
conventional, 2D graphical interaction techniques. A good example of a GIS based on 
such an interface is GEO++, a geographic information system developed at TNO- 
FEL, based on the Postgres database management system [1,2]. 

The user interface of GEO++ offers facilities for the viewing of Postgres relations, 
the addition and editing of Postgres tuples ("objects"), graphic query composition, 
graphic display of query results on maps, map entity labeling, picking of graphic 
objects, zooming and panning of displayed maps, etc. The user can interactively 
compose queries via 2D mouse based interaction. 2D windows-based presentation 
facilities are available to display query results (see fig. 1.) 

Recently, extensions to the display facilities of GEO++ have resulted in the GE03D 
system [3]. Its 3D display capabilities can produce static and semi-interactive 
projections of 3D geographic data on a 2D screen. The 3D display extensions are 
based on [4]. 

1.2       Virtual   Environments 

Virtual Environments on the other hand, offer facilities for advanced man-machine 
interaction through 3D image presentation, and direct manipulation of (virtual) 
objects [5, 6]. To this aim, the user is immersed in the 3D computer generated 
environment using peripheral devices such as head-mounted displays, and 
position/orientation sensors. VE technology is expected to have a big impact on 
future developments of interactive systems for applications such as education (training 
simulators), tele-manipulation, design (CAD), scientific visualization and decision 
support information systems. 
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Virtual environments would, at least in theory, allow a more natural interaction with 
the inherently spatial data in a GIS. Related work in the area of data visualization in 
VEs has been described by others. Fairchild has done work on VE based visualization 
for information management [7], while McGreevy has reported extensively non the 
use of virtual environments for planetary face exploration [8]. In the Sequoia 2000 
project, advanced visualization techniques are being investigated, although virtual 
environments have not been mentioned explicitly [9]. The use of virtual environment 
techniques for the interactive visualization of remote sensing data has been reported by 
Bagiana and Jense [10]. 

This paper describes some aspects of the development of a VE based user interface for 
geographic information systems. We have designed and implemented software that 
provides facilities to interrogate a geographic information system from within a 
virtual environment simulation. In section 2 we discuss how differences between the 
data representation in a GIS and the data representation in a VE system lead to 
problems that have to be solved in the interface. Section 3 then described the high- 
level architecture of the interface. The interaction facilities provided to the user are 
described in section 4. The results of our work are provided in section 5, and we 
conclude by discussing these results, and giving suggestions for future work. 

2. Background 

2.1 GIS  architecture 

GEO++ is a GIS with a so-called integrated architecture. This means that its 
capabilities for handling spatial data are implemented in an open, extensible Data Base 
Management System (DBMS). This is in contrast to some other approaches, where 
the spatial data are stored and processed separately from the non-spatial data. These so- 
called dual or layered architectures most often use a relational DBMS to handle the 
non-spatial data In the case of GEO++, the underlying relational DBMS is Postgres, 
which has built-in support for spatial data types. The Postgres query language is 
called Postquel. 

2.2 Geographic data types 

Geographic data can be divided into spatial and thematic data. The spatial data can be 
further subdivided into geometrical and topological data. The geometrical data 
describes the spatial properties of the geographic information in terms of points 
(coordinates), lines (e.g., line equations), and polygons (e.g., plane equations, normal 
vectors, etc.). The topological data are used to represent spatial properties of, and 
relationships between, the geometrical data such as connectivity, adjacency, inclusion, 
etc. Finally, thematical data are application dependent attributes related to the 
geographical entities. Typical examples are: city names, road capacities, and 
population density figures. 
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2.3 Basic   interaction   facilities 

Roughly speaking, three basic interaction facilities can be distinguished that every 
GIS must support: map display, object selection, and spatial calculations. These 
operations are of course closely interrelated. For instance: before a spatial calculation 
can be performed, the user must first select the object(s) on which it is to be 
performed, while the result of the calculation should be displayed in a meaningful 
manner. 

2.4 VE system architecture 

On the VE systems in use at TNO-FEL, the software platform of choice is dVS 
(distributed virtual environment system), developed by Division Ltd. [11]. dVS 
provides an open and extensible software environment for the development of 
advanced VE applications. It enhances the basic operating system (in our case UNIX) 
with various components that handle tasks that occur in almost all VE applications, 
e.g., position/orientation tracking, collision detection, image generation, audio , etc. 
A wide range of VE peripherals, such as head-mounted displays, positions sensors, 
etc. are supported. dVS provides a high-level interface to programmers that allows 
abstraction of hardware specific implementation details, and thus enhances the 
portability of applications. 

The architecture of dVS adheres to the so-called Actor model in which functionality 
related to specific elements of the VE simulation., e.g., visual aspects, audio, 
collision detection, etc. is encapsulated in separate components, called Actors, that 
communicate with each other in a truly parallel, distributed environment. User code is 
wrapped in an application Actor that runs in parallel with the standard dVS Actors. 

Communication between Actors is supported by an infrastructure that consists of a 
shared data space (the VL database). Actors can place shared objects in this dataspace, 
that are then monitored by other Actors. Actors can update shared objects and also 
react to changes in objects they monitor. In order to prevent the entire VL database 
from being replicated in the address spaces of all Actors, these can subscribe to certain 
shared objects in which they are interested. For instance, the Visual Actor that is 
responsible for image generation, is usually only interested in the shared objects that 
represent geometric properties of elements in the Virtual Environment. 

2.5 Requirements for interaction with geographic data in a VE 

The visualization and manipulation of geographic data using virtual environment 
techniques puts several requirements on the interface between the GIS and the VE 
system. The requirements are determined by 
1. the performance capabilities of the VE system, e.g., image generation rate, 

amount of data that can be handled, 
2. the differences in data representations in the GIS and the VE system, 
3. the communication channel between GIS and VE system, e.g., its throughput. 
These requirements dictate the use of some form of data management that should have 
the following properties: 
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• the VE system should keep running at "full speed", without having to wait for 
data that have been requested from the GIS, 

• the limits of the VE data representation capabilities should be respected when 
more and more data are coming in, e.g., by discarding data that are no longer 
relevant, 

• on the other hand, repeated requests to the GIS for the same data should be 
prevented 

• conversion from the GIS representation to the representation required by the VE 
system should be supported. 

In the next section we describe the architecture of an interface that supports all of the 
above mentioned features. 

3. Architecture of the Gis2Ve interface 

The software that implements the interface has been named Gis2Ve (GIS-to-VE). Fig. 
2 depicts the major components of the Gis2Ve software, as well as its relationship 
with the VE system on one hand, and the geographic database on the other. 

The Gis2Ve interface consists of a number of cooperating independent processes. This 
architecture allows several interface activities to be handled concurrently. The 
processes communicate using the standard UNIX Inter Process Communication (IPC) 
facilities, through shared memory, shared message queues, and semaphores. Each of 
the processes can spawn child processes to handle subtasks. One of our computers (a 
Silicon Graphics PowerSeries/VGX) is based on a multiprocessor architecture and has 
4 CPU's. On this machine the Gis2Ve processes can run in true parallel mode. Other 
advantages of this process decomposition is that it allows tuning of the overall 
performance of the system by allocating processes to processors based on their 
performance requirements, and that it is easy to change the implementation of 
individual processes, provided the IPC protocol is adhered to. The various processes of 
the Gis2Ve interface are described in more detail below. 
The event handler is the central entity of the system. It handles the control flow 
between the several processes, monitors events, and takes the appropriate actions. The 
relationships between events and responses are defined the "production" rules, stored 
in the rule base. 
The rule base is a database of production rules. It gives production rules belonging 
to a certain action. Although not implemented at the current time, the intention is to 
make these responses context sensitive and user specific. 
The object cache acts as a secondary store for the dVS database. It manages a 
certain amount of data objects, partly in shared memory, and partly on disk, which 
has been used by the dVS database and may later be used again. Data objects which 
have been used recently stay in memory, after a certain time they are swapped to disk 
and finally they are deleted. 
The query generation process despatches database queries to the GIS whenever 
new data is needed. The query generation process relies on certain rules for generating 
appropriate queries based on various events. It composes the required queries in child 
processes, which also send the query to the geographic database. 
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Fig. 2. Architecture of the VE/GIS interface. 

The receive data process monitors the child processes generated by the query 
generation process. Each child processes places its received data in shared memory. 
When this has been done, the receive data process notifies the conversion utility and 
destroys the child process that received the geographic data. 

The conversion utility transforms each received GIS data object to the format 
required by dVS. Rules for the conversion are stored in the conversion utility. Each 
conversion is carried out by a child process of the conversion utility. Several of these 
conversions may be going at a given time in parallel. 

4. Interaction with geographic data in a virtual environment 

4.1  Explicit and  implicit query  generation 

From the point of view of interaction facilities, VE based user interfaces offer a rich 
environment for the user to manipulate and explore his data in a highly intuitive 
manner. The challenge for the UI designer lies in the choices and trade-off that have to 
be made in order to provide the user with a concise and meaningful set of interaction 
tools. For the interaction with a Geographic Information System the most important 
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tool for the user is the query mechanism of the Database Management System. In 
conventional information systems, a basic set of query primitives can be used to 
create higher level composite queries to select from the database data that meet a 
whole set of criteria. This query composition process usually amounts to the 
programming of a composite query in the provided query language. 

4.2 3D menu and area selections 

In our VE based user interface the user can generate queries, for instance by pointing 
at an area and selecting a thematic attribute type from a 3D menu. The thematic 
attribute value for the indicated area is then retrieved from the database and visualized 
in an appropriate way. We have called this type of queries explicit queries, mainly to 
distinguish them from implicit queries, which are queries that are not initiated by 
explicit actions of the users, but instead are implied by his actions in the virtual 
environment. 

4.3 Implicit   panning 

An example of implicit query generation is the automatic visualization of only those 
areas that lie within the direct vicinity of the user. The spatial data that meet a certain 
"closeness" criterion are automatically retrieved from the database and displayed. A the 
user moves around in the environment, areas that get farther away are removed from 
the virtual environment (but remain in the cache, see above!). This interaction 
technique can be compared to the panning facilities provided to the user of a 
conventional 2D screen based GIS. An additional benefit of this "implicit panning" 
mechanism is that, the limited resources of the virtual environment system (i.e., the 
maximum number of objects that can be present in the VE, as well as the 
performance capabilities) are automatically managed. In this sense it is a cruse form 
of level-of-detail management. 

5.  Results 

The Gis2Ve interface was implemented as an application on top of the dVS software 
platform. At our laboratory we have dVS running on several machines, one of which 
is a Silicon Graphics 4D240VXG machine. This system has 4 CPU's and a high 
performance graphics subsystem for real-time rendering. 

Two implementations of the basic Gis2Ve interface has been realized. Both 
implementations adhere to the conceptual system decomposition outlined in section 
3. In the first version, the functionality of most of the system components has been 
implemented in separate processes. In that version, two of the processes are not 
complete: the query generation process does not produce actual Postquel queries to the 
database, and the rule base is only very rudimentary [12]. 

In a later, second version, the query generation process does produce Postquel queries 
has, and the interface has been implemented as a single process. The motivation for 
this decision was that we suspected that the interprocess communication between the 
individual processes consume a significant amount of overhead processing time which 
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tends to negate the performance improvement expected -of this parallel 
implementation. Initial experiments indicate that the performance loss of the single 
process version w.r.t. the multiprocess version is limited. Additionally, in this 
version the query generation module has been implemented. It can now generate basic 
Postquel queries to the underlying Postgres DBMS (which incidentally can reside on a 
different machine, accessible though a network connection). 

For testing purposes, we have used two datasets. 
1. The ETOP05 dataset, which contains a global elevation map with a resolution of 

12 samples per degree longitude or latitude. This amounts to about 18 Mbytes of 
data. ETOP05 was used to test the first version of the interface and thus was not 
stored in a Postgres database, but as a "flat" file instead. 

2. A dataset covering the United States, consisting of county borders with the 
associated population counts. This dataset was used to evaluate the second 
implementation of the interface. Therefore it was stored in a Postgres database. 

The sizes of these datasets are of course nowhere near the amount of data in an actual 
GIS, but sufficient for testing the Gis2Ve functionality and performance. 

Based on the virtual environment system, a basic user interface was implemented that 
allows the navigation of the datasets. As the user "flies" over the ETOP05 dataset, 
appropriate parts (1 degree x 1 degree grid sectors) of the dataset are automatically 
loaded and become visible in the virtual environment (implicit queries). Additionally, 
the user can select a region from the global dataset to start a fly-through sequence! 
Queries to retrieve the initial sectors from this region are then generated explicitly. 
Table 1 provides some quantitative results of the effectiveness of the Gis2Ve 
interface. The figures indicate the advantage of keeping the grid sectors in secondary 
storage (the cache) once they have been retrieved from the database but are currently 
not visible in the virtual environment. 

Nr. of grid 
sectors 

Table 1. Performance figures 

3x3 
5x5 

First retrieval 
from database 

~30s 
70 - 80 s 

Retrievals from 
object cache 

<ls 
<1 s 

Around the second implementation of the interface, the single process version, a 
simple 3D menu structure was implemented to provide the user with a basic selection 
mechanism. The menu supports the following facilities: 
• Session: supports session management, e.g., New database, New session, Load 

previous session, Save session, Quit session 
• Edit: select and change visual attributes, object types and navigation beacons; 
• View: provides a global overview of the dataset for orientation and rapid position 

changes) 
• Options: set system parameters 
• Help: provides context sensitive help 

An impression of how the geographic data is currently presented is shown in figure 3. 
It shows both the actual data and several 3D icons for user interaction. 
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Fig. 3. Geographic data presentation in a virtual environment. 

6. Conclusions and further work 

The first measurements of the performance of the Gis2Ve interface, both of the 
multiprocessing implementation and the single process version, indicate that it 
provides an effective low-level building block for the development of VE based 
interaction facilities. After the implementation of the Gis2Ve interface has been 
completed and fully tested, it will be used to investigate how the 3D interaction can 
be used to enhance the user's perception and understanding of the structure and 
relations of spatial data. The basic user interface developed around the second version 
is a first attempt in this direction. Additional research will be performed in order to 
develop useful interaction techniques that will allow the user to effectively query the 
database using the direct manipulation facilities of the virtual environment. In 
particular we intend to evaluate the prototype system that is now available in the 
context of a real-world application of Geographic Information Systems. 

The Ve2Gis interface provides a framework that can easily be extended to support 
multiple simultaneous users. Areas that have to be addressed in this case are: 
guaranteed performance, synchronization, data consistency, data persistency, and 
network traffic limitations. The approach chosen for the Ve2Gis interface, with three 
data representation layers (runtime VE database, local object cache, end underlying 
database) allows each of these issues to be handled at the appropriate system level. 
For instance, concurrent access by multiple local users can be handled by the 
mechanisms incorporated in the runtime VE database (in our case VL), whilst the 
underlying Postgres database offers facilities to handle concurrent access by remote 
users as well as persistent data storage. Techniques to guarantee the performance of 
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networked VE applications under conditions of (sometimes severe) network bandwidth 
limitations are currently being studied. The basis for this work is the expertise at 
TNO-FEL in the area of Distributed Interactive Simulation (DIS) [13]. Although the 
concepts of DIS were originally developed to support the internetworking of military 
simulators, they provide a starting point for distributed immersive VE applications as 
well. 

Another context for further work on multi-user concepts is provided by a project, in 
which TNO-FEL participates, in the area of Advanced Communications Technologies 
and Services under the European 4th Framework Programme. In this project, COVEN 
(Collaborative Virtual ENvironments), methods and techniques will be developed to 
support multiple simultaneous users in the collaborative exploration of, amongst 
other things, geographic information. The w we have done so far on the Gis2Ve 
interface has laid the foundation for further research into the technical issues of 
providing dynamic access to databases for several, possibly large numbers of 
simultaneous users. 
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Abstract. CERN is about to start building the LHC (Large Hadron Collider), 
which at its completion, in the year 2004, will be the world's largest machine 
for High Energy Physics. The LHC-system will be designed, engineered and 
manufactured in a distributed manner by about three hundred institutions 
around the world. One of the challenges to be taken up will be that of the 
technical information exchange for design and documentation purposes, 
between all the partners involved. In particular, being able to access current 
or previous designs, in a seamless manner, is essential. By combining into a 
single tool, called i3D, the 3D input and high-performance rendering 
capabilities of high-end VR systems with the data-fetching capabilities of 
network browsers, we are able to handle the distributed nature of the LHC 
project and address some of its information management issues. In particular, 
by accessing individual parts and subsystems directly from the site where 
they are being designed, we are able to reflect the distributed structure of the 
design process and make available virtual prototypes that are always in sync 
with the latest design. The browsing capabilities of the system allows us to 
attach documents of any kind of media to each three-dimensional objects, 
offering a means to structure technical information and to present it under the 
most suited media. 

1. Introduction 

CERN exists primarily to provide European physicists with accelerators that meet 
research demands at the limits of human knowledge. In the quest for higher 
interaction energies, the Laboratory has played a leading role in developing 
colliding beam machines. 

The next research instrument in Europe's particle physics armoury is the Large 
Hadron Collider (LHC), a project similar in duration and budget size to a huge 
off-shore drilling platform [2]. In keeping CERN's cost-effective strategy of 
building on previous investments, this new equipment is designed to share the 27- 
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kilometre tunnel of the existing Large Electron-Positron collider (LEP), and be 
fed by existing particle sources and pre-accelerators. CERN is about to start 
building the LHC (Large Hadron Collider), which at its completion, in the year 
2004, will be the world's largest machine for High Energy Physics. The LHC will 
require huge investments in effort and funding from all the CERN member states, 
and it is of capital importance that each single aspect of this huge project can be 
analyzed in every little detail, so that errors in the design of the premises and 
equipment can be determined as soon as possible. This will require the most 
efficient organization and technology at every stage of the design process. 

In order to evaluate and promote the use of virtual environment technology as 
a tool to help design, build and maintain the LHC premises and equipment, a 
pilot project was started in January 94 by the Computer & Network and the 
Accelerator Technologies divisions, under the name VENUS (Virtual 
Environment Navigation in the Underground Sites). In order to respond to the 
needs of LHC designers and engineers, the VENUS project is composed of the 
following applications: 

• Virtual prototyping; 

• Networked design integration; 

• Territory impact study; 

• Assembly planning and control. 

In this paper, we will present only the virtual prototyping and the networked 
design integration applications since both projects are based on the i3D system 
[1], a Virtual Reality Modeling Language (VRML) [3] capable tool that 
incorporates the 3D input, stereo output and high-performance rendering 
capabilities of high-end VR systems with the data-fetching abilities of network 
browsers. More details about the territory impact study and the assembly planning 
and control applications can be found in [9]. 

2. The i3D System 

i3D is a tool allowing the exploration of three-dimensional scenes described using 
VRML, where each 3D object can be annotated with a document of any kind of 
media documents that can be accessed on the World Wide Web [4]. Using a 3D 
device, the user can explore its three-dimensional data and request access to 
other documents. Three dimensional data is handled directly by i3D while the 
handling of other types of media is currently delegated  to NCSA Mosaic or 
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Netscape. The first version of i3D has been developed at CRS41, by the author 
and Enrico Gobbetti. Its development is currently being pursued at CERN. 

2.2 User Interaction 

When exploring three-dimensional environments, navigation using interactive 
control of virtual camera motions is often the most important of three dimensional 
interaction [8, 11, 16]. Multiple degree-of-freedom input devices allow interactive 
3D viewing with continuous viewpoint control, allowing the simulation of motion 
parallax, one of the most essential visual cues with binocular perception for the 
understanding of the three-dimensional structure of the visualized data [5, 6, 14]. 

A Spaceball is used for the continuous specification of the camera's position 
and orientation, LCD shutter glasses for binocular perception, while the mouse is 
used to select objects and access media documents. Additionally, abstractions of 
the 2D mouse motions into 3D transformations are also provided so that 
navigation be possible when no Spaceball is available. A pop-up menu as well as 
keyboard commands are used to control various visibility flags and rendering 
modes. Figure 1 shows the two-handed input capabilities of i3D's input device 
configuration. 

Figure 1. i3D's input device configuration 

To explore three-dimensional worlds, the user can free fly using an eye-in-hand 
metaphor [15] or a walk metaphor where tilt rotation is locked. Alternatively, the 
user can inspect the scene or the currently selected object by dragging the world 

1 Center for Advanced Studies, Research and Development in Sardinia, Cagliari, 
Italy. 
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with a trackball around the object's selection point or the center of the object's (or 
scenes) bounding box. 

While navigating inside a three-dimensional scene, the user can request 
additional information by accessing media documents associated with 
geometrical data. Since annotated geometries are drawn with a blue silhouette, 
they can be easily identified. Selecting an annotated geometry by clicking on its 
visual representation with the mouse triggers the document retrieval and display. 
For three-dimensional scenes, i3D maintains a stack of active worlds. Using 
keyboard commands, the previous or next world in the stack can be made current, 
thus providing a mean to quickly switch between active worlds. 

2.3 World Model 

i3D's database manager stores the representation of three-dimensional scenes as a 
collection of 3D objects, including light sources and cameras. From the set of 
world's objects, the database manager builds an octree spatial subdivision to be 
able to answer rapidly to spatial queries, as for example when selecting objects 
by tracing a ray from the mouse position. The generic 3D object possesses the 
following attributes: 

• a 3D transformation that defines the object's spatial position, orientation and 
scaling; 

• a list of geometries representing the different levels of complexity that can 
be used to render the object; 

• a material, that defines the way the object behaves with respect to lighting; 

• a texture, defining the image to be mapped on the object's geometries; 

• an URL, that locates the media document associated with the 3D object. 

Geometric, material and texture objects can be shared by multiple 3D objects of 
a same scene. Worlds can be described to i3D either using a proprietary file 
format or VRML. 

2.4 Rendering 

The task of the i3D's rendering manager is to display a visual representation of 
the current world at high and constant frame rates. During navigation, the 
rendering manager is activated at regular intervals by the main i3D event loop 
and is requested to refresh the screen while adhering to the user-specified timing 
constraint. To satisfy this requirement, the rendering manager must be able to 
trade rendering complexity with speed [8]. 

At each activation, the rendering manager renders a single frame by executing 
the following steps: 
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• visibility determination: first, the database is traversed and the objects 
visible from the observer's viewpoint are identified. This task is accelerated 
by first hierarchically determining the visibility of portions of the scene 
through a traversal of the spatial subdivision maintained by the database 
manager. This process takes into account both viewpoints when stereo 
rendering is enabled to limit the number of visibility tests; 

• display list construction: each visible objects is then compiled into a 
sequence of device-dependent commands. During this conversion, 
geometries are optimized by building structured triangular meshes from their 
triangle lists to reduce their rendering time. To avoid recreating compiled 
versions at each frame, i3D caches the graphical descriptions generated for 
each database object and reuses them until they become invalid; 

• level of detail selection: to reduce the number of polygons rendered in each 
frame, so as to be able to meet the timing requirements, the rendering 
manager traverses the generated display list and selects the level of detail at 
which each of the objects will be represented. Level of detail selection is 
based on the importance of each object for the current frame (which is 
determined by computing an approximation of its size projected on the 
screen) and on feedback regarding the time required to render previous 
frames. The feedback algorithm is similar to the one presented in [12]; 

• display list optimization: once the levels of details are selected, the system 
has all the information required to render the frame. To exploit coherence, 
the display list is sorted to optimize the rendering speed. In particular, 
objects sharing the same texture and/or material are grouped together. In 
other visual simulation systems, this task is left to the user, that has to 
encode this information together with the scene description [10, 12, 13]; 

• display list rendering: the sorted display list is finally traversed and rendered 
by executing each of the compiled command sequences. Rendering statistics 
for the current frame are updated and stored so as to be used when selecting 
the level of detail selection for the next frame. 

3. Application 

3.1 Virtual Prototyping for LHC 

In any project of the scale of LHC, the design phase is probably the most delicate 
one, as this is when some critical choices are to be taken which could 
dramatically affect the final results, timing and costs. Unlike in commercial 
manufacturing, accelerator designers and engineers don't have a chance to 
improve their product on a "second generation". Each instrument is built once 
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with very small possibilities of modifications. This implies that it must be perfect 
on the first and unique trial. 

The ability to visualize the model in depth is essential to a good 
understanding of the inter-relationships between the parts. Interactive navigation 
is a powerful method for reviewing, confronting and refining designs, that allows 
specialists to focus on items of interest, and simplifies identification of geometry 
in any section of the model. Colors assigned to engineering disciplines help 
examine design integration, look for gaps, part interferences and mismatches. 
Since the premises and equipment can be electronically preassembled, all fixing 
interferences can be visually checked, even clearances necessary for installations 
or moving parts and, all this accomplished well before the final design is released 
for construction. Since changes made in the later phase of production cost many 
times more than those caught in the prior phases, savings are inevitable. 

Figure 2. Virtual prototype for the ALICE experiment set-up. 

Virtual prototyping allows managers and engineers to critique design as when 
watching physical mock-ups, but better and earlier. Physical mock-ups, usually 
take several weeks to construct, and proved, in previous CERN projects, to be 
rather inflexible to modifications (each design iteration requiring major rebuilds), 
ill suited for ergonomic considerations and dynamic simulations, sometimes 
inaccurate and finally rather costly. Virtual prototypes (see Figure 2), on their 
side, can be made available easily and immediately, at no extra cost, since each 
part has already a three-dimensional computer representation inside the CAD 
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database. Since it can easily be kept in sync with the current design, virtual 
prototyping gives us much more of a responsive ability to study how the various 
parts and assemblies fit together; it helps reduce risks and costs, and shorten 
schedule. 

The visual capabilities of present CAD tools are much too limited to allow 
interactive navigation and, with these systems, it takes a fair amount of time and 
imagination to isolate eventual design errors. For this reason, the virtual 
prototypes are entirely extracted from the EUCLID CAD database and converted 
to VRML or i3D's file format. The conversion process is carried out in two steps: 
each EUCLID part is converted to Wavefront OBJ format and placed in a 
directory structure reflecting the assemblies' structure. EUCLID models being 
usually defined with CSG trees, evaluating the CSG representation at various 
resolutions provide us with an efficient way to generate multiple representations 
of a single part at various levels of complexity. However, this is not always 
possible, in particular when the CSG representation has been converted to a facet 
representation. We are investigating the use of decimation techniques to process 
these geometries when encountered. Once the model has been successfully 
extracted from the CAD system, various filters are applied to the individual 
geometries to convert them into one of i3D's readable formats and to apply 
geometrical processing such as smoothing normal vectors. Finally, the directory 
structure is traversed and a scene is created in each directory of the structure. By 
systematically inlining children directories in the parent's scene file, the virtual 
prototype is composed. 

In order to allow design group meetings, the VENUS project has set up a 
meeting room where a Silicon Graphics Reality Engine2 workstation with an 
Multi-Channel Option is used to render the stereograms that are fed into a VRex 
2000 stereo projector. Binocular perception is obtained by wearing cheap 
polarizing glasses that perform the proper image separation. That way, we provide 
each participant with a better perception of the complex spatial relationships 
between parts of the virtual prototype. An operator is responsible for controlling 
the viewpoint using a Spaceball or a mouse, on request of members of the group. 
The ability of the i3D system to rapidly switch between different prototypes 
loaded in memory is a powerful feature when confronting the current design with 
earlier versions. 

3.2 Networked Design Integration 

The LHC-system will be designed, engineered and manufactured in a distributed 
manner by about three hundred institutions around the world. One of the 
challenges to be taken up, in order to guaranty the success of the LHC project, 
will be that of the technical information exchange for design and documentation 
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purposes, between all the partners involved [2]. In particular, being able to access 
current or previous designs, in a seamless manner, is essential. 

The World-Wide Web has added a universal organization to the data made 
available on the Internet allowing to view all hosts as a unique data source, and 
to treat all of this data as part of a single structured document. By composing the 
descriptions of each part or subsytem, and accessing them directly from the site 
where they are being designed, we are able to retrieve virtual prototypes 
reflecting the status of the latest or some previous version of the design. This 
behavior can be easily obtained by exploiting the inlining capabilities of both 
VRML and i3D's file format. 

Figure 3. Using the 3D model to access distributed data. 

The browsing capabilities of the i3D system allows users to interactively recall 
and view information attached to 3D models, by selecting objects of interest 
during navigation. Annotations can refer to text, still images, technical drawings, 
sound, animations or even other 3D models, exploiting in this way all of the 
digital media capabilities of current workstations (see Figure 3 for an example 
session of data browsing using i3D). Annotating each three-dimensional model 
with an HTML page provides us with the basic ability to structure the available 
technical information. Soon, we will be able to build such pages automatically 
when exporting the prototype from EUCLID. In the future, we plan to investigate 
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the association of multiple URLs with each three-dimensional model and to 
provide context sensitive selection to determine which URL needs to be retrieved. 

4. Conclusions and Future Work 

In this paper, we have presented how, by combining into a single tool the 3D 
input and high-performance rendering capabilities of high-end VR systems with 
the data-fetching capabilities of network browsers, we are able to handle the 
distributed nature of the LHC project and address some of its information 
management issues. In particular, by accessing individual parts and subsystems 
directly from the site where they are being designed, we are able to reflect the 
distributed structure of the design process and make available virtual prototypes 
that are always in sync with the latest design. Thanks to stereo real-time video 
projection and 3D input devices, managers and engineers can meet to evaluate 
the current design, taking advantage of binocular perception and motion parallax 
simulation to better understand the complex spatial relationships between the 
parts of the prototype. The browsing capabilities of the system allows us to attach 
documents of any kind of media to each three-dimensional objects, offering a 
means to structure technical information and to present it under the most suited 
media. 

Future work will concentrate on improving the i3D system, in particular its 
data-fetching capabilities by using the W3 library of common code [7]. We also 
plan to improve the visual cues for media annotation and to offer context 
sensitive selection to handle multiple URLs per object. 
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Abstract: This report is a description of a software application to construct a 
whole house or living space in a virtual world and to experience it through the 

application of virtual reality technology. In the virtual house we can preview the 
appearance, convenience, safety, comfort level, and other factors such as tem- 
perature, air flow, and outside noise by using results from simulations. For de- 

veloping the virtual housing system, four major goals have been defined. These 
goals are to keep the graphics drawing speed at better than 10 frames/sec. 
(which we call real time animation), to use texture-mapping on almost all sur- 

faces in the house where texturing with applicable, to develop a user interface to 

check the house's utility, and to use a multi display large screen environment in 
which more than 30 people can participate at the same time. This virtual hous- 

ing system is a subsystem of the Japanese Ministry of International Trade and 
Industry (MITI) project called "Housing Development Project for the 21st Cen- 
tury". 

1 Introduction 

A number of research projects stemming from virtual reality (VR) [1] or artificial reality 

technology [2] are being developed these days. In Japan there are new publications de- 

scribing research such as the Virtual Dome [3] or the Application of Human Models in VR 

[4]. The former is being developed to construct a more realistic world and the latter to aim 

more effective information by using the human model. In the industrial world there are 

publications from automobile, steel, and building industries. 

We are developing a software application to construct a living environment and to experi- 

ence the environment through the use of virtual reality technology. In a virtual house we 

preview the appearance, convenience, safety, comfort level, and other factors such as tem- 

perature, air flow, and outside noise by using results from simulations. We have already 
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developed a kitchen VR system (we call it the ViVA system, "Virtual Reality for Vivid 

A&i space" system) [5], and it is in use by customers in our showroom. We will progress to 

widen the domain from a kitchen to a house composed of some rooms and develop the 

functions necessary to experience the house. 

In this paper the concepts are described relevant to our VR system for living environments 

and we explain how we will apply these newly developed functions. 

2 Concept of VR System for Living Environments 

The advantage of experiencing a virtual house is that the person who would live there can 

examine how much they will be satisfied with the appearance, convenience, and functions. 

When building a house, a plan or a floor plan is normally drawn by the professional. It is 

impossible for the person who knows nothing about the building to imagine the completed 

house. Further more there is not a single system by which the person can determine 

whether or not the completed house will be satisfying enough. 

To help to solve these problems, we propose 3 important factors in VR system for living 

environment. 

(1) We should make the realistic house data. The house data is composed of 3 dimensional 

geometry data and material data. The latter includes the texture, shininess, and reflec- 

tion data which give the users a greater feeling of realism. When we add the lighting 

effects of different kinds of illumination and sunshine, we can get more realistic im- 

ages. 

(2) By using computer graphics we can construct a virtual world wherein we can interact, 

and get some level of immersion. The virtual reality system operates by sensing the 

position, direction, movement, and orientation of the user and, in the future, by getting 

the user's thinking and mental condition. The user can move and look around quite 

naturally. They can interact with nearly all objects. For instance they can pick a pencil 

up or open a door. And these objects react in accordance with natural phenomenon or 

physical laws. 

(3) The user can experience not only the house but also factors essential to comfort. By 

changing the living environment, they can create a more comfortable living space. We 

will add a factor to influence on the level of comfort such as cutting down on outside 

noise, efficient air flow, and good thermal condition. 
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3 The ViVA System as an Application of VR for the Kitchen Environ- 

ment 

We announced the ViVA system at our Shinjuku showroom in October 1990. The system 

configuration is shown in Fig. 1 above and composed of sensor parts, a graphics computer, 

acoustic equipment, and a head mounted display (HMD). We will explain to what extent 

we were able to implement our concepts. 

MIDI 

HeadPhonff 

Fig.l. System Configuration of ViVA 

3.1 Making Database of the Kitchen 

First a kitchen plan including a floor plan is made by an arrangement between a customer 

and our planner, a person who is employed to assist with the initial plan of the living space. 

We convert the information to geometry data. We developed the system with a graphical 

user interface (GUI) to give doors thickness, an opening angle, and an axis of rotation 

shown in Fig. 2. These features were necessary to experience the doors in the virtual 

kitchen. We also texture-mapped materials onto kitchen doors. 

Geometry Data by CAD 

Lines      Polygons 

Definition of Knob 

Definition of Thickness 

Definition of Drawer 

Definition of Movement 

Definition of Color 

Definition of Texture 

Fig.2. Data Exchange from CAD to VR 
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3.2 Immersive Feeling 

Wearing an HMD, the view beyond the virtual kitchen is cut off and the user is always able 

to see an image in front of them. Tracking the position and the orientation of the head/right 

hand by magnetic sensors, the head and right hand in the virtual world were displayed at 

correct position and direction. By obtaining the joint angles of the user's fingers from a 

Data Glove, their hands were also rendered correspondingly. In response to their motion, 

for instance walking or making a fist, the scene and the hand shape in the graphics were 

changed. They could pick a dish or a cup up and put them into the cupboard. When they 

released the dish they'd picked up, it fell and was broken. When they grasped the faucet, 

they could turn on the water. We wanted to create an environment which has governed by 

the physical laws. 

3.3 Creation of Comfortable Living Environment 

The user could get a sense of the dimensions and configuration of the kitchen environment 

which has derived from the plan. By changing the color and texture of doors and compar- 

ing configurations one by one, they could select what they really liked. We added the 

acoustic function to this system, so they could experience the sound simulation results of 

attenuation of outside noises through the walls [6]. 

4 Consideration of ViVA System 

The following are the problems we could not solve in the ViVA system. 

(1) With data we prepared we could not get fully realistic feel. Rendering speed decreased 

in proportion to the volume of geometry data. We regarded real-time rendering, (more 

than 10 frames per second (Hz)), as more important than realistic drawing. We limited 

the data to under 5000 polygons. We studied that the user could notice the delay of 

drawing speed when it was under 10 Hz and that they might feel discomfort when 

under 2 Hz. After adding texture mapping functionality, rendering became as slow as 1 

or 2 Hz. Therefore, we made it possible for the users to set their positions first and then 

select a texture-mapping function. 

(2) We were limited by the number of objects with which the user could interact. When 

they went through the wall, they lost their positions. To stop going forward when col- 

liding with a wall, the collision between all walls and a part of the user's bodies should 

be computed. But we could only compute collisions between the user and 4 or 5 walls 

because of rendering speed limitations. We could not compute the collision between 
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objects. 

(3) In the virtual world the user was limited to controlling only their positions and orienta- 

tions. Changing the color or texture, had to be operated by another person from outside 

of the virtual world. 

5 VR System Applied for a House 

We have developed the following system to widen the domain from the kitchen to an entire 

house, and several users can experience the house at the same time by watching stereo 

graphics and listening to stereo sound. The system configuration is in Fig. 3. 

Screen 

^B&Cordless 
Projector I—I—I   HeadPhone/ 

Fig.3. Developed System Configuration 

5.1 Virtual House Shared by Several Persons 

In ViVA only one user could experience the virtual world. To create a better living envi- 

ronment, not only a customer but also a planner and a constructor should discuss the con- 

figuration together. Our goal is for each person to experience the virtual world by wearing 

a HMD and a glove, but it is too difficult now. So one person experiences it as mentioned, 

and the graphics are simultaneously displayed on 3 continual arch shaped screen after be- 

ing made into a stereo image pair as described in Fig. 4. The audience wears polarized 

glasses and cordless headphones, so they can also experience the 3 dimensional image and 

sound. By using 3 synchronized projectors, about 30 people can watch it with a view angle 

90 degrees in the horizontal direction and 30 in the vertical direction. 

5.2 Creation of Realistic Data for Living Environment 

We have defined the data format of objects specially for VR. We have developed the sys- 



174 

tern (IOESS, Interactive Organizing and Editing of Space System) by which we can con- 

nect several CAD systems as shown in Table 1. We have developed functions in IOESS to 

merge and distribute the CAD data, to define the door's angle and axis to open, and to 

define the coordinates of mapping textures. We divide a house into closed rooms. Each 

closed room has a layer structure given above in Fig. 5. We defined the floor at the top of 

nodes. The furniture is made separately in the local coordinate system and should be de- 

scribed as independent nodes. Each node is distributed into the absolute coordinate system 

by translation and rotation. Finally the house consists of closed rooms. Almost all objects 

are texture-mapped to give more realistic feel. Though the total size of the texture data is 

7.3 mega-bytes, the rendering speed is fast even with texture mapping because of the im- 

provement of the hardware performance. 

^ 10,000 (milli meters) 
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Projecter 

4,700 
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00 
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Fig.4. Screen and Projectors 

Tablel. Available CAD 

CAD CopyRight Valid Data 

Auto CAD AutoDesk Inc. Geometry .Hierarchy .Position 

A+E IBM Geometry 

SigmaArris Sigma Design Inc. Geometry 

SuperBuild Fujitu Geometry ,Position,Texture 
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{ Name {Standard living_floor;} 
Position x 1 ,y 1 ,z 1; 
Rotate X1.Y1.Z1; 
Mask { Property r g b; 

Texture wood.rgb;} 
Surface { Normal ll,ml,nl; 

Tcoord ul, vl; 
Point al,bl,cl; 
... , 

{ Name {Standard sofa;} 
Position x2,y2,z2; 
Rotate X2.Y2.Z2; 
Constraints { Origin pi,ql,rl; 

UnlockxOOO;} 
Mask { Property rgb; 

Texture leather.rgb;} 

} 

Fig.5. Hierarchy Structure of Data 

5.3 Immersive Feeling 

(1) As described earlier, the user data is obtained from a magnetic sensor and a 3D mouse. 

Using this data the user is put into the virtual world. 

(2) We developed the functionality to render only the current room to keep the rendering 

speed at real time. We named this function "Room Switching". Through trial runs we 

discovered that the rendering machine can draw 19000 polygons faster than 10 Hz. The 

size of the house data is 37000 polygons. By Room Switching the drawing speed de- 

pends not on the total volume but only on the rendered room. 

When the users are in room A in Fig. 6, room B is not rendered. As they open the door, 

room B is rendered. After they go into room B and shuts the door, room A is not 

rendered. To realize this feature, we defined the boundary data shown in Fig. 7. The 

boundaries are put on the floors and under the doors. The user is forbidden to move 

between the floor boundaries and permitted to move from the floor boundaries to the 

door boundaries. They can open the door there and move to the neighboring floor 

boundaries. To observe the position of the boundary and the person, we can query the 

room where they are and forbid them not to move out of the boundary. When the door 

is open, this function is not effective, so the function was added that the open door is 

automatically shut after the appropriate time except when the users are on the door 

boundary. 

We can keep rendering speed at real time as shown in Fig. 8. The "Room Switching" 

function takes advantage of the layered data structure and divided closed rooms. 

Though faster rendering hardware has been developed, the demands of data size and 

features such as texture-mapping make it necessary to use, so "Room Switching" func- 
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tion maintains the frame rate. 

(3) By using boundaries, the user cannot walk through walls but must go to an adjacent 

room by opening a door. 

(4) By keeping the eye at an appropriate height, the user can climb stairs easily. 

(5) The user can have interaction with all objects. By distributing collision detection com- 

putation to a separate CPU, we can reduce the speed loss from collision computation 

Not Drawing 

Fig.6. Room Switching Function 

iRoom All SlRoom Bl 
Boundary of Room A 

Boundary of Door 

Boundary of Room B 

Fig.7. Boundary Data 
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Entrance   Outlcoking     LDK Bath House 

Closed Room 

Fig.8. Data Volume of Closed Rooms 

5.4 Creation of Comfortable Living Environment 

We have made a menu in the virtual world. The menu contains icons and has sub-menus. 
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The user can change the virtual world and pull down functions by selecting menus and 

create more comfortable living environment. The menu functions are shown in Table 2. 

Table 2. Function of 3D menu 

Function Purpose Icon 

Color Change Change rgb color separately using sliders 

ROB 

iii 
Texture Change Change textures by selecting a icon 

$ 
Delete Object Delete object s by selecting a object B=> 

Read Object Read objects by selecting a icon fTiV 
Quit 3D Menu Quit 3D menu ££239 

6 Conclusion 

To implement our concepts for a VR system for living environment, we have made a 

realistic house from several kinds of CAD data and developed the Room Switching func- 

tion to keep drawing speed at real time. We have developed the system where several users 

can share the virtual house experience by stereo graphics and sound. Furthermore the user 

can interact with all objects and go to the next room by opening doors. He can change the 

virtual world by changing color and texture, removing or creating objects. 
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Abstract. This paper describes the architecture of DiscMC, an interac- 
tive system which supports isosurfacing on regular volume datasets. Dis- 
cMC adopts a discretized fitting algorithm that considerably reduces the 
number of polygons generated by a Marching Cubes-like scheme while 
presenting shorter running times. The extracted surfaces are composed 
of polygons lying within a finite number of incidences, thus allowing 
simple merging of the output facets into large coplanar triangular facets. 
A pyramidal representation of the volume dataset has been adopted to 
speed-up isosurface fitting, by avoiding empty volume traversal, and to 
support multiple level of resolution fitting. The system has been imple- 
mented in a Unix environment, using a de facto standard graphics library. 
The functionalities and the user interface of the system are described in 
detail. 

1    Introduction 

The use of Marching Cubes (MC), a technique originally proposed by Lorensen 
and Cline [3], is nowadays considered the standard approach to the problem of 
extracting isosurfaces from a volumetric dataset. As a member of the large class 
of surface tracking techniques, Marching Cubes is a very practical and simple 
algorithm, and many implementations are available both as part of commercial 
systems or as public domain software. 

Despite its extensive use in many applications, shortcomings of the approach 
have been pointed out regarding topological ambiguities, algorithm computational 
efficiency, and excessive output data fragmentation. The DiscMC system is an 
attempt to overcome these shortcomings. 

Standard MC produces no consistent notion of object connectivity; the local 
surface reconstruction criterion used allows a number of topological ambiguities, 
and therefore standard MC may output surfaces which are not necessarily co- 
herent. Many solutions have been proposed recently [5, 7, 9, 11]. 

MC is characterized by its computational efficiency, but in the case of high 
resolution dataset fitting times are not interactive. The most common speed- 
up technique is to avoid the traversal and classification of empty sub-volumes; 
octrees and other data structures have been used to prevent fruitless exploration 
of regions of the volume [2, 12]. 
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Excessive fragmentation of the output data can prevent interactive render- 
ing when high resolution datasets are processed. Equipments able to generate 
volumetric datasets as large as 512 x 512 x [< 512] are now generally available. 
Although an isosurface does not usually cross more than a small subset of all the 
voxels, we can understand how easy it is to generate surfaces defined by millions 
of triangles. State-of-the-art hardware is not yet fast enough to manipulate such 
masses of data in real time. 

In this work we present DiscMC, a fast and approximated isosurface fitting 
system. The aim of the paper is twofold: to present the implementation and 
functionalities of the DiscMC system and to evaluate the pyramidal represen- 
tation adopted in DiscMC to speed-up fitting and to support multi-resolution 
isosurface extraction. 

The fitting algorithm at the base of DiscMC has been proposed in a previous 
paper [4]; it is situated half-way between the cuberille method, which assumes 
constant value voxels and directly returns the voxel faces (orthogonal to the 
volume axes) [1], and the cell interpolation approach of MC. The DiscMC ap- 
proach leads to: fast approximated fitting, by replacing edge interpolation with 
midpoint selection; interesting reductions in output fragmentation, by apply- 
ing a very simple merging approach; and lower running times, when compared 
with classical MC. Moreover, the use of an unambiguous triangulation scheme 
[5] allows the extraction of isosurfaces without topological anomalies. We have 
recently proposed a new, revised version of the algorithm [6] generating geome- 
tries composed only by triangles, thus resulting in a consistent speed-up in the 
rendering process. For any detail and explanation about the algorithm we advice 
to consult reference [6]. 

Section 2 presents the algorithm. The basic ideas of the algorithm, the orga- 
nization and contents of the new lookup table and the data structures used to 
store the extracted facets are briefly described. We then introduce the merging 
phase, where coplanar facets are merged into larger convex polygons that are 
triangulated. In Section 3 we describe in details why a pyramidal representation 
has been adopted to speed-up cell classification and to support multiple level of 
resolution fitting. The architecture and the graphical user interface of the Dis- 
cMC system are presented in Section 4. Results and conclusions are discussed 
in Section 5. 

2    The Discretized Marching Cubes Algorithm 

The Discretized Marching Cube [4] is a derivation of MC based on midpoint 
selection. 

In a number of applications where approximated isosurfaces could be ac- 
ceptable, linear interpolation is not critical to extract meaningful isosurfaces 
since the maximal approximation error involved in midpoint choice rather than 
interpolation is 1/2 of the cell size. 

The set of vertices that can be generated by DiscMC is finite: there are only 
13 different spatial locations on which a new vertex can be originated (12 cell- 
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edge midpoints plus the cell centroid).  Moreover, applying midpoint selection 
allows for a finite set of planes where the generated facets lie. We have only 13 
different plane incidences onto which a facet can lie, and for each incidence the 
algorithm generates a limited number of different facets. 

The following points characterize the DiscMC algorithm: 

• each facet can be simply classified in terms of its shape and plane incidence; 
vertex coordinates are not necessary: they can be reconstructed by the 
coordinates of the cell the facet belongs to; 

• the limited number of different plane incidences increases the percentage 
of coplanar adjacent facets and therefore allows a drastic reduction in the 
number of returned polygons while preserving small, but possibly signifi- 
cant, roughnesses; 

• the algorithm does not require interpolation of the surface intersections 
along the edges of the cells; this implies it works in integer arithmetic 
(except for the computation of normals) at a considerably higher speed 
than standard methods. 

2.1 A new lookup table 

DiscMC requires a simple reorganization of the standard MC LUT. Due to 
midpoint selection the number of different facets returned by DiscMC is fixed, 
and we have only a constant number of different output primitives for each plane 
incidence: only right triangles are generated on planes x = c, y = c and z = c; 
only rectangles on planes x±y = c, x±z = c and y ± z = c; only equilateral 
triangles on planes x ± y ± z = c. Moreover, using midpoint interpolation 
means that the geometrical location of facet vertices depends on the .cell vertices 
configuration and the cell position in the dataset mesh. 

Under these assumptions, the resulting facet set returned by DiscMC for 
each of the canonical MC configurations is reported in Figure 1. With respect 
to the original proposal by Lorensen and Cline we omit configuration 0 (the 
empty cell) and configuration 14 (which can be obtained by reflection from con- 
figuration 11, i.e. configuration k in Figure 1). Furthermore, three more config- 
urations (configuration n, o and p in Figure 1) have to be managed in order to 
prevent topological ambiguity [5]. The adopted disambiguation policy implies 
the DiscMC LUT is not always symmetric. 

Each facet is coded in the DiscMC LUT by using a shape code, which codifies 
the shape and position of the facet (1..4 for right triangles, 1..2 for rectangles and 
1..8 for equilateral triangles), and an incidence code, i.e. the plane on which the 
facet lies. Geometrical information on the facet vertices isn't explicitly stored in 
the DiscMC LUT. 

2.2 Isosurface extraction and merging phases 

The data structures used to store the fitted facets are designed to guarantee 
efficient access during the following merging phase, even if this causes a loss of 
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Figure 1. The sets of facets returned by DiScMC for each cell vertex configuration. 

efficiency in memory usage. 
The data representation used is a two-level bucketed structure. For each 

facet extracted from the volume data, it's quite trivial to identify the plane it 
lies over: it depends on the incidence code and the spatial coordinates of the cell 
containing the facet. 

At the end of the extraction process we are ready to merge adjacent coplanar 
facets, and each list contains only those facets which are eligible to be merged. 

The real kernel of the algorithm is the merging phase. The goal of this 
phase is to merge all the adjacent sets of coplanar facets in larger elements. The 
original DiscMC merging approach, as described in [4] was completely revised, 
in order to increase its efficiency and to produce triangles instead of polygons1. 
The new merging phase is described in details in a recent paper [6]. Basically, 
it splits the polygons, generated by merging coplanar facets, into the largest 
possible convex sub-polygons, and then triangulates them. 

An important advantage of this surface simplification approach is its geo- 
1We chose to transform via software the polygonal n-sided facets into triangle strips to 

produce output data in a format which guarantees faster visualization on the current state-of- 
the-art graphics workstations. 
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metrical robustness. Most of the process relies on the use of look up tables and 
combinatorial rules; any choice is based on geometrical computations, which 
might be affected by the numerical limited precision. 

The merging process here briefly described returns triangle strips represent- 
ing the isosurface in what we call Draft quality. 

2.3    Computation of normals and Proof modality 

For many applications and for high-resolution datasets Draft quality isosurfaces 
are sufficient. Normals are computed as the gradient in the vertices location, in 
order to render Gouraud or Phong shaded faces. 

One problem may arise while rendering the isosurface. The generated tri- 
angular patches are absolutely correct from a geometrical point of view (and 
C° continuous, apart from the facets that lie on the volume dataset border). 
Nevertheless, we built them without taking into account the neighbor patches, 
so some of the vertices produced might be T-vertices (see Figure 2). This would 
lead to aliasing problems while Gouraud-shading the facets. 

Figure 2. T-vertices (the circled vertices in the figure) returned in Draft modality. 

To avoid this problem we developed a slightly different merging and triangu- 
lation process, called Proof modality, which detects the presence of T-vertices 
in the fitted surface and then triangulates all of the polygons taking care of the 
potential T-vertices lying on their border [6]. 

The Proof modality triangulation algorithm can triangulate polygons with 
three or more vertices aligned. T-vertices management involves very low over- 
heads in processing time but leads to an increase in the number of triangles 
generated. 

3    Pyramidal representation 

A well known problem in isosurface fitting is that a large percentage of the 
processing time is spent to analyze and classify cells not crossed by the isosur- 
face (empty cells). Solutions based on the use of hierarchical representation are 
generally proposed to avoid empty cells test. A hierarchical representation based 
on an octree structure (BONO, Branch On Need Octree) has been proposed by 
Wilhelms and Van Gelder [12]. 

We decided to adopt a simpler representation, a pyramid of regular volumes, 
in order to simplify the data structure management and to reduce storage costs. 
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The main goal of the pyramidal representation is to speed-up isosurface fitting. 
Therefore, our pyramid consists of a set of 3D arrays whose elements contain 
min - max intervals of the corresponding underlying block of cells. 

Each element of the array at the base level of the pyramid contains the min 
- max interval of, at most, the corresponding 8 cells into the data volume (see 
Figure 3); the array at the top level (it is just one element) contains the min - 
max interval of the eight elements of the array of the underlying level; this is also 
the min - max interval of the whole dataset. Depending on the dimensions of 
the original dataset, border elements of each array of the pyramid can refer less 
than 8 underlying cells or elements. This permits to work with dataset whose 
resolution is not 2n x 2™ x 2n, avoiding the problems that arise when an octree 
is used. 

The pyramid is visited recursively: we may start from the root level (which 
contains a single cell), or from an intermediate level. For each cell, then, if 
the value of the isosurface we are extracting falls within the cells min - max 
interval we recursively go down the pyramid visiting the corresponding 8 (or less 
if the cell is on the border of the dataset) cells in the level immediately below; 
otherwise, we stop the recursion and avoid the visit of these cells. 

mm max 

120 132 
Bottom level of 
the pyramidal 
stmcture 

Figure 3. A sketch of the dataset to pyramid representation mapping. 

The pyramidal representation has several advantages: 

• the pyramid storage cost is usually lower that the octree cost because no 
pointers are needed and the links between levels are implicit with the cells 
indices; the space saving for which octrees have been introduced is usually 
lost while using them to classify volumetric datasets since, due to small 
variations of the scalar fields even in isovalued regions, complete octrees 
are needed; 

• the storage needed to represent the pyramidal representation increases less 
than 50% the storage needed to represent the dataset: given a dataset with 
n cells, the pyramid requires 

Y~>.    n      n 
^   8*<4 
i=l 
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cells, and each entry contains two field values (min, max); 

• given a pyramidal representation, it is very easy to select sub-volumes of 
interest and to limit the isosurface fitting to these volumes only. 

Another great advantage of the pyramidal representation is the possibility to 
easily implement a multiple level of resolution fitting. 

We can stop the visit of the data structure at a user-defined level, and extract 
approximated representations: these approach allows for a significant reduction 
of the isosurfaces complexity: experiments on a 2563 dataset showed that fitting 
surfaces on level 7 (the next to the last level) gives sufficiently good approxi- 
mations while reducing the surface complexity to a fourth of the original (see 
Figure 4 for an example). 

Figure 4. Isosurfaces fitted on the dataset (right, 62,508 triangles) and on the bottom 
level of the pyramid (left, 20,164 triangles). 

4    DiscMC system implementation 

The DiscMC algorithm is at the very base of our isosurface fitting system. The 
system has been designed to run on Unix workstations, rendering the extracted 
isosurfaces using the OpenGL graphics library [8] and having a graphical user 
interface based on a portable toolkit built over XI1. These choices assure a 
good DiscMC portability on many different platforms (including PC's running 
Linux), even if for the time being our distribution includes only SGI binaries. 

The system GUI was implemented using XForms [13], a toolkit built over 
XI1 (Xlib). We looked for a very simple-to-use toolkit, which should not require 
an in deep knowledge of XI1. We chose to adopt XForms, a very handy library 
(usable from C) with all the common widget necessary to design a standard GUI 
(button, sliders, input field, dials, file system browser forms, using the toolkit 
terminology). 
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The library provides also a program, the Form Designer, which lets the user 
interactively design the interface layout and generate the corresponding C code. 
A limitation of the XForms toolkit is that the user cannot configure or extend the 
library, defining new interactive forms. This important feature, available in other 
graphical user interface toolkits (e.g., SGI RapidApp and ViewKit products), 
did not result critical in the design and implementation of the DlSCMC user 
interface, because the set of widget provided was enough for our purposes. 

4.1    System's Functionalities 

We chose to give the user the possibility to either render the fitted geometries in 
an OpenGL window, or to save them on disk. The geometries (lists of triangular 
facets) are saved on disk using the SGI Open Inventor [10] format. The saved 
isosurfaces can therefore be visualized using any Inventor viewer (e.g., ivview), 
which probably will provide a more sophisticated interface than the DiscMC 
viewer that has been designed as an extremely simple tool, providing a single 
light source, Gouraud shading or wire-frame rendering, and a basic control of 
the viewpoint. 

We dedicate the rest of this section to briefly summarize the functionalities 
available in the system using the GUI layout as a guide. 

Main Window We have two buttons managing the interactions with the disk 
(the two uppermost buttons, see figure 6 in Appendix). One to LOAD a dataset 
from disk and the other to SAVE on disk the triangle mesh. The format used to 
store the dataset on disk is a very simple one (in fact, we named it . sds, simple 
dataset): it uses one byte for each fields value and contains no other information. 
The size of the dataset and their physical dimensions are instead stored in a . sdh 
file (simple data header). All the information is stored as binary values. 

There are two fields showing the name, the resolution and the voxel shape of 
the loaded dataset. 
The user may choose between two different data output modalities: 
DRAFT: gives faster surface extraction and also best results in terms of simplifi- 
cation; on the other hand, triangle meshes with T-vertices may be returned and 
this may originate aliasing problems in Gouraud-shaded rendering; 
PROOF: at the cost of both some more processing time and lower simplification 
factor, T-vertices are detected and removed. 

Based on the results of simulations made on several datasets at different 
thresholds, we realized that the PROOF modality gives in output roughly 5% 
triangles more than the DRAFT modality. 

The FAST EXTRACTION mode forces the construction of the min — max pyra- 
midal representation previously described and use this data structure to speed-up 
isosurface fitting. 

The threshold value (iso-level) is selected with the slider provided in the 
main window. The START button is used to fire the fitting process. 

To help the user in selecting the desired threshold, an Image Browser 
window allows the interactive, slice-by-slice analysis of the dataset. 
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Info Window The Info Window (see figure 6 in Appendix) helps the user to 
keep under control at a glance a number of information on the isosurface cur- 
rently fitted. They are: 

1. the VOLUME bounded by the isosurface (measured in cell units; the real 
dimension of each cell is defined in the .sdh file and it is shown in the 
Main Window); 

2. the number of TRIANGLES that would be generated by a standard im- 
plementation of Marching Cubes (with ambiguous configuration manage- 
ment); 

3. the number of TRIANGLES that are generated by our discretized approach 
(BEFORE MERGE), and the number of those which are produced after the 
merging process (AFTER MERGE); 

4. the elapsed TIMES, relative to: 

LOADING: loading the dataset and data structures allocation; 
MARCHING: discretized fitting on the dataset cells; 
REDUCING: merging facets in larger triangle strips; 
COMPLETING: T-vertices management (if in PROOF mode), isosurface storing 
onto disk (if graphics output is OFF); 

5. the surface simplification obtained as a percentage on the standard MC 
mesh (REDUCTION). 

The current values in the Info Window may be saved on disk at any time for 
comparison and statistic purposes. 

Image Browser Window We considered a primary need for an interactive sys- 
tem to have the chance to interactively decide, on the basis of a dataset browsing 
facility, the threshold of interest to compute the isosurface. For these purposes 
the Image Browser Window (see figure 7 in Appendix) allows the interactive, 
slice by slice, analysis of the dataset. 

A selected list of the main functionalities provided in this window is as follows: 

SLICE ORIENTATION: selection of the slicing plane (XY, YZ or ZX) to be used 
while browsing the dataset; 
SELECTED PIXEL INFO: when the user selects a pixel on the image, its position 
(coordinates on the plane) and value are shown in this field; 
HIGHLIGHT: to paint the selected pixels with the current highlight color; while 
the highlighting, obviously, does not affect the original image all the pixel in 
the plane with the same value are colored by the selected color to let the user 
identify better where such a value appears in the dataset. 

Multi-resolution Window The pyramidal data structure provided allows the 
extraction of isosurfaces at multiple level of resolution. Using the counter con- 
tained in this window user chooses the level onto which isosurfaces are extracted. 
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5    Results and conclusions 

We tested DiscMC on a number of different datasets and compared it with a 
public domain regular Marching Cubes algorithm2 (hereafter Classic MC). We 
modified its original lookup table in order to avoid ambiguous configurations [5]. 

The results in Table 1 refer to the two different merging-modalities of the 
DiscMC algorithm: the Draft mode and the Proof version, with the T-vertices 
removed. 

MC DiscMC 
Classic Draft Proof 

Name Resol. Thr. Triang. Time Triang. % Time Triang. % Time 
Bucky 128a 127.5 183,480 9.26 48,638 26.5 4.42 62,508 34.0 5.89 

215.6 48,584 4.17 18,660 38.4 3.32 22,412 46.1 3.85 
65.1 223,264 10.43 55,243 24.7 4.68 70,738 31.6 6.33 

Head 2562 x 34 41.7 138,252 7.05 42,381 30.6 4.03 52,201 37.8 5.13 
105.1 250,369 9.40 71,197 28.4 5.77 87,562 35.0 7.68 

Hydro 1273 127.5 44,704 3.21 9,448 21.1 2.02 11,512 25.7 2.33 
40.1 124,736 6.65 26,592 21.3 2.51 32,496 26.0 3.27 

Sphere 1283 50.1 135,464 6.91 27,088 19.9 3.19 32,800 24.2 4.02 

Table 1. Number of triangles produced, simplification percentage and times of a public 
domain implementation of the Marching Cubes algorithm and of the two versions (Draft 
and Proof) of DiscMC. 

Table 1 reports the numbers of triangles generated by Classic MC and by 
DiscMC. Five datasets were used during testing: Bucky (1283) is the electron 
density around a molecule of Cßo3; Head (2562 x 34) is a CAT scanned dataset4; 
Hydro (1273) is the electron density around a molecule of H^; Sphere (1283) 
is a voxelized sphere. The thresholds (Thr) used are shown in the table. In 
Table 1, percentage values (the number of triangles produced by Draft or Proof 
DiscMC over the number of triangles in the Classic MC) represent a measure 
of the compression in space obtained with our method. The running times of 
Classic Marching Cubes and of Discretized Marching Cubes in Draft and Proof 
mode are also presented. Times (in CPU seconds) do not take into account I/O 
operations (i.e. dataset reading, output vertices, normals and triangles rendering 
or writing on disk). Tests were performed on an R4400 Indigo2 Silicon Graphics 
workstation. 

Note that the times of the Draft (Proof) version are between 21% and 63% 
(8% and 51%) shorter than Classic MC: this is mainly due to the use of integer 
arithmetic and to the fast algorithm adopted for the merging phase. The Classic 
MC and the DiscMC times in Table 1 are measured with any optimization of 
the marching step (e.g. via octree or pyramid data structure). 

2Written and kindly provided by Brian Tierney of the Lawrence Berkeley Laboratory, E- 
mail: bltierney81bl.gov. 

3Courtesy of AVS International Centre. 
4Courtesy of Niguarda Hospital, Milan, Italy. 
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Table 2 reports timing results for each phase in the Proof'DiscMC algorithm. 
Times (in CPU seconds) do not take into account I/O operations and relate to: 
non optimized (NoOpt) and optimized (Pyramid) marching times (cells classi- 
fication, facets extraction, volume computation); merging times (construction 
of 2D convex polygons, update of the 3D array of vertices); completion times 
(T-vertices management, computation of normals, triangulation). 

Proof DiscMC 
March Merge Complete 

Name Resol. Thr. No Opt. Pyramid 
Bucky 128J 127.5 2.62 0.75 1.66 1.61 

215.6 2.45 0.24 0.81 0.59 
65.1 2.65 0.86 1.85 1.83 

Head 2562 x 34 41.7 2.63 0.53 1.33 1.17 
105.1 2.82 0.94 2.79 1.97 

Hydro 1273 127.5 1.86 0.16 0.19 0.28 
40.1 1.97 0.43 0.53 0.77 

Sphere 1283 50.1 2.49 0.49 0.64 0.89 

Table 2. Running times of Proof Discretized Marching Cubes (in CPU seconds). 

The speed-up introduced by the adoption of the pyramidal representation is 
impressive. 

The efficiency of the DiscMC merging and retriangulating steps is high. 
This is crucial because the design goal of DiscMC was to give simplified meshes 
with high efficiency, to be used, for example, while interactively searching for the 
correct threshold. Once such a threshold has been selected, a more sophisticated 
method can be used as well to obtain the best approximated mesh. 

Other characteristics which differentiates DiscMC from other simplification 
approaches are as follows: it does not entail managing a geo-topological rep- 
resentation of the triangle mesh; its algorithmic robustness, because we do not 
have to handle complex situations (e.g. triangles degenerating into points) which 
have to be taken into careful consideration in the Classic MC and other simpli- 
fication approaches; it uses mostly integer arithmetic, and restricts the use of 
floating point computation to the computation of normals. 

The results obtained and the good quality of the output images (Figure 5) 
support our claim that DiscMC represents a valid tool for the rapid reconstruc- 
tion and visualization of isosurfaces from medium and high resolution datasets. 
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Abstract. In visualization of scattered data, one is often faced with the 
problem of finding the nearest neighbours of a data site. This task frequently 
occurs in an advanced stage of the visualization process, where several data 
structures have been created during run time. Many applications compute a 
triangulation of the data for their visualization purposes. To take advantage 
of this previously allocated data structure we propose an algorithm for de- 
termining the k nearest neighbours in a triangulated point set. As a benefit, 
this algorithm dynamically computes exactly as many neighbours as neces- 
sary for the specific application and does not assume a particular kind of 
triangulation. Furthermore, it works in any finite-dimensional, metric affine 
space. 

1. Introduction 

In visualization of scientific data, the raw input usually undergoes a large number of 
processing steps before an actual image can be computed. Structural analysis of com- 
plex shapes, visualization of multivariate scattered data, and computer tomography, 
for example, demand the efficient solution of a multitude of geometric problems. 

A frequent approach for treating these different problems is the application of inde- 
pendent modules for each problem separately. Although their data structures are not 
necessarily disjoint, the various modules often make no use of previously created data 
structures of other modules. This leads to an overhead of storage and computing time 
requirements, which should evidently be avoided. 

This paper adresses one fundamental geometric problem, the k nearest neighbours 
query: Given a particular data site p; from a set P, find the k nearest sites in P. 
Immediate applications within the field of visualization are gradient and derivative 
estimation, clustering, and surface extraction (cf. [7, 8]), to name only a few. 

In previous work on nearest neighbour problems [2, 1], regular space subdivisions play 
an important role. These subdivisions perform well on uniformly distributed data, but 
are somewhat less suited for data sets of strongly varying density. Triangulations, on 
the other hand, are an irregular data structure which adapts easily to all kinds of data 
distributions. They are fundamental in many geometric algorithms. Several authors 
have used triangulations for visualizing point sets in 3-space (see, e.g., [4, 5, 6].) 

The aim of this paper is, as a result of the above considerations, to present an algorithm 
for solving the k nearest neighbours problem by taking advantage of a previously 
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computed triangulation. The algorithm can process multivariate data, as it functions 
in spaces of arbitrary finite dimension. Furthermore, it does not assume a particular 
metric. Many triangulation-based algorithms will work only with triangulations that 
possess certain properties, such as Delaunay triangulations. Our algorithm makes no 
such requisites. Thus, it can operate on any triangulation that another module has 'left 
behind.' In determining the k nearest neighbours, our algorithm explores only a part of 
the triangulation. While this part contains more vertices than just the k nearest ones, 
it is in general considerably smaller than the complete triangulation. The neighbour 
points are reported in order of increasing distance from the query point. In some 
applications, this order presents useful additional information. Implementation of the 
algorithm is straightforward. Apart from distance computations and the triangulation, 
only standard operations and data structures are needed. 

With only minor modifications, the algorithm becomes applicable to slightly different 
types of queries. Thus, it is easy to find the data points lying within a certain radius 
from the query point. Not only vertices of the triangulation, but arbitrary points in 
the respective space can be used as query points. A query can be suspended after a 
certain number of neighbours have been determined, to be resumed later if further 
neighbours are needed. This is particularly useful for interactive graphical techniques 
where additional demand for neighbourhood information arises as a result of feedback 
from the user. 

2.  Terminology 

Let A be a real-affine space of dimension d with metric dist (•, •). A m-simplex s is 
the convex hull of m + 1 points, called vertices, which are not contained in a (m - 1)- 
dimensional subspace. A subsimplex of s is the convex hull of a proper subset of the 
vertices of s. A (d — l)-subsimplex of a d-simplex is called a facet. Two d-simplices are 
called incident if one of them is a subsimplex of the other. Two d-simplices are called 
adjacent if they have d vertices in common and their intersection is a facet. 
We define the distance of a simplex s from a point p as 

dist (s , p) := min dist (q, p) 
tJGS 

Let the point set P = {p1;..., pn} C Ad not be contained in a proper subspace of Ad. 
A triangulation T of P is a tesselation of the convex hull of P into rf-simplices whose 
vertices are in P. We denote the subsimplices of all d-simplices of T collectively as the 
subsimplices of T. In particular, the points in P are the O-subsimplices of T. 

3.  The Algorithm 

The basic concept of our algorithm is a ball which is centered at the query point p^ and 
whose radius increases continuously. As the ball expands, it encounters the vertices of 
T in order of increasing distance from p;. Our algorithm registers not only the vertices, 
but also the d-simplices of T in the order in which the ball encounters them. To this 
end, an appropriate subset of the rf-simplices and vertices is stored in a heap, which is 
sorted by distance from the query point. The element closest to p{ is found at the top 
of the heap. 

The expanding ball will, in general, encounter several d-simplices and/or vertices si- 
multaneously. The algorithm, on the other hand, processes these elements one after 
another. At any given time during the expansion process, we call a d-simplex or vertex 
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of T intersecting if the algorithm has determined that it intersects the ball. All other 
d-simplices and vertices are called non-intersecting, even if they do intersect the ball. 
The term closest is used with respect to distance from the query point. 
Lemma 1 Let p{ be contained in at least one intersecting d-simplex. Then one of 
the closest non-intersecting d-simplices is adjacent to (i.e., shares a facet with) an 
intersecting d-simplex. 
Proof: Let t be a closest non-intersecting d-simplex, and let q be the point of t closest 
to p;. Since T covers a convex volume, it must cover the line segment p~q. By choice 
of t and q, it is clear that each interior point of p~q is contained in some intersecting 
d-simplex. Since we consider closed d-simplices, q is also contained in an intersecting 
d-simplex, say, t'. (If the line segment has no interior points, then q = p{ is contained 
in an intersecting d-simplex by hypothesis.) Now consider two interior points, p and 
p', of t and t', respectively. We choose these points sufficiently close to q that the line 
segment p'p is covered by d-simplices containing q. If necessary, we perturb the points 
such that p'p does not intersect any subsimplex of T of dimension less than d — 1. 
At some point between p' and p, the line segment must pass from an intersecting 
into a non-intersecting d-simplex. This point is interior to a facet f, which is shared 
by the two d-simplices. Since the non-intersecting d-simplex contains q, it is a closest 
non-intersecting d-simplex. ■ 

The algorithm starts by inserting one d-simplex incident on p; into the empty heap. 
It then keeps processing simplices from the top of the heap until it has found the k 
nearest neighbours. If the simplex from the heap is a vertex, it is reported as the next 
neighbour. When a d-simplex t is taken from the heap, it becomes intersecting. The 
d adjacent d-simplices and the vertices of t are inserted into the heap. A flag for each 
d-simplex and each vertex prevents multiple insertion into the heap. The flag is set 
when its corresponding simplex is inserted. A simplex whose flag is set will not be 
inserted again. 
As mentioned above, the heap is ordered by distance from the query point. As a 
secondary ordering criterion, vertices are given priority over d-simplices: If a vertex 
and a d-simplex are equally distant from p;, the vertex will appear at the top of the 
heap first. This prevents the algorithm from unnecessarily processing d-simplices which 
are as far from p; as the fc-nearest neighbour. The complete algorithm is described in 
Algorithm 1. 
Theorem 2 Algorithm 1 reports k nearest neighbours of p; in order of increasing 
distance. 
Proof: Let us first consider the case k = n- 1, i.e., all other vertices are requested. In 
this case, we have to show that the vertices are reported in the correct order. Assume 
that vertex q is reported before p, but p is strictly closer to p; than q. This can only 
happen if q appears at the top of the heap before p has been inserted. There exists a 
d-simplex t which is incident on p. Now t must be non-intersecting, or p would have 
been inserted into the heap. On the other hand, t is not further from p; than p, and 
therefore strictly closer than q. By Lemma 1, there exists a closest non-intersecting d- 
simplex t' which is adjacent to an intersecting d-simplex. Because of this adjacency, t 
must be in the heap. On the other hand, t' is closer than q, a contradiction. Therefore, 
q cannot be reported before p. To prove the case k < n — 1, we simply note that the 
algorithm runs in exactly the same way as for n - 1 neighbours, but stops after the k 
nearest neighbours have been found. ■ 

Figure 1 shows two snapshots of the algorithm working on a planar triangülation. 
The intersecting triangles and vertices are drawn in white and black, respectively. The 
triangles and vertices in the heap are drawn in gray. In the left diagram, the algorithm 
has just deleted a vertex from the heap. In the right diagram, it has also processed the 
triangles that are incident on this vertex. 
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Algorithm 1 (k Nearest Neighbours Query) 
Input: Triangulation T of point set P ={p1(..., pn}, 

query point p^ 6 P, 
and integer k. 

Variables: heap H ; 
simplex s ; 
d-simplex t ; 
vertex v ; 
integer j ; (* number of neighbours found so far *) 

begin 
3 ■= 0 ; 
find a d-simplex t which is incident on p{ ; 
insert t into H ; 
set the flag of t ; 
repeat 

delete simplex s from the top of H ; (* we now call s intersecting *) 
if s is a d-simplex then 

for each vertex v of s with flag of v not set do 
compute dist (v, p4) ; 
insert v into H ; 
set the flag of v ; 

endfor 
for each d-simplex t adjacent to s with flag of t not set do 

compute dist (t, p{) ; 
insert t into H ; 
set the flag of t ; 

endfor 
else (* s is a vertex *) 

3 ■= 3 + 1 I 
report s as the jth neighbour ; 

endif 
until j = k ; 
end 

4.  Complexity 

We assume that the data structure of the triangulation allows us to carry out the 
following operations: 

• Given a vertex, find an incident d-simplex in constant time.   ' 
• Given a d-simplex, find its vertices in time 0(d). 
• Given a d-simplex, find the d+ 1 adjacent d-simplices in time 0(d). 

One elementary step in Algorithm 1 is the distance computation between a rf-simplex 
and the query point. The time complexity of this step depends on the dimension and 
on the metric being used. In d-dimensional space, it takes time proportional to d to 
determine the Euclidean distance between two points alone. In the following, we let 5 
denote the worst-case complexity of distance computations, both between two points 
and between a point and a d-simplex. 

Let \T\ denote the number of d-simplices in T, and let \H\ be the number of simplices 
contained in H. We note that n 6 0(\T\). In the planar case, we also have \T\ € 0(n). 
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Fig. 1. Two phases of the algorithm as the expanding ball encounters a vertex and, simulta- 
neously, three triangles. 

In 3-dimensional space, triangulations with \T\ € 0(n) exist and can be constructed in 
0(n log n) time (cf. [3]). 
To analyze the time complexity of the algorithm, let us first look at the time spent on 
heap operations. An insertion or deletion takes 0(log \H\) time. Each vertex and each 
d-simplex is inserted into, and, likewise, deleted from, the heap at most once. Therefore, 
both the number of heap operations and the heap size are bounded by 0(|T|). The total 
time for all heap operations is 0(\T\ log \T\) in the worst case. Distance computations 
are carried out only for those simplices which are inserted into the heap, and only 
once per simplex. Therefore, the total time for distance computations is bounded by 
0(S\T\). 
Next, we will look at the two for-loops. Disregarding the heap operations and distance 
computations, for which we have already accounted above, the body of each for-loop 
consists only of setting a flag. This can be done in constant time. Within one execution 
of the repeat-loop, each for-loop is run at most d+1 times. The loop overhead consists of 
finding d+1 vertices or d-simplices and testing their flags, which takes time proportional 
to d. Thus, the for-loops cost 0(d) time. All other steps that we have not considered so 
far require constant time. Each time the repeat-loop is executed, a simplex is deleted 
from the heap. This bounds the number of executions of the repeat-loop with 0(|T|). 
Thus, the time for all executions of all constant-time steps is bounded by 0(d|T|). 
This results in a total execution time of 0(\T\ (d + 5 + log |T|)) in the worst case. 

Figure 2 shows a planar example which causes worst-case behaviour of the algorithm. 
The dots in the diagram indicate that the left and right boundaries have n/2 —1 vertices 
each, where n may be arbitrarily large. We consider a query with k = 2 at the time 
when the nearest neighbour of p; has just become intersecting. The heap contains the 
n/2 — 1 vertices left of p^. Before the next neighbour can be found, n/2 — 2 triangles 
and n/2 — 1 vertices lying to the right of the nearest neighbour are inserted. Since these 
new simplices are closer to p^ than the n/2 — 1 vertices already contained in the heap, 
the summed cost for the insertions is proportional to nlogn. Note that this extreme 
behaviour of the algorithm occurs only if p; or its nearest neighbour is used as the 
query point. For any other vertex, at most 6 triangles and 7 vertices are inserted into 
the heap before the second neighbour is found. In fact, as long as A; is small compared 
to n, the time complexity averaged over all vertices depends on k rather than on ||T||. 
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Fig. 2. Triangulation causing worst-case behaviour of the algorithm. 

We conjecture that dependency on k only will be the case for most triangulations. This 
conjecture is strongly supported by the experimental results which are presented in the 
next section. 

5. Experiments 

In order to investigate the algorithm's behaviour in practice, it was measured on various 
point sets. The experiments were set up as follows. For each point p; in a data set P, a 
query for the 2000 nearest neighbours of p; is carried out. When the query finds the jth 

neighbour, 1 < j < 2000, two quantities are recorded: the current heap size, denoted 
by II^IKPiii), and the number of heap insertions which the query has executed up to 
this point, denoted by #I{pi,j). Note that these quantities reflect not only the current 
state of the actual query for 2000 neighbours, but also the final state of a hypothetical 
query for only j neighbours of pi. 

The measurements were carried out on eight two-dimensional data examples: 

• 3 sets of uniformly distributed random points, containing 2500, 10000, and 100000 
points, 

• 3 square grids of sizes 50 x 50, 100 x 100, and 200 x 500, and 
• 2 sets of 8700 and 13687 points, scanned from real objects and exhibiting strong 

variation in point density due to previous data reduction. 

In each case, T was a Delaunay triangulation of P. 

We were interested in the worst-case behaviour of the algorithm on each particular 
data set, so the maxima 

\H\(j):=mzx\H\(Pi,j) and #/(,') := max#/(Pi, j) 
Pi^p Piep 

over all queries within the same data set P were computed. Figure 3 shows the graphs 
of \H\(j) and #I(j) as funcions of j. Two observations can be made in the graphs. 
The first is that #I(j) is strongly correlated to j. In other words, it appears to depend 
on j linearly. The second observation is that, although the underlying data sets vary 
in size by a factor of up to 40, the corresponding function graphs in Figure 3 almost 
coincide. This indicates that, as far as our examples go, the time complexity is in fact 
independent of \T\. 
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heap size / 
insertions 

neighbours 

Fig. 3. Number of heap insertions (upper set of curves) and current heap size (lower set of 
curves). 

6. Variations of the Basic Algorithm 

This section describes four possible modifications of Algorithm 1. The first one is a 
speed-up, whereas the others aim at performing different, similar tasks. 

6.1. Equidistant Stack 
Whenever the expanding ball encounters a new subsimplex of dimension less than 
d—1, it intersects a number of d-simplices simultaneously. This holds for the very first 0- 
simplex, the query point p^, too. Let r be the current radius of the ball. Suppose we have 
taken d-simplex s from the heap and find an adjacent d-simplex t with dist (t, pj = 
dist (s , p;) = r. Algorithm 1 will insert t into the heap at a cost of 0(log \H\). Now the 
heap cannot contain any d-simplex with a distance less than r at this point, nor a vertex 
of distance less than or equal to r. Therefore, only d-simplices which are equidistant 
to t can appear at the top of the heap before t does. These equidistant d-simplices, 
including t, may be processed in an arbitrary order without affecting the correctness of 
the algorithm. Instead of inserting t into the heap, we may set it aside to be processed 
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Algorithm 2 (Modifications for Equidistant Stack) 

(* as in Algorithm 1 *) 

Variables: stack S ; 

(* as in Algorithm 1 *) 

repeat 
if S not empty then 

pop d-simplex s from S ; 
else 

delete simplex s from the top of H ; 
endif 
if s is a d-simplex then 

(* as in Algorithm 1 *) 

for each d-simplex t adjacent to s with flag of t not set do 
compute dist (t, pj ; 
if dist (t, p{) = dist (s, p{) then 

push t onto S ; 
else 

insert t into H ; 
endif 
set the flag of t ; 

endfor 

(* as in Algorithm 1 *) 

immediately after s. Since we will find several equidistant d-simplices in general, we 
use a stack S for setting them aside. A new simplex is deleted from the heap only when 
S is empty. Algorithm 2 shows the changed parts of the algorithm. 

6.2. Radius Query 

Instead of looking for k nearest neighbours, one may be interested in all neighbours 
within a ball of some radius r centered in p;. For this kind of query, the algorithm does 
not count the neighbours it finds, but stops when it realizes that no more neighbour 
within distance r can be found. This is the case when a vertex s with dist (s, p;) > r 
or a d-simplex s with dist (s, pj > r appears at the top of the heap. 

6.3. Arbitrary Query Points 
In principle, Algorithm 1 works not only for vertices, but also for an arbitrary query 
point, p. The problem lies in determining the first d-simplex, t, which is inserted into 
the heap before the repeat-loop. If p lies in the convex hull of P, this process is known as 
point location and yields a d-simplex t containing p. For p outside the convex hull, all 
d-simplices which are visible from p are inserted at the beginning of the computation. 
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6.4. Suspended and Concurrent Queries 
In some applications, one does not know a priori how many nearest neighbours of a 
query point will be required. After looking at the k nearest neighbours, one may find 
that another i neighbours are necessary. In such a situation, it is an easy matter for 
Algorithm 1 to resume the query where it left off before. The cost for searching first k 
and then the next £ neighbours is the same as for searching k + SL neighbours in a single 
query. Some information must be saved in order to resume a query. This comprises the 
heap H, the flags, and the number k of previously found neighbours. 

It is also possible to run queries in a concurrent manner, e.g., find ki neighbours of pit 

then kj neighbours of p., then another £, neighbours of p;, etc. Multiple suspended 
queries require a separate heap and a separate set of flags for each query point. Suppose 
that concurrent queries are carried out for all n vertices, then the space requirement 
for the flags is proportional to n\T\. However, if the average number of neighbours 
computed per vertex is small, most of the flags will never be used. Storage space can 
be reduced if we replace the flags by a hash table. Instead of setting a flag, we insert a 
pair of the form (query point, 'flagged' simplex) into the table. By the very nature of 
concurrent queries, the required number of neighbours in a single query is not known in 
advance. Thus, it may be impossible to make an appropriate choice for the size of the 
hash table, which has a strong influence on the table's efficiency. As an alternative, we 
can substitute a sorted tree (e.g., AVL or SBB tree, cf. [9]) for each heap, i.e., one per 
query. We insert s' into the tree if it is not contained in the tree and was not processed 
before s. Containment in the tree can be tested efficiently. Simplices are processed 
in order of increasing distance from the query point. Therefore, if s is strictly closer 
than s, it has been processed before, and if s' is strictly further than s, it has not 
been processed before. Equidistant simplices that have been processed are stored in 
an auxiliary tree, and can be found there. A simplex is inserted into the auxiliary tree 
as soon as it is processed. The auxiliary tree is cleared when the intersecting sphere 
expands, i.e., when a simplex of greater distance is processed. 

7.  Conclusion 

We have presented an algorithm for computing the k nearest neighbours of a vertex in 
a triangulated point set. The algorithm does not expect any particular kind of trian- 
gulation and computes only as many neighbours as are needed for the application. It 
operates in spaces of any (finite) dimension and with arbitrary metric. The output is 
sorted by increasing distance from the query point, which is a benefit for various appli- 
cations. The algorithm is easy to implement and uses only very simple data structures 
in addition to the triangulation. 

The principle of the algorithm, a ball expanding through the triangulation, is flexible 
enough to cover a variety of similar tasks. Radius queries, arbitrary query points, and 
suspended and concurrent queries require only small adjustments in the algorithm. 
This flexibility makes our algorithm a useful tool in a wide range of visualization 
applications. 
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Abstract. Tomographie devices often produce data with directionally and spa- 
tially dependent resolution. Resampling to cubic voxels is possible at the cost 
of a significant increase of data volume and rendering time. We present an al- 
gorithm for direct ray tracing of rectilinear grids, which enables the implementa- 
tion of surface rendering with subvoxel surface detection based on local interpol- 
ation, as well as different volume rendering techniques (color compositing, re- 
projection, maximum intensity projection). Further we present a faster version of 
the basic algorithm, based on cubic macro-regions assigned to each background 
voxel. Each macro-region is denned by its chessboard distance to the nearest 
foreground voxel and can be skipped during the scene traversal. The speed-up 
is thus gained by increasing the step along the ray, maintaining 6-connectivity 
of the ray in the object vicinity, which is necessary for correct surface detection. 

1    Volume visualization by ray tracing 

Ray tracing is now common in the field of computer graphics, and the technique has also 
gained popularity in volumetric visualization. This is due to its ability to enhance spatial 
perception of the scene using such effects as transparency, mirroring and shadow cast- 
ing. Correct understanding of the nature of the processed data further necessitates usage 
of various visualization techniques. In the framework of its basic scheme, ray tracing 
enables the implementation of various surface as well as volume rendering techniques 
(color compositing, reprojection, MIP), which makes it an ideal tool for data explora- 
tion. 

The term surface rendering denotes a set of 3D data visualization techniques where 
only object surfaces contribute to the rendered image. One possibility is to build a sur- 
face model, i.e., to define a set of patches approximating the surface. These patches can 
then be rendered by some standard technique, usually with a hardware support. The bin- 
ary volume rendering techniques represent an alternative. Although the image is still 
only contributed to by surfaces, no explicit surface model is defined. Instead, a trivari- 
ate implicit function T — T(P, P„) is given, depending on voxel position P and data 
samples in some neighborhood Pa ■ A continuous surface description can be then ob- 
tained by thresholding this function at some level T. 

In order for there to be a possibility to specify various surface properties (color, re- 
flectivity etc.) for different objects, an object identifier can be assigned to a voxel, either 
directly during the scan conversion of an analytical object description or as a result of 
segmentation in the case of scanned data. Voxels with no identifier assigned belong to 
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background and can be ignored during the processing, since they do not contribute to 
the rendered image. 

Due to the fact that the scene is defined within a 3D discrete raster, the ray should be 
represented as a discrete ray, i.e., as an ordered sequence of voxels pierced by the ray, 
with the following properties: 

1. to enable supersampling and recursi vity, the ray should be able to start at any point 
outside of the scene, or inside, and with arbitrary direction and 

2. to get correct images, no object voxels along the ray should be missed. There- 
fore, the ray should, at least in the vicinity of an object, fulfill the demands of 
6-connectivity[l]. 

Traversal of the ray voxels usually has more phases. Background voxels, surrounding 
the objects, are usually found first. Their traversal stops either when the ray leaves the 
scene or when the first object voxel is found. In the second case a hit-miss test should be 
performed in order to know if the ray should continue further by the following object or 
background voxel, or if a ray-surface intersection should be searched for. The hit-miss 
test can be performed by evaluation of the interpolating function T at one or more points 
lying in the voxel and comparing the results with the threshold value. In order to detect 
the ray-surface intersection point exactly, a system of equations defined by the ray and 
the surface T(V, cr) = T) should be solved either analytically or numerically[2]. 

The probabilistic volume rendering techniques represent an alternative to the surface 
approaches. Rather than segmenting the scene into objects and background, an opacity 
and color are assigned to each voxel, based on local properties of the data. The opa- 
city reflects a measure by which the given voxel can contribute to the rendered image. 
A culling function can be defined, identifying the voxels which cannot contribute to 
the rendition and which can be discarded from consideration, alike to the background 
voxels in the surface rendering. Among others, techniques tracing primary rays (ray 
casting) through the scene were proposed, accumulating color and opacity of voxels or 
data samples obtained by interpolation along the ray. 

We can see that visualization of volumetric data by ray tracing is a task which is al- 
gorithmically similar to standard ray tracing of analytical objects, if some space subdivi- 
sion speed up method is used. In this case the object space is subdivided, either hierarch- 
ically or uniformly, again into voxels, which can be empty or can contain a list of con- 
tributing objects. The primary goal of the subdivision is to limit the number of ray-object 
intersection tests, which are themselves costly operations, by only performing tests with 
objects belonging to voxels pierced by a ray. 

Ray traversal algorithms designed for the subdivision speed up techniques can there- 
fore also be also for ray tracing volumetric data. However, one difference still exists, 
namely the voxel scene size. While the optimal subdivision rate for the speed up tech- 
niques was found to be low (only hundreds of voxeIs[3]), data sets which are orders of 
magnitude larger are processed in visualization tasks. Therefore applicability of these 
algorithms is only moderate and special techniques for ray tracing volumetric data were 
developed. 



203 

2   Macro-region based voxel traversal algorithms 

Not all voxels along the ray contribute to the rendered image with the same weight. Only 
some of them belong to the interesting objects or surfaces, while the others can be tra- 
versed rapidly or even totally skipped. This capability is called space-leaping[4] and 
exploits some kind of coherence inherent to the object and/or image space as well as to 
a sequence of consecutive images. 

The macro-region based voxel traversal algorithms exploit the object space coher- 
ence, i.e., the tendency of object (background) voxels to occupy connected regions of 
the space. In this case, background voxels are gathered into cubic, parallelepipedal or 
spherical macro-regions, which can be skipped in one step thus reducing the number of 
steps and therefore also the total rendering time. Various schemes for the macro-region 
definition are possible. Some of them are based on hierarchical encoding of the scene 
space, others define the macro-regions directly in the original voxel scene. 

2.1   Distance based speed up techniques 

Distance transforms convert a 2D (3D) binary image into an image, where each back- 
ground pixel (voxel) is assigned a value corresponding to its distance to the nearest ob- 
ject pixel (voxel). Although computing the distances is in principle a global operation, 
algorithms were developed for approximating the global distances by propagating dis- 
tances between neighboring pixels[5]. 

The idea to exploit the distance transforms to speed up the background traversal was 
introduced by Zuiderveld et al.[6]. The proposed Ray Acceleration by Distance Coding 
(RADC) scheme works in two phases: 

Preprocessing: The volume is segmented and the distance information is added to back- 
ground voxels by a 3D distance transform. 

Rendering: The floating point 3D DDA algorithm defining the ray as a sequence of 
equidistant samples is used, exploiting the distance information for skipping empty 
regions. 

Since objects in volumetric data sets tend to be centered in the middle of the volume, 
rays usually skip rapidly the off-center parts and slow down until they hit an object. For 
parallel projection, if the ray totally misses the object, the minimal distance along its 
path can be utilized for further speed up. In such a case, this distance defines a region 
in the image plane, where it is not necessary to fire new rays, because they all miss the 
object. The RADC algorithm works with various digital approximations of the ideal Eu- 
clidean distance. Since different shapes of thus defined free regions were not taken into 
account, highest speed has been obtained with the chamfer distance, which is the best 
approximation of the Euclidean distance. 

A similar technique was proposed by Cohen and Sheffer[7]. The authors call the free 
zones defined by the distance transform proximity clouds. Once a ray enters a cloud cell, 
it can safely skip the distance determined by the cell's value. The algorithm is also based 
on the floating point 3D DDA algorithm and it differs from the RADC in that it takes 
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the shape of the free zone into account: the step size depends not only on the distance 
value, but also on the kind of the distance and the ray direction. If the ray is defined by 
its direction vector f = {rx,ry,rz) and the assigned distance is d then the coordinate 
increment should be 

f dPx    dpy    dp,\ 
\D(r)'D(r)'D(r)J {l) 

where D(r) is size of the projection vector in the corresponding metrics (Euclidean met- 
rics is used in the case of chamfer distance): 

\Px\+ \py| + \Pz|        for the city block distance 

D(r) = <    J(pl +pl + p2
z)       for the Euclidean distance (2) 

max( \px |, \py |, \pz |)    for the chessboard distance. 

Authors have shown that the average step for the city block distance can even be a few 
percent longer than for the Euclidean distance. Another advantage of the city block dis- 
tance is that its computation is easier than computation of the chamfer distance, which 
is usually used instead of the Euclidean distance. 

The proposed technique has two drawbacks: 

1. The distances are calculated for the cell centers, while the current location along 
the ray is not necessarily in the center. Therefore, to avoid skips beyond the free 
zone, the computed distance d is decreased by 1. 

2. The sequence of cells generated by the floating point 3D DDA algorithm does not 
fulfill the condition of 6-connecti vity, which may cause some of the object voxels 
to be missed. Therefore, in the object's vicinity, the algorithm is switched to the 
incremental cell traversal algorithm[3] generating the 6-connected sequence. 

A different method, the CD voxel traversal algorithm[2], relies exclusively on cubic 
macro-regions defined by the chessboard distance (CD). In this case, the ray is defined 
as a sequence of nonuniform samples at its intersections with the macro-region walls. 
This precision allows the utilization of the full size of the macro-region and overcomes 
the first drawback of the previous "proximity clouds" technique. In the close vicinity of 
an object, where CD equals zero, the macro-regions are identical to single voxels. Since 
the samples lie on their faces, a 6-connected sequence of voxels is defined, overcoming 
the second drawback. 

The algorithm has two control variables:/ace7ype (face is X type if it is perpendicular 
to the x axis) and relative position V = (Px,Py,Pz) of the sample with respect to the 
voxel vertex. Its main loop is based on the following observation: for each ray direction 
and each assigned CD there is some threshold txy(n) (assuming X is the actual face type 
and n is the assigned CD) of the^ coordinate. If px < tx, then the macro-region exit 
face is also X type, otherwise it is Y type. The algorithm therefore distinguishes between 
two step types, those with equal and those with different entry and exit face types. The 
fact that the sample coordinate is maintained during the traversal can speed up detection 
of the ray-surface intersection point[8]. 
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3    Traversal of rectilinear grids by cubic macro-regions 

In the previous section we described algorithms speeding up a binary scene traversal 
by exploiting distance information, assigned to each background voxel. Their common 
feature was that they assumed cubic voxels. In this section we introduce an algorithm 
which speeds up the traversal of scenes defined by a rectilinear grid. It is similar to the 
CD algorithm described above, in that it is also based on cubic macro-regions. However, 
in this case we assign the distances to background voxels of a secondary scene with cubic 
voxels and the same dimensions. Thus, parallelepipedal empty regions are defined in the 
original scene. The exact voxel dimensions are taken into account during the traversal. 

Let G be a 3D grid of (Nx + 1) x (Ny + 1) x (Nz + 1) points pijk: 

G = {Pijk = (S£,Sj,S*) : 0 < i < Nx,0 < j < Ny,0 < k < Nz],        (3) 

where i, j and k are integers, 

m 

S? =Y, Al~\   v = x,yoxz (4) 
1=1 

are sample coordinates (S° = 0) and A°, A*,..., A^», A°, A*,..., Ayy and A°, A*, 
..., A^* is the spacing between samples along each coordinate axis. 

Let a voxel be a tuple Viik = (vijk, hijk), where vijk = (S'X,S'X
+1) x (Sy,Sy

+1) x 
(S^r, S;+1) is voxel volume and hijk G {0,1} is its value. Grid pointspijk are defined 
in voxel vertices, and therefore the voxel scene V: 

V = {Vijk :0<i<Nx,0<j<Ny,0<k<Nz}, (5) 

has one element less along each axis than G. The voxel value h = 1 means that the voxel 
can contribute to the image: either an object surface passes through its volume (binary 
volume rendering) or it can contribute with nonzero color and opacity in probabilistic 
volume rendering. The value h = 0 means, that the voxel cannot contribute, and there- 
fore it can be skipped during the traversal without processing. We denote voxels with 
values equal to 0 (resp. 1) 0-voxels (resp. 1-voxels). 

Let the secondary voxel scene V consist of the same number of unit cubic voxels 
along each axis and let the corresponding voxels have equal values: 

Kjk = hijk (6) 

If we assign now to each 0-voxel Vijk its chessboard distance n to the nearest 1-voxel, 
we define a cubic macro-region in V: 

0'n(Vijk) = {tipqr = 0 : i-n <p< i+nj-n <q< j+n,k-n <r< k + n} (7) 

with its center in Vijk and with side size 2n+1. A corresponding macro-region is defined 
inV: 

On(Vijk) = {hpqr = 0:Sx-
n<p< Si+n,Sy-

n < q < Si+n,Sk
z'

n< r < <?*+"}, 
(8) 
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voxel 

First object 
voxel found 

O        Ray sample 

Fig. 1. Rectilinear grid traversal by cubic macro-regions 

which is, of course, not cubic and voxel Vijk is not situated in its center. 
The voxel scene V corresponds to the form of our data as stored in main memory 

or in a file. We do not care about the grid spacing and therefore the necessary distance 
transform is done in exactly the same way as for the cartesian scenes. The grid spacing 
should be taken into account during the ray definition, as will be shown in the next sec- 
tion. 

3.1    The algorithm 

We know that there are no object voxels within On(V), so we can jump from V directly 
to the first voxel outside of O" (V). The traversal speed up is thus increased by reducing 
the number of visited voxels (Figure 1). We shall assume that the direction vector has 
only nonnegative coordinates. Generalization to all possible directions is done by proper 
initialization of some variables. 

Let us imagine that the ray has reached voxel V with coordinates V = (vx, vy, vz) 
and assigned chessboard distance n, at an entry point V = (px,Vy,Pz) positioned at 
one of its walls. It is necessary to find the nearest intersection of the ray X = V + tf 
with the planes: 

x = Sv
x*

+n 

y = Sv
y*

+n 

z = Sv'+n 

=^    tx = 
cvx+n _ 

-Vx 

rx 

üy          — Vy 
rv 

SV,> +n _ 
Vz 

(9) 

The nearest intersection is defined by t = min(tx ,ty,tz). 
Due to symmetry of the algorithm with respect to all three coordinate axes and due to 

the possibility given by the C language macro preprocessor to manipulate source code 
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ttdefine CDstep (  tx,   ty,   tz,   n  ) 
if (   tx<tyAtx<tz){ 

Step(   x,   y,   z,   n  ) 
else   if {ty <tz) 

Step(  y,   z,   x,   n  ) 
else 

Step(   z,   x,   y,   n  ) 

#define Step (   x,   y,   z,   n 
MasterStep (   x, n  ) 
SlaveStep(   x,   y,   n  ) 
SlaveStep(   x,   z,   n  ) 

) 

Fig. 2. Traversal of rectilinear grids by cubic macro-regions: the algorithm kernel 

symbols, the algorithm can be coded in a compact form, represented by two macros (Fig- 
ures 2 and 3): 

MasterStep updates the sample position and voxel coordinate for that axis v, for which 
tv = mm(tx,ty,tz). Versions MasterStep.l and MasterStep_n for single voxel 
and macro region traversal (Figure 3) differ only in the step size, which updates 
the coordinate value. The remaining two lines, which test if the voxel is within the 
scene bounds and update the point coordinate px, are the same. 

SlaveStep updates the variables for the remaining two axes. Now, the macros differ sig- 
nificantly. In the single voxel step (SlaveStep.l) the new ray point is positioned 
on a wall of the same voxel as the previous point. Therefore it is sufficient to up- 
date only the point coordinate, while the voxel coordinate remains the same. The 
situation is different for the macro-region step (SlaveStep JI): 

1. The ray may leave the scene in the y direction, therefore the new point co- 
ordinate should be compared with the scene bounding box, and 

2. the voxel coordinate should be updated, since the ray may skip several voxels 
along the y direction. It is not possible to compute its value directly from the 
point coordinate py (as in the case of uniform or cartesian grid). Function 
Locate returns this coordinate by binary search in the array Sy of the grid 
point coordinates. Values vy and vy + n define lower and upper bounds for 
this search. 

The algorithm can be easily extended to arbitrary rays by mirroring the scene along 
the axes with negative projection vector coordinate: 

i f (?V < 0)   then 
pv <r- Sj?» - Pv 
qi   ,     ON» _ qi 

endif 

This inversion should also be taken into account when addressing the 3D attribute and 
data arrays. 

A faster version of the algorithm can be obtained by replacing the sample coordinate 
Vv by ^-, by which we remove the divisions in Eq. 9 and multiplications in SlaveStep 
macros (Figure 3). This change should be applied also to the Su arrays. 
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4    Results 

We implemented the algorithm on a HP720 workstation equipped with 32 MB of main 
memory. The test data we used was the well known CT head from the VOLII data set 
provided by the University of North Carolina. Originally, the data is cubic. Therefore we 
converted it to rectilinear first, by summing several voxels in the top-bottom direction, 
to get a typical CT data set: the voxel was 1 x 1 x 2 in the lower facial part of the skull and 
1 x 1 x 4 in the cranial part. The size of the data set thus reduced from 175 x 235 x 225 
to 175 x 235 x 94. Figure 4(a) shows a distorted image when assuming cubic voxels. 
The distortion is removed in Figure 4(b), where proper voxel dimension were taken into 
account. 

Figure 5 demonstrates the difference between the single voxel and macro-region ver- 
sions of the grid traversal algorithm from the point of view of effectiveness. For each ray 
its cost was computed, given by the number of steps necessary to reach the first surface 
voxel. This cost is depicted by values of gray; dark pixels represent rays with smaller 
number of steps. We can see a significant difference between both cost maps, prefer- 
entially for rays missing the object. Table 1 summarizes results obtained by measuring 
rendering times for both cases. The background traversal time column represents time 
spent exclusively by traversal of the empty background, while the second rendering time 
column also includes time necessary for the surface point detection and shading. We see 
that the macro-region traversal introduces a more than three-fold speed up in the back- 
ground traversal phase. 

5    Conclusion 

Direct processing of rectilinear data without resampling to cubic voxels can save much 
memory space and processing time. We proposed a ray generator defining a 6-connected 
ray in such rectilinear data grid. Traversal of rays in empty regions of the rectilinear 
grid can be speeded up by macro-regions, defined by chessboard distance transform in a 
secondary scene with cubic voxels. Experiment has shown, that the proposed technique 
can speed up the traversal more than 3 times. 

# de fine MasterStep.n (   x,   n  ) 

#def ine MasterStep_l (   x   ) 
vx <- »I + 1 
if (   vx> Nx   ) 

return  SceneExit 

vx <-t)r + n 
if (   vx > Nx   ) 

return SceneExit 
P* «- SI* 

P* <- SI* #define SlaveStep_n (   x,   y,   n 

#define SlaveStep_l (   x,   y   ) 
Py   *      t,x  * Ty 

if{Py>Sy"       ) 
return  SceneExit 

vy <— Locate (   py, Sy, vy, vy + n   ) 

Fig. 3. Traversal of rectilinear grids by cubic macro-regions: voxel and macro-region steps 
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(b) 

Fig. 4. Data set 1: (a) cubic voxel assumed, (b) voxel dimensions taken into account. 

lift: 

J 
(a) 

Fig. 5. Voxel traversal cost map: (a) single voxel traversal, (b) macro-region traversals 
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version background traversal time [s]    rendering time [s] 
single voxel 56.1 67.2 
macro-region 18.5 29.1 

Table 1. Comparison of background traversal and rendering times for the single voxel and 
macro-region versions of the algorithm (data set 1). 
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Abstract 
To what extent can the exact size and form of an object be reconstructed from 
volume data? Why can the rendering of a 3D dataset performed with a 
super-resolution volume rendering algorithm be magnified beyond the 
dimensions of the individual voxels without introduction of artefacts and/or 
unsharpness? These topics are covered with clear examples and new ways to 
present fundamental issues related to the reconstruction of 3D objects from 
grey-values on a 3D grid. Application areas are 3D rendering of medical, seismic 
and geometrical data, as well as the rendering of surface textures. 

1 Introduction 

The quality of volume rendered images is highly dependent on the method 
implemented. The extreme compute intensive nature of the volume rendering 
algorithm has lead to a wide variety of methods [1], [2], [3], [4], [5] as well as several 
(proposals) for architectures [6], [7], [8], [9], which can render a volume of substantial 
size in (near) real-time. The aspect of metric volume rendering introduced in this 
paper is a refinement of the super-resolution technique introduced earlier by the 
authors [10], [11], [12] as a technique to obtain renditions which are sharp irrespective 
of the magnification used to visualize the object. The concept of super-resolution deals 
with the exchange of amplitude resolution with spatial resolution, an effect which is 
closely related to the partial volume effect. 

The concept of super-resolution has as effect that binary objects of arbitrary shape can, 
within certain limits, be reconstructed at a high spatial resolution which extends the 
spatial resolution of the dataset with the amplitude resolution at which the dataset has 
been acquired, c.q. is represented. In the limit it will not be possible to infer the actual 
shape of the smallest object. Instead an estimation of the volume involved may be 
given. 

In Figure 1, an example is given of the image quality that can be obtained using the 
super-resolution approach. 
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Fig. 1 Example of a visualization using the super-resolution algorithm 

How dramatic image quality may differ when distinct visualization methods are used 
is shown in the Figures 2 and 3. 

The sliced cone, represented by a 323 dataset, visualized in Figures 2 and 3, is an 
example of a synthetic 3D object which was sampled taking the partial volume effect 
into account, i.e. the grey-values are proportional with the proportion of the cone 
covered in the direct environment of the sample location. The three slits are of size 
2, 1, and 1/2 voxel distance respectively. 

\i 

Fig. 2 Levoy's algorithm Fig. 3 Intermediate 
gradients from the Super 

Resolution Algorithm 

Fig. 4 Surface gradients 
of a tri-linearly 

interpolated volume 

Figure 2 shows a rendition of the cone dataset from a given opacity dataset and a given 
color dataset. The algorithm, from which a flowchart is given in Figure 5, was 
originally developed by Levoy to render a grey-value dataset using an opacity and 
color dataset, precqmputed for a given light and observer direction. The idea was to 
avoid the recomputation of gradients and colors. 
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Fig. 5 Global flow within Levoy's algorithm 

Figure 3 shows a rendition of the sliced cone dataset with the super-resolution 
rendering algorithm [10], [11]. This algorithm does not precompute color and opacity 
datasets, but calculates the color and opacity at the sample location, directly from the 
original 3D grey-value dataset. As a result of the more accurate opacity calculation, 
the slits are visualized as real slits, irrespective of the fact that they are smaller than 
one single voxel distance. The accurate gradient algorithm gives the additional 
realism. This approach results in high quality images. The efficiency of the color and 
opacity calculation, results in a marginal increase in the computational complexity. 
The method does not require any precomputing step, nor additional memory to store 
intermediate results. The visualization of the cone given in Figure 4 will be discussed 
later when the detailed form of the surface will be described. 

2 Data acquisition 
It is important to acquire data describing a binary 3D object, like the sliced cone, in 
such a way that the magnitude of the grey-value corresponds with the size of the 
volume in question. This is usually the case in equipment for data acquisition like CT, 
MRI, PET scanners and the like. I.e. the grey-value at the sample location will 
correspond to the integral of a continuous 3D grey-value function g(x, y, z) over some 
local volume Vo, with the sample as center and an extent which depends on the width 
of the point spread function of the input device. The same procedure is natural for the 
calculation of the grey-value of an artificial object. 
Although we are interested in the reconstruction of (binary) 3D objects from measured 
grey-values, it is considered to be of advantage to consider artificial objects, like the 
sliced cone, when it is important to understand the fundamental nature of the 
algorithms. 

3 A norm for the reconstruction process 
The Nyquist sampling theorem states that sampled (3D) data with a band limited 
frequency content can be reconstructed without error using an ideal low-pass filter. 
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The ideal lowpass filter has a sin (x) / x impulse response, with a cut-off frequency 
which equals the Nyquist frequency f = 1 / 2T, with T the sample distance. A small 
part of the sin (x) / x impulse response of the ideal lowpass is shown in Figure 6a. The 
adjective without error has to do with the frequency domain approximation used. 

Within this paper we willjestrict ourselves to the problem of the reconstruction of an 
original binary object B (x) = {0,1} of arbitrary spatial resolution in three dimensions, 
which has been sampled on a grid of finite spatial resolution. The_grey-values on the 
grid of the acquired dataset are proportional to the integral of B (x) = {0,1} over the 
point-spread function used throughout the acquisition process. Our goal is to 
reconstruct the binary object from the grey-values on the grid using an interpolation 
filter to reconstruct the object through resampling and application of a threshold 
function at the sample locations. The reconstructed object R (x) will be considered to 
be correct with respect to a given error bound when the set describing the disjunction 
between the original object B (x) and the reconstructed binary object R (x) e {0,1} 
approaches a volume of zero size, i.e. the integral 

M = (#(*) - R(x)) dx 

will be used as norm for the quality of the reconstruction process. Note that this 
formulation assumes that the reconstruction is done at an arbitrarily fine resampling 
grid, and that the reconstructed object is either present or absent. Note that it is not 
necessary to assign an opacity to the reconstructed object. 

4 Volumetric responses considered 

We will now discuss the response of the reconstruction filters on a wide range of 
morphological objects, like for instance a single point, precisely located on the 3D 
grid, a collection of points on the 3D grid located on a line in the x, the y, or the z 
direction, as well as on an edge of a volume which has its border at an arbitrary 
x-location. Finally we will consider the ability of a linear interpolation filter to 
reconstruct exact location of the boundary of a binary object. 

The emphasis in the discussion will be on the linear interpolation filter, other strong 
points of the other reconstruction filters will be indicated as well. 

4.1 The response on a single voxel value 

Figure 6 shows the response of some candidate ID reconstruction filters on a unit 
impulse in the ID case. The three dimensional reconstruction filters considered are 
derived from these ID prototypes, through a sequence of applications of the filter in 
each of the three dimensions. This process involves the lookup of a set of filter 
coefficients in each of the dimensions followed by the application of Finite Impulse 
Response (FIR) filter operations with these position dependent parameters. In the case 
of a tri-linear interpolation, 7 multiplications are needed, whereas a 3D Spline uses 
16x4 + 4x4 + 4 = 84 multiplications to resample the dataset. Figure 7 shows the 
general shape of the response on a single voxel value for the interpolation filters from 
Figures 6 b, c, and d, respectively. 
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Fig. 6 Impulse response h (t) of some reconstruction filters. 
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Fig. 7 The shape of the voxel response for distinct reconstruction filters. 

The shape of the response on a single voxel value will vary as a function of the 
grey-value and the threshold which defines the set R(x) describing the reconstructed 
object. This is shown in Figure 8 for a trilinear reconstruction filter with a unit 
grey-value applied and a threshold ranging from 0.75 to 0.125. 
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Fig 8 The voxel response for several threshold ratios. 

Note that the responses in Figure 8 looks much smoother than the response in Figure 
7 b. This is due to the use of intermediate difference gradients for the shading of the 
objects in Figure 8, whereas surface gradients were used in Figure 7b. It is easily seen 
from the response in the Figures 7b and 8 that the response of a linear reconstruction 
filter is not a volume bounded by a set of triangles, each described by a linear equation. 

The equation: 

iso_val = (1  - bd) (1 - \y\) (1  - Id) 

describes the iso-surface of the response of the linear interpolator on the unit grey 
value at a single voxel location. 
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Fig. 9 Parametric description of the shape of the iso surface of the tri-linear interpolator at z=0 

Figure 9 shows the shape of a cross section of the iso-surfaces of the voxel response 
of a tri-linear interpolator for z=0, for threshold values ranging from 0.1 on the outer 
contour, 0.3, 0.5, 0.7 to 0.9 on the inner contour. 

There are too problems with the response shown. First of all, the reconstructed 
volume R(x) is always centered at the voxel-grid position. Second, the volume V of 
the reconstructed object is of the order: 

V(R( x ))  = 0(V(B( x ))3) 
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with V(B( x )) < l.I.e.thereconstructedobjectwillcoverjustafractionoftheinput 
volume. This is especially true for rather small input objects. This is considered not 
to be a big disadvantage for clinical applications as it avoids the visualization of 
artificial small objects due to noise in the dataset. The calculation of the response on 
a collection of voxels located on a grid line is similar in nature for very small values 
of the grey-values. A second order metric: 

V(R( x ))  = 0(V(B( x ))2) 

can be observed for larger grey-values, i.e. when the boolean object given covers a 
larger fraction of the input space. In this case the 3D problem tends to a 2D problem 
derived from the 3D case using the quasi cylindrical extension of the problem along 
the grid line. 
So far we have concentrated on the understanding of the metric for specific cases. The 
explicit calculation of the relation between the input volume and the output volume 
has not been performed for all cases discussed so far, as these calculations require long 
simulation runs. One of the most striking observations which can be made so far is that 
the observed volume is always located at the voxel-position(s). Hence a further 
investigation of the problem at hand will be needed. This can in general not be done 
without the characterization of the acquisition process. I.e. knowledge about the 
point-spread function of the input device, or the algorithms with which the voxels 
were calculated, will be needed to really understand the problem of the metric of the 
volume rendering problem. Before tackling this problem, we will analyze the ID 
problem of the detection of the boundary of a semi infinite object bounded at some 
location x between two voxels. A linear interpolator is used to reconstruct the 
boundary of the binary object from the grey-values gO and gl at x = 0 and x = 1 
respectively. 

g(x) 
w 

Si   RSI 

0 1 2 

Fig. 10 A semi-infinite object bounded at x 

Given a binary-pulse spread function with width 2w, as shown in Figure 10, one can 
calculate the grey-values as: 

gO = max (0, w - x) 
gl - min (2w, 1 - x + w) 

Using a linear interpolation on gO and gl and application of a 50% threshold, one may 
calculate the reconstructed location xr. Figure 11 shows the reconstruction error: x - 
xr, as a function of the boundary location x, for w ranging from 0 to 1. Note that the 
reconstruction error is zero for w=l. 
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Fig. 11 Reconstruction error as a function of x and w 

It follows from the derivation given that the ID object does not have to be 
semi-infinite. Another edge, which makes the object finite, can be located somewhere 
in the interval (1+w, °°], The same calculation for the error-bound can be used in that 
case. This implies that both edges of a ID binary object, can be ideally reconstructed, 
provided that the size of the object is equal or larger than twice the voxel interval, as 
shown in Figure 12. 

g(x) 

0 2 4 6 
Fig. 12 The boundaries of object A can be ideally reconstructed 

5 Reconstruction errors in 3D 
A complete derivation of the reconstruction error in the general case, for multiple 
reconstruction filters, is outside the range of this paper. Instead we will discuss the 
'observed' reconstruction error, using the results just derived for the ID case as a basis 
for the discussion. 
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Fig. 13 Cross-section of the binary 'sliced-cone' object before and after acquisition 

A cross-section of the binary 'sliced-cone' object is shown in Figure 13. The cone is 
aligned on the voxel grid with its top. The slits are located on voxel planes as well. 
The reconstruction of the slits is possible due to the fact that they are located on the 
grid. The situation is similar to Figure 12 A. The only difference is that the object is 
absent at the location of the slit, instead of present. Close examination of the circular 
edges at the end of the slits shows that these details get rounded as shown in Figure 
14. This has as effect that the volume of the reconstructed object is slightly smaller 
than the volume of the original object. 

Fig. 14 Cross-section detail of the reconstructed 'sliced-cone' object 

The top of the cone gets rounded as shown in Figure 15. Here again it is clear that the 
volume of the reconstructed object is less than the original volume. 

Fig. 15 Cross-section detail of the reconstructed 'sliced-cone' object 

Adaptation of the threshold value has as effect that the volume of the reconstructed 
cone object becomes either larger, for smaller threshold values, or smaller, for larger 
threshold values. 
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Fig. 16 Some visualizations of the sliced cone 

Figure 16 shows the visualization of the sliced cone with: a) a tri-linear interpolator, 
b) a tri-point interpolator and c) a cubic-spline interpolator. Note that Figures 16a and 
16b are almost identical, but that Figure 16b is slightly smoother due to the fact that 
the continuity of the derivative of the tri-point interpolator results in a continuous 
surface gradient. Figure 16c has strange additional rings directly adjacent to the slices, 
due to the overshoot of the cubic-spline interpolator. These rings, which in a sense, 
compensate for the loss of volume shown in Figure 14, become objects on their own 
for certain threshold settings, as shown in Figure 16d. The presence of objects which 
would be absent with other methods may be undesirable, as there is a nonzero metric 
which should actually be zero. The risk for ghost images is relatively high for a 15% 
overshoot in the step-response, as steps in all three dimensions can produce an 
aggregate overshoot in the order of 45%. 

6 Additional reconstruction properties 
The reconstruction of grey-values through interpolation involved the selection of 
appropriate filter coefficients at the positions of the sample grid. For instance, the 
resampling polynomial r (x) of the tri-point interpolation filter is defined as: 

r (x) = -x2 + 3/4 0 < Ixl < 
1/2 < Ixl < 

1/2 
3/2 l/2x2-3/2x + 9/8 

The reconstructed grey-value is: 

gr (XJ - m) = gs (xj-1) r (1 - m) + gs (XJ) r (m) + gs (XJ+1) r (m + 1) 

f 9r (X) 

Fig. 17 Calculation scheme for the reconstructed grey-value gr(x) 
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The tri-point interpolation function, shown in Figure 17, has as main properties that 
the sum of the filter coefficients gr (XJ - 1), gr (XJ) and gr (XJ+1) equals one. This has 
as effect that the reconstruction is position invariant when a constant volume has to 
be resampled. The tri-point function is continuous in its first derivative as well. It is 
however not a true interpolation function, as its value is 0.75 in the origin and 0.125 
at x = -1 and x = 1. The spline interpolation filter is better in this respect as it is a true 
interpolation function with r (-2) = 0, r (-1) = 0, r (0) = 1, r (1) = 0 and r (1) = 0. It 
has in addition many other desirable properties, which give it an excellent frequency 
response [13]. The overshoot in the spline-interpolation function is however highly 
unwanted, as this results in non-monotonicity in the metric of the reconstruction 
process. 

7 Non binary problems 
It is not necessary that the problem at hand is of a fully binary nature. The simplest 
extension concerns the case that the given object has two grey-values, gO and gl, 
which are not necessarily elements of the set {0,1}. A simple scaling may be applied 
on the voxel values to create a binary problem. Medical datasets can be processed by 
taking the grey-value in a given (local) background into consideration. In some cases 
it may be desirable to select a low threshold value with respect to the background in 
order to visualize line-structures, like blood vessels, or bone fractures. Some of the 
reconstruction filters, like the linear and the tri-point filter, have the ability to suppress 
the visual effect of noise in the input data. The selection of a proper threshold depends 
on the desired metric fidelity for volume-objects and/or the extent to which fine 
details, like line and point structures should be visualized. 

8 Related problems 
Algorithms for the construction of iso-surfaces in the form of a triangulation of a 3D 
dataset are described in [15] and in [16]. The latter publication goes into the details 
of the ambiguity of the marching cubes algorithm in general. It has been shown in this 
paper that a tri-linear interpolator reconstructs the iso-surface as a collection of third 
order patches, whereas the marching cubes approach tries to find multiple linear 
patches. The identification of the 'correct' patches in the marching cubes approach 
is of a much more complicated nature than the application of a threshold after 
interpolation. The marching cubes approach has the ability of super resolution. It is 
so far not clear how the metric of this approach can be evaluated. 

9 Conclusions 
Various aspects of the reconstruction of a properly sampled binary object were 
discussed. It was shown that the boundary of a binary ID object can be reconstructed 
without error, at an arbitrary high resolution, using a simple linear .interpolator, 
provided that certain restrictions about the presence of multiple boundaries are met. 
The methods introduced are inherently unambiguous, when the interpolation filters 
are free of overshoot. 
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Abstract: In this paper we introduce our work within the DMU (Digital Mock- 
Up) project. The focus of this project is the development of technology for 
replacing physical prototypes with virtual prototypes. In particular, we discuss 
the integration of scientific visualization into virtual prototyping. Fraunhofer- 
IGD has implemented the DMU demonstrator - we describe those parts of the 
demonstrator where scientific visualization functionality was incorporated. Fur- 
thermore, IGD has carried out separate 'virtual prototyping' projects with two 
german car manufacturers where we realized 'immersive data visualization'. We 
describe those projects and discuss the various approaches to implementing 
immersive data visualization. From our experience with different approaches 
and applications we discuss the use and usefulness of virtual reality technology 
for scientific visualization. 

Keywords: virtual prototyping, digital mock-up, functional simulation, informa- 
tion visualization, immersive data visualization, product presentation. 

1    Introduction 

Prototyping is an essential step in the product development process. Prototypes repre- 
sent important product features, which are to be investigated, evaluated and improved. 
They are used to prove design alternatives, to do engineering analysis, manufacturing 
planning and often just to show a product to the customer. The actual demand on inter- 
national markets is primarily determined by higher product quality, a shorter time to 
market philosophy and, due to customer oriented marketing, a growth in the number of 
variants and increasing product complexity. 

Generating physical prototypes is very time-consuming and expensive. To shorten 
product development time, design evaluations have to be performed more rapidly, the 
results must be directly incorporated into the design process. As CAD software and 
CAE tools such as Finite Element programs are widely used in the manufacturing 
industry, a lot of product data is already digitally available. This provides a good basis 
for design evaluations, manufacturing planning, and product presentation electroni- 
cally. However, there is usually no close link between the different databases which 
hinders the presentation of available product data as a virtual prototype. This demands 
for the further development of complete product data description standards [13]. Fur- 
thermore, a visualization environment has to be established which is able to integrate 
geometrical and other product information together with simulation data from multiple 
sources. 

Another reason why physical prototypes are still used in most cases arises from 
their spatial presence. Especially for conceptual design and for product presentation, 
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one can touch it, take them into the hand, and manipulate it to see whether it works 
properly. Therefore virtual prototyping asks for superiour man-machine interface. Vir- 
tual Reality (VR) is the enabling technology providing realistic presentation and intui- 
tive direct manipulation of digital models. Within the last few years enormous progress 
was achieved in the field of VR technology. Tools and systems were realized with 
which the practical use of VR technology has been demonstrated for different applica- 
tion domains. First examples were walk-through presentations for architectural design, 
interior design and urban planning. Recently, the automotive and aeronautical industry 
began to investigate this technology. 

IGD started its VR research and development in 1993 with the VR Demonstration 
Centre initiative [10] of the Fraunhofer Gesellschaft, one of the biggest research orga- 
nizations carrying out applied research with the industry. Subsequently, a lot of VR 
research was performed and the Virtual Design [2] system was developed. First ideas 
and concepts of virtual prototyping have been developed and demonstrated [5]. 
Besides, several applications were realized for industrial partners where scientific sim- 
ulation data was presented in a virtual environment [1,7]. 

The idea of virtual prototyping is under investigation in the ESPRIT project AIT - 
Advanced Information Technologies in Design and Manufacturing . The AIT consor- 
tium has identified a project called Digital Mock-Up (DMU) with the objective to 
develop the technology that allows designers, manufacturing planners, and even man- 
agement to work on Virtual Products / Digital Mock-Ups. Within the DMU cluster a 
number of sub-programs have been established in which Fraunhofer-IGD is a partner. 
In this paper we describe our ideas and aims in these projects in the context of scien- 
tific visualization. Visualization requirements and possible solutions are presented. 
Furthermore, results from the AIT-DMU demonstrator which was developed by Fraun- 
hofer-IGD and from direct cooperations between IGD and two german car manufac- 
turers are described. From our experience with different approaches and applications 
we discuss the use and usefulness of virtual reality technology for scientific visualiza- 
tion. 

1.1  The DMU process 

The life-cycle of a sophisticated product like a car or an aircraft can be broken into 
several major steps: Product Definition starting with Market Requirements Analysis, 
Design of Product, Production Process, Production System and Distribution System, 
Design Validation, Production, Distribution, and Operational Use. About 80% of the 
total product costs are incurred during the early design stages and therefore major 
efforts are spent in improving the effectiveness of the design process. 

The Digital Mock-up (DMU) comprises of a methodology (company or product 
specific) detatiling how to manage and visualize structured data sets of product geom- 
etry and information coming from the design/engineering, manufacturing and product 
service environment and how to release these digital product data. Prerequisites for an 

(ESPRIT Project 7704). The project partners are: Aerospatiale, BMW, Saab, BMW 
Rolls-Royce, Audi, Alenia, Dassault Aviation, British Aerospace, Renault, Reydel, 
Mercedes-Benz, CASA, PSA, VW, Magneti Marelli, Fiat, Rover 
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operative DMU are software tools to manage the high amount of different data, to nav- 
igate inside the digital model, to analyze and simulate product functionality, to visual- 
ize the large amount of geometric and engineering data and to support the 
communication and decision process in the concurrent engineering workflow, since 
DMU will be the only binding digital product description, the digital master (see Fig. 

Conception 

Fig. 1: Digital Mock-up building blocks, (copyright AIT) 

The strategic goal is represented by the DMU definition: Digital mock-up is a realistic 
computer simulation of a product with the capability of all required functionality from 
design/engineering, manufacturing and product service environment which is used as a 
platform for product and process development, for communication and decision from a 
first conceptual layout up to maintenance and product recycling. The idea behind 
DMU is to evaluate the product design - from function and process view - within soft- 
ware (without building real physical mock-ups) and to have only one final verification 
in hardware. 

By an innovative use of appropriate DMU visualization methodologies and tools - 
as one building element of DMU, a dramatic reduction of costs in the areas of product 
development, production, service and aerospace groundfloor support will be expected. 
Time to market will be shortened. 

2    The AIT demonstrator 
On behalf of the AIT consortium Fraunhofer-IGD has implemented a visualization 
demonstrator and presented it in June 1995. The scenario was defined by the consor- 
tium to show the DMU approach. The goal was to show how virtual reality can be 
applied to digital mock-up to support a rapid product development. Using the example 
of alternator exchange in a car, the story illustrated the use of VR techniques for the 
evaluation of design alternatives, for clash and clearance analysis, and for simulation 
of operation conditions. Since the focus of this demonstrator was mostly on VR tech- 
niques we will not describe these aspects here in detail, an in-depth description will be 
published soon [6]. But we identify those parts of the demonstrator where scientific 
visualization or functional analysis was incorporated. 



226 

2.1  Information visualization 

As mentioned above, the demonstrator featured the alternator exchange of a car: In 
order to select a region of interest the user can draw a box which results in the display 
of all parts of the machine contained in that box (Fig. 2, left, see appendix). After the 
selection the car body disappears and all selected parts appear as 3D models. The user 
takes the alternator and puts it into a container. Before choosing a different alternator, 
on a virtual menu, a list of regulation rules is displayed. The user selects the rule for 
temperature change tests, and gets some information on the new alternator (Fig. 2, 
right, see appendix). 

2.2  Functional simulation - simulation of operation conditions 

The volume occupied by the engine block is of special interest for the assembly task 
which was addressed with the AIT demonstrator. The user has to decide whether the 
new alternator fits in, not only in the static assembly, but also if it fits under operation 
conditions. Therefore, the results of a vibration simulation are displayed in two ways: 
As an animation of the motion of the engine block, and as a transparent envelope indi- 
cating the volume which is occupied by the vibrating engine block. 

3    Virtual prototypes featuring CFD results 

Here, we describe work done in 1995 for two german car manufacturers, VW and 
BMW, where we incorporated specific visualization functions into a powerful VR sys- 
tem. The aim in both projects was to create a dedicated virtual environment for a spe- 
cific application. In both applications CFD (computational fluid dynamics) data played 
a role. 

We have developed a flow-visualization module for our VR system Virtual Design 
//in order to integrate product simulation data with geometrical design studies. Before 
we go into the description of the work, it has to be pointed out, that the focus of the 
projects was product presentation and not engineering analysis. Thus, flow visualiza- 
tion was one of several tools in the demonstration of certain product functions to a spe- 
cial audience. In one case - the BMW Virtual Seating-Buck - the audience were 
designers and managers who discussed car compartment design. In the other case - the 
VW fair presentations - the addressee of the visualization was the technically inter- 
ested lay-audience at car fairs. The following visualization tools have been imple- 
mented (or are currently being implemented). 

Vector field visualization. Most impressive in flow visualization is the interactive 
particle tracing in the velocity field. Unfortunately, most flow simulations are carried 
out on unstructured Finite Element grids [8]. Visualization algorithms for such grids 
require much more computational effort than those for regular or curvilinear computa- 
tional grids. Our investigations have shown that real-time particle tracing at VR-frame 
rates is only feasible on regular grids or (in the computational space of) curvilinear 
grids when movements of hundreds of particles have to be computed simultaneously. 
Therefore, we resample unstructured CFD grids to a regular grid of adjustable spatial 
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extension and density - being aware that we trade visualization speed against accu- 
racy- Our particle tracing module allows the release of particles at sources which are 
either coupled to the user's hand(-echo) or which can be positioned freely in the 3D 
scene by the user. The later alternative allows to position a fixed particle source and 
walk around in the scene in order to watch the advected particles from different points 
of view. The particles, which are rendered usually as flat squares, may be rotated by 
the rotational component of the velocity field (rot v) and/or may be connected to form 
streaklines. For transient flow data we provide streamribbons as an alternative visual- 
ization technique. Furthermore, particles or ribbons can be colourcoded according to 
the local speed or according to any other scalar data of the simulation results. 

Scalar field visualization. Other SciVis techniques that also fit well into the concept 
of immersive and intuitive exploration of virtual prototypes are those techniques that 
require spatial interaction by the user. Beside particle tracing, this is slicing &nA point 
probing. We are currently integrating these techniques as modules in a our VR system. 

The use of isosurfacing is to slice through the parameter range or to animate a 
fixed-value isosurface over time. It is already possible to animate isosurfaces which 
have been created within another system and have been loaded as polygonal objects 
into Virtual Design II. The porting of an isosurface extraction module to Virtual 
Design II has now been started. Isosurfacing in VR can be realized by pointing at a 3D 
position and computing the isosurface which is defined by a scalar value at the finger's 
position (as reported in [15]). But, usually, the user is interested in the spatial extension 
of a critical data value. Therefore, isosurfacing requires, in our view, a parameter 
selection in the data range and not in the geometrical space. In general, isosurfacing in 
an immersive VR system forces the user to scale down the geometry (or to move away 
from the isosurfaces) to get insight in the spatial data distribution. 

The following describes the goal, the hardware used, and the features of the imple- 
mentations for our customers from the automotive industry. 

3.1  The BMW Virtual Seating-Buck 
IGD developed a Virtual Seating-Buck for BMW. This project focussed on the chal- 
lenge of using VR and SciVis to create a tighter integration between design and engi- 
neering analysis functions in the development process of automotive interiors. It was 
necessary to address graphic display quality as well as functionality, and interaction 
techniques in order to provide the user with a convincing feeling of immersion into the 
virtual environment. To further increase this effect, a physical mock-up consisting of 
seat, steering wheel and foot pedals was built. Other hardware components included a 
tracking system, data glove and Fakespace's BOOM 3C (Fig. 3, left, see appendix). 
One important aspect in order to intensify the user's feeling of immersion was the pre- 
cise coupling between real objects and virtual objects. This was achieved by calibrat- 
ing the virtual steering wheel with its physical counterpart (held by the user) and 
implementing a virtual feedback, such that the virtual steering wheel rotates simulta- 
neously with the physical one. An accurate collision detection algorithm allows us to 
realize this functionality without additional hardware, just using software to detect col- 
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lision between hand and steering wheel and resolve the rotational constraints coupling 
the two. 

Another point of interest was the embedding of CAE simulation results into the 
virtual environment. This was demonstrated through flow visualization with interac- 
tive particle tracing of a passenger compartment air conditioning simulation (Fig. 3, 
right, see appendix). Finally we addressed the use of VR for maintenance access verifi- 
cation and configuration studies. Again, using real-time collision detection on a large 
scale, conditions such as system location, space allocation and stayout envelopes could 
be interactively evaluated taking the air condition/heating unit as an example. 

The system has been in prototypical use at BMW's R&D facility since November 
1995 running on an SGI RE2 computer with two independent graphics subsystems. 
The results as well as user responses are promising. 

3.2   The VW fair presentations in 1995 

While we demonstrated the interactive analysis of the flow around a Volkswagen Polo 
at the Hannover Messe '95, we realized the immersive investigation of the Volkswagen 
TDI (Turbo Direct Injection) Diesel engine for two car fairs1, the IAA '95 in Frankfurt 
and the Detroit Motor Show '95/'96. 

The characteristic features of the innovative motor concept of Diesel direct injec- 
tion were to be demonstrated on the basis of numerical flow simulations which gener- 
ated 3D transient data sets. Together with Volkswagen a demonstration scenario was 
worked out, which was aimed at the technically interested lay audience at the automo- 
bile fair. The scenario featured a cybernaut who navigates through different parts of 
the TDI motor introducing them to the audience. The audience watches through the 
eyes of the cybernaut (looking at a stereo projection) while the cybernaut navigates 
through the scene with a dataglove and a head-mounted display. 

The geometry of the Diesel cylinder with inlet valve and piston was extracted from 
Finite Element grids which served for numerical simulations of the Volkswagen engi- 
neers. Other parts of the motor, such as air inlet channel and waste-gas tubes were 
reconstructed with a CAD system. IGD's virtual reality system Virtual Design II was 
extended with a module for steering of time-dependent scenes. Herein triggering of 
single events as well as controlling direction and speed of the presentation time were 
realized. 

How processes around the valves and inside the cylinder as well as combustion were 
visualized on the basis of numerical simulations. This Finite Element data (local veloc- 
ity, temperature and pressure) had been pre-computed at about 100 time-steps. In order 
to visualize the data in real-time, i.e. at 15 double-frames per seconds, we resampled 
the data from an unstructured grid to a grid regular in space and non-regular in time. 
The algorithms for stream- and streakline computation as well as for particle advection 
allowed for a interactive analysis of the flowfields by the cybernaut (Fig. 4, left see 
appendix). The injection of Diesel fuel as well as the expansion of the combustion 
inside the cylinder were pre-computed and animated together with suitable sound 
effects. 

The visualization was also shown at SIGGRAPH '96 
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Another visualization technique which is of great use for structural analysis as well 
as for CFD data - and which is already available in the VR system - is object deforma- 
tion. We animate the piston as well as the valves of the TDI engine during the flow 
visualization. The diesel particles whose movements and momentary masses were pre- 
computed in a Lagrangian form by the CFD program are animated as well. Isosurfaces 
of the temperature serve as an indicator of the momentary location of the flames when 
the air/diesel mixture is burning (Fig. 4, right, see appendix). 

Volkswagen has purchased our VR system and uses it in the company's research 
center. Beside what was described here, the engineers investigate Finite Element crash 
test simulation data in virtual environments with the system 

4    Immersive data visualization - a discussion 

In the previous chapters we have reported on projects where immersive data visualiza- 
tion was used for product presentation. Beside the described software design approach, 
there are a number of other possible approaches. We discuss these approaches here - 
their pros and cons - together with some examples. 

With the introduction of new interaction and display devices, known as VR tech- 
nology, investigations were made to see whether this technology might be useful for 
data visualization. In our group the hardware approach for virtual environments was 
mostly fairly conventional, namely to use multidimensional input devices, like the dat- 
aglove, the space mouse or the flying joystick. For display we used head mounted dis- 
plays plus stereo projection walls for passive users. Only for our Arthroscopy Training 
Simulator [18] were dedicated interaction devices built. Special VR hardware systems 
have been developed in other groups, e.g., the CAVE [4], the Nanomanipulator [17], 
and the Responsive Workbench [14]. On the software side several different approaches 
can be taken. A classification of these approaches is given in [7]. Here, we use this 
classification and present examples together with a discussion of the 'pros' and 'cons' 
of the different approaches. Experiences related to immersive visualization in general 
are discussed in chapter five. 

4.1  Software design strategies for immersive data visualization 

Five different software design strategies are distinguished for immersive data visual- 
ization: 

i.   Rendered objects are precomputed by some existing, SciVis system, stored as files, 
and are then imported into an existing, VR system for investigation. 

An approach for a quick realization of immersive data visualization. In fact, several 
examples were realized within the CAVE system at Siggraph '94. Of course, no modi- 
fications regarding mapping parameters are possible if there are no SciVis capabilities 
implemented. In our group this approach was used in several cases to demonstrate off- 
line simulation results together with interior design. Results of a radiosity-based light- 
ing simulation as well as from a particle-based acoustics simulation have been mapped 
to polygonal visualization objects and were incorporated into VR scenes [11]. 
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ii.  Some VR capabilities are added to an existing, powerful SciVis system. 

An example for this approach is reported in [16] where VR devices have been com- 
bined with a dataflow visualization system / application builder. The main problem of 
this approach is that data communication between the modules slows down the visual- 
ization performance. Besides, user interaction with data is not easy in such a system 
because it requires upstream communication between modules. However, the 'must' 
of a VR system, in order to create the illusion of immersion, is real-time rendering and 
interaction without latency. 

Coupling our monolithic visualization system ISVAS1 [10] with the dataglove and 
stereo rendering was described in [1]. Here we experienced problems in the navigation 
via the dataglove because of the 'grab and rotate' paradigm of ISVAS (instead of using 
'point and fly' as in most VR systems). Furthermore, ISVAS has a conventional 2D 
'point and click' GUI for configuration. Working with the glove and the mouse was 
not comfortable at all. 

Hi. Some SciVis capabilities are added to an existing powerful VR system. 

In chapter three we described examples of this approach in detail. It might be seen as a 
drawback that visualization algorithms and data structures have to be re-implemented 
that are already working in a different system. However, experience shows that VR 
based visualization demands, in some cases, special data structures and/or algorithm 
design, anyhow. 

iv. A new system is designed from scratch offering some SciVis and some VR capabili- 
ties. 

The classical example is the Virtual Windtunnel [3]. The benefits are tailored algo- 
rithms, data structures and interface design for a specific application. The drawback: A 
lot of implementation work for a dedicated system which can only be used for one 
kind of data, e.g., blockstructured CFD data. 

v.   An existing powerful SciVis system is coupled closely to an existing, powerful VR 
system; both systems exchange data at run time. 

This approach has been realized by our group by connecting our visualization system 
ISVAS with our VR system Virtual Design [2]. Details of this work are described in 
[12]. Communication is realized via shared memory or via sockets in the case that both 
systems do not run on the same machine. The later can be useful since the VR system 
requires fast rendering processors while visualization algorithms of ISVAS need fast 
numerical processors. In contrast to the work with ISVAS described above (see i).), 
navigation is now realized in the VR system through 'point and fly' and parametriza- 
tion of visualization modules is done via virtual buttons and sliders which are provided 
by the VR system, too. The parameters are translated to the ISVAS command language 
so that no 2D GUI is needed. 

The benefits of this approach are: All visualization algorithms of the SciVis sys- 

1.   ISVAS is registered trademark of Fraunhofer-IGD 
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terns are available for the immersive data visualization. Also, the complete functional- 
ity of the VR system including collision detection, level-of-detail rendering, etc. can 
be utilized. Furthermore, having separate processes for both systems prevents the 
undesirable effect that rendering is slowed down by a computationally intensive visu- 
alization algorithm. However, this software approach does not take into account that 
the visualization performance of the existing visualization system may not be fast 
enough for a truly real-time investigation of the data. Another critical point is that sim- 
ulation data and CAD data are usually not in the same coordinate system which 
requires careful translation, rotation and scaling in the data communication. 

5    Conclusions 

So far we have described virtual prototyping projects carried out by IGD for the AIT 
consortium and for two german car manufacturers. In the following we draw some 
conclusions regarding immersive data visualization. 

5.1   Experiences with immersive data visualization 

Discussing the use of virtual environments for SciVis is not easy and is naturally dom- 
inated by subjective experiences. Therefore, the following statements should be seen 
as our preliminary experiences. Further investigation of this subject has to be (and will 
be) undertaken. However, we have realized four of the five software design strategies 
as described in chapter 4.1 during the last years. With this background we identify the 
following aspects of immersive data visualization for discussion. 

Hardware Environment. Today's supergraphic workstations allow virtual environ- 
ments of remarkable complexity. But still, the installation of VR hardware suitable for 
industrial applications is quite expensive. A major drawback of immersive systems is 
that they do not fit into the normal engineering environment which is dominated by 
desktop workstations. The reliability and accuracy of trackers has been much 
improved in the last few years so that accurate positioning is more a software than a 
hardware problem. Display quality of head mounted displays - even of the best (non- 
military) HMDs - is still far from acceptable for routine work. Stereo projection walls 
seem to be more useful. Regarding input devices, the glove is still the only device 
which allows intuitive interaction strategies. But the hand is obstructed by sensors and 
cables, which makes it difficult to handle mouse and keyboard, to make a note on a 
piece of paper or even to answer the phone. You cannot rotate and move the hand arbi- 
trarily and you get tired from moving around in the air. 

Software Approach. We have described the possible software design strategies in 
chapter four together with pros and cons. If data from different sources - CAD geome- 
try and simulation results - is processed, one data set has to be transformed into the 
other's coordinate system. If a VR system is coupled with a SciVis system these trans- 
formations have to be done on the fly. Furthermore, as long as visualization algorithms 
run as separate (shared memory) processes the frame rate is not affected by SciVis 
computations. In comparison with the more sophisticated coupling-approach a very 
stable system results. 
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Implementing single visualization modules into an existing VR system, as 
described in chapter three, has several benefits: The algorithms and data structures can 
be tailored to the special needs of the application with respect to the required speed 
and accuracy. Our experience is that visualization algorithms that require a notable 
amount of time are experienced more negatively in an immersive environment than 
within a desktop system. For example, if a particle tracing algorithm is slow because it 
is performed on unstructured Finite Element data, the non-smooth motion of the parti- 
cles is disturbing. Thus, the aim and the addressee of the visualization have to been 
analyzed very carefully to decide what is more important, speed or accuracy. 

Navigation and Interaction. The intuitive point and fly and grab metaphors are not 
suitable for all visualization tasks. Often, the user wants to restrict the effect of some 
input to a certain degree of freedom. E.g., a slicing plane shall be translated in the 
direction of the x-axis or an object shall rotate exactly around the y-axis. It may be 
even necessary to type-in a certain 3D position. This leads to one big problem of 
immersive data visualization: How to configure the many parameters of visualization 
modules. There are many tasks in configuration that can be realized more efficiently in 
2D GUI's than in 3D, e.g., file selection or definition of a mapping transfer function. 
Further research is required in order to make immersive systems more user friendly. 
One focus of this research will be voice input. 

Application Data. The use of VR is certainly not equal for all applications. Reviewing 
the successful VR applications helps identify those simulation data where immersive 
visualization might provide more inside than desktop systems. From our experience 
and from the reaction of our customers VR is regarded to be an efficient tool in a) inte- 
rior design and architecture, b) training and c) product presentation. In all cases, users 
deal with geometrical data of great complexity to which they are not accustomed to. 
Thus, a CAE engineer who works with the same part for many days will not discover 
much new if he is immersed within the simulation data. However, if the simulation 
results are of complex spatial distribution or shape and cannot be foreseen, immersion 
is definitely of use. Examples are crash simulations and CFD studies of complex real- 
life products, like whole airplanes or passenger compartments of cars. 

Visualization Task and Addressee. The answer to the question of whether immersive 
visualization may be useful is influenced greatly by the visualization task and the 
addressed audience. We have to be aware that explaining a complex technical process 
or machine to a lay-audience requires different media than if the addressed person is a 
simulation expert. Designers, manager, and politicians too, rely more on naturalistic 
visualizations than engineers who prefer and who are used to abstract presentations. 
On the other hand, some classical SciVis operations are, as explained above, hard to 
realize within an immersive system. Thus, if the visualization task is pure technical 
analysis, VR is certainly not the best fitting medium. We are convinced that here the 
new man-machine interface VR will accomplish the desktop analysis rather than 
replacing it. In the context of virtual prototyping immersive visualization is certainly 
necessary. 
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Abstract. Large data sets that represent complex physical phenomena 
require advanced tools that help to recognize and to study the essential 
features. The local behaviour of the numerical data in significant areas can 
provide insight in its global character. We present several types of icons, 
geometric objects, that symbolize selected local properties of the data, 
notably of flow fields and of deformation fields. Furthermore we discuss 
the choice of points where such icons should be placed. 

1     Introduction 

Complex physical phenomena can be simulated and resolved with large scale 
computations based on recent numerical methods, in particular adaptive, time- 
dependent, two and three dimensional finite element or finite volume algorithms 
based on unstructured grids. Characteristics of the solution, which are topo- 
logically invariant and globally describe the physical phenomena, are in general 
hidden in enormous masses of information. Standard methods like isosurface 
extraction, rendering scalar or vector fields on intersection planes and particle 
tracing in most cases are not sufficient to understand the peculiarities of the pro- 
cess. Instead of an "overall" visualization concepts to display selected important 
aspects are required. We are forced to carefully depict certain features of inter- 
est, which characterize the global solution. Various selection techniques have 
recently been studied. Globus et al. [5] propose to extract critical points from 
flow data sets. At these locations they graphically represent the eigenspaces. 
On boundary shapes, Helman and Hesselink [6] construct topological skeletons 
for vector fields. In [4] Demarcelle and Hesselink give a complete analysis of 
second order tensor field topology on two dimensional domains. Post et al. [9] 
apply methods based on mathematical morphology to locate interesting regions 
in large data sets. Finally the identification and extraction of structures, i. e. 
vortex filaments, is studied by several authors [3, 11]. To represent the local 
solution in regions of interest graphically icons have been investigated. An icon 
is a geometric object which acts as a symbolic representation for specific data 
quantities and features of the solution. DeLeeuw and van Wijk [7] have de- 
veloped an iconic flow probe. Post et. al. [9] give several glyphs for various 
simulation features. 
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In this paper we contribute new icons and criteria for point selection suitable 
for different steady and time-dependent applications with the emphasis on flow 
fields and deformations. In section 2 a classification of solution types will lead to 
appropriate iconic representations for the. solution gradients and a corresponding 
interpretation. Several methods to identify seed points at different levels of 
resolution of the. local representation are discussed and compared in section 3. 
In particular we emphasize peculiarities of time-dependent flow and propose 
subsets with vanishing material derivative as a generalization of critical point 
sets in steady fields. Some important algorithmical aspects are examined in 
section 4 and conclusions are drawn in 5. 

2     Local Behaviour of PDE solutions 

Following the guidelines for the extraction of global features of numerical solu- 
tions to PDEs (partial differential equations) we will, in a first step, study how 
to analyze and visually represent the local behavio\ir of the solution at certain 
points of interest. Theoretically this is based on linearization and the calculus 
of ordinary differential equations (ODEs for short) [1]. Then, in a second step, 
these graphical representations, the proposed icons, will be placed at well cho- 
sen locations significant for global characteristics of the - typically physical - 
phenomena under consideration. 

To start with, we first review some of the basic concepts well known in 
continuum mechanics. Partial differential equations in this field are derived from 
conservation laws, such as conservation of mass or energy and constitutive laws 
describing the material properties. The conservation laws can be formulated in 
two different coordinate systems. On the one hand, solutions can be interpreted 
as functions over some reference domain, for instance the initial state of the 
material. The underlying coordinates are denoted Lagrangian coordinates. An 
elastic deformation is a typical example. On the other hand, especially flow 
problems are in general represented in Eulerian coordinates. Here the unknowns 
are functions in some fixed spatial coordinate system, which can be regarded as 
the observer frame. They are not linked to material points. To be more specific, 
let X be a fixed material point at time t0 and x = <p(X, t) its location at time 
t where ip describes the deformation or the flow of the material in Lagrangian 
coordinates X, whereas v{x,t), the velocity of a particle passing by some fixed 
point x at time t, is said to be described in Eulerian coordinates. 

In the following, we will mainly focus on the two types of unknowns: defor- 
mations and velocities. They will be regarded as two significant representatives 
for a larger class of different applications. 

The local behaviour of a differentiable PDE solution can be described in 
terms of its first order expansions. For velocity fields and deformations, we will 
now study the local expansions and their graphical description separately. 
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2.1     First order motion 

There is a well known one-to-one relation between a velocity field and the in- 
duced flow <p defined by the ordinary differential equation (or ODE for short) 

<p(X,t) = v{<p(X,t),t) 

where <p(X, t) = x describes the motion of particles initially located at positions 
X driven by the velocity v in Eulerian coordinates. Therefore the above equation 
can be rewritten as x = v(x,t). Now we ask for the acceleration £ of a particle. 
By applying the chain rule we obtain the material derivative Dv/dt (D/dt = 
v ■ V + dt by definition) of the velocity v: 

•     -     ,     „x        d        D x = (v •V)v+ —v = —v 
at        at 

If this derivative vanishes on a particle path, the corresponding particle is up to 
first order in a constant motion. The path x = x(t) of a particle which passes 
the point x0 at time to can be expanded in terms of v and j^v 

x0(t) = x0 + v{x0, t0)(t - t0) + 2jt
v(x°' *°)(< _ <0)2 + ° ((' ~ M3) 

We will study the motion of particles moving along nearby paths y more closely 
and expand the offset 

(y-x)(t)    =   yo-xo + (v(yo,to)-v(x0,to))(t-to) + 0((t-to)2) 
=   yo-xo + Vv(x0,to)(yo-xo)(t-to) 

+0{\yo-x0\2 + {t-to)2) 

Linearizing this equation we obtain 

S = Vv(x0,to)S        S(0) = So 

In summary, the first order relative motion in a neighbourhood of a specific 
particle x0 at time t0 is described by the velocity v(x0,t0) and the velocity 
gradient Vv(x0, t0). 

Now we ask for a graphical representation of this motion. Therefore let us 
look more closely at the induced linear field. Vv has at least one real eigenvalue, 
which we will suppose to be the third. The others might be real as well or con- 
jugate complex. If the real parts of all three eigenvalues are positive (negative) 
then a; is a moving source (sink). But the flow of an incompressible medium in 
a closed system is source and sink free. Let us focus on this case. For differ- 
entiable velocities incompressibility is equivalent to vanishing divergence which 
equals the sum of the eigenvalues A,-. Then one eigenvalue is real, say A3, and 
the real part of Ai, A2 has the opposite sign. In the nondegenerate case, the 
eigenvectors e\, e2 corresponding to Ai, A2 span a plane. The induced flow is 
hyperbolic, particles stream in along this plane and they stream away from x 
in the direction of 63 or vice versa.  Graphically the eigenspace spanned by e3 
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is represented by a pair of arrows placed at x and pointing in or out depending 
on the sign of A3. The plane is shown by a disk centered at x and deformed 
according to ei, e2. If Ai, A2 are real, the. flow along the plane is of sink or source 
type. We characterize this flow by drawing a pair of arrows on the disk both for 
e.\ and e2, the arrows being scaled by the respective eigenvalues (see Appendix). 
In the complex case the flow is swirling in or out along the plane. In a coordinate 
system with axes aligned to the real and imaginary part of ex, the real part of 
the eigenvalue Ai = a + iß drives the particles into the center or away from it 
proportionally to e"*. That determines the period of time r the particles need 
to traverse the disk. Afterwards, they'll have been swirled around the angle ßr. 
We partition the above disk into 4 segments with alternating colour. The rim 
of the disk is twisted according to that angle, and the (initially circular) disk 
is deformed linearly as indicated by the real and imaginary parts of ex. This 
leads to spiral shaped segments. The separation lines between these segments 
are integral curves of the linearized field (see Fig. 2). 

2.2     First order deformation or growth 

We have discussed the local behaviour of solutions, in particular flow fields, given 
in Eulerian coordinates. Elastic deformation and growth fields are typical exam- 
ples for solutions of partial differential equations given in Lagrangian coordinates 
X. The local behaviour of a deformation <p(X, t) is described by the deformation 
gradient Vtp(X,t). At first, in three dimensions these are 9 degrees of freedom, 
which we have to represent graphically. The complexity can be reduced signifi- 
cantly by taking into account the polar decomposition. Any linear mapping A 
can be decomposed into a rotation Q{A), possibly including a reflection, and a 
symmetric mapping H(A). Applying this to deformation gradients we obtain 

V<p{X,t) = H{V<p(X,t))Q{V<p{X,t)). 

If the material orientation is preserved under the deformation, which is true 
in most cases, Q(Vy(A, t)) is a rotation without reflection. The polar decom- 
position comes along with a physical interpretation. Up to first order a test 
volume placed at X is first undergoing a rotation given by Q(V<p(X,t)) and 
then a stretching described by H(V<p(X, t)). Q can uniquely be described by an 
axis of rotation and a rotation angle, whereas H has three real eigenvalues, the 
stretching factors, corresponding to three orthogonal eigenvectors, the stretching 
directions. We. obtain a graphical representation for arbitrary local deformations 
by displaying the symmetric and the rotational part separately (see Appendix). 
The rotation is symbolized by a disk in the plane of rotation which is perpendicu- 
lar to the axis. The disc is segmented into regions of different colour and twisted 
by the angle of rotation similarly to the disc representing conjugate complex 
eigenvalues of velocity gradients. The symmetric mapping can be illustrated by 
a three dimensional cross pointing in the orthogonal stretching directions and 
scaled by the stretching factors. Considering the stretching of a sphere induced 
by H we. find another possible icon for the symmetric part, where we display 

{X + H{V<p{X,t)){Y-X)\Y edBs{X)}. 
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Fig. 1.   Icons show the local deformation of an elastic bar factorized in gyration and 
stretching. 

Physically this depicts what happens to the sphere under the deformation. 
Instead of displaying the icons in reference coordinates X we can place them 

in the deformed configuration as well. Let us finally mention that growth fields 
cr(X, t) = ip(X,t). can be decomposed analogously. Then because of its inter- 
pretation the proposed second icon seems to be particularly useful (for details 
see [8]). If there are directions of positive and negative growth the sphere gets 
partly turned inside out (see Appendix). 

2.3     Further interesting tensor fields 

Up to now we have classified the local flow relative to a particular particle and 
local deformation or growth at a certain position in the reference domain. Graph- 
ically we have represented the corresponding gradients of the solution by finding 
appropriate icons for these second order tensors. But there are other important 
second order fields, most of them expressed as functions of the gradients, such 
as the rotation tensor of a flow or the stress tensors. The rotational part of the 
velocity gradient reduces to the vector quantity curl v, which can be displayed 
using the twisted disk icon already introduced above. Stress tensors are sym- 
metric due to the conservation of angular momentum [13]. Therefore, the icons 
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Fig. 2. Icons placed at critical points and streamlines in incompressible 3d flow. The 
streamlines that move into or out of a critical point form a surface separating the flow 
locally. The icon disks are tangential to these surfaces. 

for symmetric linear mappings seem to be appropriate. 

3     Spotlighting the global solution 

In the preceding section, we have discussed the local behaviour of PDE solu- 
tions, in particular velocity fields in Eulerian coordinates and deformations in 
Lagrangian coordinates, and we have introduced graphical representations, the 
icons described above, which allow an intuitive physical understanding. Up to 
now, the question is still open where to position these icons. 

At first hand, icons can be released at positions related to the domain ge- 
ometry. Or icons may be aligned to appropriate particle lines of a flow field 

[7]- 

3.1     Critical points in flow fields 

Critical points (roots) are of specific interest in velocity fields, in particular in the 
steady case. They are topological invariants of the underlying flow [2] and can 
be taken as seed points to reconstruct a topological skeleton (in two dimensions) 
[4]. We have used the icons of 2.1 to describe, the local flow at critical points in 
a 3d volume, (see Appendix). Since the reference particle in the critical point is 
unmoved, the icons show the absolute field (up to first order). 
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In unsteady flow, patterns emerge, e.g. drifting vortices, that are not present 
as such in the momentaneous field at any time. But nevertheless, critical points 
are still topologically invariant and give insight in qualitative aspects of the flow. 

r 

3.2     Points of constant motion in time-dependent fields 

In this paragraph we will remark upon a generalization of critical points in the 
time-dependent case. In general points of constant motion are the appropriate 
objects we should ask for. Their physical meaning is that the underlying particle 
is not undergoing any acceleration. They are identified as the roots of the mate- 
rial derivative. To rule out points in laminar regions we demand a nonvanishing 
velocity gradient. Let us call a point (a;, t) center point iff 

— v(x,t)=0    , Vv^O 

To motivate our definition we note the following: . 

• In a moving observer frame centered at such a point, this point will, of 
course, appear as a critical point. Furthermore center points are invari- 
ant under any observer transformation in constant motion. Therefore the 
definition is not in conflict with respect to reasonable frame indifference 
requirements. 

• In the steady case center points are either critical or (v ■ V)v = 0, which 
implies locally a constant motion in the direction of v and first order terms 
only in planes perpendicular to this direction. But this slight generalization 
seems to make sense as well, in particular if one thinks of a vortex filament 
lying in the axis of the principal motion. 

• Vortices and vortex filaments are of specific interest, in particular for vis- 
cous flow at high Reynolds numbers. They are typically characterized as 
pressure extrema with nonvanishing curl [3, 11]. If we neglect the viscous 
term in the underlying Navier-Stokes equations we obtain the Euler equa- 
tlon div = ~^P> which clearly indicates a strong relation between pressure, 
extrema and center points. Respectively, if particles are swirling around a 
point x of an inertial frame they are perpetually accelerated towards x (e.g. 
by the pressure gradient), so that the acceleration Dv/dt, if continuous, 
has to vanish in x, i.e. x is a center point. 

Although sets of center points seem to be reasonable candidates for topo- 
logically interesting quantities it is hard to extract them from numerical data 
sets mainly because both time and space discretization errors play an important 
role and lead to non uniquely definable center points. Nevertheless, in our 2d 
example, a Karman vortex street, the fast line integral convolution method of 
Stalling and Hege [12] proves the vortices to be regions containing a center point 
(see Appendix). 
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4 Algorithmical Aspects 

Solutions to PDE may exhibit features at various scales. The numerics, though, 
have to comply with resource limits and should provide a decent error control. 
Adaptive methods are well suited to resolve different scales in simulation pro- 
cesses. They resolve local phenomena by local refinement of the original grid. 
The data produced by such methods is typically based on unstructured grids, 
e.g. tetrahedral grids with cells of varying size and shape. In time-dependent 
problems, the discretization may change as the process goes on since local phe- 
nomena like vortices, reaction zones, shock fronts etc. may move - accompanied 
by the refinement zones. Our visualization concepts are based on this type of 
numerical data. 

4.1 Reliability 

The reliability of iconic visualization methods is closely related to error esti- 
mates given for the numerical results. Typically these estimates are known only 
in some energy norm, defined as integrals over the domain. For realistic simula- 
tions in general no pointwise estimates are known. But pointwise estimates for 
the solution and its gradient are necessary to reliably localize seed points and 
evaluate the icon parameters. For instance, the divergence free property in the 
data sets we have studied is not fulfilled pointwise. Therefore one should in gen- 
eral be very careful in interpreting the results based on pointwise evaluation. A 
promising alternative would be to replace point evaluation by integral averaging 
or in advance mollification. 

Another serious problem is the stable calculation of eigenvalues and eigen- 
vectors: eigenvectors do not depend continuously on the matrix. 

4.2 Integrating an ODE near a critical point 

Integral curves that start or end in a critical point x0 of an ODE x = v(x) 
cannot be integrated beginning right in x0 since the velocity in such a point is 
v(x0) = 0 and we wouldn't ever get away from it. If we start near the point 
we need an adaptive "time" step control that gets on with a very low speed 
of propagation. In addition, it should correctly integrate a field that is not 
continuously differentiable or not even continuous on cell boundary faces. 

5 Conclusions 

We have discussed the use of icons to characterize global aspects of simulation 
data. Several kinds of icons have been proposed. The icons can be released 
by hand or at points extracted automatically. These may be critical or the 
above 'center points' for flow problems, and extremal or degenerate positions 
in deformation or growth fields. A stable algorithm computing center points in 
time-dependent flow fields on unstructured grids is subject of ongoing work. 



242 

The. presented approach has been realized in the programming environment 
GRAPE [10]. This would not have been possible without the support of many 
people at the Institut für Angewandte Mathematik at Freiburg University and 
the SFB 256 at Bonn University among them R. Kleinrensing, M. Metscher, 
M. Wierse, and A. Schmidt. The numerical data have been kindly provided by 
E. Bänsch, A. Schmidt and M. Wierse. 
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Abstract 

This paper discusses a general scheme for determining the quality of 
scientific visualization systems. It presents psychological tests which have 
been performed in order to find quantitative relationships for this scheme, 
and discusses why simple numerical relationships may be hard to find. 

Our work is motivated by research into interactive and immersive scien- 
tific visualization which pose two opposing demands: maximum image 
quality at sufficient frame rates. We believe that these two factors are also 
crucial for many other applications, e.g., virtual reality. For this scheme, 
special focus is on the user's perception of the system. Three components 
of Visualization System Quality are identified: Data quality, image quality, 
and interaction quality. In order to migrate from a merely qualitative to 
a more quantitative model, psychological tests were performed to measure 
the influence of frame rate and rendering mode on the perception of vi- 
sualized three dimensional vector data. Results of the tests are presented 
and general suggestions for good perceptual tests are made. 

We believe that the experience we gained will be of benefit to many 
who are interested in questions of visualization system quality. 

Keywords:    Scientific Visualization, Realtime Interaction, Psychologi- 
cal Tests, Visualization System Quality 

1    Visualization System Quality for interactive 
and immersive scientific visualization 

Many different techniques for scientific visualization are known, and each techni- 
que can be parameterized in various ways. But what is the "best" visualization 
for a given problem, i.e., for a dataset and a user with a degree of experience 
and certain goals using hardware with specific features? 
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This is a tough question. To do visualizations well is a difficult task. Lately, 
some people have pointed out the importance of this question ([10], [18]). In [21], 
a case study is reported which addresses the question of visualization quality. In 
[16], a tool is presented which recommends visualization techniques for a given 
set of data. 

We will address this topic by means of psychological tests. In the following, 
a general scheme for Visualization System Quality (VSQ) will be presented. By 
the term visualization system we mean a combination of hardware and software. 
Visualization systems can be classified according to various criteria, e.g., price, 
CPU speed, screen size, etc. We are mainly interested in user performance as a 
criterion for system quality. This approach is motivated by our previous work 
on Scientific Visualization, e.g., [7]. 

Increasingly, scientific data now is being visualized using Virtual Environ- 
ment or Virtual Reality (VR)[1] techniques. This is due to easy availablitiy 
of hardware and software suitable for VR techniques as well as to the obser- 
vable benefits of merging these two techniques to become Immersive Scientific 
Visualization. 

Some applications which already utilize this synergy are reported in [2] (Vir- 
tual Windtunnel), [5] (several visualizations using the CAVE system), [20] (VR 
in dataflow systems), [15] (Responsive Workbench), and work by us: [12] (medi- 
cal training, material testing, visualization of room accoustics, and 3D weather 
visualization), [13] (investigation of molecule datain VR), and [14] (coupling of 
general purpose VR and scientific visualization system). In all these examples, 
the opposing demands of image quality and rendering speed have been met in a 
certain way (see also [3]). Even though CPU performance and memory size in- 
crease drastically, the tension between image quality and frame rate will remain 
to be a crucial issue for all kinds of graphics systems. This is due to demands 
for an ever increasing level of detail in the data, no matter if it is finite element 
meshes, realistic landscapes, or medical data. 

The solution to this problem lies in dynamic adaption of data and image 
complexity as well as of the degree of interaction to the current situation. This 
situation consists, among other factors, of system load, of the type and amount 
of data which is used by the system, as well as of the knowledge, strategy, and 
goals of the current user. It seems that there is need to measure quality of gra- 
phics systems which enables adjustment of system parameters depending on the 
situation in order to maximize the benefit of the system to each individual user. 
The perfect solution would be a quantitative measure for system quality allowing 
us to optimize system parameters according to the individual constraints of each 
possible user/data/system combination. 

Starting from this observation, we developed a general scheme for determi- 
ning the quality of a (3D) graphical system. It is presented in more detail in 
[13]. Visualization System Quality as described in the following is a special 
kind of Graphics System Quality since visualization systems are a special kind 
of graphics systems. Thus, VSQ describes the underlying system in terms of 
hardware and general performance but not the visualization technique used or 
the didactics of a visualization. This scheme still is only qualitative. We tried to 
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determine some numerical input for this scheme by performing perceptual stu- 
dies with test persons. Unfortunately, we discovered that valid, representative 
numerical results are not easy to obtain. Here we will report on the preliminary, 
qualitative scheme, on the tests that we performed, and on the implications of 
these tests. 

The scheme does not explicitely comprise "hidden" features like memory size 
or processor speed, even though they may influence factors which we consider 
important for Graphics System Quality (GSQ), e.g., rendering speed. Rather, 
the scheme comprises features which are visible to the user directly. 

The scheme consists of three main components: Data quality, image quality, 
and interaction quality. The details of these main components are summarized 
in Table 1. 

Data Quality Image Quality Interaction Quality 
• Data Semantics: • Image space resol. • Rendering speed 
1. Only geometric or • Color space resol. (static,sequence,realtime) 
image data • Rendering/shading • Degree of interaction 
2. Static semantics (wireframe, flat, (none, interactive, VR) 
3. Dynamic semantics gouraud, phong) • Number of users 
• Object space resol. (none, one, multiple) 

Table 1: Components of Visualization/Graphics System Quality. 

The following components of the GSQ scheme are explained in further detail. 
Data quality stands for the semantics of graphic objects and resolution in 

object (data) space. 
Image quality is a term which may be used with different meanings. Firstly, 

its definition may depend on the application area, e.g., text, technical drawings, 
or video. For the sake of this paper, we are mainly interested in (sequences 
of) raster images of scientific 3D data. Furthermore, image quality can be in- 
vestigated on a very basic level (spatial resolution of pixels, dynamic range, 
etc.), on higher levels (geometric distortion, feature distortion, etc.), or even on 
a very high conceptual level (style, redundancy, etc.). For an overview of the 
state-of-the-art of definition and measurement of image quality, see [8]. 

Image quality is an assembly of several factors, all influencing the amount 
of information which is accessible from a single image. For our purposes, the 
following characteristics seem most important for the definition of image qua- 
lity: Resolution in image space, resolution in color space, and rendering/shading 
method. 

Finally, interaction quality is an important component of the GSQ scheme. 
It comprises: Rendering speed, degree of interaction, and number of users. 

In order to further elaborate this scheme and to develop a quantitative mea- 
sure for Visualization/Graphics System Quality, we performed some psycholo- 
gical tests. These tests made clear that users have very different visualization 
and perception strategies depending on their knowledge and goals. The data to 
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(Data to Visualize) 

| User/Data | 

( Data Quality) 

| Visualization System] 

Figure 1: Main factors influencing Graphics System Quality. 

visualize as well as knowledge and goals of the user constrain the best choice of 
data quality, image quality, and interaction quality. This can be seen as a kind 
of mapping or transfer function from 3D to 3D (see figure 1). Unfortunately, 
this transfer function is unknown to us. Investigation to determine this trans- 
fer function is worth-while in order to achieve better visualizations. Therefore, 
further perceptual tests need to be performed. 

2 Testing the influence of rendering speed and 
rendering mode on perception of 3D vector 
fields 

The previous chapter outlined our view on Visualization/Graphics System Qua- 
lity. GSQ is obviously motivated by a great interest in the performance of a user 
of a graphics system. In general, a user of a graphics system may want a visuali- 
zation of great complexity at the highest possible frame rate. Due to limitations 
in rendering speed and increasing amounts of data to be visualized, this demand 
cannot be fulfilled entirely. On the other hand, since human visual perception 
is limited in respect to spatial and temporal resolution [11], it could be assumed 
that parameters can be found which allow optimum human performance without 
exceeding the capabilities of a given graphics system. Exact numerical models of 
visual 3D perception are not available ([4] presents such a model for the limited 
task of text processing). Thus, rules or formulas for the optimal configuration of 
a visualization system are hard to specify. Psychological tests are one possibility 
to obtain a crude, simple model of the "visualization user". 

Therefore, we investigated the possibility of perceptual tests. We are inte- 
rested in mathematical relationships of parameters for visualization and their 
influence on human performance in perceptual tasks. Thus, a large number of 
parameter combinations must be tested. This implies that, in order to gain 
results that can be trusted with a certain confidence, a large number of test 
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subjects must be involved which makes the test very expensive. Normally, only 
industry can afford to carry out tests with hundreds of subjects. 

But even if we could perform such tests, the quantitative results by themsel- 
ves may not be sufficient. We want to generalize from the specific test conditions 
to more general phenomena and therefore observations of the bahaviour and per- 
sonal comments from subjects must be recorded and analyzed. It may be that 
the numerical results were strongly influenced by factors that are unexpected 
and unknown to the test designer, for example different strategies in solving a 
perceptual task. 

It is also easier to look for new possible phenomena than to design a test 
which tries to verify a theory. To verify a theory with sufficient confidence, a 
large number of subjects is needed, maybe all with a similar background. To 
discover new phenomena, a smaller group with very different subjects can be 
sufficient. It should also be noted that there are different statistical methods 
that can only be used either to detect new phenomena or to verify expected 
phenomena. For example, analysis of variances should only be used to verify or 
falsify expected phenomena while cluster analysis should only be used to search 
for new phenomena. 

2.1    Our tests 
Since we have been concerned with Scientific Visualization for a couple of years, 
we chose perception of individual vectors as well as of vector fields as the task 
for the tests. Our main goal was to classify the influence of frame rate and of 
rendering mode of the vectors on the perception of the angles of individual 3D 
vectors ('detail' test) as well as on the holistic perception of a complex 3D vector 
field ('overview' test). 

We started by doing some research into literature on visual perception. Gib- 
son's ecological approach to visual perception [9] is the most fruitful for the 
explanation of perception of 3D structures. Unfortunately, it does not con- 
tain numerical models. This approach identifies "gradients" and "invariants" as 
the most important factors for spatial relations and object recognition. Cue- 
theory [11], which is based on feature extraction for the "cues" stereo, shading, 
texturing, movement, and focus, should be considered as a subset of the bigger 
concept of the ecological approach. It clarifies the different aspects of an anima- 
ted image which all should be seen as building blocks of an overall image quality. 
Most of the cues have already been tested separately, but the effect of combina- 
tions of several parameters, which is essential in visualization systems, has not 
been examined in detail. The effect of combinations of different parameters on 
2D data analysis currently is under investigation[19], especially in the case of 
dynamic presentations[17]. 

Our tests investigated four different frame rates and three different vector 
rendering modes (line, pyramid, and complex arrow). The pyramid consists of 
5 polygons while the complex arrow has 34 polygons (see plate 1, appendix). 
Thus, complex arrows take considerabely longer to draw than pyramids while 
lines are the fastest mode. The intention was to obtain an overview of possible 
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interactions between these two parameters, i.e., how to choose the best rende- 
ring mode for a given rendering speed and vice versa. Twelve subjects were 
used for these tests; they were computer science students with basic knowledge 
of computer graphics but no experience in visualization of vector data. All tests 
were performed using the ISVAS1 3.2 visualization system running on SGI hard- 
ware. The analysis of variances (ANOVA) was performed using the SAS/STAT 
software. 

Two pilot tests were designed and performed on a few subjects; the results 
of these tests led to two more elaborated tests which were performed on all 
twelve subjects. For example, in the pilot test the users interacted with the 
system in order to select a point of view. We soon realized that this leads to 
test results which are mainly influenced by the strategy of each user instead of 
the parameters which were of original interest to us (e.g., rendering speed and 
rendering mode). 

For the sake of brevity we will only report on one of the two final tests, the 
so-called 'detail' test. 

2.2    'Detail' Test 

In the 'detail' test, four vectors (all of them rendered in the same of the three 
possible rendering modes) were shown on a flat surface (see plate 2, appendix). 
The scene was rotating about the vertical axis at one of the four possible speeds 
(2, 6, 12, or 18 frames per second) at one degree per frame. 

The subject's task was to find which vector out of the four was the most 
orthogonal to the surface as well as to estimate the exact angle between this 
vector and the surface. This experiment was motivated by the need to determine 
the correctness of boundary conditions in finite element simulations. 

After a number of training cases to make the subject acquainted with the 
task, the test itself started. It consisted of 12 test cases. The whole session took 
approx. 60 minutes. For each test case we recorded 

1. the 'most orthogonal' arrow as perceived by the subject, 

2. the subject's confidence in this decission, 

3. the estimated angle of the most orthogonal arrow to the plane, 

4. the number of frames that were viewed until the correct arrow had been 
selected, and 

5. misc. comments of the subjects. 

We say that items 1 and 3 measured 'objective' entities since we have no reason 
to assume that these answers were biased by expectations. On the other hand, 
we say that items 2 and 4 measured 'subjective' entities since we believe that 
these results are influenced by the subjects' expectations. For example, if the 
subject expects that at a given frame rate it is more difficult to estimate an 

1 ISVAS is registered trade mark of Fraunhofer IGD, Darmstadt, Germany 
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angle, the subject will take longer to decide on this angle and the number of 
viewed frames (4) will be increased. 

Now, let us discuss the test results. First, the resulting number of frames (4) 
are shown in figure 2. 

Number of frames needed for successful search 

700 T- 

2fps 6fps       12fps       18fps 

Frames per second 

Figure 2: Number of viewed frames for the frame rates (2, 6, 12, 18 fps) and the 
three rendering modes (left to right in each block: line, pyramid, arrow). 

It may be seen that for higher frame rates, more frames are viewed. This is 
due to the fact that the whole scene needs to be viewed for at least 20 seconds 
which is equivalent to 40 frames at 2 fps or to 400 frames at 20 fps (increasing 
number of frames with increasing frame rate). 

By the way: If we use 'viewing time in seconds' instead of 'frames per second' 
in figure 2, the mean values of each block are decreasing from 2 to 18 fps. In this 
case, we get approx. 70 seconds for 2 fps, followed by 45, 37.5, and 30 seconds 
viewing time for 6, 12, and 18 fps. So the overall viewing time is decreasing and 
thus performance of a user is increasing with higher frame rates. 

But we can observe something much more interesting: at 2 and 6 fps, all 
three rendering modes seem to be more or less identical, but at 12 and 18 fps, 
there is an advantage of arrows over pyramids over lines. 

Source DF F-Value P 
FPS 
REND 
FPS*REND 

3 
2 
6 

29.14 
0.81 
0.49 

0.0001 
0.4458 
0.8121 

Table 2: ANOVA for number of frames. 

The overall ANOVA for the number of frames leads to the numbers given in 
table 2. We can see that frame rate (FPS) has a strong (F=29.14) and significant 
(p=0.0001) influence on the number of frames. So the first observation from the 
graph is confirmed: with increasing frame rate, the number of frames increases 
significantly. On the other hand, rendering mode (REND) is not very strong and 
not significant. To be significant, p should be < 0.05 or at least < 0.1. So our 
second observation about arrows being better than pyramids and lines is only a 
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trend but not a significant result. Finally, the interaction of these two variables 
is even less significant. 

Source DF F-Value P 
REND (PPS= 2) 2 0.11 0.8995 
REND (FPS= 6) 2 0.55 0.5837 
REND (FPS=12) 2 1.22 0.3068 
REND (FPS=18) 2 1.13 0.3342 

Table 3: ANOVA for number of frames for each individual rendering speed. 

We were looking for some influence of the rendering mode on user behaviour, 
so we were not satisfied with these results. Next, we investigated if the influence 
of rendering mode would be approximately the same with respect to rendering 
speed. Table 3 shows the results of this ANOVA. 

Level of confidence selecting 
the most normal vector 

0,86 -r 

6fps    '   12fps 

Frames per second (fps) 

Figure 3: Level of confidence for the frame rates (2, 6, 12, 18 fps) and the three 
rendering modes (left to right in each block: line, pyramid, arrow). 

We can see that for increasing frame rates, the rendering mode has increasing 
influence on the time subjects are examining the scene. At 2 fps, the three 
rendering modes are more or less identical in terms of user performance, but at 
18 fps, arrows seem to be clearly superior to pyramids or to lines, even though 
this influence is still not signficant in our test (p=0.3342 is still too large). 

The second subjective result (level of confidence, 2) is shown in figure 3. It 
can be seen that generally, confidence is higher with arrows than with pyramids 
or lines and that confidence is higher at high frame rates. ANOVA is not given 
here but again, the results are not significant. 

Next, let's have a look at the 'objective' results of selection error: figure 4 
shows the error in selecting the most orthogonal vector (1). 

We can see that for these 'objective' results, lines are not well suited. Py- 
ramids are slightly better than arrows. Also, high frame rates (dark bars) are 
better for test results than low frame rates (white bars) for the given task. 
ANOVA confirms that these results are not by chance (see table 4), and that 



251 

Error in Selecting the most normal vector 

Pyramid Arrow 
Quality of Rendering 

Figure 4:  Error in selecting the most orthogonal vector:  the rendering modes 
and four frame rates each (left to right in each block: 2, 6, 12, 18 fps). 

the influence of rendering mode is much more significant than the one of frame 
rate. 

Source DF F-Value P 
FPS 
REND 
FPS*REND 

3 
2 
6 

1.54 
4.66 
0.48 

0.2067 
0.0111 
0.8193 

Table 4: ANOVA for selection error. 

Finally, figure 5 shows the 'objective' results of errors on estimation of angle. 
We can see that pyramids perform better than lines or arrows but it's hard to 
tell what frame rates are best: for lines, low frame rates (white) are better than 
high frame rates (dark), but for arrows, the highest frame rate (18 fps, dark) is 
best. 

Concluding the discussion of this test, it can be seen that for feature extrac- 
tion (error in selection, figure 4) high frame rates are better than low frame rates 
while for exact measurements, this is not so clear. In fact, if lines are used as 
drawing primitives, low frame rates are superior to high frame rates. 

Another interesting result is that for both cases, pyramids seem to be the best 
choice for drawing primitives. This is an important finding: the most complex 
rendering objects need not necessarily be best suited for a given task. Since 
pyramids are faster to draw than detailed arrows, there seems to be no need for 
detailed arrows in a visualization system if tasks similar to our tests only need 
to be solved. But please note that we do not claim that pyramids are superior 
to detailed arrows in all or even in most cases; to make such a provocative 
statement, much more test cases would be needed. 

From our observations during the tests as well as from comments of test 
subjects we learned something that we did not expect in the beginning: even 
in a quite homogenious group of subjects as in our test (all 20 to 30 years old, 
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Error on estimating the angle 

Pyramid Arrow 
Quality ot Rendering 

Figure 5:  Error in estimating the angle:  the rendering modes and four frame 
rates each (left to right in each block: 2, 6, 12, 18 fps). 

computer scientists with computer graphics backgroud, all from Darmstadt, etc.) 
there were different strategies in solving the tasks of the test. For example, in 
order to find the most orthogonal vector, some subjects would try to perceive 
the whole scene at once and see which vector would 'jitter' fewest while others 
would try to determine each angle sequentially and then calculate which one is 
most normal to the surface. 

In the second test ('overview'), a regular grid of vectors was given (6 x 6 x 6). 
Plate 3 (see appendix) shows a screen shot with test environment and the vector 
field in the middle. For the tests, a 21 inch monitor was used. As shown in the 
plate, vectors were not identical but changed slowly in lengthand direction from 
one corner of the cube to the other. Test subjects had to find a discontinuity 
of this function. Here, we made a similar observation: Some subjects would try 
to perceive the whole scene at once in a holistic manner while others would try 
to use certain orientations of the dataset to 'take a bearing of rows of vectors. 
These different strategies also lead to different preferences: The holistic group 
needed a certain frame rate to get a good 3D impression of the scene while the 
second group prefered lower frame rates where there is more time to investigate 
the data set in a 'stable' orientation. 

In conclusion, some interesting things that we learned from the test are: 

• Personal preferences and objective performance need not be correlated. 

• Personal strategies for interaction and investigation of a scene influence 
the effects of visualization parameters (e.g., of frame rate and of rendering 
mode). 

• Humans are pretty good in detecting a feature and much worse in estima- 
ting a numerical value. 

• The formulation of a task and the goal of the viewer determine his percep- 
tion by making him select alternative strategies. 



253 

• Kind and amount of data influence the suitability of different graphical 
primitives for scientific visualization. 

2.3    Some things we learned about tests in general 

Testing the effect that different parameters of a graphics system might have on a 
user's performance involves detailed preparation of the psychological test. This 
includes precise ideas about parameters to be tested, the kinds of subjects (e.g., 
experts or laypersons), test data, perceptual tasks, and performance indicators. 
These items are not independent of each other. 

The number of parameters (e.g., rendering mode and rendering speed) and 
the number of values of each parameter (e.g., 8, 12, 16 frames per second for 
rendering speed) that will be tested have a great influence on the number of tests 
that must be conducted to gain significant results. Experienced psychologists 
claim that significant test results require the number of subjects to be in the order 
of 10 times the number of all possible combinations of parameters. This means 
that for our "detail" test where we tested 3 x 4 = 12 parameter combinations, 
approx. 120 test subjects would be needed. 

Statistical significance also is influenced by the homogeneousness of the sub- 
jects. If all subjects have very similar backgrounds, there will be a higher con- 
fidence level for the test results, but the results will only be valid for a smaller 
subset of possible users. If the subjects vary greatly from each other, results will 
be less significant but will apply over a wider range of persons. 

Also, to avoid learning effects, there should be as many datasets as the num- 
ber of trials for each subject. There need to be some additional training data 
sets for each subject to make it familiar with the task before the actual test 
starts. All datasets should be of similar difficulty. Since it may be impossible to 
get enough sets of real world data which fulfill all these criteria, it can be better 
to generate synthetic data. This also allows a precise variation of the parameters 
under investigation. 

The task must be apropriate for the test subjects. E.g., the task "determine if 
there is a tumor visible in a medical data set" can be suitable for an experienced 
physician but not for a layperson. 

The solution of a task should be easy to verify for the test personnel. Errors 
introduced by verbalization should be minimized. An example for this is the 
perception of angles. If test subjects are asked to sketch a perceived angle onto 
a piece of paper, this result generally is much better than a verbal estimation of 
the angle. 

Some general recommendations concerning psychological tests with graphics 
systems: 

1. Make a hypothesis and select a task which will be suitable to evaluate this 
hypothesis. 

2. Select a simple task which is not influenced by too many variables; try 
to eliminate any side effects which may influence the perfromance of your 
subjects. 
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3. Use a large number of subjects in order to minimize personal differences. 

4. Use a homogenious group of subjects with similar backgrounds. 

5. Design and carry out preliminary tests in order to improve your test setup, 
take plenty of time for this. 

6. Try to get the help of someone who has experince in psychological tests 
unless you have have this experince yourself. 

7. Know your statistical methods and your software packages for analyzing 
test results well. 

3 Conclusion and Future Work 

In this paper we have presented a qualitative scheme for Visualization Sytem 
Quality, we have reported on perceptual tests that were performed in order to 
gain more quantitative input for such a scheme, we have discussed the results 
of these tests, and we have given hints to test design in general. Especially 
the strong influence of user goals and user knowledge on the best settings for 
Visualization System Quality in each case has been demonstrated. 

There is need for further investigation and classification of rendering methods 
and other factors influencing Visualization System Quality. Only a quantitative 
metrics of Visualization System Quality will allow us to build systems which 
can automatically select the best combination of image quality and interaction 
quality on a given hardware configuration for each specific set of data and for 
each individual user. 

If we want to do it right, if we want to ensure the quality of scientific visuali- 
zations, the role of human perception in scientific visualization must be further 
investigated. 
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Abstract Computational steering is the ultimate goal of interactive simulation. 
Steering enables users to supervise and dynamically control the computation of an 
ongoing simulation. We describe CSE: a modular architecture for a computational 
steering environment. The kernel of the architecture is designed to be very simple, 
flexible and minimalistic. All higher level system functionality is pushed into mod- 
ular components outside of the kernel, resulting in a rich and powerful environment. 
For these modular components (called satellites) a uniform user interface metaphor 
for users, based on a tray of cards, has been used. The card tray metaphor is very 
simple to understand and provides users with a simple mechanism to organize and 
retrieve the tools. Several applications of the environment are shown. 

1 Introduction 

Computational steering is the ultimate goal of interactive simulation in which users 
have direct control over the parameters of a simulation and are able to supervise and 
dynamically control the computational process. The benefits of computational steering 
are well known. For example, according to Marshell et al. [1] : "Interaction with 
the computational model and the resulting graphics display is fundamental in scientific 
visualization. Steering enhances productivity by greatly reducing the time between 
changes to model parameters and the viewing of the results". 

There are three reasons why software tools for computational steering are more 
demanding than those found in traditional scientific visualization environments. First, in 
traditional visualization systems, a visualization expert can first prepare a visualization, 
which then is analyzed by the scientific user. Inherent to computational steering is 
that the user will be an active participant in the visualization loop. Furthermore, due 
to the exploratory nature of steering, these tools will be used iteratively. Hence, tools 
must be programmable and modifiable during the analysis cycle, preferably by the end 
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users. Second, end users are usually non-professional programmers who have neither 
the time nor the training to create a new interface. Therefore, the specification and 
usage of tools must be very simple and hide the underlying complexity of the system. 
Third, because of the inherent complexity of large scale simulations, effective usage of 
distributed computing resources must be guaranteed. 

In [2] we introduced CSE, an Computational Steering Environment that encourages 
exploratory investigation by the researcher of an ongoing simulation. The CSE kernel 
is designed to be very simple, flexible and minimalistic. Although we were able to 
demonstrate a number of applications, the CSE required substantial knowledge and 
expertise to use. In particular, it was tedious to develop individual tools and use these 
tools in concert. In this paper we focus on how original design principles of the CSE 
are used to overcome these difficulties. The governing concept is the modularity of 
tools. Instead of extending the CSE kernel, we extend the environment by defining new 
tools that build upon the basic CSE primitives. These tools provide functionality that is 
usually hard wired in the kernel of other environments. 

In section 2 we summarize the kernel and the underlying concepts of the CSE. In 
section 3 we present the underlying principles of the visualization tools - called satellites 
- and discuss the life cycle of a satellite. In section 4, a standard user interface metaphor 
based on a card tray is introduced. In section 5 the trigger manager satellite is introduced. 
Trigger management allows users to define the control of satellites. In section 6 we give 
an example of how all pieces of the CSE fit together. Finally, in section 7 we compare 
the CSE with other extensible visualization environments. 

2 Architecture 

An overview of the architecture of the environment is shown in figure 1. The architecture 
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Calculator 
Satellite 

D 

Fig. 1. The CSE architecture 

of the environment is centered around a data manager that acts as a blackboard for 
communicating values, and satellites that produce and visualize data. The purpose of 
the data manager is twofold. First, it manages a database of variables. Satellites can 
create, open, close, read, and write variables. For each variable the data manager stores a 
name, type, and value. Variables can be scalars or arrays. Second, the data manager acts 
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as an event notification manager. Satellites can subscribe to events that represent state 
changes in the data manager. Whenever such an event occurs the satellite will receive an 
event from the data manager. For example, if a satellite subscribes to mutation events on 
a particular variable, the data manager will send a notification to that satellite whenever 
the value of the variable is mutated. 

The foremost satellite is the PGO editor, an interactive graphics editing tool, [3]. 
The central concept for the graphics editor is the Parametrized Graphics Object (PGO): 
an interface is built up from graphics objects whose properties are functions of data in 
the data manager. Users sketch an interface and bind the graphics objects to variables 
by parameterizing geometry and attributes with data in the data manager. Simulations 
may drive the interface by mutating the data bound to the graphics objects. Similarly, 
users may drive the simulation by interacting with graphics objects. Hence, a two-way 
communication between graphics and data in the simulation is supported. 

The design of the CSE kernel was driven by a number of underlying concepts. First, 
low-level primitives were used exclusively. The CSE kernel uses a simple data model 
and graphics objects. The interfaces to these are familiar to the satellite developer and 
user: a UNIX-like I/O library is the API to the data manager and a MacDraw-like editor 
for the graphics. Second, no higher level semantics are defined for data and graphics. 
For example, the data manager provides no support for defining and maintaining data 
dependencies between variables. As a result, the environment is general and flexible. 
Third, all operations in both the data manager and the graphics editor are based entirely 
on data. Dragging, picking and text input are translated into mutations of data. Finally, 
satellites rely on late binding of variable names. Name matching is used to bind names 
in a satellite specification to named variables in the data manager. As a result of late 
binding, it is possible to incrementally define new visualizations of the data output by 
the simulation, while the simulation continues to run. 

We were able to demonstrate a number of applications using the CSE kernel. How- 
ever, developing satellites was a tedious task. Developers needed to implement all 
aspects of the interface to the satellite, including the interoperability and user interface, 
from the low level primitives. Moreover, satellite usage was not straightforward. For 
example, there was no support for combining satellites into a network of cooperating 
tools, and each satellite had a different style of interface. In the next section we de- 
scribe a standard satellite framework that was defined to overcome these problems. The 
framework defines the behavior of an individual satellite and how it interfaces with its 
environment. In section 4 we describe the standard user interface for the satellites. 

3 Satellite framework 

An abstract satellite is shown in figure 2. Basically, it consists of an operator that 
transforms input data into output data. Control determines when this operation has 
to be carried out, or, in other words, when a satellite is triggered. By defining control 
externally, instead of using a fixed, built-in control-strategy, a wide variety of cooperation 
styles between satellites can be realized. The actual definition of the operation is defined 
by an additional set of parameters. Parameters are manipulated through the satellites user 
interface: via predefined widgets or by interactions with geometry within the PGO editor. 
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Three phases in the life cycle of a satellite are distinguished: satellite development, edit 

datain dalaout 

Operation 

Fig. 2. Interfaces to an abstract satellite. 

mode, run mode. During satellite development, a developer will design and implement 
an operator which may or may not be parameterized. The operator is packaged into a 
satellite. Examples of operators are a sheer (selection of data), a calculator (calculation 
of derived data), and the PGO editor (the visualization and user input of data). 

In edit mode the user specifies a parameterization of the operator. This is done by 
entering names for each parameter of the operator. Examples of parameterizations are 
for the slicer the name of the input variable, the name of the output variable, and the 
names or values of the slice bounds; for the calculator a mathematical expression; and 
for the PGO editor a set of graphics objects, parametrized to names of variables. 

In run mode the satellite will bind parameter names to values in the data manager. 
Name matching is used to bind parameter names to named variables in the data manager. 
Each triggering of the satellite will result in the re-evaluation of the operator with new 
input data and the effected output values will be written to the data manager. In run 
mode, the slice operator will be re-evaluated and the output wil be written whenever the 
input variable or a slice bound is mutated. For the calculator, if a name in the right hand 
side of the expression is mutated the left hand side is re-evaluated and written. Finally, 
when a name in the drawing of the PGO editor is mutated, either by changes in the data 
manager or by interaction on a graphics object, the drawing will be re-rendered. Users 
will typically iterate a number of times between edit and run mode. 

Development and usage of the satellite is simplified through standardization. A 
satellite development environment is offered, that includes high level libraries and tools 
that hide the underlying complexities of the satellite's interface. In addition to the 
development environment, a standard user interface metaphor to a satellite is provided. 
Standardization on the user interface of the satellite reduces the learning time to operate 
a satellite. 

4 The card tray as a user interface metaphor 

All satellites in the CSE adhere to a simple user interface metaphor. The metaphor is 
a tray of cards, with a browsing mechanism to iterate through the cards. Each tray 
implements a class of operations and each card represents a particular parameterization 
of the operation. On the left side of figure 3 the user interface for the slicing satellite 
is shown. It consists of three panels, of which the top and bottom panel are the same 
for all satellites. The top panel is responsible for the connection administration with the 
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data manager. Every satellite contains a variable browser and trigger editor. The right 
side of figure 3 shows the popup panels for the variable browser and trigger editor. The 
variable browser can be used to define or inspect properties of variables that belong to 
the satellite. The trigger editor is used to specify variable names that will control the 
satellite. By default a unique variable name will be generated, but users can change this 
to any name. The details of triggering and trigger names will be explained in section 
5. The bottom panel of the card tray is responsible for the card administration. In edit 
mode, users can add or delete operators by creating or destroying cards. In run mode, 
users can browse through the tray and pull cards out of the tray. 

The middle panel contains the operator specific user interface. In figure 3 the user 
interface consists of specifying an input and output variable and a slice name. The slice 
name itself is parameterized with four variable names and two constants. There are a 
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Fig. 3. The slicer card tray with variable and trigger browser. 

number of advantages in choosing a simple user interface metaphor: 

• Since the interface of the satellite is standardized, the user interface to this func- 
tionality is the same for all satellites. Uniform variable and trigger editors are 
generated giving powerful browsing facilities for names local to each satellite. 
These editors provide the functionality needed to interface the satellite to the rest 
of environment. Satellite developers need only to supply the functionality of the 
operator itself. 

• The card tray administration is also standardized. The user interface to this 
functionality is the same for all satellites and is generated automatically. 

• Users have a standardized way of interacting with the functionality provided by 
the card tray. Only the user interface to the operator must be learned. This 
facilitates the user's task of learning to use new satellites. 

• The use of card trays reduces clutter of the screen. Push and pop functions allow 
for selective control on the number of simultaneously visible cards. The card tray 
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metaphor is scalable in the number of cards in the tray. Efficient card browsing 
facilities can help locate individual cards within the tray. 

The CSE contains a large collection of general purpose satellites. For example, 
dmpgo2D and dmpgo3D are the general purpose graphics editors, dmslice allows data 
selections, dmannot is a generalized annotation satellite, dmcalc is a calculator for 
scalar and array values, dmtrans is a fourier transformation satellite, dmtimer provides 
a general purpose clock, dmscheme is a satellite that interprets Scheme scripts, and 
dmlog logs a history of values. The development time of these satellites was greatly 
reduced by the standard framework. 

5 Trigger manager satellite 

Satellites cooperate via the basic input/output mechanisms that are provided by the data 
manager for variables. Writing to a variable will cause an event to be sent to all satellites 
subscribed to that variable. This mechanism is used in two ways. First, the user can 
specify that only if one particular variable, the input trigger variable is changed, the 
operator has to be re-evaluated. The action of operator re-evaluation is called triggering. 
Second, if no such trigger variable is specified, then upon each mutation of any input 
variable the output variables are re-evaluated. The satellite will subscribe to all its input 
variables, and every mutation will cause the satellite to re-evaluate the operator. 

The user can also specify an output trigger variable. This variable is written to each 
time the operator has been re-evaluated, and can be used to link the control flow for 
satellites. 

Using mutations on data to trigger satellites provides tremendous flexibility. How- 
ever, this flexibility also introduces additional complexity. Users must provide distinct 
output trigger names of the producing satellite which, in turn, must match the input 
name of the consuming satellite. This is not a problem when using a few satellites, but 
becomes unmanageable when many satellites are involved. 

A trigger manager satellite, dmTM, has been developed to simplify the definition 
of trigger variables. The dmTM satellite allows users to define triggers by linking two 
named variables from independent satellites together. When one variable is written, 
the trigger manager will copy its value to the second variable. The effect is that the 
satellites owning the second variable will get a mutation event from the data manager. 
Notice that copying can be potentially inefficient when applied to large data values. In 
practice, however, only scalar variables will be used as triggers. 

Linking two variables defines a data dependency between these two variables. Link- 
ing a number of variables results in an undirected graph, which we call the trigger graph. 
Users may build and edit the trigger graph whenever satellites are connected to the data 
manager. The task of dmTM is to manage the trigger graph. 

In addition to managing triggers, dmTM is used to monitor the flow of data between 
satellites. This is done by recording the satellite that has written to a variable, resulting 
in a directed flow dependency graph of write operations on a variable. 

The user interface of the trigger manager satellite can be implemented in many 
ways. However, since the CSE already provides a general purpose graphics editor, the 
user interface of dmTM is implemented as a card in the PGO satellite. A snapshot of 
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the satellite configuration of the smog prediction model discussed in section 6 is shown 
in the appendix. The nodes of the graph represent the satellites connected to the data 
manager. The blue edges indicate data flow dependency. A blue arrow indicates a 
directed data dependency. Green edges indicate the trigger graph. The trigger graph can 
be edited at any time. The panel on the top right provides additional variable information 
of a selected satellite. The panel on the bottom is the interface to the trigger graph editor. 

The most important advantage in having a satellite, rather than the kernel, manage the 
trigger and dependency graphs is that synchronization is not intrinsically defined within 
the kernel of the CSE. Alternative synchronization schemes can be realized by replacing 
the trigger manager satellite. An additional advantage is that the visual representation 
and interactions with the underlying data dependency and trigger graph is a card in the 
PGO editor. The user interface to the graph can be modified at any time. 

As an illustration of the functionality provided by dmTM, consider the three cases 
illustrated in figure 4. This typical satellite configuration consists of a simulation 
satellite, a data mapper satellite and the PGO editor. The time dependent simulation 
dumps its output to the data manager after every time step. In the configuration on 
the left, the simulation will run asynchronously with the PGO editor. Data may not 
be visualized, as the simulation may be dumping data at a higher rate than the mapper 
or PGO can consume. In the configuration in the middle, the simulation will run 
synchronously with the PGO editor. The PGO editor will trigger the simulation after it 
renders one frame. In the configuration on the right, the satellite dmbutton will trigger 
the simulation,   dmbutton is triggered manually.   By editing trigger graph, the user 
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Fig. 4. Three different synchronization configurations. 

can switch between the three configurations while the simulation is running. When 
the simulation is in a non-interesting state, the user may wish to run the simulation 
asynchronously. When the simulation is in a semi-interesting state, the user may wish 
to run synchronously. Finally, when the simulation is in a critical state and each time 
step requires careful study, the user may wish to trigger the simulation manually. 

6 Application 

The CSE was applied to the simulation of a model for smog prediction over Europe. 
The full blown model forecasts the levels of air pollution, which is characterized by 
approximately 104 reactions between ca. 70 species. For example, the concentrations 
of ozone (O3), sulphur dioxide (SO2) and sulphate aerosol (SO4) are calculated. The 
vertical stratification is modeled by four layers; the surface layer, the mixing layer, the 
reservoir layer, and the upper layer. The physical and chemical model is described by a 
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set of partial differential equations that describe advection, diffusion, emission, wet and 
dry deposition, fumigation, and chemical reactions. 

An important numerical utility to solve these equations is local grid refinement. 
This technique is used to improve the quality of the model calculations in areas with 
large spatial gradients (for example in regions with strong emissions). The tradeoff to 
be made in local grid refinement is calculation accuracy versus computation speed. 

We have used the CSE to steer various aspects of the smog prediction simulation. 
We name a few of these aspects: control of the tolerance value that determines where 
refinement is necessary; editing of the emission data; control over simulation time; and 
the use of a bounding box as a concentration probe. The coordinates of the bounding 
box steer the slicing satellite, which in turn triggers the calculator and logging satellites. 
The result of the logging satellite triggers the PGO editor. 

In the appendix a snapshot of a step in the simulation is shown. Satellites can easily 
be configured to address this question. The graph on the lower left shows a log of 
the number of cells that were refined and the maximum Courant number. The dmlog 
satellite records the data for display. Hence, the effects of changes on the tolerance or 
the simulation time will be displayed immediately. 

Similarly, average concentration probes of a region of interest can be defined through 
the combination of the dmslice, dmcalculator and dmlog satellites. The user specifies 
the region of interest is specified by dragging the red bounding box. dmslice slices the 
region of interest, dmcalculator calculates the average of the sliced area, and dmlog 
maintains the log. The log of these variables is plotted in the lower right. Notice 
that values output from dmslice, dmcalculator, and dmlog are derived variables and 
are not variables in the simulation. A different operation on the area of interest, for 
example the maximum concentration, can be plotted by simply changing the expression 
in dmcalculator. 

This particular configuration runs at approximately three frames a second on a mod- 
ern workstation. The amount of data involved is substantial. Depending on tolerance 
level, the amount of data may vary between one and four megabytes per time step. The 
simulation has 447 time steps. Approximately 90 percent of the CPU time was taken 
by the simulation satellite. The remaining 10 percent was used by the other satellites. 

7 Comparison with other systems 

Many research and development teams have designed and implemented interactive visu- 
alization environments. Giving an in depth analysis of other visualization environments 
is outside the scope of this paper. Instead, we discuss only some issues that resemble 
those in the CSE. Many of the concepts in this paper have their counterparts in other 
systems. However, their combination and application to steering is novel. 

In data flow environments operators are combined by linking output and input 
ports. Operators are executed upon availability of data on the input port. Operators 
are packaged as modules, and most environments provide high level tools for building 
modules. IRIS Explorer [4] is an example of an advanced data flow visualization 
environment. However, there are many fundamental differences between IRIS Explorer 
and CSE. First, direct manipulation is very difficult to achieve in data flow environments. 
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In IRIS Explorer there is no one-to-one relation between geometry and the corresponding 
Lattice object in an upstream module. This makes direct manipulation of objects in the 
simulation very tedious. In contrast, with CSE's binding mechanism direct manipulation 
is ensured. Second, IRIS Explorer's mechanism to manage data transport differs from 
CSE's. Global and local controllers are configured as a result of the topology of the data 
flow map. Finally, in contrast to IRIS Explorer's rigid and hard-wired firing algorithm, 
CSE's control rules are very flexible and are managed by a satellite. Many other IRIS 
Explorer functions are built in the run-time system. 

VIEW [5] is a system that is based on a tight coupling of on-screen geometry 
with a database. A data drawing tool allows users to define composite geometric 
objects by selecting primitive graphical components from the database. In addition, an 
event-definition mechanism allows the user to customize interaction sequences. A tool 
scripting language is used to specify these interaction sequences, and simple selection 
functions are offered to bind names in the scripts to geometry in the database. Event 
monitors are used to execute scripts. A principle difference between VIEW and CSE 
is event handling. VIEW provides event monitors to customize interaction sequences. 
Events in VIEW include changes in input device state and picking of geometry. CSE 
notion of events is based exclusively on state changes within the data manager. Satellites 
may receive events by subscribing on the state change. 

Spreadsheet Images [6] is a data visualization system based on spreadsheets. Cells 
may contain graphical objects, widgets, or formulas written in a scripting language. 
The output of a cell can be referenced by other cells, resulting in a number of depen- 
dency relationships between cells. These dependency relationships are represented by 
a directed acyclic graph which, when a cell is modified, is updated through a predefined 
firing algorithm. A similar aspect with Spreadsheet images is the strong emphasis of a 
common user interface metaphor. Spreadsheets are conceptually easy to learn, and the 
screen space is used very effectively. In contrast, however, CSE groups operators with 
similar functional behavior in one card tray instead of scattering them throughout the 
spreadsheet. 

GRASPARC [7] has defined a model of a problem solving environment. It defines 
an architecture in which tools for computation and visualization are embedded in a 
framework which assists in the management of the problem solving process. A key 
component in this framework is based on the History Tree concept, which reflects 
the search process used be a scientist in reaching an optimal solution to a simulation. 
GRASPARC includes an integral data management facility which allows an audit trail to 
be recorded. Although both GRASPARC and CSE share the common goal of providing 
tools for interactive simulation, the approaches and focus are quite different. For 
example, both environments are modular and open, allowing new tools to be added 
without much effort. However, GRASPARC has chosen to place substantial emphasis 
on support of a History Tree concept, allowing a end useer to explore parameter spaces. 
CSE does not provide such support, although such functionality would be added by 
developing an additional satellite. 



266 

8 Conclusion 

CSE is a modular computational steering environment that provides an interface between 
a researcher and an ongoing simulation. The interface consists a wide range of coop- 
erating satellites that implement various visualization functions. The kernel of the CSE 
architecture is designed to be very simple, flexible and minimalistic. All higher level 
functionality is pushed into the satellites, thus ensuring that a rich environment can be 
developed yet maintaining the simplicity and flexibility of the underlying architecture. 

The notion of modular satellites is certainly not new, and has been applied to many 
visualization environments. However, CSE takes this modularity one step further by 
defining systems functions in satellites. These system functions, which are usually 
hard-wired in the runtime systems of other visualization environments, can be tailored 
to meet the specific needs of the simulation environment. We presented dmTM as an 
example of a systems satellite. 

We have presented a standard user interface metaphor for all satellites. The card tray 
can be viewed as a generic operator and individual cards are viewed as parameterizations 
of the operator. The card tray is easy to understand since it provides an intuitive metaphor 
for organizing and retrieving cards. 
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Abstract. Visualization systems based on the dataflow paradigm are 
enjoying increasing popularity in the field of scientific computation. Not 
only do they permit rapid construction of a display application, but they 
also allow the simulation to be incorporated, giving the scientist the 
opportunity to interact with the calculation as well. However, if these 
systems are to realise their full potential for problem solving, additional 
support must be given for the iterative investigation which characterises 
this activity. This paper will review these systems, identify some of their 
shortcomings as problem solving environments and describe current work 
which addresses these deficiencies. An implementation of our ideas for 
the IRIS Explorer system will demonstrate their effectiveness in a study 
of gas turbine exhaust emissions. 

1 Introduction 

Visualization has been a tool of the computational scientist from the time of the 
first mainframes, through the rise and fall of the minicomputer and nowadays 
in conjunction with powerful desktop workstations. In the early days programs 
would run overnight, outputting a file of results which in turn was processed 
by a specially-written graphics program. But with the change in computing en- 
vironment has also come a change in our way of working; the trend has been 
to move away from application-specific visualization in favour of re-usable soft- 
ware packages and, most recently, towards the so-called Modular Visualization 
Environments (MVEs). 

This paper will give an overview of these systems - what they offer in vi- 
sualization and, moreover, as Problem Solving Environments (PSEs). We then 
identify some of their shortcomings in this respect and describe current work 
to extend one such system. The tools developed will be demonstrated in a case 
study taken from reaction chemistry and the paper concludes with some possi- 
bilities for future work. 

1.1  Modular visualization environments 

Cameron [1] gives a useful summary of what constitutes an MVE - all tend 
to consist of building blocks, or modules, performing separate functions. Blocks 
are connected by links, typically within a visual programming environment, so 
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that together they describe the series of transformations the data will undergo. 
These systems allow visualization program development without programming 
knowledge, though there is still a learning curve involved in their use. Four 
visualization systems in common usage can be classed as MVEs; these are AVS 
[2], IRIS Explorer [3], IBM Data Explorer [4] and Khoros [5]. 

A key feature of MVEs which contributes to their growing popularity in sci- 
entific computing is their extensibility, allowing the simulation process to be 
incorporated into the environment and the results delivered directly into the 
visualization pipeline. Mathematical parameters can be implemented as widgets 
on the simulation module, giving the opportunity to steer [6, 7] the calculation 
and perhaps halt part-way if the visualized results so indicate. 

MVEs make use of the dataflow paradigm [8, 9], where processes are cate- 
gorised as performing filter, map or render functions. Input data can be read 
in or generated within the environment if steering a calculation. The original 
dataflow model is an excellent paradigm for visualization but has limitations as 
an environment for problem solving. One is the inherently uni-directional flow 
which makes it difficult to query data held at, say, the filter stage, by interact- 
ing with a render process. Another is the difficulty in preserving previous states 
of the pipeline during the iterative solution of a problem - for example, when 
comparing results with those from an earlier run employing different parameters. 

As MVEs develop there have been improvements made which can be seen 
as an extension of the dataflow model. For example, envisioning data flowing 
upstream as well as downstream is the basis of current systems' image probing 
capabilities; that is, display functions which return a geometric position to an 
earlier visualization process in order to retrieve data values. Likewise, facilities to 
perform animations by varying process parameters in sequence can be thought 
of as adding loop constructs to the dataflow model. 

Both of these extensions go some way towards supporting the iterative process 
which is inherent in problem solving, but even modern MVEs fall short of the 
comprehensive facilities which are needed for this activity. Steering applications 
of the type described remain a rarity and MVEs tend not to be used as PSEs - 
hence the motivation for our current work. 

1.2 GRASPARC 

GRASPARC (GRAphical Support for PARallel Computing [10]) looked at the 
way an investigation progressed and put forward the history tree as a model 
for computational problem solving. The objective was to record information 
(input parameters and output results) as the simulation progressed, so that 
the calculation could be stopped at any stage and rolled-back to some previous 
point. Here a modified set of parameters could be specified based on the recorded 
set, and the simulaton restarted. This created a branch point in the tree. An 
important feature was that the tree as well as the data was recorded, providing 
an audit of how the problem had been tackled. 

GRASPARC treated the simulation and visualization processes as external to 
a central, invariant core of software which provided the tree-oriented database 
and user interface. Interaction by the scientist was by means of the tree - for 
example, "start a new branch here", "halt this branch" , "start a new tree" and 
so on (Figure 1). Given the chosen architecture, it followed that GRASPARC 



269 

History Tree Manipulator 
Legend: 

GRASPARC 
Management System 

:  dat* channel 

■  control channel 

Fig. 1. The GRASPARC Architecture 

adopted its own data model, so Application Managers were needed to convert 
the external numerical and visualization formats into GRASPARC format. 

A number of demonstrators were constructed during the GRASPARC project 
to demonstrate the validity of the approach and some of these used MVEs as 
their visualization component. The problems tackled ranged from computational 
physics, computational fluid dynamics and planetary motion [10], to reaction 
chemistry [11]. Whilst successful in terms of their problem solving approach, a 
considerable development effort was needed to construct the Application Man- 
agers and configure these demonstrators. The thrust of our current work, there- 
fore, has been to find a more accessible means of delivering this type of support 
to potential users. 

2 HyperScribe - problem solving support for dataflow 

Brodlie and Wright [12] describe a number of ways of delivering this support. 
One suggestion is to turn the GRASPARC architecture 'inside out', that is, 
instead of having an MVE attached to the GRASPARC framework, we could 
put GRASPARC functionality inside the MVE. We have investigated what this 
entails within the dataflow paradigm and have implemented a first version for 
IRIS Explorer in the form of the HyperScribe module. Wright and Walton [13] 
furnish a detailed description of the implementation - here we give just a brief 
overview in order to present our case study. 

2.1  Architecture 

GRASPARC functioned by passing messages between the various components 
so that the central management system could direct the attached applications 
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Fig. 2. The HyperScribe architecture 

to perform tree-building operations. For example, if the user wanted to compute 
a new branch, the data store would be requested to provide the restart data and 
pass it to the computational part, which in turn Would generate new data to 
be passed back to the data store. The processes in a dataflow system, however, 
are activated only when new data arrives; the potential for directing the flow of 
data is thus very limited by comparison with a GRASPARC system. 

As we might expect in a dataflow environment, the key to resolving this diffi- 
culty is to concentrate on the data rather than the tree operations. HyperScribe 
has therefore been designed around the concept of data inputs and data outputs, 
as the architecture in Figure 2 shows. 

The price paid for this simplification is that the user must decide which data 
sets to store and how to place them to form the tree - functions that were 
formerly carried out by the GRASPARC management system. Similarly the 
user must decide which data sets to retrieve and how to route them to other 
modules in order to effect a computation restart, or to perform visualization of 
previously computed data. 

2.2 Implementation 

The IRIS Explorer implementation of this architecture consists of two parts: the 
first part is the HyperScribe module itself which deals with the storage of the 
data and the physical representation of the tree. The second part is a dedicated 
Render module which draws the tree and handles the user's interaction with 
it when they specify which data to store or retrieve. Communication between 
the two is by means of the Geometry and Pick datatypes. Data inputs to the 
HyperScribe part are implemented as text slots on the left of the user interface 
panel, whilst the corresponding data outputs appear as text slots on the right 
hand side. The two modules can be grouped together if desired, as shown in 
Figure 3. 

Data and problem independence. Using text slots within HyperScribe rather 
than integers, floats or doubles ensures that any type of scalar parameter can 
be stored since all are first converted to a character string. A slot may also 
be used to record some comment typed in directly by the scientist to describe 
the current state of the experiment. For non-scalars such as lattices, pyramids, 
images or geometry the data must first be passed through a WriteLat, WritePyr, 
Writelmg or WriteGeom module to generate a file - only the file name need then 
be stored by HyperScribe. Furthermore, when HyperScribe is first launched in 
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Fig. 3. The HyperScribe/Render module combination 

the map the user is given the opportunity to re-label the text slots however they 
wish, so the module is completely problem-independent. 

Data capture and retrieval. HyperScribe's set of input text slots capture 
parameter values and the file names of any associated data sets delivered from 
the upstream simulation. The dataflow model ensures that each new occurrence 
upstream is delivered to HyperScribe immediately it is generated, but the final 
decision on whether to record the information rests with the experimenter. If it is 
to be recorded, an add event is signalled at an appropriate point on the tree. This 
is received by HyperScribe, which enters the input information into its database 
and generates a sphere as the physical representation of this stored data set. The 
location of the sphere is determined by the coordinates of the mouse cursor when 
the event was generated. Pairs of spheres can be linked together by cylinders in 
order to develop the tree structure. 

Subsequent retrieval of the information is by interaction with its representative 
sphere. When a retrieve event is specified for a sphere, the stored information 
is found in the database and delivered to the set of output text slots, from 
where it can either flow down the map for visualization, or upstream to restart 
some computation process. Since retrieved data flows immediately from the text 
slots as soon as it is delivered, we have also found it useful to implement an 
inform event. This behaves just like retrieve but delivers values to the input 
side of HyperScribe's interface. Thus it is possible to browse the tree to find a 
particular data set before committing the information to flow into the map. 

The database exists in shared memory whilst the module is running but Hy- 
perScribe also allows for it to be written to file between sessions. When the 
module is restarted the user is given the option to continue with a previous 
experiment, or to start afresh. 

3 Case Study 

Our case study is taken from the field of chemical kinetics, where the compu- 
tational task is to determine the time-varying concentrations of a number of 
chemical species taking part in a reaction. The system is modelled as a set of 
ordinary differential equations, one for each species plus possibly temperature 
and pressure. 
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Fig. 4. The SENKIN module user interface panel 

3.1  Computation component 

The physical process being modelled is the combustion of fuel in gas turbine 
based Combined Heat and Power systems, with particular reference to the impact 
on different exhaust gas concentrations of changes in operating conditions [14]. 
In this paper we will pay particular attention to the conversion of NO to NO2 at 
different initial temperatures of the gas mixture, since the relative concentrations 
of these are significant when considering emission limits for such systems. 

The computation component has been developed from the SENKIN program 
distributed as part of the CHEMKIN system [15] by Sandia National Labo- 
ratories, California. For this study we have implemented SENKIN as an IRIS 
Explorer module which can be used in the Map Editor along with any of the 
system-provided modules. SENKIN's original keyword input file has been re- 
placed by a user interface panel with interactive widgets (Figure 4), whilst the 
output results comprising species concentrations and sensitivities are generated 
in the form of the IRIS Explorer lattice datatype. The user specifies their prob- 
lem by altering widget values and starts the computation by pressing the Run 
button. Once the integration is completed the results flow down the map and 
are visualized immediately. Experimentation with the input parameters is very 
easy - for instance, a sequence of time traces (plots of species concentrations vs. 
time) at various temperatures can be created and visualized within just a few 
minutes. 



273 

Fig. 5. Offline visualization of time series plots 

3.2  Problem solving support 

Having made a quick pass through the time traces for a number of temperature 
values, the experiments are re-run in a systematic way using HyperScribe to 
record the initial gas composition, temperature increasing by 50K intervals, pres- 
sure and the file name in which the corresponding lattice of results is recorded. 

In figure 5 HyperScribe has been combined with its Render module to give 
a simplified composite interface, where only the retrieved temperature and file 
name parameters are exported to the map. The upper connection carries the 
file name to the standard ReadLat module, whose lattice output then flows into 
the visualization pipeline. The lower connection carries the corresponding tem- 
perature value used to title the plot. Using HyperScribe's data retrieval facility 
we can thus traverse the tree to bring back the results and view them offline in 
flipbook style. 

Individual SENKIN outputs represent species concentrations as a function of 
time, whilst the axis of the tree in Figure 5 can be thought of as denoting the 
changing temperature parameter. It follows that if we now combine a number 
of datasets from the tree, the composite result will represent concentrations 
as a function of time and temperature. We achieve this using a module called 
Daisy Chain, which has been written to concatenate recalled lattices. The user 
moves along the tree specifying retrieve events for the required datasets, and 
once the traverse is completed a Switch is opened to pass the data into a contour 
module (Figure 6). 
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Fig. 6. Concatenating data sets to make a 2D plot (NB. the 'Filter' module in this 
map is just a collection of three standard modules grouped together for greater clarity) 

3.3  Results 

Figure 6 shows the contour plot of NO concentration resulting from the orig- 
inal experiment specifying temperatures at 50K intervals. The area of greatest 
interest is a region of low NO concentration (and correspondingly high N02 

concentration) lying between 700 and 800K, which is worthy of investigation at 
a greater resolution of the temperature parameter. However, no data is available 
so HyperScribe is used to reset the SENKIN module parameters for the 700K 
experiment. The temperature is increased to 710K, new data is generated at 
10K intervals and is recorded by HyperScribe alongside the original data. To re- 
inforce the idea of having re-run the simulation in order to insert data, the new 
data sets are recorded as a branch rooted at the original 700K set. The process 
is repeated from 800K and once the requisite area of data has been 'filled in', 
the tree is traversed again to create the composite data for NAGContour, but 
this time including the branched data. Figure 7 shows the new tree and set of 
contours, with the minimum of NO concentration now clearly pinpointed. 

4 Conclusions and further work 

An architecture for problem solving support within a dataflow environment has 
been proposed and an implementation demonstrated in the IRIS Explorer MVE. 
Results from the case study show that the resulting module is readily incorpo- 
rated into the visualization pipeline and that complex sequences of parameters 
and results can be managed using it. 

Future work will include developments to HyperScribe, such as a facility to 
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Fig. 7. A 2D plot with new data between 700 and 800K 

delete stored information, and the addition of further tools like the Daisy Chain 
module to collate data sets retrieved from the tree. We are also working with the 
COVISA project [16] at the University of Leeds, which is developing collaborative 
visualization facilities, and are investigating the potential of paradigms other 
than the history tree for problem solving. 
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Abstract: The hidden Markov model (HMM) technique has become very 
popular in the signal and data processing areas during the last 10 years. It is not 
easy, however, to understand its complex nature that is 'hidden' behind a 'veil' 
of two probability functions, one associated with the given space of data 
parameters and the other with the temporal data flow. Our system, named 
Visual Markov, aims at removing the veil by visualizing the continuous density 
HMM and displaying its individual states. Moreover, it is able to show the 
iterative process of HMM training, step after step. In a similar way, also the 
HMM based classification can be presented. The system is a highly illustrative 
tool that is well suited both for research and teaching purposes. In the article, 
we demostrate its application in the speech recognition domain. 

1. Introduction 

The hidden Markov model (HMM) technique [1,2] has been used in data and signal 
processing since 1970s. Nowadays, its largest application domain seems to be speech 
recognition, where its introduction in mid 1980s meant a breakthrough toward more 
accurate and more reliable voice-input systems. 

Most of the recent speech recognition systems are based on continuous density hidden 
Markov models (CDHMM). The CDHMM relies on continuous probability functions 
rather than on discrete distributions as it was in the older, discrete, version of the 
HMMs. A practical implementation of this technique, however, is not an easy job. 
That is why several development kits for building and investigating CDHMM systems 
have been designed. Some of them are commercially available, e.g. the HTK software 
by Entropie [3]. These kits are widely used, particularly, at universities for teaching 
and research purposes. 

The development kits offer their users many advantages; allowing them an easy 
design of an experimental recognition system and providing them by testing data as 
well as by scoring tools. A student or a researcher can start first experiments shortly 
after reading a manual. What most of the users really miss, however, is a deeper 
knowledge of the modelling technique itself and better understanding of what actually 
happens when a model is being trained or used in classification. Thus the substance of 
the HMM and the events inside the models remain 'hidden' for many people who 
employ this popular technique in a black-box manner. 



278 

Learning more about the CDHMMs is not just a matter of understanding the 
theoretical foundations of the HMMs but also the only way to make any improvements 
in HMM recognition systems. On the other side, it is quite difficult to investigate the 
model internal structure, mainly because of its non-trivial formal description, many 
parameters and complex evaluation algorithms. Up to the authors' knowledge, neither 
an educational tool nor an HMM study system offering an insight into the heart of the 
models has been presented yet. 

In order to cover this gap we have developed a system called Visual Markov. It is 
primarily aimed at graphic presentation of the CDHMMs. The system enables its user 
a detailed investigation of individual states in a so called left-to-right model, i.e. in the 
form that is standardly used in word modelling. The graphically oriented software 
displays both the multi-dimensional state ouput functions as well as the state-to-state 
transitions. Animated time snaps offer a highly illustrative picture of dynamic 
processes that take place inside the model during its training or matching with an 
unknown word. A wide range of system options allows to conduct various 
comparative experiments, which gives the user answers on many frequently asked 
questions about the CDHMM nature. The system may also serve as a helpful research 
tool for analysing and improving the performance of a practical recogniser. 

The article is laid out in the following way: The next section gives a brief overview of 
the hidden Markov model technique and its application in speech recognition. In 
sections 3 and 4, essential basic tasks of the Visual Markov software are presented; 
namely the training of a model and testing the model. Some implementation issues are 
briefly dealt in section 5. In the concluding part we mention the system evaluation that 
has been done both in our lab as well as at several other institutions abroad. 

2. HMM and speech recognition 

The main problem in speech recognition is a very high level of variability in speech 
signals, both in the time and frequency domain. This is caused by the large speaking- 
style variability among people as well as by many other factors, like different 
microphone and input-device transfer characteristics, environment noise, etc. This 
variability must be handled by a sophisticated statistical approach. This is just the 
case of the hidden Markov model technique. 

2.1 Models for discrete-utterance recognition 

Let us introduce the HMM approach on a discrete-utterance recognition (DUR) task, 
a simplified subtask of the general speech recognition problem. Within the DUR, an 
utterance (either a single word or a word sequence) is spoken separately, i.e. it is 
preceded and followed by short pauses. Each vocabulary utterance has got its model 
in the recognition system. The system classifies an unknown utterance by matching 
its parametric representation with all the models. The goal is to find the most likely 
match. 
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transition and output probabilities. From outside we may but guess the process inside 
the model and have to rely on a maximum likelihood estimation. 

2.2 Recognition with the HMMs 

Within the recognition process, a measure of similarity between the classified 
utterance and each of the models is evaluated. The measure has a meaning of the 
likelihood that the utterance, represented by the vector X, is generated by the given 
Markov model. The log likelihood of model \P is evaluated for the most probable 
state sequence Q* that is determined using the Viterbi algorithm [2]: 

F 

ln/»(X|¥)    =X(lnV.*/ + 1«V)]'       Where qf e Q* andflwi =1       (3) 

The likelihood measure is calculated for each of the N models representing the 
complete vocabulary. Finally, the utterance is classified as belonging to model n*, 
when: 

n* = argmax/'(X|xP„) (4) 
n=l..N 

i.e. if the match between the X and model ¥„, yields the maximum likelihood score. 

2.3 Training the HMMs 

While the classification itself is not so difficult problem, creating the models is a 
much more complex task. If we want the model to represent all the variabilities of the 
given utterance, we must train the model on a large material. Usually some tens of 
samples of the same utterance spoken by different speakers are needed to produce a 
good model. 

The goal of the training is to estimate the parameters A, w, X a C by applying the 
maximum likelihood estimation (MLE) principle. It consists in the search for the 
parameter values that maximize the sum of likelihoods computed (by eq. (3)) for all 
the training data. Generally, the search is performed in two phases: 1) initial 
estimation and 2) reestimation. In each of the phases several iterative steps are 
necessary until the parameters reach a stable state. For the reestimation, the well 
known Baum-Welch algorithm [2] is used. 

3. Visualization of the training process 

A researcher or a student involved in training a continuous density hidden Markov 
model usually asks several essential questions: 



280 

Hidden 
Markov 
Model 3 

\ aS-lS-l /---\ ass 

4 1 4        I 14    1 I 4   4 4 4   4 4 
Signal 

Frames 
1 2 t F 

Fig. 1. A speech signal assumed as being generated by a left-to-right HMM 

In a standard speech processing system, the utterance to be classified is represented 
by multi-dimensional vector X = (xu...xf,...xF) consisting of Fframe vectors x, 
each being composed of P signal features \ = (xl,...xp,...xP). Using the hidden 
Markov model approach we suppose that vector X has been generated by a model 
with the simple left-to-right structure shown in Fig.l. Such a model has S states 
interconnected by transition paths that are either self-loops or moves to the adjacent 
state. The transitions are described by their probabilities ay: 

a^Probfo, =ß,k,_, =Q) (1) 

Each state generates an output that is characterised by state output function bs. In the 
case of the CDHMM, the output is a continuous probability density function defined 
as a mixture of M normal distributions: 

M. 

*,(*) = £ w 

m=\ J(2n)pdeti 
exp[-Ux-xsJ

rC-s
]

m(x ,)] (2) 

In most of the practical DUR systems, the models belonging to individual utterances 
have the same number of states. The utterance-specific characteristics are stored in 
the matrix of transition probabilities A = {ay} and in the output function parameters 
xsm (the mean), Csm (the covariance matrix) and wsm (the mixture-weighting 
factor). All these parameters must be estimated during a model training procedure. 

Let us explain the attribute 'hidden' in the method's name. As indicated in Fig. 1, 
there is no straightforward correspondence between the speech signal frames and the 
model states. In general, each state can generate any of the frame vectors. The model 
itself is hidden behind a double 'veil' made of two uncertainities represented by the 
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• How do the output probability functions in each state look like? 

• What happens to the output and transition probabilities during the training 
procedure? 

• How much does the model likelihood change during the training phases? 

• How much do the models with different numbers of states and mixtures differ 
each from other? 

• How much do the models trained on different amount of speech material differ? 

• How much do the models of different utterances differ each from other?, etc. 

All these questions can be easily answered when the model is visualized. In our 
system this is accomplished by the Visual Markov I program. It performs and displays 
the CDHMM training procedure. An example of its graphic output is in Fig. 2. 

CDHMM training process Visual Markov I 3.0 1995 SpeechLab, TU Liberec, Czechia EH 

System    Options ^_^___,  
Irain      ||Next model ||   Repeat|[   Pause     |[ Continue   \\   Break     \\       > \\ < 

Press REPEAT to repeat animation or NEXT MODEL to skip to "napravo' 

Trans:   Q.81 

cep4 

Trans:  0.83 

cepA 

S8 /'Trans:  1.80 

cep4 

Trans:   0.85 

S6 Trans:  0.89 

jtssmJ'^ ■ y%. 

fSSBBSSsSr ceo3 
/ cep4 

1 Model:  nalevo 
States:   8 

Mixtures:  3 

Ü Part:   FINAL 

Total score:  -5927.96 

Fig. 2. Visualization of a model that is being trained 

In the figure we can see an 8-state 3-mixture model trained for Czech word „nalevo" 
(„left"). Each state has its own window where the output pdf is displayed as a 
function of two optionally selected signal features. In Fig. 2, the pdf values (z-axis) 
are plotted for two of the 8 cepstral coefficients {cep3 along the x-axis and cep4 along 
the y-axis). In the upper right corner of each of the windows, the probability of 
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staying in the state is shown. The last window gives an overview of the running 
training process by displaying the current process status, the iteration counter and the 
total likelihood score. 

The user can choose from a wide range of options. The system options, like the choice 
of the database and the vocabulary, the amount of the training data, the number of 
features representing the speech signal, the features to be displayed, the 3D plot 
parameters, as well as the complete choice of model parameters, are available. 
Additional facilities, like the run, pause, step, backstep buttons allow the user to 
control the training and the animation. An example of the time evolution of the model 
state parameters is shown in Fig. 3. 

Iteration:  1 Part:  INIT 

cep4 

Iteration:   2 Part:   INIT 

cep4 

Iteration:   3 Part:  INIT 

cep4 

o 

Iteration:   4 Part:   INIT 

<s«KeM5& Ww 
/   cep4 

Iteration:   1      Part:   REEST 

D> 

Iteration:   3     Part: REEST 

.if 
„ \-g^ 

■ffiBraysB ' KiSäSsüj $Wr 
/   cep4 

H?cep3 

Iteration:  A       Part: FINAL 

"=> 
•\     ':■'?■ 

j 

/   cep4 
pcep3 

Fig. 3. Evolution of a model state (8 iterations from the initial one to the final one) 

4. Visualization of the HMM matching process 

As mentioned in section 2, the recognition of an unknown utterance consists in a 
series of matches between the parametric representation of the utterance and the 
models. Again, one involved in the HMM investigation may ask several essential 
questions, like: 

• Which states are assigned to the utterance frames by the Viterbi decoder? 

• What is the difference between matching the correct and a wrong model? 
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• How does the matching score evolve during the Viterbi procedure? 

• What  is  the  difference  between  matching  models  with  different  model 
parameters?, etc. 

The second of the Visual Markov package programs, the Visual Markov II, has been 
designed to assist in answering the above stated questions. Its screen, very similar to 
that described in the previous section, is shown in Fig. 4. 

CDHMM matching process Visual Markov II 2.0 199S SpeechLab.TU Liberec, Czechia 
System    Options 

Match      | Select model||  Next token Pause Continue    |       Break 

Viterbi matching process for "napravo" (SpeakerA) is being animated. Step-by step mode is active. 

S1     Stay: 9 Trans: 0.84 

cep4 

SZ    Stay: 28      Trans: 0.84 

cep4 

S3    Stay: 11       Trans: 0.83 

cep4 

S4     Stay: 15       Trans: 0.90 Trans: 0.82 

cep4 cep4 

Trans: 0.86 Trans: 1.00 

cep4 cep4 

Model: 
States: 

Mixtures: 

Frame: 
cep3: 
cep4: 

Total score: 

nahoru 
8 
3 

64 / 70 
1.77 

-2.31 
-619.73 

Fig. 4. Matching word „napravo" with a model of word „nahoru" 
(Currently, the word's 64th frame is assigned to model state 5.) 

The program displays the selected model and performs the match frame by frame. The 
matching process is demonstrated by a green ball travelling through the model. Each 
of its travel stops corresponds to one speech frame. The actual position of the ball is 
determined by the currently processed frame vector (on the screen represented again 
by two arbitrary chosen features) and by the Viterbi decoder that had estimated the 
most likely state sequence. The evolution of the log likelihood score can be watched 
and compared with the score achieved by the best model. This gives the user an 
excellent opportunity to see how much the model fits the utterance, both on the local, 
state, level as well as on the global level. Again, the user can choose from several 
options, like the choice of the utterance and the model, the two displayed features, the 
plot parameters and some others. A set of buttons is available to control the flow of 
the animation. Fig.5 on the next page is an attempt to present the animation in a single 
picture. 
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S1   Stay: 7     Trans: 0.86 

6,7 1,2,3,4,9 

Jggsmäi fflteaMMgacep3 
/  cep5 

SZ   Stay: 9      Trans: 0.89 
12,15 

),10,11,13 

cep5 

S3  Stay: 8     Trans: 0.89 

cep5 

E> 

S4  Stay: 14   Trans: 0.90 
|     25,26,27,34 

5i2i- 35,36.37,38 
31_ \Y*L.    2JL29Ü0 

cep5 

SG Stay: 3 •Trans: 

*-.:v5 43 

1.00 

/ cep5 
cep3 

Fig. 5. An example of matching word „nahoru" with a 6-state 2-mixture model ofthat word. 
(Positions of each of the 43 frame vectors of the matched word with regard to the model states 

assigned by the Viterbi decoder are depicted by small numbered circles.) 

5. System implementation issues 

The first version of the Visual Markov system [4], that was originally written for 
DOS, found a positive response among speech specialists and proved a usefulness of 
such a graphic system. Therefore, in this second version, we aimed at developing a 
tool that would meet a wide range of practical demands. 

The system runs under the Windows environment, now. This makes its usage much 
easier and allows simple copy, store and display operations with the graphic output. A 
lot of effort has been put into the efficient implementation of the system. From the 
computation load point of view, the two most critical implementation issues were the 
training procedure and the animation of the 3D plots of the state output functions. The 
former problem was solved by adopting a set of optimized routines [5]. The 3D plots 
are drawn with the use of the floating horizon method combined with a view 
transformation to solve the invisibility problem. In order to make the animation 
smoother, we adopted a screen swapping technique. As a result, the complete software 
operates fast enough even on a PC machine with a 486/50 processor. 

The system allows to perform investigations on an arbitrary speech database. The 
analysed objects can be either single words, subword units or short utterances with 
maximum duration of 2 s (for 8 kHz sampling rate). The constraints for the Markov 
models are: 20 features, 12 states and 3 mixtures per state. Up to 8 model states can be 
displayed at one moment. The system parameters are set either manually using the 
menus inside the program or they can be prepared in an external file before an 
experiment starts. Though the Visual Markov package has been developed primarily 
for the speech recognition, its application domain is not restricted just to the speech 
processing. It can be utilized in any area where data series are modelled by the 
CDHMM technique. 
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6. Conclusions 

In the article we have presented a graphic system, named Visual Markov, that was 
designed for practical and theoretical investigation of continuous density hidden 
Markov models with a special focus on the application in the speech processing 
domain. The system enables a user to study the complex dynamic processes that take 
place inside the models during their training and recognition. It is a highly illustrative 
tool for studying the behaviour of the CDHMM as well as a useful piece of software 
supporting the design of a speech recognition system. In our lab, it assisted us in 
several studies and projects dealing with the CDHMM (e.g. [6]). Recently, we have 
offered the system to the other colleagues in the speech research community. Up to 
now, its copies have been registered at some tens of universities and institutes in 
Europe and Japan. 
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Abstract: Turbulent flow is often modelled using statistical models. In these models the flow 
is described using average velocity at a certain level of scale, and velocity variations at smaller 
scale are described by some quantity indicating turbulence intensity. In this paper several 
methods are described which utilize spot noise texture to visualize turbulent flow modelled in 
this way. With spot noise the separate fields are combined in one visualization which shows 
both data fields and how they are related in an intuitively clear way. Different aspects of 
turbulent flow can be shown using different mappings. The utility of this approach will be 
shown in two hydrodynamical case studies. 

1 Introduction 
In contemporary scientific research a large amount of computational power is devoted to flow 
simulations. Although computers become more powerful by the day, it is still not possible to 
simulate fully developed three dimensional turbulence at realistic scale using the Navier-Stokes 
equations in reasonable time. Therefore, turbulent flow is often modelled using statistical turbu- 
lence models. In these models the large scale flow is represented using an average velocity and 
on a small scale the flow is described statistically. Thus, at different levels of scale a single flow 
is described by different quantities. 

Several techniques have been developed for the visualization of turbulent flow. Briscolini and 
Santangelo visualized the vortex structures of two dimensional turbulence using animation [1]. 
They show the vortices of various sizes due to turbulence, but they need a complete description 
of the flow field (as generated by direct numerical simulations of turbulent flows) to make such 
pictures. The method cannot handle separate fields for turbulence intensity and average velocity. 
Sakas and Westermann [2] presented a method for modelling turbulent phenomena using fractal 
functions, which are visualized using volume rendering. 

Spot noise [3] is a texture synthesis technique which has been successfully used for the 
visualization of flow fields. In de Leeuw and van Wijk [4] the technique was extended to handle 
a larger variety of flow data. By utilizing graphics hardware, the spot noise textures can be 
rendered fast and inspected interactively. In de Leeuw et al. [5] spot noise was used for the visual 
simulation of skin friction images taken from wind tunnel experiments. The pictures generated 
showed several effects, such as the skin friction field on a surface, the convergence and material 
distribution over the surface, using several parameters to control texture generation. In this paper 
we will show that spot noise can also be used to visualize turbulent flow field data. Different 
aspects of turbulence such as dispersion and velocity variation can be mapped onto parameters of 
spot noise so that intuitively clear pictures are produced. 

The paper has the following structure. In section 2 we will discuss turbulence and related work 
on the visualization of turbulence. Section 3 will describe spot noise. The techniques used to 
visualize turbulence using spot noise will be covered in section 4. In section 5 some examples 
will be presented, and in section 6 we will draw conclusions. 
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2 Turbulence 
Turbulent flow is a hot topic in flow research. Although a direct simulation of turbulent flow 
using Navier-Stokes equations is possible in theory, in practice statistical models of turbulent 
flow are often used to reduce of computation time. Statistical models are based on Reynolds 
decomposition, in which a turbulent flow is described by mean velocity and turbulence intensity 
components. A Reynolds-averaged turbulent flow simulation uses a statistical model, such as 
the k-e model, where turbulence is characterized by kinetic energy k and dissipation rate e. The 
resulting data from a Reynolds-averaged simulation are mean velocity and eddy-diffusivity E. In 
general, E is a tensor quantity, but it is usually represented by a vector if the main directions align 
with the coordinate axes. For isotropic turbulence, E reduces to a scalar quantity. 

Turbulent flow has many characteristics and effects, such as randomness and rotational motion. 
The detailed motion patterns, such as the rotational pattern of eddies, cannot be fully reconstructed 
from data generated by a statistical model, but the random nature of the motion can be visualized 
in a generic way. For example, the amount of fluctuation can be shown as a perturbation of particle 
motion. 

In Hin and Post [6], particle motion is used to visualize both convective and turbulent motion 
by combining particle path integration of mean velocity data and random fluctuations derived 
from eddy-diffusivity data. This technique effectively shows local turbulence in 3D flow fields, 
but is limited by the number of particles in the flow. Ma and Smith [7] have visualized turbulent 
dispersion using conical surfaces. The core of the conical surface is determined by a stream line 
of a particle advected by the average velocity while the radius of the cone increases downstream 
depending on turbulent dispersion. This increase of the radius is proportional to the local turbulence 
along the stream line. Hin [8] also visualized turbulent dispersion by animation of concentration 
fields, derived from particle motion. Both methods do not show turbulent motion itself, but only the 
dispersion of material caused by this motion. The particles [6] show this motion in a generalized 
way, but this technique is local by nature. We will use texture generation to give a global view of 
fluid motion, including turbulent effects. 

3 Spot noise 
Spot noise was introduced by van Wijk [3]. A texture can be characterized by a scalar function / 
of position x. A spot noise texture [3] is defined as 

/(x) = ^2 o-iH* - Xi), (1) 

in which h(x) is called the spot function. It is a function everywhere zero except for an area that is 
small compared to the texture size, a; is a random scaling factor with a zero mean, x; is a random 
position. In non-mathematical terms: spots of random intensity are drawn and blended together 
at random positions in a plane (Fig. 1). 

The use of a spot as a basis for a texture has two nice consequences. First the shape of the spot 
determines the characteristics of the texture; the global appearance of the texture can be controlled 
by the shape of the spot. Different textures result from different spot shapes. Second, local control 
of the texture is possible. Vector fields can be effectively visualized, if the shape of the spot is 
adapted to the data at the position of the spot. The visualization of vector fields is achieved by 
scaling the spot in the direction of the vector field, proportional to the vector magnitude. To keep 
the other properties of the texture constant the spot is also scaled perpendicular to the flow, such 
that the area of a spot is preserved (Fig. lc). The advantages of spot noise over other techniques 
for the visualization of vector fields are a global visualization of the field and possibilities to 
generate pictures similar to pictures obtained from experimental techniques [5]. 

The anisotropic scaling used for the visualization of vector fields is just one choice out of a 
wide range of possibilities to control the texture. Other choices are the shape, size and intensity 
distribution of the spots. All these parameters have a different effect on the texture generated. To 
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Fig. 1. Principle of spot noise: single spot (a) spot noise texture (b) and spot noise used to visualize a vector 
field (c). 

predict the effect of the different spot shapes on the final texture we can use the fact that the spot 
and the resulting texture have the same energy distribution in the Fourier transform. 

Spot noise is also very suitable for visualization of turbulent flows. It produces a global view 
of a flow over a surface, which is a useful addition to the particle advection technique [6, 8]. We 
will show in the next sections that spot noise offers a suitable set of control parameters for texture 
generation that can be mapped to the mean velocity and turbulence intensity data. 

4 Visualization of turbulent flow 
If we want to visualize turbulent flow, several mappings can be considered. The final goal is a 
clear representation of the average velocity and turbulence intensity data. In this section we will 
consider a number of ways to achieve this. In this section we will use an artificial data set of a jet 
in an almost still fluid, as described in detail by Hin [8]. It was generated using profile functions 
for mean velocity and eddy-diffusivity on a regular grid, and we have used one central vertical 
slice of 40 x 20 cells for the spot noise visualizations. 

4.1 Colour 
Separate visualization of mean velocity and eddy-diffusivity is possible using for example spot 
noise for the mean velocity and colour for eddy-diffusivity (Fig. 2). This separate visualization 
gives a good view of the spatial distribution of turbulence intensity, but it does not show any 
turbulent motion, nor any effects of it, such as dispersion. 

Fig. 2. The plume data set visualized using spot noise for the average velocity and colour for the eddy- 
diffusivity (see Appendix). 

4.2 Intensity range scaling 
One parameter of spot noise that can be used to visualize an additional scalar value of a field is 
the intensity range of the spots. The intensity of a single spot is random, but changing the range 
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from which the intensity of a spot is chosen affect the appearance of the texture. Here we scaled 
the intensity range by the turbulence intensity. 

In images generated by this method the range of random spot intensity increases with turbulence 
intensity, and thus the high-turbulence regions are highlighted by a higher contrast. Attention is 
focussed on these regions. Low-turbulence regions with low contrast tend to recede into the 
background. In practice it appeared to be better to use a minimum intensity range: even where 
eddy-diffusivity is zero the spots still have some variation in intensity, to ensure that in regions 
without turbulence the flow is still visible. 

Fig. 3. The plume data set visualized using spot noise with eddy-diffusivity mapped to the intensity of the 
spots. Left with, and right without a minimum intensity range for zero eddy-diffusivity. 

4.3 Velocity perturbation 
One effect of turbulence is fluctuation of velocity. The simulation has a mean velocity as a result, 
but the actual velocity at a point is unknown. However, by combining the Fokker-Planck equation 
and the advection-diffusion equation (eq. 3) a velocity distribution function of possible velocities 
can be constructed [6]. Particle paths can be calculated with the following differential equation: 

dXa = (Ua + 
dEa 

da 
(2) 

where X is the position of a particle, a is the coordinate direction (x, y or z), ü is the mean 
velocity, E is the eddy-diffusivity and N is a sample from a trivariate normal distribution with 
zero mean and unit standard deviation. This equation can be used to generate velocity values with 
a realistic distribution. These values can be used as input to the transformation and advection of 
spots in the spot noise generation process. 

In this way the velocity directions will vary strongly in areas of high turbulence intensity, 
giving an appearance of randomness. In low turbulence areas, the appearance of smooth motion 
is achieved by mean velocity with little directional perturbation. 

Fig. 4. The plume data set visualized using velocity perturbation spot noise for average velocity and eddy- 
diffusivity data. In the picture on the right the maximum eddy-diffusivity is 4 times as high as on the left 
side. 
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Figure 4 shows two images of the plume data set with different mappings of eddy-diffusivity 
to velocity magnitude. The highly turbulent regions can be easily detected in both images. The 
higher frequency of the texture in regions with high turbulence is caused by the fact that the spot 
orientation becomes almost random, so the width of the spot determines the texture frequency 
in all directions. This effect is in accordance with the intuitive idea of chaos increasing with the 
amount of turbulence. 

4.4 Texture blurring 
Another effect of turbulence is dispersion. The idea we used for this mapping is to regard the 
spots in the textures as the concentration of material inserted in the flow. The spot initially is disc- 
shaped with sharp edges, but due to turbulence the material is diffused and therefore the sharp 
edges become blurred proportional to the turbulence. This will show an effect of blurred texture in 
turbulent regions. This blurring effect is also an intuitive representation of the uncertainty of the 
velocity information presented. We will now describe the physical foundation and implementation 
of this idea in more detail. 

In fluid mechanics the dispersion process is modelled by the advection-diffusion equation given 
by: 

dc 
— = -V • uc + V(EVc) (3) 

In this equation c denotes concentration of inserted material, u is the average velocity and E is 
the eddy-diffusivity. If we view the spot function as a local concentration function of the inserted 
material, then we can use the above equation to modify the shape of the spot over time. A full 
solution of equation 3 would give the local dispersion pattern of the spot, but would be very time 
consuming. To limit the calculation time we make some simplifying assumptions: ü and E are 
assumed constant over the surface of a spot. The justification of this is that spots are small with 
respect to the whole texture. If we apply these simplifications to equation 3 it reduces to: 

dc       „„■> 

in discrete form for a 2D position (a:, y) and a time step At this equation can be written as: 

Cx,y,t+At = Cx,y,t + (E,^ + Ey^)M (5) 

If we assume that Ex = Ey (isotropic eddy-diffusivity) and Ay = Ax then Cx,y,t+e,t becomes: 

Cx      t + EAtt X'V,t ~*~ C*-A.x,y,t + CXty+Ay,t + Cx.y-Ay.t — 4CXyy,t. 
Ax2 ' 

This equation can be implemented as the addition of the original spot image with an image of the 
spot processed using the digital filter: 

0 1 0 
1 -4 1 
0 1 0 

scaled by the local value of EAt. 
We have to take care with numerical stability of this integration process. If we choose the 

time step At too large, i.e. the value of .EAt has a dynamic range which is too large, numerical 
instability will occur. Figure 6 shows the result of using a too large time step for the integration. If 
filtering with a large time step is desired the same effect can be achieved by filtering n times, with 
a time step equal to At/n. In the pictures presented in this paper using this technique, 20 filtering 
steps were applied using a time step just within the bounds in which the numerical process is still 
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stable. It can be proved using Von Neumann analysis [9] that EAt should not exceed 0.25 in 
order to keep the process stable. 

Figure 5 shows the result of applying this technique to the plume data set. The difference 
between the images is a result of using a different time step used for the filtering operation. 

Because a spot noise texture is the accumulation of intensities of individual spots, this equation 
can be applied to each spot individually as well as to the whole texture. Because each pixel in the 
texture is covered by multiple spots it is obvious that the latter is cheaper. 

Visualization in a single image is possible by choosing a time interval to determine how long 
the spots are influenced by the turbulence. Another possibility is to use animation. Here all spots 
initially have the same size, and they are influenced by the flow (by advection) as well as the 
turbulence over time. 

Fig. 5. The plume data set visualized using spot noise with texture blurring. 

Fig. 6. Texture filtering to visualize eddy-diffusivity: this image results from choosing a too large value of 
EAt. 

5 Examples 
In this section we will describe two cases in which the techniques presented are applied to real-life 
data sets. Both data sets are slices from 3D layered hydrodynamic simulations [10]. 

In the process of mapping velocity to spot noise we can adjust many parameters. In the 
following cases the parameters showing the velocity are equal for each image and chosen such 
that mean velocity direction and magnitude is clearly visualized over the entire field. Bent spots 
and rectilinear texture space [4] are used for better texture and image quality. The size of the 
textures is 512 x 512. 

All pictures were made using the graphics hardware accelerated implementation described in 
de Leeuw and van Wijk [4]. Each of the data sets is visualized using the four methods described 
in section 4. The results are shown in figures 7 and 8. 

The Lith harbour (Fig. 7) is a 3D simulation of a flow in a river passing a harbour entrance [10]. 
The river is shown at right in the figure, and the main flow direction is upward in the images. The 
harbour is at the top left, and is partly separated from the river by a narrow dam. No texture was 
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mapped onto the land regions at the lower left. The middle horizontal grid slice was used here, 
with a size of 79 x 38 cells. The goal of the simulation was to study the material transport from 
the river to the harbour, and to design the harbour entrance geometry to minimize the deposition 
of river sediment in the harbour. 

All images clearly show the large difference in flow speed between the river and the harbour. 
Turbulence intensity is highest at the transition, with two peaks at each side of the harbour entrance. 
The speed difference complicates the perception of turbulence levels for all methods except the 
colour mapping. Discrimination between velocity variations and turbulence (both occurring at 
the harbour entrance) is difficult, because both turbulence and velocity variations affect material 
transport, and thus can be visualized in the same way. 

The bay of Gdansk (Fig. 8) is a simulation of the flow in a coastal region in the North of Poland 
driven by wind and the inflow of the river Vistula. This results in a complicated flow pattern with 
a few small regions of high turbulence. The set size is 42 x 27 cells. 

Because of the small size of the turbulent area, intensity range scaling of the spots to visualize 
turbulence (Fig. 8 top right) gives a poor result. The larger part of the flow is not turbulent and 
in that case rendered with low intensity. The resulting image lacks contrast in a large part of 
the image. The velocity perturbation technique and texture filtering technique give better results 
because the turbulent regions are clearly visible without affecting the visibility of the flow pattern 
in the rest of the data set. 

6 Conclusion 
In this paper four techniques for the visualization of flow fields with statistical turbulence data 
using spot noise were described. The textures give a good global impression of turbulent velocity 
in a 2D vector field. The velocity perturbation and filtering techniques are based on physical 
processes occurring in the turbulent flow. These methods show actual processes taking place in 
the flow: variation of flow velocity and dispersion. The intensity scaling has no physical basis but 
is a visual technique to highlight turbulent regions in the flow. We think there is no single best 
technique in all cases, as each one has its own merits and drawbacks. Which technique to use 
depends on the application and the personal preference of the user. 

Spot noise gives an integrated view of a turbulent flow, in which the separate mean velocity and 
turbulence data are re-united in the same visual effects. This corresponds to the physical reality 
of the flow, where the different variables are affecting the same phenomenon. Turbulent spot 
noise shows this very clearly, but the individual fields may not be visually distinct. If orthogonal 
visualization of velocity and turbulence data is required, then the use of spot noise for velocity 
and colour for turbulence gives a good result. This technique can be easily combined with any of 
the others. 

An obvious advantage of spot noise based visualization techniques over techniques using colour 
is ease of reproduction. Data visualized using spot noise can usually be reproduced on grey scale 
output devices, which are still cheaper and more common than colour devices. 

The spot noise images look very similar to pictures of turbulent flow made by experimental 
techniques [11], such as injection of smoke or dye into the flow. Comparative visualization [12] 
is a promising application of the techniques presented. However, some care must be taken in 
the comparison of results from statistical simulations to observations of physical experiments. 
The former shows instances of a set of abstract statistical distribution functions, while the latter 
show a sample of the actual flow. A fair comparison would require both to be represented by 
statistical distributions. Further research into generating images for comparing the results of 
physical experiments and numerical simulations is needed before conclusions can be drawn from 
a comparison. 
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Fig. 7. Slice from the Lith harbor data set visualized with different methods: colour (see also Appendix), spot 
intensity scaling, velocity perturbation and texture blurring. 
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Fig. 8. Slice from the bay of Gdansk data set visualized with different methods: colour (see also Appendix), 
spot intensity scaling, velocity perturbation and texture blurring. 
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Abstract. 
Multiblock multigrid finite volume methods based on hexahedral control vol- 
umes are computationally efficient and widely used for solving the Navier- 
Stokes equations. Due to the enormous amount of data generated during an 
instationary 3D simulation visualization plays an important role for problem 
analysis and development. Two different approaches for the interactive steering 
of multigrid computations in combination with the IRIS Explorer visualization 
package are investigated. The strategies for the visualization of complex multi- 
block grids which are presented are based on a new visualization data type, on 
a concept for the reusability of available visualization modules for curvilinear 
grids, and on a special algorithmfor particle tracing, which does not depend 
on the connectivity information between blocks. 

1.  Introduction 

Due to the advances in computing hardware and software, computational fluid dy- 
namics becomes a more and more complex field. Very efficient numerical methods for 
solving the Navier-Stokes equations are based on multiblock multigrid finite volume 

methods. Many implementations of these methods use hexahedral control volumes, so 
that blocks can be described as a curvilinear grid. An important property of multiblock 
grids is their capability for describing complex geometries. In practical applications, 
multiblock grids have very often more than one hundred blocks. 

For such complex numerical simulations, efficient visualization tools play a key role. 
Tracking and steering are desirable techniques, that allow the scientists to control the 
evolution of their numerical simulation by means of parameter and data exchange. 
These techniques are especially important for very large simulations of time dependent 
problems, where it becomes impossible to save enough time steps for detailed post- 
processing. Flow visualization tools based on particle methods are an important topic 
of research [4, 7, 1, 6]. Special attention has to be paid to multiblock particle tracers 
since they have to be able to follow the particles through the various blocks. 

In this paper we are concerned with the interactive steering and visualization of fluid 
flow simulations based on the multiblock multigrid method for finite volumes with 

hexahedral control volumes. In section 2 we briefly analyze multigrid methods and 
propose different models for interactive steering. In section 3 we investigate aspects of 
visualization algorithms for multiblock grids and propose strategies for extending the 



297 

IRIS Explorer visualization environment to handle such data structures. The problem 
of implementing a particle tracer will be considered in more detail in section 4. Finally, 
we present some results and draw conclusions. 

2.  Multiblock Multigrid Flow Simulations 

One important topic of research in computational fluid dynamics is the numerical 
solution of the Navier-Stokes equations for the case of three dimensional, steady and 
unsteady, incompressible and compressible flows. Very efficient methods for solving 
these partial differential equations are based on collocated multigrid methods and grid 
partitioning techniques. Block-structured or multiblock grids are very common data 
structures within efficient numerical software due to their adaptability to complex 
geometries and due to the possibility of local refinement in different blocks. In spite 
of these elaborated algorithms the processing time demands still require the Navier- 
Stokes solver to be run on a high-performance computers generating very large data 
sets. Especially in the case of time dependent simulations, the storage demand is on 
the order of some GBytes when saving a few time steps. A solution to this problem 
and an important aspect during the development of numerical codes is the interactive 
steering of the simulation and its integration within the visualization. 

2.1.  The Multigrid Method 

In order to couple the numerical simulation and the visualization and to facilitate the 
interaction and steering of the simulation process, we revise the multigrid method in 
more detail. The multigrid method is among the fastest methods for solving systems of 
equations with a large number of unknowns. Fedorenko [3] was the first that formulated 
a two- and multigrid algorithm and showed that the complexity grows as 0(n) with 
the number of unknowns (see also [5]). The key point is to note that standard iteration 
algorithms are smoothing, that means they eliminate the oscillating (high frequency) 
component of the error function very fast. The long wave (low frequency) components 
of the function, however, should be computed on a coarser grid. The building blocks of 
a multigrid method are the iterative repetition of the relaxation steps at the fine grid 
in order to reduce the oscillating terms in the error and the approximate computation 
of the smooth components at the coarse grid. A multigrid method is defined recursively 
and the principal steps are the apriori-smoothing iterations, the coarse grid corrections, 
and the posteriori-smoothing iterations. Depending on the sequence of smoothing iter- 
ations and coarse grid corrections one usually speaks of V-cycles or W-cycles. 

In this paper we restrict ourselves to the case of V-cycles and consider two different 
techniques depending on whether steady or unsteady problems are solved. The ideas 
presented can easily be extended to other techniques and to W-cycles. For unsteady 
cases, a Full Approximation Scheme (FAS) starts from the finest grid level and iterates 
some V-cycles to compute a time step. For steady cases, the Full MultiGrid (FMG) 
method obtains good initial values for the computation on the next finer grid starting 
from coarser grid levels (see figure 1). In this case, the additional effort on the coarser 
grids is over-compensated by the better convergence on the finest grids, since iterations 
on coarse grid levels are much cheaper with respect to computational costs than fine 
grid iterations. 
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Figure 1: Full Multi Grid technique on 3 grid levels 

2.2.  Coupling the Numerical Simulation and the Visualization 

In order to observe and to control the development of the numerical simulation, one 
has to be able to visualize the flow and the scalar fields and their evolution during the 
iterative process. There are quite some post-processing programs and libraries available 
for flow visualization, however, the support for multigrid and multiblock data types 
and the means for integrating the visualization with the computation are usually very 
limited. Therefore, we decided to base our work on a modular visualization environment 
like IRIS Explorer, which is easily extendible with respect to new functionality, new 
data types, and distributed computing. The modular nature of these visualization 
packages make them ideal for rapid prototyping and for exchanging applications with 
users in form of maps. 

Concerning the visualization of data derived from a multigrid solver it is important 
to be aware of the fact that only the data on the currently finest grid level corresponds 
to an approximate solution of the physical problem. The fields that are computed at 
coarse grids within a V-cycle are solutions of the correction equations and do not have 
an explicit relation to the physical variables. Actually, the so called defect equations of 
the non-linear problem which corresponds to the Navier-Stokes equations are solved. In 
figure 1 this corresponds to the smoothing iterations. After the completion of a V-cycle 
convergence will be checked on the finest grid level. The iteration over the V-cycles 
at a given level is simply carried out by a loop. Our model of interaction between the 
simulation and the visualization consists of the exchange of control parameters and data 
after the completion of a certain number of V-cycles which has to be determined by the 
user. A finer granularity for data exchange is possible, but this would require a deeper 
intervention in the original code in order to isolate the smoothing iterations at the 
finest grid within a V-cycle. On the other hand, no significant changes in the physical 
variables can be observed at this level. Thus, such finer granularity for interaction does 
not seem to be necessary. 

This interaction model can be realized in many different ways. The first one we pro- 
pose is made up of two completely independent applications, where one is the numerical 
simulation and the other one is the visualization package. Within the numerical code 
only some slight modifications in the read and write routines have to be implemented 
replacing the file I/O with socket communication to a well known port. On the side of 
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the visualization package we have written a module which opens and accepts a connec- 
tion to a socket with that known port number. This module can also read and write 
data in the format specified by the application. Thus, the simulation can be run inde- 
pendently of the visualization. After each iteration it will try a connection to the socket, 
and as long as a socket with that port number was not opened, this connection will fail 
and the simulation will continue with its iterations. When the visualization is started, 
the socket port is opened and both processes will couple and synchronize by means 
of the accept system call, where blocking sockets are used. When the visualization is 
stopped, the simulation will continue with its iterations. 

A second approach we realized is based on the complete integration of the numerical 
simulation code as a computation module into the visualization environment. Here, 
the specific distribution mechanism of the visualization package has to be taken into 
account. In IRIS Explorer each computation module is a separate Unix process which 
is waiting for messages from a master process. When a message arrives, the process re- 
sponds to the required actions by executing the module's functions. On the other hand, 
the V-cycle iteration at each grid level, the convergence check and the change between 
cycles of different level are usually realized by nested DO loops and GOTO statements. 
Thus, within the computation module, this structure has to be replaced by equivalent 
function calls and global variables used as loop counters, and by the encapsulation of 
program parts of the Fortran main routine into C functions. In our implementation we 
have introduced a C++ class hierarchy to encapsulate a complete V-cycle and all the 
necessary administrative operations to change from a level to the next. The methods 
of theses classes perform operations such as initialization, V-cycle iterations, setting of 
physical parameters, writing and reading data, and setting control parameters which 
are related to the numerical method like under-relaxation factors or the number of 
iterations within the various steps of the nonlinear multigrid technique. 

3.  Multiblock Flow Visualization 

After having considered the problem of coupling a multigrid simulation with the vi- 
sualization we have to investigate how to visualize the data structures they exchange, 
i.e. a complete multiblock grid with all the associated solution fields. In this paper we 
only deal with multiblock data structures with blocks of curvilinear grids, neglecting 
multiblock unstructured grids or even hybrid variants. This is not a real restriction 
since most of the widely used finite volume methods are based on multiblock grids 
with hexahedral volume elements. In this section we consider the problem of extend- 
ing visualization algorithms and software packages in order to support multiblock data 
structures. In practical applications, where the geometry of the domain is very complex, 
a large number of blocks is needed. Examples of multiblock grids with more than one 
hundred blocks are quite common. Due to the fact that standard IRIS Explorer mod- 
ules do not support multiblock data structures, we have decided to introduce them as 
a new data type allowing us to manage such complex situations. Design considerations 
and some implementations details will be given at the end of this section. 

3.1. Visualization Algorithms 

Most of all flow visualization techniques are based on two fundamental classes of algo- 
rithms, the ones which correspond to an Eulerian formulation of the flow fields, such as 
arrow plots, isosurfaces or cutting planes, where the complete field under consideration 
is visualized at a certain instant of time, and particle methods which correspond to 
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a Lagrangian formulation. In the later case, where particles are placed into arbitrary 
positions which are then traced through the blocks of the grid according to the local 
vector field, it is obvious that information from neighboring blocks is required for the 
accurate integration of the path. These multiblock particle tracing algorithms will be 
analyzed in more detail in section 4. For Eulerian algorithms it seems that an indepen- 
dent handling of all blocks could be sufficient. In order to analyze the details we first 
need to review some aspects of finite volume methods on multiblock data structures. 

Typical multiblock grids can be classified into matching grids, grids with local re- 
finement and the most general case of non-matching grids with local refinement, where 
no relation exists between the control volumes at the boundary of one block and the 
corresponding ones at the neighboring block The common surface between two blocks 
will be called block interface or internal boundary. In matching grids, which is the most 
simple case, the computed physical fields have the same values at the common nodes 
of neighboring blocks, i.e. the physical fields are continuous at the block interfaces. 
Numerical algorithms for multiblock grids with local refinement are very complex and 
an important topic of research in computational fluid dynamics with the first commer- 
cial software packages using general grids with local refinement just appearing on the 
market. For visualization purposes, we are interested to know how the physical fields 
behave at the internal boundaries. For general grids with local refinement it is very 
difficult to estimate the continuity of the fields in those regions. The solution might be 
discontinuous and the strength of the discontinuity will in some sense be proportional 
to the gradient of the fields across those regions and to the jump in the discretization. 
This jump is given by the discretization size and the relation between the number of 
control volumes of the neighboring blocks. A typical example is a shock wave traveling 
between two blocks where at the block interfaces the wave will stretch into the block 
with the coarser discretization. 

In the case of matching grids, physical fields are continuous at block transitions. 
The marching cubes isosurface algorithm for example computes the intersection of 
the surface with the cell edges using linear interpolation. Since the values of the scalar 
fields on common nodes of neighboring blocks coincide, the computed intersection of the 
surfaces at the block interfaces will also coincide and the surfaces will be continuous, i.e. 
there will be no steps or holes. Discontinuities might, however, appear in the gradient 
of the field on the isosurface if for the computation forward or backward differences are 
used independently in the neighboring blocks. Since the gradient is used for illumination 
purposes this might result in visual artifacts along the block interfaces (see figure 2). 
The marching cubes algorithm can be slightly modified in order to produce correct 
results. If common nodes of the corresponding neighboring blocks are searched at the 
block boundary, central differences can be used for the computation of the gradient on 
the isosurface. A more simple solution would be to compute the normals at those points 
independently using forward or backward differences and then take the mean value for 
the normal at those boundary points. Similarly, if a cutting plane through a multiblock 
grid is computed running a standard algorithm for a curvilinear grid on each of the 
blocks independently, the resulting slice will be continuous, if short range interpolation 
filters like nearest neighbor or trilinear interpolation are used for the computation of 
the field values on the cutting plane. We remember that these algorithms will use some 
suitable boundary conditions, such as symmetric or periodic, at the block borders. 

In the most general case of non-matching grids with local refinement where the 
numerical solution might be discontinuous at the internal boundaries one would expect 
to see these discontinuities also in the visualization. In this case or if interpolation of 
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Figure 2: Isosurface computed using marching cubes independently at each block of 
matching grids. 

order higher than one is used, the marching cubes and the cutting plane will correctly 
produce results which are discontinuous at the block interfaces (see figure 3). If the 
numerical solution for non-matching grids is continuous at the block interfaces, then 
these visualization algorithms will generate correct results with the exception of the 
computation of the normals. 

3.2.  A Multiblock Data Type 

Prom the last section it seems that at least for the broad class of Eulerian visualiza- 
tion algorithms matching multiblock grids could be treated by applying the standard 
curvilinear algorithm to each of the blocks successively. As shown for isosurfaces and 
cutting planes those algorithms would generate the correct result with the exception 
of the behavior of the normal at the block interfaces. In the context of IRIS Explorer 
this means that if a read module would deliver the various blocks as a set of. separate 
lattices, which is the Explorer data type for curvilinear grids, then a replication of 
the isosurface module for each of the lattices would generate a geometry stream which 
could be combined to be feed into the render module. Obviously, this approach is fea- 
sible only for a few different blocks (for example for 100 blocks one has to start 100 
isosurfaces modules and make the connections between them). For real applications 
with hundreds of blocks a special multiblock data type has to be introduced in order 
to handle all the blocks in a unified and simple manner. While the integration of new 
data types is possible in IRIS Explorer, the disadvantage of this approach is, that the 
new data type is completely unknown to the existing modules, which means that all 
relevant modules have to be re-implemented in order to support the new data type. 

When designing a new data type, two aspects have to be considered: efficiency and 
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Figure 3: For grids'with local refinement the marching cube algorithm might produce 
discontinuous surfaces. 

practical issues. We first investigate the efficiency requirements of algorithms like a par- 
ticle tracer which heavily depend on the data structures used. When a particle leaves 
one block, the tracing algorithm has to search for the block and the corresponding cell 
which contains the new particle position. In order to achieve this a naive method based 
on the stencil walk algorithm can be implemented. This can be costly if the multiple 
evaluations of higher order integration schemes again require information from the pre- 
vious block, but its implementation will be very simple. In general, numerical methods 
for multiblock data which have to interpolate field values at the block interfaces or 
between points of neighboring blocks impose complex problems. For an efficient search 
of neighboring blocks and corresponding cell indices these algorithms use the logical 
connection information which describes the topological structure of the grid. 

While from a point of view of realizing a multiblock particle tracer efficiency would 
require the implementation of the logical connection information within the new data 
type, this information is usually not available. There are two file formats for multiblock 
grids, which are widely used. The PLOT3D format from the Ames Research Center and 
the Tecplot file format from Amtec Engineering Inc. Both of them store the number of 
blocks constituting the multiblock grid, the values of the fields in the different blocks 
and the corresponding coordinates. However, no topology information concerning the 
neighborhood relations or boundary conditions between blocks is known, if a multiblock 
grid is read from these data sets. 

Due to the fact that for many applications, where the data comes from a file in 
PLOT3D or Tecplot format, and because many algorithms such as marching cubes or 
cutting plane for a single curvilinear grid can be run as if they were within a loop over 
all blocks, we have decided to introduce a simple data type in IRIS Explorer. This data 
type consists of an integer indicating the number of blocks in the grid, and an array 
of Explorer lattices containing the blocks. The declaration of these new data type has 
the form: 

shared root  typedef struct  { 
long NBlocks; 
cxLattice Lat[NBlocks]; 

}  mBlock; 

/* Number of Blocks */ 

/* Array of Lattices */ 

This new data type can easily be generalized to include the logical connection infor- 
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mation, which is saved in form of integer arrays. But this will be a topic for a future 
work. 

In order to process multiblock data with IRIS Explorer we have implemented some 
key modules. A channel selector module MBSwitch to select a special block to be vi- 
sualized with the standard tools. A lattice to multiblock module LatToMB in order to 
process standard single curvilinear grid data with our multiblock visualization mod- 
ules. The most important implementation work is a pair of modules conceived to reuse 
such Explorer modules as the isosurface, cutting plane or wire frame modules. The first 
module MBLoop realizes an internal loop over the blocks which have to be processed. 
It reads a multiblock data type and writes lattices. By means of the input parameters 
it can be decided which block will be processed. The output lattices are sent to the 
standard Explorer modules for curvilinear grids. The resulting geometry objects are 
sent to the second module MBMagic which collects all incoming geometry information 
into a new single geometry stream. This module is synchronized with the loop-module 
in order to know, how many objects it has to collect. When it is done it sends the 
result to the Tenderer. In this way we can reuse many Explorer modules without any 
extra implementation work. 

4. Particle Tracing 

In this section we discuss particle tracing algorithms for multiblock data structures 
in more detail. By particle tracing we mean the numerical solution of the differential 
equation: 

dx .      . 
^=v(t'X)' 

where x is the position of the particle and v the velocity. The pseudo-code for a 
multigrid particle tracing algorithm is of the same form as for a single curvilinear grid: 

find cell  containing  initial position (point  location) 
while  (particle within grid and not too many iterations) 

interpolate velocity 
compute new particle position 
find cell containing new position 

endwhile 

(interpolation) 
(integration) 
(point  location) 

The only difference is the way the point location works. For multiblock grids, the cell 
containing the new particle position may be in a neighboring block which introduces 
the new class of problems mentioned in section 3. 
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According to the data type we have introduced in Explorer we do not have any logical 
connection information, thus no knowledge of neighborhood relations and boundary 
conditions between blocks is available. In this article we analyze a naive algorithm, 
where point location is based on the stencil walk method. This method has to be 
slightly modified in order to walk through all the blocks. The new position of a particle 
leaving a block is determined by a linear search of the lattice array. If the particle is 
not within the block with the next higher block number, the search is continued until 
a block is found which contains the particle. If no block is found, the particle has left 
the computational domain. This generalization seems to be natural and it works fairly 
well. But for performance reasons the situation has to be analyzed more carefully, if 
the integration method is of second or higher order. When considering the second order 
Runge-Heun-Kutta scheme the new position xn+i at the time tn+x is derived from the 
old position xn at a time t„ by: 

Xn+i = x„ + -y(v(x„) +v(X;+1))        where        At = tn+i-tn ,    K+i = Atv(xn) 

From this formula it is obvious that at block interfaces it might happen that the 
intermediate position x*+1 is in a neighboring block, and that the final position x„+i 
is in the previous block (see figure 4). That means, that the linear search algorithm 
will probably cycle two times through all the blocks for computing only one integration 
step. Taking this into account, the performance of the algorithm can be improved very 
easily. At the block interface, when the particle leaves a block, the cell indices and the 
block id are kept and reused for the point location of x„+i, if this position is not in 
the same block as the intermediate position x£+1. 

We have implemented an IRIS Explorer module, which due to historical reasons 
is called Streakband, which computes path lines and streak lines, and correspond- 
ing generalizations such as stream ribbons, and stream balls on arbitrary curvilinear 
multiblock grids. The particle traces are computed in the physical space domain (P- 
space-algorithm) [7]. 

5.  Results and Conclusions 

Interactive Steering. In this paper we have proposed two different models for the 
integration of a multiblock multigrid finite volume code into a distributed simulation 
and visualization environment. For our tests we have used the Navier-Stokes solver 
FASTEST-3D of the CFD department of the University of Erlangen [2, 8]. Our first 
approach is characterized by a completely asynchronous run of the parallel simulation 
program and the visualization package. While the computation is running, the visual- 
ization can be started and stopped at various time steps. Interactive setting of control 
parameters or reading and writing of data is possible only at these times. In this case, 
only minor changes in the structure of the numerical code had to be done. This is 
important if the software is still under continuous development in order to include new 
features, such as different physical or chemical models. 

A different strategy is the complete integration of the numerical software into the 
visualization package in the form of a computational module. In this case, one takes 
advantage of the tools that already exist in the visualization environment, such as 
a comfortable user interface, which assists in defining the parameters that will be 
exchanged and in controlling the simulation process by simple buttons, dial or slider 
manipulation. 
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grid size of block 1 size of block 2 size of Block 3 CPU time sec. 

1 5x64 5x10x4 5x6x4 0.26 

2 8x10x6 8x18x6 8x10x6 1.94 

3 14x18x10 14x3410 14x18x10 13.16 

4 26x34x18 26x66x18 26x34x18 108.40 

Table 1: CPU-time of V-cycles on different grid levels 

The rate of interaction, i.e. the number of data sets that one can obtain from the 
simulation per time unit, strongly depends on the physical problem being considered 
and on the performance of the hardware being used. Table 1 shows the computing 
time needed between V-cycles for different levels for a three block configuration. The 
number of control volumes for the different grid levels is also given. The measurements 
were carried out on a SGI Indigo2 Highlmpact with a MIPS R4400 processor running 
at 250 MHz. This example shows, that an acceptable rate of interaction is only possible 
for the first three grid levels. However, this presents a realistic preproduction applica- 
tion and offers a comfortable environment providing rapid insight into the physics of 
the problem being modeled. Of course, in order to achieve better interaction in more 
complex problems, they have to be simulated using high performance computers. 

Multiblock Flow Visualization. We have shown, that the visualization of data 
defined on multiblock grids may become a cumbersome task. In this paper we have 
proposed a strategy for the visualization of multiblock fields which is based on the 
following three aspects: a new data type in order to be able to handle large and complex 
multiblock grids, a concept for the reusability of many available visualization tools for 
single curvilinear grids and, finally, a special visualization module for particle methods, 
i.e. streak lines and path lines, as well as stream ribbons and stream balls. 

Figure 5 show stream ribbons of a benchmarking data set of a flow around a cylinder 
where the multiblock grid consists of 8 blocks and has a size of 13 MBytes. As we 
have already seen in section 3, isosurfaces may exhibit artifacts at block interfaces, if 
a standard marching cubes algorithm for curvilinear grids is applied to each of the 
blocks successively (see also figure 2). Thus, in order to interpret the visualization 
results correctly, one has to be conscious of the limitations of the method. 

A second data set containing a helical flow spiraling through 120 blocks of size 
21x21x11 was artificially generated in order to test the efficiency of the position location 
method of our particle tracer. We generated two extreme cases where in the first data 
set the numbering of the blocks increases in the direction of the flow, and a second 
one where the block numbering decreases in the direction of the flow. For the latter 
case, the point location algorithm will always search for the new particle position in 
the wrong direction. We have repeated the measurements for the naive and for the 
optimized version of the algorithm presented in section 4. Each time we have counted 
the number of block transitions, i.e. how often the algorithm has to search for the new 
particle position in a different block. Table 2 clearly shows, that when the enumeration 
of the blocks runs in the opposite direction of the flow, the particle tracer not only needs 
a larger computing time, but also performs about a factor of 3 more block transitions. 
For all measurements we had a maximum number of 30,000 integration steps. The 
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Figure 5: Visualization of a flow around a cylinder. Pressure values are used for coding 
the colors on the stream ribbons. 

version numbering direction CPU time sec. block transitions 

optimized downwards 9.59 13211 

optimized upwards 17.68 37694 

non optimized downwards 17.30 33582 

non optimized upwards 26.69 54341 

Table 2: CPU-time and number of block transitions for computing a streak line using 
a maximum of 30,000 integration steps 

performance improvement between the non-optimized and the optimized version is a 
about factor of 2 which approximately corresponds to the expected results. 

The new data type introduced in the visualization package Explorer does not in- 
clude any logical connection information concerning the neighborhood relations or the 
boundary conditions between blocks. We have justified our decision based on the fact 
that widely used file formats for multiblock data do not include this information. How- 
ever the data type can easily be extended to include this information for modules which 
can make use of it. Standard algorithms like marching cubes will still see lattices only, 
thus running unmodified. We are planning to investigate this extension in the future. 
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Appendix: Colour Figures 

Example process plant (Hubbold et al., Fig. 3) Example radiosity solutions (Hubbold et al., Fig. 4) 
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(del Pino) 
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An example of real-time walking sequence (Pandzic et al., Fig. 1) 

^fi^v 
An example of real-time grasping sequence (Pandzic et al., Fig. 3) 
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Emotion Motor updates the joints on the upper part of the body depending on the 
user's input. Some of the possible emotion representations: a paying attention, 
b tired, c surprised (Pandzic et al., Fig. 4) 

Mapping of the face to the 3D virtual actor. Usage of simple head provides a 
compromise between 3D geometry and texture quality (Pandzic et al., Fig. 5) 

Some application examples (entertainment, medical) (Pandzic et al., Fig. 7) 
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3J> Inunction Acccleraliirn 

(Bouvier and Guilloteau) 
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After initially deforming the sweeping tool the designer uses 
it to sweep out a curved surface above her head. This surface 
can be further reshaped by applying appropriate forces to it 
(Usoh et al., Plate 1) 

The designer sweeps out a flat curved surface and applies a 
single force to it (Usoh et al., Plate 2a) 

The result of applying the upward force to the surface (Usoh 
et al., Plate 2b) 
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Massive parallel supercomputer (SP2) 
High performance 
Network 

,!,< AM T.NTUF. 

Virtual cancer hospital (Oyama, Fig. 1) 
System configuration of medical 
virtual reality (Oyama, Fig. 2) 

Virtual operation room (Oyama, Fig. 3) Liver cancer in virtual environment (Oyama, Fig. 5) 

Brain tumor in virtual environment 
(Oyama, Fig. 4) 

Metastatic renal cell carcinoma invaded in bone shaft 
(Oyama, Fig. 6) 
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Main, info, view and graphics output windows (Criscione et al., Fig. 6) 

Image browser windows (Criscione et al., Fig. 7) 
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Temperature Charts« Test 
( DO»tec 68 Pan2- 1t) 

I    Ts:     -40*C 
TR: 23 ±2'C TO:  *30+_5'C 

#17028     ribbed v-belt MMQ&. 
r"?1.:' r'"i''i.   f^"'Vj ?, :',:':li 

*17330    inductive transduce* 

#99199    sock et h ead cap 

17366    decoupling element 

Showing selected part list (left). Acquiring technical data (right). Data courtesy of AIT 
consortium (Frühauf and Dai, Fig. 2) 

The physical equipment of the BMW virtual seating-buck (left). Air conditioning visualization 
with particle tracing (right). Data courtesy of BMW AG (Frühauf and Dai, Fig. 3) 

Data courtesy VW AG 

Streamribbons visualize the transient flow field inside the cylinder (left). Temperature- 
Isosurfaces symbolize the advancing combustion front (right). Data courtesy of VW AG 
(Frühauf and Dai, Fig. 4) 
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A countryside modelling application: using deformation tools users can build mountains and dig 
lakes (Torguet et al., Plate 1) 

Another modelling session: two users co-operate to create a complete countryside landscape 
(Torguet et al., Plate 2) 

On the left icons representing the motion of nearby particles in an incompressible flow field 
relative to a specific particle, on the right icons representing the deformation and growth in 
Lagrangian coordinates (Happe and Rumpf, Fig. 1) 
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A view of incompressible flow in three dimensions. Icons placed at critical points indicate the 
flow induced by the velocity field (Happe and Rumpf, Fig. 2) 

Some streamlines that start or end critical points of incompressible flow (same as in Fig. 2) 
(Happe and Rumpf, Fig. 3) 

Fast LIC image of the material derivative in a two dimensional karman vortex street combined 
with a traced and adaptively refined line. Blue/red colour indicates low/high pressure (Happe 
and Rumpf, Fig. 4) 
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The three investigated rendering modes: line, pyramid, detailed arrow (Haase et al., Plate 1) 

Detail test: which of the four vectors is most orthogonal to the surface? (Haase et al., Plate 2) 

Test environment and one view of the second test ("overview") (Haase et al, Plate 3) 
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mmmm. 
PGO interface to the trigger manager satellite 
(van Liere and van Wijk, Fig. 5) 

Smog prediction (van Liere and van Wijk, Fig. 6) 
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