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Abstract 

Expressing a large number of lightweight, parallel threads in a shared address space significantly eases the 
task of writing a parallel program. Threads can be dynamically created to execute individual parallel tasks; 
the implementation schedules these threads onto the processors and effectively balances the load. However, 
unless the threads scheduler is designed carefully, such a parallel program may suffer poor space and time 
performance. 

In this paper, we evaluate the performance of a native, lightweight POSIX threads (Pthreads) library 
on a shared memory machine using a set of parallel benchmarks that dynamically create a large number of 
threads. By studying the performance of one of the benchmarks, matrix multiply, we show how simple, yet 
provably good modifications to the library can result in significantly improved space and time performance. 
With the modified Pthreads library, each of the parallel benchmarks performs as well as its coarse-grained, 
hand-partitioned counterpart. These results demonstrate that, provided we use a good scheduler, the rich 
functionality and standard API of Pthreads can be combined with the advantages of dynamic, lightweight 
threads to result in high performance. 
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1   Introduction 

Multithreading has become a popular methodology for expressing parallelism in the shared memory pro- 
gramming world. Threads are typically implemented either at the kernel level, or as a user-level library. In 
the former case, most thread operations involve making a system call, with the kernel being aware of the 
existence of multiple threads within a single process. This approach provides a single, uniform thread model 
with access to system-wide resources, at the cost of making thread operations (such as a creation or synchro- 
nization) fairly expensive. On the other hand, a user-level implementation allows most thread operations to 
execute entirely in user space without kernel intervention, making them significantly cheaper than kernel 
threads. Thus parallel programs can be written with a large number of such lightweight threads, leaving the 
job of scheduling and load balancing to the threads library, while allowing the user to write simpler, well 
structured, architecture-independent code. Lightweight threads are particularly useful for applications with 
irregular or dynamic parallelism. For example, if a program consists of a large number of tasks of varying 
lengths that can execute in parallel, a separate user-level thread can be created to execute each task. The 
threads implementation, rather than the user, schedules the threads and balances the load. Similarly, in a 
parallel divide-and-conquer application, even if the recursion tree is revealed at runtime, the user can create 
a separate thread for each recursive call to execute in parallel. Such uses of threads incur prohibitive runtime 
overheads if they are implemented as heavyweight, kernel-level threads. Another advantage of user-level 
threads is the flexibility of their implementation; since they are scheduled by the threads library, the schedul- 
ing mechanism for the threads can be independent from the kernel scheduler. In fact, the threads library can 
support multiple scheduling techniques, allowing the user to pick the technique that best suits his or her 
application. 

Several lightweight, user-level threads packages have been developed [44, 6, 30, 28, 2, 10, 26, 31], 
which include implementations of the POSIX standard threads or Pthreads API [24]. Pthreads are now 
becoming a popular standard for expressing parallelism in the shared memory programming model. Despite 
the existence of lightweight implementations of Pthreads, most programmers still write applications with 
one or a small constant number of Pthreads per processor. The reason is performance—programmers do not 
believe they will get high performance by simply expressing the parallelism as a large number of threads 
and leaving the scheduling and load balancing to the threads library. Thus even multithreaded programs 
are typically restricted to the SPMD programming style, and do not take advantage of lightweight threads 
implementations. Another reason for this choice of programming style may be the fact that Pthreads are not 
currently implemented as user level threads on all multiprocessor platforms, and therefore programs written 
assuming lightweight threads will not run efficiently on all platforms. We do not address this issue here, 
since we feel that eventually all or most platforms will provide user level threads implementations. 

In this paper, we examine the applicability of lightweight, user-level Pthreads to express dynamic or 
irregular parallel programs, that is, the large class of programs that can be more simply expressed using a 
large number of lightweight threads. We study in detail the performance of the native user-level Pthreads 
library on Solaris 2.5 running on a Sun Enterprise SMP using the matrix multiply benchmark. We find that 
using the only supported scheduler, namely a FIFO queue, results in a very large number of simultaneously 
active threads, leading to high memory allocation and high resource contention. This prevents the compute 
intensive benchmark from scaling well. We then describe several simple modifications we make to the 
Pthreads library that improve space and time performance. The final version of the scheduler uses a provably 
efficient scheduling mechanism [32] that results in a good speedup for the matrix multiply benchmark, while 
keeping memory allocation low. The simple and portable code for matrix multiply runs within 10% of hand- 
optimized BLAS3 code for small matrices, and outperforms it for larger matrices. We also describe a set 
of 6 additional benchmarks, most of which were rewritten from their original coarse-grained versions to 
dynamically create a large number of Pthreads. We show that the rewritten code, although simpler than the 



original code, results in equivalent performance as the original code, when the modified Pthreads library 
was used. Thus we demonstrate that, provided we use a good scheduler, the rich functionality and standard 
API of Pthreads can be combined with the advantages of dynamic, lightweight threads to result in high 
performance. 

The rest of this paper is organized as follows. Section 2 summarizes the advantages of using lightweight 
threads and gives an overview of related work on scheduling user-level threads. Section 3 describes the 
native Pthreads library on Solaris, and presents the parallel matrix multiply benchmark with its initial per- 
formance. Section 4 briefly explains each modification we made to the Pthreads library, along with the 
resulting change in space and time performance. In Section 5 we describe a set of parallel benchmarks 
and compare the performance of the original version with the version rewritten to create a large number of 
threads, using both the original library and the library with the new scheduler. We summarize and discuss 
open problems and future work in Section 6. 

2   Motivation and related work 

Using a large number of lightweight threads has several advantages over the conventional coarse-grained 
style of creating one thread per processor. We summarize these advantages below. 

• All the parallel tasks can be expressed as threads, without explicitly mapping the threads to processors. 
This results in a simpler, more natural programming style, particularly for programs with irregular and 
dynamic parallelism. 

• The resulting program is architecture independent, since the parallelism is not statically mapped to a 
fixed number of processors. This is particularly useful in a multiprogramming environment, where 
the number of processors available to the computation may vary over the course of its execution [9]. 

• Since the number of threads expressed is much larger than the number of processors, the threads can 
be effectively load balanced by the implementation. The programmer does not need to implement a 
load balancing strategy for each application that cannot be mapped statically. 

• The implicit parallelism in functional languages, or the loop parallelism extracted by parallelizing 
compilers is fine grained, and can be more naturally expressed as lightweight threads. 

• Since lightweight threads are implemented at the user level, the thread scheduler can be independent of 
the kernel scheduler. This allows the programmer to choose between a variety of alternate scheduling 
techniques that may be available in the threads library; adding a new scheduling mechanism to the 
user-level library is also easier. 

In this paper, we focus on the scheduling mechanism used in lightweight threads packages written for shared 
memory machines. In particular, we are interested in implementing a scheduler that efficiently supports 
dynamic and irregular parallelism. 

2.1   Scheduling lightweight threads 

A variety of systems have been developed to schedule lightweight, dynamic threads [5, 10, 27, 40, 23, 29, 
33,46, 14,13, 35]. Although the main goal has been to achieve good load balancing and/or locality, a large 
body of work has also focused on developing scheduling techniques to conserve memory requirements. 
Since the programming model allows the expression of a large number of lightweight threads, the scheduler 
must take care not to create too many simultaneously active threads. This ensures that system resources 



like memory are not exhausted or do not become a bottleneck in the performance of the parallel program. 
For example, consider the serial execution of a simple computation, represented by the computation graph 
in Figure 1. Each node in the graph represents a computation within a thread, and each edge represents a 
dependency. The solid right-to-left edges represent the forking of child threads, while the dashed left-to- 
right edges represent joins between parent-child pairs. The vertical edges represent sequential dependencies 
within a single thread. Let us assume a single global list of ready threads is maintained in the system. If this 
list is implemented as a LIFO stack, the nodes are executed in a depth-first order. This results in as many 
d simultaneously active threads, where d is the maximum number of threads along any path in the graph1. 
On the other hand, implementing the ready list as a FIFO queue, the system would execute the threads in 
a breadth-first order, creating a much larger number of threads. Thus a serial execution of the graph in 
Figure 1 using a FIFO queue would result in all 7 threads being simultaneously active, while a LIFO stack 
would result in at most 3 active threads. 

The initial approaches to conserving memory were based on heuristics that work well for some applica- 
tions, but do not provide guaranteed bounds on space [41,16,39,5,29,20,27]. For example, Multilisp [39], 
a flavor of Lisp that supports parallelism through the "future" construct, uses per-processor stacks of ready 
threads to limit the parallelism. In [5], stack and other thread resources are conserved by allocating them 
lazily, that is, only when the thread is first scheduled, rather than when it is created. Similarly, lazy thread 
creation [29, 20] avoids allocating resources for a thread unless it is executed in parallel. Filaments [27] is 
a package that supports fine-grained fork-join or loop parallelism using non-preemptive, stateless threads; it 
further reduces overheads by coarsening and pruning excess parallelism. 

Recent work has resulted in provably efficient scheduling techniques that provide upper bounds on the 
space required by the parallel computation [11,12,10, 8, 32]. Since there are several possible execution or- 
ders for lightweight threads in a computation with a high degree of parallelism, the provably space-efficient 
schedulers restrict the execution order for the threads to bound the space requirement. For example, the Cilk 
multithreaded system [10] guarantees space-efficiency by maintaining per-processor stacks of ready threads. 
When a processor runs out of threads on its own stack, it picks another processor at random, and steals from 
the bottom of its stack. Various other systems use a similar work stealing strategy [23, 33,29,46] to control 
the parallelism. In [32], we present a new, provably space-efficient scheduling algorithm that uses a shared 
"parallel" stack and results in lower space requirements for parallel benchmarks compared to Cilk, while 
maintaining good performance. 

In this paper, we implement a variation of the scheduling strategy from [32] in the context of Pthreads. 
While previous work on space-efficient scheduling supports a restricted set of thread operations and re- 
quires a specialized runtime system, in this paper we focus on the standard Pthreads API. Providing very 
fine-grained threads with overheads close to a function call, similar to [10, 27], makes it difficult to sup- 
port a variety of user-level synchronization primitives (such as locks) that require the lightweight thread to 
suspend. Instead, in this work, we focus on providing an efficient scheduling mechanism to support the 
complete, standard Pthreads functionality, which includes locks and condition variables. We modify an ex- 
isting native Pthreads library by adding the space-efficient technique to its scheduler. In fact, the existing 
Pthreads interface allows the programmer to choose between a set of alternate scheduling policies for each 
thread; thus our policy can be used along with existing scheduling policies. Since our scheduler does not 
affect other important parts of the library, such as synchronization or signal handling, any existing Pthreads 
program can be run as is with our modified Pthreads library. If the program is written to use a small number 
of threads, its performance will be identical to the original library. However, as we shall see later in the 
paper, a program that dynamically creates and destroys a large number of Pthreads enjoys improved space 
and time performance with the modified library. 

^or programs with a large amount of parallelism, d is typically much smaller than the total number of threads. 
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Figure 1: An example computation graph with fork-join style of parallelism. A right-to-left bold edge represents 
the fork of a child thread, while a left-to-right dashed edge represents a join between a parent and child; a sequential 
dependency within a thread is represented by a vertical edge. For example, thread e is the child of thread b, which is 
the child of thread a. 

3   Case study: Pthreads on Solaris 

In this section, we describe the native Pthreads library on Solaris, followed by some experiments measuring 
the performance of a parallel matrix multiply benchmark that uses Pthreads on Solaris. 

The Solaris 2.5 operating system contains kernel support for multiple threads within a single process 
address space [36]2. The goal of the Solaris Pthreads implementation is to make the threads sufficiently 
lightweight so that thousands of them can be present within a process. The threads are therefore imple- 
mented by a user-level threads library so that common thread operations such as creation, destruction, syn- 
chronization and context switching can be performed efficiently without entering the kernel. 

Lightweight Pthreads on Solaris are implemented by multiplexing them on top of kernel-supported 
threads called LWPs. The assignment of lightweight threads to LWPs is controlled by the user-level threads 
library [44]. A thread may be either bound to an LWP (to schedule it on a system-wide basis) or may be 
multiplexed along with other unbound threads of the process on top of one or more LWPs. LWPs are sched- 
uled by the kernel onto the available CPUs according to their scheduling class and priority, and may run 
in parallel on a multiprocessor. Figure 2 shows how threads and LWPs in a simple Solaris process may be 
scheduled. Process 1 has one thread bound to an LWP, and two other threads multiplexed on another LWP, 
while process 2 has three threads multiplexed on two LWPs. 

Since Solaris Pthreads are created, destroyed and synchronized by a user-level library without kernel 
intervention, these operations are significantly cheaper compared to the corresponding operations on kernel 
threads. Figure 3 shows the overheads for some Pthread operations on a 167 MHz UltraSPARC processor. 
Operations on bound threads involve operations on LWPs and require kernel intervention; they are hence 
more expensive than user-level operations on unbound threads. Note, however, that the user-level thread 
overheads are significantly more expensive than function calls; e.g., the thread creation time of 20.5/is 
corresponds to over 3400 cycles on the 167 MHz UltraSPARC. The library incurs this overhead for every 
thread expressed in the program, and does not attempt to automatically coarsen the threads. Therefore, the 
overheads limit how fine-grained a task may be expressed using Pthreads without significantly affecting per- 
formance. It is left to the programmer to select the finest granularity for the threads such that the overheads 
remain insignificant, while maintaining portability, simplicity and load balance; we discuss this issue briefly 
in Section 6. 

2 Although Pthreads on Solaris differ from native "solans threads" in their API, the implementations of the two threads packages 
on Solaris are essentially identical, so the references on Solaris threads cited here apply to both the threads packages. 
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Figure 2:   Scheduling of lightweight Pthreads and kernel-level LWPs in Solaris. Threads are multiplexed on top of 
LWPs at the user level, while LWPs are scheduled on processors by the kernel. 

Operation Create Context 
switch 

Join Semaphore 
sync 

Unbound thread 
Bound thread 

20.5 
170 

9 
11 

6 
8.5 

19 
55 

Figure 3: Uniprocessor timings in microseconds for Solaris threads operations on a 167 MHz UltraSPARC 
running Solaris 2.5. Creation time is with a preallocated stack5, and does not include any context switch. 
Join is the time to join with a thread that has already exited. Semaphore synchronization time is the time for 
two threads to synchronize using a semaphore, and includes the time for one context switch. 

Although more expensive than function calls, the thread overheads are low enough to allow the creation 
of many more threads than the number of processors during the execution of a parallel program, so that the 
job of scheduling these threads and balancing the load across processors may be left to the threads library. 
Thus, this implementation of Pthreads is well-suited to express medium-grained threads, resulting in simple 
and efficient code, particularly for programs with dynamic parallelism. For example, Figure 4 shows the 
pseudocode for a block-based, divide-and-conquer algorithm for matrix multiplication using dynamic par- 
allelism: each parallel, recursive call is executed by forking a new thread. To ensure that the total overhead 
of thread operations is not significant, the parallel recursion on a 167 MHz UltraSPARC is terminated once 
the matrix size is reduced to a size of 64 x 64: beyond that point, an efficient serial algorithm is used to 
perform the multiplication3. The total time to multiply two 1024 x 1024 matrices with this algorithm on a 
single 167 MHz UltraSPARC processor, using a LJEO scheduling queue and assuming a preallocated stack 
for every thread created, is 17.5s; of this, the thread overheads are no more than 0.2s. The more complex 
but faster Strassen's matrix multiply can also be implemented in a similar divide-and-conquer fashion with 
a few extra lines of code; coding it with static partitioning is significantly more difficult. Further, efficient, 
serial, machine-specific library routines can be easily plugged in to multiply the 64 x 64 submatrices at the 
base of the recursion tree. Note that the allocation of temporary space in the algorithm in Figure 4 can be 
avoided, but this would significantly add to the complexity of the code or reduce the parallelism. 

3.1   Performance using the native Pthreads library 

We implemented the algorithm in Figure 4 on an 8-processor Sun Enterprise 5000 SMP running Solaris 
2.5 with 512 MB of main memory. Each processor is a 167 MHz UltraSPARC with a 512KB L2 cache. 

3The matrix multiply code was adapted from an example Cilk program available with the Cilk distribution [10]. 
'Creation of a bound or unbound thread without a preallocated stack incurs an additional overhead 200/is for the smallest stack 

size of a page(8KB). This overhead increases to 260ps for a 1MB stack. 



Matrix_Mult(A, B, C, size) { 
if (size <= K) serial_mult(A, B, C, size); 
else 

T = mem_alloc(size * size); 
initialize smaller matrices as quadrants of A, B, C, and T; 
hsize = size/2; 
fork Matrix_Mult(All, Bll, Cll, hsize) 
fork Matrix_Mult(All, B12, C12, hsize) 
fork Matrix_Mult(A21, Bll, C21, hsize) 
fork Matrix_Mult(A21, B12, C22, hsize) 
fork Matrix_Mult(A12, B21, Til, hsize) 
fork Matrix_Mult(A12, B22, T12, hsize) 
fork Matrix_Mult(A22, B21, T21, hsize) 
fork Matrix_Mult(A22, B22, T22, hsize) 
join with all forked child threads; 
Matrix_Add(T,   C); 
mem_free(T) ; 

Matrix A 
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A21 A22 
I 

Matrix B 

B11 B12 

B21IB22 

Matrix C 

C11 

C21 

C12! 

C22 

Temporary 
Storage T 
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Figure 4: Pseudocode for a divide-and-conquer parallel matrix multiply. The Matrix-Add function is implemented 
similarly using a parallel divide-and-conquer algorithm. The constant K to check for the base condition of the recursion 
is set to 64 on a 167 MHz UltraSPARC. 
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Figure 5: Performance of matrix multiply on an 8-processor Enterprise 5000 SMP using the native Pthreads library: 
(a) speedup with respect to a serial C version; (b) high water mark of memory allocation during the execution of the 
program. "Input size" is the size of the three matrices, while "Serial" includes the additional temporary space allocated 
in the serial program. 

Figure 5 (a) shows the speedup of the program with respect to the serial C version written with function 
calls instead of forks. The speedup was unexpectedly poor for a compute-intensive parallel program like 
matrix multiply. Further, as shown in Figure 5 (b), the maximum memory allocated by the program during 
its execution significantly exceeded the memory allocated by the corresponding serial program6. 

To detect the cause for the poor performance of the program, we used a profiling tool7 to obtain a 
breakdown of the execution time, as shown in Figure 6. The processors spend a significant portion of the 
time in the kernel making system calls. The most time-consuming system calls were those involved in 
memory allocation. We also measured the maximum number of threads active during the execution of the 
program: the library creates more than 3500 active threads during execution on a single processor. Note 
that a simple, serial, depth-first execution of the program (in which a child preempts its parent as soon as 
it is forked) on a single processor should result in just 10 threads being simultaneously active. Both these 
measures indicate that the native Pthreads library creates a large number of active threads, which all contend 
for allocation of stack and heap space, as well as for scheduler locks, resulting in poor speedup and high 
memory allocation. Note that even if a parallel program exhibits good speedups for a given problem size, it 
is important to minimize its memory requirement; otherwise, as the problem size increases, the performance 
soon begins to suffer due to excessive TLB and page misses. 

The reason for the library creating a very large number of active threads is that the only scheduling 
technique supported by the library is a FIFO queue. Further, when a parent thread forks a child thread, the 
child thread is added to the queue rather than being scheduled immediately. As a result, the computation 
graph is executed in a breadth-first manner. (This matrix multiply program has a computation graph similar 
to the one in Figure 1; at each stage 8 threads are forked instead of the 2 shown in the figure.) 

To improve the time and space performance of multithreaded applications a scheduling technique that 
creates fewer active threads, as well as limits their memory allocation, is necessary. We describe our exper- 
iments in using such a scheduling technique with the Solaris Pthreads library in the rest of the paper. 

6Note that the serial algorithm is marginally different and allocates a quarter of the temporary space at each stage, compared to 
the parallel version. However, this difference accounts for just a small fraction of the difference shown in Figure 5. 

7Sun Workshop version 4.0 
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Figure 6: A breakdown of execution times on up to 8 processors for matrix multiply. "Compute" is the time doing 
useful computation, "system" is the time spent in system calls, "sys-wait" is the time spent waiting in the system, and 
"user-lock" is the time spent waiting on user-level locks. 

4   Improvements to the native Pthreads library 

In this section, we list the various modifications we made to the scheduler in the user-level Pthreads library 
on Solaris 2.5. The goal of these modifications was to improve the performance of the matrix multiply al- 
gorithm in Figure 4. The effect of each modification on the program's space and time performance is shown 
in Figure 7. All the speedups in Figure 7(a) are with respect to the serial C version of matrix multiply. For 
comparison, the figure also shows the speedup obtained by the BLAS3 library routine for matrix multipli- 
cation [17] with respect to the serial C version. This library is hand-optimized by the manufacturer for the 
specific hardware and software system [45], and is widely considered to yield optimal performance. 

The modifications on the native Pthreads library are described in the order in which they were performed: 

1. Disabling creation of new LWPs. The current implementation of the thread library attempts to 
avoid deadlocks by creating new LWPs when all the existing LWPs are blocked [44]. Since in the 
original library, LWPs are often blocked making system calls to allocate more memory, this results 
in a very large number of LWPs getting created. For example, in a 1024 x 1024 matrix multiply 
on an 8-processor machine may result in as many as 40 LWPs being created by the library. Since 
LWPs are kernel-level threads, they incur a larger overhead for all thread operations, including context 
switches. The running time on 8 processors varied from 5.8s to 9.97s depending on the total number 
of LWPs created, which varied from 8 to 41. Therefore, we decided to disable this deadlock-avoidance 
feature for the matrix multiply code by modifying the library source code. Note that this feature is 
not required when the LWPs are temporarily blocked in the kernel; it is, however, useful to avoid 
deadlocks when the LWPs are blocked in possibly indefinite, external events (such as a poll ()). 
As suggested in [36], we recommend distinguishing between such blocks and allowing the user to 
disable the creation of new LWPs during short-term blocks. Once we fixed the number of LWPs to be 
the number of processors, we were able to obtain results with lower variance, and were also able to 
measure the speedup of the algorithm for different numbers of processors8. The results are shown as 
the curve labeled "No LWPs" in Figure 7 (this is the same curve from Figure 5 (a)). 

The original library would often create more than p LWPs for a run on p < 8 processors, and the program would therefore end 
up using more than p processors. 
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Figure 7: Performance of matrix multiply on an 8-processor Enterprise 5000 SMP using variations of the native 
Pthreads library: (a) speedup with respect to a serial C version; (b) high water mark of memory allocation during the 
execution of the program. "No LWPs" is the original library without creation of new LWPs, "Smaller stack" is with 
smaller 8K stacks as the default size, "LIFO" uses a LIFO scheduling queue, "No preempt" uses the space-efficient 
scheduler without preempting on memory allocations, and "Final" is the space-efficient scheduler with preemptions 
on large allocations. 

2. Reduced default stack size. On Solaris, if a thread's stack size is not specified while creating the 
thread, the default stack size is fixed at 1MB. To reduce the load on the memory allocator, the library 
caches a number of these stacks once threads are destroyed, so that the stacks may be reused for 
future threads. However, for applications that dynamically create and destroy a large number of 
threads, where each thread only requires a far more modest stack size, the default size of 1MB is 
too large. Further, a scheduling technique like FIFO creates a large number of simultaneously active 
threads, and therefore benefit little from caching the stacks. As a result, a large portion of time is spent 
in memory allocation for these stacks; this explains a portion of the large system times in Figure 6. 
Although programmers can supply their own stack or specify a smaller stack size, these stacks are 
not automatically cached by the library unless they are of the default size. We argue that to simplify 
the role of the programmer, the stacks should in fact be cached by the library, and therefore, there 
should be an option to change or specify the default stack size. We modified the default stack size 
to be one page or 8KB; the improved performance curves are marked as "Smaller stack" in Figure 7. 
Note that the memory allocation plotted in Figure 7(b) includes only the heap space, since only a very 
small portion of the allocated stack is actually used, while the entire allocated heap space is touched 
within the program. Therefore this step did not significantly improve the memory performance of the 
program. 

Note that it may not always be possible for the user to give a good estimate of the stack space required 
for the threads, which is why a large, conservative size of 1MB was chosen in Solaris. For example, 
the space required for a recursive function in a thread may vary depending on the input data. For such 
cases, an alternate strategy to conserve stack space is required to efficiently support a large number of 
threads, such as the one suggested in [22]. 

3. LIFO scheduler. Next, we modified the scheduling queue to be last-in-first-out (LIFO) instead of 
FIFO. The motivation for this change was to reduce the total number of active threads created by the 
library at any time during the execution. A FIFO queue executes the threads in a breadth-first order, 
while a LIFO queue results in execution that is closer to a depth-first order. As expected, this reduced 
the memory requirements of the execution to some extent (see curve labeled as "LIFO" in Figure 7), 
and simultaneously improved the speedup. 



4. Space-efficient scheduler. Finally, we implemented a variation of the space-efficient scheduling 
technique described in [32]. The main difference between this technique and the LIFO scheduler 
described above are 

• There is an entry in the scheduling queue for every thread that has been created but that has not 
yet exited. Thus threads represented in the queue may be either ready, blocked, or executing. 
These entries serve as placeholders for blocked or executing threads. 

• When a parent thread forks a child thread, the parent is preempted immediately and the processor 
starts executing the child thread. 

• When a thread is preempted, it is returned to the scheduling queue in the same position (relative 
to the other threads) that it was in when it was last selected for execution. 

• A newly forked thread is placed to the immediate left of its parent in the scheduling queue. 

• Every time a thread is scheduled, it is allocated a counter initialized to a constant K units. When 
it allocates m bytes of memory, the counter is decremented by m units, and when the counter 
reaches zero, the thread is preempted. If a thread contains an instruction that allocates m > K 
bytes, Ö dummy threads (threads that perform a no-op and exit) are inserted in parallel9 by the 
library before the allocation, where S is proportional to m/K. The constant K can be used as a 
parameter to adjust the trade-off between space and time (see [32]). 

We measured the performance of matrix multiply using two versions of this technique: one without 
the final modification of preempting a thread due to memory allocations (labeled "No preempt" in 
Figure 7), and one with the preemptions (labeled "Final"). Note that both these versions yielded 
good speedups, and are around 10% slower than the BLAS3 routine; in fact, when the matrix size is 
doubled, the absolute running times of these versions are lower than BLAS 3 for up to 8 processors. 
This is particularly encouraging since our code is high-level and platform-independent, while BLAS3 
is hand-optimized. Note, however, that BLAS3 handles general matrix sizes, while our code handles 
sizes that are powers of 2. For a more complete implementation of a portable, divide-and-conquer 
matrix multiply, an algorithm such as [18] would need to be implemented. 

The two versions of the new scheduling technique differ in their memory requirements, as seen in 
Figure 7(b), especially as the number of processors increases. This difference is expected, since the 
preemptions added in the "Final" version make the scheduling technique provably space-efficient 
(see [32] for details). With the final scheduling technique, the performance was also less sensitive to 
the stack size, since fewer threads are simultaneously active, and stacks can therefore be effectively 
cached by the library. 

5   Other parallel benchmarks 

In this section, we describe our experiments with 6 additional parallel benchmarks. The majority of them 
were originally written to use one thread per processor. We rewrote the benchmarks to use a large number 
of Pthreads, and compared the performance of the original benchmark with the modified version using both 
the original Pthreads library and the library with the new scheduler. For the rewritten versions, we manually 
adjusted the granularity of the parallel threads (and hence the total number of threads created) to be of the 
finest degree such that the thread overheads did not significantly affect the running time. This adjustment 
is fairly simple, and involves specifying a runtime parameter that sets the chunking size for parallel loops, 
or the termination condition for parallel recursive calls. Since the threads are sufficiently lightweight, this 

'Since the Pthreads interface allows only a binary fork, these 5 threads are forked as a binary tree instead of a (5-way fork. 
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Benchmark Original 

Speedup 

Modified + orig. lib Modified + new lib 

Speedup Threads Speedup Threads 

Matrix Multiply 6.35 2.53 3537 6.03 76 

Barnes Hut 7.99 4.65 4185 7.94 88 
FMM — 5.18 2277 7.42 17 

Decision Tree — 5.03 92 5.03 70 
FFTW 5.00 4.64 224 4.76 14 

Sparse Matrix 4.74 4.69 67 4.98 9 
Vol. Rend. 6.81 5.60 171 6.79 44 

Figure 8: Speedups on 8 processors over the corresponding serial C programs for the 7 parallel benchmarks. Three 
versions of each benchmark are listed here: the original version (BLAS3 for Matrix Multiply; none for FMM or 
Decision Tree), the modified version that uses a large number of threads with the original Solaris Pthreads library, and 
the modified version with the Pthreads library using the new scheduling technique. "Threads" is the maximum number 
of active threads during the 8-processor execution. 

coarsening still results in a large number of threads being created, and thus allows for automatic load- 
balancing. All threads were created with the smallest stack size that was sufficient to run the experiments; 
in most cases, a stack of one page (8KB) was used. The experiments were run on the 8-processor Enterprise 
5000 described in Section 3. All programs were compiled using Sun's Workshop compiler (cc) 4.2, with 
the flags-fast  -xarch=v8plusa -xchip=ultra -xtarget=native -x04. 

We describe each benchmark with its experimental results separately; Figure 8 summarizes the results. 
Preliminary results on 16 processors of a Sun Enterprise 6000 are presented at the end of this section. 

5.1   Barnes Hut 

This program simulates the interactions in a system of N bodies over several timesteps using the Barnes-Hut 
algorithm[25]. Each timestep has three phases: an octree is first built from the set of bodies, the force on 
each body is then calculated by traversing this octree, and finally, the position and velocity of each body is 
updated accordingly. We used the Barnes application code from the SPLASH-2 benchmark suite [47] in our 
experiments. 

In the SPLASH-2 Barnes code, one Pthread is created for each processor at the beginning of the exe- 
cution; the threads (processors) synchronize using a barrier after each phase within a timestep. Once the 
tree is constructed, the bodies are partitioned among the processors. Each processor traverses the octree 
to calculate the forces on the bodies in its partition, and then updates the positions and velocities of those 
bodies. It also uses its partition of bodies to construct the octree in the next timestep. Since the distribution 
of bodies in space may be highly non-uniform, the work involved for the bodies may vary to a large extent, 
and a uniform partition of bodies across processors leads to load imbalance. The Barnes code therefore uses 
a costzones partitioning scheme to partition the bodies among processors [43]. This scheme tries to assign 
to each processor a set of bodies that involve roughly the same amount of work, and are located close to 
each other in the tree to get better locality. 

We modified the Barnes code so that, instead of partitioning the work across the processors, a new 
Pthread is created to execute each small, constant-sized unit of work. For example, in the force calculation 
phase, a new thread is created to compute the forces on bodies in every 4 leaves in the tree10. Since each leaf 

Creating a new thread for every leaf adds a 4% overhead due to thread operations, so we coarsened the parallelism by grouping 
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holds multiple bodies, this granularity is sufficient to amortize the cost of thread overheads and to provide 
locality within a thread. Thus, each phase was parallelized by simply writing a loop to create a large number 
of Pthreads over the set of all leafs or all bodies11. Further, we do not need any partitioning scheme in 
our code, since the large number of threads in each phase are automatically load balanced by the Pthreads 
library. In addition, no per-processor data structures were required in our code, and the final version was 
significantly simpler than the original code. 

The simulation was run on a system of 100,000 bodies generated under the Plummer model [1] for four 
timesteps12. Figure 8 shows that our simpler approach achieves the same high performance as the original 
code. However, the library's scheduler needs to be carefully implemented to achieve this performance. 
Note that when the thread granularity is coarsened and therefore the number of threads is reduced, the 
performance of the original library also improves significantly. However, as the problem size scales, unless 
the number of threads increases, the library cannot balance the load effectively. The performance of our 
modified Pthreads library is not affected by the high usage of locks (Pthread mutexes) in the tree-building 
phase. 

5.2   Fast Multipole Method 

This application executes a different iV-Body algorithm called the Fast Multipole Method or FMM [21]. 
The FMM in three dimensions, although more complex, has been shown to do less work than the Barnes- 
Hut algorithm for simulations requiring high accuracy, such as electrostatic systems [7]. The main work 
in FMM involves the computation of local and multipole expansion series that describe the potential field 
within and outside a cell, respectively. We first wrote the serial C version for the uniform FMM algorithm, 
and then parallelized it using Pthreads. The parallel version is written to use a large number of threads, and 
we do not compare it here to any preexisting version written with one thread per processor. The program 
was executed on 10,000 uniformly distributed particles by constructing a tree with 4 levels and using 5 terms 
in the multipole and local expansions. 

We describe each phase of the force calculation and how it is parallelized: 

1. Multipole expansions for leaf cells are calculated from the positions and masses of their bodies; a 
separate thread is created for each leaf cell. 

2. Multipole expansions of interior cells are calculated from their children in a bottom-up phase; a sep- 
arate thread is created for each interior cell. 

3. In a top-down phase, the local expansion for each cell is calculated from its parent cell and from 
its well-separated neighbors; since each cell can have a large number of neighbors (up to 875), we 
created a separate thread to compute interactions with a constant number (50) of a cell's neighbors. 

4. The forces on bodies are calculated from the local expansions of their leafs and from direct interactions 
with neighboring bodies; a separate thread is created for each leaf cell. 

Since this algorithm involves dynamic memory allocation (in phase 3), we measured its space require- 
ment with the original and new versions of the Pthreads library (see Figure 9 (a)). As with matrix multiply, 
the new scheduling technique results in lower space requirement. The speedups with respect to the serial C 
version are included in Figure 8. 

4 leaves together. This coarsening is not required for larger problem sizes. 
nFor the force calculation phase, since we created over 4000 threads, we rewrote the flat loop as a simple binary tree of forks to 

avoid serializing the creation of the threads. 
12As with the default Splash-2 settings, the first two timesteps were not measured. 
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Figure 9: Memory requirement for the FMM and Decision Tree benchmarks. "Orig. lib" uses the native Pthreads 
library, while "New lib" uses the library modified to use the new scheduler; "Serial" is the space requirement of the 
serial program. 

5.3 Decision Tree Builder 

Classification is an important data mining problem. We implemented a decision tree builder to classify 
instances with continuous attributes. The algorithm used is similar to ID3 [37], with C4.5-like additions to 
handle continuous attributes [38]. The algorithm builds the decision tree in atop-down, divide-and-conquer 
fashion, by choosing a split along the continuous-valued attributes based on the best gain ratio at each stage. 
The instances are sorted by each attribute to calculate the optimal split. The resulting divide-and-conquer 
computation graph is highly irregular and data dependent, where each stage of the recursion itself involves 
a parallel divide-and-conquer quicksort to split the instances. We used a speech recognition dataset with 
133,999 instances, each with 4 continuous attributes and a true/false classification as the input. A thread is 
forked for each recursive call in the tree builder, as well as for each recursive call in quicksort. In both cases, 
to minimize thread overheads, we switch to serial recursion once the number of instances is reduced to 2000. 
Since a coarse-grained implementation of this algorithm would be highly complex, requiring explicit load 
balancing, we did not implement it. The 8-processor speedups obtained with the original and new library 
are shown in Figure 8; both the libraries result in good time performance; however, the new library resulted 
in a lower space requirement (see Figure 9 (b)). 

5.4 Fast Fourier Transform 

The FFTW ("Fastest Fourier Transform in the West") library [19] computes the one- and multidimensional 
complex discrete Fourier transform (DFT). The FFTW library is typically faster than all other publicly 
available DFT code, and is competitive or better than proprietary, highly optimized versions such as Sun's 
Performance Library code. FFTW implements the divide-and-conquer Cooley-Tukey algorithm [15]. The 
algorithm factors the size N of the transform into N = Nx ■ N2, and recursively computes Nx transforms of 
size N2, followed by N2 transforms of size JVi. The FFTW package includes a version of the code written 
with Pthreads, which we used in our experiments. The FFTW interface allows the programmer to specify 
the number of threads to be used in the DFT. The code forks a Pthread for each recursive transform, until 
the specified number of threads are created; after that it executes the recursion serially. The authors of the 
library recommend using one Pthread per processor for optimal performance. 

We ran a one-dimensional DFT of size N = 222 in our experiments, using either p threads (where p 
= no. of processors), or 256 threads. Figure 10 shows the speedups over the serial version of the code for 
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Figure 10: Running times for three versions of the multithreaded, one-dimensional DFT from the FFTW library on 
p processors: (1) using p threads, (2) using 256 threads with the original Pthreads library, (3) using 256 threads with 
the modified Pthreads library. 

one to eight processors. Note that when p is a power of two, the problem size (which is also a power of 
two) can be uniformly partitioned among the processors using p threads, and being a regular computation, it 
does not suffer from load imbalance. Therefore, for p = 2,4,8, the version with p threads runs marginally 
faster. However, for all other p, the version with a larger number of threads can be better load balanced 
by the Pthreads library, and therefore performs better. This example shows that without any changes to 
the code, the performance becomes less sensitive to the number of processors when a large number of 
lightweight threads are used. For this application, the original and new versions of the Pthreads library 
resulted in similar performance. However, as with the volume rendering benchmark, for bigger input sizes 
and therefore larger numbers of threads, the difference in performance of the two libraries is expected to 
increase 13 

5.5   Sparse Matrix Vector Product 

We timed 20 iterations of the product w = M • v, where M is a sparse, unsymmetric matrix and v and 
w are dense vectors. The code is a modified version of the Spark98 kernels [34] written for symmetric 
matrices. The sparse matrix in our experiments is generated from a finite element mesh used to simulate the 
motion of the ground after an earthquake in the San Fernando valley [4, 3]; it has 30,169 rows and 151,239 
non-zeroes14. In the coarse-grained version, one thread is created for each processor at the beginning of the 
simulation, and the threads execute a barrier at the end of each iteration. Each processor (thread) is assigned 
a disjoint and contiguous set of rows of M, such that each row has roughly equal number of nonzeroes. 
Keeping the sets of rows disjoint allows the results to be written to the w vector without locking. 

In the fine-grained version, 128 threads are created and destroyed in each iteration15. The rows are 
partitioned equally rather than by number of nonzeroes, and the load is automatically balanced by the threads 
library (see Figure 8). 

13Our experiments were run on the largest problem size that fit into the 0.5 GB of main memory on our machine. 
14This matrix is available as part of the Spark98 kernels. 
15For this matrix size, creating 128 threads results in over 5% overhead compared to 8 threads; therefore we did not create any 

more threads. 
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5.6 Volume Rendering 

This application from the Splash-2 benchmark suite uses a ray casting algorithm to render a 3D volume [47, 
42]. The volume is represented by a cube of volume elements, and an octree data structure is used to traverse 
the volume quickly. The program renders a sequence of frames from changing viewpoints. For each frame, 
a ray is cast from the viewing position through each pixel; rays are not reflected, but may be terminated 
early. Parallelism is exploited across these pixels in the image plane. Our experiments do not include times 
for the preprocessing stage which reads in the image data and builds the octree. 

In the Splash-2 code, the image plane is partitioned into equal sized rectangular blocks, one for each 
processor. However, due to the nonuniformity of the volume data, an equal partitioning may not be load 
balanced. Therefore, every block is further split into tiles, which are 4 x 4 pixels in size. They explicitly 
maintain a task queue for each processor, which is initialized to contain all the tiles in its own block. When 
a processor runs out of work, it steals a tile from another processor's task queue. The program was run on 
a 256 x 256 x 256 volume data set of a Computed Tomography head and the resulting image plane was 
375 x 375 pixels. 

In our version of the code, we created a separate Pthread to handle each set of 32 tiles (out of a total 
of 8836 tiles). Since the computation for one tile requires on average around 350/is, creating one Pthread 
per tile would make the thread overheads significant. Further, since rays cast through consecutive pixels are 
likely to access much of the same volume data, grouping a small set of tiles together is likely to provided 
better locality. On the other hand, since the number of threads created is much larger than the number of 
processors, the computation is load balanced across the processors by the Pthreads library, and does not 
require the explicit task queues used in the original version. Figure 8 shows that the simpler, modified code 
runs as fast as the original code16 when the modified library is used. Further, as the size of the data set 
grows, and therefore the number of threads created increases17, we expect the difference in performance of 
the two versions of the Pthreads libraries to increase. 

5.7 Scalability 

To test the scalability of our scheduling approach, we ran our benchmarks on up to 16 processors of a Sun 
Enterprise 6000 server. Each processor is a faster, 250 MHz UltraSPARC with a 4MB L2 cache. The results 
are summarized in Figure 11. For the matrix multiply benchmark to scale beyond 12 processors, we had 
to rewrite the serial multiplication at the leaves of the recursion tree to avoid using malloc; we expect a 
more concurrent implementation of malloc will allow the original code to scale well. The timings for the 
Barnes-Hut benchmark do not include the tree building phase, since it does not scale well on 16 processors 
in the rewritten versions. We currently use the same locking tree building algorithm as the original code; 
therefore the use of locks increases with the number of threads. We expect a divide-and-conquer tree builder 
to scale better as the number of processors and threads increases. In general, the results for the parallel 
benchmarks were similar to those in Figure 8. 

6   Summary and discussion 

A space-efficient scheduler that limits the memory requirement of an application has the benefits of incurring 
fewer system calls for memory allocation, as well as fewer TLB and page misses. We have described the 

The variance in running times of successive runs of the original code was much higher compared to the modified version; the 
times presented are the mean of 10 successive runs. 

"Keeping the number of threads low as the problem size increases will limit its scalability and load balancing, particularly for a 
larger number of processors. 
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Benchmark Problem Size Original 
Speedup 

Modified + orig. lib Modified + new lib 
Speedup Threads Speedup Threads 

Matrix Multiply 20482 matrices, 1282 blocks — 10.0 3537 14.24 83 
Barnes Hut 200,000 bodies 14.73 7.26 4494 14.95 92 

FMM 20,000 bodies, 5 terms — 11.61 977 13.55 33 
Decision Tree 133,999 instances — 6.02 101 6.03 90 

FFTW iV = 222 11.94 11.54 156 12.41 23 
Sparse Matrix 30K nodes, 151K edges 11.37 9.63 72 9.64 17 

Vol. Rend. 2563 volume, 3752 image 13.85 12.88 181 13.41 61 

Figure 11: Speedups on 16 processors over the corresponding serial C programs for the 7 parallel benchmarks on a 
Sun Enterprise 6000 SMP. Each processor is a 250 MHz UltraSPARC with a 4MB L2 cache. Due to limited access 
to the machine, we could not analyze the reason behind the low speedup for the decision tree benchmark; we expect 
it may be due to increased bus contention or due to contention inside malloc. The columns are as explained in 
Figure 8. 

implementation of a simple, space-efficient scheduling technique in the context of a POSDC threads library. 
The technique results in improved space and time performance for programs written with a large number 
of threads. Thus the simpler programming style of expressing a new thread to execute each unit of parallel 
work in programs with dynamic, irregular parallelism can achieve high performance using our scheduling 
technique. 

We have not addressed the issue of how to choose the appropriate unit of parallel work that should be 
executed by each thread. Since the operations in the Pthreads library that we use are significantly more ex- 
pensive than a function call, we manually coarsen the parallelism for the programs described. For example, 
we terminate the creation of new threads in matrix multiply when the matrix size is down to 64 x 64; simi- 
larly, in the volume rendering benchmark, we created a Pthread to handle not one, but 32 tiles of the image 
plane. This coarsening ensures that thread overheads are negligible compared to the useful computation. 
Further, coarser threads may provide good locality within each thread, and fewer accesses to the scheduling 
queue may result in lower contention. For example, in the volume rendering application, if we create a 
separate thread to handle 8 tiles of the image (instead of 32), the serial execution of the resulting program 
is slowed down by 2.25% due to thread overheads, while the same program on 8 processors slows down 
by 20%. We estimate that the additional slowdown is due to lower locality within each thread, as well as 
increased contention for the bus and the scheduling queue. Therefore, if our current scheduler were applied 
to a system that schedules very fine-grained threads such as [20, 27] we do not expect the performance to 
remain high. However, the scheduler can be extended to use globally ordered per-processor task queues. We 
expect this extension to scale better for fine-grained threads and larger numbers of processors by lowering 
contention and providing good locality within a processor, while maintaining provable space bounds. 

We are currently working on practical but space-efficient ways to automatically coarsen the granularity 
of the unit of work scheduled across processors when per-processor queues are used. We also hope to 
analytically provide a trade-off between granularity and space requirement. 
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