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1    Introduction 

Direction finding (DF) systems provide an emitter's bearing that can be used as a 

sorting parameter in the identification of radar and communication systems. The 

emitter's true bearing gives an estimate of the geolocation (geographical direction) 

and can also be used in navigation and targeting [1]. Also, successful electronic attack 

depends on the ability of the associated electronic warfare support system to measure 

the direction to the victim emitter. Law enforcement and wildlife conservation efforts 

also employ DF systems, as do signal intelligence and search and rescue teams. 

There are a number of tradeoffs in a DF antenna architecture. Among these 

are accuracy, response time, antenna size, and the associated cost. The accuracy 

depends largely on the signal characteristics and the errors generated by the system 

itself. Response time also depends on the architecture used and the bandwidth. 

Other important performance metrics are the processing gain and the probability of 

intercept. In a phase sampled system, the antenna performs the spatial sampling using 

either a linear or circular interferometer grid. The antenna size has also traditionally 

been a problem. For example, high frequency (HF) DF arrays typically require a 

large spacing between elements to obtain a fine spatial resolution. This large spacing 

between elements becomes a packaging problem due to platform restrictions. 

The phase sampled linear interferometer is a well known DF approach [1-3] that 

consists of two perpendicular linear interferometers to obtain two angular coordinates. 

The DF algorithm uses different spacings within each array to obtain time-of-arrival 

relationships that translate into measurable phase differences that are used to deter- 

mine the angle of arrival. Multiple baseline systems generally consist of a reference 

antenna in the center of two or more other antennas spaced at different distances. By 



relating the baselines in a known manner the ambiguities may be resolved. 

There is sufficient information from three elements to uniquely determine the 

angle of arrival (AOA). To resolve the ambiguities in phase sampling, a combination 

of phase and amplitude is most often required. Ambiguous measurements from a 

widely spaced pair are resolved by another more closely spaced baseline pair having no 

ambiguities. Fine angular measurements are possible with the pair having the larger 

spacing (greatest phase change per degree) while the unambiguous course angular 

measurements are made by the pair with the smaller spacing (smallest phase change 

per degree). The channel with the smallest phase change per degree often requires 

a better signal to noise ratio and an amplitude measuring system to provide the 

information [3]. The phase information often takes the form of a sawtooth folding 

waveform which is hard to detect with analog hardware. Analog mixers that provide 

the phase response in a symmetrical folding waveform are more convenient; however, 

there are more ambiguities that must be resolved. 

This report describes the development of a new high-resolution phase-sampled 

DF array based on an optimum symmetrical number system (OSNS) [4]. Symmetrical 

number systems have been used previously to increase the efficiency of folding analog- 

to-digital converter architectures, efficiently encode digital antenna links, and increase 

the resolvable bandwidth of 2- and 3-channel digital intercept receivers [5-7]. The 

OSNS DF antenna architecture being investigated uses the OSNS to decompose the 

analog spatial filtering operation into a number of parallel sub-operations (moduli) 

that are of smaller complexity. One two-element interferometer is used for each sub- 

operation and only requires a precision in accordance with its modulus. A much higher 

spatial resolution is achieved after the spatial filtering results of the low precision 

sub-operations of all the OSNS moduli are recombined. The use of the symmetrically 



folding phase waveform provides for a simple straight-forward implementation. In 

Section 2 we review the fundamentals of phase-sampled interferometers. The OSNS 

is then presented in Section 3. In Section 4 the design and operation of the OSNS 

DF antenna system is described. Simulation and experimental results are shown to 

numerically evaluate the transfer function of the antenna and detail the advantages 

of our approach. 

2    Phase-Sampled Interferometers 

A two-element linear interferometer is shown in Fig. 1. The two antenna elements are 

spaced a distance d apart and the plane wave arrives with incident angle <J>B- In this 

phase monopulse configuration the angle </>B is measured from the perpendicular to 

the baseline axis and can take on values 7r/2 < (J>B < —7r/2. The electromagnetic wave 

arrives first at antenna element 1 located at x = d/2 and y = 0. Without affecting 

the general case we assume that the phase of the wave arriving at the first element 

at time t is Vi = 2irft. The wave arrives at antenna element 2 after traveling an 

additional distance of d sin <f>B- The phase of the wave arriving at the second element 

is then 

V>2 = 27T/i-— dsm(<ßB) . (1) 

The phase difference between the two elements is 

A^ = fa - fa = 2TT- sin (<f>B) (2) 

which is a function of the incidence angle of the wave. For example, a plane wave 

arriving perpendicular to the array axis would result in a phase difference of zero. 

The signals received by the antenna elements are mixed (multiplied together and 

processed by a lowpass filter) resulting in an output signal whose frequency is the 
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Plane Wave \ 

Figure 1: Linear two-element interferometer array geometry. 



diffrence between the two input signal frequencies. Because the signals have the same 

frequency, the mixer output is a voltage whose value is proportional to the difference 

between signal phases ipi and fa- This difference is not purely Aip because of the 

time delays due to the different transmission line lengths from each antenna element. 

However, these line lengths are known and can be compensated for in the angle 

estimate. 

Let the signals from the two antenna elements be 

v1{t) = V cos [2TC ft+ (j>1{t)} (3) 

and 

v2(t) = V cos [2vrft + fa(t)] (4) 

where V is the maximum value of the voltage at the antenna elements. Let IJJQ be 

the phase difference between the transmission lines to the two elements. The lowpass 

mixer output voltage is 

V2 

««it   =   — cos(A0) 

V2       [2nd .  tl  ,      , \ 
=   -ycosl— sm(<£B)+^ol (5) 

which contains the plane wave AOA information. For values of d = A/2 and ip0 = 0, 

A<f> = 7rsin(0B). As the AOA (<f>B) varies from —7r/2 to 7r/2, the phase difference 

(A(fr) varies from — ir to -K as shown in Fig. 2. The mixer output voltage, which is a 

function of the phase difference, is a symmetrical folding waveform, as shown in Fig. 

3. Together these relationships give the mixer output voltage as a function of the 

angle of arrival as shown in Fig. 4 for d = A/2. 

Ambiguities are generated for baselines where d > A/2 . For example, the output 

voltage for d = 7.5A is shown in Fig. 5. A given output voltage is highly ambiguous 
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Figure 2: Angle of arrival vs. phase difference between the elements for d = A/2. 
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Figure 3: Phase difference between the elements vs. mixer output voltage for d = A/2. 
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Figure 4: Angle of arrival vs. mixer output voltage for d = A/2. 



since it corresponds to many angles of arrival. The number of periods n that occur 

in 180° is 
2d 

»=-• (6) 

For d = 7.5A, n = 15 folds are available as shown in Fig. 5. The folding period is not 

constant but grows larger in proportion to the angle off of broadside (because of the 

sin^jg dependence in Eq. (5)). 

1 -25 •  '6 &>—*r 
Angle of arrival (degrees) 

Figure 5: Angle of arrival vs. mixer output voltage for d = 7.5A. 

The ambiguities within the symmetrical folding waveforms represent the phase 

difference between the elements and can be resolved by using additional interferom- 

eters in the linear array. Each interferometer symmetrically folds the input signal 

phase to be sampled. Figure 6(a) shows a schematic diagram of a 4-bit system that 

uses four interferometers (one interferometer per bit). Detailed are the most signifi- 

cant bit (MSB), the next most significant bit (NMSB), the next least significant bit 

(NLSB), and the least significant bit (LSB). The plane wave for which the AOA is to 

be determined is applied in parallel to each interferometer. High-speed binary com- 

parators are used to produce a digital Gray code output. Each interferometer in the 

linear array symmetrically folds the phase response with the folding period between 

interferometers being a successive factor of two. The folding waveforms are shifted 
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Figure 6: Binary Gray code phase sampled interferometer array: (a) Block diagram of 
4-bit architecture, (b) simulated phase response from mixers and, (c) corresponding 
binary Gray code. 



appropriately using a phase shifter in each channel to achieve the Gray code results. 

Figure 6(b) shows the symmetrically folded phase signals that appear at the output 

of each mixer. The folded output from each mixer (phase response) is then quan- 

tized with a single comparator with normalized threshold level T = 0.5. Together, 

the comparator outputs directly encode the signal's AOA in the Gray code format. 

Figure 6(c) shows the resulting comparator outputs. These architectures make use of 

the periodic dependence of the interferometer's phase response on the applied plane 

wave's AOA and the distance between the elements of each interferometer. 

One of the major limitations associated with this type of approach is the achiev- 

able resolution. For the folding periods to be a successive factor of 2, the distance 

between the elements must also be doubled. That is, an 8-bit DF antenna using the 

previous scheme would require element spacings A/4, A/2, A, 2A, 4A, • • •, 32A with a 

total baseline length of 32A. This distance doubling requirement of the element spac- 

ings (complex analog hardware) adversely affects the physical implementation of the 

DF architecture and ultimately constrains the achievable resolution. Incorporation 

of the OSNS encoding process discussed next overcomes the major limitations of the 

binary encoding approach and provides an efficient method to enhance the resolution 

of the array. 

3    Optimum Symmetrical Number System 

The optimum SNS scheme is composed of a number of pairwise relatively prime 

(PRP) moduli m*. The integers within each OSNS modulus are representative of a 

symmetrically folded waveform with the period of the waveform equal to twice the 

PRP modulus, i.e., 2rrii. For given m, the integer values within twice the individual 
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Figure 7: Optimum SNS folding waveforms and output codes for mi = 4 and m2 = 5. 

modulus are given by the row vector 

xm = [0,1, • • •, m - 1, m - 1, • • •, 1,0] (7) 

Figure 7 shows the OSNS folding waveforms and output codes for both mi = 4 and 

m2 — 5. Due to the presence of ambiguities, the integers within (7) do not form 

a complete system of length 2m by themselves. The ambiguities that arise within 

the modulus are resolved by considering the paired values from all channels together. 

By recombining the N channels, the SNS is rendered a complete system having a 

one-to-one correspondence with the residue number system (RNS). For JV equal to 

the number of PRP moduli, the dynamic range of this scheme is 

N 

M = JJ rrti. 
i=l 

(8) 

10 



Table 1: OSNS Dynamic Range with m1=A and m2 = 5 (M = 20) 

Normalized 
Input ml =4 m2 = 5 

0 0 0 
1 1 1 
2 2 2 
3 3 3 
4 3 4 
5 2 4 
6 1 3 
7 0 2 
8 0 1 
9 1 0 

10 2 0 
11 3 1 
12 3 2 
13 2 3 
14 1 4 
15 0 4 
16 0 3 
17 1 2 
18 2 1 
19 3 n    ^ U    ^ 

20 3 n u 
21 2 1 

Ambiguity 

This dynamic range is also the position of the first repetitive moduli vector. For the 

example with mi = 4 and m^ = 5, the first repetitive moduli vector occurs at an 

input of 20 as indicated in Table 1. In the next section the OSNS is used to design a 

high resolution DF array requiring considerably less analog hardware than previous 

phase sampled DF designs. 

4    OSNS Direction Finding Antenna Design 

An iV-channel OSNS phase-sampled DF antenna has N +1 radiating elements, a mi- 

crowave beamforming network, and a digital processor to recombine the phase samples 

11 



from the individual channels. Figure 8 shows a block diagram of an OSNS antenna 

that passively detects an emitter using N wideband interferometers (channels) that 

share a common element. As demonstrated below, very fine spatial resolution can be 

obtained by using two or three interferometers. The trade-off issues are discussed in 

the next section. 

To provide an adequate amount of signal to noise, a low-noise amplifier is included 

at the output of each interferometer element. Since the common element splits the 

signal into N paths, an attenuator is placed in the other branches to balance the 

amplitudes. A fixed phase shifter is also included in one branch of each interferometer 

so that the symmetrically folded phase response waveforms from each mixer may be 

aligned. The alignment insures that the comparators in the digital processor properly 

sample the phase waveform and encode the angle-of-arrival in the OSNS. Also, since 

phase waveforms are bipolar, a dc bias amplifier is required at the output of the mixer 

to shift the folding waveforms to be above zero (unipolar). This is necessary since 

the comparator matching threshold values can not be near either the ground voltage 

or the supply voltage. 

The OSNS encoding is affected by the distance between the interferometer ele- 

ments and the small number of comparators that are used for each channel. The 

distance between the elements generates the required folding periods. If the desired 

number of spatial resolution cells (i.e., dynamic range of the OSNS) is M, then the 

required number of folds from each interferometer is 

*-£ (9) 

where mi is the corresponding channel modulus. The distance between the interfer- 

12 
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Figure 8: Optimum symmetrical number system, phase-sampled interferometer an- 
tenna architecture. 
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ometer elements becomes 
riiX     MX ,   , 

The corresponding number of comparators required from (7) is m* -1. Note that for 

a given number of spatial resolution elements M, a larger modulus gives a smaller 

required distance between the interferometer elements. As an example, if a three 

moduli system is designed with mi = 3, m2 = 4, and m3 = 5, then the number of 

spatial resolution cells is 60. The total number of comparators required is 9. The 

spatial resolution near boresight is given by 

FOV ,   N 

where FOV is the field of view determined by the receiving element pattern. Ideally 

the FOV can be 180°, which gives r = 3 degrees. 

5    Two-Channel Design 

A TV = 2 interferometer array was designed and fabricated. It has a shorter baseline 

than the example just described and because it has one less element it requires two 

less amplifiers (the amplifiers are a cost driver because they must be phase matched 

at all frequencies across the operating band). The two-channel high resolution OSNS 

DF array configuration is shown in Fig. 9. The short-baseline array uses relatively 

prime moduli mi = 6 and rri2 = 11 resulting in a total array length of 3.82 inches 

with spatial broadside resolution on the order of r = 180/(6 • 11) = 2.72 degrees. For 

moduli mi = 6 and 7712 = 11, a total of 5 +10 = 15 comparators are now required (as 

compared to 9 comparators for the n = 3 example). This comparison illustrates the 

inherent flexibility in the OSNS for encoding wideband high-resolution DF arrays. 

14 
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Figure 10: Simulated mixer output voltages for both mi = 6 and m-2 = 11. 

To investigate the performance of the design, a simulation was carried out on the 

two-channel design. The folding waveforms representing the phase response in each 

channel are shown together in Fig. 10. The sampling period is 0.1 degree for both 

curves. Note the edge effects that are present at the end-fire locations. Since these 

parts of the antenna response give erroneous results, the phase responses for both 

channels were aligned at an input direction of arrival of 50 degrees. This is also the 

point at which the OSNS encoding begins. 

The comparator thresholds for each channel are non-uniformly spaced and are 

shown in Table 2. Using these threshold values and the simulated folding waveforms, 

the transfer function is computed and is shown in Fig. 11. Note the presence of the 

encoding errors when the sampled angle of arrival occurs about the code transition 

16 



Table 2: Comparator Thresholds for OSNS Antenna 

1712 = 11 mi = 6 

t\   =-0.300122 -0.258821 
*2 = -0.277011 -0.187919 
*3 = -0.233625 -0.012512 
*4 = -0.165201 0.143976 
*5 =-0.04046 0.26828 
*6 = 0.050343 
*7 = 0.149914 
*8 = 0.212881 
«9 = 0.264524 
il0= 0.298688 

60 

40 

~i i i i r 
SimulatedlTransfer function 

£   20 

5 

o 
a 

-20 

lu -40 

-60 

-80 

LJ- 

-50 -40 -30 -20 -10 0 10 
Angle of Arrival (degrees) 

20 30 40 50 

Figure 11: Simulated transfer function for OSNS antenna using mi = 6 and ra2 = 11. 
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points. These occur when some of the cbmparators that are supposed to change do 

not and thus cause a large error in the resolved AOA. Interpolation and other SNS 

encodings, however, can eliminate these occurrences. 

6 Experimental Results 

First, the amplifiers used in the N = 2 array design were characterized by examining 

the output power as a function of input power. The individual transfer functions 

of the six amplifers being used are shown in Fig. 12. To insure that the response 

remains constant over a large range of input power, a (matched) pair of amplifiers 

are cascaded together with a 30 dB attenuator. This gives the desired flat response 

also shown in Fig. 12. 

The N = 2 OSNS antenna was designed and built to operate at 8.5 GHz using 

open ended waveguide elements on an aluminum ground plane. Figure 13 shows the 

mixer output voltages for the two channels. Note the similarity to the simulated 

folding waveforms shown in Fig. 10. The major difference between the experimental 

results and simulated results is at wide angles. The corresponding transfer function 

of the array is shown in Fig. 14. The encoding errors in Fig. 11 are also present 

in the experimental result. They do, however, occur with different amplitudes and 

positions within the AOA due to the differences with phase response in each channel. 

It must be emphasized that the encoding errors are correctable. 

7 Summary and Conclusions 

A new direction finding architecture based on the optimum symmetrical number 

system has been presented. Equations (8) through (11) describe the tradeoff involved 

in the design of a OSNS array. The spatial resolution, that is, the angular resolution 

18 
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of the direction measurement, is determined by M. The resolution is commonly- 

expressed in bits, B. Thus the equivalent number of bits resolution is obtained from 

M = 2B. 

According to (8), M can be increased by 

1. increasing the number of moduli, or 

2. increasing the values of the individual moduli. 

Since each m* in (8) is equivalent to a channel, to increase M without adding antenna 

elements implies option 2. 

The spacing of the elements is specified in (10). Generally, large rrii result in small 

spacings. The number of comparators required for the channel with modulus ra* is 

mi — 1. Thus the total number of comparators is Y%=\{™>i — 1)- In general, as m* 

decreases, the channel spacing decreases but the number of comparators increases. 

The basic tradeoffs are illustrated in Fig. 15 for two and three channel arrays. 

The solid line is classical Rayleigh resolution limit, X/dmax, where d!max is the distance 

between the farthest elements in the array. Each circle represents an OSNS array 

design based on a set of two (for TV = 2) or three (for N = 3) relatively prime 

integers less than 50. The appeal the OSNS architecture is its flexibility and ability 

to provide high resolution with as few as three closely spaced elements. Even finer 

spatial resolution can be obtained for shorter baselines when integers greater than 

50 are included. In practice, the element spacings will be limited by the size of the 

antenna elements themselves. 
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