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Abstract 

We describe a language for defining term rewriting strate- 
gies, and its application to the production of program op- 
timizers. Valid transformations on program terms can be 
described by a set of rewrite rules; rewriting strategies are 
used to describe when and how the various rules should be 
applied in order to obtain the desired optimization effects. 
Separating rules from strategies in this fashion makes it eas- 
ier to reason about the behavior of the optimizer as a whole, 
compared to traditional monolithic optimizer implementa- 
tions. We illustrate the expressiveness of our language by 
using it to describe a simple optimizer for an ML-like inter- 
mediate representation. 

The basic strategy language uses operators such as se- 
quential composition, choice, and recursion to build trans- 
formers from a set of labeled unconditional rewrite rules. 
We also define an extended language in which the side- 
conditions and contextual rules that arise in realistic opti- 
mizer specifications can themselves be expressed as strategy- 
driven rewrites. We show that the features of the basic and 
extended languages can be expressed by breaking down the 
rewrite rules into their primitive building blocks, namely 
matching and building terms in restricted environments. 
This primitive representation forms the basis of a simple 
implementation that generates efficient C code. 

1     Introduction 

Compiler components such as parsers, pretty-printers and 
code generators are routinely produced using program gen- 
erators. The component is specified in a high-level language 
from which the program generator produces its implementa- 
tion. Program optimizers are difficult labor-intensive com- 
ponents for which few program generation techniques have 
been developed to date. 

A program optimizer transforms the source code of a 
program into a program that has the same meaning, but is 
more efficient. On the level of specification and documenta- 
tion, optimizers are often presented as a set of correctness- 
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preserving rewrite rules that transform code fragments into 
equivalent more efficient code fragments (e.g., see Table 5). 
Examples of optimizers for functional programs are dis- 
cussed in [3, 4, 20]. The paradigm provided by conventional 
rewrite engines is to compute the normal form of a program 
with respect to a set of rewrite rules. However, optimiz- 
ers are usually not implemented in this way. Instead, an 
algorithm is produced that implements a strategy for apply- 
ing the optimization rules. Such a strategy contains meta- 
knowledge about the set of rewrite rules and the program- 
ming language they are applied to in order to (1) guide the 
application of rules; (2) guarantee termination of optimiza- 
tion; (3) make optimization more efficient. 

Such an ad-hoc implementation of a rewriting system 
has several drawbacks, even when implemented in a lan- 
guage with good support for pattern matching, such as ML 
or Haskell. First of all, the transformation rules are embed- 
ded in the code of the optimizer making it hard to under- 
stand, to maintain, and to reuse individual rules in other 
transformations. Furthermore, the strategy is not specified 
at the same level of abstraction as the transformation rules, 
making it hard to reason about the correctness of the opti- 
mizer even if the individual rules are correct. 

It would be desirable to apply term rewriting technol- 
ogy directly to produce program optimizers. The standard 
approach to rewriting is to provide a fixed strategy (e.g. 
innermost or outermost) for normalizing a term with re- 
spect to a set of user-defined rewrite rules. This is not sat- 
isfactory when—as is usually the case for optimizers—the 
rewrite rules are neither confluent nor terminating. A com- 
mon work-around is to encode a strategy into the rules them- 
selves, e.g., by using an explicit function symbol that con- 
trols where rewrites are allowed. But this approach has the 
same disadvantages as the ad-hoc implementation of rewrit- 
ing described above: the rules are hard to read, and the 
strategies are still expressed at a low level of abstraction. 

In this paper we argue that a better solution is to use 
explicit specification of rewriting strategies. We show how 
program optimizers can be built by means of a set of labeled 
rewrite rules and a user-defined strategy for applying these 
rules. In this approach transformation rules can be defined 
independently of any strategy, so the designer can concen- 
trate on defining a set of correct transformation rules for a 
programming language. The transformation rules can then 
be used in many independent strategies that are specified 
in a formally defined strategy language. Given such a high- 
level specification of a program optimizer, a compiler can 
generate efficient code for executing the optimization rules 



Starting with simple unconditional rewrite rules as 
atomic strategies we introduce in Section 2 the basic com- 
binators for building rewriting strategies. We give examples 
of strategies and define their operational semantics. 

In Section 3 we explore optimization rules for RML pro- 
grams, an intermediate format for ML-like programs [21]. 
This example shows that there is a gap between the uncon- 
ditional rewrite rules used in rewriting and the transforma- 
tion rules used for optimizations. For this reason, we enrich 
rewrite strategies with features such as conditions, contexts 
and alpha renaming. 

In order to avoid complicating the language by many 
ad-hoc features, we refine the strategy language in Section 4 
by breaking down rewrite rules into the notions of matching 
and building of terms. In Section 5 we show how this refined 
language can be used to define rules with conditions and 
contexts. In Section 6 we use the resulting language to give 
a formal specification of the RML rules presented earlier. 

2    Rewriting Strategies 

A rewriting strategy is an algorithm for applying rewrite 
rules. In this section we introduce the building blocks for 
specifying such algorithms and give several examples of their 
application. The strategy language presented in this section 
is an extension of previous work [16] of one of the present 
authors. 

2.1 Terms 

We will represent expressions in the object language by 
means of first-order terms. A first-order term is a variable, 
a constant, a tuple of one or more terms, or an application 
of a constructor to one or more terms. This is summarized 
by the following grammar: 

t::=x\c\(h,---,tn)\f{tu---,tn) 

where x represents variables (lowercase identifiers), c rep- 
resents constants (uppercase identifiers or integers) and / 
represents constructors (uppercase identifiers). We denote 
the set of all variables by X, the set of terms with variables 
by T(A') and the set of ground terms (terms without vari- 
ables) by T. Terms can be typed by means of signatures. 
For simplicity of presentation, we will consider only untyped 
terms in this paper until Section 6. 

2.2 Rewrite Rules 

The basis of a strategy is a set of labeled rewrite rules of 
the form / : / -> r, where t is a label, / and r are first-order 
terms. For example, consider the following rewrite rules on 
a small language of lists constructed with Cons and Nil and 
providing the functions Cone and Rev. 

Cncl : Conc(Nil,xs) —► xs 

Cnc2 : Conc(Cons(z,:rs),ys) 

Revl : Rev(Nil,j/s) -¥ ys 

Rev2 : Rev(Cons(x,is), ys) - 

-> Cons(x,Conc(xs,j/s)) 

Rev(xs, Cons(x, ys)) 

The first two rules define the concatenation of two lists. The 
last two rules define the reversal of a list by shifting elements 
of the first list to the second list until the first is empty and 
the second is the reversed list. 

A rewrite rule specifies a single step transformation of a 
term. For example, rule Cnc2 induces the following trans- 
formation: 

Cone(Cons(1, Nil), Cons(2,  Nil)) 

-^»ConsU,  Cone (Nil,  Cons (2,  Nil))) 

In general, a rewrite rule defines a labeled transition re- 
lation between terms and reducts, as formalized in the op- 
erational semantics in Table 1. A reduct is either a term or 
t, which denotes failure. The first rule defines that a rule I 
transforms a term t into a term t' if there exists a substitu- 
tion a mapping variables to terms such that t is a (T-instance 
of the left-hand side I and t' is a ^-instance of the right-hand 
side r. The second rule states that an attempt to transform 
a term t with rule I fails, if there is no substitution a such 
that t is a tr-instance of I. Note that a rewrite rule applies 
at the root of a term. Later on we will introduce operators 
for applying a rule to a subterm. 

t J±±L> t'    if 3(T : a(l) = t A <x(r) = t' 

*-^4f    if-.3<r : <T(J) = t 

Table 1: Operational semantics for unconditional rules. 

2.3    Reduction-Graph Traversal 

The reduction graph induced by a set of rewrite rules is the 
transitive closure of the single step transition relation. It 
forms the space of all possible transformations that can be 
performed with those rules. 

For instance, one path in the reduction graph induced 
by the rules Revl and Rev2 is the following: 

R»v2 

Rtv2 

Ravi 

Rev(Cons(l, Cons(2, Nil)), Nil) 

+ Rev (Cons (2, Nil), ConsU, Nil)) 

+ Rev(Nil, Cons(2, Cons(l, Nil))) 

+ Cons(2,  Cons(l, Nil)) 

A strategy is a compact description of a subset of all such 
paths. Rewrite rules are atomic strategies that describe a 
path of length one. In this section we consider combinators 
for combining rules into more complex strategies. The op- 
erational semantics of these strategy operators is defined in 
Table 2. 

The fundamental operation for compounding the effects 
of two transformations is the sequential composition S\ ■ «2 
of two strategies1. It first applies si and, if that succeeds, 
it applies S2- For example, the reduction path above is de- 
scribed by the strategy Rev2 • Rev2 ■ Revl. 

The non-deterministic choice S1+S2 chooses between the 
strategies si and si such that the strategy chosen succeeds. 
For instance, the strategy Revl + Rev2 applies either Revl 
or Rev2. Note that due to this operator there can be more 
than one way in which a strategy can succeed. 

'The notation x • y is derived from the process algebra ACP [6] 
and should not be confused with function composition. 



t-±*t 

»1 , J(    J.1     «2 . ±II ■f    t' t" 

t *1'*2 + t" 

t     S1+3l)t> 

t     "•»'»)«' 

t     Sl+S2)f 

X' 
t ""»"it 

(a) positive rules (b) negative rules 

Table 2: Operational semantics for basic combinators. 

Strategies that repeatedly apply some rules can be de- 
fined using the recursion operator fix. a. One strategy for 
the complete evaluation of an application of Rev is: 

/ix.(Revl + (Rev2 ■ x)) 

It tries to apply either rule Revl or Rev2. In the first case 
(the first argument is Nil) evaluation is done. In the sec- 
ond case, the entire strategy is invoked again through the 
recursion variable x. This strategy will only succeed if it can 
terminate with an application of Revl. 

With the non-deterministic choice operator the program- 
mer has no control over which strategy is chosen. The deter- 
ministic or left choice operator «i «3- S2 is biased to choose 
its left argument first. It will consider the second strategy 
only if there is no way in which the first can succeed. This 
operator can be used to optimize the strategy for evaluating 
list reversals. The strategy 

/iX.((Rev2 • x) <- Revl) 

always first tries to apply rule Rev2 before it considers Revl. 
The identity strategy e always succeeds. It is often used 

in conjunction with left choice to build an optional strategy: 
s «ä- e tries to apply s, but when that fails just succeeds with 
e. The failure strategy 8 is the dual of identity and always 
fails. 

The strategy test s can be used to test whether a strat- 
egy s would succeed or fail without having the transforming 
effect of s. The negation -<s of a strategy s is similar to 
test, but tests for failure of s. We will see examples of the 
application of these operators in Section 6. 

Redex and Normal Form We will call a term an ^-redex 
if it can be transformed with a rule (., otherwise it is in (- 
normal form. We will generalize this terminology to general 

strategies, i.e. if ( —£-+1', then t is an s-redex and if t —£-* f> 
then t is in s-normal form. 

Strategy Definitions In order to name common patterns 
of strategies we will use strategy definitions. A definition 
/(ii,... ,xn) = s introduces a new n-ary strategy operator 
/. An application f(si,... , s„) of / to n strategies denotes 
the instantiation s[xi := s\...xn := s„] of the body of 
the definition. Strategy definitions are not recursive and 
not higher-order, i.e. it is not possible to give a strategy 
operator as argument to a strategy operator. An example of 
a common pattern is the application of a strategy to a term 
as often as possible. This is expressed by the definitions 

repeat(s) = (ix.((s ■ x) <- e) 

repeatl(s) = s ■ repeat(s) 

The strategy repeat (s) applies s zero or more times, but as 
often as possible. The strategy repeatl(s) applies .s one 
or more times, but as often as possible. Using repeat, 
yet another way of evaluating the application of Rev is 
the strategy repeat(Rev2) • Revl which is equivalent to 
/tx.((Rev2 • x) <S- e) ■ Revl. 

Backtracking As we remarked before, the non- 
deterministic choice operator a + b leads to more than one 
transformation when both strategies si and 82 are applica- 
ble to a term. This leads to the possibility of backtracking. 
Consider the strategy (si + «2) ■ «3- If both si and «2 apply 
to a term t, say we have t -^-» t' and t -^-> t", but S3 fails 
for t' and succeeds for t", i.e. t' -^ t and t" -^ <"', then 

(si+s2)-S3 we get as result * '"' '"" "J> t" 
of the order in which n\ and .<i-> 
will be chosen.   Or, in more operational terms, if a choice 

In other words, regardless 
arc tried. » succeeding one 



f(ti,. .. ,ti,.. . ,tn)  >/(*!,... ,t[,... ,tn) 

 tl > ti    . . .    In > tn  

m,...,tn) /(Ji 8n)>/(n,---,<n) 

11   r T\     ■ ■ ■    tn  > tn 

ti-^t 

/(*!,...,*i,...,t„) -^4 t 

Hh,...,tn) /(31 }>t 

g(«i,-..,«m)   /(" an)>t    if/#<7 

(a) positive rules (b) negative rules 

Table 3: Operational semantics for term traversal operators. 

made at some point leads to failure later on, the strategy 
will backtrack to the choicepoint. This does not hold for 
left choice. Once the left branch has succeeded the right 
branch can never be chosen. Therefore, left choice provides 
the means to define deterministic strategies without the 
global backtracking behaviour described above. 

2.4    Term Traversal 

The operators we introduced above apply strategies to the 
root of a term. This is not adequate for achieving all trans- 
formations. For instance, for evaluating an application of 
Cone with rules Cncl and Cnc2, we need to apply rules to 
subterms of the root. For example, if we continue the re- 
duction of the concatenation we started before we get the 
reduction path: 

Cone(Cons(1,   Nil),  Cons(2,  Nil)) 

-^i> Cons (1,  Cone (Nil,  Cons (2,  Nil))) 

two lists: 

fix.(Cncl + Cnc2 • Cons(e, x)) 

2(Cncl) 
*• Cons(l,  Cons(2,  Nil)) 

The second step in this reduction is an application of rule 
Cncl to the second argument of the Cons. 

In order to apply rewrite rules below the root of a term, 
i.e. to the subterms of a term, we need operators to traverse 
the tree structure of a term. For this purpose we introduce 
four new operators. The operational semantics of these op- 
erators is defined in Table 3. 

The fundamental operation for term traversal is the ap- 
plication of a strategy to a specific direct subterm of a term. 
The strategy i(s) applies strategy s to the t-th child. Using 
this operator an arbitrary path in a term can be constructed. 
We saw an example above, 2(Cncl) applies rule Cncl to the 
second argument of the root. 

The congruence operator /(si,... , sn) is a strategy that 
specifies a strategy to be applied to each direct subterm of 
a term with constructor /. Instead of 2(Cncl) we could use 
the congruence operator Cons(e, Cncl) to apply rule Cncl to 
the second argument of a Cons term. Using this idea we can 
now construct a strategy for evaluating the concatenation of 

The strategy repeatedly applies rule Cnc2 and then termi- 
nates with rule Cncl. In the first case the strategy is recur- 
sively applied to the Cone in the second argument of Cons. 

A more general example of the use of congruence opera- 
tors is the strategy map(s) that applies a strategy s to each 
element of a list: 

map(s) = //a:. (Nil + Cons(s, x)) 

The path and congruence operators are useful for con- 
structing strategies for a specific data structure. To con- 
struct more general strategies that can abstract from a con- 
crete representation we introduce the operators D(s) and 
0(5). 

The strategy O(s) applies s to each direct subterm of 
the root. This only succeeds if a succeeds for each direct 
subterm. In case of constants, i.e. constructors without 
arguments, the strategy always succeeds, since there are no 
direct subterms. This allows us to define very general traver- 
sal strategies. For example, the following strategies apply a 
strategy s to each node in a term, in preorder (top-down), 
postorder (bottom-up) and a combination of pre- and pos- 
torder (downup): 

topdown(s) = fj.x.{s ■ D(x)) 

bottomup(s) = /w\(0(x) • s) 

downup(s) = fix.(s ■ ü(x) • s) 

The strategy 0(s) applies s non-deterministically to one 
direct subterm. It fails if there is no subterm for which it 
succeeds. In particular, it fails for constants, since they have 
no child for which s can succeed. As we did with D we can 
construct bottom-up and top-down traversals with O: 

oncetd(s) = fix.(s <- O(x)) 

oncebu(s) = /xx.(0(x) <- s) 

These strategies succeed if they find an s-redex as subterm. 



These strategies perform a fixed traversal over a term. 
A normalization strategy for a strategy s keeps traversing 
the term until it finds no more s-redexes. Examples of well- 
known normalization strategies are reduce, which repeat- 
edly finds a redex somewhere in the term, outermost, which 
repeatedly finds a redex starting from the root of the term 
and innermost, which looks for redexes from the leafs of the 
term. Their definitions are: 

reduce(s) = repea.t(iix.(0(x) + s)) 

outermost (s) = repeat(oncetd(s)) 

innermost(s) = repeat(oncebu(s)) 

Note that this definition of innermost reduction is not 
very efficient. After finding a redex, search for the next 
redex starts at the root again. A more efficient definition of 
innermost reduction is the following. 

innermost'(s) = px.(0(x) ■ (s ■ x <3- e)) 

It first normalizes all subterms (ü(x)), i.e. all subterms are 
in s-normal-form. Then it tries to apply s at the root. If that 
fails this means the term is in s-normal-form and normal- 
ization terminates with e. Otherwise, the reduct resulting 
from applying s is normalized again. 

Finally, <S(s) is a parallel (greedy) version of O(s) that is 
defined by 

$(s) = test(0(s)) • a(s <$- e) 

The operator is a hybrid between D(s) and O(s). It is like 
O because it has to succeed for at least one child and it is 
like □ because it applies to all children. The difference with 
□ is that it does not have to succeed for all children. An 
application of 3> is the strategy 

somebu(s) = fj.x.((Q(x) • (s <- e)) <- s) 

that applies s bottom-up at least once somewhere in the 
term, but as often as possible. 

3     Case Study: RML Optimizer 

RML [21] is a strict functional language, essentially similar 
to the core of Standard ML [18] with a few restrictions. In 
this paper we consider a subset of RML that includes ba- 
sic features of functional languages, namely basic constants 
(integer, boolean, etc.) and primitive built-in functions, tu- 
ples and selection, let-bindings and mutually recursive func- 
tions. Programs are pre-processed by the compiler of RML 
to .A-normal form. The syntax of this restriction of RML is 
presented in Table 4. 

Table 5 describes a set of meaning preserving source-to- 
source transformation rules for RML. For in-depth discus- 
sions of the intent and correctness of these rules we refer 
the reader to the literature on transformation of functional 
programs, e.g. [3, 4, 12, 20]. The rules in Table 5 were in- 
spired by the high-level rules presented in [4]. In the sequel, 
we concentrate on the details of the implementation of these 
rules. 

It might seem straightforward to implement these rules 
by a rewriting system using the strategy combinators intro- 
duced in the previous section. Unfortunately, this is not 
the case! There is a gap between these transformation rules 
and the simple rewrite rules defined above.  Only (Hoistl) 

t ::= b | t -> t | ti * • ■ • * tn (Types) 

se ::= x | c (Simple expressions) 

fdec ::= f :t xi,...,xn = e (Function declarations) 

vdec ::= x : t = e (Variable bindings) 

e ::= se (Expressions) 

| a;(sei,. ..,sen) 
| d(sei,...,se„) 

| (sei,... ,sen) 

| select(i,se) 

| let vdec in e 

| letrec fdeci ■ ■ ■ fdecn in e 

where x,f,fi,... range over variables, c over constants, 
and d over primitive built-in functions, i over integers, 
e, ei,... over expressions, b over basic types, and t, t.  
over types. 

Table 4: Syntax of RML 

and (Hoist2) conform to the format. All the other rules use 
features that are not provided by basic rewrite systems. 

(Deadl) and (Dead2) are conditional rewrite rules that 
remove pieces of dead code. The condition (Deadl) tests 
whether the variable defined by the let occurs in the body 
of the let. The condition of (Dead2) tests whether any of the 
functions defined in the list of function declarations occurs 
in the body. (Prop) and (Inline) require substitution of free 
occurrences of a variable by an expression. (Inline) uses 
simultaneous substitution of a list of expressions for a list of 
variables. In addition, it is a context-sensitive rule, replacing 
an application of the function / somewhere in the expression 
e by the body of the function. This is expressed by the 
use of a context e[f(es)]. Furthermore, the rule renames 
all occurrences of bound variables with fresh variables, to 
preserve the invariant that all bound variables are distinct. 
This invariant simplifies substitution and testing for variable 
occurrence in an expression. Finally, (Etaexp) generates 
fresh variables, which is a global condition on the whole 
term. 

4    Refining the Strategy Language 

The RML example shows that simple unconditional rules 
lack the expressivity to describe optimization rules for pro- 
gramming languages and that we need enriched rewrite rules 
with features such as side conditions and contexts and sup- 
port for alpha renaming and substitution of object variables. 
For other applications we might need other features such as 
list matching and matching modulo associativity and com- 
mutativity. Adding each of these features as an ad-hoc ex- 
tension of basic rewrite rules would make the language dif- 
ficult to implement and maintain. It would be desirable to 
find a more uniform method to deal with such extensions. 

If we take a closer look at the features discussed above, 
we observe that they all have strategy-like behaviour. For 
instance, a rule with a context c[l'\ in the left-hand side 
and c[r'] in the right-hand side can be seen as performing a 
traversal over the subterm matching c applying rule /' —> ;•'. 
Therefore, instead of creating more complex primitives such 



let v : t = let vdec in ei in ei 

let v : t = letrec /decs in ei in e2 

let v : t = ei in e2 

letrec fdecs in e 

let v : t = se in e 

letrer f : t xs = e' in e[/(es)] 

let x : £ = (sei,-- • ,sen) in e[select(i,x)] 

let / : is -4 t = ei in e2 

► let vdec in let v : t = ei in e2 (Hoistl) 

► letrec fdecs in let v : t = ei in e2 (Hoist2) 

► e2 (Deadl) 

if x & varsfa) and ei is pure 
► e (Dead2) 

if for all / : t xs = e in fdecs: f & fv(e) 

► let v : t = se in e{se/v} (Prop) 

► letrec / : t xs = e' in e[rename(e'{ss/a:s})] (Inline) 

if (/ £ ss U MeQ)) or (e' is small) 

► let x : < = (sei, • • • , se„) in e[sei] (Select) 

if /' and xs' are fresh variables 

► letrec / : ts -> t xs = let /' : ts -> t = e\ in /' xs in e2 (Etaexp) 

if /' and xs are fresh variables and t\ is pure 

Table 5: Transformation rules for RML 

as rules with contexts, we break down rewrite rules into 
their primitives: matching against term patterns and build- 
ing terms. Using these primitives we can implement a wide 
range of features in the strategy language itself by translat- 
ing rules which use those features to strategy expressions. 

Match, Build and Scope We first need to define the 
semantics of matching and building terms. A rewrite rule 
( : I -4 r first matches the term against the left-hand side 
/ with as result a binding of subterms to the variables in 
I. Subsequently it builds a new term by instantiating the 
right-hand side r with those variable bindings. By intro- 
ducing the new strategy primitives match and build we can 
break down £ into a strategy match(J) • build(r). However, 
this requires that we carry the bindings obtained by match 
over the sequential composition to build. For this reason, 
we introduce the notion of environments explicitly in the 
semantics. 

An environment £ is a mapping of variables to ground 
terms. We denote the instantiation of a term t by an en- 
vironment £ by £(t). An environment £' is an extension 
of environment £ (notation £' 3 £) if for each x 6 dom(£) 
we have £'(x) = £(x). An environment £' is the smallest 
extension of £ with respect to a term t (notation £' 3t £), 
if £' D £ and if dom(£') = dom(£) U vars(t). 

Now we can formally define the semantics of match and 
build. We extend the reduction relation —*-> from a relation 
between terms and reducts to a relation on pairs of terms 
and environments, i.e. a strategy s transforms a term t 
and an environment £ into a transformed term t' and an 
extended environment £', denoted by t : £ —*-> t' : £', or 
fails, denoted by t : £ -*-> |- The operational semantics of 
the environment operators is defined in Table 6. 

Once a variable is bound it cannot be rebound to a dif- 
ferent term. To use a rule more than once we introduce 
variable scopes. A scope {x : s} locally undefines the vari- 
ables x. The notation £/x denotes £ without bindings for 
variables in x. £\x denotes £ restricted to x. 

We have changed the format of the operational seman- 
tics. Therefore, we should change all rules in Tables 2 and 3 

as follows: replace each t —*-► t' by t: £ —^ t' : £' 

5    Implementation of Transformation Rules 

We now have a strategy language that consists of match and 
build as atomic strategies (instead of rewrite rules) and all 
the combinators introduced in Section 2. Using this refined 
strategy language, we can implement transformation rules 
by translating them to strategy expressions. In this higher- 
level view of strategies we can use both the 'low-level' fea- 
tures match, build and scope and the 'high-level' features 
such as contexts and conditions. We start by defining the 
meaning of unconditional rewrite rules in terms of our re- 
fined strategy language. 

5.1 Unconditional Rewrite Rules Revisited 

A labeled rewrite rule £ : I -* r translates to a strategy 
definition 

£ = {vars(Z,r) : match(Z) • build(r)} 

It introduces a local scope for the variables used in the rule 
vars(Z, r), matches the term against I and then builds r using 
the binding obtained by matching. 

5.2 Subcomputation 

Many transformation rules require a subcomputation in or- 
der to achieve the transformation from left-hand side to 
right-hand side. For instance, the inlining rule in Table 5 
applies a substitution and a renaming to an expression in 
the right-hand side. 

Where The where clause is the basic extension to rewrite 
rules to achieve subcomputations. A rule 

£ : I —► r where s 

corresponds to the strategy 

I = {vars(Z, r, s): match(Z) • s • build(r)} 
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Table 6: Operational semantics for environment 

that first matches I, then executes s and finally builds r. 
The strategy s can be any strategy that affects the environ- 
ment in order to bind variables used in r. Note that s can 
transform the original term, but the effect of this is can- 
celed by the subsequent build. Only the side-effect of s on 
the environment matters. 

Matching Condition A frequently occuring subcompu- 
tation is to apply a strategy to a term built with variables 
from the left-hand side I and match the result against a 
pattern with variables used in the right-hand side r. The 
notation 

(s) t =*• t' 

corresponds to the strategy 

build(t) • s ■ match(t') 

It first evaluates t with respect to s then matches the result 
(if it succeeded) against t' with as result a side-effect on the 
variables in t'. If the match to t' is not needed, then (s) t 
can be used either to get the side-effect of s or to only test 
for success of s. 

Application in Right-hand Side Often it is annoying 
to introduce an intermediate name for the result of applying 
a strategy to a subterm of the right-hand side. Therefore, 
the application (s) t can be used directly in the right-hand 
side r. That is, a rule 

£ : I -4 r{{s) t} 

is an abbreviation of 

1:1 -¥ r{x} where (s) t =*• x 

where i is a new variable and r{(s)t} denotes a meta- 
context, i.e. a term with an occurrence of (s) t. 

Conditions Conditions that check whether some predi- 
cate holds can also be be seen as subcomputations. We 
implement these conditions as strategies using the where 
clause. Failure of such a strategy means that the condition 
does not hold, while a success means that it does hold. Pred- 
icates are user-defined strategy operators. For instance, to 
test that ti is a subterm of ti the condition (in) (ti,tt) can 
be used. The predicate in is defined as 

in = {*i,*2 : match((ti,t2)) • (oncetd(match(ti))) ^2} 

Conditions can be combined by means of the strategy com- 
binators. In particular, conjunction of conditions is ex- 
pressed by means of sequential composition and disjunction 
by means of non-deterministic choice 

5.3 Contexts 

A useful class of rules are those whose left-hand sides do not 
match a fixed pattern but match a top pattern and some in- 
ner patterns which occur in contexts. For instance, consider 
the (Inline) and (Select) rules in Table 5. Contexts can also 
be implemented with the where clause. A rule 

e:l{c[l']}^r{c[r'}} 

with one context cQ occurring in the left-hand side and right- 
hand side corresponds to the rule 

e.l{x} -*r{x'} 
where(oncetd({vars(/',r')/vars(i,r) : (I' -f r')})) x => x' 

where x and x' are fresh variables. The notation (/' -> r') 
is an abbreviation for match(Z') • build(r') and is used to 
inline a rule in a strategy. The strategy in the where clause 
traverses the subterm matching the x (using oncetd) to find 
one occurrence of I' and replaces it with r . The result of 
the traversal is assigned to x', which is then used in the 
right-hand side of the rule. Note that we scope locally the 
variables of I' and r' except those common to the variables 
of I and r, since they are bound by the matching of I. 

The implementation of the rule above replaces exactly 
one occurrence of I' in the redex due to the strategy oncetd. 
To replace all occurrences of I' in the context, we have de- 
fined a greedy context, written e[|(|]. The implementation of 
this context is the same as the contexts above, except that 
the traversal strategy sometd is used instead of oncetd. 

5.4 Alpha Renaming 

An important feature of program manipulation is bound 
variable renaming. A major requirement is to provide re- 
naming as an object language independent operation. This 
means that the designer should indicate the binding con- 
structs of the language. This is done by mapping each bind- 
ing construct to the list of variables that it binds. For ex- 
ample, for the Let construct, the rule 

Bindl : Let(Vdec(t,u,e),e') -» [v]; 

gives the binding variable v (see Appendix A for the other 
rules).   Given these rules the strategy rename renames all 



bound object variables in the term to which it is applied. It 
is defined using the strategy language (see the definition in 
Appendix D). This strategy uses the built-in strategy new 
which generates fresh names. 

6 Rules and Strategy for RML 

Rules Table 7 presents the specification of RML optimiza- 
tion. It consists of a signature, rewrite rules and strategy 
definitions. The signature allows us to statically check the 
rules, strategies and input term. Because the input of the 
optimizer arp programs in abstract syntax we use the ab- 
stract syntax of RML programs instead of concrete syntax. 

One benefit of rewrite strategies is that the specification 
of RML is almost similar to the high-level rules presented 
in Table 5. There are very few changes, namely the use of 
greedy context for efficiency considerations, and the bind 
rules in Appendix A. 

Strategies Another important advantage of our approach 
is the ability to experiment and reason easily with strate- 
gies, which are generally heuristic. We present two pos- 
sible strategies: optimizel and optimize2. No change 
of rules is required. A separation of strategies from rules 
prevents many mistakes and enables us to reason on their 
property such as termination. For instance in optimizel 
and optimize2, we have avoided to apply EtaExp repeat- 
edly since this rule is not terminating. Both optimizel 
and optimize2 first apply EtaExp once everywhere in the 
term. The strategy optimizel uses the generic strategies 
innermost' and somedownup (see Appendix B) to apply the 
rest of these rules. The strategy somedownup is a variant of 
sometd that applies a strategy s at all positions of a term. 
It fails when none of these applications succeed. If it it suc- 
ceeds we know that some redex has been reduced. Hence, 
we can repeat oncedownup to normalize a term. 

While optimizel uses generic strategies, optimize2 per- 
forms specific analyses to apply rules. It first tries to hoist a 
Let at. the root. Notice that it repeats Hoistl since it may 
reapplv at the root, whereas Hoist2 cannot reapply after 
mir iipphi ill ion. Then, only Let or Letrec expressions can 
be redexes. For each case there are specific rules that can 
apply. This leads us to define a sub-strategy for each case 
and compose them non-deterministically. In both cases we 
first normalize the body of the Let or Letrec expression. 
For a Let we try the rules Prop and Sei and then Deadl. 
For a Letrec, we first normalize the bodies of the functions 
of the Letrec expression. Then we try Inll or Inl2 and if 
they succeed we try Dead2. Since inlining gives rise to new 
opportunities for optimization, we retry to strategy to this 
term. 

7 Implementation 

The strategy language presented in this paper has been im- 
plemented in SML. The programming environment consists 
of a simple interactive shell that can be used to load spec- 
ifications and terms, to apply strategies to terms using an 
interpreter and to inspect the result. A simple inclusion 
mechanism is provided for modularizing specifications. The 
current implementation does not yet implement the sort 
checking for rules and strategies. In addition to an inter- 
preter the environment contains a compiler.  It compiles a 

strategy to a C program that transforms terms according to 
the strategy. 

The compilation of non-deterministic strategies is remi- 
niscent of the implementation of Prolog in WAM [1] using 
success and failure continuations and a stack of choicepoints 
to implement full backtracking. A difference with WAM is 
that our implementation deals with choicepoints occuring 
inside a traversal as in the strategy D(si + sz) ■ S3. 

The run-time environment of compiled strategies is based 
on the ATerm C-library [19]. It provides functionality for 
building and manipulating a term data-structure, reference 
count garbage collection, a parser and pretty-printer for 
terms. An important feature is that full sharing of terms 
is maintained (hash-consing) to reduce memory usage. 

We have used the implementation to experiment with 
the optimizer for RML discussed in this paper, but more 
work is needed before we can present performance results. 
The strategy language provides many opportunities for op- 
timization. We plan to apply our technique to optimizing 
strategies. 

8    Related Work 

Program Optimization There have been many at- 
tempts to build frameworks for program analysis and opti- 
mization, often using special-purpose formalisms. Systems 
close to ours in spirit include TXL [9, 17], Puma [13], OP- 
TIMIX [5], and KHEPERA [11]. All these systems pro- 
vide tree transformation languages with succinct primitives 
for matching subtrees. Most of these languages require 
tree traversal to be programmed explicitly. TXL includes 
a "searching" version of the match operator which behaves 
like an application of our topdown strategy. KHEPERA 
provides a built-in construct to iterate over the immediate 
children of a node. 

Other recently-proposed optimization frameworks tend 
to rely on general-purpose languages to describe transforma- 
tions. Aspect-Oriented Programming [14] advocates the use 
of domain-specific "aspect" languages to describe optimiza- 
tion of program IR trees; however, existing examples appear 
to use LISP for this purpose. Intentional Programming [2] 
provides a library of routines for manipulating ASTs; in 
principle, these routines can be invoked from a variety of 
(intentional representations of) languages, but the current 
implementation uses C-style programs. 

Strategies First-order algebraic specification formalisms 
such as ASF+SDF [10] provide a fixed strategy for normal- 
izing terms with respect to a set of rewrite rules. A common 
work-around to implement strategies in such a setting is to 
encode a strategy into the rewrite system by providing an 
extra outermost constructor that determines at which point 
in the term a rewrite rule can be applied. 

Originating in theorem proving tactics, rewriting strate- 
gies were introduced in the algebraic specification languages 
ELAN [7] and Maude [8]. Maude is a specification formal- 
ism based on rewriting logic. It provides equations that are 
interpreted with innermost rewriting and labeled rules that 
are used with an outermost strategy. Strategies for apply- 
ing labeled rules can be defined in Maude itself by means of 
reflection. 

ELAN provides a built-in strategy language similar to 
the one in this paper. The strategy language described in 
this paper is a generalization of the language of ELAN. The 



imports lib list subs props 
signature 

sorts TExp Vdec Fdec Se Exp 
operations 
Funtype 
Recordtype 
Primtype 
Vdec 
Fdec 
Const 
Var 
Simple 
Record 
Select 
Papp 
App 
Let 
Letrec 

rules 

List(TExp) * TExp        -> TExp ~ Type expressions 
List(TExp) -> TExp 
String -> TExp 
TExp * String * Exp      -> Vdec — Variable declarations 
TExp * String * List(String) * Exp -> Fdec ~ Function declarations 

TExp * String 
String 
Se 
List(Se) 
Int * Se 
String * List(Se) 
Se * List(Se) 
Vdec * Exp 
List(Fdec) * Exp 

-> Se — Simple expressions 
-> Se 
-> Exp — Expressions 
-> Exp 
-> Exp 
-> Exp 
-> Exp 
-> Exp 
-> Exp 

Hoistl : Let(Vdec(t, v, Let(vdec, el)), e2) -> Let(vdec, Let(Vdec(t, v, el), e2)); 

Hoist2 : Let(Vdec(t, v, Letrec(fdecs, el)), e2) -> Letrec(fdecs, Let(Vdec(t, v, el), e2)); 

Prop  : Let(Vdec(t, v, Simple(s)), e[| Var(v) |]) -> Let(Vdec(t, v, Simple(s)), e[| s |]); 

Let(Vdec(t, v, el), e2) -> e2 where <not(in)> (v, e2) . <pure> el; 

Letrec(fdecs, el) -> el where <map({f : match(Fdec(_, f, _, _)). <not(in)> (f, el)})> fdecs; 

Deadl 

Dead2 

Inll Letrec([Fdec(t, f, xs, el)], e2[| App(Var(f), ss) I]) -> 
Letrec([Fdec(t, f, xs, el)], e2[| <subs . rename> (xs, ss, el) I]) where <small> el; 

Inl2  : Letrec([Fdec(t, f, xs, el)], e2[ App(Var(f), ss) ]) -> 
Letrec([Fdec(t, f, xs, el)], e2[ <subs . rename> (xs, ss, el) ]) 
where <not(in)> (Var(f), el) . <not(in)> (Var(f), e2[Hole]); 

Sei   : Let(Vdec(t, v, Record(ss)), e[| Select(i, Simple(Var(v))) |]) -> 
Let(Vdec(t, v, Record(ss)), e[| <index> (i, ss) I]); 

EtaExp : Let(Vdec(Funtype(ts, t), fl, el), e2) -> Letrec([Fdec(Funtype(ts, t), fl, xs, 
Let(Vdec(Funtype(ts, t), f2, el), App(Var(f2), xs)))], e2) 

where <pure> el . <new> fl => f2 . <map(new . {x: <x -> Var(x)>})> ts => xs 
strategies 

groupl = Inll + Inl2 + Sei + Prop 
group2 = (Deadl + Dead2) <+ (Hoistl + Hoist2) 

optl = innermost'(Hoistl + Hoist2) . 
somedownup((groupl . repeat(Deadl + Dead2) <+ repeatl(Deadl + Dead2))) 

optimizel = bottomup(try(EtaExp)) . repeat(optl) 

opt2 = rec x . (repeat(Hoistl) . try(Hoist2) . 
try( Let(id, x) . try(Prop + Sei) . try(Deadl) 

+ Letrec(id, x) . (Dead2 <+ try(Letrec(map(Fdec(id,id,id,x)),id) . 
try((Inll + Inl2) . try(Dead2) . x)))) 

optimize2 = bottomup (try (EtaExp)) . opt3  ^^^^^ 

Table 7: Specification of RML transformation rules 



resulting language is a combination of ideas from the process 
algebra ACP [6] and the modal mu-calculus [15]. An earlier 
version or our language was described in [16]. Technical 
contributions of our strategy language include the modal 
operators G, O and <8>that enable very concise specification 
of term traversal; the explicit recursion operator fix. s; the 
refinement of rewrite rules into match and build; and the 
encoding of complex rewriting features into strategies, in 
particular the expression of rules with contexts. 

9     Conclusions 

We have illustrated lnuv separating transformation mips 
lioin the application strategy can promote concise, under- 
standable descriptions of complex rewriting tasks. Our ex- 
ample compiler optimizer takes about 50 lines; the corre- 
sponding handwritten Standard ML code is several hundred 
lines. Moreover, we can completely alter the optimizer's 
rewriting strategy by changing just two or three lines; simi- 
lar changes to the ML version would require extensive struc- 
tural edits throughout the code. 

Although we concentrate on program optimizers in this 
paper, we believe that the techniques are equally well appli- 
cable in other areas where source to source transformations 
are used, including simplification, typechecking, interpreta- 
tion and software renovation. 
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A    User-defined RML Predicates 

(* file: props.r 
  Some properties of RML expressions *) 

rules 

Bindl : Let(Vdec(t, v, e), e') -> [v]; 
Bind2 : Letrec(fdecs, e) -> 

<map({f: <Fdec(_, f, _, _) -> f>}) > fdecs 

Bind3 : Fdec(_,_,xs,_) -> xs 

strategies 

rmlrename = rename(Bindl + Bind2 + Bind3) 

small = Simple(id) + Record(id) + Select(id, id) + 
Papp(id, id) + App(id, id) 

pure = not(oncebu(match(Papp("assign", _)))) 

B    Generic Strategies 

In this and the next appendices we present three sets of 
generally applicable strategy operators. Note that all, one, 
and some stands for D, O, and <& 

(* file:  lib.r   Standard strategies *) 
strategies 

(* Try s *) 

try(s)  = s <+ id 

(* Repetition *) 

repeat(s)  = rec x . ((s . x) <+ id) 
repeatl(s) = s . repeat(s) 

(* Traversal; all s applications have 
to succeed *) 

bottomup(s) = rec x . (all(x) . s) 
topdown(s) = rec x . (s . all(x)) 
downup(s)  = rec x . (s . all(x) . s) 

downup2(sl, s2) = rec x . (si . all(x) . s2) 

(* Traversal; one s application 
has to succeed *) 

oncebu(s) = rec x . (one(x) <+ s) 
oncetd(s) = rec x . (s <+ one(x)) 

(* Greedy traversal; apply s as often as possible 
and at least once. *) 

somebu(s) = rec x . (some(x) <+ s) 
sometd(s) = rec x . (s . all(s <+id) <+ some(x)) 

(* Greedier *) 

somedownup(s) = rec x . ((s . (all(x) . (s <+ id) 
<+ id)) <+ (some(x) . (s <+ id))) 

(* Normalization strategies *) 

reduce(s) = repeat(rec x  .   (some(x)   + s)) 
outermost(s) = repeat(oncetd(s)) 
innermost(s) = repeat(oncebu(s)) 
innermost'(s) = rec x  .   (all(x)   .   (s   .  x <+ id)) 

C    Lists and Pairs 

Lists are constructed with the polymorphic construc- 
tors Cons and Nil. Finite lists can be constructed 
with the special notation [h,...,tn], abbreviating 
Cons(ti,...Cons(t„,Nil)). Lists have type List(A) 
with A some type. Tuples (ti,...,tn) have type 
Prod([Ai,... , An]), where Ai is the type of U. 

(* file: list.r *) 
signature 

operations 
Zip : Prod([List(A), List(B)]) 

-> List(Prod([A, B])) 

rules 

Hd : Cons(x.l) -> x; 

Tl : Cons(x.l) -> 1; 
Fst : (x, y)   -> x; 
Snd : (x, y)   -> y; 

Zipl : Zip(Nil, Nil) -> Nil; 
Zip2 : Zip(Cons(x, xs), Cons(y, ys)) -> 

Cons((x, y), Zip(xs, ys)); 

Indl : (1, Cons(x, xs)) -> x; 
Ind2 : (n, Cons(x, xs)) -> (n-1, xs) where geq(n,2) 

strategies 

(* Evaluation strategies *) 

zip(s) = rec x . (Zipl + Zip2 . Cons(s, x)) 
index = repeat(Ind2) . Indl 

(* Concatenation *) 

cone = {1: match((l, _)) . Snd . 
rec x. (ConsUd, x) <+ build(l))} 

(* Find first list element for which s succeeds *) 

fetch(s) = rec x . (Cons(s, id) <+ ConsUd, x)) 

(* Apply strategy to each element of a list *) 

map(s) = rec x . (Nil + Cons(s, x)) 

D    Substitution and Renaming 

(* file:  subs.r *) 

strategies 

(* Test occurrence of a in b *) 

in = {a: match((a, _)) . Snd . oncebu(match(a))} 
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(* Substitution *) 

subs = {1st, xs, ss, t: 
match((xs, ss, t)) . 
<zip(id)> Zip(xs, ss) => 1st . 
<topdown(<Var(x) -> z 
where <fetch(match(x, z))> lst> <+ id)> t} 

(* Renaming *) 

rules 

Init  : t -> (t, []) 

Fresh : x -> (x, <new> x) 

Ren  : (x, 1) -> z where <fetch(match((x, z)))> 1 

strategies 

binds(s) = {t, 1: <(t, 1) -> 
(t, <conc> (<s . map(Fresh)> t, 1))>} 

dist(s) = {1, t: <(t, 1) -> t> . 
all({x : <x -> (x, 1)>} . s)} 

rename(s) = Init . 
rec x . (Ren <+ ((binds(s) <+ id) . dist(x))) 
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