
PACIFIC SOFTWARE RESEARCH CENTER
TECHNICAL REPORT 1

CONTRACT NO. F19628-96-C4I161
CDRL SEQUENCE NO. [CDRL 0002.2]

Prepared for:
USAF

Electronic Systems Center/AVK

Prepared by:
Pacific Software Research Center

Oreeon Graduate Institute of Science and Technology
6 PO Box 91000

Portland, OR 97291

OREGON

GRADUATE

INSTITUTE OF

SCIENCE &

TECHNOLOGY

D7T0 QUALITY
*Ss*BOlm> *

CONTRACT NO. F19628-96-C-0161
CDRL SEQUENCE NO. [CDRL 0002.2]

Prepared for:
USAF

Electronic Systems Center/AVK

Prepared by:
Pacific Software Research Center

Oregon Graduate Institute of Science and Technology
PO Box 91000

Portland, OR 97291

Pacific Software Research Center
Collection of papers from

January 1, 1998 to March 31, 1998

"Bridging the Gulf: A Common Intermediate Language for ML and Haskell"
"From Interpreter to Compiler using Staging and Monads"

"Multi-State Programming: Axiomatization and Type Safety"
"The Anatomy of a Component Generator"

"Optimizing ML Using a Hierarchy of Monadic Types",

Bridging the gulf: a common intermediate language for ML and Haskell

Simon Peyton Jones
University of Glasgow and Oregon Graduate Institute

Mark Shields
University of Glasgow and Oregon Graduate Institute

John Launchbury
Oregon Graduate Institute

Andrew Tolmach
Portland Stace University

Abstract

Compilers for ML and Haskell use intermediate languages
that incorporate deeply-embedded assumptions about order
of evaluation and side effects. We propose an intermediate
language into which one can compile both ML and Haskell,
thereby facilitating the sharing of ideas and infrastructure,
and supporting language developments that move each lan-
guage in the direction of the other. Achieving this goal with-
out compromising the ability to compile as good code as a
more direct route turned out to be much more subtle than
we expected. We address this challenge using monads and
unpointed types, identify two alternative language designs,
and explore the choices they embody.

1 Introduction

Functional programmers are typically split into two camps:
the strict (or call-by-value) camp, and the lazy (or call-by-
need) camp. As the discipline has matured, though, each
camp has come more and more to recognise the merits of the
other, and to recognise the huge areas of common interest.
It is hard, these days, to find anyone who believes that lazi-
ness is never useful, or that strictness is always bad. While
there are still pervasive stylistic differences between strict
and lazy programming, it is now often possible to adopt lazy
evaluation at particular places in a strict language (Okasaki
[1996]), or strict evaluation at particular points in a lazy one
(for example, Haskell's strictness annotations (Peterson et
al. [1997])).

This rapprochement has not yet, however, propagated to
our implementations. The insides of an ML compiler look
pervasively different to those of a Haskell compiler. Notably,
sequencing and support for side effects and exceptions are
usually implicit in an ML compiler's intermediate language
(IL), but explicit (where they occur) in a Haskell compiler
(Launchbury k Peyton Jones [1995]). On the other hand,
thunk formation and forcing are implicit in a Haskell com-
piler's intermediate language, but explicit in an ML com-
piler. These pervasive differences make it impossible to
share code, and hard to share results and analyses, between
the two styles.

To say that "support for side effects are implicit in an ML

Permission to make digitai/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM. Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
POPL98 San Diego CA USA
Convrieht 1998 ACM 0-Ä979I-97O.7/OR/ ru si <i\

compiler's IL" (for example) is not to say that an ML com-
piler will take no notice of side effects: on the contrary, an
ML compiler might well perform a global analysis that iden-
tifies pure sub-expressions (though in practice few do). How-
ever, one might wonder whether the analysis would discover
all the pure sub-expressions in a Haskeil program translated
into the IL. In the same way, if an ML program were trans-
lated into a Haskeil compiler's IL, the latter might not dis-
cover all the occasions in which a function argument was
guaranteed to be already evaluated. This thought motivates
the following question: could we design a common compiler
intermediate language (IL) that would serve equally well for
both strict and lazy languages ? The purpose of this paper is
to expiore the design space for just such a language.

We restrict our attention to higher order, poiymorphically
typed intermediate languages. There is considerable interest
at the moment in type-directed compilation for polymorphic
languages, in which type information is maintained accu-
rately right through compilation and even on to run time
(Harper k Morrisett [19951; Shao k Appel [19951; Tarditi et
al. [1996]). Hence we focus on higher order, statically typed
source languages, represented in this paper by ML (Milner
k Tofte [1990]) and Haskell (Peterson et al. [1997]).

At first we expected the design to be relatively straight-
forward, but we discovered that it was not. In particular,
making sure that the IL has good operational properties for
both strict and lazy languages turns out to be rather subtle.
Identifying these subtleties is the main contribution of the
paper:

• We employ monads to express and delimit state, in-
put/output, and exceptions (Section 3). Using mon-
ads in this way is now well known to theorists (Moggi
[1991]) and to language designers (Launchbury k Pey-
ton Jones [1995]; Peyton Jones k Wadler [1993];
Wadler [1992a]), but, with one exception1, no compiler
that we know has monads built into its intermediate
language.

• We employ unpointed types to express the idea that
an expression cannot diverge (Section 3.1). We show
that the straightforward use of unpointed types does
not lead to a good implementation (Section 3.6). This
leads us to explore two distinct language designs. The
first. C\, is mathematically simple, but cannot be com-
piled well (Section 3). An alternative design, £2, adds
operational significance to unpointed types, by guar-
anteeing that a variable of unpointed type is evaluated
(Section 4); this means £2 can be compiled weil, but
weakens its theory.

• We identify an interaction between unpointed types,
polymorphism, and recursion in £1 (Section 3.5). In-

1 Personal communication, Nick Benton, Persimmon IT Ltd, 1997.

49

terestingly, the problem turns out to be more easily
solved in £2 than L\ (Section 4.2).

None of these ingredients are new. Our contribution is to ex-
plore the interactions of mixing them together. We emerge
with the core of a practical IL that has something to offer
both the strict and lazy community in isolation, as well as
offering them a common framework. Our long-term goal is
to establish an intermediate language that will enable the
two communities to share both ideas (analyses, transforma-
tions) and systems (optimisers, code generators, run-time
systems, profilers, etc) more effectively than hitherto.

2 The ground rules

We seek an intermediate language (IL) with the following
properties:

• It must be possible to translate both (core) ML and
Haskell into the IL. Extensions that add laziness to
ML, or strictness to Haskell, should be readily incor-
porated. We make no attempt to treat ML?s module
system, though that would be a desirable extension.

• In order to accommodate ML and Haskell the IL's
type, system must support polymorphism. This ground
rule turns out to have very significant, and rather
unfortunate, impact upon our language designs (Sec-
tion 3.5), but it seems quite essential. Nearly all exist-
ing compilers generate polymorphic target code, and
although researchers have experimented with compil-
ing away polymorphism by type specialisation (Jones
[1994]: Tolmach k. Oliva [1997]), problems with sepa-
rate compilation and potential code explosion remain
unresolved.

• The IL should be explicitly typed (Harper & Mitchell
[1993]i. We have in mind a variant of System F (Gi-
rard [i990]). with its explicit type abstractions and
applications. The expressiveness of System F really
is required. For example, there are several reasons
for wanting polymorphic arguments to functions: the
translation of Haskell type classes creates "dictionar-
ies" with polymorphic components: we would like to be
able to simulate modules using records (Jones [1996]);
rank-2 polymorphism is required to express encap-
sulated state (Launchbury k. Peyton Jones [1995]);
and data-structure fusion (Gill, Launchbury k. Pey-
ton Jones [1993]).

IL programs can readily be type-checked, but there
is no requirement that one could infer types from a
type-erased IL program.

• The IL should have a single well-defined semantics. On
the face of it, compilers for both strict and lazy lan-
guages already use a common language, namely the
lambda calculus. But this similarity is only at the
level of syntax; the semantics of the two calculi differ
considerably. In particular, the code generator from
a strict-language compiler would be completely unus-
able in a lazy-language compiler, and vice versa. Our
goal is to have a single, neutral, semantics, and hence
a single optimiser and code generator.

• ML (or Haskell) programs thus compiled should be
as efficient as those compiled by a good ML (resp.

Haskell) compiler. In other words, compiling through
the common IL should not impose any unavoidable effi-
ciency penalty, either by way of loss of transformations
(especially when starting from Haskell) or by way of
a less efficient basic evaluation model (especially when
starting from ML). Indeed, our hope is that we may
ultimately be able to generate better code through this
new route.

3 £i, a totally explicit language

It is clear that the IL must be explicit about things that are
implicit in "traditional" compiler ILs. Where are these im-
plicit aspects of a "traditional" IL currently made explicit?
Answer: in the denotational semantics of the IL. For ex-
ample, the denotational semantics of a call-by-value lambda
calculus looks something like this2

£[ei e2]p = (£[eiJ/>) b, if a = b±

_L, if a = ±
where a = £[ei]p

Here, the two cases in the right-hand side deal with the pos-
sible non-termination of the argument. What is implicit in
the IL - the evaluation of the argument, in this case - be-
comes explicit in the semantics. An obvious suggestion is
therefore to make the IL reflect the denotational semantics
of the source language directly, so that everything is explicit
in the IL. and nothing remains to be explicated by the se-
mantics. This is our first design, L\.

Figure 1 gives the syntax and type rules for L\. We note
the following features:

• As a compromise in the interest of brevity all our
formal material describes only a simply-typed calcu-
lus, although supporting polymorphism is one of our
ground rules. The extensions to add polymorphism,
complete with explicit type abstractions and applica-
tions in the term language, are fairly standard (Harper
k Mitchell [1993]; Peyton Jones [1996]; Tarditi et al.
[1996]). However, polymorphism adds some extra com-
plications (Section 3.5, 3.6).

• We omit recursive data types, constructors, and case
expressions for the sake of simplicity, being content
with pairs and selectors.

• let is simply very convenient syntactic sugar. It is not
there to introduce polymorphism, even in the polymor-
phic extension of the language: explicit typing removes
this motivation for let.

• letrec introduces recursion. Though we only give it
one binding here, our intention is that it should ac-
commodate multiple bindings. We use it rather than
a constant fix because the latter requires heavy en-
coding for mutual recursion that is not reflected in
an implementation. We discuss recursion in detail in
Section 3.5, including the unspecified side condition
mentioned in the rule.

• Following Moggi [1991], we express "computational ef-
fects" — such as non-termination, assignment, excep-
tions, and input/output — in monadic form. The type

sWe use the following standard notation. If T is a complete partial
order (CPO), then the CPO T±, pronounced «T lifted', is denned
thus: T_ = {a± j o € T) U {-L}. with the obvious ordering.

50

Types T,P

" 1
Iatin->r>| () | (n,r2)
Ref r | M r

Terms e
"~\

1
1

x\k\ei 02 | \x:r.e | (ei,e2)
let x:r = ei in e2
letrec x:r = e; in ej
letw x:r<-ei in e-i |ret,vf e

Constants k
" 1

fst | snd | new | rd | wr | liftToST
0|1|2|...| + |-|...

Monads M Lift | ST

{VAR)

{PAIR)

{APP)

{LAM)

{LET)

{REC)

{LETM)

{RET)

{FST)
{SND)
{PLUS)
{NEW)
{RD)
{WR)
{LIFT)

X:T€ r

r h ei : n T 1- e2 : rj
ri- (ei,e2) : (.n.n)

r 1- ei : r->p r !- a2 : r
r r ei e2 : p

I\x:r F e : p
n- Ax:r.a : r->p

r !-ei : r r.x:rt-e2:p
T .u let x:r = ei in e2 : p

r, x : r h ei : r r, I: r L e; : p
...plus a side condition...

T r- letrec x:r = ei in 82 ■P

T h ei : M ri T7 x : r; t- e2 : M r2

T (- let.vf x:ri <-ei in 82 : xV/r2

ri-e:r
T K ret.w e : .V/ r

Thfst: (n.rs) -> Ti
T .- snd : (n.ra) -> T2
T f- + : Int -> Int -> Int
r I- new : r -> ST (Ref r)
r I- rd : Ref r -> ST r
T I- wr : Ref r -> r -> ST 0
T H liftToST : Lift r -> ST r

Figure 1: Syntax and type rules for C\

M T is the type of .M-computations returning a value
of type r, where M is drawn from a fixed family of
monads. The syntactic forms let,v* and ret/w are
the bind and unit combinators of the monad M. The
only two monads we consider for now are the lifting
monad, Lift, and the combination of lifting with the
state transformer monad, ST. It is a straightforward
extension to include the monads of exceptions and in-
put/output as well.

This use of monads appears to contradict our goal that
£1 should have a trivial semantics. We discuss the
reasons for this decision in Section 3.4.

Figure 2 gives the semantics of C\. The semantic function
. T gives the meaning of types. If it looks somewhat boring,

T.Type -* CVO
7[Int] = 2

Tfa-^j = T[TI1-+7"IT2]
T[(n,^)j = Tin] x T{n]

71«! = 1
7[Liftrj = T[T}±

T[ST r] = State -*■ {T{r\ :< State)x
T{Kef T] = Af

State = j\f «-> UT T\T\

£ : Te.rmr -+ Env -+ TJr]
£[x]p = p{x)
£[k]p = k

£{ei e2]p = (£{ei]p) (£[ea]p)
£{\x.e]p = \y.£[e]p[x := y]

^[(ei,e2)jp = {£{e\\p,£{ei\p)
£[let x:r=ei in e2jp = £[e2Jp[x := £{e\\p\

£[letrec x:r = ei in 82jp = £\ei\{re.c{x, eijp)
£{let\t x:r<-ei in e2]p = bindet (£[ei|p)

(Ay.5le23p[x := y])
£fretM e]p = unitM {£{e\p)

recix,e,]p = fix{\p'.p[x := 5[ex]p'])

fst (a, b) = a
snd (a, Ö) = b

binduft m k = -L,
k a,

unituft x = ij.

if m = JL
if m = aj.

bindsT rn k s = J-, if m s = 1
k r 3', if m 3 = {r,s')±

iinitsT rn .j = (m, s)j.
neiu 7; a = (r, s[r ■->■ r/])x where r g dom(s)

ni r s = (sr, 3)^., if r € dom(,j)
J-, otherwise

wrrvs = (O.afr H+WJJJ,, if r € dom(s)
J-, otherwise

UftToSTms = (r,a)x, if m = rj.
JL, otherwise

Figure 2: Semantics of £i

that is the point! The function arrow in L\ is interpreted by
function arrow in the underlying category of complete par-
tial orders {CVO), product is interpreted by (categorical, i.e.
un-lifted) product, and integers are interpreted by the inte-
gers. (If £1 were expanded to have sum types, they would
be interpreted by (categorical, separated) sums.) Lastly,
each monad is specified by an interpretation. The monad
of lifting is interpreted by lifting, while a state transformer
is interpreted by a function from the current "state" to a
result and the new state. The "state" is a finite mapping
from location identifiers (modeled by the natural numbers,
^0 to their contents.

The semantic function £ gives the meaning of expressions.
Again, many of its equations are rather dull: application
is interpreted by application in the underlying category,
lambda abstraction by functional abstraction, and so on.
The semantics of the two monads is given by their bind and
unit functions. From the semantics one can prove that both
0 and 77 are valid with respect to the semantics, and that
monadic expressions admit a number of standard transfor-

51

(Ml) let« K-retM e in 6
(M2) letM x <- (letM y <- ei in e2) in 6
(M3) letM x<-(let y = ei in e2) in 6
(M4) letM x<-(letrec y = ei in e2) in 6
(M5) let A* x<-e in ret** x
(M6) let x = e in retw b

let x:T«e in 6
let« y<-ei in (letw x<-et in 6) y g /w(6)
let y = ei in (letw x<-e2 in 6) V £ /«(&)
letrec y = ei in (letM x<-e2 in 6) y £ /"(*>)
e
retM (let x » e in 6)

Figure 3: Monad transformations

mations, given in Figure 3.

3.1 Termination and non-termination

As we have mentioned, the interpretation of a type in £i
is a complete partial order (CPO). However, the interpreta-
tion of a type is not necessarily a pointed CPO; that is, the
CPO does not necessarily contain a bottom element. For
example, the data type of integers, Int, is interpreted by
the unpointed CPO of integers, Z. That is, if an expression
has type Int, then it denotes an integer, and cannot denote
a non-terminating computation. How, then, do we express
the type of possibly-diverging integer-valued computations?
As we have seen.*£i has an explicit type constructor for
each monadic (i.e. computation) type, of which lifting is
one. To express the type of a possibly-diverging integer we
use the lifting monad". A possibly-diverging integer-valued
expression therefore has type Lift Int.

So £i!s type system can distinguish surely-terminating ex-
pressions from possibly-diverging ones. The main reason
for making this distinction in the type system is so thai we
can express the idea that a function takes an evaluated argu-
ment. The L\ lambda abstraction \x:Int.e expresses that
x cannot possibly be J_. and so is a suitable translation of a
lambda abstraction from a call-by-value language. On the
other hand \x:Lift Int.e expresses that r might perhaps
be _L, which fits a call-by-name or call-by-need language.

A second motivation for distinguishing pointed types from
unpointed ones is that some useful program transforma-
tions that are not valid in general, hold unconditionally
when one has more control over pointedness. Several re-
searchers have explored languages that employ a distinc-
tion between pointed and unpointed types (Howard [1996];
Launchbury & Paterson [1996]), and others have explored
pure languages without pointed types altogether (Cockett
k. Fukushima [1992]; Hagino [1987]; Turner [1995]). The
presence of unpointed types has consequences for recursion,
as we discuss in Section 3.5.

3.2 Stateful computations

In a similar way, we use the ST monad to express in the type
system the distinction between pure and stateful computa-
tions. For example, an expression of type Lift Int denotes
a pure (side-effect free), albeit possibly-divergent, computa-
tion; on the other hand, and expression of type ST Int de-
notes a computation that might diverge3, or might perform
some side effects on a global state and deliver an integer.
Further monads can readily be added to model exceptions,
or continuations, or input/output.

3ST combines lifting with state. It would be possible to separate
the two. as we discuss in Section 7.

Types 5, T : := Int|()|S*T|S-+T|RefS
Haskell only | ST 5

Terms M, N : := x\i\M N\\x:T.M\M + N
| letrec x:T = M in N
| let x:T = M in N
| pair M N | fst M | snd M
| new M | rd M | wr M N

Haskell only j letsT x:T*-M in N | retST M

Integers t • := 0|1|2|...

"ML" constants
new Va.a —► Ref a

rd Va.Ref a —» a
wr : Va.Ref a -* a -+ ()

"Haskell" constants
new Va.a -»• ST (Ref a)

rd Va.Ref a-tSTa
wr Va.Refa-^a-r ST ()

Figure 4: Syntax of 5

This use of monads is well known. Moggi pioneered the
idea of using monads to encapsulate computations (Moggi
[1991]; Wadler [1992a]). The lazy functional programming
community has been using monads very effectively to isolate
and encapsulate stateful computations and input/output
within pure, lazy programs (Launchbury & Peyton Jones
[1995]; Peyton Jones, Gordon & Finne [1996]; Peyton Jones
k. Wadler [1993]; Wadler [1992b]). Nevertheless, there are
surprisingly subtle design choices to make, as we discuss in
Section 3.4.

3.3 Translating ML and Haskell into L\

Before discussing its design any further, we first emphasise
£i's role as a target for both strict, stateful, and pure, lazy
languages by giving translations from both into £i. Figure 4
gives the syntax of a tiny generic source language, S. We
regard 5 as a prototype for either ML or Haskell, by giving
it a strict or lazy interpretation respectively. In either case,
5 is assumed to have been explicitly annotated with type
information by a type inference pass.

The constants pair, fst, snd have the same (obvious) 5
types in both interpretations. The constants new,rd,wr
create, read, and write a mutable variable. Unlike pair,

52

A4 [Int] = Int
M[S*T]= <.M[S],MlT])

M[0] = 0
M[S -*• T\ = M[S] -> ST M[T]
.M[RefS]=Ref (M[S\)

M[x] =retsT x
M[i] — retgr i

M[M iV] = latST f<-M{M] in
letST a<-M[N] in
/a

M[Ax:T..Vf] =retST (\x:M{T].M[M])
M{let x:T = M in N]

= lets! x:M[T] <-M[M] in A*i[AT]
.M [letrec f:S ■+ T = Ai: S.Af in :V|
= letrec f:M[S-*T\-\x:M[S].M[M] in M[N]

M\pair M N] = letgr a <_ X(MJ in
letST b<-M{N] in
retsT (a,&)
... and similarly wr. ■+-

M[fst M] = letST a<-M[M] in
retgx fst a
... and similarly snd, new, rd

H\lnt] = Lift Int
u{s * T] = Lift («IST ,-Hfrp

H[0] = Lift 0
. H{S -* TJ = W[S] -> H{T]

H\ST T] = ST t,H{T])
«[Ref S] = Lift (Ref (TiJS]))

H[s] = i
"HftJ = rati if~ i

H{M N] = H{M\ H\N]
H\\x:T.M] = \x: H[T] . H[M]

«[let x:T = :V/ In .V] = let x:HlT] =H{M] in H[N]
H [letrec z:T = M in iV]

= letrec x:H{T] = H{M\ in «[iV]
«[pair .V/ N\ = retLiit («[MJ .«[iV])

HIM + .V] = letLiJt a<-«[A/]j in
letLiJt &<-«JN3 in
retT.ift (+ a &)

«[fst A/] = letilfl'a<-H{M] in fst a
... similarly snd

«[wr iV/ iV| = letST a <-lif tToST «[Ml in
wr a H[N]
... similarlv new. rd

H[letST x-.T^MinN]
= letST i:«[T]<-«[M] in H[N]

«[retST M] = retST

Figure 5: Translations of "ML" and "Haskell" into £i

their types differ in the two interpretations, as Figure 4
shows. In the lazy interpretation their types explicitly in-
volve the source-language ST monad, and 5 also includes
letsT and retsT, the unit and bind operations for ST. Mod-
ulo syntax, this is precisely how Haskell expresses stateful
computation (Launchbury &z Peyton Jones [1995]).

Then Figure 5 gives two translations of <S into A:

• The 'ML'' translation. M*. gives ehe source language
a stateful, strict, semantics. The result of a term trans-
lated by M is a computation in the ST monad, and
functions also return computations in ST. That is, if
the ML tvpe system considers that F H- e : r, then
M[T]hM[el :ST,K[rjj.

The rule for application uses letgx to evaluate both
the function and its argument, and to sequence any
state changes they contain, before applying the func-
tion to the argument. In expressions produced by
the M translation, each variable is bound to a non-
monadic type; that is, any effects (state or non-
termination) are performed before binding the vari-
able. When a variable, lambda, or pair is translated
we simply return the value using retgx- Lastly, a re-
cursive ML declaration can only bind a function: hence
the rule for letrec.

• The "Haskell" translation, H, gives the source lan-
guage (minus the state-changing operations) a pure,
non-strict semantics. A key difference from the ML
translation is that the Haskell translation of data
types, such as integers, pairs, and lists, are lifted, be-
cause Haskell allows values of these types to be recur-
sively denned, unlike the ML translation, the transla-
tion of Haskeil's function type does not need to have
an explicit Lift on the codomain. Nor does the trans-
lation H necessarily return a Lift computation: if the
Haskell tvpe svstem concludes that T r- e : r then
U\X\ r U\t\ : :H[r].

« translates Haskeil's ST-monad computations di-
rectly into Ci's ST monad, just as you would hopeD.
The oniy tiresome point is that the first argument of
wr has source-language type Ref r, and hence has
£i type Lift (Ref H[r]). It must therefore be lifted
into the ST monad using liftToST so that it can be
evaluated in the ST monad.

It is interesting to compare the two type translations. M
uses exactly the call-by-vaiue translation of Wadler [1992ai,
with the computational effect at the end of the function
arrow. On the other hand H does not use Wadlers call-by-
name translation, as one might otherwise expect. Indeed,
there is no monadic effect in the translation of function types
at all; instead the Lift monad shows up in the translation
of data types.

This translation of Haskell function types assumes that
\r.bot and bot, where bot has value -L, denote the same
value in Haskell. Recent changes to Haskell are likely to al-
low these values to be distinguished, forcing a lifting of func-
tion types, and hence a more gruesome encoding of function
application.

3.4 Why not encode the monads?

We have said that £i is meant to make everything explicit,
so that there is nothing to be said when giving its semantics.
In apparent contradiction, we made the semantics of the
monads implicit — that is, explained only by the semantics
of £i. Why, for example, did we not make the ST monad

■"The translation given here introduces quite a few "administrative
redexes"; a slightly more complex translation can avoid them (Sabry
Si Wadler [1996)).

5We do not treat the runST encapsuiator of Launchbury it Pey-
ton Jones [1995) here, but it is easy to do so.

53

explicit by representing a value of type ST r as a state-
transforming function in £1, and representing letgr and
retgT using the other £1 forms? For example, instead of
the L\ term

letsj i <- e in b

we could write the £1 term

bindST e (\x.6)

where bindST is defined (directly in £1) as follows

bindST = \m k s.let p=m s in k (f st p) (snd p)

Here, the state passing is made explicit, but the state itself
is still abstract, supporting the new-, read and write oper-
ations. This is the approach advocated by Launchbury k
Peyton Jones [1995, Section 9]. It has the notable advantage
that we can simplify £1 by getting rid of let** and ret«
entirely.

We do not adopt that approach here, for three reasons:

• Encoding the monad in purely functional terms is a
reasonable way of giving its semantics, but it may not
be a reasonable way of giving its implementation. Con-
sider, for example, the monad of exceptions in a strict
langnage. The functional encoding would perform a
conditional test whenever a possibly-exceptional value
was bound: but the expected implementation is stack-
based with no tests. Instead, a whole chunk of stack
is popped when an exception is raised. Keeping the
monad explicit in £i allows the code generator to gen-
erate efficient code.

• Even where an efficient code-generation strategy does
exist, its correctness may be fragile. For exam-
ple, Launchbury k. Peyton Jones [1995] describes an
update-in-place implementation of the primitive op-
erations (read and write) in the state monad. How-
ever, that implementation is only correct if the state
is singie-threaded. That is certainly the case in the
terms produced by M, but it might not remain the
case after performing £; transformations. For exam-
ple, a ö-expansion might duplicate the state.

It may be possible to preserve the single-threadedness
of the state by limiting the transformations performed
on the £i program. (For example, we believe that
using only transformations that are correct in a call by
need calculus is sufficient (Sabry [1997]).) Even where
this is true, it creates a complicated proof obligation.

• There may be useful transformations available that are
specific to a particular monad (for example, swapping
the order of non-interfering assignments), but which
become inaccessible, or hard to spot, when expressed
in a purely-functional encoding of the monad.

We find these reasons compelling. On the other hand, we
were concerned that by not translating the monadic code
into a core of £i we might lose valuable transformations. So
far, however, we have found no transformation that cannot
be expressed in the monadic version of £i, providing the
standard monad laws are implemented (Figure 3).

3.5 Recursion in L\

One consequence of our decision to allow a type to be mod-
eled by an unpointed CPO is that we have to take care

I- (Lift T) pomted

t- (ST r) pointed

I- T\ pointed
t- (T2 -> T\) pointed

V T\ pointed I- Ti pointed
t- (n ,T2> pointed

Figure 6: Rules for pointed types

with recursion. The rule (REC) in Figure 1 suggests that a
letrec can be constructed at any type. But that is not so.
Consider

letrec r:Int = ...x... in ...

Such a recursive definition is plainly nonsense, because Int
is an unpointed type and has no bottom element, so there
might be no solution, or many solutions, to the recursive
definition. We can only do recursion over pointed CPOs!6

How. then, can we make sense of recursion? One solution
is to link recursion to the Lift monad, since Lift adds a
bottom to its argument domain:

{RECa)
T. x : Lift r I- ei : Lift r T,x : Lift r !- &i : p

T I- letrec x:r = ei in ej : p

This solution is not very satisfactory. For a start, it cannot
type:

letrec t = \x. ... in ...

because the type of a lambda abstraction has the form
r —*• p, not Lift r, and lifting all functions raises the spec-
tre of having to force the definition on each recursive call.
Nor can it type recursive definitions of ST computations.
Furthermore, this loss of expressiveness is completely un-
necessary, since a function type whose result type is pointed
is itself pointed: and any ST computation is pointed. The
right solution is to fix (REC) by adding a side condition that
r must be pointed:

{RECb)

T,x : r I- ei : r
r,x : rh ei : p
h* r pointed

Fl- letrec x:r = ej in ei : p

Figure 6 gives rules for determining when a type is pointed.
Unfortunately, the extension to a polymorphic type system
is problematic: is the type a pointed or not? There are three
possible choices:

• We could decide that type variables can only range
over pointed types. This is precisely the restriction
proposed by Peyton Jones & Launchbury [1991], but
it is unacceptable in our IL because we expect (the
translations of) most ML data types to be unpointed.
For example, an ordinary, non-recursive polymorphic
function such as the identity function could not be
applied to both 3 and retort 3, because one has a
lifted type and one does not.

6There is a substantial literature on the categorical treatment of
recursion (for example. Pitts [1996]), but the discuuion of thi« lection
focuses on the specific setting of CVO.

54

• We could allow type variables co range over all types,
but prohibit recursion at a type variable. This would
irritatingly reject recursive functions whose result type
is a type variable, such as the function nth that selects
the rt'th element from a list.

nth : Va.Iat -> (List a) -> a

• Alternatively, we could employ qualified universal
quantification, where type variables at which fixpoints
are taken are explicitly qualified:

nth : VQ 6 Pointed .Int -> (List a) -> a

Launchbury Sc Paterson [1996] elaborate on this idea.

Since the first two choices are untenable, we conclude that
adding polymorphism to a language with both recursion and
unpointed types, requires the use of qualified universal quan-
tification.

3.6 Controlling evaluation in £L

While £i seems to be quite suitable from a theoretical point
of view, it suifers from a serious practical drawback: £i is
vague about the timing and degree of evaluation. Consider
the £i expression:

let »e in f x

What code should the code generator produce for such an
expression?

• An ML compiler writer would probably expect the
code to evaluate the right-hand side of the let, and
then call f passing the value thus computed. But this
eager strategy is incorrect in general if s diverges, and
f does not evaluate its argument, as a quick glance at
Figure 2 will confirm.

• A safe strategy is to build a thunk (suspension) for
the right-hand side, bind x. to this thunk, and call f
passing the thunk to it. That is precisely what the
code generator for a lazy language would do.

Now suppose that we are compiling code for f, and that
f has type Int -> Int. The major motivation for distin-
guishing Int from Lift Int was to allow the compiler to
treat values of type Int as certainly-evaluated, just as a
strict-language compiler would assume (Section 3.1). It is
unacceptable for f to test whether its argument is evaluated;
such a choice would guarantee that no ML compiler would
use this intermediate language! Alas, the safe strategy for
preparing the f's argument does indeed pass an unevaluated
thunk, so f must be prepared for this eventuality.

Can we instead use a hybrid strategy?

• A hybrid strategy for compiling let expressions might
use the type of the bound variable to decide what to
do: for types whose values are sure to converge (such
as Int) it can evaluate the right-hand side eagerly, oth-
erwise it can build a thunk. This strategy works for
a simply-typed language but fails (again!) when we
introduce polymorphism. What is the code generator
to do with a let that binds a value of type a? Either
the instantiating type must be passed as an argument,
or we must have two versions of the code, one for ter-
minating types and one for possibly-diverging ones.

We regard these complications as a very serious (and far
from obvious) objection to using £i for operational pur-
poses.

3.7 Summary

We expected it to be a routine matter to translate both
Haskeil and ML into a common language built directly on
top of the standard mathematics for programming-language
semantics. To our surprise it was not, as Sections 3.5-3.6
describe.

£i may still be quite useful as a kernel language for rea-
soning about programs. However, as Section 3.6 has shown,
it is unsuitable as a compiler intermediate language. Thus
motivated, we now turn our attention to a second design
that is more suitable as an IL.

4 £T? a language of partial functions

Our second design starts from the problem we described in
Section 3.6. Operationally, it is essential no be able to con-
trol exactly when evaluation takes piace. so that the recipi-
ent of a value knows for sure whether or not it is evaluated.

Since we want to control what evaluation is done when, the
obvious thing to do is to make let (and. of course, function
application) eager. That is, to evaluate let x:r = e in b
one evaluates a, binds it to x, and then evaluates b. (We
use the operational term "eager", rather than the semantic
term "strict" because the latter does not mean anything if
the type of £ has no bottom element.) How. then, are we to
translate the lets and function applications of a lazy lan-
guage? There is a standard way to do so. namely by making
the construction and forcing of thunks explicit (Friedman ic
Wise [1976]). This is what we do in £2-

Figure T gives the syntax and extra type rules for £•>. There
is now onlv one monad. ST; the Lift monad is now implicit
in the semantics of £2 so that let and function application
can be eager. There is a new syntactic form. <e>, that sus-
pends the evaluation of e, and a new constant, force, that
forces the suspension returned by its argument. There is
one new type, <p>, which is the type of <e> if e has type p.
The two new type rules. {DELAY) and (FORCE) are just
as you would expect.

Another new feature is that types are divided into value
types, r, and computation types, p. Intuitively, an expression
has a computation type, while a variable is always bound to
a value type. Another way to say this is that the typing
judgement now has the form

{x\ : Ti,...,x„ r„; I- e : p

The type rules of Figure 1 apply unchanged, because we
carefully used r and p in the right places, although they were
synonymous in £i. Function arguments and the right-hand
sides of let(rec) expressions all have value types, and are
evaluated eagerly. This separation of value types from com-
putation types neatly finesses the awkward question of what
it means to "evaluate" an argument computation without
also "performing'' it, which caused us some heart-searching
in earlier un-stratified versions of £2. For example, the ex-
pression (f (read r)) is ill-typed, and hence we do not
have to evaluate (read r) without also performing its state
changes. Indeed, expressions of type ST r can only occur as

30

Computation types p
Value types r

;:= MT\T
::= Int | r->p \ 0 | (n ,T2)

] <p>I Ref T

Terms e ::

Constants k
Monads M
Values v

PValues pv

= ar|fc|ei e2|\x.e|(ei,e2>|<e>
let x:r=ei in e2

letrec x:r=pv in e
letM x:r<-ei in e2 | retw e

:= ...|force
.:= ST
::= x\k\\x:r.e\<e>\(.vi,V2)
::= \x:r.e|<e>

The type rules from Figure 1, plus...

T\-e:p
{DELAY)

(FORCE)

r \- <e> : <p>

T h force : <p> -> p

Figure 7: Extra syntax and type rules for Li

The translation M from ML to Li
is textually the same as in Figure 5

«IInt]j = Int
U[S*T} = «U[S}> ,<H[T\»

H10] = 0
H[S - T\ = <H[S\> -> W\
WIST T] = ST <U[T}>
«IRefSI=Ref <«[S1>

Wjxj = force x
W[t]

W[Aar N]
«[Ax:T.MI

«{let x:T = Af inJV]

«[letrec x:T = Af inNJ =

«[fst AT] =
«[pair M N} =

«[M + ATI =
«[wr M N] =

«[letST x:T-f-Af in N] =

«fretsT Ml =

«[MI <U[N]>
\x:<H{T)>.HlM)
letx:<«[T}> = <«[Ml>in
■H[N}
letrec x:<U{T\>'<K{M\>
in«[JV]
force (fst U\M\)
«-H[M]>,<H[N\»
+ «[Ml K[JV]
w «[Ml W[W]
...similarly new,rd
letsT X:<«|T|><-WIW1
in«[N]

: retst W[MI

Figure 9: Translations of "ML" and "HaskelT into £2

the right hand side of a l.tsr, the body of a function, or
as the value of the whole program. Finally, when polymor-
phism is introduced, type variables range over value types

only.
Figure 8 gives the semantics of Li in full. The crucial point

is that £2
:s function tvpe arrow is now interpreted as the

CPO of partial functions, denoted "-*", and the semantic
evaluation function € takes an expression to a partial func-
tion from environments to values. Many of the equations
are defined conditionally. For example, the equation for
£[ei ei]p savs that if both S[ei)p and £\ei]p are defined
then the result is just the application of those two values;
otherwise there is no equation that applies for 5[ei e2Jp, so
it too is undefined.

The < > type constructor is modeled using lifting; the se-
mantics of force and <_> move to and fro between lifted
CPOs and partial functions. It may seem odd that we use
two different notations — Lift r in £iand <r> in Li— with
the same underlying semantic model, namely lifting. The
reason is that in A we use lifting as a monad (with a bmd
operation, for example), whereas in Li we use it to model
thunks (with a force operation but no bind).

The entire semantics of Li could instead be presented in the
CPO of total functions, using the isomorphism:

S ->■ T = S -4 Tx

Which to choose is just a matter of taste. What we like
about our presentation is that each Li type constructor cor-
responds directly to a single categorical type constructor,
whereas in the alternative presentation the Li function type
gets a more "encoded" translation. Launchbury k. Baraki
[1996] use partial functions in essentially the same way.

The translation of "ML" into Li is exactly the same as the
translation of &. The translation of "Haskell" is differ-
ent however, because we now have to be explicit about the
introduction of thunks (Figure 9). Concerning types, no-
tice the use of the tvpe constructor <_> on the arguments
of functions and data constructors. Concerning terms, the
thunk-former <_> is used for function arguments and the
right-hand side of all let and letrec definitions. Thunks
are evaluated explicitly, using force, when returning a van-
able or the result of f st or snd.

4.1 Controlling evaluation in Li

The main benefit of using Li is that its semantics permit
an eager interpretation of vanilla let; namely, "evaluate the
right-hand side, bind the value to the variable, and then
evaluate the bodv". A consequence is that any variable of
type other than <V>, or a type variable (which might be in-
stantiated to <r>), is sure to be fully evaluated, just as in
any ML implementation.

4.2 Recursion in £2

Another advantage of Li is that we can solve our earlier
difficulties with recursion (Section 3.5) witnout requiring
bounded quantification.

Firstly, we more or less have to restrict letrecs to bind
only syntactic values, because we cannot eagerly evaluate
the right-hand side. (Why not? Because we cannot con-
struct the environment in which to evaluate it.) That m
turn means that the meaning of the right-hand side is al-
ways defined, which is why there is no side condition in the
semantics of letrec.

But Figure 7 further restricts the right-hand side of a letrec
to be a particular sort of syntactic value, a pointed value, or

56

T: Type —► cvo
T[Ia.t] = 2

T\n->ri] = T[ri]->-Tln]
T[(n.T5)l = Tin] x T{n\

ri<r>i = T±
TJST T\ SB State ->• {T\T\ x State)

TfRef r] S= JV

£ : Term,. -+ Env _>.
T\T\

£{x]p = p(x)

£{k]p = k
£[ei e{\p = (£{ei]p) (f[ea]p), if £[ei]p and £[e2]p are defined
£{\x.e\p = Xy.£[e]p[x := y]

£[(.e\,e2)\p = (£{ei\p,£{ei\p), if £{e\]p and £[e2Jp are defined
£[lat X:T=öI in e^jp s= £lei}p{x := £[ex]p], if £fei|p is defined

£[latrec x:r*pv in e]p = £l«](/tx(Ap'.p[x := £\pv\p'\))
£[let,vf i:r<-ei in e2]p = bindM (£fei]p) (Ay.£[e2Jp[x :s= y]), if £\e\\p is defined

£[ret,w e]p s= jimiM (£Ie]p), if £{e]p is defined
£{<e>]p = (flejp)i. if £[ejp is defined

X, otherwise

fst (a, 6) = a
and (a,b) as &
force a±. ss a

bindsr m k s — fc r s', if ms = (r, s')x
unitsT TTL s s= (m,s)

new v s s= (r. s[r <-* v]) where r 5? dom(s)
rdr 3 = (s r,s), if r € iiom(s)

wr Tvs = ((Mr-► uj), if r £ (iom(i-)

Figure 8: Semantics of £>

PVaZwe. The syntactic category of PVaLues is chosen so
that it can only denote a value from a pointed domain, and
hence a letrec definition always has a least fixpoint. To see
this, consider the forms that a PValue can take:

• A lambda abstraction denotes a partial function, and
the CPO of partial functions is always pointed: its least
element is the everywhere undefined function.

• A thunk <e>, where e
CPO rirji.

r, is drawn from the pointed

Fortunately, the syntactic restriction of letrec does not lose
any useful expressiveness. ML insists that letrecs bind only
functions (which are PValues), while Haskell binds thunks
(which are also PValues). So there is no difficulty with
translating the recursion arising in both ML and Haskell
into C-2.

computations in ST must be maintained, whereas let bind-
ings can be re-ordered freely. Changing the order of evalua-
tion is fundamental to several useful transformations, in-
cluding common sub-expression, loop invariant computa-
tions, all kinds of code motion (Peyton Jones, Partain k.
Santos [19961), inlining, and strictness analysis (remember
we may be compiling a lazy language into C\). To take a
simple example, the following transformation is not in gen-
eral valid for letSx, but is valid for vanilla let (assuming
there are no name clashes):

let xi-ei ia let X2 -et in &

let 12 = e2 in let ti*ei in &

Of course, one could do an effects analysis to determine
which sub-expressions were pure, as good ML compilers do,
... but that is effectively just what the monadic type system
records!

4.3 Why not have just one monad?

Now that we have eliminated the Lift monad, and made
vanilla let eager, there is another question we should ask:
why not give vanilla let the semantics of letsx, and elimi-
nate the latter altogether? To put it another way, we have
made eager evaluation implicit in the semantics of let; why
not add implicit side effects as weil? After all. the code gen-
erated for letgx x <- e in b will be something like "the code
for e followed by the code for b", and that is just the same
as the code we now expect to generate for let x a e in b.

However, if we have just one form of let we lose valuable
optimising transformations. In particular, the sequence of

5 Assessment

5.1 C\ vs Co

What have we lost in the transition from £1 to £2, apart
from a somewhat more complicated semantics? One loss is
£1 's ability to describe types whose values are sure to termi-
nate. If a £1 function has type Int->Int then a call to the
function cannot diverge; but the same is not true of £2. This
does not have much impact on a compiler, but it make pro-
grammer reasoning about £2 programs more complicated.

57

Another important difference is that £2 has a weaker B rule.
L\ has full 0-conversion. That is, for any expressions e and

let x = e in b = tye/z]

(A similar rule holds for application, of course.) In £2, how-
ever 3 does not hold in general. A particular case of this us
that if x is not mentioned in b then in £] the binding can
be discarded; in £2 the binding can only be discarded if the
right-hand side is a value.

However ßv — a restricted version form of 8 that allows
only values to be substituted — is valid in £2. Values are
defined in Figure 7, and include variables, constants, and
lambda abstractions, as usual. However, values also include
thunks. Hence any Haskeil ß reduction has a corresponding
ßv reduction in its £2 translation. Thus, the restriction to
ßv will not prevent a Haskell compiler from domg anything
it can do in an implicitly lazy language with a full ß rule.

Thus far we have assumed a call-by-name semantics, in
which we are content to duplicate arbitrary amounts of work
provided we do not change the overall result. In practice no
compiler would be so liberal; we desire a call-by-need se-
mantics in which work is not duplicated. As Ariola et al.
[1995] describes, we can give a call-by-need semantics to
£j by weakening ß to ßv and adding a garbage-collection
rule that allows an unused let binding to be discarded. An
analogous result holds in £2: we can obtain call-by-need se-
mantics by replacing <e> by <v> in the definition of values
in Figure 7.

5.2 £2 vs Haskell and ML ILs

Our main theme is the search for an IL that can serve for
both ML- and Haskell-like languages. However, we believe
that a language like £2 is attractive in its own right to either
community in isolation, because one might get better code
from an £-..-based compiler.

For the Haskell compiler writer £2 offers the ability to ex-
press in its tvpe that a value is certainly evaluated. This
gives a nice wav to express the results of strictness analysis:
a function argument of unpointed type must be passed by
value. Flat arrays and strict data structures also become
expressible.

For the ML compiler writer £2 offers the ability to express
the fact that a computation is free from side effects, which
is a precondition for a raft of useful transformations (Sec-
tion 4.3). While this information can be gleaned from an
effects analysis, maintaining this information for every sub-
expression, across substantial program transformations is
not easy In £2, however, local transformations can per-
form and record the results of, a simple incremental effects
analysis. For example, consider the following ML function:

JEun f x = fst (fst x)

If we translate this into £2 we obtain:

f = retST (Ax. letST a2 <- letST aK-retsr r in
retsT (fst a1^

in
retST (fst a2))

Simple application of the rules of Figure 3 allows this ex-

pression to simplify to:

f «retST (Ax. let al-x in
let a2 = fst al in
retsT (fst a2))

Now the retsT can be floated outwards, to give:

f =retST (Ax.retST (fst (fst x)))

In this form, the inner retST makes it apparent that f has
no side effects. We have, in effect, performed a sort of mere-
mental effects analysis. The same idea can be taken further.
If f is inlined at its call sites, then the retST may cancel
with letST there, and so on. Even if x's body is big, we
can use the "worker-wrapper'5 technique of Peyton Jones k
Launchbury [1991] to split f into a small, inlinable wrapper
and a large, non-inlinable worker, f u, thus:

f =retgT (Ax.retgx (fv x))
fv =Ax.(... body off...)

Blume k Appel [1997] describe a similar technique that they
call "lambda-splitting".

The point of all this is that there is a real payoff for an
ML compiler from making the ST monad explicit. Easy, in-
cremental transformations perform a local effects analysis;
at each stage the state of the analysis is recorded in the
program itself, rather than in some ad hoc auxiliary data
structures; and all other program transformations will au-
tomatically preserve (or exploit) the analysis.

5.3 Parametricity

Polymorphic functions have certain parametricity properties
that mav be derived purelv from their types (Mitchell k
Mever [1985]: Reynolds 11983]; Wadler [1989]). For example,
in the pure polymorphic lambda calculus, a function / with
type VQ.O -a'-ta satisfies the theorem:

VAB . Vh : A -» B . Vx,y : A . h (/ 1 y) = / {h x) {h y)

In fact, / satisfies something even stronger in which the
function h can be an arbitrary relation between A and B.

When we add "polymorphic" constants to the pure calculus,
the effect is that the choice of functions h becomes restricted.
For example, adding a fix point operator fix : VQ.(Q -»■«)-+
a forces the restriction that the h functions be strict (map J.
to 1) and inductive (i.e. continuous). This is the situation
in Haskell, for example.

Adding polymorphic sequencing, say through an operator
seq ■ VQ ß.a -* ß -+ ß or by building it into the seman-
tics of function application, forces the restriction that the
h functions be bottom-reflecting (i.e. defined on all defined
arguments). This is the basic situation in pure ML.

Adding polymorphic equality forces the h functions to be
at least one-to-one; and adding polymorphic state opera-
tions like !r seems to remove any last shreds of interesting
parametricity.

What then, are the parametricity properties of £1 and £2?
If parametricity properties are weakened by claiming various
primitives to be more polymorphic than they really are, then
by being more cautious in the types we assign them, we may
hope to restrengthen parametricity.

58

In £2, for example, recursion is only done either at a func-
tion type, or at a suspension type. Recursion is never per-
mitted as a fully polymorphic type (unlike in Haskell). This
has the effect of allowing the strictness side condition to
be dropped, though inductiveness (or continuity) is still re-
quired. The same is achieved in £1 through the use of the
pointed restriction (see Launchbury &: Paterson [1996] for a
comparable situation). Furthermore, since all state opera-
tions are explicitly typed within the state monad, they also
do not interfere with parametricity in a negative way.

The main difference between £1 and £2 is to do with forcing
evaluation. £i has no polymorphic forcing operation, so has
no consequent weakening of its parametricity property. £2
does, however — it is built into its eager function applica-
tion. Thus for £2 the parametricity theorem demands the
h functions to be everywhere defined.

To see an example of this, consider the function K :
Va, ß.a -*■ ß -¥ a which selects its first argument, discarding
its second. The parametricity theorem is

VA, .4', B, B' . Vhi :A->A',h2:B
hi (K xy) = K (hi x) (A, y)

B' . Vx : A, y : B

Clearly this holds only if hi is total (defined everywhere),
otherwise the right hand side may not be defined when she
left hand side is.

There is a practical implication to this. A class of techniques
for removing intermediate lists called foldr-huild relies on
parametricity for its correctness (Gill, Launchbury & Pey-
ton Jones [1993J). While a strictness side condition is not
damaging, a totality condition is coo restrictive. The tech-
nique can no longer rely on the types to provide sufficient
guidance for correctness. This is disappointing, although
unsurprising. The compiler can still recover the short-cut
deforestation technique by refining £/s type system to use
qualified types along the lines of Launchbury & Paterson
[1996].

5.4 Side effects and polymorphism

It is well known that the ability to create polymorphic ref-
erences can lead to unsoundness in the type system (Tofte
[1990]). For example, if we are able to create a reference
r with type Vct.Ref a then we would be able to write the
following erroneous code:

latSt _: () <-wr (r Int) 2 in
letST f :(Int->Int) <-rd Cr (Int->Int)) in
retST (f 3)

However in both £1 and £2 any expression of type Va.Ref a
is undefined in any environment! The only way to construct
a value of Ref type is with new, which returns a value of type
ST (Ref r). The only way to strip off the ST constructor is
with latsx- Looking at the typing rule for lets?, we can
see that bound variable must have type Ref r.

SML's so-called 'value restriction' conservatively restricts
generalisation in let bindings precisely to avoid the con-
struction of such polymorphic references. We conjecture
(though we have not proved) that £1 and £2 are both sound
without any such side conditions.

5.5 ML thunks

One of the advantages of a language that supports both
strict and lazy evaluation is that it can accommodate source
languages that have such a mixture. Indeed, it is quite
straightforward to map Haskell's strictness annotations (Pe-
terson et al. [1997]) onto £2. Coming from the other direc-
tion, it has long been known that thunks can be encoded
explicitly in a strict, imperative language. For the sake of
concreteness we use the notation proposed for ML in Okasaki
[1996]. In this proposal delayed ML expressions are prefixed
by a T, thus:

let val z =» $(f y) in b end

Here, assuming (f 7) has type int, x is bound to a thunk
of type int snsp that, when forced, evaluates (f y) and
overwrites the thunk with its value.

We expected that these "ML thunks" would map directly
onto £2's thunks, but that turned out not to be the case.
The semantics of ML chunks is considerably more compli-
cated than that of £2's thunks, because of the interaction
with state. Consider the following ML expression:

let val rec x = 3(let val 7 = !r - 1 in
r:=y;
if 7=0 then 0
else force s +• force x

end)
in ... end

(This defines x recursively, which is not possible in ML, but
essentially ehe same thing can be done using another refer-
ence to ;:tie ehe knot". We use ehe recursive form to reduce
clutter.) When x is evaluated it decrements the contents of
the reference cell r; but then, if the new value is non-zero,
x evaluates itself! In effect, there can be multiple simulta-
neous activations of x, rather like the multiple activations
of a recursive function. (Indeed, a aon-memoising imple-
mentation of ML thunks can be obtained by representing $e
by A().e.) Furthermore, these multiple activations can each
have a different value, because chey each read the state.

£2's thunks have a much simpler semantics. A chunk has
only one value, and there can be at most one activation
of the thunk7. The key insight is that evaluation of a £2
thunk has no side effects, unlike the ML thunk above. But
what if the contents of the thunk performs side effects? For
example:

let x = <letsx v : Int<-rd rinsr (v+l)> in e

Here, if r : Ref Int, then x has type <ST ()>, not <()>.
Forcing the thunk (with force) causes no side effects (apart
from updating the thunk itself), and yields a computation
that, when subsequently performed (by a lets?), will incre-
ment the location r. The computation x may be performed
many times; for example, e might be

letsT al: 0 <- force x in letsT a2 : 0 <- force x in ...

What this means, chough, is that the more complicated se-
mantics of ML thunks have to be expressed explicitly in £2,
presumably by coding them up using explicit references.

TMore precisely, if there is more than one then the thunk's value
depends on its own value, so its value is undefined. This property
justifies the well-known technique of "black-holing" a thunk, both
to avoid space leaks and to report certain non-termination (Jones
[1992]).

59

6 Related work

The FLINT language has rather similar objectives to the
work described here, in that it aims to serve as a common
infrastructure for a variety of higher-order typed source lan-
guages (Shao [1997b]). However, FLINT has not (so far)
concentrated much on the issue of strictness and laziness,
which is the main focus of this paper. The ideas described
here could readily be incorporated in FLINT.

Both the Glasgow Haskell Compiler and the TIL ML com-
piler use a polymorphic strongly-typed internal language,
though the latter is considerably more sophisticated and
complex (Peyton Jones [1996]; Tarditi et al. [1996]). Nei-
ther, however seriously attempt to compile the others main
evaluation-order paradigm.

7 Further work

In this paper we have concentrated on a core calculus. Some
work remains to extend it to a practical IL:

• Recursive data types and case expressions must be
added — we anticipate no difficulty here.

• A proof of type soundness is needed. As we note in
Section 5.4 its soundness is not obvious.

• We have a simple operational semantics for Li\ we are
confident that it is sound and adequate, but have yet
to do the proofs.

• We are studying whether is is possible to combine L\ 's
ability to describe certainly-terminating computations
with £j's operational model.

Accommodating the ML module system is likely to involve
a significant extension of the type system (Harper k Stone
[1997]); we have not yet studied such extensions.

In a separate paper we discuss how to use the framework of
Pure Type Systems to allow the language of terms, types,
and kinds to be merged into a single language and compiler
data type (Peyton Jones k Meijer [1997]). We hope to merge
the results of that paper and this one into a single IL.

We have made no attempt to address the tricky problem
of how to combine monads. For example, ML includes the
monad of state and exceptions. Is it advantageous to sepa-
rate them into the composition of two monads, or is it better
to have a single, combined monad? In the former case, what
transformations hold?

An important operational question is that of the represen-
tation of values, especially numbers. Quite a few papers
have discussed how to use unboxed representations for data
values, and it would be interesting to translate their work
into the framework of £2 (Leroy [1992]; Peyton Jones k
Launchbury [1991]; Shao [1997a]).

Acknowledgements

We would like to thank the POPL referees, Nick Benton,
Bob Harper. Andrew Kennedy, Jeff Lewis, Erik Meijer,
Chris Okasaki, Ross Paterson, Amr Sabry, and Tim Sheard
for helpful feedback on earlier discussion and drafts of this

paper. We gratefully acknowledge the support of the Ore-
gon Graduate Institute, funded by a contract with US Air
Force Material Command (F19628-93-C-0069).

References

Z Ariola, M Felleisen, J Maraist, M Odersky k P Wadler
[1995], "A call by need lambda calculus," in 22nd
ACM Symposium on Principles of Programming
Languages, San Francisco, ACM, Jan 1995, 233-
246.

N Benton k PL Wadler [1996], "Linear logic, monads and
the lambda calculus," in Proceedings of the 11th
IEEE Symposium on Logic in Computer Science,
Brunswick, New Jersey, IEEE Press, July 1996.

M Blume k AW Appel [1997], "Lambda-splitting: a higher-
order approach to cross-module optimization," in
Proc International Conference on Functional Pro-
gramming, Amsterdam, ACM, June 1997, 112-124.

R Cockett k T Fukushima[1992], "About Charity," TR
92/480/18, Department of Computer Science, Uni-
versity of Calgary, June 1992.

DP Friedman k DS Wise [1976], "CONS should not eval-
uate its arguments," Automata, Languages, and
Programming, July 1976, 257-281.

A Gill, J Launchbury k SL Peyton Jones [1993], "A short cut
to deforestation," in Proc Functional Programming
Languages and Computer Architecture, Copen-
hagen, ACM. June 1993, 223-232.

J-Y Girard[1990], "The System F of variable types: fifteen
vears later," in Logical Foundations of Functional
Programming. G Huet, ed., Addison-Wesley, 1990.

T Hagino [1987], "A Categorical Programming Language,"
PhD thesis. Department of Computer Science, Uni-
versity of Edinburgh. 1987.

R Harper k JC Mitchell [1993], "On the type structure of
Standard ML," ACM Transactions on Program-
ming Languages and Systems 15(2). April 1993,
211-252.

R Harper k G Morrisett [1995], "Compiling polymorphism
using intensional type analysis," in 22nd ACM
Symposium on Principles of Programming Lan-
guages, San Francisco, ACM. Jan 1995, 130-141.

R Harper k C Stone [1997], "A type-theoretic semantics for
Standard ML 1996," Department of Computer Sci-
ence, Carnegie Mellon University, 1997.

BT Howard [1996], "Inductive, co-inductive, and pointed
types," in Proc International Conference on Func-
tional Programming, Philadelphia, ACM, May
1996.

MP Jones [1994], "Dictionary-free overloading by partial
evaluation," in ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM), Orlando, Florida, ACM, June
1994.

60

MP Jones [1996], "Using parameterized signatures to express
modular structure," in 23rd ACM Symposium on
Principles of Programming Languages, St Peters-
burg Beach, Florida, ACM, Jan 1996, 68-78.

R Jones [1992], "Tail recursion without space leaks," Journal
of Functional Programming 2(1), Jan 1992, 73-80.

J Launchbury k G Baraki [1996], "Representing Demand
by Partial Projections," Journal of Functional Pro-
gramming 6(4), 1996.

J Launchbury & R Paterson [1996), "Parametricity and un-
boxing with unpointed types," in European Sympo-
sium on Programming (ESOP'96), Linköping, Swe-
den, Springer Verlag LNCS 1058, Jan 1996.

J Launchbury k SL Peyton Jones [1995], "State in Haskell,"
Lisp and Symbolic Computation 8(4), Dec 1995,
293-342.

X Leroy [1992], "Unboxed objects and polymorphic typing,"
in 19th ACM Symposium on Principles of Program-
ming Languages, Albuquerque, ACM, Jan 1992.

R Milner k M Toftefl990], The definition of Standard ML,
MIT Press, 1990.

JC Mitchell k AR Meyer [1985], "Second-order logical re-
lations," in Logics of Programs, R Parikh. ed.,
Springer Verlag LNCS 193, 1985.

E Moggi[1991], "Notions of computation and monads,'' In-
formation and Computation 93, 1991, 55-92.

C Okasaki[1996], "Purely functional data structures," PhD
thesis, CMU-CS-96-177, Department of Computer
Science, Carnegie Mellon University, Sept 1996.

J Peterson, K Hammond, L Augustsson. B Boutel, W Bur-
ton, J Fasel, AD Gordon, RJM Hughes. P Hudak. T
Johnsson. MP Jones. E Meijer, SL Peyton Jones, A
Reid k PL Wadler [1997], "Haskell 1.4: a non-strict,
purely functional language," Available at http: //-
haskell.org, April 1997.

SL Peyton Jones [1996], "Compilation by transformation: a
report from the trenches," in European Symposium
on Programming (ESOP'96), Linköping, Sweden,
Springer Verlag LNCS 1058, Jan 1996, 18-44.

SL Peyton Jones, AJ Gordon k SO Finne [1996], "Concur-
rent Haskell," in 23rd ACM Symposium on Prin-
ciples of Programming Languages, St Petersburg
Beach, Florida, ACM, Jan 1996, 295-308.

SL Peyton Jones k J Launchbury [1991], "Unboxed val-
ues as first class citizens," in Ftinctionai Pro-
gramming Languages and Computer Architec-
ture (FPCA'91), Boston. Hughes, ed., LNCS 523,
Springer Verlag, Sept 1991, 636-666.

SL Peyton Jones k E Meijer [1997], "Henk: a typed inter-
mediate language," in ACM Workshop on Types in
Compilation, Amsterdam, R Harper k R Müller,
eds., June 1997.

SL Peyton Jones. WD Partain k A Santos [1996], "Let-
floating: moving bindings to give faster programs,"
in Proc Internationai Conference on Functional
Programming, Philadelphia, ACM, May 1996.

SL Peyton Jones k PL Wadler [1993], "Imperative func-
tional programming," in 20th ACM Symposium on
Principles of Programming Languages (POPL'93),
Charleston, ACM, Jan 1993, 71-84.

AM Pitts [1996], "Relational properties of domains," Infor-
mation and Computation 127, 1996, 66-90.

JC Reynolds [1983], "Types, abstraction and paramet-
ric polymorphism," in Information Processing 83,
REA Mason, ed., North-Holland, 1983, 513-523.

A Sabry[1997], "What is a purely functional language,"
Journal of Functional Programming (to appear),
1997.

A Sabry k PL Wadler [1996], "A reflection on call-by-vaiue,"
in Proc Internationai Conference on Functional
Programming, Philadelphia, ACM, May 1996, 13-
24.

Z Shao [1997a], 'Flexible representation analysis," in Proc
Internationai Conference on Functional Program-
ming, Amsterdam, ACM, June 1997.

Z Shao[1997bj, "An Overview of the FLINT/ML compiler."
in ACM Workshop on Types in Compilation. Am-
sterdam. R Harper k R Muller, eds., June 1997.

Z Shao k AW Appel[1995], "A type-based compiler for
Standard ML," in SIGPLAN Symposium on Pro-
gramming Language Design and Implementation
(PLDI'95), La Jolla, ACM, June 1995, 116-129.

D Tarditi, G Morrisett, P Cheng, C Stone, R Harper k
P Lee [1996], "TIL: A Type-Directed Optimizing
Compiler for ML," in SIGPLAN Symposium on
Programming Language Design and Implementa-
tion (PLDI'96), Philadelphia, ACM, May 1996.

M Tofte [1990], 'Type inference for polymorphic references,"
Information and Computation 89(1), Nov 1990.

A Tolmach k D OIiva[1997], "From ML to Ada(!?!)," De-
partment of Computer Science and Engineering,
Oregon Graduate Institute (and submitted to Jour-
nal of Functional Programming), 1997.

DA Turner [1995], "Elementary strong functional program-
ming," in Functional Programming Languages in
Education, Nigmegen, Springer Verlag LNCS 1022,
Dec 1995.

PL Wadler [1989], "Theorems for free!," in Fourth Interna-
tionai Conference on Functional Programming and
Computer Architecture, London. MacQueen, ed.,
Addison Wesley, 1989.

PL Wadler [1992a], "Comprehending monads." Mathemat-
ical Structures in Computer Science 2, 1992, 461-
493.

PL Wadler [1992b], "The essence of functional program-
ming," in 19th ACM Symposium on Principles of
Programming Languages, Albuquerque, ACM, Jan
1992, 1-14.

61

From Interpreter to Compiler using Staging and Monads

Tim Sheard and Zine-el-abidine Benaissa
Pacific Software Research Center

Oregon Graduate Institute
P.O. Box 91000 Portland, Oregon 97291-1000 USA

April 14, 1998

Abstract

In writing this paper we had two goals. First, to promote METAML, a program-
ming language for writing staged programs, and second, to demonstrate that staging
a program can have significant benefits. We do this by example: the derivation of
an executable compiler for a small language. We derive the compiler in a rigorous
fashion from a semantic description of the language. This is done by staging a de-
notational semantics, expressed as a monadic interpreter. The compiler is a program
generator, taking a program in the source language (a while-program) as input and
producing an ML program as target. The ML program produced is in a restricted
subset of ML over which the programmer has complete control. It is encapsulated in
a special data-structure called code. The meta-programming capabilities of METAML
allow this data-structure to be directly executed (run-time code generation), or to bo
analysed. We illustrate this analysis of generated code to build a source to source
transformation which applies the monad laws to significantly improve the generated
code.

1 Compilers as staged interpreters

Interpreters, when implemented in high-level declarative languages, are very close to the
interpreted language's denotational semantics. Because of this, interpreters are usually
used for the development of prototypes, but such prototypes lack both efficiency and any
connection to the underlying system in which the compiled code must run. If expressed
in a monadic style, an interpreter can be mapped closer to the underlying >vsirm. ami
the structuring properties of the monad even allow the interpreter to be reused us the
system evolves [32, 14, 27]. Nevertheless, the effort used to build the interpreter is often
considered wasteful since the programmer still needs to re-implement the compiler from
scratch after building the interpreter.

Our solution to this problem is the following multi-step method. First, construct the
denotational semantics as an interpreter in a functional language. Second, capture the
effects of the language, and the environment in which the target language must run, in
a monad. Then rewrite the interpreter in a monadic style. Third, stage the interpreter
using meta-programming techniques. This staging is similar to the staging of interpreters
using a partial evaluator, but is explicit rather than implicit, since the programmer places
the annotations directly, rather than using an automatic binding time analysis to discover
where they should be placed. This leaves programmers in complete control, and they can
limit what appears in the residual program. Fourth, the resulting program is both a data-
structure and a program, so it can be both directly executed and analysed. This analysis
can include both source to source transformations, or translation into another form (i.e.

•

•

intermediate code or assembly language). Because the programmer has complete control
over the structure of the residual program this can be a trivial task.

Staging of interpreters using partial evaluation has been done before [2, 4]. The con-
tribution of this paper is to show that this can all be done in a single program. A system
incorporating staging as a first class feature of a language is a powerful tool. While using
such a tool to write a compiler the source language can be given semantics, it can be
staged, translated, and optimized all in a single paradigm. It requires neither additional
processes nor tools, and is under the complete control of the programmer; all the while
maintaining a direct link between the semantics of interpreter and those of the compiler.
Staging organizes the task of constructing a compiler into simple, incremental steps, where
the semantic connection is maintained through each stage of the derivation. Each step
is a relatively easy task compared to building a compiler from scratch. Constructing a
compiler using ;i singed language has the following benefits:

• Simplicity. Each task is a simple one, and builds incrementally on the previous
tasks.

Correctness. The compiler remains connected to its semantics. Each artifact pro-
duced by a task, is provably correct with respect to the artifacts of the previous tasks.
The final artifact is both a compiler for the language and a semantics equivalent to
the original semantics.

Reuse. Each artifact reuses the code of the previous artifact.

Control. The programmer has complete control over the resulting output. He
develops his program with staging in mind, and the completely controls the structure
of the residual program.

2 Staging in METAML

M ETA ML is almost a conservative extension of Standard ML. Its extensions include four
staging annotations. To delay an expression until the next stage one places it between
meta-brackets. Thus the expression <23> (pronounced "bracket 23") has type <int>
(pronounced "code of int."). We illustrate the important features of the staging annotations
in the short MRTAML session below.

-I val z = 3+4;
val z = 7 : int

-I val quad = (3+4, <3+4>, lift (3+4), <z>);
val quad = (7, <3 '/.+ 4>, <7>, <'/.z>) :

(int * <int> * <int> * <int>)

-I fun inc x = <i + "x>;
val inc = Fn : C'a].<int> -> <int>

-I val six = inc <5>;
val six = <1 '/.+ 5> : <int>

-I run six;
val it = 6 : int

Users access METAML through a read-type-eval-print top-level. The declaration for z
is read, typed to see that it has a consistent type (int here), evaluated (to 7), and then
both its value and type are printed.

The declaration for quad contrasts normal evaluation with the three ways objects of
type code can be constructed. Placing brackets around an expression (<3+4>) defers the
computation of 3+4 to the next stage, returning a piece of code. Lifting an expression
(lift (3+4)) evaluates that expression (to 7 here) and then lifts the value to a piece of
code that when evaluated returns the same value. Brackets around a free variable (<z>)
creates a new constant piece of code with the value of the variable. Such constants print
with a '/, sign to indicate they are constants. We call this lexical-capture of free variables.
Because in METAML operators (such as + and *) are also identifiers, free occurrences of
operators often appear with '/, in front of them.

The declaration of the function inc illustrates that larger pieces of code can be con-
structed from smaller ones by using the escape annotation. Bracketed expressions can
be viewed as frozen, i.e. evaluation does not apply under brackets. However, is it often
convenient to allow some reduction steps inside a large frozen expression while it is being;
constructed, by "splicing" in a previously constructed piece of code. METAML allows one
to escape from a frozen expression by prefixing a sub-expression within it with the tilde
(") character. Escape must only appear inside brackets.

In the declaration for six, the function increment is applied to the piece of code <5>
constructing the new piece of code <1 '/,+ 5>.

Running a piece of code, strips away the enclosing brackets, and evaluates the expres-
sion inside.

3 Monads in METAML

We assume the reader has a working knowledge of monads[30, 33]. We use the unit and
bind formulation of monads[32]. In METAML a monad is a data structure encapsulating
a type constructor M and the unit and bind functions.

datatype (»M : * -> *) Monad = Mon of
(['a], 'a -> 'a 'M) * (* unit function *)
(C'a.'b]. 'a 'M -> ('a -> 'b 'M) -> 'b'M); (* bind function *)

This definition uses SML's postfix notation for type application, and two non-standard
extensions to ML. First, it declares that the argument ('M : * -> *) of the type con-
structor Monad is itself a unary type constructor [8]. We say that 'M has kind: * ->
*. Second, it declares that the arguments to the constructor Mon must be polymorphic
functions [21]. The type variables in brackets, e.g. C'a.'b], are universally quantified.
Because of the explicit type annotations in the datatype definitions the effect of these ex-
tensions on the Hindley-Milner type inference system is well known and poses no problems
for the METAML type inference engine.

In METAML, Monad is a first-class, although pre-defined or built-in type. In particular,
there are two syntactic forms which are aware of the Monad datatype: Do and Return. Do
and Return are METAML'S syntactic interface to the unit and bind of a monad. We have
modeled them after the do-notation of Haskell[10, 24]. An important difference is that
METAML'S Do and Return are both parameterized by an expression of type 'M Monad.
Users may freely construct their own monads, though they should be very careful that
their instantiation meets the monad axioms. Do and Return are syntactic sugar for the
following:

(* Syntactic Sugar Derived Form *)

Do (Mon(unit.bind)) { K- e; i } = bind e (fn x => f)

Return (Mon(unit.bind)) e = unit e

In addition the syntactic sugar of the Do allows a sequence of x, <- e,- forms, and
defines this as a nested sequence of Do's. For example:

Do m { xi <- el; x2 <- e2 ; x3 <- e3 ; e4 } =
Do m { xl <- el; Do m { x2 <- e2 ; Do m { x3 <- e3 ; e4 }}}

The monad laws, expressed in METAML'S Do and Return notation are:

Do { x <- Return e ; z } = zCe/x]
Do { x <- m ; Return x } = m
Do { x <- Do { y <- a ; b } ; c } = Do { y' <- a ; Do { x <- b[y'/y] ; c } >

= Do { y' <- a ; x <- bCy'/y] ; c }

4 The three-step method for compiler development

In this section, we illustrate our method by building the front end of a compiler for a small
imperative while-language. We proceed in three steps. First, we introduce the language
and its denotational semantics by giving a monadic interpreter as a one stage METAML

program. Second, we stage this interpreter by using a two stage METAML program in
order to produce a compiler. Third, we illustrate the usefulness of the staging approach,
by defining a function that takes the output code of the compiler as input and returns
an optimized version. This function is simply a pattern-matching based implementation
of the monadic identity and associativity laws. This makes a dramatic difference in the
quality of the generated code, and is completely reusable because the laws hold for any
monad, not just the monad used in the example.

This illustrates the usefulness of combining the monadic and staged approaches. With-
out the monadic structure of the interpreter, the usefulness of the monadic-laws would have
to be re-captured in a domain specific manner for every compiler. Without the structure
provided by the staging, the pattern-matching based rewrite system would be impossible
to use, because the compile-time computations would intervene and make recognition of
the patterns impossible. In the staged interpreter, the compile-time code has disappeared
by the time we want to apply the pattern based monadic-law transformer.

4.1 The while-language

In this section, we introduce a simple while-language composed from the syntactic elements:
expressions (Exp) and commands (Com). In this simple language expressions are composed
of integer constants, variables, and operators. A simple algebraic datatype to describe the
abstract syntax of expressions is given in METAML below:

datatype Exp =
Constant of int

I Variable of string
I Minus of (Exp * Exp)
I Greater of (Exp * Exp)
I Times of (Exp * Exp) ;

Commands include assignment, sequencing of commands, a conditional (if command),
while loops, a print command, and a declaration which introduces new statically scoped
variables. A declaration introduces a variable, provides an expression that defines its
initial value, and limits its scope to the enclosing command. A simple algebraic datatype
to describe the abstract syntax of commands is:

(* 5 *)
(* x *)
(* x - 5 *)
(* x > 1 *)
(* x * 4 *)

datatype Com =
Assign of (string * Exp) (* x := 1 *)

I Seq of (Com * Com) (* { x := 1; y := 2 } *)
I Cond of (Exp * Com * Com) (* if x then x := 1 else y := 1 *)
I While of (Exp * Com) (* while x>0 do x := x - 1 *)
I Declare of (string * Exp * Com) (* declare x = 1 in x := x - 1 *)
I Print of Exp; (* print x *)

A simple while-program in concrete syntax, such as

declare x = 150 in
declare y = 200 in -C while r > 0 do { i :=x-l; y := y - i}; print y}

is encoded abstractly in these datatypes as follows:

val SI =
Declare("x",Constant 150,

Declare("y",Constant 200,
Seq(While(Greater(Variable "x",Constant 0),

Seq(Assign("x",Hinus(Variable "x",Constant i)),
Assign("y",Minus(Variable "y",Constant 1)))),

Print(Variable "y"))));

4.2 The structure of the solution

Staging is an important technique for developing efficient programs, but it requires some
forethought. To get the best results one should design algorithms with their staged solu-
tions in mind.

The meaning of a while-program depends only on the meaning of its component ex-
pressions and commands. In the case of expressions, this meaning is a function from
environments to integers. The environment is a mapping between names (which are in-
troduced by Declare) and their values.

There are several ways that this mapping might be implemented. Since we intend to
stage the interpreter, we break this mapping into two components. The first component, a
list of names, will be completely known at compile-time. The second component, a list of
integer values that behaves like a stack, will only be known at the run-time of the compiled
program.

The functions that access this environment distribute their computation into two
stages. First, determining at what location a name appears in the name list, and second.
by accessing the correct integer from the stack at this location. In a more complicated
compiler the mapping from names to locations would depend on more than just the dec-
laration nesting depth, but the principle remains the same. Since every variable's location
can be completely computed at compile-time, it is important that we do so, and that these
locations appear as constants in the next stage.

Splitting the environment into two components is a standard technique (often called a
binding time improvement) used by the partial evaluation community[9]. We capture this
precisely by the following purely functional implementation.

type location = int;
type index = string list;
type stack = int list;

(* position : string -> index -> location *)
fun position name index =

let fun pos n (nm::nms) = if name = nm then n else pos (n+1) runs

in pos 1 index end;

(* fetch : location -> stack -> int *)
fun fetch n (v::vs) = if n = i then v else fetch (n-i) vs;

(* put: location -> int -> stack -> stack *)
fun put n x (v::vs) = if n = i then x::vs else v::(put (n-i) x vs);

The meaning of Com is a stack transformer and an output accumulator. It transforms
one stack (with values of variables in scope) into another stack (with presumably different
values for the same variables) while accumulating the output printed by the program.

To produce a monadic interpreter we could define a monad which encapsulates the
index, the stack, and the output accumulation. Because we intend to stage the interpreter
we do not encapsulate the index in the monad. We want the monad to encapsulate only
the dynamic part of the environment (the stack of values where each value is accessed by
its position in the stack, and the output accumulation).

The monad we use is a combination of monad of state and the monad of output.

datatype 'a M = StOut of (int list -> ('a * int list * string));
fun unStOut (StOut f) = f;
fun unit x = StOut(fn n => (x,n,""));
fun bind e f = StOut(fn n => let val (a.ni.sl) = (unStOut e) n

val (b,n2,s2) = unStOut(f a) ni
in (b,n2,sl * s2) end);

val mswo : M Monad = Mon(unit.bind); (* Monad of state with output *)

The non-standard morphisms must describe how the stack is extended (or shrunk)
when new variables come into (or out of) scope; how the value of a particular variable is
read or updated; and how the printed text is accumulated. Each can be thought of as an
action on the stack of mutable variables, or an action on the print stream.

(* read : location -> int M *)
fun read i = StOut(fn ns => (fetch i ns.ns,""));

(* write : location -> int -> unit M *)
fun write i v = StOut(fn ns =>((), put i v ns, ""));

(* push: int -> unit M *)
fun push x = StOut(fn ns => ((), x :: ns, ""));

(* pop : unit M *)
val pop = StOut(fn (n::ns) => ((), ns, ""));

(* output: int -> unit M *)
fun output n = StOut(fn ns => ((), ns, (toString n)"" "));

4.3 Step 1: monadic interpreter

Because expressions do not alter the stack, or produce any output, we could give an eval-
uation function for expressions which is not monadic, or which uses a simpler monad than
the monad defined above. We choose to use the monad of state with output throughout
our implementation for two reasons. One, for simplicity of presentation, and two because
if the while language semantics should evolve, using the same monad everywhere makes
it easy to reuse the monadic evaluation function with few changes.

The only non-standard morphism evident in the evall function is read, which de-
scribes how the value of a variable is obtained. The monadic interpretor for expressions

takes an index mapping names to locations and returns a computation producing an in-

teger.

(* evall: Exp -> index -> int M *)
fun evall exp index =
case exp of
Constant n => Return mswo n

I Variable x => let val loc = position x index
in read loc end

I Minus(x,y) =>
Do mswo { a <- evall x index ;

b <- evall y index;
Return mswo (a - b) }

I Greater(x.y) =>
Do mswo { a <- evall x index ;

b <- evall y index;
Return mswo (if a '>' b then 1 else 0) }

I Times(x,y) =>
Do mswo { a <- evall x index ;

b <- evall y index;
Return mswo (a * b) };

The interpreter for Com uses the non-standard morphisms write, push, and pop to

transform the stack and the morphism output to add to the output stream.

(* interpretl : Com -> index -> unit M *)
fun interpretl stmt index =
case stmt of
Assign(name,e) =>
let val loc = position name index
in Do mswo { v <- evall e index ; write loc v } end

I Seq(sl,s2) =>
Do mswo { x <- interpretl si index;

y <- interpretl s2 index;
Return mswo () }

I Cond(e,sl,s2) =>
Do mswo { x <- evall e index;

if x=l
then interpretl si index
else interpretl s2 index }

I While(e,body) =>
let fun loop () =

Do mswo { v <- evall e index ;
if v=0 then Return mswo ()

else Do mswo { interpretl body index ;
loop () } }

in loop () end
I Declare(nm,e,stmt) =>

Do mswo •{ v <- evall e index ;
push v ;
interpretl stmt (nm::index);
pop }

I Print e =>
Do mswo {. v <- evall e index;

output v };

Although interpretl is fairly standard, we feel that two things are worth pointing

out. First, the clause for the Declare constructor, which calls push and pop, implicitly

changes the size of the stack and explicitly changes the size of the index (nm:index),
keeping I he I wo in synch. It evaluates the initial value for a new variable, extends the
index with the variables name, and the stack with its value, and then executes the body of
the Declare. Afterwards it removes the binding from the stack (using pop), all the while
implicitly threading the accumulated output. The mapping is in scope only for the body
of the declaration.

Second, the clause for the While constructor introduces a local tail recursive function
loop. This function emulates the body of the while. It is tempting to control the recursion
introduced by the While by using the recursion of the interpreti function itself by using
a clause something like:

I While(e.body) =>
Do mswo { v <- evall e index ;

if v=0 then Return mswo ()
else Do mswo { interpreti body index ;

interpreti (While(e.body)) index }

}

Here, if the test of the loop is true, we run the body once (to transform the stack and
accumulate output) and then repeat the whole loop again. This strategy, while correct,
will have disastrous results when we stage the interpreter, as it will cause the first stage
to loop infinitely.

There are two recursions going on here. First the unfolding of the finite data structure
which encodes I he pmgra.ni being compiled, and second, the recursion in the program
being compiled. In an unstaged interpreter a single loop suffices. In a staged interpreter,
both loops are necessary. In the first stage we only unfold the program being compiled
and this must always terminate. Thus we must plan ahead as we follow our three step
process. Nevertheless, despite the concessions we have made to staging, this interpreter is
still clear, concise and describes the semantics of the while-language in a straight-forward
manner.

4.4 Step 2: staged interpreter

To specialize the monadic interpreter to a given program we add two levels of staging
annotations. The result of the first stage is the intermediate code, that if executed returns
the value of the program. The use of the bracket annotation enables us to describe
precisely the code that must be generated to run in the next stage. Escape annotations
allow us to escape the recursive calls of the interpreter that are made when compiling a
while-program.

(* eval2: Exp -> index -> <int M> *)
fun eval2 exp index =
case exp of

Constant n => <Return mswo "(lift n)>
I Variable x =>

let val loc = position x index
in <read "(lift loc)> end

I Minus(x.y) =>
<Do mswo { a <- "(eval2 x index) ;

b <- "(eval2 y index);
Return mswo (a - b) }>

I Greater(x.y) =>
<Do mswo { a <- "(eval2 x index) ;

b <- "(eval2 y index);

Return mswo (if a '>' b then 1 else 0) >>
I Times(x,y) =>

<Do mswo { a <- "(eval2 x index) ;
b <- "(eval2 y index);
Return mswo (a * b) }>;

The lift operator inserts the value of loc as the argument to the read action. The
value of loc is known in the first-stage (compile-time), so it is transformed into a constant
in the second-stage (run-time) by lift.

To understand why the escape operators are necessary, let us consider a simple exam-
ple: eval2 (Minus(Constant 3,Constant 1)) []. We will unfold this example by hand
below:

eval2 (Minus(Constant 3,Constant 1)) [] =

< Do mswo
{ a <- "(eval2 (Constant 3) []);

b <- "(eval2 (Constant 1) []);
Return mswo (a-b)} > =

< Do mswo
{ a<- "<Return mswo 3>;

b <- "<Return mswo 1>;
Return mswo (a - b)} > =

< Do mswo
{ a <- Return mswo 3;

b <- Return mswo i;
Return mswo (a - b)> > =

< Do '/.mswo
{ a <- Return 5£mswo 3;

b <- Return '/.mswo i;
Return Xmswo (a '/,- b)} >

Each recursive call produces a bracketed piece of code which is spliced into the larger
piece being constructed. Recall that escapes may only appear at level-1 and higher.
Splicing is axiomatized by the reduction rule: ~<x> —> x, which applies only at level-1.
The final step, where mswo and - become */,mswo and */,-, occurs because both are free
variables and are lexically captured.

Now we can state the equivalence relationship between the monadic evall and tho
staged eval2. We use the axiomatic semantics of METAML [28], in particular the axioms
for the annotations, such as the splice axiom above.

Proposition 1. For all expressions exp, and list of names index:

evall exp index = run (eval2 exp index)

Proof. We might argue that there is a trivial proof to this proposition. Since evall
is simply a copy of eval2 with all the staging annotations erased, and that both func-
tions type-check, by the semantics of METAML they must be equal. We include a more
traditional proof in the appendix using the axiomatic semantics of METAML [28] (see
appendix A).

Interpreter for Commands.

Staging the interpreter for commands proceeds in a similar manner:

(* interpret2 : Com -> index -> <unit H> *)
fun interpret2 stmt index =
case stmt of

Assign(name,e) =>
let val loc = position name index
in <Do msMO { n <- "(eval2 e index) ;

write "(lift loc) n }>
end

I Seq(sl,s2) =>
<Do mswo { x <- "(interpret2 si index);

y <- "(interpret2 s2 index);
Return mswo () }>

I Cond(e,si,s2) =>
<Do mswo { x <- "(eval2 e index);

if x=i
then "(interpret2 si index)
else "(interpret2 s2 index)}>

I While(e.body) =>
<let fun loop () =

Do mswo { v <- "(eval2 e index);
if v=0

then Return mswo ()
else Do mswo { q <- "(interpret2 body index); loop ()>

}
in loop () end>

I Declare(nm,e,stmt) =>
<Do mswo { x <- "(eval2 e index) ;

push x ;
"(interpret2 stmt (nm::index)) ;
pop }>

I Print e =>
<Do mswo { x <- "(eval2 e index) ;

output x }>;

4.4.1 An example.

The function interpret2 generates a piece of code from a Com object. To illustrate this
we apply it to the simple program: declare x = 10 in { x := x - 1; print x } and

obtain:

<Do '/.mswo
{ a <- Return '/.mswo 10
; '/.push a
; Do '/.mswo

■C e <- Do '/.mswo
{ d <- Do '/.mswo

{ b <- '/.read 1
; c <- Return '/jnswo i
; Return '/mswo b '/.- c
>

; '/.write 1 d
}

; g <- Do '/jnswo

10

{ f <- '/.read 1
; '/.output f
>

; Return '/.mswo ()
}

; '/.pop
}>

Note that the staged program is essentially a compiler, translating the syntactic repre-
sentation of the while-program into the above monadic object-program that will compute
its meaning. This program sequentializes the decrement x and the print of x. This object-
program is fully executable. Simply by using the run operator of M ETA ML ii can hv
executed for prototyping purposes.

Equally important, the object-program itself is just a piece of data, which can be
analyzed and further translated in another layer of the translation pipeline. The reader
might notice that this object-program could be further simplified by applying the monad
laws. There are many opportunities for doing so. After these laws are applied we obtain
the much more satisfying:

<Do '/«mswo
{ '/.push 10

a <- '/.read 1
b <- Return '/.mswo a '/,- 1
c <- '/.write 1 b
d <- '/.read 1
e <- 5£output d
Return %mswo ()
'/.pop

In addition to the monad laws which hold for all monads, we can also use laws which
hold for particular non-standard morphisms. For instance, in the example above, we could
avoid the second read of location 1 using the following rule:

Do { el; c <- '/.write 1 b ; d <- '/.read 1; e2} = Do { e; c <- '/.write 1 b; e2[b/d]>

Every target language will have many such laws, and because our target language is
both executable-code, and data-structure we can perform these optimizations. How this
is accomplished is the subject of Section 4.5.

As for the eval function, we state the semantic equivalence between the monadic and
the staged interpreters.

Proposition 2. For all commands com and list of names index:

interpret1 com index = run (interpret2 com index}

Proof. See appendix A.

4.5 Step 3: optimizing target code: the monadic laws

Perhaps the most important contribution we make in this paper, is that a staged program
produces a piece of code that is both an executable-program and a data-structure.

If one wants to execute this code, one uses the run annotation. If one wants to optimize
this code, this is possible as well. In this section we illustrate this by example; providing
an implementation of the monad law transformations demonstrated in section 4.4.1

u

In this section, we briefly explain our method for analysing (or computing over, or
doing intensional analysis of) METAML code. We believe, that operations such as pattern-
iiiJiirhiu», and snbstii ulion on code should bo provided once and for all by the system, and
not by the user.

Optimizations are generally thought of as rewriting rules or transformations. Both the
rules and the strategy (e.g. top-down or bottom-up) needed to apply them need to be
described.

To illustrate this point, we write a simple transformation which implements the monadic
laws as directed rewrites. As a reminder, the monadic laws expressed in terms of MBTAML'S

Do and Return notation are repeated.

Do { x <- return e ; z } = z[e/x]
Do { x <- m ; return x } = m
Do { x <- Do { y <- a ; b > ; c } = Do { y' <- a ; Do { x <- b[y'/y] ; c } }

To implement these rules, we need a mechanism for pattern matching over code. Like
all METAML code, the result of the monadic interpreter is just a data structure so this is
possible.

Let us consider a simple example. Suppose we want to match all pieces of code that
are of the form <A + 3>. We have used the A to indicate a meta-variable that will match
any piece of code. We cannot put a variable (e.g. x) here because <x+3> is just a piece
code and not a pattern. The solution to indicating a meta-variable in a pattern is to use an
escaped variable at. level-1 in the pattern. Thus the pattern <~x + 3> matches all pieces
of code that have this "shape".

I 'nfort nnaiHy. I his scheme is not always sufficient when matching against code with
binding constructs such as <fn x => x + 1>. We would like to construct a pattern that
matches against a function (or other binding construct) and to be able to use the meta-
variables bound inside the pattern to construct a transformation. To see why this is
problematic consider the following two examples:

1. We want a transformation that increments the body of an integer valued function,
such that when applied to <fn x => x> we obtain <fn x => x + 1>, and when
applied to <f n y => length y> we obtain <f n y => (length y) + 1>. As a first
approximation we try: <fn x => A> => <fn x => A +1>. This looks promising,
but what would happen if we wrote: <fn x => A> => <fn y => A +1> instead?
Now. free occurrences of x in A no longer have a binding site, because they have
been spliced into a context where y is the bound variable instead of x.

2. We want a transformation that doubles the argument of an int -> int function,
such that when applied to <fn x => x> we obtain <fn x => x + x> and when
applied to <f n x => y + x> we obtain <fn x => y + (x + x)>. The problem here
is that in the pattern, <fn x => A>, there is no way to express that A may have
free occurrences of x inside, and that our transformation needs to substitute for
those free occurrences.

The solution is to use a higher-order pattern. Suppose we could parameterize A on x.
This makes (A.,.) not, a meta-variable with type code, but a meta-variable with type code
lo code. Inside a pattern on the left hand side of a match (pat => exp) a higher order
meta-variable is bound to a function when it is successfully matched against a piece of
code. On the right hand side of the match, when this meta-variable is used (by applying
it to a piece of code) it substitutes all occurrences of x with the argument it was applied
to. For example consider the table below showing the binding of the higher order meta
variable Ax when the pattern <f n x => Ax + 3> is matched against different pieces of
code.

12

code matched against function bound to

<fn x => x + 3> fn x => < "x >

<fn x => (x - 9) + 3> fn x => < "x - 9 >

<fn x => (sin x + x"2) +3 fn x => < sin "x + "x"2 >

<fn x => x + 1> match failure

To express this in METAML we use the convention that the function in an escaped
application (where all the arguments of the application are explicitly bracketed code)
represents a higher order meta-variable. Thus, whenever an escaped application appears
inside a pattern, the function part of the application is a higher-order meta-variable and
its arguments are its formal parameters. For example: ~(g <x>). The two problematic
examples above are now easily expressed as:

<fn x => "(g <x>)> => <fn y => "(g <y>) + i>

<fn x => "(h <x>)> -> <fn z => "(g <z + z>)>

Because higher order meta-variables may appear only in the function position of es-
caped applications, and the arguments of these escaped applications may only be bracketed
bound variables (like <x>), pattern-matching and unification are decidable [16, 25].

We now possess the tools to present the monad-law and code-optimizing METAML-

function opt:

fun opt < Do "st {x <- "v ; return "st* x } > = opt v
I opt w as < Do "st -Cx <- Return "st* "e ; "(z <x>) > =

if is.constant e then opt (z e) else w
I opt < Do "st -Cx <- Do "st' {y <- "e ; "(f <y>)} ; "(g <x>)> > =

opt <Do "st -Cy' <- "e ; x" <- "(f <y'>) ; "(g <x'>)}>
I opt x = map.code opt x (* traversal through the code *)

Our opt function implements a limited form of the left-id monad law. We do not
wish to duplicate by substitution a non-constant. By composing this optimization with
interpret2 we obtain a better compiler. Applying this compiler to:

Declare x = 150 in
Declare y = 200 in while x > 0 Do { z :=x-i; y := y - 1 }

we obtain following program:

<Do '/.state

{ a <- '/.push 150;

b <- '/.push 200;
c <- let fun loop () =

Do '/.state
{ e <- '/.read 1;

f <- return '/.state (if (e '/,> 0) then 1 else 0);

if (f */.= 0)
then return '/.state ()

else Do '/.state

{ g <- '/.read 1;

h <- return '/.state (g - 1);

i <- '/.write 1 h;

13

j <- '/.read 0;
k <- return '/.state (j - 1);
1 <- '/.write 0 k;
loop ()

}
}

in loop () end
m <- '/.pop;
'/.pop

}>
>

The optimizer has fully sequentialized the code using the bind-associativity law, and
removed all superfluous Return's using the unit-identity laws. Further optimizations, such
as arithmetic simplification, or transformations to another form, such as assembly code,
could be implemented in the same fashion.

5 Related work

Our work was inspired by work in many different areas. Derivation of compilers from
specifications and the use of action-semantics [19, 23, 11, 22]; the use of monads to structure
programs in general [18, 31, 26] and language implementations in particular [32, 27, 14];
staged programming [5, 6] and its use in structuring compilers [29, 20,4]; partial evaluation
[34, 17, 1, 3, 2, 9]; higher order abstract syntax and pattern matching [16, 7]

For space considerations we limit detailed discussion to the following areas.

5.1 Monads and compilation

Perhaps, the most related work is the work of Sheng Liang and his thesis advisor Paul
Hudak [12, 13]. They investigate the derivation of a compiler from a modular monadic
interpreter. Our work is a continuation of their effort of using monads as a standard
compilation mechanism. However, some differences remain:

• The use of staging, lead us at an early step in the development, to split the environ-
ment into a static index of names and a dynamic stack of values. This allows us to
avoid the use of an environment monad. We use instead an state transformer monad
in which the state is managed like a stack. Liang uses a complicated monad which
is a combination of an environment monad and a state transformer. After code gen-
eration they show that the residual code due to the environment (the lookups of the
location of variables) can be eliminated using axioms of the non-standard morphisms
of the environment monad. Our use of staging allowed us to do the lookups in the
first stage and to never residualize the lookups at all.

• On the other hand, Liang's use of modular language components is an advantage we
have not even attempted to employ. For simplicity, we have used the same monad
for both expressions and commands while Liang uses a modular approach where
each feature is defined independently from the others. Finally all the features are
combined by a monad transformer. To do this it is necessary to lift all non-standard
morphisms through the transformer. This is hard and not completely understood.
We may try to duplicate Liang's approach in future work.

14

5.2 Staging and compilation

In his thesis Calculating Compilers [15] Erik Meijer advocates staging a compiler by using
self discipline. Construct a compiler by building it as the composition of compile-time and
run-time components. A critical step in this process is finding a representation of every
source language construct as a combination of (lower level) target level constructs. By
representing both source and target languages as algebraic datatypes, say source and
target, induced by the functors S and T, this can be reduced to finding a polymorphic
function Trans, which for all a, has type (Tö —t a) —>■ (Sa —t a), a so-called algebra
transformer.

Let the semantic domain of the target algebra be some type value. If the seman-
tic meaning function for the target language M: target -> value can be expressed as
a catamorphism M = cata phi where phi:T value -> value, we can lift phi into an
interpreter for the source language by applying the algebra transformer Trans. Thus
Trans phi:S value -> value and Interp = cata (Trans phi):source -> value. A
similar construction can be used to construct the compiler Compiler:source -> target.
Let function In:T target -> target be the injection between the functor T and its in-
duced algebraic datatype target, then cata (Trans In):source -> target constructs
the compiler.

The limiting factor in this approach is finding an algebraic datatype target to encode
the target language. For a monadic target language, it is not known how to do l his. since
the constructors for "unit" and "bind" would be too polymorphic to encode in an algebraic
datatype, and many of the non-standard morphisms would not be polymorphic enough.

By staging the process in METAML, we do away with the need for an algebraic datatype
to encode the target language, by using the special type of code instead. The constructors
of the target algebra are simply the second stage representations of the real functions.

5.3 Difference between staging and partial evaluation

Staged programming (S.P.) is closely related to partial evaluation (P.E.). We list what we
believe are the salient differences.

• S.P. uses explicit annotations while P.E. uses implicit annotations placed by an
automatic binding time analysis.

• S.P. gives the programmer complete control over what residual program is produced,
while the residual program produced by P.E. often contains surprises. The surprises
are caused by the differences between what the programmer knows and what the
binding time analysis can discover. The solution to this mismatch is for the pro-
grammer to restructure his program using "binding-time improvements" which more
closely align his knowledge and the capabilities of the binding time analysis. Of
course S.P. is not completely immune to these difficulties, but the staged program-
mer must be fully aware of the staging issues before he writes his program. The
staged type-system is a great advantage here. Nevertheless, there are many simple
programs where automatic binding time analysis is sufficient, and hand staging is
simply an annoyance. In our system we have combined the advantages of both,
allowing a simple type-directed binding time analysis to co-exist with the manual
staging annotations. An analysis of this co-existence is beyond the scope of this
paper.

• S.P. is a programming language feature. It exists at the same level as the program.
Here the algorithm and the staging are developed hand in hand. There are no

15

additional tools or processes, and users learn how to weave the staging thought
processes into their problem solving techniques.

• S.P. provides a complete, unified, typed environment, supporting both type recon-
struction and polymorphism for the staged constructs.

6 The Implementation

Everything you have seen in this paper, except the higher order pattern matching over
code! has been implemented in the METAML implementation. The examples are actual

runs of the system.
The higher order pattern matching is currently under development. We found the

normalizing effect of the monad laws1 so compelling that we implemented them in an
ad-hoc fashion inside the METAML system.

7 Conclusion

We have shown that staging programs offers an exciting new programming paradigm, and
reinforced the notion that staging a monadic interpreter into compile-time and run-time
components provides a direct link between an interpreter and a compiler.

Acknowledgements. The research reported in this paper was supported by the USAF
Air Materiel Command, contract # F19628-93-C-0069, and NSF Grant IRI-9625462.

References

[1] Anders Bondorf and Olivier Danvy. Automatic autoprojectin of recursive equations
with global variables and data types. Science of Computer Programming, 16:151-195,

1991.

[2] Anders Bondorf and Jens Palsberg. Compiling actions by partial evaluation. In
Conference on Functional Programming Languages and Computer Architecture, pages
308-320, New York, June 1993. ACM Press. Copenhagen.

[3] C. Consel. A tour of schism: A partial evaluation system for higher-order applica-
tive languages. In Partial Evaluation and Semantics-Based Program Manipulation,
Copenhagen, Denmark, June 1992, pages 145-154. New York: ACM, 1993.

[4] O Danvy, J Koslowski, and K Malmkjaer. Compiling monads. Technical Report
CIS-92-3, Kansas State University, Manhattan, Kansas, December 91.

[5] Rowan Davies. A temporal-logic approach to binding-time analysis. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, pages 184-195, New
Brunswick, New Jersey, 27-30 July 1996. IEEE Computer Society Press.

[6] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In
23rd Annual ACM Symposium on Principles of Programming Languages (POPL'96),

St.Petersburg Beach, Florida, January 1996.

'as well as the laws for ß-value, let-normalization, and »j-value reduction

16

[7] Carsten Schurmann Frank Pfenning, Jo eile Despeyroux. Primitive recursion for
higher-order abstract syntax. In Third International Conference on Typed Lambda
Calculi and Applications, number 1210 in LNCS, pages 147-163. Springer-Verlag,
April 1997.

[8] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming, 5(1), January 1995.

[9] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial. Evaluation and Auto-
matic Program Generation. Series editor C. A. R. Hoare. Prentice Hall International.
International Series in Computer Science, June 1993. ISBN number 0-13-020249-5
(pbk).

[10] Paul Hudak Simon Peyton Jones, Philip Wadler, Brian Boutel, John Fairbairn, Joseph
Fasel, Maria M. Guzman, Kevin Hammond, John Hughes, Thomas Johnsson, Dick
Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Report on the program-
ming language Haskell. SIGPLAN Notices, 27(5):Section R, 1992.

[11] Peter Lee. Realistic Compiler Generation. Foundations of Computing Series. MIT
Press, 1989.

[12] Sheng Liang. Modular Monadi Semantics and Compilation. PhD thesis, Yale univer-
sity, 1998.

[13] Sheng Liang and Paul Hudak. Modular denotational semantics for compiler con-
struction. In ESOP'96: 6th European Symposium on Programming, number 1058 in
LNCS, pages 333-343, Linkoping, Sweden, January 1996.

[14] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular in-
terpreters. In Conference Record of POPL '94: 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Francisco, California, pages
333-343, January 1995.

[15] Erik Meijer. Calculating Compilers. PhD thesis, Katholieke Universiteit Nijmegen.
1992.

[16] Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. In Peter Schroeder-Heister, editor, Extensions of Logic
Programming: International Worksh op, Tübingen, Germany, December 1989, vol-
ume 475 of LNCS, pages 253-281. Springer-Verlag, 1991.

[17] Torben Mogenson. Self-applicable partial evaluation for the pure lambda calculus.
In ACM SIGPLAN Workshop on Partial Evaluation and Semantics Based Program
Manipulation, pages 116-121, June 1992. Yale University Department of Computer
Science Technical Report YALEU/DCS/RR-909.

[18] Eugenio Moggi. Notions of computations and monads. Information and Computation.
93(1):55-92, July 1991.

[19] Peter D. Mosses. SIS-semantics implementation system, reference manual and users
guide. Technical Report DAIMI report MD-30, University of Aarhus, Aarhus, Den-
mark, 1979.

[20] F. Nielson and H. R. Neilson. Two-Level Functional Languages. Cambridge University
Press, Cambridge, Mass., 1992.

17

[21] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Proc.
23rd ACM Symposium on Principles of Programming Languages, pages 54-67, Jan-
uary 1996.

[22] .lens Palsberg. A proveably correct compiler generator. In B. Krieg-Bruckner, editor,
ESOP '92: 4th European Symposium on Programming, Rennes, France, pages 418-
434, New York, February 1992. Springer Verlag. Lecture Notes in Computer Science
582.

[23] L. Paulson. Methods and Tools for Compiler Construction, B. Lorho (editor). Cam-
bridge University Press, 1984.

[24] John Peterson, Kevin Hammond, et al. Report on the programming language haskell,
a non-strict purely-functional programming language, version 1.3. Technical report,
Yale University, May 1996.

[2')] /.. Qiaii. Linear unification of higher-order patterns. In M.-C. Gaudel and J.-P.
Jouannaud, editors, Proceedings of TAPSOFT93, volume 668 of LNCS, pages 391-
405. Springer-Verlag, 1993.

[26] Michael Spivey. A functional theory of exceptions. Science of Computer Programming,
14(l):25-42. June 1990.

[27] Guy Steele. Building interpreters by composing monads. In 21st Annual ACM Sym-
posium on Principles of Programming Languages (POPL'94), Portland, Oregon, Jan-
uary 1994.

[28] Wa.lid Taha. Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming:
Axiomatization and type safety. In International colloquium on automata, languages,
and programming, LNCS. Springer-Verlag, July 1998. To appear.

[29] William L. Scherlis Urlik Jorring. Compilers and staging transformations. In
ISthACM Symposium on Principles of Programming Languages, pages 86-96. ACM,
ACM Press, January 1986.

[30] Philip Wadler. Comprehending monads. Proceedings of the ACM Symposium on Lisp
and Functional Programming, Nice, France, pages 61-78, June 1990.

[31] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
i u,i. 2: Kil 193. 1992. (Special issue of selected papers from 6'th Conference on Lisp
and i-'u notional Programming.).

[32] Philip Wadler. The essence of functional programming (invited talk). In 19'th ACM
Symposium on Principles of Programming Languages, Albuquerque, New Mexico,
January 1992.

[33] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, volume 925 of LNCS. Springer Verlag,
1995.

[34] Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic online
partial evaluation. In Proceedings Functional Programming Languages and Computer
Architecture, 5th ACM Conference, pages 165-191, Cambridge, Ma, USA, August
1991. Springer Verlag. Lecture Notes in Computer Science 523.

18

A Proofs

We repeat here the axiomatic semantics of METAML [28]. For the sake of simplicity, we
omit the level-annotations.

run <vl> = vl| (run)
"<e> = e (escape)

(A x. e) v = e[x := v] (beta)

The (escape) axiom applies only at level one (inside exactly one bracket) and (run) and
(beta) apply only at level 0 (inside no brackets).

Lemma 1. For any well-typed expression: < ~e > , we have < ~e > = e

Proof. Since < ~e > is well-typed, e must evaluate (if it terminates) to <v>. Then e =
<v>. We have

<~e> = <~<v» replace equals by equals
= <v> By escape axiom
= e

D

Lemma 2. For any well-type expression: run <f e>, we have

run <f e> = (run <f>) (run <e>).

Proof. Since the term f e is at level 1, the only possible reduction is by the escape axiom.
Assume <f> and <e> evaluate to the values <f 1> and <el> respectively. Then <f e> must
evaluate to <f 1 el> (since at level 1 we cannot do a beta-step). Hence, we have <e> =
<el>, <f> = <f1>, <f e> = <f1 el>

run <f e> = run <fl el> by replacing equals by equals
= (fl el) 4- by run axiom
= (flj) (el|) by definition of |
= (run <fl>) (run <el>) by run axiom
= (run <f>) (run <e>) by replacing equals by equals

D

Lemma 3. For any well-type expression: run <A x.e>, we have
run <Ax.e> = Ax. (run <e>).

Proof. The proof is similar to the two lemmas above. D

A consequence of the previous two lemmas is that run distributes through its sub-
expressions. In particular, run distributes through Do and let.

run <Do { xl <- el ; x2 <- e2 ; ... ; en } > =
Do { xl <- run <el> ; x2 <- run <e2> ; ... ; run <en> } (run-Do)

run < let val x = e in e2 > = (let val x = run <el> in run <e2>) (run-Let)

Proposition 1. For all expressions exp, and list of names index:

evall exp index = run (eval2 exp index)

19

Proof. Induction on the structure of exp.
case exp of Minus(el,e2)

run (eval2 (Minus(el,e2)) index

run <Do mswo { a <- " (eval2 el index)
b <- " (eval2 e2 index)
Return mswo (a -b) >

Do mswo { a <- run <"(eval2 el index)>
b <- run <"(eval2 e2 index)>
run <Return mswo (a-b)> }

Do mswo { a <- run (eval2 el index) ;
b <- run (eval2 e2 index) ;
Return mswo (a-b)

Do mswo { a <- evall el index) ;
b <- evall e2 index) ;
Return mswo (a-b)

= By beta axiom

= by (run-Do)

= by lemmal (twice) and run axiom

= by induction hypothesis (twice)

= by beta

evall (Minus(el,e2)) index

The other cases are similar.

Proposition 2. For all commands com and list of names index:

interpret 1 com index = run (interpret2 com index}

D

Proof. By induction on the structure of com.
case com of While(e,body).

= By beta run (interpret2 (While(e,body)) index
run <let fun loop () =

Do mswo { v <- "(eval2 e index);
if v=0

then Return mswo ()
else Do mswo { q <- "(interpret2 body index); loop ()}

>
in loop () end > = by run-Do and run-Let

let fun loop () =
Do mswo { v <- run <"(eval2 e index)>;

if v=0
then run <Return mswo ()>
else Do mswo { q <- run <"(interpret2 body index)>;

run < loop () >}

}
in run < loop ()> end

= By Lemma 1 and run axiom

20

let fun loop 0 =
Do mswo { v <- run (eval2 e index)>;

if v=0
then Return mswo ()
else Do mswo { q <- run (interpret2 body index);

run < loop () >}

}
in run < loop ()> end = By induction hypothesis and Proposition 1

let fun loop () =
Do mswo { v <- (evall e index)>;

if v=0
then Return mswo ()
else Do mswo { q <- interpretl body index); run <loop ()> }

}
in run <loop ()> end = By run axiom

let fun loop () =
Do mswo { v<- (evall e index)>;

if v=0
then Return mswo ()
else Do mswo { q <- interpretl body index); loop () }

}
in loop () end

The last step is only possible because, at this step in the derivation, there are no
annotations (in particular no escapes) in the body of the function loop, thus the body of
loop at level 1 is a value, and hence in normal form.

The other cases are easier. D

21

Multi-Stage Programming: Axiomatization and Type Safety
extended abstract

Walid Taha h Zine-El-Abidine Benaissa & Tim Sheard

January 14, 1998

Abstract

Multi-staged programming provides a new paradigm for constructing efficient solutions to
complex problems. Techniques such as program generation, multi-level partial evaluation, and
run-time code generation respond to the need for general purpose solutions which do not pay
run-time interpretive overheads. This paper provides a foundation for the formal analysis of one
such system.

We introduce a multi-stage language and present its axiomatic, reduction, and natural se-
mantics. Our axiomatic semantics is an extension of the call-by-value A-calculus with staging
constructs. We demonstrate the soundness of the axiomatic semantics with respect to the nat-
ural semantics. We show that staged-languages can "go Wrong" in new ways, and devise a type
system that screens out such programs. Finally, we present a proof of the soundness of this
type system with respect to the reduction semantics, and show how to extend this result to the
natural semantics.

1 Introduction

Recently, there has been significant interest in various forms of multi-stage computation, including
program generation [3, 26], multi-level partial evaluation [11, 12], and run-time code generation
[1, 5, 4, 8, 9, 13, 15, .16, 22]. Such techniques combine both the software engineering advantages of
general purpose systems and the efficiency of specialized ones.

Because such systems execute generated code never inspected by human eyes it is important to
use formal analysis to guarantee properties of this generated code. We would like to guarantee stati-
cally that a program generator synthesizes only programs with properties such as: type-correctness,
global references only to names in scope, and local names which do not inadvertently hide global
references.

In previous work [25], we introduced a multi-stage programming language called MetaML. In
that work we introduced four staging annotations to control the order of evaluation of terms.
We argued that staged programs are an important mechanism for constructing general purpose
systems with the efficiency of specialized ones, and addressed engineering issues necessary to make
such systems usable by programmers. We introduced an operational semantics and a type system
to screen out bad programs, but we were unable to prove the soundness of the type system.

Further investigation revealed important subtleties that were not previously apparent to us. In
this paper, we report on work rectifying some of the practical limitations of our previous work.
In contrast to our earlier work that focused on implementations and problem solving using multi-
staged programs, this paper reports on a more abstract treatment of MetaML's foundations. The
key results reported in this paper are as follows:

1. An axiomatic semantics and a reduction semantics for a core sub-language of MetaML.

2. A characterization of the additional ways in which a staged program can "go Wrong".

3. A type system to screen out such programs.

4. A soundness proof for the type system with respect to the reduction semantics using the
syntactic approach to type-soundness of Wright and Felliesen [27].

5. A natural semantics that chooses the order in which rules are applied.

6. The soundness of the axiomatic semantics with respect to the natural semantics.

These results form a strong, tightly-woven foundation which gives us both a better understand-
ing of MetaML, and more confidence in the well-foundedness of the multi-stage paradigm. The
axiomatic semantics provides us with an equational theory for formally reasoning about the equiv-
alence of MetaML programs, and the reduction semantics is an abstract characterization of the
notion of staged computation. The natural semantics provides us with a deterministic strategy for
implementing multi-stage computation. The soundness of the axiomatic semantics with respect to
the natural semantics formally demonstrates that results based on the reductions semantics are
also applicable to our implementation. Finally, formally proving the soundness of the type system
with respect to the reduction semantics ensures to us that well-typed programs are well-behaved.

1.1 What are Staged Programs All About?

In staging a program, the user has control over the order of evaluation of terms. This is done
by using staging annotations. In MetaML the staging annotations are Brackets <>, Escape * and
run. An expression <e> defers the computation of e; "e splices the deferred expression obtained by
evaluating e into the body of a surrounding Bracketed expression; and run e evaluates e to obtain
a deferred expression, and then evaluates this deferred expression. It is important to note that "e is
only legal within lexically enclosing Brackets. To illustrate, consider the script of a small MetaML
session below:

-I val pair = (3+4,<3+4>);

val pair = (7,<3+4>) : (int * <int>)

-I fun f (x,y) = < 8 - ~y >;

val f = fn : ('a * <int>) -> <int>

-| val code = f pair;
val code = <8 - (3+4)> : <int>

-| run code;
val it = 1 : int

The first declaration defines a variable pair. The first component of the pair is evaluated, but the
evaluation of the second component is deferred by the Brackets. Brackets in types such as <int>
are read "Code of int", and distinguish values such as <3+4> from values such as 7. The second
declaration illustrates that code can be abstracted over, and that it can be spliced into a larger
piece of code. The third declaration applies the function f to pair performing the actual splicing.
And the last declaration evaluates this deferred piece of code.

To give a brief feel for how MetaML is used to construct larger pieces of code at run-time
consider:

-I fun mult x n = if n=0 then <1> else < "x * "(mult x (n-1)) >;
val mult = fn : <int> -> int -> <int>

-I val cube = <fn y => "(mult <y> 3)>;
val cube = <fn a => a * (a * (a * i))> : <int -> int>

-| fun exponent n = <fn y => "(mult <y> n)>;
val exponent = fn : int -> <int -> int>

The function mult, given an integer piece of code x and an integer n, produces a piece of code that
is an n-way product of x. This can be used to construct the code of a function that performs the
cube operation, or generalized to a generator for producing an exponentiation function from a given
exponent n. Note how the looping overhead has been removed from the generated code. This is the
purpose of program staging and it can be highly effective as discussed elsewhere [4,10,13,17, 22, 25].
In this paper we move away from how staged languages are used and address their foundations.

2 The A-R Language

The A-R language represents the core of MetaML. It has the following syntax:

e := i | x | ee | Xx.e \ <e> \ ~e | run e

which includes the normal constructs of the A-calculus, integer constants, and the three additional
staging constructs.

To define the semantics of Escape, which is dependent on the surrounding context, we choose to
explicitly annotate all terms with their level. The level of a term is the number of Brackets minus
the number of Escapes surrounding that term. We define level-annotated terms as follows:

a0 := i° | x° | {a0 a0)0 \ (Xx.a0)0 | <a1>° | (run a0)0

| xn+1 | (an+1an+1)n+1 | (Xx.an+1)n+1 \ <an+2>n+1 | ("an)n+1 | (run an+1)n+1 7n+l ._ jn+1

Note that Escape never appears at level 0 in a level-annotated term. We define a A-R program
as a closed term a0. Hence, example programs are (Xx.x0)0 and <<((Xx.(x2 x2)2)2 52)2>1>°.

2.1 Values

It is instructive to think of values as the set of terms we consider to be acceptable results from a
computation. Values are defined as follows:

v°
v1

vn+2

= i° | x° | (Ax.a0)0 | <u1>°
= i1 I x1 I (u1^)1 I (Xx.v1)1 | <v2>1 | (run v1)1

= in+2 | Xn+2 I (u"+2un+2)n+2 | (Aa.^+2)n+2 | <un+3>n+2 | ^n+l^n+2 | (run ^+2)71+2

The set of values for A-R has three notable points. First, values can be bracketed expressions. This
means that computations can return pieces of code representing other programs. Second, values
can contain applications such as (Xy.y1)1 (Xx.x1)1. Third, there are no level 1 Escapes in values.
We take advantage of this important property of values in many proofs and propositions in our
present work.

Because each rule in the inductive definition above is an instance of one of the rules given in
the inductive definition for level-annotated terms it is easy to show that values are a subset of
level-annotated terms.

2.2 Contexts

We generalize the notion of contexts [2] to a notion of annotated contexts:

c° := []° I (c° a0)0 | (a0 c°)° | (Az.c0)0 | <c1>° | (run c°)°
cn+l ._ jjn+l |^cn+lan+ljn+l | ^n+l^+ljn+l j jAiC<cn+ljn+l |

<cn+2>n+l | (~cn)n+l| (rml cn+l)n+l

where Q is a Ao/e. When instantiating an annotated context cn[]m to a term em we write cn[em].

2.3 Promotion and Demotion

The axioms of MetaML remove Brackets from level-annotated terms. To maintain the consistency
of the level-annotations we need an inductive definition for incrementing and decrementing all
annotations on a term. We call these operations promotion and demotion.

Promotion Demot on
xnt = xn+1 xn+1 I = xn

(«i a2)
n t = (011 a2 t)

n+1 (ai a2)"
+1 I = (ai 4 02 1)"

(Aa\a)nt = (Az.at)n+1 {\x.a)n+1 ; = (Xx.ai)n

<a>" f = <a f >n+1 <a>n+1 4. = <ai>n

(~a)n+1 t = (-af)n+2 (-a)"+2 4, = (~o;)n+1

(run a)n t = (run a |)n+1 (run a)n+1 j = (run a 4-)n

int = ,-n+l tn+1 4. = in

Promotion is a total function over level-annotated terms and is defined by a simple inductive
definition. Demotion is a partial function over level-annotated terms. Demotion is undefined on
terms Escaped at level 1, and on level 0 terms in general.

An important property of demotion is that while it is partial over level-annotated terms it is
total over values. Proof of this is a simple induction on the structure of values.

2.4 Substitution

The definition of substitution is standard for the most part. In this paper we are concerned only
with the substitution of values for variables. When the level of a value is different from the level
of the term in which it is being substituted, promotion (or demotion, whichever is appropriate) is
used to correct the level of the subterm.

in[xn = un] — in

xn[xn = vn] = vn

yn[xn = vn] = yn x^y
(d a2)

n[xn = un] = ((ai[x
n := «»]) (a2[xn := vn]))n

(Aa\ai)n[a:n = vn] = (Ax.ai)"
(Ay.oi)w[a;n = vn] = (Xy'.(ai[y

n := y'n][xn := vn]))n y' $ FV(vn), y< <£ FV(ai) x^y
<ai>n[xn = un] =r <ax[a;n+1 := vn f\>n

(~ai)
n+1[xn+1 := vn+1] = (-(a1[xn := vn+1 |]))n+1

(run ai)n[xn = vn] = (run (ai[x := vn]))n

This function is total because both promotion and demotion are total over values. A richer no-
tion of demotion is need to perform substitution of a variable by any expression. This generalization
is beyond the scope of this paper.

2.5 Axiomatization and Reduction Semantics of A-R

The axiomatic semantics describes an equivalence between two level-annotated terms. Axioms can
be thought of as pattern-based equivalence rules, and are applicable in a context-independent way

to any subterm that they match. The three axioms we will introduce can each be given a natural
orientation or direction, reducing "bigger" terms to "smaller" terms. This provides a reduction
semantics.

Axiomatic Reduction

({Xx.en)nvn)n = en[x:=vn]
(run <u"+1>")n = vn+1 I

/ ~<en+l>n\n+l _ e"+l

((Xx.en)nvn)n -A e°[x := vn]
(run <u"+1>n)n ^V vn+1 I

("<en+1>")"+1 -^ en+1

We write A-R \- M = N when M = N is provable by the above axioms and the classical inference
rules of an equational theory, and we write -^ for the reflexive, transitive, context closure of —K

Theorem 1 (Confluence). The reduction semantics is confluent.

Proof. Using a notion of parallel reduction and a Strip Lemma, following closely the development
in [2, pages 277-283]. D

Corollary 2 (Church-Rosser). The axiomatic semantics is Church-Rosser.

3 Faulty Terms

Under the reduction semantics, when a term has been sufficiently reduced, we would like such a
term to be a value, but this is not always the case. If no rules apply, and the term is not a value,
we say that such a term is stuck [27]. There are four contexts in which such terms can arise:

1. A non-A value in a function position in an application (at level 0). This is the familiar form
of undesirable behavior arising whenever the pure A-calculus is extended with constants. For
example, (<51>° 3°)° is stuck because <51>° is a piece of code, not a A-abstraction. This term
is not a value and contains no redex.

2. A variable appears at a level lower than the level at which it was bound. This is the key,
distinguishing form of undesirable behavior in multi-stage computation [25]. For example:
<(Ax."(x°)1)1>° is stuck since x is used at level 0 but bound at level 1.

3. A non-Bracket value is the argument to Run. For example: (run 7°)° is stuck since 7° is an
integer and not a piece of code.

4. A non-Bracket value is the argument to Escape. For example: <(4* + ~(7°)1)1>°

We wish to consider as faulty, terms in the form above. We will show that if a term is typable,
then it is not faulty, and neither can it reduce to a faulty term. We formalize this notion in the
next sections.

We can now present the following formal specification for the set of faulty terms F:

1. c[((<en+1>)n e')n] € F Non-A terms in an application like: (5° 3°)° and (<52>a 31)1

c[(in e')n] € F

2. c[(Xx.c'[xn])m] € F where m > n. Variables at too low a level like: <(Aa;.-(z°)1)1>°

3. c[(run [\x.e)n)n] € F Non-Bracket in Run like: (run (\x.x)°)° and (run 43)3

c[(run in)n) € F

4. c[{~{Xx.e)n)n+1] € F Non-Bracket in Escape like: <(41 + "((Aa;.a;)0)1)1>0 and <(43+-(52)3)3>2

c[{~(in))n+1] € F

The success of our specification of faulty expressions depends on whether they help us char-
acterize the behavior of our reduction semantics. The following lemma is an example of such a
characterization, and is needed for our proof of type soundness.

Lemma 3 (Uniform Evaluation). Let en be a closed term. If en is not faulty then either it is a
value or it contains a redex.

Proof: By induction on the structure of en.

4 Type System

The main obstacle to defining a sound type system for our language is the interaction between
Run and Escape. While this is problematic, it adds significantly to the expressiveness of a staged
language [23], so it is worthwhile overcoming the difficulty. The problem is that Escape allows
Run to appear inside a Bracketed A-abstraction, and it is possible for Run to "drop" that A-bound
variable to a level lower than the level at which it is bound. The following example illustrates the
phenomenon:

<(Ax.(-(run <x1>°)°)1)1>° -^ {Xx.^x0)1)1

To avoid this problem, for each A-abstraction we need to count the number of surrounding Runs
for each occurrence of its bound variable (here x1) in its body. We use this count to check that
there are enough Brackets around each formal parameter to execute all surrounding Runs without
leading to a faulty term.

The type system for A-R is defined by a judgment A h en : r, m, where en is our well-typed
expression, r is the type of the expression, m is the number of the surrounding Run annotations
of en and A is the environment assigning types to term variables.

Syntax
types T ::= T —> T | <T> | int

type assignments A ::= X^(T,JY;A\{}

judgments J ::= A\-t:r,m

Type System

A(a:) = (r,j)* i + m<n + j
 __—_ Var

Ar xn : T,m
. , .„ . Int
Ari": int, m

Ahe": <T>,m+ 1
~r~,—; ; Run A h (run e")n : r,m

A h e"+1 : T, m
~7~. n Bra
Ah <en+1>n : <T>,m

Ahe": <T>,m
~ir-,—; ;—n Esc A h ("en)n+1 : T,m

Ahe^'.r'^m A h i\r' —► r, m

Ah(e? e%)n :r,m ApP

(IH (r',m)";A)he" :T,m
———7T r ■ Lam

A h (Az.e")" : r' ->■ T,m

The type system employs a number of mechanisms to reject terms that either are, or can
reduce to faulty terms. The App rule has the standard role, and rejects non-functions applied to
arguments.

The Escape and Run rules require that their operand must have type Code. This means
terms such as run 5 and <Ax."5> are rejected. But while this restriction in the Escape and Run
rules rejects faulty terms, it is not enough to reject all terms that can be reduced to faulty terms.
The first example of such a term is <Aa\~(run <z>)> which would be typable if we use only the
restrictions discussed above, but reduces to the term <Ax."a;> which would not be typable. The

6

second examples involves an application (A/. <A:c. "(/<£>)>) (Aar.run x) which would also be typable,
but reduces to <A#.~a;>. To reject such terms we need the Var rule.

The Var rule is instrumented with the condition i + m < n + j. Here i is the number of
Bracket's surrounding the A-abstraction where the variable was bound, m is the number of Runs
surrounding this occurence of the variable, n is the number of Brackets surrounding this occurence
of the variable, and j is the number of Runs surrounding the A-abstraction where it was bound.
This ensures that every variable has more Brackets than Runs surrounding it.

In previous work, we have attempted to avoid these two kinds of problems using two distinct
mechanisms: First, the argument of Run cannot contain free variables, and second, we prohibit the
A-abstraction of Run. We used unbound polymorphic type variable names in a scheme similar to
that devised by Launchbury and Peyton Jones for ensuring the safety of state in Haskel [14]. It
turns out that not allowing any free variables is too strong, and that using polymorphism was too
weak. It is better to simply take account of the number of surrounding occurrences of Run in the
Var rule. This way we ensure that if Run is ever in a A-abstraction, it can only strip away Brackets
that are explicitly apparent in that A-abstraction.

5 Type Soundness of the Reduction Semantics

The type soundness proof closely follows the subject reduction proofs of Wright and Felliesen [27].
Once the reduction semantics and type system have been defined, the syntactic type soundness
proof proceeds as follows:

1. Show that reduction in the standard reduction semantics preserves typing. This is called
subject reduction.

2. Show that faulty terms are not typable.

If programs are well-typed, then the two results above can be used as follows: By (1), evaluation
of a well-typed program will only produce well-typed terms. By Lemma 3, every such term is either
faulty, or a value, or contains a redex. The first case is impossible by (2). Thus the program either
reduces to a well-typed value or it diverges.

5.1 Subject Reduction

The Subject Reduction Lemma states that a well-typed term remains well-typed under reduction.
The proof relies on the Demotion, Promotion and Substitution Type Preservation Lemmas. First
we need to introduce two operations on the environment assigning types to term variables:

A t(,,P) (*) = (r,j + q)i+p iff A(s) = (r,j)'
A i{qtp) (x) = (r,JY iff A(z) = (r, j + q)^

These two operations map environments to environments. They are needed in the Promotion and
Demotion Lemmas. They provide an environment necessary to derive a valid judgement for a
promoted or demoted well-typed value. Notice that we have the following two properties:

(A t(g,P)) t(»,i)= A t(9+t,p+i) and (A t(9+t,P+j)) i(i,j)= A t(9)P)

We writeu fp and v \P, respectively, for an abbreviation of p applications of t and | to v. Note
that this operation is different from t(g,p) and 4-(?,p) which is a function on environments assigning
types to term variables.

Lemma 4 (Demotion). If q < p and A2 i(qp) is defined and Ai U A2 h vn+p :T,m + q then
A1U(A2|(g)P))h^+Up:r,m.

Proof. By induction on the structure of vn+p. We develop only the variable case vn+p = xn+p.
There are only two possible sub-cases, which are:

Ai(g) = (r,j)' i + m + q<n+j+p
(Ai U A2) h *"+" :r,m + q ('

By hypothesis q < p implies m + i<n + j. Hence (Ai U (A2 4(9)P))) h vn+p lp: r, m.

Aa(g) = {r, j + q)i+p i + m + 2q<n + j + 2p

{A1UA2)\-x
n+P:T,m + q { '

Similar to the above sub-case. □

Lemma 5 (Promotion). Let q < p. If Ah vn :r,m then Ai U (A2 t(,,P)) h vn f: T,m + q.

Proof. By induction on«". □

Lemma 6 (Substitution). If j < m and Ai U (x ^ (r',i)1'; A2) h en : r,m and Ai h v* : r',j
Men one o/ Me following three judgments holds.

1. Ax h en[xn

2. Ai f- en[a;n

5. Ai I- en[xn

._ yt ^n-2j ;T^m if n> j\

:= u* 4,_n] \T,m if n < i

:= un] : r, m, otherwise

Proof. By induction on the structure en. If en = zn then we have:

A(X) = (T,J)' m + i<n + j

Ai U (a; i4 (T,JY; A2) \- xn :T,m

• If 7i < i and by the hypothesis j < m then m + i > n + j. Hence Ai U [x t-> (r, j)!; A2) h
xn : r, m cannot be typable.

• if n > i then m - j < n - i and the Promotion Lemma 5 applies.

• i = n and by hypothesis j < m and m+i < n+j then j = m. Then, A} h en[zn := un] : r, m.

D

Corollary 7 (/3 Rule). //Ah ((Az.en)n vn)n : r, m Men A h en[xn := un] : r, m.

Lemma 8 (Escape Rule). //Ah (~<en+1>")n : r, m Men A h en : r, m.

Proo/. Straightforward from the type system. □

Lemma 9 (Run Rule). //Ah (run <vn+1yi)n : T) m ^eri A h u1 |: r, m.

Proof. If A h (run <u"+1>n)n : r,m then A h vn+1 : r,m+ 1 is valid. By Demotion Lemma 4,
A h vn+1 J.: r, m is valid. □

Proposition 10. // A h e" : r, m and e£ -> e^ then A h ej : r, m.

Proof. By induction on the structure of e". If the rewrite is at the root then use Lemmas 8 and 9,
and Corollary 7. If e™ contains a redex then apply induction hypothesis. D

Proposition 11 (Subject Reduction). // A h e\ : r, m and e\ -4 e!? Men E A h eJ? : r, m.

Proo/. By induction on the length of the derivation. D

5.2 Faulty Terms

Lemma 12 (Faulty Terms are Not Typable). If e £ F then there is no A,t,a such that
A h e : £,a.

Proof. By case analysis over the structure of e. Let e = ^[(Aa^fx"])8] such that n < i, that is,
i = n + ki + 1. Assume that A h e : r, m. This implies that x i-> (r',j)!A' h xn : r',p. This means
that i + p < n + j. Because p = j + k2 then j < p. This implies that n + k + l + l + j + k? < n + j
which is impossible. The other cases are straight-forward. □

6 Natural Semantics

In previous work, we defined core MetaML by a natural semantics [25]. While this style of presen-
tation is closer to the implementation of MetaML than the reduction semantics presented in this
paper, it is more complex. We have found that it was easier to prove type soundness first with
respect to the reduction semantics, and then to extend this result to the natural semantics.

In this paper, we present a more concise natural semantics for MetaML than the one we have
presented in previous work [25]:

ei° <^->- (\x.e°)° e2°^v1° (c°[ar := «?])

(e° e°)° -s-1/2°

ein+1 >-> e3
n+1 e2"

+1 «^ e4"+1

-►«§ e0 cj. <vi>°

(\x.e°)° «-*• {Xx.e°)°

ei
0^<vl>° («14.)°^ »2°

(run e?)° ^ v2°

ei
n+1 <-¥ e2"

+1

-(e0)l c-> vl

(e?+1 en2
+l)n+l ^ (e£+1e2+1)n+1

ei"+1M-e2
n+1

ei"
+1 ^e2

n+1

(Az.e?+1)n+1 -> (A*.e2+1)n+1

ei"+1 ^e2
n+1

-(e«+i)"+2 ^ -(c»+1)B+a <e«+l>" ^ <e»+l>n

(run e?+1)"+1 ^ (run e»+1)"+1 jn c_). j"

A key property of this presentation is that it avoids the explicit use of a gensym or newname
function for renaming abstractions at levels greater than zero. This improvement avoids the prob-
lems that Moggi points out regarding the use of such stateful functions in defining the semantics
of two-level languages [18].

Now we move on to present some fundamental results about the untyped A-R language, and
use these results, in addition to the soundness of the type system with respect to the reduction
semantics, to prove the soundness of the type system with respect to the natural semantics.

We say that two terms e\ and e2 are observationally equivalent, written e\ ~ e2, if for any
context cfj such that both c[e{\ and c[e2] are closed, then c[exf «-»■ «i0 if and only if c[e2]° *-* «2°,
and Vi = i° if and only if u2 = i° when both relations are defined.

Lemma 13. If en «-»• vn then en -^ vn.

Proof. By induction on the proof tree for en «^ vn.

Lemma 14. If e —t v then e <-+ v'.

D

Proof. This proof requires a Standardization Theorem along the lines of Plotkin [20], but one
extended to deal with Brackets, Escape and Run. We omit the details for the sake of brevity.
Please see the technical report for the full details [24]. D

9

Corollary 15. There exists a value v such that X-R h e = v if and only if e <—} v'.

Proof. Consequence of Lemmas 14 and 13. D

Theorem 16 (Soundness of Axiomatic Semantics). If X-R r- e\ = e2 then e\ ~ e2.

Proof. If ei '-¥ vi then by Corollary 15 A-R h e\ = v\. Hence, A-R h e2 = v\. By Coroljary 15,
there exists a value v-i such that e2 «->• i>2- By Lemma 13, A-R h Dj = t>2. Since the axiomatic
semantics is Church-Rosser, we have v\ —*-> v and vi -^ u. Thus, ei ~ e2 □

We define undesirable behavior in the natural semantics in the classical manner: we introduce a
new "value" Wrong, written T, and a set of rules complementing the rules of the natural semantics,
and returning T in all these new cases. We call the combination of these two sets of rules the

augmented natural semantics, and denote it by ^ .

Lemma 17. //e4T then e -^ f and f 6 F and f ^ v.

Proof. By induction on the proof tree of the augmented natural semantics ^4 . D

Theorem 18 (Type Soundness). If A r- e : r, m and e <-> e' then e' / T

Proof. We prove the contrapositive. If e' = T and e «-»■ T then by Lemma 17, e -^ /. Hence by
type soundness of the reduction semantics, e is not typable. D

7 Related Work

Multi-stage programming techniques have been used in a wide variety of settings, including run-time
program generation in ML [17], run-time specialization of C programs [5, 4, 21, 9], and advanced
dynamic compilation for C programs [1].

Nielson and Nielson present a seminal detailed study into a two-level functional programming
language [19]. This language was developed for studying code generation. Davies and Pfenning
show that a generalization of this language to a multi-level language called AD gives rise to a type
system very related to a modal logic, and that this type system is equivalent to the binding-time
analysis of Nielson and Nielson [7]. Intuitively, AD provides a natural framework where LISP's
quote and eval can be present in a language. The semantics of our Bracket and Run correspond
closely to those of quote and eval, respectively.

Glück and J0rgensen study partial evaluation in the generalized context where inputs can arrive
at an arbitrary number of times rather than just specialization-time and run-time [12]. They
also demonstrate that binding-time analysis in a multi-level setting can be done with efficiency
comparable to that of two-level binding time analysis. Our notion of level is very similar to that
used by Glück and j0rgensen[lO, 11].

Davies extended the Curry-Howard isomorphism to a relation between modal logic and the type
system for a multi-level language [6]. Intuitively, AO provide a good framework for formalizing
the presence of quote and quasi-quote in a language. The semantics of our Bracket and Escape
correspond closely to those of quote and quasi-quote, respectively. Previous attempts to combine
the AD and A^ systems have not been successful [7, 6, 25]. To our knowledge, our work is the first
successful attempt to define a sound type system combining Brackets, Escape and Run in the same
language.

Moggi advocates a categorical approach to two-level languages, and and uses indexed categories
to develop models for two languages similar to AD and A^ [18]. He points out that two-level
languages generally have not been presented along with an equational calculus. Our paper has
eliminated this problem for MetaML, and to our knowledge, is the first presentation of a multi-
level language using axiomatic and reductions semantics.

10

8 Conclusion

In this paper, we have presented an axiomatic and reduction semantics for a language with three
staging constructs: Brackets, Escape, and Run. Arriving at the axiomatic and reduction semantics
was of great value to enhancing our understanding of the language. In particular, it helped us to
formalize an accurate syntactic characterization of faulty terms for this language. This character-
ization played a crucial role in leading us to the type system presented here. Finally, it is useful
to note that our reduction semantics allows for ^-reductions inside Brackets, thus giving us a basis
for verifying the soundness of the safe-/? optimization that we discussed in previous work [25].

MetaML currently exists as a prototype implementation that we intend to distribute freely on
the web. The implementation supports the three programming constructs, higher-order datatypes

(with support for Monads), Hindley-Milner polymorphism, recursion, and mutable state. The
system has been used for developing a number of small applications, including simply term-rewriting

system, monadic staged compilers, and numerous small bench-mark functions.
We are currently investigating the incorporation of an explicit recursion operator and Hindley-

Milner polymorphism into the type system presented in this paper.

Acknowledgements: We would like to thank John Matthews and Matt Saffell for comments on

a draft of this paper.

References

[1] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N. Bershad. Fast,
effective dynamic compilation. In Proceedings of the ACM SIGPLAN '96 Conference on Programming
Language Design and Implementation, pages 149-159, Philadelphia, Pennsylvania, May 1996.

[2] Henk . P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in Logic and the
Foundation of Mathematics. North-Holland, Amsterdam, 1984. Second edition.

[3] Don Batory and Bart J. Geraci. Composition validation and subjectivity in genvoca generators. IEEE
Transactions on Software Engineering, 1997.

[4] Charles Consel and Francois Noel. A general approach for run-time specialization and its application to
C. In Conference Record of POPL '96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 145-156, St. Petersburg Beach, Florida, 21-24 January 1996.

[5] Charles Consel, Calton Pu, and Jonathan Walpole. Incremental specialization: The key to high perfor-
mance, modularity, and portability in operating systems. In Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 44-46, New York, NY, USA, June 1993.
ACM Press.

[6] Rowan Davies. A temporal-logic approach to binding-time analysis. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, pages 184-195, New Brunswick, New Jersey, July 1996.
IEEE Computer Society Press.

[7] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In 23rd Annual ACM Sym-
posium on Principles of Programming Languages (POPL'96), St.Petersburg Beach, Florida, January
1996.

[8] Dawson R. Engler. VCODE : A retargetable, extensible, very fast dynamic code generation system. In
Proceedingsof the ACM SIGPLAN Conference on Programming Language Design and Implemantation,
pages 160-170, New York, May 1996. ACM Press.

[9] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. 'C: A language for high-level, efficient,
and machine-independent dynaic code generation. In Conference Record of POPL '96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 131-144, St. Peters-
burg Beach, Florida, January 1996.

11

[10] Robert Glück and Jesper J0rgensen. Efficient multi-level generating extensions for program special-
ization. In S. D. Swierstra and M. Hermenegildo, editors, Programming Languages: Implementations,
Logics and Programs (PLILP'95), volume 982 of Lecture Notes in Computer Science, pages 259-278.
Springer-Verlag, 1995.

[11] Robert Glück and Jesper J0rgensen. Fast binding-time analysis for multi-level specialization. In Dines
BJ0rrier, Manfred Broy, and Igor V. Pottosin, editors, Perspectives of System Informatics. Proceedings,
volume 1181 of Lecture Notes in Computer Science, pages 261-272. Springer-Verlag, 1996.

[12] Robert Glück and Jesper j0rgensen. An automatic program generator for multi-level specialization.
Lisp and Symbolic Computation, 10(2):113—158, 1997.

[13] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers. Annotation-
directed run-time specialization in C. In Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 163-178, Amsterdam, The Netherlands,
June 1997.

[14] John Launchbury and Simon L. Peyton-Jones. State in haskell. Lisp and Symbolic Computation,
8(4):293-342, December 1995. pldi94.

[15] Peter Lee. Realistic Compiler Generation. Foundations of Computing Series. MIT Press, 1989.

[16] Peter Lee and Mark Leone. Optimizing ML with run-time code uen&ation. In Proceedingsof the ACM
SIGPLAN Conference on Programming Language Design and Implemantation, pages 137-148, New
York, May21-24 1996. ACM Press.

[17] Mark Leone and Peter Lee. A declarative approach to run-time code generation. In Workshop on
Compiler Support for System Software (WCSSS), February 1996.

[18] Eugenio Moggi. A categorical account of two-level languages. In MFPS 1997, 1997.

[19] Flemming Nielson and Hanne RijsNielson. Two-Level Functional Languages. Number 34 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

[20] Gordon Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science,
1(1):125-159, 1975.

[21] Calton Pu, Andrew Black, Crispin Cowan, and Jonathan Walpole. Microlanguages for operating system
specialization. In Proceedings of the SIGPLAN Workshop on Domain-Specific Languages, Paris, January
1997.

[22] Calton Pu and Jonathan Walpole. A study of dynamic optimization techniques: Lessons and direc-
tions in kernel design. Technical Report OGI-CSE-93-007, Oregon Graduate Institute of Science and
Technology, 1993.

[23] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing as staged type inference. In
Proceedings of the 25th ACM Symposium on Principles of Programming Languages, San Diego, Ca.
ACM Press, jan 1998.

[24] Walid Taha, Zine-el-abidine Benaissa, and Tim Sheard. The essence of staged programming. Technical
report, OGI, Portland, OR, December 1997.

[25] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceedings
of the ACM-SIGPLAN Symposium on Partial Evaluation and semantic based program manipulations
PEPM'97, Amsterdam, pages 203-217. ACM, 1997.

[26] Richard Waldinger and Michael Lowry. AMPHION: Towards kinder, gentler formal methods. In Proceed-
ings of the 1994 Monterey Workshop on Formal Methods. U.S. Naval Postgraduate School, September
1994.

[27] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(l):38-94, 15 November 1994.

12

Extended Abstract

The Anatomy of a Component Generator1

Walid Taha & Jim Hook
{walidt, hook}® cse.ogi.edu

The Oregon Graduate Institute

In this extended abstract, we outline some essential elements of a conceptual model for a component generation
system. This model is based on an extensive study of a large number of high-level program generation systems, and
the significant body of related literature. We focus our attention on the architectural elements of this model, and
briefly discuss the technological and process elements. We show how the model is a useful basis for comparing
component generation technologies. With a rapidly growing area like component generation, it is hard to get a truly
representative sample of generators. As a workaround, we illustrate our model using seven significant component
generation systems developed by various research groups, and discuss some insights that the model provides. We
conclude with an overview of the current status of our investigation.

1. The Pragmatic Need for Models

We know that component generation can be very beneficial for evolving systems, but we don't have a widely-accepted
conceptual model for component generation systems. Conceptual models allow us to categorize and distill our
knowledge of details into more manageable and structured information. We believe that such a model would facilitate
better communication of ideas, within our own research group (PacSoft), within the component generation research
area, within the programming languages area, and with the outside world. For example, it will necessarily play an
important role in transferring our ideas as a research community to software houses that can develop industry-strength,
general purpose component generators.

We have been working towards such a model for almost three years now, and have studied over 100 related
publications, in addition to being involved in PacSoft's SDRR component generation project [KMB96]. Why has it
taken so much effort? The major hurdle is that interesting component generation systems emerge from many corners
of computer science, which often means incompatible vocabularies. For example, the word "Component" can have
significantly different meanings in different papers2. The diversity of programming languages, operating systems, and
tools used in developing the generators, and of the researchers' expectations from all of these, add significantly to the
difficulty of understanding the literature in a manner that would allows us to compare and contrast two different
generation technologies.

2. The Architectural Element

Software architectures [PW92] communicate ideas about software systems, and are especially useful when parties
involved come from a variety of different backgrounds. Architectural descriptions provide an abstract basis for our
model, a basis that is independent of the technology underlying the generator, the development process, and the
application domain.

Even when composed of relatively simple subsystems, the collective architecture of a generator is often quite complex,
and involves a significant number of distinct artifacts and users. Artifacts include the generator, the input and output
of the generator, libraries, and the legacy system hosting the generated component. Users include the developers of
the generator, it's input, and the libraries. Ideally, the input to the generator is a simple, compact specification that is
easy to maintain. However, it is often the case that an executable program cannot be generated solely from such

1 This research is supported by a contract with the USAF Materiel Command. Contract F19628-93-C-0069.
1 In this paper, it will mean CORBA/COM-like components.

■151-

Extended Abstract

specifications. Therefore, it is common to find an additional (specification) language, often in the form of
annotations, for controlling the generator. There may even be a developer dedicated to this task.

Hence, a model for component generators should admit all possible answers to the following questions:

• What is the input to the generator? Who writes this input?

• What is the output of the generator? Who uses it?

• What libraries does the output use? Who writes these libraries?

• How does the generator work? Who wrote it, and how? How is it controlled?

• With what systems does the generated component interact?

While it is not common to consider all of these dimensions of variability simultaneously, this is precisely what is
needed when we wish to relate and contrast more than one existing component generation system. The figure below is
a schematic representing the minimal architectural schema that arises if the answer to the each of the above questions
is distinct.

i A
De*dopcr.GD

9
A
Ubmy

buerfioc

A
Devdnpet. □>

The figure above explicates the implicit complexity of even the simplest generative system. For instance, consider the
yacc parser-generator [Joh75]. Development work on the generator itself has stopped, and hence, we usually don't
think of either the developer or the source yacac. The generator input is the grammar proper, and the control
annotations are the directives regarding precedence and association. Note that control annotations need not be in a
separate file. The component developer and the generator controller are the same person. The grammar file could
also contain further control instructions about what library files the generator output might be using. The libraries
used by the generator output include lib.y.c, which contains the abstract machine for the parse table The interface is
usually header files describing the legacy system functions that the parser uses. Finally, while we rarely see a user
directly interacting2 with the parser generated by yacc, the user of the legacy system is, indirectly, the component user.

1 Drawn in the Generator Description Language, GDL [TS97J.
2 Interaction commutes, and hence, we could have drawn the component user directly connected to the generated
component, and the diagram would have had the same meaning.

-152-

Eaendtd Abstract

2.1 Basic Distinguishing Characteristics

Certain aspects of the architecture sketched in the last section are "not negotiable": a generative architecture has to
include a generator, a generator input, and a generated component And every artifact that is not mechanically
generated must have an author. The architecture described above gives us a very natural basis for our model that
captures these essential invariants. However, it offers too many dimensions of variability. The design space is indeed
vast But some of these dimensions are more informative than others, in that they are better discriminators between
various component generation systems. We have identified basic distinguishing characteristics:

1. Who is the primary user, that is, the "customer" the system is intended to benefit?

1 What expertise is expected from the main user?

3. Which users are distinct and which users are not? For example, is the role of generator development identified
with the role of generator control?

4. Does the generator have a distinct notion of control annotations?

These factors are derived or computed from the architectural variabilities. In the following section, we illustrate the
relevance of these criteria by considering some important generative systems.

2.2 Application to Seven Research Component Generation Systems

For brevity, we will not review all the systems we have studied. Instead, we present summary of our observations, and
then illustrate how these observation can be interpreted. In the following table, "=" between two different kinds of
users means that we did not find them to be treated differently. In cases where there is no explicit notion of control
annotations, the input to the generator can be viewed as being an " Implicit" control specification:

Systems Primary
User(s)

Primary User's
Expertise

Distinct Users Control
Annotations

ISI [Bal81,Bal92] GD.CD GD: Meta-programmer,
CU: Domain expert

CU, CD=LD, GC=GD Pragmas

MIP [MKS97] CU Domain expert CU=CD=GC, GD, LD Implicit

GenVoca [BST+94] LD Programmer CU, CD=GC=LD, GD Design rules

BODS / SpecWare [Smi90, SJ94] CD Formal methods expert CU, CD=GC=LD, GD Refinements

SDRR [BH+94, KMB96] GD.CD Domain expert CU=CD, GC=GD=LD Implicit

Amphion [LPP+94] CU Domain expert CU=CD, GC=GD, LD Implicit

AOP [GLM+97] CD Programmer CU, CD=GC=GD=LD Aspects

Let us consider the first case: In the ISI technology, the generator developer (GD) uses the POPART meta-
programming tool-kit and a relational extension of C or Java to develop the generator [Bal92,Wil81,Wil90]. In the
literature we surveyed, the roles of the generator controller (GC) and generator developer were not distinguishable.
Pragmas are used to guide the relational compiler as to how to implement relations.

■153 —

Extended Abstract

The following sub-sections discuss two of the main observations that can be drawn on the basis of this information.

2.2.1 What to Mix, and What to Match

Consider the kind of information that might interest a software engineer interested in building a component generator.
Some technologies address similar classes of users, such as ISI and SDRR, and MIP and Amphion. This means that
these technologies could be a good basis for synthetic systems combining the benefits of both. For example, SDRR's
technology, which leverages on functional programming, can benefit greatly from ISI's meta-programming
technology, and vise versa. When a basic distinguishing characteristic identifies two systems, there are usually many
other (often less-abstract) dimensions in which they are different. For example, Mff and Amphion fall on distinct
points along the dimension of real-time constraints. We consider this dimension to be somewhat less abstract than
architecture because it is more dependent on the application domain. Some of these dimensions should be in a model
for component generators, discussed in the next section.

Other technologies address users that are usually not emphasized by others. For example, GenVoca is unique in
addressing concerns of the library developer (LD). This suggests that high-level ideas from the GenVoca system
might be readily combinable with generation technologies covered in our survey.

2.2.2 How to Control Generation

Four very different kinds of annotations are being considered by three different groups, namely, ISI's pragmas,
GenVoca' design-rules, KIDS and SpecWare refinements, and AOP's aspects. These annotations are an important
characteristic of modem component generation systems that was not commonplace in earlier transformational

programming systems.

Control annotations can be viewed as Domain-Specific Languages (DSLs). For example, yacc's specifications for
precedence of operators is one such DSL. In this light, we can say that the first three kinds of annotations are single
languages, and AOP's aspects can be thought of as families of DSLs. We believe that the study of these generator-
control DSLs will play an important role in developing general-purpose, industry-standard component generation

systems.

3. Technology and Process Elements

Our model also includes two other elements; the technology underlying the generation system, and the process by
which the generator itself is developed. Both can be viewed as refinements of the architectural model. The following
table summarizes some distinguishing characteristics of the systems surveyed:

Systems

ISI

MIP

GenVoca

KIDS/
SpecWare

SDRR

Underlying Technology

Meta-programming calculus and tools

Generator Development

Using POPART tools and relational C or Ada

Model-integrated real-time control

Algorithm selection and object-
orientation

Formal verification

Typed, functional programming

Using the Mff paradigm

Using design rules to specify acceptable library
combinations

Using specifications and refinements to characterize and
derive programs

Using SDRR to create the front-end of the SDRR pipeline

-154-

Extended Abstract

Amphion Theorem proving and program
synthesis

Using Meta-Amphion, a theory of the domain, and an
inference engine

AOP AOP Using (any technology?) to develop a weaver and aspects

4. Conclusion

We have outlined a model for component generation systems that we are currently developing. The model captures
some of the bare essentials required for an object of study to be considered a generator, without going too deeply into
the details of any particular system. We illustrated how it admits simple, clear, and objective criteria for comparing
component generation systems. Our work shows that there is significant diversity not only in the cultures and
application domains of contemporary component generation research projects, but also in technical problems that are
unique to the emerging research area of component generation, such widespread interest in generation control.

Acknowledgments: We thank Lisa Walton. Andrew Black, Sherri Shulman, Tito Autry, Theme Fisher, Shailish Godbole, and Amol Vyas rfor

valuable discussions.

Refferences
[Bal81] R. Balzer, Transformational Implementation: an Example. IEEE Transactions on Software Engineering. Vol. SE-7, Number 1,

January 1981.

[Bal92] R. Balzer. Design Refinement in OSS As. Proceedings of the JSCCC Software Initiative Strategy Workshop, December 1992.

[BH+94] S. Bell. F. Bellegarde. J. Hook, et al.. Software Design for Reliability and Reuse: A Proof-of-Concept Demonstration. In TRl-Ada "94
proceedings, pages 396-404, November. 1994.

[BST+94] D. Batory, V. Singnal. J. Thomas. S. Dasari. B. Geraci. and M. Sirkin. The GenVoca Model of Software-System Generators. IEEE
Software. September 1994.

[GLM+97] G. Kiczaies. J. Lamping. A. Mendhekar, C. Maeda. C. Lopes. J. Loingtier and J. Irwin. Aspect Oriented Programming. PARC
Technical Report. February 97.

[Jon75] S. Johnson. YACC — Yet Another Compiler-Compiier.Compuring Science Technical Report. Bell Laboratories, No. 32.1997.

[KMB96] R. Kieburtz. L. Mckinney. J. Bell. J. Hook, A. Kotov, J. Lewis, D. Oliva. T. Sheard. I. Smith. L. Walton. A Software Engineering
Experiment in Software Component Generation. Proceedings of 18th International Conference on Software Engineering, Berlin.
IEEE Computer Society Press. March, 1996.

[LB95] M. Lowry, J. Van Baalen. Meta-Amphion: Synthesis of Efficient Domain-Specific Program Synthesis Systems. Proc. of 10th
Knowledge-Based Software Engineering Conference, Boston, Mass, Nov. 12-15. 1995, pp. 2-10.

[LPP+94] M. Lowry, A. Philpot. T. Pressburger, I. Underwood. Amphion: Automatic Programming for Scientific Subroutine Libraries, in Proc.
8th IntL Symp. on Methodologies for Intelligent Systems. Charlotte, North Carolina. Oct. 16-19. 1994, pp. 326-335.

[MKS97] A. Misra, G. Karsai. J. Szripanovits, A. Ledeca, M. Moore, E. Long, A Model-Integrated Information System for Increasing
Throughput in Discrete Manufacturing, Proceeding of the Engineering of Computer Based Systems (ECBS) Conference. Monterey
CA. March 1997.

[PW92] D. Perry and A. Wolf. Foundations for the Study of Software Architecture, ACM SICSOFT Software Engineering Notes, 17:4
October 1992.

[SB97] Y. Smaragdakis and D. Batory. DiSTiL: A Transformation Library for Data Structures, USENIX Conference on Domain-Specific
Languages. October 1997.

[SJ94] Y. Srinivas and R. Jullig. SpecWare: Formal Support for Composing Software, Proceedings of the Conference on Mathematics of
Program Construction, Kloster Irsee, Germany, July 1995. Kestrel Institute Technical Report KES.U.94.5.

[Smi90] D. Smith. KIDS: A Semi-Automatic Program Development System. IEEE Transactions on Software Engineering — Special Issue
on Formal Methods. Vol. 16, No. 9., September 1990.

fTS97] W. Tana and T. Sheard, Facets of Multi-Stage Computation in Software Architectures, OGI Technical Report CSE-97-010,
September 1997, Oregon Graduate Institute.

[WU81] D. Wile, POPART: Producer of Parsers and Related Tools. System Builders' Manual. Technical Report, USC Information Sciences
Institute. 1981.

[Wil901 D. Wile, Adding Relational Abstraction to Programming Languages. ACM SIGSOFTSoftware Engineering Notes, 15(A) pp 128-
139. September 1990.

-155-

Optimizing ML Using a Hierarchy of Monadic Types

Andrew Tolmach*

Pacific Software Research Center
Portland State University & Oregon Graduate Institute

apt@cs.pdx.edu

March 9, 1998

Abstract

We describe a type system and typed semantics for call-by-value functional languages that

use a hierarchy of monads to describe and delimit a variety of effects, including non-termination.

exceptions, and state. The type system and semantics can be used to organize and justify a

variety of optimizing transformations in the presence of effects. In addition, we describe a

simple monad inferencing algorithm that computes the minimum effect for each subexpression

of a program, and provides more accurate effects information than local syntactic methods.

'Supported, in part, by the US Air Force Materiel Command under contract F19628-93-C-0069 and by the National
Science Foundation under grant CCR-9503383.

1 Introduction

Optimizers are often implemented as engines that repeatedly apply improving transformations to

programs. Among the most important transformations are propagation of values from their defining

site to their use site, and hoisting of invariant computations out of loops. If we use a pure (side-

effect-free) language based on the lambda calculus as our compiler intermediate language, these

transformations can be neatly described by the simple rules for beta-reduction

(Beta) Let x = e in b = b[e/x]

and for the interchange and lifting of bindings

(Exchange) Let xi = e\ in (Let X2 = e2 in b)
= Let X2 = e2 in (let X\ = e\ in b)

di i FV(e2); x2 $ FV{ex))

(RecHoist) Letrec / = (A a;.let y = e\ in e2) in b
= let y = e\ in (letrec / = A x.e2 in b)

(x,f $ FV(ei); y $ FV(b))

where the side conditions nicely express the data dependence conditions under which the transfor-

mations are valid.1 Effective compilers for pure, lazy functional languages (e.g., [10]) have been

conceived and built on the basis of such transformations, with considerable advantages for modu-

larity and correctness.
It would be nice to apply similar methods to the optimization of languages like ML, which

have side effects such as I/O, mutable state, and exceptions. Unfortunately, these "rearranging"

transformations are not generally valid for such languages. For example, if we apply (Beta) in a

situation where evaluating e performs output and x is mentioned twice in b, evaluating the resulting

expression might produce the output twice. In fact, once an eager evaluation order is fixed, even

non-termination becomes a "side effect." For example, (RecHoist) is not valid unless e\ is known

to be terminating (and free of other effects too, of course).

A similar challenge long faced lazy functional languages at the source level: how can we give

the power of side-effecting operations without invalidating simple "equational reasoning" based on

(Beta) and similar rules? The effective solution discovered in that context is to use monads [8, 12].

An obvious idea, therefore, is to use monads in an internal representation (IR) for compilers of

call-by-value languages. Some initial steps in this direction were recently taken by Peyton Jones,

Launchbury, Shields, and Tolmach [11]. The aim of that work was to design an IR suitable for

both eager and lazy source languages. In this paper we pursue the use of monads with particular

reference to eager languages (only), and address the question of how to discover and record several

different sorts of effects in a single, unified monadic type system. We introduce a hierarchy of

1 Of course, the fact that a transformation is valid doesn't mean that applying it will necessarily improve the

program. For example, (Beta) is not an improving transformation if e is expensive to compute and x appears many

times in b; similarly, (RecHoist) is not improving if / is not applied in b.

monads, ordered by increasing "strength of effect," and an inference algorithm for annotating

source program subexpressions with their minimal effect.

Past approaches to coping with effects have fallen into two main camps. One approach approach

(used, e.g., by SML of New Jersey [2] and the TIL compiler [16]) is to fall back on a weaker form

of (Beta), called (BetaJ, which is valid in eager settings. (Beta„) restricts the bound expression

e to variables, constants, and A-abstractions; since "evaluating" these expressions never actually

causes any computation, they can be moved and substituted with impunity. To augment this rule.

these compilers use local syntactic analysis to discover expressions that are demonstrably pure and

terminating. These analyses cannot "see through" function calls, but they can be quite effective,

particularly if the compiler inlines functions enthusiastically. The other approach (used, e.g., by

the ML Kit compiler [4]) uses a sophisticated effect inference system [14] to track the latent effects

of functions on a very detailed basis. The goals of this school are typically more far-reaching; the

aim is to use effects information to provide more generous polymorphic generalization rules (e.g.,

as in [19, 15]), or to perform significantly more sophisticated optimizations, such as automatic

parallelization or stack-allocation of heap-like data. In support of these goals, effect inference has

generally been used to track store effects at a fine-grained level.

Our approach is essentially a simple monomorphic variant of effect inference applied to a wider

variety of effects (including non-termination, exceptions, and 10), cast in monadic form, and in-

tended to support transformational code-motion optimizations. We infer information about latent

effects, but we do not attempt to calculate effects at a very fine level of granularity. In return.

our inference system is particularly simple to state and implement. However, there is nothing

fundamentally new about our system as compared with that of Talpin and Jouvelot [14]. except

our decision to use a monadic syntax and validate it using a typed monadic semantics. A practical

advantage of the monadic syntax is that it makes it easy to reflect the results of the effect inference

in the program itself, where they can be easily consulted (and kept up to date) by subsequent.

optimizations, rather than in an auxiliary data structure. An advantage of the monadic semantics

is that it provides a natural foundation for probing and proving the correctness of transformations

in the presence of a variety of effects.

In related work, Wadler [18] has recently and independently shown that Talpin and Jouvelot's

effect inference system can be applied in a monadic framework; he uses an untyped semantics, and

considers only store effects. In another independent project, Benton and Kennedy are prototyping

an ML compiler using a monadic encoding similar to ours [3].

2 Source Language

This section briefly describes an ML-like source language we use to explain our approach. The

call-by-value source language is presented in Figure 1. It is a simple, monomorphic variant of ML.

expressed in A-normal form [5], which explicitly binds a name to the result of each computation

and makes evaluation order completely explicit. The class const includes primitive functions as

datatype value =
Var of var

I Const of const

datatype const =
Integer of int
True I False
DivByZero I ...
Plus I Minus I Times I Divide
Eqlnt I Ltlnt
EqBool | EqExn
Writelnt

datatype exp =
Val of value
Abs of var * exp
App of value * value
If of value * exp * exp
Let of var * exp * exp
Letrec of var * var * exp * exp
Tuple of value list
Project of int * int * value
Raise of value
Handle of exp * value

Figure 1: Abstract Syntax for Source Language (presented as ML datatype).

well as constants. The Let construct is monomorphic; that is, Let(x,e,6) has the same semantics

and typing properties as would App (Abs (a;, 6) ,e) (were this legal A-normal form). The restriction

to a monomorphic language is not essential; see Section 5. All functions are unary; primitives like

Plus take a two-elenient tuple as argument. For simplicity of presentation, we restrict Letrec to

single functions.

The language is not explicitly typed, but the underlying types include the base types Int, Bool,

and Exn, tuples, and arrows. We use tuples as a surrogate for more general algebraic datatypes;

to permit type inference for Projects in the absence of declarations, we provide the total size

of the tuple as an additional parameter. We assume a supply of appropriate constants for each

base type. Exceptions carry values of type Exn, which are nullary exception constructors. Raise

takes an exception constructor; rather than providing a means for declaring such constructors,

we assume an arbitrary pool of constructor constants. Handle catches all exceptions that are

raised while evaluating its first argument and passes the associated exception value to its second

argument, which must be a handler function expecting an Exn. The body of the handler function

may or may not choose to reraise the exception depending on its value, which may be tested using

EqExn. The primitive function Divide has the potential to raise a particular exception DivByZero.

We supply Writelnt as a paradigmatic state-altering primitive; internal side-effects such as ML

reference manipulations would be handled similarly. All other primitives are pure and guaranteed

to terminate. The semantics of the remainder of the language are completely ordinary.

3 Intermediate Language with Monadic Types

Figure 2 shows the abstract syntax of our monadic intermediate representation (IR). (For an exam-

ple of the code, look ahead to Figure 10.) For the most part, terms are the same as in the source

language, but with the addition of monad annotations on Let and Handle constructs and a new

Up construct; these are described in detail below. In addition, identifiers (and Raise expressions)

datatype monad = ID I LIFT I EXN I ST

datatype mtyp = M of monad * vtyp
and vtyp =

Int
I Bool
I Exn
I Tup of vtyp list
I Arrow of vtyp * mtyp

type varty = var * vtyp

datatype value =
Var of var

I Const of const

datatype exp =
Val of value
Abs of varty * exp
App of value * value
If of value * exp * exp
Let of monad * varty * exp * exp
Letrec of varty * varty * exp * exp
Tuple of value list
Project of int * int * value
Raise of mtyp * value
Handle of monad * exp * value
Up of monad * monad * exp

Figure 2: Abstract Syntax for Monadic Typed Intermediate Language.

are explicitly typed, in order that we may easily compute the type of any closed expression.

Values have ordinary value types (vtyps); expressions have monadic types (ratyps), which in-

corporate a vtyp and a monad (possibly the ID monad). Since this is a call-by-value language, the

domain of each arrow types is a vtyp, but the codomain is an arbitrary mtyp. The typing rules

are given in Figure 3. In this figure, and throughout our discussion, t ranges value types, m over

monads, v over values, c over constants, x over variables, and e over expressions. The initial type

environment is described in Figure 4.

For this presentation, we use four monads arranged in a simple linear order. In order of "in-

creasing effect" these are:

• ID, the identity monad, which describes pure, terminating computations.

• LIFT, the lifting monad, which describes pure but potentially non-terminating computations.

• EXN, the monad of exceptions and lifting, which describes computations that may raise an

(uncaught) exception, and are potentially non-terminating.

• ST, the monad of state, exceptions, and lifting, which describes computations that may write

to the "outside world," may raise an exception, and are potentially non-terminating.

We write mi < mi iff mi precedes rri2 on this list. Intuitively, mi < m2 implies that computations

in ?7i2 are "more effectful" than those in mi; they can provoke any of the effects in mi and then

some. This particular hierarchy captures most of the interesting distinctions and still gives us a

simple inference algorithm (see Section 5). More elaborately stratified monadic structure is certainly

possible; we discuss this in more detail below.

More formally, mi < m2 implies that there exists an embedding wpmi_>m2 which, for every value

type t, maps the domain corresponding to M(mi ,t) into the domain corresponding to M(m2 ,t) • The

E(v) = t
E \-v Var v : t

Typeof (c) = t
E h„ Const c :t

E\-Vv:t
EhVal u:M(ID,*)

E+{x:ti) h e : M(m2,i2)
E h Abs(x : t\,e) : M(ID,ti->M(m2,t2))

E\-v v\ : t\ -*■ M(m2)t2) £ h, t>2 = *l
E hApp(ui ,V2) : M(m2,<2)

£I-JO: Bool E h ei M(m,t) £r-e2:M(m,i)
Eh If(ü,ei,e2) :M(m,t)

Eh ei : M(mi ,ti) i? + {x : <i} h e2 : M(m2)t2) {mi < m2)
E h Let (mi ,m2,x : t\ ,e\ ,e2) : M(m2)i2)

jE + {/:*o-^M(mi,<i),a;:«o}f-ei :M(mi,<i) ,_ __ ^ .
(LIFT < mi]

E + {/ : t0 -> M(mi ,ii)} h e2 : M(m2,t2)

E h Letrec(/ : to -> M(mi,*i),a;: to,ei,e2) : M(m2,t2)

 E \-v v\ : ti ... E \-v vn : tn
Eh Tuple(vu...,vn) :M(ID,Tup(ti,...,tn))

E\-vv:Twp(.ti,...,tn) {0<i<n)
E \- Project(i,n,v) : M(ID,tj)

EY-Vv : Exn
E h Raise(M(EXN,t),«) : M(EXN.t)

Ehe:H(m,t) £ H„ t; : Exn -> M(m,t) (EXN < m)
E h Handle (m,e,u) : M(m,t)

E\- e : M(mi ,t) (mi < m2)
i? h Up (mi, 7712, e) :M(m2,t)

Figure 3: Typing rules for intermediate language

Integer _ : Int
True,False : Bool
DivByZero : Exn
Plus,Minus,Times : Arrow(Tup[Int,Int],M(ID,Int))
Divide: Arrow(Tup[Int,Int],M(EXN,Int))
Eqlnt.Ltlnt: Arrow(Tup[Int,Int],M(ID,Bool))
EqBool: Arrow(Tup[Bool,Bool],M(ID,Bool))
EqExn: Arrow(Tup[Exn,Exn],M(ID,Bool))
Writelnt: Arrow(Int,M(ST,Tup[]))

Figure 4: Typings for constants in initial environment

up functions generalize the more usual monad unit operations: wpjrj_>m(e) is equivalent to unitm{e).

Each monad m also has a conventional bindm operation which serves to compose computations in

m. Figure 5 gives semantic interpretations for types as complete partial orders (CPC's), and

for our monads, together with the associated up and bind functions. Note that the up functions

are defined in such a way that they compose, i.e., for all TUQ < m\ < 7712, we have upmo_>m2 =
uPmi->m2 ° uPmo-*m\-

A typed semantics for terms is given in Figures 6 and 7. Environments p map identifiers to

values. This semantics is largely straightforward. However, the Let construct now serves to make

the composition of monadic computations explicit, and the Up construct makes monadic coercions

explicit. Intuitively,

Let (mi, m2 , (x, t\) , e\, ei)

evaluates e\, which has monadic type M(mi ,£), performing any associated effects, hinds the result-

ing value to x : t\, and then evaluates e2, which has monadic type M(m2,^2)- Thus, it essentially

plays the role of the usual monadic bind operation; in particular, if mi = m.2, the semantic inter-

pretation of the above expression in environment p is just

bindmi(Sle1]p)(Xy.£le2lp[x := y])

However, our typing rules (Figure 3) require only that m-z > mi; i.e., e2 may be in a more effectful

monad than e\ The semantics of a general "mixed-monad" Let is

bindm^upm^^iSleijp^iXy.S^Mx := v))

The term Let(Up(mi,m2,ei) ,rri2,(x,t) ,ei,e2) has the same semantics, so the more general form

of Let is strictly redundant. But this form is useful, because it makes it easier to state (and recognize

left-hand sides for) many interesting transformations involving Let whose validity depends on the

monad mi rather than on m^- For example, a "non-monadic" Let, for which (Beta) is always valid,

is simply one in which mi = ID. Further examples will be shown in the next section.

The semantics of the "non-proper morphism" Handle(e,iO deserve special attention. Expres-

sion e may be in either EXN or ST, and the meaning of Handle depends on which; the ST version

T : vtyp -¥ CVO

Tflnt] = Z

T[Bool] = Z (0 represents false)

TfExn] = Z

T[Tup«i,...,tn)l = T[ti] x • • • x T[tn] (n>0)

T[Tup()l = 1

r[Arrow«i,M(m2,t2))l = Tlti]->Mlm2](TlhD

M : monad -» CVO -> CVO

M[IV]c = c

M[LlFT]c = c±
M{EM]c = (Ok(c) + Fail(Z))x

MlSTJc = State -> ((Ok(c) + Fail(£)) x State)x

bindii) x k = k x

bind^i-pj x k = k a if x = a±

_L iix = ±

binden x k = k a if x = Ok(a)x

Fail(6)x ifrr = Fail(6)x

1 if x = -L

bindc>j x k s = k a s' ifx s = (Ok(a),s')x

(Fail(6),S')x ifa;s = (Fail(6),s')±
1 if x s = -L

uPm~nn x = X

UPID->LIFT x = x±
uPlD->EXN x = Ok(x)x

UJ>ID-->ST x s = (Ok(x),s)x

"PLIFT-+EXN x = Ok(a)x if a; = ax

1 ifs = ±
UPLIFT->ST x s = (Ok(a),s)x if x = a±

± if as = X
UPEXN-*ST x s = (Ok(o),s)x if x = Ok(a)x

(Fail(fc). if ar = Eail(6)x

ifx = -L

Figure 5: Semantics of Types and Monads

V : (value : t) -> Env -> TM
V[Var v\p = p{v)

V[Const (Integer i)]p = i

V[Const True]p = 1

V[Const False]p = 0

VjConst Plusjp = plus

VjConst Dividejp = divideby

V[Const Writelntjp = ■writeint

V[Const DivByZerolp = divbyO

plus (01,02) = ai 4- 02

divideby (01,02) = Ok(oi/a2)x

Fail(divbyO) ±

State = [Z]
writeint a s = (Ok(), append(s, [a]))

divbyO = 42

if a2 ^ 0

if a2 = 0

(sequence of integers written so far)

Figure 6: Semantics of Values

must manipulate the state component. Note that there are two plausible ways to combine state

with exceptions; in our semantics we have given (as in ML), the state is not reverted when an

exception is handled. Incidentally, we don't have to give a semantics when c is in ID or LIFT.

because the typing rule for Handle disallows these cases. Of course, these cases might appear in

source code; when typed IR is generated for them, e must be coerced into EXN with an explicit Up.^

A Raise expression is handled similarly; the typing rules force it into monad EXN, so semantics

need only be given for that case, but the whole expression may be coerced into ST by an explicit

Up if necessary.

As mentioned above, our basic approach is not restricted to the totally-ordered set of monads

presented here. It extends naturally to any collection of monads forming a finite upper semi-lattice

under the up embedding operation. It does not suffice to have a partial order; we insist that any

two monads in the collection have a least upper bound with respect to embedding, so that we can

always find a unique monad into which two arbitrary expressions (e.g., the two arms of an if) can

be coerced. One might be tempted to describe such a lattice by specifying a set of "primitive"

monads encapsulating individual effects, and then assuming the existence of arbitrary "union"

monads representing combinations of effects. As the Handle discussion indicates, however, there

is often more than one way to combine two effects, so that it makes no sense to talk in a general

way about the "union" of two monads. Instead, it appears necessary to specify explicitly, for every

2Another possibility is to drop the entire Handle in favor of e, which by its type cannot raise an exception!

£ : (exp : M(vn,/,)) ->• Env ->

£[Val u]p =

£[Abs(z,e)]p =

f[App(ui,V2)]p =

£{lf(v,e1,e2)jp =

£{Letxec(.f ,x,ei,e2~)}p =

f [Tuple (vi,...,w„)lp =

£[Project(i,n,t>)]p =

£[Raise(M(EXN,0,v)]p =

£[Handle(m,e,u)]p =

f [Let(mi ,m2,x,e\ ,e2)\p =

£[Up(mi,m2,e)]p =

MH(7"W)
v[u]p
Ay.£[ejp[z := y]
(v[«i]p) (VMp)
i/(VHp)(£[ei]p)(£[e2]p)
£[e2](p[/ := /ix(A/'.At;.f [ei](p[/ := f',x := «]))])

(vh]ft...,vHrf
proJi(VHp)
(Fail(VHp))±

W/em(£[e]p)(VHp)

6in4.j(«pmi_»m2(5[ei]p))(Ay.£[e2]p[a; := y])

*/ v a« a/ at
af

pro;',; («!,..., w„) = Vi

handle^rf^ x h Ok(a)x

h a

1

handle^ x h s (Ok(o),S')i
has'

1

if v ^0

if « = 0

if x = Ok(a)x

if a; = Fail(a)j_

if a: = _L

if x s = (Ok(o),«')i

if x s = (Fail(a),s')j_
if x s = _L

Figure 7: Semantics of Expressions

monad m in the lattice,

• a semantic interpretation for m;

• a definition for bindm;

• a definition of upm^mi for each m' > m;3

• for each non-proper morphism NP introduced in m, a definition of npmi for every m' > m.

The lack of a generic mechanism for combining monads is rather unfortunate, since it turns the

proofs of many transformation laws into lengthy case analyses; we conjecture that the theory

of monad transformers [9] might help organize such proofs into simpler form, but have not yet

attempted to apply it.
3Since the (IdentUp) and (ComposeUp) laws (see Figure 8) must hold in a partial order, it suffices to define

uPm->m' f°r Just enough choices of m' to guarantee the existence of least upper bounds, since these definitions will

imply the definition for arbitrary m'.

10

(IdentUp) up(m,m,e) = e

(ComposeUp) Up(mo,m2,e) = Up(mi,m2, (Up(mo,mi,e))) (mo < mi < m2)

(Monadldi) Let(m2,m3,2;,Up(mi ,m2 ,e) ,&) = Let(mi,m3,x,e,b)

(MonadId2) Let(mi,m2,x,e>Up(ID,m2)x)) = Up(mi ,m2)e) (mi < m2)

(LetAssoc) Let(mi ,m3,a;,Let(m2)mi ,2/,ei ,e2) ,b) =
Let (m2, mi, y, e\, Let (mi, 7713, x, e2, b))

(m2 < mi, y g FV(6))

(LetrecAssoc) Let(mi ,m2)a:,Letrec(/,y,ei,e2) ,fc) =
Letrec (/, y, e\, Let (mi, m2, x, t<i, b))

(y £ FV(b))

(LetUp) Let(mi,m3,x,e,Up(m2,7713,6)) = Up(m2,m3,Let(mi ,m2,3:,f,W)
(mi < m2 < 7B3)

Figure 8: Generalized monad laws

4 Transformation Rules

In this section we attempt to motivate our IR, and in particular our choice of monads, by presenting

a number of useful transformation laws, which can be proved correct with respect to the denotational

semantics. (These proofs are straightforward but tedious, so are omitted here.) Of course, this is

by no means a complete set of rules needed by an optimizer; there are many others, both general-

purpose and specific to particular operators. Also, as noted earlier, not all valid transformations

are improvements.

Figure 8 gives general rules for manipulating monadic expressions. (MonadlDi), (MonadlDj).

and (LetAssoc) are generalizations of the usual laws for a single monad, which can be recovered

from these rules by setting mi = ID in (MonadlDi), and setting mi = m-i in (MonadID2) and

(LetAssoc). (LetrecAssoc) is the corresponding associativity rule for Letrecs. (LetUp) permits

us to move expressions with weak effects in and out of coercions. The remaining rules let us do

housekeeping on coercions.

Figure 9 lists some valid laws for altering execution order. We have full beta reduction for

variables bound in the ID monad (BetalD). In general, the order of two bindings can be exchanged

if there is no data dependence between them, and if either of them is in the ID monad (ExchangelD)

or both are in or below the LIFT monad (ExchangeLIFT). The intuition for the latter rule is that

it harmless to reorder two expressions even if one or both may not terminate, because we cannot

detect which one causes the non-termination. On the other hand, there is no similar rule for the EXN

monad, because we can distinguish different raised exceptions according to the constructor value

11

(BotalD) Let(ID,m,x,e,6) = b[e/x]

(ExchangelD) Let(mi,m3,:ci,ei,Let(m2,TB3,a;2>e2>b)) =
Let(rri2,m3,X2,e2,Let(mi,m3,Xi ,e\ ,b))

(mi = ID or m2 = ID;xi £ FV{e2);x2 & FV{ex))

(ExchangeLIFT) Let (mi ,m3,xi ,ex ,Let(m2,m3,X2,e2,b)) =
Let(rri2,m3 ,x2,e2,Let(mi ,m3,xi ,ei ,b))

(mi,m2 < LIFT; n £ FV(e2); x2 & FV{et))

(HoistID) Letrec(f,x,Let(ID,m2,y,ei,e2),b) : M(m,0 =
Let (ID, m, y, e\, Letrec (/,x, e2, b))

(f,x ? FVfa))

(HoistEXN) Letrec(/,a:,Let(mi)m2,2/)ei,e2),App(/,2)) =
Let (mi, m2, y, ex, Letrec (/, x, e2, App (/, 2)))

(m, < EXN; x,f $ FV{ex))

(IfTD) If (?),Let(ID,m,.T,Pi,e9) ,63) = LetdD.m.x.ei ,If (w,e2,e3))
(a; ^ FV{e3))

Figure 9: Exchange laws for monadic expressions

they carry. This is the principal point of difference between LIFT and EXN from an optimization

standpoint.

Rule (HoistID) states that it always valid to lift a pure expression out of a Letrec (if no data

dependence is violated). (HoistEXN) reflects a much stronger property: it is valid to lift a non-

terminating or exception-raising expression of a Letrec if the recursive function is guaranteed to be

executed at least, once. This is the principal advantage of distinguishing EXN from the more general

ST monad, for which the transform is not valid. Although the left-hand side of (HoistEXN) may

seem a crude way to characterize functions guaranteed to be called at least once, and unlikely to

appear in practice, it arises naturally if we systematically introduce loop headers for recursions [1],

according to the following law:

(Header) Letrec(/,£,e,6) : M(m,t) =
Let(ID,m,/,Abs(2,Letrec(/',a;)e[/7/],App(/',2))),6)

(/' $ FV(e))

Finally, we include the rule (IfID) as an example of the flexibility with which ID expressions can

be manipulated; there are similar rules for floating ID expressions out of other constructs.

As a (rather artificial) example of the power of these transformations, consider the code in

Figure 10. The computation of w is invariant, so we would like to hoist it above recursive function

r. Because the binding for w is marked as pure and terminating, it can be lifted out of the if using

(IfID), and can then be exchanged with the pure bindings for s and t using (ExchangelD). This

positions it to be lifted out of r using (HoistID). Note that the monad annotations tell us that w is

12

let f:(Int -> M(ID,Int * Int)) -> M(ST,Int) =
Ag:(Int->M(ID,Int * Int)).

letrec r:Int->M(ST,Int) =
Ax:Int.letID t:Int * Int = (x,l)

in letID s:Bool = Eqlnt(t)
in if s then

Up(ID,ST,0)
else

letID w:Int * Int = g(3)
in letID y:Int = Plus(w)

in letID z:Int * int = (x,y)
in letEXN x':Int = Divide(z)

in letST dummy:() = Writelnt(x')
in r(x')

in r(10)
in let h:Int->M(ID,Int * Int) = Ap:Int.(p,p)

in f(h)

Figure 10: Example of intermediate code, presented in an obvious concrete analogue of the abstract

syntax.

pure and terminating even though it invokes the unknown function g, which is actually bound to

h.

The example also exposes the limitations of monomorphic effects: if f were also applied to an

impure function, then g and hence w would be marked as impure, and the binding for w could not

be hoisted. In practice, it might be desirable to clone separate copies of f, specialized according to

the effectfulness of their g argument. Worse yet, consider a function that is naturally parametric

in its effect, such as map. Such a function will always be pessimistically annotated with an effect

reflecting the most-effectful function passed to it within the program. The obvious solution is to

give functions like map a generic type abstracted over a monad variable, analagous to an effect

variable in the system of Talpin and Jouvelot [14]. We believe our system can be extended to

handle such generic types, but we have not examined the semantic issues involved in detail.

5 Monad Inference

It would be passible to translate source programs into type-correct IR programs by simply assuming

that every expression falls into the maximally-effectful monad (ST in our case). Every source Let

would become a LetST, every variable and constant would be coerced into ST, and every primitive

would return a value in ST. Peyton Jones et al. [11] suggest performing such a translation, and

then using the monad laws (analogous to those in Figure 8) and the worker-wrapper transform [13]

to simplify the result, hopefully resulting in some less-effectful expression bindings. The main

objection to this approach is that it doesn't allow calls to unknown functions (for which worker-

wrapper doesn't apply) to return non-ST results. For example, in the code of Figure1 10. no local

13

ff H„ a: Bool ff Hei =» ei :M(m,t) ff H e2 =» e'2 : M(m,0

ff H If(u,ei,e2) =» If (u.ei.e^) : M(m,i)

ff Hei =» ej :M(mi,ti) ff + {x : h} H e2 =» e'2 : M(m2,t2) (mi < m2)

ff H Let(x,ei,e2) =$> Let(mi,m2,a: : t\,e\ ,e'2) : M(m2>i2)

ff H e => e' : M(mi ,2) mi < m2

ff H e => Up(mi,m2,e') :M(m2,0

Figure 11: Selected translation rules

syntactic analysis could discover that argument function g is pure and terminating.

To obtain better control over effects, we have developed an inference algorithm for computing the

minimal monadic effect of each subexpression in a program. Pure, provably terminating expressions

are placed in ID, pure but potentially non-terminating expressions in LIFT, and so forth. The

algorithm deals with the latent monadic effects in functions, by recording them in the result types.

As an example, it produces the annotations shown in Figure 10.

The input to the algorithm is an untyped program in the source language; the output is a

program in the typed IR. The algorithm performs ordinary type inference, monad inference, and

program translation simultaneously. The type inference aspect uses unification in a completely

conventional way, except that unifying the codomain mtyps of two arrow types requires unifying

their monad components as well as their vtyp components. We therefore omit a detailed description

of vtyp unification.

The translation aspect is also quite straightforward. We can turn each typing rule in Figure 3

into a translation rule simply by recording the inferred type and monad information in the appro-

priate annotation slots of the output and combining the translations of subterms in the obvious

manner. As examples, Figure 11 shows the translation rules corresponding to the typing rules for

If. Let. and Up. In cases where a monad or type appears in the translation output, such as mi

and t\ in the: Let rule, a fresh monad or type variable is created and inserted in the output for sub-

sequent instantiation. Type variables are instantiated by unification; the method of instantiating

monad variables is described below.

Excluding the rule for Up, the resulting translation rules form a deterministic, syntax-directed

algorithm for translation, giving an output program with exactly the same term structure as the

input. However, the resulting program may not obey the monadic constraints in the typing rules.

Consider, for example, the source term If (z.Val y,Raise z). Since Val y is a value, its transla-

tion is in the ID monad, whereas the translation of Raise z must be in the EXN or ST monad. To

glue together these subterm translations we must insert a coercion around the translation of the

Val term. The "translation" rule for Up is really a coercion insertion rule, which serves exactly this

purpose; it adds the necessary flexibility to the system to permit all monad constraints to be met.

14

Since this rule can be applied to any subexpression, it adds a problematic element of nondeter-

minism to the system. Our solution is to insert a (single) Up coercion around every subexpression,

and rely on a postprocessing step to remove unneeded coercions using the (IdentUp) rule. (The

complete Standard ML code for the translation routine is given in Appendix A.)

The final consideration is how to record and resolve constraints on the monad variables. Such

constraints are introduced explicitly by the side conditions in the Let, Letrec, and Up rules,

implicitly by the equating of monads from subexpressions in the If and Handle rules, and (even

more) implicitly as a result of ordinary unification of arrow types, which mention monads in their

codomains. The side-condition constraints are all inequalities of the form mi > m.2, where m\ is a

monad variable and m.2 is a variable or an explicit monad. The implicit constraints are all («qualities

m\ = 7712; for uniformity, we replace these by a pair of inequalities: m\ > 7712 and m2 > mi. We

collect constraints as a side-effect of the translation process, simply by adding them to a global list.

It is very common for there to be circularities among the monad constraints. To solve the

constraint system, we think of it as a directed graph with a node for each monad and monad

variable, and an edge from mi to m2 for each constraint mi > m2. We then partition the graph

into its strongly connected components, and sort the components into reverse topological order.

We process one component at a time, in this order. Since > is a partial order, all the nodes in a

given component must be assigned the same monad; once this has been determined, it is assigned

to all the variables in the component before proceeding to the next component. To determine the

minimum possible correct assignment for a component, we consult all the edges from nodes in that

component to nodes outside the component; because of the order of processing, these nodes must

already have received a monad assignment. The maximum of these assignments is the minimum

correct assignment for this component. If there are no such edges, the minimum correct assignment

is ID. This algorithm is linear in the number of constraints, and hence in the size of the source

program.

To summarize, we perform monad inference by first translating the source program into a

form padded with coercion operators and annotated with monad variables, meanwhile collecting

constraints on these variables, and then solving the resulting constraint system to fill in the variables

in the translated program. The resulting program will contain many null coercions of the form

Up(m,m,e); these can be removed by a single postprocessing pass.

Our algorithm is very similar to a that of Talpin and Jouvelot [14], restricted to a monomor-

phic source language. Both algorithms generate essentially the same sets of constraints. Talpin

and Jouvelot apparently solve the constraints using unification; the full details of the unification

algorithm are not given. It would be natural to extend our algorithm to handle Hindley-Milner

polymorphism for both types and monads in the Talpin-Jouvelot style. The idea is to generalize all

free type and effect variables in let definitions and allow different uses of the bound identifier to

instantiate these in different ways. In particular, parametric functions like map could be used with

many different monads, without one use "polluting" the others. (Note that functions not wholly

parametric in their effects would place a minimum effect bound on permissible instantiations for

15

monad variables.) This form of monad polymorphism seems desirable even in the absence of type

polymorphism (e.g., resulting from explicit monomorphization [17]).

In whole-program compilation, the complete set of effect instantiations would be known. This

set could be used to put an upper effect bound on monad variables within definition bodies and

hence determine what transformations are legal there. Alternatively, it could be used to guide the

generation of effect-specific clones as suggested in the previous section. Generalization of effect

variables would also support safe separate compilation, though drawbacks would remain: in the

absence of complete information about uses of a definition, any variable monad in the body of

the definition must be treated as ST, the most "effectful" monad, for the purposes of performing

transformations within the body.

6 Status and Conclusions

We believe our approach has the merits of simplicity and reasonable effectiveness. We have im-

plemented the monad inference algorithm for an extended version of the IR described here, which

supports full Standard ML; we are currently measuring its effectiveness using the backend of our

RML compiler system [17].

Acknowledgements

We have benefitted from conversations with John Launchbury and Dick Kieburtz, and from ex-

posure to the ideas in their unpublished papers [6, 7]. The comments of the anonymous referees

also motivated us to clarify the relationship of our algorithm with the existing work of Talpin and

Jouvelot.

References

[1] A. Appel. Loop headers in A-calculus or CPS. Lisp and Symbolic Computation, 7(4):337-343,

199-1.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[3] N. Benton. Personal communication, July 1997.

[4] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann machines

via region representation inference. In 23rd A CM Symposium on Principles of Programming

Languages (POPL'96), pages 171-183. ACM Press, 1996.

[5] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with contin-

uations. Proc. SIGPLAN Conference on Programming Language Design and Implementation,

28(6):237-247, June 1993.

16

[6] R. Kieburtz and J. Launchbury. Encapsulated effects, (unpublished manuscript), Oct. 1995.

[7] R. Kieburtz and J. Launchbury. Towards algebras of encapsulated effects, (unpublished

manuscript), 1997.

[8] J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Computation, pages

293-351, Dec. 1995.

[9] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In 22nd

ACM Symposium on Principles of Programming Languages (POPL '95), Jan. 1995.

[10] S. Peyton Jones. Compiling Haskell by program transformation: A report from the trenches.

In Proceedings of ESOP'96, volume 1058 of Lecture Notes in Computer Science, pages 18 44.

Springer Verlag, 1996.

[11] S. Peyton Jones, J. Launchbury, M. Shields, and A. Tolmach. Bridging the gulf: a common in-

termediate language for ml and haskel. In 25th A CM Symposium on Principles of Programming

Languages (POPL'98), San Diego, Jan 1998.

[12] S. Peyton Jones and P. Wadler. Imperative functional programming. In 20th ACM Symposium

on Principles of Programming Languages (POPL'93), pages 71-84, Jan. 1993.

[13] S. L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens. In Proc. Func-

tional Programming Languages and Computer Architecture (FPCA '91), pages 636-666, Sept.

191.

[14] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal of Func-

tional Programming, 2:245-271, 1992.

[15] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and Computation,

lll(2):245-296, June 1994.

[16] D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Compiler

for Standard ML. PhD thesis, Carnegie Mellon University, Dec. 1996. Technical Roport CMT-

CS-97-108.

[17] A. Tolmach and D. Oliva. From ML to Ada: Strongly-typed language interoperability via

source trans lation. Journal of Functional Programming, 1998. (to appear).

[18] P. Wadler. The marriage of effects and monads, (unpublished manuscript), Oct. 1997.

[19] A. Wright. Typing references by effect inference. In Proc. 4th European Symposium on Pro-

gramming (ESOP '92), volume 582 of Lecture Notes in Computer Science, Feb. 1992.

17

Appendix: Code for monadic inference translation

fun unify_typ (M(ma,ta),M(mb,tb)) =
(bound_monad(ma,mb); bound.monad(mb,ma); unify_vtyp(ta,tb))

and unify_vtyp (a:vtyp,b:vtyp) = ...unify.typ...

and bound_monad (ma:monad,mb:monad) = ...

fun type_value (env:id -> vtyp) (v:value) : typ = ...

fun wrap(e : exp.t as M(m,vt)) : exp * typ =

let val m' = new_monad()

in bound_monad(m',m);

(Up(m,m',e),M(m',vt))

end

fun translate_exp (env:id -> vtyp) (e: exp) : exp * typ -

case e of
Source.Val v => let val t' = type_value env v

in wrap(Val v, M(ID.t'))

end
I Source.Abs(x,e) =>

let val t = new_vtyp()
val (e',t') = translate.exp (extend env (x,t)) e

in wrap(Abs((x)t))e
,),M(ID,Arrow(t,t')))

end

I Source.App(vl,v2) =>
let val t = new_vtyp() and u = new_typ()

val tl = type_value env vl

val t2 = type.value env v2

in unify_vtyp(Arrow(t,u), tl');

unify_vtyp(t,t2');

wrap(App(vl,v2),u)

end

18

I Source.If(v,el,e2) =>
let val t' = type_value env v

val (el'.tl') = translate_exp env el
val (e2',t2') = translate_exp env e2

in unify_vtyp(t',Bool);

unify_typ(tl',t2');
wrap(If(v,el',e2'),tl')

end
I Source.Let(x,el,e2) =>

let val (el'.tl» as M(ml',vtl')) = translate.exp env el

val (e2',t2' as M(m2',vt2')) =
translate_exp (extend env (x.vtl')) e2

in bound_monad(m2',ml');
wrap(Let(ml,,m2',(x>vtl

,))el',e2'),t2')

end

I Source.Letrec(f,x,el,e2) =>
let val t = new_vtyp() and u as M(um,uvt) = new_typ()

val (el'.tl') =
translate.exp (extend (extend env (f.Arrow(t,u))) (x,t)) el

val (e2',t2') = translate.exp (extend env (f,Arrow(t,u))) e2

in unify_typ (tl'.u);
bound_monad(um,LIFT);
wrap(Letrec((f,Arrow(t,u)),(x,t),el',e2'), t2')

end

I Source.Tuple vs =>
let val ts = map (type_value env) vs

in wrap(Tuple vs,M(ID,Tup ts))

end
I Source.Proj(i.n.v) =>

let val t' = type_value env v
fun upto (x,y) = if x > y then [] else x::(upto (x+l,y))

val vts = map new_vtyp (upto (0,n-l))
val t = List.nth(vts,i) handle Subscript => raise Bad "Proj index"

in unify_vtyp(t'.Tup(vts));

wrap(Proj(i,n,v),M(ID,t))

end

I Source.Raise (v) =>
let val vt = new_vtyp()

val t = M(EXN,vt)
val t' = type_value env v

in unify_vtyp (t'.Exn);
wrap(Raise(t.v),t)

end
I Source.Handle(e,v) =>

let val u as H(um,uvt) = new_typ()
val (e',f) = translate_exp env e

val vt' = type_value env v

in unify_typ(u,t');

bound_monad(um,EXN);

unify_vtyp(vt'.Arrow(Exn.t'));

wrap(Handle(m,e',v),t')

end

19

