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Abstract 

Compilers for ML and Haskell use intermediate languages 
that incorporate deeply-embedded assumptions about order 
of evaluation and side effects. We propose an intermediate 
language into which one can compile both ML and Haskell, 
thereby facilitating the sharing of ideas and infrastructure, 
and supporting language developments that move each lan- 
guage in the direction of the other. Achieving this goal with- 
out compromising the ability to compile as good code as a 
more direct route turned out to be much more subtle than 
we expected. We address this challenge using monads and 
unpointed types, identify two alternative language designs, 
and explore the choices they embody. 

1    Introduction 

Functional programmers are typically split into two camps: 
the strict (or call-by-value) camp, and the lazy (or call-by- 
need) camp. As the discipline has matured, though, each 
camp has come more and more to recognise the merits of the 
other, and to recognise the huge areas of common interest. 
It is hard, these days, to find anyone who believes that lazi- 
ness is never useful, or that strictness is always bad. While 
there are still pervasive stylistic differences between strict 
and lazy programming, it is now often possible to adopt lazy 
evaluation at particular places in a strict language (Okasaki 
[1996]), or strict evaluation at particular points in a lazy one 
(for example, Haskell's strictness annotations (Peterson et 
al. [1997])). 

This rapprochement has not yet, however, propagated to 
our implementations. The insides of an ML compiler look 
pervasively different to those of a Haskell compiler. Notably, 
sequencing and support for side effects and exceptions are 
usually implicit in an ML compiler's intermediate language 
(IL), but explicit (where they occur) in a Haskell compiler 
(Launchbury k Peyton Jones [1995]). On the other hand, 
thunk formation and forcing are implicit in a Haskell com- 
piler's intermediate language, but explicit in an ML com- 
piler. These pervasive differences make it impossible to 
share code, and hard to share results and analyses, between 
the two styles. 

To say that "support for side effects are implicit in an ML 
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compiler's IL" (for example) is not to say that an ML com- 
piler will take no notice of side effects: on the contrary, an 
ML compiler might well perform a global analysis that iden- 
tifies pure sub-expressions (though in practice few do). How- 
ever, one might wonder whether the analysis would discover 
all the pure sub-expressions in a Haskeil program translated 
into the IL. In the same way, if an ML program were trans- 
lated into a Haskeil compiler's IL, the latter might not dis- 
cover all the occasions in which a function argument was 
guaranteed to be already evaluated. This thought motivates 
the following question: could we design a common compiler 
intermediate language (IL) that would serve equally well for 
both strict and lazy languages ? The purpose of this paper is 
to expiore the design space for just such a language. 

We restrict our attention to higher order, poiymorphically 
typed intermediate languages. There is considerable interest 
at the moment in type-directed compilation for polymorphic 
languages, in which type information is maintained accu- 
rately right through compilation and even on to run time 
(Harper k Morrisett [19951; Shao k Appel [19951; Tarditi et 
al. [1996]). Hence we focus on higher order, statically typed 
source languages, represented in this paper by ML (Milner 
k Tofte [1990]) and Haskell (Peterson et al. [1997]). 

At first we expected the design to be relatively straight- 
forward, but we discovered that it was not. In particular, 
making sure that the IL has good operational properties for 
both strict and lazy languages turns out to be rather subtle. 
Identifying these subtleties is the main contribution of the 
paper: 

• We employ monads to express and delimit state, in- 
put/output, and exceptions (Section 3). Using mon- 
ads in this way is now well known to theorists (Moggi 
[1991]) and to language designers (Launchbury k Pey- 
ton Jones [1995]; Peyton Jones k Wadler [1993]; 
Wadler [1992a]), but, with one exception1, no compiler 
that we know has monads built into its intermediate 
language. 

• We employ unpointed types to express the idea that 
an expression cannot diverge (Section 3.1). We show 
that the straightforward use of unpointed types does 
not lead to a good implementation (Section 3.6). This 
leads us to explore two distinct language designs. The 
first. C\, is mathematically simple, but cannot be com- 
piled well (Section 3). An alternative design, £2, adds 
operational significance to unpointed types, by guar- 
anteeing that a variable of unpointed type is evaluated 
(Section 4); this means £2 can be compiled weil, but 
weakens its theory. 

• We identify an interaction between unpointed types, 
polymorphism, and recursion in £1 (Section 3.5). In- 

1 Personal communication, Nick Benton, Persimmon IT Ltd, 1997. 
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terestingly, the problem turns out to be more easily 
solved in £2 than L\ (Section 4.2). 

None of these ingredients are new. Our contribution is to ex- 
plore the interactions of mixing them together. We emerge 
with the core of a practical IL that has something to offer 
both the strict and lazy community in isolation, as well as 
offering them a common framework. Our long-term goal is 
to establish an intermediate language that will enable the 
two communities to share both ideas (analyses, transforma- 
tions) and systems (optimisers, code generators, run-time 
systems, profilers, etc) more effectively than hitherto. 

2    The ground rules 

We seek an intermediate language (IL) with the following 
properties: 

• It must be possible to translate both (core) ML and 
Haskell into the IL. Extensions that add laziness to 
ML, or strictness to Haskell, should be readily incor- 
porated. We make no attempt to treat ML?s module 
system, though that would be a desirable extension. 

• In order to accommodate ML and Haskell the IL's 
type, system must support polymorphism. This ground 
rule turns out to have very significant, and rather 
unfortunate, impact upon our language designs (Sec- 
tion 3.5), but it seems quite essential. Nearly all exist- 
ing compilers generate polymorphic target code, and 
although researchers have experimented with compil- 
ing away polymorphism by type specialisation (Jones 
[1994]: Tolmach k. Oliva [1997]), problems with sepa- 
rate compilation and potential code explosion remain 
unresolved. 

• The IL should be explicitly typed (Harper & Mitchell 
[1993]i. We have in mind a variant of System F (Gi- 
rard [i990]). with its explicit type abstractions and 
applications. The expressiveness of System F really 
is required. For example, there are several reasons 
for wanting polymorphic arguments to functions: the 
translation of Haskell type classes creates "dictionar- 
ies" with polymorphic components: we would like to be 
able to simulate modules using records (Jones [1996]); 
rank-2 polymorphism is required to express encap- 
sulated state (Launchbury k. Peyton Jones [1995]); 
and data-structure fusion (Gill, Launchbury k. Pey- 
ton Jones [1993]). 

IL programs can readily be type-checked, but there 
is no requirement that one could infer types from a 
type-erased IL program. 

• The IL should have a single well-defined semantics. On 
the face of it, compilers for both strict and lazy lan- 
guages already use a common language, namely the 
lambda calculus. But this similarity is only at the 
level of syntax; the semantics of the two calculi differ 
considerably. In particular, the code generator from 
a strict-language compiler would be completely unus- 
able in a lazy-language compiler, and vice versa. Our 
goal is to have a single, neutral, semantics, and hence 
a single optimiser and code generator. 

• ML (or Haskell) programs thus compiled should be 
as efficient  as those compiled by a good ML (resp. 

Haskell) compiler. In other words, compiling through 
the common IL should not impose any unavoidable effi- 
ciency penalty, either by way of loss of transformations 
(especially when starting from Haskell) or by way of 
a less efficient basic evaluation model (especially when 
starting from ML). Indeed, our hope is that we may 
ultimately be able to generate better code through this 
new route. 

3    £i, a totally explicit language 

It is clear that the IL must be explicit about things that are 
implicit in "traditional" compiler ILs. Where are these im- 
plicit aspects of a "traditional" IL currently made explicit? 
Answer: in the denotational semantics of the IL. For ex- 
ample, the denotational semantics of a call-by-value lambda 
calculus looks something like this2 

£[ei e2]p =   (£[eiJ/>) b,   if a = b± 

_L, if a = ± 
where a = £[ei]p 

Here, the two cases in the right-hand side deal with the pos- 
sible non-termination of the argument. What is implicit in 
the IL - the evaluation of the argument, in this case - be- 
comes explicit in the semantics. An obvious suggestion is 
therefore to make the IL reflect the denotational semantics 
of the source language directly, so that everything is explicit 
in the IL. and nothing remains to be explicated by the se- 
mantics. This is our first design, L\. 

Figure 1 gives the syntax and type rules for L\. We note 
the following features: 

• As a compromise in the interest of brevity all our 
formal material describes only a simply-typed calcu- 
lus, although supporting polymorphism is one of our 
ground rules. The extensions to add polymorphism, 
complete with explicit type abstractions and applica- 
tions in the term language, are fairly standard (Harper 
k Mitchell [1993]; Peyton Jones [1996]; Tarditi et al. 
[1996]). However, polymorphism adds some extra com- 
plications (Section 3.5, 3.6). 

• We omit recursive data types, constructors, and case 
expressions for the sake of simplicity, being content 
with pairs and selectors. 

• let is simply very convenient syntactic sugar. It is not 
there to introduce polymorphism, even in the polymor- 
phic extension of the language: explicit typing removes 
this motivation for let. 

• letrec introduces recursion. Though we only give it 
one binding here, our intention is that it should ac- 
commodate multiple bindings. We use it rather than 
a constant fix because the latter requires heavy en- 
coding for mutual recursion that is not reflected in 
an implementation. We discuss recursion in detail in 
Section 3.5, including the unspecified side condition 
mentioned in the rule. 

• Following Moggi [1991], we express "computational ef- 
fects" — such as non-termination, assignment, excep- 
tions, and input/output — in monadic form. The type 

sWe use the following standard notation. If T is a complete partial 
order (CPO), then the CPO T±, pronounced «T lifted', is denned 
thus: T_ = {a± j o € T) U {-L}. with the obvious ordering. 
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Types T,P 

" 1 
Iatin->r>| () | (n,r2) 
Ref r | M r 

Terms e 
"~\ 

1 
1 

x\k\ei 02 | \x:r.e | (ei,e2) 
let x:r = ei in e2 
letrec x:r = e; in ej 
letw x:r<-ei in e-i |ret,vf e 

Constants k 
" 1 

fst | snd | new | rd | wr | liftToST 
0|1|2|...| + |-|... 

Monads M Lift | ST 

{VAR) 

{PAIR) 

{APP) 

{LAM) 

{LET) 

{REC) 

{LETM) 

{RET) 

{FST) 
{SND) 
{PLUS) 
{NEW) 
{RD) 
{WR) 
{LIFT) 

X:T€ r 

r h ei : n    T 1- e2 : rj 
ri- (ei,e2) : (.n.n) 

r 1- ei : r->p   r !- a2 : r 
r r ei e2 : p 

I\x:r F e : p 
n- Ax:r.a : r->p 

r !-ei : r    r.x:rt-e2:p 
T .u let x:r = ei in e2 : p 

r, x : r h ei : r    r, I: r L e; : p 
...plus a side condition... 

T r- letrec x:r = ei in 82 ■P 

T h ei : M ri     T7 x : r; t- e2 : M r2 

T (- let.vf x:ri <-ei in 82 : xV/r2 

ri-e:r 
T K ret.w e : .V/ r 

Thfst: (n.rs) -> Ti 
T .- snd : (n.ra) -> T2 
T f- + : Int -> Int -> Int 
r I- new : r -> ST (Ref r) 
r I- rd : Ref r -> ST r 
T I- wr : Ref r -> r -> ST 0 
T H liftToST : Lift r -> ST r 

Figure 1: Syntax and type rules for C\ 

M T is the type of .M-computations returning a value 
of type r, where M is drawn from a fixed family of 
monads. The syntactic forms let,v* and ret/w are 
the bind and unit combinators of the monad M. The 
only two monads we consider for now are the lifting 
monad, Lift, and the combination of lifting with the 
state transformer monad, ST. It is a straightforward 
extension to include the monads of exceptions and in- 
put/output as well. 

This use of monads appears to contradict our goal that 
£1 should have a trivial semantics. We discuss the 
reasons for this decision in Section 3.4. 

Figure 2 gives the semantics of C\. The semantic function 
. T gives the meaning of types. If it looks somewhat boring, 

T.Type -* CVO 
7[Int] = 2 

Tfa-^j = T[TI1-+7"IT2] 
T[(n,^)j = Tin] x T{n] 

71«! = 1 
7[Liftrj = T[T}± 

T[ST r] = State -*■ {T{r\ :< State)x 
T{Kef T] = Af 

State = j\f «-> UT T\T\ 

£ : Te.rmr -+ Env -+ TJr] 
£[x]p = p{x) 
£[k]p = k 

£{ei e2]p = (£{ei]p) (£[ea]p) 
£{\x.e]p = \y.£[e]p[x := y] 

^[(ei,e2)jp = {£{e\\p,£{ei\p) 
£[let x:r=ei in e2jp = £[e2Jp[x := £{e\\p\ 

£[letrec x:r = ei in 82jp = £\ei\{re.c{x, eijp) 
£{let\t x:r<-ei in e2]p = bindet (£[ei|p) 

(Ay.5le23p[x := y]) 
£fretM e]p = unitM {£{e\p) 

recix,e,]p = fix{\p'.p[x := 5[ex]p']) 

fst (a, b)    =   a 
snd (a, Ö)    =   b 

binduft m k    =    -L, 
k a, 

unituft x    =    ij. 

if m = JL 
if m = aj. 

bindsT rn k s    =   J-, if m s = 1 
k r 3', if m 3 = {r,s')± 

iinitsT rn .j    =    (m, s)j. 
neiu 7; a    =    (r, s[r ■->■ r/])x where r g dom(s) 

ni r s   =   (sr, 3)^., if r € dom(,j) 
J-, otherwise 

wrrvs    =    (O.afr H+WJJJ,, if r € dom(s) 
J-, otherwise 

UftToSTms    =    (r,a)x, if m = rj. 
JL, otherwise 

Figure 2: Semantics of £i 

that is the point! The function arrow in L\ is interpreted by 
function arrow in the underlying category of complete par- 
tial orders {CVO), product is interpreted by (categorical, i.e. 
un-lifted) product, and integers are interpreted by the inte- 
gers. (If £1 were expanded to have sum types, they would 
be interpreted by (categorical, separated) sums.) Lastly, 
each monad is specified by an interpretation. The monad 
of lifting is interpreted by lifting, while a state transformer 
is interpreted by a function from the current "state" to a 
result and the new state. The "state" is a finite mapping 
from location identifiers (modeled by the natural numbers, 
^0 to their contents. 

The semantic function £ gives the meaning of expressions. 
Again, many of its equations are rather dull: application 
is interpreted by application in the underlying category, 
lambda abstraction by functional abstraction, and so on. 
The semantics of the two monads is given by their bind and 
unit functions. From the semantics one can prove that both 
0 and 77 are valid with respect to the semantics, and that 
monadic expressions admit a number of standard transfor- 
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(Ml) let« K-retM e in 6 
(M2) letM x <- (letM y <- ei in e2) in 6 
(M3) letM x<-(let y = ei in e2) in 6 
(M4) letM x<-(letrec y = ei in e2) in 6 
(M5) let A* x<-e in ret** x 
(M6) let x = e in retw b 

let x:T«e in 6 
let« y<-ei in (letw x<-et in 6)    y g /w(6) 
let y = ei in (letw x<-e2 in 6) V £ /«(&) 
letrec y = ei in (letM x<-e2 in 6)    y £ /"(*>) 
e 
retM (let x » e in 6) 

Figure 3: Monad transformations 

mations, given in Figure 3. 

3.1    Termination and non-termination 

As we have mentioned, the interpretation of a type in £i 
is a complete partial order (CPO). However, the interpreta- 
tion of a type is not necessarily a pointed CPO; that is, the 
CPO does not necessarily contain a bottom element. For 
example, the data type of integers, Int, is interpreted by 
the unpointed CPO of integers, Z. That is, if an expression 
has type Int, then it denotes an integer, and cannot denote 
a non-terminating computation. How, then, do we express 
the type of possibly-diverging integer-valued computations? 
As we have seen.*£i has an explicit type constructor for 
each monadic (i.e. computation) type, of which lifting is 
one. To express the type of a possibly-diverging integer we 
use the lifting monad". A possibly-diverging integer-valued 
expression therefore has type Lift Int. 

So £i!s type system can distinguish surely-terminating ex- 
pressions from possibly-diverging ones. The main reason 
for making this distinction in the type system is so thai we 
can express the idea that a function takes an evaluated argu- 
ment. The L\ lambda abstraction \x:Int.e expresses that 
x cannot possibly be J_. and so is a suitable translation of a 
lambda abstraction from a call-by-value language. On the 
other hand \x:Lift Int.e expresses that r might perhaps 
be _L, which fits a call-by-name or call-by-need language. 

A second motivation for distinguishing pointed types from 
unpointed ones is that some useful program transforma- 
tions that are not valid in general, hold unconditionally 
when one has more control over pointedness. Several re- 
searchers have explored languages that employ a distinc- 
tion between pointed and unpointed types (Howard [1996]; 
Launchbury & Paterson [1996]), and others have explored 
pure languages without pointed types altogether (Cockett 
k. Fukushima [1992]; Hagino [1987]; Turner [1995]). The 
presence of unpointed types has consequences for recursion, 
as we discuss in Section 3.5. 

3.2    Stateful computations 

In a similar way, we use the ST monad to express in the type 
system the distinction between pure and stateful computa- 
tions. For example, an expression of type Lift Int denotes 
a pure (side-effect free), albeit possibly-divergent, computa- 
tion; on the other hand, and expression of type ST Int de- 
notes a computation that might diverge3, or might perform 
some side effects on a global state and deliver an integer. 
Further monads can readily be added to model exceptions, 
or continuations, or input/output. 

3ST combines lifting with state.   It would be possible to separate 
the two. as we discuss in Section 7. 

Types     5, T   : :=   Int|()|S*T|S-+T|RefS 
Haskell only |    ST 5 

Terms   M, N   : :=   x\i\M N\\x:T.M\M + N 
|   letrec x:T = M in N 
|   let x:T = M in N 
|    pair M N | fst M | snd M 
|   new M | rd M | wr M N 

Haskell only j   letsT x:T*-M in N | retST M 

Integers          t   • :=    0|1|2|... 

"ML" constants 
new Va.a —► Ref a 

rd Va.Ref a —» a 
wr :    Va.Ref a -* a -+ () 

"Haskell" constants 
new Va.a -»• ST (Ref a) 

rd Va.Ref a-tSTa 
wr Va.Refa-^a-r ST () 

Figure 4: Syntax of 5 

This use of monads is well known. Moggi pioneered the 
idea of using monads to encapsulate computations (Moggi 
[1991]; Wadler [1992a]). The lazy functional programming 
community has been using monads very effectively to isolate 
and encapsulate stateful computations and input/output 
within pure, lazy programs (Launchbury & Peyton Jones 
[1995]; Peyton Jones, Gordon & Finne [1996]; Peyton Jones 
k. Wadler [1993]; Wadler [1992b]). Nevertheless, there are 
surprisingly subtle design choices to make, as we discuss in 
Section 3.4. 

3.3    Translating ML and Haskell into L\ 

Before discussing its design any further, we first emphasise 
£i's role as a target for both strict, stateful, and pure, lazy 
languages by giving translations from both into £i. Figure 4 
gives the syntax of a tiny generic source language, S. We 
regard 5 as a prototype for either ML or Haskell, by giving 
it a strict or lazy interpretation respectively. In either case, 
5 is assumed to have been explicitly annotated with type 
information by a type inference pass. 

The constants pair, fst, snd have the same (obvious) 5 
types in both interpretations. The constants new,rd,wr 
create, read, and write a mutable variable.   Unlike pair, 

52 



A4 [Int] = Int 
M[S*T]= <.M[S],MlT]) 

M[0] = 0 
M[S -*• T\ = M[S] -> ST M[T] 
.M[RefS]=Ref (M[S\) 

M[x] =retsT x 
M[i] — retgr i 

M[M iV] = latST f<-M{M] in 
letST a<-M[N] in 
/a 

M[Ax:T..Vf] =retST (\x:M{T].M[M]) 
M{let x:T = M in N] 

= lets! x:M[T] <-M[M] in A*i[AT] 
.M [letrec f:S ■+ T = Ai: S.Af in :V| 
= letrec f:M[S-*T\-\x:M[S].M[M] in M[N] 

M\pair M N] = letgr a <_ X(MJ in 
letST b<-M{N] in 
retsT (a,&) 
... and similarly wr. ■+- 

M[fst M] = letST a<-M[M] in 
retgx fst a 
... and similarly snd, new, rd 

H\lnt] = Lift Int 
u{s * T] = Lift («IST ,-Hfrp 

H[0] = Lift  0 
. H{S -* TJ = W[S] -> H{T] 

H\ST T] = ST t,H{T]) 
«[Ref S] = Lift (Ref (TiJS])) 

H[s] = i 
"HftJ = rati if~ i 

H{M N] = H{M\ H\N] 
H\\x:T.M] = \x: H[T] . H[M] 

«[let x:T = :V/ In .V] = let x:HlT] =H{M] in H[N] 
H [letrec z:T = M in iV] 

= letrec x:H{T] = H{M\ in «[iV] 
«[pair .V/ N\ = retLiit («[MJ .«[iV]) 

HIM + .V] =   letLiJt a<-«[A/]j in 
letLiJt &<-«JN3 in 
retT.ift  (+ a &) 

«[fst A/] = letilfl'a<-H{M] in fst a 
... similarly snd 

«[wr iV/ iV| = letST a <-lif tToST «[Ml in 
wr a H[N] 
... similarlv new. rd 

H[letST x-.T^MinN] 
= letST i:«[T]<-«[M] in H[N] 

«[retST M] = retST 

Figure 5: Translations of "ML" and "Haskell" into £i 

their types differ in the two interpretations, as Figure 4 
shows. In the lazy interpretation their types explicitly in- 
volve the source-language ST monad, and 5 also includes 
letsT and retsT, the unit and bind operations for ST. Mod- 
ulo syntax, this is precisely how Haskell expresses stateful 
computation (Launchbury &z Peyton Jones [1995]). 

Then Figure 5 gives two translations of <S into A: 

• The 'ML'' translation. M*. gives ehe source language 
a stateful, strict, semantics. The result of a term trans- 
lated by M is a computation in the ST monad, and 
functions also return computations in ST. That is, if 
the ML tvpe system considers that F H- e : r, then 
M[T]hM[el :ST,K[rjj. 

The rule for application uses letgx to evaluate both 
the function and its argument, and to sequence any 
state changes they contain, before applying the func- 
tion to the argument. In expressions produced by 
the M translation, each variable is bound to a non- 
monadic type; that is, any effects (state or non- 
termination) are performed before binding the vari- 
able. When a variable, lambda, or pair is translated 
we simply return the value using retgx- Lastly, a re- 
cursive ML declaration can only bind a function: hence 
the rule for letrec. 

• The "Haskell" translation, H, gives the source lan- 
guage (minus the state-changing operations) a pure, 
non-strict semantics. A key difference from the ML 
translation is that the Haskell translation of data 
types, such as integers, pairs, and lists, are lifted, be- 
cause Haskell allows values of these types to be recur- 
sively denned, unlike the ML translation, the transla- 
tion of Haskeil's function type does not need to have 
an explicit Lift on the codomain. Nor does the trans- 
lation H necessarily return a Lift computation: if the 
Haskell tvpe svstem concludes that T r- e : r then 
U\X\ r U\t\ : :H[r]. 

« translates Haskeil's ST-monad computations di- 
rectly into Ci's ST monad, just as you would hopeD. 
The oniy tiresome point is that the first argument of 
wr has source-language type Ref r, and hence has 
£i type Lift (Ref H[r]). It must therefore be lifted 
into the ST monad using liftToST so that it can be 
evaluated in the ST monad. 

It is interesting to compare the two type translations. M 
uses exactly the call-by-vaiue translation of Wadler [1992ai, 
with the computational effect at the end of the function 
arrow. On the other hand H does not use Wadlers call-by- 
name translation, as one might otherwise expect. Indeed, 
there is no monadic effect in the translation of function types 
at all; instead the Lift monad shows up in the translation 
of data types. 

This translation of Haskell function types assumes that 
\r.bot and bot, where bot has value -L, denote the same 
value in Haskell. Recent changes to Haskell are likely to al- 
low these values to be distinguished, forcing a lifting of func- 
tion types, and hence a more gruesome encoding of function 
application. 

3.4    Why not encode the monads? 

We have said that £i is meant to make everything explicit, 
so that there is nothing to be said when giving its semantics. 
In apparent contradiction, we made the semantics of the 
monads implicit — that is, explained only by the semantics 
of £i. Why, for example, did we not make the ST monad 

■"The translation given here introduces quite a few "administrative 
redexes"; a slightly more complex translation can avoid them (Sabry 
Si Wadler [1996)). 

5We do not treat the runST encapsuiator of Launchbury it Pey- 
ton Jones [1995) here, but it is easy to do so. 
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explicit by representing a value of type ST r as a state- 
transforming function in £1, and representing letgr and 
retgT using the other £1 forms? For example, instead of 
the L\ term 

letsj i <- e in b 

we could write the £1 term 

bindST e (\x.6) 

where bindST is defined (directly in £1) as follows 

bindST = \m k s.let p=m s in k (f st p) (snd p) 

Here, the state passing is made explicit, but the state itself 
is still abstract, supporting the new-, read and write oper- 
ations. This is the approach advocated by Launchbury k 
Peyton Jones [1995, Section 9]. It has the notable advantage 
that we can simplify £1 by getting rid of let** and ret« 
entirely. 

We do not adopt that approach here, for three reasons: 

• Encoding the monad in purely functional terms is a 
reasonable way of giving its semantics, but it may not 
be a reasonable way of giving its implementation. Con- 
sider, for example, the monad of exceptions in a strict 
langnage. The functional encoding would perform a 
conditional test whenever a possibly-exceptional value 
was bound: but the expected implementation is stack- 
based with no tests. Instead, a whole chunk of stack 
is popped when an exception is raised. Keeping the 
monad explicit in £i allows the code generator to gen- 
erate efficient code. 

• Even where an efficient code-generation strategy does 
exist, its correctness may be fragile. For exam- 
ple, Launchbury k. Peyton Jones [1995] describes an 
update-in-place implementation of the primitive op- 
erations (read and write) in the state monad. How- 
ever, that implementation is only correct if the state 
is singie-threaded. That is certainly the case in the 
terms produced by M, but it might not remain the 
case after performing £; transformations. For exam- 
ple, a ö-expansion might duplicate the state. 

It may be possible to preserve the single-threadedness 
of the state by limiting the transformations performed 
on the £i program. (For example, we believe that 
using only transformations that are correct in a call by 
need calculus is sufficient (Sabry [1997]).) Even where 
this is true, it creates a complicated proof obligation. 

• There may be useful transformations available that are 
specific to a particular monad (for example, swapping 
the order of non-interfering assignments), but which 
become inaccessible, or hard to spot, when expressed 
in a purely-functional encoding of the monad. 

We find these reasons compelling. On the other hand, we 
were concerned that by not translating the monadic code 
into a core of £i we might lose valuable transformations. So 
far, however, we have found no transformation that cannot 
be expressed in the monadic version of £i, providing the 
standard monad laws are implemented (Figure 3). 

3.5    Recursion in L\ 

One consequence of our decision to allow a type to be mod- 
eled by an unpointed CPO is that we have to take care 

I- (Lift T) pomted 

t- (ST r) pointed 

I- T\ pointed 
t- (T2 -> T\) pointed 

V T\ pointed   I- Ti pointed 
t- (n ,T2> pointed 

Figure 6: Rules for pointed types 

with recursion. The rule (REC) in Figure 1 suggests that a 
letrec can be constructed at any type. But that is not so. 
Consider 

letrec r:Int = ...x... in ... 

Such a recursive definition is plainly nonsense, because Int 
is an unpointed type and has no bottom element, so there 
might be no solution, or many solutions, to the recursive 
definition. We can only do recursion over pointed CPOs!6 

How. then, can we make sense of recursion? One solution 
is to link recursion to the Lift monad, since Lift adds a 
bottom to its argument domain: 

{RECa) 
T. x : Lift r I- ei : Lift r    T,x : Lift r !- &i : p 

T I- letrec x:r = ei in ej : p 

This solution is not very satisfactory. For a start, it cannot 
type: 

letrec t = \x. ... in ... 

because the type of a lambda abstraction has the form 
r —*• p, not Lift r, and lifting all functions raises the spec- 
tre of having to force the definition on each recursive call. 
Nor can it type recursive definitions of ST computations. 
Furthermore, this loss of expressiveness is completely un- 
necessary, since a function type whose result type is pointed 
is itself pointed: and any ST computation is pointed. The 
right solution is to fix (REC) by adding a side condition that 
r must be pointed: 

{RECb) 

T,x : r I- ei : r 
r,x : rh ei : p 
h* r pointed 

Fl- letrec x:r = ej in ei : p 

Figure 6 gives rules for determining when a type is pointed. 
Unfortunately, the extension to a polymorphic type system 
is problematic: is the type a pointed or not? There are three 
possible choices: 

• We could decide that type variables can only range 
over pointed types. This is precisely the restriction 
proposed by Peyton Jones & Launchbury [1991], but 
it is unacceptable in our IL because we expect (the 
translations of) most ML data types to be unpointed. 
For example, an ordinary, non-recursive polymorphic 
function such as the identity function could not be 
applied to both 3 and retort 3, because one has a 
lifted type and one does not. 

6There is a substantial literature on the categorical treatment of 
recursion (for example. Pitts [1996]), but the discuuion of thi« lection 
focuses on the specific setting of CVO. 
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• We could allow type variables co range over all types, 
but prohibit recursion at a type variable. This would 
irritatingly reject recursive functions whose result type 
is a type variable, such as the function nth that selects 
the rt'th element from a list. 

nth : Va.Iat -> (List a) -> a 

• Alternatively, we could employ qualified universal 
quantification, where type variables at which fixpoints 
are taken are explicitly qualified: 

nth : VQ 6 Pointed .Int -> (List a) -> a 

Launchbury Sc Paterson [1996] elaborate on this idea. 

Since the first two choices are untenable, we conclude that 
adding polymorphism to a language with both recursion and 
unpointed types, requires the use of qualified universal quan- 
tification. 

3.6    Controlling evaluation in £L 

While £i seems to be quite suitable from a theoretical point 
of view, it suifers from a serious practical drawback: £i is 
vague about the timing and degree of evaluation. Consider 
the £i expression: 

let »e in f x 

What code should the code generator produce for such an 
expression? 

• An ML compiler writer would probably expect the 
code to evaluate the right-hand side of the let, and 
then call f passing the value thus computed. But this 
eager strategy is incorrect in general if s diverges, and 
f does not evaluate its argument, as a quick glance at 
Figure 2 will confirm. 

• A safe strategy is to build a thunk (suspension) for 
the right-hand side, bind x. to this thunk, and call f 
passing the thunk to it. That is precisely what the 
code generator for a lazy language would do. 

Now suppose that we are compiling code for f, and that 
f has type Int -> Int. The major motivation for distin- 
guishing Int from Lift Int was to allow the compiler to 
treat values of type Int as certainly-evaluated, just as a 
strict-language compiler would assume (Section 3.1). It is 
unacceptable for f to test whether its argument is evaluated; 
such a choice would guarantee that no ML compiler would 
use this intermediate language! Alas, the safe strategy for 
preparing the f's argument does indeed pass an unevaluated 
thunk, so f must be prepared for this eventuality. 

Can we instead use a hybrid strategy? 

• A hybrid strategy for compiling let expressions might 
use the type of the bound variable to decide what to 
do: for types whose values are sure to converge (such 
as Int) it can evaluate the right-hand side eagerly, oth- 
erwise it can build a thunk. This strategy works for 
a simply-typed language but fails (again!) when we 
introduce polymorphism. What is the code generator 
to do with a let that binds a value of type a? Either 
the instantiating type must be passed as an argument, 
or we must have two versions of the code, one for ter- 
minating types and one for possibly-diverging ones. 

We regard these complications as a very serious (and far 
from obvious) objection to using £i for operational pur- 
poses. 

3.7    Summary 

We expected it to be a routine matter to translate both 
Haskeil and ML into a common language built directly on 
top of the standard mathematics for programming-language 
semantics. To our surprise it was not, as Sections 3.5-3.6 
describe. 

£i may still be quite useful as a kernel language for rea- 
soning about programs. However, as Section 3.6 has shown, 
it is unsuitable as a compiler intermediate language. Thus 
motivated, we now turn our attention to a second design 
that is more suitable as an IL. 

4    £T? a language of partial functions 

Our second design starts from the problem we described in 
Section 3.6. Operationally, it is essential no be able to con- 
trol exactly when evaluation takes piace. so that the recipi- 
ent of a value knows for sure whether or not it is evaluated. 

Since we want to control what evaluation is done when, the 
obvious thing to do is to make let (and. of course, function 
application) eager. That is, to evaluate let x:r = e in b 
one evaluates a, binds it to x, and then evaluates b. (We 
use the operational term "eager", rather than the semantic 
term "strict" because the latter does not mean anything if 
the type of £ has no bottom element.) How. then, are we to 
translate the lets and function applications of a lazy lan- 
guage? There is a standard way to do so. namely by making 
the construction and forcing of thunks explicit (Friedman ic 
Wise [1976]). This is what we do in £2- 

Figure T gives the syntax and extra type rules for £•>. There 
is now onlv one monad. ST; the Lift monad is now implicit 
in the semantics of £2 so that let and function application 
can be eager. There is a new syntactic form. <e>, that sus- 
pends the evaluation of e, and a new constant, force, that 
forces the suspension returned by its argument. There is 
one new type, <p>, which is the type of <e> if e has type p. 
The two new type rules. {DELAY) and (FORCE) are just 
as you would expect. 

Another new feature is that types are divided into value 
types, r, and computation types, p. Intuitively, an expression 
has a computation type, while a variable is always bound to 
a value type. Another way to say this is that the typing 
judgement now has the form 

{x\ : Ti,...,x„ r„; I- e : p 

The type rules of Figure 1 apply unchanged, because we 
carefully used r and p in the right places, although they were 
synonymous in £i. Function arguments and the right-hand 
sides of let(rec) expressions all have value types, and are 
evaluated eagerly. This separation of value types from com- 
putation types neatly finesses the awkward question of what 
it means to "evaluate" an argument computation without 
also "performing'' it, which caused us some heart-searching 
in earlier un-stratified versions of £2. For example, the ex- 
pression (f (read r)) is ill-typed, and hence we do not 
have to evaluate (read r) without also performing its state 
changes. Indeed, expressions of type ST r can only occur as 
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Computation types p 
Value types r 

;:=     MT\T 
::=    Int | r->p \ 0 | (n ,T2) 

]    <p>I Ref T 

Terms   e   :: 

Constants   k 
Monads M 
Values   v 

PValues pv 

=   ar|fc|ei e2|\x.e|(ei,e2>|<e> 
let x:r=ei in e2 

letrec x:r=pv in e 
letM x:r<-ei in e2 | retw e 

:= ...|force 
.:= ST 
::= x\k\\x:r.e\<e>\(.vi,V2) 
::= \x:r.e|<e> 

The type rules from Figure 1, plus... 

T\-e:p 
{DELAY) 

(FORCE) 

r \- <e> : <p> 

T h force : <p> -> p 

Figure 7: Extra syntax and type rules for Li 

The translation M from ML to Li 
is textually the same as in Figure 5 

«IInt]j = Int 
U[S*T} = «U[S}> ,<H[T\» 

H10] = 0 
H[S - T\ = <H[S\> -> W\ 
WIST T] = ST <U[T}> 
«IRefSI=Ref <«[S1> 

Wjxj = force x 
W[t] 

W[Aar N] 
«[Ax:T.MI 

«{let x:T = Af inJV] 

«[letrec x:T = Af inNJ = 

«[fst AT] = 
«[pair M N} = 

«[M + ATI = 
«[wr M N] = 

«[letST x:T-f-Af in N] = 

«fretsT Ml = 

«[MI <U[N]> 
\x:<H{T)>.HlM) 
letx:<«[T}> = <«[Ml>in 
■H[N} 
letrec x:<U{T\>'<K{M\> 
in«[JV] 
force (fst U\M\) 
«-H[M]>,<H[N\» 
+ «[Ml K[JV] 
w «[Ml W[W] 
...similarly new,rd 
letsT X:<«|T|><-WIW1 
in«[N] 

: retst W[MI 

Figure 9: Translations of "ML" and "HaskelT into £2 

the right hand side of a l.tsr, the body of a function, or 
as the value of the whole program. Finally, when polymor- 
phism is introduced, type variables range over value types 

only. 
Figure 8 gives the semantics of Li in full. The crucial point 

is that £2
:s function tvpe arrow is now interpreted as the 

CPO of partial functions, denoted "-*", and the semantic 
evaluation function € takes an expression to a partial func- 
tion from environments to values. Many of the equations 
are defined conditionally. For example, the equation for 
£[ei ei]p savs that if both S[ei)p and £\ei]p are defined 
then the result is just the application of those two values; 
otherwise there is no equation that applies for 5[ei e2Jp, so 
it too is undefined. 

The < > type constructor is modeled using lifting; the se- 
mantics of force and <_> move to and fro between lifted 
CPOs and partial functions. It may seem odd that we use 
two different notations — Lift r in £iand <r> in Li— with 
the same underlying semantic model, namely lifting. The 
reason is that in A we use lifting as a monad (with a bmd 
operation, for example), whereas in Li we use it to model 
thunks (with a force operation but no bind). 

The entire semantics of Li could instead be presented in the 
CPO of total functions, using the isomorphism: 

S ->■ T = S -4 Tx 

Which to choose is just a matter of taste. What we like 
about our presentation is that each Li type constructor cor- 
responds directly to a single categorical type constructor, 
whereas in the alternative presentation the Li function type 
gets a more "encoded" translation. Launchbury k. Baraki 
[1996] use partial functions in essentially the same way. 

The translation of "ML" into Li is exactly the same as the 
translation of &. The translation of "Haskell" is differ- 
ent however, because we now have to be explicit about the 
introduction of thunks (Figure 9). Concerning types, no- 
tice the use of the tvpe constructor <_> on the arguments 
of functions and data constructors. Concerning terms, the 
thunk-former <_> is used for function arguments and the 
right-hand side of all let and letrec definitions. Thunks 
are evaluated explicitly, using force, when returning a van- 
able or the result of f st or snd. 

4.1     Controlling evaluation in Li 

The main benefit of using Li is that its semantics permit 
an eager interpretation of vanilla let; namely, "evaluate the 
right-hand side, bind the value to the variable, and then 
evaluate the bodv". A consequence is that any variable of 
type other than <V>, or a type variable (which might be in- 
stantiated to <r>), is sure to be fully evaluated, just as in 
any ML implementation. 

4.2    Recursion in £2 

Another advantage of Li is that we can solve our earlier 
difficulties with recursion (Section 3.5) witnout requiring 
bounded quantification. 

Firstly, we more or less have to restrict letrecs to bind 
only syntactic values, because we cannot eagerly evaluate 
the right-hand side. (Why not? Because we cannot con- 
struct the environment in which to evaluate it.) That m 
turn means that the meaning of the right-hand side is al- 
ways defined, which is why there is no side condition in the 
semantics of letrec. 

But Figure 7 further restricts the right-hand side of a letrec 
to be a particular sort of syntactic value, a pointed value, or 
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T: Type —► cvo 
T[Ia.t] = 2 

T\n->ri] = T[ri]->-Tln] 
T[(n.T5)l = Tin] x T{n\ 

ri<r>i = T± 
TJST T\ SB State ->• {T\T\ x State) 

TfRef r] S= JV 

£ : Term,. -+ Env _>. 
T\T\ 

£{x]p = p(x) 

£{k]p = k 
£[ei e{\p = (£{ei]p) (f[ea]p), if £[ei]p and £[e2]p are defined 
£{\x.e\p = Xy.£[e]p[x := y] 

£[(.e\,e2)\p = (£{ei\p,£{ei\p), if £{e\]p and £[e2Jp are defined 
£[lat X:T=öI in e^jp s= £lei}p{x := £[ex]p], if £fei|p is defined 

£[latrec x:r*pv in e]p = £l«](/tx(Ap'.p[x := £\pv\p'\)) 
£[let,vf i:r<-ei in e2]p = bindM (£fei]p) (Ay.£[e2Jp[x :s= y]), if £\e\\p is defined 

£[ret,w e]p s= jimiM (£Ie]p), if £{e]p is defined 
£{<e>]p = (flejp)i. if £[ejp is defined 

X, otherwise 

fst (a, 6) = a 
and (a,b) as & 
force a±. ss a 

bindsr m k s — fc r s', if ms = (r, s')x 
unitsT TTL s s= (m,s) 

new v s s= (r. s[r <-* v]) where r 5? dom(s) 
rdr 3 = (s r,s), if r € iiom(s) 

wr Tvs = ((Mr-► uj), if r £ (iom(i-) 

Figure 8: Semantics of £> 

PVaZwe. The syntactic category of PVaLues is chosen so 
that it can only denote a value from a pointed domain, and 
hence a letrec definition always has a least fixpoint. To see 
this, consider the forms that a PValue can take: 

• A lambda abstraction denotes a partial function, and 
the CPO of partial functions is always pointed: its least 
element is the everywhere undefined function. 

• A thunk <e>, where e 
CPO rirji. 

r, is drawn from the pointed 

Fortunately, the syntactic restriction of letrec does not lose 
any useful expressiveness. ML insists that letrecs bind only 
functions (which are PValues), while Haskell binds thunks 
(which are also PValues). So there is no difficulty with 
translating the recursion arising in both ML and Haskell 
into C-2. 

computations in ST must be maintained, whereas let bind- 
ings can be re-ordered freely. Changing the order of evalua- 
tion is fundamental to several useful transformations, in- 
cluding common sub-expression, loop invariant computa- 
tions, all kinds of code motion (Peyton Jones, Partain k. 
Santos [19961), inlining, and strictness analysis (remember 
we may be compiling a lazy language into C\). To take a 
simple example, the following transformation is not in gen- 
eral valid for letSx, but is valid for vanilla let (assuming 
there are no name clashes): 

let xi-ei ia let X2 -et in & 

let 12 = e2 in let ti*ei in & 

Of course, one could do an effects analysis to determine 
which sub-expressions were pure, as good ML compilers do, 
... but that is effectively just what the monadic type system 
records! 

4.3    Why not have just one monad? 

Now that we have eliminated the Lift monad, and made 
vanilla let eager, there is another question we should ask: 
why not give vanilla let the semantics of letsx, and elimi- 
nate the latter altogether? To put it another way, we have 
made eager evaluation implicit in the semantics of let; why 
not add implicit side effects as weil? After all. the code gen- 
erated for letgx x <- e in b will be something like "the code 
for e followed by the code for b", and that is just the same 
as the code we now expect to generate for let x a e in b. 

However, if we have just one form of let we lose valuable 
optimising transformations.  In particular, the sequence of 

5    Assessment 

5.1    C\ vs Co 

What have we lost in the transition from £1 to £2, apart 
from a somewhat more complicated semantics? One loss is 
£1 's ability to describe types whose values are sure to termi- 
nate. If a £1 function has type Int->Int then a call to the 
function cannot diverge; but the same is not true of £2. This 
does not have much impact on a compiler, but it make pro- 
grammer reasoning about £2 programs more complicated. 
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Another important difference is that £2 has a weaker B rule. 
L\ has full 0-conversion. That is, for any expressions e and 

let x = e in b = tye/z] 

(A similar rule holds for application, of course.) In £2, how- 
ever 3 does not hold in general. A particular case of this us 
that if x is not mentioned in b then in £] the binding can 
be discarded; in £2 the binding can only be discarded if the 
right-hand side is a value. 

However ßv — a restricted version form of 8 that allows 
only values to be substituted — is valid in £2. Values are 
defined in Figure 7, and include variables, constants, and 
lambda abstractions, as usual. However, values also include 
thunks. Hence any Haskeil ß reduction has a corresponding 
ßv reduction in its £2 translation. Thus, the restriction to 
ßv will not prevent a Haskell compiler from domg anything 
it can do in an implicitly lazy language with a full ß rule. 

Thus far we have assumed a call-by-name semantics, in 
which we are content to duplicate arbitrary amounts of work 
provided we do not change the overall result. In practice no 
compiler would be so liberal; we desire a call-by-need se- 
mantics in which work is not duplicated. As Ariola et al. 
[1995] describes, we can give a call-by-need semantics to 
£j by weakening ß to ßv and adding a garbage-collection 
rule that allows an unused let binding to be discarded. An 
analogous result holds in £2: we can obtain call-by-need se- 
mantics by replacing <e> by <v> in the definition of values 
in Figure 7. 

5.2    £2 vs Haskell and ML ILs 

Our main theme is the search for an IL that can serve for 
both ML- and Haskell-like languages. However, we believe 
that a language like £2 is attractive in its own right to either 
community in isolation, because one might get better code 
from an £-..-based compiler. 

For the Haskell compiler writer £2 offers the ability to ex- 
press in its tvpe that a value is certainly evaluated. This 
gives a nice wav to express the results of strictness analysis: 
a function argument of unpointed type must be passed by 
value. Flat arrays and strict data structures also become 
expressible. 

For the ML compiler writer £2 offers the ability to express 
the fact that a computation is free from side effects, which 
is a precondition for a raft of useful transformations (Sec- 
tion 4.3). While this information can be gleaned from an 
effects analysis, maintaining this information for every sub- 
expression, across substantial program transformations is 
not easy In £2, however, local transformations can per- 
form and record the results of, a simple incremental effects 
analysis. For example, consider the following ML function: 

JEun f x = fst  (fst x) 

If we translate this into £2 we obtain: 

f = retST (Ax. letST a2 <- letST aK-retsr r in 
retsT (fst a1^ 

in 
retST (fst a2)) 

Simple application of the rules of Figure 3 allows this ex- 

pression to simplify to: 

f «retST (Ax. let al-x in 
let a2 = fst al in 
retsT (fst a2)) 

Now the retsT can be floated outwards, to give: 

f =retST (Ax.retST (fst  (fst x))) 

In this form, the inner retST makes it apparent that f has 
no side effects. We have, in effect, performed a sort of mere- 
mental effects analysis. The same idea can be taken further. 
If f is inlined at its call sites, then the retST may cancel 
with letST there, and so on. Even if x's body is big, we 
can use the "worker-wrapper'5 technique of Peyton Jones k 
Launchbury [1991] to split f into a small, inlinable wrapper 
and a large, non-inlinable worker, f u, thus: 

f =retgT (Ax.retgx (fv x)) 
fv =Ax.(... body off...) 

Blume k Appel [1997] describe a similar technique that they 
call "lambda-splitting". 

The point of all this is that there is a real payoff for an 
ML compiler from making the ST monad explicit. Easy, in- 
cremental transformations perform a local effects analysis; 
at each stage the state of the analysis is recorded in the 
program itself, rather than in some ad hoc auxiliary data 
structures; and all other program transformations will au- 
tomatically preserve (or exploit) the analysis. 

5.3    Parametricity 

Polymorphic functions have certain parametricity properties 
that mav be derived purelv from their types (Mitchell k 
Mever [1985]: Reynolds 11983]; Wadler [1989]). For example, 
in the pure polymorphic lambda calculus, a function / with 
type VQ.O -a'-ta satisfies the theorem: 

VAB . Vh : A -» B . Vx,y : A . h (/ 1 y) = / {h x) {h y) 

In fact, / satisfies something even stronger in which the 
function h can be an arbitrary relation between A and B. 

When we add "polymorphic" constants to the pure calculus, 
the effect is that the choice of functions h becomes restricted. 
For example, adding a fix point operator fix : VQ.(Q -»■«)-+ 
a forces the restriction that the h functions be strict (map J. 
to 1) and inductive (i.e. continuous). This is the situation 
in Haskell, for example. 

Adding polymorphic sequencing, say through an operator 
seq ■ VQ ß.a -* ß -+ ß or by building it into the seman- 
tics of function application, forces the restriction that the 
h functions be bottom-reflecting (i.e. defined on all defined 
arguments). This is the basic situation in pure ML. 

Adding polymorphic equality forces the h functions to be 
at least one-to-one; and adding polymorphic state opera- 
tions like !r seems to remove any last shreds of interesting 
parametricity. 

What then, are the parametricity properties of £1 and £2? 
If parametricity properties are weakened by claiming various 
primitives to be more polymorphic than they really are, then 
by being more cautious in the types we assign them, we may 
hope to restrengthen parametricity. 
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In £2, for example, recursion is only done either at a func- 
tion type, or at a suspension type. Recursion is never per- 
mitted as a fully polymorphic type (unlike in Haskell). This 
has the effect of allowing the strictness side condition to 
be dropped, though inductiveness (or continuity) is still re- 
quired. The same is achieved in £1 through the use of the 
pointed restriction (see Launchbury &: Paterson [1996] for a 
comparable situation). Furthermore, since all state opera- 
tions are explicitly typed within the state monad, they also 
do not interfere with parametricity in a negative way. 

The main difference between £1 and £2 is to do with forcing 
evaluation. £i has no polymorphic forcing operation, so has 
no consequent weakening of its parametricity property. £2 
does, however — it is built into its eager function applica- 
tion. Thus for £2 the parametricity theorem demands the 
h functions to be everywhere defined. 

To see an example of this, consider the function K : 
Va, ß.a -*■ ß -¥ a which selects its first argument, discarding 
its second. The parametricity theorem is 

VA, .4', B, B' . Vhi :A->A',h2:B 
hi (K xy) = K (hi x) (A, y) 

B' . Vx : A, y : B 

Clearly this holds only if hi is total (defined everywhere), 
otherwise the right hand side may not be defined when she 
left hand side is. 

There is a practical implication to this. A class of techniques 
for removing intermediate lists called foldr-huild relies on 
parametricity for its correctness (Gill, Launchbury & Pey- 
ton Jones [1993J). While a strictness side condition is not 
damaging, a totality condition is coo restrictive. The tech- 
nique can no longer rely on the types to provide sufficient 
guidance for correctness. This is disappointing, although 
unsurprising. The compiler can still recover the short-cut 
deforestation technique by refining £/s type system to use 
qualified types along the lines of Launchbury & Paterson 
[1996]. 

5.4    Side effects and polymorphism 

It is well known that the ability to create polymorphic ref- 
erences can lead to unsoundness in the type system (Tofte 
[1990]). For example, if we are able to create a reference 
r with type Vct.Ref a then we would be able to write the 
following erroneous code: 

latSt _: () <-wr  (r Int)   2 in 
letST f :(Int->Int) <-rd   Cr   (Int->Int)) in 
retST (f 3) 

However in both £1 and £2 any expression of type Va.Ref a 
is undefined in any environment! The only way to construct 
a value of Ref type is with new, which returns a value of type 
ST (Ref r). The only way to strip off the ST constructor is 
with latsx- Looking at the typing rule for lets?, we can 
see that bound variable must have type Ref r. 

SML's so-called 'value restriction' conservatively restricts 
generalisation in let bindings precisely to avoid the con- 
struction of such polymorphic references. We conjecture 
(though we have not proved) that £1 and £2 are both sound 
without any such side conditions. 

5.5    ML thunks 

One of the advantages of a language that supports both 
strict and lazy evaluation is that it can accommodate source 
languages that have such a mixture. Indeed, it is quite 
straightforward to map Haskell's strictness annotations (Pe- 
terson et al. [1997]) onto £2. Coming from the other direc- 
tion, it has long been known that thunks can be encoded 
explicitly in a strict, imperative language. For the sake of 
concreteness we use the notation proposed for ML in Okasaki 
[1996]. In this proposal delayed ML expressions are prefixed 
by a T, thus: 

let val z =» $(f y)  in b end 

Here, assuming (f 7) has type int, x is bound to a thunk 
of type int snsp that, when forced, evaluates (f y) and 
overwrites the thunk with its value. 

We expected that these "ML thunks" would map directly 
onto £2's thunks, but that turned out not to be the case. 
The semantics of ML chunks is considerably more compli- 
cated than that of £2's thunks, because of the interaction 
with state. Consider the following ML expression: 

let val rec x = 3(let val 7 =  !r - 1 in 
r:=y; 
if 7=0 then 0 
else force s +• force x 

end) 
in ... end 

(This defines x recursively, which is not possible in ML, but 
essentially ehe same thing can be done using another refer- 
ence to ;:tie ehe knot". We use ehe recursive form to reduce 
clutter.) When x is evaluated it decrements the contents of 
the reference cell r; but then, if the new value is non-zero, 
x evaluates itself! In effect, there can be multiple simulta- 
neous activations of x, rather like the multiple activations 
of a recursive function. (Indeed, a aon-memoising imple- 
mentation of ML thunks can be obtained by representing $e 
by A().e.) Furthermore, these multiple activations can each 
have a different value, because chey each read the state. 

£2's thunks have a much simpler semantics. A chunk has 
only one value, and there can be at most one activation 
of the thunk7. The key insight is that evaluation of a £2 
thunk has no side effects, unlike the ML thunk above. But 
what if the contents of the thunk performs side effects? For 
example: 

let x = <letsx v : Int<-rd rinsr (v+l)> in e 

Here, if r : Ref Int, then x has type <ST ()>, not <()>. 
Forcing the thunk (with force) causes no side effects (apart 
from updating the thunk itself), and yields a computation 
that, when subsequently performed (by a lets?), will incre- 
ment the location r. The computation x may be performed 
many times; for example, e might be 

letsT al: 0 <- force x in letsT a2 : 0 <- force x in ... 

What this means, chough, is that the more complicated se- 
mantics of ML thunks have to be expressed explicitly in £2, 
presumably by coding them up using explicit references. 

TMore precisely, if there is more than one then the thunk's value 
depends on its own value, so its value is undefined. This property 
justifies the well-known technique of "black-holing" a thunk, both 
to avoid space leaks and to report certain non-termination (Jones 
[1992]). 
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6    Related work 

The FLINT language has rather similar objectives to the 
work described here, in that it aims to serve as a common 
infrastructure for a variety of higher-order typed source lan- 
guages (Shao [1997b]). However, FLINT has not (so far) 
concentrated much on the issue of strictness and laziness, 
which is the main focus of this paper. The ideas described 
here could readily be incorporated in FLINT. 

Both the Glasgow Haskell Compiler and the TIL ML com- 
piler use a polymorphic strongly-typed internal language, 
though the latter is considerably more sophisticated and 
complex (Peyton Jones [1996]; Tarditi et al. [1996]). Nei- 
ther, however seriously attempt to compile the others main 
evaluation-order paradigm. 

7    Further work 

In this paper we have concentrated on a core calculus. Some 
work remains to extend it to a practical IL: 

• Recursive data types and case expressions must be 
added — we anticipate no difficulty here. 

• A proof of type soundness is needed. As we note in 
Section 5.4 its soundness is not obvious. 

• We have a simple operational semantics for Li\ we are 
confident that it is sound and adequate, but have yet 
to do the proofs. 

• We are studying whether is is possible to combine L\ 's 
ability to describe certainly-terminating computations 
with £j's operational model. 

Accommodating the ML module system is likely to involve 
a significant extension of the type system (Harper k Stone 
[1997]); we have not yet studied such extensions. 

In a separate paper we discuss how to use the framework of 
Pure Type Systems to allow the language of terms, types, 
and kinds to be merged into a single language and compiler 
data type (Peyton Jones k Meijer [1997]). We hope to merge 
the results of that paper and this one into a single IL. 

We have made no attempt to address the tricky problem 
of how to combine monads. For example, ML includes the 
monad of state and exceptions. Is it advantageous to sepa- 
rate them into the composition of two monads, or is it better 
to have a single, combined monad? In the former case, what 
transformations hold? 

An important operational question is that of the represen- 
tation of values, especially numbers. Quite a few papers 
have discussed how to use unboxed representations for data 
values, and it would be interesting to translate their work 
into the framework of £2 (Leroy [1992]; Peyton Jones k 
Launchbury [1991]; Shao [1997a]). 
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Abstract 

In writing this paper we had two goals. First, to promote METAML, a program- 
ming language for writing staged programs, and second, to demonstrate that staging 
a program can have significant benefits. We do this by example: the derivation of 
an executable compiler for a small language. We derive the compiler in a rigorous 
fashion from a semantic description of the language. This is done by staging a de- 
notational semantics, expressed as a monadic interpreter. The compiler is a program 
generator, taking a program in the source language (a while-program) as input and 
producing an ML program as target. The ML program produced is in a restricted 
subset of ML over which the programmer has complete control. It is encapsulated in 
a special data-structure called code. The meta-programming capabilities of METAML 
allow this data-structure to be directly executed (run-time code generation), or to bo 
analysed. We illustrate this analysis of generated code to build a source to source 
transformation which applies the monad laws to significantly improve the generated 
code. 

1    Compilers as staged interpreters 

Interpreters, when implemented in high-level declarative languages, are very close to the 
interpreted language's denotational semantics. Because of this, interpreters are usually 
used for the development of prototypes, but such prototypes lack both efficiency and any 
connection to the underlying system in which the compiled code must run. If expressed 
in a monadic style, an interpreter can be mapped closer to the underlying >vsirm. ami 
the structuring properties of the monad even allow the interpreter to be reused us the 
system evolves [32, 14, 27]. Nevertheless, the effort used to build the interpreter is often 
considered wasteful since the programmer still needs to re-implement the compiler from 
scratch after building the interpreter. 

Our solution to this problem is the following multi-step method. First, construct the 
denotational semantics as an interpreter in a functional language. Second, capture the 
effects of the language, and the environment in which the target language must run, in 
a monad. Then rewrite the interpreter in a monadic style. Third, stage the interpreter 
using meta-programming techniques. This staging is similar to the staging of interpreters 
using a partial evaluator, but is explicit rather than implicit, since the programmer places 
the annotations directly, rather than using an automatic binding time analysis to discover 
where they should be placed. This leaves programmers in complete control, and they can 
limit what appears in the residual program. Fourth, the resulting program is both a data- 
structure and a program, so it can be both directly executed and analysed. This analysis 
can include both source to source transformations, or translation into another form (i.e. 



• 

• 

intermediate code or assembly language). Because the programmer has complete control 
over the structure of the residual program this can be a trivial task. 

Staging of interpreters using partial evaluation has been done before [2, 4]. The con- 
tribution of this paper is to show that this can all be done in a single program. A system 
incorporating staging as a first class feature of a language is a powerful tool. While using 
such a tool to write a compiler the source language can be given semantics, it can be 
staged, translated, and optimized all in a single paradigm. It requires neither additional 
processes nor tools, and is under the complete control of the programmer; all the while 
maintaining a direct link between the semantics of interpreter and those of the compiler. 
Staging organizes the task of constructing a compiler into simple, incremental steps, where 
the semantic connection is maintained through each stage of the derivation. Each step 
is a relatively easy task compared to building a compiler from scratch. Constructing a 
compiler using ;i singed language has the following benefits: 

• Simplicity.   Each task is a simple one, and builds incrementally on the previous 
tasks. 

Correctness. The compiler remains connected to its semantics. Each artifact pro- 
duced by a task, is provably correct with respect to the artifacts of the previous tasks. 
The final artifact is both a compiler for the language and a semantics equivalent to 
the original semantics. 

Reuse. Each artifact reuses the code of the previous artifact. 

Control. The programmer has complete control over the resulting output. He 
develops his program with staging in mind, and the completely controls the structure 
of the residual program. 

2    Staging in METAML 

M ETA ML is almost a conservative extension of Standard ML. Its extensions include four 
staging annotations. To delay an expression until the next stage one places it between 
meta-brackets. Thus the expression <23> (pronounced "bracket 23") has type <int> 
(pronounced "code of int."). We illustrate the important features of the staging annotations 
in the short MRTAML session below. 

-I   val z = 3+4; 
val z = 7  :   int 

-I val quad = ( 3+4, <3+4>,   lift (3+4), <z> ); 
val quad =   (7,   <3 '/.+ 4>, <7>,      <'/.z> ) : 

( int * <int> *  <int> *    <int>) 

-I  fun inc x = <i + "x>; 
val inc = Fn    :   C'a].<int> -> <int> 

-I val six = inc <5>; 
val six = <1 '/.+ 5> : <int> 

-I run six; 
val it = 6 : int 

Users access METAML through a read-type-eval-print top-level. The declaration for z 
is read, typed to see that it has a consistent type (int here), evaluated (to 7), and then 
both its value and type are printed. 



The declaration for quad contrasts normal evaluation with the three ways objects of 
type code can be constructed. Placing brackets around an expression (<3+4>) defers the 
computation of 3+4 to the next stage, returning a piece of code. Lifting an expression 
(lift (3+4)) evaluates that expression (to 7 here) and then lifts the value to a piece of 
code that when evaluated returns the same value. Brackets around a free variable (<z>) 
creates a new constant piece of code with the value of the variable. Such constants print 
with a '/, sign to indicate they are constants. We call this lexical-capture of free variables. 
Because in METAML operators (such as + and *) are also identifiers, free occurrences of 
operators often appear with '/, in front of them. 

The declaration of the function inc illustrates that larger pieces of code can be con- 
structed from smaller ones by using the escape annotation. Bracketed expressions can 
be viewed as frozen, i.e. evaluation does not apply under brackets. However, is it often 
convenient to allow some reduction steps inside a large frozen expression while it is being; 
constructed, by "splicing" in a previously constructed piece of code. METAML allows one 
to escape from a frozen expression by prefixing a sub-expression within it with the tilde 
(") character. Escape must only appear inside brackets. 

In the declaration for six, the function increment is applied to the piece of code <5> 
constructing the new piece of code <1 '/,+ 5>. 

Running a piece of code, strips away the enclosing brackets, and evaluates the expres- 
sion inside. 

3    Monads in METAML 

We assume the reader has a working knowledge of monads[30, 33]. We use the unit and 
bind formulation of monads[32]. In METAML a monad is a data structure encapsulating 
a type constructor M and the unit and bind functions. 

datatype (»M  :  * -> * ) Monad = Mon of 
(['a],   'a -> 'a 'M) * (* unit function *) 
(C'a.'b].   'a 'M -> ('a ->  'b 'M) ->  'b'M);     (* bind function *) 

This definition uses SML's postfix notation for type application, and two non-standard 
extensions to ML. First, it declares that the argument ('M : * -> * ) of the type con- 
structor Monad is itself a unary type constructor [8]. We say that 'M has kind: * -> 
*. Second, it declares that the arguments to the constructor Mon must be polymorphic 
functions [21]. The type variables in brackets, e.g. C'a.'b], are universally quantified. 
Because of the explicit type annotations in the datatype definitions the effect of these ex- 
tensions on the Hindley-Milner type inference system is well known and poses no problems 
for the METAML type inference engine. 

In METAML, Monad is a first-class, although pre-defined or built-in type. In particular, 
there are two syntactic forms which are aware of the Monad datatype: Do and Return. Do 
and Return are METAML'S syntactic interface to the unit and bind of a monad. We have 
modeled them after the do-notation of Haskell[10, 24]. An important difference is that 
METAML'S Do and Return are both parameterized by an expression of type 'M Monad. 
Users may freely construct their own monads, though they should be very careful that 
their instantiation meets the monad axioms. Do and Return are syntactic sugar for the 
following: 

(* Syntactic Sugar Derived Form *) 

Do (Mon(unit.bind)) { K- e; i }      =      bind e (fn x => f) 

Return (Mon(unit.bind)) e =     unit e 



In addition the syntactic sugar of the Do allows a sequence of x, <- e,- forms, and 
defines this as a nested sequence of Do's. For example: 

Do m { xi <- el;  x2 <- e2  ;  x3 <- e3  ;  e4 }      = 
Do m { xl <- el; Do m { x2 <- e2  ; Do m { x3 <- e3  ;  e4 }}} 

The monad laws, expressed in METAML'S Do and Return notation are: 

Do { x <- Return e  ;  z } = zCe/x] 
Do { x <- m  ;  Return x } = m 
Do { x <- Do { y <- a  ;  b }  ;  c } = Do { y' <- a ;  Do { x <- b[y'/y]   ;  c } > 

= Do { y' <- a ; x <- bCy'/y]   ;  c } 

4    The three-step method for compiler development 

In this section, we illustrate our method by building the front end of a compiler for a small 
imperative while-language. We proceed in three steps. First, we introduce the language 
and its denotational semantics by giving a monadic interpreter as a one stage METAML 

program. Second, we stage this interpreter by using a two stage METAML program in 
order to produce a compiler. Third, we illustrate the usefulness of the staging approach, 
by defining a function that takes the output code of the compiler as input and returns 
an optimized version. This function is simply a pattern-matching based implementation 
of the monadic identity and associativity laws. This makes a dramatic difference in the 
quality of the generated code, and is completely reusable because the laws hold for any 
monad, not just the monad used in the example. 

This illustrates the usefulness of combining the monadic and staged approaches. With- 
out the monadic structure of the interpreter, the usefulness of the monadic-laws would have 
to be re-captured in a domain specific manner for every compiler. Without the structure 
provided by the staging, the pattern-matching based rewrite system would be impossible 
to use, because the compile-time computations would intervene and make recognition of 
the patterns impossible. In the staged interpreter, the compile-time code has disappeared 
by the time we want to apply the pattern based monadic-law transformer. 

4.1    The while-language 

In this section, we introduce a simple while-language composed from the syntactic elements: 
expressions (Exp) and commands (Com). In this simple language expressions are composed 
of integer constants, variables, and operators. A simple algebraic datatype to describe the 
abstract syntax of expressions is given in METAML below: 

datatype Exp = 
Constant of int 

I Variable of string 
I Minus of (Exp * Exp) 
I Greater of (Exp * Exp) 
I Times of (Exp * Exp) ; 

Commands include assignment, sequencing of commands, a conditional (if command), 
while loops, a print command, and a declaration which introduces new statically scoped 
variables. A declaration introduces a variable, provides an expression that defines its 
initial value, and limits its scope to the enclosing command. A simple algebraic datatype 
to describe the abstract syntax of commands is: 

(* 5           *) 
(* x           *) 
(* x - 5    *) 
(* x > 1    *) 
(* x * 4    *) 



datatype Com = 
Assign of  (string * Exp) (* x  := 1 *) 

I   Seq of   (Com * Com) (* { x   :=  1;   y   := 2 }                       *) 
I  Cond of  (Exp * Com * Com) (* if x then x  := 1 else y  := 1 *) 
I  While of  (Exp * Com) (* while x>0 do x  := x - 1 *) 
I Declare of  (string * Exp * Com)      (* declare x = 1 in x := x - 1    *) 
I  Print of Exp; (* print x *) 

A simple while-program in concrete syntax, such as 

declare x = 150 in 
declare y = 200 in -C while r > 0 do { i  :=x-l;  y := y - i};  print y} 

is encoded abstractly in these datatypes as follows: 

val SI = 
Declare("x",Constant 150, 

Declare("y",Constant 200, 
Seq(While(Greater(Variable "x",Constant 0), 

Seq(Assign("x",Hinus(Variable "x",Constant i)), 
Assign("y",Minus(Variable "y",Constant 1)))), 

Print(Variable "y")))); 

4.2    The structure of the solution 

Staging is an important technique for developing efficient programs, but it requires some 
forethought. To get the best results one should design algorithms with their staged solu- 
tions in mind. 

The meaning of a while-program depends only on the meaning of its component ex- 
pressions and commands. In the case of expressions, this meaning is a function from 
environments to integers. The environment is a mapping between names (which are in- 
troduced by Declare) and their values. 

There are several ways that this mapping might be implemented. Since we intend to 
stage the interpreter, we break this mapping into two components. The first component, a 
list of names, will be completely known at compile-time. The second component, a list of 
integer values that behaves like a stack, will only be known at the run-time of the compiled 
program. 

The functions that access this environment distribute their computation into two 
stages. First, determining at what location a name appears in the name list, and second. 
by accessing the correct integer from the stack at this location. In a more complicated 
compiler the mapping from names to locations would depend on more than just the dec- 
laration nesting depth, but the principle remains the same. Since every variable's location 
can be completely computed at compile-time, it is important that we do so, and that these 
locations appear as constants in the next stage. 

Splitting the environment into two components is a standard technique (often called a 
binding time improvement) used by the partial evaluation community[9]. We capture this 
precisely by the following purely functional implementation. 

type location = int; 
type index = string list; 
type stack = int list; 

(* position :  string -> index -> location *) 
fun position name index = 

let fun pos n (nm::nms) = if name = nm then n else pos (n+1) runs 



in pos  1  index end; 

(* fetch  :  location -> stack -> int *) 
fun fetch n (v::vs) = if n = i then v else fetch (n-i) vs; 

(* put:  location -> int -> stack -> stack *) 
fun put n x   (v::vs)  = if n =  i then x::vs else v::(put  (n-i)  x vs); 

The meaning of Com is a stack transformer and an output accumulator. It transforms 
one stack (with values of variables in scope) into another stack (with presumably different 
values for the same variables) while accumulating the output printed by the program. 

To produce a monadic interpreter we could define a monad which encapsulates the 
index, the stack, and the output accumulation. Because we intend to stage the interpreter 
we do not encapsulate the index in the monad. We want the monad to encapsulate only 
the dynamic part of the environment (the stack of values where each value is accessed by 
its position in the stack, and the output accumulation). 

The monad we use is a combination of monad of state and the monad of output. 

datatype 'a M = StOut of (int list -> ('a * int list * string)); 
fun unStOut (StOut f) = f; 
fun unit x = StOut(fn n =>  (x,n,"")); 
fun bind e f = StOut(fn n => let val (a.ni.sl) = (unStOut e) n 

val (b,n2,s2) =    unStOut(f a) ni 
in (b,n2,sl * s2) end); 

val mswo  :  M Monad = Mon(unit.bind);   (* Monad of state with output *) 

The non-standard morphisms must describe how the stack is extended (or shrunk) 
when new variables come into (or out of) scope; how the value of a particular variable is 
read or updated; and how the printed text is accumulated. Each can be thought of as an 
action on the stack of mutable variables, or an action on the print stream. 

(* read : location -> int M *) 
fun read i = StOut(fn ns => (fetch i ns.ns,"")); 

(* write : location -> int -> unit M *) 
fun write i v = StOut(fn ns =>( (), put i v ns, "" )); 

(* push: int -> unit M *) 
fun push x = StOut(fn ns => ( (), x :: ns, "")); 

(* pop : unit M *) 
val pop = StOut(fn (n::ns) => ((), ns, "")); 

(* output: int -> unit M *) 
fun output n = StOut(fn ns => ( (), ns, (toString n)"" ")); 

4.3    Step 1: monadic interpreter 

Because expressions do not alter the stack, or produce any output, we could give an eval- 
uation function for expressions which is not monadic, or which uses a simpler monad than 
the monad defined above. We choose to use the monad of state with output throughout 
our implementation for two reasons. One, for simplicity of presentation, and two because 
if the while language semantics should evolve, using the same monad everywhere makes 
it easy to reuse the monadic evaluation function with few changes. 

The only non-standard morphism evident in the evall function is read, which de- 
scribes how the value of a variable is obtained. The monadic interpretor for expressions 



takes an index mapping names to locations and returns a computation producing an in- 

teger. 

(* evall: Exp -> index -> int M *) 
fun evall exp index = 
case exp of 
Constant n => Return mswo n 

I Variable x => let val loc = position x index 
in read loc end 

I Minus(x,y) => 
Do mswo { a <- evall x index ; 

b <- evall y index; 
Return mswo (a - b) } 

I Greater(x.y) => 
Do mswo { a <- evall x index ; 

b <- evall y index; 
Return mswo (if a '>' b then 1 else 0) } 

I Times(x,y) => 
Do mswo { a <- evall x index ; 

b <- evall y index; 
Return mswo (a * b) }; 

The interpreter for Com uses the non-standard morphisms write, push, and pop to 

transform the stack and the morphism output to add to the output stream. 

(* interpretl : Com -> index -> unit M *) 
fun interpretl stmt index = 
case stmt of 
Assign(name,e) => 
let val loc = position name index 
in Do mswo { v <- evall e index ; write loc v } end 

I Seq(sl,s2) => 
Do mswo { x <- interpretl si index; 

y <- interpretl s2 index; 
Return mswo () } 

I Cond(e,sl,s2) => 
Do mswo { x <- evall e index; 

if x=l 
then interpretl si index 
else interpretl s2 index } 

I While(e,body) => 
let fun loop () = 

Do mswo { v <- evall e index ; 
if v=0 then Return mswo () 

else Do mswo { interpretl body index ; 
loop () } } 

in loop () end 
I Declare(nm,e,stmt) => 

Do mswo •{ v <- evall e index ; 
push v ; 
interpretl stmt (nm::index); 
pop } 

I Print e => 
Do mswo {.  v <- evall e index; 

output v }; 

Although interpretl is fairly standard, we feel that two things are worth pointing 

out. First, the clause for the Declare constructor, which calls push and pop, implicitly 



changes the size of the stack and explicitly changes the size of the index (nm:index), 
keeping I he I wo in synch. It evaluates the initial value for a new variable, extends the 
index with the variables name, and the stack with its value, and then executes the body of 
the Declare. Afterwards it removes the binding from the stack (using pop), all the while 
implicitly threading the accumulated output. The mapping is in scope only for the body 
of the declaration. 

Second, the clause for the While constructor introduces a local tail recursive function 
loop. This function emulates the body of the while. It is tempting to control the recursion 
introduced by the While by using the recursion of the interpreti function itself by using 
a clause something like: 

I While(e.body) => 
Do mswo { v <- evall e index ; 

if v=0 then Return mswo () 
else Do mswo { interpreti body index ; 

interpreti (While(e.body)) index } 

} 

Here, if the test of the loop is true, we run the body once (to transform the stack and 
accumulate output) and then repeat the whole loop again. This strategy, while correct, 
will have disastrous results when we stage the interpreter, as it will cause the first stage 
to loop infinitely. 

There are two recursions going on here. First the unfolding of the finite data structure 
which encodes I he pmgra.ni being compiled, and second, the recursion in the program 
being compiled. In an unstaged interpreter a single loop suffices. In a staged interpreter, 
both loops are necessary. In the first stage we only unfold the program being compiled 
and this must always terminate. Thus we must plan ahead as we follow our three step 
process. Nevertheless, despite the concessions we have made to staging, this interpreter is 
still clear, concise and describes the semantics of the while-language in a straight-forward 
manner. 

4.4    Step 2: staged interpreter 

To specialize the monadic interpreter to a given program we add two levels of staging 
annotations. The result of the first stage is the intermediate code, that if executed returns 
the value of the program. The use of the bracket annotation enables us to describe 
precisely the code that must be generated to run in the next stage. Escape annotations 
allow us to escape the recursive calls of the interpreter that are made when compiling a 
while-program. 

(* eval2:  Exp -> index -> <int M> *) 
fun eval2 exp index = 
case exp of 

Constant n => <Return mswo "(lift n)> 
I   Variable x => 

let val  loc = position x  index 
in <read "(lift loc)> end 

I  Minus(x.y) => 
<Do mswo { a <- "(eval2 x index)   ; 

b <- "(eval2 y index); 
Return mswo (a - b) }> 

I  Greater(x.y) => 
<Do mswo { a <- "(eval2 x index)   ; 

b <- "(eval2 y index); 



Return mswo (if a  '>' b then 1 else 0)  >> 
I  Times(x,y) => 

<Do mswo { a <- "(eval2 x index)   ; 
b <- "(eval2 y index); 
Return mswo (a * b) }>; 

The lift operator inserts the value of loc as the argument to the read action. The 
value of loc is known in the first-stage (compile-time), so it is transformed into a constant 
in the second-stage (run-time) by lift. 

To understand why the escape operators are necessary, let us consider a simple exam- 
ple: eval2 (Minus(Constant 3,Constant 1)) []. We will unfold this example by hand 
below: 

eval2 (Minus(Constant 3,Constant 1))   [] = 

< Do mswo 
{ a <- "(eval2 (Constant 3) []); 

b <- "(eval2 (Constant 1) []); 
Return mswo (a-b)} > = 

< Do mswo 
{ a<- "<Return mswo 3>; 

b <- "<Return mswo 1>; 
Return mswo (a - b)} > = 

< Do mswo 
{ a <- Return mswo 3; 

b <- Return mswo i; 
Return mswo (a - b)> > = 

< Do '/.mswo 
{ a <- Return 5£mswo 3; 

b <- Return '/.mswo i; 
Return Xmswo (a '/,- b)} > 

Each recursive call produces a bracketed piece of code which is spliced into the larger 
piece being constructed. Recall that escapes may only appear at level-1 and higher. 
Splicing is axiomatized by the reduction rule: ~<x> —> x, which applies only at level-1. 
The final step, where mswo and - become */,mswo and */,-, occurs because both are free 
variables and are lexically captured. 

Now we can state the equivalence relationship between the monadic evall and tho 
staged eval2. We use the axiomatic semantics of METAML [28], in particular the axioms 
for the annotations, such as the splice axiom above. 

Proposition 1.   For all expressions exp, and list of names index: 

evall exp index = run (eval2 exp index) 

Proof. We might argue that there is a trivial proof to this proposition. Since evall 
is simply a copy of eval2 with all the staging annotations erased, and that both func- 
tions type-check, by the semantics of METAML they must be equal. We include a more 
traditional proof in the appendix using the axiomatic semantics of METAML [28] (see 
appendix A). 



Interpreter for Commands. 

Staging the interpreter for commands proceeds in a similar manner: 

(*    interpret2  :  Com -> index ->    <unit H> *) 
fun interpret2 stmt index = 
case stmt of 

Assign(name,e) => 
let val loc = position name index 
in <Do msMO { n <- "(eval2 e index)   ; 

write "(lift loc) n }> 
end 

I  Seq(sl,s2) => 
<Do mswo { x <- "(interpret2 si index); 

y <- "(interpret2 s2 index); 
Return mswo () }> 

I  Cond(e,si,s2) => 
<Do mswo { x <- "(eval2 e index); 

if x=i 
then "(interpret2 si index) 
else "(interpret2 s2 index)}> 

I While(e.body) => 
<let fun loop () = 

Do mswo { v <- "(eval2 e index); 
if v=0 

then Return mswo () 
else Do mswo { q <- "(interpret2 body index); loop ()> 

} 
in loop () end> 

I Declare(nm,e,stmt) => 
<Do mswo { x <- "(eval2 e index) ; 

push x ; 
"(interpret2 stmt (nm::index)) ; 
pop }> 

I Print e => 
<Do mswo { x <- "(eval2 e index) ; 

output x }>; 

4.4.1 An example. 

The function interpret2 generates a piece of code from a Com object. To illustrate this 
we apply it to the simple program: declare x = 10 in { x := x - 1; print x } and 

obtain: 

<Do '/.mswo 
{ a <- Return '/.mswo  10 
;   '/.push a 
;   Do '/.mswo 

■C e <- Do '/.mswo 
{ d <- Do '/.mswo 

{ b <- '/.read 1 
;  c <- Return '/jnswo i 
; Return '/mswo b '/.- c 
> 

; '/.write 1 d 
} 

; g <- Do '/jnswo 
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{ f  <- '/.read  1 
;  '/.output f 
> 

; Return '/.mswo () 
} 

; '/.pop 
}> 

Note that the staged program is essentially a compiler, translating the syntactic repre- 
sentation of the while-program into the above monadic object-program that will compute 
its meaning. This program sequentializes the decrement x and the print of x. This object- 
program is fully executable. Simply by using the run operator of M ETA ML ii can hv 
executed for prototyping purposes. 

Equally important, the object-program itself is just a piece of data, which can be 
analyzed and further translated in another layer of the translation pipeline. The reader 
might notice that this object-program could be further simplified by applying the monad 
laws. There are many opportunities for doing so. After these laws are applied we obtain 
the much more satisfying: 

<Do '/«mswo 
{ '/.push 10 

a <- '/.read 1 
b <- Return '/.mswo a '/,-  1 
c <- '/.write 1 b 
d <- '/.read 1 
e <- 5£output d 
Return %mswo () 
'/.pop 

In addition to the monad laws which hold for all monads, we can also use laws which 
hold for particular non-standard morphisms. For instance, in the example above, we could 
avoid the second read of location 1 using the following rule: 

Do { el;   c <- '/.write 1 b ;  d <- '/.read 1;  e2} = Do { e;  c <- '/.write 1 b;   e2[b/d]> 

Every target language will have many such laws, and because our target language is 
both executable-code, and data-structure we can perform these optimizations. How this 
is accomplished is the subject of Section 4.5. 

As for the eval function, we state the semantic equivalence between the monadic and 
the staged interpreters. 

Proposition 2.    For all commands com and list of names index: 

interpret1 com index = run (interpret2 com index} 

Proof.   See appendix A. 

4.5    Step 3: optimizing target code: the monadic laws 

Perhaps the most important contribution we make in this paper, is that a staged program 
produces a piece of code that is both an executable-program and a data-structure. 

If one wants to execute this code, one uses the run annotation. If one wants to optimize 
this code, this is possible as well. In this section we illustrate this by example; providing 
an implementation of the monad law transformations demonstrated in section 4.4.1 

u 



In this section, we briefly explain our method for analysing (or computing over, or 
doing intensional analysis of) METAML code. We believe, that operations such as pattern- 
iiiJiirhiu», and snbstii ulion on code should bo provided once and for all by the system, and 
not by the user. 

Optimizations are generally thought of as rewriting rules or transformations. Both the 
rules and the strategy (e.g. top-down or bottom-up) needed to apply them need to be 
described. 

To illustrate this point, we write a simple transformation which implements the monadic 
laws as directed rewrites. As a reminder, the monadic laws expressed in terms of MBTAML'S 

Do and Return notation are repeated. 

Do { x <- return e  ;  z } = z[e/x] 
Do { x <- m ;  return x } = m 
Do { x  <- Do { y <- a   ;   b >   ;   c  } = Do { y'   <- a  ;  Do { x <- b[y'/y]   ;   c } } 

To implement these rules, we need a mechanism for pattern matching over code. Like 
all METAML code, the result of the monadic interpreter is just a data structure so this is 
possible. 

Let us consider a simple example. Suppose we want to match all pieces of code that 
are of the form <A + 3>. We have used the A to indicate a meta-variable that will match 
any piece of code. We cannot put a variable (e.g. x) here because <x+3> is just a piece 
code and not a pattern. The solution to indicating a meta-variable in a pattern is to use an 
escaped variable at. level-1 in the pattern. Thus the pattern <~x + 3> matches all pieces 
of code that have this "shape". 

I 'nfort nnaiHy. I his scheme is not always sufficient when matching against code with 
binding constructs such as <fn x => x + 1>. We would like to construct a pattern that 
matches against a function (or other binding construct) and to be able to use the meta- 
variables bound inside the pattern to construct a transformation. To see why this is 
problematic consider the following two examples: 

1. We want a transformation that increments the body of an integer valued function, 
such that when applied to <fn x => x> we obtain <fn x => x + 1>, and when 
applied to <f n y => length y> we obtain <f n y => (length y) + 1>. As a first 
approximation we try: <fn x => A> => <fn x => A +1>. This looks promising, 
but what would happen if we wrote: <fn x => A> => <fn y => A +1> instead? 
Now. free occurrences of x in A no longer have a binding site, because they have 
been spliced into a context where y is the bound variable instead of x. 

2. We want a transformation that doubles the argument of an int -> int function, 
such that when applied to <fn x => x> we obtain <fn x => x + x> and when 
applied to <f n x => y + x> we obtain <fn x => y + (x + x)>. The problem here 
is that in the pattern, <fn x => A>, there is no way to express that A may have 
free occurrences of x inside, and that our transformation needs to substitute for 
those free occurrences. 

The solution is to use a higher-order pattern. Suppose we could parameterize A on x. 
This makes (A.,.) not, a meta-variable with type code, but a meta-variable with type code 
lo code. Inside a pattern on the left hand side of a match ( pat => exp) a higher order 
meta-variable is bound to a function when it is successfully matched against a piece of 
code. On the right hand side of the match, when this meta-variable is used (by applying 
it to a piece of code) it substitutes all occurrences of x with the argument it was applied 
to. For example consider the table below showing the binding of the higher order meta 
variable Ax when the pattern <f n x => Ax + 3> is matched against different pieces of 
code. 
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code matched against function bound to 

<fn x => x + 3> fn x => < "x > 

<fn x =>  (x - 9) + 3> fn x => < "x - 9 > 

<fn x =>  (sin x + x"2) +3 fn x => < sin "x + "x"2 > 

<fn x => x + 1> match failure 

To express this in METAML we use the convention that the function in an escaped 
application (where all the arguments of the application are explicitly bracketed code) 
represents a higher order meta-variable. Thus, whenever an escaped application appears 
inside a pattern, the function part of the application is a higher-order meta-variable and 
its arguments are its formal parameters. For example: ~(g <x>). The two problematic 
examples above are now easily expressed as: 

<fn x => "(g <x>)>   =>     <fn y => "(g <y>) + i> 

<fn x => "(h <x>)>    ->      <fn z => "(g <z + z>)> 

Because higher order meta-variables may appear only in the function position of es- 
caped applications, and the arguments of these escaped applications may only be bracketed 
bound variables (like <x>), pattern-matching and unification are decidable [16, 25]. 

We now possess the tools to present the monad-law and code-optimizing METAML- 

function opt: 

fun opt < Do "st {x <- "v  ;  return "st* x } > = opt v 
I    opt w as < Do "st -Cx <- Return "st*  "e  ;   "(z <x>) >    = 

if is.constant e then opt  (z e) else w 
I    opt < Do "st -Cx <- Do "st'  {y <- "e  ;   "(f <y>)}  ;   "(g <x>)> > = 

opt <Do "st -Cy'  <- "e  ;  x"  <- "(f <y'>)   ;   "(g <x'>)}> 
I    opt x = map.code opt x        (* traversal through the code *) 

Our opt function implements a limited form of the left-id monad law. We do not 
wish to duplicate by substitution a non-constant. By composing this optimization with 
interpret2 we obtain a better compiler. Applying this compiler to: 

Declare x = 150 in 
Declare y = 200 in while x > 0 Do { z  :=x-i;  y  := y - 1 } 

we obtain following program: 

<Do '/.state 

{ a <- '/.push 150; 

b <- '/.push 200; 
c <- let fun loop () = 

Do '/.state 
{ e <- '/.read 1; 

f <- return '/.state (if (e '/,> 0) then 1 else 0); 

if (f */.= 0) 
then return '/.state () 

else Do '/.state 

{ g <- '/.read 1; 

h <- return '/.state (g - 1); 

i <- '/.write 1 h; 
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j  <- '/.read 0; 
k <- return '/.state (j - 1); 
1 <- '/.write 0 k; 
loop () 

} 
} 

in loop  ()  end 
m <- '/.pop; 
'/.pop 

}> 
> 

The optimizer has fully sequentialized the code using the bind-associativity law, and 
removed all superfluous Return's using the unit-identity laws. Further optimizations, such 
as arithmetic simplification, or transformations to another form, such as assembly code, 
could be implemented in the same fashion. 

5    Related work 

Our work was inspired by work in many different areas. Derivation of compilers from 
specifications and the use of action-semantics [19, 23, 11, 22]; the use of monads to structure 
programs in general [18, 31, 26] and language implementations in particular [32, 27, 14]; 
staged programming [5, 6] and its use in structuring compilers [29, 20,4]; partial evaluation 
[34, 17, 1, 3, 2, 9]; higher order abstract syntax and pattern matching [16, 7] 

For space considerations we limit detailed discussion to the following areas. 

5.1    Monads and compilation 

Perhaps, the most related work is the work of Sheng Liang and his thesis advisor Paul 
Hudak [12, 13]. They investigate the derivation of a compiler from a modular monadic 
interpreter. Our work is a continuation of their effort of using monads as a standard 
compilation mechanism. However, some differences remain: 

• The use of staging, lead us at an early step in the development, to split the environ- 
ment into a static index of names and a dynamic stack of values. This allows us to 
avoid the use of an environment monad. We use instead an state transformer monad 
in which the state is managed like a stack. Liang uses a complicated monad which 
is a combination of an environment monad and a state transformer. After code gen- 
eration they show that the residual code due to the environment (the lookups of the 
location of variables) can be eliminated using axioms of the non-standard morphisms 
of the environment monad. Our use of staging allowed us to do the lookups in the 
first stage and to never residualize the lookups at all. 

• On the other hand, Liang's use of modular language components is an advantage we 
have not even attempted to employ. For simplicity, we have used the same monad 
for both expressions and commands while Liang uses a modular approach where 
each feature is defined independently from the others. Finally all the features are 
combined by a monad transformer. To do this it is necessary to lift all non-standard 
morphisms through the transformer. This is hard and not completely understood. 
We may try to duplicate Liang's approach in future work. 
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5.2 Staging and compilation 

In his thesis Calculating Compilers [15] Erik Meijer advocates staging a compiler by using 
self discipline. Construct a compiler by building it as the composition of compile-time and 
run-time components. A critical step in this process is finding a representation of every 
source language construct as a combination of (lower level) target level constructs. By 
representing both source and target languages as algebraic datatypes, say source and 
target, induced by the functors S and T, this can be reduced to finding a polymorphic 
function Trans, which for all a, has type (Tö —t a) —>■ (Sa —t a), a so-called algebra 
transformer. 

Let the semantic domain of the target algebra be some type value. If the seman- 
tic meaning function for the target language M: target -> value can be expressed as 
a catamorphism M = cata phi where phi:T value -> value, we can lift phi into an 
interpreter for the source language by applying the algebra transformer Trans. Thus 
Trans phi:S value -> value and Interp = cata (Trans phi):source -> value. A 
similar construction can be used to construct the compiler Compiler:source -> target. 
Let function In:T target -> target be the injection between the functor T and its in- 
duced algebraic datatype target, then cata (Trans In):source -> target constructs 
the compiler. 

The limiting factor in this approach is finding an algebraic datatype target to encode 
the target language. For a monadic target language, it is not known how to do l his. since 
the constructors for "unit" and "bind" would be too polymorphic to encode in an algebraic 
datatype, and many of the non-standard morphisms would not be polymorphic enough. 

By staging the process in METAML, we do away with the need for an algebraic datatype 
to encode the target language, by using the special type of code instead. The constructors 
of the target algebra are simply the second stage representations of the real functions. 

5.3 Difference between staging and partial evaluation 

Staged programming (S.P.) is closely related to partial evaluation (P.E.). We list what we 
believe are the salient differences. 

• S.P. uses explicit annotations while P.E. uses implicit annotations placed by an 
automatic binding time analysis. 

• S.P. gives the programmer complete control over what residual program is produced, 
while the residual program produced by P.E. often contains surprises. The surprises 
are caused by the differences between what the programmer knows and what the 
binding time analysis can discover. The solution to this mismatch is for the pro- 
grammer to restructure his program using "binding-time improvements" which more 
closely align his knowledge and the capabilities of the binding time analysis. Of 
course S.P. is not completely immune to these difficulties, but the staged program- 
mer must be fully aware of the staging issues before he writes his program. The 
staged type-system is a great advantage here. Nevertheless, there are many simple 
programs where automatic binding time analysis is sufficient, and hand staging is 
simply an annoyance. In our system we have combined the advantages of both, 
allowing a simple type-directed binding time analysis to co-exist with the manual 
staging annotations. An analysis of this co-existence is beyond the scope of this 
paper. 

• S.P. is a programming language feature. It exists at the same level as the program. 
Here the algorithm and the staging are developed hand in hand.   There are no 
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additional tools or processes, and users learn how to weave the staging thought 
processes into their problem solving techniques. 

• S.P. provides a complete, unified, typed environment, supporting both type recon- 
struction and polymorphism for the staged constructs. 

6 The Implementation 

Everything you have seen in this paper, except the higher order pattern matching over 
code! has been implemented in the METAML implementation. The examples are actual 

runs of the system. 
The higher order pattern matching is currently under development. We found the 

normalizing effect of the monad laws1 so compelling that we implemented them in an 
ad-hoc fashion inside the METAML system. 

7 Conclusion 

We have shown that staging programs offers an exciting new programming paradigm, and 
reinforced the notion that staging a monadic interpreter into compile-time and run-time 
components provides a direct link between an interpreter and a compiler. 
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A    Proofs 

We repeat here the axiomatic semantics of METAML [28]. For the sake of simplicity, we 
omit the level-annotations. 

run <vl> = vl| (run) 
"<e> = e (escape) 

(A x.  e) v = e[x := v] (beta) 

The (escape) axiom applies only at level one (inside exactly one bracket) and (run) and 
(beta) apply only at level 0 (inside no brackets). 

Lemma 1. For any well-typed expression: < ~e > , we have < ~e > = e 

Proof. Since < ~e > is well-typed, e must evaluate (if it terminates) to <v>. Then e = 
<v>. We have 

<~e> = <~<v»      replace equals by equals 
= <v> By escape axiom 
= e 

D 

Lemma 2. For any well-type expression: run <f e>, we have 

run <f e> =  (run <f>)   (run <e>). 

Proof. Since the term f e is at level 1, the only possible reduction is by the escape axiom. 
Assume <f> and <e> evaluate to the values <f 1> and <el> respectively. Then <f e> must 
evaluate to <f 1 el> (since at level 1 we cannot do a beta-step). Hence, we have <e> = 
<el>, <f> = <f1>, <f e> = <f1 el> 

run <f e> = run <fl el> by replacing equals by equals 
=  (fl el) 4- by run axiom 
=  (flj)   (el|) by definition of | 
=  (run <fl>)   (run <el>) by run axiom 
=  (run <f>)   (run <e>) by replacing equals by equals 

D 

Lemma 3. For any well-type expression: run <A x.e>, we have 
run <Ax.e> = Ax. (run <e>). 

Proof. The proof is similar to the two lemmas above. D 

A consequence of the previous two lemmas is that run distributes through its sub- 
expressions. In particular, run distributes through Do and let. 

run <Do { xl <- el   ;  x2 <- e2  ;   ...   ;  en } > = 
Do { xl <- run <el>  ;  x2 <- run <e2>  ;   ...   ; run <en> } (run-Do) 

run < let val x = e in e2 > = (let val x = run <el> in run <e2>)     (run-Let) 

Proposition 1. For all expressions exp, and list of names index: 

evall exp index = run (eval2 exp index) 
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Proof. Induction on the structure of exp. 
case exp of Minus(el,e2) 

run (eval2 (Minus(el,e2)) index 

run <Do mswo { a <- " (eval2 el index) 
b <- " (eval2 e2 index) 
Return mswo (a -b) > 

Do mswo { a <- run <"(eval2 el index)> 
b <- run <"(eval2 e2 index)> 
run <Return mswo (a-b)> } 

Do mswo { a <- run (eval2 el index) ; 
b <- run (eval2 e2 index) ; 
Return mswo (a-b) 

Do mswo { a <- evall el index) ; 
b <- evall e2 index) ; 
Return mswo (a-b) 

= By beta axiom 

= by (run-Do) 

= by lemmal (twice) and run axiom 

= by induction hypothesis (twice) 

= by beta 

evall  (Minus(el,e2)) index 

The other cases are similar. 

Proposition 2. For all commands com and list of names index: 

interpret 1 com index = run (interpret2 com index} 

D 

Proof. By induction on the structure of com. 
case com of While(e,body). 

= By beta run (interpret2 (While(e,body)) index 
run <let fun loop () = 

Do mswo { v <- "(eval2 e index); 
if v=0 

then Return mswo () 
else Do mswo { q <- "(interpret2 body index); loop ()} 

> 
in loop () end > = by run-Do and run-Let 

let fun loop () = 
Do mswo { v <- run <"(eval2 e index)>; 

if v=0 
then run <Return mswo ()> 
else Do mswo { q <- run <"(interpret2 body index)>; 

run < loop () >} 

} 
in run < loop ()> end 

= By Lemma 1 and run axiom 
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let fun loop 0 = 
Do mswo { v <- run (eval2 e index)>; 

if v=0 
then Return mswo () 
else Do mswo { q <- run (interpret2 body index); 

run < loop () >} 

} 
in run < loop ()> end = By induction hypothesis and Proposition 1 

let fun loop () = 
Do mswo { v <- (evall e index)>; 

if v=0 
then Return mswo () 
else Do mswo { q <- interpretl body index); run <loop ()> } 

} 
in run <loop ()> end = By run axiom 

let fun loop () = 
Do mswo { v<- (evall e index)>; 

if v=0 
then Return mswo () 
else Do mswo { q <- interpretl body index); loop () } 

} 
in loop () end 

The last step is only possible because, at this step in the derivation, there are no 
annotations (in particular no escapes) in the body of the function loop, thus the body of 
loop at level 1 is a value, and hence in normal form. 

The other cases are easier. D 
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Abstract 

Multi-staged programming provides a new paradigm for constructing efficient solutions to 
complex problems. Techniques such as program generation, multi-level partial evaluation, and 
run-time code generation respond to the need for general purpose solutions which do not pay 
run-time interpretive overheads. This paper provides a foundation for the formal analysis of one 
such system. 

We introduce a multi-stage language and present its axiomatic, reduction, and natural se- 
mantics. Our axiomatic semantics is an extension of the call-by-value A-calculus with staging 
constructs. We demonstrate the soundness of the axiomatic semantics with respect to the nat- 
ural semantics. We show that staged-languages can "go Wrong" in new ways, and devise a type 
system that screens out such programs. Finally, we present a proof of the soundness of this 
type system with respect to the reduction semantics, and show how to extend this result to the 
natural semantics. 

1    Introduction 

Recently, there has been significant interest in various forms of multi-stage computation, including 
program generation [3, 26], multi-level partial evaluation [11, 12], and run-time code generation 
[1, 5, 4, 8, 9, 13, 15, .16, 22]. Such techniques combine both the software engineering advantages of 
general purpose systems and the efficiency of specialized ones. 

Because such systems execute generated code never inspected by human eyes it is important to 
use formal analysis to guarantee properties of this generated code. We would like to guarantee stati- 
cally that a program generator synthesizes only programs with properties such as: type-correctness, 
global references only to names in scope, and local names which do not inadvertently hide global 
references. 

In previous work [25], we introduced a multi-stage programming language called MetaML. In 
that work we introduced four staging annotations to control the order of evaluation of terms. 
We argued that staged programs are an important mechanism for constructing general purpose 
systems with the efficiency of specialized ones, and addressed engineering issues necessary to make 
such systems usable by programmers. We introduced an operational semantics and a type system 
to screen out bad programs, but we were unable to prove the soundness of the type system. 

Further investigation revealed important subtleties that were not previously apparent to us. In 
this paper, we report on work rectifying some of the practical limitations of our previous work. 
In contrast to our earlier work that focused on implementations and problem solving using multi- 
staged programs, this paper reports on a more abstract treatment of MetaML's foundations. The 
key results reported in this paper are as follows: 

1. An axiomatic semantics and a reduction semantics for a core sub-language of MetaML. 

2. A characterization of the additional ways in which a staged program can "go Wrong". 



3. A type system to screen out such programs. 

4. A soundness proof for the type system with respect to the reduction semantics using the 
syntactic approach to type-soundness of Wright and Felliesen [27]. 

5. A natural semantics that chooses the order in which rules are applied. 

6. The soundness of the axiomatic semantics with respect to the natural semantics. 

These results form a strong, tightly-woven foundation which gives us both a better understand- 
ing of MetaML, and more confidence in the well-foundedness of the multi-stage paradigm. The 
axiomatic semantics provides us with an equational theory for formally reasoning about the equiv- 
alence of MetaML programs, and the reduction semantics is an abstract characterization of the 
notion of staged computation. The natural semantics provides us with a deterministic strategy for 
implementing multi-stage computation. The soundness of the axiomatic semantics with respect to 
the natural semantics formally demonstrates that results based on the reductions semantics are 
also applicable to our implementation. Finally, formally proving the soundness of the type system 
with respect to the reduction semantics ensures to us that well-typed programs are well-behaved. 

1.1    What are Staged Programs All About? 

In staging a program, the user has control over the order of evaluation of terms. This is done 
by using staging annotations. In MetaML the staging annotations are Brackets <>, Escape * and 
run. An expression <e> defers the computation of e; "e splices the deferred expression obtained by 
evaluating e into the body of a surrounding Bracketed expression; and run e evaluates e to obtain 
a deferred expression, and then evaluates this deferred expression. It is important to note that "e is 
only legal within lexically enclosing Brackets. To illustrate, consider the script of a small MetaML 
session below: 

-I val pair = (3+4,<3+4>); 

val pair = (7,<3+4>) : (int * <int>) 

-I fun f (x,y) = < 8 - ~y >; 

val f = fn : ('a * <int>) -> <int> 

-|  val code = f pair; 
val code = <8 -  (3+4)>  :  <int> 

-|  run code; 
val it = 1  :   int 

The first declaration defines a variable pair. The first component of the pair is evaluated, but the 
evaluation of the second component is deferred by the Brackets. Brackets in types such as <int> 
are read "Code of int", and distinguish values such as <3+4> from values such as 7. The second 
declaration illustrates that code can be abstracted over, and that it can be spliced into a larger 
piece of code. The third declaration applies the function f to pair performing the actual splicing. 
And the last declaration evaluates this deferred piece of code. 

To give a brief feel for how MetaML is used to construct larger pieces of code at run-time 
consider: 

-I  fun mult x n = if n=0 then <1> else < "x * "(mult x (n-1))  >; 
val mult = fn    :  <int> -> int    -> <int> 



-I  val cube = <fn y => "(mult <y> 3)>; 
val cube = <fn a => a *  (a *  (a * i))>  :  <int    -> int> 

-|  fun exponent n = <fn y => "(mult <y> n)>; 
val exponent = fn    :  int    -> <int    -> int> 

The function mult, given an integer piece of code x and an integer n, produces a piece of code that 
is an n-way product of x. This can be used to construct the code of a function that performs the 
cube operation, or generalized to a generator for producing an exponentiation function from a given 
exponent n. Note how the looping overhead has been removed from the generated code. This is the 
purpose of program staging and it can be highly effective as discussed elsewhere [4,10,13,17, 22, 25]. 
In this paper we move away from how staged languages are used and address their foundations. 

2    The A-R Language 

The A-R language represents the core of MetaML. It has the following syntax: 

e :=   i | x | ee | Xx.e \ <e> \ ~e | run e 

which includes the normal constructs of the A-calculus, integer constants, and the three additional 
staging constructs. 

To define the semantics of Escape, which is dependent on the surrounding context, we choose to 
explicitly annotate all terms with their level. The level of a term is the number of Brackets minus 
the number of Escapes surrounding that term. We define level-annotated terms as follows: 

a0       :=   i° | x° | {a0 a0)0 \ (Xx.a0)0 | <a1>° | (run a0)0 

| xn+1 | (an+1an+1)n+1 | (Xx.an+1)n+1 \ <an+2>n+1 | ("an)n+1 | (run an+1)n+1 7n+l      ._     jn+1 

Note that Escape never appears at level 0 in a level-annotated term. We define a A-R program 
as a closed term a0. Hence, example programs are (Xx.x0)0 and <<((Xx.(x2 x2)2)2 52)2>1>°. 

2.1    Values 

It is instructive to think of values as the set of terms we consider to be acceptable results from a 
computation. Values are defined as follows: 

v° 
v1 

vn+2 

=   i° | x° | (Ax.a0)0 | <u1>° 
=   i1 I x1 I (u1^)1 I (Xx.v1)1 | <v2>1 | (run v1)1 

=     in+2   |  Xn+2   I   (u"+2un+2)n+2   |   (Aa.^+2)n+2   |   <un+3>n+2   |   ^n+l^n+2   |   (run  ^+2)71+2 

The set of values for A-R has three notable points. First, values can be bracketed expressions. This 
means that computations can return pieces of code representing other programs. Second, values 
can contain applications such as (Xy.y1)1 (Xx.x1)1. Third, there are no level 1 Escapes in values. 
We take advantage of this important property of values in many proofs and propositions in our 
present work. 

Because each rule in the inductive definition above is an instance of one of the rules given in 
the inductive definition for level-annotated terms it is easy to show that values are a subset of 
level-annotated terms. 

2.2    Contexts 

We generalize the notion of contexts [2] to a notion of annotated contexts: 



c°        :=    []° I (c° a0)0 | (a0 c°)° | (Az.c0)0 | <c1>° | (run c°)° 
cn+l     ._     jjn+l |^cn+lan+ljn+l | ^n+l^+ljn+l  j jAiC<cn+ljn+l | 

<cn+2>n+l | (~cn)n+l| (rml  cn+l)n+l 

where Q is a Ao/e. When instantiating an annotated context cn[]m to a term em we write cn[em]. 

2.3    Promotion and Demotion 

The axioms of MetaML remove Brackets from level-annotated terms. To maintain the consistency 
of the level-annotations we need an inductive definition for incrementing and decrementing all 
annotations on a term. We call these operations promotion and demotion. 

Promotion Demot on 
xnt = xn+1 xn+1 I = xn 

(«i a2)
n t = (011 a2 t)

n+1 (ai a2)"
+1 I = (ai 4 02 1)" 

(Aa\a)nt = (Az.at)n+1 {\x.a)n+1 ; = (Xx.ai)n 

<a>" f = <a f >n+1 <a>n+1 4. = <ai>n 

(~a)n+1 t = (-af)n+2 (-a)"+2 4, = (~o;)n+1 

(run a)n t = (run a |)n+1 (run a)n+1 j = (run a 4-)n 

int = ,-n+l tn+1 4. = in 

Promotion is a total function over level-annotated terms and is defined by a simple inductive 
definition. Demotion is a partial function over level-annotated terms. Demotion is undefined on 
terms Escaped at level 1, and on level 0 terms in general. 

An important property of demotion is that while it is partial over level-annotated terms it is 
total over values. Proof of this is a simple induction on the structure of values. 

2.4    Substitution 

The definition of substitution is standard for the most part. In this paper we are concerned only 
with the substitution of values for variables. When the level of a value is different from the level 
of the term in which it is being substituted, promotion (or demotion, whichever is appropriate) is 
used to correct the level of the subterm. 

in[xn = un] — in 

xn[xn = vn] = vn 

yn[xn = vn] = yn x^y 
(d a2)

n[xn = un] = ((ai[x
n := «»]) (a2[xn := vn]))n 

(Aa\ai)n[a:n = vn] = (Ax.ai)" 
(Ay.oi)w[a;n = vn] = (Xy'.(ai[y

n := y'n][xn := vn]))n    y' $ FV(vn), y< <£ FV(ai) x^y 
<ai>n[xn = un] =r <ax[a;n+1 := vn f\>n 

(~ai)
n+1[xn+1 := vn+1] = (-(a1[xn := vn+1 |]))n+1 

(run ai)n[xn = vn] = (run (ai[x := vn]))n 

This function is total because both promotion and demotion are total over values. A richer no- 
tion of demotion is need to perform substitution of a variable by any expression. This generalization 
is beyond the scope of this paper. 

2.5    Axiomatization and Reduction Semantics of A-R 

The axiomatic semantics describes an equivalence between two level-annotated terms. Axioms can 
be thought of as pattern-based equivalence rules, and are applicable in a context-independent way 



to any subterm that they match. The three axioms we will introduce can each be given a natural 
orientation or direction, reducing "bigger" terms to "smaller" terms. This provides a reduction 
semantics. 

Axiomatic Reduction 

({Xx.en)nvn)n   =   en[x:=vn] 
(run <u"+1>")n   =   vn+1 I 

/ ~<en+l>n\n+l     _     e"+l 

((Xx.en)nvn)n    -A   e°[x := vn] 
(run <u"+1>n)n    ^V   vn+1 I 

("<en+1>")"+1    -^   en+1 

We write A-R \- M = N when M = N is provable by the above axioms and the classical inference 
rules of an equational theory, and we write -^ for the reflexive, transitive, context closure of —K 

Theorem 1 (Confluence).  The reduction semantics is confluent. 

Proof. Using a notion of parallel reduction and a Strip Lemma, following closely the development 
in [2, pages 277-283]. D 

Corollary 2 (Church-Rosser). The axiomatic semantics is Church-Rosser. 

3    Faulty Terms 

Under the reduction semantics, when a term has been sufficiently reduced, we would like such a 
term to be a value, but this is not always the case. If no rules apply, and the term is not a value, 
we say that such a term is stuck [27]. There are four contexts in which such terms can arise: 

1. A non-A value in a function position in an application (at level 0). This is the familiar form 
of undesirable behavior arising whenever the pure A-calculus is extended with constants. For 
example, (<51>° 3°)° is stuck because <51>° is a piece of code, not a A-abstraction. This term 
is not a value and contains no redex. 

2. A variable appears at a level lower than the level at which it was bound. This is the key, 
distinguishing form of undesirable behavior in multi-stage computation [25]. For example: 
<(Ax."(x°)1)1>° is stuck since x is used at level 0 but bound at level 1. 

3. A non-Bracket value is the argument to Run. For example: (run 7°)° is stuck since 7° is an 
integer and not a piece of code. 

4. A non-Bracket value is the argument to Escape. For example: <(4* + ~(7°)1)1>° 

We wish to consider as faulty, terms in the form above. We will show that if a term is typable, 
then it is not faulty, and neither can it reduce to a faulty term. We formalize this notion in the 
next sections. 

We can now present the following formal specification for the set of faulty terms F: 

1. c[((<en+1>)n e')n] € F   Non-A terms in an application like: (5° 3°)° and (<52>a 31)1 

c[(in e')n] € F 

2. c[(Xx.c'[xn])m] € F   where m > n. Variables at too low a level like: <(Aa;.-(z°)1)1>° 

3. c[(run [\x.e)n)n] € F   Non-Bracket in Run like: (run (\x.x)°)° and (run 43)3 

c[(run in)n) € F 

4. c[{~{Xx.e)n)n+1] € F Non-Bracket in Escape like: <(41 + "((Aa;.a;)0)1)1>0 and <(43+-(52)3)3>2 

c[{~(in))n+1] € F 



The success of our specification of faulty expressions depends on whether they help us char- 
acterize the behavior of our reduction semantics. The following lemma is an example of such a 
characterization, and is needed for our proof of type soundness. 

Lemma 3 (Uniform Evaluation). Let en be a closed term. If en is not faulty then either it is a 
value or it contains a redex. 

Proof:    By induction on the structure of en. 

4    Type System 

The main obstacle to defining a sound type system for our language is the interaction between 
Run and Escape. While this is problematic, it adds significantly to the expressiveness of a staged 
language [23], so it is worthwhile overcoming the difficulty. The problem is that Escape allows 
Run to appear inside a Bracketed A-abstraction, and it is possible for Run to "drop" that A-bound 
variable to a level lower than the level at which it is bound. The following example illustrates the 
phenomenon: 

<(Ax.(-(run <x1>°)°)1)1>° -^ {Xx.^x0)1)1 

To avoid this problem, for each A-abstraction we need to count the number of surrounding Runs 
for each occurrence of its bound variable (here x1) in its body. We use this count to check that 
there are enough Brackets around each formal parameter to execute all surrounding Runs without 
leading to a faulty term. 

The type system for A-R is defined by a judgment A h en : r, m, where en is our well-typed 
expression, r is the type of the expression, m is the number of the surrounding Run annotations 
of en and A is the environment assigning types to term variables. 

Syntax 
types                       T     ::= T —> T | <T> | int 

type assignments   A    ::= X^(T,JY;A\{} 

judgments               J    ::= A\-t:r,m 

Type System 

A(a:) = (r,j)*    i + m<n + j 
 __—_ Var 

Ar xn : T,m 
. ,   .„    . Int 
Ari": int, m 

Ahe": <T>,m+ 1 
~r~,—; ; Run A h (run e")n : r,m 

A h e"+1 : T, m 
~7~. n Bra 
Ah <en+1>n : <T>,m 

Ahe": <T>,m 
~ir-,—; ;—n Esc A h ("en)n+1 : T,m 

Ahe^'.r'^m     A h i\r' —► r, m 

Ah(e? e%)n :r,m             ApP 

(IH (r',m)";A)he" :T,m 
———7T r ■ Lam 

A h (Az.e")" : r' ->■ T,m 

The type system employs a number of mechanisms to reject terms that either are, or can 
reduce to faulty terms. The App rule has the standard role, and rejects non-functions applied to 
arguments. 

The Escape and Run rules require that their operand must have type Code. This means 
terms such as run 5 and <Ax."5> are rejected. But while this restriction in the Escape and Run 
rules rejects faulty terms, it is not enough to reject all terms that can be reduced to faulty terms. 
The first example of such a term is <Aa\~(run <z>)> which would be typable if we use only the 
restrictions discussed above, but reduces to the term <Ax."a;> which would not be typable.  The 
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second examples involves an application (A/. <A:c. "(/<£>)>) (Aar.run x) which would also be typable, 
but reduces to <A#.~a;>. To reject such terms we need the Var rule. 

The Var rule is instrumented with the condition i + m < n + j. Here i is the number of 
Bracket's surrounding the A-abstraction where the variable was bound, m is the number of Runs 
surrounding this occurence of the variable, n is the number of Brackets surrounding this occurence 
of the variable, and j is the number of Runs surrounding the A-abstraction where it was bound. 
This ensures that every variable has more Brackets than Runs surrounding it. 

In previous work, we have attempted to avoid these two kinds of problems using two distinct 
mechanisms: First, the argument of Run cannot contain free variables, and second, we prohibit the 
A-abstraction of Run. We used unbound polymorphic type variable names in a scheme similar to 
that devised by Launchbury and Peyton Jones for ensuring the safety of state in Haskel [14]. It 
turns out that not allowing any free variables is too strong, and that using polymorphism was too 
weak. It is better to simply take account of the number of surrounding occurrences of Run in the 
Var rule. This way we ensure that if Run is ever in a A-abstraction, it can only strip away Brackets 
that are explicitly apparent in that A-abstraction. 

5    Type Soundness of the Reduction Semantics 

The type soundness proof closely follows the subject reduction proofs of Wright and Felliesen [27]. 
Once the reduction semantics and type system have been defined, the syntactic type soundness 
proof proceeds as follows: 

1. Show that reduction in the standard reduction semantics preserves typing.   This is called 
subject reduction. 

2. Show that faulty terms are not typable. 

If programs are well-typed, then the two results above can be used as follows: By (1), evaluation 
of a well-typed program will only produce well-typed terms. By Lemma 3, every such term is either 
faulty, or a value, or contains a redex. The first case is impossible by (2). Thus the program either 
reduces to a well-typed value or it diverges. 

5.1    Subject Reduction 

The Subject Reduction Lemma states that a well-typed term remains well-typed under reduction. 
The proof relies on the Demotion, Promotion and Substitution Type Preservation Lemmas. First 
we need to introduce two operations on the environment assigning types to term variables: 

A t(,,P) (*) = (r,j + q)i+p iff A(s) = (r,j)' 
A i{qtp) (x) = (r,JY iff A(z) = (r, j + q)^ 

These two operations map environments to environments. They are needed in the Promotion and 
Demotion Lemmas. They provide an environment necessary to derive a valid judgement for a 
promoted or demoted well-typed value. Notice that we have the following two properties: 

(A t(g,P)) t(»,i)= A t(9+t,p+i)  and (A t(9+t,P+j)) i(i,j)= A t(9)P) 

We writeu fp and v \P, respectively, for an abbreviation of p applications of t and | to v. Note 
that this operation is different from t(g,p) and 4-(?,p) which is a function on environments assigning 
types to term variables. 

Lemma 4 (Demotion). If q < p and A2 i(qp) is defined and  Ai U A2 h vn+p :T,m + q then 
A1U(A2|(g)P))h^+Up:r,m. 



Proof. By induction on the structure of vn+p.   We develop only the variable case vn+p = xn+p. 
There are only two possible sub-cases, which are: 

Ai(g) = (r,j)'    i + m + q<n+j+p 
(Ai U A2) h *"+" :r,m + q (      ' 

By hypothesis q < p implies m + i<n + j. Hence  (Ai U (A2 4(9)P))) h vn+p lp: r, m. 

Aa(g) = {r, j + q)i+p    i + m + 2q<n + j + 2p 

{A1UA2)\-x
n+P:T,m + q {      ' 

Similar to the above sub-case. □ 

Lemma 5 (Promotion). Let q < p. If Ah vn :r,m then Ai U (A2 t(,,P)) h vn f: T,m + q. 

Proof. By induction on«". □ 

Lemma 6 (Substitution).  If j < m and Ai U (x ^ (r',i)1'; A2) h en : r,m and Ai h v* : r',j 
Men one o/ Me following three judgments holds. 

1. Ax h en[xn 

2. Ai f- en[a;n 

5.   Ai I- en[xn 

._ yt ^n-2j ;T^m  if n>  j\ 

:= u* 4,_n] \T,m if n < i 

:= un] : r, m, otherwise 

Proof. By induction on the structure en. If en = zn then we have: 

A(X) = (T,J)'    m + i<n + j 

Ai U (a; i4 (T,JY; A2) \- xn :T,m 

• If 7i < i and by the hypothesis j < m then m + i > n + j. Hence  Ai U [x t-> (r, j)!; A2) h 
xn : r, m cannot be typable. 

• if n > i then m - j < n - i and the Promotion Lemma 5 applies. 

• i = n and by hypothesis j < m and m+i < n+j then j = m. Then, A} h en[zn := un] : r, m. 

D 

Corollary 7 (/3 Rule). //Ah ((Az.en)n vn)n : r, m Men A h en[xn := un] : r, m. 

Lemma 8 (Escape Rule). //Ah (~<en+1>")n : r, m   Men A h en : r, m. 

Proo/. Straightforward from the type system. □ 

Lemma 9 (Run Rule). //Ah (run <vn+1yi)n : T) m ^eri A h u1 |: r, m. 

Proof. If A h (run <u"+1>n)n : r,m then   A h vn+1 : r,m+ 1 is valid.  By Demotion Lemma 4, 
A h vn+1 J.: r, m is valid. □ 

Proposition 10. // A h e" : r, m and e£ -> e^ then A h ej : r, m. 

Proof. By induction on the structure of e". If the rewrite is at the root then use Lemmas 8 and 9, 
and Corollary 7. If e™ contains a redex then apply induction hypothesis. D 

Proposition 11 (Subject Reduction). // A h e\ : r, m and e\ -4 e!? Men E A h eJ? : r, m. 

Proo/. By induction on the length of the derivation. D 



5.2    Faulty Terms 

Lemma 12 (Faulty Terms are Not Typable). If e £ F then there is no A,t,a such that 
A h e : £,a. 

Proof. By case analysis over the structure of e. Let e = ^[(Aa^fx"])8] such that n < i, that is, 
i = n + ki + 1. Assume that A h e : r, m. This implies that x i-> (r',j)!A' h xn : r',p. This means 
that i + p < n + j. Because p = j + k2 then j < p. This implies that n + k + l + l + j + k? < n + j 
which is impossible. The other cases are straight-forward. □ 

6    Natural Semantics 

In previous work, we defined core MetaML by a natural semantics [25]. While this style of presen- 
tation is closer to the implementation of MetaML than the reduction semantics presented in this 
paper, it is more complex. We have found that it was easier to prove type soundness first with 
respect to the reduction semantics, and then to extend this result to the natural semantics. 

In this paper, we present a more concise natural semantics for MetaML than the one we have 
presented in previous work [25]: 

ei° <^->- (\x.e°)°   e2°^v1°   (c°[ar := «?]) 

(e° e°)° -s-1/2° 

ein+1 >-> e3
n+1   e2"

+1 «^ e4"+1 

-►«§ e0 cj. <vi>° 

(\x.e°)° «-*• {Xx.e°)° 

ei
0^<vl>°     («14.)°^ »2° 

(run e?)° ^ v2° 

ei
n+1 <-¥ e2"

+1 

-(e0)l c-> vl 

(e?+1 en2
+l)n+l ^ (e£+1e2+1)n+1 

ei"+1M-e2
n+1 

ei"
+1 ^e2

n+1 

(Az.e?+1)n+1 -> (A*.e2+1)n+1 

ei"+1 ^e2
n+1 

-(e«+i)"+2 ^ -(c»+1)B+a <e«+l>" ^ <e»+l>n 

(run e?+1)"+1 ^ (run e»+1)"+1 jn c_). j" 

A key property of this presentation is that it avoids the explicit use of a gensym or newname 
function for renaming abstractions at levels greater than zero. This improvement avoids the prob- 
lems that Moggi points out regarding the use of such stateful functions in defining the semantics 
of two-level languages [18]. 

Now we move on to present some fundamental results about the untyped A-R language, and 
use these results, in addition to the soundness of the type system with respect to the reduction 
semantics, to prove the soundness of the type system with respect to the natural semantics. 

We say that two terms e\ and e2 are observationally equivalent, written e\ ~ e2, if for any 
context cfj such that both c[e{\ and c[e2] are closed, then c[exf «-»■ «i0 if and only if c[e2]° *-* «2°, 
and Vi = i° if and only if u2 = i° when both relations are defined. 

Lemma 13. If en «-»• vn then en -^ vn. 

Proof. By induction on the proof tree for en «^ vn. 

Lemma 14. If e —t v then e <-+ v'. 

D 

Proof. This proof requires a Standardization Theorem along the lines of Plotkin [20], but one 
extended to deal with Brackets, Escape and Run. We omit the details for the sake of brevity. 
Please see the technical report for the full details [24]. D 
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Corollary 15.  There exists a value v such that X-R h e = v if and only if e <—} v'. 

Proof. Consequence of Lemmas 14 and 13. D 

Theorem 16 (Soundness of Axiomatic Semantics). If X-R r- e\ = e2 then e\ ~ e2. 

Proof. If ei '-¥ vi then by Corollary 15 A-R h e\ = v\. Hence, A-R h e2 = v\. By Coroljary 15, 
there exists a value v-i such that e2 «->• i>2- By Lemma 13, A-R h Dj = t>2. Since the axiomatic 
semantics is Church-Rosser, we have v\ —*-> v and vi -^ u. Thus, ei ~ e2 □ 

We define undesirable behavior in the natural semantics in the classical manner: we introduce a 
new "value" Wrong, written T, and a set of rules complementing the rules of the natural semantics, 
and returning T in all these new cases.   We call the combination of these two sets of rules the 

augmented natural semantics, and denote it by  ^ . 

Lemma 17.   //e4T then e -^ f and f 6 F and f ^ v. 

Proof. By induction on the proof tree of the augmented natural semantics  ^4 . D 

Theorem 18 (Type Soundness). If A r- e : r, m and e <-> e' then e' / T 

Proof. We prove the contrapositive. If e' = T and e «-»■ T then by Lemma 17, e -^ /. Hence by 
type soundness of the reduction semantics, e is not typable. D 

7    Related Work 

Multi-stage programming techniques have been used in a wide variety of settings, including run-time 
program generation in ML [17], run-time specialization of C programs [5, 4, 21, 9], and advanced 
dynamic compilation for C programs [1]. 

Nielson and Nielson present a seminal detailed study into a two-level functional programming 
language [19]. This language was developed for studying code generation. Davies and Pfenning 
show that a generalization of this language to a multi-level language called AD gives rise to a type 
system very related to a modal logic, and that this type system is equivalent to the binding-time 
analysis of Nielson and Nielson [7]. Intuitively, AD provides a natural framework where LISP's 
quote and eval can be present in a language. The semantics of our Bracket and Run correspond 
closely to those of quote and eval, respectively. 

Glück and J0rgensen study partial evaluation in the generalized context where inputs can arrive 
at an arbitrary number of times rather than just specialization-time and run-time [12]. They 
also demonstrate that binding-time analysis in a multi-level setting can be done with efficiency 
comparable to that of two-level binding time analysis. Our notion of level is very similar to that 
used by Glück and j0rgensen[lO, 11]. 

Davies extended the Curry-Howard isomorphism to a relation between modal logic and the type 
system for a multi-level language [6]. Intuitively, AO provide a good framework for formalizing 
the presence of quote and quasi-quote in a language. The semantics of our Bracket and Escape 
correspond closely to those of quote and quasi-quote, respectively. Previous attempts to combine 
the AD and A^ systems have not been successful [7, 6, 25]. To our knowledge, our work is the first 
successful attempt to define a sound type system combining Brackets, Escape and Run in the same 
language. 

Moggi advocates a categorical approach to two-level languages, and and uses indexed categories 
to develop models for two languages similar to AD and A^ [18]. He points out that two-level 
languages generally have not been presented along with an equational calculus. Our paper has 
eliminated this problem for MetaML, and to our knowledge, is the first presentation of a multi- 
level language using axiomatic and reductions semantics. 
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8    Conclusion 

In this paper, we have presented an axiomatic and reduction semantics for a language with three 
staging constructs: Brackets, Escape, and Run. Arriving at the axiomatic and reduction semantics 
was of great value to enhancing our understanding of the language. In particular, it helped us to 
formalize an accurate syntactic characterization of faulty terms for this language. This character- 
ization played a crucial role in leading us to the type system presented here. Finally, it is useful 
to note that our reduction semantics allows for ^-reductions inside Brackets, thus giving us a basis 
for verifying the soundness of the safe-/? optimization that we discussed in previous work [25]. 

MetaML currently exists as a prototype implementation that we intend to distribute freely on 
the web. The implementation supports the three programming constructs, higher-order datatypes 

(with support for Monads), Hindley-Milner polymorphism, recursion, and mutable state. The 
system has been used for developing a number of small applications, including simply term-rewriting 

system, monadic staged compilers, and numerous small bench-mark functions. 
We are currently investigating the incorporation of an explicit recursion operator and Hindley- 

Milner polymorphism into the type system presented in this paper. 

Acknowledgements: We would like to thank John Matthews and Matt Saffell for comments on 

a draft of this paper. 
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Extended Abstract 

The Anatomy of a Component Generator1 

Walid Taha & Jim Hook 
{walidt, hook}® cse.ogi.edu 

The Oregon Graduate Institute 

In this extended abstract, we outline some essential elements of a conceptual model for a component generation 
system. This model is based on an extensive study of a large number of high-level program generation systems, and 
the significant body of related literature. We focus our attention on the architectural elements of this model, and 
briefly discuss the technological and process elements. We show how the model is a useful basis for comparing 
component generation technologies. With a rapidly growing area like component generation, it is hard to get a truly 
representative sample of generators. As a workaround, we illustrate our model using seven significant component 
generation systems developed by various research groups, and discuss some insights that the model provides. We 
conclude with an overview of the current status of our investigation. 

1. The Pragmatic Need for Models 

We know that component generation can be very beneficial for evolving systems, but we don't have a widely-accepted 
conceptual model for component generation systems. Conceptual models allow us to categorize and distill our 
knowledge of details into more manageable and structured information. We believe that such a model would facilitate 
better communication of ideas, within our own research group (PacSoft), within the component generation research 
area, within the programming languages area, and with the outside world. For example, it will necessarily play an 
important role in transferring our ideas as a research community to software houses that can develop industry-strength, 
general purpose component generators. 

We have been working towards such a model for almost three years now, and have studied over 100 related 
publications, in addition to being involved in PacSoft's SDRR component generation project [KMB96]. Why has it 
taken so much effort? The major hurdle is that interesting component generation systems emerge from many corners 
of computer science, which often means incompatible vocabularies. For example, the word "Component" can have 
significantly different meanings in different papers2. The diversity of programming languages, operating systems, and 
tools used in developing the generators, and of the researchers' expectations from all of these, add significantly to the 
difficulty of understanding the literature in a manner that would allows us to compare and contrast two different 
generation technologies. 

2. The Architectural Element 

Software architectures [PW92] communicate ideas about software systems, and are especially useful when parties 
involved come from a variety of different backgrounds. Architectural descriptions provide an abstract basis for our 
model, a basis that is independent of the technology underlying the generator, the development process, and the 
application domain. 

Even when composed of relatively simple subsystems, the collective architecture of a generator is often quite complex, 
and involves a significant number of distinct artifacts and users. Artifacts include the generator, the input and output 
of the generator, libraries, and the legacy system hosting the generated component. Users include the developers of 
the generator, it's input, and the libraries. Ideally, the input to the generator is a simple, compact specification that is 
easy to maintain.   However, it is often the case that an executable program cannot be generated solely from such 

1 This research is supported by a contract with the USAF Materiel Command. Contract F19628-93-C-0069. 
1 In this paper, it will mean CORBA/COM-like components. 
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specifications.    Therefore, it is common to find an additional (specification) language, often in the form of 
annotations, for controlling the generator. There may even be a developer dedicated to this task. 

Hence, a model for component generators should admit all possible answers to the following questions: 

• What is the input to the generator? Who writes this input? 

• What is the output of the generator? Who uses it? 

• What libraries does the output use? Who writes these libraries? 

• How does the generator work? Who wrote it, and how? How is it controlled? 

• With what systems does the generated component interact? 

While it is not common to consider all of these dimensions of variability simultaneously, this is precisely what is 
needed when we wish to relate and contrast more than one existing component generation system. The figure below is 
a schematic representing the minimal architectural schema that arises if the answer to the each of the above questions 
is distinct. 

i A 
De*dopcr.GD 

9 
_A_ 
Ubmy 

buerfioc 

_A_ 
Devdnpet. □> 

The figure above explicates the implicit complexity of even the simplest generative system. For instance, consider the 
yacc parser-generator [Joh75]. Development work on the generator itself has stopped, and hence, we usually don't 
think of either the developer or the source yacac. The generator input is the grammar proper, and the control 
annotations are the directives regarding precedence and association. Note that control annotations need not be in a 
separate file. The component developer and the generator controller are the same person. The grammar file could 
also contain further control instructions about what library files the generator output might be using. The libraries 
used by the generator output include lib.y.c, which contains the abstract machine for the parse table The interface is 
usually header files describing the legacy system functions that the parser uses. Finally, while we rarely see a user 
directly interacting2 with the parser generated by yacc, the user of the legacy system is, indirectly, the component user. 

1 Drawn in the Generator Description Language, GDL [TS97J. 
2 Interaction commutes, and hence, we could have drawn the component user directly connected to the generated 
component, and the diagram would have had the same meaning. 
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2.1 Basic Distinguishing Characteristics 

Certain aspects of the architecture sketched in the last section are "not negotiable": a generative architecture has to 
include a generator, a generator input, and a generated component And every artifact that is not mechanically 
generated must have an author. The architecture described above gives us a very natural basis for our model that 
captures these essential invariants. However, it offers too many dimensions of variability. The design space is indeed 
vast But some of these dimensions are more informative than others, in that they are better discriminators between 
various component generation systems. We have identified basic distinguishing characteristics: 

1.   Who is the primary user, that is, the "customer" the system is intended to benefit? 

1   What expertise is expected from the main user? 

3. Which users are distinct and which users are not? For example, is the role of generator development identified 
with the role of generator control? 

4. Does the generator have a distinct notion of control annotations? 

These factors are derived or computed from the architectural variabilities. In the following section, we illustrate the 
relevance of these criteria by considering some important generative systems. 

2.2 Application to Seven Research Component Generation Systems 

For brevity, we will not review all the systems we have studied. Instead, we present summary of our observations, and 
then illustrate how these observation can be interpreted. In the following table, "=" between two different kinds of 
users means that we did not find them to be treated differently. In cases where there is no explicit notion of control 
annotations, the input to the generator can be viewed as being an " Implicit" control specification: 

Systems Primary 
User(s) 

Primary User's 
Expertise 

Distinct Users Control 
Annotations 

ISI [Bal81,Bal92] GD.CD GD: Meta-programmer, 
CU: Domain expert 

CU, CD=LD, GC=GD Pragmas 

MIP [MKS97] CU Domain expert CU=CD=GC, GD, LD Implicit 

GenVoca [BST+94] LD Programmer CU, CD=GC=LD, GD Design rules 

BODS / SpecWare [Smi90, SJ94] CD Formal methods expert CU, CD=GC=LD, GD Refinements 

SDRR [BH+94, KMB96] GD.CD Domain expert CU=CD, GC=GD=LD Implicit 

Amphion [LPP+94] CU Domain expert CU=CD, GC=GD, LD Implicit 

AOP [GLM+97] CD Programmer CU, CD=GC=GD=LD Aspects 

Let us consider the first case: In the ISI technology, the generator developer (GD) uses the POPART meta- 
programming tool-kit and a relational extension of C or Java to develop the generator [Bal92,Wil81,Wil90]. In the 
literature we surveyed, the roles of the generator controller (GC) and generator developer were not distinguishable. 
Pragmas are used to guide the relational compiler as to how to implement relations. 
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The following sub-sections discuss two of the main observations that can be drawn on the basis of this information. 

2.2.1 What to Mix, and What to Match 

Consider the kind of information that might interest a software engineer interested in building a component generator. 
Some technologies address similar classes of users, such as ISI and SDRR, and MIP and Amphion. This means that 
these technologies could be a good basis for synthetic systems combining the benefits of both. For example, SDRR's 
technology, which leverages on functional programming, can benefit greatly from ISI's meta-programming 
technology, and vise versa. When a basic distinguishing characteristic identifies two systems, there are usually many 
other (often less-abstract) dimensions in which they are different. For example, Mff and Amphion fall on distinct 
points along the dimension of real-time constraints. We consider this dimension to be somewhat less abstract than 
architecture because it is more dependent on the application domain. Some of these dimensions should be in a model 
for component generators, discussed in the next section. 

Other technologies address users that are usually not emphasized by others. For example, GenVoca is unique in 
addressing concerns of the library developer (LD). This suggests that high-level ideas from the GenVoca system 
might be readily combinable with generation technologies covered in our survey. 

2.2.2 How to Control Generation 

Four very different kinds of annotations are being considered by three different groups, namely, ISI's pragmas, 
GenVoca' design-rules, KIDS and SpecWare refinements, and AOP's aspects. These annotations are an important 
characteristic of modem component generation systems that was not commonplace in earlier transformational 

programming systems. 

Control annotations can be viewed as Domain-Specific Languages (DSLs). For example, yacc's specifications for 
precedence of operators is one such DSL. In this light, we can say that the first three kinds of annotations are single 
languages, and AOP's aspects can be thought of as families of DSLs. We believe that the study of these generator- 
control DSLs will play an important role in developing general-purpose, industry-standard component generation 

systems. 

3. Technology and Process Elements 

Our model also includes two other elements; the technology underlying the generation system, and the process by 
which the generator itself is developed. Both can be viewed as refinements of the architectural model. The following 
table summarizes some distinguishing characteristics of the systems surveyed:   

Systems 

ISI 

MIP 

GenVoca 

KIDS/ 
SpecWare 

SDRR 

Underlying Technology 

Meta-programming calculus and tools 

Generator Development 

Using POPART tools and relational C or Ada 

Model-integrated real-time control 

Algorithm selection and object- 
orientation 

Formal verification 

Typed, functional programming 

Using the Mff paradigm 

Using design rules to specify acceptable library 
combinations 

Using specifications and refinements to characterize and 
derive programs 

Using SDRR to create the front-end of the SDRR pipeline 
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Amphion Theorem proving and program 
synthesis 

Using Meta-Amphion, a theory of the domain, and an 
inference engine 

AOP AOP Using (any technology?) to develop a weaver and aspects 

4. Conclusion 

We have outlined a model for component generation systems that we are currently developing. The model captures 
some of the bare essentials required for an object of study to be considered a generator, without going too deeply into 
the details of any particular system. We illustrated how it admits simple, clear, and objective criteria for comparing 
component generation systems. Our work shows that there is significant diversity not only in the cultures and 
application domains of contemporary component generation research projects, but also in technical problems that are 
unique to the emerging research area of component generation, such widespread interest in generation control. 

Acknowledgments: We thank Lisa Walton. Andrew Black, Sherri Shulman, Tito Autry, Theme Fisher, Shailish Godbole, and Amol Vyas rfor 

valuable discussions. 
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Abstract 

We describe a type system and typed semantics for call-by-value functional languages that 

use a hierarchy of monads to describe and delimit a variety of effects, including non-termination. 

exceptions, and state. The type system and semantics can be used to organize and justify a 

variety of optimizing transformations in the presence of effects. In addition, we describe a 

simple monad inferencing algorithm that computes the minimum effect for each subexpression 

of a program, and provides more accurate effects information than local syntactic methods. 
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1    Introduction 

Optimizers are often implemented as engines that repeatedly apply improving transformations to 

programs. Among the most important transformations are propagation of values from their defining 

site to their use site, and hoisting of invariant computations out of loops. If we use a pure (side- 

effect-free) language based on the lambda calculus as our compiler intermediate language, these 

transformations can be neatly described by the simple rules for beta-reduction 

(Beta)    Let x = e in b      =      b[e/x] 

and for the interchange and lifting of bindings 

(Exchange)    Let xi = e\  in (Let X2 = e2 in b) 
=    Let X2 = e2 in (let X\ = e\  in b) 

di   i  FV(e2); x2   $  FV{ex)) 

(RecHoist)    Letrec / =  (A a;.let y = e\  in e2)  in b 
= let y = e\  in (letrec / = A x.e2 in b) 

(x,f   $   FV(ei); y   $   FV(b)) 

where the side conditions nicely express the data dependence conditions under which the transfor- 

mations are valid.1 Effective compilers for pure, lazy functional languages (e.g., [10]) have been 

conceived and built on the basis of such transformations, with considerable advantages for modu- 

larity and correctness. 
It would be nice to apply similar methods to the optimization of languages like ML, which 

have side effects such as I/O, mutable state, and exceptions. Unfortunately, these "rearranging" 

transformations are not generally valid for such languages. For example, if we apply (Beta) in a 

situation where evaluating e performs output and x is mentioned twice in b, evaluating the resulting 

expression might produce the output twice. In fact, once an eager evaluation order is fixed, even 

non-termination becomes a "side effect." For example, (RecHoist) is not valid unless e\ is known 

to be terminating (and free of other effects too, of course). 

A similar challenge long faced lazy functional languages at the source level: how can we give 

the power of side-effecting operations without invalidating simple "equational reasoning" based on 

(Beta) and similar rules? The effective solution discovered in that context is to use monads [8, 12]. 

An obvious idea, therefore, is to use monads in an internal representation (IR) for compilers of 

call-by-value languages. Some initial steps in this direction were recently taken by Peyton Jones, 

Launchbury, Shields, and Tolmach [11]. The aim of that work was to design an IR suitable for 

both eager and lazy source languages. In this paper we pursue the use of monads with particular 

reference to eager languages (only), and address the question of how to discover and record several 

different sorts of effects in a single, unified monadic type system.   We introduce a hierarchy of 

1 Of course, the fact that a transformation is valid doesn't mean that applying it will necessarily improve the 

program. For example, (Beta) is not an improving transformation if e is expensive to compute and x appears many 

times in b; similarly, (RecHoist) is not improving if / is not applied in b. 



monads, ordered by increasing "strength of effect," and an inference algorithm for annotating 

source program subexpressions with their minimal effect. 

Past approaches to coping with effects have fallen into two main camps. One approach approach 

(used, e.g., by SML of New Jersey [2] and the TIL compiler [16]) is to fall back on a weaker form 

of (Beta), called (BetaJ, which is valid in eager settings. (Beta„) restricts the bound expression 

e to variables, constants, and A-abstractions; since "evaluating" these expressions never actually 

causes any computation, they can be moved and substituted with impunity. To augment this rule. 

these compilers use local syntactic analysis to discover expressions that are demonstrably pure and 

terminating. These analyses cannot "see through" function calls, but they can be quite effective, 

particularly if the compiler inlines functions enthusiastically. The other approach (used, e.g., by 

the ML Kit compiler [4]) uses a sophisticated effect inference system [14] to track the latent effects 

of functions on a very detailed basis. The goals of this school are typically more far-reaching; the 

aim is to use effects information to provide more generous polymorphic generalization rules (e.g., 

as in [19, 15]), or to perform significantly more sophisticated optimizations, such as automatic 

parallelization or stack-allocation of heap-like data. In support of these goals, effect inference has 

generally been used to track store effects at a fine-grained level. 

Our approach is essentially a simple monomorphic variant of effect inference applied to a wider 

variety of effects (including non-termination, exceptions, and 10), cast in monadic form, and in- 

tended to support transformational code-motion optimizations. We infer information about latent 

effects, but we do not attempt to calculate effects at a very fine level of granularity. In return. 

our inference system is particularly simple to state and implement. However, there is nothing 

fundamentally new about our system as compared with that of Talpin and Jouvelot [14]. except 

our decision to use a monadic syntax and validate it using a typed monadic semantics. A practical 

advantage of the monadic syntax is that it makes it easy to reflect the results of the effect inference 

in the program itself, where they can be easily consulted (and kept up to date) by subsequent. 

optimizations, rather than in an auxiliary data structure. An advantage of the monadic semantics 

is that it provides a natural foundation for probing and proving the correctness of transformations 

in the presence of a variety of effects. 

In related work, Wadler [18] has recently and independently shown that Talpin and Jouvelot's 

effect inference system can be applied in a monadic framework; he uses an untyped semantics, and 

considers only store effects. In another independent project, Benton and Kennedy are prototyping 

an ML compiler using a monadic encoding similar to ours [3]. 

2    Source Language 

This section briefly describes an ML-like source language we use to explain our approach. The 

call-by-value source language is presented in Figure 1. It is a simple, monomorphic variant of ML. 

expressed in A-normal form [5], which explicitly binds a name to the result of each computation 

and makes evaluation order completely explicit.  The class const includes primitive functions as 



datatype value = 
Var of var 

I  Const of const 

datatype const = 
Integer of  int 
True   I   False 
DivByZero  I   ... 
Plus   I  Minus  I  Times   I  Divide 
Eqlnt   I   Ltlnt 
EqBool   |   EqExn 
Writelnt 

datatype exp = 
Val of value 
Abs of var * exp 
App of value * value 
If of value * exp * exp 
Let of var * exp * exp 
Letrec of var * var * exp * exp 
Tuple of value list 
Project of int * int * value 
Raise of value 
Handle of exp * value 

Figure 1: Abstract Syntax for Source Language (presented as ML datatype). 

well as constants. The Let construct is monomorphic; that is, Let(x,e,6) has the same semantics 

and typing properties as would App (Abs (a;, 6) ,e) (were this legal A-normal form). The restriction 

to a monomorphic language is not essential; see Section 5. All functions are unary; primitives like 

Plus take a two-elenient tuple as argument. For simplicity of presentation, we restrict Letrec to 

single functions. 

The language is not explicitly typed, but the underlying types include the base types Int, Bool, 

and Exn, tuples, and arrows. We use tuples as a surrogate for more general algebraic datatypes; 

to permit type inference for Projects in the absence of declarations, we provide the total size 

of the tuple as an additional parameter. We assume a supply of appropriate constants for each 

base type. Exceptions carry values of type Exn, which are nullary exception constructors. Raise 

takes an exception constructor; rather than providing a means for declaring such constructors, 

we assume an arbitrary pool of constructor constants. Handle catches all exceptions that are 

raised while evaluating its first argument and passes the associated exception value to its second 

argument, which must be a handler function expecting an Exn. The body of the handler function 

may or may not choose to reraise the exception depending on its value, which may be tested using 

EqExn. The primitive function Divide has the potential to raise a particular exception DivByZero. 

We supply Writelnt as a paradigmatic state-altering primitive; internal side-effects such as ML 

reference manipulations would be handled similarly. All other primitives are pure and guaranteed 

to terminate. The semantics of the remainder of the language are completely ordinary. 

3    Intermediate Language with Monadic Types 

Figure 2 shows the abstract syntax of our monadic intermediate representation (IR). (For an exam- 

ple of the code, look ahead to Figure 10.) For the most part, terms are the same as in the source 

language, but with the addition of monad annotations on Let and Handle constructs and a new 

Up construct; these are described in detail below. In addition, identifiers (and Raise expressions) 



datatype monad = ID I LIFT I EXN I ST 

datatype mtyp = M of monad * vtyp 
and vtyp = 

Int 
I Bool 
I Exn 
I  Tup of vtyp list 
I  Arrow of vtyp * mtyp 

type varty = var * vtyp 

datatype value = 
Var of var 

I   Const of  const 

datatype exp = 
Val of value 
Abs of varty * exp 
App of  value * value 
If of value * exp *  exp 
Let of monad * varty * exp  *  exp 
Letrec of varty * varty * exp *  exp 
Tuple of value list 
Project of int *  int * value 
Raise of mtyp * value 
Handle of monad * exp * value 
Up of monad * monad * exp 

Figure 2: Abstract Syntax for Monadic Typed Intermediate Language. 

are explicitly typed, in order that we may easily compute the type of any closed expression. 

Values have ordinary value types (vtyps); expressions have monadic types (ratyps), which in- 

corporate a vtyp and a monad (possibly the ID monad). Since this is a call-by-value language, the 

domain of each arrow types is a vtyp, but the codomain is an arbitrary mtyp. The typing rules 

are given in Figure 3. In this figure, and throughout our discussion, t ranges value types, m over 

monads, v over values, c over constants, x over variables, and e over expressions. The initial type 

environment is described in Figure 4. 

For this presentation, we use four monads arranged in a simple linear order. In order of "in- 

creasing effect" these are: 

• ID, the identity monad, which describes pure, terminating computations. 

• LIFT, the lifting monad, which describes pure but potentially non-terminating computations. 

• EXN, the monad of exceptions and lifting, which describes computations that may raise an 

(uncaught) exception, and are potentially non-terminating. 

• ST, the monad of state, exceptions, and lifting, which describes computations that may write 

to the "outside world," may raise an exception, and are potentially non-terminating. 

We write mi < mi iff mi precedes rri2 on this list. Intuitively, mi < m2 implies that computations 

in ?7i2 are "more effectful" than those in mi; they can provoke any of the effects in mi and then 

some. This particular hierarchy captures most of the interesting distinctions and still gives us a 

simple inference algorithm (see Section 5). More elaborately stratified monadic structure is certainly 

possible; we discuss this in more detail below. 

More formally, mi < m2 implies that there exists an embedding wpmi_>m2 which, for every value 

type t, maps the domain corresponding to M(mi ,t) into the domain corresponding to M(m2 ,t) • The 



E(v) = t 
E \-v Var v : t 

Typeof (c) = t 
E h„ Const c :t 

E\-Vv:t 
EhVal u:M(ID,*) 

E+{x:ti) h e : M(m2,i2) 
E h Abs(x : t\,e) : M(ID,ti->M(m2,t2)) 

E\-v v\ : t\ -*■ M(m2)t2)    £ h, t>2 = *l 
E hApp(ui ,V2) : M(m2,<2) 

£I-JO: Bool    E h ei M(m,t)    £r-e2:M(m,i) 
Eh If(ü,ei,e2) :M(m,t) 

Eh ei : M(mi ,ti)    i? + {x : <i} h e2 : M(m2)t2)     {mi < m2) 
E h Let (mi ,m2,x : t\ ,e\ ,e2) : M(m2)i2) 

jE + {/:*o-^M(mi,<i),a;:«o}f-ei :M(mi,<i)      ,_ __ ^      . 
(LIFT < mi] 

E + {/ : t0 -> M(mi ,ii)} h e2 : M(m2,t2) 

E h Letrec(/ : to -> M(mi,*i),a;: to,ei,e2) : M(m2,t2) 

 E \-v v\ : ti    ...    E \-v vn : tn  
Eh Tuple(vu...,vn) :M(ID,Tup(ti,...,tn)) 

E\-vv:Twp(.ti,...,tn)    {0<i<n) 
E \- Project(i,n,v) : M(ID,tj) 

EY-Vv : Exn 
E h Raise(M(EXN,t),«) : M(EXN.t) 

Ehe:H(m,t)    £ H„ t; : Exn -> M(m,t)    (EXN < m) 
E h Handle (m,e,u) : M(m,t) 

E\- e : M(mi ,t)     (mi < m2) 
i? h Up (mi, 7712, e) :M(m2,t) 

Figure 3: Typing rules for intermediate language 



Integer _   :   Int 
True,False :  Bool 
DivByZero :  Exn 
Plus,Minus,Times  :   Arrow(Tup[Int,Int],M(ID,Int)) 
Divide:  Arrow(Tup[Int,Int],M(EXN,Int)) 
Eqlnt.Ltlnt:  Arrow(Tup[Int,Int],M(ID,Bool)) 
EqBool:   Arrow(Tup[Bool,Bool],M(ID,Bool)) 
EqExn:  Arrow(Tup[Exn,Exn],M(ID,Bool)) 
Writelnt:  Arrow(Int,M(ST,Tup[])) 

Figure 4: Typings for constants in initial environment 

up functions generalize the more usual monad unit operations: wpjrj_>m(e) is equivalent to unitm{e). 

Each monad m also has a conventional bindm operation which serves to compose computations in 

m. Figure 5 gives semantic interpretations for types as complete partial orders (CPC's), and 

for our monads, together with the associated up and bind functions. Note that the up functions 

are defined in such a way that they compose, i.e., for all TUQ < m\ < 7712, we have upmo_>m2 = 
uPmi->m2 ° uPmo-*m\- 

A typed semantics for terms is given in Figures 6 and 7. Environments p map identifiers to 

values. This semantics is largely straightforward. However, the Let construct now serves to make 

the composition of monadic computations explicit, and the Up construct makes monadic coercions 

explicit. Intuitively, 

Let (mi, m2 , (x, t\) , e\, ei) 

evaluates e\, which has monadic type M(mi ,£), performing any associated effects, hinds the result- 

ing value to x : t\, and then evaluates e2, which has monadic type M(m2,^2)- Thus, it essentially 

plays the role of the usual monadic bind operation; in particular, if mi = m.2, the semantic inter- 

pretation of the above expression in environment p is just 

bindmi(Sle1]p)(Xy.£le2lp[x := y]) 

However, our typing rules (Figure 3) require only that m-z > mi; i.e., e2 may be in a more effectful 

monad than e\ The semantics of a general "mixed-monad" Let is 

bindm^upm^^iSleijp^iXy.S^Mx := v)) 

The term Let(Up(mi,m2,ei) ,rri2,(x,t) ,ei,e2) has the same semantics, so the more general form 

of Let is strictly redundant. But this form is useful, because it makes it easier to state (and recognize 

left-hand sides for) many interesting transformations involving Let whose validity depends on the 

monad mi rather than on m^- For example, a "non-monadic" Let, for which (Beta) is always valid, 

is simply one in which mi = ID. Further examples will be shown in the next section. 

The semantics of the "non-proper morphism" Handle(e,iO deserve special attention. Expres- 

sion e may be in either EXN or ST, and the meaning of Handle depends on which; the ST version 



T : vtyp -¥ CVO 

Tflnt] = Z 

T[Bool] = Z (0 represents false) 

TfExn] = Z 

T[Tup«i,...,tn)l = T[ti] x • • • x T[tn] (n>0) 

T[Tup()l = 1 

r[Arrow«i,M(m2,t2))l = Tlti]->Mlm2](TlhD 

M : monad -» CVO -> CVO 

M[IV]c = c 

M[LlFT]c = c± 
M{EM]c = (Ok(c) + Fail(Z))x 

MlSTJc = State -> ((Ok(c) + Fail(£)) x State)x 

bindii) x k = k x 

bind^i-pj x k = k a if x = a± 

_L iix = ± 

binden x k = k a if x = Ok(a)x 

Fail(6)x ifrr = Fail(6)x 

1 if x = -L 

bindc>j x k s = k a s' ifx s = (Ok(a),s')x 

(Fail(6),S')x ifa;s = (Fail(6),s')± 
1 if x s = -L 

uPm~nn x = X 

UPID->LIFT x = x± 
uPlD->EXN x = Ok(x)x 

UJ>ID-->ST x s = (Ok(x),s)x 

"PLIFT-+EXN x = Ok(a)x if a; = ax 

1 ifs = ± 
UPLIFT->ST x s = (Ok(a),s)x if x = a± 

± if as = X 
UPEXN-*ST x s = (Ok(o),s)x if x = Ok(a)x 

(Fail(fc). if ar = Eail(6)x 

ifx = -L 

Figure 5: Semantics of Types and Monads 



V : (value : t) -> Env -> TM 
V[Var v\p = p{v) 

V[Const  (Integer i)]p = i 

V[Const True]p = 1 

V[Const False]p = 0 

VjConst Plusjp = plus 

VjConst Dividejp = divideby 

V[Const Writelntjp = ■writeint 

V[Const DivByZerolp = divbyO 

plus (01,02) = ai 4- 02 

divideby (01,02) = Ok(oi/a2)x 

Fail(divbyO) ± 

State = [Z] 
writeint a s = (Ok(), append(s, [a])) 

divbyO = 42 

if a2 ^ 0 

if a2 = 0 

(sequence of integers written so far) 

Figure 6: Semantics of Values 

must manipulate the state component. Note that there are two plausible ways to combine state 

with exceptions; in our semantics we have given (as in ML), the state is not reverted when an 

exception is handled. Incidentally, we don't have to give a semantics when c is in ID or LIFT. 

because the typing rule for Handle disallows these cases. Of course, these cases might appear in 

source code; when typed IR is generated for them, e must be coerced into EXN with an explicit Up.^ 

A Raise expression is handled similarly; the typing rules force it into monad EXN, so semantics 

need only be given for that case, but the whole expression may be coerced into ST by an explicit 

Up if necessary. 

As mentioned above, our basic approach is not restricted to the totally-ordered set of monads 

presented here. It extends naturally to any collection of monads forming a finite upper semi-lattice 

under the up embedding operation. It does not suffice to have a partial order; we insist that any 

two monads in the collection have a least upper bound with respect to embedding, so that we can 

always find a unique monad into which two arbitrary expressions (e.g., the two arms of an if) can 

be coerced. One might be tempted to describe such a lattice by specifying a set of "primitive" 

monads encapsulating individual effects, and then assuming the existence of arbitrary "union" 

monads representing combinations of effects. As the Handle discussion indicates, however, there 

is often more than one way to combine two effects, so that it makes no sense to talk in a general 

way about the "union" of two monads. Instead, it appears necessary to specify explicitly, for every 

2Another possibility is to drop the entire Handle in favor of e, which by its type cannot raise an exception! 



£ : (exp : M(vn,/,)) ->• Env -> 

£[Val u]p = 

£[Abs(z,e)]p = 

f[App(ui,V2)]p = 

£{lf(v,e1,e2)jp = 

£{Letxec(.f ,x,ei,e2~)}p = 

f [Tuple (vi,...,w„)lp = 

£[Project(i,n,t>)]p = 

£[Raise(M(EXN,0,v)]p = 

£[Handle(m,e,u)]p = 

f [Let(mi ,m2,x,e\ ,e2)\p = 

£[Up(mi,m2,e)]p = 

MH(7"W) 
v[u]p 
Ay.£[ejp[z := y] 
(v[«i]p) (VMp) 
i/(VHp)(£[ei]p)(£[e2]p) 
£[e2](p[/ := /ix(A/'.At;.f [ei](p[/ := f',x := «]))]) 

(vh]ft...,vHrf 
proJi(VHp) 
(Fail(VHp))± 

W/em(£[e]p)(VHp) 

6in4.j(«pmi_»m2(5[ei]p))(Ay.£[e2]p[a; := y]) 

*/ v a« a/ at 
af 

pro;',; («!,..., w„) = Vi 

handle^rf^ x h Ok(a)x 

h a 

1 

handle^ x h s (Ok(o),S')i 
has' 

1 

if v ^0 

if « = 0 

if x = Ok(a)x 

if a; = Fail(a)j_ 

if a: = _L 

if x s = (Ok(o),«')i 

if x s = (Fail(a),s')j_ 
if x s = _L 

Figure 7: Semantics of Expressions 

monad m in the lattice, 

• a semantic interpretation for m; 

• a definition for bindm; 

• a definition of upm^mi for each m' > m;3 

• for each non-proper morphism NP introduced in m, a definition of npmi for every m' > m. 

The lack of a generic mechanism for combining monads is rather unfortunate, since it turns the 

proofs of many transformation laws into lengthy case analyses; we conjecture that the theory 

of monad transformers [9] might help organize such proofs into simpler form, but have not yet 

attempted to apply it. 
3Since the (IdentUp) and (ComposeUp) laws (see Figure 8) must hold in a partial order, it suffices to define 

uPm->m' f°r Just enough choices of m' to guarantee the existence of least upper bounds, since these definitions will 

imply the definition for arbitrary m'. 
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(IdentUp) up(m,m,e) = e 

(ComposeUp)      Up(mo,m2,e) = Up(mi,m2, (Up(mo,mi,e)))     (mo   <   mi   <   m2) 

(Monadldi)      Let(m2,m3,2;,Up(mi ,m2 ,e) ,&) = Let(mi,m3,x,e,b) 

(MonadId2)    Let(mi,m2,x,e>Up(ID,m2)x)) = Up(mi ,m2)e)     (mi   <   m2) 

(LetAssoc)      Let(mi ,m3,a;,Let(m2)mi ,2/,ei ,e2) ,b) = 
Let (m2, mi, y, e\, Let (mi, 7713, x, e2, b)) 

(m2   <   mi,  y   g   FV(6)) 

(LetrecAssoc)      Let(mi ,m2)a:,Letrec(/,y,ei,e2) ,fc) = 
Letrec (/, y, e\, Let (mi, m2, x, t<i, b)) 

(y   £   FV(b)) 

(LetUp)      Let(mi,m3,x,e,Up(m2,7713,6))  = Up(m2,m3,Let(mi ,m2,3:,f,W) 
(mi    <   m2   <   7B3) 

Figure 8: Generalized monad laws 

4    Transformation Rules 

In this section we attempt to motivate our IR, and in particular our choice of monads, by presenting 

a number of useful transformation laws, which can be proved correct with respect to the denotational 

semantics. (These proofs are straightforward but tedious, so are omitted here.) Of course, this is 

by no means a complete set of rules needed by an optimizer; there are many others, both general- 

purpose and specific to particular operators. Also, as noted earlier, not all valid transformations 

are improvements. 

Figure 8 gives general rules for manipulating monadic expressions. (MonadlDi), (MonadlDj). 

and (LetAssoc) are generalizations of the usual laws for a single monad, which can be recovered 

from these rules by setting mi = ID in (MonadlDi), and setting mi = m-i in (MonadID2) and 

(LetAssoc). (LetrecAssoc) is the corresponding associativity rule for Letrecs. (LetUp) permits 

us to move expressions with weak effects in and out of coercions. The remaining rules let us do 

housekeeping on coercions. 

Figure 9 lists some valid laws for altering execution order. We have full beta reduction for 

variables bound in the ID monad (BetalD). In general, the order of two bindings can be exchanged 

if there is no data dependence between them, and if either of them is in the ID monad (ExchangelD) 

or both are in or below the LIFT monad (ExchangeLIFT). The intuition for the latter rule is that 

it harmless to reorder two expressions even if one or both may not terminate, because we cannot 

detect which one causes the non-termination. On the other hand, there is no similar rule for the EXN 

monad, because we can distinguish different raised exceptions according to the constructor value 
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(BotalD)     Let(ID,m,x,e,6)  = b[e/x] 

(ExchangelD)      Let(mi,m3,:ci,ei,Let(m2,TB3,a;2>e2>b)) = 
Let(rri2,m3,X2,e2,Let(mi,m3,Xi ,e\ ,b)) 

(mi = ID or m2   =   ID;xi   £   FV{e2);x2   &   FV{ex)) 

(ExchangeLIFT)      Let (mi ,m3,xi ,ex ,Let(m2,m3,X2,e2,b)) = 
Let(rri2,m3 ,x2,e2,Let(mi ,m3,xi ,ei ,b)) 

(mi,m2   <   LIFT;  n   £   FV(e2);  x2   &   FV{et)) 

(HoistID)      Letrec(f,x,Let(ID,m2,y,ei,e2),b)   :  M(m,0 = 
Let (ID, m, y, e\, Letrec (/,x, e2, b)) 

(f,x   ?   FVfa)) 

(HoistEXN)    Letrec(/,a:,Let(mi)m2,2/)ei,e2),App(/,2)) = 
Let (mi, m2, y, ex, Letrec (/, x, e2, App (/, 2))) 

(m,   <   EXN; x,f   $   FV{ex)) 

(IfTD)      If (?),Let(ID,m,.T,Pi,e9) ,63)  = LetdD.m.x.ei ,If (w,e2,e3)) 
(a;   ^   FV{e3)) 

Figure 9: Exchange laws for monadic expressions 

they carry.  This is the principal point of difference between LIFT and EXN from an optimization 

standpoint. 

Rule (HoistID) states that it always valid to lift a pure expression out of a Letrec (if no data 

dependence is violated). (HoistEXN) reflects a much stronger property: it is valid to lift a non- 

terminating or exception-raising expression of a Letrec if the recursive function is guaranteed to be 

executed at least, once. This is the principal advantage of distinguishing EXN from the more general 

ST monad, for which the transform is not valid. Although the left-hand side of (HoistEXN) may 

seem a crude way to characterize functions guaranteed to be called at least once, and unlikely to 

appear in practice, it arises naturally if we systematically introduce loop headers for recursions [1], 

according to the following law: 

(Header) Letrec(/,£,e,6)   :  M(m,t)    = 
Let(ID,m,/,Abs(2,Letrec(/',a;)e[/7/],App(/',2))),6) 

(/'   $   FV(e)) 

Finally, we include the rule (IfID) as an example of the flexibility with which ID expressions can 

be manipulated; there are similar rules for floating ID expressions out of other constructs. 

As a (rather artificial) example of the power of these transformations, consider the code in 

Figure 10. The computation of w is invariant, so we would like to hoist it above recursive function 

r. Because the binding for w is marked as pure and terminating, it can be lifted out of the if using 

(IfID), and can then be exchanged with the pure bindings for s and t using (ExchangelD). This 

positions it to be lifted out of r using (HoistID). Note that the monad annotations tell us that w is 
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let f:(Int -> M(ID,Int * Int)) -> M(ST,Int) = 
Ag:(Int->M(ID,Int * Int)). 

letrec r:Int->M(ST,Int) = 
Ax:Int.letID t:Int * Int = (x,l) 

in letID s:Bool = Eqlnt(t) 
in if s then 

Up(ID,ST,0) 
else 

letID w:Int * Int = g(3) 
in letID y:Int = Plus(w) 

in letID z:Int *  int =  (x,y) 
in letEXN x':Int = Divide(z) 

in letST dummy:() = Writelnt(x') 
in r(x') 

in r(10) 
in let h:Int->M(ID,Int * Int)  = Ap:Int.(p,p) 

in f(h) 

Figure 10: Example of intermediate code, presented in an obvious concrete analogue of the abstract 

syntax. 

pure and terminating even though it invokes the unknown function g, which is actually bound to 

h. 

The example also exposes the limitations of monomorphic effects: if f were also applied to an 

impure function, then g and hence w would be marked as impure, and the binding for w could not 

be hoisted. In practice, it might be desirable to clone separate copies of f, specialized according to 

the effectfulness of their g argument. Worse yet, consider a function that is naturally parametric 

in its effect, such as map. Such a function will always be pessimistically annotated with an effect 

reflecting the most-effectful function passed to it within the program. The obvious solution is to 

give functions like map a generic type abstracted over a monad variable, analagous to an effect 

variable in the system of Talpin and Jouvelot [14]. We believe our system can be extended to 

handle such generic types, but we have not examined the semantic issues involved in detail. 

5    Monad Inference 

It would be passible to translate source programs into type-correct IR programs by simply assuming 

that every expression falls into the maximally-effectful monad (ST in our case). Every source Let 

would become a LetST, every variable and constant would be coerced into ST, and every primitive 

would return a value in ST. Peyton Jones et al. [11] suggest performing such a translation, and 

then using the monad laws (analogous to those in Figure 8) and the worker-wrapper transform [13] 

to simplify the result, hopefully resulting in some less-effectful expression bindings. The main 

objection to this approach is that it doesn't allow calls to unknown functions (for which worker- 

wrapper doesn't apply) to return non-ST results.  For example, in the code of Figure1 10. no local 

13 



ff H„ a: Bool    ff Hei  =» ei :M(m,t)    ff H e2 =» e'2 : M(m,0 

ff H If(u,ei,e2)  =» If (u.ei.e^) : M(m,i) 

ff Hei =» ej :M(mi,ti)    ff + {x : h} H e2 =» e'2 : M(m2,t2)    (mi < m2) 

ff H Let(x,ei,e2)  =$> Let(mi,m2,a: : t\,e\ ,e'2) : M(m2>i2) 

ff H e => e' : M(mi ,2)    mi < m2 

ff H e => Up(mi,m2,e') :M(m2,0 

Figure 11: Selected translation rules 

syntactic analysis could discover that argument function g is pure and terminating. 

To obtain better control over effects, we have developed an inference algorithm for computing the 

minimal monadic effect of each subexpression in a program. Pure, provably terminating expressions 

are placed in ID, pure but potentially non-terminating expressions in LIFT, and so forth. The 

algorithm deals with the latent monadic effects in functions, by recording them in the result types. 

As an example, it produces the annotations shown in Figure 10. 

The input to the algorithm is an untyped program in the source language; the output is a 

program in the typed IR. The algorithm performs ordinary type inference, monad inference, and 

program translation simultaneously. The type inference aspect uses unification in a completely 

conventional way, except that unifying the codomain mtyps of two arrow types requires unifying 

their monad components as well as their vtyp components. We therefore omit a detailed description 

of vtyp unification. 

The translation aspect is also quite straightforward. We can turn each typing rule in Figure 3 

into a translation rule simply by recording the inferred type and monad information in the appro- 

priate annotation slots of the output and combining the translations of subterms in the obvious 

manner. As examples, Figure 11 shows the translation rules corresponding to the typing rules for 

If. Let. and Up. In cases where a monad or type appears in the translation output, such as mi 

and t\ in the: Let rule, a fresh monad or type variable is created and inserted in the output for sub- 

sequent instantiation. Type variables are instantiated by unification; the method of instantiating 

monad variables is described below. 

Excluding the rule for Up, the resulting translation rules form a deterministic, syntax-directed 

algorithm for translation, giving an output program with exactly the same term structure as the 

input. However, the resulting program may not obey the monadic constraints in the typing rules. 

Consider, for example, the source term If (z.Val y,Raise z). Since Val y is a value, its transla- 

tion is in the ID monad, whereas the translation of Raise z must be in the EXN or ST monad. To 

glue together these subterm translations we must insert a coercion around the translation of the 

Val term. The "translation" rule for Up is really a coercion insertion rule, which serves exactly this 

purpose; it adds the necessary flexibility to the system to permit all monad constraints to be met. 
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Since this rule can be applied to any subexpression, it adds a problematic element of nondeter- 

minism to the system. Our solution is to insert a (single) Up coercion around every subexpression, 

and rely on a postprocessing step to remove unneeded coercions using the (IdentUp) rule. (The 

complete Standard ML code for the translation routine is given in Appendix A.) 

The final consideration is how to record and resolve constraints on the monad variables. Such 

constraints are introduced explicitly by the side conditions in the Let, Letrec, and Up rules, 

implicitly by the equating of monads from subexpressions in the If and Handle rules, and (even 

more) implicitly as a result of ordinary unification of arrow types, which mention monads in their 

codomains. The side-condition constraints are all inequalities of the form mi > m.2, where m\ is a 

monad variable and m.2 is a variable or an explicit monad. The implicit constraints are all («qualities 

m\ = 7712; for uniformity, we replace these by a pair of inequalities: m\ > 7712 and m2 > mi. We 

collect constraints as a side-effect of the translation process, simply by adding them to a global list. 

It is very common for there to be circularities among the monad constraints. To solve the 

constraint system, we think of it as a directed graph with a node for each monad and monad 

variable, and an edge from mi to m2 for each constraint mi > m2. We then partition the graph 

into its strongly connected components, and sort the components into reverse topological order. 

We process one component at a time, in this order. Since > is a partial order, all the nodes in a 

given component must be assigned the same monad; once this has been determined, it is assigned 

to all the variables in the component before proceeding to the next component. To determine the 

minimum possible correct assignment for a component, we consult all the edges from nodes in that 

component to nodes outside the component; because of the order of processing, these nodes must 

already have received a monad assignment. The maximum of these assignments is the minimum 

correct assignment for this component. If there are no such edges, the minimum correct assignment 

is ID. This algorithm is linear in the number of constraints, and hence in the size of the source 

program. 

To summarize, we perform monad inference by first translating the source program into a 

form padded with coercion operators and annotated with monad variables, meanwhile collecting 

constraints on these variables, and then solving the resulting constraint system to fill in the variables 

in the translated program. The resulting program will contain many null coercions of the form 

Up(m,m,e); these can be removed by a single postprocessing pass. 

Our algorithm is very similar to a that of Talpin and Jouvelot [14], restricted to a monomor- 

phic source language. Both algorithms generate essentially the same sets of constraints. Talpin 

and Jouvelot apparently solve the constraints using unification; the full details of the unification 

algorithm are not given. It would be natural to extend our algorithm to handle Hindley-Milner 

polymorphism for both types and monads in the Talpin-Jouvelot style. The idea is to generalize all 

free type and effect variables in let definitions and allow different uses of the bound identifier to 

instantiate these in different ways. In particular, parametric functions like map could be used with 

many different monads, without one use "polluting" the others. (Note that functions not wholly 

parametric in their effects would place a minimum effect bound on permissible instantiations for 
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monad variables.) This form of monad polymorphism seems desirable even in the absence of type 

polymorphism (e.g., resulting from explicit monomorphization [17]). 

In whole-program compilation, the complete set of effect instantiations would be known. This 

set could be used to put an upper effect bound on monad variables within definition bodies and 

hence determine what transformations are legal there. Alternatively, it could be used to guide the 

generation of effect-specific clones as suggested in the previous section. Generalization of effect 

variables would also support safe separate compilation, though drawbacks would remain: in the 

absence of complete information about uses of a definition, any variable monad in the body of 

the definition must be treated as ST, the most "effectful" monad, for the purposes of performing 

transformations within the body. 

6    Status and Conclusions 

We believe our approach has the merits of simplicity and reasonable effectiveness. We have im- 

plemented the monad inference algorithm for an extended version of the IR described here, which 

supports full Standard ML; we are currently measuring its effectiveness using the backend of our 

RML compiler system [17]. 
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Appendix: Code for monadic inference translation 

fun unify_typ (M(ma,ta),M(mb,tb)) = 
(bound_monad(ma,mb); bound.monad(mb,ma); unify_vtyp(ta,tb)) 

and unify_vtyp (a:vtyp,b:vtyp) = ...unify.typ... 

and bound_monad (ma:monad,mb:monad) = ... 

fun type_value (env:id -> vtyp) (v:value) : typ = ... 

fun wrap(e : exp.t as M(m,vt)) : exp * typ = 

let val m' = new_monad() 

in bound_monad(m',m); 

(Up(m,m',e),M(m',vt)) 

end 

fun translate_exp (env:id -> vtyp) (e: exp) : exp * typ - 

case e of 
Source.Val v => let val t' = type_value env v 

in wrap(Val v, M(ID.t')) 

end 
I Source.Abs(x,e) => 

let val t = new_vtyp() 
val (e',t') = translate.exp (extend env (x,t)) e 

in wrap(Abs((x)t))e
,),M(ID,Arrow(t,t'))) 

end 

I Source.App(vl,v2) => 
let val t = new_vtyp() and u = new_typ() 

val tl = type_value env vl 

val t2 = type.value env v2 

in unify_vtyp(Arrow(t,u), tl'); 

unify_vtyp(t,t2'); 

wrap(App(vl,v2),u) 

end 
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I Source.If(v,el,e2) => 
let val t' = type_value env v 

val (el'.tl') = translate_exp env el 
val (e2',t2') = translate_exp env e2 

in unify_vtyp(t',Bool); 

unify_typ(tl',t2'); 
wrap(If(v,el',e2'),tl') 

end 
I Source.Let(x,el,e2) => 

let val (el'.tl» as M(ml',vtl')) = translate.exp env el 

val (e2',t2' as M(m2',vt2')) = 
translate_exp (extend env (x.vtl')) e2 

in bound_monad(m2',ml'); 
wrap(Let(ml,,m2',(x>vtl

,))el',e2'),t2') 

end 

I Source.Letrec(f,x,el,e2) => 
let val t = new_vtyp() and u as M(um,uvt) = new_typ() 

val (el'.tl') = 
translate.exp (extend (extend env (f.Arrow(t,u))) (x,t)) el 

val (e2',t2') = translate.exp (extend env (f,Arrow(t,u))) e2 

in unify_typ (tl'.u); 
bound_monad(um,LIFT); 
wrap(Letrec((f,Arrow(t,u)),(x,t),el',e2'), t2') 

end 

I Source.Tuple vs => 
let val ts = map (type_value env) vs 

in wrap(Tuple vs,M(ID,Tup ts)) 

end 
I Source.Proj(i.n.v) => 

let val t' = type_value env v 
fun upto (x,y) = if x > y then [] else x::(upto (x+l,y)) 

val vts = map new_vtyp (upto (0,n-l)) 
val t = List.nth(vts,i) handle Subscript => raise Bad "Proj index" 

in unify_vtyp(t'.Tup(vts)); 

wrap(Proj(i,n,v),M(ID,t)) 

end 

I Source.Raise (v) => 
let val vt = new_vtyp() 

val t = M(EXN,vt) 
val t' = type_value env v 

in unify_vtyp (t'.Exn); 
wrap(Raise(t.v),t) 

end 
I Source.Handle(e,v) => 

let val u as H(um,uvt) = new_typ() 
val (e',f) = translate_exp env e 

val vt' = type_value env v 

in unify_typ(u,t'); 

bound_monad(um,EXN); 

unify_vtyp(vt'.Arrow(Exn.t')); 

wrap(Handle(m,e',v),t') 

end 
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