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PREFACE

This volume contains lectures presented at the Quantum Optics IV meeting
which took place at Jaszowiec (Poland) from June 17 to June 24, 1997. The lead-
ing themes of the meeting were: cold atoms, strong laser field-atom interactions
and quantum chaos. It turned out that the first topic got most attention. It is
worth noting that our meeting took place before the announcement of the Nobel
Prize in physics for 1997. This Nobel Prize was awarded to C. Cohen-Tannoudji,
W. Philips and S. Chu for their contribution to cooling and trapping of atoms.
Of particular interest were lectures on the "hot topic" of ultracold atoms forming
Bose-Einstein condensate. This effect is often considered as a part of condensed
matter physics but it became accessible to experiments due to progress in laser
cooling of dilute atomic gases. Thus we have witnessed yet another example of a
new subject encompassed by quantum optics. Some earlier examples include clas-
sical and quantum chaos. Although not directly related to quantum optics they
draw from experimental possibilities provided by modern laser techniques. Our
third theme: strong laser field-atom interactions is a more traditional subject of
quantum optics.

Some 140 physicists from 13 countries participated in the meeting. We had
25 invited lectures, of which 18 are included in this volume. In addition there were
120 posters presented at two poster sessions. The conference offered an overview
of the most important issues of quantum optics in its broad sense.

Organizers
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QUANTUM IMPLICATIONS OF RAY SPLITTING

R. BLOMEL

Fakultit ffir Physik, Albert-Ludwigs-Universitiit
Hermann-Herder-Str. 3, 79104 Freiburg, Germany

Ray splitting is a universal phenomenon that occurs in all wave systems
with sharp interfaces. Quantum implications of ray splitting are: (i) the im-
portance of non-Newtonian orbits for the density of states in the semiclassical
limit, (ii) ray-splitting corrections to the average density of states and (iii)
the need to include non-Newtonian orbits in trace formulas for the oscillat-
ing part of the density of states. The signatures of non-Newtonian orbits in
the density of states have recently been identified experimentally (L. Sirko,
P.M. Koch, R. Bliimel, Phys. Rev. Lett. 78, 2940 (1997)).

PACS numbers: 05.45.+b

In 1948 Feynman introduced a particularly illuminating representation of
quantum mechanics [1]. According to Feynman the transition amplitude of a par-
ticle from point P to point Q in the phase space is given by a sum of complex phases
computed on the basis of all possible phase-space paths connecting P with Q. In
order to obtain the exact quantum transition amplitude all paths in S are equally
important. It is, however, possible to bring out particular subclasses of S by a
judicious choice of quantum problems. Let us focus on the class of potential prob-
lems. For such problems it is convenient to divide S into the two disjoint subsets of
Newtonian (AO) and non-Newtonian (A7") trajectories. The Newtonian trajectories
are the solutions of the classical canonical equations. For smooth potentials and
sufficiently small h very good approximations to the quantum transition ampli-
tudes can be obtained on the basis of A( alone. The contribution of the rest of the
paths is near zero because of destructive interference. In the case of non-smooth
potentials particular subclasses of V have to be kept besides the trajectories con-
tained in N for a good representation of transition amplitudes. In other words,
potentials with steps and other types of irregularities may be used as "projectors"
to bring out the effects of particular classes of non-Newtonian trajectories. In the
case of step potentials the importance of the non-Newtonian orbits survives the
h -* 0 limit. Thus Newtonian mechanics is not the only mechanics important
in the semiclassical limit of quantum mechanics. In the case of step potentials,
e.g., the underlying orbit structure in the semiclassical limit is obtained from a
nondeterministic, non-Newtonian mechanics [2-6].

(7)
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In order to illuminate the new concept of a non-Newtonian mechanics con-
sider the following potential:

0, for x < 0,
V(x, w)= Vox/w, for 0 < X<w (1)

V0, I for x > w.

For w -- 0 we obtain a step potential. We are particularly interested in the
scattering of waves off the potential (1) for E > VO. In the asymptotic region to
the left of the potential the wave function is given by

O(x) = eikx + re- ik, x < 0, k = 2mE/h 2 . (2)

To the right of the potential we have

(x) = teik, x > w, r = V12m(E - Vo)/h 2 . (3)

Since (1) is a piecewise linear potential, r can be computed with the help of Airy
functions. We obtain

ikKC1 + kqC 2 - KqC 3 - iq 2C 4  (4)
ikgC 1 + kqC2 + nqC 3 + iq 2C4 '

where

q (2mVo) 1/3

h 2W\• (5)

The constants C are given by

C1  Ai(-fl)Bi(-a) - Ai(-e)Bi(-f),

C2 = Ai(-a)Bi'(-fl) - Ai'(-/)Bi(-a),

C3 = Ai(-fl)Bi'(-a) - Ai'(-a)Bi(-f6),

C4 = Ai'(-#)Bi'(-a) - Ai'(-a)Bi'(-/3), (6)

where
a = qwElVo, 8l = qw ( T--- _ 1) .(7)

We are mainly interested in the double limit w --* 0, h -+ 0. Investigation of Eq. (4)
shows that the two limits do not commute. Moreover, let w and h approach 0,
but keep their ratio v = h/w constant. Then it is easy to show that for h --+ 0 the
reflection amplitude is r 5 0 and depends on v. A finite r for h -+ 0 means that in
the classical limit there exist trajectories reflecting off the step although E > Vo.
These must clearly be non-Newtonian trajectories since Newtonian trajectories
transmit with probability 1 for E > V0 . The probability for a particle to go left
is p = IrJ2 , the probability to go right is 1 - p. The decision about whether to
reflect (go left) or to transmit (go right) is left to chance, governed by p. Thus, the
non-Newtonian dynamics for a step potential is non-deterministic. If we represent
the incoming path of the particle by a ray, there are two possibilities for this ray
to leave the step: the particle may reflect (with probability p) or transmit (with
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probability l-p). Thus, one incident ray creates two (or sometimes more) outgoing
rays. We call this situation "ray splitting".

Ray splitting is a universal phenomenon that occurs in all wave systems
with sharp interfaces in the limit of small wavelength. Examples are the splitting
of light rays at the interface between two transparent dielectrics, the splitting of
acoustic rays at the interface between two media of different density, the splitting
of rays associated with water surface waves at the interface between two different
depths, and finally the splitting of rays associated with de Broglie matter waves
in quantum mechanics at the position of a potential step.

The wave implications of ray splitting were recently studied in the context
of acoustic and quantum systems [2-7]. Major findings were the importance of
non-Newtonian orbits for the oscillating part of the density of states [2-6], the
necessity of correcting the Weyl formula [8] for the average density of states of
ray-splitting systems [7] and the need to modify existing trace formulas [8] to
include non-Newtonian periodic orbits [2]. Additional quantum implications are
the existence of new classes of scars in the quantum wave functions [3].

The signatures of periodic non-Newtonian orbits were recently identified ex-
perimentally [5, 6] in the context of microwave resonance spectroscopy. We used
thin dielectric- and metal-loaded cavities to generate ray-splitting of microwaves
a'. sharp air/teflon and air/metal interfaces. The Fourier transform of the measured
density of resonances shows peaks at the optical path lengths of non-Newtonian or-
bits. Since for thin microwave resonators the electromagnetic Helmholtz equation
and the quantum Schr6dinger equation are equivalent [9, 10], these experiments
are of direct relevance for quantum ray-splitting systems.

Having established the importance of non-Newtonian orbits experiments
should now aim at testing the ray-splitting correction of the Weyl formula. In order
to do this the experiments have to be improved in such a way that
; 500 levels can be measured without missing a single one. Not missing a sin-
gle level is a stringent experimental constraint which may be achieved with the
help of numerical support. It was recently demonstrated [4] that a few hundred
levels are indeed enough for a first qualitative test of the ray-splitting correction.

The theory of ray-splitting systems is also not complete yet. For example, the
ray-splitting correction derived analytically in Ref. [7] applies only to rectilinear
ray-splitting boundaries. What is missing is the computation of the correction for
curved ray-splitting boundaries.

Another promising route for theoretical research is the identification of pre-
bifurcation ghosts [11] in ray-splitting systems. As non-Newtonian orbits undergo
much the same type of bifurcations as Newtonian orbits, we expect the existence
of non-Newtonian ghosts in ray-splitting systems. Theoretical work on the identi-
fication of the signatures of non-Newtonian ghosts is currently in progress.

Fruitful discussion with Prof. Fritz Haake on the nature of ghost orbits
are gratefully acknowledged. The author is grateful for financial support by the
Deutsche Forschungsgemeinschaft.



10 R. Bliimel

References

[1] R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

[2] L. Couchman, E. Ott, T.M. Antonsen, Jr., Phys. Rev. A 46, 6193 (1992).

[3] R. Bliimel, T.M. Antonsen, B. Georgeot, E. Ott, R.E. Prange, Phys. Rev. Lett.
76, 2476 (1996); Phys. Rev. E 53, 3284 (1996).

[4] A. Kohler, G.H.M. Killesreiter, R. Bliimel, Phys. Rev. E, in press.

[5] L. Sirko, P.M. Koch, R. Bliimel, Phys. Rev. Lett. 78, 2940 (1997).

[6] Sz. Bauch, A. Bldowski, L. Sirko, P.M. Koch, R. Bliimel, submitted to Phys.
Rev. E.

[7] R.E. Prange, E. Ott, T.M. Antonsen, Jr., B. Georgeot, R. Bliimel, Phys. Rev. E
53, 207 (1996).

[8] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York
1990.

[9] J.D. Jackson, Classical Electrodynamics, Wiley, New York 1975.

[10] H.-J. St6ckmann, J. Stein, Phys. Rev. Lett. 64, 2215 (1990).

[11] M. Kug, F. Haake, D. Delande, Phys. Rev. Lett. 71, 2167 (1993).



Vol. 93 (1998) ACTA PHYSICA POLONICA A No. 1

Proceedings of the International Conference "Quantum Optics IV", Jaszowiec, Poland, 1997
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N.P. BIGELOW, W. CHALUPCZAK, R. EJNISMAN, H. Pu, P. RUDY

AND J. SHAFFER

Department of Physics and Astronomy and the Laboratory for Laser Energetics
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As research in quantum optics has advanced, so too has our ability
to precisely tailor the quantum state of a system. Indeed, techniques for

quantum state preparation have become sufficiently advanced that an entire

subfield has appeared which has been given the name "quantum control"..

Parallel to these advances have been other striking developments in quan-
tum optics, in particular, laser cooling and trapping of neutral atoms. In this

paper we describe some of the recent advancements in laser cooling, particu-

larly in our laboratories, and point out that laser cooling and trapping is also

realizing an important form of quantum control. In laser cooling, instead of
exercising control over the internal quantum state of an atom or molecule

or a laser field, we are instead controlling a complementary set of degrees of

freedom: those of the external coordinates of the atom.

PACS numbers: 03.75.Fi, 32.80.Pj, 42.50.Dv

1. One atom interacting with many photons:

laser cooling and trapping

1.1. Manipulating the atomic velocity: laser cooling basics

The idea that atoms could be slowed and cooled by their interaction with
light was first proposed in 1975 [1] and demonstrated shortly thereafter on trapped
ions in 1978 [2]. It was not, however, until 1981 that a group at the Institute

of Spectroscopy in Moscow demonstrated the application of laser cooling to the

slowing of a neutral atomic beam [3]. Soon afterwards, a group at the National

Institute of Standards and Technology (NIST) reported the cooling of an atomic
beam to temperatures of less than 100 mK [4]. This accomplishment opened the

door to the realization of the three-dimensional cooling of a vapor of neutral sodium

atoms to a few hundred microkelvin by a group at Bell Laboratories in 1985 and

(11)
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the subsequent cooling and trapping of an atomic vapor using the now ubiquitous
magneto-optical trap (MOT) in 1987 by the same group [5].

Formally, we can derive expressions for the light pressure force on an atom
interacting with a laser field by starting from the Lorentz force. In practice, a
detailed microscopic understanding of the light pressure force which is valid under
all conditions is complex and in some cases incomplete. However, by restricting
the situation to moderate atomic velocities and moderate laser field intensities, a
convenient decomposition of the force can be made [6].

All of the forces involved in the optical cooling and trapping of atoms hinge
on the exchange of energy and momentum between the atom, the laser field, and
the vacuum; an exchange which occurs through photon absorption and emission.
In this paper we consider two classes of interaction. One of these concerns pro-
cesses in which the atom absorbs a photon and then reemits it spontaneously some
characteristic time -sp - 1/F later. The other class of processes are those which
involve stimulated emission. In many situations we can associate each of these two
types of processes with distinct force mechanisms: the spontaneous and the dipole
forces.

The first realization of an optical trap was based on the force which empha-
sizes stimulated emission of photons: the dipole force. In a semi-classical treatment,
the dipole force arises from the interaction between the quadrature component of
the dipole moment induced in the atom by the laser field and the gradient of the
field itself. This interaction produces a shift in the atomic energy levels via the
AC Stark shift. If there is a spatial gradient in this shift, then the atom expe-
riences a net force. In a more quantum mechanical treatment, the dipole force
is understood in terms of the momentum transfer to the atom which occurs as
the atom mediates the transfer of photons from one mode of the applied laser
field to another. Because this transfer occurs at constant photon energy the dipole
force is a conservative force. Indeed, for a two-level atom, the dipole force can
be conveniently expressed in terms of a potential U(x) = -hA ln[1 + p(x)] where
p(x) = [I(x)/Isat]JA2/(4A 2 + F 2). Here !sat is the two-level transition saturation
intensity and A = wo - wiaser is the laser field detuning from the atomic res-
onance. For moderate field intensities and/or large detunings U(x) cx I(x) and
hence F cc VI(x).

Cooling of an atom arises from the dissipation of kinetic energy and hence
forces which can cool an atomic vapor are intrinsically nonconservative. In laser
cooling, this is generally achieved by absorbing a photon of one wavelength and
emitting a photon of a different wavelength, the difference in photon energy (AE =
hc/Aemit - hC/Aabsorb) being provided by the change in atomic kinetic energy. The
simplest such cooling processes are referred to as the dissipative or spontaneous
force and with a particular laser field configuration which has been named "optical
molasses".

Consider a two-level atom, initially in its ground state 1g) with center-of-mass
momentum P interacting with an infinite plane traveling wave characterized by a
wave vector k. When the atom absorbs a single photon from this wave the atomic
momentum changes by hk and the atom emerges in the excited state le). Simply
put, the atom receives a momentum kick along k. Some characteristic time later
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(rsp) the atom spontaneously decays back to the ground state jg), reemitting a
photon with wave vector Vi, receiving another momentum kick: hk + Ig, P) -+
le, P + hk) -* hk' + 1g, P + h(k - V')). If we consider the average over n cycles
then as n ---* o the state of the atom approaches 1g, P+ nhk): a net momentum
nhk "as been transferred to the atom over a time scale of approximately nr-sp
(Fig. 1). To estimate the size of the resulting force, consider the case of a sodium
atom (MNa = 23 amu) absorbing light which is nearly resonant with the D2 line
(589 nm). The change in momentum, hk, in one absorption/spontaneous emission
cycle (-,p = 16 ns) gives an acceleration, a = hkF/2MNa of the order of 106 m/s 2

(105g!).

mjl

M mj0

W O

z
I

Fig. 1. The operation of a magneto-optical trap for a J = 0 -- J = 1 transition. As the
atom propagates to either the left or the right it is Zeeman shifted into resonance with
the laser beam that it is counterpropagating with respect to its displacement and it is
"pushed" by the dissipative force back towards the magnetic field zero. This interaction
provides the restoring or trapping force. If the laser is also detuned below the atomic
resonance, the cooling effect of optical molasses (see Fig. 2) will simultaneously cool the
atom.

If the light field is an optical standing wave formed from two counter-propa-
gating infinite traveling waves, and the field frequency is tuned below (to the red
of) the two-level transition frequency (i.e. A < 0), then the spontaneous force can
generate a velocity dependent force which causes a damping of the atomic velocity.
The velocity damping - the cooling - arises from the fact that an atom with
a finite velocity will be Doppler shifted into resonance with the traveling wave
component of the standing wave which is directed opposite to the atomic motion.
The atom will therefore absorb more photons per unit time from the counter
propagating wave than from the copropagating wave and will experience a net
force which opposes its motion. The result is a velocity dependent force which
causes the atom to decelerate regardless of the direction of atomic motion. This
standing wave configuration is referred to as optical molasses.

The energy flow in optical molasses can be understood semi-classically by
noting that when the atom re-emits a photon spontaneously, this photon is emitted
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at the atom's rest frame resonance frequency wo and this photon is higher in
energy than that of the absorbed photon by an amount equal to the Doppler shift
hA = hk • v. To conserve energy, the kinetic energy of the atom decreases and
the atom is cooled. In a more quantum mechanical picture, the cooling can be
understood as the irreversible scattering of photons out of the laser field and into
the empty electromagnetic field modes of the vacuum.

The steady-state temperature for a gas of atoms in equilibrium with an
optical molasses is determined by the balance between the Doppler cooling and
the spontaneous or diffusive heating associated with the individual random veloc-
ity recoil kicks experienced during spontaneous emission. In the limit where the
atom is modeled as a simple two-level system it is predicted [6] that the vapor
will equilibrate at the so-called Doppler temperature TDoppier = hF/2kB which,
for sodium, is 240 pK. Clearly then optical molasses enables us to modify one
important external coordinate: the atomic center-of-mass velocity.

To the surprise of many researchers, it was discovered in 1988 by the group at
NIST that the atoms in optical molasses could be cooled to well below the Doppler
temperature. Indeed, more recently, temperatures below 2 PK (barely a few photon
recoil kicks of average momentum!) have been achieved for Cs atoms using optical
molasses [6]. The microscopic explanation for this remarkable super-cooling power
of optical molasses involves two facts. First, the atoms are not two-level systems;
they have a complex magnetic substructure that cannot be neglected. Second, the
light field of optical molasses usually involves complex spatially varying intensities
and polarizations which also cannot be ignored. These two facts give rise to a new
time scale: the time scale for motion of population amongst these internal states
via an effect referred to as optical pumping [7]. This microscopic mechanism was
described by a beautiful model introduced by the Paris group and is now referred
to generally as "polarization gradient" cooling.

1.2. Manipulating the atomic position: trap basics and the MOT

Although optical molasses can be used to modify the velocity distribution of
a vapor of atoms, it cannot necessarily be used to control their position and hence
to confine them in space. To accomplish this task, we need to create a restoring
force centered about some position in space, or, in other words, we need to create a
trap. More than any other single device, the magneto-optical trap is the hallmark
of laser cooling and trapping.

In the MOT, the trapping force is also produced using the scattering force.
This is achieved by introducing a spatially varying Zeeman shift which acts much
like the Doppler shift does, except in position space rather than velocity space [5].
Figure 1 illustrates a simple one-dimensional model of how the MOT functions for
the case of a J = 0 --+ J = 1 atomic transition. A quadrupolar field, produced
by a set of magnetic field coils, creates a linear magnetic field gradient which
increases from a zero located at the center of the trap. As in optical molasses, the
laser light is detuned to the red of the atomic resonance but now we also require
that each of the counterpropagating fields has opposite circular polarization: o-+
traveling in the z+ direction and o- traveling in the z- direction. Now, if the
atom is displaced from the field zero (i.e. the trap center) the upper level (J = 1)
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manifold will be Zeeman split into its magnetic sublevels mj as shown in Fig. 1.
Because of the careful choice of field polarizations, the sub-level which is shifted
lower in energy will also be shifted into resonance with the counterpropagating
laser beam and be pushed back towards trap center. The end result is a restoring
force towards the magnetic field zero and hence the formation of a trap. Because
the laser fields are tuned to the red of resonance A < 0 the atoms are also cooled
by the molasses and by polarization gradient effects such that the MOT both
cools and traps the atoms. The temperatures in the real MOT range from a few
Trecoil (where Trecoil = h2k2/2kBM) to a few TDoppIer depending on the intensities
and detunings of the trapping laser beams. The record densities for the MOT are
> 1011 atoms/cm 3 and the total number of atoms held in a MOT can exceed
10i atoms [8].

2. Many individual atoms + many photons:
optical lattices and parametric excitation of motional states

2.1. The optical lattice

When multiple laser beams overlap in space they can interfere. An atom
placed in this interference pattern will experience the spatial variations of the
electromagnetic field. The result is that there are forces acting upon the atoms
on the scale of an optical wavelength. For a two-level atom, these forces will be
exactly the dipole force described earlier. To describe the evolution of an atom
moving in the interference pattern, we can think in terms of a potential surface
U(x) oc I(x) which directly reflects the one, two or three-dimensional periodicity
of the optical interference pattern. So far we have stressed the way in which this
potential surface contributes to cooling of atoms whose energy is large enough that
they can climb the hills of U(x). However, as the atoms evolve on this surface they
can reach a low enough total energy that they can become localized in the periodic
minima for long periods of time. When this occurs, a highly organized array of
atoms is created which is referred to as an optical lattice. Optical lattices have
played an important role in a variety of experiments. In one class of experiments,
optical lattices have been used as a model of the familiar solid-state crystal and the
correspondence between these systems has been extensively studied. In the second
class of experimentý, optical lattices have been used as a tool for controlling the
motional state of the individual atomic de Broglie waves.

In many ways, the optical lattice is a novel model of the solid-state where the
atoms play the role of a gas of electrons interacting with a periodic potential. Many
exciting optical lattice experiments have been carried out which probe this analogy.
Unlike a true solid, however, the lattice potential in an optical lattice is externally
imposed. As a result, it is as if the periodic potential exists whether the lattice is
fully occupied or not, maintaining its perfect order. For this reason optical lattices
can and are used to explore another very interesting limit inaccessible in the true
solid-state: the highly dilute limit where the atoms behave as isolated particles
arranged randomly on the lattice grid. In this way the optical lattice still displays
perfect long-range order even though most of the lattice sites may be empty! This
last fact has recently been demonstrated in an elegant set of experiments in which
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a probe laser beam was Bragg diffracted from an optical lattice [9] despite the fact
that less than one in ten of the lattice sites was occupied by an atom.

The first experiments which showed that atoms could be localized in an
3D optical lattice were based on spectroscopy of light scattered by atoms in an
optical molasses lattice [10]. In these experiments the NIST group used homodyne
spectroscopy to show that a narrow peak less than 50 kHz wide was present in
the spectrum even though the natural line width of the atoms was much much
larger (; 10 MHz). This peak was attributed to the motional narrowing predicted
by Dicke [11] for a radiator confined within a potential well. Soon thereafter,
these experiments were improved and distinct side bands were observed on this
peak. The presence of these side bands proved that not only were the atoms
confined in the lattice wells but that the bound states in the wells were clearly and
resolvably quantized (see Fig. 2). Since that time a variety of lattice symmetries
have been investigated, representing a "crystallography" of the optical lattice and
well known properties such as magnetic susceptibility of the lattice have been
measured optically [12].

Some of the important properties of a gas of electrons in a solid include the
ideas of Bloch waves, energy band curvature and effective mass - all properties
which relate to the presence of extended states. In a recent set of experiments

DETECTOR

Fig. 2. In an optical lattice atoms are trapped in the interference patterns produced
by overlapping multiple laser beams. The motional state of the atom localized in each
lattice potential well is shown to be quantized using homodyne spectroscopy. In this
experiment, a portion of the lattice light was mixed with the scattered light and the
spectrum of the beat note was studied. The beat signal showed three well resolved
peaks corresponding to spontaneous Raman transitions between the bound states of the
lattice. The different amplitudes of the two side bands of the central peak reflects the
fact that the population of the lower bound states is larger than the upper bound states.
This ratio can be used to measure the temperature distribution of the localized atoms.
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these effects have also been observed in optical lattices [13]. In what follows, we
briefly describe the beautiful experiment carried out by Paris group in which Bloch
oscillations were observed [14].

Bloch oscillations are a purely quantum mechanical effect predicted by Felix
Bloch decades ago. The prediction was that an electron experiencing a constant
force, and hence constant acceleration, will display oscillations in its momentum.
These oscillations occur .because as the electron accelerates up to the edge of
the Brillouin zone its quasi-momentum will effectively fold back around the zone
causing the momentum to reverse. This reversal takes place every time the particle
accelerates to the zone boundary. To mimic a constant acceleration, the Paris
group accelerated the optical lattice and simultaneously measured, as a function
of time, the momentum distribution of the atoms in the lattice. Clear oscillations
were observed in this momentum at exactly the Bloch period. Moreover, a detailed
analysis of the data clearly revealed the signature of extended states through effects
such as the curvature of the energy bands of the optical lattice. It is interesting to
note that although Bloch oscillations are a fundamental idea in solid-state theory,
they are essentially impossible to observe in natural crystals because of electron
scattering from lattice defects. In the optical lattice, the periodicity of the lattice
potential is nearly perfect, defect scattering is essentially absent, and the Bloch
oscillations gracefully emerge. A series of closely related experiments were carried
out by a group in Texas who have also used optical lattices as a system for studying
the physics of Wannier-Stark ladders, tunneling and quantum chaos [15].

2.2. Parametric excitation of motional wave packets in an optical lattice

Groups in Japan, at NIST, in Munich and our group at Rochester [16],
have also been using optical lattices to explore another interesting problem: the
quantum control of center-of-mass wave packet motion in the optical lattice. In
these experiments we have taken advantage of the fact that the potential wells
which bind the atoms in the lattice can be manipulated rapidly and with great
precision. For example, by changing the light field parameters of the lattice beams
as a function of time, the atoms in the lattice can be excited into novel motional
states and the evolution of these states can be carefully studied. Simply put, by
dynamically controlling the spring constants and origins of the lattice wells, the
atomic wave packets in the lattice can be tailored and caused to vibrate and move
in a highly controlled manner.

In our experiments we achieved this effect by modulating the laser field inten-
sity and detuning as a function of time. If we view the atom as a nearly harmonic
oscillator, our technique corresponds to the familiar parametric excitation of that
oscillator. In particular, consider a single atom bound in a single well. If the spring
constant of the well is suddenly decreased, then a wave packet originally station-
ary in the center of the original well will begin to execute a breathing motion. In
a quantum picture this is because when the initial wave packet state is projected
onto the bound states of the final well the resulting superposition state evolves
in time in a manner that produces the breathing motion. In our experiments we
probe the wave packet evolution by time resolved spectroscopy of the fluorescence
from the lattice atoms. This technique relies on the fact that the lattice potential
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Fig. 3. The spring constant of the lattice potentials are modulated in time to induce
coherent motion of the atomic wave packets bound in the lattice potentials. In these
experiments the motion is detected through time resolved fluorescence measurements.
This technique takes advantage of the fact that the lattice potential U(x) 'x I(x). The
result is that as the atoms vibrate, they explore different laser intensities, causing their
fluorescence to vary in time. From this data we can reconstruct the wave packet motion
and compare the desired wave packet motion as calculated analytically. This experiment
clearly demonstrates the ability to use optical lattices to execute a novel form of quantum
control (from P. Rudy et al., Ref. [16]).

scales as U(x) oc I(x). Since the fluorescence rate depends on I(x), and x = -(t),

as the packet moves the fluorescence is a measure of the wave packet distribution
in the well. In Fig. 3 we show the time evolution of an atomic wave packet in a
driven optical lattice as reconstructed from data taken when U(x) was varied lin-
early in time. We also show a reconstruction of the predicted and measured wave
packet for this experiment. The shape and evolution of this wave packet are in
good agreement with our theoretical predictions for this U(x, t) demonstrating our
ability to use a pre-tailored U(x, t) to generate a desired wave packet evolution.

In our optical lattice wave packet experiments, the oscillations were observed
to decay after several oscillation cycles. Typical decay data for a given set of ini-
tial conditions (laser intensity, detuning, sample temperature, etc.) is shown in
Fig. 4. A fit to this data yields a decay time of ; 15 ps. The origin of the wave
packet damping for our experiments dan be understood in terms of an interplay
of anharmonicity induced dephasing and irreversible damping due to spontaneous
emission. To estimate the dephasing rate due to anharmonicity in the lattice po-
tential, we consider the first order correction to the sinusoidal potential and find
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Fig. 4. Decay rates of parametrically excited optical lattice wave packets. The best-fit
slope gives a decay constant of 15 ps.

Tan oC 1/(j 2 + j + 1/2), where j is the mean level index for the levels used to form
the wave packet. In our experiments j • 1 and we find ran -_ 10 ps, in reasonable
agreement with the observed decay time. If, on the other hand, we estimate the
decay time expected from spontaneous emission, treating spontaneous emission as
a random walk in frequency space, we find Tsp-decay 0C wosc/iwrecoiiR, where Wosc is
the harmonic frequency for wave packet oscillation in the well, Wrecoil is the single
photon recoil shift and R is the spontaneous emission rate. For our experimental
conditions, rsp-decay • 10 ps also! In other words, in our experiment we cannot
discriminate between these two decay processes. One very important conclusion
is, given that spontaneous dephasing is present, there is little hope of observing
quantum revivals [17] in our current experiment - irreversible decay will mask
such quantum effects. If, however, we repeat our experiments for larger detunings
(which reduces the spontaneous emission rates) such revivals may be observable.

Quantum revivals can be expected to occur in the optical lattice due to
the fact that the lattice wells are not perfectly harmonic. For the optical lat-
tice, the observation of revivals would provide dramatic proof of the quantum
nature of the system. To investigate this possibility we have carried out a nu-
merical study of wave packet evolution in the lattice [18]. In particular, we have
solved Schr6dinger's equation numerically and modeled the time evolution of a
wave packet created at t = 0 from a superposition of the bound lattice states.
For simplicity, we have neglected band structure effects. For deeper lattice wells,
and for wave packets involving mostly the low lying states, band structure effects
should be unimportant. However, we note that for shallow potentials, well-to-well
tunneling may become important and band curvature may not be negligible.
In Fig. 5 we show the autocorrelation function between the initial wave packet
and the wave packet at a time t after a sudden change of the lattice well. Here
C(t) = f 0*(x, O)Vb(x,t)dx. Not only is there a clear revival seen, but there are
well resolved fractional revivals. In the inset, we show the norm of the initial wave
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Fig. 5. Model wave packet dynamics showing a clear revival and a clear half-revival.
The inset shows the wave packet shape at the half revival point (dashed line) and at the
full revival. Note the characteristic double peaked structure at the half-revival signifying
the presence of two wave packets which cause the oscillation frequency to be doubled
at the half-revival point.

packet and the norm of the wave packet at the peak of the half revival. At the half

revival time, a clear double peaked structure is seen, as expected for the spatial
wave packet structure at a half revival.

3. Many pairs of atoms + many photons I: cold collisions

One very active area of research involves the study of ultra-cold collisions [19].
Experimental and theoretical studies of cold collisions in optical traps have pro-
vided a remarkably rich view of what might have appeared to be a simple reaction:
the binary interaction between two identical atoms interacting with a laser field.

Many of the interesting properties of ultra-cold collisions which make them
different from collisions that take place at high temperature stem from the fact
that in the MOT the thermal de Broglie wavelength of the atom AdB ; 5-50 nm.
This makes AdB much larger on the scale of variation of the interatomic collision
potentials and far greater than the s-wave scattering length, a, • 1-10 nm. This
hierarchy defines these vapors as "quantum gases" meaning that the atoms can
exhibit highly wave-like behavior in their interactions but are clearly nondegener-
ate. A separate feature of ultra-cold collisions is that the scale of the interatomic
potential energy is large as compared to the average kinetic energy of atoms in
the trap, even at larger internuclear separations. Indeed, the collision partners in
a MOT measurably experience the long-range van der Waals interactions at inter-
atomic separations of hundreds or even thousands of angstrbms when dressed by
a nearly resonance laser field. In recent years these features of ultra-cold collisions
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have been put to excellent use and researchers have demonstrated the ability to
probe long-range atom-atom interactions with exquisite resolution. Perhaps the
most important point about ultra-cold collisions is that they occur on a time scale,
too11 z 100 ns »> rp Pt 10 ns. This fact allows for an exciting new possibility: that
both absorption and emission processes can modify the collision process. In an
ultra-cold collision both the absorbed and emitted photons are able to change the
collision, or reaction, pathway during the ongoing collision process. In this way
the photons can play a role much more similar to that of a "reaction constituent"
rather than the more familiar role as a means of state preparation or interrogation.

One particularly interesting cold collision process that has been investigated
by several groups is photoassociative ionization (PAI). Photoassociative ionization
is a two-step process in which two colliding atoms absorb two photons sequentially
after which the colliding pair ejects an electron through an Auger-like process and
produces a bound molecular ion as the final state. In essence, PAI of ultra-cold
atoms represents another form of quantum control, namely, the use of laser light
to activate and mediate the creation of a molecule starting from the monatomic
vapor.

PAI is described schematically in Fig. 6. To date PAI has been primarily
studied in ultra-cold Na collisions and in Fig. 7a we show a set of interatomic
interaction potentials which can be used to describe this collision. In the MOT,
the collision begins as two atoms in their ground state approach one another. At

100 A. a

Na,

L/Na!*

S~e

Fig. 6. Photoassociative ionization begins as two atoms approach each other and are
excited into a long-range quasi-molecule. This state evolves until the atoms are at a
closer range where the molecule can be further excited into a doubly excited state. This
doubly excited intermediate state can then autoionize forming a molecular ion.
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Fig. 7. (a) The intermolecular potential curves and the laser fields describing the pho-
toassociative ionization process illustrated in Fig. 9. R is the internuclear separation.
Processes involving trap photons are shown by the two rightmost upward arrows whereas
those explored with the second probe laser are the leftmost two upward arrows. This
second configuration was used to generate the spectrum shown in Fig. 10b. (b) A portion
of the photoassociative ionization spectrum obtained from a Na trap. The zero of the
spectrum is at the F = 2 to F' = 3 transition on the D2 line of Na. The probe laser
intensity for this spectrum is 1 W/cm2 .

remarkably large internuclear spacings (R ; 1800ao) a trap photon is absorbed.
The approaching pair then interacts through a very long-range resonant dipole
interaction and begins to accelerate toward each other. Some time later, the pair
comes back into resonance with the trap lasers and can absorb a second pho-
ton (R ; 1000ao). When this happens, the doubly excited pair can then either
dissociate or autoionize leading to the final ionic molecule.
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There are a wealth of exciting processes which can be investigated in just
this one ultra-cold collision process alone. Let us consider only one of those here:
the spectroscopy of the long-range 0 state. Using a second tunable laser as a
probe for linear spectroscopy, both the tightly bound state structure of this novel
long-range state can be probed as can the near dissociation limit levels and their
coupling to the doubly excited 1,u state. Groups at NIST, Maryland, in Brazil
and in Utrecht have carried out elegant spectroscopic measurements of this type
as has our group at Rochester. The experimental efforts have been paralleled by
extensive theoretical work and a remarkable coherence between experiment and
theory has been achieved [20]. The richness of this one type of PAI spectroscopy is
characterized in the spectrum shown in Fig. 7b, taken in our laboratory. This spec-
trum displays several striking features. For example, the narrowest peak widths
are 200 pK wide and the spectrum begins 24 mK below the dissociation limit.
Furthermore, the structures in this spectrum show clearly that the PAI process
involves photoassociation of the atoms into well resolved intermediate molecular
states which are very long-range (internuclear spacings of hundreds of Bohr!).

4. Many pairs of atoms + many photons II:
heteronuclear cold collisions

PAI is only one of many sides of the cold collision problem. Most recently, a
group at the University of Sao Paulo in Brazil and our group at Rochester have
opened the door to a new class of ultra-cold collision experiments: we have realized*
novel multiple species optical traps (see Fig. 8) [21].

.........=i.-r"', :?:

Fig. 8. An image of the trapped atom cloud in a two-species magneto-optical trap. Here
the two species are cesium and sodium and the cloud centers have been intentionally
displaced.

In our group in Rochester, we have investigated traps composed of differ-
ent combinations of three alkalis: Na, Rb and Cs. Unfortunately, little is known
about the interatomic potentials for any of these bi-alkali pairs and hence little is
known about collision cross-sections, scattering lengths etc. An important starting
point then is to determine the degree of coupling expected between the different
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Fig. 9. Intensity dependence of trapped atom number density in two-species Na-Cs
trap. The left curve is the sodium density as a function of the total intensity of the
sodium trapping light while the left curve is the cesium atom density as a function of
the total intensity of the cesium trapping light. The solid circles are for the single species
traps (i.e. pure Na on the left and pure Cs on the right) whereas the triangles are for
the two-species trap.

ultra-cold vapors in the trap. In the case of a binary mixture of sodium and ce-
sium atoms, we have found experimentally that the coupling is strong! In Fig. 9a
we show a plot of the density of sodium atoms contained within the trap as a
function of sodium trap light intensity. The solid circles are for a trap containing
pure sodium and the open triangles are for a trap containing a mixture of sodium
and cesium atoms. In Fig. 9b we show a similar plot for the number density of
trapped cesium atoms. Clearly, although the cesium vapor is almost unaffected
by the presence of sodium in the trap, the sodium vapor is greatly affected by
the cesium atoms. In fact, at high laser intensities, the density of sodium atoms
decreases by almost an order of magnitude when cesium is introduced into the
trap. We find experimentally that these effects require two ingredients: (1) that
ultra-cold atoms of both species be in the trap and (2) that some of the atoms are
in their excited state. We note that we have eliminated the possibility that the
sodium vapor density is modified by the cesium trapping light alone.

The measurements described by this data clearly show that there is a strong
coupling of the two species in this novel MOT, but they do not provide much
information about what the microscopic processes are which cause the loss of
sodium. One measurement which does provide more insight, as mentioned above,
is photoassociative ionization. Applying the same ion detection techniques used
to investigate the pure sodium trap, we have investigated the production of ions
in our multi-species traps. For the case of the sodium-cesium mixtures another
remarkable change was observed: despite the fact that the trapped sodium atom
density is lower in the Na-Cs mixture, the flux of ions was observed to increase,
and by almost one order of magnitude! Using a time-of-flight technique to mass
analyze the ions we find that not only are we observing the production of Na+ ions,
but also Cs+ ions and, most importantly, NaCs+ heteronuclear ions. Simply put,
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using laser cooling and trapping techniques we have demonstrated the ability to
"build" heteronuclear molecules! We are currently carrying out detailed spectro-
scopic measurements to determine the states of the atoms and the molecules which
are involved in the heteronuclear PAI process. One particularly exciting possibility
is that we can use PAI spectroscopy to determine the two-species s-wave scatter-
ing length, much as has been done for sodium-sodium and for rubidium-rubidium
collisions. These interaction parameters are particularly important for research on
the creation and control of another interesting quantum state: the Bose-Einstein
condensate.

5. Many identical atoms: Bose-Einstein condensation

In the proceedings of the 1993 meeting "Quantum Optics III" a paper by
Lewenstein et al. [22] marked the emergence of a new problem in the quantum
optics community: that of the Quantum Optics of a Bose-Einstein condensation
(BEC) of a dilute, cooled and trapped atomic vapor [23]. In this meeting, several
excellent seminars were presented on BEC and we refer the reader to these papers
for some excellent and more detailed discussion.

One of earliest successes of trapped alkali BEC has been in the excellent
agreement between the experimental data and the theoretical results derived using
a mean-field theory. A representation of the condensate wave function in the mean
field picture can be derived from the Gross-Pitaevskii (GP) equation. Essentially,
this is a Schr6dinger equation for the many-particle ground state (the BEC) with
an additional term in the Hamiltonian which is of the form: U0jITj 2 . Here TI is the
BEC wave function and U0 is the interaction potential between the atoms in the
condensate. In many situations U- cc a, where a, is the s-wave scattering length
of the particles. Frequently it is simplest to solve the GP equation in the so-called
Thomas-Fermi approximation which essentially means that the kinetic energy
term of the Hamiltonian can be neglected. At Rochester, we have developed a new
numerical technique based on a variational approach for solving the GP equation
without making any approximations [24]. In most situations, the modifications to
the shape of !P due to the inclusion of the kinetic energy are small. In fact, only in
regions where there is a large curvature in @ (and hence a large contribution from
the V1T2 term in the Hamiltonian) does the Thomas-Fermi approximation cause
problems. It is not surprising that these problems can become most marked near
the condensate boundaries.

6. Many not completely identical atoms:
two-species Bose-Einstein condensation

With the advent of multi-species traps and the recent realization of a Bose
condensate comprised of two different spin-states of a vapor of rubidium atoms [25]
a new and important question has arisen: what is the nature of a two-species
Bose-Einstein condensate - the 2BEC? In approaching this question it is impor-
tant to realize that we cannot expect that each condensate will simply co-exist
with the other condensate. The reason for this is that, even though the alkali
BECs are very dilute (• 1013 atoms/cc) the role of interparticle interactions is
still crucial. For a 2BEC, then, we must consider three classes of interactions:
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the two self-interactions of each species and a third "cross-species" interaction. In
the mean field limit, this means that the 2BEC can be characterized by two cou-
pled GP equations and three scattering lengths a11 , a 22 and a12 (the cross-species
scattering length) [26].
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Fig. 10. The ground state density profiles of a two-species Bose-Einstein condensate
(2BEC) for two different choices of cross-scattering length a12. For this figure we consider
a mixture of sodium (Na with ala = 3 nm - the solid lines) and rubidium (a22 = 6 nm
- the dashed lines) atoms. Here N1 = N 2 = 103.

A rich array of new phenomena have been predicted for this system includ-
ing modifications to the ground state wave function profile, the excitation spec-
trum and even the essential stability of the condensate itself [27]. We have been
investigating the 2BEC using a modification of our variational technique [24]. In
Fig. 10 we show the ground state condensate wave function for a mixture of sodium
atoms and rubidium atoms contained in a spherically parabolic trap. The parame-
ter which is varied between the different parts of this figure is the cross scattering
length a12 . We see that for strong repulsive interactions (i.e. a12 > 0) the ground
state is definitely not a mixture of two overlapping condensates, but that instead
the system has phase separated into two distinct condensates. Because the ground
state condensate wave function in the mean field is the state which minimizes the
mean field energy we can provide a physical interpretation of the phase separa-
tion. When the system separates, the overlap between the condensates is reduced,
and hence the cross-species mean field energy is decreased. Simultaneously, the
outer species must be spread over a larger volume, which decreases its mean field
energy. By contrast, the mean field energy of the core increases because the core
atoms are now closer together (the core atoms are not "diluted" by the second
species). Overall, the total system energy is determined by the interplay of these
individual energies and in the phase separated state the total mean field energy is
minimized. A careful analysis of the JILA two-spin state condensates has provided
some evidence for the effective "condensate repulsion", however a true two-species
condensate has yet to be realized. At Rochester, an experimental effort on this
problem is well underway.
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Fig. 11. The density of atoms in the core condensate as a function of the number of
atoms in the outer shell condensate. Note that as the number of atoms in the shell
increases, the inner condensate is compressed. The dotted line is the density of the core
as calculated within the Thomas-Fermi approximation.

In Fig. 11, we show a plot of the density of the core species as a function of
the number of atoms in the shell condensate. What is predicted is that as the outer
condensate particle number increases, the shell will compress the core condensate.
In addition to the prediction of this new phenomenon, this result highlights an-
other point: in the 2BEC, once phase separation has occurred and boundaries
have appeared, the Thomas-Fermi approximation does not give reliable results.
In the figure, the dotted line is the density as calculated using the Thomas-Fermi
approximation and the solid line is for the full GP equation.

7. Conclusion

Physicists from many backgrounds have become excited by the problems
that laser cooling has brought into view and generations of students are emerging
with Ph.D.s earned in the field. Laser coolers have refined the techniques for
manipulating individual atoms, and ensembles of atom, the collisions between
atoms, and in creating novel macroscopic quantum states. Overall the efforts in
quantum optics to control and manipulate the external coordinates of atoms have
developed into a remarkable and dynamic field and we are pleased to be part of
this excitement.

The list of remarkable scientists that have contributed to our understanding
is too large to list - we thank them nevertheless - and we apologize for the
many omissions we have made. N.P.B. is particularly grateful to K. Rzaewski for
insightful discussions and inspiration early on in our lattice wave packet work. We
are grateful to the National Science Foundation, the David and Lucile Packard
Foundation and the Laboratory for Laser Energetics for Financial Support. R.E.
acknowledges support of the CNPq.
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High-field ionization suppression in a classical Kepler ensemble is dis-
cussed in terms of optimization with respect to pulse turn-on rate as well as
pre-pulse preparation. It is argued that high-field ionization suppression is
best understood in terms of reduced probability of ionization for pulsed felds,
whereas for a quasi-steady field, high-field ionization suppression implies a
reduced ionization rate at higher intensities. The classical ensemble is used
to calculate the high-field ionization rate of a one-dimensional atomic model
using a Gaussian short-range potential and the results are compared with
high-frequency Floquet theory results recently reported by other authors.
Better than qualitative agreement is found and the results are compared
and discussed in terms of quantum superposition and classical interference.
Finally, high-field ionization suppression is discussed in relation to statistical
relative stability of classical orbits of the ensemble, and classical interference
for both short- and long-range potentials. Correspondence with quantum
superposition is interpreted in relation to quantum-classical correspondence.
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1. Introduction

The possibility of atomic stabilization in an intense optical field has been an
area of active theoretical research in recent years [1, 2]. Both quantum and classical
approaches have been taken, using many different model atomic potentials. We and
our collaborators have studied several classical-ensemble models for intense-field
stabilization and the correspondence between their results and those of quantum
treatments [3-10]. This report is a synopsis of our most recent results [7-10].

Seemingly contradictory results can be found in the literature [2], and there
is not universal agreement that the phenomenon of atomic stabilization in an in-
tense laser field even exists. Also, those who do feel that the evidence supports its
existence are not always in agreement on the conditions for its manifestation. We
have attempted to clarify this situation in our recent work. Part of the disagree-
ment stems from a potential ambiguity in the meaning of "stabilization". Some
authors interpret it strictly, so that it refers to an ionization probability that is
less than unity or that decreases with increasing field; in this strict interpreta-
tion, it is inappropriate to describe a decreasing ionization rate as stabilization,
unless the rate decreases to zero. Many other authors,. however, would prefer to
state that any reduction in ionization rate makes the atom more stable. To avoid
this possible ambiguity, we will use the term "high-field ionization suppression"
(HFIS); this term can refer to either a reduced ionization rate or a probability of
ionization that is less than unity. The interpretation of HFIS as a reduced rate of
ionization makes sense if the field is in a quasi-steady state (changing no faster
than adiabatically); this is because the ionization rate F(ao) is determined by the
field strength (ao = A/cw, where A is the field amplitude and w is its frequency).
Only when the field has a finite duration, as in the case of a pulse (ao(t)), is
the interpretation as a reduced ionization probability meaningful, and then the
probability of ionization is given by

P = l-exp {- JF[ao(t)]dt} (1)

where the ionization rate V is integrated over the pulse duration.
Most of the apparent contradictions in the literature can be resolved by tak-

ing care in making comparisons, as there are many parameters whose variation
can lead to qualitatively different results. For example, in considering ionization
rates, one must ask how the atom is excited to a quasi-steady state [6, 7, 11, 12].
In the case of pulsed fields, the probability of ionization depends very much on the
pulse shape, particularly on how the pulse turns on (ramp-up); ionization is most
likely to happen during ramp-up [7, 8]. One must also consider the range of the
potential [6, 9, 10] and its dimensionality. The angular momentum of the initial
state is important, as is the field frequency relative to the binding energy. One
must also be careful in using a criterion to define when ionization occurs. In spite
of the great diversity of results reported in the literature, quantum-classical corre-
spondence [10] indicates that the various theoretical methods predicting HFIS [2]
may actually have more in common than previously thought.

In the next section, we present a treatment of HFIS as a classical Kepler
problem and emphasize how HFIS can be enhanced by proper tailoring of the field
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pulse. The reduction of ionization rate in a short-range potential is presented in
Sec. 3. Section 4 contains a discussion of the classical interpretation of HFIS in
terms of statistical relative stability of orbits, and we conclude with a discussion
of our results and quantum-classical correspondence in Sec. 5.

2. Classical Kepler ensemble

We use the Kepler model to write the classical equations of motion for atomic
hydrogen in cylindrical coordinates (p, z) and atomic units (e = me = h = 1):

d 2p _ (V M2 (2)
2 - -p+ +7'

d~z _ OVd 2 - -v + 7(t)Asin(wt), (3)dt2 OZ

where V(p, z) = -1/r = -1/(p 2 + z2)1/2 is the potential function and m is the az-
imuthal angular momentum. The external field e(t) - 7(t)Asin(wt) is specified by
the maximum amplitude A and frequency w, and it takes the form of a trapezoidal
pulse whose envelope is given by

ft/To, 0<t<T0 ,

77(t) 1, TO _< t _< T, (4)

(T + To - t)/To, T < t < T + To.

The ramp slope, R, defined by
A

R =- A (5)

is an important parameter. We solve Eqs. (2) and (3), using w = 1 and m = 0.75.
The roles played by w and m were discussed earlier [6, 7]. We fix the length of
the pulse plateau, T - To, at 30 optical periods. The initial conditions determine
whether or not a particle will be ionized; we take a distribution of initial conditions
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Fig. 1. Ionization probability P versus the number of particles in the ensemble N.
A pre-pulse (described in the text) is seen'to reduce P from 0.44 to 0.34.
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consistent with r = (z2 + p2 )1 / 2 = 1, where p < 0.75, and a total (ground state)
energy of E = -0.5. A particle is considered to have ionized if it has a positive
total energy at the end of the pulse.

A discussion of the process of ionization will be given in See. 4. Here we
present some results showing how to enhance HFIS by tailoring the shape of the
pulse. We use an ensemble of 200 members; Fig. 1 shows this to be sufficient.
In Fig. 1, the probability of ionization (fraction of the ensemble that ionizes) is
shown as a function of ensemble size for the case of A = 8, R = 2. Also shown
in this figure is the enhancement of HFIS that results from preceding the main
pulse with a small trapezoidal prepulse with A = 0.5, To = 0.25 periods, and
T - To = 1.5 periods - the effect of the prepulse is to move the electron to a
larger orbit, making it less likely for the electron to pass near the nucleus during
the critical ramp-up phase of the field. We have found that most ionizations take

0.8- A = 32

.....................

0.6 .

0.2

0.5 t.5 2.5 4.5
R

Fig. 2. Probability of ionization during ramp-up, as a function of ramp rate, for
m = 0.75.

100- 0
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Fig. 3. Percent ionization P versus field amplitude A. Open squares represent a fixed
turn-on slope R = 2. Open circles represent a fixed turn-on time of 4 periods. Ionization
returns to 100% in the latter case because the slope R becomes very steep as A increases.



Quantum-Classical Correspondence ... 35

place during ramp-up, and that the ramp rate R is critical: too slow, and the
electron spends too much time in the "death valley" region, of highest ionization
rate, around A = 2 [13]; too fast, and the electron can be subject to a high field
while still close to the nucleus. We have shown R = 2 to be the optimal value,
producing the least ionization [7]. This is illustrated in Figs. 2 and 3. Shown in
Fig. 2 is the probability of ionization during ramp-up vs. ramp-up rate for three
values of A larger than the "death valley" value of A = 2, clearly demonstrating an
optimum turn-on rate of R = 2. In Fig. 3, the percent ionization (for a pulse with
no pre-pulse) is given for different values of A, both for constant To = 4 (periods)
and for constant R = 2. Some apparently contradictory results in the literature
are probably a result of these two different choices.

3. Classical HFIS in a short-range potential

A recent paper [14] calculates high-constant-field ionization rates using the
approximate solution to the Schr6dinger equation given by high-frequency Flo-
quet theory (HFFT). The (short-range) potential used is a Gaussian well with one
bound state, as treated in previous quantum calculations [15, 16]. An interesting
feature of the results, for sufficiently large fields, is that the ionization rate de-
creases non-monotonically with increasing field strength. (This behavior has also
been found in a long-range potential, the one-dimensional soft Coulomb poten-
tial [17].) The same results can be obtained by a classical calculation [10], and the
agreement with quantum methods is better than merely qualitative.

The results of Ref. [14] are found by an adiabatic quantum method and
represent HFIS in a short-range potential. Field-atom interaction in the HFFT
may be thought of as a perturbation to the steady-state Kramers-Henneberger
(K-H) potential [1, 2], which is the time average, in the infinite-frequency limit,
of the potential V(u) given below. The ionization rate of interest is that of the
K-H ground state, which has been reached from the Gaussian well's bound state by
adiabatic turn-on of the field. We wish to approximate this method classically, and
to do so we solve the classical equation of motion (in atomic units) for an electron
in a 1D potential V and subject to a field of amplitude A and frequency w,

(9VX o6_X - Acos(wt), (6)

by making the transformation

A
U -X - •T cos(wt), (7)

so that the equation of motion becomes
avV - * (8)

In Eq. (8), the potential to be considered here is

V(u) = -0.27 exp{-[u + ao cos(wt)] 2 /4}, (9)

where a•0 = A/w 2. We take w = 0.236 a.u., as in Refs. [14-16]. We begin with a
large number of particles with a random, uniform distribution of initial conditions
(u(O), it(O)), such that the initial energy of each is E(0) = -0.13, equal to that
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of the bound state of V for a 0 = 0 [14]. This ensemble is meant to approximate,
in an average sense, the corresponding quantum state. The field is then ramped
linearly from zero to its final value at a constant rate, chosen to be slow enough
(e.g., dao/dt = 0.5/optical period = 0.019 a.u.) that this process approximates
adiabatic evolution to the perturbed ground K-H eigenstate. The members of the
initial ensemble that survive the ramp-up of the field (remain unionized) then
constitute an ensemble approximating the perturbed K-H ground state. Finally,
while the field amplitude remains constant (hence constant ao), the decay of the
number of survivors is analyzed to find the ionization rate F(ao); a particle is
considered to be ionized when the absolute value of its coordinate u becomes
greater than 4ao.

1.50 -

1.25-

1-

r' o.,5

0.50-

0.25-
0 o I I

0. 5.0 10.0 15.0 20.0 25 o 30.0
a. [o.u.]

Fig. 4. Ionization rate F (in inverse optical periods) as a function of oscillation am-
plitude ao (= A/w 2 ). A limited initial ensemble produces a very narrow distribution,
around the phase-space point u, it = (-9, 0.39), among survivors of the field ramp. The
field ramp-up rate is dao/dt = 0.5/optical period = 0.019 a.u., and w = 0.236 a.u. The
ionization distance is taken to be 4aO.

Results of our classical calculation are shown in Fig. 4, where the ionization
rate F (in inverse optical periods) is plotted as a function of a0 . Note that the
decrease in F with increasing a 0 is not monotonic. The classical results are con-
sistent with the quantum results [14-16], which indicate a minimum lifetime of
approximately one optical period and an oscillatory decrease in rate. The precise
values of F and shape of the F vs. a0 curve depend somewhat on the choice of
ramp slope and initial ensemble; these determine the ensemble that remains after
the end of the ramp. We limit the ensemble that survives the ramp to a distribu-
tion localized in phase space; but, qualitatively the results do not depend upon
the specific selection of members of the ensemble as long as they are sufficiently
clustered in the phase space.

The oscillatory behavior of F(ao) can be understood classically as resulting
from the combination of the periodic field variation with the near-periodic return
of the electron to the vicinity of the nucleus where large momentum transfer can
take place to cause ionization [2]. The electron motion will be determined by a'o
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and, because only a narrow range of initial conditions in the ensemble survives the
ideal adiabatic ramp-up, certain values of a0 will make ionization more likely than
others due to the resulting coincidence between electron return and high field.

The fact that we find suppression of ionization in a short-range potential
does not contradict our earlier results [6], despite our claim therein that there is
no stabilization due to interference suppression (in the sense of Fedorov [18-20])
in short-range potentials. That conclusion was based on the fact that short-range
potentials have only a finite number of bound states, thus limiting the number
of states that can interfere effectively; the result is that the probability of ion-
ization by a pulse goes to unity at high fields in short-range potentials. Careful
distinction must be made between probability of ionization and rate of ioniza-
tion; the apparent absence of stabilization (no reduced ionization probability) in.
short-range potentials is simply due to a quantitative difference in the integrated
ionization rates (see Eq. (1)), compared to those for long-range potentials. There
is no qualitative difference between long-range and short-range potentials as far as
ionization suppression (reduction of ionization rates) is concerned. By comparing
1'(ao) for a short-range and a Coulomb potential [9], we find that under identical
pulsed-field conditions which result in only ,z 63% ionization for the long-range
potential, there will be > 99% ionization for the short-range potential. This means
that our earlier conclusion of minimal stabilization in a short-range potential is,
in fact, consistent with these results showing an ionization rate that decreases
with increasing field, because the decrease is significantly slower than that for a
long-range potential [9, 14, 21].

4. Statistical relative stability of classical orbits

We study the stability of orbits (solutions to Eqs. (2) and (3)) within the time
domain during the turn-on, 0 < to •5 To. A difficulty in analyzing stability is that
the field, e(to), is the dominant term in Eqs. (2) and (3) for larger A; thus stability
at any instant does not necessarily imply stability at later times. A point to note
here is that the stability equations (10)-(14), given below, do not involve the
field amplitude A explicitly. Therefore, what we find is the instantaneous stability
condition of the orbits in the absence of an external field. Here, we take an approach
somewhat modified from the conventional one, and define an ionization point (IP)
to be that point for an orbit that ionizes within 0 < to •< To for which the
p-component of the force acting on the particle is maximum. For the overwhelming
majority of cases, the IP corresponds to the point of closest approach to the nucleus,
after which the particle's p coordinate increases monotonically. An example is
shown in Fig. 5.

The IP, defined this way with respect to the p coordinate, is an expression
of the fact that for the ensemble represented here, i.e., for sufficiently large az-
imuthal angular momentum, the condition for ionization resides almost entirely
with respect to the dynamics associated with p. This can be made plausible by
examination of Eqs. (2) and (3). A particle of the ensemble is first accelerated
along the z direction in a strong field, then accelerated back toward the nucleus
after having reached the z turning point at IzI = a0 . When the particle reaches
the azimuthal plane it is experiencing an acceleration along the p direction at the
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Fig. 5. Field e(t) and coordinates (p, z) as functions of time for a member of the
ensemble that does not survive ramp-up. Here A = 10, m = 0.75, and R = 2.

same time that the z-component of acceleration is small or zero. If the centrifugal
term is larger than the Coulomb attraction, the particle will experience an accel-
eration along the p direction, away from the nucleus. This acceleration is larger,
the smaller the p coordinate, corresponding to the closest approach to the nucleus.
We find this to be overwhelmingly the case for the dynamics corresponding to our
ensemble. We define a critical point (CP) for an orbit that remains bounded in
0 < to < To using the identical criterion, the maximum p-component of the force
acting on the particle. These definitions enable consistent statistical comparison
of the relative stability of ionization points and critical points.

Thus we examine the behavior of p = p(to) + bp and z = z(to) + 6z at an
IP or CP, and analyze statistically the relative stability of the points, IP and CP,
using the ansatz 6p - exp (iwot), 6z - exp (iwot). Equations (2) and (3) become

d2 6p _ 02V I 2 V 3m 2  (10)

d -2 OZ z OpI o V 1 p T IP,

d2 6z 02V 1 6 (2V1)

dt 2 -- -21 0 - paz o 6P,

where 1o indicates evaluation at p0 = p(to) and zo = z(to). The stability eigenvalue,
W02, is determined by

w- Bw + C =O, (12)

where
B - IV/'l IV//I p 3m--2 (13)

r' mp 4

C _ 3M2 IV'I e + IV"I .)2 (14)

An orbit is unstable at the IP if the stability eigenvalue wo is negative or complex.
In our study of many potentials with different parameters and initial conditions,
all IP have values of w20 < 0 (i.e., C < 0 when the negative sign of the solution
of Eq. (12) is taken). The values of B and C are found by using the potential
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V(r) = -(l/r) exp[-a(r - 1)]. The reason for using this particular functional
form is to make a fair comparison between short-range potentials (a > 0) and the
long-range Coulomb potential (a = 0); in both cases we use the same ensemble of
200 sets of initial conditions, and at r = 1 the kinetic and potential energy will be
the same for both types of potential.

'0- (a) V1

2 .''.: B6...... o

0 2 4 6 8 10

25] (b) .................................................. 8
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Fig. 6. Number, AN, of particles (out of 200) that reach ionization points per one-tenth
optical period versus time (solid line); field envelope and plateau value A (dotted line).
Graphs (a) and (b) are for short-range (a = 0.2) and long-range (ae = 0) potentials,
respectively, with a four-period ramp-up and A = 8. Graph (c) represents a one-period
ramp-up with A = 2 for the long-range potential.

We consider the probability P of ionization by a pulse with T - To = 30
optical periods and R = 2; we find that a small reduction of the range of the
potential can destroy HFIS. For the long-range potential, P decreases with in-
creasing A, even though the field amplitude ramps up through the "death valley"
(where A has a value around 1 or 2) at the same rate for all A, because of the
decreasing ionization rate in the plateau region of the pulse. For the short-range
potential, P never decreases because there is essentially complete ionization on the
ramp-up. This is illustrated in Fig. 6a, where the number of ensemble members
reaching an IP in each 0.1-optical-period interval (proportional to the product of
the ionization rate and the number remaining unionized) is plotted as a function
of time for a fixed value of A. For the Coulomb potential, it can be seen from
Figs. 6b and c that approximately the same amount of ionization (about 50% of
the particles) occurs on the ramp-up, whether to A = -2 or to A = 8. At larger
plateau values of A, once the particle survives passage through "death valley" we
obs, ve that its orbit becomes so large that its motion is controlled by the external
field, and it is virtually immune from the atomic force; ionization in the ensemble
becomes negligible, as in Fig. 6b. On the other hand, A = 2 can produce complete
ionization (P = 1) because the orbits remain closer to the nucleus, resulting in a
larger Iw21 (Eq. (12)); hence consistently unstable orbits arise and continued ion-
ization occurs in the ensemble. Although the pulses are completed, and ionization
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Fig. 7. Energy input AE, as measured at the ionization point or critical point, versus
log1 o(jw0 I) for (a) long-range (a = 0) and (b) short-range (a = 0.3) potentials. Solid
squares (m) represent ionized particles and hollow squares (0) are survivors.

determined afterward, Fig. 6 does not show the ramp-down; as we pointed out
earlier [6], ionization during pulse turn-off is negligible. We now understand this
to be a result of the orbits not having time to return close to the nucleus before
the field passes through the region around A z 1-2. It is evident statistically that
the size of Iw21 can indicate a measure of instability and likelihood of ionization,
despite the obvious limitations of the method. The application of the method in
the case of a 'short-range potential demonstrates its utility; for A = 8, there is
complete ionization, in contrast to the Coulomb case. We can see from Fig. 6 that
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the reason for this is that the ionization rate, for a given value of field amplitude
on the ramp-up, is significantly larger for the short-range potential. The analysis
of stability explains this, as is illustrated in Fig. 7. Each point in Figs. 7a and b
reflects the state at an IP or CP. The overwhelming majority of orbits that ionize
have larger Iw21 at that point than orbits that do not ionize. Another minor indi-
cator of stability is AE, the energy input, i.e., the difference between the particle's
energy at the IP or CP and its energy at t = 0. A very large AE pumps the orbit
to ionization even when the particle is located far away from the nucleus and Iw21
is small. A comparison of parts (a) and (b) of Fig. 7 shows that as a increases and
the range of the potential becomes shorter, both 1W21 and AE are pushed toward
larger values, enhancing the ionization.

Equations (12) and (14) explain why Iw021 can serve the purpose of predicting
ionization. For C to be negative at an IP, the value of the coordinate pa should
be small or z0 should be large. A small po implies a large azimuthal angular speed
ý 0 from 9o = m/p 2 . A larger 90 coupled with a short-range force of diminishing
influence over the orbits moving away from the nucleus, causes ionization, as
expected. This same physical picture is also applicable to explain the presence of
HFIS for the Coulomb potential. In this case, when the plateau amplitude of the
field pulse is at A = 2 (near the "death valley" region of high ionization rate), those
particles not ionized in their first pass at small pa can try again, whereas at A = 8,
the orbits escape safely to a larger p (smaller Iw2D), where they stay as relatively
more stable orbits. Our extensive numerical investigation, however, demonstrates
that all orbits are unstable throughout most of their dynamical history. This is
an important point. We have examined many pairs of orbits, originating from two
very close initial conditions resulting in only slightly different 9 0 or jw2j, in which
one ionizes and one remains bound after reaching the IP or CP. This explains
why ionized and unionized orbits cannot be clearly distinguished in a simple way
based on the initial conditions, much as the initial conditions determine regular or
chaotic behavior in the model of Ref. [22].

Our explanation of the importance of Iw21 in producing ionization, as shown
in Figs. 7a and b, is a statistical statement. There are obviously a number of
exceptions because of other factors that contribute to the probability of ionization
at an IP or CP: the position coordinate z 0 , which determines AE; the time, which
determines the phase of the field at the IP or CP; and the direction of the particle's
velocity there. These minor factors are difficult to correlate to form a cohesive
deterministic picture. We account for them through their distribution over the
ensemble, giving us a statistical interpretation.

5. Conclusions

The role of the ramp-up of the external field in HFIS was analyzed. The
realization of an optimum turn-on rate, R, provides an essential clue to the ex-
planation of HFIS using the classical ensemble. The results have led to the use of
a weak prepulse to enhance HFIS, and suggest the expediency to implement an
optimization procedure within suitable constraints.

We point out the need to distinguish between two different interpretations
of HFIS. One interpretation, applicable to the case of pulsed fields, is that HFIS
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is a reduction in the probability of ionization with increasing pulse intensity. The
other, for quasi-steady fields, is that HFIS is a reduction in the ionization rate
with increasing field amplitude. The major features in either case are that high
field amplitudes induce less ionization, and that ionization is more likely for a
particle bound in a short-range potential. We show that these features may be
explained in terms of a classical dynamical ensemble. We show that orbits in
general are characterized by a stability eigenvalue (w2) that is a good indicator of
whether ionization will occur. Our results show that there exist points (IP and CP)
in configuration space at which the particle experiences an impulse; a short-range
potential is more likely than a long-range potential to lose its grip on the particle at
the IP or CP, meaning that ionization is more likely in the short-range case. This
means that at any value of field amplitude, the ionization rate will be larger for a
short-range potential than for a long-range potential; this quantitative difference in
instantaneous rates, acting over the duration of a pulse, can result in a qualitative
difference in the resultant ionization probabilities.

The question as to just why the classical model gives results equivalent to
those of the quantum approach, even for a short-range potential, merits further
investigation. In earlier work [6], we suggested that the classical-quantum equiv-
alence for a long-range potential derived from the importance of interference and
coherent superpositions of many quantum bound states out of the infinite number
available [18-20]. For the short-range potential, our preliminary suspicion is that
interference is again responsible, although it is less effective because the number
of the bound states of the potential, and therefore the number of K-H eigenstates
for finite a0 , is finite. Evidence pointing to interference can be found in Ref. [14],
where the initial decline in the ground-state ionization rate begins shortly after the
appearance of the first light-induced excited state. Further evidence for the role
of interference between K-H eigenstates may be found in the existence (absence)
of ionization suppression for a one-dimensional (three-dimensional) delta-function
potential [2, 23-25]. An explanation for this behavior of delta-function potentials
may be found by applying the method used in Ref. [6], for estimating the number
of bound states, to the corresponding time-averaged (K-H) potentials. It is found
that the number of bound states of the K-H potential derived from a one- (three-)
dimensional delta function goes to infinity (zero) as &o increases without limit -
in the three-dimensional case, there are no light-induced excited states to interfere.
For the Gaussian potential treated here, agreement with the quantum results also
suggests that the field-induced superposition of K-H eigenstates is not dominated
by nonclassical interferences, in which the Wigner quasi-probability distribution
takes on negative values [26]. Thus we suggest that these quantum-classical corre-
spondences point to interference as the mechanism underlying HFIS even in the
adiabatic limit.
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A simple picture describes the results of recent treatments of partially-
-condensed, dilute, trapped Bose gases at temperature T > 0. The conden-
sate wave function is nearly identical to that of a T = 0 condensate with the
same number of condensate atoms, No. The cloud of non-condensed atoms
is described by the statistical mechanics of an ideal Bose gas in the com-
bined potentials of the magnetic trap and the cloud-condensate interaction.
We provide a physical motivation for this result, show how it emerges in
the Hartree-Fock-Bogoliubov-Popov approximation, and explore some of
its implications for future experiments.

PACS numbers: 03.75.Fi, 67.40.Db, 67.90.+z

1. Introduction

Most recent experiments [1-3] on dilute, magnetically-trapped, alkali-atom

Bose gases have viewed phenomena which are well described by the zero-tempe-
rature (T = 0) mean-field theory of the Bose-Einstein condensate (BEC), in which
virtually all the gas in the system resides in the condensed state. The technique of

evaporative cooling [4] used in all such experiments, grows the BEC by selective

(45)
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extraction of the non-condensed, "thermal" component of the gas, which is located
at the outer edges of the trap [5]. The T = 0 mean-field theory has been found
to give a good account of many BEC properties observed in these systems [6, 7].
New experiments [8, 9] have started to probe BECs at T > 0, and so the testing
of alternative finite-temperature BEG theories has begun.

This paper draws attention to common features emerging from several inde-
pendent finite-temperature theories, which suggest that a relatively simple picture,
which we call the "two-gas model", describes many of the properties of a dilute
Bose gas with repulsive atomic pair interactions (scattering length a > 0). The two
gases concerned are the condensate gas, the intrinsic properties of which are es-
sentially independent of temperature; and the thermal, non-condensed gas, which
behaves much like an ideal Bose gas at temperature T in an effective potential
created by the condensate. This model emerges naturally as a limiting case of the
Hartree-Fock-Bogoliubov-Popov (HFB-Popov) [10-12] and Hartree-Fock (HF)
[13] approximations, but its features seem also to be manifested in recent quan-
tum Monte Carlo [14] and semiclassical [15] calculations. The two-gas picture offers
some straightforward implications for interpretation of experiments and for further
development of first-principles theories.

Our evidence for the validity of this picture first emerged from large-scale
numerical calculations, but its origin can be traced back qualitatively within the
structure of finite-temperature field theory. In Sec. 2, we show how such a theory
can plausibly lead to a two-gas scenario. Section 3 explores some of the implications
of the model.

2. Two-gas model as a limit of the HFB-Popov approximation

The HFB-Popov equations have been derived elsewhere [10] and we merely
state the basic equations here. In the Heisenberg equation of motion, the Bose field
operator, ý(r) is decomposed into a c-number wave function ko(r) that describes
a condensate of No atoms, and an operator ý(r) describing the non-condensate
atoms: b(r) = \/N_0o(r) + ý(r). In the HFB-Popov approximation, the wave
function for a condensate of trapped atoms satisfies a generalized Gross-Pitaevskii
(GP) equation

S+ Uo [N0[V)0(r)j 2 + 2Fi(r)] } 00 (r) = (r),(1)

where fH0 = 2P-V2 + Vtrap(r) is the Hamiltonian for a single atom of mass M and
position coordinate r; the trapping potential (for cylindrically symmetric systems
of current interest) is given by Vtrap(r) - M(w~p2 + w~ z 2 )/2, with wZ and w2

the radial and axial angular frequencies of the trap; Uo = 4rrh 2a /M expresses
the binary interaction between atoms; the chemical potential u, interpreted as the
work required to add one more atom to the condensate, is treated as an eigenvalue;
and Vb0(r) is normalized to unity.

The function ii(r) is the density of the non-condensed component of the gas,

ii(r) =j (I{ur)12 + v) (r) 12] Nj + jv (r) 12}, (2)
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where

Nj = [exp(i3Ej) - 1]-1 (3)

is the Bose-Einstein factor, 8-1 = kBT and kB is the Boltzmann constant. The
quasi-particle excitation energies Ej and amplitudes uj(r), vj (r) are obtained by
solution of the coupled HFB-Popov equations

£uj (r) + NoUo Io0(r)j2 vj (r) = Ejuj (r), (4)

&j (r) + NoUo[I bo(r)I2uj(r) = -Ejvj(r), (5)

where f =Ho+2Uon(r)-p, and n(r) = No J0o(r)J2+±j(r) is the total trapped-atom
density.

In simple physical terms, Eqs. (1)-(5) describe a condensate subject to inter-
action with itself and a thermal cloud, with the cloud being generated by thermal
excitations of condensate quasi-particles. (There is also a non-thermal contribution
to this cloud, the so-called "quantum depletion" term represented by the right-
most term of Eq. (2), but it is much smaller than the thermal component except
near T = 0.) To solve these equations for a given atomic species and trap config-
uration, we fix the values of T and No, and then determine all other quantities
self-consistently, eventually obtaining the total number of trapped atoms, N, via

N = drn(r) = No + Nj. (6)Nj

By carrying out a sequence of such (laborious) calculations, we can map out the
{N, No, T} phase diagram of the interacting Bose gas. We present elsewhere [12] a
detailed comparison of the results of this approach with experimental data for the
"s7Rb condensate at JILA [9]; for the temperature-dependent quasiparticle excita-
tion energies, HFB-Popov approximation agrees with experiment to within 5% for
temperatures from zero up to 65% of the temperature To of the phase transition
for the corresponding ideal gas (corresponding to thermal fractions from less than
1% to about 50%). Although at present there are considerable discrepancies as
T --* To, it seems that HFB-Popov approximation is a useful working theory over
a significant temperature range.

Several calculations [11, 12] have shown that, for current experiments, the
quantum depletion of a small condensate is negligible, i.e., fdrii(r)jw=o
>j f drIvj(r)12 < No. This justifies use of the approximation

v (r) 0, (7)
which is equivalent to the Hartree-Fock approximation used by other authors
[13, 16]. If we apply this approximation to Eq. (4) (and neglect the contribution
of ii(r) to n(r)), we obtain an ordinary Schr6dinger equation for u (r),

h V + Veff(r)uj (r) = Eiuj(r), (8)

where the effective potential, given by

Veff(r) = Vtrap(r) + 2NoUo[10o(r)12 , (9)

is that of the trap modified by the repulsive pair interaction between the thermally-
-excited atoms and the condensate density.
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If we consider the case of a relatively small thermal fraction, then we expect
to find the condensate localized near the center of the trap, so that Eq. (9) presents
the thermal cloud with a trap and repulsive core. Thus, at least the low-energy
quasi-particle amplitudes uj(r) will be expelled from the core, i.e., they will have
little overlap with the condensate wave function. This then gives consistency of
Eq. (5) with our initial approximation, Eq. (7). It also justifies the approxima-
tion that completes our portrayal of a two-gas system: because of the expulsion
of quasi-particle amplitudes from the condensate, we assume that ii(r) can be ne-
glected in Eq. (1), so that the condensate wave function is determined by solving

h-V + Vtrap(r) + No0UIIo(r)12 00(r) = ,p0(r), (10)

which is just the usual GP equation for a condensate of No atoms at T = 0.
Thus, these arguments have led us to a simple picture in which the finite-

-temperature Bose system appears to be composed of two distinct gases. One of
these gases, the BEC, is always effectively at zero temperature, and is described
by an equation which depends only on its own atomic population, No, and the
trap parameters. The other gas, the thermal cloud, behaves as a normal Bose gas
at finite temperature, sensing the presence of the condensate through an elastic
interaction; it does not undergo Bose-Einstein condensation itself, but serves as
an atomic reservoir for the BEC. This resembles the phenomenon of BEC of an
ideal gas in an external potential, except that we account for interactions in the
identification of the ground state, and in the modification by the condensate of
the external potential exposed to the thermal cloud.

3. Implications of the two-gas model

The two-gas model provides us with a straightforward way of computing the
phase diagram of the dilute Bose gas for T < To. If there are No atoms in the
BEC, we solve Eq. (10) to obtain what we will call an equivalent zero-temperature
condensate (EZC), i.e. the corresponding T = 0 condensate that contains No
atoms. The EZC solution provides us an orbital 00(r; NO) and chemical potential
y(No); with these in hand, we can construct Veff(r) and find the spectrum of
Eq. (8). This procedure, which is independent of T, gives us the information we
need to compute the equilibrium value of N for given values of No and T: we
evaluate Eq. (6) from Eq. (3).

In short, the EZC provides a "reference condensate" which, for a given set of
trap parameters, describes all systems with the same number of condensate atoms
No. As we have shown elsewhere [12], this model provides good agreement with
the results of full HFB-Popov calculations of condensate and thermal densities
and the critical temperature To; the emergence of an EZC can also be seen in the
analysis by Krauth [14] of the results of his quantum Monte Carlo calculations,
and in the recent quasi-classical calculations of Minguzzi et al. [15]. Comparison
of the EZC condensate densities with those of HFB-Popov calculations is made
in Fig. 1; this shows that even in cases where the condensate fraction f = No/N
is as small as 0.1, the condensate is relatively unperturbed by the presence of the
thermal cloud.
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Fig. 1. Condensate densities in the z = 0 plane for systems of S7Rb atoms in the JILA
TOP trap [1] with radial frequency vp = 74 Hz. The solid line shows the condensate
density as computed in the HFB-Popov approximation, and the dashed line is the
density of the corresponding EZC. Case (a): A system of N = 13150 atoms at T = 70 nK,
corresponding to f = 0.54 in the HFB-Popov approximation, i.e. N0 = 7106. (b) A
system of N = 2000 atoms at T = 51 nK, corresponding to f = 0.1. The EZC densities
are seen to be very close to those of the HFB-Popov approximation.

Another straightforward implication of the two-gas model concerns the den-
sity profile of the thermal cloud. If we entertain the simple hypothesis that the
cloud would be described by classical statistical mechanics of an ideal gas, then its
density ii(r) would be proportional to exp[-lVeff (r)]. Since Veff(r) is repulsive at
small H and confining at large Irl, (r) will attain its maximum away from the
center of the condensate. If we consider the Thomas-Fermi limit [17] appropriate to
large condensates, then for the case of a spherical condensate [Vtrap(r) = MW2 r2 /2]
we find that

- (Mw 2 /2) (2rF - r2), r < rTF,
Veff(r) Mw 2r 2/2, r > rTF,

(15No•%• 1/5deiethshrbonayf
where the Thomas-Fermi radius, rTF = 5N0 U 2  defines the sharp boundary of
the condensate. Thus in this limit, ii(r) is largest at the surface of the condensate,
and its distribution becomes more localized as No increases, albeit slowly.

The key qualitative aspects of this classical description are applicable to the
quantum system, as shown in Fig. 2: this displays results of a full quantum-mechan-
ical finite-number description, without any of the semiclassical continuous spec-
trum approximations made by other authors [15, 18]. This figure clearly suggests
that quantitative interpretations of experimental data on finite-temperature con-
densates, e.g. determination of a condensate fraction from density measurements,
will have to invoke some detailed model of the thermal distribution, since this
distribution is neither monotonic nor close to the results obtained for a nonin-
teracting gas. On the other hand, our current model suggests that the conden-
sate and thermal densities are relatively distinctly segregated within the cloud,
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Fig. 2. Thermal density for N • 2000 87Rb atoms in a spherical trap with vr = w/27r =

200 Hz, T = 75 nK, corresponding to f = 0.5 in the HFB-Popov approximation. The

radius r is given in units of the characteristic length of the oscillator d = h/I-/Mw. These

parameters were previously used by Hutchinson et al. [11], whose numerical HFB-Popov

results we have reproduced and use here. The main figure shows the thermal density as

computed in various approximations. Chain-dashed line: the confined ideal quantum gas;

dashed line: full solution of the HFB-Popov equations; solid line: full quantum-statistical

distribution as computed from two-gas model, which obtains N = 1965 (vs. the exact

value of 2000) from No = 1000 and T = 75 nK; dotted line: result of classical sta-

tistiryd mechanics applied to the two-gas model, using a fit to force N = 2000. The

inset compares the HFB-Popov thermal density (solid line) with that of the condensate

(dashed). Thus, even when the system is only 50% condensate, the peak condensate

density is clearly much higher than that of the thermal cloud.

which may considerably simplify the qualitative understanding of some proper-

ties. Since it originates in the distinction between interactions of condensate and

non-condensate atoms, this spatial segregation of the two gases seems to be a

fundamental aspect of the behavior of inhomogeneous Bose gases, such as the

trapped-atom systems of current interest. This may have interesting consequences

for applications: for example, it may be possible to selectively extract conden-

sate vs. thermal atoms from a trap by appropriate positioning of a probe, thus

obtaining an outcoupled matter wave with higher coherence than would be other-

wise expected [19]. In homogeneous systems, on the other hand, condensate and

non-condensate populations are intertwinned; this is one of the essential features

of the two-fluid model of liquid helium [20].
Taking this idea further, we suggest that any property of a finite-temperature

BEC should be compared in the first instance to that of the corresponding EZC. In

the two-gas model, we expect most of the T-dependence of a given quantity to be

reduced to No-dependence. For example, in Fig. 3 we show the quasiparticle exci-
tation frequencies for the JILA TOP trap, over a range of temperatures relevant to
recent experiments, as computed in the full HFB-Popov approximation and in the
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Fig. 3. HFB-Popov excitation frequencies (filled circles) for the m = 0 (top), m = 2
(middle), and the m = 1 modes (bottom) for the JILA TOP trap with radial frequency
vr = 129 Hz and N = 2000 87Rb atoms, vs. temperature in units of To. Overlaid (solid
lines) are the frequencies for a zero-temperature system with the same number No of
condensate atoms as in the finite-temperature system.

two-gas model. It is seen that the two methods agree up to temperatures quite close
to the phase transition, so the main effect of finite temperature is renormalization
of the value of No. An analogous result was seen in earlier calculations [21, 22] for
the homogeneous Bose-condensed gas of the temperature dependence of the speed
of sound, which found it to be given by an equivalent T = 0 expression adjusted
for the temperature-dependence of the condensate density.

4. Conclusions

We find that condensate and thermal populations of a partially Bose-Ein-
stein-condensed trapped-atom system separate out to a considerable extent. Treat-
ing the condensate as uncoupled from the thermal cloud, and the thermal cloud
as interacting with a static condensate potential, yields results similar to those
that come from involved self-consistent field calculations. These results motivate
the identification of the equivalent zero-temperature condensate as a consolidat-
ing feature of finite-temperature systems. In this model, the main effect of finite
temperature on the condensate is depletion of the condensate number. Condensate
properties that depend only weakly upon No, such as the quasi-particle spectrum
in the large-No limit (corresponding to the excitation frequencies of large conden-
sates) [7], should exhibit only weak temperature dependence.
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By using the double-lambda configuration of energy levels and three
classical fields, an atom or ion in a high-Q resonant cavity can be manipu-
lated to create a single-mode quantum state in the cavity that is an arbitrary
combination of Fock states for that mode. The same principles of operation
can be applied to a cavity with much lower Q in order to produce a "photon
pistol", a device that "shoots" one and only one photon when a trigger is
pulled, and emits no photons at other times.

PACS numbers: 42.50.Dv, 42.50.Ct, 32.80.Qk

Cavity QED now provides a realistic framework for experimental study of
strongly interacting quantum systems, and for the production of interesting va-
rieties, of non-classical states of atoms and photons. It is almost too easy in the
context of cavity QED to produce hyper-quantum states, states that are extremely
tangled combinations of mixed numbers of atoms and photons. It is not usually
realized that in 1958 Jaynes already predicted [1] that cavity QED would provide
an attractive way to study entanglement.

Here we address a related question that has captured some attention in the
past few years but has proved difficult to answer with complete satisfaction. This is
the question how best to produce arbitrary, pre-specified, quantized cavity-mode

states without entanglement with atomic states, even without entanglement of
the atom used to generate the photons, and to do so using classically controllable
inputs.

What classical device or collection of classical devices would be suitable to
generate an arbitrary non-entangled quantum state with sufficient reliability that
it could serve as the heart of a photon factory? Such a factory could, for example,
act as supplier for a shop such as the one shown in Fig. 1. Or, if the engine were
compact and reliable enough, perhaps Fock & Associates could install one in the

cellar of their shop and run their own factory. At the present time there are three

(55)
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Fig. 1. A retail showroom where quantum states are available.

models for a photon engine capable, in principle, of generating an arbitrary state
of the cavity mode, say

N

I•Y) -- c Z In), (1)
n=-

where the coefficients c, are to be specified by the customer and must satisfy
probability conservation, E Icn12 = 1, but are otherwise arbitrary, and where N
is the highest occupation number desired.

These model engines are sketched in Fig. 2. Model 1 is an "exit control"
model [2]. It uses extremely low-cost raw materials, just a stream of identically
prepared two-level atoms, but it requires a rigorous quality control stage, because
the action of the atoms inside the cavity is fully quantum mechanical and the
cavity builds up to its desired state only after the passage of at least N atoms,
and typically many more than that. The state of each atom must be monitored
when it leaves the cavity to determine if the cavity state is on the right path to
the desired result. Because of the statistical rarity of achieving the desired output
and the overtime wages of the quality control inspector, this is a low-profit model.

Model 2 is an "input control" model [3]. It can produce a desired output
with commendable reliability, but it consumes very expensive raw materials. The
raw materials required are carefully tailored quantum systems with imprinted co-
herence properties, for example a distribution of properly sequenced probability
amplitudes in a Zeeman multiplet. Under the right conditions in the cavity, this
coherence can be transformed into a coherence property of the cavity mode, yield-
ing the desired cavity state directly, with only a cursory inspection of the output to
make sure the transformation has occurred. Because of the expense of producing
the carefully tailored raw materials (and drastically different tailoring for every
customer must be anticipated), this is also a low-profit model.

Model 3 is a "process control" model [4]. It uses even less expensive raw
materials than model 1 because it needs only a single atom, and it requires mini-
mal quality control. However, it uses a carefully programmed interaction sequence
during the time the atom is in the cavity. This means that external classical fields
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Fig. 2. Sketches of three models that have been proposed for a photon engine that will
generate photon states according to a customer's prescription.

are used to excite and de-excite the atom in a predetermined sequence of steps.
The major cost is not in supplying such external fields but in building a cavity
that permits these fields to enter and leave without seriously affecting the Q value
of the quantized cavity mode of interest. This is a capital cost that needs to be
undertaken only once, independent of the state that is to be produced. Thus a
factory using model 3 needs sufficient business volume to recover the capital cost
of the unusual cavity, but is otherwise a low-cost and high-profit model.

The odds appear to be in favor of model 3, so we will now explain its advan-
tages more carefully. One important difference that was not mentioned explicitly,
although it is implied by the sketch in Fig. 2, is that the atom is used in a stim-
ulated Raman mode, which means that the two-level atom is really a three-level
atom being excited and de-excited very far off resonance in a lambda configura-
tion. Moreover, the lambda interaction is employed twice, so the atom is actually
a "double-lambda" atom, as shown in Fig. 3.

The absorption-emission events are those of two Raman-type processes act-
ing between the same two levels of an atom at the same time: absorption of a pump
photon and the accompanying emission of a Stokes photon, followed by the ab-
sorption of another pump photon and then the emission of an anti-Stokes photon,
and in the figure R and L denote the "right" and "left" pump modes, while S and
A label the usual Stokes and anti-Stokes modes. In an alternating-pair sequence
these fields can take the atom from state I-) to state J+) and around to I-) again.
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Fig. 3. Sketch of double-lambda atom. Dipole transition matrix elements connect the
two "ground" states with an upper opposite-parity state that is not shown.

In this way, the atom ends where it began, but the field inventory of photons is
different. In the end there are two fewer pump photons and one additional photon
in each of the Stokes and anti-Stokes modes. The atom has acted as a wave-mixing
catalyst, and is ready to be used again. The Jaynes-Gummings system has only
a single channel connecting its two states, so cyclic operation of this kind is not
possible.

The double-lambda atom has not received a lot of attention in the literature,
but there are applications for which its advantages have already been recognized.
Some of the previous works can be identified with the following themes and names:

(i) amplification without inversion, Kocharovskaya and Mandel [5];

(ii) excitation via a classical and a quantum channel simultaneously, Law and
Eberly [6];

(iii) exact quantum solutions for 3 modes, Wang et al. [7];

(iv) boson spin algebra for 4 modes, Wang and Eberly [8];

(v) two mechanisms for inversionless amplification, Keitel et al. [9];

(vi) perfect Greenberger-Horne-Zeilinger (GHZ) correlator, Wodkiewicz et al. [10];

(vii) two-mode squeezing and phase correlation, Law and Eberly [11];

(viii) lasing without inversion and phaseonium, Scully et al. [12];

(ix) transparency and dressing in a double-lambda medium, Cerboneschi and
Arimondo [13];

(x) photon engine, Law and Eberly [4];

(xi) quantum image storage, Kneer and Law [14];

(xii) photon pistol, Law and Kimble [15].

The double-lambda is obviously a two-channel extension of the well-known
Jaynes-Gummings (JO) model [1]. One knows that the JC model is essentially a
handy toy in which to examine fundamental aspects of both optical spectroscopy
and laser action, with the major advantage that strong-field cavity interactions
of current experimental interest can be treated in detail. However, many effects
and processes familiar in optical physics do not fit into the Jaynes-Cummings
framework at all. These include:
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(a) pump-probe effects,

(b) nonlinear wave mixing, including down conversion,

(c) three-mode correlations of the GHZ type,

(d) two-photon lasing, and

(e) optical pumping of laser action.

Because of its two channels, the double-lambda model is able to treat some or all
of these effects. The main important difference to the JC model is the ability to
manipulate the atom by connecting the states 1+) and I-) in two independent
ways. This has been shown [4] to be the key to avoid entanglement. Although a
3-mode quantum model of the two-channel process also exists [7], we are concerned
here only with a 4-mode model [8]. In any case a single atom (or ion) is either
laser-cooled and allowed to drift very slowly through the cavity or it is permanently
trapped in the cavity. Figure 4 sketches the three (classical) light beams incident
from outside the cavity that are imposed to control atomic excitation in either
case.

I k *

Fig. 4. Arrows designate three classical external radiation fields (laser beams) that are
directed at a double-lambda atom that drifts through a cavity or is held in a trap, which
is located in a cavity too. The cavity supports excitation of a fourth mode, which is
excited one photon at a time and is treated as quantized.

It is remarkable that the much more complex quantum double-lambda is
"solvable" in the same sense as the JC model - the eigenvalues and eigenfunc-
tions of its Hamiltonian can be found exactly. For comparison, the two models'
interaction Hamiltonians are

VjSc = gci&+_h.c.,

VA-A = g(dR&s+ + aL+aA)o+- + h.c. (2)

It is well known that the raising and lowering operators for the JC model
atom have an angular momentum interpretation. In the 3-mode case Schwinger's
procedure extends an angular momentum property to the radiation mode oper-
ators. For example, we define 1, operators using bilinear combinations of the R
and S modes: Li+ -- as and L1_ = aRa+, and L1, = -- [LI+,L 1-]. Then L2
operators are formed from the A and L mode operators in the same way. The
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connections between angular momentum quantum numbers and photon numbers
are given by

1 1
11 = (nR + ns), m1 = - ns), (3)

and

12 = (nA + nL), M2 =(nA - nL). (4)

These angular momenta, plus the atom's two-level pseudo-spin S, are used to
define a new "total" angular momentum J = L 1 + 1 2 + S. It has been shown [8]
that the eigenvalues and eigenfunctions can be found for this Hamiltonian exactly
and analytically in closed form. (The same is true for the 3-mode double-lambda
systems [7], but angular momentum algebra is not helpful there and the results
are strikingly different.) In the 4-mode case of interest here we only quote the
eigenvalue formula, which is given by a Clebsch-Gordan coefficient

A•= V/(l - m)(1 + m + 1), (5)

where I and m belong to the "mode angular momentum" L = L1 + L 2.
Surprisingly, the most interesting applications of the double-lambda model

are not even on our list of effects lying outside the reach of the JC model. These
are the consequences of understanding the working of a photon "engine", and one
of these is the invention of a "photon pistol."

Only the design for the photon engine [4] has been published so far. In the
case of the photon pistol, the same combination of external and cavity modes is
used as for the engine, but the cavity Q is drastically lowered so that as soon
as a cavity photon is generated in the cycling of the "engine", it is transmitted
through one of the cavity mirrors ("shot") out of the cavity. A second photon will
not be emitted until the engine is run through another cycle. Since the principle
of the pistol is clear, the remaining issue is only one of practicality. Surprisingly,
the device is not impractical and a photon pistol can probably be made in the
laboratory in the near future.

Here we list the results of a study of a photon pistol in the context of the
D1 line of Cs. This turns out to provide a particularly attractive context for
pistol operation. The relevant Cs transitions for this are shown in Fig. 5. The
F = 4 -* F = 4 transition in Fig. 5 is the one we have labelled R above, and r0 is
its peak Rabi frequency. The F = 4 --+ F = 3 transition is the one labeled S above,
and g is its one-photon Rabi frequency. The "recycling" transitions involving the
external fields labeled L and A above, that make up the other half of the double
lambda are omitted from the figure for simplicity.

Some of the key operating points are these. Once an atom is chosen, the
value of g is fixed according to the relevant dipole moment, the size of the cavity,
and the position of the atom in it. The other transitions in the atom determine
how strong r0 can be made before higher excitations need to be considered. In the
Cs case this means the critical parameter, the effective two-photon Rabi frequency
QRs given by

1 gro
ORs- 2A' (6)
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Fig. 5. The basis for operation of the photon pistol is the induced appearance of a
photon in the cavity (channel "g" here). The relevant energy levels of the experimental
atom (Cs operating on the D1 line) are shown, along with the principle atomic relaxation
channels. The cavity relaxation is much more rapid, allowing the photon "bullet" to
emerge from the pistol with less than 0.1 gs delay.

is too weak to be effective unless A, the one-photon detuning, is nearly resonant.
This has no effect on the pistol concept, but does allow the upper state (m = 4 in
the figure) to become populated, thus opening an extra relaxation channel (spon-
taneous emission from m = 4) disregarded up to now. Both quantum trajectory
calculations and also more elaborate master equation calculations [15] show that
this effect can be tolerated.

At resonance, the following parameter values are currently realizable in the
laboratory for the Cs transitions shown: (ro, g, the cavity loss rate K and the atomic
decay rate y) = (22.5, 45,45,4.5), where all values are in MHz. To be specific, / =
27r .45 MHz, etc. Given a temporal halfwidth To = 3--1 = 105 ns for the external
field R, calculations that take full account of hyperfine structure, atomic decay
channels, and operating cavity conditions lead to the following conclusions [15].
The one-photon emission probability rises more than 95% within less than 0.1 ps,
just two atomic lifetimes (7t = 2). An even higher emission probability (99.5%)
can be reached when g = 27r. 120 MHz. In the absence of another R pulse there will
be no second photon. This is an operational reliability that is probably acceptable
to most customers (quantum optics Mafia, etc.). An important selling point is that
the fall-off in performance is not great even for a significant decrease in reliability
of input. For example, if g fluctuates by a factor of 2 it is predicted that the firing
probability still remains near to, or well above, 90%.

In summary, we have discussed progress toward classical control of quan-
tum processes. The two-channel double-lambda system has been exploited here to
provide two examples of classical control, the photon state engine and the photon
pistol. Both rely on very highly lossless operation of an optical cavity of very small
dimension. Until recently these requirements would have been unrealistic, and at
this time they remain just beyond realization for the photon engine. However, the
photon pistol requires a much lower storage time for the cavity mode, and we
have reported the results of a recent calculation [15] to show that a pistol is prob-
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ably feasible at the present time. Just as interesting are the items in the second
listing above. They represent targets for future application of the double-lambda
principle.
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This is a brief description of how to protect quantum states from dissipa-
tion and decoherence that arise due to uncontrolled interactions with the en-
vironment. We discuss recoherence and stabilization of quantum states based
on two techniques known as "symmetrization" and "quantum error correc-
tion". We illustrate our considerations with the most popular quantum-optic-
al model of the system-environment interaction, commonly used to describe
spontaneous emission, and show the benefits of quantum error correction in
this case.

PACS numbers: 89.70.+c, 03.65.Bz

1. Introduction

Suppose we want to transmit or store a block of 1 qubits (i.e. two-state
quantum systems) in a noisy environment. Here "noisy" means that each qubit may
become entangled with the environment. Thus due to spurious interactions with
the environment the actual state of the I qubits, described by a density operator
p(t), will differ from the original state I!). This deviation can be quantified by the
fidelity

F(t) = (Tjp(t)fl) = 1 - c(t). (1)

In order to maximize this fidelity we may try all sorts of tricks ranging
from the most obvious one, i.e. isolating the qubits from the environment to more
sophisticated methods such as "symmetrization" [1, 2], "purification" [3, 4], and
"quantum error correction" [5]. The last method seems to be the most popular one
at the moment and relies on encoding the state of 1 qubits into a set of n qubits
and trying to disentangle a certain number of qubits from the environment after
some period of time. In the following we describe, very briefly, how some of these
techniques work.

We will assume that in the block of I qubits each qubit is coupled to a dif-
ferent environment. This is a perfectly reasonable assumption, which is valid if
the coherence length of the environment/reservoir is less than the spatial separa-
tion between the qubits [6], and introduces a great deal of simplifications to the

*ekertc@physics.ox.ac.uk.

tchiaracmildred.physics.ox.ac.uk. Also at: Dipartimento di Fisica Generale "A. Volta",
Via Bassi 6, 27100 Pavia, Italy.

(63)



64 A. Ekert, Ch. Macchiavello

calculations. Basically it allows us to view any dissipation of 1 qubits as a set of
independent dissipations of 1 single qubits (i.e. we ignore collective phenomena
such as superradiance etc.).

The qubit-environment interaction leads to the qubit-environment entan-
glement, which in its most general form is given by

IO)IR) -- •O)IRoo(t)) + 11)IR01(t)), (2)
11) JR) - J0) lR10(t)) + ]1)JR11(t)), (3)

where states of the environment IR) and IRij) are neither normalised nor or-
thogonal to each other (thus we have to take additional care at the end of our
calculations and normalise the final states). The r.h.s. of the formulae above can
also be written in a matrix form as(Roo) IRo,) 10) (4)

JRio) R 11) Jk 11) J
and the 2 x 2 matrix can be subsequently decomposed into some basis matrices
e.g. into the unity and the Pauli matrices

IRo)l + IR1 )a-' + iIR2)a-y + IR3)o)•, (5)

where IRo) = (IRoo)+IRui))/2, IR3) = (IRoo)-IRu))/2, lRa) = (IRol)+lRjo))/2,
and IR2) = (IRol) - IRio))/2. Thus the qubit initially in state ITZ) will evolve as

3ITI) IR) 1: o -II) jRj) (6)
i=0

becoming entangled with the environment (we have relabelled the unity operator
and the Pauli matrices 11, U, cy, c,} respectively as {aO, al, a-2 , 9 3}). Its fidelity
with respect to the initial state Ily) evolves as

F(t) = Z(TIabl3I)(Tfo- lrlI)(Rj(t)IRi(t)). (7)
i~j

The formula (6) describes how the environment affects any quantum state of a
qubit and shows that a general qubit-environment interaction can be expressed
as a superposition of unity and Pauli operators acting on the qubit. As we will
see in the following, in the language of error correcting codes this means that the
qubit state is evolved into a superposition of an error-free component and three
erroneous components, with errors of the au, ay and o-, type.

We can carry on this description even if the qubit itself is not in a pure
state j1) but is entangled with some other qubits. For example, if in a three qubit

register initially in state ! = -10)10)10) - 11)11)11) the second qubit interacted

with its environment then the state of the register at some time t is given by
3 3

i=O i=O

where the superscript (2) reminds us that the Pauli operators act only on the
second qubit. We can then say that the second qubit was affected by quantum
errors which are represented by the Pauli operators oai. Errors affecting classical
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bits can only change their binary values (0 --+ 1), in contrast quantum errors
operators o-i acting on qubits can change their binary values (a.,), their phases
(o-) or both (ay).

In general, a batch of n qubits initially in some state 1•), each of them
interacting with different environments, will evolve as

J17 oZ i(k) ()IRk) (t)(9
k=1 i=0

namely multiple errors of the form Oi ® uj ... ®o00-k may occur, affecting several
qubits at the same time.

So much about unwelcome dissipation, what about remedies?

2. Stabilization via symmetrization

The first proposed remedy was based on a symmetrization procedure [1]. The
basic idea is as follows. Suppose you have a quantum system, you prepare it in
some initial state ITQ and you want to implement a prescribed unitary evolution
ITf(t)) or simply you want to preserve IJli) for some period of time t. Now, suppose
that instead of a single system you can prepare R copies of ITl4) and subsequently
you can project the state of the combined system on the symmetric subspace, i.e.
the subspace containing all states which are invariant under any permutation of
the subsystems. The claim is that frequent projections on the symmetric subspace
will reduce errors induced by the environment. The intuition behind this concept
is based on the observation that a prescribed error-free storage or evolution of
the R independent copies starts in the symmetric subspace and should remain in
that subspace. Therefore, since the error-free component of any state always lies
in the symmetric subspace, upon successful projection it will be unchanged and
part of the error will have been removed. Note however that the projected state
is generally not error-free since the symmetric subspace contains states which are
not of the simple product form IV)) 10) ... IV). Nevertheless it has been shown that
the error probability will be suppressed by a factor of 1/R [2].

We illustrate here this effect in the simplest case of two qubits. The pro-
jection into the symmetric subspace is performed in this case by introducing the
symmetrization operator

1
S = -(P 12 + P21), (10)

where P12 represents the identity and P2 1 the permutation operator which ex-
changes the states of the two qubits. The symmetric-projection of a pure state If!I)
of two qubits is just SI[f), which is then renormalised to unity. It follows that the
induced map on mixed states of two qubits (including renormalization) is

S(pi ® p2)St
P1 ® P2 ---+ rS(pi ®0p2)St" (11)

The state of either qubit separately is then obtained by partial trace over the other
qubit.

Consider for example the symmetric projection of p ® p followed by renor-
malization and partial trace (over either qubit) to obtain the final state Ps of one
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qubit, given that the symmetric-projection was successful. A direct calculation
based on (11) yields

PpIPs - p +p 2  (12)Tr(p + p2 )'

For any mixed state ý of a qubit the expression Tr. 2 provides a measure of the
purity of the state, ranging from ¼ for the completely mixed state 1/2 (where I is
the unit operator) to 1 for any pure state. From (12) we get

Trp, > Trp2  (13)

so that p, is purer than p. This illustrates that successful projection of a mixed
state into the symmetric subspace tends to enhance the purity of the individual
systems.

To be more specific, let us assume now that the two copies are initially
prepared in pure state p0 = ITI)(TlI and that they interact with independent envi-
ronments. After some short period of time 5t the state of the two copies p( 2) will

have undergone an evolution

P( 2)(0) = Po ® PO - P( 2)(6t) = P1 ® P2, (14)

where pi = p0 + Li for some Hermitian traceless ei. We will retain only terms of
first order in the perturbations Qi so that the overall state at time 6t is

p( 2) = p0® p0 + e1®p09PO + P®O 2 + O(e102). (15)

We can calculate the average purity of the two copies before symmetrization by
calculating the average trace of the squared states

2 Tr[(po + ei) 2] = 1 + 2Tr(poý), (16)

2
where 5 = ½(ei + Q2). Note that Tr(p0•) is negative, so that the expression above

does not exceed 1. After symmetrization each qubit is in state

P., [1 - Tr(po )]po + + (Poý + po) (17)

and has purity

Tr(p2) = 1 + Tr(pO). (18)

Since Trp2 is closer to 1 than (16), the resulting symmetrised system p, is left in
a purer state.

Let us now see how the fidelity changes by applying the symmetrization
procedure. The average fidelity before symmetrization is

Fb 1 E('RIpO + eill) 1 + (OPWITI), (19)

while after successful symmetrization it takes the form

F., = (Of Ip, ITl) = 1 + PI100 ) (20)

The state after symmetrization is therefore closer to the initial state Po.
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For the generic case of R copies the purity of each qubit after symmetrization
is given by [2]

1
Tr(pS) = 1 + 2-Tr(pOk), (21)

R

where now = i ,and the fidelity takes the form

W 1p, I) = 1 + JTr(PO 0.(22)

Formulae (21) and (22) must be compared with the corresponding ones before
symmetrization, i.e. (16) and (19). As we can see, Ps approaches the unperturbed
state Po as R tends to infinity. Thus by choosing R sufficiently large and the
rate of symmetric projection sufficiently high, the residual error at the end of
a computation can, in principle, be controlled to lie within any desired small
tolerance.

The efficiency of the symmetrization procedure depends critically on the
probability that the state of the R qubits is successfully projected into the sym-
metric subspace. It has been shown that if the projections are done frequently
enough, then the cumulative probability that they all succeed can be made as
close as desired to unity. This is a consequence of the fact that the fidelity of the
state of the R computers with respect to the corresponding error-free state for
small times 6t has a parabolic behaviour (see Sec. 5). Therefore the probability of
successful projection, which is unity at the initial time, begins to change only to
second order in time. If we project n times per unit time interval, i.e. we choose the
time interval between two subsequent projections 6t = 1/n, then the cumulative
probability that all projections in one unit time interval succeed is given by

[1-k(6t)2]n(= 1-- k)n+1 as n -- . (23)

Here k is a constant depending on the rate of rotation of the state out of the
symmetric subspace. This effect is known as the "quantum watch-dog effect" or
the "quantum Zeno effect".

3. Quantum encoding and decoding

The idea of protecting information via encoding and decoding lies at the
foundations of the classical information theory. It is based on a clever use of re-
dundancy during the data storage or transmission. For example, if the probability
of error (bit flip) during a single bit transmission via a noisy channel is p and each
time we want to send bit value 0 or 1 we can encode it by a triple repetition i.e. by
sending 000 or 111. At the receiving end each triplet is decoded as either zero or
one following the majority rule - more zeros means 0, more ones means 1. This
is the simplest error correcting protocol which allows to correct up to one error.

In the triple repetition code the signalled bit value is recovered correctly
both when there was no error during the transmission of the three bits, which
happens with probability (1 - p)3 , and when there was one error at any of the
three locations, which happens with probability 3 p(l - p)2 . Thus the probability
of the correct transmission (up to the second order in p) is 1 - 3p 2 i.e. the probab-
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ility of error is now 3p 2, which is much smaller when compared with the probability
of error without encoding and decoding p (p < 1). This way we can trade the
probability of error in the signalled message for a number of transmissions via the
channel. In our example the reduction of the error rate from p to 3p 2 required to
send three times more bits. If sending each bit via the channel costs us money
we have to decide what we treasure more, our bank account or our infallibility.
The triple repetition code encodes one bit into three bits and protects against one
error, in general we can construct codes that encode 1 bits into n bits and protect
against t errors. The best codes, of course, are those which for a fixed value 1
minimize n and maximize t.

Quantum error correction which protects quantum states is a little bit more
sophisticated simply because the bit flip is not the only "quantum error" which
may occur, as we have seen in the previous sections. Moreover, the decoding via
the majority rule does not usually work because it may involve measurements
which destroy quantum superpositions. Still, the triple repetition code is a good
starting point to investigate quantum codes and even to construct the simplest
ones.

The simplest interesting case of the most general qubit-environment evolu-
tion (3) is the case of decoherence [7] where the environment effectively acts as a
measuring apparatus

IO)IR) -- IO)IRoo(0 )), (24)

I1)IR) - I1)JR 1 1(t)). (25)
Following our discussion in Sec. 1 we can see that this model leads only to dephasing
errors of the o-, type. It turns out that a phase flip can be handled almost in the
same way as a classical bit flip. Again, consider the following scenario: we want
to store, in a computer memory, one qubit in an unknown quantum state of the
form aJO) + 011) and we know that any single qubit which is stored in a register
may, with a small probability p, undergo a decoherence type entanglement with
an environment (Eq. (25)); in particular

(aJo) +,811))1R) -- aJo)IRoo) + i#1)R 11). (26)

Let us now show how to reduce the probability of decoherence to be of the order p2 .
Before we place the qubit in the memory register we encode it: we can add

two qubits, initially both in state 10), to the original qubit and then perform an
encoding unitary transformation

1000) - 1 Co) = (10) + 11))(10) + I1))(10) + 11)), (27)

1100) -- ICO) = (10) - 11))(10) - 11))(10) -I11)), (28)
generating state alCo) + f0jC 1 ). Now, suppose that only the second stored qubit
was affected by decoherence and became entangled with the environment

o•({o) + I1))(IO)IRoo) + I1)IR11))(IO) + 11))

+,#(10) - I1))(IO)IRoo) - 1)IR 11))(Io) - I1)), (29)
which, following Eq. (8), can be written as

(alCo) + 131C0))JRo) + oa,2)(a1Co) + fICi))IR 3). (30)
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If vectors ICO), ICO), 0 (k) 00 ), and o(k)ICI) are orthogonal to each other we can
try to perform a measurement on the qubits and project their state either on the
state alCo) + # ICi) or on the orthogonal one oa2l(aICo) + PICi)). The first case
yields the proper state right away, the second one requires one application of a,,
to compensate for the error. In this simple case one can even find a direct unitary
operation which can fix all one qubit phase flips regardless their location. For
example the transformation

1000) - 1000) 1100) -l 1o11)

1001) - 1001) 1101) -- 1110)

1010) -- 1010) 1110) - 1101)

1011) - liii) 1iii) - 1100) (31)
corrects any single bit flip 0 e-+ 1 and when applied in the conjugate basis (10') =
10) + -1), I1') = 10) - 11)) it corrects any single phase flip (the bit flips become
phase flips in the new basis). The snag is that using the scheme above we can
correct up to one phase error o-, or we can go to a conjugate basis and the same
scheme will correct up to one amplitude error o-, but it cannot correct up to one
general error, be it amplitude or phase.

To fix this problem Peter Shor in 1995 combined the phase and the amplitude
correction schemes into one constructing the following nine qubit code [5]:

10) -) + I111))(I000) + 1111)) (32)

11) - 1-(1000) - I111))(1000) - I111))(1000) - 1111)). (33)

This code involves double encoding, first in base 10) and 11) and then in base 10')
and I1'), and it allows to correct up to one either bit or phase flip. It turns out
that the ability to correct both amplitude and phase errors suffices to correct any
error due to entanglement with the environment. In other words the action of the
environment on qubits can be viewed in terms of bit and phase flips.

4. Quantum error-correcting codes

The original nine qubit code of Shor can be further simplified. It has been
shown that a five qubit code suffices to correct a single error of any type. Let us
now specify the conditions for the existence of quantum error-correcting codes.

We say we can-correct a single error o-k) (where i = 0... 3 refers to the type
of error) if we can find a transformation such that it maps all states with a single

error o !ft) into the proper error-free state pft/:

(34)

To make it unitary we may need an ancilla
ok)• 10)--+• laý). (35)
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For encoded basis states of a single qubit ICQ) and fCI) this implies [8]

AkICo)10) i ICo)lak) (36)
AkIC1)10) )- JIC)Jak), (37)

where Ak denotes all the possible types of independent errors affecting at most one
of the qubits. The above requirement leads to the following unitarity conditions:

(Co 0IA' AAICo) = (C iIAtIA, IC1) = (ak Iaa), (38)

(ColAtlA 1 ICI) = 0. (39)

The above conditions are straightforwardly generalised to an arbitrary t error
correcting code, which corrects any kind of transformations affecting up to t qubits
in the encoded state. In this case the operators Ak are all the possible independent
errors affecting up to t qubits, namely operators of the form IF = 1a-r acting on t
different qubits. In the case of the so-called "nondegenerate codes" Eq. (38) takes
the simple form [9]

(CoIAt AICo) = (C IAtAl Ci) = 0. (40)

This condition requires that all states which are obtained lVy affecting up to t qubits
in the encoded states are all orthogonal to each other, and therefore distinguish-
able. This ensures that by performing suitable projections of the encoded state
we are able to detect the kind of error which occurred and "undo" it to recover
the desired error-free state. Condition (40), even if more restrictive than (38), is
particularly useful because it allows to establish bounds on the resources needed in
order to have efficient nondegenerate codes. Let us assume that the initial state of
I qubits is encoded in a redundant Hilbert space of n qubits. If we want to encode
21 input basis states and correct up to t errors we must choose the dimension of
the encoding Hilbert space 2n such that all the necessary orthogonal states can be
accomodated. According to Eq. (40), the total number of orthogonal states that
we need in order to be able to correct i errors of the three types a., a1 and arz

in an n-qubit state is 3i ( n )(this is the number of different ways in which the

errors can occur). The argument based on counting orthogonal states then leads
to the following condition:

2'Z3 ( n ) <2". (41)
i=O i -

Equation (41) is the quantum version of the Hamming bound for classical error-
-correcting codes [10]; given I and t it provides a lower bound on the dimension
of the encoding Hilbert space for nondegenerate codes. Let us mention that an
explicit construction for quantum codes for some values (1, n, t) which saturate the
quantum Hamming bound has been provided [11]. It is interesting that this bound
has not been beaten so far by degenerate codest.

tIn fact, during the "Workshop in Quantum Computation" in Torino in summer 1996 the

authors offered a good bottle of Barolo wine to the first person who can construct quantum error
correction codes which encode I qubits into n qubits, correct perfectly up to t errors, and which
violate the quantum Hamming bound (41).
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The quantum version of the classical Gilbert-Varshamov bound [10] can
be also obtained, which gives an upper bound on the dimension of the encoding
Hilbert space for optimal non degenerate codes

2T 3' ( )Ž 2n. 
(42)

This expression can be proved from the observation that in the 2n dimensional
Hilbert space with a maximum number of encoded basis vectors (or code-vectors)

ICk) any vector which is orthogonal to ICk) (for any k) can be reached by ap-
plying up to 2t error operations of o-, ay, and o-, type to any of the 21 encoded
basis vectors. Clearly all vectors which cannot be reached in the 2t operations
can be added to the encoded basis states ICk) as all the vectors into which they
can be transformed by applying up to t amplitude and/or phase transformations
are orthogonal to all the others. This situation cannot happen because we have
assumed that the number of code-vectors is maximal. Thus the number of ortho-
gonal vectors that can be obtained by performing up to 2t transformations on the
code-vectors must be at least equal to the dimension of the encoding Hilbert space.

It follows from Eq. (41) that a one-bit quantum error correcting code to
protect a single qubit (I = 1, t = 1) requires at least 5 encoding qubits and,
according to Eq. (42), this can be achieved with less than 10 qubits. Indeed, Shor's
nine qubit code can be simplified to the seven qubit code [12], and ultimately to
the quantum Hamming bound [8, 13]. We will consider explicitly one form of the
five qubit code in Sec. 6.

The asymptotic form of the quantum Hamming bound (41) in the limit of
large n is given by

-_<1-- log 2 3- H (43)
n n

where H is the entropy function H(x) = -x log 2 x - (1 - x) log 2 (1 - x). The
corresponding asymptotic form for the quantum Gilbert-Varshamov bound (42)
is

S_>1 - log2 3-H ) (44)
n n

As we can see from Eq. (43), in quantum error correction there is an upper bound
on the error rate O/n which a code can tolerate. In fact, differently from the classical
case, where any arbitrary error rate can be corrected by a suitable code, in the
quantum world the ratio t/n cannot be larger than 0.18929 for nondegenerate
codes.

5. System-environment dynamics

In order to provide a tangible illustration of some abstract ideas discussed
in the text we have picked up the most popular quantum-optical model of dissi-
pation commonly used to describe spontaneous emission. A two-level atom, with
two energy eigenstates 10) and 1) separated by hwo, interacting with an environ-
ment modelled as a set of quantised harmonic oscillators, e.g. a set of quantised
modes of radiation with frequencies win. The Hamiltonian of the combined system
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H = Ho + V includes both the free evolution of the qubit and the environment.
The free evolution Hamiltonian is given by

Ho = hwo11)(11 + Z hwmat am,, (45)

m

where am and at represent the annihilation and creation operators of the radiation
mode of frequency win. The interaction (in the rotating wave approximation) is
described by

Am =• x10)(1llat + A'11) (0lam, (46)

where Am is the coupling constant between the qubit and the mode of frequency Win.
In order to find the time evolution of the relative states of the environment

IRi(t)) we need some knowledge about the qubit-environment interaction. Let us
then have a closer look at a dissipative dynamics in our model of a qubit coupled
to a continuum of field modes or harmonic oscillators. If all the oscillators in the
environment are in their ground states and the qubit is initially prepared in state
ITI) = alO)+f131) then the dynamics described by the Hamiltonian H = Ho+V does
not affect state 10). It is state 11) which undergoes a decay. Let us then consider a
case when the initial state of the combined system (qubit+environment) is

1i l) = 11)(10)1102) ... 1O)f ... IO).ax), (47)

meaning the qubit is in state 1) and all the harmonic oscillators in their ground
states 10) (we will denote the state where all harmonic oscillators are in the ground
state as the vacuum 10)). Possible final states of the combined system are

10f) = 10)(10)110)2... "1)f ... 10)m.a), (48)

where the qubit decayed to state 10) and one of the harmonic oscillators got excited.
Let us note that

Hoj¢•) - hwoI¢•), Hoiqf) h•flt.f), (O.lHolkj) = 0, (.flVl¢') = Af. (49)

Let us write 10(t)) as

10(t)) = ci(t)e-iWO t I ) + c el(t)e- iOfj) (50)

which, using our notation from the previous section, implies IRo0) = 10),
IRo0) = 0, IRio(t)) = Ef cf(t)e-i"'1tI1) and 1R11(t)) = cj(t)e-iWOt O).

In order to find the relevant time dependence we have to solve the Schr6dinger
equation

ih~i(t) = *e-i(wf-wO)tcf(t), (51)

ih~f(t) Afei(Wf-WO)tci(t). (52)

The second equation can be solved formally for cj (W)

Cf(t) = -- f dt'Afei(wf-0)t'ci(t') (53)

and after substituting this expression for c1 (t) in Eq. (51) we obtain
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6 -(t) dt'K(t - t') c(t'), K(r-) = 1 EZAlje-1i(wf-wO)'. (54)

It is the function Af = A(wf) which determines the character of the evolution.
9 Parabolic decay

At short times, the exponential in e-i(wf0)(t-t') in K(t - t') can be replaced
by 1. This is justified when t <« 1/A, where A is a typical width of the A(wf) curve.
Usually, for a bell-shaped A(wf ) curve the order of A is pretty well approximated
by w0 . For example if we analyse spontaneous emission in the optical domain then
wo = A = 10 Hz thus the short time means here much less than 10-1' s. The
integration in Eq. (53) together with the initial condition ci(t = 0) 1 gives

C,(t) = I(€,10(t))12 = 1- t(2 5)

The same result can be obtained directly by writing

10(t)) = e-iHt/hOq) = (1- -Ht -- 1H 2t 2 + .. (56)

which, together with Eq. (49) gives
t2  2t 2 X"A

1(, 1(t)) 12= - 2-t2((H2) - (H) 2 ) ... 1- 2 t+" (57)

Thus for short times the decay is always parabolic. Let us mention in passing that
from a purely mathematical point of view we have assumed here that expression
((H 2) - (H)2) = Z. A', i.e. the variance of the energy in the initial state 10j)
is finite. Needless to say in reality it is always finite but there are mathematical
models in which, due to various approximations, this may not be the case (e.g. the
Lorentzian distribution which has no finite moments).

9 Exponential decay
Expression IAj j2e-i(w-ww)r viewed as a function of wf -wo oscillates with frequency
1/r whereas A1 = A(wf) varies smoothly in the frequency domain. Again taking
A as the typical width of the A(wf) curve for r T 1/A the sum in K(ir) averages
out to zero. This allows to substitute ci(t) for ci(t') in Eq. (51) which gives

(€) ; -Ci(€ ) di-K(ir) ; -ci(t)0 dr-K(,). (58)

Now we can calculate fo7 drK(7-) using the identity

Sdr-eiwr = limj drei(w+ic) - lim . = iP - + iri(w). (59)
1000-+0+ -- E+ W

It gives

dirK(7-) = + i5, IA= jli(wf = wo)1j, 6 = PZ JAo-1 (60)

Incorporating the energy shift h6 into the modified energy separation h(wo + 6)
we finally obtain

6i(t) = -2ci(t) that is ci(t) = e -,t/2 (61)
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and consequently

cj (t) A• 1 - ei(wf-wf+i-y/2)th Wf - W'o + i-y/2 (2

Let us now go back to the language introduced in Sec. 1. The states of the
environment IRo(t)), fR1(t)), 1R2(t)) and IR3(t)) in the present context take the
explicit form

1JRo(t)) = [1 + ci(t)e-iwO'] 10), (63)

IR1 (t)) = 2E cj(t)e-iwf tIl)j, (64)

[R2(t)) = - • c(t)e-iwf tI1)f, (65)

IR3 (t)) = [1 - c1(t)eiw~t] 0). (66)

By formula (7), the fidelity of this process is given by

F(t) = (Ro(t)IRo(t)) + (R3 (t)IR3(t)) - 2Re(Ro(t)IR 3 (i))

= Ici(t)I2 . (67)
Therefore, the fidelity in the case of a parabolic decay takes the form

.t 2

Fpar(t) = 1 t2 1 A (68)

while in the case of an exponential decay it has the exponential form

Fexp(t) = e-t. (69)

6. Benefits of quantum error correction

In order to get an idea about the efficiency of quantum error correction, we
will now discuss an explicit construction of the single error-correcting five qubit
code. The initial state of the qubit a 10) + 111) is encoded in state ac C0 ) + /3ICi),
where [13]

ICo) = 100010) + 100101) - 101011) + 101100) + 110001)

-110110) - 111000)- 111111), (70)

ICJ) = 00000) - 100111) + 101001) + 101110) + 110011)

-110100) + 111010) - 111101). (71)
(To see the benefits of quantum error correction we do not need to use the explicit
form of the code, we wrote it down here for those curious readers who may want to
play with quantum error correcting codes.) These encoded states are chosen in such
a way that conditions (40) are satisfied. Since this code can correct any type of error



Against Quantum Noise 75

affecting one qubit, it is suitable for protecting quantum states against spontaneous
emission. We notice that the spontaneous emission process described in Sec. 5,
unlike decoherence, involves both phase and amplitude errors and therefore it
cannot be successfully defeated with less than five bit codes.

The probability that the state undergoes exponential decay in the presence
of spontaneous emission is approximately given by

Pdec(t) = 1 - Fexp(t) = 1 - e--. (72)

If we assume that the five qubits decay independently from each other, the prob-
ability that none of them decays is given by

Pno dec(t) = e-7t, (73)

while the probability that only one of them decays is

P1 dec(t) = e-4Yt(1 - e-Yt). (74)
Since by construction the above error correction scheme corrects perfectly the
encoded state when only one of the qubits is affected, the fidelity of reconstruction
of the state after the error correction is at least as high as the probability of having
at most one qubit decay during the process, that is

Fee(t) Ž Pno dec(t) + 5P 1 dec(t) == e-47t(5 - 4e--t). (75)

In order to have a successful error correction the such fidelity must be greater
than the fidelity Fexp(t) corresponding to a single qubit in the absence of error
correction. This is true when the decay probability Pdec(t) is much smaller than
one, namely when the correction procedure is applied at times t < 1/7. Actually,
for t < 1/7 the fidelity of reconstruction after error correction is bounded by

Fec(t) _> 1 - 107
2t 2 + 0(t 3 ), (76)

namely it has parabolic form, while the single qubit decay probability is

Pdec(t) P 1 - Yt. (77)

7. Concluding remarks

Research in quantum error correction in its all possible variations has be-
come vigorously active and any comprehensive review of the field must be obsolete
as soon as it is written. Here we have decided to provide only some very basic
knowledge, hoping that this will serve as a good starting point to enter the field.
The reader should be warned that we have barely scratched the surface of the
current activities in quantum error correction neglecting topics such as group the-
oretical ways of constructing good quantum codes [14], concatenated codes [15],
quantum fault tolerant computation [16] and many others. Many interesting pa-
pers in these and many related areas can be found at the Los Alamos National
Laboratory e-print archive (http:/xxx.lanl.gov/archive/quant-ph).

This work was supported in part by the European TMR Research Network
ERP-4061PL95-1412, the TMR Marie Curie Fellowship Programme, Hewlett-
Packard, The Royal Society T ndon and Elsag-Bailey, a Finmeccanica Company.
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Photoionization of Rydberg atoms is considered in the quasi-classical
(WKB) approach. The total nonlinear strong-field ionization rate is found
and investigated. The time of ionization, as a function of a growing field-
-strength amplitude, is shown to approach asymptotically the Kepler period
tK. Interference stabilization of Rydberg atoms is confirmed to exist in the
case of short pulses (shorter than the Kepler period).

PACS numbers: 32.80.Fb, 32.80.Rm

1. Introduction

Interference stabilization (IS) of Rydberg atoms is known [1, 2] to arise
due to Rydberg-continuum A-type field-induced transitions between neighboring
Rydberg levels. In such a case, the time of ionization ti(co) of a Rydberg atom
in its dependence on the light field strength amplitude C0 was predicted [1, 2]
to have the "death-valley" form, i.e., the form of a curve with the minimum at
some critical field Cc. The quasi-classical (WKB) estimate of c, and t min = ti(Cc)

are very simple: -c w53, where w is the frequency of light (in atomic units)
and tmin - ---- 27rn 3 , where n is the principal quantum number of the originally
populated Rydberg level and tg is the classical Kepler period.

The results of the first works on IS were generalized later [3, 4] to take
into account a possibility of excitation of Rydberg levels with higher values of the
electron angular momentum t via the A-type Raman transitions. The main result
of such a generalization is the prediction that the "death-valley" behavior of the
function ti(&0) can be replaced by the "death-plateau" behavior which means that
at C0 < Ec the function ti(C0) falls, then at Co Cc achieves the level -, tK, and

(77)
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remains at this level more or less constant at a rather large interval of eo (such
that Eo > ec).

All the above-mentioned theories of IS [1-4] were based on a series of approx-
imations [such as the rotating wave approximation (RWA) and the "pole" approxi-
mation (PA)] validity of which is sometimes far from being evident. An alternative
approach to the theory of strong-field photoionization of Rydberg atoms, free from
these approximations, can be based on an attempt to apply the quasi-classical
approach directly to the Schr6dinger equation for a Rydberg electron in a light
field [5, 6]. In the framework of such an approach, in Ref. [5] the complex quasiener-
gies of the system were found. However, the consideration of Ref. [5] failed to de-
scribe in a satisfactory way time evolution of the ionization probability as well as
many other important characteristics of the strong-field photoionization process.
For this reason, one of the conclusions of Ref. [5] consisted of the suggestion to
consider in future, in the framework of the same general quasi-classical approach
as in Ref. [5], the initial-value rather than the eigenvalue problem. The first at-
tempt to realize such a program was made in our recent paper [6]. In this talk we
report about our newest findings in this direction.

2. Strong-field quasi-classical solutions of the Schr6dinger equation

The main idea of the quasi-classical approach [5-7] can be formulated as an
assumption that the field-induced Rydberg-continuum transitions occur mainly in
the region of electron-nucleus distances r of the order of the so-called quasi-classical
length rq, where [7]

rq = W-2/3. (1)

Though, typically, much larger than one (rq > 1 at w < 1), the quasi-classical
length is usually much shorter than the size of the Rydberg orbit rmax = 2n 2 ,
rq < rmax. Under these conditions, the centrifugal energy in the Schr6dinger en-
ergy, estimated at r - rq, appears to be much smaller than the Coulomb potential
energy 1/r, if only average angular momentum is smaller than w-1/3 > 1 [7, 8].
This observation gives rise to the approximation of slow angular motion [5, 6],
under which the centrifugal energy is dropped at all from the atomic Hamiltonian.
As the result, the original three-dimensional Schr6dinger equation can be reduced
to the one-dimensional radial equation

i- [.t20 1 a2 + -cos(O)Eo(t)rsin(wt)] x(r,t;O), (2)

where X = rR and R is the radial wave function of an electron; in a light field, both
X and R depend parametrically on the angle 0 between the field-strength vector -0
and the electron position vector; eO(t) is a slow field-strength amplitude describing
how a light pulse is switched on and off. Following to the ideas of Refs. [5, 6], let
us solve first the Schr6dinger equation (2) at a frozen angle 0 (0 = const) and,
then, average the results over 0. At the first stage, to simplify notations, let us
drop cos 0 in Eq. (1) and further formulas keeping in mind that in the final results
cos 0 has to reappear in front of co(t).
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Our goal consists of solving the initial-value problem, i.e., of finding non-pert-
urbative solution of Eq. (2) X(r, t) obeying the initial condition

x(r,t) = X(0)(r,t) 2 sin {jPn(r')dr' exp{-iEnt}, (3)

where Xn(°)(r,t), En = -1/2n 2 , and pn(r) are the wave function, energy and
quasi-classical momentum of the initially populated field-free Rydberg state,

By using the Euler formula for the sine on the right hand side of Eq. (3), let us

present both X(°)(r, t) and x(r, t) in the form of sums of diverging and converging
waves, x•$((r,t) and x+(r,t), respectively. The initial conditions for X±(r,t) have
the form

x±(r,t)lt-- Ti /2 ýnp(r) exp {±i Pn(r')dr'-iEnt. (5)

Let us search for the solutions of the Schr6dinger equation in the form

X+ (r,t) = T ei exp ±ijpP(r')dr'-iEnt-io-(r,t)j (6)V2rt) -in P/2 ns(r) fxp
with the new unknown functions o+ (r, t) obeying the zero initial conditions

±(r,t)lt--c, = 0. (7)
In accordance with the above-discussed role of relatively small electron-

nucleus distances r - rq< rmax, we can expand the quasi-classical momentum
pn(r) (4) in powers of riEI = r/rmax < 1:

pn (r) ý + EnI• (8)

Under this approximation and with X+(r, t) (6) substituted into Eq. (2), by drop-
ping the second-order derivative of o-± (r, t) over r, let us reduce the arising equa-
tion for o-± (r, t) to the following simplest form:

ao -± ( r , t ) + ./ 2 ,9 a ± ( r , t ) = e o ( t ) r s i n ( w t ) . ( 9 )
ot V r -a -

The solution of this equation is easily found to be given by

or(r,t) = j dt'eo(t') sin(wt')rci[±t' Tt + r(r)]

-- dt"eo(t - t") sin[w(t - t")]rcl[t" : r(r)], (10)

where t" = t - t' and r(r) is the time of motion from 0 to r of a classical particle
with zero total energy in the Coulomb field

S= dr' V_ 3/2
T(r) -- p( -r ; (11)
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ri(t) is the corresponding classical trajectory, or the solution of the Newton equa-
tion, or the solution of the equation r(rdl) = t:

32/3t2/3 (12)

21/3
and rcl(-t) =rt(t).

By substituting o±(r, t) (10) into Eq. (6), we find the searched for solution
of the Schr6dinger equation (2) obeying the appropriate initial conditions (5) and
(7). In its dependence on t, the functions exp[-io-(r, t)] contain a periodical part
[via sin[w(t - t")] in the last expression on the right hand side of Eq. (10)]. By
expanding these periodical functions in the Fourier series, we get

X(r,t) = Zxk(r,t) = E [X+(rt) + X-(rt)] , (13)
k k

where k = 0, ±1, ±2,... and the functions X1(r, t) are given by

X± t) = irl/4S(,t -23/4 Jf[¢±(rt)

x exp {±i[23/2/ f-+ ET(r)]-i(E, + kw)t-ikq±}. (14)

Here Jk are the Bessel functions, 0± are some phases, and c± (r, t) are the functions
very similar to -±(r, t) (10):

S(r, t) _ý If dt"e0(t - t") exp(iwt")r>'[t" :F r(r)]

_ dt'Eo(t') exp(-iwt')rI[t - t'::r(r)] . (15)

In a general form, Eqs. (13)-(15) solve the problem formulated in the beginning of
this section: they determine the solution of the Schr6dinger equation obeying the
initial condition (3).

3. Above-threshold and total ionization

The quickest variations of the functions X1 (r, t) (13) in time t are determined
by the factors exp[-i(En + kw)t]. For this reason, the functions xk(r,t) can be
interpreted as the wave functions of the above-threshold wave packets with mean
energies equal to E, + kw. The t- and r-dependent electron density in the k-th
above-threshold wave packet is given by

pk(r,t) = IXk(r,,t)12 = Ix+(r,,t) + X-(r,,t)l2 . (16)

The total probability of ionization to the time t can be determined as

wi(t) = drpk(r, t) = j drX+(r, t) + x-(rt), (17)
k---1 0 k--1 )0

Let us discuss now the r-dependence of the functions xk(r,t) (14). The
quickest part of this dependence is determined by the factor exp(±i23 / 2Vf). This
dependence disappears in the squared absolute values of the functions X1 (r, t). But
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in their cross-product, 2Re{[x1(rt)]*x-(rt)} o cos(2 5/%/ ), this dependence
gives rise to very fast oscillations with a period of the order of one in atomic units.
Being averaged over these fast oscillations, Eq. (17) gives

W -(t) 1 Z dr(1X+(r,t)12 + Ix-(r,t)12)
-Jk=1 )

J rv r 1 {2 - J2[(+(r,t)]- J2[(-_(r,t)]}. (18)

o4 27rn 3

Let us discuss now the structure of the functions + (r, t) (15) determining
the arguments of the Bessel functions in Eqs. (14) and (18). In accordance with
the definition (15), these functions are given by the integrals of products of the fast
oscillating [exp(-iwt')] and slow (Eo(t')rl[t - t' 7-(r)]) functions. Such integrals
are known to be determined mainly by the ends of the integration regions, if only
the slow part of the integrand is everywhere smooth. An important part of these
slow function is the function r,1[t - t' F r(r)] in which t' < t and r(r) > 0. For
the lower sign the argument of r,1 is always positive, whereas for the upper sign it
changes sign at t' = t-r(r). In terms of the corresponding classical trajectories this
means that in the first case the classical particle comes monotonously from infinity
to the point r, whereas in the second case (the upper sign in the argument of r01)
it comes from infinity, reaches the origin r = 0, experiences reflection, and then
returns to the point r (see Fig. 1). In fact it appears that just this reflection from
the origin is responsible for irreversible ionization. Mathematically, the reflection
of the classical trajectory from the origin means that, in the case of (+, the slow
part of the integrand has a cusp at the point t' = t - r(r). Hence, in this case

b rd~t - t' w r],

r

t-T(r) t

Fig. 1. The classical trajectories r,1[t-t'+r(r)] (a) and rci[t-t'-r(r)] (b) determining
the functions C_ (r, t) and C+ (r, t) (15), respectively. The arrows indicate the direction
of motion over the classical trajectories.
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the integral over dt' from -oo to t turns in fact in the sum of two integrals with
different integrands, from -oo to t - r(r) and from t - r(r) to t. This is the limit
t' = t - r(r) in both of these two integrals that gives the main contribution to the
irreversible ionization. Not dwelling upon any further details of calculations, let
us reproduce the result of integration in (15) for the case of large t, t > T, where
T is the pulse duration, i.e., for the case when the light pulse has gone

= 22/ 33 1 6r(2)Eo[t - r(r)]2 t) = 0, (19)

where F(x) denotes the gamma-function.
Equation (19) describes the wave packet that moves away from the nucleus.

The shape of this packet coincides with that of the pulse envelope. With the help
of Eq. (19) the general expression (18) for the probability of ionization per pulse
wi can be further simplified. The substitution of the integration variable r by -(r)
and, then, by t gives

f'~'dt( 22/3 116 FV q~ o~
]i -j 1  _j02. , , [t -/ 7(r)] (20)

where tK = 2irn 3 is the Kepler period.
Finally, for a square pulse of a duration T Eq. (20) yields

wi = rT, (21)

where r is the nonlinear rate of transitions
.V = _1 [1 _ jo2((] ,(22)

2(22

where

2 5/3 , (23)

and now £0 = const. In the weak-field limit (£o < w5/3), Eq. (22) yields the
Fermi-golden-rule rate of ionization

1-3'r/(•)° (24)
TFGR = 25/37n3wlO/3 I(('24 cos l,mi,

where Yl,m are spherical functions, I and 1' denote the electron angular momentum
in the initial and final states, m is z-projection of the angular momentum, and
the factor I(Y,,m Icos 01 Y,m)j 2 is added to the expression following from Eqs. (22)
and (23) to take into account the electron angular motion. In the case of a strong
field, co Ž w 5/3, the angular motion of a Rydberg electron can hardly be taken
into account rigorously in such a simple way. However, in the approximation of a
slow angular motion discussed in the beginning of Sec. 2 we can use the procedure
of Ref. [5]. In the framework of this procedure, in the expressions (22) and (23)
for the strong-field rate of ionization, the field strength amplitude -o has to be
substituted by -o cos 0 and the result has to be averaged over x _ cos 0 to give

F = - [1-- dxJ((x)] . (25)

The characteristic time of ionization can be determined as the inverse double rate
of ionization



The Initial- Value Problem ... 83

ti = 1/2r and ii = 1/2T (26)

for the case 0 = 0 and for the rate T (25) averaged over 0, respectively.

3. Discussion

The dependence of the ionization rates and time of ionization on the field-
-strength parameter ((23) is shown in Figs. 2 and 3 for the two above-discussed
cases: for 0 = 0 (Fig. 2) and for T (25) averaged over 0 (Fig. 3), the rates of
ionization and the time of ionization are measured in units of the inverse double
Kepler period and Kepler period, respectively. The pictures of Fig. 2 show that
for a given 0, both the rate and time of ionization are oscillating functions of the
field-strength amplitude e0 . This result agrees with and specifies the qualitative
prediction of Ref. [5]. By comparing the results of the present theory with those of
Refs. [1-4], we can make an assumption that, possibly, the oscillating dependencies
ti(eo) and r(eo) arise when and because one does not use the rotating-wave and
pole approximations inherently present in the earlier theories [1-4]. The minima
of the oscillating curve ti(() and the maxima of the curve F(c) correspond to the

0

(b)

0 2I

Fig. 2. The zero-order Bessel function (a), the rate of ionization r1 (b), and the time
of ionization tj (c) vs. the field-strength parameter C (23).
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positions of zeros of the zero-order Bessel function Jo(() shown for comparison
in Fig. 2a. The minimal time of ionization achieved at these points is equal to
one Kepler period t K and the corresponding maximal rate of ionization is equal
to 1/(2tK). This means that the strong-field stabilization in Rydberg atoms has
to occur if the pulse duration is less or of the order of the Kepler period, in
accordance with the main ideas of Refs. [3, 4]. In agreement with Refs. [3, 4],
the "death-plateau" rather than the "death-valley" behavior of the curve ti(0o)
is confirmed: in the strong-field limit the function t i (Eo) saturates at the level t K

rather than grows unlimitedly.
The curves of Fig. 3 show that the above-discussed oscillations appear to be

smoothed out when the electron angular motion is taken into account, though in
the framework of a very rough and approximate procedure of averaging over 0.
This result can be interpreted as an indication that the 3D structure of an atom
can result in a well pronounced "death-plateau" structure of the dependence ti(eo):
saturation in a strong field at the level tK without any oscillations or growth. This
conclusion agrees with that of Refs. [3, 4] though the methods of analysis in these
papers were absolutely different from that of the present one.

At last, it should be mentioned that, in the case of rectangular pulses, the de-
rived probability of ionization per pulse (21) depends linearly on the pulse duration
T, though this is not the lowest order perturbation theory and the rate of ioniza-

0
0 2

L~(b)

0 1 I 1,__b
0 2

Fig. 3. The rate of ionization averaged over 0, Fi (a) and the corresponding "average"
time of ionization ii = 1/(2Fi) (b) vs. C (23).



The Initial- Value Problem ... 85

tion F (22) is not a linear function of eC0. The linear dependence of the ionization
probability wi on the pulse duration T means that the suggested theory cannot
describe the regime of depletion of the initially populated Rydberg state. Equa-
tion (21) assumes that the results derived are valid only if FT < 1, i.e., only for
short pulses. In the strong-field case, when F -- 1/tK, this limitation yields t < t K,
i.e., the pulse duration has to be shorter than the Kepler period. These restrictions
are explained by the used approximations in which the quasi-classical momentum
pn(r) (4) was expanded in powers of rIEnI <« 1 (8) and the squared derivative
of the functions o-(r, t) was dropped in Eq. (9). Unfortunately, these approxima-
tions are crucially important for the found above rather simple solutions of the
Schrbdinger equation (13)-(15) to be valid. Construction of a theory free from the
discussed approximations can be very interesting but also much more complicated
than in the case considered here. Another equally important but, probably, equally
difficult direction of future investigations has to include attempts to consider more
rigorously the electron angular motion. We hope to return to these problems later.
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We summarize recent developments in the area of the coherent propaga-
tion of laser pulses through dielectric media. We will show that the principle
of dynamical adiabaticity opens new avenues to control the non-perturbative
and resonant interaction between two laser pulses and a three-level medium.
Examples include the formation of stable wave forms that can travel through
optical dielectric media in a loss-free manner with arbitrary pulse shapes,
novel possibilities to store optical information in dielectric media in the form
of spatially dependent excitations and techniques to exploit this information
to control laser pulse envelopes.

PACS numbers: 42.65.Hw, 42.65.Re

1. Nonlinear optics and adiabatic dynamical control physics

In order to describe the spatial and temporal evolution of electromagnetic
radiation pulses in dielectric media, the Maxwell equations have to be solved to-
gether with the quantum Liouville or Schr6dinger equation. The Maxwell equations
determine how the electric field (of the laser pulse) evolves as a function of time
and space. Its behavior is controlled by the macroscopic polarization of the di-
electric medium, which serves as the "source term" in the Maxwell equations. The
macroscopic polarization is proportional to the product of the dipole moment and
the number density N of the atoms in the medium. The temporal evolution of the
polarization is determined by the Liouville equation of the atoms that are driven
by the external field. This itself would not be a major complication for the theoret-
ical analysis. If there was just a single differential equation for the polarization, one
could use this equation to eliminate the polarization from the Maxwell equations
and one would not need to solve for the entire complicated atomic dynamics.

The key problem is that in general there is not just one single differential
equation for the polarization but a coupled set of equations that contain several
(auxiliary) quantities, such as the inversion or the population of the electronic
states that need to be solved simultaneously. A non-perturbative solution of the
combined Maxwell and Schr6dinger equations is therefore in most cases analyti-
cally inaccessible and even numerically it is a demanding computational task. To
master this challenge in a computationally more feasible way, it would be helpful
to have a more direct relation between the electric field and the polarization.

(87)
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As is well known, such a direct relation can be found if the laser field is
sufficiently weak and/or its frequency is not near any of the atoms' resonance
frequencies. In this case the polarization P can be expanded perturbatively as a
standard power series in the electric field amplitude £

P(z,t) = ,,aS". (1.1)
In this domain the medium plays a relatively passive role as the atoms get only
very weakly excited. This regime is, of course, the realm of nonlinear optics. The
optical properties of the medium are modeled by the expansion coefficients aN,
such as (possibly nonlinear) indices of refraction and higher-order nonlinear sus-
ceptibilities. Especially in strongly dissipative atomic systems, the quantum state
of the medium can reach quickly its steady state during the duration of the laser
pulse and the perturbative expansion above is typically well justified. Using rela-
tion (1. 1) the polarization as a function of the electric field strength can be inserted
back into the Maxwell equations and the problem of solving the atomic equations
is elegantly avoided. The resulting set of equations for the electric field can then
be solved under various additional approximate assumptions leading, e.g., to non-
linear Schr6dinger equations for the field, as shown in many textbooks on linear
and nonlinear optics.

The theme of the present work is to describe a different regime in the inter-
action of laser fields with dielectric media in which another relation between the
polarization and the electric field vector can be found. In this regime adiabaticity
is the key characteristic to provide this relation. We will describe some recent pre-
dictions for this dynamical regime in which the laser field is either relatively strong
and/or in resonance with an atomic transition, such that the standard perturbative
relation of nonlinear optics between the polarization and the electric field is not
valid. We illustrate this regime for the special case of the resonant interaction of a
pair of laser pulses with a medium of three-level lambda atoms. This system has
recently found some revived interest in the context of electromagnetically-induced
transparency [1, 2] and also lasing without inversion [3].

For this system it is possible to find a direct relation between the polarization
and the electric fields that leads to a fully analytical theory. We assume here that
the two laser frequencies are sufficiently different such that each laser pulse excites
only one atomic transition. To keep the formalism as transparent as possible and
to focus on the essential elements of this approach, we also neglect all dissipative
influences. Subsequent work will be devoted to explore how the basic theory needs
to be modified to account for relaxation effects.

Under these simplifying assumptions the temporal response of each lambda-
-atom to the two laser pulses is given by the well-known Schrbdinger equation for
the state amplitudes Ci of the three levels

a 1
i-7Cl(z, r) = -f2.*C 2 (z,) ), (1.2a)

O 1 1
i-0 2 (z, 7) = -2SaC (z, r) - 2SQbC3(Z, 7), (1.2b)

ic 3 (z,r)= 1C 2 (z, r), (1.2c)
Or Gb ,(z, I"b
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where we have used the rotating wave approximation. With respect to the spatial
evolution we have replaced the laboratory time t by a retarded time variable
r = t - z/c. The time and space dependent parameters ra and S

2
b are the Rabi

frequencies of the two fields.
One eigenvector of the system of Eqs. (1.2) is the well-known dark or trapped

state [4, 5] of the form (C 1 , C 2 , C 3) - (Qb/S2, 0, -S2/Q?), where Q22 
_Q 22 + Q2• is

the so-called two-photon Rabi frequency. In the following we will assume that this
trapped state condition approximates the response of the atoms to the fields suffi-
ciently well. In practice, this can be achieved via an appropriate sequencing of the
turn-on times of the two laser pulses [6]. If we insert this eigenvector back into the
right hand side of equations (1.2a) and (1.2c) and solve for the amplitude of the up-
per state C 2(z, r), we obtain C 2 • -2i/Qý(a/8r)(rlb/f2) = 2i/fS•(a1/a)(S2a/fS).
This approximation leads then to a direct relation between the effective polariza-
tions (for the reduced wave equation of the Rabi frequencies) and the electric field
vector (represented by the Rabi frequencies)

Pa(z, 7) = i~aC* c2 =-(2v/1•2) a--W(a / S), (1.3a)

Pb(z, r) = iJ~bCaC2 = a (1.3b)

The coupling coefficients /.a,b are related to the number density of atoms N
via Ua,b =-- Nda,bWa,b/(eolic), where the dipole moment matrix elements for the
transitions 1-2 and 2-3 are denoted by da and db, respectively.

These relations are in striking contrast to the perturbative relation (1.1) of
nonlinear optics. In this case the polarization increases with decreasing electric
field strength (which is proportional to S2) and a perturbative expansion would
not be valid. Another difference lies in the fact that the size of the polarization
depends also on the time derivative of the field. Rapidly changing envelopes in Qla
and f2b induce an enhanced polarization. The polarization for the 1-2 transition
depends on both fields SQa and f1b.

Both polarizations vanish completely if the two pulses have identical en-
velopes and differ only by their amplitudes. In this case the source term Eq. (1.3)
for the Maxwell equations is zero and one could conjecture that any two input
pulses with matching envelopes evolve in a fully transparent manner with the
velocity c. However, the corresponding trapped state for matched pulses
(1/'V2, 0, -1/V2) does not agree with the state of a medium initially in the ground
level (1, 0, 0). We will see in Sec. 2 that the relations (1.3) force the fields to evolve
into "antimatched" pulse shapes to become transparent. This kind of transparency
is fully dynamical, that means the polarization is not zero and a.significant amount
of population gets transferred between the levels as the pulses propagate.

A new exciting research area is based on these relations (1.3). This is an
example of what one could call "adiabatic dynamical control physics". As we will
argue below, these relations predict the control of nearly arbitrary pulse envelopes
and quantum states of the medium. One has to be careful not to confuse the term
adiabatic with weak or off-resonant fields. One can show that the inverse of the
upper state amplitude C 2 can serve as a measure for the degree of adiabaticity [7].
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From the scaling of C2 as a function of 2, it is clear that a stronger Rabi frequency
12 favors a more adiabatic response. When we use the term adiabatic, from now on
we mean "temporally" adiabatic. Its relation to "spatial" adiabaticity in three-level
pulse propagation has been discussed in Ref. [8].

In the following sections we will briefly summarize the basic ideas for three
interesting phenomena that can be derived analytically from the relations (1.3).
These phenomena are exploited in new forms of optical transparency, novel possi-
bilities to control laser pulse shapes and to store optical information in dielectric
media in the form of spatially dependent excitations.

2. Loss-free pulse forms

The reduced wave equations for the fields in the slowly varying envelope
approximation and in one spatial dimension take the well-known form:
(a/tc9)A2a(z, r) = Pa(z, r) and (O/t 9 -r)Qb(z, r) = Pb(z, r). To keep here the the-
oretical description analytically feasible, we assume that both atomic transitions
have identical oscillator strengths u,, = 1b =- P.

Analogous to non-linear optics we can insert the relation between the effec-
tive polarization and the electric field into the reduced Maxwell equations, which
take the following form [9]:

a02 _ 
2 ya S?, (2.l1a)Or• - 2 Or 2 '(l

F7 Qu 0 7 S?
Sb- 2 O /2" (2.1b)
TT.S2 (97 S?

Reduced wave equations in general neglect internal reflections of the medium and
often also transverse propagation effects. In our case the two equations are non-
linearly coupled via the Rabi frequency £2. By multiplying the first of the two
equations with Sa and the second with S

2
b and adding both equations, one can

find that the total Rabi frequency is not a function of the position z, Q(z, r) =
Q2(z, r = 0) _=- 2(r), and it is therefore determined once and forever by the two
pulses at the entry surface of the medium at z = 0. If we choose appropriate ini-
tial pulse pairs such that 12(r) becomes time independent after a characteristic
time T*, 12(r) = S2 for r > T*, then it is clear that the wave equations are de-
coupled and describe the shape invariant propagation of two laser pulses after this
time T*. In other words, each layer of the medium is passed by the same pulse
pair. Measured in the (z, r) space-time frame, the velocity of the pulses is 2p/0 2 2,
corresponding to a laboratory velocity v as given by 1/v = 1/c + 2P/£2 . These
pulse pairs do not travel with the (vacuum) speed of light c, but with velocities
that can be several orders of magnitudes smaller than c.

Quite remarkably, the two non-linearly coupled partial differential Eqs. (2.1)
can be solved fully analytically and require only the inversion of an integral

S1a,b(z, r) = Qab[z = 0, X-(X(r) z)] Q(z = 0,,r), (2.2)
Q[z = 0, X-'(X(r) - z)]

where X- 1 denotes the inverse function of the integral X(r) _ (1/2u) fT dr'I£2(r')1 2 .
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Fig. 1. The formation of loss-free pulses. (a) /a (Z, r) and (b) f2b(z, r) as predicted
by Eq. (2.2). The parameters are: p = 1, /2 .(z = 0, r) = Aexp[-0.5((r - 35)/7)2],
/2b(z = 0, r) = B exp(-0.5[(r - 4rp)/rp]2 ) for r < 4rp and Qb(z = 0, r) = B for rp < r,

A=10, B=12, rp-=-5.

In Fig. 1 we display the evolution of the two pulses as a function of the
position z and position r. The pulses were chosen such that S2 is constant for
r > T*. Both pulses reshape until after a characteristic propagation distance a
shape-invariant and nearly loss-free propagating pulse-pair is formed. The energy
of each pulse is conserved during the propagation. The final two "antimatched"
pulses are called adiabatons [9]. First experimental evidence of these pulse forms
has been reported by the Stanford group of S.E. Harris [10]. We should note here
that adiabatons are intrinsically different than solitons, which are exact solutions
and take typically specific functional forms [11, 12]. The difference between adi-
abatons and electromagnetically induced transparency is discussed in Ref. [13].
In contrast, adiabatons can take arbitrary forms and are characterized by "anti-
matched" amplitudes such that Q?2(z, r) + I2•(z, r) is independent of time.

3. Control of the excitation state of three-level media

There has been a growing interest in studying the optical properties of me-
dia that are in a coherent superposition of two states [2, 14-18]. In this section
we will address the question whether it is possible to bring the medium into a
prescribed excited state with a given spatial dependence. Can one use lasers to



92 R. Grobe

control the final state of excitation of the medium after interaction with the two
pulses? The surprising answer is yes [19, 20]. As the state of the medium is coupled
to the instantaneous amplitudes of the fields via the trapped state relation, we can
therefore obtain analytically the temporal and spatial evolution of the medium.
The population in the third state IC312 = P33 is given by P33 = ISQa(Z, r)/f2(r)12,
whose evolution is known from the solution (2.2). The final state of the medium
after both laser pulses have propagated through it takes the following form:

f&cz = 0,x 1 (-lz-)] 2
P33(zr T [z- 0, X (Z _ z)] -G(z)1 2 , (3.1)

where T is the pulse duration for Q2 and Z X(T) is the corresponding inte-
gral which is proportional to the total energy contained in the input pulses. This
result shows that any desired spatially dependent profile G(z) can be obtained
with an appropriate choice of two control laser pulses at input. From a mathemat-
ical standpoint, however, it is non-trivial to invert Eq. (3.1), that is to solve this
equation for SQ, and !2b as a function of a given excitation function G(z).

To illustrate Eq. (3.1) let us present here an illustrative example for which
such a mathematical inversion is formally possible by restricting the input pulses
shapes to have "antimatched" envelopes such that Qa(z = 0, r) 2 + Sb(z 0= , r)2 =

B 2 is a square pulse for 0 < r < Tb and zero otherwise. This, of course, does not
necessarily imply that S,, and S2b are constant. In this case the integral can be
solved easily X(7-) = (B 2/2ft)[r- (r- Tb)O(r-Tb)], where t9 is the Heaviside unit
step function. Its inverse function is X-1 (x) = (2p/B 2 )x for 0 < x < Z and it has
a singularity at x = Z = (B2 /2p)Tb. If we insert this into Eq. (3.1) and solve for
S?2a(z = 0, r), we obtain the pulse shape of the input pulses as a function of the
given excitation profile G(z)

1. a 15 ............. 0spatial excitation functio ( 15 (z= (b)

~~~. . . .. •. .... ; .. .
0.8 G(z) 10

0.4 5

00 2000 4000 2 i6000 0 20 40 60 80 tim100
position time

Fig. 2. Generation of spatially dependent excitations. (a) An example for a three-
-peaked excitation distribution function G(z),G(z) = 0.5{exp[-((z - Zl)/w) 2] +
exp[-((z--z2)/w)2 ]} +exp[--((z--z3)/w) 2 1, where zj = 1500, Z2 = 3000, z3 = 4500 and

w = 350. (b) Temporal profiles of the two input laser pulses ?2a and "2b (dashed line)
that generate the distribution G(z) for a medium that is initially entirely in the ground
state. The pulse shapes are described in Eq. (3.2) with Tb = 100, B = 12 and p = 1.
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B 2
Qa(z = O, r) = BG(z = -- (Tb -Tr)), (3.2a)

Qb(Z =•0, r) = B V - [G(z = t-i(Tb - r"))]2. (3.2b)

In this case the required input pulse shape Qa(Z = 0, r) is just a mirror
symmetric replica of the desired spatial excitation profile G(z). In Fig. 2 we give
an example of how one can convert a ground state medium into a state charac-
terized by a three-peaked excitation function G(z). In the second figure we show
the temporal profiles of the corresponding two control pulses at input, which,
after having propagated through the ground state medium, leave behind the
medium's excitation in exactly the desired form G(z). The pulse shape of the field
Qb(z =. 0, -r) at early times before the second field Sa(z = 0, r) is turned on does
not influence the final excitation function. The relative abrupt turn-off at r = Tb
is required by our condition 2(z = 0, r) = const for 0 < r < Tb. This condition,
however, was only imposed by us to invert relation (3.1) so as to obtain the fully
a~nalytical solutions (3.2).

4. Optical properties of media with space-dependent excitations

Let us now assume we have a medium which has been successfully brought
into the space dependent state given by G(z). Let us take the three-peaked distri-
bution shown in Fig. 2a as our working case here. How can one verify whether the
medium is really precise in this state? Is there a method which allows us to retrieve
the information stored in the spatially excited medium? It turns out that this can
be done [19] if we inject a laser pulse with a constant amplitude field through
the medium. As we will see below, a second laser field will be created inside the
medium and its temporal profile at output reflects the original medium's quantum
mechanical state as described by G(z).

We denote the Rabi frequency of the input field by R(r) and refer to it
as the "recall" field. Its frequency is assumed to be close to the 2-3 transition
frequency of the medium. A pulse of this type would have been called £b in the
previous section. Again the polarization-electric field relations of Eq. (1.3) are
the key to understanding how this recall can happen. If we insert the relation
P33 = [!2a(Z, r)/Q(r)12 into the nonlinear wave equation, we obtain the temporal
and spatial evolution of P33(z, r)

C9p33 (z,7) = -(2p/Q2)pa(Z,7). (4.1)

Here it is important to note that ?2(r) has been replaced with R(r), as
in this case there is only one field injected into the medium. In other words, the
space-time evolution of p33(z, r) is entirely determined by R(7-) and p33(z, r = 0) =

IG(z)12 . Under these boundary and initial conditions the solution for P33 (z, r) is
straightforward P33 (z, r) = IG(z - X(r)) 12. As R(r) is turned on after time 7 = 0,
we have assumed X(0) = 0. Returning to the trapped state relation p33 = IQ2a/R12 ,
we can solve this relation for S2,a which we call the signal field S(z, r) Q ,a(z, r).
We obtain the following solution for the signal field: S(z, t) = -G(z - X(-))R(r).
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During those times for which R(T) is constant for 0 < r < TR, R(r) = R, the
integral X(r) can be simplified to X(T) = R 2 [r - (r- TR)?9(r - TR)]/2p. In other
words our solution simplifies for this time interval and we obtain

S(z, r) = -G(z - R 2r/2,t)R. (4.2)
This shows that a second field has been created inside the medium whose temporal
envelope reflects the spatial distribution of the medium G(z). This, of course, opens
the possibility to control laser pulse shapes using spatially prepared dielectric
media.

In Fig. 3 we have injected a recall field into the medium prepared according
to the three-peaked distribution G(z). We show the recall and signal field as a
function of z and r. At the three positions where the function G(z) is peaked,
the signal field S(z, T) is generated. After a characteristic propagation distance
when the information transfer is complete, the signal carries all the information
of G(z) and travels shape invariant. Figure 3b displays the recall field. The three
"holes" in R(z, r) indicate that the recall field looses some of its energy to form the
signal field. After both fields have left the medium, the final state is the ground
state for each atom and the memory of the original excitation function G(z) is
lost.

(a) 15.0

•75

4000 50

position 2000 5 time

0 0

Fig. 3. Recall of spatially dependent excitations. (a) Temporal and spatial profile of
the signal field S(z, r) that is generated by the three-peaked spatial distribution G(z) of
Fig. 2a. (b) Temporal and spatial evolution of the recall field R(z, T). The parameters
were: p --- 1 and R(z = 0, i-) = Rexp(-0.5[(r-4rp)/rp]2) for r < 4rp; fab(z = 0, T) = R
for4<r/p, R---12, r505.
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5. Discussion and conclusion

In this review we have given an example of adiabatic control theory for a
medium consisting of three-level lambda systems and driven by a pair of resonant
laser pulses. This research area is just in its cradle, and many important questions
need to be addressed in the future. A direct relation between the polarization and
the electric field vector is the key to investigating this regime fully analytically.
This direct relation is completely different to the standard perturbative expansion
of nonlinear optics.

We have restricted our discussion to a very simplified model of a three-level
atom. An important question of course concerns the range of applicability of the
adiabaticity relation and the corresponding validity of the trapped state assump-
tion. The validity of the adiabaticity relation (see, e.g. Ref. [6]) requires basically
that the (dimensionless) product2r >> 1. This condition can be quite easily sat-
isfied for optical transitions in dielectric media if the lasers have intensities in
the range of a few MW/cm 2 and have pulse durations in the nanosecond range.
This is also confirmed by the experimental observation of adiabatons in the study
by Kasapi et al. [10]. In a previous work [9] we compared the predictions of the
approximate analytical solutions based on adiabaticity with those obtained from
direct numerical simulations of the fully-coupled Maxwell-Schr6dinger equation
and we found that the agreement is excellent.

Another equally important question concerns the applicability of the theory
to dissipative systems. The trapped state condition relies on the coherence between
the two lowest levels 1 and 3. Any dissipative influence that destroys this coherence
changes the dynamics sufficiently. On the other hand, any relaxation process which
is associated with the upper level 2 has only a small influence on the dynamics if
the Rabi frequencies are chosen larger than the relaxation rates. This is due to the
fact that the population in the upper state is very small during the entire evolution,
and the exchange of population happens to be restricted to levels 1 and 3.

We finish this report with a comment about possible applications. The
nearly loss-free propagation properties of adiabatons could be exploited in the
long-distance transmission of optical signals. Because of the fact that the temporal
features of one of the input pulses (Sa) are imprinted on the other pulse duration,
the formation of adiabatons could also be advantageous in a signal replicator.

The function G(z) determines obviously the optical properties for a weak
optical probe field. The optical index of refraction can be directly proportional to
the degree of excitation as describdd by G(z). We have shown above that prac-
tically arbitrary excitation functions can be generated by an appropriate choice
of input fields. In other words, the index of refraction in its spatial dependence
can be controlled. The state 3 is typically metastable and its lifetime determines
how long a medium can maintain the spatially dependent index of refraction un-
til it relaxes back into its ground state and its normal space-independent index.
The faster time scale on which the two-photon coherence decays due to energy
conserving collisions, e.g., is not expected to affect the index. The combination of
the recall and excitation mechanism could be exploited in the intermediate storage
of optical data.
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QUANTUM INSTABILITIES
AND DECOHERENCE PROBLEM

S.YA. KILIN, D.B. HOROSHKO AND V.N. SHATOKHIN

Institute of Physics, Belarus Academy of Sciences

F. Skarina Avenue 70, Minsk 220072, Belarus

A decoherence problem is discussed by means of quantum continuous
measurement theory. It is shown that the conditional state of quantum sys-
tem interacting with a bath preserves its initial purity. In this presentation
decoherence arises as a result of averaging over the stochastic times of re-
duction moments ("clicks"). A method based on external phase feedback is
proposed to slow down the decoherence of field superposition state in an open
optical cavity. It is also shown that an atom placed inside the optical cavity
plays a role of internal self-organized positive feedback between field and
atom, which leads to an exponential increase in the mean dipole moment of
the atom for the field initially prepared in a superposition of coherent states,
i.e. to quantum instability.

PACS numbers: 42.50.Lc, 03.65.Bz

1. Introduction

A decoherence problem is one of the fundamental problems of quantum the-
ory. The problem has been formulated by E. Schr6dinger in his famous "cat-state"
paper [1] published in 1935. The problem was presented in a grotesque form which
is perturbing our perception of the world. E. Schr6dinger asked about possibility

0
of observing macroscopic superposition of two states of a cat: alive I Q) and dead
10Q). Why has such kind of macroscopic superposition never been registered in the
real world? A reasonable answer for the question has been done by Zurek et al. in
a series of papers [2-5]. Using the density matrix approach they argued about a
rather common statement: the larger the cat size the faster the interference part of(0 0)
density matrix (I Q)(0QI + IOQ)(Q i) disappears, and the superposition evolves

into a classical mixture. Decoherence being a very fundamental problem obtained
recently a practical meaning because of limits put by it on the practical realization
of quantum computers [6]. In this paper we discuss some new methods to influence
fast decoherence and to slow it down.

(97)
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2. External feedback and the decoherence problem

There have been several proposals for slowing down the fast decoherence
process in quantum systems [7-11]. Most of them are connected with Zurek's
idea [2] that in the course of relaxation the quantum system is projected into a
preferable basis ("pointer basis") formed via "quantum system - environment"
interactions. Let us choose a harmonic oscillator as a quantum system interacting
with the environment formed by a set of reservoir harmonic oscillators via an
interaction Hamiltonian

Hint = A(a, a+)F+ + A+(a, a+)F, (1)

with F = h ji gibi, where A(a, a+) is a function of annihilation and creation oper-
ators of the selected oscillator, gi are coupling constants and bi, b+ are annihilation
and creation operators of the reservoir oscillators. In this case it becomes evident
that for A = A+ = R the eigenstates of R form the pointer basis and they are
not changed via interaction with environment. Therefore there is a possibility to
select a different pointer basis by constructing a different form of coupling operator
A(a, a+) (the so-called "quantum reservoir engineering"). Some known examples
are summarized in Table.

TABLE

Overview of different forms of system-reservoir coupling.

Form of Zurek's Steady References

coupling "pointer basis" state

A = a + a+ -- x position vacuum Zurek et al.

eigenstates (1981,82,89,91)

Caldeira, Leggett(1985)
Walls, Milburn (1985)

A = a 2  even, odd vacuum Gerry, Hach (1993)

coherent states

A = (a + a)(a - a) even, odd even, odd Garraway, Knight (1994)

coherent states CS Filho, W. Vogel (1996)

(CS) Poyatos, Zoller, Cirac

(1996)

A = a+a Fock states vacuum Poyatos, Zoller,

Cirac (1996)

A = a(a+a - n) Fock states Fock state Poyatos, Zoller,

Cirac (1996)

A = ei7ra+aa Yurke-Stoler CS I vacuum Horoshko, Kilin (1997)

In the present paper we discuss the decoherence problem for a specific ini-
tial state of the harmonic oscillator: a superposition of two coherent states with
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opposite phases

[V)+) = N (1a) + e" I - a)), N- 2 = 2 (1 + cos 0 exp(-21a12)) (2)

This state exhibits remarkable quantum features [12]. For instance, the Wigner
function W(,3) of this state besides two positive peaks centered at /3 = ±a has the
interference part at /3 = 0 which can take negative values. This nonpositive inter-
ference structure is a manifestation of quantum nature of the superposition (2).
In the case of linear system-reservoir interaction (A = a), the decoherence process
consists in the fast disappearance of this interfeience part with the speed, which
is Ja12 times higher than the speed of the peaks decay. The evolution of the den-
sity matrix averaged over the vacuum states of the reservoir in the Born-Markov
approximation is described by the standard master equation

1 (2aoa+ - a+ao - ea+a) , (3)

where y = 7ro(W)Ig(W)I 2 is the energy decay rate of the selected oscillator, e(w) is
the density of reservoir states at the oscillator frequency w. The exact solution of
Eq. (3) with the initial condition o(O) = I has the following form:

2
+ 1ie- 2jaj'(1-exp(- ,t)) (eiO 1_at)(atl+e-'Ilat)(_atI), (4)

2

where at = ae-,yt/2. Expression (4) clearly shows the fast disappearance of the

quantum interference terms with the rate of tdecoh = 27Ia2. However, it does

not allow us to understand all the details of the decoherence process. The most
convenient and furthermore productive way for that is to use the continuous mea-

surement theory [13]. Using this theory one can calculate the conditional state

of the harmonic oscillator after emitting exactly n quanta into the reservoir at
stochastic times t1 , t 2 , .. •, tn in the time interval [0, t)

10rond(t)) = 7y'S(t, tn,)aS(tn,, t,-1)a ... aS(t1, 004+) (5)

where S(ti, ti- 1 ) = exp (--ya+a(ti - ti-1 )/2) is a nonunitary operator of evolution

between two emission times ti- 1 and ti The emission of quanta at times {ti} makes

a reduction of the system state according to action of the annihilation operator a.

So, according to Eq. (5) and the relation

a (1a) - eie I-a)) = a (1a) p: e" I-a)) , (6)

the system changes the relative phase 0 on 7r at the moments of clicks but the state
of the system remains a pure superposition state. Between the clicks the amplitude

of the state diminishes according to non-unitary evolution operator action

exp (-ya+ a(tj - ti-_1)/2) (1a) ± e'O I-a))

= (lae-•(ti-ti-I )/2) ± eiO I-ae--Y(t-i- 1)/2)) (7)

Therefore, the stochastic history of the selected harmonic oscillator tells us that

its state during all period of evolution is a superposition state with preserved
coherence

Izcond(t)) = N(Ta)n (Iae--'1/2) + (-1)neiBI-ae-yt/2)). (8)
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However if we want to discuss the unconditional state which suits
for ensemble measurements, we should average the conditional density matrix
jV'cond,(t))(Ocond(t)[ over the stochastic times of clicks {ti}. This averaging gives
exactly the density matrix (4) which describes the loss of coherence which can be
understood as the loss of information about the system state. From the continuous
measurement theory representation it becomes evident that to erase the quantum
interference terms it is enough to average over the first click time. And because
the mean time of waiting for the first click is of the order of 1/ (71a]2), one can
immediately obtain the decoherence time value tdecoh = 1/ (.yJ•2). Another lesson
which follows from the consideration is that there is a way for slowing down the
decoherence: after each click it is necessary to change back the relative phase in
the superposition of coherent states.

We can also come to the same conclusion using the quantum engineering
approach [11]. As is shown in this paper, the generalized annihilation and creation
operators

Aw, = e iwa+aa, A+ = a+e-iwa+a (9)

obey boson commutation relations

[Aw, A+] = 1 (10)
and, what is more useful, the eigenstates of the operator A.,

AvIA,) = A,,A,) (11)
are the states with Poissonian distribution of photons, but with quadratic depen-
dence of amplitude phase

An
IAV) = eI14,I 2 /2 & (12)

n
These states belong to the class of states, firstly introduced by Glauber and Tit-
ulaer in Ref. [14], where they discussed the states with all degrees of coherence
equal to unity. Note that the class of states (9) has a number of unusual quan-
tum properties. As an example we demonstrate the Q-function of IA2,/ 7)-state
in Fig. 1. The IA7,)-state coincides with the Yurke-Stoler state given by Eq. (2)
with 0 =7r/2, A,• = io. Taking into account this fact, we use A, as a nonlinear
coupling operator in interaction Hamiltonian (1) and obtain the following master
equation:

7
= . ([Ar, oA+] + [AT, A+]). (13)

Being rewritten in a different form

7 (2eira+aaoa+e- i7ra+a - a+ ao- oa+ a) (14)

this master equation is exactly the one for system under measurement mediated
feedback. The evolution introduced by the first right-hand term is the state reduc-
tion (due to emission of quantum) followed by feedback action corresponding to
interactive field phase changing on r. And now the conditional state evolution is
described by the following equation:

10cond(t)) = 7'S(t, t i)ei'7a+aaS(t. ,n-I)eibra+aa... eira+aaS(ti,0)I0+), (15)
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(a) (b)

4 4

2

2 4 8 10

Fig. 1. Q-function (view from above) of the generalized coherent state given by Eq. (12)
for a = 5 and (a) p = 7r/7, (b) p = 27r/7.

rather than Eq. (5). From this equation we easily find that this conditional state

10cord(t)) = 1(-o)' (Iee-,1/2) +il-e-7t2) , (16)

remains a superposition with a fixed relative phase. So, averaging over the stochas-
tic times {ti} does not influence this statement, and the unconditionalstate in this
case will be a pure superposition

0(t))= (Iae e_,/2)+ili-ae_7,/2)) (17)

Therefore a simple experimental scheme for slowing down the decoherence or for
improving error introduced by decay processes could be proposed [11] as follows:
after each successful click of the photon detector collecting all the light escaping
the optical cavity one should use this information and change the intracavity field
phase by 7r. Repeating this procedure we will allow the cat state I1+) for 0 = 7r/2
to be a superposition as long as there are photons in the cavity*.

3. Quantum instabilities, entanglement and feedback action

of an atom in a high Q cavity

As is seen from the previous consideration, the intracavity field initially
prepared in a superposition (2) will evolve to a mixture in a fast mode. So, in an
empty cavity after a time larger than t decoh the state of the field will be described
by density matrix

LOmix (1a)(al + I-o,)(-oI) (18)

without any quantum features. From the first sight the time tdecoh = 1/(71a1 2) will

limit all possible manifestations of quantum peculiarities of superposition state (2).

*A technical aspect of the proposed scheme should be noted: the feedback loop action time

'FB should be less than the average time between two successive clicks, which is of order t
decoh =

I/ (-yjaI2). Therefore this fast switching of the intracavity field phase can put some problems

with the single mode operation of the cavity.
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Below we show that a two-level atom placed inside cavity acts as internal positive
feedback and this action leads to a quantum instability [15, 16] as well as to more
prolonged period for field coherence manifestation.

As was shown in Ref. [15] the Glauber P-function of state (2) has four terms

P(/6) = N+ {6(2)((a- _l) + 6(2)(C, + 3) + [e- 2102/1#1] 6 (ýpa - p + 7r/2)

x [ei",Ac (101 - i1al) + e- iGAC (101 + il&l)] } . (19)
The first two terms correspond to a classical part. The latter terms describ-
ing the quantum interference part of this state are proportional to the so-called
delta-functions of analytic continuation bAC ([/31 ± i&lI). The 6-function of analytic
continuation may be defined by its action on a probe function F(x)

0 dxbAc(x - z)F(x) = F(z), x E R1 , z E C'. (20)

The well-known solution for a mean dipole moment of a two-level atom in a free
space immediately leads to an exponentially divergent solution when averaged with
this function. We call this effect quantum instability [15] because of the reason of
the effect: the quantum interference part of the density matrix of state (2).

The effect of the quantum instability may be observable in a high-Q cavity
at the initial part of evolution. If we use the Jaynes-Cummings (J-C) model the
mean dipole moment of a two-level atom is (for an atom initially prepared in the
ground state and the field in a state 10))

/\ sin (gtV'_Tii)
(O_(t)) = -i(Oj cos (gtVn') sin (t - ajl), (21)

where j = a+a, g is the atom-field coupling constant. For initial coherent field
state IV) = 1a) Eq. (21) gives

(0-_(t)),oh = --iae-10,12 I k cos (gtV-k') sin (gtV1/k-+--) (22)
k k!,/k +1

while for the Yurke-Stoler superposition state (0 = 7r/2)

(o-(t))ys = ae-e21all2  (-I>I2)k cos (gtVk) sin (gtlV-+-l) . (23)
k k ! k - --

For the mixture (18) of coherent states (a-(t))mix = 0 for all moments of time.
The main difference between Eq. (22) and Eq. (23) is that the Fourier components
of the sum (23) have alternating sign in contrast to that of the sum (22). For large

values of coherent amplitude jal when the spacing g (V/k +i1 - Vk-) ,t g/(2vrk) ,z

g/(2j1a) between significant components of the sum much less than the width 21cI g
of the components distribution, the asymptotic of Eq. (23) is

1(t)) 1 e-21a1 2 +2l-jgt-(gtl2) 2  (24)

4V1 - gt/(2I1a)

instead of Rabi oscillation for Eq. (22). So, the exponential growth of the mean
dipole moment for times t < 2a/g, which are smaller than revivals time TR =
27rce/g is also observable for the J-C model.
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A physical reason for this instability is entanglement between atomic and
field states [15, 17]. As it has been shown in Ref. [15] the phase of interference
part of the conditional Wigner function of the field follows the atomic state: the
phase changes by 7r when atom makes a transition from the ground state Ig) to
excited le) and vice versa. It can be easily seen from the time-evolved atom-field
state for initial state I0(0)) = Ig) I+V

1,(t)) = cos (gtv¶)- I'+)Ig)-i sin (giV4-Ti?) (25)

So we can conclude that the quantum positive feedback (entanglement) between
the phase of interference part of field Wigner function and state of two-level atom
is the factor which leads to the quantum instability of the mean dipole moment.

2x10"4

2l- 0"

I-

0

U'

0- o

-2x10"
0.0 0.2 0.4 0.6 0.8 1.0

TIME (in units of TR)

Fig. 2. Temporal dependence of the mean dipole moment in the optical resonator
with the parameters g = 27r x 2.7 MHz, k = 27r x 0.7 MHz, -y = 27r x 2.5 MHz for
the initial superposition state lac)+ij-a) with a = 3. Arrows mark the decoherence
time tdecoh - 1/(kc 2 ), the interaction time tint and the time of the field energy decay
tE = Ilk.

When a cavity damping is included into consideration, the fast decoher-
ence processes should diminish all manifestations of coherent interactions. How-
ever atom seating in cavity sees continuously the state of the field, and as we
demonstrated in Sec. 2, the continuous state of the field is nothing more than a
pure superposition state with a changing relative phase at the moments when a
photon escapes the cavity. That is why one could observe the effect of quantum
instability at the initial stage of a two-level atom interaction with damping cavity
mode prepared in the superposition state (2). The solution of master equation for
the Jaynes-Cummings model with cavity decay [16, 18] supports this statement
(see Fig. 2).

4. Conclusions

On the basis of quantum continuous measurement theory we demonstrated
that the decoherence arises as a result of combination of averaging over stochastic
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times of the clicks due to the quanta passing into a bath, and reduction of the
system state which occurs at these times. Without averaging the single-run-state
of the decaying system is a pure quantum state. We showed that because of this
purity the decoherence processes can be slowed down by adding corrections after
reduction which each click makes. We proposed the concrete scheme for slowing
down the decoherence of the Yurke-Stoler state on the basis of phase feedback
which introduces a 7r phase shift after detecting each photon escaping the cavity.

We also showed that a two-level atom placed inside a cavity plays a role of
an internal positive feedback (in other words, entanglement) which leads to the
effect of the quantum instability of the mean dipole moment of an atom. The
exponential growth of the dipole moment can be observed at the initial stage of
evolution of an atom in a cavity containing field prepared in a superposition state.

The authors gratefully acknowledge financial support by INTAS under grant
RFBR 95-0656 and Belarus Foundation for Basic Researches under grants F205
and MP 96-38.
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POLARIZATION DEPENDENCE OF MICROWAVE

"IONIZATION" OF EXCITED HYDROGEN ATOMS

P.M. KOCH*

Department of Physics and Astronomy, State University of New York

Stony Brook, NY 11794-3800, USA

After a brief review of the ionization of excited hydrogen atoms by a

linearly polarized field, we discuss experimental results for the polarization

dependence of this process. Experiments at w/22r = 9.904 GHz used two

different ranges of principal quantum number no between 29 and 98. At low

scaled frequencies, Qo , 0.1, ionization data for certain narrow ranges of
no exhibit striking sensitivity to fields with elliptical polarization not too far

from circular polarization. Classical calculations reproduce this behavior and

show it to be the result of 2w driving terms that appear when the Hamilto-
nian is transformed to a frame rotating at w. It shows how higher-dimensional

dynamics can influence the ionization and be used to control it when the
polarization departs from linear or circular polarization. At higher scaled

frequencies, 0.6 <_ So ;ý 1.4, near the onset of ionization circularly and ellip-

tically polarized data show surprising similarities with linearly polarized data

in a parameter regime where the ionization dynamics is dominated by the

influence of the pendulumlike resonance zone centered at scaled frequency

ngw - 2o = 1. The stabilizing influence of this zone can be understood clas-

sically, but nonclassical stability associated with quantal separatrix states at

its edge is a semiclassical effect.

PACS numbers: 32.80.Rm, 05.45.+b, 42.50.Hz

1. Introduction

Experiments on the ionization of hydrogen atoms with principal quantum
number no by a linearly polarized (LP) microwave electric field F sin(wi) have

been a cornucopia of data. For recent reviews and commentary that emphasize

experimental data obtained at Stony Brook and compare them to other experi-
mental data and classical, semiclassical, and quantal calculations, see [1, 2]; for

ones appearing earlier in the 1990s, see [3-8]. Reviews or extended articles in the

1990s that emphasize theoretical calculations, but contain comparisons with or

commentary on LP ionization data, include [9-29].

*Internet: Peter.Koch@sunysb.edu.
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From the vantage point of semiclassical theory, the experiments attract at-
tention because for a wide range of parameters the onset of ionization coincides
classically with the onset of irregular (chaotic) trajectories. This system is the
paradigm for the experimental/theoretical/numerical study of non-perturbative
quantal dynamics in a time-dependent, low-dimensional, classically chaotic sys-
tem. All previous LP experiments, as well as those in this paper for varying po-
larization, required the (net) absorption of many photons to reach the ionization
continuum. This, and so many quantal states being coupled by the strong driv-
ing field, renders quantal perturbation theory questionable, if not useless, as a
calculational method for simulating the experiments. Brute-force numerical inte-
grations of the Schrddinger equation on large, fast computers are used, but often
the crucial insights into the complexities of the ionization dynamics have come
from semiclassical or even fully classical theory and calculations.

Dynamics is about time scales, which means comparing frequencies. Be-
cause of its special dynamical symmetries, the classical bound orbits of the unper-
turbed, non-relativistic 3d hydrogen atom at total energy E < 0 depend only upon
the principal action I0. In atomic units (a.u.)t classically E = -(2102)-'; quan-
tally, replace Io with no. Therefore, at E < 0 there is only the Kepler frequency
WK = tE/t 0o = lo 3 . Exemplifying Bohr's correspondence principle, in the limit
of no --* ca, WK is the frequency splitting between adjacent n-states, lAni = 1.
For large but finite no, WK is close to the average of the An = ±1 splittings.

When the excited hydrogen atom is driven at frequency w, the important
frequency ratio is the scaled frequency W/WE = n3w S2o. Similarly, the scaled
amplitude nOF = Fo is the ratio of the peak amplitude of the driving field to
the Coulomb field at the Bohr (circular) orbit rn = n2 a.u. As was first shown
in [31] the resultant classical dynamics does not depend independently on w, F,
and Io; it depends on the ratios S20 and F0 . However, a non-zero Planck's constant
h spoils the classical scaling invariance in the quantal dynamics. Varying no, w,
and F in such a way as to keep S20 and F0 constant changes the size of the
effective h, h = h/no. However, Refs. [1, 2, 32, 33], as well as the discussion in
Sec. 5 below, show that the experimental, i.e., quantal, ionization data can follow
classical scaling for at least up to 50% changes in h.

All results mentioned above were obtained for the case of an LP driving field.
It is well known from pulsed laser experiments with tightly bound atoms that

the polarization of an intense electromagnetic field can strongly influence atomic
ionization when many photons must be absorbed. In a perturbation expansion
polarization-dependent electric dipole selection rules determine pathways through
unperturbed states, so small changes in polarization may dramatically vary the
ionization rate for fixed peak field amplitude. Except for the case [34] of few-photon
(<• 3) ionization dominated by a resonance between intermediate bound states,
early optical [35] and microwave [36.] experiments, using atoms in initial states

tAtomic units (a.u.) are defined by setting (27r)-1.Planck's constant, h, the electron mass,

me, the antielectron charge, e, and the electrostatic constant, 47reo, all equal to one. Definitions
and numerical values for a.u. are listed in Ref. [30]. When confronting experimental data obtained

with real hydrogen atoms or its isotopes, one should use physical a.u. that result from substituting
for me the reduced electron mass /.e.
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Ino, t, m) with low values of the angular momentum (t < 2) and a driving frequency
w < (E..+, - E. 0 )/h, showed that many-photon (>- 11) ionization in a circularly
polarized (CP) field required significantly larger field intensities than in an LP
field. A smaller effective quantal density of participating, unperturbed states in
CP fields was used to explain [37] these many-photon results. The monotonic
change of the azimuthal quantum number m with each absorbed photon forces
an eventual monotonic increase in t, whereas in LP the Am = 0 selection rule
does not seriously constrain the upward and downward movement in t permitted
by the At = ±1 selection rule. Classically, quasistatic pictures including effects
of frame rotation and an angular momentum barrier were used [38, 39] to explain
the microwave ionization results. Nevertheless, these explanations are all "rules of
thumb", applicable only to particular cases. They have no universal validity. In
a succinct description of our limited knowledge a recent review [40] stated, "the
matter of polarization ... is more complicated than previously realized".

CP ionization experiments with pulsed lasers (for references, see above)
and tightly bound atoms or with microwave fields and alkali Rydberg atoms
[36, 38, 41, 42], as well as most theories to date, have focused on fields with
g2o < 1. When 20 < 1, a quasistatic view should be applicable if narrow quantal
resonances [43] are avoided, while at higher frequencies dynamics should play an
important role.

Early work on the non-LP ionization of excited hydrogen atoms was theoreti-
cal [44, 45], using classical analysis and numerical simulations to follow trajectories
near 00 = 1 for the case of a CP field. The approximate classical resonance analy-
sis presented in Sec. 6.F of [46] led to a conclusion that the onset of ionization for
hydrogen atoms driven by a CP field near 020 = 1 would occur at a peak amplitude
estimated to be 1.5-2 times below that for an LP field. This estimate correctly
anticipated the trend found experimentally; see Sec. 5 below.

The recent flurry of theoretical activity on the ionization of Rydberg atoms
by a CP field was stimulated by the first CP experiment with alkali atoms [36].
Since then several theoretical groups have published growing series of papers on
excited hydrogen atoms driven by a strong CP field. These include [13, 39, 47-79].
Several contain the lively give-and-take of theoretical controversies not yet com-
pletely resolved, both about the ionization mechanism in a CP field and the ex-
istence and nature of nonspreading wave-packet states of hydrogen atoms in a
strong CP field.

Unlike the LP and CP cases, the elliptically polarized (EP) case has no
integrals of the motion: it has three degrees of freedom and is not conservative.
Moreover, the case that interests us here, that of many unperturbed states being
strongly coupled, is unlikely to be amenable to any simple selection rule analysis
for LP vs. CP vs. EP driving.

Intended to be a reasonably self-contained, mid-length review that empha-
sizes experimental and theoretical work on hydrogen atoms, this paper is organized
as follows. Section 2 describes the experimental method. Section 3 reviews what
has been learned from previous LP experiments and theory. It describes six regimes
of strong-field dynamical behavior, each lying within a certain range of the scaled
frequency S2o, though the dividing lines are fuzzy. Section 4 presents experimen-
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tal and classical theoretical results for the polarization dependence of ionization
at low scaled frequencies, S20o < 0.1. For certain, narrow ranges of no, striking
EP-induced resonances dominate the ionization dynamics. Section 5 presents ex-
perimental and classical theoretical results for the polarization dependence of ion-
ization for 0.6 <! fo ; 1.4. This includes a range where the ionization dynamics
is dominated by the influence of the main, pendulumlike resonance zone centered
at S20 = 1. Section 6 presents some conclusions and directions for future work.

2. Experimental method

2.1. Apparatus

Because the details of the experimental method are given in [1, 2, 80-83],
this discussion is brief. Ions extracted from a hydrogen ion source were acceler-
ated, focused, and deflected in a mass-analyzer magnet tuned to transmit pro-
tons. 14.6 keV H+-Xe electron-transfer collisions produced fast hydrogen atoms
with an approximately n-3 -wighted distribution of states. A static electric field
Z• 100 kV/cm ionized all H(n > 9) atoms, while those with n <! 6 radiatively
decayed in flight. With parabolic quantum numbers (n, n1 , Iml) labeling Stark
substates, in a 29.2 kV/cm static field half of the (7, 0, 0) population was driven
into (10, 0, 0) by a CO 2 laser. Another CO 2 laser drove the transition (10, 0, 0) --+
(no, 0, 0) in a static field whose strength was between a few to a few hundred V/cm.
This created a beam of H(no) atoms that was collimated by a 0.21 cm diameter
aperture before it traversed the 9.904 GHz cavity described in Sec. 2.2. This paper
involves H(no) atoms with individual n0-values between 29 and 98. A surviving
atom signal Isurv consisting of energy-labeled protons was produced by ionization
of excited atoms in a voltage-labeled, rectilinear, 9.8 GHz cavity, followed by elec-
trostatic deflection, transmission through an electrostatic filter lens, and detection
in a particle multiplier; see Sec. 13.3c of [80]. A uniform, longitudinal 3.8 V/cm
field before the 9.8 GHz cavity caused only atoms with n-values below the n cutoff

Cnq 110 to contribute to Isurv; see Sec. 2.3.3 of [1].
Reduction of the signal Isurv was caused by H(no) in the 9.904 GHz cav-

ity being either truly ionized or excited to final n-values n > nq. Calling these
two contributions to the reduct.ion in Isuruv an "ionization" signal [1], the "ion-
ization" and survival probabilities are related as P"ion" = 1 - Psurv. Experimen-

tally, we measured Psurv, but we interpret this in terms of P"ion'u; see Sec. 2.3.4
of [1]. Energetically, "ionization" required the net absorption of at least A -

1 + •[((2n2)-1 - (2n2)-1)/w] photons, where [...] means "the integer part of".

At w/27r = 9.904 GHz, and taking n q = 110, Af = 396 at no = 29, dropping to
AK = 8 at no = 98.

For clarity in the remainder of this paper, we no longer write "ionization"
and "ion", but the presence of quotation marks will be understood.

2.2. Microwave caviiy

The cylindrical brass cavity had inner dimensions length L = 2.57 cm and
diameter D = 6.350 cm. The beam traversed 0.26 cm diameter holes in the
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0.159 cm thick entrance and 0.476 cm thick exit endcaps, respectively. Exciting

the cavity via two spatially orthogonal coupling slots in the entrance endcap to

resonate degenerate TE 12 1 modes, one could vary at will the polarization of the

9.904 GHz cavity field. The on-axis field was

F(t) = A(t)F[XaY sin(wt) + Ysin(wt + 6)], (1)

with 0 < a < 1 and 0 < 6 < E,; 0< A(t) • 1 is the 152 cycle, half-sine pulse

envelope seen by the atoms in their rest frame, and (X, Y, Z) are spatial coordinates

in the laboratory frame. The ratio Fir7 of the peak amplitude F to the amplitude

F of the Y-component depends on the polarization. With an attenuator in one

arm, to control a, and a phase shifter in the other, to control 6, we used the atoms

to fine-tune the polarization. Extinguishing the power in one arm (a < 0.0002)

created LP. To create EP one could either (i) keep a = 1 and vary 6 or (ii) make

a < 1 and keep b = ir/2 or (iii) vary both a and 6. Experimentally it was more

precise to use scheme (ii), but for comparisons with theory to be made below, it

will be easier to characterize the EP via scheme (i), for which F/F = V/2acos(b/2)

varies from 1, at CP, to V2-, at LP.
For converting scalar microwave power measurements to F (or F) with an es-

timated 5% accuracy for the case of arbitrary polarization, we adapted the method

presented for LP cavity fields in [84]. S. Zelazny [85] kindly checked this method for

determining the power-to-amplitude calibration for our CP microwave ionization

data for hydrogen. He used the same apparatus to take CP Stueckelberg oscillation

data (for the case of LP fields, see [86]) for (lsnos)'Si He Rydberg atoms with

no near 30. He calculated Floquet eigenvalues for He triplet Rydberg atoms in the
CP field to provide quasienergy potential curves for modeling the experimental

data and determining the absolute field amplitude to 5%.

2.3. Ionization curves

Taken for LP, CP, and two values of EP, Fig. 1 shows representative ioniza-

tion curves, Pion vs. the scaled peak field amplitude F0 , for two different, nearby

no values. For both the scaled frequency Do is low enough to be in regime-II, as is

described for LP in the next section. Little change occurs near the onset of ioniza-

tion as the polarization is varied. However, this is not the case well past the onset

of ionization: the CP curves "stretch out", reaching Pion = 1 only at a significantly

larger value of Fo than do the other curves. Why this happens, as well as what

produces the structure evident in the 6 = 0.457r EP curve for no = 42, will be

explained in Sec. 4. For now we emphasize the usefulness of the stretching out

for experimentally setting CP precisely. In fact, for large Pion, say Pion = 0.8, the

measured CP peak field thresholds were systematically larger than those for LP

driving for no = 30,..., 78. (No similar, simple statement applies to smaller values

of Pion and/or 75 < no <.98.) Because, for these parameters, small departures

from CP to EP lowered the large-Pion threshold, we used this dependence, usually

for no = 58, to fine-tune the polarization to CP [36, 82, 83] giving a = 1.00 ± 0.05

and 6 = 900 ' 10.
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Fig. 1. A survey of the polarization dependence for experimental ionization curves for

no = 42 and no = 45 (inset).

3. Ionization by a linearly polarized field

3.1. Regimes of behavior

In LP experiments at Stony Brook we have thus far varied g2o in a stepwise

manner between 0.021-2.8 with use of cavities between 7.6 and 36 GHz and various

ranges of n 0-values between 24 and 98; for reviews, see [1, 2, 6, 81]. We have

also used a broadband, waveguide interaction region for a smaller number of LP

studies between 26-40 GHz; see, e.g., [87-89] and see the early 9.6-11.4 GHz

LP waveguide data in [90], reconsidered in Appendix B of [1]. The combined

experimental-theoretical investigation of this wide dynamic range of !2o led to

classifying six different regimes of dynamical behavior, the first five of which we

have studied experimentally. References [1, 2] discuss them in some detail. The

dividing lines between these regimes are fuzzy.

Figure 2 is helpful for a brief description of regimes I through V. It compares

two sets of our experimental data with the results of 3d classical Monte Carlo

calculations (3dCL) [91-93] that closely modeled the experimental situation: for

each initial classical principal action I0 a microcanonical distribution of orbits,

which corresponds to the uniform distribution of quantal substates of fixed no

that entered the microwave cavity in the experiment [1]; the pulse envelope A(t);

and the n cutoff nq. Plotted are scaled 10%-thresholds, i.e., the scaled amplitude

n4F(0.1) = Fo(0.1) at which Pion reaches 0.1, vs. o0 .

Regime-I: the quasisiatic tunneling regime. When S•o gets low enough, one

expects quantal penetration of the slowly oscillating Coulomb-Stark potential

barrier to become the dominant ionization mechanism. Comparisons of 9.91 GHz

data for no = 24-32 with 3d quantal and theoretical calculations [94], reviewed

in [1], show this behavior: as no decreases with fixed w, the experimental on-

set of ionization falls systematically below the classical onset. A ld theoretical
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Fig. 2. Scaled amplitudes for 10% ionization probability for 3d hydrogen atoms in
an LP field. (*): 9.92 GHz experiments with a flat-top pulse envelope with each
no = 32,..., 90 and an n-cutoff n. z 92; (0): 36.02 GHz experiment with a flat-top
pulse envelope with each no = 45,..., 80 and an n-cutoff n zl 89; (A): 3d classical
Monte-Carlo simulations of the experiments.

model [43, 95, 96] reproduces and explains this behavior when the coupling con-
stant Cno = 1.5no(n0w)(n0F) between adjacent quantal adiabatic basis states is
sufficiently small. At 9.91 GHz, this occurs for n0 _ 28, or D2o ; 0.03; see Fig. 16
of [1]. Reference [43] predicts that the quantal resonances between adiabatic states,
which are the distinctive feature of regime-II discussed next, will also be present
in regime-I, but that as a function of frequency the resonances get exponentially
narrow as S20 decreases.

Regime-II: the low frequency regime. For 0.05 <_ f2o <, 0.3, some experi-
mental microwave ionization and quench curves have shown structures such as
non-monotonic bumps, steps, or changes in slope; see ionization curves in [1, 96]
for examples. These structures can be understood as the consequence of ampli-
tude-tuned resonances between the adiabatic basis states mentioned above. Other
ld quantal theoretical treatments [10, 97, 98] based in part on Floquet theory
have given good numerical estimates for the onset of experimental ionization. In
these treatments the experimental structures are caused by interactions at avoided
crossings of quasienergy (Floquet) states.

Regime-Ill: the near-classical regime. For S0o between about 0.1-1.2, the gen-
eral agreement in Fig. 2 between experimental 10%-thresholds and those obtained
from 3dCL must mean that the strong driving field is coupling not a small number
of quantal states: the density of participating quantal states must be high enough
for near-classical behavior. The onset of classical ionization coincides with the on-
set of unstable (chaotic) classical trajectories; see [1, 2] for lists of references. The



112 P.M. Koch

classical dynamics in regime-III and neighboring regimes is strongly influenced by
nonlinear (trapping) resonances, wherein the local motion is pendulumlike; see
previously cited references and [1, 2, 19, 28, 99-105]. They give enhanced stability,
i.e., higher ionization thresholds, when S20 is near simple rational fractions and
give a semiclassical explanation for the bumps in the experimental data in Fig. 2
for •20 near, e.g., 1/3, 1/2, 1, and 2. Nevertheless, localized disagreement in Fig. 2
shows that quantal effects are still important in regime-III.

Notice in Fig. 2 the good agreement for Q20 between about 0.5-0.8 for the
experimental data sets taken at two different frequencies, 9.9 and 36 GHz, for
two different ranges of no. This is an example of classical scaling in the quantal
dynamics. As is explained in [1, 2], that the 9.9 GHz data lie systematically below
the 36 GHz data for S2o between 0.8-1.1 is an n-cutoff effect. This occurs when
initial no values in one data set are much closer to the n cutoff than in the other
data set. See also Sec. 3.3 and Fig. 4, below.

Regime-IV: the transition regime. In the range 1 g Q20 ; 2, Fig. 2 shows
that the experimental data begin to deviate in a systematic way from 3dCL, al-
though similarities remain near resonances, e.g., near S20 = 1 and 2. But notice, in
particular, that the large measured [1, 2, 33, 87, 89, 106, 107] peak near 2o = 1.3
is absent classically; we shall return to this in Sec. 5.

The first data [106] displaying this striking example of nonclassical local
stability with 3d atoms stimulated ld quantal calculations [108] that confirmed
the effect via numerical integrations of the time-dependent Schrddinger equation
and gave a clear semiclassical physical picture [19, 109] for it. Via projections of
the Husimi (coherent-state-smoothed Wigner function) wave function distribution
onto phase portraits of the periodically driven ld classical hydrogen atom, the
stability was shown to be associated with a wave packet localized in the chaotic
part of the phase space just outside the main pendulumlike resonance zone, i.e., the
one centered at Q0 = 1. The preparation of this wave packet was found numerically
[108-110] to be associated with the slow turn-on of the driving field amplitude
by the pulse envelope A(t). Moreover, subsequent ld theoretical work [22, 111]
associated this nonclassical, local stability specifically with wave packet states
living near the separatrix of the pendulumlike classical motion. For earlier work
on separatrix states in the kicked rotor model, see [112-114].

Following earlier quantal theoretical work carried out in (2 or 3)d + time
[115-118], recent quantal calculations using the complex-coordinate-rotated Flo-
quet method [11-13, 17, 49, 119-122] have extended to 3d the treatment of hydro-
gen in LP microwaves. However, the 3d Floquet calculations still have to address

the important role of the slow experimental turn-on A(t) in the 3d experiments.
References [33, 107] used a powerful experimental technique to demonstrate

the classical "origin" of the nonclassical local stability peak at S2o Z 1.3, viz., that
it scaled classically; see also [1, 2, 32]. When no, w, and the microwave amplitude
F were all varied, the nonclassical local stability remained near S2 o = 1.3 and for
a nearly constant value of the scaled 10%-threshold Fo(0.1). This was shown for

three ranges of no at the driving frequencies 26.4, 30.36, and 36.0 GHz.
Moreover, Refs. [2, 87, 89] showed experimentally and theoretically that

broad-band noise added to the coherent driving field had a strong effect on the
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nonclassical peaks. Indeed, the addition of noise was used as an experimental tool
for finding the influence of separatrix states both below and above the resonance
zone centered at D2O = 1. Reference [89] demonstrated a strong frequency depen-
dence near these nonclassical peaks that was also strongly affected by broad-band
noise. Remarkably, both the frequency dependence and the influence of added noise
observed experimentally with 3d hydrogen atoms near the onset of ionization was
reproduced with ld quantal numerical simulations based on an integration of the
time-dependent Schr6dinger equation.

Section 5 presents experimental evidence for the persistence with varying
polarization of the observed nonclassical local stability associated with separatrix
states.

Regime-V: the high-frequency regime. When DO > 2, observed threshold
amplitudes in Fig. 2 rise systematically above classical thresholds. The LP ex-
periments in [106] were stimulated by and provided the first experimental con-
firmation of the earlier prediction of this quantal effect for periodically driven
hydrogen atoms [115, 116, 123, 124]; see also [11, 19, 97, 119] and the reviews
[117, 125-128]. Subsequent microwave ionization experiments with hydrogen [129]
and rubidium [130] Rydberg atoms confirmed the rise of the thresholds.

The theoretical prediction of the quantal stabilizing effect of dynamical local-
ization followed from the hydrogen atom periodically driven by a high frequency,
LP field being modeled by the periodically delta-kicked rotor. The kicked rotor
is a theoretical model much used in quantum chaos studies, and it is known to
be a close analog [114, 131, 132] to the tight-binding model in solid state physics
for a periodic Id lattice perturbed by disorder that causes Anderson (exponential)
localization of the electronic wave function. Another experimental realization of
quantal kicked-rotor dynamics uses laser cooled sodium atoms [133-135].

Other theoretical explanations for enhanced high-frequency stability of the
quantal driven atom vs. its classical counterpart have been based on uncertainty
principle violation [136]; dynamics in a severely truncated, quasiresonant state
basis [19, 137-139]; and quantal vs. classical transport through cantori [140, 141],
but see Secs. 7.4 and 9.4 of [127] for critical comments.

Regime- VI: the photoelectric effect. When the photon energy rises above the
threshold for one-photon ionization, hw > (2n0) 1 , all vestiges of classical behavior
are gone, at least for weak field intensities. Theoretically, this is predicted not to
be so for intensities high enough for so-called stabilization phenomena to come into
play; see papers in [142] and references therein.

The first experimental evidence for adiabatic stabilization of Ne Rydberg
atoms in the 5g circular state in a 623 nm pulsed laser field was recently pub-
lished [143, 144].

3.2. Classical phase-space portraits

Phase portraits of the driven classical motion of a ld hydrogen atom are a
useful aid for interpreting the LP experimental results. Figure 3 shows one made
for amplitude F = 3.14 V/crm and w/27r = 9.923 GHz with use of a computa-
tionally efficient, area-preserving, implicit, iterated mapping that is an excellent
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Fig. 3. Phase portrait (Poincar6 surface- of-section) for the periodically driven id clas-

sical hydrogen atom obtained with use of an area-preserving, iterated mapping; see the
text. It is an excellent approximation to the continuous dynamics for the scaled frequency

Do= 13w above about 0.4, here being used to record the evolution of 105 orbits having
initial actions between 67.9 and 95.7 (in h), for F = 3.14 V/cm and w/27r = 9.903 0Hz.
The number of orbits and range of Q~o sampled is enough to show several resonance
zones for £2o = ilk from 1/2 to 1/1. Arrows along the right-hand vertical axis label

them. Within each resonance zone, the local motion is pendulumlike and nearly regular,
the more so far lower values of 1. A region of irregular motion (sea of chaos) encircles

the 1/1 zone, which is also surrounded by a five-island-chain, secondary resonance zone
that is born from an orbit bifurcation found numerically to occur near 2.96 V/cm. The
dashed box in the upper right-hand corner shows size of Planck's quantum of action h.

approximation to the continuous dynamicst for Q2o above about 0.4. Note that
classical scaling of the dynamics [1] means that if classical dynamical evolution
were calculated for different values of Io, wo, and F that give the same ranges of

I'0 1w and FO = 14F used to make Fig. 3, the classical phase portrait would be
identical . However, the area of Planck's constant at fixed fO and F0 would change,
becoming larger as (10 decreases, w increases, F increases) and becoming smaller

t The mapping used is equivalent to Eqs. (14)-(19) in Ref. [145a], except for adding a nmiss-
ing factor sin(Ok) that was inadvertently omitted from the right-hand side of Eq. (15) and for
changing from positive to negative the signs in the right-hand-most terms of its Eqs. (14), i.e.,
the ones containing the symbol Oo; this serves only to move the stable, elliptic fixed points of
the primary resonance islands to 0 = ir, in accord with the mapping Eqs. (15) in Ref. [145b].
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as (I0 increases, w decreases, F decreases). As is reviewed in [1, 2], the effective
Planck's constant is h = h/no; see also Secs. 1 and 5.

Five different resonance zones are labeled by their respective rational values
of the scaled frequency IrW = j/k associated with a resonant action Ir. (In a
9.923 GHz field, Ir = 87.2 gives I3w = 1.) In a rotating frame the local motion
within and near each zone is pendulumlike: librational motion around an elliptic
fixed point (corresponding to a stable periodic orbit of the full motion) inside the
zone and rotational motion outside the zone on either side of a separatrix (broken
by the chaos-producing, higher-order terms beyond the pendulum approximation
to the Hamiltonian) that connects to a hyperbolic fixed point (corresponding to
an unstable periodic orbit of the full motion). The formula (see [87])

I.: = (1 + 0.419V ir + 0.144Fr +...)Ir, (2)

where Fr = I14F, gives estimates for the maximal upward I+ and downward I.- ex-
cursions in action of the separatrix of the 1/1 resonance zone. For the parameters
used to make Fig. 3, I+ = 94.5 and I,- = 80.8, so in the pendulum approxima-
tion the separatrix contains (I+ - Ir-) = 13.7 units of area measured in Planck's
constant h. This gives a semiclassical estimate for the number of quantal states
influenced by the main resonance zone at w/21r = 9.923 GHz and F = 3.14 V/cm.

One may see by eye that far smaller area and, therefore, far fewer quantal
states are associated with the 1/2, 2/3, 3/4, and 4/5 resonance zones. For formulae
used to estimate their areas, see [146].

The full, driven classical motion is nonintegrable but only partly so when
parameter values are chosen to give a phase portrait of coexisting regular and
irregular (chaotic) regions, i.e., a mixed phase space. Each separatrix becomes, in
fact, a chaotic layer whose thickness grows with increasing F and within which are
other fixed points with small resonance zones and chaotic layers, ad infinitum; see,
e.g., p. 810 and Fig. 21 of [104]. Moreover, orbit bifurcations at certain values of
the driving field amplitude produce new fixed points, resonance zones, and chaotic
layers. Several such bifurcations occur for the main resonance zone at values of
F below that used to make Fig. 3. (See also [28] and [147].) Surrounding the
1/1 resonance zone is a chaotic sea produced by higher-order terms beyond the
pendulum approximation to the Hamiltonian. These terms mutate the separatrix
into stable and unstable manifolds, converting its environs to a "sea of chaos".
In this chaotic sea irregular orbits can diffuse to arbitrarily high action if the
interaction time is sufficiently long. Indeed, the onset of global chaos is a classical
mechanism for ionization.

One also sees in the phase portrait rotational Kolmogorov-Arnold-Moser
(KAM) curves (tori) [100, 103, 104, 148, 149] that are impenetrable barriers to
transport in a periodically driven, one degree of freedom system; many such tori
separate the 1/2 and 2/3 resonance zones.

Above it was remarked that the mapping used to make Fig. 3 is an excellent
approximation to the continuous, periodically forced dynamics in ld for S20 above
about 0.4. At lower S2o the approximations used to derive the mapping break down,
but there is a deeper reason why not only it but phase portraits in general cease
to be very useful at low Q20. As Q0 decreases, the time during which the electron
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can be accelerated in a given direction by the external LP field increases. This
means that the momentum impulses given to the electron by the external field
get larger, so large that the notion of ionization occurring classically by a diffusive
wandering (net) upward in the phase space no longer makes sense. Moreover, as S2o
decreases, the separation in action of the 1/k (subharmonic for k > 1) resonance
zones decreases, but with increasing F, their widths explode as Fk/2 [43, 146, 150].

At low 2o it makes more sense to think of the ionization as taking place by
escape over a slowly oscillating barrier in coordinate space.

3.3. LP results: old vs. new

Figure 4 compares the scaled 10%- and 90%-thresholds Fo(0.1) and Fo(0.9),
respectively, for the 9.923 GHz LP data set from [1] with those from the present
9.904 GHz LP data set [81, 82] obtained with the cavity described in Sec. 2.2. The
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0.06
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Fig. 4. A comparison of two different sets of LP microwave'ionization data; see the
text.

gross behavior of the two data sets is similar, but one notable, global difference is
the latter data being systematically higher than the former data. The two most
important contributions to this are undoubtedly

(i) the significantly shorter peak-field interaction time in the half-sine pulse
envelope used to obtain the latter data, viz., above 95% peak value for only
31 field oscillations, compared to 230 oscillations for the flat-top envelope
used to obtain the former data;

(ii) the significantly higher n cutoff nq • 110 used for the latter data, compared
to nq ý- 90 used for the former data. One expects that this effect would be
greatest as no for the former data set approaches n2q P 90; this is just what
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one sees in Fig. 4. (See the similar discussion in Sec. 3.5 of [1] about its
Fig. 15.)

Because the 59 oscillation turn-on and turn-off (5% to 95% of maximum) used for
the 9.904 GHz data was comparable to the 80 oscillation turn-on and 95 oscillation
turn-off used for the 9.923 GHz data, i.e., both were "slow", it is less likely that
they contributed to the differences in the data sets.

Notice the similar, local, undulatory structure in both data sets. As was
explained above, the maxima are caused by the stabilizing influence of resonance
zones centered at 12o = j/k. In the 9.904 GHz Fo(0.1) and Fo(0.9) data, there are
clear peaks near 12o =j/k for k = 1, 2,3,4,5,6 with j = 1, as well as peaks near
2/5 and 2/3.

Using Eq. (14) of Ref. [1] to estimate the area in units of h inside each 12o =
1/k resonance zone, we obtain a semiclassical estimate of the number N of quantal
states inside. Taking experimental values Fo(0.1) from the 9.904 GHz LP data, the
formula gives (N; 1/k) = (18.6; 1/1), (7.1; 1/2), (4.5; 1/3), (2.6; 1/4), (2.0; 1/5),
and (1.4; 1/6). This gives a neat quantal/classical correspondence: local maxima
in experimental ionization thresholds occur close to 2o = 1/k when the classical
resonance zones centered at these values contain at least one quantal state, i.e.,
when N Z 1.

Note that local maxima in Fo(0.1) and Fo(0.9) persist to lower values of D20 ,
but these no longer line up with g2o - 1/k for k > 7. This could be explained,
experimentally, by the discrete sampling of D2o with fixed w and integer values of
no and, theoretically, by the classical resonances getting ever closer as k increases
and by N dropping below one for k > 7. For F0 P 0.12, the formula gives, e.g.,
(0.7; 1/7) and (0.6; 1/8).

Why are the local maxima in the 9.904 GHz data more pronounced than
in the 9.923 GHz data? Reason (i) above likely contributes because the shorter
the interaction time, the larger the peak field amplitude can be before raising !ion
to a given level. Because N for classical D2o = 1/k resonances grows roughly as

k/2F6 , see, e.g., Eq. (14) of [1], one expects their stabilizing influence to grow as F0
grows, as long as the resultant increase in P!0n is offset by the shorter interaction
time. One expects reason (ii) above to contribute strongly as no approaches nq.

This likely explains why the 2o = 1 resonance zone centered near no = 87 is less
prominent in the 9.923 GHz data, for which nq • 90 is only slightly higher. See
also the discussion for regime-III in Sec. 3.1.

In both data sets, there are local maxima at other values of D2o. In Sec. 5 we
shall explicitly comment on the peak near D2o = 1.3. As may be seen by comparing
experimental data and 3dCL in Fig. 2, the LP peak near D2o = 1.3 is not due to
a classical 4/3 resonance zone. Rather, as was discussed for regime-IV in Sec. 3.1,
this nonclassical peak is associated with a quantal separatrix state.

4. Polarization dependence at low scaled frequencies

As was noted in' Sec. 2.3, the CP ionization curves in Fig. 1 stretch out
compared to those for other polarizations. We now explain why this happens
when S2o is low [29, 83]. First we need to recall well-known features of ioniza-
tion of excited hydrogen atoms by a static, an LP, and a CP field. Hereafter using
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a.u. unless explicitly noted, the Hamiltonian in the laboratory coordinate frame
(X, Y, Z) is 7-(t) = p2/2 - 1/R + R. F(t). For a static field, R. F(t) = ZF,
the system is separable in parabolic coordinates ( 0, l,¢) [151]. Below the on-
set of ionization, all three classical actions I _ (Ic, I,7, Im) [quantum numbers
(ni,n 2, m)] are conserved. Classically, there is a sharp threshold field Fcrit(l)
below which the motion with these actions remains bound; from the least ro-
bust orbit [quantally, m =n = 0, n2 = (n - 1)] to the most robust orbit
[n, = (n - 1), n2 = m = 0], n04Fcrit varies between about 0.13-0.38. Tunnel-
ing through the 7l-barrier allows ionization for F < Fcrit; for interaction times
near 10-s s and no z 40, it lowers thresholds by 10-15% [1, 152].

For an LP field, R . F(t) = A(t)ZFsin(wt + V), with 0 an initial phase;
again, separability leads to conservation of m. The dynamics is quasistatic [1, 94]
if D2o is sufficiently small and away from exponentially sharp resonances discussed
theoretically for ld in [43]. The spatial reversal of F on each half-cycle interchanges
n, and n 2; therefore, as Fig. 1 of [94] shows, for a uniform mixture of substates of
a given no, classically a microcanonical ensemble, the ionization probability Pion
rises from 0 to 1 as the scaled amplitude F0 varies between about 0.115-0.17. This
is just the beginning of the wider classical range, F0 = 0.13-0.38, lowered 10-15%
by tunneling, discussed above for the static field case.

In a frame (x, y, z) rotating at frequency w, the Hamiltonian is given by

K(t) = p'/2 - 1/r + A(t).Ty + wLý

+0.5A(t).F[y sin 2wt - x(1 - cos 2wt)] sin 61

+0.5A(t)iF[x sin 2wt - y(l + cos 2wt)] sin 2(61/2), (3)
where 61 = 7r/2 - 6 measures the deviation from CP.

For CP the Hamiltonian in the rotating frame consists of the first line in
Eq. (3), which represents the free hydrogen atom perturbed by a static field term
and the Coriolis term wLz. (This CP Hamiltonian is close to one giving integrable
motion [70-72].) For w low enough one expects that the Coriolis term should
have little effect on the ionization dynamics. References [29, 83] confirmed that it
affected Pion very little for f2o <_ 0.1 by finding close similarity between classical
trajectory ionization curves calculated with (the CP case) and without (the static
field case) the wL, term. Therefore, at low S2o the lack of interchange of n, and n2
(see above) should cause quantal CP ionization curves to stretch out and approach
Pion = 1 at a higher value of F0 than for the LP case.

Though this explains the behavior of the CP curves in Fig. 1, this is not the
only polarization-dependent difference. Note the different shape of the no = 42 EP
curve for 6 = 0.457r. Figure 5 shows the EP dependence for no = 42 over a much
finer range, from 6 = 0.427r to 0.57r, with an experimental uncertainty Ab = 0.017r.
Here there is a remarkable local variation of Pion with 6 at fixed F0 . Over about
the same range of 6, similar EP dependence was observed for no = 41 and 43 (data
not shown here), but not for no ;ý 44 nor, with exceptions discussed below, for
no • 40.

We now extend the discussion above for the CP case to give a classical expla-
nation for the physical origin of the sensitivity of no = 41,42,43 at 9.904 GHz to
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Fig. 5. The detailed elliptical-polarization dependence for no = 42 in steps of
/ir = 0.01 [6/r = 0.02] for experimental data [for 3dCL calculations (inset)].

EP for values of 6 close to CP; mathematical details of the theory are given in [29].
A full understanding of the polarization-dependent dynamics will require 3d quan-
tal calculations, but state-of-the-art 3d quantal (Floquet) calculations have been
reported, so far, only for LP and CP and for no <• 23 [153]. Until improvements in
computers and algorithms enable 3d quantal calculations for 3d hydrogen atoms
in an EP field, with the atomic and field parameters used for the present experi-
ments, we must use insights gleaned from comparisons of experimental data with
classical calculations and theory.

We begin with 3d classical Monte Carlo calculations (3dCL), the results of
which [29, 83] are shown in the inset to Fig. 5. Allowing for the ±0.017r experi-
mental uncertainty in 6, there is remarkable, quantitative agreement between the
experimental data and 3dCL; similar agreement was obtained for no = 41 and 43,
not shown here.

This agreement validates the use of classical theory to understand the ex-
treme local sensitivity of the ionization dynamics to polarization. But we need
to understand what produces the local maximum in Pion at, e.g., F0 ; 0.13 for
6 ; 0.457r and why it has this effect. Because it involves the complexities of multi-
dimensional dynamics, the discussion here can only be brief; for the details see [29].
The key point is that all perturbations vary little during an unperturbed Kepler
period, so one can average over this fast motion, reducing the number of degrees
of freedom, and then write the resulting equations for the mean motion in terms of
the vectors X = L - A and Y = L + A where L is the orbital angular momentum
and A = (p x 1 - r/r)/v'-2-E is the Runge-Lenz vector. For a CP field (bi = 0),
both X and Y rotate uniformly about the field direction with the scaled frequency

S±i +S20, where ws = 3X 0 /2 is a classical Stark frequency associated with
the scaled amplitude To. For the ranges of F0 and Qo considered here, Zu < 1
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Perturbations of frequency 20?0 and strength proportional to bl, which appear
for an EP field, can resonate with the mean motion when ar = 2S2o, i.e., when
.Fo ýF T0, - 2sYo/v'. For go = 0.1116 this gives Yor = 0.13; equivalently, this is
For varying from 0.145 to 0.13 as 6/7r varies from 0.42 to 0.5, in agreement with
the local maxima in Fig. 5. We use "2S2 0 resonance" to label this dynamics.

The averaged equations of motion give a model for understanding how the
21?o resonance affects the bound-state dynamics. With the full richness of the
details being given in [29], ionization is added post hoc to the model via the time
dependence of Fcrit(t) = "crit(I(t)), which can be used to mimic the classical
escape over the barrier when .crit(t) < A(t).7. (Recall that 0 < A(t) < 1 is
the pulse envelope.) This model, compared with exact calculations in [29], shifts
one's attention to understanding the temporal evolution of the classical actions
I(t) and critical fields .Fcrit(I(t)). Though the details are complicated, the analysis
shows that if 1, > 0 [< 0] then .Tcrit(t) decreases [increases] as A(t).T increases
through the resonance by an amount which increases as dA/dt decreases. Numerical
calculations show that the mean over Im, > 0 and I,, < 0 is dominated by the
behavior of the former, thereby producing the observed local maximum in the
ionization probability [29, 83].

Data for no = 31, 32,33 also exhibited extreme sensitivity to EP, but for
lower values of 6 than for the 212o resonance. Figure 6 shows results for no = 31
for eight values of 6 between 0.287r-0.45ir (F/.F between 1.28-1.08). Observe the
clear similarity between Figs. 6 and 5. The inset shows that the 3dCL results, ob-
tained for the same eight values of 6, again reproduce the experimental polarization
dependence.
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Fig. 6. The detailed elliptical-polarization dependence for no = 31 for experimental
data [for 3dCL calculations (inset)].
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Though K(t), Eq. (3), has harmonic terms only at 22o, let us, nevertheless,
extrapolate the frequency-matching condition to a "412o resonance": 4920 = C =
/(3F 0 /2) 2 + S23, giving f2o = 0.39F 0 . The classical static field ionization thresh-

old, -To = 0.13, gives D0 = 0.05; at 9.904 GHz this gives no = 32, the middle of the
three n 0-values where extreme sensitivity to EP was observed [81, 83]. This result
cannot be accidental. It predicts that successive application in the rotating frame
of perturbation theory, classical or quantal, will lead to resonances at even powers
of S20 . The detailed derivation has been accomplished, so far, only classically and
only for the 2S?0 resonance [29].
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Fig. 7. The detailed elliptical-polarization dependence for no 31 for experimental
data (solid curves) and for 3dCL calculations (inverted filled triangle: 422 orbits; upright
filled triangle: 864 orbits; filled square: 1728 orbits).

The top three curves in Fig. 6 show another rise in Pio., near F0 = 0.17
and a subsequent plateau. For five values of .5/ir in steps of 0.01, Fig. 7 compares
experimental data in this region with the results of 3dCL. The rise and subsequent
plateau in the data for 6/1r = 0.30, 0.31, 0.32, as well as its disappearance for higher
values of 6/7r, is quantitatively reproduced by 3dCL. Arguments were given in [83]
that this behavior is caused by the "6W2o resonance".

Therefore, these low frequency experiments, supported by 3dCL, establish a
series of EP-induced resonances that occur when even integer powers of the scaled
driving frequency S2o match the frequency of the mean classical Stark motion in
the rotating frame. Such resonances are a striking example of the kind of the rich-
ness that can occur in the higher-dimensional dynamics (3d + time) of a driven
quantal system. In this case, even classical theory quantitatively reproduces the
behavior and provides a clear physical picture for what causes it. As was em-
phasized in [83], this EP-induced resonant dynamics provides a mechanism for
controlling the ionization.
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5. Polarization dependence near the main resonance zone

In the preceding section we saw that the polarization dependence of the mi-
crowave ionization of excited hydrogen atoms can be dramatic at low scaled fre-
quencies. We now examine the polarization dependence for hydrogen atoms with
no= 70,...,98 at 9.904 GHz, which corresponds the range of scaled frequency
S20 =0.517-1.417. This includes the main resonance zone centered at £?o = 1,
which, we shall see, exerts a controlling influence that makes the ionization dy-
namics near the onset of ionization independent of polarization when a certain
classically derived, amplitude-scaling of the field is used.

The experimental techniques described in Sec. 2 were used to measure [81, 82]
9.904 GHz ionization curves for LP, CP, and a number of different values of EP.
From these curves were obtained the 10% and 50% ionization thresholds plotted
in Fig. 8 with use of scaled parameters. (Please note the suppressed zeros on the
vertical axes of panels (a) and (b).) Focusing on Fig. 8a, note that the depen-
dence of F0 (O.1) on S2o has the same shape for all three polarizations. Also note
that the onset of ionization for CP in this range of S20 occurs at lower peak field
amplitude Fo than it does for LP. This behavior is opposite to the rule of thumb
mentioned in Sec. 1 that emerged from laser multiphoton ionization experiments
with tightly-bound atoms.
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Fig. 8. Frequency- and polarization-dependence of experimental ionization peak-field
thresholds (filled symbols, Pon- = 0.1; open symbols, Pion = 0.5) for H(no = 70, ... ,98)

atoms.

As was explained in Sec. 3, because the local maximum nearS20 = 1 is known
for the LP case to be due to the stabilizing effect of the main resonance zone, the
experimental results show this effect is independent of polarization.

This is an important result for the following reason. Using lower case d
(upper case D) to represent spatial (phase-space) dimension, the phase portrait
in Fig. 3 is a result of following ld dynamics that is periodically forced in time,
visualized stroboscopically in a 2D plot. Colloquially, such dynamics is said to
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have 1½ degrees of freedom. For a 3d atom in the time-dependent driving field,

the dimensionality depends on the polarization. For LP, the conservation of the

projection of the orbital angular momentum on the field polarization axis reduces

the dimensionality to 2d + time, or 5D, or 21 degrees of freedom. Because of

a separation of time scales [117], the LP dynamics is well approximated near

the onset of ionization by the (1d + time) model .(1½ degrees of freedom). This

explains why the surface-state-electron (SSE) model, reviewed in [19], has been

able to provide good estimates for onsets of ionization measured with 3d hydrogen

atoms in an LP field, at least for 1o up to 2.8 or so [154]. But note that it has been

predicted [24, 27] that the SSE model may not provide quantitatively useful ld

estimates for the LP ionization thresholds for 3d hydrogen atoms at much higher

scaled frequencies.
The EP dynamics is 3d + time, or 7D, or 3½ degrees of freedom.
Let us look back to Eq. (3), the Hamiltonian K(t) in the frame (x, y, z)

rotating at frequency w. For CP, 61 = 0, and ignoring the slow pulse envelope

A(t), the time dependence is removed, but there remains the static Stark term Fy

and the Coriolis term wL, = w(xp, - yp,,). In contrast to the discussion in Sec. 4,
because we are now considering scaled frequencies that are not low, we cannot

ignore the Coriolis term. That it mixes coordinates and momenta means that the

concept of potential energy surface no longer applies, though one can use so-called
zero-velocity curves as an effective potential [53, 63].

Figure 9 compares the experimental data shown in Fig. 8 with the re-

sults of 3dCL [82] that modeled all important features of the experiment, in-

cluding the uniform distribution of initial substates, the pulse envelope A(t), and

the n cutoff nq. (See also Fig. 2.) The accord between experiment and 3dCL

is equally good for CP, EP, and LP, with wide regions of striking agreement

and those of disagreement being similarly localized for all polarizations. System-

atically, the 3dCL lie below experimental data (a) for Do >• 1.15 and (b) for

0.8 <! D2 o <• 0.9. Using in Eq. (2) the coordinates for the local maximum in the

LP data at (Q0,F0 (0.1)) P• (1.33, 0.052) gives It = 95 for the location of the

upper separatrix of the pendulum, in good agreement with the local maximum in

the LP data at no = 96,97. Similarly, on the lower side of the D2o = 1 resonance
bump, using the coordinates in the LP data at (D2o, F0 (0.1)) • (0.083, 0.028) gives

I;- = 81 for the location of the lower separatrix of the pendulum; this is in good

agreement with the largest local excursion at no = 82, 83 of the LP data above the

3dCL results, which is matched by excursions in the EP and CP data, too.
We interpret these results as demonstrating the polarization independence

of the nonclassical, stabilizing influence of quantal separatrix states prepared in

the experiment from both above and below the pendulumlike resonance zone, i.e.,

associated with both the upper and lower branches of the separatrix.
Note that the nonclassical stability near the upper branch of the separa-

trix occurs at (no; w/27r) = (96, 97; 9.904 GHz). This may be compared to previ-
ous LP data [33, 87], where it occurred for (62;36.0 GHz), (66;30.36 GHz), and

(69;26.4 GHz). That enhanced, nonclassical stability associated with quantal sep-

aratrix states persists from 36.0 GHz to 9.904 GHz shows that this semiclassical
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Fig. 9. The same data shown in Fig. 8 compared with the results of 3d classical Monte
Carlo simulations (X) for (a): CP; (b): EP; (c): LP; and with the results of 2d classical
Monte Carlo calculations (cross) for (a): CP and (c): LP. See the text.

effect [33] is insensitive to at least a 50% variation in the effective Planck's constant

K; see Secs. 1 and 3.2.
Other disagreements between experiment and 3dCL in Fig. 9 are localized

near the top of the S?0 = 1 resonance bump, but they are not systematic.
Also shown in Fig. 9 are the results for CP, frame (a), and LP, frame (c),

of classical calculations [39] used to predict 10%-ionization thresholds for LP and
CP fields over the sc-aled frequency range 0.01 < D2 < 0.6; these were carried out
before the present experiments on the polarization dependence of the microwave
ionization of 3d hydrogen atoms were done [81-83]. Let us refer to these calcula-
tions as 2dCL because they used only ensembles of orbits whose plane of motion
included the microwave electric field vector. In these 2dCL, unlike the subsequent
experiments, the initial pricipal action was held fixed, and the frequency w was
changed to vary 02o. The pulse envelope used in the 2dCL rose over 200 initial
Kepler periods. TK, remained flat for 40TK, and fell over 200TK. This is not too
different from the experimental, half-sine pulse shape, see Sec. 2.2, whose 152
field oscillation duration corresponds to 294TK at no = 70, dropping to 107TK
at no = 98. The reasonable agreement among the 2dCL, the experimental data,
and the 3dCL in Fig. 9, where they overlap, bears out our expectation that mod-
est changes in the pulse shape will exert only a small influence on the ionization
thresholds when S2o is not "too high". For additional 2dCL and a discussion of
classical time scales for hydrogen atoms driven by a strong CP field at values of

o20 below the main resonance zone, see [39].
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Fig. 10. Frequency- and polarization-dependence of the measured ionization thresholds
expressed in terms of the scaled Y-component field amplitude 1% = n'T defined in the
text.

Figure 10 replots the experimental data in Figs. 8 and 9 using a field para-
meterized with the scaled Y-component amplitude Y for a = 1 and variable 6; see
Eq. (1) in Sec. 2.2. For our [LP] {EP} (CP) data, this Y is [1/x/2] {1/1.26} (1.00)
times the peak amplitude F. Plotted this way the classically scaled thresholds
To -- n4 (X) vs. 120 are insensitive to polarization near the main resonance for
low X; e.g., for f20 > 0.63 the To(0.1) thresholds are nearly identical for LP, EP
and CP. However, this agreement persists only up to X = 0.3; at X Z 0.5 the CP
thresholds are systematically higher.

Encouraged by the agreement of the data with classical simulations, and
realizing that the high values of no and inherent 3d nature of this problem strain
the most advanced quantal computations [11, 76, 153], a classical theory was used
[82] to understand these results; Ref. [155] gives details. Here we provide only a
very brief qualitative explanation of why classical dynamics leads to the invariance
of F70(X) with respect to polarization, observed for X < 0.3, and how the main
resonance causes it. The dynamics of the 3d hydrogen atom is determined by the
Hamiltonian H = p2/2 - 1/r + r F(t), where F(t) was given in Eq. (1). Using
the unperturbed, F = 0, angle-action variables (On, 01, O0, In, I, Im) [156], one
can show that near the principal resonance, where w = WK(I,), because O6 ; WK

the system has three distinctly different dynamical time scales: fastest is the field
variation, slowest is the changing orientation of the Kepler ellipse, and intermediate
is the change in 0,,. It follows, see [155], that for w R WK there is a canonical
representation in which the Hamiltonian has the form K = Kp + Kf, where Kf is
a rapidly varying part that causes the escape from the regular, slow motion due
to Ip.

The slow Hamiltonian, Kp, may be approximated by one similar to that of a
plane vertical pendulum subject to gravity, with a "gravitational" coefficient that
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is a function of the slowly varying angle-action variables

K -- - + (t)oHgr(o; 6) cos q,
21R2

where 69 (1,0,, m , 1,,Im), IR is the value of the principle action satisfying
w = WK(IR), and (q,p) are simply related to the variables describing the motion
around the Kepler ellipse. Reference [45] analyzes motion produced by a Hamil-
tonian similar to Kp, and Ref. [156] shows that Hr is an approximate adiabatic
invariant and that the angles O9 vary more slowly than (q, p) which, in turn, vary
more slowly than Kr. Moreover, Hr is relatively weakly dependent upon 6, the
field ellipticity; the mean of Hr2 over a microcanonical distribution is independent
of 6.

The slowly varying field envelope adds the final, and slowest, time scale that
is important to the ionization dynamics [157]. Including its effect one can, e.g.,
estimate the ionization threshold at the minimum of To0 (X) near S20 = 0.8. For
S2O < 1 the first orbits to ionize as To increases satisfy two conditions [22]: (i) they
adiabatically switch onto the separatrix of Kp as A(t) slowly increases from 0 to 1.
(ii) The amplitude X0 must be large enough for the first (&0 = 1) and second
(£2 = 2) resonance island to touch: this is the Chirikov overlap criterion [100].
(For recent classical theoretical work applying the resonance overlap criterion to
the CP and EP cases, see [74] and [158], respectively.) When (i) is satisfied, the
initial phase points gradually move onto the separatrix of Kp and then wind
around the edge of the resonance island. The presence of Kf converts separatrices
into stable and unstable manifolds. When (ii) is satisfied, a proportion of orbits
transfers to the unstable manifold of the Q20 = 2 island and subsequently to higher
actions that easily ionize.

These two conditions provide estimates for the frequency of the minimum
threshold, near Q0 = 0.8, and also the critical values of '70 at which ionization first
occurs, .T(4(, 6); Ref. [155] gives details. Since the angles e are slowly varying
functions of time, the minimum of this function gives an estimate of the critical
field. This minimum turns out to be only weakly dependent upon 6. As 6 increases
from 0 to 7r/2, min(.Fc(i9, 6)) decreases monotonically from about 0.014 to 0.011
and S?' from 0.78 to 0.77. In the 3dCL simulations the minimum of .Fo(0.1) de-
creases from 0.016 to 0.014, a statistically insignificant change, and •28 • 0.8, for
all 6.

The analysis sketched above uses the approximate Hamiltonian Kp to give
a theoretical explanation for the insensitivity to polarization of the ionization
thresholds .TO(X = 0.1) plotted in Fig. 10. Therefore, it seems clear that the
pendulumlike resonance dominates the strong-field dynamics in the neighborhood
of Q20. Because such resonances are generic features of mixed-phase-space classical
systems and have a clear quantal analog [22, 99, 105, 159], this result should not
be regarded as a special case.

It is interesting to ask what determines the boundaries of the influence of
the main resonance zone. We tentatively conclude that the marked divergence of
the thresholds for different polarizations in Fig. 10 at S2O ;-. 0.63 is the signature
of its lower boundary, but analysis to demonstrate this theoretically must be left
for future work. It is tantalizing that this divergence might supply a sort of crude
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spectroscopy for experimentally determining where the boundaries of pendulumlike
resonance zones occur in a quantal dynamical system. Because one expects the
effect of quantal tunneling - now in phase space [160], not configuration space -
to blur whatever sharpness there is to classical barriers to transport, even a crude
spectroscopic tool homes in on some very interesting physics.

6. Conclusions

The results of our first experimental forays [81-83] into the terra incognita of
the polarization dependence of the microwave ionization of excited hydrogen atoms
has presented some surprising similarities with the extensive body of previous LP
results as well as a new discovery. The surprising similarities occur in the data
presented in Sec. 5 for 0.6 ý, f2o • 1.4, a range that overlaps the near-classical
regime-III and the transition regime-IV. When an amplitude scaling relation given
by classical theory is used, the experimental data here show that, near onset, i.e.,
for Pion ýý 0.3, the scaled ionization thresholds are approximately independent of
polarization. The similarity of the EP and CP behavior with the LP behavior was
an unanticipated surprise. Classical theory shows that it is a result of separation
of time scales in a regime where the dynamics is influenced by the main resonance
zone. For field amplitudes Y raising Pion significantly above 0.3, however, the
simple similarity expressed by the theoretical amplitude scaling relation goes away.
Perhaps the nature of the dynamics or its effective dimensionality change as Y

increases. We need to understand how the most easily ionized orbits (classically)
or wave packets (quantally) differ from those that do not ionize until much higher
values of Y. However, though the theoretical amplitude scaling relation breaks
down for higher values of Y and /on, the stabilizing influence of quantal separatrix
state(s) above and below the main resonance zone does not. It will be fascinating
to study and understand the detailed reasons for this behavior.

The new discovery is found in the data presented in Sec. 4 for 2o <_ 0.1.
For LP driving this range overlaps the low-frequency regime-II, which is defined
by resonances between quantal adiabatic states of the (atom + field) system, and
the quasistatic tunneling regime-I. For certain narrow ranges of no at fixed driving
frequency w, we find extreme sensitivity of the ionization dynamics to the ellipticity
of an EP field near CP. Surprisingly, this behavior is reproduced quantitatively
by completely classical calculations that, moreover, reveal its cause. In a frame
rotating at w, a CP field at low 20 produces a new, slow motion (classically) or
a Stark splitting of energy levels (quantally). In the rotating frame an EP field
provides 2w driving terms that can resonate with this new frequency (splitting).
This dramatically influences the ionization dynamics and can be used to control it.
It is an excellent example of the kind of manifestly higher-dimensional dynamics
that occurs when the polarization of the driving field is no longer restricted to the
quasi-ld, LP case.

What about the other dynamical regimes? Will the ionization of excited
hydrogen atoms by CP and EP fields be similar to that for the LP field, or will there
be new discoveries? Probably yes and yes. As is now being prepared for publication,
we have observed [81, 161] that at very low DQ0 the quasistatic tunneling of regime-I
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becomes the dominant ionization mechanism even more dramatically for CP than
it does for LP. The LP case was studied earlier [1, 94].

What about much higher D0 ? Will the dynamical localization effect that
produces what has been called the quantal suppression of classical chaos cause
quantal CP and EP ionization threshold amplitudes to rise systematically above
their classical values? The previously predicted [123,124], systematic rise of quantal
over classical ionization thresholds was first observed in 1988 for LP driving when
.10o ; 2 [106]. Another LP hydrogen experiment [129] confirmed this behavior.

Theoretically there is a prediction "that the same phenomenon occurs in the
case of elliptically polarized fields" (which includes the CP case); see Sec. VIII
of [117] and its bibliography for earlier references on dynamical localization. Com-
ing from authors who helped to initiate the theoretical and numerical study of
dynamical localization as an essential phenomenon in physics, this prediction must
be tested experimentally. This is a goal for future work in our laboratory.

If the past is any guide, much remains to be discovered, studied, and under-
stood about the polarization dependence of the microwave ionization of excited
hydrogen atoms.
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Spontaneous decay of excited cold atoms into a cavity can drastically
affect their translational dynamics, namely, atomic reflection, transmission
and localization at the interface. We show that the quantum Zeno effect on
excitation decay of an atom is observable in open cavities and waveguides,
using a sequence of evolution-interrupting pulses on a nanosecond scale.

PACS numbers: 42.50.Lc, 03.65.Bz, 03.75.Be, 42.50.-p

1. Transmission of emitting tunneling atoms in cavities

Spontaneous emission in atomic tunneling has been virtually unexplored
before our recent work [1]. Since tunneling is a distinct manifestation of wave-like
properties, it is important to raise the basic questions: can spontaneous decay of
internal excitations in tunneling atoms be viewed as a decoherence process that
is analogous to its counterpart in diffracted atoms? and if so, how would such
decoherence manifest itself?

We have put forward a theory of spontaneous emissionfrom a two-level atom
as it tunnels through a square potential barrier [1]. Our theory demonstrates that
the emission process is describable as loss of coherence between interfering clas-
sical trajectories in space-time, which constitute the atom tunneling motion. The
emitted photon at each frequency is correlated to particular atomic classical trajec-
tories, in a way which makes them measurably distinguishable. This distinguisha-
bility destroys their interference [2], as does "which-way" ("Welcher-Weg") infor-
mation, which is obtainable from spontaneous emission in diffracted atoms [3, 4].

The ensuing analysis rests on two observations. (i) The overall duration of the
decay process is much longer than the inverse transition frequency w- 1 (see below).
This allows us to resort to the rotating wave approximation (RWA), which is used
in the Wigner-Weisskopf (WW) treatment of spontaneous emission [5]. (ii) Nearly
all of the cavity-enhanced spontaneous emission is funneled into the continuum
of nearly resonant modes with wave-vectors q P., (w/c)i, which are aligned with
the cavity axis z, perpendicular to the atomic incidence axis x. This allows us to
use the dipole approximation, since q. x -- 0, and neglect off-axis photon recoil
effects on the atomic wave packet. Hence, the RWA interaction Hamiltonian of
the atom with the cavity-mode continuum becomes effectively one-dimensional,

(135)
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Hint = -C(x)fdwp(w)[gwa.le)(gl + h.c.]. Here ((x) = 1 for 0 < x < L and
0 elsewhere, i.e., the interaction is confined to the cavity, whose x-axis extent
coincides with that of the barrier; p(w) is a Lorentzian mode-density distribution
associated with the cavity-mode line width 7 [6]; g, is the coupling of the atom
to the cavity mode at w and a, is the corresponding annihilation operator. The
transition frequency weg is shifted (renormalized) by the difference between the
AC Stark shifts of le) and 1g), AAC = "f. /e -e Qlg)"

In order to analyze the entanglement of emitted photon states with the trans-
lational degrees of freedom of the tunneling atom, we have developed a theoretical
approach which combines the WW treatment [5], resulting in exponential decay of
the excited state, with the Feynman path-integral method, which yields a coherent
sum over the atomic classical trajectories contributing to tunneling [7].

The above analysis yields the probability for an atom incident as a nearly
monochromatic wave packet to be transmitted in the excited state

ptr = i -(Ek V-ihr)12, (1)

where a(Ek, V) is the transmission amplitude for a structureless particle of kinetic
energy Ek through a square potential barrier of height V and length L,

U(Ek, V) = [cos(pL)-i kp sin(pL)] (2)

k = V2'--7/h and p = V2m(Ek - V)/h being the corresponding wave vectors
outside and inside the barrier, respectively. The effect of spontaneous emission is
to shift the effective potential V by -ihF.

Plots of Eq. (1) reveal the overall diminishing of ptr with -' in both the tun-
neling (below-barrier) and allowed (above-barrier) regimes of Ek. The correspond-
ing probability ptr of the transmitted ground state wave-packet is an incoherent
sum (integral) of partial wave-packet transmission probabilities P,, associated with
photon emission at w

ptr =j dwP,,

P,= .Y(w)1- 1 -• h1-.(Ek, V)12, (3)

where .7(w) = p(w) Ig,1 2/(1(S + 72) and o,(Ek, V) is a complicated function of
Ek, V and w. The most salient effect of spontaneous emission is seen to be (Fig. la)
the huge enhancement of ptr as a function of 7 for atoms initially in the deep
tunneling regime pL = V2m(Y - Ek)L/h > 1.

In order to gain more insight into the above general results, we shall hence-
forth assume that the cavity line width r7 and Ek satisfy the following inequalities:

IEk - Vf I< h7 < Ek < hweg, 7 < 77. (4)
The spectrum of spontaneous emission is then limited to 1.1 << Ek and becomes
Lorentzian in this range, .17(w) ; £C.(A), since the spectral variation of p(w) and

Ig I 2 is slow, p(w)lg l2 ; 27r-y, in accordance with the WW approximation. The
equation for o-, can now be simplified to

ou (Ek, V) P o0(Ek - hA, V) - U(Ek, V-ihr). (5)
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Fig. 1. (a) The energy spectrum of transmitted ground state atoms. Solid curve
- transmission probability P,, [Eq. (3)] (in units of h/V) for Ek/V = 0.8, L =
2.5ADB (Ek/V = 1), 7 = 0.05V/h, W•g = lOOV/h as a function of kinetic energy fol-
lowing emission. Dashed curve - spontaneous line shape. Inset: idem, on a small scale.
Dotted curve - cavity line shape. (b) Schematic description of the experiment.

It is seen from Eqs. (3) and (5) that the dramatic enhancement effects in the
tunneling regime are due to the first term in (5), corresponding to atoms that have
decayed to the ground state shortly after entering the barrier and are subsequently
transmitted through the barrier as unexcited atoms with kinetic energy EM - hA,
which can be above the barrier if A < 0. By contrast, the second term in (5)
corresponds to atoms that have decayed shortly before exiting the barrier after
having effectively been transmitted as excited atoms with the initial kinetic energy
EM, whence this term is exponentially small in the tunneling regime. The use of
Eq. (5) in Eq. (3) therefore leads to the enhancement of P,, (Fig. la) and pyr

due to the possibility to gain kinetic energy from the broad vacuum field reservoir
by emitting a photon detuned below the resonance hweg. In the deep tunneling
regime, assuming that y <« (V - Ek), Eqs. (3)-(5) allow us to roughly estimate
that the atoms have probability of order

ptr [ g dEZ,[(E L EM)/h] (6)

to jump over the barrier into the allowed energy regime by emitting a photon with
A < Ek - V < 0 (Fig. 1).

Under the assumptions leading to Eq. (5), along with hA << EM, we can
obtain a simplified expression for the total transmission probability

00  00 -ylr-r'[
ptr ptr+ ptr I dr- dr'e *(rTV)&(r', V), (7)

Pt~ot 9 + ]o 1'' I '

where a(t, V), the Fourier transform of ou(E, V), is the impulse response (to a
temporal 6-function) for transmission of a structureless particle. We thus obtain
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the following important result: the total transmission probability PtoZt coincides,
in the limit of narrow spontaneous line width 7 [Eq. (4)], with the transmission
probability of a partially incoherent wave packet of a structureless particle with
coherence time 7-1 (see Ref. [8]).

The following conclusions can be inferred from the above analysis. (a) The
probability distribution of the transmitted atoms is approximately Lorentzian for
final kinetic energies Ek - hA above the barrier, whereas their counterparts below
the barrier only contribute an exponentially small tail to this distribution. (b) The
fact that fast atoms emerging from the barrier are almost always unexcited means
that the barrier acts as a "filter" that transmits almost only atoms that have
already decayed.

These results open a new vista into the transitior, from quantum dynam-
ics to classicality via decoherence by focusing on the e, 'ccts of excitation decay
on atomic tunneling. In the limit of negligible decay y --+ 0, which is realizable
by detuning the cavity off resonance with w,,, the excited atomic wave packet
with Ek < V exhibits tunneling, which is a result of interference between many
classical trajectories, and is characterized by exponentially low transmission ptr

[Eq. (1)]. When 7 is appreciable, the wave packet is dominated by th" rtion
that has decohered by decay into the field-mode continuum and has thereby lost
its tunneling properties: its energy spread becomes classical (statistical), giving
rise to a Lorentzian tail into the above-barrier energy range, thereby allowing for
enhancement of the transmission [Eqs. (3),(7)]. The effects of this decoherence on
barrier traversal times will be discussed elsewhere.

The results predicted here can be experimentally realized by a variety of
cold atoms. In accord with Eq. (4), the lifetime of the le) --* 1g) transition should
preferably be long, above 10-6 s. A confocal cavity whose finesse is Z 10i and
subtends a solid angle of ;-, 0.1 steradians can enhance spontaneous emission rate
7 by a factor of ; 30. The cavity line width y7 should be much larger than 7,
i.e., preferably above 10 MHz. Correspondingly, the potential energy V and the
kinetic energy Ek must be above 0.1 GHz, which requires the laser Rabi frequency
Qe(g) and detuning 6e(g) to be well within the GHz range. This implies that the
transition frequency weg can lie anywhere between the GHz and the optical ranges.

2. Atomic reflection and localization at cavity interfaces

We have recently considered an excited atomic wave packet or an atomic
beam propagating from a region where spontaneous emission is negligible (x < 0)
to a region where spontaneous emission is strongly enhanced (x > 0), due to the
high density of the electromagnetic field modes. The wave function of the total
system (atom plus field) can be written in'the following general form in the rotating
wave approximation:

10(r, t)) = 14(r, t)Ie, {0}) + 5 bq(r, t)1g, {q}), (8)
q

where the ket-vector le, {0}) denotes the atom in the excited state with no pho-
tons in the field, whereas 1g, {q}) corresponds to the ground state of the atom
with a photon emitted at a mode q, and Ve(q) are the corresponding amplitudes.
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One obtains coupled Schr6dinger equations for the envelopes of these states given
an atom with initial energy E and transition frequency w0 , ?&(r) and kq(r) by

assuming 7 eq(rt) = be q(r)e-i(E+lwo/ 2)t. Far from the interaction region the
solution describes propagation of the atomic wave packet. The total energy of the
incident excited atom E + hwo is then equal to the kinetic energy of the ground
state atom plus the emitted photon energy hwq.

The coupled equations for V) and Vq yield a complicated integro-differential
wave equation for 0,(r,), with F(r, r') acting as a non-local complex potential
whose shape and strength are determined by the confined mode eigenfunctions
gq(r). If-the line width of the spatially confined modes h?7, is much larger than

the atomic energy E, the recoil energy Erec h2w,/2mc2 and the spontaneous line
width in the confined reservoir, h-ye, then the correlatiou, iength of the interaction
of the emitted photon with the atom is much shorter than the spontaneous decay
length and the de Broglie wavelength ADB. Such an atom effectively moves in a
local complex potential

SJdrF (r 7/) = ,, 12 Eq 18q(r)I26(Wq Wo0)

where y is the atomic dipole matrix element, gq(r) are the field mode amplitudes
and 4A is the detuning of the atomic transition frequency wo from the center of
the spectral line of the reservoir.

In order to concentrate on the atomic motion along the axis of incidence x
and avoid diffraction effects caused by the local potential in the directions perpen-
dicular to x, we consider a multimode confocal cavity where the many degenerate
modes contributing to V(r) render it approximately uniform in the directions per-
pendicular to x. We assume that the transition frequency wo is resonant with the
Lorentzian center of the degenerate modes. Then the real part of 1(x) is much
less than the imaginary part 7,(x) Im{P(x)}. We then obtain

a2  
20

-X () Oý W+ 7-2 [E + ihyc(x)]4(x) = 0.

For a step-like interaction profile yc(x) = 7 ,(x), where 1(x) is the Heav-
iside step function, the probability to detect an excited atom decreases as eik,
where k., = 02m(E+ih-Y)/h, so that only the fraction Ir 2 of excited atoms re-
mains at large negative x (to the left of the interface). This reflection increases
with the spontaneous emission rate -y,. The atomic interaction with the confined
vacuum reservoir for h-y > E is thus analogous to the skin effect of light reflection
from metals. If the energy of the incident atom is comparable to Erec, the width
Ax of the interface should satisfy AX Z ADB(E) - Aopt. A realistic description of
the atomic entry into a confocal cavity shows a much lower reflection probability,
even for subrecoil energies. However, when the real part of F(x) contributes too,
for w0 well off the center of the Lorentzian spectrum (large 4A), the cavity can be
strongly reflective. This spectral dependence of the reflectivity on the detuning is
characteristic of the atomic skin effect.

The spatial variation of the q-mode amplitude in Eq. (8) can be estimated
for a strong decay hy, >» E and incidence energy well above the recoil limit. Then
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bq oc exp(+ikqx), where hkq = V/2m(E - hUq) and Aq = wq - wo. Whenever
E > hAq, kq becomes imaginary and Oq(r) is exponentially localized at the in-
terface between free space and the confined-field region. A solution with imaginary
kx represents a transient atomic wave packet which disappears after the incident
atomic wave packet decays or leaves the interface, and is accompanied by a tran-
sient bound photon, which eventually disappears with it, after the time - h/AE,
the inverse of the energy bandwidth AE of the incident atom. If such a photon is
detected, then a localized atomic state is formed. The subsequent evolution of the
atomic wave packet is governed by the free-space Schr6dinger equations with the
localized atomic distribution serving as the initial condition.

To conclude, we have found that excited-atom reflection from the interface
between two spatial regions with different spontaneous emission rates is appre-
ciable for cold atoms and enhanced coupling to the mode continuum, when the
effective width of the interface is smaller than the atomic de Broglie wavelength.
This reflection is analogous to the optical skin effect of metal surfaces. Transient
localized atomic state appear at the interface while an excited two-level atom is
crossing it, due to detection of spontaneously emitted "bound photons" at "for-
bidden" energies, having short lifetime and range of propagation. The regime con-
sidered here is essentially different from Ref. [9], where the correlation time of the
atom with the emitted photon is large, thereby responsible for the oscillation of
the atomic population.

3. Quantum Zeno effect on atomic excitation decay in resonators

The "watchdog" or quantum Zeno effect (QZE) is a spectacular manifesta-
tion of the influence of continuous measurements on the evolution of a quantum
system. The original QZE prediction has been the inhibition of exponential decay
of an excited state into a reservoir, by repeated interruption of the system-reservoir
coupling by measurements [10-12].

We have recently demonstrated [13] that the inhibition of nearly-exponential
excited-state decay by the QZE in two-level atoms, in the spirit of the original
suggestion [10], is amenable to experimental verification in resonators. Although
this task is widely believed to be very difficult, we have shown, by means of our
unified theory of spontaneous emission into reservoirs with arbitrary mode-density
spectra [11], that several realizable configurations based on two-level emitters in
cavities or in waveguides are in fact adequate for QZE observation. The possibili-
ties for such observation have been examined in various regimes thaL can arise in
resonators.

We start with a general analysis of the evolution of an initially excited
two-level atom coupled to an arbitrary density-of-modes (DOM) spectrum p(w)
of the electromagnetic field in the vacuum state. At time r this evolution is
interrupted by a short optical pulse, which serves as a quantum measuring de-
vice [14-17]. Its role is to break the evolution coherence, by transferring the popu-
lations of the excited state le) to an auxiliary state which then decays back to le)
incoherently [15].

As in our previous treatment [18], the atomic response, i.e., the emission rate
into this reservoir at frequency w, which is [g(w)j 2 p(w), hg(w) being the field-atom
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coupling energy, is divided into two parts,

G(w) = Gý(w) + Gb(w). (9)

Here G6(w) stands for the sharply-varying (nearly-singular) part of the DOM
distribution, associated with narrow cavity-mode lines, the frequency cut-off in
waveguides, or photonic band edges. The complementary part Gb(W) stands for
the broad portion of the DOM distribution (the "background" modes), which
always coincides with the free-space DOM p(w) _ W2 at frequencies well above
the sharp spectral features. In an open structure (see below), Gb(w) represents the
atom coupling to the unconfined free-space modes.

We cast the excited-state amplitude in the form a,(r)e-iwT, where wa is
the atomic resonance frequency. Then, for arbitrary DOM spectra and coupling
strengths, one can reduce the equations for spontaneous decay [19] to the following
evolution equation, up to the interruption time r:

&(7) = - J dt[CO(t) + (b(t)]eidtCeo(r - t). (10)

Here A = Wa - W-, w. is a characteristic frequency corresponding to the maximum
or the singularity of the sharp spectral feature, whereas 0,(t) and Ob(t) are the
time-domain Fourier-transforms of G,(w) and Gb(w), respectively,

Os(b)(t) = j dwGs(b)(w)e-i(W-W,)t. (11)

Restricting ourselves to sufficiently short interruption intervals r such that
a,(7) • 1, yet long enough to allow the rotating wave approximation (RWA),
Eqs. (10),(11) yield T

ae(r-) • 1 -- dt(r - t),s(t)eiAt - ybr/ 2 . (12)

The terms within the parentheses in Eq. (12) are the contribution of the background
DOM, simplified according to the Weisskopf-Wigner approximation [19]. Here
7b = 27'Gb(wa) is the effective rate of spontaneous emission into the background
modes.

Equation (12) is obtained to first order in the atom-field interaction. To the
same accuracy, the excited state probability after n interruptions (measurements),
W(t = n-) =Ij(T)I2,, can be written as

W(t = nr) zti [2Rec,(,r) - 1]n ;z e'-, (13)

where

S= 2Re[1 - ae(7)]/r. (14)

In most structures yb is comparable to yf and gives rise to an exponential decay
factor in the excited state probability regardless of how short r is, i.e., K = KS + 7l,
where n., is the contribution to K from the sharply-varying modes.

Thus the background-DOM effect cannot be modified by QZE. Only the
sharply-varying DOM portion allows for QZE, provided that

, = (2/r)ReI dt(,r - t)Os(t)eidAt (15)
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rises with r- for sufficiently short r. This is essentially a condition on the correlation
(or memory) time of the field reservoir.

First and foremost, we wish to apply the above analysis to the case of a
two-level atom coupled to a near-resonant Lorentzian line centered at W., charac-
terizing a high-Q cavity mode or a "defect" mode in a photonic band structure [19].
In this case, G5 w) = g•Fs/{ir[F• + (w - w) 2]}, where g. is the resonant coupling
strength and Fr is the line width (Fig. 2 - inset). In the short-time approxima-
tion, taking into account that the Fourier transform of the Lorentzian G5 (w) is
4p,(t) = g2e-r't, Eq. (12) yields (neglecting the background modes)

1 2 1e(iA-r1) - (16)o~e(T) • s-i --+ -•--•i-A (6

The QZE condition is r- «< (Fs +[Z1)-1 g;-1: obviously, it is easiest to satisfy
this inequality on resonance, when A = 0. Then Eq. (16) yields

Ks + 7b, KS = g2 7. (17)

Only the 's term decreases with r, indicating the QZE inhibition of the smooth
nearly-exponential decay into the field reservoir as r --* 0. Since Fs and A have
dropped out of Eq. (17), the decay inhibition is the same for both strong- and
weak-coupling regimes (Fig. 2). Physically, this comes about since for r << g-1
the energy uncertainty of the emitted photon is too large to distinguish between
reversible and irreversible evolutions.

The experimental scheme we envisage for observing the above effects is as
follows. A fraction of an atomic beam oriented perpendicular to the axis of a confo-
cal cavity is excited to state le) by a laser outside the cavity. Within the cavity the
atoms repeatedly interact with a pump laser, which is resonant with the le) -* ju)
transition frequency. The resulting le) --+ 1g) fluorescence rate is collected as in

0.8"

01
100 200 300 400 500 600 700 800

Time (ns)

Fig. 2. Evolution of excited-state population W in two-level atom coupled to cavity
mode with Lorentzian line shape (inset) in case (i) (on resonance, zA = 0): curve 1 -
decay to background-mode continuum at rate -7b y -Yf = 106 s-1; curve 3 - uninter-
rupted decay in cavity with F =_ (1 - R)- 2 = 10s, L = 15 cm, and f = 0.02; curve 4
- idem, but with F = 106 (damped Rabi oscillations); curve 2 - interrupted evolution
along both curves 3 and 4, at intervals r = 3 x 10-8 s.
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Fig. 3. Idem, for two-level atom (-If = 106 s-1) coupled to waveguide field, with
coupling C 2' 3 = 1.2 x 10' s-1 and width F. = 0: curve 1 - uninterrupted evolution
at cut-off frequency (A - 0); curve 4 - idem, A = 108 s-'; curve 2 - interrupted
evolution at intervals r =10-8 s for A = 0; curve 3 - idem, for d = 10i s- 1 . Insets
- (a) DOM with cut-off [Eq. (17)]; (b) dipole in a waveguide.

Ref. [6] and monitored as a function of the pulse repetition rate. Each short, intense
pump pulse of duration tP and Rabi frequency S2p is followed by spontaneous decay
(via fluorescence) from ju) back to le), at a rate yu, The "measuring" pulse has to
satisfy tp-1 , < y < S2p, so as to destroy the coherence of the system evolution, on
the one hand, and reshuffle the entire population from le) to ju) and back, on the
other hand (Fig. 3 - inset). By combining these requirements with the demand
that the interval between measurements significantly exceed the measurement
time, we infer the inequality r > tp. The above inequality can be relaxed to require
r >» 'Yu1 if the "measurements" are performed with ?r pulses: 2

rptp = 7, tp <. yu1.
The only real constraint is that (F. + I- I))-I > r > 1 . This calls for choosing a
Iu) --+ le) transition with a much shorter radiation lifetime than that of le) -* 1g).
The curves in Figs. 2 and 3 are calculated for such a choice, and for feasible cavity
parameters: F. = (1 - R)c/L, gs = /cf'ff/(2L), 7b = (1 - f)7., where R is
the geometric-mean reflectivity of the two mirrors, f is the fractional solid angle
(normalized to 47r) subtended by the confocal cavity, and L is the cavity length.

We now extend the above analysis to any DOM distributions characterized
by a cut-off frequency, as in a waveguide, a photonic band edge or a phonon
reservoir (with Debye cut-off). A specific model for the spectral response of a
DOM distribution with a cut-off is represented by [19] (Fig. 3 - inset (a)).

G.(w) = [CVw-/( - ws + F5)]O(w - w5), (18)

where w. is the cut-off (or band-edge) frequency, F. is the cut-off smoothing pa-
rameter, C is the, strength of the coupling of the atomic dipole to this reservoir,
and e(.) is the Heaviside step function. Upon computing the Fourier transform of
Eq. (18), we find from Eqs. (10),(11) that the QZE condition is

r < min{Fr- 1 , I1', C- 2/ 3 }. (19)
.Under this condition, Eqs. (10) and (15) yield &e(r) of the form

,• = (2 5/ 27rl/ 2 /3)6Cr-/ 2. (20)
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As mentioned above, the QZE is now less pronounced (see Fig. 3, where we used
the exact solution to compute ae(r)). This case is realizable for an active dipole
layer embedded in a dielectric waveguide, using a level scheme similar to that of
Fig. 2.

Instead of disrupting the coherence of the evolution by a sequence of "im-
pulsive" measurements, i.e., short x-pulses, we can achieve this goal by noisy-field
dephasing of a, (t). Random ac-Stark shift by an intensity-fluctuating field results
in

i, = J Gs(A + wa)F(A)dA, (21)

where F(A) is a Lorentzian spectrum whose width is (Aw2)rc, the product of the
mean-square Stark shift and the noisy-field correlation time.

Our unified analysis of two-level system coupling to field reservoirs has re-
vealed the general optimal conditions for observing the QZE in various structures
(cavities, waveguides, phonon reservoirs, and photonic band structures). We note
that the wave function collapse notion is not involved here, since the measurement
is explicitly described as an act of coherence-breaking [15]. This analysis also clar-
ifies that QZE cannot combat the background-modes contribution to exponential
decay, and'is therefore inadequate for decoherence error prevention [20]. The best
way to achieve such prevention is by switching-off the entire density of modes, i.e.,
placing the resonance well within an ideal band gap.
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DARK STATES AND DE BROGLIE WAVE OPTICS

H. METCALF

Physics Department, State University of New York
Stony Brook NY 11794-3800, USA

The techniques of laser cooling have now become sufficiently developed
that the focus has shifted toward interesting applications such as the quan-
tum domain of atomic motion. This topic is characterized by the failure
of the classical description in which atoms move as point particles whose
trajectories can be known: instead, atomic motion must be described as the
optics of de Broglie waves. For example, when the de Broglie wavelength AdB

exceeds Aopticai, then a classical description is insufficient (Bose condensa-
tion is done in the dark, and the quantum condition becomes AdB > nearest.
neighbor distance). One of the most fascinating topics of quantized atomic
motion in a laser field derives from optical dark states that can even occur
in the simplest (two-level) atoms, where there are no magnetic sublevels and
the polarization is irrelevant. In spite of the simplicity of this two-level atom
case however, the more interesting cases occur in multilevel atoms where the
internal magnetic states and external quantum states of atomic motion be-
come truly entangled. Schr~dinger called such states "the heart of quantum
mechanics" because they led to puzzles such as his famous "cat" and the
EPR paradox.

PACS numbers: 32.80.Pj

1. Introduction

In their early days, laser cooling and atom trapping were envisioned as tech-
niques for producing a sample of nearly stationary atoms with negligible Doppler
shifts that could be used for precision spectroscopy. More recently, the topic has
evolved toward optical control of atomic motion in a broader sense, and has there-
fore exposed many new and interesting phenomena. The main topic of research in
optical control of atomic motion is now no longer the lowest possible steady-state
temperatures and the variety of cooling schemes that were of initial interest. In-
stead, the focus has shifted to the study of elementary processes, especially the
quantum mechanical description of the atomic motion.

The uniquely complex character of this subject stems from the internal struc-
ture of atoms that can be exploited so beautifully to manipulate their interactions
with light. This is accomplished using optical pumping and Raman transitions to
optically pump atoms into desired internal states that determine the magnitude
and nature of the electromagnetic forces on them. The quantum mechanical de-
scription of the atomic motion then means that the Hamiltonian must include

(147)
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the kinetic energy of the atomic center-of-mass motion, and that the total wave
functions must be composed of both internal and motional contributions.

2. Laser cooling

2.1. Classical view

From the beginning, theories of laser cooling recognized that dissipation
required some irreversible or non-adiabatic behavior. In the extremely simplified
but well-studied case of two-level atoms moving in a monochromatic standing wave
field, the dissipation is produced by spontaneous emission that provides relaxation
between the excited state le) and the ground state 1g) (in a two-level atom, the
polarization is irrelevant) [1]. In the spirit of the dressed atom picture [2], the
eigenstates of the Hamiltonian are intensity-dependent mixtures of Ig) and le),
and atoms moving through an inhomogeneous optical field (e.g., a standing wave)
must undergo periodic variation of their internal states to remain in eigenstates
of the Hamiltonian. Without fast enough relaxation of the otherwise pure Rabi
oscillations, the atoms generally are not in eigenstates.

The required relaxation from spontaneous emission has a rate -y = 1/r,
where 7- is the excited state lifetime, and the spatial inhomogeneity of a standing
wave optical field occurs on the scale of A/2ir. Thus atomic speeds comparable
to A/27r-r _ -y/k result in non-adiabatic response of moving atoms in the field
variations they encounter. This can result in energy exchange with the field at
each scattering event, of magnitude corresponding approximately to the fraction
v/(7/k) of the light shift. For velocities v «< y/k, the internal states can follow
the changing field seen by the moving atoms, and the rate of energy exchange
is much smaller. For a laser field tuned below an atomic transition, the energy
flow is from the atoms into the field, resulting in cooling of the atomic sample.
When such laser cooling occurs in pairs of counterpropagating beams, it is called
optical molasses, and there are many descriptions of this in terms of the different
Doppler shifts seen by the moving atoms [3-5]. The non-adiabatic response, and
subsequent energy loss, is then described as a viscous damping force whose nature
can be calculated in several ways [1, 6, 7].

Real atoms have more than two levels, and relaxation to the local eigen-
states of such atoms moving in an inhomogeneous optical field can be far more
complicated. For example, in a three-dimensional (3D) light field that necessarily
has polarization gradients, there can be several relaxation rates among the vari-
ous Zeeman sublevels of the ground state, and these can be much slower than 7.
Thus there can be significant energy exchange even at velocities much slower than
7 /k, corresponding to laser cooling to much lower temperatures. Such polarization
gradient cooling, and other types of related "Sisyphus" mechanisms that routinely
cool atomic vapors to the pK regime, have been described in several places [8-12].

2.2. Quantum view

Up to now, the motion of atoms has been described in a completely clas-
sical way, assuming they had arbitrary position and momentum that could be
known simultaneously. The mechanism of energy exchange in laser cooling, as well
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as competition with and limits to that mechanism that determine the ultimate

achievable temperatures, depend upon the location of the individual atoms in the

spatially varying light field. Such a classical picture of atoms moving as point par-

ticles without regard to their overall wave-like character has been of great use,

but when atoms are moving sufficiently slowly that their de Broglie wavelength

precludes their localization to w. A/2ir, these descriptions fail and a quantum me-

chanical description is required. Such conditions are routinely achieved in modern

laser cooling experiments.
It becomes necessary to consider atomic position and motion as quantum

mechanical variables, replete with wave packet spreading and non-commuting op-

erators. A de Broglie wave field occupies allowed states of a region of space that

may have a spatially varying potential that derives from the light shift and which

defines modes of the field. These may be eigenstates in the optical potentials cre-

ated by the laser fields. Laser cooling then becomes a process of optically pumping

atoms to discrete quantum states of lower kinetic energy [13], dissipating the lost

energy by fluorescence into the radiation field. In a standing wave, for example,

the light shift produces an array of potential wells and the atoms' quantum states

of motion are simply the bound states within these wells as shown in Fig. 1. Laser

cooling is then the optical pumping to the lower states as shown [13].

"jL/,//•••//"////////////////////////

w

0 X/4 X/!2 SX/4
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Fig. 1. Energy levels of atoms moving in the periodic potential of the light shift in

a standing wave. There are discrete bound states deep in the wells that broaden at

higher energy, and become bands separated by forbidden energies above the tops of

the wells. Under conditions appropriate to laser cooling, optical pumping among these

states favors populating the lowest ones as indicated schematically by the arrows (figure

adapted from [13]).
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In analogy with optics, occupation of particular modes of this de Broglie
field can result in spatial 6r temporal interference, and then the entire field of
atom interferometry emerges as a subset of this way of thinking. Atoms can only
"interfere" if they occupy both the same internal and external states, and thus are
truly indistinguishable. "Parts of an atom", i.e., atoms described by a superposition
of eigenstates, certainly may have some overlap and can thus partially interfere.
Of course, atoms at ordinary thermal velocities are distributed over thousands of
quantum states of motion, so laser cooling is intimately involved in these studies.
One important difference between this and the optical case arises because unlike
photons, atoms are not all bosons. There will be cases where only a single atom
can occupy a particular mode of the de Broglie wave field.

le>W 3

2

~energy

319> 2
01

Fig. 2. Kinetic energies accessible to atoms moving freely (no spatially varying light
shift) for both ground and excited states, with the integer momentum values marked as
lines. All these KE states are doubly degenerate in ID except for p = 0.

The quantum description of atomic motion requires that the energy of such
motion be included in the Hamiltonian. Such a Hamiltonian will have eigenstates
of not only the usual internal energy levels and the atom-laser interaction that
connects them, but also of the kinetic energy (KE) operator P 2/2M. These eigen-
states will therefore be labelled by quantum numbers of the atomic states as well
as the center of mass momentum p. For example, an atom in the ground state,
Ig; p), has energy E. +p 2 /2M which can take on a range of values. Figure 2 shows
the continuum of KE values for both ground and excited states, with the integer
momentum values marked as lines. All these KE states are doubly degenerate in
1D except for p = 0.

3. Shedding new light on dark states

3.1. Introduction to dark states

One of the most important requirements for successful experiments in
de Broglie wave optics is the preservation of atomic coherence against destruc-
tion by spontaneous emission (SE). Recently there have been a few pioneering
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experiments where SE has been carefully avoided by detuning the light frequency
wt so very far from atomic resonance Wa that the rate of SE becomes negligibly
small: only a few atoms are lost from the experiment because of SE. Thus atoms
are kept "in the dark".

Using large values of 6 = wt - wa, is not the only way to inhibit SE; a far
more interesting way involves inherently "dark states", atomic states that can-
not be excited by the light field. Some atomic states are trivially dark, that is,
they cannot be excited because the light has the wrong frequency or polarization.
The more interesting cases are superposition states created by coherent optical
Raman coupling [14, 15]. A very special case are those superpositions whose ex-
citable component vanishes exactly when their external (de Broglie wave) states
are characterized by a particular momentum. Such velocity selective coherent pop-
ulation trapping (VSCPT) has been a subject of considerable interest since its first
demonstration in 1988 [16-18]. VSCPT enables arbitrarily narrow momentum dis-
tributions and hence arbitrarily large delocalization for atoms in the dark states.

3.2. The two-level atom case

To see how the quantization of atomic motion allows the existence of such a
velocity selective dark state, we consider the states of a two-level atom with single
internal ground and excited levels, 1g; p) and le; p). Two ground eigenstates 1g; P)
and Ig; p') are generally not coupled to one another by an optical field except in
certain cases. For example, in oppositely propagating light beams (1D) there can
be absorption-stimulated emission cycles that connect Ig; p) to itself or to 1g; p±2),
depending on whether the stimulated emission is induced by the beam that excited
the atom or by the other one (momentum is measured in units of hk).

Ie;0> IC;0>

Ig;-l> Ig;+l> I-> 1+>

Fig. 3. Schematic diagram of transformation of eigenfunctions from the internal atomic
states Ig; p) coupled by Raman transitions to the coupled basis 1J).

In the first case, the states of the atom and field are left unchanged, but
the interaction shifts the internal atomic energy levels, thereby producing the
light shift. In the second case, the initial and final KE of the atom differ by
-4(p ± 1)/2M (the energy of the light field is unchanged by the interaction),
so energy conservation requires p = :F1. Thus energy conservation corresponds to
Raman resonance between the distinct states 1g; -1) and 1g; +1), and is therefore
velocity selective. The coupling of these two degenerate stationary states by the
light field results in the new ground eigenstates of the (optical + KE) Hamiltonian
given by (see Fig. 3)

1._) _ 1g; -1) ± Ig; +1)(
,12-(1
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Excitation of the states 1±) given in Eq. (1) to le; 0) is proportional to the square
of the radial matrix element

i(e; 0 )1i+2 =I(e; Ojlg; -1) ± (e; OlrIg; +1)12 (2)
2

and this vanishes for I-) because the two terms on the right side of Eq. (2) are
equal since r does not operate on the external momentum of the atom (dashed line
of Fig. 3). Excitation of 1-) to le; ±2) is off resonance because its energy is higher
by 4hwr =_ 4h 2k2 /2M so that the required frequency is higher than to le; 0). The
detuning is thus 8wr/7 - 8c halfwidths, and for e .t 0.5-1, this is large enough so
that the excitation rate is small, making I-) quite dark. Excitation to any state
of p' 0 0, ±2 violates conservation of momentum and is forbidden. Atoms are
therefore optically pumped into the dark state I-) where they stay trapped, and
since their momentum components are fixed, the result is VSCPT [17].

A useful view of this dark state arises by considering that its components
1g; ±1) have well defined momentum, and are therefore completely delocalized.
Such oppositely travelling waves of the same frequency form a standing de Broglie
wave. The fixed spatial phase of this wave relative to the optical standing wave re-
sults in the vanishing of the spatial integral of the dipole transition matrix element
so that the state cannot be excited.

This view can also help to understand the consequences of p not exactly
equal to -1. In this case, the two components of the standing wave do not have
exactly the same energy, and so their relative phase evolves at the rate of their
energy difference. The de Broglie wave "walks" at a corresponding velocity, and
has soon shifted its phase relative to the optical standing wave by 7r/4. Thus its
transition matrix element no longer vanishes, and the "evolved" state is readily
excited by the standing wave laser field.

3.3. Bragg reflection

A different view of VSCPT emerges by considering more carefully the motion
of such dark state atoms in the spatially periodic field of oppositely propagating
light beams [19]. As Fig. 4 shows, dark state atoms travelling with longitudinal

"1•optical

Swave fronts.

Fig. 4. The trajectory of an atom in the dark state makes an angle € with the wave
front planes. Its transverse component is one recoil.
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momentum pt make an angle 0 with the optical wave fronts, and their de Broglie
wavelength is

Adn h 2r 3)ý ýdB -- - -k- i

since sin € 1/ pi + 1 (momentum is in units of hk). Thus

AdB = 2d sin 9, (4)

where d E_ A/2 is the spatial periodicity of the light field. Equation (4) is exactly
the equation for Bragg diffraction, but its interpretation in this context is indeed
most astounding [19]. Here the de Broglie "matter" wave is Bragg diffracted by
the spatially periodic optical field: matter and field have been interchanged from
the usual case of Bragg diffraction of an electromagnetic field by crystalline planes
of atoms!

In retrospect, if we view ordinary Bragg diffraction as arising from multi-
-center scattering of radiation by atoms at each lattice site, then propagation of the
diffracted wave can occur only in the preferred direction defined by Eq. (4). Such
waves are the only ones not diffusively scattered by the lattice. The equivalent
view of atoms in dark states is simply that the de Broglie wave fields propagate
without scattering (i.e., no SE) in the light field only when the atoms are indeed
in dark states [19]. Such an effect has recently been observed in metastable Ar
atoms [20].

Such Bragg reflection has a rather simple intuitive explanation. In the ab-
sence of SE, atoms cannot exchange energy with the light field since its energy is
unchanged by stimulated emission processes (the frequency is always we). Therefore
atoms entering the light field with momentum Pt can leave with only +Pt. Their
paths are thus either unaltered or Bragg reflected, and either process preserves
coherence. Beam splitting simply leaves atoms in a superposition of degenerate
states with +pt and -Pt.

3.4. High velocity dark states

The discussion above has focussed on the case of dark states composed of
superpositions that arise from a two-photon coupling between two states whose
momenta differ by ±2. It is also possible to construct analogous dark states with
2n-photon coupling between two states whose momenta differ by ±2n. Of course,
their energies are larger, but as long as the components have equal energies, that
is, their opposite momenta have equal magnitude, the states are stationary and
remain dark. For n = 2, the two momentum states having p = ±2 have momenta
that differ by 4, and so a four-photon R.aman transition is required to conserve
momentum, corresponding to a higher order process in VSCPT.

Experimentally we note that population always accumulates in the state -)

because it is dark, producing peaks in the momentum distribution at p = ±1.
But there is also population accumulated in the analogous superposition states
coupled by four photons that produce peaks in the momentum distribution at
p = 4-2, resulting in four peaks as shown in Fig. 5. Both of these long-lived states
are populated by a random walk in momentum space, and each of them has a
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0 = 30°

-4 L2.

Velocity (recoils)

Fig. 5. Measured He* velocity distributions after 20 ps interaction time for I
1.6 mW/cm2 and zero detuning with counterpropagating beams linearly polarized
at 300. The four-peaked structure is quite evident.

long enough lifetime to be readily observable in an experiment with appropriate
interaction time. Thus we see four very narrow (FWHM < 1) peaks in the measured
momentum distribution of Fig. 5 [21]. From the point of view of Bragg reflection
as described above in Sec. 3.3 above, this simply corresponds to the next higher
order, found by replacing the right hand side of Eq. (4) by 2ndsinq¢ with n = 2.
This is the only example we know of using higher order non-linear optical effects
to produce dark states and laser cooling.

4. Real (multilevel) atoms

4.1. The J = 1 #= 1 transition

Real atoms have multiple internal levels that include the magnetic, hfs, and
other sublevels, and thus the strength of their optical interactions depends on the
light polarization. A particularly beautiful example of dark states appears in the
J = 1 <* 1 transition, where the optical selection rules associated with Mj produce
an analog of the hypothetical state I-) that is perfectly dark [16-18].

When a single circularly polarized light beam drives a J = 1 ý= 1 transition
with AMj = +1, the state Mj = +1 is dark, and similarly for AMj = -1 and
Mj = -1 with the opposite circular polarization. (Choosing the z-axis parallel
to the beam's k vector allows only AM = ±1 transitions because the light has
no electric field component parallel to k.) Because the transition Mj = 0 --+ 0
is forbidden by the selection rules, the Mj = 0 level is then emptied by optical
pumping, and the only populated ground states are Mj = ±1 and the excited
state Mi = 0, forming "A" system of levels.

The velocity-dependent dark state can be visualized by considering that a
single beam travelling in the +z direction excites the ground state IM1 = -1; p-1)
only to a single excited state jMj = 0;p) as shown in Fig. 6 (the excited state
Mj- = O;p - 2) is not coupled by a beam travelling in the +z direction). A

beam of opposite circular polarization travelling in the opposite direction excites
IMj = +l;p' + 1) only to a single excited state jMj = O;p'). The two excited
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Mj 0 0 0

MJ-1 +1

Fig. 6. The coupling between momentum states connected by oppositely circularly
polarized light beams travelling in opposite directions. The internal atomic states are
indicated by their Mj values, and in this J = 1 ý* 1 transition, they are entangled with
the momentum states. The A system consists of the set of three levels coupled by the
two arrows.

states are the same only for p = p' = 0, and the subsequent mixing of the ground
states forms two new superposition states, as in Sec. 3.2. These states are given
by

S- I + 1, +1) + 1I - 1z,-5)

where the quantum numbers in the kets are IMj,p).

4.2. Entanglement

One of the most interesting aspects of dark state physics arises from the
entanglement of motional and internal states that can be produced. The states
represented in Eq. (5) are called entangled states because they satisfy the very
special criterion that there exists no basis set in which the states could be written
as a product of sums. This leads to the opportunity for fundamental studies at
the heart of quantum mechanics, such as quantum communication, computing,
cryptography, and teleportation.

Although there have been many recent studies of these topics using photons
as the primary quantum objects, the use of atoms has many advantages. Atomic
dark states have special advantages. First, the number state can be controlled
with minimal doubt, .nlike optical fields whose Fock states always have significant
uncertainty. Perhaps more important, the number of Hilbert spaces, as well as their
dimensionality, can each be larger than two.

As an illustration of how these entangled states could enable quantum com-
puting, we consider the elementary functional unit of a quantum computer, the
controlled NOT gate (CN). A two-qubit CN gate, which can be combined with
rotations to enable any computational operation, can be realized directly using the
states IMj,p). By simply applying a focused optical Raman 7r-pulse to one of the
two separated VSCPT beams, say I + 1, +1), the following CN truth table results:

A=[-1, -1) -- A' = I-1, -1)
B= +1, -1) - B'=1+1, -1)
C =[+ 1, +1) C' =I- 1, +1)
D= 1, +1).-- D'=+I1, +1)
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Clearly the value of p controls the inversion of Mj. This neutral atomic beam
version is complementary to a quantum CN gate realized with trapped ions, while
retaining the relatively high isolation from environmental decoherence (the mo-
mentum states are naturally very robust, and the internal states are composed
entirely of ground levels).

Note that the Raman 7r-pulse converts the perfectly entangled state
(A + C)/Vf2 into the product state (A' + C')/v/2 (= (A + D)/VI ), and vice
versa. That is, the state I-) given in Eq. (5) is converted into

IM1 = -1) ® (Op = +1) + IP = -1)) (6)

Because the states A and C are orthogonal, overlapping them would produce
interference fringes of visibility equal to zero because their superposition is a per-
fectly entangled state [22], whereas overlapping states A' with 6' would produce
fringes of visibility equal to unity because their sum can be written as a simple
product as in Eq. (6).

5. Conclusions and summary

Advances in laser cooling have imposed a new view of atomic motion that
constitutes de Broglie wave optics. Optical pumping of atoms among ,*ie momen-
tum states accessible to these de Broglie waves shares many commoji features
with optical pumping among internal atomic states. Especially interesting fea-
tures arise when entangled superpositions of momentum and internal states result
in dark states that can be readily observed because of their long lives.

This paper is not a report of work done solely by the author, but rather
by his students and associates. The work described here was done principally by
Marya Doery, Mark Widmer, Mary-Jo Bellanca, Wally Buell, Edgar Vredenbregt,
and Tom Bergeman. The research was supported by the NSF and the ONR.
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MEASUREMENT OF WAVE FIELDS

I.A. WALMSLEY, L. WAXER AND C. IACONIS

Institute of Optics, University of Rochester, Rochester, NY 14627, USA

Wave fields play a central role in both classical and quantum mechanics.
Generally applicable methods for the characterization of (scalar) fields are
outlined, and illustrated by experiment and simulation.

PACS numbers: 03.65.Bz, 42.50.Vk, 33.80.-b, 42.50.Dv

1. Introduction

Wave fields are the fundamental entities in bofh classical electrodynamics
and quantum mechanics. The similarity of their governing dynamical equations
suggests that similar strategies may be used to measure both classical and quantum
fields. Indeed, numerous experiments in the recent past have demonstrated just
this. But it is not this similarity alone that makes it important to consider their
measr.rement within a single context, it is the very notion of manipulation of
quantum systems (the idea of quantum state preparation or control) that demands

it. Consider, for example the generation of a single photon "on demand", using
the prescription, say, of Eberly and Law's "photon pistol" [1]. What does this
mean, precisely? Nothing more than the specification of the quantum state of the
field (a Fock state with eigenvalue unity) and a classical state of the field (the
temporal mode in which the excitation is generated). Both pieces of information
are necessary to appropriately specify what one means by the time of production
of a photon. This problem resurfaces in all quantum measurement problems -
one needs to know both the basis in which one is making the measurement and
the degree of freedom (or the mode) for which the measurement is defined.

To the extent that quantum state measurement is the same as state prepa-
ration, it might be argued that there is no need to consider state measurement
procedures separately. Of course, in practice most measurement schemes end up
being of the demolition variety - one infers from the detected signal what the
state must have been at the detector before a signal was registered. This is quite a
different situation than the ideal envisioned by von Neumann. But this aside, the
situation may perhaps be likened to one of quality control, if one may adopt the
industrial metaphor used by the state engineers. That is, the consumer needs to
determine whether she has been sold the quantum system that meets her needs,
in the state that she ordered. Thus she needs both a classical and a quantum field
measurement apparatus. Of course in practice one must order (and measure) an
ensemble of identically prepared states, and then use the apparatus to determine

(159)
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not only the quantum state and mode, but also the purity of the ensemble. Since
presumably one would wish also to do an experiment with the purchased state,
then the acquisition of two identical ensembles would, of course, be necessary,
along with some "fair sampling" assumption consistent with good quality control.

2. General strategies for wave field measurement

2.1. Quantum and classical measurements

The quantities to be determined in the first instance, are, in the case of
classical fields, the scalar optical field E(x, t) (as a function of one of these variables
only, at the moment) and in the case of quantum matter fields, the wave function
@(x) (the dynamical dependence of this function being understood). In the case
of the radiation field, the argument of the wave function is considered to be a field
quadrature. In fact the measurements to be described can all be used to determine
the purity of the state or the coherence of the field, in which case one seeks the
density matrix (in position or momentum basis) or the two-point or two-time
correlation function. We consider only fields or particles that are well localized, so
that it is rather simple to define an ensemble for which the correlations may be
evaluated. Thus the two-point correlation function for the electric field (taken to
be time-stationary) can be defined as

F(x, x') =< E*(x)E(xI) >, (1)
where the average is taken over a set of realizations of the experiment, repeated
many times. This definition is analogous to the definition of the density matrix,
which involves an average over all pure states that the system may potentially
occupy. If one does not know a priori that the field is coherent or the state is
pure, it is necessary to measure p(x, x') or F(x, x') and then to perform a test for
coherence or purity. The test consists of assessing whether the function factorizes.
That is, construct the parameter p, defined as

0 f.. dxft dx'lp(x,x')12OiI.= [f+• dxp(xx)] <1. (2)

Then, if p 1 the field is coherent, or the state is pure.
The similarity of the measurement problem in the case of (one-particle) quan-

tum fields and the optical field arises not only because they obey similar dynam-
ical equations, and can be represented by continuous complex functions of real
variables, but also because they can be observed using only "square-law" type
detectors*. A general measurement strategy for both can thus be worked out in
the context of a strategy for either. We therefore consider the case of idealized
linear quantum measurements. The analogous formulation for classical wave fields
is related to the theory of optimal signal detection. There are two manipulations
that one may perform on a quantum system; a unitary evolution Ue where 0 de-
notes a parameter, and a measurement HtA, where A denotes the outcome of the
measurement. This is defined by

*For THz pulses it is possible to measure the dynamical eacetric field directly, so that this

analogy does not hold. In the optical regime, however, the situation is quite different.
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F,= JdA'f(AIAt)IA')(A'I, (3)

where f 2 (AIA') is the conditional probability that the measurement will yield the
outcome A if the input was definitely in state IA').

According to Braginsky and Khalili [2] sequential measurements of two ob-
servables A and A' are defined as linear if their commutator is a complex number.
In the case of a sequence of unitary transformations (labeled by the set of param-

eters {fO }) and measurements of the set of observables }, the probability that

the result will be a set of real numbers { Ai } is

P({Ai};{9j}j)= =Tr(jflHALjO,~HhjftJtifl. (4)
i:j .t,3

For a single, ontinuous degree of freedom, the probability may be written as an
overlap integral of the density matrix (taken here in the position representation)
as

J+OJ 
+00

P({Ai}; {Oj}) = dx dx'p(x, x')F(x, x'; {Af}, {Ai }). (5)
-00

where the propensity function F(x, x'; {A} , {O1 }) depends on the meter and trans-
formation parameters.

An entirely analogous expression may be derived for the photodetector signal
at the output of a sequence of linear filters, at the input of which is an electric
field specified by its correlation function (F(x, x') for the case of time-stationary
fields and filters, or F(t, t') for space-shift invariant fields and filters). In this case
the analog of a meter (used for making a measurement) is an amplitude filter, and
that of a unitary evolution is a phase-only filter. Then, denoting the filter transfer
function parameters by Xi and Oj leads to

f+.0 +00
S({Xi} ; {}) = dx dx'F(x, x')F(x, x'; {Xj} , {¢0}). (6)

We may. ask what are the minimal conditions for reconstructing this cor-
relation function or density matrix? It is clear that any measurement apparatus
must be capable of completely exploring the two-dimensional space of these func-
tions even if one only wishes to measure a one-dimensional electric field or wave
function. The simplest methods, therefore, require two linear operations. These
take two forms, either in series, or in parallel. If one considers both meters and
unitary-transformers two-port devices (the field enters at one port and exits in
a modified form at the other) then the in-series arrangements consist only of
two-ports. Any in-parallel arrangement must, though, include a way to divide the
input field into parts, and must therefore contain at least one ancillary four-port
device, such as a beam-splitter. The unused input port of such devices plays an im-
portant role in many quantum measurement apparati, but none at all in classical
measurements.

In-series measurements consist of a meter or a unitary transformation, fol-
lowed by a meter, as shown in Fig. la. In the case of two meters in sequence, it
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(a) Ta

(b) T 1

Test

(C)

Fig. 1. The four minimal-operation in-series arrangements, and two in-parallel ar-
rangements for field or state measurement for a single degree of freedom. Test
denotes the unknown input field. H1A denotes a measurement and U0 a unitary
transformation of the field. (a) spectrographic (two-meter) (b) tomographic (unitary
transform-meter) (c) test-plus reference. (d) self-referencing. In these figures "Ref" de-
notes a well-characterized reference field, and "vac" an empty input.

is straightforward to show that the meters must register complementary observ-
ables if the measured probability density is to be dependent on the phase of the
density matrix. For the case of a unitary transformation and a meter, it is clear
from Eq. (4) by cyclic permutation under the trace that the unitary operation
must precede the meter, otherwise the probability density will be independent of
the parameter characterizing the transformation.

The inversion method for these two schemes are quite different. The two-di-
mensional function returned by the two-meter method is a particular phase-space
representation of the input state. If the first filter in the arrangement has a Gaus-
sian conditional probability, and the second is precise (i.6. its conditional probabil-
ity is a delta function) then the measured function is the Q-function, or its analog
for a classical field. The inversion to the density matrix or correlation function is
then via deconvolution. This class of measurement is termed spectrographic, since
it involves characterizing the field by a spectrogram or a sonogram.

The method involving a unitary transform and a meter, shown in Fig. 1b,
returns a set of one-dimensional positive functions (position or momentum distri-
butions, for example) that depend also on the setting of the parameter(s) associ-
ated with the transformation. It is possible to invert this set of functions for any
type of transformation [3], but it is particularly straightforward for transforma-
tions that are equivalent to dynamical evolution in a harmonic potential. In this
case the transformation is characterized by a single parameter 0 that ranges from
-7r to +-r. For a sufficiently large number of, say, position distributions, each with

a different value of 0 over this range, the discrete inverse Radon transform that
is well known from computer-assisted tomography may be used to reconstruct the
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Wigner distribution of the field [4]. From this function it is straightforward to
obtain the density matrix via a Fourier transform. This class of measurement is
therefore labeled tomographic.

The second class of measurement involves two filters placed in parallel chan-
nels at the output ports of a four-port. Or two filters simultaneously in the two
input channels of a second four port, at one of whose output ports is a meter.
Schematic illustrations of these are shown in Figs. 1c and d. Both of these classes
of measurement are essentially interferometric, and determine phase by compar-
ison with a second field. The difference is that the first type of apparati use a
known reference field for comparison, whereas the second type are self-referencing.

For classical fields, it is well known that the real part of the correlation func-
tion is simply related to the fringe pattern observed in two-beam interferograms.
Even so, interferometry is not commonly used in measurements for coherence,
and it has not yet been applied at all to the measurement of the state of quan-
tum matter waves. On the other hand, the optical balanced homodyne detector
may be thought of as an interferometer, so that the technique of homodyne tomo-
graphy for characterizing quantum optical fields can be considered as either an
in-series (if one takes the detector to measure the quadrature amplitudes directly)
or in-parallel devices.

An important point in interferometric measurements is that there is always
a second input field, whether or not it is explicitly manipulated by the experi-
menter. For example, in test-plus-reference type interferometers, Fig. ic, the two
input ports of the four-port are occupied by the test and reference fields. But in
the self-referencing type (Fig. 1d) the second input port sees only the vacuum
or no-particle state. The presence of this field may or may not compromise the
precision of the measurement, but its presence must always be taken into account.

2.2. Phase-space representations of in-series measurements

Spectrographic and tomographic measurements can be clearly distinguished
by their phase-space representations. Such spaces can be defined for both quantum
and classical fields, and are based on the notion of conjugate variables. For exam-
ple, the quantum oscillator phase-space variables are position and momentum,
which are complementary in the sense that the commutator of the corresponding
observables is a complex number, and the variance of the two observables taken in
any state of the oscillator is greater than or equal to h. The phase-space of a clas-
sical field can be thought of as also involving two classically conjugate variables,
corresponding to two representations of the field. In the case of the optical field,
these might be position and wave vector or time and frequency. In both cases the
products of the variances of these quantities for any field is greater than or equal
to 27r according to Fourier's theorem - one may think of such Fourier pairs as
"classically incompatible observables".

Thus for any complex field that is a function of a real variable, ((X), it is
possible to define a Wigner representation of the correlation function of the field,

W~ ,7) = o dxe'x, r(c - 2 +c+ ). (7)
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For example, a temporally localized optical field may be represented by a.Wigner
function of time and frequency in the chronocyclic phase space. This representation
has all the analytic properties associated with the more familiar quantum Wigner
function, including the property that it may be negative. Negativity in this context
arises from the interference of classical waves rather than quantum waves, but
nonetheless provides information about the coherence of the underlying field [5].

The output of spectrographic measurement apparati is a two-dimensional
function of ý and 7 (say, position and momentum, or time and frequency) that is
related to the input field according to

P(7, 7) = f d' J dq'W(ý',.77')H(ý - ý', 71- 7'). (8)

The function H(ý', r7) is a phase-space "window" function through which one may
gaze upon the input field. It is related to the propensity function defined by Eq. (5)
by a transformation similar to Eq. (7). Since we assumed linear measurements (or
filtering, in the case of classical fields) this function is a property of the apparatus
alone. The window function occupies a minimum phase space area of h in the
quantum case, or 27r in the classical case, but only attains this minimum when the
first measurement is imprecise and the second precise. It is easy to see why this
should be so from a simple example, say the measurement of a short optical pulse.
In the frequency-resolved optical gating (FROG) spectrographic method the first
meter is a spectrometer or frequency meter, and the second a fast shutter, or time
gate. It is obvious that a precise initial measurement of frequency will discard all
information about the arrival time of the field, and thus render the shutter useless.
Thus intuitively one might expect that the optimum situation is arrived at if the
spectral filter bandwidth is comparable to the pulse spectral width and the shutter
opening is very rapid. This turns out to be the caset.

A cartoon of a spectrographic window function is shown in Fig. 2a. It is
a well-localized entity in both transform variables, and moves about the phase

Parameter adjustment

(a) translates windovfiunction (b)

0Parameter adjustment
rotates Window

4sr function

T1

Fig. 2. Phase-space representations of window functions for in-series arrangements,
(a) spectrographic. (b) tomographic.

tThe formalism behind noninterferometric pulse characterization routines as well as an ex-
tensive list of references is given in Ref. [6].
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space as the output variables 4 and rj change, corresponding, in our example, to
varying the time of opening of the shutter, and the tuning of the center of the
spectrometer passband. These devices act as meters for the classical field in the
sense that if one detects radiation having passed through the apparatus with a
particular setting of these parameters, then one infers that the radiation contained
that particular frequency during that particular time slot. The configuration space
version of this situation has been discussed in connection with the measurement
of spatially localized quantum wave functions by Raymer [7].

The output of tomographic measurement apparati are a set of one-dimensio-
nal functions of 4 that are parametrized by the transformation variable 0. In the
case of harmonic tomography, these are related to the input field via

P(4; 0) = d<' dq'W(ý', 71')T (ý', 7'; ý, 0). (9)

The function T (', 0; 4,9) is also a phase-space window function, but has quite a
different form than the spectrographic window function, as is shown in Fig. 2b. It
rotates in the phase space as 0 varies, and moves horizontally as 4 varies. Again
it is possible to show that the function occupies a minimum area of phase space
for precise measurements of 4, in which case the window function becomes a delta
function, and 0 is the angle between T (4',,'; 0,) = 6 (' sin 0 - 'cos 0 - 4) and
the 4 axis. Then the measured probability distributions are projections of the
Wigner function representing the field onto a set of rotated ý- i, axes. The princi-
ples of tomography for quantum systems based on these ideas has been reviewed
extensively by several authors [8, 9].

2.3. Coherence-space representations of in-parallel measurements

Interferometric measurements are more easily visualized in the space in which
the correlation function resides. We shall label this the "coherence space" of the
field. This might be a two-dimensional configuration space, in the case of P(x, x')
for example, or the two-dimensional momentum or wave vector space that is oc-

cupied by its conjugate function f(k, k'). These are two representations of the
same underlying entity, of course, analogous to the position and momentum repre-
sentations of the density matrix of a quantum particle. The relationship between
these two representations and the phase-space densities discussed in Sec. 2.2 fol-
lows straightforwardly from Eq. (7). The Wigner phase-space density is obtained
by a Fourier transform of the density matrix or correlation function in the C rep-
resentation, with respect to the difference of its two arguments. A second Fourier
transform, this time with respect to the average of its two arguments, yields the
sj-space representation of the density matrix or correlation function. This may also
be obtained by a second route in which the order of the Fourier transforms are
inverted; the intermediate function in this case is the characteristic function of the
Wigner distribution, which is known as the ambiguity function for classical fields.

There are two versions of the test-plus-reference interferometric measurement
for quantum fields. In the first, a coherent-state field enters the reference port, after
a phase shift characterized by the phase angle 9. A precise 4 measurement is made
at the output ports. This leads to the method of optical homodyne tomography.
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In the second method, a vacuum enters the second input port, and precise
and t7 measurements are made simultaneously at the two output ports. Since these
are incompatible observables, this arrangement corresponds to a spectrographic
type of measurement, as discussed by Stenholm [10].

Self-referencing methods in which one of the input ports sees a vacuum are
different. These correspond to looking at the region of coherence space occupied
by the field using a point-like window representing a precise measurement of the
77 or 4 observable, a unitary transformation, parametrized by a displacement by
amount 64 of one part of the field with respect to the other, and a phase-shift 0.
Because only a single observable is measured, there is no minimum area of phase
space that the window function must occupy. The correlation function or density
matrix can be constructed directly by a series of measurements of 4 for various
values of 64 and two values of 0 separated by 7r/2.

Given the direct access to the density matrix or correlation function that this
class of measurement affords, one may question why it is not used more often when
fields are to be characterized. The reason is that the unitary transformation and
meter must be functions of the same observable, and it is rare that one is able to
find both simple displacements and precise measurements in the same variable. For
example, in the case of an ultrashort optical pulse, it is simple to displace the pulse
in time - a delay line will do this - but impossible to measure the shape of the
resulting temporal interference pattern, which contains beat frequencies as large as
the optical frequency. On the other hand, it is easy to measure frequency precisely,
but difficult to make a wavelength displacement of any significant magnitude.

3. Spectrography and tomography

3.1. Emission tomography for quantum state reconstruction in matter
The principles of tomography may be applied to the measurement of any

material system in which the electronic and vibrational degrees of freedom are
coupled. For systems in which the major mechanism for the damping of the elec-
tronic degree of freedom is radiation, tomographic reconstruction of the vibrational
mode is accomplished from measurement of the spontaneous emission. An exam-
ple of this is the reconstruction of the quantum state of the vibrational mode of
a diatom in an excited electronic state from a measurement of its time-dependent
fluorescence spectrum.

A molecule may be excited into nonclassical vibrational states, notably quad-
rature squeezed states [11] or classically distinguishable coherent superposition
states [12, 13], by the application of a short optical pulse resonant with the elec-
tronic transition. Because the electronic and nuclear vibrational motions are cou-
pled, a change in the electronic configuration causes a change in the nuclear con-
figuration, so that when the molecule emits a photon and returns to the ground
electronic state, as shown in Fig. 3, the wavelength of the emitted photon will
depend on the location of the vibrational wave packet at the moment of emission.
Thus the vibrational mode is allowed to evolve freely in a known potential for a
certain time (this corresponds to the unitary evolution required for tomography)
following which its position distribution is measured with a certain precision from
the spectrum of spontaneous emission sampled at a given time [14].
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NJJ

CU

Internuclear Separation Internuclear Separation

Fig. 3. Schematic illustration of the connection between quasi-instantaneous emission
spectrum and wave packet position distribution for a molecular vibrational mode. A
photon emitted by the molecule when the vibrational wave packet is at the outer turning
point has a longer wavelength (black column) than one emitted when the packet is near
the potential minimum (gray column).

These simple physical ideas may be put on a firmer footing using the notion
of a time-dependent spectrum [15] based on an empirical scheme [16]. For example,
in the case relevant to our experiments, the spontaneous radiation from a sam-
ple of molecules in the near-forward direction is sampled at some instant using a
nonlinear-optical time gate, open for duration F- 1 near a time T (which is refer-
enced to the creation time of the wave packet by a preceding pump pulse). The
spectrum of this temporal slice of fluorescence is then measured by a spectrometer
with passband centered at frequency 2, and with spectral resolution 7 [16]. Thus
the measured quantity is a two-parameter function S(1, T): the time-dependent
spectrum of spontaneous emission,

S(Q2, T) = K E Pnim E fknfkm exp(-iv•nmT)g(S 2 1 w )(S - w2'k), (10)
n~m k¢

where p,, is the vibrational density matrix in the excited electronic state 12)
and vnr is the difference of vibrational frequencies in this state. ft, contains the
details of the vibrational surfaces through the Franck-Condon factors. The unim-
portant constant K specifies the correct units of the spectrum. The function g is
determined by the details of the time-gate and spectrometer response functions,
and in our simple model is given by g(w) = exp [-w 2 /(4F 2 )]. It can be shown that
the time-dependent spectrum of Eq. (10) corresponds to projections of a rotated
phase-space density of the vibrational mode in the excited electronic state, with
the position mapped to emitted wavelength in a way that depends on the details
of the vibrational potentialst [14]. The phase-space density is a smoothed version
of the Wigner function, since there is an inherent uncertainty in the emission fre-
quency when a time-gate is used to sample the spectrum. For the case of haxmonic
vibrational potentials, the density can be obtained from the spectrum using the in-

t The desired information can also be determined by photoelectron spectroscopy, see Ref. [17].
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verse Radon transform [14]. But in general molecular vibrations are not harmonic,
so different inversion methods must be used to implement tomography.

A small, easily invertable linear system can be developed from Eq. (10). A
time series is obtained from the time-dependent spectrum by sampling. The time
series is a sampling of the truncated spectrum defined S' (S2, T) = S(S2, T) x G(T; r)
where G(T; r) is a sampling window of length r. The Fourier transform of this
series with respect to T is

S'(12, vi) = K •-'Pnm 21 fkfSmg(?2  
-w21k)g(v2 - ) - vnm). (11)

nm k

For a particular value of v, chosen typically to lie near a maximum of G(v-vnm),
there will be several Prim which contribute to S'(Q, v). It is possible to resolve
the contribution of each density matrix element to the time-series spectrum at fre-
quency v by forming a linear system consisting of a set of different time series, each
associated with different values of the frequency filter setting, 12. This system can
then be inverted to find the particular contributing density matrix elements [18].
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Fig. 4. Reconstruction of a classically distinguishable coherent superposition state for

an anharmonic vibrational mode, from a simulated time-dependent emission spectrum,
in the basis of eigenstates In), In) of the vibrational mode in the excited electronic state.
The upper histogram represents the modulus of the density matrix elements and lower
portion represents the errors between reconstructed and actual matrix elements.

To illustrate the efficacy of this method, Fig. 4 shows a simulated recon-
struction of the reduced density matrix for a molecular vibration in the AiE+
state of the sodium dimer, measured by its fluorescence to the X1Z+ state. The
method is quite robust, and is capable of reconstructing a complicated mesoscopic

Schr6dinger-cat state, simulated by superposing two quasi-coherent-state wave
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packets which are separated by one half a vibrational period. The mean vibra-
tional quantum number of each wave packet was set at I -= 9, and about 8 states
were populated around this quantum number. The temporal resolution was taken
to be 20% of the classical vibrational period (310 fs), or F - 0.0167 fs- 1 , and the
total sampling time was r = 23 ps, corresponding to the one-quarter fractional
revival period for this molecular state. In this case we used up to 13 different time
scans (each corresponding to a particular value of 0?). In order to ensure a stable
inversion, the values of SQ were chosen to be equally spaced across the fluorescence
spectrum of the molecular wave packets (i.e. in wavelength, between 630 nm and
810 nm corresponding to the wave packet classical turning points).

3.2. Chronocyclic spectrography for classical ultrashort optical pulse shape
reconstruction

Tomography has also been proposed as a method for the measurement of
the (classical) electric field of an ultrashort optical pulse§. It has not yet been
implemented experimentally, since, for technical reasons, it is much easier to make
the measurements using a spectrographic method. The most widely studied of the
spectrographic methods is FROG, but there are alternates, such as a version of
Treacy's dynamic spectrogram known as temporal analysis of spectral components
or TASC.

These two techniques measure two different types of spectrogram: based
on either resolving the spectrum of temporally filtered components, as in FROG
[20-23], or time-resolving each component of the pulse's spectrum as in TASC
[24, 25] or other methods [26]. The two permutations of spectrometer and time-gate
make up the two simplest experimental arrangements for spectrographic measure-
ment of pulsed optical fields.

The dynamic spectrogram was shown by Chilla and Martinez [25] to possess
a simple phase retrieval algorithm in the limit of precise frequency measurements.
A better estimate of the input pulse field, using an iterative phase-retrieval algo-
rithm, is available if the measurement is imprecise, however, and the full temporal
dependence of each spectral component is measured.

Our experimental demonstration of TASC measured the output of a conven-
tional Kerr-lens modelocked Ti:sapphire laser operating at 808.5 nm, producing
pulses 80-90 fs in duration, with a spectral FWHM of 11.8 nm. The pulses passed
through an optical isolator before being measured. This type of source has also
been measured using FROG [27].

The apparatus, shown schematically in Fig. 5a was a modified Michelson
interferometer, in one arm of which was a quasi-zero-dispersion grating spectro-
meter, with adjustable passband center frequency w,. In the reference arm, the
input pulse was reflected by a corner cube and a plane mirror. The corner cube was
moveable to provide the variable temporal delay r. These two pulses are combined
in a non-collinear geometry onto a 300-[Lm-thick nonlinear crystal, resulting in
second-harmonic generation (SHG) which is detected by a photomultiplier tube
(PMT). The nonlinear optical interaction of SHG forms the time gate for the

§ For an introduction to pulse shape measurement methods see Ref. [19].
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Fig. 5. (a) Apparatus for the characterization of an ultrashort optical pulse via TASC.
(See text for description.) (b) Experimentally measured spectrogram measured using
the apparatus of (a).

spectrally filtered pulse from the other arm. The spectrogram is obtained from the
resulting cross-correlations, which are recorded as a function of (2 and T.

Figure 5b shows the spectrogram recorded with spectrometer resolution of
one-tenth the spectral bandwidth of the input pulse. The spectrogram displays a
slight negative chirp, arising primarily from the residual chirp in the spectral filter
combined with the pulse's phase structure due to the dispersion of the optical
isolator. This intuitive spectrographic representation of the pulse is a feature that
TASC shares with polarization-gate-FROG, which uses a third-order nonlinearity.

The extraction of the input spectral field ti 0 (w) from the TASC spectrogram
involves a two-dimensional phase retrieval problem, which is well known to yield
unique solutions [20]. We apply an iterative algorithm based on the method of
generalized projection similar to that of FROG [28] to perform the two-dimensional
phase retrieval [24].

The amplitude and phase of the pulse that are reconstructed from the sono-
gram exhibit the correct phase structure expected from the passage of a nominally
80 fs transform-limited pulse from the Ti:sapphire laser through the dispersive
optical isolator.

4. Interferometry

4.1. Self-referencing interferometry for characterizing the spatial coherence
of classical optical fields

It is well known that the real part of I'(x, x') is simply related to the fringe
pattern observed in two-beam interferograms. Despite this, interferometric mea-
surements have been sparingly applied to the measurement of fields with an arbi-
trary correlation function [29-34].

It is possible, however, to construct an interferometer capable of measuring
the space-shift variant two-point correlation function for fields at a remote plane
with arbitrary spatial coherence in a simple, accurate and efficient manner [35].

The apparatus consists of a Sagnac interferometer, shown in Fig. 6a, con-
sisting of a polarization-insensitive nominally 50/50 beamsplitter and two mirrors.



Measurement of Wave Fields 171

((t) P a •

. A.

* a
: ; -4

a a 0.

-200 -100 0 100 200
t (qs)

Fig. 6. (a) Sagnac interferometer for the measurement of the two-point correlation
function of a time-stationary optical field. (See text for description.) (b) Magnitude
of the experimentally measured correlation function for a filamentary broad-area laser
diode.

A glass block mounted on a rotation stage is located in the common path al-
lowing the Sagnac to be operated as a lateral shearing interferometer for both
transverse coordinates. Also in the common-path region are first-order quarter-
and half-wave plates that are used for quadrature selection. The object fields are
imaged onto a detector array by a lens, which must be placed after the interfero-
meter so that phase structure due to the imaging optics does not appear in the
measured interferograms¶l. The field exiting the input port of the beamnsplitter is
sent to a detector array. This arrangement ensures that both clockwise (cw) and
counter-clockwise (ccw) fields experience one reflection from and one transmission
through the beamnsplitter, nulling the effect of deviations from 50% transmission
and allowing for polarization insensitive orientation of the beamnsplitter. The shear

¶Ilf the shear is not introduced in the object space of the imaging system, then the interfero-
grams exhibit tilt-like fringes perpendicular to the direction of shear that arise from the spherical
phase front that is imposed on the field by the lenses.
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is varied from 0 to 1 (as a fraction of the full field) in equal steps. The resulting
data consists of an array of numbers representing the measured intensity.

The two quadratures of 1(x, x') are determined by the following procedure.
The quarter- and half-wave plates are oriented such that their fast axes are parallel
to the object field polarization. In this orientation both cw and ccw fields travel
equal optical path lengths. The intensity at the detector array is

Idet(Y; s) = F(Y + 2'Y+ ) + F(Y - Y- ) + 2ReF(y + j,-j) (12)

where y is the position on the detector array, equal to the object field coordinate x
multiplied by the image magnification, and s is the shear. Measurement of Idet (y; s)
for all s directly yields a sample of ReF(x, x') by subtracting out the individual
intensities. Measurement of ImF(x, x') is accomplished by rotating the half-wave
plate by 45 degrees so that the cw and ccw propagating fields experience different
path lengths.

Measurement of two spatially separated Gaussian beams that were super-
posed with either fixed phases or random phases show that the two-point cor-
relation function can be reconstructed quite reliably, and the integral degree of
coherence p, defined in Eq. (4), evaluated. Note that p provides a simple measure
of beam quality, although a different one than the more usual M2 parameter. It
does not specify how close the beam is to a Gaussian, as does the latter value,
but rather, whether it is possible in principle (although not of course necessarily
in practice) to find an optical system that will produce a beam of size equal to the
diffraction limited spot size of a Gaussian beam.

We have used this technique to examine filamentation in the output of broad-
-area semiconductor lasers; an important problem for the design of high power
lasers of this type. Figure 6b shows the correlation function for the output of an
edge-emitting, AIGaAs, buried-heterostructure-type Fabry-Perot laser. The laser
was operated about two times above threshold. The intensity at the output facet
at this current was a four-peaked pattern, each peak centered at xi (i = 1- 4),
corresponding to four filaments being above threshold. The correlation function
reveals, however, that these filaments are not all coherent with one another. Evi-
dence for this is that the correlation function is close to zero in the regions near
(x3, xi) (i = 1, 2, 4). The implication of this is that there exists no optical system
that can transform this beam to a diffraction limited spot containing all of the
laser's output power. Also, it shows that the filamentation of the laser beam is
not necessarily due to a single mechanism. One might expect, for example, that if
self-focusing-induced modulation instability were responsible for the filamentation
then the degree of coherence of the filaments might depend only on xi - xj.

4.2. Self-referencing interferometry for characterizing classical ultrashort optical
pulses

Interferometric characterization of ultrashort optical pulses has been per-
formed primarily using the test-plus-reference geometry, in either the time do-
main [36], or the frequency domain, in which guise it is known as spectral inter-
ferometry [37-39].
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Although some self-referencing methods have been developed for time-domain
measurements, including the classic interferometric autocorrelation [40], and other
methods [26] these either provide only partial phase information or require unrea-
sonably precise temporal measurement. Precise spectral measurements are possi-
ble, though, and spectral shearing interferometry (SSI) [41, 42] is a self-referencing
interferometric method that takes advantage of the direct phase retrieval routine
offered by interferometry. It does require, however, shifting the two spectra with
respect to one another by several hundred GHz. This can be done quite simply
using upconversion.

The spectral interferogram of two pulses that are identical in all respects
with the exception that they are shifted (sheared) in frequency with respect to
one another, is given by the frequency domain analog of Eq. (12)

S(wo) = E(wo)1 + E(wo + 6w) 2+ 2 E(wo)E(wo + 6w)

x cos (#w(Wo + bw) - wL(•o) + wor), (13)
where r is the temporal delay between the two replicas.

(a) Object Plane

(b)

1/4 6plate

40
1/2 X plate

o o"
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Fig. 7. (a) Upconversion spectral shearing interferometer for measuring the field of
ultrashort optical pulses. (b) Phase and amplitude of an 80 fs-duration pulse from a
modelocked laser measured using SSI.

Our apparatus for generating such a pair is shown in Fig. 7a. A portion
of the pulse to be characterized is split off and directed through a Michelson
interferometer. The output from the Michelson is a pair of test pulses separated in
time by delay 7. This pair of pulses is mixed with a stretched replica of the input
pulse in a type-II nonlinear crystal (250 pm BBO). In the limit of large dispersion,
the stretched pulse stretcher is highly chirped with each frequency occurring at
a different time. Since the pulses in the test pair are delayed with respect to one
another by 7, each is upconverted with a different spectral slice of the stretched
pulse. For a stretched Gaussian pulse of temporal duration T and spectral width £2,
the spectral shear between the upconverted pair of test pulses is bw = rQs/T. It is
necessary that T > r so that the frequency of the chirped pulse does not change
over the duration of an individual unstretched test pulse. The resultant spectral
interferogram is recorded by a spectrometer.
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The phase reconstruction routine follows a procedure introduced by Takeda
et al. [43]. The recorded spectral interferogram is Fourier transformed with respect
to w, and all features at times near to and less than t = 0 are discarded. The
remaining signal for positive t is inverse transformed. After subtracting the carrier
frequency term wor from the resulting phase distribution we are left with the
relative phase, #, (wo + 6w) - 0, (wo), between each pair of frequency components
separated by 6w. (In the limit of small 6w this is approximately the group delay
at wo.)

Using the above apparatus and inversion procedure we reconstructed the
amplitude and phase of the pulses output from a Ti:sapphire oscillator. The test
pulses leaving the Michelson arrangement are separated by roughly 4 ps. The
dispersed pulse is stretched to 25 ps, roughly a factor of 300, such that a spectral
shear of 16% of the total pulse bandwidth is achieved and upconversion of the
test pulses with "continuous-wave slices" of the stretched pulse is assured. The
reconstructed pulse amplitude and phase in the time domain is shown in Fig. 7b.

4.3. Self-referencing interferometry for characterizing atomic wave functions

Shearing interferometry can also be used to measure the transverse compo-
nent of the wave function of the center of mass degree of freedom of an atom
moving in free space. Freyberger et al. [44] have recently proposed a method quite
similar to that described for optical fields in Sec. 4.1. Here we discuss an alternate
approach that makes use of shearing in momentum space rather than in configu-
ration space [45].

Phase adjust

• ;2 Wx 
ln

IiI
P.1 k=0

I 1 G rating P , 2 k
Region p+h 2  Detector

X1 )Lx2+2k Plane

Fig. 8. Double-grating lateral shearing interferometer for measuring the density matrix
of the transverse coordinate of free atoms. The Ai's are the wavelengths of the two
standing-wave light field diffraction gratings, whose relative phases are adjusted using
the mirrors Mi. Monoenergetic atoms with different transverse momenta area scattered
into the same direction (pxi + 2hki) and detected in the far-field at 4.

The set up is sketched in Fig. 8. It consists of a beam of atoms, width Ax
in their ground electronic states, with reasonable collimation, propagating in the
z-direction. It is incident upon two quasi-monochromatic standing wave light fields
with wave vectors in the +x directions. The fields differ in their wavelength, and
one has a phase adjustment that allows the nodes of the standing wave to be



Measurement of Wave Fields 175

shifted through one half wavelength. An array of hot-wire or other atom detectors
is situated in the far-field of the apparatus.

If the standing light waves are strongly detuned from the atomic resonance,
and the gratings, width ci, are taken to be thin, and if the two gratings are closely
spaced, so that there is no lateral spreading of the beam within the grating region
due to scattering or diffraction, then the wave function of the beam immediately
to the right of the second grating is

TI(x, z = C1 + C2) = /+(x, 0) = Ti(x)T 2 (x)!l1(x, 0), (14)

where Ti(x) is the grating (spatial) response function. Of course, the atom also
accumulates a phase 4i = Eri/h, where ri is the approximate time taken for the
atom to traverse the grating.

If the beam is then allowed to propagate in free space then the wave function
Tl(ý, z) at the detector plane, in the far-field of the gratings, is proportional to
the Fourier transform of the wave function immediately after the gratings. The
detected signal in the vicinity of the first-order scattered beam is approximately

s( ) = IA10 1 - 2ki, - +) - 2k 2 ,- - 2k 2

+2Re [e(02-0)Z (k• - 2k1, 2k2)]} (15)
P z g

This part of the signal depends on the momentum space correlation func-
tion of the initial state, and from it the momentum representation of the initial
density matrix can be reconstructed, even for mixed states. The requirement of
well-separated first-order diffraction sets a lower bound on the wave functions that
can plausibly be reconstructed using this technique. In particular the scattering
light beams ought to satisfy k1, k2 > 2ir/Ax.

A procedure for the complete reconstruction of this quantity follows from
Eq. (15), and is quite analogous to that described in Sec. 4.2 for the optical field.
The two quadratures of the density matrix are measured by adjusting the phase
between the two gratings to be first 0 then 7r/2. Simple estimates indicate that
this method should be experimentally feasible for sodium atoms moving at about
10 m/s, and having a divergence of less than 2.5 mrads, using two laser beams
tuned near the D lines, that may be detuned from one another by about 50 nm
while maintaining a relatively constant Rabi frequency.

5. Interferometric spectrography

5.1. Test-plus-reference interferometry for quantum state reconstruction
of ultrashort optical pulses

As an example of the importance of both classical and quantum field mea-
surements we discuss in this section a method for measuring the multimode quan-
tum state of a pulsed quantum optical field. The single mode problem has been
solved using optical homodyne tomography, (OHT) [4] and partial reconstruction
has been developed for the two-mode problem [46]. As Raymer has shown [48], a
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complete state reconstruction for even the two-mode problem using OHT is un-
pleasantly cumbersome. However, it is possible to reconstruct the Q-function of a
multimode field using a simple multi-detector apparatus, and using a much simpler
arrangement [48].

Consider a balanced test-plus-reference spectral interferometer, into which
the quantum (test) pulse and a classical (reference or local oscillator (LO)) pulse,
duration rp, enter. The spectra of the radiation at the two output ports of the
beamsplitter are detected by two multichannel detector arrays, and the difference
photocount numbers Ni are taken channel by channel from the array outputs. The
discrete Fourier transform of the No• is taken to yield a set of complex numbers
Nti [49]. The real and imaginary parts of this set of numbers are realizations of
the two quadratures of a set of temporal modes of the field, each displaced by a
time irp from the reference pulse. This procedure is followed on each shot, and the
statistics of the set Nti constructed. Then it can be shown that the probability
distribution of these numbers scaled by the LO field amplitude is proportional to
the joint Q-functicn for the set of temporal modes

P([Nt,]) = Q ( t[ = Re -; Yt, = Im ]), (16)

where Xti and Yti are the in-phase and in-quadrature field amplitudes for mode ti.
Note that the single or two mode statistics can be obtained by simply tracing
over the remaining modes. The total number of modes on which information is
simultaneously obtained is equal to the number of pixels (or resolution elements)
of the multichannel detectors.

Note that the spectral interferogram is sensitive only to the modulus of the
delay of the LO pulse from the test pulse. Thus there is an uncertainty as to
whether the detected photons came from a temporal mode that arrived at the de-
tector before the LO pulse or after it. This is analogous to the case in heterodyne
detection in which the measurement space is increased to include the image modes
of the test field. Shapiro and Wagner [50] have shown that this is equivalent to
making a joint measurement of the two quadratures of the signal mode simulta-
neously provided the image mode is in the vacuum, so that measurement of the
multimode Wigner function of the test field is not possible.

6. Conclusions
The similarity of detectors and dynamic equations for both quantum matter

waves and classical optical fields allows techniques developed for the characteriza-
tion of one to be easily translated to the characterization of the other. We have
illustrated this by several experimental and numerical examples. Note that both
characterization procedures are necessary when measuring the state of a quantum
field, since then one must first characterize the classical mode function in which the
quantum system exists. The important and emerging problem of quantum state
engineering in both matter and radiation will no doubt benefit from the ability to
measure fields of all types, although new methods need to be developed to tackle
the multimode problem in matter. Given the recent activity and progress in this
field, it is likely that such techniques will be available in the near future.

This work was supported by the National Science Foundation.
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Consider an initial state lying on a primary resonance island. The state

may tunnel into the chaotic sea surrounding it and further escape to infinity
via chaotic diffusion. Properties of transport in such a situation are studied

on an exemplary system - the hydrogen atom driven by microwaves. We
show that the combination of tunneling followed by chaotic diffusion leads to
peculiar large scale fluctuations of the AC Stark shift and ionization rates.
An appropriate random matrix model describes accurately these statistical

properties.

PACS numbers: 05.45.+b, 32.80.Rm, 42.50.Hz

1. Introduction

Typical textbook cases of tunneling (in one-dimensional systems) consider

quantum transport in situations when the classical transport between regions of
space separated by e.g. potential barriers is forbidden. In multidimensional sys-
tems, the situation becomes complicated. Classically, in two-dimensions, Kolmogo-
rov-Arnold-Moser (KAM) [1] tori provide strictly impenetrable borders for trans-

port separating the phase space into distinct regions of classical motiont. When
the classical phase space is of the mixed type - partially chaotic and partially

*Permanent address.

tIn higher-dimensional systems, classical Arnold diffusion provides another mechanism of
classical transport, a process which is, however, typically very slow [1].

(179)
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regular - composed of a chaotic sea and regular islands embedded in it, the clas-
sical transport between the islands and the sea is forbidden. Semiclassically, one
can associate wave functions with distinct regions of phase space [2], the residual
coupling between them will be due to quantum tunneling process. One can then
consider the tunneling between two islands mediated by the classical transport in
the chaotic sea surrounding them.

Interestingly, this chaos assisted tunneling mechanism possesses unique fea-
tures typically absent in the standard "barrier" tunneling of quantum mechanics,
such as a great sensitivity to the variation of external parameters manifesting
itself in fluctuations of observable quantities. Previous works considered mainly
model one-dimensional time dependent systems [3-5] or model two-dimensional
autonomous systems [6-9]. A similar problem in the scattering case has also been
discussed on a kicked model system [10].

We shall consider here a different situation, motivated by the physics of atoms
ionized by external strong electromagnetic radiation. We discuss the single tunnel-
ing process out of the stable island followed by the chaotic diffusion process which
eventually leads to ionization. The example studied, a hydrogen atom placed in the
microwave field of circular polarization, is realistic and experimentally accessible.

Firstly we review the properties of states localized on stable primary islands
- the so-called nonspreading wave packets. Later we concentrate on the prop-
erties of the decay of wave packet states showing, by comparison to a statistical
model, that their mechanism of ionization is indeed due to chaos assisted tunneling
process. The reader interested in details should consult the original papers [11-15].

2. Nonspreading wave packets in periodically driven systems

Consider a one-dimensional system described by the Hamiltonian Ho(I)
where I is the principal action (we denote by p the angle conjugate to I). The
frequency of the classical motion w,1(I) = Ho/OI is a function of the action
and, therefore of the energy E. Now let us perturb the system by a time-periodic
potential V = v(I, o)cos(wt). If, for a given E, wcl is vastly different from the
external frequency w, the perturbation is nonresonant and affects only weakly the
motion. The situation is drastically different in the case of a resonance, i.e. when
nw,1 =mw with n, m being low integers [1]. A resonant exchange of energy can
take place, the system becomes strongly perturbed by V. Consider the simplest
case of 1 : 1 resonance, i.e. when w~l • w. The Hamiltonian of the perturbed
system can be (locally in energy) represented by the Hamiltonian of a pendulum
with a pair of stable and unstable fixed points (periodic orbits of period 27r/w) [1].

While in the unperturbed system two initially close points (I 1,Vi) and
(12,W2) in the phase space tend to separate in angle from one another (since
wcl(I 1 ) 0 w,1(I 2 )) it may no longer be so for the perturbed motion. Inside the
island surrounding the stable fixed point, the classical motion is restricted to tori
surrounding the fixed point, the classical motion becomes locked to the external
driving frequency.

Consider now a wave packet constructed for the unperturbed system. It will
disperse following the fate of classical trajectories. By contrast, a wave packet
placed inside the resonance island of the perturbed system will not disperse re-
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maining in the vicinity of the fixed point at every period of the external driving
(following the corresponding periodic trajectory at all times).

Quantum mechanics of periodically perturbed systems tells us, by Floquet
theorem [16], that the eigenstates of the system, the so-called quasi-energy states,
are time periodic. If the classical island is large enough to support quantum states,
some of the Floquet states must be localized inside the island. As exact solutions
of the Schr6dinger equation, they regain their shape every period and remain
localized in the same region. Thus a quantum representation of the non-dispersive
wave packet is simply a well chosen Floquet eigenstate.

First examples of Floquet states with such interesting properties were studied
for model systems [17] and termed flotons. In an independent work, the non-disper-
sive wave packets have been semiclassically constructed for the hydrogen atom
driven by a circularly polarized microwaves (CPM) [18]. Similarly such objects
have been found for linearly polarized microwaves (LPM) [19] and identified with
single Floquet eigenstates. For CPM this identification has been carried out in [11].
Let us mention also that the pendulum analysis in LPM case was also done [20].
Such a pendulum approach gives an excellent semiclassical prediction for the
quasienergies of wave packet Floquet states.

For a hydrogen atom in CPM the situation is even simpler if not generic. In
the frame rotating with the CPM field, the Hamiltonian becomes time independent

H !-1+ Fx - wtz, (1)
2 r

with t, the angular momentum operator. Atomic units are used throughout the
paper.

At the center of the principal resonance island between the Kepler and the
microwave frequency, a periodic orbit exists in the lab frame whose period exactly
matches the period of the microwave. It corresponds to a fixed point of the motion
in the rotating frame. It is possible to find the region of microwave fields when the
point is stable [18], the semiclassical quantization based on a harmonic approx-
imation around the fixed point yields accurate prediction for their energies [11].
Moreover, the wave packet is a coherent superposition of circular Rydberg states
with a Gaussian-like distribution of the corresponding overlaps centered around
the principal quantum number no = w-1./. Note that no is not necessarily an
integer.

Due to the scaling properties of the Coulomb problem, the classical dy-
namics depends only on the scaled microwave amplitude F0 = Fn4 = Fw-4/3

which is the ratio of the microwave amplitude to the Coulomb field of the nu-
cleus on the unperturbed no circular orbit. The fixed point remains stable up to
F0 ; 0.11, i.e. fields which are strong enough to ionize a typical atomic state in few
microwave periods [21]. In fact a significant ionization of a typical initial atomic
state occurs already at F0 ; 0.03 during few tens of microwave periods. Yet the
lifetime against ionization of the wave packet states may well exceed million mi-
crowave periods! [12]. This is precise because these Floquet states are strongly
localized on the stable island and classically forbidden to ionize. The spontaneous
emission lifetime for the wave packets is exceedingly long [22], orders of magnitude
longer than their lifetime against the ionization. Thus the ionization process is a
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dominant mechanism of the decay of wave packet states, the unusual properties
of this decay are reviewed in the next section.

3. Chaos assisted tunneling as a mechanism for ionization

Using the expansion of Eq. (1) in the Sturmian basis combined with complex
rotation technique and Lanczos diagonalization routine we are able to calculate
exactly the quasienergy spectrum of the problem (for details and further references
see [12, 15]). The resulting Hamiltonian matrix is complex symmetric and yields
eigenvalues of the form ei = E - iF/2. For a bound state the imaginary part
vanishes and Ei is simply the energy of the state. For resonances, Ei yields the
energy position of the resonance while the corresponding Fi is the resonance width.
Excellent semiclassical prediction for the real part of the energy [11] allows us to
extract only few eigenvalues (from matrices of a typical rank of 50000) around
the semiclassical value, the wave packet state is then identified by its large dipole
moment (; n2) in the rotating frame.

=E 10-

W 2 10C 0
10

10
N-

'E c 10' i (b)
:S E 10-14
S39 40 41

Effective Principal Quantum Number no &--/3

Fig. 1. Typical fluctuations of the width (ionization rate) (b) and the energy shift
(a) (with respect to its unperturbed position) of the non-spreading wave packet of a
hydrogen atom in CPM. The data presented are obtained for small variations of the
effective principal quantum number no around 40, a scaled microwave electric field
Fo = Fn4 = 0.0426 and a microwave frequency w = i/n'. To present both plots on the
logarithmic scale, preferred to show the fluctuations over several orders of magnitude,
we plot the absolute value of the shift rather than the shift itself.

The typical deviations of the exact resonance position from the semiclassical
prediction and the ionization rates obtained are presented in Fig. 1. Observe the
large scale fluctuations of both quantities over several orders of magnitude for
small changes of the frequency (typically of the order of 1 part in 1000). These
fluctuations - although perfectly deterministic - look completely random and
are strongly reminiscent of the universal conductance fluctuations observed in
mesoscopic systems [23]. Indeed, the ionization width measures the rate at which
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an electron initially localized close to the stable resonant trajectory ionizes, i.e.
escapes to infinity. In other words, the ionization width directly measures the con-
ductance of the atomic system from the initial point to infinity. In a quantum
language, the ionization width is due to the coupling (via tunnel effect) between
the localized wave packet and states lying in the chaotic sea surrounding it. While
the energy of the wave packet is a smooth function of the parameters F and w,
the energies of the chaotic states display a complicated behavior characterized by
level repulsion and strong avoided crossings. By chance, it may happen that - for
specific values of the parameters - there is a quasi-degeneracy between the wave
packet eigenstate and a chaotic state. There, the two states are more efficiently
coupled by tunneling and the ionization width of the wave packet eigenstate in-
creases. This is the very origin of the observed fluctuations. Simultaneously, the
repulsion between the two states should slightly modify the energy (real part of
the complex eigenvalue) of the wave packet state leading to fluctuations of the AC
Stark shift.

To describe the fluctuations quantitatively we calculate the statistical distri-
butions of the ionization widths P(w) and of the energy shifts P(s) and compare
them with a simple statistical model [15]. The idea is to consider the wave packet
eigenstate as coupled randomly with a set of chaotic states (described by random
matrix theory [24]) themselves randomly coupled to the atomic continuum. For the
detailed description of the model we refer the reader to [15]. In short the random
realization of the Hamiltonian takes the form

H ( Ea Vw ) (2)

-aV Ho -iyWWT ) I

where V is a random vector (whose components are Gaussian distributed random
numbers) coupling a regular (wave packet) state with energy Eo to N chaotic
states (eigenstates of Ho). The strength of the coupling is determined by a. To
model HO we use the standard assumption that H0 pertains to the Gaussian or-
thogonal ensemble and generate HO accordingly [24]. The decay of chaotic states
is due to a non-Hermitian part -iyWWT with strength determined by Y. W itself
is a random vector for a single channel decay [25]. The variance of the Gaussian
distribution used to generate Ho and the dimension of the matrix N determine
the mean level spacing A of the model. The two physically relevant, independent
parameters are y/A and a/A. In the perturbative regime (y/A,a/A < 1) one
may obtain analytically [15] the predictions for the distribution of shifts (of the
regular state energy from the unperturbed value Eo) P(s) and that for the widths
P(w). Alternatively, as done here, one may find both distributions numerically by
averaging over several realizations of random Hamiltonian Eq. (2). A comparison
of the obtained distributions with data obtained for the real system - the hydro-
gen atom in CPM - allows us to extract the values of the physical parameters:
a/A - the coupling between the regular and chaotic states (the tunneling rate)
and y/A - the strength of the decay of chaotic states (the chaotic ionization
rate). An example of such a fit is presented in Fig. 2. Typically around 1000 data
points are taken around some mean value of no and Fo.
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Fig. 2. The AC Stark shift distribution (a) and the width distribution (b) obtained
from the data, part of which is shown in Fig. 1. Both distributions are shown in double
logarithmic scale to better visualize the behavior over a range of shift and width values.

Since AC Stark shift may be both positive and negative we show the distribution of
the modulus. Large bin histograms correspond to hydrogen atom in circularly polarized
microwaves, small bins to a fitted random model. Both distributions show the dominance

of algebraic tail behavior followed by an exponential cut-off.
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Fig. 3. The tunneling rate cr/A as a function of the effective quantum number no cx 1/h
for a fixed classical dynamics, F 0 = 0.0426. Note the exponential decrease for sufficiently

high no (vertical scale is logarithmic).

Taking several stretches of data corresponding to different mean no and the
same F0 one can test the h dependence of the tunneling rate and the ionization
rate. The effective h in our problem is inversely proportional to no. It turns out
that y/A, the chaotic ionization rate, is only weakly dependent on no. This is
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understandable - the ionization of chaotic states originates from the classical
diffusion. However, as depicted in Fig. 3, u/A, i.e., the tunneling rate decays
exponentially with no to a good accuracy. Writing the tunneling rate as cr/A oc
exp(-S/h) oc exp(-Sno) we can extract by a straight line fit, the tunneling action
value S = 0.06 ± 0.01. This exponential behavior is a strong evidence of the
tunneling mechanism of the ionization.

4. Conclusions

We have provided a numerical evidence for a novel mechanism of ionization
- chaos assisted tunneling - by studying a realistic and experimentally accessible
example - a hydrogen atom driven by circularly polarized microwaves. It turns
out that both the widths and AC Stark shifts of nonspreading wave packet states
exhibit large scale fluctuations. We analyse these fluctuations quantitatively using
an appropriately defined random matrix model. The model allows us to separate
the ionization into two stages: tunneling from a stable island into the surrounding
chaotic sea (which shows the typical exponential dependence on h) and the chaotic
diffusion process (weakly dependent on h) which leads to further excitation and
finally ionization.
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The premises of the Einstein-Podolsky-Rosen argument for their claim
that quantum mechanics is an incomplete theory are inconsistent when ap-
plied to three-particle systems in entangled Greenberger-Horne-Zeilinger
states. However, thus far there is no experimental confirmation for existence
of such states. We propose a technique to obtain Greenberger-Horne-Zeilinger
states which rests upon an observation that when a single particle from two
independent entangled pairs is detected in a manner such that it is impossible
to determine from which pair the single came, the remaining three particles
become entangled.

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

1. Introduction

The premises of the Einstein-Podolsky-Rosen (EPR) argument [1] to show
incompleteness of quantum mechanics are inconsistent when applied to maximally
entangled states of at least three particles. Take a Greenberger-Horne-Zeilinger
(GHZ) state of three particles which are on their way to three spatially separated
observers (Fig. 1) [2]. Imagine that the relevant degrees of freedom for the local
measurements are described by

1
1(3))= (Ia)Ib)Oc) + Ia') b')Ic')), (1)

where (xjx') = 0 (x = a, b, c, and kets denoted by one letter pertain to one of

the particles). The three observers A, B and C (spatially separated) measure the

observables: A(qA), B(qB), &(Oc), defined by

X(¢x) = I+, Ox)(+, OxI - I-, ox)(-, OxI (2)

and

1+,ox) = 1 (-ilx') + exp (ikx)Ix)), (3)

(187)
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D BSab' •--.mBS Dý

Fig. 1. Three-particle beam-entanglement GHZ interferometer [2]. Three particles in
state (1) enter the arrangement. Adjustable phase shifters provide a change of the rel-
ative phase of the state components by OA + OB + OC. Consequently the threefold
coincident count rate in, say, detectors DA, DB, and DC will oscillate sinusoidally when
the phase is varied. The detection events are spatially separated.

where X = A, B, C. The quantum prediction for the expectation value of the
product of the three local observables is given by

E(OA, (B, OC) =(¢A((AYB((B)C((c)I¢) = sin(OA + (B + -- C)- (4)

The EPR program, when applied to the above process, should be based first
on the establishment of the elements of reality for the system. The EPR definition
of an element of reality reads: if, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to unity) the values of a
physical quantity, then there exist an element of physical reality corresponding to
this physical quantity. The EPR argument continues now with the following steps.
One establishes that quantum mechanics predicts for the studied system perfect
correlations. This occurs in the present case when (A + (B + (C = 7r/2 + kir (that
is, when sin(7r/2+kir) = ±1). E.g., for the settings (A = 7r/2, (B = 0 and (c = 0
whatever may be the results of local measurements of the observables, for say the
particles belonging to the i-th triple (the ensemble of all such triples is represented
by the quantum state 10(3))), they have to satisfy

Ai(7r/2)Bi(O)Ci(0) = 1, (5)

where Xi(¢) is the value of a local measurement of the observable 9(0) that would
have been obtained for the i-th particle triple if the setting of the measuring device
had been as indicated, i.e. (. Note that relativistic causality demands that Xi(()
depends solely on the local parameter. Equation (5) clearly indicates that we can
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predict with certainty the result of measuring the observable pertaining to one
of the particles (say c) by choosing to measure suitable observables for the other
two. As the two first acts of measurement are spatially separated from the third
particle, EPR argue that they cannot cause any real change in it. Hence the value
C,(0) is an element of physical reality.

However, had the local apparatus settings been different one would have
had, e.g.

Aj(O)Bj(0)Ci(r1/2) = 1. (6)

We can repeat the argument, establishing now the value of the element of reality
Ci(7r/2). Hence two noncommuting observables C(7r/2) and 0(0) are endowed with
elements of reality (i.e. their values are predetermined). Since such statement is
prohibited by quantum mechanics therefore it cannot be a complete theory!

However, for the three-particle state one can consider also two other simi-
lar situations and establish that quantum mechanical predictions imply that the
elements of reality must satisfy

Aj(0)BS(O)Cj(ir/2) = 1 (7)

and

Aj(1r/2)Bj(7r/2)C,(7r/2) = -1. (8)

The allowed values for the elements of reality are equal, by definition, to the
eigenvalues of the respective observables, i.e. they are ±1. If one multiples the left
hand sides of Eqs. (5-8), and simply notices that all elements of reality appear in
such a product twice, the result is, surprisingly, 1, whereas, the product of right
hand sides gives -1. Thus the EPR program breaks down at the very outset, as
their definition of the elements of reality (via the perfect correlations, and locality)
is void. We have a "Bell theorem without inequalities" [2]. One can summarize
the above story by yet another counterfactual statement (precisely on such type
of statements the EPR argument is based on): had EPR known about GHZ states
they might never have written their paper or, at least, they might have written it
very differently.

Due to imperfections of laboratory devices, one cannot expect perfect cor-
relations to occur. Thus, any test of local realism based on the GHZ correlations
has to resort to some Bell-type inequalities. The simplest (ad hoc) algebraic form
leading to a Bell-like inequality seems to be the one based upon the following
algebraic identity:

Ai (OA)Bi (B)Ci(OC) + Ai(OA)Bi(OB)Ci(O¢/) + Ai(OA)Bi(0'B)C (0c)

S(±A)Bj(¢B)i(¢')=:±2, (9)
which must be always satisfied if Xj(Ox) = ±1. Thus the average values for local
realistic [3] predictions for the products of the local results should fulfill

-2 < E(¢Y ,qB, ¢C) + E(OA, 4B, 0') + E(¢A, 0' , ¢C)

S0' < 2. (10)
The maximal violation of this inequality, by a factor of 2, is obtained if we put into it
the quantum prediction with the previously discussed settings: Ox = 0, 0' = 7r/2.
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In a real experiment one cannot expect the three-particle interference fringes to
be of 100% visibility (V) and therefore one expects the correlation function to be
V sin(OA + eB + qc) [4]. Therefore, the critical value of the visibility to violate
the Bell inequality is Vcrit = 50% (i.e. much lower than the threshold for'the
two-particle Bell-type experiment).

2. Experiment

While it would be interesting to experimentally exhibit the correlations
present in a three-particle entanglement, no experimentally tested procedure exists
for preparing the necessary state. The natural source of three-particle entangle-
ments, three-photon positonium annihilation, is a rare event, and the polariza-
tions of the -y rays are difficult to measure. Also one could think of a higher order
spontaneous down-conversion process involving cubic nonlinearity in crystal's po-
larizability. However, both processes share (almost) complete unpredictability of
the directions of emission (this makes the count rates very low). Since 1989, many
other sources were proposed but thus far no experiment has been performed [5].

We wish to propose a possibly realizable, relatively simple procedure for gen-
erating three-particle entanglement out of only two pairs of entangled photons [6].
One can generate these states by interfering photon pairs produced by two inde-
pendent spontaneous parametric frequency down-conversion (PDC) sources. The
product of two two-particle states can be projected, by a measurement upon one of
the four particles, in such a way that the resulting collapse leads to a three-particle
GHZ-state. As the PDC sources are endowed with high angular correlation of the
emissions, this feature is also present in our compound source (what, despite rel-
atively low probability of simultaneous emissions from two independent sources,
should contribute to tolerable count rates).

Yurke and Stoler [7] were first to suggest that interfering particles from inde-
pendent sources may give rise to non-classical Bell-EPR correlations. Interference
between particles produced by independent sources is observable only if the ori-
gin of the particles cannot be inferred anymore [8]. This necessitates that either
the coincidence detection or the generation of the particles is done with a time
resolution shorter than their coherence times [9]. Here we shall employ the second
alternative.

Consider the arrangement of Fig. 2. Two independent PDC sources each emit
a pair of particles in a beam entangled state (type-I phase matching) [10] and, by
chance, these emissions are nearly simultaneous. Suppose for example that the
states of the pairs are

1 (la)ld) + Ja')c')) (11)

from source A, and

1 (Id')lb') + Ic)lb)) (12)

from source B (the letters represent beams taken by the photons in Fig. 2, all
beams have the same polarization) [10]. The beams d and d' are mixed by a 50-50
beamsplitter, behind which are two detectors DT (trigger) and DT.



Quest for GHZ States 191

D'T DT

Fig. 2. A three-particle beam-entanglement source. Short pulses of duration AT
stimulate two independent two-particle sources, A and B, to each emit a pair of
beam-entangled particles. The state of the pair from A [B] is given by Eq. (11) [(12)].
Suppose that the trigger detector, DT, registers a single particle and the other three
particles are eventually found to have been in beams a or a', b or bV, and in c or c',
respectively. If the trigger particle came from A via transmission at the beam splitter,
BS, its sibling must be in beam a and the pair from B must be in beams b and c. If
the trigger particle came from B via reflection at BS, its sibling must be in beam bV
and the pair from A must be in beams a' and c'. Narrow filters, F, and Fd, of widths
much narrower than the pulse spectrum make the source of the trigger particle essen-
tially unknowable (see text). Consequently, the state of the other three particles is the
entanglement of Eq. (13).

Suppose that one and only one of these four particles is detected by DT, no
particle is detected at DT, and the other six beams illuminate the three-particle
interferometer [2] of Fig. 1. Because of the beamsplitter, the trigger particle could
have come from either source A or B. If it came from A, its companion must be
in beam a, and the pair from B must be in beams b and c. Thus, the state of the
triple of remaining particles is Ia)jb)Ic). If on the other hand the trigger particle
came from source B, its companion must be in beam b' and the pair from A must
be in beams a' and c'. Thus, if the trigger particle came from B, the state of the
remaining triple is Ia')Ib')Ic').

Now, if the procedure of emission and selection of the four photons is such
that one cannot ever know, not even in principle, which source produced the trigger
event, then the other photons, as they enter the interferometer of Fig. 1, will be in
a superposition of the two three-particle states mentioned above, i.e. in the GHZ
state

2 (Ia)Ib)Ic)±+e'ia') b')Ic')) , (13)

where the relative phase 0 depends on the positions of various elements of the full
setup.

For the coherent superposition of state (13) to form one must erase all
ways by which one might in principle identify true pairs. We assume that the two
sources are pumped by one pulsed laser and emitting down converted radiation
of a degenerate frequency. All three remaining photons (after the trigger event)
are fed into three spatially separated interferometers (see, Fig. 1). The detection
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station B observes the radiation coming from beams b and Vi, station A from
beams a and a', whereas the station C collects the radiation from c and c. In all
beams we have filters of the same central frequency (half of the pump frequency).
However, the widths of the filters may differ.

Suppose that the three photons and the trigger one are detected coincidently
(within a few nanosecond window), one in each detection stations A, B and C,
and the fourth at DT. Clearly the photons at the first two stations came from the
crystals bearing the same name as the station. But the origins of the photon at DT
and C are unclear. In such a case one could, in principle, determine that photon
detected at DT came from crystal A (B) by noting the near simultaneity of the de-
tection of photon DT and one of the photons at B or A (this is due to the property
of the PDC radiation: the detection times of a pair are extremely well correlated).
To ensure that the source of photons is unknowable, we propose that the two crys-
tals should be pumped by pulses of durations around r % 100 fsec, and that the
trigger should be detected behind a narrow filter whose inverse of the bandwidth
(coherence time) exceeds r. If one of the members of a PDC pair passes such a
filter the temporal correlation with its companion spreads to around r. Thereby
placing suitable filters prevents identification of the trigger photon and its partner
by comparison of their arrival times. However, if the detections at C and either A
or B are strictly time correlated one still concludes that the photons came from one
crystal. One can again remedy this by putting filters of coherence time exceeding
7 in beams c and c'. Now, the which-way information is completely erased. Please
note that due to the pulsed nature of the pump (i.e. its non-monochromaticity)
the complementary feature which could in principle betray the origin of particles
at DT and C, namely the frequency correlation, is more fuzzy than the frequency
resolution imposed by the filters. We can expect high visibility of three-particle
fringes.

With a more quantitative description we now shall estimate the visibility of
the three-particle fringes. The following assumptions will be made: (i) the prob-
ability of a multiple emission from a single PDC is low; (ii) the pulse is not too
short, i.e., the nonmonochromaticity of the pulse will not blur too much the strong
angular correlation of the emissions (due to the effective energy and momentum
conservation within the crystal). Thus, the photons can be described as emitted
in specified, very well-defined directions.

The state of the photon pair emerging from the source A (plus the filter
system) can therefore be approximated by

,A) = 1Pad) + k'0a') = J dwjdW2 dwo A(wo - - w2)g(wo)

X (fa(Wl)fdQJ2)Iwj;a)IW2 ; d) + fai(wi)f&(W2)Iwna')1w2;c')), (14)

where, e.g., the ket 1w, e) describes a single photon of frequency w in the beam e, the
function g represents the spectral content of the pulse, and fe is the transmission
function of the filter in the beam e. The function A is sharply peaked at the origin
and describes the phase-matching condition. One can approximate it by the Dirac
delta. Similar structure has the ket describing the pair of photons coming from
the other source, JOB).
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If one introduces objects [9] like, e.g. It; b) = (1/V2-7)f dweiwt1w; b), the am-
plitude, e.g., to detect a photon at time ti, by a detector monitoring the beam x'
and another one at time ty, by a counter in the beam y', provided the initial pho-
ton state was, say, ]V=u), can be written as AY(tx',tu,) = ((t-,;X'I(tY,;Y'D)-e)-
The elementary amplitudes of the interferometric process have now a simple, intu-
itively appealing, form Ay (t, ty) = (1/Vr) f dtG(t)F, (t, - t)Fb(ty - t)), where

the functions denoted by capitals are the Fourier transforms: F(t) = (1/vs/) x
f dweiwt f(w).

The amplitude of the three-photon interference at, say, detectors DA, DC
and DB (detector Dx registers photons in state I+, Ox)), at times t

A, 
t
B and tc,

under the condition that th, trigger photon fired at t T, is proportional to

Aad(tA, tT)Acb(tc, tB) + eieei(O +O+bk.) Abd,(tB, tT)Aac,(tA, tc), (15)

where Oi, i = a, b, c is the local phase shift in the given beam. To get the overall
probability of the process one has to integrate the square of the modulus of the
amplitude over the detection times (the time resolution of the detectors is of the
order of nanoseconds, which is much longer than the coherence times, thus due to
our earlier assumptions the integration over time can be extended to infinity).

Now, if one assumes that the filters in beams leading to a single detector
station are identical, that the functions have the following structure: Ff(t) =

e-iwptIF(t)I, G(t)= e-wPtjG(t)I, where wp is the central frequency of the pulse,
then the maximal visibility of the three-particle interference can be written as

V(3) - f d 4 tlAad(tA, tT)Ab,(tB, tc)Abd, (tB, tT)Aac, (tA, tc)IV()=f d4tIAad(ta,tT)Abr(tB, tC) 12 (16)

where d 4t = dtAdtBdtcdtT.

If one specifies, for simplicity, all the functions as Gaussians, exp [-(w-2)1P 202 ]

where S2 is the mid frequency and a the width, the formula for the visibility reads

V(3) = (17)
202+ 0- 02/(0-2 + 0-2 + 02)+ r2-T2~/(0-2 + 0-2 +4T)) /, (7

where op is the spectral width of the pulse, af, f = A, B, C, is the width of
the filter, and we assume that 0rA = UB. If one removes the filters A and B, the
formula simplifies to

V(3)= ( 2 -2~ ) (18)V()--2a2 + 0-2 + 07 (S

Therefore, narrow filters in paths a, a' and b, b' are not necessary to obtain high
visibility. The other filters should be always sufficiently narrow.

3. Prospects

Currently realizable values of cj P 1 nm for filter widths and up Z 5 nm for
pulse spectral width yield V(3) P 97%. This is well above the required 50%, and
therefore there is much room before the imperfections of the actual equipment
force down the visibility below this crucial figure. It is worthwhile to add that
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our current set-up for pulsed two-source down conversion (producing polarization
entanglements [11]) gives about 10-2 S-1 fourfold coincidences, but with wider
filters.

The principal aim of the experiment will be to show the existence of GHZ
states. However, one also may view it as yet another attempt for a test against
local realism. At the present moment plenty of "loophopes" seem to be present
in our proposal if one wishes to view it in this way. However, if one attempts to
interpret experimental observations in a local realistic way, one must notice that
while the filters select photons, one could in principle detect all of them by using
a suitably sophisticated dispersive optical element. The other complications are
less important. For example, the trigger detector may fire if (a) only one down
conversion occurred, (b) two down conversions occurred in one crystal. Case (a)
can be rejected, two of the detector stations will show no counts. Case (b) can also
be rejected, station DA or DB will exhibit no counts.

The laboratory realization of three-particle entanglement will open the door
to many novel quantum phenomena and applications. These may include, not only
the demonstration of GHZ correlations, but also: (a) generalization of two-particle
phenomena (e.g. illumination of a tritter [12] with three entangled particles),
(b) demonstration of entangled entanglement [13], (c) multiparticle quantum com-
munication schemes (see, e.g. [14]).

One can for example link the ideas (b) and (c) and notice that the use of
GHZ states (1) makes possible generation of a cryptographic key in such a way
that it can be controlled by a third operator who decides whether to activate
the key or not. Imagine that Alice, Bob and Cecil observe GHZ correlations. The
protocol of key establishment between Alice and Bob is exactly the same as the one
proposed by Ekert [15] for standard two-particle EPR-Bell correlations. However,
depending on the measurement result at the station of Cecil, Alice and Bob share
different two photon entangled states. Say that Cecil's observable is given by (3)
with 0c = 7r/2. Then depending on the local result that he obtains the state
shared by Alice and Bob is either 10(2+)) = (1/V2) (1a)Ib) + la')ib')) or ]¢(2-)) =
(1/v/2) (1a)1b) - la')jbI)), and therefore he holds the key to their key. Without the
information on his results all that Alice and Bob share is just useless. However,
once Cecil has communicated his results to Alice and Bob, the key they now
can establish is also perfectly secret to him. The Third Man can control the key
distribution but not the secret communication once he allows it!
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University of Gdafisk research grant No. BW-5400-5-0306-7, and of the 1996/97
Austrian-Polish scientific-technological collaboration program No. 22 (Quantum
communication and quantum information). H.W. is supported by the APART-fel-
lowship of the Austrian Academy of Science.
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We have designed a gravitational cavity for ultra-cold atoms using an
atomic mirror made from an evanescent laser wave. By a temporal variation
of the evanescent wave intensity, we have realized various atom optics com-
ponents such as temporal slits and phase modulators. We have also designed
an atom interferometer using this cavity which proves that the coherence of
the de Broglie waves can be preserved during the bounce of the atoms on
the mirror. Finally we show that an efficient cooling of the atoms inside the
cavity can be achieved using a Sisyphus process during the bounce.

PACS numbers: 03.75.Dg, 32.80.Pj, 42.50.Vk

1. Introduction

In textbook presentations of quantum mechanics, a central argument for the
validity of the theory is the equivalence of the behavior of material particles and
light in a given interferometric setup, such as a Young slit or a Bragg diffraction
experiment. From this equivalence we deduce the wave nature of particles, the
optical wavelength being replaced by the de Broglie wavelength in the expressions
for the fringe spacing or the diffraction angles.

The central point of this paper is to address the directly related question:
are there situations where atoms and photons will give qualitatively different re-
sults in a given interference experiment? For steady-state problems the answer is
negative since equal wavelength for light and matter will produce equal diffraction
patterns. On the contrary, for time dependent problems, the dispersion relation

*Present address: Laboratoire de Spectroscopie Hertzienne de Lille, Bitiment P5, 59655 Vil-

leneuve d'Ascq, France.
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enters into play and it becomes possible to investigate the nature of the interfering
or diffracting objects.

Consider for example the following "Gedanken" experiment where a quasi-
-monochromatic wave packet is incident on a chopper (Fig. 1). The chopper is
opened only for two short periods of duration -r and one looks for the signal on
a detector located after the chopper. Is there any interference observable on this
detector? In the case of photons propagating in vacuum, the answer is negative
since the two wave packets will not spread and they will never overlap. On the
contrary, for nonrelativistic material particles, the dispersion relation is not linear
and the spreading of the two wave packets may be large enough so that they
overlap onto the detector: an interference signal may be observed.

(a) (b)

Fig. 1. (a) A quasi-monochromatic wave packet is incident onto a chopper which is
opened for two short periods. (b) For matter waves the spreading of the two wave
packets may lead to interferences in the signal recorded by the detector. This is not
possible for light waves propagating in a non dispersive medium.

We present in this paper experiments performed with cesium atoms and
addressing this class of time-dependent problems in quantum mechanics. We first
describe the basic tool which allows us to chop and modulate atomic de Broglie
waves, i.e. the atomic mirror (Sec. 2). We then present an observation of the
time-diffraction phenomenon mentioned above (Sec. 3). In Sec. 4 we show that it
is indeed possible to observe interferences between de Broglie waves by letting two
wave packets spread and overlap. We then describe in Sec. 5 a phase modulator for
atomic de Broglie waves. Finally we present in Sec. 6 a side experiment showing
that an evanescent wave mirror can also provide an efficient cooling of the bouncing
atoms using a Sisyphus process.

2. The atomic mirror

The key element for all the experiments presented in this paper is an atomic
mirror formed by an evanescent light wave extending from a glass surface into the
vacuum [1, 2]. The electric field in this wave gives rise to a potential for the atom
which is simply the light shift of the atomic ground state

U = h122 /46, for 161 > 12, (1)

12 = dE/2h is the Rabi frequency in the evanescent wave, proportional to the
electric field amplitude E and the atomic dipole moment d; 6 = WL -- WA is the
detuning between the laser frequency WL and the atomic resonance frequency WA.
The electric field falls off with a distance z into the vacuum as exp(-Kz), where
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the characteristic distance K-1 • 0.19 pm. The potential is repulsive at positive
detunings providing thus the desired mirror.

The prism surface is concave, with a radius of curvature 2 cm. The evanescent
wave (EW) has a circular Gaussian profile, with 1/e2 radius w = 300 pm. It is
formed using the total internal reflection of a laser with intensity I = 100 mW,
with a linear polarization in the reflection plane; it is blue-detuned by 6/27r =
1 to 10 GHz from the resonance line 6s,1 2 , F = 4 +-+ 6 P3/2, F = 5. The EW
therefore creates a potential barrier along the z-vertical direction U(x, y, z) cc
I exp[-2(x2 + y2 )/w2 ] exp(-2Kz)/5. The incident atomic velocity on the mirror is
vi = 25 cm/s, corresponding to a free fall of 3 mm (see below). The EW mirror
is switched on and off by an acousto-optic modulator used in the zeroth order,
triggered by a quartz-stabilized function generator. The switching time is ;t 0.5 ps,
similar to the atomic bouncing time 1/ivi • 1 ps.

Lower MOT beam

Upper MOT

~251/s

25 1/s

Lower

Probe

Y4;2 AOM

Fig. 2. Experimental setup. Atoms are captured in the upper MOT from a cesium
vapor, and transferred to the lower MOT in a high vacuum cell. They are then cooled
and dropped into the evanescent wave mirror, which is formed using light produced by
a diode laser and which may be time modulated by an acousto-optic modulator.

Our vacuum system is based on two glass cubes of side 10 cm, one positioned
70 cm above the other (see Fig. 2). Each is evacuated by a 25 1/s ion pump, and
they are connected through a narrow glass tube (¢9 mm, length 140 mm) to allow
differential pumping. This system allows us to produce a good vacuum in the lower
cell (< 3 x 10i9 mbar) while having sufficient vapor pressure of cesium in the upper
cell (6 x 10' mbar) to load a magneto-optical trap (MOT) there in a short time.

The experimental cycle begins by loading 3 x 10s atoms into the MOT in the
upper cell during 1 second. The collected atoms are then cooled to 5 pK in optical



200 P. Szriftgiser et al.

molasses: the laser intensity is switched to 1 mW/cm 2 per beam, the magnetic
field gradient is cut and the detuning 6 between the laser and atomic frequencies
is ramped to 6 = -9r, where P = 27r x 5.3 MHz is the FWHM of the atomic
resonance. The trap light is then switched far from the atomic resonance, and the
atoms fall into the lower chamber.

After a free fall time of 365 ms, a MOT in the lower cell is switched on for
100 ms. The overall transfer efficiency is about 20%, so this provides 6 x 10' atoms
each 1.4 seconds, with a lower trap lifetime • 12 s. Once the atoms are caught in
the lower MOT, they are compressed to a density 5 x 1010 cm- 3 by reducing the
laser intensity in the MOT to 0.5 mW/cm 2 at 6 = -3r during 3 ms, and then
cooled to 3.6 pK at 6 = -9F in optical molasses during 20 ms. The center of the
lower MOT is located 3 mm above the surface of the prism where the EW forms
the mirror. The atoms are then dropped and hit the mirror • 25 ms later; multiple
bounces have been observed in this gravitational cavity [3].

3. Temporal diffraction of de Broglie waves

When a beam of particles with a well-defined energy is chopped into a short
pulse, the outcoming energy distribution is broadened according to the time-energy
uncertainty relation. This effect is very well known for photons and it is at the basis
of spectroscopy with ultra-short pulses of light. For matter waves, the phenomenon
of diffraction by a time slit has been studied theoretically by several authors [4].

tprobe

"Pll P2a) 'P 2b " P3

0 T 3T 5T time

Fig. 3. A cold atomic cloud is released above a mirror formed by an evanescent laser
wave. The mirror intensity I (lower curve) is chopped for two short pulses P1 and P2 . The
energy distribution is probed using a time-of-flight method, by measuring the number of
atoms bouncing on a third pulse P3 whose temporal position is scanned. By replacing P2
by two pulses P2a and P2b (dashed line), we realize the temporal equivalent of a Young
slit interferometer.

To investigate experimentally this effect [5], we start at t = 0 with the atomic
cloud from the MOT released above the atomic mirror. We first select atoms with
a well-defined total (kinetic+potential) energy using a sequence of two bounces
(Fig. 3), generated by chopping the atomic mirror on for two short pulses P1 and
P2 ; these pulses are respectively centered at time T = 25 ms and 3T, with a variable
width r. From classical mechanics, one would expect after P 2 a triangular energy
distribution centered on Eo = mg2 T 2/2 = h x 10 MHz (m is the atomic mass
and g = 9.81 m/s 2), with a full width at half maximum (FWHM) AEc1 = Eor/T.
This prediction has to be compared with the typical width AEQu = h/r of the
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sine-shape energy distribution obtained after the diffraction of a monoenergetic
beam by the pulse P2 . The range at which diffraction phenomenons become pre-
dominant corresponds to AEQU _! AEh leading to r < 50 ps.

The energy distribution after P2 is determined by a time-of-flight technique,
by measuring the number of atoms bouncing on a third pulse P3 , whose temporal
position is scanned around 5T.

The width of P3 is also r, so that the broadening of the energy distribution in
the measurement process remains small. The number of atoms which can perform
this sequence of three bounces varies as r 2 in the classical region (r > 50 ps)
and as r 3 in the quantum region, provided P 3 is centered on 5T. To increase this
number, we have used for P 1 , P2 and P3 a grating of pulses instead of a single
pulse. The separation between two consecutive pulses of the grating ranges from
400 ps for 7- < 40 ps, up to 1200 ps for r = 100 js; it is chosen large enough so
that there is no overlap between the various patterns going through the time slits.
The number of atoms per shot for r = 40 ps is z 40 for the optimal position of
the grating of pulses P3.

In order to detect those atoms, we have measured the fluorescence induced by
a weak resonant probe beam using a cooled photomultiplier. Each atom scatters
p 104 photons, among which 10 are detected on average, due to the detection
solid angle and to the photomultiplier sensitivity. The signal therefore constitutes
in a bunch of 40 x 10 = 400 photons, distributed over the duration (4 ms) of the
detection window. The stray light is responsible for a similar background signal
(105 detected photons/s). We note that this detection scheme was possible thanks
to the double cell system, which guarantees that the Cs vapor pressure is low in
the prism region and that the resonant scattering from this vapor remains small
enough.

A typical time-of-flight spectrum is presented in Fig. 4a for r = 30 ps. It
gives the fluorescence induced by the probe laser as the temporal position of P3 is

1.0 (a) 0.4 2oo0 b)

0.9

S0.8 0.3 150

C1.0- 

2000.7 .
0.6

50 -
0.5

0.4 0"
0 20 40 60 80 100

-200 -100 0 100 200 r(jis)
arrival Lime (ps)

Fig. 4. (a) Circles - experimental time-of-flight signal for a pulse duration r =

30 gs; continuous line - theoretical prediction using the temporal version of the
Huygens-Fresnel principle. Inset - magnification of the side band signal. (b) * and
continuous line - experimental and theoretical FWHM AT of the time-of-flight sig-
nals, as a function of the pulse width r. Dotted line- classical prediction AT = 2r.
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scanned. Each of the 90 points of this figure has been averaged 170 times so that the
total acquisition time for such a plot is 7 hours. We have repeated this experiment
for various r and we have plotted in Fig. 4b the corresponding FWHM AT. For
large r, we find that AT increases with r as expected from classical mechanics.
When 7- decreases, AT passes through a minimum and increases again, as expected
from the time-energy uncertainty relation. The error bars shown in Fig. 4b indicate
the statistical fluctuations of AT in a series of measurements. We have also plotted
in Fig. 4b the result of a theoretical analysis based on the path integral approach,
which is well suited for this Fresnel-like diffraction problem.

In addition to the existence of a minimum width AT, which is a direct con-
sequence of the time-uncertainty relation, there are two other signatures of the
temporal diffraction phenomenon in the set of data presented here. First, side
bands appear on the time-of-flight data of Fig. 4a (see in particular the inset, in
which the data have been averaged 850 times and smoothed over every 3 consecu-
tive data points). Because of the convolution of the signal with the detecting pulse
P3 , they are not as visible as in spatial diffraction experiments (see e.g. [6] for
neutron diffraction). Second, for large r, the width AT is found to be smaller by
, 10 ps than the classical prediction (broken line in Fig. 4b). This originates from
the temporal equivalent, on each side of P 2 , of the well-known edge diffraction
phenomenon [7].

4. A temporal Young slit interferometer for atoms

The time-diffracted atomic wave packet produced in the experiment de-
scribed above can now be used as a source for an interferometry experiment. In
this purpose we have designed a temporal Young slit interferometer by splitting
P2 into two pulses P2a and P2b separated by a variable duration -'. This is an
analog for de Broglie waves of the Sillitto-Wykes photon experiment [8]t. The
interference occurs between the paths P1 - P2a - P 3 and P1 - P2b - P 3 , as in a
Young double slit experiment [10]. Figure 5a presents the time-of-flight distribu-
tion obtained with r' = 40 ps. The measured interference profile between the paths
P1 - P2a - P 3 and P1 - P2b - P3 is in good agreement with the one calculated using
the path integral approach, shown in a continuous line, which takes into account
the finite width of the temporal slits.

The relative phase between the two arms of this interferometer can be easily
scanned by changing the effective height of the mirror for P2b, with respect to
the mirror height for P2a. This is done by changing the mirror intensity I by a
quantity r51 during the pulse P2b, which displaces the atom turning point by

bz = (2>)- 16I/I, (2)

and modifies the path length of P1 - P2b - P3 by 26z. A phase shift of 7r between
the two paths is obtained for Sz = AdB/4, where AdB = h/mgT = 12 nm is the
de Broglie wavelength of the atoms incident on the mirror. In our experimental
condition, this corresponds to 61/1 = 0.03. The interference profile obtained in
this situation is shown in Fig. 5b. As expected, the central fringe then corresponds
to a destructive interference.

tThe extension of Ref. [8] to neutrons has been discussed theoretically in Ref. [9].
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Fig. 5. Experimental (.) and calculated (continuous line) time-of-flight signals obtained
in a temporal Young-slit configuration, in which the pulse P2 is split into two pulses
P2. and P2b separated by a duration r' = 40 ps. (a) Equal mirror intensity for P2a
and P2b. (b) Phase shift of r between the two paths of the interferometer, obtained
experimentally using a 3% reduction of the evanescent wave intensity during Pmb. (c)
Amplitude of the central fringe of the temporal Young-slit interferometer as a function
of the evanescent wave intensity I2b during the pulse P2b. The intensity 12a during the
pulse P2. is constant. The maxima correspond to a path difference between the two
arms multiple of AdB/2 = 6 nim.

Finally, Fig. 5c gives the interference signal obtained with the detecting pulse
P3 set on the central fringe (t = 5T), when the intensity for P2b is scanned. Several
extrema are visible and each maximum corresponds to constructive interference
which occurs when the turning point in P2b is displaced by a multiple of AdB/ 2 .
The reduction of the contrast as 61 increases is due to the dispersion in AdB
resulting from the use of a sequence of several pulses for P1 , P2, P 3 . Also the van
der Waals interaction between the bouncing atoms and the dielectric modifies the
simple prediction (2), so that the phase shift actually varies with the distance
between the turning point of the atomic trajectory and the dielectric surface. It
therefore depends on the atomic transverse position in the Gaussian evanescent
wave. This latter experiment can be used for a measurement of the van der Waals
interaction between the atom and the dielectric surfacet, by analyzing precisely
the variation of the phase difference between the two paths, as the turning point
of P2b gets closer to the dielectric.

5. Phase modulation of matter waves

Atomic mirrors with evanescent waves can be used in a way which is richer
than simply blocking and unblocking an atomic beam. For instance by modulating
the evanescent wave intensity, we can mimic a vibrating mirror. When atoms
prepared in a state of well-defined total energy are reflected from such a vibrating
mirror, the associated matter waves are phase modulated. The resulting beam

1A meaurement of this van der Waals interaction using an atomic mirror is reported in

Ref. [11].



204 P. Szriftgiser et al.

then consists of a "carrier" plus various side bands corresponding to de Broglie
waves propagating at different velocities [12].

To observe such a phenomenon [13], we prepare as before cesium atoms in
the magneto-optical trap of the lower chamber and we release them. They form
"a cold "beam", moving vertically downwards. They are velocity-selected using
"a sequence of two short pulses of the EW intensity (Fig. 6a). Each pulse has a
duration - = 0.4 ms and their centers are separated by T = 52 ms, with the
first pulse centered T/2 = 26 ms after the atoms have been released from the
MOT. The velocity distribution which is thus selected is triangular, centered at
vi = gT/2 = 25.5 cm/s, with a width (HWHM) Av = gAT/4 = 0.098 cm/s. Note
that this value of r is large enough for a classical reasoning to be valid; in other
words the time diffraction phenomenon described in Sec. 3 is negligible in these
conditions.

1,0

(b) (

0.5 i

P1b 0.3

0ro 0.0

_________________________________ 00 5 10 15 20 25 30

26 78 110, time (ins) timec(ms)

Fig. 6. Phase modulation of de Broglie waves (a) Atoms with a well-defined energy
are selected using a two-pulse technique. The modulation of the EW during the second
pulse introduces sidebands onto the de Broglie waves. These are detected by their time
of flight to a probe beam introduced after the second pulse. (b) Time-of-flight signals.
(i) Non-modulated potential; (ii)-(iv) modulated potential, with frequency v = 950 kHz
(ii), 880 kHz (iii), and 800 kHz (iv).

The atomic kinetic energy is E/h = 10.42 ± 0.03 MHz at the mirror surface.
During the second pulse, the amplitude of the light field is modulated at a chosen
frequency between 0 and 2 MHz. The presence of several frequency components in
the reflected atomic beam is deduced by recording the time taken for the beam to
rise and then fall back down to a fixed "probe" height in the earth's gravitational
field. Since the matter waves' group velocity (at any given height) depends on
their frequency, the negative-order side bands arrive first at the probe, followed by
the carrier, followed by the positive side bands. The presence of these side bands
clearly demonstrates the quantum nature of the phenomenon, since they could not
appear in the reflection of a classical point-like particle on a modulated potential.
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They demonstrate also a direct transfer of a precisely synthesised r.f. frequency
onto the atomic motion.

The time-of-flight (TOF) signal shown in Fig. 6b(i) was obtained with a
non-modulated mirror (c = 0). It represents the average of 1000 shots, with
S4000 atoms contributing per shot. The TOF spectra 6b(ii-iv) were obtained
with various modulation frequencies v with a modulation depth c = 0.82. We have
measured from these spectra the positions t4, of the side bands, from which we
derive the corresponding energy transfers. These agree with the theoretical pre-
dictions. From our measurements, we deduce h/Mg2 = 3.14 ±t0.02 x 10-11 s3, to be
compared with the expected value 3.120 x 10-11 s', using the local g 9.81 m/s 2

in Paris.
This device opens up new possibilities for precision experiments in atom

optics, in complement to current gratings and slits, since one can take advantage
of the fact that frequency and time intervals can be produced more accurately than
distance intervals. This feature is now basic to high precision methods in photon
optics, such as frequency chains using electro-optics modulators. In neutron optics,
direct frequency transfer can be achieved by reflection of a neutron beam off a
crystal lattice vibrating at one of its resonant frequencies [14, 15]. For atoms or
molecules, most experiments [16] using precise r.f. techniques have relied on the
presence of a narrow resonant transition between internal states of the system. By
contrast, in our experiment and in a recent experiment performed in Innsbruck
[17], demonstrating a frequency shifter for atomic matter waves as a generalization
of an acousto-optic shifter for photons, the internal structure of the atom plays no
role in defining the modulating frequency, and the latter can be varied continuously.

6. Dissipation with atomic mirrors

We have seen that the ability to vary in time the intensity of the evanes-
cent mirror enables us to manipulate the motion of the reflected atoms. Pursuing
this theme, we have performed further experiments in which the mirror is used
to accelerate or decelerate reflected atoms in a controlled way, thus enabling the
atomic trajectories to be focussed [18]. All such experiments are conservative, and
so do not permit the brightness of the atomic beams to be increased. Equivalently,
the phase space density of the atoms is conserved. However, atomic mirrors, un-
like their photonic equivalents, can also provide dissipation. Using a spontaneous
emission process during the reflection of the atoms, one can take advantage of
the Sisyphus cooling mechanism to reduce their kinetic energy much below the
incident one. This idea was first proposed in Ref. [19] and later on investigated
theoretically in detail in Ref. [20]. The atomic ground level has to involve at least
two states which experience a different and spatially dependent light shift by the
evanescent wave. A spontaneous Raman transition from the most shifted state to
the other one may occur during the bouncing process, which leads to a reduction
of the atomic kinetic energy.

A first experimental evidence for such a cooling process was reported in
Ref. [21]. A thermal atomic beam was sent at grazing incidence onto an atomic
mirror, and a non-specular reflected beam was observed, corresponding to a de-
crease in the atomic kinetic energy due to the Sisyphus process. A good agreement
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between the experimental results and a simple theoretical model was obtained con-
cerning the average energy loss. We report here on an observation of this cooling
process for our laser cooled atoms dropped at normal incidence onto the evanescent
wave mirror (for more details, see also [22]).

We model the cesium atoms as a three-level system, with an unstable excited
state e and two stable ground states. These two states correspond to the hyperfine
ground levels (6s 1/ 2, Fg = 3 and Fg = 4) of the cesium atom separated by A =
27r x 9.193 GHz. The excited state corresponds to the level 6p3/2, whose hyperfine
structure can be neglected since it is small compared with the laser detunings
chosen in the experiment.

The interaction between the atom and the evanescent wave gives rise to a
potential which depends on the ground state

h2~
U3 (z) = -oexp(-21z), (3)66

U4 (z) - 4(6 + A) exp (-21z) - 6 + AU3(z), (4)

where 6 = WL - w3 is the detuning between the laser frequency and the atomic
resonance corresponding to the transition 6s,1 2 , Fg = 3 +-* 6p3/2. The potential
U4 (z) is proportional to U3(z), but weaker.

Consider an atom in state Fg = 3 with kinetic energy Ej = mv2/2 entering
into the wave. It experiences the repulsive potential, so that its kinetic energy
decreases, whereas its potential energy increases. If we choose the intensity and
the detuning such that the spontaneous emission probability per bounce is much
smaller than unity, the spontaneous emission process, if it occurs, will preferentially
take place in the vicinity of the classical turning point z0 , given by Ei = U3 (zo).
The atom may then fall back to either one of the two ground states.

If it ends up in Fg = 3, it will continue its way, without being perturbed, if
we neglect the atomic recoil during absorption and emission. However, the atom
may also fall into Fg = 4. While the kinetic energy remains constant during this
transition, the atom now experiences the potential U4 (z) which is weaker than
U3(z). After the bounce, the atomic kinetic energy Ef = mv2 /2 is thus smaller
than the initial one [19, 20]. The loss of potential energy is maximal when the
scattering process occurs at z0 . The final energy in this case is given by

6

Ei -- E 6 --- (5)

The atoms are prepared in the MOT located 3 mm above the prism as
described above. We then block the repumping laser at a time referred to as t = 0
in the following. Consequently almost all atoms are optically pumped into the
Fg = 3 ground state in which they no longer interact with the light and fall under
the influence of gravity. At t = 6 ms, we also block the main lasers resonant with
the Fg = 4 +-+ Fe = 5 transition.

If the Sisyphus transition occurs, it changes the velocity of the reflected
atoms. We analyze the energy distribution of these atoms by a TOF starting at
t = 43 ms (Fig. 7). We record the absorption of a horizontal probe laser beam
resonant with the Fg = 4 +-* Fe = 5 transition. The probe is centered 450 pm
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Probe

Utnle

Fig. 7. A fraction of ground state (Fg = 3) atoms bouncing on the mirror can undergo
"a Sisyphus transition towards F. = 4 in the evanescent wave. The energy loss results in
"a shorter arrival time in the probe beam.

above the evanescent wave mirror. It may be i..ixed with a repumping beam
Fg = 3 *-* Fe = 4, so that we can choose between the detection of atoms either in
Fg = 4 or in both hyperfine states. We can therefore determine the proportion of
atoms undergoing the Sisyphus transition.

Figure 8a gives a typical atomic TOF curve. It shows the probe absorption
as a function of time t. The bouncing period for atoms in state Fg = 3, which
undergo a specular reflection, is 53 ms. These atoms cross the probe laser mixed
with the repumping beam at t = 83 ms. Atoms undergoing a Sisyphus transition
loose energy during the reflection and leave the mirror at a smaller velocity and
with a shorter bouncing period. They arrive first at the detection laser and they
give rise to a corresponding broad peak of low height, whose maximum is located
around the arrival time tsis = 53 ms. The signal was recorded using a mirror
detuning of 8 = 27r x 3000 MHz and a repumping laser was introduced in the
probe beam so that both ground hyperfine levels were detected.

6
(a)

4.

- 43 53 63 73 83 93 103

o 0.4
C.
o5 0.3 .(b) \Ca 0.2

o 0.1
E-

3 53 83 73 83 93 103
t (ms)

Fig. 8. TOF signals showing a Sisyphus cooling in a single bounce: (a) The atoms are
detected both in FP = 3 and F, = 4 using a probe beam including a repumping laser.
The slowed atoms arrive first (peak centred at tisj = 53 ms) followed by the uncooled
atoms (peak centred at t = 83 ms). (b) Same experiment without a rempumping beam
in the probe; only the cooled atoms (in FP = 4) are detected.
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In order to prove that this signal corresponds to atoms undergoing a Sisyphus
process, we repeated the measurement detecting only atoms in the state Fg = 4, i.e.
without repumping laser. The result is presented in Fig. 8b. The peak previously
detected at 83 ms, which corresponds to atoms in state Fg = 3, nearly disappears,
whereas the earlier observed signal is unchanged. The atoms corresponding to this
broad peak maximum at t sis are thus in state Fg = 4.

This elementary Sisyphus process is a convenient tool to accumulate a large
number of atoms in a restricted domain of space, increasing therefore the quantum
degeneracy of the gas. As pointed out in Ref. [19] and [21], and as shown exper-
imentally very recently in Ref. [23], the repetition of such processes, alternated
with repumping phases transferring the atoms back to Fg = 3, should lead to an
atomic gas with a kinetic energy of a few recoil energies h2k2/2m only, where hk
is the momentum of a single photon.

This Sisyphus process can also be used to populate efficiently the ground
state of a potential confining the atoms in the vicinity of the dielectric prism,
achieving thus a quasi bidimensional gas [24-26]. This could provide an efficient
way to prepare a 2D gas with a high quantum degeneracy.

We acknowledge stimulating discussions and general encouragement from the
E.N.S. laser cooling group. M.A. acknowledges financial support by the Alexander
von Humboldt Foundation. This work has been partially supported by DRET,
CNRS, Coll~ge de France, DRED and the T.M.R. program of the European Com-
munity (contract FMRX-CT960002).
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We discuss our numerical studies of the low energy excitations of trapped
Bose condensates using a Bogoliubov-Hartree treatment. In the zero tem-
perature limit, the lowest few excitation frequencies calculated within the
Bogoliubov approximation agree well with the experimental data. Finite
temperature results obtained using the Popov approximation display quali-
tative differences from the experimental data close to the critical temperature
region. Details of our numerical approach are presented and comparison with
other results is discussed.

PACS numbers: 03.75.Fi, 67.90.+z

1. Introduction

A little over two years ago a new phase of research was entered by experi-
mentalists pursuing research in the Bose-Einstein condensation (BEC). Built upon
cumulative research advances in laser cooling and trapping [1] and in evaporative
cooling [2], BEC was first observed in 8 7Rb by a collaboration at JILA [3]. Shortly
thereafter, a group at Rice University reported apparent evidence of quantum de-
generacy with 7 Li [4], and a group at MIT developed techniques for rapid produc-
tion of large condensates containing about a million 23 Na atoms [5]. Tremendous
progress has been made in the past two years: many single particle properties of
trapped condensates have been measured; direct non-destructive optical imaging
techniques have been developed [6]; several of the low-lying collective excitation
modes have been detected [7, 8]. Recently, the macroscopic coherence properties
of the condensate were displayed in a spectacular fashion with the demonstration
of interference between two condensates [9], and the suppression of the collisional
losses from the inelastic collisions [10] due to the multi-particle correlations. Rudi-
mentary atom lasers with pulsed output couplers have also been reported [9, 11],
and the sound velocities of the condensate have been measured [12].

(211)
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The theoretical description of these experimental systems has also been an
active field. Particular interest has been focused on the calculation of excitation
spectra for condensates. In the zero temperature limit, the Bogoliubov-de Gennes
equations that govern the wave functions for quasi-particles have been studied
by several groups [13, 14]. An (analytic) asymptotic expression for the eigenfre-
quencies valid in the Thomas-Fermi/hydrodynamic limit was first presented by
Stringari [15]. A variational approach was developed in Ref. [16]. A dynamical
variational approach was also applied by P~rez-Garcia et al. [17]. More recent
studies can be found in Refs. [18-21]. All of these studies describe the condensate
within a mean-field approximation with excitations corresponding to the poles of
the single particle Green function. Multi-particle excitations and related correla-
tion effects have not been carefully addressed yet, although an atomic structure
approach based on the Hartree-Fock, random phase approximation, and configu-
ration interaction approach as presented in [22], can be used to study such corre-
lation effects by including multi-excitation configurations [23]. The finite temper-
ature mean-field Bogoliubov-Hartree (BH) approach to the collective excitations
involves a great deal of numerical effort and only limited results are available at
the moment [24]. A detailed comparison with the experimental data [8] is yet to
be performed.

In this paper we present the numerical procedure we have developed for
the study of low energy excitations of trapped Bose condensates [25]. The paper
is organized as follows. We start by giving an overview of the field theoretical
description of the condensate. In Sec. 3 we follow with an outline of the numerical
procedures we have developed. The results and discussions are given in Sec. 4.
Finally, we conclude in Sec. 5.

2. Bogoliubov-Hartree theory

Several versions of the Bogoliubov-Hartree theory exist in the literature [26]
but we closely follow the approach of Ref. [25], which is based on the linearization
of the 2nd-quantized Hamiltonian around a coherent siade (or a c-number) of the
atomic fields. This approach fixes the overall phase (by breaking the global U(1)
gauge invariance) of the mean atomic fields and keeps quadratic terms of the small
quantum fluctuations (around this coherent state) in the Hamiltonian. For trapped
systems, these quantum fluctuations cause the initial fixed phase of the atom field
to diffuse, which can be understood mathematically as due to the degeneracy of
the zero mode in the quasi-particle excitation spectra. For a detailed discussion of
the zero mode, see Ref. [27]. Recently approaches which conserve the number of
particles (and therefore do not fix the phase) have been presented [28].

The second quantized Hamiltonian for a system of N spinless bosonic atoms
trapped in a potential Vt(r) is given by [25, 26]

7 J dr!ft[(r) [-"V2 + V,(r) - u] !(r)
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where T(r) and !t(r) are atomic (bosonic) annihilation and creation fields, u0 =
47rh 2 as,/M, with M being the atomic mass, and a,, - the scattering length of the
atom-atom interaction. This Hamiltonian in fact describes the free energy since
the chemical potential it is used to guarantee the conservation of the average of
the total number of atoms R = f dr !t(r)!P(r). The aim of the BH approach is
to describe the single particle excitations of the system in terms of non-interacting
quasiparticles. Mathematically we try to cast the Hamiltonian (2.1) into the form

'H -+ * + + (n = 0 zero mode part aP2/2), (2.2)
n •0

where gt (,) are the quasiparticle creation (annihilation) operators which satisfy
the standard bosonic commutation relations and the quasiparticle index,
n = 0, 1, 2,..., labels the positive eigenfrequencies wn arranged in ascending order.
Therefore, the density matrix for quasiparticles at equilibrium is described by the
Bose-Einstein distribution1 (

1= 1 exp 8-Eh E n h nt !n+... + (2.3)

where w, depend on the chemical potential/y and Z is the partition function.
At zero temperature the BH approach takes its simplest form, the Bogoliubov

approximation, which starts with the assumption

P(r) = V/-o0(r) + 65(r), (2.4)

where the c-number condensate wave function Oo(r) is assumed to be real (with-
out loss of generality) and normalized such that f drloo (r)12 = 1, and No is the
number of particles in the condensate. In Eq. (2.4), 5W(r) denotes the quantum
fluctuation which obeys the same standard bosonic commutation relations as Tf(r).
We substitute Eq. (2.4) into Eq. (2.1) and neglect both 3-rd and 4-th order fluctua-
tion terms. The linear fluctuation terms are vanishing provided that 00(r) satisfies
the nonlinear Schr6dinger equation (NLSE), i.e.

[L + uopO]I 0(r) = 0, (2.5)
_h2V2

where we have defined £ - ---- +Vt(r)-p, and the condensate density po(r)
No0o0(r)12 . The resulting linearized effective Hamiltonian

f1 V)
'Heff Jdrcf(r)£6q(r) + ýNuo J dr0(r)

x [4ft(r)&•t(r) + h.c. + 46Ct(r)6S(r)], (2.6)

may be diagonalized in the representation of the quasiparticle annihilation opera-
tors

, =JIdr [U, (r)&ý[(r) +Vk (r)&YA (r)] ,(2.7)

for k 1, 2, 3, ... and their Hermitian conjugates, a quasiparticle creation opera-

tors y. The Uk (r) and Vk (r) are the mode functions of the quasiparticles which
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have to be determined. To determine the functions U,(r) and V,(r) (for n $ 0) we
solve [W,,, Wi] = hý;Jn, which is equivalent to the coupled Bogoliubov-de Gennes
equations

[C + 2u0opo((r)] U,,(r) - uoA*(r)V,(r) = &Dun(r),

[C + 2uopo((r)] V. (r) - uo Ao(r)U,(r) = -h&nV,(r), (2.8)

where AO(r) = NOt02(r). There is a time-reversal symmetry associated with (2.8).
If the set {Un(r), Vn(r)} constitutes a solution for energy +h&n then the set
{V.*(r), U*(r)} is also a solution but for energy -hi, [26]. All of the non-zero

eigenvalues are thus paired and real. To have Wk and - fulfill bosonic commuta-

tion relations, [gk, -g=,- 6kk,, [k, k,]= 0, the mode functions have to obey the
orthonormality condition [26],

J dr[Uk(r)Uk,(r) - Vk(r)Vk*,(r)] = 6kk',

dr [Uk (r)Vk, (r) - Vk (r)Uk, (r)] =0. (2.9)

The presence of a zero mode solution to Eq. (2.8) requires the introduction
of the momentum operator P, defined according to [27] as,

P = I dr~o(r) [60(r) + tV (r)] . (2.10)

The zero mode and the above associated momentum operator describe collective
motion without restoring force of the condensate [29]. Therefore, P commutes with

all Wk, and -t operators, i.e., f drbo(r)[Uk(r)-Vk(r)] = 0 for k $ 0. The conjugate
"position" operator is defined as

Q i dr!o(r) [6be(r) - 60t(r)] , (2.11)

and it has to satisfy [ý, P] = i, [Q, k = 0 (for k 5 0), and [Q,l-eff] = iceP [27].
Thus, we obtain

2J drPo(r)Oo(r) = 1,

I drco(r)[Uk(r) + Vk(r)] = 0, for k $ 0, (2.12)

and

[L + 3uopo(r)]4o(r) = a¢o(r), (2.13)
which has a unique solution, since the operator on the lhs of Eq. (2.13) is clearly
positive-definite. The coefficient a is related to the rate of change of the conden-
sate phase. The annihilation operator for the zero mode is go = (P-iQ)/V/2_. Its
associated mode functions are given by

Uo(r) = [0o(r) + P0(r)]/,

Vo(r) = [lo(r) - Po(r)]/v'2. (2.14)
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The total atomic field can now be expanded as
00

= [Uk(r)Wk - Vr)t(2.15)
k=0

assuming the validity of the linearization approximation. Since the mean value of
TI(r) is VfN-ot0(r), this can happen if and only if the system is in the coherent
state IVN) of all the quasiparticle operators gklv/No) = zklvNo), such that

00

Z[k Uk (r) - z4 Vk (r)] = vfN'KP(r). (2.16)
k=O

The above condition implies that zk = /V/Nof drbo(r)[Uk(r)+ Vk(r)] and z4 = Zk.

In addition to the collective excitation frequencies Zý, several other quanti-
ties are of potential interest. The total energy of the system (at T = 0, the ground
state) of trapped atoms is given by

fo = Nop + U0 = Noy - uo J drpo(r)/2, (2.17)

which may be measured as the total release energy by turning off the trapping
potential [30]. The depletion of the condensate (caused by the inter-atomic inter-
actions) at zero temperature is [31],

N'(T= 0) = JdrZ IVn(r)I2. (2.18)
n>0

For T $ 0, a self-consistent Bogoliubov-Hartree approach is usually adopted.
Within the present notation, we have to take into account the neglected 3rd and
4th order terms of 6!lY(r) and 60T (r) and reduce these terms to quadratic operator
terms using a decorrelation approximation [26]. The resulting equations will then
be slightly different from those used for the zero temperature studies. First the
condensate wave function vN-o0o(r) cannot in general be assumed to be real. In
fact, the analogue to the NLSE are two coupled equations

[,C + uo(po + 2p')]Oo(r) + uoA'(r)O*(r) = 0,

[C + uo(po + 2p')]i¢b (r) + uoA'*(r)O)o(r) = 0. (2.19)

Similarly modifications to Eqs. (28) lead to

[,C + 2uop(r)] U.(r) - uoA*(r)Vn(r) = UU(r),

[,C + 2uop(r)] V.(r) - uoA(r)U,(r) = -hv,(r), (2.20)

where we have used the notations

p(r) = po(r) + p'(r), p'(r) - y [N.IU(r) I' + (N. + 1)IV.(r)I2 ],
n>0

A(r) = A(r) + A'(r), A'(r) = -- (2Nn + 1)U.*(r)Vn(r), (2.21)
n>0

where

N.•o = (gtgn) 8 = 13=1/kT, (2.22)n e•rZ;- - 1'
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is the Bose-Einstein distribution. We also obtain

S= Nop - uo J drpo(r)[po(r)/2 + A'(r) + 2p'(r)],

N'(T) = I drp(r). (2.23)

Self-consistent solutions to the above Eqs. (2.19) and (2.20) can be obtained
through an iterative scheme. We note that the BH approximation as outlined here
is a conserving approximation, but it leads to an energy gap in the excitation
spectra [26]. Generally, one expects the low energy excitations for an interact-
ing Bose gas to be gapless since the zero mode will always be present in a U(1)
symmetry-breaking approach [26, 27]. A commonly adopted approximation to en-
force gapless excitation solutions is by setting A' = 0 in Eqs. (2.19) and (2.20).
Such an approach is called the Popov approximation. It is gapless but this is not a
conserving approximation. However, it has allowed preliminary numerical studies
of finite temperature excitation spectra [24]. Recently a U(1) symmetric approach
has also been developed. It is a conserving gapless formalism [28].

To study numerically the trapped Bose gas within the BH approach, one
may solve first the NLSE (2.5) or (2.19) for V0 and then proceed to solve the
Bogoliubov-de Gennes equations (2.8) or (2.20) for U,, and Vi,. For non-zero tem-
peratures, self-consistency is enforced by iteration. The details of our numerical
approach are discussed in the following section.

3. The numerical approach

In this section we outline the details of our numerical approach to solve the
equations of the BH theory. We present the details of the calculation technique for
the zero temperature limit since it is in this limit that most of our results have been
obtained. A generalization to non-zero temperature calculations is straightforward.
Several groups have studied the zero temperature problem [13, 22, 24, 32]. Our
work relies on a basis expansion method that we have developed [25]. Since most
of the experimental traps can be well approximated at their minima by a harmonic
potential, Vt(r) = M(w2x 2 + w2y 2 + W2z 2 ) [3-5], we use a harmonic oscillator
basis. The basis is composed of product states of three separate one-dimensional
harmonic oscillators, 0¢,(r) = ¢•xjx)0,,(y)¢,z(z). All frequencies (energy terms)
are scaled in units of the smallest trap frequency, w = min(w2 ,,WY,w,), and the
three coordinates (x, y, z) are scaled to their ground state sizes (a., ay, a,), where
a•,,,z = %1h/2Mwxuz. We also scale the scattering length asc to a = Vh/2Mw.
In these units the atom-atom interaction coupling takes the dimensionless form
Nouo --* 8rNoa. 6:.ý-;-ywý.

Given a basis, one can write the condensate wave function (for T = 0) as
Vk0(r) = ,. aq.O(r). Equations (2.5) and (2.8) can be rewritten in terms of their
matrix representation

S-, ,,, = J dr¢* (r)£qC',(r) = (w(0) - p)b,,,I, (3.1)

Nouo0Oo(r)12 
- D* n, = TIE a*anamInmnm,, (3.2)

M M/
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where

m -= dr€* (r)0- (r).m, (r)•n, (r), (3.3)

with w(°) -nxw + nywy + nzwz.
The NLSE (2.5) can now be written as a matrix eigenproblem

(Wn +, + NouoDn,,)an, = pn'5nn ,an,. (3.4)

The Bogoliubov-de Gennes equations (2.8) can also be expressed similarly in terms
of Dnn, and nn',.

We find an approximate solution to Eq. (3.4) by taking a finite subset of the
basis functions (Ntot) and solving iteratively the above equation for pn and an. The
proper choice of the subset is dictated by the relevant symmetries of the problem.
One also has to prove that the number of states within the subset basis is sufficient
to obtain a reasonable numerical solution. This is most easily done by checking the
change in the "final" answers as a function of the number of basis states used. The
iterative procedure is as follows. An initial guess aold is used to generate the matrix
D,0 ,,. The eigenvalues and eigenvectors of this matrix are found numerically and
the eigenvector corresponding to the lowest eigenvalue, aeigen, is used to update
the input vector according to the rule

anew =• [(1 - 7])aSigen + •aold], (3.5)

where typically rI E [0, 1) is fixed for relatively weak interacting case, and adjusted
step by step (by-section) for other values of Nouo. The coefficient i ensures proper
normalization. Then the vector anew is used as the new input for generating the
Dnn, and the steps are repeated. If the procedure converges to a fixed point,
anew = aold this point is a solution of Eq. (3.4). The lowest eigenvalue corresponds
to the chemical potential p. The rate of convergence clearly depends on the value
of •/chosen as well as the initial guess for the an. We have achieved convergence to
a fixed point for a wide range of coupling strengths Nuo by using an appropriate 7.

The initial guess a(O) was also varied with the parameter Nuo. For moderate values
of this parameter, the noninteracting ground state was chosen as the initial guess.
For larger values of Nouo one can neglect the kinetic energy term in the NLSE
[15, 18], often referred as the Thomas-Fermi approximation (TFA). In this limit,
the condensate wave function becomes the mirror image of the trapping potential,

Oo(r) oc p - Vt(r)O[p - Vt(r)], (3.6)

where 9(x) is the step function, and /. is determined from the normalization con-
dition. The solution (3.6) was found to provide a better starting point for the
algorithm for large values of Nouo.

The solution for the NLSE (3.4) is used to solve Eq. (2.8) for Un(r), Vn(r),
and ho,•. For calculations of experimental interest, the computational effort is
bottle-necked at the evaluation of the Dnn, matrices. In using this approach, two
issues must be addressed: (1) a practical method of ordering the basis must be
found, i.e., a mapping n, ny , nz -* n; (2) an efficient method of storing and
evaluating the integrals Inmnom, must be identified.

Without loss of generality, we can assume all (Uk,Vk) to be real. By intro-
ducing the sums and differences as
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Sk (r)=Uk (r) + (r),

Dk(r) = (r) - (V). (3.7)

Equation (2.8) may be rewritten in a decoupled form [21] as

(£C + 3Nuo b2)(£C + Nuobo')Sk(r) - (h&Uk) 2Sk(r),

(L + Nuo02)(£ + 3Nuo•ob)Dk(r) = (hKk)2 Dk(r). (3.8)

The latest form will reduce the size of the numerical computation.
The above equation yields the spectrum of quasiparticle excitations as the

eigenvalues of the product operator of £ + 3Nuo00(r) and £ + NuO02(r). Math-
ematically, Sk(r) and Dk(r) correspond to the left- and right-eigenvectors of the
non-Hermitian product operator (although individual operators £ + Nuo0b and
£ + 3NuO02 are Hermitian, they do not commute). In the TFA and working in
the classical phase space (r, p) with Ep = p2/2M, we can easily find the excitation
spectra as

C(p, r) (Ep + Vt - p + Nuo0b)(Ep + Vt - p + 3Nuo02)

f Ep(Ep +2p - 2Vt) oc p, O(p - Vt),
Ep + Vt - p, O(Vt - P),

where 0(p-Vt) is the step function, and the region specified by 0(p-Vt) is the inner
region of the condensate with phonon-like low energy collective excitations, while
the second line of €(Vt - p) corresponds to the outer region with no condensate
mean-field, where the excitations in phase space are particle-like.

We can also understand the mathematical reason for introduction of the con-
jugate wave function 450 described by Eq. (2.13). By putting 0o = 0 in Eq. (3.8),
one may see that SO(r) oc ¢0(r) is a solution, and in general we have
[C + 3Nuo02(r)] Do(r) cx ¢o(r), which corresponds to Do(r) oc Oo. A general
misleading of the previous works was to consider the trivial solution of Do(r) = 0
which corresponds to the Goldstone mode of U0 = V0 = ¢0(r).

3.1. Ordering of the basis states

We choose to order the basis states such that if n < n' then E, = (nXWX +
nywy + nw 2 ) < E,, = (n'wx + w + n'zw). Within the degeneracy manifolds
of E, eigenvalue, the states are sorted by (1) increasing order of the largest of
the three 1D indices (nrnmx -= max(n,, ny, n,)); (2) increasing order of the sec-
ond largest of the three 1D indices (nmid = sum(nx, ny, n,) - max(nx, nyr, n,)-
min(n,, ny, nz)); (3) increasing in the n, index. This sorting indexes the basis
states in ascending order of energy using a single integer n index.

In numerical computations we further decompose the states into eight sec-
tors since the parity along each of the three coordinates (x, y, z) are good quantum
numbers [14]. The resulting parity sectors consists of (even x, even y, even z),
(odd x, even y, even z), (even x, odd y, odd z), etc. Then the numerical di-
agonalization may be performed in each of the sectors, provided that the mean



Low Energy Excitation Spectra ... 219

field potential profiles due to po(x, y, z), p'(x, y, z), Ao(x, y, z), and A'(x, y, z) are
symmetric, which is indeed the case of the ground state of the NLSE (3.4). This
numerical strategy will reduce eight times the size of the problem, since the NLSE
(2.5) and the Bogoliubov-de Gennes equations (2.8) may be solved independently
in each of the parity sectors. The total computation effort is then determined by
the summation of all the Inmn' terms in the Dn,, expression Eq. (3.2). One
may easily see that to compute all N2ot matrix elements would, at least, require
Nt operations, since computing each of these matrix elements requires a sum-
mation over Nt2ot terms (matrix diagonalization scales with a lower power of Ntot
and we focus on leading order behavior). To perform self-consistent calculations
such as those required by the Popov approximation, each iterative loop demands
N4ot-order calculations. Therefore this repartition of the total basis, into the 8
distinct parity sectors, has some clear advantages.

3.2. Indexing the IijkC

The evaluation of the basis coupling matrix elements Inmn'm, is also an ex-
tremely intensive numerically effort. Since in total there are Nt40 elements, we

mention that the evaluation may lead to a memory management problem too.
Various approaches have been developed [13, 25, 32]. The most common one is
based on the fast Gaussian quadrature algorithms. Analytic formulas are not very
useful since their numerical evaluation takes longer than a direct quadrature com-
putation. We note that, using the harmonic oscillator basis, there is an efficient
scheme for ordering the Inmn'm, that allows for both a compact storage as well as
efficient addressing and searching.

For a harmonic oscillator basis representation the matrix elements Iijk, are
a direct product of three one-dimensional matrix elements,

Iijkl = rlDký[,
1 iyj 3 rklD ijjk (3.10)

Further, the symmetry properties (to be discussed later) of the one-dimensional
matrix elements I1 D are, obviously, the same and the values of the matrix elements
are related to each other by a scaling constant. This allows the full matrix element
to be calculated from a single set of 1 1D elements.

The stored values of I1 D must be ordered and indexed. Because all harmonic
oscillator basis functions Oh are real, any permutation of the indices will refer to
elements with equal values. Therefore, we assume that each element to be indexed
by four integers h, Ž h2 _> h 3 > h4 > 0. Written in this way, the iPrkDI elements
may be mapped into a one-dimensional array labeled by an single integer index
"ind",

i1D 11D
h1 h 2 h3h ind (3.11)

This mapping is most easily explained by considering a simple case of an object
with two indices, Iab for a > b > 0. For a given value of a, there are

a 
1E -b= a(a + 1) (3.12)

b=O

elements preceding the next a + 1 elements which correspond to the possible
values of b. We associate with the original two indices a single number a, b -+
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½a(a + 1) + b (0 < b < a). Generalizing this procedure to higher numbers of
indices is straightforward. For the case of '1D 2 h3  with h h2 > h3  h4 > 0
one finds

hjh 2 h3 h4 -+ ind = hi(h, + 1)(h, + 2)(h, + 3) + oh 2 (h2 + 1)(h 2 + 2)

h3(h3 + 1) + h4 . (3.13)

The use of this indexing procedure allows us to store economically all of the matrix
elements needed for our computations.

3.3. Evaluadion OfIh,,DofXlh2h~h4

The wave function for a 1D-harmonic oscillator, of fundamental
frequency w, in the coordinate representation is given byn~ 2 ¼ 2) ( )

On(x) = (2 n!)- ( 2 1-)exp (-• .) H, (3.14)

where a = N/h-/2Mw is the size of the ground state. Then we have

IID (2hl+h2+h3+h4 h!h 2 2ha!h4 !)- 2 dxh h2hh "- 2 --h!h !4!

xexp -X) Hhi( x Hh2 ' X ) Hh3 ( Hh. X

[(2 h+h+3+hhl!h2 !h3!h 4 !)- --r2Mhlh2hJh4, (3.15)

where

Mhl h2h3 h4 = f dy exp(-2y2 )Hh1 (y)Hh2 (y)Hh3 (y)Hh4 (y). (3.16)

We note that the quantity inside the square bracket in the rhs of Eq. (3.15) is
dimensionless and independent of the frequency of the harmonic oscillator. The
Mhlh2 h3 h4 integrals may be easily evaluated with the help of the generating func-
tion of the Hermite polynomials, i.e.,

e-02+ 0 = A 1 (Y) SI. (3.17)
hi

and so
00 shi th2 P1 h 3 V h4

E Mhlh2h3h4hj~hh3,4=0hi! h2! h3! h4!
h1 ,h2 ,h 3 ,h4 =O

= j dye_22 e_ 2 +2syet
2 +2tyeP A

2
+Aye- v 2

+2vy

0(
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Then, the Mhlhh 3 h4 are found to be the coefficients of the Taylor expansion of
the rhs of Eq. (3.18). Alternatively, numerical quadratures can be developed to
evaluate (3.16) [32]. Also, another equivalent analytical expression exists,

min(hi,h 2 ) 2 t

Mhlh~h2h h =- hl!h2! E t!(hl -t)!(h 2 -)!
t-=O -

for hi + h2 + h3 + h4 = 2k = 2k+ 2t, and zero otherwise (when hi + h2 + h3 + h4 =
odd number) [33].

3.4. From I1Drnjm to Ie and ID

The above approach was initially implemented for the calculation of low
energy excitations within a mean-field Bogoliubov approximation [25]. At T = 0,
only a linear computation (one loop) of the Bogoliubov-de Gennes equations was
needed. To study the properties of the excitation spectra at a finite temperature
(e.g. with the Popov approximation), we are forced to develop new methods for
more efficient evaluation of the matrix elements given in Eq. (3.2). After dividing
the basis into 8 parity sectors, it became clear that there is indeed a systematic
way of reducing the overall computational effort for one loop from Nt4ot-order to
Ntot-order. We outline this approach in this subsection.

As we mentioned earlier, in a harmonic oscillator trap, quasiparticle states
have well defined parities with respect to their (x, y, z) coordinates. This can be
used to accomplish more efficient evaluation of the matrix elements of the type
D,,,, Eq. (3.2), i.e. of the following types of integrals:

a- / d'r*(r)[po(r), r), A'(r)]¢m, (r). (3.20)

At thermal equilibrium, the converged solutions for Oo(r) and (Uk(r), Vk(r)) will
necessarily result in parity symmetric functions for po(r), p'(r), zAo(r), A'(r). There-
fore, these func! ions themselves can be expanded into one particular 8 parity basis
sector: the (even x, even y, even z) basis set. As an example, we formally write

p(r) = b . (r), (3.21)
n

where 0, are the complete symmetric basis set. Suppose that the expansion param-
eters bn are known, then the calculation of matrix elements as given in Eq. (3.20)
will involve products of three on functions

bJ drq* / qnNO ..mI(r), (3.22)

which contain only three Hermite polynomials. We denote the corresponding terms
as Imnm, (Ii'D,) and the reduced integral involving products of the Hermite
polynomial as Mmnm' (compare with Mnmn,m, defined in (3.16)). The Mmnm, is
given by the following identity [33]:

j dy exp ( Y!') Hh, (y)Hh2 (Y)Hh3,(Y) = / zy r [k +1
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min(h 'h 2 ) 1

x 21- hi -h2,(-h3;tk ( '2 Z (3.23)

for 7 = 2/3 and h, + h2 + h3 = 2k (even), where z = [2(1 - 7)]-1, and (m)t
- are the Pochhammer symbols. For the case hl + h2 + h3 = odd numbers(m - )!

we have Mhlh2 h3 = 0. The above calculation (3.22) is now a simple summation
of Ntot terms (instead of a double summation of Nt2ot terms as in Eq. (3.2)).
Therefore, the computation of all matrix elements requires only N operations.
Only two distinct possibilities exist for nonzero values of Mhxh~h3 : (1) all indices
are even; (2) one index is even and the other two are odd. We denote them as Meee

and Meoo respectively, and they can be ordered into a one-dimensional array in a
manner similar to that detailed in Sec. 3.2.

One question remains: how do we find the expansion coefficients b, and
what is the associated computational effort? If one writes explicitly the form of
expansion (3.21) for any generic term in po(r),p'(r), Ao(r), or A'(r), then one
may see that these quantities involve terms proportional to b02(r) or IUk(r)12 and
IVk(r)12 . We assume that 00(r), Uk(r), and Vk(r) are written as E an, (r) (these
are just the solutions for condensate or quasiparticle states in any of the 8 parity
sector basis sets). Then we have

-7bnkn(r) = ya* ami *(r)qrm,(r), (3.24)
n m m/

which allows the following expression for bn coefficients:

bn a* am, Inrrn,. (3.25)
m m'

The above operation is again of the N~ot-order for all the expansion coefficients
b,, and the matrix elements f dr* (r)q* (r)¢m,(r) are exactly of the same type
as those needed in Eq. (3.22), i.e. they can all be reduced to terms involving Meee
and Meoo. Therefore, by first expanding terms such as p0(r), p'(r), 4A(r), A'(r)
in the appropriate basis given their parity, the calculation for the density matrix
elements of the type Dnn, has been reduced from the N4ot-order to the 2N3t-order
(one Nt3ot-order from calculating the expansion coefficients b", as in Eq. (3.25), and
another Nt3ot-order from computing the matrix elements for the expanded form,
as in Eq. (3.22)).

We want to emphasize that this technique, of reducing a calculation involving
Inm,,nm to one involving only Imnm,, is also applicable when the ground state

0o(r) (and thus po(r), p'(r), A0(r), A'(r)) have different symmetries, as one might
expect to occur in the case of vortex states. It even applies when there is no
explicit symmetry. In such a case, one may use the complete set of basis states
which includes all 8 different parity sectors.

3.5. Construction of the angular momentum states

The preceding subsections have outlined an approach which is efficient for
finding the low energy excitations for a trapped Bose gas [25]. Although we have
repartitioned the basis states into parity sectors for three coordinates (x, y,z)
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no other special symmetries of a given trap have been used. In practice, most of
the current magnetic traps used in BEC experiments have cylindrical symmetry.
For such traps the angular momentum projection along the symmetric z-axis,
LZ, is conserved. For L, : 0 there is a double degeneracy according to the sign
of L,. Using the harmonic oscillator eigenfunctions as our expansion basis, the
reconstruction of the LZ eigenstates is a straightforward task [34], which will be
discussed below.

For a cylindrical trap with wwy w W. (radial trapping frequency), we
can characterize the quasiparticle states according to (1) their energy Dn; (2) their
angular momentum projection L,; and, (3) an integer indexing the sequence within
a degenerate &n and L, manifold. We notice that the states (Uki, Vki) for i =

1,..., nd correspond to the same energy Wk and so are any linear combinations of
them (since the Bogoliubov-de Gennes equations, Eqs. (2.8) and (2.20), are linear).
Thus, the eigenstates of LZ into the nd-degenerate manifold may be constructed as
a linear combination, i.e. UkL. = E ciUki (and similarly for Vki). The appropriate
coefficients ci are given by the following system of equations:

E (Ueh, Ij ZUk,)c, = Lý Z(UkiIUki)ci. (3.26)
i i

The summation on the rhs is due to the non-orthogonality of the Uki functions.
This is a generalized matrix eigenvalue problem. The matrix elements involved
may be easily evaluated using a product of harmonic oscillator basis denoted by
In•)Iny)In.). Let us assume that

Ie aU' n,.,. ,In. I,•,). (3.27)
n.,ny•?n.

Using the creation (annihilation) operators at at, at (a , ay, a,) for the harmonic
oscillator basis states In,), Iny), Inz) and the relations,

= ih(*a.a -atay), aqlnq) -- V Inlq -1), q = x,y,z,

atInq) = Vfq + lInq + 1), q = x,y,z, (3.28)

we find

n',n',n' nxx~nyln.

(n4I(n'I(axat -a ay)Inx)Iny) = ih 1 [ak*n a i,

xVný(ny + 1) a+ 1  -1,nz a , /(n + 1)nY] (3.29)

and
ki'* k'(UklIUki) = E E a ,n, n.6nxnn , ,ni 6 nn'

nt,'t,nt n nx,ny,nz

ki'* ak (3.30)
= anx,ny,n. anx,ny,n. (

n,,nyl,n.
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Similar techniques may be used in the case of a spherically symmetric har-
monic trap to find the quasiparticle states for the angular momentum operators
Z2 = Z2 + Z2 + Z2. In this case the eigenstates of Z2 and L, must be of a spherical
harmonics type, YLL,.

4. Results and discussions

We incorporated the above ideas into a numerical program and use it in the
study of interacting trapped Bose gases within the standard mean-field BH approx-
imation. In our ongoing efforts, we have solved the BH equations for the excitations
of condensates in various types of traps. Some of the results are discussed here.

(even x, even y) (even x, odd y /odd x, even y) od " , odd-
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Fig. 1. The calculated dependence of quasiparticle excitation frequencies on the number
of condensed atoms for the JILA TOP trap with (wx: wy: wz) = (1 : 1 : \/-8) (129 Hz),
for 87Rb atoms with a., = 5.2 nm. The three separate panels are for the 4 separate parity
sectors in x and y coordinates respectively: first panel for (even x, even y); second panel
for (even x, odd y) [same as (odd x, even y)]; third panel for (odd x, odd y). The even
z parity states are plotted with solid lines while odd parity z states are plotted with
dashed lines.

We note that our quasiparticles represent elementary excitations of the quantum
noise Wf!(r) (50 t(r)), while in the current experimental investigations the quasi-
particle excitations are created by using microwave pulses or trapping potential
perturbations [7].

For the solution of the NLSE (2.5), we typically use up to 10,000 states with
the highest energy states corresponding to Emax > 50hw for the JILA TOP trap
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and Em.ax > 200hw for the MIT cloverleaf trap. Here we only present results for
the TOP trap with w. = wY = w,/vf8. For the zero-temperature calculations,
the same number of basis states were used for Eq. (2.8), therefore, higher excita-
tions, closer to Emax, are not well represented. For finite temperature calculations
within the Popov approximation, we have used fewer basis states for Eq. (2.20),
in order to make the calculation possible on a personal workstation. We limited
the calculations to a range of parameter where the convergence of the solution is
ensured.

(even x, even , even z)
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Fig. 2. The first panel of Fig. 1 for even z. The open circles highlight our data points
for the three shape oscillation modes of Ref. [17].

The typical dependence of the excitation spectrum on the number of con-
densed atoms is shown in Fig. 1 calculated in the 8 separate parity sectors. The
characterization of the angular momentum operator Z, is a straightforward task
usually involving only two energy degenerate states. All L, = ±(2m+1) states (i.e.
odd angular momentum projection states) are obtained simply from the doubly
degenerate states of the (odd x, even y) and (odd y, even x) sectors (of the same, z
parity). All states in the middle panel are doubly degenerated. This symmetry be-
tween the x and y basis sets requires us to solve only Eqs. (2.8) and (2.20) within
the (odd x, even y) sector (for both odd and even z parity). The even angular
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Fig. 3. The same curves as in Fig. 1, now characterized by their L, quantum numbers.
The open circles denote the three shape oscillation modes from Ref. [17]. The dashed
lines in the asymptotic limit, N =O 10 106 , are the results based on Ref. [16]. The
asterisks, triangles, squares, and X's denote, respectively, the n = 0, 1, 2, 3 modes in the
asymptotic limit of Ref. [19].
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Fig. 4. Plots of the expansion coefficients of the mode function U for two modes at
N - 250 and N = 1000. These modes participate in the lowest energy possible crossing
of the L. = 0 curves. The higher energy modes are shown across the top and the lower
energy modes are shown across the bottom. It is interesting to note that the level crossing
actually occurs at N z 655. At this point, our numerical diagonalization results in the
energy difference of ; 0.001.

momentum states, L, = ±(2m), are formed by the linear combinations of the so-
lutions for (even x, even y) and (odd x, odd y) sectors (i.e. states in the first and
third panel). In particular, all L, = 0 states are within the (even x, even y) sector.
For every state in the (odd x, odd y) sector there is always an energy degenerate
counterpart in the (even x, even y) sector. Together they form a nonzero even ±4L
pair of states. In this plot, we have connected the calculated points assuming no
crossing between states with the same symmetries.

In the first panel of this Fig. 1, there are two curves with constant excitation
frequencies. The lowest curve, for & = 0, corresponds to the Goldstone mode
associated with the U(1) symmetry breaking. The higher one, at tv = A/8, is
the small amplitude center of mass motion of the rigid cloud in the z-direction.

Similarly, in the middle panel, the doubly degenerate state for Z = 1 corresponds
to the small amplitude center of mass oscillation in the x and y axes.

Three of the independent shape oscillations have been measured experimen-
tally [7, 8] and discussed extensively using various analytic approaches [15, 17-20].
In Fig. 2 we compare our calculations with the results of Ref. [17]. In Fig. 3 we
show the dependence of the quasiparticle eigenfrequencies on N for L, = 0, ±-1, ±2,
and ±3. The open circles denote the three shape oscillation modes from Ref. [17].
The dot lines in the asymptotic limit, N - 10' - 106, are obtained using the
Stringari results [15]. The asterisks, triangles, squares, and X's denote the n =
0, 1,2, 3 modes, respectively, obtained in the asymptotic limit of Refs. [19, 20].
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Fig. 5. The made functions Ug(x, 0, z)l for the modes of Fig. 4.

Our numerical evaluation agrees well in the asymptotic limit with the analytical
results of [15, 17-20].

In Figs. 1, 2, and 3, all crossings between curves of different z parity are
allowed. For curves with the same z parity, we have connected the calculated
points assuming that there are no crossings between them. This may not be always
true. Let consider a possible crossing for the lower energy curves with Lz = 0 from
Fig. 3. Any of these curves represents one of the shape oscillations Ref. [17] and,
therefore, they should maintain their symmetry through any value of N. In Fig. 4,
for values of N = 250 and N = 1000 on either side of the possible crossing, we
show projections of the mode function U(r) onto the (even x, even y, even z)
basis for each of the two curves involved. This may suggest that a crossing point
exists in this range of value of N. To firmly determine if this crossing indeed exists
one has to perform detailed numerical computations at exactly the crossing points
(minimum distance points between the two energy curves for avoided crossings).
We have performed such a study of the crossing shown in Fig. 4. Figure 5 presents
the shape of IU(z,y = 0, z)I for the same values of N. These figures indicate
the existence of a crossing between these two curves. In our initial studies [25]
this crossing was identified as an avoided crossing based on the fact that these
two quasiparticle energy levels belong to the same symmetry manifold. Recent
semiclassical studies of quasiparticle motion in trapped condensates have revealed
rich chaotic dynamics underlining these complicated level crossings and avoided
crossings [35].
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Fig. 6. Zero temperature results for (a) the chemical potential A and the dephasing pa-
rameter a, (b) total ground state energy, and (c) number of the noncondensate particle.
The crosses denote the calculated data points.

In Fig. 6 various zero temperature results are plotted as a function of N. Fig-
ure 6a presents the chemical potential, p, the dephasing parameter, a, as well as the
dephasing rate, -ydp = a/VrN as a function of N. In the TFA bothy and a scale as
N 2' 5 , while 7dp scales as N- 1110 . It is interesting to note that before 'Ydp reaches its
asymptotic scaling behavior it passes through a maximum. Figure 6b presents the
total ground state energy as a function of N. Figure 6c presents the number of non-
condensed particles in the zero temperature limit as a function of N. The conden-
sate depletion is a good measure of the effect of interparticle interaction. As a per-
centage, only a very small fraction of the atoms are noncondensed. In the asymp-
totic limit N'(T = 0) scales approximately as N 6/ 5 , as indicated with the dashed
line. This is consistent with the empirical results of Ref. [31] as well as the semi-
classical results of Ref. [36]. The projection, zk, of the condensate wave function
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Fig. 8. The calculated dependence of quasiparticle excitation frequencies on the tem-
perature T, within the Popov approximation for N = 1000. The open circles represent

the results for L, = 0 modes while the squares represent the results for L. = =2 modes.
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Fig. 9. The temperature dependent results for (a) the chemical potential and the de-
phasing, and (b) the ground state energy computed within the Popov approximation
for N = 1000 atoms. The filled circles denote the calculated data points.

onto the quasiparticle mode functions (Uk, Vk) (see Eq. (2.16)), is plotted in Fig. 7
only for k corresponding to the L, = 0 quasiparticles since the ground state con-
densate wave function Vbo(r) has the L, = 0 symmetry.

In Figs. 8, 9, and 10, we plot our preliminary results for finite tempera-
ture calculations within the Popov approximation for the JILA TOP trap with
N = 1000 atoms. The trap and atomic parameters are the same as in the previous
zero temperature results. Figure 8 is arranged in a similar fashion as Fig. 1 ex-
cept now we plot the dependence of the excitation spectra on the temperature T,
which is determined from the self-consistent Popov calculation by specifying both
No and N. We denote with Tc the ideal Bose gas condensation temperature for the
same trap parameters and number of atoms (in our case it is equal to 13.3hw/k).
Even with the limited basis set of functions used, the highest temperature point
computed is very close to T,. For No = 0.125N the temperature is given approxi-
mately by T/Tc c (1 - 0.125)1/3 p 0.9565. The open circles and squares are used
to highlight the shape oscillations recently studied experimentally [7, 8] but they
do not represent experimental data points. We can see that when T is close to Tc,
the overall trends of the temperature dependence of the two excitation frequencies
are similar to those measured in Ref. [8], although N = 1000 atoms is significantly
smaller than the total number of atoms involved in the experiment. However, close
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Fig. 10. (a) The depleted fraction as a function of the computed temperature within
the Popov approximation. (b) The temperature as a function of the condensate fraction
within the Popov approximation. Calculations were performed for N = 1000 atoms.
The filled circles denote the calculated data points and the open squares represent the
results for a trapped ideal Bose gas: No/N = 1 - (T/Tc)3 .

to the transition temperature, our calculations do not produce any rapid changes
of the excitation frequencies. This is in disagreement with the variations observed
in recent experiments and is the subject of our continued study.

Figure 9 presents: (a) the temperature dependence of the chemical poten-
tial, p, and the dephasing parameter, &, and (b) the ground state energy of the
condensate.

In Fig. 10a the solid line with filled circles shows the fraction of noncondensed
atoms, N'/N = (N-No)/N, plotted against the computed temperature. The filled
circles denote the computed data points. The dashed line represents the fraction
as given by our numerical solution using a basis of states satisfying Emax _< 50hw.
The dotted line represents the difference between the two curves. We are confident
that the size of the basis adopted here is suitable to describe the present system,
of course, increasing the total number of atoms, the interaction strength, or the
temperature would require a larger basis set. Figure 10b presents the computed
temperature of the condensed gas plotted against the fraction of condensate atoms.
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We note that the computed temperature is always lower than that of the ideal Bose
gas prediction, No/N = 1 - (T/T,)3 . This is consistent with the observation of
lowering the condensation temperature T, from Ref. [39].

5. Conclusions

We conclude the. following:
(1) At zero temperature, results of the quasiparticle excitation spectra from

the mean field Bogoliubov approximation calculations agree well with the ex-
perimental data. Many approximate analytical approaches [15, 17-20] also pro-
duce excellent predictions for various quasiparticle excitation frequencies in the
Thomas-Fermi limit.

(2) For finite temperatures, we have presented a self-consistent mean field
Bogoliubov-Hartree calculation within the Popov approximation. Our preliminary
calculations indicate that more detailed studies are needed in order to explain the
recently measured finite temperature excitation results [8].
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We analyze propagation of ultra short light pulses in a transparent, dis-
persive, nonlinear medium. A general formula for femtosecond wave packet
evolution is developed and applied to specific problems. Theoretical and
experimental results for wave packet distortion by lenses, wave packet ro-
tation in birefringent media and group velocity matching in sum frequency
generation are presented. Numerical results for splitting of femtosecond wave
packets in dispersive Kerr media are also presented.

PACS numbers: 42.65.Jx, 42.65.Re

1. Introduction

Developments in laser mode-locking techniques during the last decade led to
generation of pulses as short as 7.5 fs (1 fs = 10-15 s) directly from Ti:sapphire
laser [1]. By employing pulse compression techniques one can achieve even shorter
pulses with the current record at less than 5 fs level [2, 3]. Progress in this field has

been very fast, especially in the 70-ties and 80-ties, as illustrated in Fig. 1 which
presents the history of ultra short pulse generation in the last 25 years. Originally,
the most common femtosecond systems were based on organic dyes as laser mate-
rials, however with an advent of fs Ti:sapphire lasers [4] in the early 90-ties a solid
state technology is available. Currently, systems operating at 20-30 fs range are
routine and commercial systems with sub-20 fs capabilities are on the market.

A femtosecond light pulse propagating in a given medium can be visualized
as a wave packet of electro-magnetic radiation that moves with its group velocity
and at the same time changes its shape due to the interaction with the medium. We
find the wave packet picture appealing and we will use the wave packet language
throughout this paper. One of the simplest experiments with femtosecond light
pulses involves propagation of such wave packets through a transparent medium,

(237)
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Fig. 1. A history of ultra short light pulse generation. Pulse duration available directly
from lasers and after compression are shown.

for example an optical window made of glass. Such experiments are omnipresent.
They are performed every day in ultra fast optics laboratories, often without a
conscious thought on the experimentalist part, whenever an ultrashort light pulse
has to be delivered from the laser system to the sample and, on its way, passes
through a lens or a glass cell window. Since the result of many experiments with
ultra short light pulses, especially in a nonlinear regime, strongly depends on the
details of the pulse such as its time and/or spatial properties it is quite important
to understand what happens to such a pulse on its way from the laser system to
the sample. When considering propagation of a low intensity monochromatic light
beam in a dielectric one only has to account for its index of refraction which modi-
fies the diffraction of the beam by changing the propagation constant with respect
to that for vacuum. What makes the propagation of femtosecond pulses different?
First, by the virtue of their brevity, the femtosecond pulses have broad spectrum.
Because of that, a significant pulse shaping is observed whenever they propagate
in a dispersive medium. Second, the peak intensity can be quite high even with a
moderate pulse energy and average power. Therefore 3-rd order processes (allowed
in a medium of any symmetry) cannot be neglected. For instance, intensity depen-
dent refraction index gives rise to self-phase modulation and self-focusing which
influence the spectrum of the pulse and its spatio-temporal characteristics, respec-
tively. It is a well-known phenomenon leading, among other things, to formation
of optical solitons in fibers [5, 6] and white light continuum generation [7]. As is
often the case in nonlinear problems, three phenomena: diffraction, dispersion and
self-focusing are entangled; one can study their effects separately only in a limited
number of cases when one of them dominates. However, in most cases numerical
methods have to be employed as a method of solution. This paper is organized as
follows. In Sec. 2 we present a general form of the propagation equation for a fern-
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tosecond wave packet in a transparent, dispersive and nonlinear medium. Section 3
provides examples of the wave packet shaping effects in a linear regime - both
theoretical and experimental data are provided. In Sec. 4 we analyze nonlinear
propagation regime and present the results of numerical calculations illustrating a
complex wave packet evolution.

2. Propagation equation

We start by representing the scalar electric field E(r, t) of the light wave
packet as an integral of its Fourier components

t) = ( J d3 kE(k) exp{[k, r - w(k)t]}, (1)

each characterized by its amplitude E(k), wave vector k and frequency w(k).
Out of four variables, i.e. frequency and three components of the wave vector
that describe each Fourier component, only three are independent because of the

dispersion relation w = w(k). Next we represent the field amplitude as a product
of a slowly varying envelope (SVE) and a phase factor

E(r, t) = A(r, t) exp{i[ko • r - w(ko)t]}, (2)

where we assumed that the wave vectors are grouped around a central value k0

and correspondingly the frequencies form a band around the central frequency
wo = w(ko). This leads to the propagation equation for slowly varying enve-
lope [8-11]

aA(r,t) - 1 +/0 dkA(kw)(ik- ko] *so)

taz (27r)3 d_.-

x exp{i[(k- ko) . r- (L. - wo)t]}+i-nt IAI2 A. (3)

In the last equation a unit length vector so = ko/IkoI assumed to be in the direction
of z coordinate has been introduced. An additional term i-yIIAI 2A has also been
added. It describes the effect of the 3-rd order nonlinearity (Kerr type nonlinearity)
of the medium. The integral over k, can be replaced by an integral over W when
the dispersion relation is taken into account:

k= Vw 2n 2(W, S)/c 2 - k2 -

where n is the index of refraction and s = k/Ikl. This particular form of expression
for n allows application of this approach to both isotropic and anisotropic media.
Since no assumptions about the form of A(r, t) have been made Eq. (3) is exact.
A partial differential equation for A(r, t) can also be obtained by using Eq. (3).
This is done by expanding k, in powers of kx, ky and (w - Lo0) and replacing these
variables with i&/&x, iO/Oy and -iO/&t, respectively. Keeping terms up to the
second order gives for a uniaxial birefringent medium [11]

_A OA i 02A aA . &2A

i 02 A i a2 A (4
+ • + -yyy 2 +i~ntIAA. (4)aX 2 1y2
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The coefficients 61. = 1/vg = Ok/Ow and /82 = 0/81 /Ow describe the effects of
group velocity and group velocity dispersion, respectively, ', and 7yy are re-
sponsible for the diffraction of the wave packet, y. reflects beam walk-off in a
birefringent medium while yt. was found to be responsible for the rotation of the
wave packet [9]. It is worth mentioning that the coefficients -. and -t. vanish
for isotropic medium. One can easily generalize Eq. (4) by adding higher order
terms. For the sake of clarity we will not do it here but rather refer an interested
reader to the original papers [8-11]. Either of the two equations (Eq. (3) or the
expanded version of Eq. (4)) can be numerically integrated. It should be pointed
out that Eq. (4) is an approximation of Eq. (3) and in order to make them totally
equivalent one would have to include terms of all orders into Eq. (4). This clearly
is not a practical approach. We found however that in all cases studied, the results
of either approach are almost identical if the terms up to 3-rd order are included
into Eq. (4). Before we present the results of such integration let us consider some
simpler cases.

3. Linear propagation: 1-D and 3-D effects

First, let us analyze Eq. (4) in a 1-dimensional case. Assume that A(r, t) -

A(z, t). This is the case whenever light propagates in a single mode optical fiber
or the laser beam properties are such that it can be modeled as a one-dimensional
plane wave. In this case all derivatives with respect to x and y vanish and we are
left with a well-known nonlinear Schr6dinger equation of the following form:

A OA iM 02 A A2-5 = _)31 -•t + 2 8 _ý-25+i'Yn, A 1 A. (5)
Oz t+

This equation is easy to solve if we keep only the first term on the right side. One
can verify that any function A(z, t) that has a form A(z, z/vg) constitutes a proper
solution. This means that in the lowest order approximation a 1-dimensional wave
packet can be of any shape and it propagates without distortions with the speed
equal to the group velocity in a given medium. It may seem to be a trivial state-
ment, which it is, but a one with significant consequences in many experiments.
We will illustrate this with two examples.

The first example of the havoc that the group velocity can play with an

experiment is a wave packet distortion by lenses. It has been recognized quite a
long time ago that the difference between phase and group velocities can lead to

significant effects upon propagation of femtosecond pulses through lenses [12-13].

If a collimated beam, i.e. a flat wave packet, is focused with a chromatic lens

then the phase surfaces behind the lens are spherical but the shape of the wave

packet is not. In the UV-visible range the group velocity is smaller than the phase
velocity for optical glasses. Because the wave packet propagates through more

glass in the center of the beam where the lens is the thickest it accumulates more

group delay than phase delay there while at the edges of the lens the two delays
are almost equal. As a result the wave packet behind the lens is distorted; its

central part lags behind the edges. This in turn causes that the intensity of light

in the focus no longer follows the intensity time profile of the input pulse because
different radial zones of the wave packet contribute to it at different times. It is
important to be able to measure this distortion, especially for complex lenses such
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Fig. 2. An experimental set-up used to measure wave packet distortion by lenses.
NGVD is a negative group velocity dispersion prismatic line. L is the tested lens. The
TV camera has been used to align the interferometer.

as microscope objectives for which direct calculations may be quite difficult and
which are commonly used in applications such as two-photon microscopy [141. We
have designed an interferometric method to measure the wave packet distortion
in lenses [15]. The experimental set-up is shown in Fig. 2. The main part of the
system is a modified Michelson interferometer with one arm serving as a reference
arm and the other arm including the tested lens L. A collimated beam from a
femtosecond Ti:sapphire laser was used as an input beam. Its diameter was big
enough to fill the aperture of the lens. As indicated in the figure, at the output

of the interferometer a fiat reference wave packet interferes with a wave packet
distorted by a double passage through the lens. The interference fringes are visible
only in the regions where the two wave packets overlap for a given delay defined
by the position of the mirror Mi. As this mirror is scanned the fringes appear and

disappear in different radial zones of the output beam. A detector placed behind
a small pinhole was used to measure the fringe visibility at different distances
from the beam center. For any given position of the pinhole we measured the
delay corresponding to maximum fringe visibility and thus found the shape (we
assume cylindrical symmetry) of the distorted wave packet. An example of the
results is presented in Fig. 3. It shows the relative group delay as a function of
the radial position on a 40× microscope objective. As one can see the parts of the
wave packet propagating close to the edges of the lens are advanced by more than
30 fs with respect to the center of the wave packet. We found it quite amusing
that an addition of a cover glass (170 pm thick) between the lens and the curved
mirror M2 significantly improved the performance of the objective. Apparently
the objective has been designed to work with the cover glass!

As a second example, consider a frequency mixing experiment with femtosec-
ond laser pulses. A crystal with zon 2 nonlinearity is illuminated by two collinear
ultra short laser pulses with frequencies w v and w2 and a sum frequency at
reslt is pre-nw2 is generated. Since the three frequencies involved in the process
are quite different, the group velocities of the corresponding pulses are differ-
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Fig. 3. Wave packet distortion by 40x, 0.65 NA Olympus microscope objective. Rela-
tive delays for different radial zones of the wave packet are shown.

ent, too. This has a detrimental effect on the sum frequency generation process. If
W1 # W2 then vg(wi) # vg(w2) in a dispersive medium. As a result the two input
pulses propagate with different speeds. This limits the range over which the input
pulses overlap which in turn limits the efficiency of the process. In addition, the
output pulse at w3 propagates at yet another (and usually very different) speed.
As a result, the output pulse is longer than the input pulses because contributions
from different slices of the crystal arrive at the output face at different times. The
latter effect remains even in the case of second harmonic generation (SHG) when
a single femtosecond pulse is used to produce another pulse at twice the input
frequency. The problem of group velocity mismatch could be significantly allevi-
ated if a frequency mixing scheme which ensures both phase matching (PM) and
group velocity matching (GVM) could be found. We found that this can be actu-
ally achieved in some cases when type I non-collinear sum frequency generation
scheme is applied [16, 17].

Figure 4 illustrates the basic idea. In the UV-visible range the group ve-
locity in nonlinear crystals decreases with increasing frequency and thus the sum
frequency pulse at w3 lags behind the driving pulses at w, and w2. Therefore with
a suitable choice of the angles 0 1 and 02 the projections of vgl, 2

g2 and V.3 on k3
can be made equal. This means that the three pulses have the same components
of the group velocity along the propagation direction and they do not separate as
they propagate. It is not obvious that group velocity matching and phase match-
ing can be achieved in a given crystal for given wavelengths of the input pulses.
Whether this is possible or not depends on dispersion properties of the particu-
lar nonlinear birefringent crystal selected. Figure 5 shows the results of numerical
calculations for fl-barium borate (BBO) crystal in the range of fundamental wave-
lengths corresponding to the tunability range of Ti:sapphire femtosecond oscilla-
tor. Two processes have been considered: non-collinear type I SHG (w + w -* 2w)
and non-collinear type I third harmonic generation (THG) (w + 2w --* 3w). The
two cases are quite different. For SHG the problem involves solving two equations
(phase matching condition and group velocity matching condition) for two vari-
ables 0 = 01 = 02 and & (01 is an angle between k3 and the optic axis of the
crystal) and the solutions are exact if they exist. In the case of THG there are
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optic axis

V9.g3 j'

Fig. 4. A schematic diagram of non-collinear phase matching and group velocity match-
ing scheme for sum frequency generation. The angles V5i and 0b2 are chosen so that the
components of the group velocity of all three waves along the k vector of the output
signal are equal. (9 is the phase matching angle.
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Fig. 5. (a) Phase-matching angle 19 and angle 0 for SHG in BBO versus wavelength.
(b) Phase-matching angle e and angles 0i and ?b2 for THG in BBO versus wavelength.
Note that for THG group velocity matching is possible only for wavelengths longer than
740 nm.

3 variables Vbi, 0b2 , and & and only two equations. Phase matching condition has
to be fulfilled but then group velocity matching is not exact. However, the results
of numerical calculations indicate that the residual group velocity mismatch in
our scheme can be as small as one percent of that for a standard collinear THG
case. As one can see in Fig. 5 PM and GVM conditions can be achieved for SHG
in BBO over an entire tuning range of Ti:sapphire laser. Similarly exact PM and
approximate GVM are possible for THG process in a somewhat smaller range of
wavelengths.
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In order to see the effect of GVM on frequency mixing with femtosecond
pulses we have numerically integrated the nonlinear equations for the amplitudes
of the three fields

8A1 + P21 9 _A iw1 x ,+z 2+ at2 - 2-,

OA2 .•A2  L22 02A2 _ iw2Oz + A9 12 a + 2 at 2 - n2-1

OA3  aA3  L23 02A3 _ iW3 - -- x l•=,(6)S+ A#313"-- +a -• n3-~ A 6
az tat 2 at 2  n

where Ai is the amplitude, wi - the frequency, ni -- the refraction index of the
i-th field and 82i = 0 2 ki/aW2 . A reference frame moving with the group velocity
of the w1 pulse is used and A/31i = 1/vgi - i/Vgl for i = 2, 3.

The results of the integration are shown in Fig. 6. One can clearly see that
for reasonable experimental conditions the effect of group velocity mismatch is
not negligible. Second harmonic pulses in a GVM non-collinear scheme can be
significantly shorter than those achievable in a standard collinear scheme.

This has been verified in an experiment performed with approximately 30 fs
long pulses from a Ti:sapphire laser and a 0.5 mm long BBO crystal. The second
harmonic has been generated using two different approaches: a standard collinear

1.0-. -1I
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Fig. 6. Numerical results for SHG in a 0.5 mm thick BBO crystal. Input pulse duration
is 30 fs and input wavelength 800 nm, (a) shows fundamental and second harmonic pulses
for collinear geometry while (b) shows the same data for non-collinear (GVM) scheme.
Note that in (b) the second harmonic pulse is shorter than the laser pulse.
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SHG and a non-collinear GVM SHG. In each case the duration of the second
harmonic pulse has been measured by intensity cross-correlation with the input
laser pulse. Results of the cross-correlation measurements are shown in Fig. 7. For
the standard collinear scheme the output pulse duration is almost twice of that for
the laser pulse. At the same time the results show that for the GVM scheme second
harmonic pulses that are shorter than the input laser pulses, can be achieved. This
is not surprising since in an ideal case of SHG without saturation one should expect
the second harmonic pulse to be shorter than the input pulse by a factor of V'2.

tEACSS1 fS
•r•(co) = 33 fs

(a)

Tcc=48 fs
-28 fs 100 fs

(b)

"" . = 74 fs
-,_( )59 is

(c)":.. ..

Fig. 7. Experimental results for (a) the auto-correlation of the fundamental pulse,
(b) the cross-correlation of the fundamental with the SH pulse in the non-collinear
experiment, and (c) the cross-correlation of the fundamental pulse with the SH pulse in
the collinear experiment.

As a final example of linear propagation effects let us consider a femtosecond
wave packet propagating in a birefringent dispersive medium. If the light propa-
gates as an extraordinary wave then the terms 7., and Itx in Eq. (4) are non-zero.
While the first one means that the Poynting vector in such a medium is not parallel
to the wave vector (a fact known for at least a century) the existence and meaning
of the second one have been found and explained only recently [8, 9]. Numerical
integration of Eq. (4) shows that because of this term the wave packet, which is
tightly focused when it enters an uniaxial birefringent crystal, rotates around the
axis that is perpendicular to the plane defined by optic axis of the crystal and the
k vector. The effect can be explained in a way very similar to that employed to
explain the wave packet distortion by lenses. Because of the tight focusing the ex-
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panding beam contains wave vectors that form different angles with the optic axis
of the crystal. Since, for an extraordinary wave, the index of refraction depends on
this angle, both phase and group velocities are also functions of the same angle.
What is even more important, the difference between phase velocity and group ve-
locity varies as a function of this angle. As a result, one side of the wave packet lags
more behind the phase fronts than the other side which leads to the wave packet
rotation. If such a pulse is recollimated after it exits the crystal, it will look skewed
- while the phase fronts will be perpendicular to the direction of propagation, the
wave packet itself will be not, simply because the difference between phase and
group delays will be different at its opposite sides. The theoretical predictions for
the wave packet rotation have been verified experimentally in a set-up [18] similar
to the one shown in Fig. 2. The set-up has been modified to include two identical
1:1 telescopes, one in each arm. Two 1 mm thick rutile crystals have been placed,
one at the focus of each telescope. The wave packets propagating in the crystals
experience rotation as described above. We have placed the crystals in both arms
to cancel all the distortions of the wave packets that are not due to the rotation in
the crystal. However the crystals were set in such a way that the two wave packets
experienced rotation in opposite directions and thus did not overlap perfectly in
space. By recording the fringe visibility at different positions in the output beam
versus the delay between two arms of the interferometer we were able to measure
the wave packet rotation.

The results of the experiment (points) are compared to the theoretically
calculated wave packet rotation (line) in Fig. 8. It is clear that our model for wave
packet rotation is at least adequate as indicated by the agreement of its predictions
with the experimental results.

60

40

20
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-40

I I , I I
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Fig. 8. Measured (dots) and calculated (line) wave packet rotation in rutile crystal.
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To complete our analysis of the linear propagation we should briefly mention
the effects of the group velocity dispersion. When the group velocity dispersion
term -(i/2)fl28

2A/8t 2 is also included into the analysis of Eq. (5) the pulse shape
does not remain constant during propagation. Instead, because different Fourier
components of the pulse experience different group delays, the result is a pulse
with varying shape and time dependent frequency. In this approximation the light
frequency varies linearly with time and thus the pulse is said to have a linear chirp.
The effect can be quite severe. For instance, a 25 fs long Fourier limited pulse at
630 nm doubles its duration upon propagation through 10 mm of fused silica. The
reshaping of femtosecond pulses due to propagation in dispersive media means that
in any given experiment we cannot take the pulse duration for granted. Even if we
verify that the pulse is short when it exits the laser system, it can be quite longer
when it interacts with our sample simply because there was some glass on the way
from the laser to the interaction region! An addition of higher order dispersion
terms leads to even more significant pulse reshaping and a nonlinear chirp.

4. Nonlinear propagation

Let us start again with 1-dimensional case. The nonlinear term i-Yn 1 IAI2A
in Eq. (5) describes the effect of intensity dependent index of refraction n(A) =
no + 'ynlA12. This introduces a time dependent phase and nonlinear chirp without
affecting the pulse shape. As a result, new frequencies are generated and the pulse
spectrum broadened. Spectrum broadening in Kerr media can be combined with
a group velocity dispersion to produce pulses that are significantly shorter than
the original laser pulses in a technique called pulse compression [19]. When both
group velocity dispersion and Kerr nonlinearity terms are included the net result
depends on the signs of P2 and y1 coefficients. If the two terms have the same
sign the chirp due to dispersion and the one due to Kerr nonlinearity have the
same sign, too. As a result the pulse experiences reshaping and a combined chirp.
On the other hand, if sgn(f32 ) = -sgn(-yn0) then there exist stable solutions of the
propagation equation [5]. Such solutions are called optical solitons. Because they
can propagate over long distances in optical fibers without changes in shape they
are of particular interest to engineers designing optical communication systems.
In one of the experiments in this field picosecond pulses have been propagated in
a fiber of length 1.8 x 1011 m, i.e. further than from the Earth to the Sun [20].

In a 3-D case the interplay between dispersion and nonlinearity is augmented
by an additional effect, namely a competition between diffraction and self-focusing.
While the first tends to increase the transverse dimensions of the wave packet, the
latter does exactly the opposite. It has been known for at least 30 years [21] that
for long pulses the ultimate fate of a beam propagating in a Kerr medium is
determined by its power P. For P < P, (P, is called critical power and depends on
the medium properties only) diffraction wins and the beam defocuses. If, however,
P > P, self-focusing prevails and catastrophic beam collapse is observed. This is
not true for femtosecond pulses. As has been pointed out by several groups [22-25]
in this case one has to take into account dispersion effects as well. Because of that
the wave packet with a power higher than the critical power does not collapse;
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instead it undergoes a complex evolution both in time and space. In order to
illustrate this evolution let us turn back to Eq. (4).

For a wave packet that is Gaussian both in time and transverse spatial
distribution propagating in an isotropic medium, it is convenient to rewrite Eq. (4)
in a slightly different form [11]

aA _ OA .r02 A .w2 a2A 02A . 1- - -- y + - I+ A I AIA1 A, (7)

where three new parameters all of length dimension have been introduced: dis-
persion length Ld5 = r7/#32 , diffraction length Ldf = 7x.,w/2 = 7rw2/Ao, and

nonlinear length Ln1 = (7,hA021)-l with r0 , w0 , and A0 being the duration, trans-
verse size, and amplitude of the wave packet, respectively. The advantage of such
scaling is that it provides three parameters that can be easily compared to each
other which in turn enables one to evaluate the strength of the three phenomena
they represent (the smaller the coefficient the more important the corresponding
term in Eq. (7). The meaning of these parameters is as follows: Lds is a distance

a) a
2.5 -

b)c4

0 0

Fig. 9. Numerical results for nonlinear propagation of a wave packet in fused silica.
Numbers in each figure indicate the distance that the wave packet has propagated inside
the medium.
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Fig. 10. Spatia-temporal 
spectrum of the wave packets shown in Fig. 9. Kx is thewhich takes the pulse to double its duration because of the medium dispersion,

Ldf is the distance required for the pulse to double its area as a result of diffrac-

tion, and Lnl is the self-focusing 
distance. For transparent 

media the inequality

Lds »> Ln1 , Ldf typically holds. It means that the dispersion effects constitute only

a small correction to the basic wave packet evolution defined by diffraction and

self-focusing. 
However, the results of integration of Eq. (7) show that, small as it

is, the dispersion plays a crucial role in propagation 
of a femtosecond 

wave packet.

An example of the wave packet evolution obtained by direct integration of Eq. (3)

is shown in Fig. 9 (the results were very similar when Eq. (7) with 3-rd order

terms included was integrated). 
In this particular case it was assumed that the

wave packet size in the y direction is much larger than its size in the x direction.

This not only made the computation 
simpler but also enabled us to present the

results as a 3-D graphs. The following parameters 
have been assumed: material 

-

fu se d silic a (L dS -- 2 4 0 m am), p u lse d u ra tio n - -6 6 fs, p u lse w a v e len g th - -8 0 0 n m ,

beam size - -32 #im (Ldf =4 mm), pulse intensity 
- -70 GW /cn • (L nl 2 mm).

The power of the beam is about 2.2Pc. A long pulse of this power Would self-focus

and collapse. However the femtosecond 
wave packet considered here displays a

quite different behavior. It starts to self-focus as indicated by the elongated shape

in Fig. 9a but then the process is arrested and the pulse splits into two pulses as

shown in Figs. 9c and d. It is instructive to look at the spatio-temporal 
spectrum

of the wave packet shown in Fig. 10. Starting from a smooth Guassian shape the
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spectrum evolves through a "Mexican hat" structure (Fig. 10c) and then develops
three spatial lobes. The central lobe (around k, = 0) contains two peaks in the
frequency distribution, one at the frequencies lower than the input pulse frequency
and another which is shifted towards higher frequencies. The two side lobes have
broad spectra centered at the input pulse frequency. The results depend, as one
might expect for a nonlinear problem, on a particular choice of parameters, for
example the sign and magnitude of the P2 coefficient, but from the numerical
integration results some general conclusions about the role of the dispersion can
be drawn. For the case illustrated in Figs. 9 and 10 the process starts with the
self-focusing. The self-focusing is the strongest at ct = 0 (Fig. 9a) simply because
the intensity is the highest there. Thus the intensity at the center of the wave
packet increases rapidly and so does the width of spectrum due to self-phase mod-
ulation. Once the spectrum is broad enough the dispersion shifts lower frequencies
towards the head of the pulse and higher frequencies towards its tail. This lowers
the intensity at the center of the wave packet and prevents it from a collapse. At
the same time the part of the wave packet that has been focused strongly diffracts
to form the side lobes in the spectrum as discussed above. The pulse splitting
shown in Fig. 9 has been recently observed in an experiment [26].

In conclusion, we have analyzed some aspects of linear and nonlinear prop-
agation of femtosecond light wave packets in transparent, dispersive nonlinear
media. In particular, we have shown the effects of group velocity on propagation
of such wave packets through lenses, wave packet rotation in birefringent media
and sum frequency generation without group velocity mismatch. Numerical results
showing wave packet splitting were also presented.
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