
JPRS-EST-89-026
7 SEPTEMBER 1989

JPRS Repor

Science &
Technology

Europe
FRG's 'Suprenum' Supercomputer

REPRODUCED BY

U.S. DEPARTMENT OF COMMERCE
NATIONAL TECHNICAL INFORMATION SERVICE
SPRINGFIELD, VA. 22161

DISTRIBUTION STATEMENT &

Approved for public release;
Distribution Unlimited

jmC QUALITY mSP^OISD 3

Science & Technology
Europe

FRG's 'Suprenum' Supercomputer

JPRS-EST-89-026 CONTENTS 7 SEPTEMBER 1989

36980245 Amsterdam SUPERCOMPUTER in English Mar 89

Concept [Ulrich Trottenberg; SUPERCOMPUTER, Mar 89] 1
System [Wolfgang Giloi; SUPERCOMPUTER, Mar 89] 4
User Interface [Karl Heinz Werner, et al.; SUPERCOMPUTER, Mar 89] 7
Programming [Karl Solchenbach; SUPERCOMPUTER, Mar 89] 10
Parallel Programming [Bernhard Thomas, Klaus Peinze; SUPERCOMPUTER, Mar 89] 13
Application Software [Karl Solchenback; SUPERCOMPUTER, Mar 89] 19
SUPERB Parallelizer [Heinz-J. Bast, et al.; SUPERCOMPUTER, Mar 89] 22

JPRS-EST-89-026
7 September 1989

Concept
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 5-12

[Article by Ulrich Trottenberg of Suprenum GmbH,
Bonn: "Suprenum—The Concept"]

[Text] The Suprenum 5-Gflops supercomputer is the
result of a national German project which includes an
MIMD [multiple instruction, multiple data] multi-
vector processor hardware with distributed memory and
the development of all software layers that guarantee
comfortable and efficient exploitation of the scalable
hardware. Also, a large amount of application software
has been developed on the basis of superfast parallel
algorithms. The applications cover all typical models in
scientific computing.

Suprenum is an unusual combination of a widespread,
long-range research-oriented activity and a strictly prod-
uct-oriented development. The research idea was to
bring together:
— the users of supercomputers representing the know-

how for the grand challenge problems ("superprob-
lems") in scientific computing and numerical simu-
lation;

— the computer architects representing the know-how
on parallel architectures, parallel languages, and tools
for parallel computing;

— the numerical analysts representing the know-how on
fast numerical algorithms (like multigrid and multi-
level approaches) and their "superfast" parallel ver-
sions.

Suprenum combines these three fields. In its product-
oriented part, it consequently develops a system that
integrates:
— hardware;
— the operating and the run-time system;
— programming environment;
— parallelization (partitioning and vectorization) tools;
— basic and advanced application software.

About a third of the manpower in the Suprenum project
is devoted to the hardware, another third to system
software, programming environment and tools; and the
last third is used in application software.

The Suprenum Hardware Essentials and Software
Developments

The Suprenum prototype system which will be opera-
tional by the end of 1989 is, with respect to its hardware,
characterized by the following essentials (see Figure 1):
— highly parallel MIMD architecture with a peak per-

formance of 5 Gflop/s;
— 256 computing nodes aggregated into 16 clusters;
— each node with 8 Mbyte private memory (giving an

overall main memory of 256 x 8 Mbyte = 2 Gbyte);
— each node with a vector floating-point unit (20

Mflop/s, if chaining is used);

flexible two-level (intra- and inter-cluster) intercon-
nection network on the basis of very fast busses.

f -{clutter l) (clutter 2) (clatter 3) (dntterT)-^

, feinster h) (clatter 6j (clutter 1) (cluster 8/-^

, -(clutter 9}— -(duster lty (duster lj)— -WusterTSK,

, -gutter 13) flutter 14J (clutter 1$ (duster 1^

front end system

did

Nodelj . . . MeldLSJ^

dusterbus

Figure 1. Structure of the Suprenum 1 prototype with
256 nodes in 16 clusters.

The timetable for the hardware development is as
follows: After the first ideas in 1984, most of the
essential architecture decisions were made in 1985. In
1986, Suprenum GmbH was founded, and work essen-
tially commenced. A preliminary system (10 nodes in
two clusters) with nearly the full functionality was
available in 1987. The final node with full performance
was running in 1988.

This year, 1989, a 32-node-system (two full clusters)
will be in operation at the Hannover fair in April, and
the final 256 node prototype (16 full clusters) will be
operational by the end of this year.

The development of system software, programming
environment, compilers, tools, and application soft-
ware was carried out essentially in parallel with the
hardware development. Actually most of the software
will already be finalized before the hardware is fully
operational. In order to be able to achieve this, it was
extremely important to make simulators available that
allow, for example, Suprenum application software (in
Suprenum-Fortran) to be developed and tested on
other computers. Furthermore, an essential part of the
project was devoted to analyse the system behavior
and its influence on the overall system performance for
each single hardware and software component. On the
basis of these tools, very precise performance predic-
tions were made which, in turn, allowed tuning and
optimizing the system essentials and the software.

JPRS-EST-89-026
7 September 1989

Suprenum in the Supercomputer World

In order to embed Suprenum into the supercomputer
world, we distinguish 8 classes of architectures (see
Figure 2).

1. SIMD [single instruction, multiple data] versus MIMD
(vertical line). SIMD operation mode means that parallel
or pipelined functional units execute the same instruc-
tion sequence on different data.

The MIMD principle is the favorite operation mode for
multiprocessors based on independent complete proces-
sors. Each processor may execute a different instruction
stream within the same application.

2. Shared versus distributed memory (horizontal line).
One of the central problems to be solved in the design of
multiprocessor systems is the memory access. Basically,
there are two possibilities to organize this:
— shared memory (sm) guarantees fair access to a global

memory for each processor;
— distributed memory (dm) means that each processor

has direct access only to its own private memory.

Often both memory organization types are combined in
hierarchical memory systems.

Our classification reflects the user's view of the memory
organization rather than its hardware realization.

3. Scalar versus vector floating-point units (dashed hori-
zontal lines). Presently, scalar floating-point units seem
to be restricted to a floating-point performance of less
than 10 Mflop/s. The most cost-effective way to achieve
higher floating-point rates is vector processing. There-
fore, the most powerful architectures today are mixed
MIMD/SIMD multiprocessor systems (class 4 and 8).
The efficient use of these architectures requires paral-
lelism on two levels: the coarse grain parallelism related
to the global MIMD structure and the fine grain paral-
lelism which ensures efficient vector processing locally.

In the following we briefly describe the 8 classes of
supercomputer architectures and name typical represen-
tatives of them.

Class 1: Scalar Computers

The "traditional" Von Neumann computer architecture
(SISD [single instruction, single data]) is the basis for
mainframes, minicomputers, and microcomputers.
Using the current hardware technology, the floating-
point performance of this architecture seems to be lim-
ited to 10 Mflop/s, which is much less than current
supercomputer performance.

Class 2: Vector Computers

Historically the first machines to be called supercom-
puters were vector computers. Their hardware architec-
ture is based on very fast arithmetic pipelines which
support the rapid execution of vector instructions oper-
ating on all components of vector operands simulta-
neously. Vectors in that sense consist of components

which can be processed independently. Hence, vector
processing is a special form of parallel processing based
on fine grain parallelism. Application codes have to be
vectorized (i.e., operations are defined on vectors and
certain data dependencies between operations are
excluded) in order to exploit the potential speed of the
hardware. The need for vectorization resulted in new
vector algorithms and in special compiler tools (vector-
izers) for the automatic vectorization of existing codes.

Examples for vector machines are Cray-1, Cyber 205,
Fujitsu VP, NEC-SX, Hitachi S-8I0, and the IBM 3090-
VF.

Due to technological progress in VLSI chip develop-
ment, vector computer architectures today can be real-
ized in standard microcomputer technology. These sys-
tems are smaller, somewhat slower and considerably
cheaper than the classical vector computers and there-
fore called minisupercomputers. The vector-
minisupercomputers take advantage of the existing soft-
ware and tools for vector machines; some systems are
even Cray-compatible. Examples are Convex Cl and
SCS-40.

Class 3: Scalar SM-Multiprocessors

Another way to increase the computing performance is
the combination of several single processors to a multi-
processor system and to replace the sequential pro-
cessing by parallel processing. The optimal degree of
parallelism (fine or coarse granularity) depends on the
number and the power of the single processors as well as
on the memory organization. The shared memory con-
cept restricts the number of CPUs to less than or equal to
8 today (e.g. the Alliant). If the memory is accessed via a
network, a larger number of CPUs can be connected at
the cost of longer access times. Examples are the IBM
RP-3 and the Cedar project (= clusters of Alliant sys-
tems). Further examples in this class are the Sequent,
Flexible, Encore, and Concurrent Computers machines.

Class 4: Vector SM-Multiprocessors

The step from a single processor to a multiprocessor
system (class 1 to class 3) is, of course, also possible and
obvious for vector computers (class 2). Similarly as for
scalar multiprocessors, the performance is increased by
composing several vector CPUs to multiprocessor sys-
tems with the same memory access problems. The shared
memory concept limits the number of vector processors
(today less than or equal to 8). The parallelism on these
systems is often used to increase the throughput of the
systems (running different jobs on different CPUs).
MIMD parallel as well as SIMD-like processing is also
possible (e.g. on the Cray X-MP using macrotasking or
microtasking constructs). Representatives of this class
are the Cray X/Y-MP, Cray-2, and the ETA-10.

Class 5: Scalar Array Processors

The era of parallel computers started with array proces-
sors which perform one instruction simultaneously on an

JPRS-EST-89-026
7 September 1989

array of operands (in SIMD mode). Recently these
systems have been upgraded to massively parallel mul-
tiprocessors (with many thousands of processors). Each
processor is relatively small and weak but the enormous
degree of parallelism may result in supercomputer per-
formance. Typically, these systems are used for a
restricted class of special applications. We mention here
the historical Illiac IV, the Goodyear MPP, the ICL
DAP, and the Connection Machine 1.

Class 6: Vector Array Processors

The combination of (SIMD) array and vector processing
has been realized in the Connection Machine 2, which
presently is the system with the highest floating-point
performance rate for special applications on very regular
data structures.

Class 7: Scalar DM-Multiprocessors

Today, multiprocessor systems with a large (and princi-
pally unlimited) number of processors require that the
memory units are physically associated with the proces-
sors (distributed memory). The basic unit of such a
system (a "processing node", or shortly a "node") con-
sists of the CPU, the arithmetic coprocessors, the
memory, and the communication unit. The first proto-
types of this class were based on hypercube topologies
and were built up at the Californian Institute of Tech-
nology. Intel's iPSC was the first commercial product,
followed by Ametek and Ncube. Recently Intel came out
with its second generation, the iPSC-2. Multiprocessor
systems with transputer nodes have also entered the
market (Meiko, Parsytec).

Class 8: Vector DM-Multiprocessors

These systems combine the advantages of the vector and
the parallel processing concepts. The multiprocessor
architecture is derived from the class 7 machines,
whereas the node architecture is taken from low-cost
vector computers (class 2). The basic idea is to combine
powerful vector nodes having an advantageous cost/
performance ratio with a multiprocessor system. Due to
the size and the cost of a single node, their number
is—although principally unlimited—today practically
limited to several hundreds. The computational speed of
the nodes, of course, imposes strong requirements on the
speed of the communication. If the communication
problem is solved satisfactorily, these machines are the
most powerful supercomputers existing today. Systems
currently entering the market are Suprenum, the Intel
iPSC-VX, and the Ametek 2010.

The classification of parallel computers in Figure 2 is by
no means unique and complete. An important classifi-
cation category which is not taken into account in Figure
1 is the hardware technology. Systems based on very
high-speed technology hardware (like the Cray and ETA
systems) are much more powerful (and expensive) than
systems based on microcomputer technology (like the
Alliant), although they belong to the same class.

class 1 class 3 s

scalar scalar scalar sm- h
floating- computers multipro- a
point (SISD) cessors r
units

d

class 2 class 4 m
vector vector vector sm- e
floating- computers multipro- m

point cessors o
units r

y

d
i

class 5 class 7 s

scalar scalar scalar din- t
floating- array multipro- r
point processors cessors i

b units
u
t

d

class 6 class 8 m

vector vector vector dm- e

floating- array multipro- m

point processors cessors o

units r
y

Figure 2. Classification of parallel and supercomputer
architectures.

The Suprenum Project Organization

The Suprenum project was conceived—during its defi-
nition phase by the Gesellschaft fuer Mathematik und
Datenverarbeitung mbH [Company for Mathematics and
Data Processing]—as a big national joint venture. From
the beginning of the project, the initiators were aware of
the fact that only by means of a concentrated coopera-
tion of the leading experts could Germany catch up in
the international supercomputer developments. Users,
mathematicians (numerical analysts), system software
experts, and computer architects had to be brought
together and be committed to a uniform, clear develop-
ment goal.

Thirteen partner institutions were recruited from
industry, national research laboratories, and universi-
ties, being involved in the Suprenum project:

• German Research and Experimental Institute for
Aeronautics and Astronautics (DFVLR);

• Dornier GmbH;
• Company for Mathematics and Data Processing

mbH;
• Nuclear research center in Julich;
• Nuclear research center in Karlsruhe;
• Siemens AG (Power Plant Unit);
• Krupp Atlas Elektronik GmbH;
• Stollmann GmbH;

JPRS-EST-89-026
7 September 1989

• Institute of Advanced Technology in Darmstadt;
• Brunswick Technical University;
• University of Bonn;
• University of Duesseldorf;
• University of Erlangen-Nuremberg.

The contributions of the partners are sponsored by the
Federal Ministry of Research and Technology (BMFT).

Suprenum GmbH is the fourteenth partner. It was
founded in 1986 due to an initiative of the BMFT by the
main development partners Krupp Atlas Elektronik
GmbH, Stollmann GmbH, and Gesellschaft fuer Math-
ematik und Datenverarbeitung mbH. It is funded by
BMFT and the Ministry for Economy and Technology of
the State of North Rhine-Westphalia. The primary tasks
of Suprenum GmbH are:
— coordination and management of the Suprenum

project;
— integration of the hardware and software compo-

nents which are developed in the project;
— fundamental research and development;
— marketing of individual results, especially the

Suprenum systems;
— conceptional responsibility for the further Suprenum

development.

Perspectives

With the realization of the Suprenum concept, an
attempt is made to set a standard in the promising area
of parallel processing. In order to ensure the long-term
realization of this chance, it is important to conduct a
permanent development.

The next Suprenum generation, Suprenum 2, is being
conceived. The general Suprenum philosophy is:
— to use a large number of processor nodes and
— to make each node as powerful as possible on the

basis of VLSI technology.

In order to achieve an optimum cost/performance ratio,
this will not be changed.

Generally, the trends in supercomputer developments
are characterized by an increase of the number of nodes
for "conventional" supercomputers like the Cray and an
increase of performance per node for the massively
parallel computers like the Connection Machine. Thus, a
convergence of architectures can be expected, with
Suprenum in the middle of these trends.

The general concepts like the abstract Suprenum
machine, the programming model, etc. will be main-
tained; some of them will be extended. One development
goal of the system software, for example, is—among
other things—the automatization and dynamization of
process assignment (process migration, etc.), automatic
optimization and dynamization of load balancing, etc.

The main emphasis in the field of applications software
will be placed on the development and parallelization of

new, even faster algorithms (e.g. on dynamic and self-
adaptively modifying grid structures) and further numer-
ical and also non-numerical application classes. Of
course, all application software that runs on the
Suprenum 1 will also be usable—with correspondingly
higher performance—on the Suprenum 2.

A long-term research and development goal in the field
of parallel computing should be to overcome the division
of the parallel world into computers with a global shared
memory and computers with distributed local memory
units.

On the hardware side, these differences will disappear if
multi-level memory hierarchies (the more local, the
faster) are used. Such developments combine both con-
cepts and anyway include what a forward-looking
memory technique requires.

On the software side, the concepts for the presently
pursued and future architecture lines should be stan-
dardized so that portability of the application software is
ensured generally and not only within certain architec-
ture classes. Several areas which are treated in the
project (communication library, semi-automatic paral-
lelizer) offer natural and promising approaches for those
developments.

References

1. Giloi, W., Suprenum—the system. Supercomputer,
this issue.

System
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 13-19

[Article by Wolfgang Giloi: "Suprenum—the System"]

[Text] The Suprenum supercomputing hardware consists
of a scalable number of clusters each containing 16
vectorprocessors with local memory for high-speed com-
puting and several special nodes for services within a
cluster (disk controller, diagnosis, external links). Inter-
processor communications based on a hierarchical bus
concept, a parallel high-speed bus within a cluster, and a
torpid system of multiple serial busses between clusters.
This multiprocessor kernel is handling by a dedicated
distributed operating system (PEACE) which provides—
based on teams of light weight processes—fast services
for message passing, resource management and all other
functionalities within a multiprocessor kernel.

The Suprenum Node Architecture

A Suprenum supercomputer consists of up to 256 "Pro-
cessing Nodes" (PN). Each PN is a complete single-board
"vector machine" running its own operating system
PEACE and communicating with other PNs. A PN con-
sists of the following major resources (see Figure 1):

JPRS-EST-89-026
7 September 1989

node CPU (Motorola MC68020, 20 MHz) with
Paged Memory Management Unit (PMMU) (Motor-
ola MC 68851) and Scalar Arithmetic Coprocessor
(MC 68882);
8 Mbyte of Node Memory (DRAM, 35 nsecs static
column access time);
pipeline vector processor (IEEE double precision)
with 2 x 64 Kbyte of vector memory (SRAM, 20
nsecs access time);
DMA/Address Generator for block transfer of data-
structure objects;
communication coprocessor for internode communi-
cation.

Figure 1. Internal structure of the suprenum processing
node.

The node CPU performs the operating system tasks and
interprets the instructions of a program. For the sake of a
secured operation, access to the code and the data objects of
the operating system and user tasks residing in the node
memory is protected by the node PMMU. As the name
suggests, the node memory is paged; however, not in the
sense of virtual memory. Rather, paging is a means of
protection and of providing fast block transfer DMA to the
data elements in a page in a static column mode of opera-
tion. Since the PMMU adds 45 nsec to a memory access, it
is employed only on the first entry into a new page, in order
to exercise access right control, and from then on bypassed
for all the other accesses to the same page. This is feasible
since a page boundary violation would be detected "on the
fly" by special page boundary watchdog logic.

The Pipeline Vector Processor (PVP) uses the Weitek
WTL2264/2265 chip set in connection with a micro-
coded controller accommodated in one of the ASICs. At
20 MHz clock frequency, the Pipeline Vector Processor
has a peak performance of 10 Mflop/s for the single
operations (IEEE standard double precision) and 20
Mflop/s for the chained operations (e.g. vector dot
product). The Vector Memory (VM) ensures a sustained
performance close to the peak performance. The PVP
performs also the common scalar floating-point arith-
metical operations. The Scalar Arithmetic Coprocessor
(SAC) (MC68882) provides additional floating-point
functionality such as conversion, trigonometric and tran-
cendental. The DMA/Address Generator (MAP) allows
for a high-speed block transfer of data-structure objects
(DSO):
i. between Pipeline Vector Processor and Vector
Memory,
ii. between Vector Cache and Node Memory, and
iii. between Node Memories of different nodes.

Its microcoded address generators support all required
access functions for the data-structure types "vector"
and "matrix" [2,3]. The MAP functions are performed
by an ASIC.

The Communication Coprocessor (CC) performs the
functions of formatting, sending, and receiving of mes-
sages by hardware in the microsecond range. It is real-
ized by an ASIC.

All four coprocessors utilize the same unique copro-
cessor interface of the MC68020, whose functionality
has been expanded by a special coprocessor interface
ASIC. In addition to the ASICs already mentioned, there
are also ASICs for other functions such as memory error
detection and correction (EDC), address decoding, data
path multiplexing and bus protocol handling. All ASICs
are realized by CMOS gate arrays from LSI Logic Inc.

The node memory utilizes DRAM SMDs with 1 Mbit
capacity each, mounted on SIPs. The various static
memories (Vector Memory, microprogram control
stores) as well as the CMOS bus drivers are packaged as
hybrid modules.

The Suprenum Cluster

A Suprenum cluster consists of 20 nodes accommodated
in one 19 inch rack; 16 nodes are the "Processing Nodes"
as described in the preceding section. The other 3 nodes
are: the Cluster Disk Controller Node (DCN), the Inter
Cluster Communication Node (CCN), and the Cluster
Diagnosis Node (CDN).

The nodes of a cluster communicate via the cluster bus
system, which consists of 2 message switching parallel
buses with 64 date lines each. Doubling the cluster bus
including its controller logic renders the cluster bus

JPRS-EST-89-026
7 September 1989

system fault tolerant and, by the same token, doubles the
interconnection bandwidth in the cluster to a total of 320
Mbytes per second (arbitrated). Several nodes can com-
municate simultaneously via the cluster bus system.

The remaining question how to interconnect the clusters
is discussed in the following section, which presents the
rationale for the rather unique interconnection structure
of Suprenum.

The Cluster Interconnection Structure

The interconnection structure of a high-performance
MIMD/SIMD system with a large number of nodes must
be blocking-free in order to avoid the performance
degradation.

For many computer architects, the "classical" answer to
the inter-node communication problem is the use of a
multi-stage interconnection network (IN), realized in the
form of either a circuit switching network, where a

. physical connection is provided directly from the source
node to the destination node, or a packet switching
network, where a logical connection is provided between
source node and destination node.

There exist a large variety of IN structures, and many
papers have been published dealing with the intercon-
nection properties of the various network types. How-
ever, a few papers address the issues of technical feasi-
bility, interconnection bandwidth obtainable, packaging
problems including the severe pin limitation problem
one may be running into, driving power limitation, cost,
and other mundane technical problems [4]. Here we
briefly discuss the dichotomy between the solution that
exhibits ideal interconnection properties at the cost of an
unfavorable (7V2)-complexity—the crossbar switch net-
work—and on the other hand the favorable (N log
AO-complex networks which have unfavorable intercon-
nection properties.

The network type that provides total point-to-point
connectivity without the danger of blockings is the
crossbar switch. However, the quadratic complexity of
the crossbar solution limits its size for reasons of pin
limitation and packaging complexity to 32 x 32 or 64 x
64 at most. The network types that provide an optimal
trade-off between interconnection properties and circuit
complexity are the (N log JV)-complex networks.

There exists a way out of the dilemma of the technical
non-feasibility of large crossbar switch networks and the
unfavourable interconnection behavior of the INs with
(N log AO-complexity. The solution is a two-stage
approach in which either a crossbar network or an
equally fast packet switching network is used to inter-
connect clusters of nodes rather than the nodes them-
selves. Consequently, instead of having to interconnect a
large number of nodes only a much smaller number of
clusters needs to be interconnected.

Thus, the first stage of the two-stage interconnection
network consists of the intra-cluster interconnection
structures, while the second stage is formed by the
inter-cluster interconnection structure. The advantage of
this solution is that as long as the cluster size is kept
sufficiently small there exists an extremely fast and
economical solution for the intra-cluster interconnection
structure, given in the form of the common parallel bus.
Parallel buses can be made rather wide, e.g. 64 data bits,
a measure that alone already guarantees a high intercon-
nection bandwidth. In addition, as long as a parallel bus
is kept short, it can be made quite fast. A parallel bus can
be made fault tolerant, e.g. by adding a number of
redundant bus lines. However, if one wants to combine
fault tolerance with the highest possible interconnection
bandwidth, the better approach is to simply double the
parallel bus and have a bus arbiter that allocates to a
requesting node either one of the two buses, whichever is
free next. In order to keep the length of the cluster buses
sufficiently short, we restricted the number of circuit
boards to a maximum of 20, assuming 20 mm spacing.

In the Suprenum supercomputer, the clusters are inter-
connected via the torus structure. The torus structure is
formed by a matrix of bit-serial ring buses which
transmit data at a rate of 2 x 125 Mbits per second on the
basis of the token-ring protocol. The net data rate, which
the clusters of a torus must share, is about 20 Mbyte/s.
This is the reason why not more than 4 clusters are
inserted in each ring, so that there remains enough
interconnection bandwidth per cluster. Doubling the
torus structure by having row rings and column rings not
only doubles the interconnection bandwidth but also
renders the structure fault tolerant: should a ring fail,
there is still the possibility of reaching the clusters of the
ring through alternative routing. Alternative routing is
provided by the CCN in each cluster (one of the special-
ized nodes).

The Node Operating System (PEACE)

Suprenum has been designed as a message-based, loosely
coupled system, the rationale for this design decision
being twofold. Firstly, "hot spot contentions" that may
easily arise in memory sharing systems are avoided.
Secondly, a high degree of fault tolerance had to be
designed into the system, and thus, availability.
Designing Suprenum as a fault tolerant architecture
implies all the characteristics of a distributed system.

Therefore, centralized resources—including a central-
ized "global operation system" had to be avoided. Con-
sequently, Suprenum has a local "node operating
system" in each node, while a global operating system
exists only virtually, its functions being performed in
reality by the collective of node operating systems.

JPRS-EST-89-026
7 September 1989

Major tasks of the node operating system are:
— local resources management, including access right

control to memory;
— local process management;
— interprocess communication.

In performing its tasks, the node operating system may
request services from other node operating systems; by
the same token, it must be willing to provide services for
other node operating systems.

There are strong reasons for designing the node oper-
ating system as a multitasking operating system. At the
system level, a highly modularized design of the oper-
ating system enhances its efficiency, security, and fast
implementation. At the user level, multi-tasking is a
prerequisite for constructing application software inde-
pendent of the specific configuration of the machine, i.e.,
the number of the nodes: the application program is
partitioned into a number of cooperating processes
which are then distributed over the number of nodes of
a particular configuration.

PEACE (Process Execution And Communication Envi-
ronment) [5] is the Suprenum node operating system
especially designed to meet the requirements outlined
above. Specifically, PEACE supports the following fea-
tures:
— remote access of resources (files, devices) in other

nodes;
— remote monitoring of system components in other

nodes;
— dynamic reconfigurability of the system after the

detection of faults and dynamic reconfiguration for
load balancing and service migration in user pro-
grams.

The architecture of PEACE is based on the team concept,
resulting in a highly modularized, hierarchically struc-
tured system. Means of structuring in PEACE are: pro-
cesses and teams.

Processes are lightweight processes representing system
components that render services to other such compo-
nents; they are subject and object of access rights, and
they allow readily the construction of dynamically recon-
figurable systems. A team is a group of lightweight
processes that share common access domains to intrinsic
system objects such as files, memory segments, and
processes.

A process requests a service from a remote server process
by issuing a remote procedure call (RPC) message. Mes-
sage passing is based upon a synchronous communica-
tion mechanism of maximal efficiency.

PEACE is hierarchically structured, its core consists of:
— PEACE kernel
— process server;
— name server;
— memory server;
— team server.

Functions of the PEACE kernel are:
— interprocess communication (supported by a specific

communication coprocessor);
— process and address space switches;
— propagation of traps and interrupts as messages;
— message routing (send, reply).

Functions of the name server are the issuing and moni-
toring of name spaces and service access points (SAP).
Functions of the process server are the issuing of unique
process identifiers (PID) and the dynamic process
administration. Functions of the memory server are the
issuing of segment identifiers and the dynamic manage-
ment of memory objects. The team server handles a
variety of specialized teams that function as administra-
tors such as: name administrator, team administrator,
memory administrator, panic administrator, signal
administrator, clock administrator, device adminis-
trator, and file administrator, the names of the adminis-
trators indicating their role in the system. Each admin-
istrator team usually encompasses several server
processes (e.g. the memory administrator comprises the
memory server and the MMU trap server, etc.).

PEACE has been designed in MODULA-2 and was
rewritten in C for performance reasons. PEACE has been
optimized and fine tuned to render its basic function as
fast as possible. At present, PEACE is believed to be the
fastest message-passing operating system currently
existing.

References

1. Giloi, W„ Suprenum: A trendsetter in modern super-
computer development, Parallel Computing 7/3, 1988.

2. Giloi, W. and H. Berg, Introducing the concept of data
structure architectures, Proc. 1977 International Confer-
ence on Parallel Processing, 44-51, 1977.

3. Giloi, W. and R. Guth, Concepts and realization of a
high-performance data tvpe architecture, Internat. J.
Comput. Inform. Sei. 11(1), 25-54, 1982.

4. Ermel, W., Untersuchungen zur technischen Realisier-
barkeit von Verbindungsnetzwerken fur Multicomputer-
Architekturen, Ph.D. Thesis, Technical University of
Berlin, FB Informatik, 1985.

5. Schroder, W., A distributed process execution and
communication environment for high-performance appli-
cation systems, in: Nehmer, J. (ed), Experiences with
Distributed Systems, 1987.

User Interface
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 20-24

[Article by Karl Heinz Werner, Ulrich Brass and Ernst
Thomas: "The Suprenum User Interface"]

[Text] From the front-end the Suprenum multiprocessor
along with all its resources and file system is accessed

JPRS-EST-89-026
7 September 1989

simply as a common Unix-device to the user. Server like
the job manager, the Suprenum kernel manager, and a
file server system can be invoked by Unix commands
and take care for mapping and execution of jobs on a
requested partition of the kernel, for file management
and access rights, job security and I/O. The user interface
is implemented on top of PEACE and Unix.

Very early in the conceptual phase of the Suprenum
project it was clear that the global architecture of the
system will be divided into the host system (one or more
Unix machines) and the Suprenum kernel (sk), con-
sisting of several independent nodes organized in clus-
ters and performing high speed numerical programs.

An interesting question is how to use a high performance
numerical computing device such as the Suprenum
kernel within a Unix system from a user's point of view.
A Suprenum system is expected to run in different
environments: computing centers, university institutes,
industrial laboratories and others.

Impacts on the solution of this question come from the
major usage of the system as a numerical supercomputer,
specific decisions in the architecture of the system (clus-
ter structures, distributed disk system, etc.), properties of
both operating systems (Unix on the host and PEACE [1]
on the Suprenum kernel), the abstract programming
model and the user expectations.

The programming model is based on independent tasks
exchanging messages. There is always an initial task and
a set of node tasks. Usually the node task is based on the
same program, but with different data. The communica-
tion model is asynchronous. This means for instance, a
"send"-operation performs without explicit blocking
and without an explicit acknowledgement.

The PEACE node operating system provides lightweight
processes, organized into teams, a variable number of
teams on a node, a rendezvous mechanism for interpro-
cess communication, hardware-supported high-volume
data transfer and a remote procedure call mechanism
based on interprocess communication as basic primi-
tives. Remote procedure call is embedded in a distrib-
uted name space concept. The various name spaces are
connected to each other like directories in the file
system. PEACE is optimized for fast process switches
and fast network wide communication ([1,2]).

A task from the programming model is mapped to a
PEACE team consisting of the application process, a
mailbox server and some other servers like a name server
and signal server. During the design process of the user
interface questions came up both in connection with the
systems as well as from the users point of view.

Typical questions were:
— In which way should jobs be executed in the sk, what

is an acceptable granularity with respect to the jobs/
node ratio?

— Host and node operating systems have to be con-
nected. How should this be done?

— In which way are file-accesses handled in the distrib-
uted system?

— How can user-identification and other security mech-
anisms be extended to the Suprenum kernel?

— What is a good collection of tools for a system
administrator to manage the system with respect to
disk usage, handling of user jobs and so on?

Since Suprenum is a distributed project, different project
teams worked together in order to solve these and related
questions. A common forum, the "Suprenum user inter-
face circle", was established in the spring of 1988. In this
paper we collect the design decisions as results from the
"Suprenum user interface circle" and experiences from
the implementation of prototype systems. Currently,
major design decisions are done and the implementation
process is going on. Still there is no experience with a
complete system.

Basic Design Decisions

The basic design decision is as follows:

• The combined system is represented as a homogenous
Unix-system to the user, with the Suprenum kernel as
a specific (high-performance computing) device.

Modifications in the underlying Unix system produce
costs by adopting new releases. Also, there exist different
Unix systems (System V, Berkeley-Unix, etc.). For
Suprenum, the target host system is a System V (V.3)
machine (the MPR 2300), but in the process of develop-
ment, other Unix machines were used.

• Search for portable solutions with respect to software
running on the host.

As a practical consequence we try to minimize the
number of software components that run on the host
system. Most servers are prepared to run in the
Suprenum kernel. There is a distributed disk system,
consisting of the host disks and the cluster disks. On each
cluster disk there is a Unix file-system. Clearly the
expectation is:

• There is a unique logical file-system.

The different cluster file-systems are mounted in the host
file system. A typical path could be:

/sk/du5/user/joe/pdesolver/euler/data44

Access to files in the Suprenum kernel from the host
system is permitted in a command set including the
usual file handling commands ([3]). The Suprenum
system should run efficiently in different environments.
Since we were not able to predict what would be the best
way of system management for each possible environ-
ment, the decision was to:

• Provide tools, so that the system can be configured to
specific needs.

Last but not least the following principle was adopted:

• Increase overall system throughput.

JPRS-EST-89-026
7 September 1989

Single/Multi-Tasking System

The decision which type of single/multi-tasking system
should be used is difficult. A typical Unix user would
expect a timesharing system for the Suprenum kernel.
Technically this is not impossible because the node
operating system supports multi-tasking. On the other
hand, supercomputer users tend to expect a batch system
for performance reasons.

In a parallel system, one can be middle of the road by
partitioning the set of nodes for several users. What is
the smallest unit available for a job?

In the Suprenum context, this can be a single computing
node or a cluster. Clearly a single node allows a more
flexible handling of user requests, but also the manage-
ment overhead increases. Currently, the smallest unit
available for a user job is a cluster.

If a partition is assigned to a job A, then no other job is
allowed to use the computing nodes of this partition
during execution time of job A. On the other hand, a user
working on the host system is allowed to move data in
and out of the clusters which are assigned to job A. Also
all types of system processes may run in the partition
assigned to user A.

This decision increases overall throughput by a (usually)
minor decrease of system performance for a single job.

Job Management

User jobs on the Suprenum kernel are started on the host
by the skx command ([4]). By using options to this
command, the user can request a certain number of
clusters and other resources.

The skx part runs under Unix, it interprets the command
line, initializes data structures for the job spooler, reads
the (Unix-)environment, and controls the usage of files.
Then, the skx command sends the job request to the job
spooler.

The job spooler controls a fifo-queue of sk requests.
There is a server called sk-manager ([5]). This compo-
nent manages the Suprenum kernel in terms of actually
available clusters, nodes and communication paths. By
requesting information from the sk manager, the job
spooler obtains information on which parts of the
Suprenum kernel are available for job execution. If there
is a job waiting and the resources are available the
spooler forks itself and starts job-execution.

A job can be in one of three states: active, waiting or
frozen. Frozen means that a distributed job is stopped
and swapped out of the Suprenum kernel. There is a
package of tools allowing a single user to manage owned
jobs. The system administrator has his own access party
to the configuration of the job manager. In this way, it is
possible to constrain resources of the Suprenum kernel
for specific users.

Access Rights

The usual identification and access mechanisms are
extended to the Suprenum kernel. Files on cluster disks
are owned by a specific user; this yields read, write and
execution rights for the owner, the group and others. By
starting a job, the job-executer initializes the name space
of the job. There is a security-server for this job, which is
connected to the job-name space. Also a file server is
included in the name space. The file server may issue a
getuid remote procedure call, which is replied by the
security server with the user identification.

Environment

The Unix environment is read and sk-specific data are
added by the skx-command. For each task this environ-
ment is at hand. By routines like getenv, putenv the
environment can be read into user programs, manipu-
lated and put back.

Finding Files in the Suprenum Kernel

It may occur that initially a task with file I/O will run on,
say, cluster 1. Then for the second time, the task will run
on, say, cluster 2. Now the problem is how to find the old
file(s) from the first run. Our solution to this question is
that logically a user is always at the same place in the file
system during task execution, i.e. the current user direc-
tory of the host.

All files in the Suprenum kernel, newly created or
modified during task execution, are mapped by symbolic
links in the current user directory by the full path names.
This is self-documenting and enables the file server
system to find the files. By the environment mechanism
a user can enter a local flag, which makes the local file
server responsible for moving remote data to the local
disk ([3,6]).

Connecting the Host and the Suprenum Kernel

Physically, there are special VME-boards that fit into the
host system. This system is called CAC and it consists of
a CAC/processor board and a CAC/Suprenumbus board.
The latter connects the different clusters with the host
system via the Suprenumbus, a 125-Mbit/s serial link.
On the CAC/processor a special version of the PEACE
operating system iruns (with special device drivers).
Logically, parts of the PEACE environment are emulated
in the Unix environment. This allows the initial task to
run on the host system. On the other hand, the initial
task can run in the Suprenum kernel. Then, only a few
servers run in the Unix environment providing for file
access, graphics support and so on, while most of the
servers run in the Suprenum kernel. This is faster, but
limitations like a fixed amount of money on a node in
the Suprenum kernel become important.

Implementation of the User Interface

A system of servers is used to realize the user interface as
described above. At the outer level there are sk and job
manager for execution of jobs, the file server system

10 JPRS-EST-89-026
7 September 1989

including the various disk servers (one per cluster disk)
and tty servers for atomic I/O operations on tty's.
Included in the run time system there is one security
server per userjob, individual file server per job name
space, mailbox server for asynchronous communication,
name and signal server and optional server for mapping,
performance data delivery, accounting and related tasks.
A distributed debugging system is available, which can
be initiated during job execution.

References

1. Schroder, W., Concepts of a Distributed process Exe-
cution and Communication Environment (PEACE),
Technical Report, GMD FIRST an der TU Berlin, 1986.

2. Schon, F. Hochvolumen-Datentransfer in PEACE,
Technical Report, GMD FIRST an der TU Berlin, 1987.

3. Lange, D., Wiederauffinden von Files in Suprenum
Rechner, Stollmann GmbH, Max-Brauer-Allee 79-81,
D-2000 Hamburg 50, FRG, 1988.

4. Schaffler, G. and Janke-Martinez-Santelices, T.,
Linking Suprenum Programs, Stollmann GmbH, Max-
Brauer-Allee 79-81, D-2000 Hamburg 50, FRG, 1988.

5. Janke-Martinez-Santelices, T., Hochleistungskern-
Manager Aufgabenstellung und Losungsansatz, Stoll-
mann GmbH, Max-Brauer-Allee 79-81, D-2000 50,
FRG, 1988.

6. Lange, D., Inpout/Output in MIMD Fortran 8x Pro-
grams, Stollmann GmbH, Max-Brauer-Allee 79-81, D-
2000 Hamburg 50, FRG, 1989.

Programming
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 25-30

[Article by Karl Solchenbach: "Suprenum-Fortran—An
MIMD/SIMD Language]

[Text] Scientific codes for SUPRENUM are pro-
grammed in SUPRENUM-Fortran, a superset of stan-
dard Fortran 77. The SUPRENUM-specific language
extensions are directly related to the SUPRENUM archi-
tecture. Process handling and message passing constructs
support comfortable MIMD programming. In order to
program the SIMD hardware of each node efficiently,
array constructs (conforming to the coming Fortran 8x
standard) can be used.

Fortran is still the most widely used programming lan-
guage on supercomputers. This is mainly due to the fact
that an enormous amount of technical and scientific
software libraries are written in Fortran and nobody can
afford to rewrite them. Several attempts have been made
to replace Fortran (PL/1, Algol) but their success was
limited. Fortunately, Fortran is evolving and has
changed considerably compared to old Fortran 66. With

the advent of the new Fortran 8x standard—which is
currently heavily discussed—Fortran will be an up-
to-date language.

Since Suprenum is focussing on technical and scientific
applications it was an absolute necessity to provide
Fortran for the Suprenum users. It was also clear that
standard Fortran had to be extended by different fea-
tures to support the Suprenum MIMD/SIMD architec-
ture optimally.

The Suprenum-Fortran Language

The Abstract Suprenum Machine as described in [1] is
characterized by MIMD parallel processing and SIMD
vector processing within each process. In order to for-
mulate parallel programs (in terms of processes) and to
exploit the Suprenum hardware efficiently, standard
sequential Fortran 77 turns out to be inadequate. A
special Suprenum-Fortran language has been defined
and a new compiler has been developed. Suprenum-
Fortran is based on Fortran 77 [2] and extended by
MIMD constructs, SIMD constructs, and miscellaneous
extensions; these three are treated here.

The advantages of language extensions as compared to
run time system subroutine calls are:
— They provide a greater flexibility in formulating the

message passing objects. Subroutine calls require
continguously stored messages.

— Fewer copy steps are required since the Suprenum
node hardware can access and transfer vectors with
constant increments (> 1).

— The compiler can do a better optimization. Overlap-
ping of communication and calculation can be
achieved by instruction scheduling.

The Suprenum approach of language extensions may be
disadvantageous if portability of codes were an impor-
tant issue. Portability of codes to other distributed
memory systems with a simpler message passing inter-
face, however, is guaranteed either on the level of com-
munications libraries [1,3] or on the basis of the so-called
Argonne message passing macros [4].

The complete and correct definition of Suprenum-
Fortran is given in [5]. In the following sections, the most
important extensions are described in a rather informal
way.

MIMD Extensions

Process creation. A process or a set of processes is created
by the NEW-TASK function call:

pid = NEWTASK (progname, cpuid)

progname is the name of a TASK PROGRAM which is
written as a usual Fortran main program including a
TASK PROGRAM progname header, and contains the
code to be executed by the new process, cpuid is a node
number or an array of node numbers which the new
process(es) are loaded on. The nost numbers may be
specified by the user or can be determined by the

JPRS-EST-89-026
7 September 1989

mapping library (see [1]). NEWT ASK returns a TASKID
(see below) value or an array of those, respectively.
Analogously to the EXTERNAL statement, the
progname has to be specified in a TASK EXTERNAL
statement if it is passed as argument, e.g. in NEWT ASK.

Process termination. A process is terminated if it termi-
nates itself (STOP or END-statement), or if the initial
process is stopped. Termination of the creating father
process does not terminate the child process.

TASKID data type. Each generated process is associated
with a 32-bit identifier of data type TASKID. Variables
of that data type are used as addresses in SEND/
RECEIVE-statements (see below) and they can only be
defined by a NEWTASK function call. TASKID vari-
ables can be passed to subroutines and may occur in
COMMON-blocks if they are not mixed with other data
types. They must not occur in formatted I/O statements.
The null value of this data type is the constant
.NOTASKID.

Message passing. The basic message passing primitives
are SEND and RECEIVE. The syntax is

SEND ([TASKID=] pid, [TAG=] tag) iolist

The brackets [] indicate optional keywords, pid is the
process identifier of the addressed process. Multicast
and broadcast is possible by specifying a set of process
identifiers or ALL, respectively. The tag is an additional
information (integer number) which is associated to the
message. In addition to the address and the tag, the user
can specify an error label and a status variable.

The iolist is a list containing expressions, implied do-
loops (similar to those in READ and WRITE state-
ments), arrays, and array sections (see below).

The syntax of the RECEIVE statement is similar:

RECEIVE ([TASKID=] pid, [TAG=] tag,
SENDER= sender) iolist

The parameters are similar to those in the SEND state-
ment. The TAG specification is obligatory. The optional
"SENDER=" specification returns the process identifier
of the sending process which might be useful to know if
the "TASKID=" specifier has been omitted. Error labels
and status variables can also be specified.

The Suprenum message passing model is asynchronous:
— The sending process continues immediately after

execution of the SEND and can overwrite data in the
iolist. The sending process does not wait for the
execution of the corresponding RECEIVE by the
receiving process.

— Each process has a mailbox which contains all mes-
sages sent to this process and which have not been
RECEIVEd yet. If a process wants to receive a
message with a specified tag and (optionally) a spec-
ified sender and no message with matching data is in
the mailbox, the process blocks until a matching
message has arrived in the mailbox.

11

— Messages do not preserve temporal order. Messages
from the same sender can be distinguished ony by the
tag.

Selective receive. In order to avoid possible blocking of a
receiving process, several expected process identifier and
tag combinations can be specified in the WAIT state-
ment

WAIT ([TAG=] tag, [TASKID=] pid,
COND= condition,
LABEL= labelk,...)
CONTINUE= label0

The tag/pid/cond/label combination may be repeated
and several labels label,,..., labeln may be specified. If a
message is in the mailbox which matches to one of the
tag/pid combinations and if the corresponding condition
is true, the program branches to the associated labelk. If
none of the tag/pid/cond combinations is fulfilled the
program continues execution at label0.

Inquiry functions. The following inquiry functions are
provided:
— MYTASKID () gives the process identifier of the

calling process;
— MASTER () gives the process identifier of the initial

process; . .
— TESTTAG ([TAG=]tag) is a logical function which is

.TRUE, if a message with the specified tag is in the
mailbox, otherwise it returns .FALSE.;

— TESTMSG ([TAG=] tag, [TASKID=] pid) is a logical
function which is .TRUE, if a message with the
specified tag and pid is in the mailbox, otherwise it
returns .FALSE.

TESTTAG and TESTMSG can be used to avoid
blocking processes.

SIMD Extensions

SIMD vector processing within each process (and node)
is supported by the array constructs as they are part of
the new Fortran 8x standard [6], meanwhile also opti-
mistically called Fortran 88 [7]. Although the standard
has not been accepted finally by the responsible ANSI
and ISO groups, some essential parts of the new Fortran
including most of the array processing constructs can be
regarded as stable. The formulation of an application
program in terms of arrays and vectors instead in terms
of (nested) loops is an important advance in program-
ming vector computers. Using the new array notation,
programming becomes more "object-oriented", the
codes look clearer, and automatic vectorizers are more
or less superfluous since in the array notation vectors are
expressed explicitly.

In the following, only some important features of the
array notation will be mentioned (see [8] for a detailed
explanation).

Array properties. An array is a named set of contiguously
stored data entities. All elements of an array must be of

12 JPRS-EST-89-026
7 September 1989

the same data type. Subsets of arrays are called array
sections. Each array has a data type, a rank (the number
of dimensions, less than or equal to 7), a size (total
number of elements), and a shape (defined by the rank
and number of elements in each dimension). Depending
on when they are defined, arrays can be declared as
explicit-shape, assumed-shape, assumed-size, or
deferred-shape arrays.

Array subscripts. An array or an array section is refer-
enced with one or more subscripts in a subscript list. The
subscripts may be triplets (lower bound : upper bound :
increment) or vector subscripts. Example:

REAL, ARRAY (20):: A. B, C
INTEGER IND(10)
IND = [4,3,2,1,9,10,8,7,6,5]
A(2:20:2)=B(IND)+C(10:1:-1)

! new declaration statements

! array constructor
! triplets and vector subscripts
! A(2)=B(4)+C(10),
! A(4)=B(3)+C(9),...

Dynamical allocation. Arrays can be declared without
specified bounds. Execution of an ALLOCATE state-
ment specifies the bounds and makes the array definable.
The dynamic allocation can be used e.g. in parallel
matrix or grid applications when the size of the subma-
trices or subgrids depends on the number of processes.
This number is usually an input parameter and not
known at compile time. Example:

REAL, ARRAY, ALLOCAT-
ABLE (:,:):: GRID

RECEIVE (...) NPROCX,
NPROCY

ALLOCATE GRID (0:NX/
NPROCX, 0:NY/NPROCY)

DEALLOCATE(GRID)

! deferred shape

! declaration
! receive process

! configuration
! dynamical allocation

! deallocation

Assignments. Before an assignment variable=expression
is made, the expression is evaluated completely.
Example:

A(1:10) = A(10:1:-1)! reverses elements of array A

Conditional operations. Array assignments can be
masked using the WHERE-statement. Example:

REAL A(10), B(10)
WHERE (A > 0.0) B ■
LOG(A)

! the assignment is evaluated
only
! where the elements of A are
> 0.

WHERE can be regarded as "vectorized" IF and can
similarly be used as block statement together with ELSE-
WHERE and ENDWHERE.

An array assignment can be specified in terms of array
elements using a FORALL statement. Example:

REAL GRID (0:M, 0:N)
GRID = 0. ! set all grid points

!to0.
FORALL (I=1:M-1,J=1:N-1) ! set interior grid
GRID(I,J) = 1.

! points to 1

Intrinsic functions. Fortran 8x provides new intrinsic
functions related to array processing. Here are some
examples:

DOTPRODUCT (VA.VB)

MATMUL(MA.MB)

MAXVAL (A)

MAXLOC (A)

SUM (A)
ALL (MASK)

! dotproduct of two ID-
vectors
! matrix product of two
matrices
! maximum value of all ele-
ments of A
! location of maximum ele-
ment
! sum of all elements of A
! determines whether all ele-
ments
! in MASK are true

Some functions can be called with optional DIM and
MASK arguments. The use of the new intrinsic functions
is recommended since they are implemented very effi-
ciently on the Suprenum node either as assembler pro-
grams or in microcode.

In order to exploit the vector floating point unit of the
Suprenum node efficiently, special vector instructions
have to be generated. The compiler can generate these
vector instructions only, if

1. the vectors are already formulated in the Fortran
source using array notation as described above or

2. if a loop-based code is transformed by a vectorizer.
Since not only new Fortran 8x programs but also
"old" Fortran 77 programs should run on the
Suprenum node, the Suprenum-Fortran vectorizer
has been developed which works either as an inte-
grated vectorizer in combination with the Suprenum-
Fortran compiler or as a source-to-source transformer
which generates readable Fortran 8x code.

Miscellaneous Extensions

Suprenum-Fortran covers most of the Vax and IBM
extensions as DOUBLE COMPLEX, INTEGER*2 and
BYTE data type and additional numerical intrinsic func-
tions as COTAN, GAMMA, ERF. As soon as the BIT
data type is finally defined in the Fortan 8x standard, it
will be supported by Suprenum-Fortran.

JPRS-EST-89-026
7 September 1989

13

References

1. Thomas, B. and K. Peinze, Suprenum comfort of
parallel programming, Supercomputer, this volume.

2. Fortran 77, ANSI X3.9-1978.

3. Solchenbach, K., Application software for Suprenum,
Supercomputer, this volume.

4. Lusk, E., et al., Portable programs for parallel proces-
sors, Holt, Rinehart, and Winston, New York, 1987.

5. Suprenum-Fortran, reference manual, Suprenum
GmbH, Bonn, 1989.

6. Fortran 8x, Draft S8, Version 104 of X3.9-198x
standard, April 1987.

7. Fortran 88, ISO/IEC JTC1/SC22/WG5 - N335,
December 1988.

8. Metcalf, M. and J. Reid, Fortran 8x explained, Clar-
endon Press, Oxford, 1987.

Parallel Programming
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 31-43

[Article by Bernhard Thomas and Klaus Peinze: "Supre-
num Comfort of Parallel Programming"]

[Text] Program development for the Suprenum multi-
processor is based on an abstract machine concept.
Languages such as Suprenum-Fortran and a rich choice
of tools support, and considerably facilitate, the writing,
testing, and analysing of parallel applications in the
frame of this programming model.

System architecture and software components of
Suprenum have been described in detail in preceding
contributions [1-3]. But in fact the programmer of a
Suprenum system does not have to be aware of all these
details when developing and running his/her software.
This is one important issue of the Suprenum software
concept, which is depicted in Figure 1.

The Abstract Supreneum Machine comprises the fol-
lowing concepts:
— an application consists of a dynamical system of

processes that are generated from independent pro-
gram units;

— there is one initial process that initiates the distrib-
uted application;

— each process can create other processes at any time,
termination of a process is an internal event, e.g. by
executing a STOP;

— termination of the initial process, however, will end
the distributed application;

— processes have access to private data space only;
— inter-process data requests are handled strictly by

message passing;
— the process system can be of arbitrary structure (with

respect to creation and interprocess-communica-
tion);

■— vector and array processing can be programmed for
within processes.

*■ r '" i H
I i

r i
i

f Operating system j

C Mapping ^ f PerformanceN
library J ^ analysis J

Abstract SUPRENUM architecture

User
Programming environment^

Software tools J

Programming for the Abstract Machine

Application software development for Suprenum can be
based on a very general programming model, the
Abstract Suprenum Machine. The model allows program
design in terms of concurrently executing, communi-
cating processes and can be mapped in principle, to a
wide range of MIMD-parallel, distributed memory sys-
tems. Suprenum, in particular supports this view on both
hardware and system software level as well as by dedi-
cated language extensions.

Figure 1. The Suprenum software concept, a layered
structure providing system transparency on various

levels.

Obviously, configuration details such as the cluster
structure or the interconnection system do not explicitly
occur in the abstract machine context. There is, of
course, a natural understanding of how these concept
items might go together with a given hardware: processes
will usually be thought of as executing on individual
processors (or nodes), with the initial process being

14 JPRS-EST-89-026
7 September 1989

located on a front-end processor. Also, vectorized oper-
ations will be assigned to the vector floating-point unit in
a node.

Yet there is no need to be concerned about these aspects
in the course of program development. For example, an
application designed to comprise a certain number of
processes may actually run on a smaller number of
processors (multi-processing on nodes), with lower per-
formance, of course, but without any implications for the
program development.

In a sense, the granularity of the individual processes
should also be reflected, which indeed introduces a
hardware aspect into the programming model. But again,
this can be kept quite general, and may function merely
as a guide to the complexity of the tasks to be performed
in a process.

The layout of a parallel application in terms of the
Abstract Machine concept is quite easy. The initial
process is written as a single main program that will
usually take care of creation and initialization of the
process system (e.g. provide parameters and initial data)
as well as for general I/O. All other processes are execut-
able copies of one or several task programs, which are
written according to the chosen parallelization strategy.
In grid based applications, for example, the same task
program usually codes for all necessary operations to be
performed on a part of the grid (see the grid partitioning
parallelization paradigm in [4]). In other applications
there might be independent algorithmic components
that can be programmed for concurrent execution. Cre-
ation of new processes and message based data exchange
are programmed for whenever needed or wherever suit-
able in task programs of the initial program (dynamical
process creation).

Within task programs attention should be paid to any
portion of code that suits vector processing mode. Here
the programmer may choose to utilize SIMD-parallelism
within MIMD-parallelism by writing vector instructions
explicitly.

The Abstract Suprenum Machine is a useful concept for
mapping high level parallelism identified in an intended
application onto an efficient process structure, before
taking pains to code it in a particular programming
language for a particular system. Nevertheless, a com-
fortable programming environment and suitable lan-
guage primitives are needed to support this model.

Using Suprenum-Fortran
Suprenum provides two programming languages that
directly provide this support by means of language
extensions: Suprenum-Fortran and Concurrent Modula-
2. Focusing on numerical applications, we will mainly
consider Suprenum-Fortran throughout this contribu-
tion.

There are many reasons for choosing Fortran as a
primary language in scientific computing, and these have
been given in [3] along with a detailed description of the
main extensions. Here we concentrate on the MIMD-
oriented features.

The example below gives code fragments in Suprenum-
Fortran that realize the following abstract model of a
relaxation algorithm as it might be used in solving
boundary value problems for elliptical partial differen-
tial equations:
Initial process
— get grid dimensions and problem parameters interac-

tively;
— create 2-D array of processes executing the relaxation

program (see node process) and send parameters of
the application (e.g. identifications of neighboring
processes, grid, subgrid and process array extensions)
to either process as well as initial data on the corre-
sponding subgrid;

— receive solution data from the processes and estab-
lish global results;

— stop.

Node processes
— receive parameters and initial data for local subgrid;
— perform computations, essentially the conventional

relaxation routine;
— after each computational step, update values in

points near inner boundaries by mutual exchange
with neighbor processes;

— retrieve and send out global results (residual norms),
preferably along a tree-like structure;

— send results to host.
The initial process is written as an initial task program
whereas the node processes can be generated from one
task program (called NODEPRG in this example). Note
the ease of using tags (see [3]) to make asynchronous user
data exchange between processes logically safe, and to
ensure that computational parts are written in common
Fortran 77 throughout and kept distinct from commu-
nication parts. A typical consequence of this strategy is
that large parts of existing Fortran codes, e.g. written as
subroutines, can be reused unaffected by parallelization
requirements.

JPRS-EST-89-026
7 September 1989

15

Host Program
C declaration« of array» ate.

C declaration of TASKID variable« and array«

TASKID PID(..,..l
TASKID SOOTH, HORTB, WEST, EAST

C lnltlallia tag» u««d in SEND'» and RECEIVE'«

INTEGER TIN. TST, TSO, TRE
DATA TIN/10/, TST/11/, TSO/12/, TRE/13/

C uaar Input:
C proc*«« configuration NPX x NPY, grid iln NX x NY

C Initial »olutlon D, right hand «Id« F
READ!...! NPX. NPY. NX. NY, 0, F

NP-NPX * NPY

C computa »It« of «ubdomaln«

IPSX-HX/NPX

IPSY-NY/NPY
C create 2-0 array of node processes from task program NODEPRG

DO 10 IPX - 1. NPX

DO 10 IPY - 1, NPY
NEWTASKC NODEPRG'. PID (IPX. IPY))

C compute Index boundaries of subgrlds

C and «tore to Index arrays IX, IY

10 CONTINUE
C distribution of parameter« of the application

DO 20 IPX - 1, NPX

DO 20 IPY - 1, NPY
C Identify neighbor» of process In IPX, IPY

SOOTB - .NOTASICID.
IF(IPY.NE.l) SOUTH-PID(IPX.IPY-l)

NORTH - .NOTASKID.
IF(IPY.NE.NPY) N0RTH-PID(IPX,IPY*1)

WEST - .NOTASKID.
IF(IPX.NE.l) WEST-PID(IPX-l.IPY)

EAST - .NOTASKID.
IF(IPY.NE.NPX) EAST-PID(IPX+1,IPY)

C send parameters and process »peclflc information

C to proc«»« In IPX, IPY

SEND (TASKID-PID(IPX.IPY), TAG-TIN)
I IPX. IPY. IX(IPX. IPY, 1:2), I»

1 SOUTH.NORTH.WEST.EAST

20 CONTINUE
C «end Initial data right band «lde

DO 30 IPX - 1, NPX

DO 30 IPY - 1, NPY

SEND <TASKID-PID(IPX,IPY>, TAG-TST)

t D(IX(IPX,IPY,1):IX(IPX,IPY,2),

4 IY(IPX,IPY,1):IY(IPX,IPY,2)),

t F(IX(IPX,IPY,1):IX(IPX,IPY.2).

(IY(IPX,IPY,1):IY(IPX.IPY.2)>

30 CONTINUE

c receive «olutlon in arbitrary ordar

IP-0

IF(IP.LT.NP) THEN

RECEIVE (TAG-TSO) IPX. IPY,

t UIIX(IPX.IPY.l):IX(IPX.IPY.2),

(IY(IPX,IPY,1):IY(IPX,IPY.2))

IP - IP+1
ENDIF

C receive residual norms in arbitrary order

IP-0

RES - 0.D0

IF(IP.LT.NP) THEN

RECEIVE (TAG-TRE) RESLOC

RES - MAX (RES. RESLOC)

IP - IP+1

ENDIF

C postprocessing

C end of host program

STOP

END

IPY,

Node Program:
C declarations of arrays, TASKID variables etc.

TASKID SOUTH, NORTH, WEST, EAST

C Initialize tags

INTEGER TIN, TST, TSO, TRE

DATA TIN/10/, TST/11/, TSO/12/, TRE/13/

C receive parameters and initial information

RECEIVE(TAG-TIN) IPX, IPY, IX, IY,

I SOUTH, NORTH, WEST, EAST

C receive initial data and right hand side

RECEIVE(TAG-TST) U(IX(1):IX(2), IY(1):IY(2)).

F(IX(1):IX(2), IY(1):IY<2>>

C iterative loop (pre-assigned number of passes: MAXIT)

DO 10 IT - 1, MAXIT

C subroutine RELAX contains the usual sequential program

CALL RELAX(U, F, ...I

C data exchange across Inner boundaries by message passing

TEX - 100 + IT
SEND(TASKID-WEST.TAG-TEX) U(IX(1),IY(1):IY(2))

SEND(TASKID-EAST.TAG-TEX) 0(IX(2),IY(1):IY(2))

SEND(TASKID-SOUTH.TAG-TEX) U(IX(1):IX(2),IY(1))

SEND(TASKID-NORTH.TAG-TEX) U(IX(1):IX(2),IY(2))

RECEIVE(TASKID-WEST.TAG-TEX) U(IX(1)-1,IY(1):IY(2))

RECEIVE (TASKID-EAST,TAG-TEX) 0(IX(2>«. IY(1) :IY (2))

RECEIVE(TASKID-SOUTH.TAG-TEX) D(IX(1):IX(2),IY(l)-l)

RECEIVE(TASKID-NORTH.TAG-TEX) U(IX<1>:IX(2),IY(2)+1)

C end of Iterative loop

10 CONTINUE

C send local solution to host

SEND (TASKID-MASTERO, TAG-TSO) IPX,

1 U(IX(1):IX(2),IY(1):IY(2))

C send local residual norms to Host

CALL RESID(U, F, RES, ...)

SEND (TASKID-MASTERO, TAG-TRE) RES

C end of node program

STOP

END

Clearly, within the computational parts, SIMD-
parallelism can be exploited by using appropriate vector
notations as provided by Suprenum-Fortran. Besides,
the Suprenum-Fortran compiler includes an autovector-
izer (see [3,5]).

Employing Libraries

As it was noted in the previous section, collecting and
sending out global data from a grid of processes could be
done most efficiently in a treewise fashion. This would
imply treating the collection of processes as a tree-
structure rather than a grid. On Suprenum, multi-
structured process systems are supported, being an issue
of the Abstract Machine model view.

For example the grid structure laid out in a 2-D TASKID
array in the example program fragment above can easily
be supplied with an additional tree structure by intro-
ducing a father/left-son/right-son scheme of TASKIDs in
each process.

16 JPRS-EST-89-026
7 September 1989

Structuring process systems and having process struc-
tures distributed across available processors is particu-
larly facilitated by the Mapping Library. The library can
be involved to either establish:
—- for a particular process set, one of the elementary

topologies (trees, rings, cubes, etc.) or a general graph
topology specified by a (weighted) adjacency matrix;

— automatic process placement, where a new process is
loaded onto a new processor taking current workload
into account;

— semi-automatic process placement, where the pro-
grammer may specify a new process to be placed onto
the same processor or same cluster or elsewhere.

Whereas the first two items are automatic mappings, the
third one along with explicit process placement enables
the user to directly control where a process has to go
([6]). It is noted that programming can use various levels
of transparency with respect to the underlying hardware
according to the special requirements of the pro-
grammer.

Thus, if the programmer does not want to take care of
process structuring and placement, he might resort to
mapping library routine calls. If he prefers not to worry
about process creation and communication at all, he
might even write programs completely in Fortran 77
(probably including Fortran 8x notations provided by
Suprenum-Fortran) by relying on Communication
Library calls.

For the current version of the communication library,
this is only meant to work for problems where grid
partitioning is the parallelization paradigm. However,
they are numerous and occur in various fields of appli-
cations (see [4]). The table below lists example routines
that would correspond to whole parts of the relaxation
program above.

Initial Task Task Comment

crgr2d grid2d creation of 2-D
grid of processes
generated from
specified task pro-
gram; also gener-
ates logical tree
structure; transfer
of initial informa-
tion

supdt2 send/receive values
in boundary area
of specified width

rupdt2 to specified neigh-
bors (2-D prob-
lems)

gloph glops compute global
values from local
ones according to
specified
arithmetic opera-
tion; distribute and
receive results (ini-
tial task: receive
only)

agglm2 agglomeration for
2-D process grids;
maps logical pro-
cess grid onto
another one of dif-
ferent size

Essentially, 2-D and 3-D process grid and tree structures
are created simply by subroutine calls. It is worth men-
tioning that all the necessary process identification man-
agement (by data of type TASKID) is completely hidden
in the subprograms of the communication library. Com-
munication across inner boundaries is done by calling
boundary data exchange routines, where the depth of the
boundary layer as well as an ordering of points can be
respected. Several other services are accessible according
to needs, including collection and sending out global
values tree-wise, and agglomeration, a strategy applied in
multi-processor implementations of multigrid methods.

Besides the aspect of merely programming in plain
Fortran, there are several general advantages of
employing the communication library in grid-oriented
numerical software:
— programming is safer using well tested and optimized

routines for data exchange across process grids;
— redundant coding is considerably reduced;
— software becomes portable for a wide class of multi-

processor systems, since only the library has to be
adapted, which can be done safely, leaving the user
program essentially unaltered, on date implementa-
tions have been done on iPSC, Ncube, and even to a
shared memory system ([7]).

Writing Programs

Program editing can be done on the front-end system or,
equally well, on remote machines like Unix worksta-
tions. In any case, the programming environment is
Unix-based [2] and thus familiar to most numerical
programmers.

Besides, there is a comfortable, language-dependent pro-
gramming system which allows maintaining sources,
keeping version control, facilitating code writing and
doing syntax checks even on program fragment level.
The programming system is operated through a window-
based look-and-feel type surface and makes program-
ming much easier and safer. Details are given in [8].

With a set of files constituting the parallel program (e.g.
an initial task program relaxh.f and associated task

JPRS-EST-89-026
7 September 1989

17

programs, e.g. relaxn.f), ways may now temporarily
diverge: the programmer might either hope for a fault-
free, well-performing program and push it forward onto
the Suprenum multiprocessor (see below). Or, he might
take a more careful step in using the Suprenum simulator
instead, which runs on the front-end or a Unix worksta-
tion.

Simulations With SUSI

SUSI, the Suprenum simulating system, is an implemen-
tation of the Abstract Suprenum Machine, and can be
used to simulate a parallel application on a conventional
architecture. SUSI consists of language dependent pre-
processors, a hardware configurator, a user interface,
runtime systems for both languages (Suprenum-Fortran
and Concurrent Modula-2), and the actual scheduling
and execution kernel.

The preprocessor is invoked for the Suprenum-Fortran
example by:

mf77 [mf77-options] [f77-options] [Id-options]
relaxh.f relaxn.f

where the list of program files might be preceded by the
common f77 and linker options as well as by special
preprocessor options which include a reference to the
mapping library. mf77 resolves MIMD-constructs in
Suprenum-Fortran into subroutine calls, compiles them,
and links them with SUSI's runtime system. The simu-
lator kernel takes care of scheduling processes and object
dispatching based on coroutine concepts from Modula-
2. Another version of the simulator currently under
development is based on an emulation of the basic
distributed operating system PEACE [1].

The SUSI user interface provides a flexible and compre-
hensive control of the simulation run, and is able to
extract all sorts of statistics and trace data on activities of
such objects like user processes, CPUs, busses, mail-
boxes, etc. To begin with, the hardware configurator
expects input of a hardware configuration, to which the
application will be mapped. This is usually contained in
a hardware description (HADES) file, which might be
specified as in the following example, or be generated by
a graphical tool (HADESGEN).

Systems liks SYS1 and SYS2 are "plugged together"
from clusters, intercluster busses, CPUs and cluster
busses to taste.

After starting the simulation run, SUSI's interface
prompt will show up. The simulation may then be run
for a specified period of simulation time by issuing
commands like:

start simtime=0.2

It may be interrupted by CTL-C or after simtime elapsed
and continued, eventually with new options set, or

Cpul - CPU MIPS - 2.0; TSLICE - 0.05 END (» cpu *)

Bus! . BUS MBITS - 30.0; END (» bus *);

Bus2 - BUS MBITS - 300.0;END (• bus •);

Icbl - ICB MBITS - 24.0; END (« lnter-cluster-bus *>

Icb2 - ICB MBITS - 512.0,-END (« lnter-cluster-bus *)

Clul - CLUSTER Cpuj [8) : Cpul;

Busj : Busl;END (* cluster »);

Clu2 - CLUSTER Cpuk (8] : Cpul;

Busk : Bus2;END (* cluster *);

HI ■ ■ HOST Cpul [1] : Cpul;

Busl : Busl;END (< host •);

H2 - HOST Cpum [1! : Cpul;

Busm : Bus2;END (* host *);

SYS1 - LATTICE (* system configuration *)

Icbl Icbl ;

HI # ;

Icbl # Clul Clul ;

Icbl # Clul Clul ;

END (* lattice *);

SIS2 - LATTICE (* another system configuration *)

Icb2 Icb2 ;

H2 # ;

Icb2 # Clu2 Clu2 ;

Icb2 # Clu2 Clu2 ;

END (* lattice •>;

stopped to terminate the simulation. Whenever appro-
priate, a variety of trace information on all kinds of
events can be switched on or off. As an example, by
giving

trace on msg all (up=system)

listings like the one below will be output from SUSI

multicast No- 9 sent: PAT/TAG-1

multicast No- 9 deliv. to OP002CPU001

OrigNO- 9 PAT/TAG-1

multicast No- 13 deliv. to UP003CPU002

OrigNo- 9 PAT/TAG-1

multicast No- 14 deliv. to OP004CPU003

OrigNo- 9 PAT/TAG-1

multicast No- 15 deliv. to UP005CPU004

OrigNo- 9 PAT/TAG-1

multicast No- 9 recv from UP001CPU000

OrigNo- 9 PAT/TAG-1

multicast No- 13 recv from UP001CPO000

OrigNo- 9 PAT/TAG-1

multicast No- 14 recv from UP001CPU000

OrigNo- 9 PAT/TAG-1

multicast No- 15 recv from UP001CPU000

OrigNo- 9 PAT/TAG-1

userdata No- 41 sent to UP002CPU001

PAT/TAG-2

userdata No- 41 deliv. to UP002CPO001

PAT/TAG-2

userdata No- 41 recv from UP001CPU000

PAT/TAG-2

userdata No- 42 sent to UP003CPU002

PAT/TAG-2

userdata No- 42 deliv. to UP003CPU002

PAT/TAG-2

userdata No- 42 recv from UP001CPU000

PAT/TAG-2

The complete range of commands and options exceeds
the scope of this contribution; for further reference see
[9,10]. Graphic tools (as described below) can be used to

0 003202 UP001CPOOOO

0 003230 CPO001

0 003230 CPU002

0 003230 CPU003

0 003230 CP0004

0 003340 UP002CPU001

0 003340 UP003CPU002

0 003340 UP004CPU003

0 003340 UP005CPU004

0 003522 UP001CPUO00

0 003C09 CPU001

0 003719 UP002CPU001

0 003837 UP001CPO000

0 003924 CPU002

0 004034 UP003CPU002

18 JPRS-EST-89-026
7 September 1989

process trace data and facilitate the understanding of
what the parallel application actually does as a process
system.

SUSI is employed to do logical testing of the complete
parallel application, to get a feeling for loads on CPUs,
busses, etc., for the communication paths, inappropriate
message scheduling, and deadlocks. It provides some
rough estimates on resource utilization and efficiency.

If it is felt that the program is perfect, with respect to
SUSI, one wants to see real performance by running it on
the actual hardware. In most applications that promise
good parallel efficiencies on theoretical grounds, the
problem will be scalable. That is, to do real life calcula-
tions the user will only have to change some (interac-
tively set) parameters that describe the size of the appli-
cation, e.g. the total grid size and the size of the subgrids
within one process. There will be no rewriting of any part
of the code to switch from SUSI to Suprenum hardware
in such cases.

Running Programs on a Real Configuration

The Suprenum user interface (see [2]) provides the
necessary commands and services to let a user run his
application on real hardware without having to bother
about multi-processor specific details such as resource
allocation, job control, downloading and the like in
depth. Since the Suprenum system is perceived by the
user as a homogeneous Unix-system with the Suprenum
kernel hardware appearing as a specific device, conven-
tions for e.g. file access, job executing, and querying the
status of the system are quite familiar. In particular,
details about the kernel operating system (PEACE, see
[11]) are not visible on the user interface level.

To run a program that has been compiled and linked by
the Suprenum-Fortran compiler (see [3]), the job man-
ager can be invoked by the Suprenum kernel execute
command skx as simply as e.g.

skx -n 4 -t 20:00 relax

Here, relax is assumed to be the executable file generated
from relaxh.f and relaxn.f in the above example. Option
-n claims 4 clusters to be needed for the run, and -t gives
the time limit. A detailed discussion is given in [2].

Keeping Informed

Besides displaying the actual user program output which
may make use of GKS and X/Windows based tools on
the front-end there are several facilities that provide
information about what is happening on the allocated
part of the machine. Among these are:
a parallel debugger;
performance analysis and profiling;
state reporting,

which can be invoked together with the execution com-
mand.

The state reporting facility, in particular, will extract
data on the process and message passing activities of a
distributed application running on Suprenum hardware,
similar to the trace data generated by SUSI's trace
options.

A set of visualization tools operate on such data streams
to produce a comprehensive graphical representation of
the overall behaviour of the application: the dynamic
map, the time map, and the statistic map.

All three of them take a stream of standardized event
descriptions as input. A filter program extracts relevant
information either from SUSI traces or from the state
reporting facility and condenses it into this standard
event format. What information is considered to be
relevant as well as hints where to find it in a line of
information can be specified by the user in a filter
description file that acts as an interface between the
various sources of process data and the filter program.

The dynamic map produces an animated view of the
activities of processes, processors, mailboxes, and of the
interconnection system along with information on sent-
out or incoming messages. The animation can be slowed
down to follow through the actions of the system, e.g.
right before a deadlock situation.

The time map produces a comprehensive temporal over-
view of the behavior of the complete application. It
displays a record of states of processes and associated
mailboxes as well as of process creation and intercom-
munication over the full time-interval. The graphics
provide a "first glance" of the communication schedule
and active-to-inactive time ratio of processes. Analyzing
the display in more depth can provide useful hints to
inefficient organization of the communication and lead
to improved tuning of the application.

The statistic map generates a final evaluation of the
reported data and displays some statistics on the perfor-
mance of a distributed application. It computes figures,
and displays them graphically, for e.g. the load of pro-
cessors, number of interprocess communication events,
occupation of mailboxes, as well as time period spent on
message passing activities in much details.

An overview of the complete visualization system is
given in [12]. The visualization can be run concurrently
(in the sense of Unix pipelined processes) with the
application by establishing a suitable pipeline, including
the filter. However, it usually does not make much sense
to monitor behavior of an application with these tools
on-line, unless it is run as a simulation. Instead, reported
data will be written on file, either on cluster disks and/or
on external mass memory, for further postprocessing by
the visualization tools. Hard copies of the visualization
can be made most easily with a suitable color graphics
printer.

JPRS-EST-89-026
7 September 1989

19

References

1. Giloi, W., Suprenum—the system, Supercomputer,
this issue.

2. Werner, K., The Suprenum user interface, Supercom-
puter, this issue.

3. Solchenbach, K., Suprenum-Fortran—an MIMD/
SIMD language, Supercomputer, this issue.

4. Solchenbach, K., Application software for Suprenum,
Supercomputer, this issue.

5. Trottenberg, U., Suprenum—the concept. Supercom-
puter, this issue.

6. Kramer, O., Suprenum mapping library—user
manual, GMD, St. Augustin, 1987.

7. Hempel, R., The Suprenum communications subrou-
tine library for grid-oriented problems. Mathematics and
Computer Science Division, Argonne National Labora-
tory, Argonne, II, 1987.

8. Thies, Ch., Anleitung zum Benutzen von PSG-
Programmierumgebungen, Report PI-R9/87, TH Darm-
stadt, FB 20, 1987.

9. Limburger, F., Ch. Scheidler, Ch. Tietz and A. Wes-
sels, Benutzeranleitung des Suprenum-Simulations-
systems SUSI, GMD, St. Augustin, 1986.

10. Tietz, Ch., Das Benutzer-Interface des Suprenum-
Simulationssystems, GMD, St. Augustin, 1987.

11. Bast, H.-J., M. Gerndt and C.-A. Thole, SUPREB—
The Suprenum Parallelizes Supercomputer, this issue.

12. Thomas, B., E. Thomas and E. Truchet, Suprenum
visualization tools for distributed applications—user's
guide, Suprenum Report 12, Bonn, 1988.

Application Software
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 44-50

[Article by Karl Solchenbach: "Application Software for
Suprenum"]

[Text] About one third of the SUPRENUM develop-
ment resources has been spent for implementation of
application software packages, mainly from scientific
computing as CFD and statistical physics. Some of the
codes are based on sequential versions which have been
"parallelized", others have been written completely new.
The paper gives an overview over the SUPRENUM
application codes and sketches briefly the underlying
parallelization techniques.

The availability of practical relevant application soft-
ware is decisive for the scientific and commercial success
of a new computer architecture like Suprenum. This
software must make use of the specific advantages of the
architecture and translate these advantages into gains of

speed. It is, however, not desirable to use old numerical
methods on advanced computer architectures. Only effi-
cient numerical algorithms in combination with the
parallel Suprenum hardware can provide the computing
performance which is required for large scale scientific
and technical simulations. Consequently, roughly one
third of the Suprenum development resources have been
spent for application software development which
covers the implementation of new algorithms as well as
the parallelization of existing codes.

The application software for Suprenum is based on the
Abstract Suprenum Architecture (see [1]), i.e., the par-
allel programs are formulated in terms of parallel pro-
cesses. The number of processes and their topology
(defined by the message passing communication) are
primariy prescribed by the numerical problem and they
are independent of the actual hardware configuration.

The programming language for nearly all of the applica-
tion packages is Suprenum-Fortran (see [2]). Before the
hardware was available, the application software devel-
opment was done on the Suprenum simulator.

Application Software Packages

Linear Algebra Package

Suprenum provides parallel algorithms for linear algebra
computations including:
— vector and matrix operations;
— elimination methods for linear systems with dense

matrices (Gaub, Cholesky);
— elimination methods for linear systems with banded

matrices (reduction methods);
— solution of eigenvalue problems;
— iterative solvers for sparse systems (conjugate gradi-

ents, incomplete decompositions, ADI, block relax-
ation).

The interface to the dense matrices solvers is an exten-
sion of the LIN-PACK interface.

Multigrid Software

A library of multigrid solvers for elliptic boundary value
problems is available on Suprenum. The partial differ-
ential equations are of the type

V-(DVu) + cu = /

Different classes of coefficients and boundary conditions
can be selected. The domain is a 2-D or 3-D cube. The
solvers are based on highly efficient parallel multigrid
algorithms. Due to their high degree of parallelism they
can be parallelized (across the Suprenum nodes) and can
be vectorized (within each node).

Computational Fluid Dynamics (CFD)

Potential solver. Because of its comparatively small com-
putational work the potential equation is still an attrac-
tive model used very frequently for aerodynamical appli-
cations where only limited accuracy is required. It can be

20 JPRS-EST-89-026
7 September 1989

applied for subsonic as well as for transonic flow. It is,
however, principally restricted to irrotational and
inviscid flow.

Its mathematical formulation is a nonlinear scalar PDE
which is elliptic in the subsonic flow areas and hyper-
bolic in the transonic areas. The problem is solved
numerically by a parallel multigrid code which provides
a special treatment of the sonic shock curve.

Euler solver. The Euler equations are the standard model
for the description of inviscid flows. They are used for all
simulations in aerodynamics where the viscosity can be
neglected. Mathematically they form a coupled non-
linear system of PDEs for the flow-velocity components,
the pressure, and the total energy.

Often it is necessary to take viscous effects into account
near boundaries whereas they are negligible in zones far
away from the body surface. This leads to a combination
of the Euler equations with special boundary layer
approximations.

Navier-Stokes solver. The most general CFD models are
the (compressible) Navier-Stokes equations which prin-
cipally describe all flow phenomena governed by macro-
scopic physical rules. Mathematically they form a system
of PDEs similar to that of the Euler equations with
additional viscous terms.

Suprenum offers the parallelized version of the estab-
lished code Ikarus (by Dornier) for the compressible case
and the completely new Navier-Stokes solver Liss (by
GMD)—based on multigrid methods and designed for
Suprenum—for incompressible calculations.

Grid generation. Most, interesting flow phenomena are
related to geometrically complex domains with curved
boundaries. Typical examples are the exterior space
around wings, airplanes or cars or the interior space in
pipes, turbines, etc. In order to discretize the mathemat-
ical model (i.e., the system of PDEs) by finite differences
or finite volumes one needs a grid with the following
properties:
— good resolution (especially near boundaries);
— simple and accurate discretization of boundary con-

ditions;
— logically simple structure.

Suprenum offers 2-D and 3-D grid generators for
boundary fitted grids (based on Thompson's method [3])
with graphical interfaces.

Other Applications

Besides the CFD applications many different application
software packages have been adapted to Suprenum. Here
we mention some of them:

• Structural analysis. A finite element code (PERMAS)
is currently adapted for Suprenum. The sequential
linear solver (Cholesky) is replaced by a parallel
version.

• Quantum chromodynamics (QCD). These very time-
consuming simulations can optimally be mapped on
Suprenum. An SU(2) code is already running; the
SU(3) code is under development and expected to run
with nearly 2 Gflop/s.

• Reactor safety. In the framework of the Suprenum
project, a thermohydraulic code for the simulation of
a nuclear reactor core is developed. Another ongoing
activity in this area is the parallelization of the Relap5
code which simulates the cooling circuit within a
nuclear power plant.

Parallelization
Many of the different applications mentioned in the
previous section are based on either matrix-vector or
grid data structures. This is not surprising since the
underlying mathematical model consists of PDEs and
their discretization most naturally leads to grid struc-
tures or at least to large matrices.
Parallelization requires the selection of parallel algo-
rithms and the distribution of the data structure to the
local memory units. The data distribution should try to
preserve locality and to achieve load balancing.
Matrix Based Applications
The basic data structures for linear algebra calculations
are matrices and vectors. Depending on the particular
algorithm, matrices are distributed in rows, in columns
or—the most general method for dense matrices—in
blocks (submatrices). The distribution is chosen
according to the following requirements:
— minimal number of communication steps;
— minimal length of communicated data;
— maximal vector length in each process.
Vectors are distributed conforming to the matrix distri-
bution. Complete redistributions (matrix transform)
should be avoided whenever possible.
Parallel algorithms. The linear algebra algorithms can be
parallelized on block level, i.e., submatrices are treated
independently and simultaneously. In case of matrix
multiplication this can be done in a straightforward way.
In the case of Gaubian elimination the dependency on
pivot elements has to be considered. Within each process
the algorithms are based on vectorized BLAS routines.
Grid Based Applications
The Suprenum application packages support two classes
of grid structures:
— Regular grids are characterized by direct addressing

of the grid points and a rectangular or cuboid address
space. Geometrical neighbors are also logical neigh-
bors.

— Block-structured grids are composed of several reg-
ular grids. Each single block shows internally a reg-
ular grid structure; the block structure itself, how-
ever, is irregular (with certain restrictions).

In future, also codes based on irregular grids (as used by
finite element methods) and locally refined grids will be
implemented on Suprenum.
Parallel grid algorithms. A grid algorithm is a (usually
iterative) method which calculates the value of a grid
function at one point as a function of values defined at
neighboring points (also called relaxation). The iteration

JPRS-EST-89-026
7 September 1989

21

can be characterized as Jacobi-type (the new iterate at a
grid point is calculated using only old neighboring
values) or Gaub-Seidel-type (using already calculated
new neighboring values). Obviously, Jacobi-type
methods are completely parallel since the calculation in
each grid point can be performed independently (see
Figure la). If the number of grid points is N the paral-
lelism is also N.

The parallelism of Gaub-Seidel methods depends on the
order in which the grid points are processed. Lexico-
graphic ordering implies that only points on "wave
fronts" can be calculated in parallel (see Figure lb).

For Gaub-Seidel methods, a far better degree of paral-
lelism, namely Nil, is obtained by "coloring" the grid
points appropriately and processing all points of the
same color simultaneously, e.g. the so-called red-black
relaxation (see Figure 1 c).

lüll'ül I n i Hilf

T t i M I i h
H i i I i !
+ H 11 ■ i t »
t;; ; };T

r^~

-«—t-

(a) Jacobi (b) 1«. GS

-r . 1 » t
l 9 9 O C 9

n T-rrr-
■■'?♦;

'M T t TT'
TT"

t t 1 t ■
I a e a ■i-i-i-

8 * ^ i 9
*i |

i « « «
tliict

I f * f } » ■ •

c
w (c)

Figure 1. Jacobi- and Gaub-Seidel relaxation schemes.
• denotes grid points which can be calculated independently in
parallel, o denotes grid points with old values, and Qdenotes
grid points with already calculated new values.

Although the range of grid algorithms for CFD applica-
tions varies widely they all can be regarded either as
Jacobi-like (to these belong explicit time-stepping
schemes) or as Gaub-Seidel-like or as a mixture of both.
The parallelism of the grid algorithms in all cases is
sufficiently high for highly parallel systems.

The same applies if instead of point relaxation schemes
(as described above) line or plane block relaxations are
performed, where the values of a whole line or plane of
grid points are updated simultaneously. The implemen-
tation of parallel grid applications on Suprenum is based
on the method of grid partitioning (often called domain
decomposition).

Multigrid methods. Standard iterative multigrid algo-
rithms process a cycle from the fine to the coarse grids
and back to the fine grids sequentially, whereas on each
grid level the actual problem is treated in parallel simi-
larly to the parallel single grid algorithms.

The algorithmic and technical details of parallel multi-
grid algorithms are described in [4,5].

Communications library. For grid applications, the
explicit programming of the communication can be
hidden from the user. In the Suprenum project, for
example, a library of communication routines has been
developed [6] which ensures:
— clean and error-free programming;
— easy development of parallel codes;
— portability within the class of distributed memory

computers, programs can be ported to any of these
machines as soon as the communication library has
been implemented.

The library supports regular and block-structured grids
and is used by most of the Suprenum applications.

Performance

The quantities of interest in evaluating the performance
of parallel algorithms are:
— time T(N,P): time to solve a problem of size N on a

multiprocessor system using P nodes;
— speed-up S(N,P) := T(N,\)/T(N,P)\
—■ efficiency E(N,P) :=S(N,P)/P.

Note that on the Suprenum the utilization of the hard-
ware capabilities is the product of the "multiprocessor"
efficiency as defined above and the efficiency related to
the vector processing unit. The total problem solving
time—which is the only interesting number from the
user's point of view—depends, of course, additionally on
the numerical efficiency of an algorithm.

In practice E will be smaller than its ideal value 1, mainly
because of communication (including synchronization),
unbalanced load, and sequential parts in the algorithm
(Amdahl's law). It is often claimed that the speed-up on
parallel systems is limited due to Amdahl's law. This
does, however, only apply if a constant problem is
distributed to more and more processors. Realistically,
the applications are scalable, i.e., the parallel fraction of
the program increases as the problem size increases.

Since the sequential part of such a program is less
dependent on the problem size, its fraction is not con-
stant and the assumptions of the classical form of
Amdahl's law are not fulfilled (see [7]).

Performance estimates. A simple analysis shows that
asymptotically for matrix and grid based applications:

S(N,P) — P, E(N,P) -* 1

if P is fixed and N —. infinity. For many grid and matrix
algorithms E depends mainly on N/P, i.e. the size of the
submatrices or subgrids.

Estimated performance results for CFD applications are
given in the next two tables.

3-D potential solver (parallel version of FL022) with N
approximately equals 200,000 grid points:

22 JPRS-EST-89-026
7 September 1989

f=16 P=64 />=256

£(200,000,/>) 0.98 0.97 0.85
Mflop/s 75 300 1040

The table shows that for realistic CFD problems a
performance of more than 1 Gflop/s can be expected on
Suprenum.

2-D incompressible Navier-Stokes solver:

N= 16384 65536 262144

E(N,256) 0.62 0.85 0.95

As predicted by the asymptotic analysis, the efficiency is
increasing with growing problem sizes.

References
1. Thomas, B. and K. Peinze, Suprenum comfort of
parallel programming, Supercomputer, this volume.

2. Solchenbach, K., Suprenum-Fortran—an MIMD/
SIMD language, Supercomputer, this volume.

3. Thompson, J., Z. Warsi and C. Mastin, Boundary-
fitted curvilinear coordinate systems for the solution of
partial differential equations on fields containing any
number of arbitrary two-dimensional bodies, NASA
report CR-2729, Washington, D.C., 1977.

4. Thole, C. and U. Trottenberg, A short note on standard
parallel multigrid algorithms for 3-D problems, in:
Lichnewsky, A. and C. Saguez (eds.) Supercomputing,
North-Holland, Amsterdam, 1987.

5. Solchenbach, K., C.-A. Thole and U. Trottenberg,
Parallel multigrid methods: implementation on Supre-
num-like architectures and applications, in: Houstis, E.,
T. Papatheodorou and C. Polychronopoulos (eds.),
Supercomputing, 1st International Conference, Lecture
Notes in Computer Science 297, Springer Verlag, New
York, 28-42, 1988.

6. Hempel, R., The Suprenum communications subrou-
tine library for grid-oriented problems, Report ANL-
87-23, Argonne National Laboratory, 1987.

7. Gustafson, J., G. Montry and R. Benner, Development
of parallel methods for a 1024-processor hypercube, SI AM
J. Sei. Stat. Comp. 9, 4, 609-638, 1988.

SUPERB Parallelizer
36980245 Amsterdam SUPERCOMPUTER in English
Mar 89 pp 51-57

[Article by Heinz-J. Bast, Michael Gerndt, and Clemens-
A. Thole: "SUPERB—the Suprenum Parallelizer"]

[Text] Although automatic vectorization is a well-known
technique, automatic transformation of sequential pro-
grams for MIMD execution on distributed memory

architectures, like a Suprenum, is a research topic. The
real problem is not the detection of MIMD parallelism
but the detection of locality in the memory references.
From the application point of view two basic kinds of
locality for memory references are distinguished: matrix-
type and grid-type. The basic task for automatic trans-
formation tools for distributed memory architectures
and computers with memory hierarchies is outlined. The
interactive system SUPERB is oriented to the paral-
lelization of grid-type problems. The design of this
system for semi-automatic transformation of Fortran 77
programs into parallel programs for the Suprenum
machine is given. The system is characterized by a
powerful analysis component, a catalog of MIMD and
SIMD transformations, and a flexible dialog facility.

The Challenge of Automatic Parallelization

Parallel programs for parallel architectures can be cre-
ated by explicit formulation of the parallelism using
special language constructs (e.g.Suprenum-Fortran) or
special language semantics (e.g. functional languages).
The application programmer would prefer the automatic
detection of parallelism in sequential programs written
in standard Fortran.

In the case of SIMD parallelism as it is used by conven-
tional vectorcomputers the generation of vector instruc-
tions from loops is well known. Comparison of the
automatic vectorizing compilers of different vendors
shows the very high quality of their products [1].

For some architectures compilers supporting MIMD
parallelism can be used (e.g. Alliant FX/xx, Convex 2xx,
Cray-2 and Cray X/Y-MP systems). All of these archi-
tectures are shared memory computers. The automatic
parallelization uses different levels of nested loops or
strip mining to generate vector instructions to be exe-
cuted in parallel. The work is assigned to processors
either in portions of fixed size or dynamically in several
smaller portions to improve the balance of the loads
[2-4]. In [5,6] it is shown that most of the parallelism in
scientific applications is due to parallel work on elements
of the same large data structures. Parallel execution of
substantially different threads of code only leads to a
small degree of parallelism. This means that the
approach sketched here for the extraction of parallelism
is appropriate for systems with many processors.

The challenge of modern architectures is not the recog-
nition of parallelism in the applications but the support
for locality in the data references to make efficient use of
memory hierarchies. This is in particular true for local
memory architectures.

Several of the state-of-the-art supercomputers contain,
besides local registers for the processors, small and fast
local or global memory in front of the huge shared main
memory with larger latency and smaller bandwidth.
Examples of this kind of architecture are the ETA 10,
Cray-2 or the Alliant. Distributed memory architectures
behave in a similar way. The local memory of a processor
can be accessed very fast by the processor itself while the

JPRS-EST-89-026
7 September 1989

23

access to the memory of other processors has larger
latency and smaller bandwidth. An essential difference
between the shared and distributed memory approach is
that in the first case the local memories of the processors
enclose only a small fraction of the total amount of
memory available.

Even for shared memory architectures, a compiler has to
optimize code for this kind of memory structures by
minimizing memory references to the non-local memory
by exploiting the locality of memory accesses in the
algorithm.

Scientific applications contain in principle two different
kinds of locality of memory references: matrix-type and
grid-type.

For multiplication of matrices of size n the number of
operations is 2n3 while 3n2 data transfers are necessary.
Furthermore, the matrix multiplication can be decom-
posed into a series of smaller ones of any size; and the
favorable ratio of computations and memory transfers
depends on the size of the submatrices.

Figure 1 shows a simple but typical small program for a
grid-type computation. For a n x n grid, 5n2 computa-
tions but also at least 0(3«2) memory transfers have to
be executed. This number of memory references can only
be achieved if each value of the array UOLD has to be
loaded only once. This means that even UOLD(I-l,J)
and UOLD(I+l,J) do not have to be reloaded when
UNEW(I,J) is computed. Nevertheless, the ratio of com-
putations emory transfers is small and depends only
little on the size of the problem.

PROGRAM RELAX
PARAMETER (N=100)
REAL UOLD(0:N+1,0:N+1),UNEW(0:N+1,0:N+1),

& F(0:N+1,0:N+1)

DO 10 1=1,N
DO 10 J=1,N
UNEWd, J)=0.25*(F(I,J)

& + UOLD(I-l,J) + UOLD(I+l,J)
& + UOLD(I,J-l) + UOLD(I,J+l))

10 CONTINUE

END

Figure 1. Example of a subroutine used for a simple
grid-type problem.

On the other hand, the computation UNEW at a certain
element of the array requires only values from neigh-
boring points. This kind of locality can be exploited only
if the respective parts of the data structure can be kept
local to the processor over several executions of the code
segment and only the boundary values of a subgrid have
to be updated.

From both examples it can be concluded that a compiler,
which shall optimize code for this kind of architectures,

must be able to partition the data structures in such a
way that the parts match each other for the desired
computations. In some sense multidimensional strip
mining has to be applied to nested loops to exploit full
locality in the case of matrix-type problems and to yield
minimal memory transfers in the case of grid-type prob-
lems if the code segment is executed only once.

The full locality in the case of grid-type problems can be
exploited only for distributed memory architectures,
because only this type of architecture has the feature that
the entity of the fast local memory forms a significant
amount of memory. In this case the parts of the data
structures have to be assigned for a longer period of
computation statically to a specific processor; and only
boundary information of the partitioned grid structures
will be passed to the memory of other processors.

As shown in the following section the interactive paral-
lelizer SUPERB—result of a research activity at the
university at Bonn—was designed according to these
requirements.

Structure of the Parallelizer

SUPERB (SUprenum ParallelizER Bonn) is a semi-
automatic source-to-source parallelization system. In
contrast to existing parallelizers, SUPERB is designed to
combine both MIMD and SIMD parallelization into one
integrated interactive system that is oriented towards the
Suprenum computer and its application for large-scale
scientific computing.

As already mentioned in the first section, automatic
SIMD-parallelization is a well-known task, but it is
extremely difficult to detect parallelism for systems with
distributed memory automatically. In SUPERB, data
partitioning—the only useful way to extract enough
parallelism for this kind of machine—has to be done
interactively. The user assigns parts of the data domain,
e.g. a grid or a grid hierarchy represented by the arrays of
the program, to specific processes. Due to the inherent
incompleteness of analysis information the system
cannot automatically extract the global relationships
between the program's arrays necessary to obtain effi-
cient parallel code.

In principle, there are no restrictions on the kind of
programs SUPERB can be applied to. However, to be
successful in MIMD-parallelization, the programs
should work on a mesh or mesh-like data domain, the
computation at the mesh points should be local and the
problems to be solved should be large.

The overall structure of the system is depicted in Figure
2. The main components and the overall parallelization
process may be outlined as follows: the front-end, the
core, the transformation catalog and the backend. (A
detailed description of the structure can be found in
[7,8].)

24 JPRS-EST-89-026
7 September 1989

Fortran 77
program

'

Front-end
/ r\/l Reconstructor

1
i

Xy
•X

i

)
r\ r

Internal
representation r y

1

\

/

data flow

[Back-end
>

control flow

<
Suprenum-Fortran

program

Figure 2. Structure of SUPERB.

The front-end first transforms a Fortran 77 program into
an internal representation (attributed abstract syntax
tree, symbol table, call graph). After splitting the original
program into the initial task (running on the front-end
machine and performing I/O) and the subtask (describ-
ing the actual computation), in both tasks, control flow
(IF-conversion) DO-loops, expressions and special For-
tran-features are normalized to facilitate application of
other transformations and analysis of the program. Some
initial analysis information, such as sets of variables
used or defined in a statement (in particular if there are
calls to other program units) and control flow relation-
ships describing possible execution sequences of the
program, are computed.

The core—the main part of the system—controls the
execution of the other system parts, provides a catalog of
transformations and analysis services, and contains the
interface to the user.

The transformation catalog—organized in a hierarchical
structured set of menus—offers a number of transforma-
tions (e.g. for MIMD-parallelization) the user can select
from. The analysis component verifies the existence of
preconditions necessary for the application of a transfor-
mation and supplies the user with details about his
program. For example, information between statements
in loops, interprocedural relationships, references which
require communication between processes or conflicts
caused by the currently selected data partition can be
computed and displayed.

The back-end produces the final Suprenum-Fortran
code. Vector code (corresponding to Fortran 8x syntax)
is generated for all vectorizable statements. The infor-
mation collected during the interactive parallelization
process is used to insert correct send/receive statements.

Some final optimizations are performed to increase
efficiency of the generated code.

A Small Example

The interactive parallelization process is described
below by using the small example program in Figure 1.

After applying the front-end to the program, the user
determines a partition specification. This specification
describes a set of partitioned arrays and the information
for mapping segments of these arrays to selected pro-
cesses.

Here the arrays UOLD, UNEW and F are partitioned
into segments as shown in Figure 3. Using special
analysis services offered by the core the user can look at
the communication overhead resulting from this parti-
tion.

segment of p

overlap area

L 2 R2

LI

Rl

Figure 3. Partitions of UOLD, UNEW and F.

In the second phase the user identifies critical code
sections, i.e., sections causing much communication. He
can try to optimize the communication by applying
transformations like scalar forward substitution, induc-
tion variable substitution or special MIMD transforma-
tions. Beside these optimizations he may change the
partition specification.

In the example program, array elements which have to be
exchanged between processes are described by an
overlap area around the segments (see Figure 3). All
array elements read by process p and not local to p have
to be in this overlap area. Here, each process has an
overlap area of width one in every direction.

Now the user is able to improve the vectorization of the
code interactively. The analysis component offers him
the possibility to examine dependence information in
loops. Thus cycles in the dependence graph preventing
vectorization can be detected. To remove such cycles,
the user may apply transformations such as scalar expan-
sion and loop distribution to selected loops or whole
units. In this phase no vector code is generated, but loops
are marked to be vectorizable.

In our example both loops can be vectorized.

JPRS-EST-89-026
7 September 1989

25

In the last phase the user applies special MIMD trans-
formations to further optimize the communication.
These transformations extract communication from
loops and combine small messages into larger ones.

Figure 4 shows the result of the transformation process
applied to the example. The communication between the
processes is organized by the EXCH statements
according to the overlap specification. All array elements
in the overlap area of the segments are actualized. LI,
Rl, L2, R2 are variables containing the bounds of the
segment assigned to the executing process.

CALL EXCH (UOLD, 0, N+l, 0, N+l,
5 [1,1,1,1], ...)

UNEW (L1:R1,L2:R2) = 0.25 (F (LI:R1,L2:R2) +
6 U0LD(L1-1:R1-1,L2:R2) +
S U0LD(L1+1:R1+1,L2:R2) +
£ U0LD(L1:R1,L2-1:R2-1) +
S U0LD(L1:R1,L2+1:R2+1))

Figure 4. Transformed code segment.

A more detailed description of MIMD parallelization in
SUPERB can be found in [9].
A prototype of the parallelizer is completed and can be
demonstrated. Currently, some additional transforma-
tions are being implemented and parts of the parallel-
izing process improved so that they work without direct
user assistance. The user will be able to define abbrevi-
ations for frequently used sequences of transformations.
The application of these transformations will be done
automatically to selected parts of the program if the
corresponding macro is envoked.

References

1. Callahan, D., J. Dongarra and D. Levine, Vectorizing
compilers: a test suite and results, Argonne National
Laboratory Report, ANL-MCS-TM-109, March 1988.

2. Alliant Computer Systems Corp., Alliant FX/Fortran
language manual. Part number 302-00007, Littleton
MA, 1988.

3. Mercer, R., The Convex Fortran 5.0 compiler, Convex
Computer Corp., 1988.

4. Cray Research, Inc., Cray X-MP multitasking pro-
grammer's reference manual, SN-0222 Rev. C, 1986.

5. Solchenbach, K.., Application software for Suprenum,
Supercomputer, this issue.

6. Trottenberg, U., Suprenum—the concept. Supercom-
puter, this issue.

7. Zima, H., H.-J. Bast and M. Gerndt, SUPERB: a tool
for semi-automatic MIMD/SIMD parallelization, Par-
rallel Computing 6, 1-18, 1988.

8. Kremer, U., H.-J. Bast, M. Gerndt and H. Zima,
Advanced tools and techniques for automatic paralleliza-
tion, Parallel Computing 7, 387-394, 1988.

9. Gerndt, M. and H. Zima, MIMD parallelization for
Suprenum, in: Houstis, E., T. Papatheodorou and C.
Polychronopoulos (eds.), Supercomputing, 1st Interna-
tional Conference, Lecture Notes in Computer Science
297, Springer Verlag, New York, 278-293, 1988.

\o

22161
31

flTTN= PROCESS 103
«5285 PORT ROYAL RD
SPRINGFIELD, VA

22161

This is a U.S. Government publication Its contents in no way represent the
policies, views, or attitudes of the US Government Users of this publication may
cite FBIS or JPRS provided they do so in a manner clearly identifying them as the
secondary source

Foreign Broadcast Information Service (FBIS) and Joint Publications Research Service (JPRS)
publications contain political, economic, military, and sociological news, commentary, and other
information, as well as scientific and technical data and reports All information has been obtained from
foreign radio and television broadcasts, news agency transmissions, newspapers, books, and periodi-
cals. Items generally are processed from the first or best available source, it should not be inferred that
they have been disseminated only in the medium, in the language, or to the area indicated. Items from
foreign language sources are translated, those from English-language sources are transcribed, with
personal and place names rendered m accordance with FBIS transliteration style

Headlines, editorial reports, and material enclosed in brackets [] are supplied by FBIS/JPRS.
Processing indicators such as [Text] or [Excerpts] m the first line of each item indicate how the
information was processed from tne original Unfamiliar names rendered phonetically are enclosed in
parentheses Words or names preceded by a question mark and enclosed in parentheses were not clear
from the original source but have been supplied as appropriate to the context Other unattnbuted
parenthetical notes within the body of an item originate with the source Times within items are as given
by the source Passages in boldface or italics are as published

SUBSCRIPTION/PROCUREMENT INFORMATION

The FBIS DAILY REPORT contains current news
and information and is published Monday through
Friday in eight volumes: China, East Europe. Soviet
Union, East Asia, Near East & South Asia, Sub-
Saharan Africa, Latin America, and West Europe.
Supplements to the DAILY REPORTS may also be
available periodically and will tie distributed to regular
DAILY REPORT subscribers JPRS publications, which
include approximately 50 regional, worldwide, and
topical reports, generally contain less time-sensitive
information and are published periodically

Current DAILY REPORTS and JPRS publications are-
listed in Government Reports Announcements issued
semimonthly by the National Technical Information
Service (NTIS), 5285 Port Royal Road, Springfield.
Virginia 221 61 and the Monthly Catalog of US Gov-
ernment Publications issued by the Superintendent of
Documents, US. Government Printing Office, Wash-
ington, DC 20402

The public may subscribe to either hardcover or
microfiche versions of the DAILY REPORTS and JPRS
publications through NTIS at the above address or by
calling (703) 487-4630 Subscription rates will be

provided by NTIS upon request Subscriptions are
available outside the United States from NTIS or
appointed foreign dealers New subscribers should
expect a 30-day delay in receipt of the first issue

U S Government offices may obtain subscrip-
tions to the DAILY REPORTS or JPRS publications
(hardcover or microfiche) at no charge through their
sponsoring organizations For additional information
or assistance, call FBIS, (202) 338-6735,or write
to PO Box 2604, Washington, DC 20013
Department of Defense consumers are required to
submit requests through appropriate command val-
idation channels to DIA, RTS-2C, Washington, DC.
20301 (Telephone (202) 373-3771, Autovon:
243-3 771)

Back issues or single copies of the DAILY
REPORTS and JPRS publications are not available.
Both the DAILY REPORTS and the JPRS publications
are on file for public reference at the Library of
Congress and at many Federal Depository Libraries
Reference copies may also be seen at many public
and university libraries throughout the United
States

