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SLENDER BODY APPROXIMATION FOR YAW VELOCITY TERMS 

IN THE WAVE DRIFT DAMPING MATRIX 

J.A.P.Aranha & M.R.Martins 

Dep. of Naval Eng., USP, CP61548, S.P., Brazü 

1. INTRODUCTION 

Consider a slender ship with length L and beam B (e = B/L « 1) and suppose a 

coordinated system with the x-axis being coincident with the longitudinal axis while the z-axis is 

vertical, pointing upwards, the origin of the system being at the intersection of the free surface with 

the mid section; the ship cross section is defined by the contour line öC(x) and the ship water line 

by 9W. Points in 5C(x) are defined by the radius vector 

r=ycj + zckeöC(x). (1) 

Let p2o(x,rc) be the steady second order pressure field due to a harmonic wave with 

amplitude A, frequency co and incident in the ß direction; one assumes here that p2o(*,rc) includes 

Dirac 5-functions at the points where dC(x) intersects 5W, these concentrated forces per unit of 

length being related with the change in the wetted surface of the ship. The sectional steady drift 

coefficients are then defined by the expressions 

dx(x;a>,ß) 

dy(x;<a,ß) 

n2(x;a>,ß) 
=   f P2o(x,rc)- 

ac(x) 

nx(x,rc) 

ny(x,rc)   JdSC(x), 

-ycny(x,rc)J 
(2) 

where (nx;ny) are components of the normal n; defining the moments of (2) by the expressions 

K,il L/2 dx(x;©,ß)' 

MyJ r J'XH dy(x;to,ß) • 

Ki, -L/2 nz(x;co,ß) 

dx, j = 0,1,2, (3) 

the generalized steady drift force vector in the horizontal plane has obviously the components 



Dx(©,ß) = Mx0(©,ß); 

Dy(©,ß) = My0(©,ß); 

N2(©,ß) = Mz0(©,ß)+Myl(©,ß). 

(4) 

The intention now is to express all elements of the Wave Drift Damping matrix, including 

the ones related to the yaw motion, in terms of the moments {MXJ; Myj; Mzj}. In the present study 

the influence of the coupling between the second order steady potential and the slow ship motion 

will not be considered, although it can be obtained by integration of quadratic functions of the first 

order (linear) solution 

2. THE YAW TERMS IN WDD MATRIX 

The first column of the WDD matrix, the one related with the surge velocity Ux, is exactly 

given by the expression 

[Bn(ö,ßy 
B21(©,ß) 

B61(©,ß) 

© 
a Q 

©cosß- 2sinß—+ 4cosß 
ö© öp 

(5a) 

the second column, related to the sway velocity Uy, is given by 

[B12(©,ßV 
B^.ß) 
lß62(©,ß) 

© © sinß—+2cosß—-+4sinß 
5© öß 

inß • 
fD,(«,ß)| 
Dy(©,ß)|, 

Nz(©,ß) 

(5b) 

both results bekg proven in Aranha (1996). 
Observing the essentially two-dimensional feature of the wave diffraction by a slender body, 

one can introduce here, by inspection, the sectional WDD coefficients influenced by the sway 

velocity, given by (see (5b)) 

b12(x;©,ß)j 
•b22(x;©,ß)[ = 

b62(x;©,ß) 

© 

g 
© sinß— + 2cosß—+4sinß 

9© öß 

dx(x;©,ß) 

dy(x;©,ß) 

nz(x;©,ß) 

(5c) 

Expression (5c) can be also proven exactly, as a blend of a two-dimensional result derived in 

Aranha (1994) and the three dimensional one given in Aranha (1996), and it can be used to obtain a 

slender body approximation for the elements of the WDD matrix related with the yaw motion. In 



feet, for a slender body the yaw motion is seen, at the cross section x, as being a sway motion with 

amplitude x.Q, Q being the yaw angular velocity; it turns out that the related sectional WDD 

coefficients are then given by 

b16(x;©,ß) = x.b12(x;<D,ß); 

b26(x;©,ß) = x-b22(x;ö),ß); 

b66(x;o),ß) = x-b62(x;a),ß). 

(5d) 

Integrating (5d) along the ship length, observing the contribution of the sway term b* to the 

yaw moment and ignoring terms of relative order e2, one obtains finally, with the help of (3), that: 

B16((ö,ß)| 

B26(o>,ß) 

lB«(©,ß)J 

Cd 

g 

a a 

© sinß—+2cosß—-+4sinß 
9© öß 

M^Cffl.ß) 
My>1(ö),ß) 
My>2(ü>,ß)J 

(6) 

3. GEOMETRIC OPTICS APPROXIMATION 

The slender body approximation (6) can be checked directly against numerical results, as the 

ones derived by Grue & Palm (1996), for instance. While waiting the slender body code that allows 

one to determine the moments {M^; MyJ; Mzj}, one presents here analytical expressions for the 

high frequency limit, where geometric optics approximation can be used. These limits have an 

importance in themselves, since they are analytic and hold in a range of frequencies where numerical 

results are most questionable. 
Consider a wave incident on a vertical wall with a being the angle between the wave 

direction and the normal n. It is trivial to show in this case that the elementary drift force on an 

element ds of the wall is given by 

dF = — pgA2 cos2 a n ds. 

In high frequency one can consider the body as if it were a vertical cylinder infinitely long 

with cross section coincident with the water line 9W. Assuming symmetry with respect to y-axis 

and that r(x) is the half beam of the body, the transition between the "illuminated" and "shadow" 

zones in the geometric optics limit is defined by a single variable Xo(ß), given by the expression 



Max|r'(x)|<|tanß| =>x0(ß) = y; 

Max |r'(x)| > |tanß| => |r'(x0(ß))| = |tanß|. 

Introducing the variables {% = 2x/L; ^o(ß) = 2x»(ß)/L} and the integrals 

1    0Jl+(r'(^))2 

The following expressions are then obtained in the high frequency limit: 

^=p^4(i)J^(ß)sinß+C2(ß)cosßl; 

22 " ,D„A2 =2(|) lSo(ß) ^ß + C0(ß) COSß]. n B22 
ö""pBcoA' 

(7a) 

(7b) 

(7c) 

Table (1) compares (7c) with high frequency numerical results obtained by Grue & Palm 

(1996) for different values of ß. 

B1Ä         ||         B26 1       6«      II 

p NUM (7c) NUM (7c) NUM (7c) 

71/2 -1.2 -3.4 0. 0. 21.4 24.6 

3TC/4 -0.8 -2.4 1.1 2.4 18.7 17.4 

71 0. 0. 1.7 3.4 5.0 7.9 

TABLE (l):Comparision between numerical results for KL-16 and (7c) 

* * * 



DISCUSSION 

Eatock Taylor R.: I do not think one should try to draw conclusions about the 
reliability of your drift damping formula for moving bodies by refering to the slow 
convergence of results for a truncated cylinder. It is well known that the sharp 
corners in this case lead to slow convergence, particularly in the surge-heave 
coupling coefficient which is proportional to the slow forward speed (see the 1993 
OTC paper by Teng and myself). The problem vanishes when a small corner radius 
is used, but the hemisphere analysed by John Grue is a much better test case than 
the truncated cylinder in the context of this controversy. 

Aranha J.: I agree, in some aspect at least, with you, since the cylinder problem 
seems to be plagued with small numerical imprecisions to which the WDD formula 
is very sensitive. If I recall well, Kinoshita & al. results, shown in the presentation, 
were obtained by a quasi-analytic method and the convergence does not seem to 
be very good when the cylinder is free to oscillate. 
However, the cylinder problem is one of the most obvious in our field and it seems 
natural, in this context, to look at it to confirm the validity of the formula. 
With respect to your suggestion, that it would be better to look to the sphere, 
Grue's results, shown in the conference, together with a similar result, shown in my 
JFM (1996) paper, point both to a perfect agreement between the WDD formula 
and numerical results. 

Grue J.:   Your abstract and presentation are based on the work Aranha (1996) 
JFM, which you claim provides a formula for wave drift damping based on strict 
proof. First you find an expression for the far-field amplitude of the diffracted- 
radiated waves (with current), next conservation of momentum is applied to find 
the force. 
Denote the far-field amplitude of the diffracted-radiated waves by Hu, which may 
be expanded by Hu=H0 + %Hhwhere x = Uw/g. 
Consider the difference between your and our formulae for Hx. I have tried to 
show that this difference is zero, however, it is generally not. The following figure 
illustrates this. The body is a freely floating hemisphere moving with small forward 
speed. Dashed line: Aranha (1996), solid line: Nossen et al. (1991). 
In this example your and our wave drift damping coefficients (Bn) are in close 

agreement, see figure la. For other geometries, e.g. ships, there is a general 
disagreement, of the order 100 %, except possibly for long waves. 
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Figggggl^: For a half immersed sphere, 400 panels on SB and 880 panels on SF, in head 
waves, the figures shows: (a): B\\ computed by complete theory (solid line), and Aranha's 
formulae (dashed line), (b): The far-field amplitude function H1 for translatory motion at 
ka = 0.9, computed by complete theory (solid line), and Aranha's theory (dashed line). 



Aranha J.: Two things must be said about this: 
1) I should thank J. Grue since he provided just another example of a 3D-body, 
free to oscillate, where the agreement between the numerical results and WDD 

formula is perfect. 
2) With respect to the behavior of the H^Q) function one has obviously a 

misunderstanding since, otherwise, how could one obtain a complete agreement in 
the force computation with a complete disagreement in the far-field behavior? The 
point is that in my work the far-field is well behaved, it does not have the secular 
term that Grue's approach has (recall Malenica in the 10th IWWWFB, Oxford, 

1995). 
If Grue intends to make a comparison, it is not enough to differentiate the AU(Q) 

coefficient with respect to U ; it is necessary to differentiate also the wavenumber, 
that depends also on U. In this way he would obtain secular terms in my 
expression that should be matched to his secular terms. 
The way he has done compares two distinct things and it has no relevance for the 
discussion. 





A time domain method to compute transient non linear hydrodynamic 
flows 

M. BA, A.FARCY (ENSMA) and M. GUHJBAUD, (CEAT, Universite de Poitiers) 
Laboratoire d'Etudes Aerodynamiques-UBA CNRS n°191, 
43 rue de rAerodrome, 86036 Poitiers CEDEX, FRANCE 

Introduction 
Today, most of the numerical codes for the computations of ship seakeeping or for the diffrac- 
tion-radiation motions for platforms are solved in the frequency domain using a linear form of 
the free surface boundary conditions, called the Neumann-Kelvin approach. The water can be 
considered as incompressible and inviscid and the flow around the body as irrotationnal except 
on some lines or surfaces, so the Laplace equation is valid in the fluid domain. These problems 
can be solved by panel methods using either Rankine (aerodynamic) or Kelvin singularities. For 
more complicated (non harmonic) motions, the time domain has to be chosen instead of the 
frequency one and in his case, the Green's function is so complicated (Newman, 1995, Mas et 
Clement, 1995) that no computational codes have been developed up to day. But these line- 
arized approaches are limited to small harmonic motions with mean constant forward speed 
and the body condition has to be satisfied on the mean position of the exact body surface. For 
motions with larger amplitudes, this simplification is no more possible and the body condition 
has to be satisfied of the body exact position, implying also that the free surface conditions 
cannot more be linearized. So these previous problems are fully non linear and the flow 
analysis is more easily done in the time domain. 
If less developed than the computations in the frequency domain, the calculations using the 
time domain (cf. Beck ,1994 for review) become more popular with the development of 
computers. We present here the first results obtained with a non linear method to compute 
transient free surface flows. To reduce the computational time, the surface source distribution 
on the free surface and on the body are replaced by source points desingularized, as proposed 
by Cao et al.(1990). To check the validity of the method, computations are presented on the 
transient flow around a submerged source with impulsive start. The results are compared with 
those of linearised computations. Finally some results on a submerged ellipsoid are also 
presented. 

Formulation of the non linear problem 
The flow of an ideal and incompressible fluid of infinite depth is considered with the undis- 
turbed free surface located in the plane z=0. The frame of co-ordinates uses the z-axis positive 
upwards and the x-axis pointing in the direction of the mean velocity of the body. The surface 
tension is neglected. As the problem starts from rest, the flow is irrotational implying the 
existence of a velocity potential (j), satisfying the Laplace equation in the fluid domain. This 
potential must also satisfy the body condition on the surface SB of the body : 

d£ 
dn 

VE-n on SB     (1), 

where n is the unit normal vector directed into the fluid and VE is the local velocity of the 

body. A condition of non perturbation when the depth of immersion goes to infinity must also 
be satisfied. On the instantaneous free surface, the potential must also satisfy both the kine- 
matic and the dynamic boundary conditions ; if the free surface elevation is given by z=E(x,y,t), 
those conditions are given by : 

dE    d<j>    dE dd>    dE d<b , v 
T7~ir+irir+irA=0 on z = E{x,y,z,t),  (2) ot    oz    ox ox    oyoy 
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3t    2 

grad6 +gE = 0 on z = E(x,y,t)       (3). 

Finally, the fluid disturbance must vanish at infinity, and the following initial conditions have 
also to be satisfied : 

6 = 0 for /<0 in the whole fluid domain, and E(x,y,t) = 0 for /<0 (4). 
The two previous conditions (2) and (3) can be written using the material derivatives, enabling 
to compute the variation of a physical quantity following a fluid particle and leading to the 
kinematic condition as : 

DXV     > 
-^ = grad6   (5), 

where X (x(t),y(t),z(t),t) is the location of a fluid particle on the free surface. The dynamic 

condition can be written as : 

-^-=-gE + -grad6-gräa6     (6). 

Method of resolution 
At each time step, the potential is assumed to be known on the free surface, the real location of 
which being also known. Conditions (4) is used at the beginning of this time marching pro- 
cedure. For the next time step, equation (5) is used to compute the new free surface elevation 
and equation (6) to obtain the new value of the potential on the free surface. So, at each time 
step, a new mixed problem with a Neumann condition on the body (known normal potential 
derivative) and a Dirichlet problem on the free surface (known potential) has to be solved. To 
satisfy the boundary conditions, the body is divided into quadrilateral panels and a part of the 
free surface, into rectangular panels. To reduce the computational time, point sources are dis- 
tributed on the free surface instead of using surface source distribution on panels. The potential 
and the velocity induced by these point sources being singular when the collocation points is 
located on source positions, a desingularised technique has been followed (Cao et al., 1990 or 
Beck, 1994). So point sources are located into the body or above the free surface. The source 
displacement, with distance Ld, is done along the normal to the panel. The choice of Ld is 
difficult and the values do not be too large or too small in order to obtain correct results. Beck 
(1994) has proposed as optimum value Ld=(SF)025 where SF is the area of the panel containing 
the source on the body or the mean value of the areas of the four panels surrounding a source 
on the free surface. 

Applications 
Wave field due to an submerged doublet with a constant mean forward speed 
The flow generated by the impulsive start of a doublet (source and sink of same intensity 
located 0. lm apart in the x direction) from rest. The forward speed and doublet intensity are 
quickly set to their steady values U« and G0 using the following relations: 

V(t) = Ux(l-e-4') and a(t) = (T0(l-e^) (7). 
This doublet travels along an axis parallel to the x axis, 1mm deep under the free surface. The 
initial mesh on the free surface is located at 0<y<20m and -7.5<x<7.5m and is subdivided into 
a mesh of 40x30 panels(figure 1). The nodes are equidistant in the x direction but in the y one, 
the distance between two nodes increases of 10%, both in the positive and negative y direction. 
The doublet intensity, G0 is assumed to be known, the unknowns for this problem are the 
intensities of the point sources on the free surface. These values are computed by writing that 
the potential is given on the free surface. For each time step, a new location of the free surface 
and the new distribution of the potential for the next time step are obtained from equations (5) 
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and (6). In these equations, the right hand sides are analytically computed because point 
sources are used; the time derivatives in the left hand sides are computed by a fourth order 
Runge-Kutta method. 
On figure 2, the free surface elevation above the doublet is plotted for 3 values of Go (0.05- 
0.75 and 0.9) for a fully converged computations (t=40s), with a time step At=0.2s. The results 
obtained with the use of the steady forward speed Green's function, so corresponding to a 
linear and steady computation, are also plotted. It can be observed on this plot that, as the 
doublet intensity increases, the non linear wave amplitudes become greater than that the ones 
computed by the linear method. The difference is maximum for the first crest above the dou- 
blet. The evolution of the free surface is presented on the figure 3 (G0=0.05) and for four val- 
ues of the time t=4-10-16 and 25s, showing the evolution of the unsteady solution towards the 
steady one. 

Wave field due to a submerged ellipsoid starting from rest 
Computations have been done on a ellipsoid with horizontal axis a=5m and lateral one, b=lm 
The horizontal axis is located at the distance h= 1.5 86m under the undisturbed free surface. In 
this case, the mesh on the free surface is made of square panels (40 in the x direction and 20 in 
the lateral one). The singularity intensities on the body are obtained from the body condition 
(eq. 2). The expression proposed by Beck(1994) for the desingularisation distance has been 
modified at both longitudinal ends of the ellipsoid. The evolution of the free surface with time 
is presented on figure 4 for a Froude number based on the depth of immersion h, 

F = Ux I -Jgh = 1.26, for 4 time values. After the impulsive start, t=1.8s, a crest can be ob- 

served on front part of the body and the level decreases on the rear part. As the time increases, 
the wave becomes steepest and a second crest appears immediately upstream of the body. At 
t=12s, the shape of the first wave become smoother and the second wave propagates with a V- 
shape; at the same time, a second trough and a third crest appears. A second V-shape wave 
appears and become important at t=30s, but its amplitude is weaker than the one of the first 
wave. Finally at t=45s, a quasi-steady state is obtained. 

Conclusion 
First results obtained in the time domain using a non linear method to compute transient flows 
close to a fiee surface are presented. The method uses desingularized source points, on the free 
surface and on the body, modified at both ends of bodies, to avoid numerical difficulties, 
keeping relatively low the computational time. The converged results have been first checked 
for a submerged doublet with known strength by comparing with steady calculations achieved 
with a panel method using the linear steady Green's function, showing good agreement. The 
evolution of the free surface with time has been also studied. The second application presented 
concerns a submerged ellipsoid. Work is on progress to optimise the computational time and to 
extent the validity of the method to surface-piercing bodies. 
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Fig. 1 : Mesh of the free surface 

Fig. 2 : Free surface elevation at t=40s 

t=1.8 

Fig. 3 : Evolution of the free surface 

t=12. 

U30. 

Fig. 4 : Wave fied due to a submerged ellipsoid starting from rest 
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Time Domain Calculations in Finite Water Depth 

A. K. Bratland* F. T. Korsmeyer* J. N. Newman* 

1 Introduction 

Hydrodynamic computations in the time domain using a free-surface Green function have been presented in 
numerous papers [Bingham et al. 1994, Lin k Yue 1990, Beck & Magee 1990]. This abstract demonstrates 
the extension of this type of analysis to finite depth. This transient approach may be used to compute the 
first-order, frequency-domain hydrodynamic coefficients. We present these here to validate the method by 
comparison to computations made directly in the frequency domain for zero speed. With the addition of 
forward speed to the analysis the first-order steady force becomes important. It has been shown that this 
steady force (with components referred to as resistance, sinkage, and trim) is the limit as time becomes 
infinite of the force computed when the body is impulsively accelerated in surge. Since the prediction of 
squat (maximum draught; sinkage plus trim) is particularly important in finite depth, we present these 
results for various depth-based Froude numbers to demonstrate the forward-speed analysis. 

The finite-depth analysis is carried out similarly to our previous infinite-depth approach. The potential 
problem is cast as a boundary integral equation. The only boundary appearing in this equation is the body 
boundary itself due to the choice of a Green function which satisfies the (transient) free-surface condition 
and, in the present work, the bottom (no-flux) boundary condition. One advantage of the time-domain 
approach is that the same Green function can be used both for moving-ship problems with nonzero forward 
velocity U and for fixed structures where U — 0. 

2 The Green function 

The appropriate Green function may be written as the sum of a Rankine and a wave part, which we define 
in the forms 

. 11 f°°   e~kh 

G     =r + ?~2J0    ^^h^shk(z + h)coshk(c + h)J0(kR)dk (1) 

„u, [°°   ^Jgk tanh kh    .  ,    /—  
<-rt  = l /     —. ,,   . ,,, sm(t^gk tanh kh) cosh k(z + h) cosh k(c+h)J0(kR)dk (2) 

[Newman 1992] describes effective algorithms for the integral in (1), and outlines the fundamental diffi- 
culties associated with the efficient evaluation of (2). The approach which we have implemented here is to ex- 
press (2) as the sum of two terms involving the normalized function F(X, V, T), as defined by [Newman 1992] 
equation 25, and then to consider the difference function F — F«, where FTO can be evaluated from the cor- 
responding infinite-depth Green function. Then we expand this difference function in triple Chebyshev 
expansions, in unit squares of the rectangular domain 0 < X < 16 and 0 < T < 33. (Physically, the 
variables X and T correspond to the horizontal distance from the source to the field point, and the time t, 
nondimensionalized in terms of the depth h and gravity g.) The coefficients of these Chebyshev expansions 
are pre-evaluated, and stored for routine use. At each time step of the convolution, T =constant and the 
triple expansions are reduced to double expansions in the normalized horizontal and vertical coordinates X 
and V, which are then evaluated for each combination of source and field points. 

'Techpower, Norway 
t Research Laboratory of Electronics, Massachusetts Institute of Technology 
'Department of Ocean Engineering, Massachusetts Institute of Technology 
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One point to note is the large-time asymptotic behavior of the Green function, since this affects the 
corresponding behavior of computed hydrodynamic forces. In the infinite-depth case (2) is exponentially 
small, but for h < oo G? -»■ 0(1 ft). When U f 0, and coordinates are used which move with the ship, 
Gf —► 01/t + ösm(wct)/t, where wc denotes the critical frequency. This is given in the infinite-depth limit 
by TC = wcU/g = 1/4, while the variation of rc with depth is shown in Figure 5. 

3    Results 

For zero speed we compare Fourier-transformed time-domain computations to computations made directly 
in the frequency domain with a similar boundary integral method, for the surge and heave motions of a 
hemisphere. From the asymptotic behavior of the Green function it is clear that the time record has to 
be longer for finite water depth than infinite water depth. Alternatively we could approximate the large 
time behavior based on the asymptotic analysis. For the added-mass and damping coefficients presented in 
Figure 1 we have calculated to a maximum time of T=25 and assumed the impulse-response function to be 
zero beyond that. The results from the frequency-domain code ("FD") and time-domain code ("TD") agree 
within graphical accuracy. At low frequency, the heave added-mass rises steeply, in a manner which appears 
consistent with the the result of [Yeung 1981] that A33 -* 00 as w -* 0. Figure 2 shows the corresponding 
results for the exciting force, with similar confirmation from the frequency-domain computations. 

The large time limit of the radiation potential forced by impulsive surge acceleration, <f>r, can be con- 
sidered as the steady potential. That means the steady forces, with Neumann-Kelvin linearization, can be 

written as the large time limit of 

F^ = puikv^dS- (3) 

Figure 3 shows computations of F3(t) and F5(t) for the Wigley hull. By applying the equations of hydrostatic 
equilibrium 

C33X3 + C35Z5    =    ^3 

C53X3 + ^55X5    =    F$ 

the "steady" sinkage and trim are found.  The sinkage is shown in Figure 4.  The sinkage increases with 
decreasing water depth, or with increasing values of the Froude number Fnh — ~7^- ■ 

For large values of time, the transient results oscillate at the critical frequency, with slowly-decreasing 
amplitude, about the steady limiting values. While computations at higher depth-based Froude number are 
of interest, the finite computational domain for the evaluation of the Green function described in §2, poses a 
restriction. Work is presently underway to remove this limitation, permitting the estimation of squat closer 

to the critical Froude number. 
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Figure 1: The added-mass and damping coefficients of a hemisphere for surge (left) and heave (right) 
for water depth h = 1.2R. "TD" denotes Fourier transformed time-domain computations, "FD" denotes 
frequency-domain computations. 
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Figure 2: The exciting-force coefficients of a hemisphere for surge (left) and heave (right) for water depths 
h = 1.2R and h —► oo. "TD" denotes Fourier transformed time-domain computations, "FD" denotes 
frequency-domain computations. 
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DISCUSSION 

Tuck E.O.: I am encouraged by the fact that the rate of decay of transients seems 
to be as rapid at the higher Fnh = 0.400 as it is at the lower Fnh = 0.283. As Fnh -»1, 

one might expect that, since the flow is ultimately unsteady then, the transients 
might decay less rapidly, perhaps not at all. 

Bratland A.K., Korsmeyer T., Newman J.N.: In our results Fnh «1, and the 
Green function has the asymptotic behaviour as written in abstract. As Fnh -»1 
another asymptotic must be considered. Newman has shown that, as F^ -> 1 and 

Gt « T~2ß 'im-% 
ut where T = ts[gjh   X = 

This must be examined closer, but we think you are right in suggesting slower 
decay. 

Clement A.: In preceeding Workshops (Kyushu, Oxford), I presented the results 
of S. Mas' work about numerical computations of the time-domain Green function 
in finite water depth, and we observed that the gradient of the function was much 
more difficult to obtain through series and asymptotic expansions. Do you need to 
compute the gradient of the Green function in your numerical method? If so, did 
you observe this difference in the divergence of the algorithms? 

Bratland A.K., Korsmeyer T., Newman J.N.: The gradient is required in the 
kernel of the integral equation. The Green function is represented by Chebyshev 
expansions which can be differentiated term-by-term. This avoids the analytic 
difficulties which have been discussed at past Workshops, but we are limited to a 
finite computational domain in (X,T) as noted in Section 2 of our abstract. 
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A time-domain algorithm for motions of high speed vessels using a 
new free surface condition. 

Tim H.J. Bunnik and Aad J. Hermans 
Department of Applied Mathematics, Delft University of Technology, The Netherlands 

1 Introduction 

When a ship is designed, it is important to know its behaviour in real sea-keeping at forward speed. 
This behaviour can be predicted performing model tests in towing tanks, but this is quit expensive. 
The introduction of fast and large computers has given the possibility to write simulation programs 
that can partly replace physical tests. A lot of research has therefore been carried out recent years. 
Prins [2] developed a time-domain algorithm to compute the behaviour of several floating bodies in 
current and waves based on potential flow. Sierevogel [1] contributed an absorbing boundary condition 
independent of frequency. Both used the double body potential to approximate the steady potential. 
This approximation is valid for low speeds, but when we increase speed, non-linear effects in the steady 
potential become more important. At MARIN a program has been developed (RAPID) by Raven [3] 
that calculates the steady potential satisfying the exact non-linear free surface condition. We use this 
potential to linearize the time dependent free surface condition. We solve the potential flow problem 
with this boundary condition in the time domain using a Rankine source distribution. We put the 
source panels at some distance above the free surface. This promising 'raised panel approach' was also 
used by Raven [3]. It has the advantage of resulting in a much smoother potential. Besides it is easier 
to include non-linear effects in the future. Because we assume the speed to be high, upwind differences 
must be used to obtain a stable iteration procedure. An absorbing boundary condition seems not to 
be necessary in the frequency range we're interested in (Strouhal number r > \). The calculations 
are carried out for a Active analytical hull shape. For this hull hydrodynamic coefficients like added 
mass and damping are calculated. In our presentation we will compare these coefficients with results 
from other methods, investigate the influence of some of our most important parameters and look at 
the influence of reflected waves. 

2 Mathematical model 

We consider a ship moving at constant speed U. A coordinate system Oxyz is introduced in the frame 
of reference following the forward speed of the body, with the x- and y-axes in the mean free surface 
and the z-axis vertical upward. The forward speed is in the direction of the negative x-axis. The fluid 
is assumed to be incompressible and inviscid, and the flow irrotational. We can therefore introduce a 
velocity potential $ whose gradient equals the fluid velocity and that satisfies the Laplace equation. 
On the free surface z = C(x,y) this potential must satisfy: 

^ + 2V$-V^J+-V$-V(v$-V$)+5—= 0    atz = C (1) 

We linearize this condition by splitting the potential in a steady and unsteady part: 

*(£,t) = 0(2,i)+*R(£) (2) 

The steady potential satisfies the exact time-independent free surface condition and a zero normal 
velocity condition on the hull and is calculated by RAPID (RAised Panel Iterative Dawson). If we 
assume the unsteady potential to be small (small amplitudes of motion and waves), we can neglect 
higher order terms in 4> and find: 

^ + 2V*Ä • V^ + V$fi • V (V<£ • V$fi) + ^<t> ■ V (V$ß • V$R) + g^ 
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_I (^ + V4>K • V*) yz Qv*R • V (V$H • $*R) + 9^fj =0    at z = CR (3) 

The last term is a transfer term that occurs because we linearize around the steady free surface in 
stead of the actual free surface.   Most of the terms contain derivatives of steady velocities.   First 
order derivatives can be calculated accurate. The transfer term contains second order derivatives. We 
are still busy finding a numerical scheme to obtain these derivatives. Until then the transfer term is 
omitted. On the hull of the ship we have the same linearized boundary condition Prins and Sierevogel 

used: 
^ = ^.£+((v$ß.v)a-(a.v)v$R)-n (4) 
on      ot vv / \        / / 

with a the displacement vector. Again, we need stationary speed derivatives. We solve the Laplace 
equation with these linear boundary condition using a source distribution on the hull and above the 
free surface.   The boundaries are divided in TV panels, and on each panel the source strength a is 
assumed to be constant. The potential is now given by: 

*(*,*) = 2>i(0 JJG (*,<) dS<       G=^-r (5) 
j      \    '/      "• 47rr 

dii, 

If we choose N collocation points on the hull and free surface and apply the corresponding boundary 
conditions, we obtain JV equations for the N unknown source strengths. 

3    Test case 

Before developing a numerical algorithm we have to choose some kind of hull.  The calculations will 
be made for a mathematical hull shape given by the formula: 

d/Lj   +\b(x)J 
B 

b{x) = — (l - 8x2 + 16z4) 

Figure 1: Mathematical hull shape used in calculations 

We use 4 = 0.1 and # = 0.2.  The advantage of a mathematical hull is the easy refinement of the 
Li LJ 

grid. In our test study, that's very useful. 

4    Numerical method 

In our new free surface condition, time and spatial derivatives of the unsteady potential occur. The 
time derivatives are discretized by second order explicit schemes, therefore using only the current 
potential and potentials on previous time levels. The spatial derivatives are more complicated. They 
are decomposed in a derivative in a direction perpendicular and parallel to the free surface (see figure 
2). The derivative parallel to the free surface is obtained using upwind differences because of it's well 
known stabilising properties. We found out that in our case it's absolutely necessary to use upwind 
differences to avoid wiggles in the solution. The difference becomes this way: 

!r(*)=i;7<i*(*i) (6) 
di

w    i=i 
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free surface 

Figure 2: Decomposition of differentiation direction 

with m the number of collocation points on the free surface. The coefficients jij are non-zero only for 
some nearby collocation points upstream of the point a?;. In case of a rectangular grid and uniform 
flow, this means for example: 

v*„. **(*) = pi»(a)-*»(*-A.)+i»a-»A,)+0 ((Al)2) P) 

The derivative in a direction perpendicular to the stationary free surface is obtained by changing the 
order of integration and differentiation in (5): 

81 J-a an, 
(8) 

Second order derivatives of the unsteady potential are treated the same way. After discretizing the 
boundary conditions, the boundaries are divided in panels and coDocation points are chosen. Applying 
the discretized boundary conditions in each collocation point gives us a matrix equation for the 
unknown source strengths: 

Aa = f (9) 

Initially all source strengths are put zero. The time iteration starts by giving the ship one of possible 
6 sinusoidal motions (translational or rotational). After a few periods a periodical wave pattern 
arises around the ship. When there is no reflection, the wave pattern is the same after each period 
of movement. When that state has been reached, the forces on the ship can be calculated and 
hydrodynamic coefficients like added mass and damping can be calculated. 

5    Results 

We mentioned we don't need an absorbing boundary con- 
dition because we consider high speeds and frequencies. 
In that case, the waves propagate downstream. The up- 
wind difference scheme causes the waves not to reflect 
against the edge of the computational domain behind 
the ship. We only get reflections from the edge beside 
the. ship. If we choose that edge far away enough, the 
reflected wave will end up behind the ship and not affect 
the wave pattern around the ship. Because our main goal 
is to calculate forces on the hull we can accept these re- 
flections. If we want to predict the total wave pattern, or 
decrease the speed of the ship, we must add an absorbing 
boundary condition. 
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Figure 3: Wave pattern behind ship. 
Distances : 0.75A and A 
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In figure (3), (4) and (5) is shown what happens to the 
wave pattern after 1,2,3,4 and 5 periods behind the ship 
if we change the size of the computational domain. In the 
absence of reflections the wave pattern should not change 
anymore after a few periods. The pictures show a change 
in wave pattern at some distance behind the ship, an indi- 
cation of the presence of reflected waves there. Choosing 
the edge of the free surface behind the ship further away 
doesn't influence the reflections. If we choose the edge 
of the free surface beside the ship further away, the re- 
flections end up further downstream. In figure (3) the 
the free surface edge beside the ship was 0.75 wavelength 
away from the ship and the edge behind the stop one 

wavelength away, with the wavelength A =       J-Z^-y ■ 

All calculations were done for Fn = -j=£ = 0.4 and 

r _ adL - 2.55. In figure (4) we see the same reflections 
if we choose the edge behind the ship further away and 
don't change the distance to the free surface edge beside 
the ship. In figure (5) is shown that the reflections occur 
closer to the ship if the distance to the free surface edge 

beside the ship is 0.25A. 
In our presentation we will also look at hydrodynamic 
coefficients like added mass and damping and compare 
these with results from other methods. 

Figure 4: Wave pattern behind ship. 
Distances : 0.75A and 2A 

Figure 5: Wave pattern behind ship. 
Distances : 0.25A and A 

6    Conclusions and further research 

We have developed an algorithm to determine added mass and damping of a ship at high speed using 
a new boundary condition. Because of the high speed the reflected waves don't spoil the results. Next 
step is to add an absorbing boundary condition so we can decrease speed. After that we want to 
determine drift forces by introducing an incoming wave field. Also some attention still has to be paid 

to the transfer term in our free surface condition. 
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DISCUSSION 

Ferrant P.: I would like to know how you plan to account for incoming waves in 
your model. It is not clear to me how you can combine a linearised incident wave 
with the non-linear steady solution given by RAPID. 

Bunnik T.H.J., Hermans A.J.:  There are two ways of doing this. The first and 
easiest way is to split up the time-dependent potential § into an incoming potential 
and an extra potential: §tot = §inc + <j>. 

The separate potentials no longer represent physical waves close to the body, but 
the sum does. 
If this approach doesn't work a wavemaker can be introduced, upstream of the 
body. The interaction between incoming wave and steady wavefield is then 
automatically included when the wave travels downstream. 

Bertram V.: 
1) The 'new' condition has been derived already by Newman (1978), but it is 
satisfying to see it now implemented in codes. 
2) I would recommend modifying RAPID for a frequency approach for x > 0.25 ; 
the problem is then very similar to a shallow-water steady wave resistance 
problem. So all techniques including radiation and open-boundary conditions 
work just as well. Since the computations are easily parallelized in the frequency 
domain, this approach is in my experience very efficient. 
Congratulations on a most interesting paper! 

Bunnik T.H.J., Hermans A.J.: 
1) Thank you for noticing. 
2) It is possible in a time-domain approach to obtain information about a range of 
frequencies by using some kind of impulse response functions. 
If we want to extend the method to non-linear, we can't use the frequency-domain 
approach because of its limitation to linear problems. 

Magee A.: Since you have developed a time-domain method, why not calculate 
the impulse response functions to obtain the added mass and damping at all 
frequencies? This may help as well with wave reflection difficulties as you can 
finish the calculations before the wave reflections reach the ship. 
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Bunnik T.H.J., Hermans A.J.: We are certainly going to try this. The main 
problem is, that when waves of all frequencies are generated, high frequencies 
cannot be resolved on the frequency-independent grid (short waves) and low- 
frequency waves travel very fast and their reflections will reach the ship before 
stopping the calculation. 
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NONLINEAR WAVE-BODY INTERACTIONS IN A 
NUMERICAL WAVE TANK 

M. Serdax CELEBI and Moo-Hyun KIM* 
Texas A&M University 

CoUege Station, TX 77843, USA 

1    Introduction 

The time-domain nonlinear free-surface waves and wave-body interactions 
are investigated in a 3-dimensional numerical wave tank using an Indirect 
Boundary Integral Method (IBIM). Simple Rankine sources are used outside 
the solution domain to desingularize boundary integrals (Cao et al., 1991). To 
update the position of the fluid particles on the free surface, fully-nonlinear 
free-surface boundary conditions are integrated with respect to time using 
the Eulerian-Lagrangian time marching technique. A regridding algorithm 
is used to eliminate the possible instabilities in the region of high gradients 
without using artificial smoothing. The input waves entering from the up- 
stream boundary are generated by either a piston-type wave maker or by 
prescribing actual wave data or analytic solutions. The energy of outgoing 
waves are gradually removed in the artificial damping zone by viscous dissi- 
pation rather than by being transmitted out of the solution domain. When 
simulating open-sea conditions instead of a numerical wave tank, the artifi- 
cial damping zone (absorbing beach) is employed at all side walls to prevent 
possible contamination due to wall reflection. Unlike Cao et cd. (1991), side 
walls and <£n-type damping zone are used in the present numerical wavetank. 
The developed computer program was verified through mass and energy con- 
servations and comparisons with experiments as well as analytic first- and 
second-order diffraction solutions. 

2    Mixed boundary value problem 

The ideal fluid is assumed so that a velocity potential exists and the fluid 
velocity is given by its gradient. The value of the potential, at each time step, 
is given on the free surface (Dirichlet boundary condition) and the value of the 
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normal derivative of the potential (Neumann boundary condition) is known 
on the body surface and the bottom surface. The free-surface potentials and 
elevations are determined by integrating the following nonlinear free-surface 
boundary conditions with respect to time. 

§ = -57?-l/2V0.V0 + v.V0-^-t/o(O^ onSF   (2) 
bt p ox 

where 

— = 1-v.V 
St     dt 

is the time derivative following the moving node, U0 is forward velocity, and 
v = —U0i + V</> dictates the material node approach. V</> on the right- 
hand side can be determined after solving the boundary value problem for <f>. 
Using the material node approach, Vr? term drops in eq.(l). A Lagrangian- 
Eulerian method, in which a mixed BVP is solved at each time step, is 
used on the free surface to time step the unknown potentials and wave el- 
evations. A Runge-Kutta-Fehlberg method is employed for this purpose. 
Indirect boundary integral methods utilize the source density o(rs) which is 
used to determine the unknown velocity potential. Then, a weighted resid- 
ual method (collocation method) is used to solve the integral equations for 
the unknown a(fa). In order to determine the unknown source strengths, 
an efficient iterative method called Generalized Minimal Residual (GMRES) 
Technique (Saad and Schultz, 1986) is used. 

For an accurate free-surface flow computation, mass/volume, momentum, 
and energy conservations should be satisfied in the computational domain. 
For instance, the total energy conservation in a wave tank, following Contento 
and Casole (1995), can be expressed as 

e(t) = Ww(t) + E0(t) - WB(t) - En{t) (3) 

where Ww{t) is the power delivered by the wavemaker and given by 

aw 
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E0(t) is the rate of energy flux through the open boundary and given by 

awo 

Wß(t) is the rate of work done by fluid on the body and given by 

WB{t) = - I p^dS (5) 
dB 

En(t) is the rate of energy in the fluid and defined by a potential and 
kinetic contribution 

En(t)   =   EnPOT(t) + EnKIN(t) (6) 

-sis«  /  >?<*-? I *&<* 
awudFudB an 

where £1 is the boundary of 3-D solution domain. Then, e(t) can be 
compared with the amplitude of the power delivered by the wavemaker to 
obtain the absolute error in the solution domain. 

3    Numerical results 

First, the developed computer program was verified through mass, momen- 
tum, and energy conservation. The performance of artificial damping zone 
was tested for various wave conditions. As can be seen in Figure 1, the 
^n-type beach is more effective for shorter waves. Second, we conducted 
two fully-nonlinear diffraction computations with bottom-mounted and trun- 
cated uniform vertical cylinders. The simulation results are compared with 
Mercier & Niedzwecki's (1994) experiments and Kim & Yue's (1989) second- 
order diffraction computation. The comparison with Mercier & Niedzwecki 
(1994) showed that the present fully-nonlinear computation agreed better 
with experiments than the second-order diffraction computation, as can be 
seen in Figure 2. 
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Numerical beach absorption test 
constant, dynamic and coupled beaches 

-A- Present Method, y/G=1.0, G/*>1.19, (Dynamic). 
-v- Clement 1996, y/G=1.0, G = constant. 
-0— Clement 1996, Piston+Beach Meth., (Nonlinear). 

2nd order run-up on an uniform vertical 
truncated cylinder at lee (9 = 0°) side 

Figure 1 
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DISCUSSION 

Berkvens P.J.F.: In your results on waves diffracting around a cylinder, some 
very short waves are visible along the waterline. Do you think there is a relation 
between these short waves and the problems that P. Ferrant encounters when he 
has waves diffracting around a cylinder in the presence of current? 

Celebi S., Kim M-H.: The very small kinks along the waterline is just a graphical 
noise and short waves around the cylinder are diffracted waves. The 
desingularized BIEM method is relatively robust at the body-free surface 
intersection line and we did not experience any numerical problems there. 

Grilli S.: Which phase velocity did you use in your Orlanski condition for the bi- 
chromatic problem? 
And what did you do in case of singularity of the celerity? 

Celebi S., Kim M-H.:  We numerically calculated the phase velocity on the free 
surface directly from Orlanski condition. In doing this, we selected several points 
close to the open boundary and the phase velocities are averaged. 
In this procedure, the point where singularity occurs is excluded. 

Läget O.: Can you tell some precisions on the outside boundary condition you 
have used? 
Do you use both the absorbtion beach and the Orlanski condition? How do you 
compute the phase velocity and on which variable do you apply the Orlanski 
condition (free surface deformation, velocity, pressure?) 

Celebi S., Kim M-H.: We applied Orlanski condition for the velocity potential 
and the phase velocity was numerically obtained. For the time derivative of the 
velocity potential, dynamic free-surface condition was used. We did not combine 
Orlanski and numerical beach yet. 
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Dispersion relation and far-field waves 

Xiao-Bo CHEN, Bureau Veritas, CRD, Rueil-Malmaison, (France) 
Francis NOBLESSE, DTMB, NSWC-CD, Bethesda, MD (USA) 

A theoretical formulation of wave diffraction-radiation by ships or offshore structures, motivated by the 
practical and theoretical importance of free-surface potential flows and the formidable complexities of existing 
calculation method based on free-surface Green function, is recently developed and summarized in Noblesse, 
Chen and Yang (1996). One of important results is the analysis of the classical Fourier representation of free- 
surface effects, as a two-dimensional linear superposition of elementary plane progressive waves exp[-i(a£+ 
ßrj+ft)}, given in Noblesse and Chen (1995), which defines the wave potential <t>w(£,n) in terms of the single 
Fourier integral 

4T:4>
W
 = -iY,[    ds[sign(Df) + sign(ZDa+VDß)] exp[-i^a+r,ß))A/\S7Dl (1) 

JD=O 

along every curve, called dispersion curve, defined in the Fourier plane (a, ß) by the dispersion relation Z) = 0. 
Here, ds is the arc length along a dispersion curve, |VD[2 = D^ + Dß and / is the frequency. The Fourier 
representation (1) is valid for steady and time-harmonic free-surface flows, in infinite or finite water depth, 
generated by an arbitrary distribution of singularities defined by the generic amplitude function A, which is 
given by a distribution of the elementary wave function exp[A;z + i(ax + ßy)] over the surface of the wave 
generator (e.g. ship or offshore structure). Here, k = yJoP+ß2 is the wavenumber. 

Considerable information about important far-field features of the waves defined by the Fourier representa- 
tion (1) have been revealed in Chen (1996), via a stationary-phase analysis of (1). Specifically, the constant- 
phase curves (e.g. crest lines) and the related wavelengths, directions of wave propagation, and phase and 
group velocities can be determined explicitly from the dispersion function D. This stationary-phase analysis 
of (1), which provides direct relationships between the dispersion curves D = 0 in the Fourier plane and the 
corresponding wave systems in the physical plane, is briefly summarized here for the generic case of dispersive 
waves characterized by an arbitrary dispersion function D, and for the specific case of time-harmonic ship waves 
in deep water. 

Generic dispersive waves 
The far-field features of <f>w are determined by the stationary points of the phase function tp = £a+T]ß along 

the dispersion curves. The stationary points are defined by <p' = £a' +-qß' = 0 and satisfy the relation : 

^D0-T]Da = O = h\VD\sm(j-0) (2) 

Here, h and 9 are the polar coordinates of the field point (£,??) = /i(cos0,sin0). Furthermore, 7 is defined by 
(cos7,sin7) = (Da ,Dß)/\VD\ and thus represents the angle between the unit vector normal to a dispersion 
curve and the a axis. The wavelength of the waves corresponding to a stationary point (2) is given by \ = 2iv/k 
where k is the wavenumber at the stationary point. 

Expression (2) shows that a point of stationary phase on a given dispersion curve is defined by 7 = 0 or 
7 = 0+7T. Thus, a point of a dispersion curve generates waves in the physical space in a direction normal to the 
dispersion curve. The sign function sign(£Da+r]Dp) in (1) is equal to 1 if 7 = 9 or -1 if j = 9+n. Expression 
(1) therefore indicates that a point of a dispersion curve generates waves in the direction of the normal vector 
VD to the dispersion curve if sign(J9/) = 1, or in the opposite direction if sign(D/) = -1. Furthermore, at the 
stationary point <p' = 0, the second derivative of the phase function is expressed as : 

<p" = cy/a'2+ß'2d   with   d = h(£a'-riß')/(2Zr)) (3) 

where a' and ß' are differentiation of a and ß with respect to the integral variable along the dispersion curves, 
and the curvature c is given by : 

c = {-D2
aDßß + 2DaDßDaß - D2

ßDaa)/IVDf (4) 

As d j^ 0 in the expression (3), (p" = 0 only at the point of inflection where c = 0. Two points on both sides of 
the inflection point may have the same unit normal and then two groups of waves may propagate in the same 
direction but with different wave number. In fact, an inflection point (ac, ßc) of a dispersion curve, determined 
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by c = 0, defines a cusp line along which two distinct wave systems are found. The corresponding angle 7c is 
defined by 

7c = tan-1 (D0/Da) a (5) 

where the subscript c indicates evaluation at (ac ,ßc). 
The curves along which the phase <p is constant, equal to C± = ±2TT - sign(<//')7r/4, are given by 

(t,Ti) = C±(Da,Dß)/(aDa+ßDß)   with    sign(C±) = sign(aDQ + ßDß)sign{Df) (6) 

The phase velocity vf, determined by the stationary-phase relation (2), is given by 

Zf = -(a,ß)f/k* (7) 

which is orthogonal to constant-phase curves (6) and different, both in magnitude and in direction, from the 
group velocity v9, at which wave energy is transported, defined by 

v3 = -(df/da,df/dß) = (Da,Dß)/Df (8) 

Expresions (8) and (6) yield (£, 7?) • Vs > 0, which shows that wave energy is propagated away from a wave 
generator in accordance with the radiation condition. 

Far-field features of time-harmonic ship waves 
The foregoing results, valid for generic dispersive waves, are now applied to the particular case of time- 

harmonic ship waves in deep water, for which the dispersion function is given by 

£>=(/- Fa)2 - Jfc (9) 

For r = fF <l/4, three dispersion curves defined by £> = 0 intersect the axis ß = 0 at four values of a, denoted 
af and af. The ring, inner V and outer V waves correspond to the interior curve comprised between a^ 
and af, the exterior right curve located in a+ < a < oo, and the exterior left curve located in -oo < a< a0 , 
respectively. For r > 1/4, only two distinct dispersion curves intersect the axis ß = 0 at af and af. The ring-fan 
and inner V waves are respectively associated with the dispersion curves in the left (-oo <a<af) and right 
(af < a < oo) regions. 

The wavelengths of the transverse waves (the waves at the ship track 77 = 0), in the various component wave 
systems described above, have already been given in Noblesse, Chen and Yang (1996). In th same way, the 
wavelengths at the edges (cusp lines) of the wedges containing the inner and outer V waves and the ring-fan 
waves are given by Ac = 2x/fcc where kc is the wavenumber at the inflection points determined by the relation 

F4k2
c - (3/2)F2fcc + sign(/-Fa)4rFv

/^ - 3r2 = 0 (10) 

The corresponding wedge angle 7C is 

7c = tan-1(±l/v
/6F2fcc-l) (11) 

The group velocity (8) is now written as 

& = -[F + sign(/-Fa)a/(2fc3/2), sign(/-Fa)/9/(2fc3/2)] (12) 

in the system of coordinates moving with the mean forward motion of the ship, and 

VS =t? + (F,0) = -sign(/-Fa)(a,/?)/(2fc3/2) (13) 

in the absolute system of coordinates.  The absolute velocity V9 is orthogonal to the constant-phase curves, 
whereas the relative velocity v3 is not. 

The foregoing simple analytical relationships between the dispersion curves in the Fourier plane and impor- 
tant features of the corresponding far-field waves in the physical plane are illustrated in the attached figures for 
the four distinct cases which must be considered for time-harmonic flows with forward speed. 
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Figure 1: Inner V waves 
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The right exterior dispersion curve (a+ < a < oo) is associated with the inner V waves, for T > 0. Two 
groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersion curve 
{at < k < kc) and (kc < k < oo), respectively. 

Figure 2: Ring waves 
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The interior dispersion curve comprised between a{  and af is associated with the ring waves, for r < 1/4. 
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Figure 3: Outer V waves 
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The left exterior dispersion curve (—oo < a < a~) is associated with the outer V waves, for r < 1/4. Two 
groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersion curve 
(—a~ < k < kc) and (kc < k < oo), respectively. 

Figure 4: Ring-fan waves 
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The left dispersion curve (—oo < a < af) is associated with the ring-fan waves, for r > 1/4. Three groups 
of waves systems (the partial-ring waves, the outer-fan waves and the inner-fan waves) correspond to three 
portions of the dispersion curve (af < k < kc), (kc <k < 4/2) and (4/2 < k < oo), respectively. 
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DISCUSSION 

Schultz W.W.: What new conclusions (or discrepancies) are obtained in your 
Fourier analysis over the simple ray theory of Eggers (1957)? 

Chen X.B., Noblesse F.: The results and the analysis we have summarized differ 

from those given in Eggers (1957) and elsewhere, in a number of ways. First of all, 

our results are valid for generic dispersive waves generated by arbitrary 

distributions of singularities. Thus, the results can directly be applied to a broad 

class of dispersive waves, including steady and time-harmonic water waves with or 

without forward speed in homogeneous or density-stratified water of infinite or 
finite depth. The results we have given provide simple and elegant explicit 
relationships between the so-called dispersion curves, defined in the Fourier plane 

by the dispersion relation and the corresponding far-field waves. These 

relationships include expressions, both in fixed (attached to the earth) and moving 

(attached to a translating distribution of singularities) systems of coordinates, for 

the phase and group velocities of the various wave components associated with 

each distinct dispersion curve. It is also shown that cusp lines of far-field wave 

patterns are explicitly related to inflection points of the dispersion curves, which 
yield closed-form expressions for cusp-angles. In particular, for the case of time- 
harmonic ship waves in deep water considered for illustrative purposes, two 
particular exact values of x, namely x = -^2/27 (at which no waves propagate 

upstream) and x = ^8/3 (where unsteady waves are contained within the wedges 

of the steady waves), are given (to the authors' knowledge, only numerical 

approximations to these exact values of x have previously been given). 

Magee A.: Using the relation you developed for group velocity, for a given x and 
F, can you calculate the time for a disturbance to reflect off tank walls and return 
to the ship. In other words, can you find the x and F values free from tank 
reflections? 

Chen X.B., Noblesse F.: Indeed, the relationship we have given, specifically the 

expressions for the wave propagation angles and the group velocity, can be 

directly used to determine the time required for the various components of the 
waves diffracted-radiated by a ship model advancing at constant speed in a water 
tank to be reflected at the walls of the tank. 
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A shortcut for computing time-domain free-surface potentials 
avoiding Green function evaluations. 

A. CLEMENT 

ECOLE CENTRALE de NANTES 
Laboratoire de Mtcanique des Fluides - division Hydrodynamique Navale 

CNRS URA 1217, E.C.N, Nantes, FRANCE 

The numerical solution of transient hydrodynamic problems in the frame of the linearized 
potential theory requires the computation of convolution integrals. These integrals may 
be regarded as the memory of the free-surface fluid. Since they extend from the initial 
state of rest up to the current time t, the mass storage and cpu time required for their 
computation grow quickly with time, roughly quadratically. Consequently, in time-domain 
seekeeping computations, the major part of cpu is spent in evaluating these convolutions 
(Magee 1991). 
Let us consider, for instance, the generation of surface waves by the prescribed motion 
(V) of a body around its equilibrium position (S) in a perfect fluid. 
The resulting velocity potential <P{M,t) must satisfy the following boundary integral 
equation: 

mA- ff 4>{M',t)BG^mds' = -\\ \.n(M',t)G0(M,M>)ds> 
2 JJs on JJS 

+ \\ds'f 0(M',r)dF(M'M'>t-T)dr_ UdAY.n{M',t)F{M,M',t-T)dx 
JJs    i dn' }}s    i (1) 

where G0 and F are respectively the impulsive and the memory part of the Green 
function. In the present study we focus our attention on the convolution integrals in the 
RHS of (1). They may be written in the general form : 

T 

S = JQ(r)F(r,Z + Z',t-r)dt (2) 
o 

where, when the water depth is infinite (Finkelstein 1957, Wehausen & Laitone 1960): 

F(r,C,$) = JT[Ksm(<lK$)J0(Kr)eKSdK      (3) 

with: ■ 4(X-X')2 + {Y-Y')2 

Up to now, the efforts made to speed up the 
numerical computation of integrals like (2) in 
the numerical implementations of BEM to 
solve integral equations like (1) were 
essentially: 

- derivation of alternative faster expres- 
sions of the Green function F, better suited 
to numerical calculation (Jami (1982), Newman 
(1985), Beck & Liapis (1987), ...), 

- tabulation of the memory part of the 
Green function in order to replace the 
evaluation of F by a bi-linear interpolation in 

^/M{X,Y,Z) 

field point 

MXX',Y',Z') 
source point 

Fig.l : Definition sketch. 
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a precomputed table (Ferrant-1988, Magee & Beck-1989). 
An alternative method to evaluate the convolution products (2) without computing 
explicitly the Green function was proposed by Clement (1991). It is based on the 
identification of the Green function considered as a SISO (Single-Input-Single-Output) 
linear time-invariant process. The identification parametric model of the process is a 
linear ODE linking the input Q(M',t), the output S(M,t), and their derivatives. Once such a 
model has been found, S can be recovered from the knowledge of Q by simply integrating 
the ODE from a time step to the next one, instead of computing convolution integrals like 
(2). Doing so could save a huge amount of computer time and memory (Clement 1992). 

1. A parametric time-varying model 

In our first papers related to this topic (1991-1992), we attempted to identify the Green 
function with discrete time invariant models. These kind of models, often called AKX in 
process science literature, are characterized by discretized ODEs with constant 
coefficient. 
They were shown later (Clement 1995) to be inadequate for the time domain Green function 
(3) which behaves asymptotically like a "chirp" process. This feature results in increasing 
considerably the model order to maintain a reasonable accuracy as both source point and 
field points approach the free surface (i.e : /i->0). 
Thus, we were led to adopt a more refined model (4) where the ODE coefficients are 
themselves function of time. 

X A,- «)SW (0 = £ P, (t)Q(i) (t) (4) 
i=0 (=0 

jj Off\ 

where we use the notation : S(i)(t) = . 

In such a differential model, the causality of the process ensures the right-hand side order 
to be less than the left-hand side order. This property which is well known when the 
coefficients are constant, still holds for time-varying models (Zadeh et al. 1963). 

2. The auto-regressive terms ^(t) 
The left-hand side of (4) is generally referred to as the auto-regressive part of the model. It 
can be obtained from the response of the process to an impulsive input Q(t) = S(t). 
Here, the impulse response function of the process is, by definition, the Green function 
itself F(M,M',t). 
Taking advantage of the fact that the kernel of the integral (3) can be expressed by an 
hypergeometric function, an exact fourth order differential equation for F may be derived 
making use of the general confluent equation : 

d*F      „.d3F .(t2 . <..r>}d*F + nW + 9F = Q (5) *^*^+r4^ dt2     4  dt 

with: /i = -(Z + Z')/sjr2 + (Z + Z')2. Thus, from (5), the auto-regressive coefficients Mt) are 
found to be polynomials at most of degree two in the time variable. Their coefficients are 
very simple functions of the geometric parameters /* and R^ A detailed derivation of (5) 
will appear in a more lengthy paper (Clement 1997). 
As a first step toward computations speed up, one may use this ODE instead of the 
classical series developments (Newman 1985) for the in-line evaluation of the Green 
function in the numerical computation of the integral (3). To do so, one need also the initial 
conditions which can be easily deduced from (3) and its time derivatives by using the 
integral form of Legendre polynomials. After some algebra, we obtain : 
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F(2*,(r,C,0) = 0 

Fl2k+*)(r,C,0) = 
(-D*(fe+1)! 

Äx*+2 P**lW 
A = 0,1,. (6) 

which give the complete set of the time derivatives at the origin; all the even order 
derivatives are null. It should be noticed to conclude this section that (5) and (6) are exact 
analytical results. 

3. The forcing terms 

The right-hand side of eq.(4) is generally referred to as the forcing term. Its form is a priori 
unknown, and a direct combination of (2) and (5) would lead to reintroduce convolution 
integrals in the RHS of the model. Thus, referring to time invariant models for which the 
property is formally established, we made the hypothesis that the forcing term of the 
present model can be expressed by a differential form similar to LHS (i.e with polynomial 
coefficients), and we sought it in the form : 

RHS(4) = Y,Q(i)(t)j?PutJ (7) 
i=0 j=0 

The determination of the unknown coefficients ptj was made easy by the knowledge of all 
the Markov parameters of the process through eq.(6). The method consists in expressing 
the model (4) and its successive time derivatives at the origin of time. At each level of 
differentiation, one can show that the lowest order unknown parameters ptJ may be 
expressed as a linear combination of the coefficients of (5), and of the Markov parameters 
F(J)(.,.,0). 

4. continuous models of the Green function and its gradient. 

The above method was applied first to the Green function itself, and gave 

R1
2Sli)+/iR1tS

a) + -4ßRAsG> + —Sm- 
-V3l     ,    , 

2B," Ä. 

(8) 

The maximum order of the polynomials Pt was assumed to be at most equal to the order 
of the Ai to ensure a stable asymptotic behaviour; whatever the input of the process ; 
nevertheless, it should be pointed out that the iterative method in §3 could provide higher 
order polynomials. 
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Fig.2 : Output S(t) for input Q(t)=sm{Qt), 
computed by both methods. \l =.3714 

22 

Results of a simulation of the 
process output for an har- 
monic input Q(t)=sin(6t) are 
plotted on Fig.2 . Both methods 
were applied : a standard 
trapezoidal integration 
method using (2) and (3), and 
the present time-varying 
model (8). Discrepancies 
between these two curves 
appear to remain negligible in 
this precise case. 
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Because the solution of the integral equations of time-domain hydrodynamics may require 
also convolution integrals involving the gradient of the Green function, the present 
approach was applied to the horizontal and vertical gradient as well. 
We simply give below the results after calculations. 
Horizontal gradient 

„2a
4s    D,«?3s ft*     p ^fs  in as  21 „ 

at 
4-^ff 

2Rl' 
t' + 

1+p* 

Ä, 
Q 

Vertical gradient Did*s    „ta
3s (t*   . „V2Sx 1W^*259 

(9) 

(10) 

3p2-l 
to»> + ^- Ai< | 3^2 - 1 

Äi V    Äi 

(M
2
 + I) f  ,E  4    75M

2     13l   *2       o   V1  + 

^+^L-TJW + 3M-^ Q 

Numerical simulations were also performed for these two models with the same input, 
and a comparable accuracy was observed. Thus, the proposed models seem to be useful 
for our purpose in that frequency range. Nevertheless, the results are not so good as the 
input frequency decreases, and refining the models of the forcing terms seems to be 
necessary in that range. 

Conclusion The time-domain Green function and its gradient were found to be solutions 
of fourth order ordinary differential equations with time-varying coefficients. These 
coefficients functions are low order polynomials of the time variable, and their own 
coefficients are simple functions of the geometrical parameters of the problem. 
These time varying models may be used to compute the convolution integrals in time- 
domain seakeeping codes without computing the Green function itself (nor its gradient). 
The accuracy is excellent for high frequency, but remain to be improved in the low 
frequency range. 
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DISCUSSION 

Newman J.N.: Equation 5 is remarkable. One conseqqence is that the 
corresponding frequency-domain Green function integral satisfies a 2nd order 
ODE with respect to the wavenumber! 

Magee A.:  I wish to congratulate the author on a truly original contribution on 
the use of time-domain Green functions. If a more accurate method for the forcing 
terms can be found, this shortcut should soon supplant all available methods for 
computing the time-domain Green function, because it will permit a gain of about 
80 % in memory requirements for typical calculations. It is clear that equation (5) is 
exact. Is it possible to find exact solutions for the forcing terms (second part of 
eqn. 8)? What are the steps necessary to find these terms? 
Secondly, you have treated the case applicable to linearised motions at zero 
forward speed, that is, the positions of the source and field points are not functions 
of time. However, we already have well-developed frequency-domain calculation 
methods for this case, at least in infinite depth. The real benefit of the time-domain 
method is its applicability to more complex cases such as steady forward speed and 
arbitrary large-amplitude motions because the Green function retains its relatively 
simple form in these cases as well. 
According to my calculations, equation (5) is also valid in a steadily moving 
coordinate system (linearised problem with steady forward speed U) provided we 

-\ -\        -\ 
replace the partial time derivative — with the total derivative —-U— in the 

dt dt        dx 

steadily moving frame. In this case we would have: 

*'2,f4)vWf4T- (tt        \ V + 4U*! 

(1) (2) (3) (4) (5) 

where Rx and \i are functions of time. In order to calculate the Green function in 
this case, we would need to "simulate" the Green function and its first four x- 
derivatives, which I have not done here. However, I have tested (5bis) by other 
means. 
The attached figure presents the five terms of equation (5bis) and the sum of the 
terms, which should equal zero, if the relation holds. The Green function values 
were calculated using a Romberg method to assure a good precision, and the 
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derivatives were calculated using finite-difference schemes. The results seem to 
indicate that the relation holds and this is true for all values of the parameters 
tested. This calculation is confirmed by an analytical calculation (Maple) using the 
series expansion of the Green function (up to the order of the truncated series). 
Furthermore, I believe the same equation should generalise to the case of arbitrary 
motion of the source and field points (large-amplitude motions case) by using 

 V.V, where V is the relative velocity between M and M' in place of the 
at 

partial time derivative — of equation (5). If this is true, then the large-amplitude 
ot 

calculations would be only slightly more time-consuming than linearised ones-a 
great advance indeed! Could you please comment? 

2   - 

v*   V V 
/    \      A V 

i;      •■ i \     • \ 

>   X w \ . 

Term 1  
Term 2  
Term 3 " 
Term 4   
Term 5  
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\ '. fj\! i-'V <  A U A >-■ 

-2 
10        Time(secs)        20 30 

Fig.   1.  The 5 terms of eqn (5bis) and their sum, in the case of steady forward speed U = 0.25, 
x = 1, y = 0, z = -2 

Clement A.: It is indeed possible to find exact solutions for the forcing term. The 
simplest method consists in differentiating (2) four times using the Leibnitz rule, 
and then integrating (5) after having multiplied it by Q(t). After a few lines of 
calculations, the exact forcing term of (4) is obtained. Unfortunately, it contains 
new convolution integrals, which is exactly what we want to avoid in our model! 
Thus, we chose the present approximation by a differential form, with no guarantee 
of convergence. 
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The Green function F does not depend on the trajectory of the source, due to the 
impulsive nature of its strength, and then (5) is also valid in that case, expressed in 
a fixed reference frame, provided Rx and u. are understood as /^(O) and u.(0). 

It can be indeed expressed in a moving reference frame by changing the derivative 
operator as you did, and taking into account the induced dependence of the space 
parameters on time. Thus, your numerical check of the ODE in these conditions is 
not surprising. As you mention, it involves higher horizontal derivatives of F. 
Differential equation similar to (5) could be easily derived for them, from the 
general lemma established in Clement (1997), to appear shortly. 
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Viscous FREE SURFACE FLOW PAST A SHIP IN STEADY DRIFT MOTION 

A. Di Mascio, R. Penna, M. Landrini, E.F. Campana 

INSEAN - Italian Ship Model Basin, Via di Vallerano 139,00128 Roma, Italy 

Abstract 

The Reynolds averaged Navier-Stokes (RANS) equations with non linear free surface boundary conditions have been 
solved to simulate the flow field past a ship hull advancing with a drift angle. A Finite Volume technique has been used 
to discretize the equations, leading to a nonlinear algebraic system solved by a standard multigrid algorithm. Preliminary 
numerical results obtained for the Series 60 hull have been compared with experimental data. 

Introduction 

The computation of the unsteady incompressible viscous flow past a ship in maneuvering remains a great challenge. In 
fact, the general problem is a formidable one. The nonsymmetric flow over the hull is fully three-dimensional, boundary 
layers are turbulent, flow separation is common and may be followed by reattachment, and large wakes and complicated 
wave pattern are formed. .... 

In principle, a fully viscous computation allows the prediction of the generation and transport of vorticity in the 
boundary layer and in the wake, and the coupled free surface and boundary layer interaction. However, the numerical 
solution of the general problem is in practice still strongly constrained by computer resourches. Reliable simulations of 
the flow past a manouvering ship are at present only feasible for steady drift motion. 

Nevertheless, numerical computations of the RANS equations for the steady problem are particularly important also 
for the development of improved simplified models. Indeed they may provide useful detailed information on the location 
of the separation lines and on the evolution of the wake and may be used to calibrate and validate inviscid rotational 
models. As an example, the influence of an approximate choice of the location of the separation line on the values of 
the hydrodynamical lateral force and the yaw moment is still to be investigated. In fact, inviscid rotational models give 
satisfactory results once the separation line is known, as for a flat plate [1] or for a Wigley model. Unfortunately, this 
can be easily done only when the geometry is such to force the separation (i.e. sharp edges). Furthermore, to define the 
separation line in the case of 3D ship flows may not be an easy task. 

A previous computation of the viscous free surface flow around a yawed Wigley model was attempted by using a 
domain decomposition approach [2]. In the present paper a large domain solution has been developed. 

Mathematical model 

We consider the steady flow past a ship hull B moving in an incompressible viscous fluid. The flow domain is bounded 
by the free surface S, by the hull surface and extends to infinity. We assume a body-fixed reference frame with the x-axis 
aligned with the uniform flow and the z-axis positive upwards. The variables have been nondimensionalized by the ship 
length L and the free stream velocity U. 

The velocity field is divergence free 

V ■ u = 0       in V W 

and the momentum equation has to be satisfied 

u • Vu + VP = V • r        in V (2) 

In the previous equation P is the 'total' pressure, i.e. the sum of the pressure term and the gravity term 

„ ^     Vp       k 
VP = —+ 

Fr2 
(3) 
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k being the unit vector aligned with the ^-axis. r is the stress tensor, including the turbulent stresses 

Re 
+ *,r)[(Vu) + (Vu)7 (4) 

vT being the kinematic eddy viscosity. In the present work the Baldwin-Lomax turbulence model has been used. 
The boundary conditions to be imposed are the standard ones for Navier-Stokes computations. At the solid wall no 

slip conditions are enforced, i.e. velocity is set to zero at the boundary (no conditions are required for the pressure). On 
the free surface H(x, y), neglecting the effects of surface tension and viscosity, the following kinematic and dynamic 
(constant pressure on S) boundary conditions are to be satisfied: 

ox        oy 
(5) 

H 
Fr2 

(6) 

Numerical Solution 

The Series 60 model (C6=0.6) has been selected for simulation of this type of flow. In fact, for this model, detailed 
experimental data are available [3]. Furthermore, we have performed also some comparisons with measured data obtained 
atlNSEAN. 

Since the study is devoted to the simulation of the rectilinear motion of a ship advancing with a drift angle, in the 
numerical solution we cannot exploit the symmetry of the problem about the (x, z)-plane and therefore port and starboard 
sides are discretized. Hence the computational domain is decomposed into a port and a starboard block, the topology of 
each block being of H-0 type. RANS equations have been written in a pseudo-transient formulation and a Finite Volume 
technique has been used to discretize the problem. Time integration has been carried out by a Runge-Kutta algorithm, 
second order accurate in time. The convergence has been accelerated by a FMG-FAS (Full Multigrid-Full Approximation 
Storage) multigrid technique. 

As first test case, we simulate the flow past a Series 60 advancing in a oblique course for a drift angle a = 5° and for 
Fr = 0.316, Re = 1.5 x 107. In this computation we have used 128 x 64 x 32 cells in each block (port, starboard) of 
the fluid domain (streamwise, normal, and girthwise directions respectively). 

The wave profile along the hull for both port and starboard side is shown in fig. 1 in comparison with some experimental 
data obtained by Longo [3]. The wave profile at the bow is dramatically modified with respect to the case a = 0, since the 
different pressure values in that area, between pressure and suction side, imply respectively an increase and a lowering of 
the wave height. The numerical simulation was able to catch the main features of the flow. The agreement is satisfactory 
from x = 0.2 to x = 1.2 (the hull is located between 0 and 1). The flow at the bow (x < 0.2) is qualitatively predicted 
but the maximun free surface elevation in this region are underestimated. The unsufficient longitudinal grid resolution is 
this area is obviously a major factor in the loss of accuracy of the numerical prediction. 

Forces and moments acting on the hull have been also predicted and compared with eperimental data obtained at 
INSEAN for the fixed hull case. Measurements were made on a model 6.096 m long, following the ASME guidelines [4] 
for the uncertainty analysis. As a preliminary check, numerical results for the force and moment coefficients for a drift 
angle a = 5° and for Fr = 0.316, Re = 1.5 x 107, are compared with the experimental data in Table 1. The computed 
normal force coefficient Cx shows a satisfactory agreement with the measured data, while the moment coefficient CMz 
and the lateral force coefficient Cy are overpredicted. 

In fig. 2 the history of the convergence for Cy has been reported as a funtion of the work, defined as the cost of one 
iteration on the finest grid. The best performance, from the point of view of the CPU time requirements, has been found 
with a five level computation. Cy values obtained on each level can be easily followed from the coarsest to the finest grid 
and compared with the reported measured data. 

c* c» Cjlf! 

Exp. Num. Exp. Num. Exp. Num. 
-0.0155 -0.0141 0.0222 0.0314 0.0106 0.0133 

Table 1: Computed and measured forces and moment coefficients for a = 5°, Fr = 0.316, Re = 1.5 x 107 
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Figure l: Wave profile along the hull: Fr = 0.316, Re = 5 x 106, a = 5°. Solid lines, numerical simultation ; A, 
experimental data by [3] 

A typical wave pattern is depicted in fig. 3 for Fr = 0.316, Re = 1.5 x 107, a = 5° As espected, the free surface 
elevation in the starboard side is less pronunced, expecially near the bow. The wave pattern is stretched in the port side 
and spread in the starboard side. 

Finally, for the same case as before, the visualization of the computed wake shed from the keel and the stern lines is 
reported in fig. 4. 
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Figure 2: Convergence history for Cy as a function of the work. Five grid levels have been used in the multigrid 
algorithm. Correspondingly the value of Cy varies from the coarsest grid to the finest one. The experimental 
value is reported with the dashed line. 
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Figure 3: Computed wave pattern for Fr = 0.316, Re = 1.5 x 107, a = 5° 

Figure 4: The wake shed from the keel and the stern lines of a Series 60 advancing with a drift angle a = 5° 
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Solitary waves with algebraic decay 
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1    Introduction 

The study of capillary-gravity solitary waves is fairly recent. Among these waves, the most 
relevant from a physical point of view are the waves which bifurcate from a train of infinitesimal 
periodic waves with the property that their phase and group velocities are equal. These waves 
exist both in finite and in infinite depth. However, their properties differ with the depth. 
These waves were first computed numerically in infinite depth by Longuet-Higgins (1989). A 
physical interpretation was provided simultaneously by Akylas (1993) and Longuet-Higgins 
(1993). They showed that these waves correspond to stationary solutions of the nonlinear 
Schrödinger equation that governs slow modulations in space and in time of capillary-gravity 
waves. In certain regions of parameter space, it is well-known that the nonlinear Schrödinger 
equation (nlS) admits solutions in the form of wave packets, characterized by two length scales, 
the length of the envelope and the wavelength of the oscillations inside the envelope. The 
envelope travels at the group velocity while the oscillations travel at the phase velocity. It is 
therefore natural to obtain steady wave packets when phase and group velocities are equal. 
Additional numerical results were provided in infinite depth by Vanden-Broeck Sz Dias (1992) 
and in finite depth by Dias, Menasce &: Vanden-Broeck (1996). 

The important difference between finite and infinite depth comes from the properties of 
the dispersion relation. Let h denote the depth, k the wave number, g the acceleration due to 
gravity, c the phase velocity, a the coefficient of surface tension. In finite depth, the dispersion 
relation is 

(| + ok J tanh(/ch), (1.1) 

while in infinite depth it becomes 

c   = 

^(il+^l), (1.2) 

which is singular at k = 0. This singularity leads to nonlocal terms, which are not present 
in the nlS equation. In the context of modulated waves, these nonlocal terms represent the 
interaction between the wave envelope and the induced mean flow. For gravity waves, they 
were computed first by Dysthe (1979) and recomputed by Stiassnie (1984) by using the so- 
called Zakharov's equations. Hogan (1985) extended Stiassnie's analysis to capillary-gravity 
waves. In this abstract, we construct an analytical solution of Hogan's equation which shows 
that the presence of the nonlocal terms leads to an algebraic decay in 1/x2 of the solitary waves. 
Note that Longuet-Higgins (1989) predicted such a decay purely on physical grounds and that 
the numerical results of Vanden-Broeck & Dias (1992) also show such a decay. 
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2    Analytical results 

Let the free surface elevation be described by 

V(x,t) = £{A(M)ei(fcl-wt) +c.c.} . (2.1) 

Using as a basis the so-called Zakharov's equations, Hogan (1985) derived a higher-order nlS 
equation, similar to Dysthe's equation which was obtained by the method of multiple scales. 
Dimensionless variables (denoted with primes) are introduced by taking a/pc2 as unit length 
[L] and a/pc3 as unit time [T]. In addition we introduce a small parameter e (see below) as 
well as slow variables: 

(x,z) = [L](x',z'),    t=[T]t',    A = e[L]A',    $ = e2^',     (X, Z,T) = e(x',z\t'). 

(j) is the velocity potential, z the vertical coordinate. From now on, the primes will be dropped. 
The amplitude A satisfies the equation 

AT + cgAx-ie{pAxx + q\A\2A) + e2(rAXXx+uA2Ax+v\A\2Ax) + ie2kÄ$x\z=0 = 0, (2.2) 

Where _ u,   q + 3fc2 w_ 3fc4 + 6afc2-a2 

Cg ~ k 2(a + k2) '    P     k2      8(a + k2)2      ' 

2    8a2 + k2a + 2k4 u> (a - k2)(a2 + 6afc2 + fc4) 
(i-~ujk   16(a-2fc2)(a + fc2)'    r fc3 16(a + fc2)3 

(8a2 + fc2a + 2fc4)(a-fc2) ___       4fc8 + 4afc6 - 9a2fc4 + a3fc2 - 8«4 

U = wfc      32(a-2fc2)(a + fc2)2      '    V~ lQ(a - 2k2)2(a + k2)2 

Wlth
 9x 5^ w2 = fc (a + k2 ,    a = -^-T . 

The potential </> satisfies Laplace's equation 

~4>xx + 0zz = ° > (2-3) 

with boundary conditions 

^ = ^^(|A|2),   (Z = 0),    ^->0,   (Z->-oo). (2.4) 

Capillary-gravity solitary waves bifurcate when a = a0 = |, fc = fco = 5> w = w° = 2- 
The corresponding values of the coefficients are p0 = 5, <?o = ^, »*o = 0; uo = 0, vo = 35. 

In terms of £ = X - cg T and of T = eT, the evolution equations for A and </> read 

L4T + p% + ^m2A + i€(r%f + nA2^ + u|A|2Af) - efcA^|z=o = 0, (2.5) 

with boundary conditions 

^ = ^^(|A|2),   (Z = 0),    0z->O,   (Z->-oo). (2.7) 
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Solutions in the form of envelope solitons can be sought as 

A = R(Oexp{i(Xr + ef(0)}, (2.8) 

which leads to the following system, correct to order e2: 

2pR^fi+pRf^ + rR^ + uR2R^ + vR2R^   =   0, (2.9) 

pR^-xR + qR3-ekR4^\z=0  =  o. (2.10) 

Let us now expand R in powers of e: 

R = Ro(0+eR1(£) + ---. 

One finds that RQ satisfies the differential equation 

PRoK-XRo + qRl = 0, (2.11) 

which gives 

cosh[a(^)V2^ 

Now we explain the meaning of the small parameter e. The branch of solitary waves bifurcates 
at a = \. e measures how far a is from «o. Let p = a — a.Q. One finds easily that 

11     2  2 
"=256ae • 

Therefore 
D  _ J6_  r- 1 
^v/ll^cosh^z-*)]' 

The integration of the first equation of the system leads to 

12 
ef = -—y/ßtaah[y/ji(x - t)]. 

So far, we have only dealt with the central part of the envelope.   Let us now compute the 
nonlocal term $: 

/+oo .—- f+OO   
etK*8gnKI%dK = -± /       sin(i^) RQ dK. 

-oo JO 

One finds that 

11 A    smh^K) 

This induced mean flow leads to a change rj of the free surface elevation, given in unsealed 
variables by 

'        a 22 V 7T / Jo smhK 

The behavior as y/fi(x — t) becomes large is given by 

512   ^_      1 
Unv^(x-ty 
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Figure 3.1: Solitary wave for /z = 0.02. Profile and algebraic decay. 

It follows that the algebraic tail dominates the exponential tail if 

ln/i 
{x - t) > - 

y/ß 

For small amplitude waves, when the algebraic tails starts to dominate, it is already quite small 
and therefore one can conclude that the effect of the algebraic tail is more pronounced for larger 
amplitude waves. In the next section, numerical results on the full Euler equations are used to 
show that it is indeed the case. 

3    Numerical results 

In this section, we present numerical results for several values of \i. For large values of /Lt, it is 
clear that the tail decays algebraically (see plot of In 77 versus lna;). The numerical solutions 
are obtained by using the scheme of Vanden-Broeck & Dias (1992). 
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Recent progress in dealing with the singular behavior 
of the Neumann-Kelvin Green function 

Y. Doutreleau* and J.-M. Clarisse* 

The Neumann-Kelvin formulation of the linear wave-resistance problem is considered. Due to the 
singular behavior of the Neumann-Kelvin Green function, special care is required when dealing with 
surface piercing bodies. Consequently, an element integration technique is proposed as a discretization 
paradigm. This method, which alleviates the singular behavior of the Green function, is implemented 
within the frame of a bounded domain formulation for the Neumann-Kelvin problem. Advantages and 
drawbacks are presented, and possible improvements discussed. 

A bounded domain formulation for the Neumann-Kelvin problem 
We consider the wave-resistance problem of a body moving at constant speed, — Uo x, in the half space 
z < 0 occupied by an ideal fluid at rest. In the Neumann-Kelvin approach, the velocity potential 
is decomposed, in the co-moving reference frame, as the sum Uo x + <pe, where <pe is solution of the 
Neumann-Kelvin problem. 

Panel methods making use of the Neumann-Kelvin Green function, define the perturbation poten- 
tial <pe in terms of dipole and source distributions over the body boundary T. The potential <pe, which 
has then the following integral representation: 

(1) MM) = f [MP) dnPGv(M, P) - f(P) G„(M, P)] dTp, 
«'I 

where Gv is the Neumann-Kelvin Green function, v — g/Ufi and f(P) = -Uo (ftp ■ z), is obtained as 
solution of an integral equation on T. 

However, rather than solving this integral equation, we here consider a bounded domain prob- 
lem which is derived using a variational formulation/integral representation coupling method [4]. In 
addition to its theoretical interest, this approach presents some practical advantages: for example, 
equation (1) can now be defined on an arbitrary coupling surface E thus avoiding the 1/r singularities 
of the Green function. Furthermore, in order to avoid computing second order derivatives of G„, the 
bounded domain formulation is herein modified by introducing a potential <£,, solution of a Dirichlet 
problem in ü{, an interior domain of the body (Figure 1-a). Consequently, solving the Neumann- 
Kelvin problem for a submerged body is shown to be equivalent to finding the solution (<pe,(f>i) of the 
problem: 

/   V<pe ■ V& - - L dx<pe dxje dS + pl tpe$edL [ fje dV 
Ja* v JSL JE Jr 

+ JQ
V(rra((Pe) + <pt)-vJi =    - j &J f(P)G»d£pdLM 

~lIjeLV (rr° &e) + fr) ■ V (rf« + rrFa) (Gx) da + 1J 4 J f(P) Gx dTP daM 

+ f $e I  V (if- (ipe) + <pi) • V (rf + rrF) (Gß)dX 

for any test function (V>e, i/>,-). In this formulation, the conventions are: 

- GM(M, P) = (daM • +fi-)Gl/(M, P), where \i is a complex number of non-zero imaginary part so as 
to avoid irregular frequencies; 

- GX(M, P) = dXMGu(M, P) (n' • x), where n' is the vector lying in SL and normal to a at M; 

- if*(ip) is such that rf(V') = i> on T and if°(^) = 0 on Fa, and conversely for rF 

m 

Fa' 

'Bassin d'Essais des Carenes, Chaussee du Vexin, 27100 Val de Reuil, France 
*CEA/LV, 94195 Villeneuve-St-Georges, France 
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Unfortunately, because of the singular behavior of GV{M, P) for P downstream of M, the latter being 
on the free surface (see [7]), the equivalence between the Neumann-Kelvin problem and (2) could 
not be established for surface piercing bodies. In view of this difficulty, we shall restrict ourselves to 
the devising of a discretized formulation of (2) for submerged bodies which remains numerically well 
behaved in the limit of zero depth. 

A 

SL a 

FIG. 1-a: Coupling method FIG. 1-b: Singular behavior of Gj, 

For this purpose, the bounded domain formulation is solved numerically using a finite element 
method: the different terms in (2) are discretized with the help of basis functions w\ which depend on 
the volume discretization of the domains (2,- and fte, and on the type of interpolation functions being 
used. The singular behavior of the Green function forbids however the use of classical discretization 
techniques for the terms of (2) which involves GV(M,P) at its singular regime [1]. Consequently, a 
specific discretization method must be devised. 

An element integration method 
The Green function Gv can be decomposed as the sum of a near-field and a far-field component, (■?{,, 
the latter accounting entirely for its singular behavior. The difficulties which arise when discretizing 
the terms involving Gl

v in (2), can be circumvented by first, interchanging the orders of integration 
between the points M and P in (2), then, performing analytically the spatial integration with respect to 
M. An approach following this principle has also been proposed for the diffraction-radiation problem 
with forward speed: see [6]. The present procedure leads to computing analytically the integrals: 

(3) / wi dXMGl(x, y, z') (n'M ■ x) daM   and     / w, {daM • +//•) Gl
v{x, y, z') dEM 

with the notations x = xp — XM, y = yp — yM, and z1 — zp + ZM- In performing this task, we benefit 
here from the ability of choosing an arbitrary coupling surface E. Hence by imposing üe to be a 
rectangular prism (Figure 2-a), analytical integration of (3) is only required for M on ox and Ei—the 
portions of a and E directly upstream of the body. 

M, M, M3 

0.2 V^ y 
FIG. 2-a: Particular choice ofüe 

0.075 

FIG. 2-b: Discretization of Si 

Based on experience with computations for submerged bodies, Lagrange elements of degree 2 are 
retained as they provide satisfactory rates of convergence for a limited number of unknowns. Therefore, 
evaluating the integrals in (3) for a triangular element T — (A/i,M2,M3) of Si is equivalent to 
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computing the element integrals: 

f Tj = f wj dXMGl(x, y, z') daM 3 = 1,2,3 
/4j i J[MiM2] 

|T;= j widXMGl
v{x,y,z,)dY.M,    T] = j^Gl

v{x,y,z')dY,M    j = 1..6. 

For this purpose, we retain the representation of Gj, used in [2].  We are thus led to consider the 

following complex contour integrals: 

(5) G*(r,a,0-yL+ (coshu^-Hsinhu)^1 

(6) *b.{r,a,t,Q) = JL 

exp [-§ cosh(2u - t» + qu + z£ cosh u] 

L+      (cosh u)fc (ZQ cosh u - iyQ sinh u) ' 
du, for 

<Z=-1,0,1 
A; = 0,1,2 

.A;'=1,2,3 

with ^ = u\x\, r = vVy2 + zn, « = aictan(-y/a/), and where £+ is a path joining -oo to +oo^and 
avoiding the poles of the integrand. As the integrals Gk and E^, are similar to the expression of G„, 
the various approximations described in [2] are extended to the present case. Two complementary 
approximations per integral are thus derived which provide numerical results with an absolute accuracy 
of at least five significant digits, and this for £ in a range sufficiently large for the present applications. 
These approximations consist in: a) convergent series expansions for values of the parameter^ - 
£2/4r < 16, and b) asymptotic expansions along with highly oscillatory integrals when M > 16. These 
oscillatory integrals, similar to that introduced in [8], are evaluated Mowing [5]. The main difference 
between G'„ and the functions Gk and £* fc, lies in the fact, that the latters are defined and continuous 
for £ > 0, T = 0, \a\ = 7r/2, whereas the former is singular there. 

Applications 

Submerged ellipsoid 
The present element integration approach has been compared, for the case of a submerged ellispoid, 
with a classical discretization method as well as with the semi-analytical results of Farell [3]. Wave- 
resistance results show good agreement between the element integration method and Farell's results 
for an ellipsoid with an aspect ratio of 5 at a submergence depth of a quarter of the focal distance: 

see Figures 3-a, b. 

i 1 r 
0.32      0.33      0.34 

Froude 

FIG. 3-b: Large Froude number 
FIG. 3-a: Small Froude number 

Surface piercing ellipsoid 
Computations with the same ellipsoid, but now half submerged, have been performed. Wave-resistance 
results appear to be strongly unstable with respect to mesh refinements. An analysis of the line and 
surface integral contributions in (3) furnishes a possible explanation for this behavior. Indeed these 
contributions present oscillations near the tracks of the discretization points lying on ax.   These 
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oscillations, which cannot be resolved with a reasonably fine mesh, render the element integrals Tj 
acutely sensitive to the location of the point P. This peculiarity is illustrated in Figures 4-a, b for 
the element integrals Ta and T[ associated to the point Mx of coordinates x = 1.4, y = z = 0 (see 
Figure 2-b): significant peaks are clearly visible about the points yP = 0, ±0.075. The fact that these 
peaks are more pronounced for Tx than for Tf, and that their magnitude increases with the distance 
f, indicates that they are inherent to the highly oscillatory behavior of <?'„. t 

—r- 
OJO 

yp 

«0.1 
-«pj>. 
■xp-1. 

FIG. 4-a: Behavior of T\ FlG. 4-a: Behavior ofT[ 

Discussion 
Analytical evaluations of the line and surface integral contributions in (3) has alleviated the singular 
behavior of G[, thus resulting in a proper numerical discretization of the bounded domain formula- 
tion (2). However, at this stage, numerical results could not be obtained for surface piercing bodies due 
to the strongly oscillatory behaviors of the element integrals Tj. Such behaviors are associated with 
the discretization of the boundary Sx and the particular choice of basis functions with discontinuous 
slopes. Significant improvements could be achieved in several ways, namely: 
- by performing analytically the spatial integration with respect to the field point P: while this task 

does not present further difficulties, the required analytical computations are significantly heavier. 
- through the use of Cm elements, m > 0: the current finite element procedure based on Lagrange 

element would need to be taylored to such a case. 
- through the use of spectral elements: substantial work would be needed to devise a practical 

method capable of handling an arbitrary shaped boundary such as T. 
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DISCUSSION 

Kuznetsov. N.: The finite element method usually leads to tridiagonal matrix while 
matrices arising from discretization of boundary integral equations are complete. 
Does the matrix in your coupled approach have the advantage of the FEM to be 
tridiagonal? 

Doutreleau Y., Ciarisse J-M.: No, it's not the case because of the coupling terms 
between the hull r and the coupling surface X. So we have more unknowns than 
in boundary integral method, but not so many because in many problems, only one 
layer of finite elements is needed. The real advantage of the coupling method 
consists in involving no singularities of Rankine type in the Green function. 
The second advantage in the precise problem involved in this talk is that we can 
decrease the analytical work drastically by choosing an appropriate coupling 
surface. 
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Impulsive diffraction by an array of three cylinders 

Thomas H. Farstad* 

It has recently been discovered that trapped waves are present in an array of cylinders. 
Frequency-domain work reported by Maniar and Newman [3] and others, includes both ana- 
lytical solutions and computational results. One of the important questions this phenomenon 
raises is how long it will take to build up a trapped wave or nearly trapped wave, and how 
important this will be in the generation of time series. It is also of interest to understand when 
the interaction between the cylinders occurs. 

Impulsive-diffraction analysis by an array consisting of three cylinders has been performed 
to answer these questions. Results have been reported in the frequency-domain on arrays of 
the size of 100 cylinders using a B-spline methodology, but the computational expense using 
a planar, constant strength panel method in the time-domain has so far limited this study to 
three cylinders. However, the phenomenon found in the frequency-domain are recovered. 

During work with arbitrary generalized modes in the time-domain, it was found that a wide 
variety of problems could be addressed [2]. Generalized modes were therefore used to study the 
diffraction by the three cylinders. The total potential $ describing the flow satisfies Laplace's 
equation. The free surface condition is linearized and the body boundary condition is implied 
on the mean wetted surface of the global structure. The total potential is decomposed by 

J 

where the incident potential is <£/, the scattered potential is (f>s and for all rigid body modes 
and deformation modes there is an associated radiation potential <f>j. If the number of bodies 
is N then J=6N. 

J normal vectors are also defined, in an N body problem such that ni is zero on all other 
bodies except the first. The same is true for n2 to n6. The normal vectors n-r to n\2 are nonzero 
on the second body and so on. The diffraction force can then easily be obtained by 

Fj = Jl<t>i + <t>s)njdS (2) 

where S is the mean wetted surface of the global body. The problem is solved using an integral 
formulation and a free-surface Green function as explained by Bingham et al. [1]. Giving the 
body an impulsive velocity in a mode, impulse-response functions for the influence on all modes 
are obtained. 

*Aker Norwegian Contractors, Boks 1358 Vika, 0113 Oslo, Norway (thomasfa@chf.mit.edu) 
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The global problem includes three truncated cylinders in infinite depth of radius and draft 
a. The separation distance between cylinder centroids is 2d = 4a. The wave heading is parallel 
to the array. Each cylinder consists of 240 panels total. 

Figure 1 presents the exciting force coefficient vs. nondimensional wavenumber for each 
of the three cylinders. The exciting force coefficients are found by Fourier transform of the 
diffraction impulse-response functions. The existence of trapped modes is evident. The results 
from the time-domain are compared to quantities produced by the frequency-domain code 
WAMIT, and the comparison confirms the method used. The peak occurring close to Kd/ir = 
1/2 is the Neumann trapped wave whereas the peak at Kd/ir « 1 is the Dirichlet trapped 
wave. These names correspond to the boundary conditions for the trapped waves, for further 
explanation see [3]. Peaks for higher wavenumbers are present as well, all peaks will become 
sharper in a larger array and with larger draft for each cylinder. 

The diffraction impulse-response functions for each of the three cylinders is presented in 
Figure 2. The response function is compared with the impulsive diffraction of a single cylinder 
at the same spatial location. To interpret the results it is important to understand that the 
impulsive wave is a delta function in time at x = 0, the same spatial location as the center of 
the second cylinder. As one would expect, it is found that no interaction is present before the 
wave-packet is close to the second cylinder. From the time when the majority of this wave- 
packet is coming close to the second cylinder the interaction is evident from Figure 2-a, where 
trapped waves are present for t/{L/g)ll2 > 0. As scattered waves of the second cylinder are 
becoming important, there is a rapid build-up of a nearly trapped wave-force acting on the 
first cylinder. The trapped wave has a slow decay rate and when the computation was stopped 
interaction effects could still be found. Figure 2-a indicates that it takes 4-5 wave periods to 
dissipate the energy associated with the trapped wave for this geometry. 

Figure 2-b indicates that the interaction effects on the second cylinder take place earlier, as 
can be expected. The sheltering effect is easily seen for t/(I/ff)1/2 < 0, whereas a trapped wave 
is seen for larger time. The magnitude of the wave is initially about the same as for cylinder 
one, but the decay rate is faster, of the order of 2-3 wave periods. This might be due to the 
interaction with the third cylinder, but results reported in the frequency-domain indicate that 
the separation distance is important as well. The third cylinder experiences a strong sheltering 
effect, and the trapped wave is not so clearly defined in Figure 2-c. The Fourier transform of 
the impulse-response function confirms this. 

Applying generalized modes theory, the feasibility of computing impulsive diffraction in the 
time-domain for an array has been demonstrated, and it is shown that frequency-domain results 
can be reproduced. This gives confidence in the method. For the particular case studied we 
find that the trapping effect has a fast build-up, but the decay rate is different for each cylinder. 
This might be connected with the separation distance between the cylinders, and further studies 
should therefore include variation of the spatial separation. Further work will also be to study 
this problem in finite depth with bottom-mounted, rigid, cylinders. Interaction effects have 
been found to be strongest for this case, and by convolving an arbitrary wave-packet with the 
diffraction impulse-response function one will be able to study the duration of a nearly trapped 
wave in a random sea. In the generation of a time series this will be of importance. 
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Figure 1: Magnitude of the exciting force coefficient in head seas for an array consisting of 3 
truncated cylinders. Cylinder 1 is the first in the row. The separation distance is 2d = 4a, 
where a is the radius. The baseline is the force on a single cylinder with no other bodies present. 
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DISCUSSION 

Clement A.: Your results are for evenly spaced cylinders; what would happen to 

the trapped modes in the case of uneven spacing? 

Farstad T.H.: I have not studied this problem, but I believe the resonance will 
disappear if the geometry of the problem is non-symmetric. This can be uneven 

spacing or cylinders with different diameters, for instance. 

Eatock-Taylor R.: Have you encountered any numerical difficulties associated 

with the high frequency content in the impulsive wave? 

Farstad T.H.: The formulation calculating the impulsive wave and performing the 
water line integral was developed by Bingham, Korsmeyer et. al [1]. The waterline 
integral is performed at a distance d/2 below the free surface, where d is the 

average height of the panels along the waterline. This attenuates the signal 

somewhat, and the high frequency problem is avoided. 

Molin B.: You seem to hint that one could end up with different design values 
when using a time domain approach, as compared to the usual frequency domain 
one. If linearity is assumed, identical values are finally obtained. 
On the other hand experiments on TLP like structures show quite different 

behavior in regular and irregular waves. In regular waves, quasi resonant sloshing 

motions of the free surface are observed at some frequencies leading to non-linear 

effects coming into play and ultimately breaking. In irregular waves these resonant 

sloshing motions get initiated in long wave groups at critical frequencies then 

disappears. So an aspect of the problem is how many waves it takes for the 

resonant state to be attained. In this respect your work is quite helpful. 
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NONLINEAR WAVE-CURRENT INTERACTIONS 
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INTRODUCTION 

This paper is dedicated to the analysis of wave-current interactions in the vicinity of a 
three-dimensional body. 

Most recently published numerical methods for the solution of this problem were 
developed within the frame of frequency-domain analysis, with significant contributions 
including Nossen et al (1991), Emmerhof & Sclavounos (1992), Teng & Eatock-Taylor (1995), 
Malenica et al (1995), among others. The advantage of this first approach is to provide results of 
interest such as wave forces and runups on the structures in a relatively straightforward 
manner. On the other hand, the mathematical formulation is significantly more complicated 
than with zero current speed, with specific problems such as secularity (Malenica 1995). There are 
also a number of practical limitations, such as regular incoming waves and uniform bottom 
topography only. At last, the perturbation expansion of boundary conditions with respect to wave 
steepness and current speed limits the analysis to linear or weakly nonlinear phenomena, and 
up to the author's knowledge, only linearized formulations have been published to date. 

In these conditions, as for a number of other problems (Ferrant 1996b), time domain 
analysis represents a very attractive alternative. Using a time domain Rankine panel method, it 
is theoretically possible to implement any level of boundary condition approximation, from 
linearized conditions to fully nonlinear ones, and there is no limitation on the geometry. Of 
course, due to their computational demand which may be very important, even for recent 
workstations, the convergence of the numerical models, their stability and accuracy have not yet 
been sufficiently studied. Generally speaking, there is a remaining lack of confidence in this 
class of numerical models which will undoubtedly progressively disappear with their 
development and validation. The applications of time domain analysis to wave-current 
interaction problems are still scarce, see for example Kim & Kim (1995), and are restricted to the 
simulation of problems developed to first order in the wave amplitude parameter e and in the 
current speed parameter x. 

In the present paper, we present some results of the application of fully nonlinear time- 
domain analysis to the wave-current interaction problem in the presence of a three-dimensional 
body. The incoming flow, including regular waves and current, is modelized using a stream 
function theory (Fenton & Rienecker 1981), and the problem is formulated in terms of the 
nonlinear perturbation induced to the incident flow by the body, using a formulation initially 
developed in Ferrant (1996a) for the capture of higher order diffraction effects in the time domain. 
The nonlinear free surface boundary conditions are updated using a 4th order Runge-Kutta 
scheme, the boundary value problem being solved at each step using a linear isoparametric 
boundary element method. An absorbing layer method is implemented for the absorption of 
diffracted waves. Results presented at the end of this paper concern the computation of the runup 
on a vertical cylinder in finite depth due to waves and current. 
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PROBLEM FORMULATION - NUMERICAL PROCEDURE 

The simulation strategy is the same as described in Ferrant (1996a). The incident flow, 
including here acurrent, is prescribed by a stream function theory (Rienecker & Fenton 1981), 
and the diffraction problem is solved for the perturbation (<&D> HD) induced by the body, defined by: 

(1) *(x,y) = <t>e + $D 
(2) n(x,y) = Tie + HD 

where the subscript e denotes the pure incident flow. With this definition, we obtain the kinematic 
and dynamic free surface conditions for the perturbation flow: 

(3) dt dt dz 

(4) 7T=      "Tl.-TlD--[grad<4,1+4>D)j- — 

where terms from the incident flow at the right-hand side can be evaluated exactly from the 
stream function wave model, without influence from time or space discretization. The problem 
being fully non linear, equations (3) and (3) must be satisfied on the instantaneous free surface 
position, and thus the incident potential may possibly be evaluated above the undisturbed incident 
wave. This is possible here because of the continuous prolongation of the incident potential above 
the incident wave. Of course, the formulation described above is not universal and depends on the 

availability of an explicit model for the incident wave. 
On the body surface, the no-flux condition is written: 

(5) <I>Dn = - ß(t) • *en 
where b(t) is a scalar function vaying smoothly from 0 to 1 during the first wave period, the 
simulation starting with OD=0 everywhere in the fluid domain and r|D=0 °n the free surface. 

A boundary element method is used for the solution of the boundary integral equation 
formulation of the problem.  The method is based on isoparametric triangular elements 
distributed over the different boundaries. A piecewise linear, continuous variation of the solution 
over the boundary is thus assumed, and collocation points are placed at panel vertices. Meshes are 
made of an assembly of different patches, with the assumption of continuous normal on each of 
them. On intersection lines between two patches, two collocation points are kept at the same 
geometrical position, and the boundary conditions corresponding to the two surfaces are both 
satisfied. At the intersection between two solid patches, two Neumann conditions for the two 
different normals are enforced, whereas at the intersection between solid boundaries and the free 
surface, both a Neumann (N) condition on the solid surface and a Dirichlet (D) condition on the 
free surface are satisfied. This discretization scheme reduces the integral formulation to a linear 
algebraic system to be solved for the normal velocity on Dirichlet boundaries (free surface) and 
the potential on Neumann boundaries. This system is made of the influence coefficients of 
linearly varying distribution of sources on boundary elements. Analytical formulas for the near 
field, and different approximate formulas for the intermediate and far field of the different 
panels are implemented. These coefficients are factorized with respect to sources or dipoles 
density at panel vertices, which are selected as control points. This scheme results in square 
systems of equations for the singularity distribution on the boundaries of the computational 

domain, which are solved using a preconditioned GMRES scheme. 
After the solution of the boundary value problem and the computation of fluid velocities at 

the free surface, free surface conditions considered as ODE's for (t> and r, are integrated in time. 
A fourth order Runge-Kutta method is used for that purpose, requiring four solutions of the 

boundary value problem per time step. 
The radiation condition is enforced by adding dissipative terms in equations (3) and (4) 

on the outer part of the free surface mesh. 
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NUMERICAL RESULTS 

The numerical scheme has been applied to the simulation of the diffraction of regular 

waves by a vertical cylinder in water of finite depth, with or without current. The cylinder radius 

is equal to the water depth, i.e. R/H=l. and the wavenumber is koH=1.0. The wave amplitude is 

A/H=0.1, and computations have been performed for current speeds U/sqrt(g/H)=-0.1, 0.0, 0.1. 

Figure 1 and 2 compare the time series of the wave elevation at the weather side (Fig.l) 

and at the lee side (Fig. 2), for the three different values of the current speed. Figure 3 compares 

the maximum runups along the cylinder waterline in the three cases. Present nonlinear results 

at zero Froude number seem to be close to the second order model of Büchmann et al (1997). 

However, sensible differences in the influence of the current are observed between their approach, 

which is based on a perturbation analysis up to second order in the wave steepness and to first 

order in the current speed, and the present fully nonlinear model. 

CONCLUSION 

Wave-current-body interactions simulations presented in this paper were based on a 

fully nonlinear model in which no assumptions regarding the relative magnitudes of wave 

steepness and current speed are necessary. With the present values of the current and wave 

parameters, we observe sensible differences between the present fully nonlinear approach and the 

perturbation analysis results of Büchmann et al (1997). These differences remain to be clarified, 

first by comparing both approaches for lower values of the wave amplitude and current speed, but 

also by comparing numerical results and experimental values. We hope to be able to report on 
such comparisons in the near future. 
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DISCUSSION 

Grilli S.: Did I correctly understand that you initialize your computations with a 
streamfunction, wave everywhere in the domain? Wouldn't this cause initial 
transient response that may affect the initial oscillation observed in your runup 
height. These, hence, may not be entirely physical. 

Ferrant P.: Yes, the initial conditions correspond to the undisturbed incident 
wave in the domain, without body. The body is introduced through the Neumann 
condition which is multiplied by a smooth ramp function going from 0 to 1 during 
the first wave period. 
Of course this procedure produces unphysical transients, but they die out very 
quickly and a periodic steady state is reached within less than two periods. 
Relevant results such as forces and runups are then derived from the steady state 
part of the solution. 
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Higher-order wave drift forces on bodies with a small 
forward speed based on a long wave approximation 

S.Finne 

Department of Mathematics, Mechanics Division University of Oslo, Norway 

1 Introduction 

The mean wave force acting on bodies, stationary or moving with a small forward speed in a wave 
field is considered. This force, the so called wave drift force, has shown to be of great importance 
within offshore technology. The change in the drift force because of the small speed, the wave drift 
damping, may be an important damping mechanism. 

Calculation of the wave drift forces has traditionally been based on linear theory giving the drift 
force consistently to second order in the wave amplitude, the mean second order wave force. We 
here refer to Grue & Biberg (1993), who extended the theory to include a finite depth. In this 
work we use a long wave approximation to calculate higher order wave drift forces on a vertical 
cylinder in shallow water, but of interest is also the time-dependent higher order wave force. The 
latter is among others also considered by Jiang k Wang (1995), for stationary bodies. As a model 
we use one version of the weakly nonlinear and dispersive Boussinesq equations, see. e.g. Wu 
(1981), Pedersen (1989). We remark that the Boussinesq equations contain the fully nonlinear 
hydrostatic equations. The equation set is then modified to include a small current. It is necessary 
to point out that in many practical problems, the water depth is outside the limit of the long wave 
approximation. One of the intentions with the present work is however to indicate higher order 
effects on the wave drift force. 

The body is exposed to incoming cnoidal waves, and the wave field around the body is solved 
numerically in space and time by the finite element method. Then the drift force is computed by 
first integrating the pressure over the body surface, and then time-averaging the periodic force. 
The wave drift damping is calculated by numerical differentiation of the drift force with respect to 
the small current. 

2 Mathematical formulation 

The problem is considered in a frame of reference (x, y, z) moving with the body, in which there 
is a small constant current UQ in the positive ^-direction. Assuming potential theory, the velocity 
field may be expressed by a velocity potential $(x,y,z, t), where t is the time. According to the 
long wave approximation used here, we then introduce a depth average velocity potential ip(x,y, t) 

by 
l     P 

■tp(x,y,t) = —— /    ${x,y,z,t)dz (1) 
h + T] J_h 

Here r](x,y,t) denotes the surface elevation, and the constant h is the mean water depth. We 
observe that the unknowns ip and 77 are only functions of the horizontal coordinates. Furthermore 
tjj is divided into two parts ip(x,y,t) = (f>(x,y,t) + <f>0(x,y) where cf> and <f>o represent the velocity 
potential due to the waves and the small current respectively. Typical wave length Ao, and typical 
wave height Ho are then defined, and three important dimensionless parameters ao, a and e given 
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by 
Uo Ho h , . 

a° = 7P'       a = T'       e = Äf (2) 

will be present in the model. The gravitational acceleration is denoted by g. The actual version 
of the Boussinesq equations that will be used, and modified to include a small current, has the 
advantage of containing the unknown velocity potential instead of the two horizontal velocity- 
components. This reduces the total number of unknowns. The equation set for the unknown 
potentials 4>o and 0, and the surface elevation rj is 

V2<p0 = 0 (3) 

^+^+^)2-yV2^ + V<^W = 0 (4) 

^ + V-((/1 + 7?)V^) + V0O-VT? = O (5) 

where neglected terms are O(al,aoa>e,a2e,ae2). Eq. (4) represents conservation of momentum, 
while eq. (5) represents mass conservation. 

The force acting on the body is obtained by integrating the pressure over the body surface. The 
depth integration is done analytically, and for the time dependent force F(i) we then obtain the 
following expression in terms of </>o, <}> and r\ 

F(i) = phf  (-^ + |V - \{V4>? - Wo • V0)ndr (6) 

Here TB denotes the contour line of the body, n is the normal vector pointing out of the fluid 
domain and p is the fluid density. By time-averaging the force with respect to the wave period, we 
obtain the drift force F 

phL^ '-I(V*)'-V*>.V*-i(^ L(y<t>)2 -V<t>o-V4>- -{-^)2)ndT (7) 

In this expression neglected terms are O(al,aoa2e,a4e,a2e2), which is consistent with (3) - (5). 
The wave drift force is then expanded in order of a0 by F = F0 + «oFi, where F0 is the zero speed 
drift force, and «oFi is the wave drift damping force. 

3    Numerical simulation 

The numerical solution is performed by using the finite element method, with the ability of easily 
consider bodies of arbitrary shapes. Differentiation with respect to time is approximated by finite 
difference. For further details about the numerical method, we refer to Irmann-Jacobsen (1989) 
where (4)-(5) have been solved numerically when <fo = 0. 

The model is applicable to an arbitrary fluid domain, but in the present study we want to calculate 
the drift force on a body in an unbounded fluid, with the incident wave field propagating in positive 
x-direction. We therefore define the simulating area as a square basin, (see. Fig 1), and solve (3)-(5) 
with the following initial and boundary conditions. 

Eq. (3) for the unknown (f>o- 

^ = -U0,Uo    on     TL}TR (8) 

^ = o   on   r5,rB (9) 

Eq. (4) and (5) for the unknowns <f> and r}\ 

(f>=7] = 0     t = 0 (10) 
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4> = <t>l{t),     ri = rji{t)     on     TL (11) 

|^ = o   on   rB,rs,rÄ (12) 

Considering the solution of (4) and (5), (11) is the essential and (12) the natural boundary condition, 
the latter being the rigid wall condition. The incident waves given by r\i and </>/ with given wave 
length A, and given wave height H, are the cnoidal wave solution of (4)-(5). 

It is necessary to discuss some aspects about the discretization and the choice of boundary con- 
ditions. The time-averaging of the force must not be done before the wave field around the body 
has become nearly periodic in time. We must therefore either impose a radiation condition, or use 
a very large simulating area. The problem with the first is that it is difficult to ensure that the 
boundary does not reflect any significant waves, this has been the outcome from simulations where 
a radiation condition has been applied. In the latter case, one normally need a large number of 
elements. It is however found, by simulation of solitary waves propagating in one direction, that 
by increasing gradually and not to fast the element size, reflection because of grid-variation may 
bee neglected. We therefore use a large basin, with increasing element sizes in the outgoing region 
(i.e. downstream and to the side of the body see. Fig 1). It is then like wise to use the rigid 
wall condition on Ts and TR. A time-averaging procedure is then established, and the drift force 
may be computed within a reasonable CPU time. An analytical solution of the second order drift 
force based on (4)-(5) when <f>o = 0, has been developed for a circular cylinder. The mean second 
order wave force has then been computed numerically and convergence-tested with the analytical 
solution, with very good accuracy. 

4    Results 

In the first example, the body is a circular cylinder, with radius R = 5h, the size of the basin is 
110h x llO/i with 11745 elements in half of the fluid domain. The body is exposed to an incident 
cnoidal wave train, and Fig. 2a shows an example of the x-component of F(t) at two different 
values of Uo- Fig. 2b and Fig. 2c then shows the ^-component of the zero speed drift force and the 
wave drift damping at different values of the wave height, as a function of the wave length. The 
numerical differentiation of the drift force is done about Uo = 0.0 with AUo = 0.04^/gh. H = 0.0 
means second order theory. What is interesting to note is that both the wave drift coefficient ^j$2R 

and the wave drift damping coefficient —jf^R are decreasing with increasing values of ^. In the 
last example, Fig. 2d, the body is a model of a ship with length L = 10/J and beam B = 1.79/i. In 
this case we see that the wave drift damping coefficient is not always less for the steepest waves. 
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Figure 1: Discretization of half of the fluid domain, for the body being a circular cylinder. 4095 
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Figure 2: (a): The z-component of F(t) for the circular cylinder, H/h = 0.2, A/2Ä = 1.5, U0/s/gh = 
0.02 (solid line) and -0.02 (dashed line), (b) and (c): The x-component of F0 and Fx for the circular 
cylinder, H/h = 0.0 (solid line), 0.1 (long dashed line), 0.2 (dashed line) and 0.3 (dotted line), (d): 
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line). 

74 



STEADY FLOW NEAR A WEDGE SHAPED BOW 

E. FONTAINE 
Ecole Centrale de Nantes, 1 rue de la Noe, 44072 Nantes Cedex, France. 

O.M. FALTINSEN 
Division of Marine Hydrodynamics, 

Norwegian University of Science and Technology, N-7034 Trondheim, Norway. 

1 Introduction 

The free surface steady potential flow around 
a fine wedge shaped bow is studied. The con- 
cept of a bow flow solution was first introduced 
by Ogilvie (1972) and has recently been studied by 
(among others) Faltinsen & Zhao (1991), Fontaine 
& Cointe (1997), and Fontaine (1996). When the 
so called 2D + 1/2 or 2D +1 theory is used to find 
the bow solution, good agreement is generally re- 
ported between the measured and computed wave 
profile along the hull. The main differences appear 
at the "nose" (apex) of the wedge where an ini- 
tial elevation is observed but is not predicted. To 
over-come this misfit, a local analysis of the flow 
in the near-bow domain is performed (see fig. 1). 
The near-bow solution matches on the one hand 
to the bow-flow solution and on the other hand 
to the far-field solution. It also leads to an esti- 
mate of the wave elevation at the nose of the bow. 
Comparison with experiments are given. Exten- 
sion of the theory to general cross-sections will be 
discussed in the oral presentation. 

2 The near-bow flow 

The two non-dimensional parameters describing 
the wedge shaped bow are tana = b/L and 5 = 
h/L. The near-bow domain is based on a length 
scale equal to the draft h and a velocity scale equal 
to U. The non-dimensional variables are defined 
as : 

x 
X=h' y = r 

y_ 

where ip is the velocity perturbation potential and 
r\ the free surface elevation. Assuming the ship to 
be slender or thin (a < 1, 8 < 1), the following 
asymptotic expansions are introduced : 

<p(x,y,z:a,6)    =    ß^a, 6) <py{x, y, z) + o{fii) 

f)(x,y;a,6)   =   i>i(a,<5) fn(x,y) + o(u\) 

Since there is no dilation of the space variables, 
the leading order perturbation potential <p\ sat- 
isfies the three-dimensional Laplace equation in 
the fluid domain. Using the non-dimensional vari- 
ables, the body boundary condition gives : 

- + o(l) = 0 {l + ßl-d¥)-TTy 

The principle of least degeneracy implies that 
fii = S. When the ship is thin (a <C 5), the re- 
sulting condition is   : 

>,».») = . (i) 

on the center plane of the hull. 
The kinematic free surface condition is imposed 
on z = (a/'S) v\ fji and takes the form : 

+tana 

dx    dx 

dy     dy      v\ dz 
S dip 

- + o(l) = 0 

The principle of least degeneracy implies that v\ = 
5 so that the resulting condition at first order is : 

[§-tl<-.°> = ° dx       dz 

The dynamic free-surface condition is then : 

+    tanaf-?)1 + o(l) = 0 

(2) 

(3) 

Since r)i is of order 0(1), a non-trivial solution can 
then only be found if : 

g^°< 
1 

tana (4) 
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Figure 1: illustration of the different domains of the composite solution. 

Fontaine & Cointe (1997) obtained a similar con-   Taking the limit and performing the integral leads 

dition for the different approximations to be co-   to : 

herent in the bow flow problem : 

g_L 

U2 
<0(8) (5) 

Since we study both the bow flow and the near- 
bow flow, we must satify the condition (5) which 
is the more restrictive. In that case, 2D + t theory 
can be used to compute the bow solution and the 
previous near-bow approximations remain valid. 
As a consequence, gravity effect can be neglected 
at first order in equation (3). Assuming the per- 
turbation potential vanishes at infinity in front of 
the ship (x ->■ -oo), the resulting condition is : 

<pi(x,y,0) = 0 (6) 

The perturbation potential satisfies the three- 
dimensional Laplace equation subject to the 
boundary conditions (1) and (6). The solution of 
this problem can be expressed in term of a distri- 
bution on the center plane of the hull of Rankine 
sources and mirror sinks above z = 0 : 

i   r°      tLis 

S&i = lim — /    dQ /       d£G{x,y,z,S,0,Q 
8^o 2n 7-1     Jo 

1  f° i r-a + v^ + ^ + ^-CFi dc m 

^ = ^LlnLx + ^ + f + ^+o^ (7) 

Matching of the different 
solutions 

Fontaine & Cointe (1997) use the method of 
matched asymptotic expansions to define an in- 
ner solution valid in the bow region, and an outer 
solution valid far from the ship. Even if the outer 
solution remains valid in front of the ship, these 
two solutions are not of same order of magnitude 
in the near-bow domain so that they do not match 
at first order (Fontaine, 1996). The introduction 
of the near-bow domain removes this gap since the 
near-bow solution matches on the one hand to the 
bow flow solution and on the other hand to the 
far-field solution. 
Using the following non-dimensional variables : 

with :    G = {(x - a2 + y2 + (* + 0 

-[(x-02 + y2 + (^-cr 

21-1/2 

-1/2 X  = 
X 

L1 
y_ 
V = / y

2 + *2, 
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the perturbation potential is given by1 : 

S ipi (x, y, z)     in the near-bow domain 
S ipi (x, y, z)     in the bow domain 
S2 <pi(x, y, z)    in the far-field domain 

The far-field solution is given by a distribution 
of three-dimensional vertical dipoles on the axis 
x > 0. Using 6 — tan_1(5/y), (pi is given by : 

—jJi{s)       r sin(0) lPi(x,f,e) f Jo 
■ ds    (8) 

47r   [{x-s)2 + P]2 

The dipole density is given by the behaviour of 
the bow flow solution asf-4 +oo : 

fi(x)   sin(0) 
lim <pi(x, r,9) = 

2K 
(9) 

3.1    Matching of the near-bow and bow 
solutions 

In order to match the near-bow flow solution 
to the bow flow one, we define an intermediate 
variable xx = x/x(S) where S <C x(<^) "C 1. xx 

is of order 0(1) in the overlap domain and the 
matching condition at first order is : 

hm    koi 
<5-K)      VT 

xx>° 
rx = 0(l) 

■X(S) 
xx,y, z) - (pi(x(&)xx>y,z)\=° 

This condition states that the behaviour of the 
bow solution at origin must be the same as the 
behaviour of the near-bow solution as x —> +oo. 
Taking  (7)  into account, this condition implies 
that : 

\y2 + (z-C)2- (pi(0,y,z) 
1   f° ,  \f ;}d(    (10) 

3.2    Matching of the near-bow and far- 
field solutions 

3.2.1    Bow side matching 

The behaviour of the near-bow solution far aside 
the ship bow (as x = 0(1) and r —> +oo) must be 
the same as the behaviour of the far-field solution 
in the vicinity of the ship bow side, i.e. as f —>■ 0. 
As before, we define an intermediate variable rx = 

r/x(S) {ö < x(£) < 1) which is of order 0(1) in 
the overlap domain. The matching condition is at 
first order : 

lim   [pi(£^rx,0)-S<p1(Sx,x(S)rXi9)]=O 
rx = 0(l) 

When S -» 0, it follows from (7) and (8) that : 

;2 + (i + C)2. 

This can be recognised as a solution of the bow 
flow problem. Indeed, this expression satisfies 
the two-dimensional Laplace equation subject to 
the body boundary condition and an homoge- 
neous Dirichlet condition on the unperturbed free- 
surface. As a result, the two solutions match if the 
initial conditions for the bow flow problem are : 

<£i(0,y,0) = 0    and    rh(0,y) = 0 

These are the same initial conditions as used in the 
bow flow solution by Fontaine & Cointe (1997) and 
Faltinsen & Zhao (1991). However, this matching 
is more precise since the bow flow and the near- 
bow flow solutions have the same order of mag- 
nitude in the overlap domain. As we will see in 
section 4, it also leads to an initial wave elevation. 

-      f       X(S) -V 1     6   sin0     ^r   S
2 

+ 0[ 
2TTX(£)   ry x(sy 

j"(0)    5   sinÖ       r   6   1 

The dipole density fi(0) is determined by using 
equations (9) and (10). This leads to /x(0) = -2 
so that the two solutions match. 

3.2.2     Matching in front of the bow 

The behaviour of the near-bow flow solution far 
ahead of the bow, as r = 0(1) and x -> —oo 
must equal the behaviour of the far-field solution 
in front of the bow (as x —> 0_). Using an interme- 
diate variable xx = x/x{&) so that S <C x(^) ^ 1) 
the matching condition is at first order : 

lim    [!p1(^P-xx,r,9)-8lp1(X(S)xx,5r,e)]=0 

xx<0 

When S -► 0, it follows from (7) and (8) that : 

,X{8)       - „x 1     62    rsinö       r   8
2   . 

Vl(—Xxtr,0)    =    ___ + o[^] 

S<Pi{x^)xx,Sr,e)   =    —^ —— + o[ 
8K X(S)2   xj, l

X(Sy 

As a result, the two solutions match. 

'where the subscript 1 indicates that the quantity is of 
order O(l) 
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4    Composite solution 

The composite solution is obtained by adding 
the near-bow to the bow solution and by sub- 
stracting the common part (given by eq. (10) for 
the potential). In front of the bow (s < 0), the 
composite solution for the wave elevation is equal 
to the near-bow solution and can be found by inte- 
grating the kinematic free-surface condition (2) : 

x + \Jx2 + y2 

fn{x<0,y) = -\x\n{- 
n L x + \/xl + yz + 1 

+yWy2- yWy2 + i] 
The wave elevation in front of the bow is therefore 
independant of the speed and the wave elevation 
at the nose is : 

ah 
»7(0,0) = (11) 

These results differ from the results of Sclavounos 
(1994). He predicted half the value of eq. (11). 
The theoretical result has been compared with ex- 
periments presented by Fontaine (1996). Because 
of the small size of the tested model, the effect 
of surface tension is important. The experimen- 
tal results can be scaled to full scale by introduc- 
ing a surface tension parameter (see fig. 2). Full 
scale corresponds to that surface tension parame- 
ter goes to zero. The results show that eq. (11) is 
reasonable. 
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Figure 2: Initial elevation as a function of the sur- 
face tension parameter, a = 15°, Fh = U/\fgh, 
a = surface tension. 

For the wave elevation along the hull (s > 0), the 
following three-dimensional correction should be 
added to the bow flow solution : 

A?? = — [s In (2s (-s + \Jx2 + 1)) 

x/h o- 0.05 0.1 0.15 0.2 0.3 
nAr)/(ah) 1.0 0.83 0.73 0.66 0.6 0.5 

x/h 0.4 0.5 1. 2. 5. CO 

TrAri/(ah) 0.43 0.38 0.22 0.12 0.05 0 

Table 1: Numerical values of the wave profile cor- 
rection. 

However, this three-dimensional correction is not 
sufficient to completely explain the differences 
between experiments and the bow solution by 
Fontaine & Cointe (1997). One reason to this 
is surface tension effects like in fig. 2. There 
were not done measurements for the wave eleva- 
tion along the hull for small surface tension pa- 
rameter to see any trend for full scale situation. 
This need futher investigations. 
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DISCUSSION 

Tuck E.O.: I applaud this study, which corrects a well-known deficiency in the 
2.5 D theory, namely absence of a rise in FS at the bow. But I am not sure how it 
was achieved, since surely matching between the local bow flow and the 2.5 D 
expansion should have supplied a non-zero initial condition to the latter. 

Fontaine E.: Thank you for your comments. The matchings have been performed 
using the classical technique of matched asymptotic expansions and the details of 
the procedure will be published soon. It appears that 3D effects arise in the 
composite solution which is the sum of the 2.5 D expansion and the local bow 
flow, substracting the common part of the two expansions. 
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The problem of waves generation by moving surface pressure disturbance 
is well known and well enough studied in the works of many authors. Here we 
present the results of numerical simulation of 2D plain waves generation by 
negative pressure disturbance, which revealed a new regime when moving with 
a critical speed disturbance doesn't generate upstreame-advancing solitons. 

1. Mathematical model 
Numerical model used in computations is the so-called discrete nonlinear- 

dispersive shallow water model [1]. The essence of this approach is that an 
incompressible flow with a free surface is simulated by a finite mechanical sys- 
tem of material particles with some holonomic constraints which represent an 
incompressibility condition. The governing equations are obtained then from 
Hamilton principle. The main advantage of such models is that they provide 
exact conservation of mass, momentum, angular momentum and energy even 
for coarse spatial discretization. So they give, in particular, the numerical 
solutions which are real solitary waves advancing with constant amplitude, 
shape and phase speed without any numerical dissipation or radiation. This 
property seems to be important for long-time calculations and played, in par- 
ticular, significant role in solving Mach reflection problem [2]. 

In a shallow water case some additional simplifications can be made which, 
as in case of usual fluid motion equations, allow to reduce the dimension of a 
model. A detailed description of the model and the results of numerical testing- 
it's accuracy are given in [1]. There was shown also that for even bottom this 
model gives a finite-dimensional approximation of well known Green-Naghdi 
(1976) equations. As far as the problem under consideration deals only with 
even bottom, one may assume that the discrete model used here is just a 
kind of difference scheme for Green-Naghdi equations in lagrangian variables, 
which conserves exactly the horizontal momentum and total energy. 

2. Numerical results 
An infinite fluid layer of constant depth H with a free surface is considered. 

The moving surface pressure disturbance is given by 

_ Jpo cos2(7r£/2Z),   if K| < L 
p-\0. if \S\ > L. 
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where ( = x-xQ-Ut. Hereafter we assume the depth H, fluid density p and 
gravity acceleration g being unit, and the pressure disturbance being moved 
with a critical speed U = 1. The computational domain moves step by step 
after disturbance with the boundary conditions corresponding to the quies- 
cent liquid at the right end and a kind of "open" condition at the left one. 
It is known that for p0 > 0 such disturbance, pushing a fluid ahead, gener- 
ates periodically upstream-advancing solitons. The wave resistance coefficient 
always remains positive oscillating near some mean value. 

When po < 0 the solitons are also generated but the mechanism is different. 
This rarefaction region first pulls out a wave of large amplitude which, having 
a large speed, quickly overtakes the pressure source and losing an amplitude 
becomes a soliton. The wave resistance coefficient periodically changes sign, 
but the mean value, as far as a radiation of solitons takes place, is usually 
nonzero. It appeared, however, that the halfwidth L of a rarefaction region 
can be specially chosen so that a new periodic mode arises when no upstream- 
advancing soliton are generated. This effect first was observed for the solitons 
of large amplitude, wich exist only in shallow water approximation but break 
down in reality. Then it was found to be the case for all amplitudes. 

In fig.l an example of such mode for p0 = -0.12 is given. It is well seen that 
the pressure disturbance pulls out a wave, which coming to the right end of 
pressure region loses it's amplitude and dissapears there completely. At this 
time the next wave appears near the left end of pressure region and so on. The 
wave resistance coefficient Cd versus time t plot shows periodic behaviour with 
almost zero mean value. In our calculations this periodic mode took place for 
some 8-10 periods and then a soliton of small amplitude was emitted (see fig.l 
(f)), which probably means that this mode is unstable. Still it seems to be 
interesting as an example of new nonlinear and nontrivial solutions. 

In fig.2 the values of L versus p0 are plotted for which this mode is realized. 
Fig.3 shows the maximal values of wave amplitudes which arise in this regime. 
It can be seen that this mode exists for moderate amplitudes and so it is 
possible trying to observe it in experiment. 

1. Frank A.M. Discrete nonlinear-dispersion shallow water model. J. of Appl. 
Mech. and Techn. Phys.(transl.),1994,v.35,No.l,p.34-42. 
2. Serebrennikova O.A., Frank A.M. Numerical modeling of Mach reflection 
for solitary waves. J. of Appl. Mech. and Techn. Phys.(transl.),1993,v.34,No.5. 

p.610-618. 
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MOTION SIMULATION OF A TWO-DIMENSIONAL BODY AT THE SURFACE 
OF A VISCOUS FLUID BY A FULLY COUPLED SOLVER 

L. GENTAZ, B. ALESSANDRINI, G. DELHOMMEAU 
Laboratoire de Mecanique des Fluides 

Ecole Centrale de Nantes B.P. 92101 44321 Nantes Cedex 3 
phone: (33) 02 40 37 25 96, fax: (33) 02 40 37 25 23, e-mail: Lionel.Gentaz@ec-nantes.fr 

INTRODUCTION 

We present here an original solver [1] to compute two-dimensional free surface flows in viscous and 
incompressible fluid by a finite difference method. In most of the methods used nowadays for 
solving such problems, free surface elevation is updated at each time step by integration of the 
kinematic condition after computation of velocity and pressure fields [2] [6]. In these methods non- 
physical boundary conditions must be introduced to solve linear systems and non-linear free surface 
boundary conditions cannot be computed accurately. In the method presented here exact non-linear 
free surface boundary conditions are implemented on the real position of the free surface. At each 
time step the totally coupled linear system for velocity, pressure and free surface elevation unknowns 
is solved by a CGSTAB algorithm. Results for a free surface-piercing cylinder in forced heave, sway 
or roll motion are presented. 

EQUATIONS AND NUMERICAL RESOLUTION 

Navier-Stokes equations for laminar flows are written under convective form in a cartesian system 
(V,*2) defining the physical fluid domain. The dependant unknowns are the cartesian components 
(y,w2J of velocity, the dynamic pressure p = P + pgx2 including gravitational effects and the free 
surface elevation h. A curvilinear system (e\e2) is used to simplify the implementation of boundary 
conditions. Here e1 = Ois the equation of the immersed part of the body and e2 = 0 the equation of 
the free surface. A partial transformation of the moving physical space in a fixed curvilinear 
computational space is then defined. 
In classical uncoupled methods a linear system issued from discretisation of transport and continuity 
equations is solved by weakly-coupled algorithms such as PISO or SIMPLER. Thus new velocity 
and pressure fields are obtained at each time step. The free surface elevation is updated by integration 
of the kinematic condition. This method leads to several theorical or numerical problems : 
- a free surface boundary condition for velocities is lacking because of the use of kinematic condition 
for free surface elevation calculation. A supplementary non-physical condition must be used and does 
not allow an accurate calculation of viscous or surface tension effects. Moreover the normal dynamic 
condition is used as a Dirichlet condition for the pressure what leads to a poor mass conservation just 
under the free surface. 
- the singularity of the kinematic condition at the intersection of free surface and solid body can be 
solved by introducing a meniscus. For veiy refined grids in the vicinity of the body this meniscus can 
become too important and lead to numerical divergence of the computation. 
- the use of the SIMPLER algorithm gives a poor convergence of non-linear residuals (fig. 1) and it is 
a serious problem to compute unsteady flows. 

In the new method proposed here the kinematic condition is used as a free surface boundary condition 
for velocity. The tangential dynamic condition is the other condition on the free surface for velocities 
(as in the uncoupled method). The discrete pressure unknowns are yet located at the centre of the cells 
(velocity unknowns are located at the nodes of the mesh) and no pressure boundary conditions are 
required. With these choices we have only physical boundaries conditions on the free surface. The 
normal dynamic condition gives a relation between pressure and free surface and will be used to 
compute the free surface elevation. 
A totally-coupled solution is chosen to ensure mass conservation. 
The mass conservation is represented by a pressure equation which is discretised by a Rhie and 
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Chow procedure to avoid checkerboard oscillations. This procedure is generalised for cells located 
near the free surface to take free surface effects into account and to make the pressure block 
inveitible. At each iteration the following linear system for discrete velocity, pressure and free surface 
elevation unknowns (respectively called U, P and H) is solved and inverted by the iterative CGSTAB 
algorithm [8]: 

transport equations —> 
pressure equation —> 

normal dynamic condition —> 

M„  ' Mr 
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Mi 
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With the coupled method the convergence of non-linear residuals is very good (fig. 1) compared to 
the convergence of the uncoupled method. Moreover the total CPU time is decreased by the totally 
coupled method (two or three twice as fast than the uncoupled method for the same global simulation 
time). 

Uncoupled method 
(numerical resolution by SIMPLER) 

Totally-coupled method 

1.0 1.5 2.0 2.5        3.0        3.5 
CPU time (mn) 

Fig. 1 : Convergence of non-linear residuals with 
the present method and an uncoupled method 

RESULTS 

The monoblock structured grids used here are generated by an direct algebraic method. 
Heave forced motion has been first computed for a circular cylinder. The flow is supposed to be 
symmetric and simulated only in half the fluid domain. 
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Fig. 2 : Added mass in heaving 

0.5 1.0 1.5 tfr/g 

Fig. 3 : Damping coefficient in heaving 

A Fourier transform of the computed time series of the hydrodynamic forces acting on the body leads 
to non-dimensional hydrodynamic coefficients. 
Numerical results are in good agrement with Yamashita [10] and Tasai' et al. [7] experiments even for 
the 3rd-order force amplitude [3] and perfect flow computations [5]. Added mass and damping 
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coefficients are presented on figures 2 and 3. 
For numerical simulations of a rectangular cylinder in forced sway or roll motion [4] the fluid domain 
comprises two free surface boundaries which are not connected. These two interfaces are defined by 
the equations e  - 0 and e  = e2

asK = 1 (see fig. 4). 

Free surface Free surface 

Fig. 4 : Shape of the grid during a computation in roll 

For the sway motion the beam-to-draft ratio BITwas 2 (5=0.4 m in the present computation and in 
Vugts experiments [9]) and the forced motion of the form y{t) = yas>in(cot) with yfl=0.02 m. The 
present method leads to a good accordance of the computed added mass with the experimental results 
or perfect fluid computations of Vugts (fig. 5) but under-estimates the damping coefficient for non- 
dimensional frequencies upper than 0.75 (fig. 6). 

2.0 
■      Present computations 
o      Vugts experiments 

Perfect fluid computations 
1.5 

li*2gr
u 

■     Present computations 
o     Vugts experiments 
 Perfect fluid computations 

Fig. 5 : Added mass in swaying 
(for a rectangle) 

^B/2gf20 

Fig. 6 : Damping coefficient in swaying 
(for a rectangle) 

For roll motion the beam-to-draft ratio BIT was 2 and the forced motion of the form 
0(0 = 0flsin(fi») with 3>a=0.1 rad. Results are compared with viscous flow computations of Yeung 
et al. [11] (made with <£a=0.05 rad) based on the Free-Surface Random-Vortex Method and Vugts 
experiments with <2>a=0.1 rad (non-dimensional experimental results for <2>fl=0.1 rad and <2>fl=0.05 rad 
are nearly the same) or inviscid flow computations. 
The CMij and CAy with / different from j are the mass coupling and the damping coupling 
coefficients in the /-equation by motion in the ;'-mode respectively (with 1 for sway motion, 2 for 
heave motion and 3 for roll around an axis perpendicular to the plane of the flow). The hydrodynamic 
coefficients are non-dimensionalised according to CMJJ = ay I pAB2 and CAy = by«jB/2g / pAB2. 
A is the area coefficient. A 10000 nodes-grid (100 on the body) was used for most of the 
computations with a time step of 0.01 s. For lower motions frequencies a 23000 nodes-grid (230 
nodes on the body) was required and the time step was 0.005 s. 
Added roll moment of inertia (fig. 7) is well-predicted and close from Vugts experiments. However 
the damping coefficient in roll is highly over-predicted (fig. 8) for all motion frequencies. On the 
contrary the mass and damping coupling coefficients are in good agreement with Vugts experiments 
and perfect fluid computations (fig. 9 and 10) except for the mass coefficient for the lowest computed 
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frequency. 
These first results are satisfying and show the interest of viscous-flow computations for such quite 
complex flows. However other computations must be undertaken particularly for the calculation of 
the damping coefficient in sway and roll. More refined grids in the vicinity of the body will be used to 
try to compute viscous effects (particularly vortices shedding near solid walls and corners of the body 
in motion) with more accuracy and should improve present results. 
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Fig. 7 : Added mass moment of inertia 
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DISCUSSION 

Yeung R.W.: These are encouraging calculations along a boundary-fitted 
coordinate full N-S solver of Yeung & Ananthakrishnan (1992, J. Eng. Math.). 
However, I do not believe the calculations you presented have sufficient precision. 
Fig. 3 shows that the total damping with viscosity is less than the inviscid solution. 
Our recent FSRVM method (Ref. 11) has been validated by comparing vorticity 
structures with DPIV measurements. As mentioned in Ref. [11], we have some 
doubts that Vugt's expt. data for added inertia is correct. Your calculations for 
CM33 may well be off by as much your damping is unreasonably high in Fig. 8.1 
hope you can be successful in tracking down the problems. 

Gentaz L., Alessandrini B., Delhommeau G.: The originality of the present 
method consists in solving only one fully-coupled linear system for the velocity, 
pressure and free surface elevation unknowns at each iteration. This method first 
implemented by B. Alessandrini (1995, Numerical Method in Laminar and 
Turbulent Flows, Atlanta, vol. IX, part 1, pp. 1173-1184) allows complete free- 
surface boundary conditions to be taken into account and an efficient and fast 
convergence during nonlinear process (figure 2) contrary to weakly-coupled 
methods as this one described by Yeung and Ananthakrishnan in Journal 
Engineering Mathematics, 1992, or others (1994, proceedings of CFD Workshop, 
Tokyo). 
We do not believe that differences between Navier-Stokes computations and 
experiments for the figure 3 (damping coefficient for a circular cylinder in forced 
heave motion) are significant. In this case, part of viscous forces seems negligible. 
In our opinion, these differences can be explained by Fourier analysis of forces 
acting on the body or gaps in the manual plot of experimental data but are not due 
to an insufficient precision in the computation. 
Concerning hydrodynamic coefficients for a rectangular cylinder in forced roll 
motion, damping coefficient is actually largely overestimated and its computation 
must be improved. For the added inertia coefficient CM33 we hope you can 
provide other experimental data to confirm your hypothesis and computations. 
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AN INVESTIGATION OF STANDING WAVES USING A FULLY NON-LINEAR 
BOUNDARY ADAPTIVE FINITE ELEMENT METHOD 

D M Greaves1, A G L Borthwick2 and G X Wu1 

1 Dept of Mechanical Engineering, University College London, Torrington Place, London WC1E 7.TE, U.K. 
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1.  INTRODUCTION 
This paper describes a quadtree based finite element solver for two-dimensional fully 

non-linear time-dependent free surface flows. In the scheme, the free surface is allowed to 
deform, and a new mesh created at each time step. To ensure fast, fully automatic mesh 
generation, an underlying Cartesian quadtree grid is first created about seeding points at the 
free surface and on rigid boundaries; the quadtree grid is then triangularised to generate the 
finite element mesh. 

Details of the governing equations and finite element formulation used in this work 
are given by Wu and Eatock Taylor (1994, 1995). The quadtree-based grid generation is 
described in detail by Greaves (1995). Numerical results obtained here are for standing waves 
in rectangular tanks of various aspect ratio. The results show encouraging agreement with 
analytical solutions and alternative numerical data. 

2.  RESULTS 
The fully non-linear moving boundary finite element method was used to simulate 

various cases of standing waves in rectangular containers. Mesh size and time step 
convergence tests were carried out for a steep standing wave profile, taken from Mercer and 
Roberts (1992). Standing waves generated from sinusoidal initial profiles were also 
considered. The decrease in non-linear wave frequency with amplitude in deep water, and 
the corresponding increase in shallow water, noted by Tsai and Jeng (1994) as well as 
Vanden-Broeck and Schwartz (1981) and Tadjbakhsh and Keller (1960), are observed. Each 
of the standing wave simulations presented herein has a larger crest amplitude than trough 
amplitude, which is typical of non-linear wave profiles (Tsai and Jeng, 1994). 

The various parameters used in the numerical simulations are non-dimensionalised as 
follows, 

0 =  *1_,     L = ^,     t- 
(„*\± (h*^1 

h*{g*h*) 
h* 

8 

[h* 
2t*       w = 

81 

2 w*     ,        (17) 

where § is the velocity potential, h is the water depth, g is the acceleration due to gravity, L 
is any length, t is time and co is the wave frequency. The superscript * represents a 
dimensional value.  All calculations were performed on a SUN SPARC 10 workstation. 

In each of the following simulations, the dimensionless height of the container walls 
is equal to 1.5. Unless otherwise stated, the seeding points are spaced to provide the 
maximum mesh resolution along the free surface boundary and at the container walls in the 
region which intersects with the free surface. The seeding point spacing at the free surface 
is equal to Sn:j,=2'M, where M is the maximum division level of the underlying quadtree grid. 
Thus, the resolution of the underlying quadtree grid, and also of the finite element mesh, is 
finest where velocity potential gradients are likely to be highest, and coarsest at the bottom 
of the container where gradients are likely to be low. 
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Standing Waves in a Rectangular Container 
Various standing waves were simulated in order to investigate the relationship between 

water depth, amplitude, and frequency of oscillation. The waves have initial surface elevation 
profile, T| = ctcos(2nx/b) where x is measured along the length of the tank, b is the length of 
the tank and a is the wave amplitude. 

Figure 1 shows the initial mesh for case A. The dimensionless length of the tank, b, 
is equal to the dimensionless wavelength 2. The dimensionless wave amplitude, a = 0.05. 
Figure 2 shows the wave surface elevation history at the centre of the tank, plotted with the 
linear and first plus second order analytical solutions calculated following the method 
described by Wu and Eatock Taylor (1995), for comparison. The linearised analytical 
solution does not agree well with the fully non-linear numerical solution as time increases. 
The inclusion of second order terms, however, leads to much better agreement. 

The time period of non-linear oscillation in Figure 2 is greater than that predicted by 
linear theory. This effect was noted by Tsai and Jeng (1994), Vanden-Broeck and Schwartz 
(1981), and Tadjbakhsh and Keller (I960). Tsai and Jeng (1994) calculated numerical Fourier 
solutions of standing waves in finite water depth, and observed that the non-linear wave 
frequency increases with wave steepness for water depths less than 0.1662 of its wavelength, 
and decreases with increasing amplitude for depths greater than this value. 

Various cases were investigated and the results recorded in Table 1. Figure 3 shows 
the initial mesh for case D, and the temporal free surface elevation plot is given in Figure 4. 
In Figure 4, the third trough is higher than those surrounding it, which may indicate the 
occurrence of double minima in the wave profile at this stage. This effect is recorded by Tsai 
and Jeng (1994) for shallow water standing waves. 

Each simulation was continued over at least five cycles and the non-linear wave 
frequency, CO, determined, along with the corresponding hlL0 and HIL„ values, where H is the 
wave height. The corresponding linear wave frequency, co„, and linear wave length, L„, are 
calculated using linear wave theory. The ratio, co/co„, is given in Table 1 as a function of hlL0 

and H/L„ for each of the standing wave calculations and can be seen to agree reasonably with 
equivalent frequency ratios obtained from Tsai and Jeng's (1994) data. The decrease in non- 
linear wave frequency with increasing amplitude is evident for cases A and B, in which h = 
LJ2, and for case C in which h = L„IA. In case D, h = LJ10 and the non-linear wave 
frequency is greater than the linear value. 

Standing Wave Interaction with an Array of Three Submerged Circular Cylinders 
In order to demonstrate the flexibility of the mesh generator to model complex 

geometries, the case of a standing wave in a tank containing three submerged horizontal 
cylinders was simulated. Figure 5 shows the initial mesh for this case, in which the cylinders 
each have diameter, d = 0.35. The underlying quadtree grid has a maximum of 8 and a 
minimum of 5 division levels. The wave has an initial cosine elevation of amplitude a = 
0.01. Figure 6 shows the computed time history of the wave elevation recorded at the centre 
of the tank.  A regular standing wave oscillates above the submerged bodies. 

3.  CONCLUSIONS 
The finite element mesh generator proposed herein produces a mesh of high quality 

triangular elements without hanging nodes from an underlying quadtree grid. Coupled with 
the finite element solver, the adaptive grid generator models the moving free surface with a 
high level of resolution, controlled by the spacing of the seeding points. 
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The flexibility of the method is demonstrated by the results presented here, which 
agree well with published data. The predicted deviation of the period of oscillation from the 
linear value as the wave height is increased corresponds to that described by Tsai and Jeng 
(1994). 
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CASE hlL„ H/L0 (co/co,,) 
present scheme 

(co/co0) 
Tsai and Jeng (1994) 

A 0.5 0.05 0.991 0.996 

B 0.5 0.13 0.978 0.979 

C 0.25 0.10 0.989 0.989 

D 0.1 0.02 1.007 1.003 

Table 1 Comparison between results predicted by the present method and by Tsai and 
Jeng (1994) for various combinations of wave steepness and water depth. 
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DISCUSSION 

Magee A.: Is your gridding scheme appropriate for use in a nonlinear BEM 
surface grid on a complex (ship) hull form? 

Greaves D.M., Borthwick A., Wu G.X.: If a discrete set of seed points can be 
defined which describe the hull form, then it should be possible to produce a 
surface mesh using the octree-based method. 
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Fully nonlinear properties of shoaling periodic waves calculated in a numerical 
wave tank 

Stephan T. Grilli \ and Juan Horrillo 2 

In this work, nonlinear properties of finite amplitude shoaling periodic waves are calculated over 
mildly sloping bottom topographies, using a numerical wave tank which combines : 

(i) a Boundary Element Model (BEM) solving Fully Nonlinear Potential Flow (FNPF) equations 
in a domain of arbitrary shape Q (i.e., in a so-called physical space), up to and including 
wave overturning (Grilli et al, 1989; Grilli and Subramanya, 1996; Fig. 1); 

(ii) a generation of zero-mass-flux Streamfunction Waves at the deep water extremity of the tank, 
rri (i.e., exact periodic wave solutions of FNPF equations superimposed to a mean current 
equal and opposite to the wave mass transport velocity; Grilli and Horrillo, 1996a); and 

(iii) an Absorbing Beach (AB) at the far end of the tank, which features both free surface 
absorption (through applying an external pressure; Cointe, 1990) and active absorption at 
the tank extremity, Tr2 (using a piston-like condition; Clement, 1996). The beach depth 
is gradually increased to induce wave de-shoaling and a feedback mechanism adaptively 
calibrates the absorption coefficient, as a function of time, for the beach to absorb the period- 
averaged energy of incident waves, computed at the AB entrance, x = x\ (Grilli and Horrillo, 
1996a). 

Incident waves of various heights H0 and periods T are modeled (covering the range k0H0 

= [0.028 ,0.105]), first over plane slopes s (1:35, 1:50, and 1:70; Fig. 1) and then over "natural 
beaches" of similar mean slope; in all cases both the AB location and characteristics are adjusted 
for the waves to shoal up to very close to their breaking point (BP). Due to the low reflection 
from such mild slopes and from the AB, a quasi-steady state is soon reached in the tank for which 
both local and integral properties of shoaling waves are calculated as a function of depth h(x). 
These are the shoaling coefficient K, — H/H0, the phase velocity c, the wave relative height 
H/h (i.e. a measure of nonlinearity in classical shallow water wave models), the wave steepness 
kH = 2-KH/L, the mean water level r)m, the radiation stress Sxx, the mean Eulerian current Um, 
and the energy flux Ef. 

For a shallow enough normalized depth (k0h < 0.5 or kh < 0.77), significant differences are 
observed between FNPF results and 1st (LWT), 3rd (CWT), and higher-order steady wave (FSWT; 
Sobey and Bando, 1991) theories (Fig. 2). For the first two theories, low-order nonlinearity is 
clearly the main reason for the observed differences in a region where H/h = ö(\); with the latter 
theory, the lack of skewness in the wave shape and the representation of the bottom by horizontal 
steps likely explain the observed differences. Despite the significant influence of actual bottom 
shape on the results, however, for the range of tested mild slopes, FNPF results are found to be 

'Dept. of Ocean Engng., University of Rhode Island, Narragansett, RI02881, USA, Ph.Nb.: (401) 874-6636; Fax 
: (401) 874-6837; email: grilli@mistral.oce.uri.edu; http ://www.oce.uri.edu/~grilli 

2Graduate research assistant; same address. 
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fairly similar for the same wave taken at the same normalized depth (k0h or kh). This is also found 
true for a mildly sloping bottom with geometry corresponding to a "natural beach" and average 
slope 1:50. [This "natural beach" has a depth variation defined according to Dean's equilibrium 
beach profile, h = A(x* - z)2/3, with x* denoting a constant, function of the location of the toe 
of the slope in depth h0, and A depending on the specified average beach slope.] This, hence, 
allows us to use kh as the unique parameter describing a mild bottom variation and to compute 
additional results on a unique mild slope (1:50). Among these results, when taking all tested waves 
simultaneously, the normalized wave steepness kH/k0H0 shows an almost one-to-one relationship 
with kh in the shoaling region (Fig. 3). Quite surprisingly, due to a partial compensation of 
nonlinear effects for the wave height and celerity, LWT is found to be quite a good predictor of this 
parameter (maximum difference is 11%), whereas discrepancies for H and c reach 55 and 85%, 
respectively. 

For the tested waves, the wave set-down (Fig. 4a) is quite well predicted by the first-order 
perturbation of LWT, except in the shallower region, where it is smaller, following the steep drop 
in radiation stresses (Fig. 4b). [This could also partly be due to the mean undertow current. 
More work remains to be done about this.]. Radiation stresses are overpredicted by the first-order 
theory in the region where wave left/right asymmetry (i.e., skewness) becomes large, confirming 
the sensitivity of this parameter to wave shape. Otherwise, agreement with the theory is quite 
good. A Fourier analysis of surface profiles shows, as expected, a continuous transfer of energy 
from the fundamental to higher-order harmonics in the shoaling region (Fig. 4c); this illustrates 
nonlinear interactions in the shoaling wave field. The 3rd-harmonic amplitude a3 is found to be 
strongly correlated with wave asymmetry/skewness. 

More results will be presented at the workshop, including some for barred beaches. Further 
discussions can also be found in Grilli and Horrillo (1996b). 
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Figure 1: Sketch of "numerical wave tank" for FNPF computations of periodic waves shoaling 
over a plane slope s. 
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Figure 2: (a) shoaling coefficient K, = H/H0; and (b) celerity c, for periodic waves shoaling 
over a 1:50 plane slope, with H'0 = H0/h0 = ( ) 0.04, ( ) 0.06, and ( ) 0.08, and 
T' = T^JK, = 5.5 : (n) FNPF results; (s) Sobey and Bando's (1991) FSWT results; ( ) LWT 
results; (c) CWT results. c0 = gT/(2n) is the (linear) deep water celerity. 
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Figure 3: Normalized wave steepness kH/k0H0 for periodic waves shoaling over a 1:50 slope. 
H'„ = ( ) 0.04, ( ) 0.06, and ( ) 0.08, and V = : 5.5 (curves a); 6.5 (curves b); 7.5 
(curves c). ( ) LWT results. 
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Figure 4: Normalized (a) mean water level T]'m = r)m/h0H'0
2; (b) radiation stress S'xx = Sxx/pgH0 

(with p the fluid density); and (c) first three harmonics amplitudes (a,b,c = C{,i= 1,2,3). for three 
periodic waves shoaling over a 1:50 slope. Symbols and definitions are as in Fig. 2. Results have 
been averaged over 3T in the quasi-steady regime. Symbols (o) denote locations of "numerical 
gages". Corrections, AV'mo = -0.0274 and AS'xxo = h'0(Ar)'m0) + (A^J2/2, have been applied 
to the linear results for -q'm and S'xx, respectively, to account for the actual mean water level in depth 
ha in the FNPF results. 
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(Abstract for the 12th International Workshop on Water Waves and Floating Bodies, Marseilles, 16-19 March 1997) 

Modelling of fully nonlinear internal waves and their 
generation in transcritical flow at a geometry 

by 

John Grue and Enok Palm 
Mechanics Division, Department of mathematics, 

University of Oslo, Norway 

Introduction 

Knowledge of flows due to internal waves, their origin and propagation, is important for 
many reasons. Relevant examples are flows in fjords and at sills, breaking of internal 
waves and mixing processes in the ocean, motion in coastal water and sub-surface waves 
in a layered ocean. An important aspect of the latter relates to oil exploration in deep 
water, with operation performed from ships or oil platforms floating at the sea surface, 
connected to subsea drilling or production via long cables. Knowledge of currents in the 
ocean, which may be induced by internal waves, may be of importance for the design of 
such concepts, in addition to the wave effects at the ocean surface. Dynamics of internal 
waves is also important in dimensioning of subwater bridges, which have been proposed 
across Norwegian fjords. This study is in particular motivated by needs relating to the 
two latter problems. In this abstract we describe recent efforts at the University of Oslo 
on this issue, both theoretical and experimental. 

Time stepping of the interface 

In the two-layer model we study fully nonlinear two-dimensional motion of two fluid 
layers of infinite horizontal extension under the action of gravity, with the gravitation 
force along the negative vertical direction. The lower fluid layer has thickness hi at 
rest and constant density p1? and the upper layer has thickness h2 at rest and constant 
density p2, where p2 is smaller than p\. Hereafter, index 1 refers to the lower fluid, and 
index 2 to the upper. A coordinate system O — xy is introduced with the x-axis along 
the interface at rest and the y-axis pointing upwards. Unit vectors i,j are introduced 
accordingly. We assume that the two fluids are homogenous and incompressible and that 
the motion in each of the layers is irrotational such that the velocities may be obtained 
by potential theory, i.e. 

V!  =U1'l + V1j = V<£i, V2 = U2i + V2J = V</>2, (1) 

where </>i and <j)2 satisfy the Laplace equation in their respective domains. 
We adopt a pseudo Lagrangian method where pseudo particles are introduced on the 

interface, each with a weighted velocity given by 

vx = (1 - a)vx + av2 (2) 
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where 0 < a < 1. To determine the position R = (X, Y) of a pseudo particle we use 

DvR 
5T = T* (3) 

where a pseudo Lagrangian derivative is introduced by Dx/dt = d/dt + vx • V. From 
the dynamic boundary condition at the interface I we find 

D*fa-^ = vx • (Vl - Mv2) - i(v? - /iv») - (1 - p)gY -^atJ (4) 

where /i = /02//£>i. The equations (3) and (4) contain sufficient information to integrate 
R and fa - fifa forward in time. It is, however, an advantage to apply also higher order 
derivatives of (3) and (4) in a time stepping procedure for R and fa - \ifa. 

The Eulerian velocity fields in the layers are obtained by solving the Laplace equation 
at each time step. It turns out that accurate solution of the Laplace equation is crucial to 
an algoritm for computing interfacial flows. Earlier works on time evolution of nonlinear 
interfacial waves have applied singularity distributions directly along the interface to 
solve the Laplace equation. We have sought a different method, and have chosen to 
employ Cauchy's integral theorem for this purpose, which is advantageous in avoiding 

instability. 
Invoking complex analysis we introduce complex variable z = x + iy and complex 

velocities qj(z) = Uj - it;,-, j = 1,2. Since ?,- are analytic functions of z we have by use 
of Cauchy's integral theorem 

-^-w,^+/,*?^   {zonI)     (5) 

riMdz    r    g^Ydz* {zonI) (6) 
+   JB  Z'-Z  ^ JBZ*- 2ihx -z> K ' w 

.    ,  ,x fqi{z)dz   ,   f     qi{z)*dz* 

+   PVf*®*L+[    .*(');*•   y (zonB) (7) 
JB  Z> - z      JB z* - 2%hx - z' 

where PV denotes principal value and B denotes the boundary of a geometry in the 
lower fluid. Only the real part of the principal value integrals in (5)-(7) are singular. 

Transcritical flow at a topography. Upstream solitary waves 

We apply the model to study transcritical two-layer flow at a bottom topography. There 
are several questions concerning this subject: Under which conditions is the flow un- 
steady? Another aspect is upstream influence in stratified flows, which in part can 
be addressed by the present two-layer model. Furthermore, for which conditions may 
transcritical flow over topography generate upstream solitary waves? These topics have 
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been discussed in earlier works exploiting hydraulic nonlinear theory or weakly nonlinear 
dispersive models. These methods have, however, limited validity with regard to nonlin- 
earity and dispersion and give unrealistic predictions for finite amplitude and moderate 

wave length. 
In the transcritical regime we find that an undular upstream bore is generated when 

the speed of the geometry, U, is less than a value which slightly exceeds the linear long 
wave speed, c0. In the remaining part of the transcritical regime we find that solitary 

waves propagating upstream are generated by the geometry. We show an example in 
figure 1, which is due to a half elliptical bottom topography with horizontal half-axis 
lOfei, vertical half-axis O.lhi, moving with speed U/co = 1.1 in the lower layer, with 
h,2/hi = 4 and fj, = 0.7873. We have performed a very long time simulation with this 
configuration. A depression behind the moving geometry stabilizes at a level of 80% of 
the initial thickness of the lower fluid. The upstream waves have all the same amplitude, 
within a variation of 0.3%. The amplitude has same magnitude as the depth of the 
thinner layer, which means that the nonlinear effect is rather strong. Upon comparing 
with the solution of a steady profile we find a very good agreement between the computed 
profiles and wave speeds. Thus, the simulated waves may be regarded as a train of solitary 

waves. 
In several other examples (not shown) we find that a moving geometry generates 

upstream disturbances with rather large elevation, even for geometries with small height 
(the volume of the geometry cannot be too small). We also compare our results with 
weakly nonlinear Korteweg-de Vries, finite depth and Benjamin-Ono theories. Our re- 
sults indicate that these theories in many cases predict quite unrealistic wave profiles, and 
that a fully nonlinear method in general is required to investigate stratified transcritical 
flow at a geometry or bottom topography. 

Experiments 

We also perform experiments on internal waves with the perposes to determine wave 
shapes, velocity profiles and compare with theoretical models, such as the interface 
method. The experiments are carried out in a wave tank, and we use fresh water above 
salt water with vertical density profiles varying between p2 = 1.0000g/cm3 and pi = 
1.0225g/cm3. The velocity field in solitary waves is measured using Particle Tracking 
Velocimetry, where the fluid is seeded with particles and the motion is recorded onto a 
video tape. This is later digitized and analyzed by image processing. 

The experiments are carried out with different (vertical) density variations, including 
profiles from rather localized depth variation, to density variations with some vertical 
extension. We compare the velocity profiles due to solitary waves with approximately 
corresponding amplitudes obtained by computations and experiments. We find very 
good agreement between the different methods, see figure 2. In this example h\jh,2 = 4 
and \Y\maxfh2 = 0.68. This means that the interface method may be applied also to 
a stratified fluid, as long as a typical wave is much longer than the thickness of the 
stratification. 

This research was supported by The Research Council of Norway through a grant of 
computing time (Programme for Supercomputing). 
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Figure 1: Generation of upstream solitary waves. Moving elliptical bottom topography 
with major half-axis (horizontal) 10&i, minor half-axis (vertical) O.lAi. U/co = 1.1, 
fi = 0.7873, hz/hx = 4. (a) Profile after tjgjhx = 2760. (b) Close up of figure (a), black 
squares mark steady solitary wave solution with \Y\max/hi = 0.869. 
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Figure 2: Velocity profile at the crest of a solitary wave. * and o: experiments with 
different stratification. Solid line: two-layer model (theory). |y|max/^2 = °-68> M = 
0.978, hi/hi = 4. 
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DISCUSSION 

Grilli S.: What type of boundary conditions did you use on lateral boundaries of 
your model? Did you translate the model with the mean wave velocity? 

Grue J., Palm E.: The lateral boundaries are assumed far away such that the flow 
there may be considered to be zero. The model is translated with the mean wave 
velocity-approximately-in the computations. 
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The excitation of waves in a very large floating flexible 
platform by short free-surface water waves. 

Aad J. Hermans * 

1 Introduction 

At the eleventh workshop on water waves and floating bodies Ohkusu et.al. [2] described 
recent developments of the design of floating airports. These floating airports consist of 
a thin mat configuration of very large horizontal size. One must think of dimensions of 
about several kilometers by several hundred meters, while the thickness of the mat is 
several meters. For these configurations the natural bending rigidity is relatively small 
and the elastic deflection due to wave action will be dominant compared with the rigid 
body motions. This paper treats in principle the same problem as Ohkusu did but with a 
different mathematical method, a similar approach can be found in Stoker [5] for the motion 
of a floating elastic beam in shallow water. If one looks at the operational conditions of 
the airport it is expected that in general the deflections are generated by short waves, 
this means waves with a wavelength short with respect to the horizontal dimensions if 
the platform, but such that the thickness of the structure is small with respect to this 
wavelength. This motivates us to treat the mat as an infinite thin plate at the free- 
surface and to neglect its thickness. In this presentation results for the wave transmission 
and reflection by a half-plane and a strip will be shown. Finally the propagation of the 
disturbances due to an accelerating and a decelerating point source are shown, this can be 
seen as the simulation of the take-off and landing of an airplane. 
The problem has some resemblance with the deflection of a floating ice plate. There is 
a lot of literature about this topic, hence, some more information can be distracted from 
these sources. The papers of Schulkes et. al. [3],[4] and Meylan et. al. [1] are mentioned 
for further reference. 

2 Mathematical formulation 

We consider the situation that the platform is positioned in an area where no tidal current 
is present and the incident waves are long crested. The waves will be incident with a 
arbitrary angle of incidence. To keep the formulae simple we treat the case of infinite 
water depth, it will be clear from the analysis that the case of finite water depth is a 
straight forward extension. Viscous effects are neglected as well. In the fluid domain we 
introduce the velocity potential V(x,t) — V$(x,t). The incident wave will be written as, 

<£.     (x   £\ _ eik(xcosa+ysina)+kz-iwt Q\ 

where k — ui2 j'g is the dispersion relation and a the angle of incidence. The waves are short 
with respect to the length L and the beam B of the platform, i.e. kB > 1 and L/B > 1. 

"Faculty of Applied Mathematics and Computer Science, TUDelft, Mekelweg 4, 2628 CD Delft, The 
Netherlands 
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The wave number k is be the proper large parameter in the asymptotic expansions. Usually 
in the application of the ray method the expansions are made with respect to k, in the final 
results it becomes evident what dimensionless parameter plays a dominant role. In our 
case it is expected that in beam seas the parameter kB is essential, while for pure head 
seas we have to consider kL. So we don't bother about the two large parameters. In the 
fluid domain we have the potential equation 

A$ = 0 (2) 

together with the linearized free-surface condition for (x,y) outside the platform 

02$        9$ 

__ + ,_ = 0at, = 0 (3) 

The platform is assumed to be a thin layer at the free-surface z = 0, this seems to be a 
good model for a shallow draft platform. The platform is modelled as an elastic plate with 
zero thickness. To describe the deflection w we apply the thin plate theory, this finally 
leads to an equation for $ at z = 0 in the platform area 

[EL(®L    ®L\2    ™<L    il<?£    1 d2$ _' 
\ pg  [dx* + dy*J   + pgdt*+   J dz+ g 0<2 (4) 

We now introduce harmonic waves in the form of the ray expansion 

$(*,*; k) = a{x, k)eikS^-iut with a{x, k) = £ ^ + o{{ik)~N) (5) 

where S(x) is the phase function and a{x,k) the amplitude function. Insertion of (5) into 
the Laplace equation (2) gives 

-k2V3S ■ V3.S'a + ifc(2V3a • V3S + aA3S) + 0(1) = 0 (6) 

The subscript 3 is used to indicate the three-dimensional V and A operator. If no subscript 
is used the operators are two-dimensional in the horizontal plane. We compare orders of 
magnitude in (6). This leads to a set of equations for S and a0 to be satisfied in the fluid 
region: 

0(fc2) : V3S ■ V3S = 0, (7) 

0(k') : 2V3a0 • V35 + a0A3S = 0. (8) 

Next we insert (5) into the free-surface condition (3) outside the platform to get the 
following : 

Oik1) : iSz = 1  and 0{kr>) : ajz = 0 for j = 0 • • • N at z = 0 (9) 

The next step is to insert (5) into the condition at the platform.  At this stage we have 
to make some estimates of the order of magnitude of the parameters of the platform. We 
introduce 

El      S        ,   m      M 
— = 77  and  — = —-. 
pg      A;4 p        k 
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In this case the elastic properties and the mass of the platform play a role in the diffraction 
of the waves. The parameters £ and M are of order one in k, this means they stay finite 
if k tends to infinity. This sounds like a contradiction, but it makes sense, it will be shown 
the values of these parameters may be large or small. The first two terms in the asymptotic 
evaluation of (4) become 

Oik1) : {S(S2
X + S2

y)
2 -M + l}iSz = 1 at z = 0 (10) 

and 

0(k°) : a0 ^Sl + Si)2 + 2SZ [§-x{Sx{Sl + S2
y)) + ±{SV(% + Si)) + (11) dy 

a0z {S{Sl + S2
y)

2 - M + l} + 4a0xSxSz(S
2

x + S2
y) + 4a0ySySz(S

2
x + S2

y) = 0 

We combine the equations for the phase function at the free-surface with those in the water 
domain and obtain: 

Sz = -i or Si + S'I = 1   outside the platform (12) 

{sSt - M + l} Sz = -i for 0 < x < L and 0 < y < B (13) 

Equation (13) has four solutions for Sz : {ru±r2 + ir3,±r4 + ir5}. Only the values of Sz 

with negative imaginary part are taken into account. 

3    Infinitely long platform 

We consider plane waves incident at y = 0. For convenience we assume the platform 
infinitely long, hence the waves are diffracted by a half-plane or a strip of width B. The 
wave field for y < 0 consists of an incident and reflected wave: 

<WJJJ   f\ _ eik{xcosa+ys'ma)-\-kz-iujt   ,    n  ik(xcosa-ysh\a)+kz-iu/t (1A\ 

where R is the reflection coefficient. 

Let us first solve the problem for the half-plane in other words with B = oo. We then 
have (14) for y < 0 and for y > 0: 

3 

$(*,<) = £ cij eik\x cos a+Vn; ~cos2 «)+kiriz-iu,t /jgx 

i=i 

where the square root is such it is positive or that its imaginary part is positive. This is 
to guarantee that the waves are either outgoing or evanescent. In this expression different 
types of solutions are combined. For all the components the amplitude function is a 
constant in the whole domain, in the case of a plane incident wave. For instance, for the 
real nj < 1 the solution consists, for angles of incidence with | cosa| < na of a transmitted 
wave. This wave gives rise to reflections at y = B, if B is finite. If | cosa| > m we have 
total reflection at y = 0, however the formulation (15) still gives a proper description of 
the evenescent mode. The angle for wich | cosac| = nx is called the critical angle ac. The 
other two contributions are always of evenescent type, because the arguments of the sin 
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and cos terms are always complex. The four unknown coefficients {R, a.j} for j = 1,2,3 
are completely determined by the boundary conditions at the edge of the platform. We 
require continuity of the wave elevation and its inclination, hence, we assume platform very 
flexible. We now obtain 

$|o_ = $|o+  and $„|0-- = $y|o+  at y = 0 and z = 0, (16) 

furthermore at the edge of the platform we have the condition of zero moment and zero 

shear force , , 

&(£)-£(a-«'--'-    (i7) 
We now solve four linear equations for the four unknown coefficients. In the figures 1 and 2 
the elevation is shown for several values of the angle of incidence for £ = 1 and M = 0.5. 
For the angle of incidence a = vr/3 we notice a plane wave propagating along the platform 
and two evanescent modes, while for the small value a = 7r/8 total reflection occurs and 
the deflection of the platform consists of three evanescent modes. 

wav*h«igN wav»h*igM 

Figure 1: Waveheight for a = 7r/3. Figure 2: Waveheight for a = 7r/8. 

References 
[1] Meylan, M. and Squire, V.A., The response of ice floes to ocean waves. J. Geophysical 

Research, Vol. 99 No. Cl 

[2] Ohkusu, M. and Nanba, M., Hydroelastic behavior of a very large floating platform 
in waves. Proceedings of the eleventh Workshop on Water Waves and Floating Bodies, 

Hamburg, 1996. 

[3] Schulkes, R.M.S.M., Hosking, R.J. and Sneyd, A.D., Waves due to a steady moving 
source on a floating ice plate. Part 2. J.Fluid Mech., Vol. 180, pp. 297-318, 1987. 

[4] Schulkes and Sneyd, A.D., Time-dependent response of floating ice to a steadily mov- 
ing load. J.Fluid Mech., Vol. 186, pp. 25-46, 1988. 

[5] Stoker, J.J., Water Waves, Interscience Publ., New York, 1957. Springer-Verlag, 
Berlin, 1960. 

110 



Free surface integrals in non-linear wave-diffraction 
analysis 

J. B. Huang1, R. Eatock Taylor1 and R. C. T. Rainey2 

1 Department of Engineering Science, University of Oxford, U. K. 
2 W. S. Atkins Consultants Ltd, Epsom, Surrey, U. K. 

A difficult problem in frequency-domain analysis of non-linear wave interaction with offshore struc- 
tures is the evaluation of the two-dimensional free-surface integral, which provides the 'locked wave' 
component of the diffraction potential. This is usually done by meshing the free-surface of the fluid 
domain into boundary elements, and carrying out the integration element-by-element. The approach 
is known to be very time-consuming, especially if needed for computing the third-order forces, where 
it is necessary to evaluate the second-order potentials over a large domain on the free-surface. This 
paper proposes an alternative way of performing the free-surface integrations. We first extend the 
integration domain into the entire free-surface, then subtract out the contribution from the internal 
water plane occupied by the structures. In this way an efficient semi-analytical method can be de- 
veloped, and the integrals are reduced to one-dimensional quadratures. The algorithm presented in 
the paper is relevant to obtaining the 'locked wave' component of the diffraction potential at either 
second or third order. 

1. Semi-analytical method for the free surface integrals 

We consider the locked wave component of the potential associated with diffraction by an array of 
vertical, surface-piercing structures of arbitrary shape. We define a global co-ordinate system (x, y, z) 
and a number of local cylindrical co-ordinate systems (rk,6k,z) which coincide with the individual 
structures. The z axis originates from the quiescent free-surface and points upwards. For simplicity 
we only consider the second-order potential, but the formulation is also valid at third order. In the 
local coordinate system, the locked wave potential can be expressed as: 

$Hrk,Ok,z) = JJ   QW(s)GM(rk,ek,z;s)ds (1) 

where 5/ is the entire free-surface of the fluid domain, Q^ is the forcing function and G^ the Green 
function. 

We rewrite equation (1) as 

42Wk,*)= //    Q^(s)G^(rk,ek,z;s)ds-YJf[    Q{2\s)G(-2\rk,0k,z;s)d. (2) 

where Sfe is the extended region over the whole free-surface, and SWj is the water plane of the jth 
cylinder. This arrangement implies that we first extend the region of validity for Q^ into the water 
planes occupied by the structures, and then subtract the contribution due to the ficticious forcing 
from the extended region. 

We express the forcing function at a point (rj,9j) inside the jth water plane as: 

Q^(rj,ej) = Q^[a(9j),ej}-^- (3) 

where a(6j) is the radial co-ordinate on the jth waterline at 9j. 
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The major computational burden comes from the first integral on the right-hand side of equation 
(2). For its efficient evaluation, we expand the locked wave potential, the free-surface forcing function 
and the Green function into Fourier series: 

00 00 

*<2W*,*)=   £   ^(rk,z)e^,Q^(r,9)=   £   Q^(r)e^ (4) 
n=—oo n=—oo 

oo I     oo 
G{2) =   £  ^ek-9){z(2){Q)z{2){z)Jn[Kr<)Hn{Kr>^_ + _L £ Zf)(0)Zf^/„(K^IM'VV)} 

n=—oo 9=1 

(5) 
where r> = max(rfe,r), r< = min(rjt,r). Z\2)(z), Zg (*) are eigenfunctions, and J„(x), Hn(x), In{x), 
Kn(x) are normal and modified Bessel/Hankel functions respectively. 

We remark that the above-defined integrals associated with the Green function are valid in the 
whole fluid domain, inspite of the fact that Hn(x), In(x) possess singularities at x -» 0. In fact, as 
x ->■ 0, we use the asymptotic form of the normal and modified Bessel/Hankel functions, noting that 
when r -> 0, Q{2)(r,9) = rf{9); and when rk -> 0, we have Q^H^G^lr^o = 0. When rk > 0, 
except for the logarithmic singularity at r -t rk, z = 0, no other singularity is encountered in the 
Green function. The logarithmic singularity was first discussed by Fenton (1978). When the field 
point is outside the waterplanes Swj(j - 1,2, • • ■, Nc, j ^ k), the nth the Fourier mode of the locked 
wave potential can be expressed as: 

<$)    =    ^2)(0)Z$2)(z)f {H^r^S^r,) - ^ f* Q™ (a(9))e-
in9 j^ r2 Jn{nr)drd9) 

00 frk 
- <$?(n,rfc) + Jn(Krk)S2(n,rk)} + £ Z^(0)Z^(z){Kn(Kqrk)[       Q%\r)rIn{Kqr)dr 

q-l J0 

- ^-/     Q{2\a{6))e-ine r2In(Kqr)drd9) 
2,IT Jo                                 Jo 

/"OO 

- 4$(n,q,rk) + In(Kqrk)        Q^(r)rKn(Kqr)dr}, (6) 

where 

Si(n,rk)   =    r QW(r)rJn(Kr)dr; 
Jo 

/•oo 

S2(n,rk)    =    /    QW{r)rHn(Kr)dr; 
Jru 

A2)(„  r,\     -     J_ V     V     I    Jrn(Krk)Hn-m(K,Rjk)   \    t(n-m)(ajk- 

J2)(nnr,\     _     J_V    V     ( I™(Krk)Kn-rn{KRjk)\i(n-m){ajk-i<) 
<PP2{n,q,rk)   -    ^ ^^ [ Km(Krk)In„m(KRjk) ) 

/o
27r QW{a{93))e-^ J*W rjUnr^dr^, ( £ < ^ 

In deriving equation (6), we have used the Bessel addition theorem, Rjk being the horizontal distance 
between the jth and /cth coordinate systems. A similiar expression for the nth Fourier mode of the 
second-order locked wave component in the extended region can also be obtained. 

In the case of simple geometry, e.g. for multiple bottom-seated or truncated cylinders, semi- 
analytical solutions for the 'free-wave' component can be obtained (Huang & Eatock Taylor 1997). 
Such a solution is adopted in generating the results in the next section. 
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2 Computation of the one-dimensional free-surface integrals 

Let Rj be a large radius, such that when r > Rj, the local waves associated with the modified 
Bessel functions can be neglected, and the asymptotic forms can be used for the normal Bessel or 
Hankel functions. Thus integrals like S2(n,Rj) can be carried out analytically. For r < Rj we can 
derive recurrence formulae such as the following for the free-surface integrals: 

5i(n,a) =0;5i(n,r0 + Ar) = 5i(n,r0)+ / rQn(r)Jn(Kr)dr (7) 

/■ro+Ar 
S2{n,r0) = S2(n,r0 + Ar) + / rQn{r)Hn(nr)dr. (8) 

Algorithms for the integrals associated with the modified Bessel functions are treated in Huang k 
Eatock Taylor (1997). In a small interval [rj,rj + Ar], we express the forcing function Qn{r) and the 
Bessel/Hankel functions (or modified Bessel functions) as a quadratic function of r, and the quadrature 
over this interval can then be carried out analytically. A similar approach was taken by Malenica k 
Molin (1995), using numerical integration over a smaller interval. 

3 A numerical example 

As a numerical example, we consider the free-surface elevation in the vicinity of four bottom-seated 
cylinders of radius a — 15.5m, in water of depth h = 300m. The centre-lines of the cylinders are placed 
at the corners of a square of side length L = 80m. The incident wave is in the same direction as the 
x axis, which bisects two opposite sides of the square. The non-dimensional wave number is given by 
ka = 0.403; and the wave amplitude A = 6m. 

Figures la and lb illustrate respectively the linear and maximum non-linear (first order plus second 
order) free surface elevations around the cylinders. Figure 2 shows the contours of the non-linear free 
surface elevation at t = 0. Figure 3 plots the maximum linear and non-linear wave run-up on the up- 
wave and down-wave cylinders. Figure 4 presents the maximum linear and non-linear wave elevations 
along the x axis. From these figures, we note that the maximum wave elevation in this specific case 
is not at the surface of the up-wave cylinders, but is located a little distance in front of them, on the 
centre-line. We also see that the non-linear effect can either increase or reduce the local free surface 
elevation. 

4 Concluding remarks 

A semi-analytical procedure is proposed for evaluating the free surface integrals associated with the 
frequency-domain analysis of non-linear wave diffraction by multiple structures of arbitrary shape. A 
distinguishing characteristic of the procedure is that it is highly efficient for evaluating the non-linear 
potential at a large number of points. It takes only a few minutes on a Sun Workstation, for the case 
of a complete second-order analysis of four cylinders. With a fully numerical method, it takes over 20 
hours CPU time on the same computer. This method therefore provides an efficient tool for flow visu- 
alization of non-linear wave field around multiple structures, and for undertaking third-order analyses. 

This work was sponsored by EPSRC through MTD Ltd (Grant GR/L19355) and jointly funded 
with Den Norske Stats Oljeselskap a.s. and W.S. Atkins Consultants Ltd. 
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Figure 1. Isometrics of maximum free surface 
elevation around 4 bottom-seated cylinders: (a) 
first-order; (b) first-order plus second-order. 
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Figure 2. Contours of non-linear wave elevation 
at t = 0. 
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Figure 3.   Maximum wave run-up around the 
cylinders;   (-   )  linear,  up-wave cylinder: 
( ) non-linear, up-wave cylinder: ( -) 
linear, down-wave cylinder; ( ) non-linear. 
down-wave cylinder. 

Figure 4. Maximum free surface elevation along 
the central line y = 0. (  ) linear; ( ) 
nonlinear. 
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Nonlinear Ship Wave Simulations by a Rankine Panel Method 
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1 Introduction 

Nonlinear hydrostatics, Froude-Krylov and hydrodynamic effects have been found in many 
experimental and numerical studies to be important for the accurate prediction of the ship 
motion responses in waves. In this article, a linear, time-domain, three-dimensional Rankine 
Panel Method has been extended, on the basis of a Weak-Scatterer Hypothesis, to treat the 
nonlinear motions of realistic ship hulls in steep ambient waves. 

The Rankine Panel Method (RPM) has enjoyed a great deal of success in recent years, for 
the treatment of both the steady wave resistance and unsteady seakeeping problems, owing to 
its flexibility to different types of free surface conditions and simplicity in using the Rankine 
source as the Green function in the boundary integral formulation. The time-domain treatment 
of the surface wave disturbance has been adopted here and demonstrated in the linear case (cf. 
[3] [5]) to be stable, convergent and accurate. The time marching is carried out by a so-called 
Emplicit Euler scheme, which integrates explicitly the kinematic free surface condition and 
implicitly the dynamic condition. The method is able to obtain accurate and convergent ship 
wave patterns and ship response predictions. Building upon this solid foundation, the solution 
of nonlinear ship wave problems is outlined in this article. 

According to the Weak-Scatterer theory, the ship wave disturbance is linearized about the 
instantaneous position of the ambient wave profile. The resulting boundary value problem 
is derived and the rationale of the hypothesis is discussed. The numerical framework of the 
solution is presented, along with computations of motion responses of realistic ship hulls in 
steep ambient waves which demonstrate a marked improvement over linear theory in waves of 
even moderate steepness. 

2 Formulation and Numerical Method 

The Weak-Scatterer hypothesis, first proposed by Pawlowski [4], relaxes two restrictions in 
classical linear ship motion theory: the amplitude of the incoming waves and ship motions. In 
contrast to linear theory, both amplitudes are allowed to be large as long as the ship radiation 
and diffraction disturbance is sufficiently small, and thus linearizable. Ambient waves are driven 
by the environment, and their amplitude is therefore not dependent on the hull shape or ship 
speed. The ship wave disturbance, on the other hand, is often seen in experimental studies and 
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full scale observations to be relatively small. An extreme example is that of a thin ship moving 
with large amplitude in steep incident waves. This vessel is evidently not going to generate 
large disturbances, hence justifying the Weak-Scatterer linearization. Most ships are designed 
to be slender, and thus, are expected to generate wave disturbances which are not as large as 
steep ambient waves. Moreover, in the course of their interaction with ambient waves ships 
behave as compliant rigid bodies in heave and pitch which often induce small wave disturbances 
due to their tendency to contour the ambient waves. 

The present theory aUows the ambient wave amplitude and ship motions to be arbitrary and 
linearizes the ship wave disturbance about the incident wave profile. The hull geometric non- 
linearity is therefore treated more accurately than in linear theory, and is found to be essential 
for the accurate predictions of ship motions, especially for ships with prominent counter-top 

sterns and flared bows. 
Within potential flow theory, the free surface conditions in the ship-fixed coordinate system 

are stated as follows, 

!_(C7_V*).V 

a* 
oz 

on the exact free surface, (1) 

$ — -V* • V* — gi], on the exact free surface, (2) 
2 

where C is the wave elevation. The total disturbance potential * and free surface wave elevation 

C is decomposed as follows, 

*(£,*) = *(*,*) + <l>(x,t) + <p0{x,t) + tp(x,t), (3) 

V(x,y,t) = (0(x,y,t) + C(x,y,t). (4) 

The basis flow $ is the solution of a ship moving through a wavy solid (*„ = 0) free 
surface boundary that is prescribed by incoming wave. The time-local flow <f> represents the 
instantaneous fluid response to the ship motion and is the solution of a pressure release boundary 
value problem (<f> = 0) on the free surface. A thorough numerical stability study [3] shows that 
no convergent results can be obtained without separating the time-local flow <f> from the total 
disturbance potential *. <p0 denotes the incident wave potential and Co is the incident wave 
elevation, <p and C stand for the remaining part of the total disturbance quantities: wave 
disturbance velocity potential and wave elevation, respectively. C records the history of the 
wave flow and takes the form of an initial boundary value problem. 

In accordance with the Weak-Scatterer model, it is assumed that, $ ~ 0(1); <p0 ~ 0(1); $ ~ 
0(1)- <p ~ 0(e) and Co ~ 0(1); C ~ 0{e). The problem is linearized accordingly. After plugging 
the decompositions (3),(4) into the free surface conditions (1),(2) and performing a Taylor 
expansion to transfer the free surface conditions from z = ( to z = Co, with the omission of 
high order terms 0(e2), the following free surface conditions are obtained, 

^_(^_v$-v0-v^o)-v]c = -[^-(c/-v$-v^-v^)-v]Co + ^ 
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£-(*- v$- -v<t>- 
o                                                                                                  1 

-VvPo)-V]^ = -[^--(t7-V$-V</>-V^o)-V]^o + ^V^o-Vv3o-Ko 

[dt 

-(£- -V$) 
a                                                     1 

■ V] $ + ^V$-V*-[^-(tf-V$-V<£)-V] <l>+-V4>-V<t>-gC 

-(tf- -V$- -v^-v^-v] ^c-[^-(^-v$-V0-v^„)-v] ^c 

-(tf- _v$- -v^-v^0)-v]^c,                                   * = &(*,»,*)■ (6) 

On all solid boundaries, the no-flux condition is imposed over the instantaneous submerged 
surfaces. $ governs the steady translation, <j> accounts for the rigid body oscillatory motions 
and <p represents the incident wave diffraction. The radiation condition is enforced by the 
application of a dissipative beach, which resembles the absorbing beach in a wave tank. 

The resulting boundary value problems are solved by a thoroughly tested time-domain 
Rankine panel method. The method uses plane quadrilateral panels, but applies bi-quadratic 
spline representation of the unknown over their surface, with continuity in the value and slope 
of the unknown across panels. The time matching is carried out by the Emplicit Euler scheme 
and the nonlinear rigid body equation of motion is solved by a fourth-order Adams-Bashford- 
Moulton scheme, using a fourth-order Runge-Kutta scheme for the first four time steps. The 
numerical algorithm is rationally shown , (cf. [3][5]), to be stable and computationally efficient. 

Unlike pure linear theory, the present method solves the boundary value problems on an 
incident-wave-prescribed free surface and the instantaneous submerged hull surface. Figure 1 
shows a computational grid, with the free surface panel elevated at the position of the incoming 
wave profile and the submerged ship surface determined by the instantaneous position of the 
ship. The whole ship is outlined by the bold line to illustrate how much/little the ship surface 
could actually be submerged during the course of traveling. Figure 2 presents computed results 
of the heave and pitch motion responses for the S7-175 ship over a range of incident wave 
frequencies. In comparison with experimental measurements documented in [1], this nonlinear 
method is seen to offer a substantial improvement over linear theory and its nonlinear variation, 
which accounts for the nonlinear hydrostatic and Froude-Krylov exciting forces coupled with 
linear hydrodynamics. More results will be presented at the Workshop. 
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Perspective View 

Side View 

Figure 1: Typical Rectangular Computational Grid 
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Figure 2: Amplitude of the heave and pitch response amplitude operator (RAO) for the S7-175 
Containership at T — 0.275 in head seas, with the incoming wave amplitude at A/L = 0.015. 
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1    Introduction 

3-D methods for estimating seakeeping of ships have become popular with the wide availability 
of high-speed computers and sophisticated numerical techniques. Some finite element analyses 
of the ship structure require improved estimations of the unsteady wave forces on the hull. 
Especially fatigue analysis involving repeatedly imposed unsteady forces is quite interesting for 
ship yards. In this respect, computations should take into account forward-speed effects and 
three-dimensional effects. Two-dimensional computations, e.g. strip methods, are insufficient 
for this purpose, [1], [2]. 

Forward-speed effects include more than just the change of the frequency of encounter, [3]. The 
degree of approximation for the steady flow is important in the unsteady calculations. Iwashita 
et al. applied their 3-D Green function method to a blunt tanker, [1], and a catamaran, [2], 
demonstrating this not only for the unsteady hydrodynamic forces, but also for the unsteady 
pressures on the hull. These calculations included the steady disturbance effect through the body 
boundary condition approximating the steady flow by double-body flow. This approximation is 
adequate if the steady waves generated by the ship are small. The validity of this approximation 
should be confirmed by investigating how the steady wave field affects the unsteady wave field. 
The discrepancy between experimental and computational pressure distributions near the bow of 
the tanker in [1] suggests a significant effect of the steady wave field in some cases and motivated 
the present numerical study. 

We study numerically the influence of the steady flow to the unsteady wave field, using a 
3-D Green function method (GFM) and a Rankine panel method (RPM) taking the steady 
disturbance effect into account. Three approximations of the steady flow are employed for the 
input of the unsteady problem: uniform flow ignoring the steady disturbance, double-body flow, 
and linear (Kelvin) wave field, m-vector, steady velocity field and its derivatives evaluated from 
those steady flows are commonly used both in the GFM and the RPM. The GFM includes the 
steady flow only through the body boundary condition and the free-surface boundary condition 
by necessity includes only the uniform flow. The RPM can include the steady flow both in the 
body boundary condition and the free-surface boundary condition. We can therefore observe the 
influence of the body boundary condition and the free-surface boundary condition separately or 
together. Results are shown here for a Series-60(C& = 0.6) for the hydrodynamic forces and the 
unsteady pressures on the hull. 

2    Boundary Conditions 

We consider a ship advancing at constant forward 
speed U in oblique regular waves encountered at an- 
gle x, Fig.l. The ship motion £,je™el{j = 1 ~ 6) 
around its equilibrium position and the wave am- 
plitude A of the incident wave are assumed to be 
small. u>o is the circular frequency and K the wave 
number of the incident wave. The encounter circu- 
lar frequency is ue(= u0 - KUcosx)- The linear 
theory is employed for this problem assuming ideal 
(potential) flow. 

Fig.l   Coordinate system 
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The velocity potential $ governed by Laplace's equation can be expressed as 

$(./;, y, z: I) = U[-x + </>,(*, y, z)] + K[^(x, y, z)e™<1} (1) 

where 
fjA.        ,    /   \   ,   •      V^ r   i i „•„KZ-H<(XCOR\ (j/sitix) (0\ 

<ff= — (<A) + 07) + *^e Z^'^''      ^) = te ^ 
.? = 

</»,, is the steady potential, <j> the unsteady velocity potential including the incident wave potential 
<^), scattering potential 07 and radiation potential <f>j(j = 1 ~ 6). 

The linearization of the free-surface boundary condition and the body boundary condition 
yields two set of the boundary condition for <j>s and (f>j(j = 1 ~ 7). 

f/20s 0<f)g        „  00.,        _ „ 0(f>s Q (a\ 
-^r£ - H~zr + K0-±- =0   on z = 0,    -7j-=«i    on 5W (3) 
Ox2 Ox dz on 

[(~«-(/l;)2+"("«-!/l;)+4l*=0   on2=0l 
^ = „, + ^,%-   ü = l~6),    ^-^       o„S„ 
On        °     iuJe   

J on       dn 

(4) 

where 
(ni,n2,n3) = ™, (»M,?n2,'m3) = -(n-V)V, 

(n,4, n5, nG) = r x n,    (m.t,m5, m6) = -(n • V)(r x V), 

r = (a, y, z), V = V(-x + </>.,),    K0 = g/U2 

ft in the free-surface boundary conditions is the Rayleigh's artificial viscosity introduced to 
satisfy the radiation condition at infinity, and n is a normal vector inward to fluid. 0, and 0j 
also subject to the condition at infinite depth. 

3    Solution Methods 

The GFM using the spline element described in [1] and [2] is applied to solve the unsteady 
problem subject to (4). The direct method solves the integral equation to avoid the irregular- 
like solutions and the steepest descent integration method proposed by Iwashita & Ohkusu [4] 
evaluates the wave term of the Green function. 

The unsteady pressure distribution on the hull is estimated by an expression derived by Tim- 
man and Newman [5]: 

P(x,y,z) = -p(i^+UV.V)((>-p^^j(ßj-y)(V.V),    ßJ = [eJj3Xr    yl^M)   (5) 

p is the density of the fluid, e,(j = 1,2,3) are the unit vectors of x, y, z axes. 
The right hand second term of eq.(5) indicates the dynamical restoring force due to the 

unsteady motion in the steady flow. The second derivatives of the steady flow in this term are 
determined by solving the steady problem (3). We solve the steady problem by using the RPM 
explained in the subsequent paragraph. For the double-body flow, the same method can be 
applied omitting the second derivative of 0.s in the free-surface boundary condition in (3). 

The hydrodynamic forces are calculated by integrating the unsteady pressure (5) over the hull 
up to the calm-water level. 

The RPM described in [6] is used. The unsteady velocity potential is represented by source 
distributions on the hull and the free surface. The radiation condition is numerically satisfied by 
the staggered grid technique which is approximately equivalent to the condition (f)x = 4>xx = 0 
at upstream. This method therefore is applicable only for r > 1/4. 

Several kinds of free-surface boundary condition are possible by the RPM. Among them we 
employed the following unsteady free-surface boundary condition derived under the assamption 
of the small unsteady disturbance of the free surface, [6]: 

- i^0 + 2iueB(f> + 2V0.SV0 + (tfV0* + <*(0) + a9)V0 + V0s(V0* • V)V0 = 0   on z = (s (6) 
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where 

This free-surface boundary condition is satisfied on the steady wave surface z — C,s. It includes 
the influence of the steady flow completely. 

4    Results 

Fig.l shows the grid system of Series-60(Q, = 0.6) container ship employed in this calculation. 
990 elements are used on the body surface and 1500 elements on the free surface in the RPM. 

Fig.2 shows the distributions of the m3-vector on the hull calculated assuming the double-body 
flow and the linear (Kelvin) solution for the steady flow. We can see an influence of the Kelvin 
wave near the free surface. Two different computations, based on a desingularized constant 
strength panel and a higher-order panel, were previously tested for a half-immersed prolate 
spheroid in double body flow and we found good agreement with the analytical solution for both 
approaches. A significant difference between them, however, was observed at the bow and stern 
parts when we applied them for the Series-60. Then the higher-order panel was adopted in Fig.2 
and following calculations, as the computed results appeared more plausible. 

Fig.3 shows the wave pressure distribution on some hull sections at Fn = 0.2, X/L = 0.3, 
X = 180°. The influence of the steady flow seems remarkable especially in the bow part. It 
is confirmed that the approximation of the exact steady flow tends to underestimate the wave 
pressure. 

Fig.4 shows heave exciting force and pitch exciting moment obtained by integrating this pres- 
sure over the hull surface. The influence of the steady flow is less significant here due to the 
integration effect. 

Calculations for a tanker with blunt bow are in progress and should be finished in time for 
the workshop. 
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Fig.2 Comparison of m:s distribution on the ship hull surface 
[left: Double body flow,    right: Linear Kelvin wave(F„ = 0.2)] 
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Fig.3 Wave pressure distribution at F„ = 0.2, ML = 0.3, \ = 180(deg.) 
[left: Ord.9.5,    middle: Ord.5,    right: Ord.3] 
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Fig.4 Wave exciting force for heave and pitch at Fn = 0.2, \ = 180(deg.) 
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DISCUSSION 

Yeung R.W.: I think this is a nice investigation to understand the role played by 

the steady flow potential. From the results your showed, it is not surprising that the 

diffraction potential does not have a strong dependence on q>^. Afterall, the only 

role that <p-s' plays is in the convective derivative of the pressure equation. The 

much stronger dependence of radiation potentials on <p^ is however to be 
expected because of the m-} terms. 

Iwashita H., Bertram V.: The influence of the steady flow field is concluded to 
be important only on the estimation of the wave pressure near the bow part for the 

diffraction problem, and to be always strong for the radiation problem not only on 
the force estimation but pressure estimation, due to the m;-term on the body 

boundary-condition. 

Ohkusu M.: You did not discuss your results in terms of the experimental data of 
the pressure distribution at the bow of a ship presented in your second slide. Your 
results on Kelvin wave field seem not to agree with the measured pressure 
distribution close to the free surface in particular. 

Iwashita H., Bertram V.: The measurement of the wave pressure along the water 

line includes some error relating ot the experimental analysis. Near the bow part 

the pressure gage is sometimes exposed outside the free surface due to large 

steady waves and Fourier analysis breaks down. The numerical results therefore 
should be compared with experiments excluding such points near the free surface. 
Then we can see an improvement of the numerical results by taking the Kelvin 
wave field into account. 

Rainey R.C.T.: I believe this work is of great practical importance, and deserves 

every encouragement. The authors' conclusion that steady-flow effects are seen 

mainly at the bow is consistent with the long history of ship structural failures in 

this region. A ship Classification Society not a million miles from the Institut für 
Schiffbau, for example, will be familiar with the case of the 100,000 tonne tanker 
"Kirki", whose whole bow section fell off in the Indian Ocean, in 1991. See my 

discussion of Faulkner and Williams' paper The Design for Abnormal Waves, in the 

Transactions of the Royal Institution of Naval Architects, Vol 139, 1997. 
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A Comparison of Two Rankine-source Panel Methods 
for the Prediction of Free-surface Waves 

Carl-Erik Janson 

Chalmers University of Technology, Dept. of NAOE, S-412 96 Gothenburg, Sweden 
FLOWTECH International AB, S-400 22 Gothenburg, Sweden 

Introduction 

Dispersion (wavelength error) and damping (amplitude error) have been investigated analytically for 
two Rankine-source panel methods in two dimensions. The flow is assumed steady incompressible 
and the Kelvin free-surface boundary condition is applied. The first method uses an upwind four- 
point operator (Dawson operator) on the free-surface for the velocity derivative in the streamwise 
direction and to enforce the radiation condition ( Kim, K. J. 1989 ) and ( Janson, C. E. 1996A ), 
while the second method uses an analytical expression for the velocity derivative together with a col- 
location point shift one panel length upstream to satisfy the radiation condition (Jensen, P. S. 1987 ), 
( Jensen, G., et. al 1988 ), ( Kim, B. K. 1990 ) and ( Janson, C. E. 1996A ). Both first order panels 
(flat panels, constant source strength) and higher order panels (parabolic panels, linearly varying 
source strength) have been investigated for the first method while the analysis is restricted to first 
order panels for the analytical method. The source panels are allowed to be positioned either on the 
free-surface (standard method) or at a distance above the free-surface (raised panel method). The 
collocation points on the free-surface may be located at the same longitudinal position as the panel 
centres (standard method) or they may be shifted upstream relative to the panel centres. 

The two methods have also been compared numerically for a three-dimensional flow using the Series 
60 CB=0.60 hull to verify the conclusions from the two-dimensional analysis. A grid dependence 
study for the free-surface was performed for non-linear computations and the grid convergence is 
compared for the wave profile at a longitudinal cut. The residual of the free-surface boundary condi- 
tion is also compared for the two methods. 

Analysis of Dispersion and Damping 

Numerical dispersion and numerical damping occur when the continuous potential flow problem is 
discretized in a numerical method. Both the discretization of the free-surface source distribution and 
the introduction of numerical operators to compute the velocity derivative in the free-surface bound- 
ary condition introduce errors to the method. A systematic methodology for this type of analysis is 
described in detail in ( Sclavounos, P. D. and Nakos, D. E. 1988 ) and in ( Raven, H. C. 1996) and it 
is used for the present analysis. The method investigates the properties of the numerical method after 
transformation to the Fourier space. 

A two-dimensional continuous source distribution is assumed at a distance zfs above the undisturbed 

free-surface level and the Fourier transforms of the induced velocity and velocity derivative at a 
point on the undisturbed free-surface due to the source distribution are introduced into the Kelvin 
free-surface boundary condition. The Kelvin free-surface boundary condition can then be formulated 
to include an operator that relates the induced vertical velocity on the free-surface to the right hand 
side of the equation which is assumed to be known. 
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The source distribution is for the first order numerical method discretized into flat panels of uniform 
size Ax having a constant source strength and the velocity derivative in the streamwise direction is 
computed using an upwind four-point numerical operator. The source panels are located a distance 
zf  = aAx above the undisturbed free-surface level and all collocation point are allowed to be 

shifted a distance yAx upstream of the panel centres. The Fourier transform of the induced velocities 
at a collocation point on the free-surface and the Fourier transform of the four-point operator are 
introduced into the Kelvin free-surface boundary condition and as in the continuous case an operator 
for the vertical velocity can be formulated. 

For the first order analytical method the Fourier transform of the analytical expression for the veloc- 
ity derivative in the streamwise direction replaces the Fourier transform of the four-point numerical 
operator in the Kelvin condition and an operator for the vertical velocity can again be formulated. 

The operator for the higher order numerical method is similar to the first order numerical method but 
it includes contributions from the curvature of the panel and from the linear source variation. 

The dispersion and damping for the discretized method can now be investigated from plots of the 

real and imaginary parts of a function Lh (s) which is included in the non-dimensionalized form of 
the operator for the vertical velocity. The difference between the operators for the discretized meth- 
ods and the operator for the continuous source distribution is shown as the difference between the 
non-dimensional wave number s and the function Lh (s) . The principle for the analysis is shown in 

figure 1A where on the abscissa s = 0 means an infinite number of panels per wavelength and 

s = 0.5 means two panels per wavelength. The intersection between a horizontal line 

1/(271- FnA
2) where FnA is the panel Froude number and the real part of the function Lh (s) 

gives the principal far-field wave number found by the discretized method and the difference 
between this wave number and s gives the dispersion for the method. The intersection between the 

imaginary part of Lh(s) and a vertical line at the principal far-field wave number indicates the 
damping of the discretized method. A spurious wave numbers may in some cases be found by the 
discretized method if a second intersection between the real part of Lh (s) and the horizontal line 
exists. 

A: Principle for the analysis B: Four-point operator, y=0.25, a =0.0, 0.5,1.0, 2.0 
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Figure 1  Interpretation of the real and imaginary parts of Lh (s) 
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Different positions of the source panels and the collocations points were investigated and as one 
example figure IB shows the influence of the distance between the source panels and the free-sur- 
face, a, for a collocation point shift, y, of one quarter of a panel length and the four-point operator. 

It can be seen that the damping is reduced as the distance, a, is increased and that the dispersion is 
small for the principal wave number. The analytical method, figure 2A, shows very small dispersion 
in a large wave number range as the distance, a, is increased. No damping is present for the analyti- 
cal method. The analysis shows that there is only a very small difference between first and higher 
order panels if the source panels are raised a distance above the free-surface. Details of the present 
analysis are described in (Janson, C. E. 1996B ). 

A: Analytical method, Y=1-0, a =0.0, 0.5,1.0, 2.0 B: Residual, free-surface boundary condition 
A - 4-point, higher order 
B - 4-point, first order 
C - Analytic, higher order 
D - Analytic, first order -4.00000    - 

10I_06**N 

-B.00000 

-16.0000    - 

0 0.05       0.1        0.15       0.2       0.25       0.3       0.35       0.4       0.45       0.5 5.0 10.0 15.0 20.0 25.0 
ITERATION NUrBER 

Figure 2 

Numerical comparison for the Series 60 hull, Fn = 0.316 

Non-linear computations were carried out for the Series 60 hull using both the four-point operator 
and the analytical method. The solution method for the non-linear problem is to linearize the free- 
surface boundary condition around a known base solution and solve the problem in an iterative man- 
ner. In each iteration the problem is linearized with respect to the solution from the previous itera- 
tion. The first iteration is started from a zero Froude number flow where a Neuman condition is 
applied on the free-surface. In the first linear solution the linearized free-surface boundary conditions 
are applied on the undisturbed free-surface and are in the following iterations moved to the wavy 
free-surface computed in the previous iteration. The source panels were raised about one panel 
length above the wavy free-surface. 

The iteration history of the max residual for the combined free-surface boundary condition is in fig- 
ure 2B shown for the four-point operator and the analytical method both for first and higher order 
panels using 25 panels per fundamental wave length. It can be seen that the residuals are reduced to 
very small values for both methods but the analytical method shows a slightly slower convergence. 
Note the logarithmic scale for the residual. There is only a very small difference between first and 
higher order panels. 
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A grid dependence study was carried out for the number of panels on the free-surface using higher 
order panels. In figure 3 the wave profile is plotted at 0.0755*Lpp aside of the centre line for 5, 10, 
15, 20, 25 and 30 panels per fundamental wave length and as can be seen the wave profile converges 
towards the measured profile as the number of panels is increased. A slightly faster convergence is 
noted for the analytical method but the solution is still not grid independent for 30 panels per wave 
length. 

It is interesting to note that the same conclusions can be made from the Fourier analysis in two 
dimensions and the numerical computation in three dimensions. In both cases the analytical method 
shows smaller dispersion than the four-point operator and the amplitude converges faster due to 
smaller damping. But, for the large number of panels used in applied computations there is only a 
small difference between the analytical method and the four-point operator. Only a minor difference 
was obtained between first and higher order panels in the Fourier analysis and this very small differ- 
ence occurred for the wave profile also in the numerical computations. 

A: Four-point operator B: Analytical method 
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Figure 3 Wave profile 0.0755*l_pp aside of the centre line 
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Capillary ripples on standing water waves 

Lei Jiang, William W. Schultz, and Marc Perlin 

Department of Mechanical Engineering and Applied Mechanics 
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University of Michigan, Ann Arbor, Michigan 48109 USA 

The dynamics of capillary-gravity standing waves strongly impact remote sensing. Satellite images 
obtained by SAR (Synthetic Aperture Radar) exhibit brighter radar returns near ocean features such 
as currents, shelves, and slicks. The backscatter of microwaves by these surface features is sensitive to 
the curvature and periodicity of the sea surface on centimeter scales. Dynamics of wave reflection in 
these regions and hence the dynamics of standing waves are critical in interpreting SAR images. Jiang et 
al. (1996) generated Faraday waves in laboratory experiments and compared to fully-nonlinear numerical 
simulations. New dynamics of harmonic interaction and interesting steep waves were discovered. In 
particular, triply-periodic breaking are discussed in Jiang et al. (1997). Herein, we present results on 
even shorter wavelengths, 2 cm to 15 cm, and on the formation of superharmonic waves (ripples) in the 
ensuing wave forms. 

Numerical methods and experimental techniques 

The flow is assumed to be irrotational, spatially periodic, and infinitely deep. Capillary number K = ak2/pg 
represents the effect of surface tension, where a is the surface tension, k is the wavenumber, p is the water 
density, and g is the gravitational acceleration. The fully-nonlinear free surface problem is solved by a 
spectral Cauchy-integral method, based on the kernel desingularization of Roberts (1983). As shown in 
Schultz et al. (1994), this method gives exponentially accurate solutions. When vertical forcing is provided, 
a term proportional to <f>xx is added to the dynamic free surface condition to simulate the free-surface 
boundary-layer damping and to provide an energy sink to balance the wave forcing. 

The standing wave excited by vertical oscillation (Faraday resonance) is subharmonic (Benjamin & 
Ursell 1954). Herein Faraday resonance is used as a "clean" experimental method to generate two- 
dimensional steep standing waves. We use a rectangular glass tank 105 mm long and 300 mm deep. 
The testing water depth is 150 mm in the experiments. An aspect ratio of 6.2 : 1 in the third dimen- 
sion is chosen to eliminate cross waves and maintain a two-dimensional wave field. The wave profile is 
recorded with a laser-sheet technique and a high-speed intensified imager/recorder. The vertical oscillation 
is provided by a mechanical shaker with computer control. 

Parasitic ripple generation 

We first validate our numerical method by calculating parasitic ripple formation on the forward face of 
traveling gravity waves (Cox 1958, Longuet-Higgins 1963). A linear Stokes wave is used as the initial 
condition with wavelengths of 6.5 cm (/c = 0.07) and 5 cm (K = 0.119). The wave first becomes spatially 
asymmetric with the crest tilting forward (wave steepness ifea=0.20). Then larger curvature is found on the 
forward face and ripples are excited after one wave period, as shown in figure 1. The number of ripples 
and their large steepness agree with the experiments by Perlin et al. (1993) and the viscous simulation of 
Dommermuth (1994). These computations prove that neither viscous damping nor vorticity is required for 
the ripple formation, even though damping may be needed to describe the subsequent evolution of these 
parasitic ripples and the underlying vortex structure (Longuet-Higgins 1992, Mui & Dommermuth 1995). 
Demonstrating ripple formation requres only 64 free-surface nodes per wave length in our computation; 
much more efficient than Dommermuth's full-field computation. 

Ripple formation can be interpreted as higher-order resonance between the fundamental mode and 
its superharmonics at critical capillary numbers K= \/N (Wilton 1915) where N is an integer. Longuet- 
Higgins (1963) explained parasitic ripples on a traveling wave as the result of a capillarity-induced pressure 
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disturbance at the wave crest, analogous to ripple generation on a steady stream. Because the group 
velocity for capillary waves is faster than the phase velocity of the underlying wave, the ripples appear 
on the front face of the wave crest. Ripple formation cannot be confirmed by Longuet-Higgins' theory for 
standing waves, as the standing wave is unsteady and the background flow can no longer be transformed 
into a steady stream. However, the high-order resonance condition: K = \/N should be equally valid for 
traveling waves and standing waves, therefore predicting ripple formation on standing waves. 

Our numerical simulation for free standing waves uses a high-order gravity standing wave solution as 
the initial condition. A large-amplitude 6.5-cm wave (fca=0.57) evolves into a waveform with many ripples 
on the surface. Shown in figure 2, the number of ripples is about 15 (RS 1/«)- The ripple growth can be 
explained in terms of interaction between short waves and a long wave as follows: Curvature variations first 
appear at the crest during its ascending phase. When the crest motion reverses, small ripples are carried 
by the orbital velocity of the underlying wave to the two troughs with their wavelength stretched and their 
steepness reduced. Because capillary waves propagate faster, these ripples reach the two troughs before 
the orbital velocity reverses. The ripples then encounter an opposing velocity field and are shortened and 
steepened. This intermittent growth occurs within one half wave cycle. Compared to traveling waves, the 
ripple growth is slower and the average ripple steepness is much smaller, although the initial wave steepness 
is three times larger. The ripples are generally shorter and steeper at the trough of a standing wave (figure 
2b), in contrast to the behavior of short waves on a long traveling wave. 

In reality, water waves are accompanied by a free-surface boundary layer that provides a viscous 
damping proportional to the square of wavenumber. The higher harmonics experience much larger damping 
than the fundamental harmonic. Therefore, the already weak parasitic ripples can be suppressed by viscous 
damping. We model both vertical forcing (acceleration) and viscous damping (4>xx term) to simulate 
Faraday waves. A periodic wave solution is achieved with the same wave steepness and the same K as 
shown in figure 2. However, due to the viscous damping, ripples form and decay quickly before significant 
ripple steepness is reached. 

Using Faraday resonance, we generate 10.5-cm Faraday waves (/c = 0.0265) in laboratory experiments. 
These waves reach a maximum steepness of fca=1.32 with a rounded crest and very steep slope without 
parasitic ripples (figure 3). This large wave steepness and the corresponding wave profile agree with the 
calculations of Schultz & Vanden-Broeck (1990) for free standing waves. More extensive experiments on 
wavelengths from 5 cm to 10 cm are required to further confirm our numerical findings on the parasitic 
ripples and the effect of viscous damping. 

Wilton ripples under Faraday resonance 

Internal resonance occurs at the critical capillary number K= 1/N, leading to the existence of a family of 
solutions (Wilton ripples). Only limited modes participate in the resonance when N is a small integer. 
Generalized Wilton ripples are usually referred to as triad interactions (Perlin et al, 1990). For standing 
waves with K= 1/2, two solutions are found for moderate wave amplitude by Vanden-Broeck (1984). Both 
the first and the second harmonics are retained at first order in his analysis. However, such solutions are 
limited by the weakly-nonlinear assumption, leaving the behavior of capillary-gravity standing waves at 
large wave steepness unexplored. 

We calculate standing waves generated by Faraday resonance at these critical capillary numbers. The 
wavelength is fixed at 2.44 cm (K = 1/2). With small forcing amplitude, we obtain a periodic wave with 
low wave steepness (fca=0.06) in figure 4(a). Either one crest or two crests appear at different phases of 
a wave cycle, similar to the two solutions of Vanden-Broeck (1984). As we increase the forcing amplitude 
and therefore increase the wave steepness to fca=0.35 (figure 4b), three or four crests appear in the wave 
profile at different phases of a periodic wave cycle. A frequency spectrum of wave elevation demonstrates 
that the second, the third, and the fourth harmonics are equally significant (the fundamental harmonic 
is 9.8 Hz). This behavior is not described by the two-mode model of Henderson k Miles (1991) for 2:1 
resonance in Faraday waves. 

The appearance of higher harmonics is even more evident for K= 1/3. With a fixed forcing amplitude 
and forcing frequency in our numerical calculations, shorter and shorter ripples appear in a cascade on the 
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free surface, and a periodic state is never reached. If the forcing frequency is slightly different from twice 
the linear natural frequency, we observe quasi-periodic and chaotic motions in the surface elevation. The 
cascade to higher wavenumbers eventually leads to a wavelength on the scale of the node spacing and our 
computation fails. 

This proliferation of superharmonics for capillary-gravity waves appears to be not studied in detail in 
the literature. Perlin k Ting (1992) noted multiple crests in traveling Wilton ripples directed excited by 
a wavemaker. The importance of small-scale wave forms to remote sensing applications warrants a more 
in-depth study of these phenomena. 

This research was supported by the Office of Naval Research partially under contract number N00014- 
93-1-0867 and partially under the University Research Initiative Ocean Surface Processes and Remote 
Sensing at the University of Michigan, contract number N00014-92-J-1650. 
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Figure 1: Calculated parasitic ripples on traveling wave (ka=0.20) with wavelengths (a) 5 cm, (b) 6.5 cm. 

Figure 2: Calculated 6.5-cm standing wave (Jfca=0.57) with parasitic ripples, (a) elevation, (b) curvature. 

Figure 3: Laser-sheet image of steep (fca=1.23) Faraday wave of 10.5-cm wavelength. 

Figure 4:   Calculated Faraday wave at different phases of the wave period T for K = 1/2 (wavelength: 
2.44 cm), (a) fca=0.06, forcing amplitude: 0.045 mm; (b) fca=0.35, forcing amplitude: 0.12 mm. 
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DISCUSSION 

Grilli S.: You mentioned that to model laboratory experiments, you used a (p^. 

damping term. Would this be also applicable to the real ocean? 

Jiang L., Schultz W., Perlin M.: We use the 9^ damping term to model open 

ocean where free-surface boundary layer is the dominant source of dissipation. 
Damping measured in laboratory experiments is dominated by the sidewall 
boundary layer and contact-line damping. A good model that consider all these 
effects has not yet been found. 

Wu T.Y.: Taylor seems to have objected to the 90-degree conjecture. 

Jiang L., Schultz W., Perlin M.: Yes, Taylor (1953) questioned the derivations 
for the 90-degree conjecture, even though he did not say the conjecture was 
wrong. However, his experiments did not disapprove the conjecture. We have 
found a crest angle smaller than 90 degrees in calculation. In the experiments 
where period-tripled breaking occurs, the sharp-crest mode has a crest angle much 
less than 90 degrees. 
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WAVE IMPACT ON ELASTIC PLATES 

T.I.Khabakhpasheva, A.A.Korobkin 

Lavrentyev Institute of Hydrodynamics, 
Novosibirsk, 630090, RUSSIA 

The plane unsteady problem of wave impact onto an elastic beam of finite length is con- 
sidered. Initially a wave crest touches the beam at its central point (central impact) or at its 
edge (edge impact). Then the liquid hits the beam from below at a constant velocity. The 
impact process can be divided into two stages: in the first stage (impact stage) the beam is 
wetted only partially, in the second stage (penetration stage) the beam is totally wetted and 
continues to interact with the liquid. The impact stage is considered here only. At this stage 
the hydrodynamic loads are very high and are dependent on both the velocity of contact region 
expansion and the beam deflection. The problem is coupled. The dimension of the contact 
region is unknown in advance and has to be determined together with the liquid flow and the 
beam deflection. Here the beam deflection is of main interest that is why the numerical method 
to treat the problem is designed in such a way that the elastic characteristics can be effectively 
evaluated, but not the hydrodynamic ones. 

We shall determine the beam deflection, the bending stresses in the beam and the duration 
of the impact stage under the following assumptions: (1) the beam deflection is governed by the 
Euler beam equation; (2) the beam is connected with the main structure bu rotatory springs at 
the beam ends; (3) the liquid is ideal and incompressible; (4) the air influence on the impact, 
and both external mass forces and surface tension, are negligibly small; (5) the wave profile near 
impact point can be approximated by parabolic contour with the initial radius of curvature at 
the top R; (6) the beam length 2L is much less then R; (7) dimension of the contact region 
grows with time. Assumption (6) implies that the deformations of both the wave profile and 
the beam are of 0(e) as e = L/R -> 0 at the impact stage. Moreover, in the leading order the 
boundary conditions and the equations of the liquid motion can be linearized with the relative 
accuracy 0(e). 

1     Formulation of the problem 

The central impact is considered in this section only, the edge impact is treated in a similar 
way. In order to formalize the derivation of the model describing the first stage of the impact, 
the following scales are introduced: L as the length scale, L2/(RV) as the time scale, L2/R as 
the displacement scale, V as the velocity scale, pV2(R/L) as the pressure scale, where p is the 
liquid density. The original equation of liquid flow, the boundary and initial conditions and 
the Euler beam equation, which are written in the non-dimensional variables, contain three 
parameters e, a,ß where a = MB/(pL), ß = (EJ)/(pLR2V2). Here MB is the beam mass per 
unit length, E is the elasticity modulus. J is the inertia momentum of the beam cross-section. 
The parameter e can be referred to as the parameter of linearization. 

Taking formally e = 0 in the original equations and the boundary conditions, we obtain the 
following boundary-value problem with respect to velocity potential (p(x, y, t) and the beam 
deflection w(x,t): 

Vxx + <Pyy = 0 (y<0), (1) 

<Py = -l+wt(x,t)       (y = 0,|x|<c(t)), (2) 

^ = 0       (y = 0,\x\>c(t))1 (3) 
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y>->0       (x2 + y2-^oo), (4) 

p(x,y,t) = -tpt{x,y,t), (5) 

aW + ßI^=pMt)     M<1-t>0>- (6) 

tu = 0,        tu« ± fciüx = 0       (i = ±l), (7) 

w = Wt = 0       (|a;| < l,t = 0), (8) 

The bending stress distribution a{x,t) is given in the dimensionless variables as a{x,t) = 
wxx{x, t), with its scale Eh/{2R), where h is the maximal thickness of the beam. The positions 
of the contact points are described in the symmetrical case by the only function c(t). Despite 
the fact that both the equations of motion and the boundary conditions are linearized, the 
problem remains nonlinear as c(t) is unknown. The 'spring' conditions (7) were introduced by 
Kvälsvold and Faltinsen (1993), k is the nondimensional spring stiffness. 

The formulation of the problem (1) - (8) is not complete. It must be added by an equation 
for the dimension of the contact region. Usually the equation derived by Wagner (1932) is used, 
but this equation is difficult to incorporate into a numerical scheme. We use here the equation 
suggested by Korobkin (1996). The equation is, in fact, a modification of the classical Wagner 

condition. It is 
f   yb[c{t)sm9,t]de = 0, (9) 

Jo 
where the function yb(x,t) describes the shape of the beam with respect to the initial position 
of the free surface. In the present case, yb(x, t) = x2/2 - t + w{x, t), equation (9) gives 

t = Ic2 + 1 r'2 w[c(t) sin 0, t\dd. (10) 
4        ix Jo 

The problem (1) - (10) is solved with the help of the normal mode method. This method 
leads to infinite system of ordinary differential equations with respect to the principal coordi- 

nates of the beam deflection w(x, t). 

2     Normal mode method 

Within the framework of this method the beam deflection w(x, t) is sought in the form 

w{x,t) = '£an{t)il>n(x). (11) 
71=1 

Here </>n(x) are non-trivial solutions of the homogeneous boundary-value problem 

4% = A^n       (|z| < 1), 
dx4 

^%(±1)±Ä±1)=0) Vn(±l) = 0, 
dx1 dx 

where An are the corresponding eigenvalues.   Moreover, the eigenfunctions ^n(x) satisfy the 

orthogonality condition 

I     1pn{x)lPm(x) dx = 8nm, 
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where Snm = 0 when n ^ m and 8nn = 1. Substitution of equations (11) into (6) - (8) and 
solution of the hydrodynamical part of the problem (1) - (5) provide the following system of 
ordinary differential equations 

~ = (aI + KS)-\ßDd + f), (12) 

Here o = (01,02,03,.. .)T, d is the vector d= (dud2,d3,.. .)
T, dn = (ßX^)-1(aän + bn), f = 

(/i(c), /2(c), /3(c),.. .)Ti I is the unit matrix, D is the diagonal matrix, D = diagfA*, A2, A3,...}. 
The right-hand side of the system (12), (13) depends on a, d, c, but not on t. Therefore, it is 
convenient to take c as a new independent variable, 0 < c < 1. Differential equation for t = t(c) 
follows from (10) and has the form 

— = Q(c,a,a), (14) 

where 
, £+(4^0(0^ 

2-(4/c/7r)(o,r(c))' 

Tn(c)= r   Tpn{csin6)de,        rnc(c) = f   tfJcsin9)sin9<W. 
Jo Jo 

Multiplying equations of system (12), (13) by dt/dc and taking (14) into account, we get 

1-* 

■£^F(c,d)Q(c,a,F(c,d)), (16) 

^ = -aQ(c,a,F(cyd)), (17) 

where F(c, d) = (al + KS(c))~1(ßDd + /(c)). The initial conditions are 

5 = 0,       d = 0,       t = 0       (c = 0). (18) 

The system (16), (17) is suitable for numerical evaluation. Indeed, for small times we have 
c(t) = 0{t1'2), w(x,t) = 0(£3/2), wt = 0(t^2), wtt = 0(t-xl2), and therefore, one cannot start 
numerical calculations for system (12) - (14) with homogeneous initial conditions. Difficulties 
with initial conditions for system of differential equations with respect to principal coordinate 
an(t) and their derivatives än(t), where the time t is taken as the independent variable, are 
described by Kvalsvold end Faltinsen (1993). On the other hand, t = 0(c2), w = 0(c3), wt = 
0(c), wtt = 0(c-1) as c —► 0, and there are no problems with initial conditions for system (14) 
- (17): 

Initial value problem for the edge impact is similar to (14) - (18) but elements of the system 
are different. Moreover, the derivative dt/dc can become large (the speed of contact region 
expansion is small) at some moment tx of the impact stage. In this case we need to return to 
system (12), (13) as t sa tx. 

137 



3     Numerical results 

The initial-value problem (14) - (18) is solved numerically by the fourth-order Runge-Kutta 
method with uniform step Ac. The condition that the numerical scheme is stable was derived. 
The step Ac has to decrease as 0(N~2) if the number of modes N taken into account increases. 

Main part of the calculations were performed for simply supported beam (k = 0). Central 
impact was analysed for the case L = 0.5m, R - 10m, h - 2cm, E = 21 • 1010H/m2, V = 3m/s, 
Q = 1000kg/m3, Qb = 7850kg/m3, b = 0.5m, where Qb is the beam density and b is the 
beam width. This gives a = 0.314, ß = 0.311. The number of 'dry' modes TV taken into 
account is equal to 15. The speed of the contact region expansion was found to be positive 
and bounded as c > 0. Numerical results are compared with both the Wagner approach and 
the Karman approach for the estimation of the wetted size of the beam. It was found that the 
simplified approaches do not provide appropriate approximations of the speed of the contact 
region expansion. Bending stress peaks close to the end of the impact stage and its maximum 
value is 140N/mm2. One-mode approximation, N = 1, does not give correct information about 
evolution of the bending stresses, but maces it possible to estimate their maximal value. 

Edge impact is analysed for a = 0.157,/? = 0.04. It was revealed that the speed of the 
contact region expansion is not uniform and takes its minimal positive value at distance 1.2L 
from the impact point. After that the speed grows beyond all bounds before the beam is totally 
wetted. This means that acoustic effects have to be taken into account at the final phase of 
the impact stage. The hydrodynamic force tends to infinity as dc/dt -* oo, where c(t) is the 
dimension of the contact region. This effect, which was not revealed for central impact, is 
referred to as blockage. It is assumed that the parameter 6, which is the dynamical rigidity of 
the beam, is responsible for this effect. The calculations were performed for ß = 0.02, ß = 0.04 
and ß = 0.06. It was found that small variations of ß lead to significant changes of the process 
evolution. When a half of the beam is wetted, the speed dc/dt becomes negative and the wetted 
area starts to decrease for ß = 0.02. This phenomenon may be responsible for cavitation effects 
and the beam ventilation. In the case ß = 0.06 the speed dc/dt is positive and bounded as 
c > 0, and the hydrodynamic force is bounded at the impact stage. Comparison of central 
impact and edge impact for the same values of the parameters a, ß shows that at the end 
of the impact stage the beam deflections and the distributions of the bending stresses differ 
significantly. 

If k ^ 0 the calculations were performed for the central impact only. It is shown that the 
conditions of simply supported beam, k = 0, can be used to estimate bending stresses near the 
beam centre. 

The numerical results demonstrate that at least five modes have to be taken into account 
to derive the initial data for the penetration stage of the impact. It should be noted that the 
present approach does not require supercomputers. The computer program, which was used for 
the calculations with 15 modes, takes about 30 minutes of computer time in a PC-486(66MHz) 
computer. 
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The Computation of the Second-Order 
Hydrodynamic Forces on a Slender Ship in Waves 

Yonghwan Kim, P.D. Sclavounos 

Massachusettes Institute of Technology 

1 Introduction 

The accurate prediction of the mean and slow-drift force on a ship is necessary for the 
reliable simulation of slow-drift response and design of a positioning system. The slow- 
drift problem, in particular, becomes important for the ship with no forward speed, like 
a drilling ship or shuttle tanker. In contrast to a floating off-shore platform, the ship is 
a slender body. Therefore, slender-body theory is applicable to reduce the effort which 
comes from full 3-dimensional discretization. In the present study, strip and unified 
theory are applied to predict the second-order mean drift forces and moment and wave 
drift damping coefficient. 

2 Application of Slender-Body Theory 

Consider a ship at zero-forward speed in regular monochromatic waves. When the ship 
is slender, slender-body theory allows an accurate linear solution for the radiation and 
diffraction problems. Especially, unified theory provides excellent accuracy for not only 
diffraction problem but also the heave and pitch radiation problem. For the transverse 
motions, strip theory is adequate. 

2.1 Strip Theory with NIIRID 

NIIRID[1] is a computer code developed at MIT for the computation of the radiation and 
diffraction forces on a 2-dimensional section. This code adopts the 2-dimensional wave 
source potential as the Green function, and provides the complete linear solution of the 
radiation and diffraction problems. In this study, NIIRID is integrated into a strip theory 
code based on the Salvesen, Tuck and Faltinsen(STF) method[2]. 

2.2 Unified Theory 

Newman[3], Sclavounos[4] developed an excellent slender-body theory which carries out 
the solution of the zero-speed seakeeping problem in the frequency domain. Unified theory 
adds a 3-dimensional correction to the sectional solution of strip theory. In this theory, the 
radiation potential is obtained by the superposition of the strip theory solution(particular 
solution) and the longitudinal wave interaction(homogeneous solution). The diffraction 
potential has an analogous form which can be related to the radiation solution in not very 
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short waves. The most important task in unified theory is to solve the integral equations 
for the three-dimensional sectional strength, qj. For example, the integral equation for 
the radiation problem is 

<&(*) - 7^(~ + WÜi) = ai(x) 3 = 3(heave),5(pitch) (1) 
Z17T    (Tj 

L{qj)  =  <z;(s) (7 + **) + JL
d^2+ sgni"x ~ ^ ln^x ~ ^ d£qj^ 

_VL {Yo(\u(x - 01) + 2iJo(W(x - 01) + Bo(\»(x - 01)) fc(0>        (2) 

where <r,- is the two-dimensional strength obtained from strip theory. All other notations 
are the same with Ref.4. The added mass, ay, and damping coefficient, 6y, can be derived 
from the equation, 

w2oy - vvbij = -tup f jnrtjds -iwpj Jn<g. + fr.(V'j + $i)ds (3) 

where V>j is the strip theory potential. The wave exciting forces and moments can be 
obtained from the Haskind relation. The far-field formula derived by Sclavounos(1985) 
has been adopted in the present study. 

XiJ™±\ qj(x)e^^dx (4) 
2a;   JL 

where A is the wave amplitude and ß is the heading angle of the wave relative to the ship 

axis. 

2.3    Mean Drift Forces and Moment 

Maruo(1960) derived a far-field formula for the surge and sway mean forces, 

w pU*   f2lt\TT(6M2l  (cos0 + cosß) \d0 (5) 
F«" = -teJo    imi   \(sin^ + sin/3)   )*» U 

The far-field equation for mean yaw moment was derived by Newman(1967), 

ft-^-r^o^-si^^'^»     (6) 
where H(0) is the Köchin function. In the present study, the following form of the Köchin 
function is found to generate the most accurate results for the drift forces and moment[5]. 

H(9)= f J2^(x)e~iUXC°s6dx (7) 

where the sectional source strength (heave & pitch) or horizontal dipole moment (roll, 
sway & yaw) are defined as follows 

r f) d 
(T*i(x)= I        -K-(f>j(xm,y,z) - (l>j{xm,y,z)-K- J Jcm{i) [on on 

where Cm(l) denotes the ship section at station x = xm. 

eV(z-ivsmß)dl (8) 
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2.4    Wave Drift Damping 

The drift damping is also an important quantity in the slow-drift oscillation problem. 
Aranha[6] suggested a formula for the wave drift damping which is adopted in the present 
study although there is some doubt about its accuracy in the radiation problem. 

3 Computational Results 

Fig.l shows the added mass and damping coefficient of the heave motion and Fig.2 shows 
the heave and pitch RAO. Both are for the Series 60(CB = 0.7) hull. As expected, 
unified theory is in very good agreement with WAMIT. Fig.3 shows the pitch component 
of the Köchin function. The accurate computation of the Köchin function is the key 
to the drift force computation. Some minor discrepancy with WAMIT's is found, and 
the accumulation of this discrepancy produces the difference of the total drift force and 
moment. However, the agreement is generally favorable. Fig.4 shows the mean drift force 
for the surge of a parabolic hull with beam/length=0.15. The longitudinal drift force is 
more important than others since the ship will change her position to be parallel to the 
wave direction. This figure shows the effect of the number of stations in unified theory. 
Fig.5 shows the lateral mean force on the Series 60 hull. Since the fore and aft body of 
this hull is not symmetric, the longitudinal component doesn't vanish. Sway, roll, and 
yaw components contribute to the second-order quantities in headings other than head 
seas. Fig.6 shows the wave drift damping coefficients. Aranha's formula is applied to the 
mean forces obtained by strip theory, unified theory and WAMIT. The primary difference 
of these curves is the difference of the slopes of mean forces with respect to the wave 

heading angle and wave frequency. 
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Wave Breaking Simulation Around 
a Lens-shaped Mast By a V.O.F. Method 

O. Läget, C. de Jouette, J.M. Le Gouez, S. Rigaud 
Principia R.D., Port de Bregaillon, 83507 La Seyne Sur Mer cedex, France. 

Abstract 

Using the CFD code EOLE, described in [3], numerical computations of steady waves around a par- 
tially immersed vertical lens-shaped mast have been done. These computations were realized using a 
"Volume of Fluid" method coupled with the Euler or Reynolds-averaged Navier-Stokes equations. The 
V.O.F. technique is often used to modelize unsteady phenomena. In [3], this technique was adapted 
to treat steady problems as non-linear waves induced by a submerged hydrofoil placed in a uniform 
flow. The purpose of this paper is to expose the way the V.O.F method was extended to compute 
fluid flows in body fitted grids, and to highlight the interesting features of this method applied to a 
strong non linear wave pattern around a 3D lens-shaped mast. 

1 Introduction 

Nowadays, as shown in [5], two major groups of methods are used to determine the wave resistance 
of structures moving at a constant speed. First, potential methods, based on a Dawson technique 
are more and more used by shipyards or tank facilities as industrial tools. However, the limits of the 
potential theory do not allow to treat viscous interactions, nor high non linear free surface. Therefore, 
important attention is payed to implement free surface algorithm in general Navier-Stokes or Euler 
solvers. A common feature of these methods is to follow the free surface evolutions by mean of 
mesh deformation. As the general evolution of ship goes to high speed vehicule, this method may 
be unadapted to deal with bow waves where wave breaking occur or whith transom stern flows. In 
the EOLE code , developed since 1990, the resolution of Euler or Navier-Stokes equations is coupled 
with the "Volume of Fluid" method for the tracking of the interface. This technique is very efficient 
for very complicated free surface unsteady phenomena like jets, bubble collapse, sloshing, cavitation. 
It is expected that this method may be used efficiently for steady problems like the wave resistance 
one. The algorithm, initialy developed for unsteady flows has been adapted to steady problems and 
its application in curvilinear coordinates is presented. A first serie of results around a vertical lens- 
shaped mast moving at Froude numbers between 0.4 and 1.2 is presented, and shows the interest of 
the method. 

2 Theory 

The steady Euler equations for incompressible fluids are solved using a pseudo-compressibility method 
[2]. This is an iterative method which consists in introducing derivatives with respect to a fictitious 

time called pseudo-time r, into the continuity and the momentum equations as follows : 

df> ,.  —> dplc       ,.   / _v     _v       =\      —> 
-^ + pdivll = 0, -^— + div [pit ®lt + pl) = 0 

Where p is a pseudo-density, p the fluid density, it the fluid velocity, p the pressure and / the identity 
tensor. This system is closed using a relation linking the pressure and the pseudo-density and called 
pseudo-law of state : p = G(p). The steady solution is obtain as the asymptotic limit of the pseudo- 
transient solution of this pseudo-unsteady system (PUS) when the pseudo-time goes toward infinity. 
The main features of the numerical method for pseudo-time integration are a finite-volume method 
based on a space-centered scheme, second and fourth order artificial viscosity terms, five stages Runge- 
Kutta pseudo-time stepping and implicit residual smoothing. 
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2.1    Steady VOF method 

The V.O.F. method implemented in the EOLE code is based on the technique, previously proposed 
by Hirt and Nichols [4]. The fraction of fluid in each cell of the discretization mesh is represented 
by a function F whose value can vary from zero to one while the cell is respectively empty or full of 
fluid. The free surface is contained by the cells with F values between zero and one. For a steady 
problem, the evolution of the F field is governed by the following transport equation in which the 
time is replaced by the pseudo-time r : 

dF     duF     dvF     dwF     n ,u  1 1 1 =0 I1) 
Or       dx        dy        dz 

where (x, y, z) is the cartesian system, (u, v, w) the cartesian components of the velocity. The evolution 
of the F function is made from fluxes calculations (based on "donor-acceptor method" [4]) through all 
the faces of each cell. This algorithm is implemented in curvilinear system (£,??, 0 via a coordinates 

transformation of jacobian J = f£^j- The last equation (1), for a cell O (of faces 60.$+, Sty-, 6^+, 

öQr)-, 6ty+, SQ^- and volume Ifo) in the new coordinates system (£,?7,C) is given by : 

dF 

dr      A£Ar?A( 
—— I /       fudrjdC - /       füdrjd(+ 
ir?A( \Jsni+ Jsn^- 

[      fvdtdC- I      fvd£d(+ [      Fwdtdr,- [      fwd^dri)=0        (2) 
J&ci + JSÜ- Jsnc+ Jsn(- J 

where /(£, r), C, r) is a continue fonction defined at each point (£, 17, C, r) of the fluid domaine and whose 
values are contained between 0 and 1. n, v and w are the modified contravariant velocity components 
which can be expressed as follow : 

ü = U.grad^-j ,    v — U.gradrj-^ ,    w = U.gradC,-^ . 
•J u *J 

where J is the jacobian of the coordinates transformation estimated at each face of the cell. For 
example at the face SQ^+ : 

~rtdS = -=grad£d?7d£ 

where itdS is the normal vector of the face in the cartesian coordinates. The expression for the 
calculation of the fluxes originaly proposed by Hirt and Nichols [4] is now written, in the curvilinear 
system, as follow : 

AF = min(F/1D|t/|AT + CF,FDVn)   with   CF = max[(l - FAD)\Ü\Ar - (1 - FD)VQ,0] 

where FA and FD are the volumes of fluid contained in the "acceptor" and the "donor" cell respectively 
(see figure 1). FAD can be both FA or FD depending of the mode "donor" or "acceptor" determined 
by the slope of the free surface which is calculated in the curvilinear system using the gradient of the 
V.O.F. The "acceptor" mode is adapted to the case of a free surface moving parallel to its normal 
vector, and the "donnor" mode is adapted to the case of a free surface moving perpendicular to its 
normal vector. Writing all the V.O.F. algorithm in curvilinear coordinates allow fluid computations 
to be realized in body-fitted grids. 
As the scheme used to discretize the previous equation (2) is explicit in pseudo-time, a CFL criteria 
is added to the one of the conservative equations (continuity and momentum equations) to force the 
free surface not move throught more than a part of a cell during a pseudo-time step : 

u-ir <c"- 
where Xj and Uj are respectively x, y, z and u, v, w for j = 1,2,3. The pseudo-time step value is 
determined by taking the minimum value between the one given by the previous relation and the value 
calculated with the CFL criteria on the conservative equations. 
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3 Numerical results 

Some numerical results about the wave generation induced by a 3D lens-shaped vertical mast (length : 
0.3375 m and maximum thickness : 0.045 m) partially immersed (0.4 m) are presented. Computations 
were realized for several values of the Froude number from 0.4 to 1.4 in order to observe the evolution 
of the wave resistance, and to make comparisons with existing results. On figure (2) the values of the 
wave resistance obtained using EOLE, are compared with the ones measured during the experiments 
(performed at "Ecole Centrale de Nantes" [1]) and those computed with the Dawson method (REVA 
code, potential linear and non linear theory) by Delhommeau et al [1], At intermediate values of the 
Froude Number (between 0.4 and 1) EOLE's results are closer to the experimental ones than those 
given by the REVA code. The better representation of the non-linear free surface arround the body is 
the explanation. For higher values of the Froude number (between 1 and 1.4) the wave resistance values 
of both codes are in agreement with the experiments because the free surface deformation along the 
body is smoother. For the free surface location, the experiments show that breaking appears when the 
Froude number value is larger than 0.5. Such phenomenon can be qualitatively represented by steady 
Volume of Fluid computations. On figures 3, 4 and 5, the free surface position along the body and the 
plane of symmetry obtained with EOLE are compared to the one given by REVA for the values of the 
Froude number equal to 0.4, 0.6 and 1 respectively. Note that the free surface calculated by the V.O.F. 
method is represented by the line V.O.F. = 0.5, using the post-prossessing logiciel Tecplot (Amtec 
Engineering, Inc.). A more precise representation should be preferable. The extrema computed with 
EOLE have a larger amplitude than the ones given by REVA but their locations along the body are 
in agreement with each other. As the pseudo-time is a non-physical iterative variable, the free surface 
instabilities (like droplets) appearing on the figures (4) and (5) give qualitative informations about the 
breaking (for example the Froude number of transition), but can not represent the unsteady evolution 
of the interface. To be more accurate in representing such phenomenon some unsteady computations 
can be performed, but they need more CPU time. The calculations presented here, were done on 
half a domain (because of symmetry reasons) discretized by a 230000 cells mesh on 2000 pseudo-time 
iterations. This kind of computations have been realized on a Digital DEC ALPHA 600/266 station 
(428 SPECfp92) in 37 hours. 
All the results presented here, show the ability of the V.O.F. method to describe non linear free surface 
phenomena. Further developments, especially to improve the representation of the free surface, will 
be carried on. 
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1 Introduction 
The flow of an incompressible viscous fluid about a circular cylinder beneath a regular Stokes wave train is 
a typical problem in marine structures hydrodynamics and several theoretical and experimental results are 

The accurate experimental analysis by Chaplin [5] confirms that the vertical mean value of the hydrodynamic 
force as well as the second and third harmonics of the fluctuating components are well explained in terms of 
the inviscid diffraction of the incident wave field as is described by weakly nonlinear models [7, 8], and by fully 
nonlinear computations [6]. However, the potential theory fails to capture exhaustively the entire phenomenon. 
Actually, Chaplin's results revealed a significant reduction in the amplitude of the fundamental harmonic of the 
loading which cannot be related to the purely inviscid diffraction of the incoming waves. 

For a cylinder with small submergence, the nonlinear dynamics of the wave system is crucial and tightly 
coupled to the dynamics of the vorticity field about the body. In these conditions, we have to consider the full 
Navier-Stokes equations for a free surface flow. To this purpouse, a particle method which account for viscous 
effects and flow separation near the body is deviced and the nonlinear behaviour of the free surface is fully 
considered (see also Yeung [9] for a similar approach in the context of roll motion of ship cross-sections). 

2 Description of the mathematical problem 
We consider a circular cylinder B immersed beneath a regular wave train on the free surface T. The water 
depth is assumed infinite and the fluid domain V is unbounded in the horizontal direction. The motion of 
the viscous incompressible fluid within V is described by the Navier-Stokes equations. The standard no-slip 
condition must be satisfied on the solid boundary ÖB and the kinematic and dynamic conditions hold at the 
free surface. Actually, we neglect the effects of the free surface boundary layer and assume the support of 
the body-generated vorticity to be confined away from the free interface. Consistently the dynamic boundary 
condition on T simply requires the fluid pressure to be atmospheric. Under such hypothesis, for finite times 
and far from the body, the fluid motion reduces to an irrotational wave system. In particular, we consider the 
corresponding Stokes wave field as a basis flow and solve for the correction which describes both viscous and 

diffraction effects. 
In order to analyze the vortical flow around the body and its interaction with the free surface, a vorticity- 

velocity formulation is considered, and an operator splitting approach is adopted for the numerical solution. 
The algorithm approximates the flow evolution by a sequence of diffusive and convective steps according to the 
Stokes and Euler equations, respectively. In particular, the diffusion of the vorticity is described through the 
solution of the heat transfer equation, the advection step consists in evaluating the Lagrangian motion of the 
vortical particles, while the free surface evolves according to a purely inviscid dynamics. To enforce the no-slip 
boundary condition, following Chorin [1], a vortex sheet is inserted on the body contour after each convective 
step. This vortex sheet is furtherly lumped in order to obtain the circulation of the discrete vortices which are 
diffused together with those already existing within the flow field. The solution of the problem is effectively 
achieved by means of a fast vortex method coupled to an integral representation of the velocity field. 

In order to describe the diffusion of the vorticity, a deterministic approach based on the integral representa- 
tion for the diffusion problem is adopted as discussed in [2] for flows without a free surface. Consistently with 
this particle scheme, the evolution of the free surface is described through the motion of markers distributed on 
T by using kinematic and dynamic evolution equations expressed in terms of velocity components [4]. 

Finally, the perturbation velocity field in the fluid domain is expressed in terms of the Poincare representation 
formula [3]. At each convective-step, a boundary integral equation is first solved to determine the normal velocity 
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component on T and the tangential velocity component on dB and then the velocity field in V is explicitely 
computed through the integral representation. 

3    Computational results 

The above described algorithm is used to analyze the interaction of a Stokes wave train with a submerged 
circular cylinder in order to enlight the role of the viscosity. The solutions of the Navier-Stokes equations 
are compared with those provided by an inviscid model which usually fully captures the nonlinear dynamics 
of wave-body interactions as well as with the experiments reported in [5]. In particular, Chaplin's Case-E 
(kR = 0.206, h/R = 2.0) is considered in detail since non-linear diffraction effects are expected to be more 
pronounced for shallow submergences of the cylinder. 

By examining the wave patterns reported in figure 1 for t/Ts = 10 and Kc = 0.75, a first comparison 
between the viscous (black line) and inviscid (red line) solutions is possible. Qualitatively, the wave diffraction 
dynamics appears to be unaltered by the vorticity generated at the body boundary: however, although the two 
solutions appear to be coincident for low values of Kc, an increasingly pronounced difference can be detected for 
larger values, the amplitude of the emitted shorter wavelenghts appearing to be reduced in the viscous solution. 
Consistently, the wave induced loading predicted by the viscous and by the inviscid model coincides for the 
smaller A'c and show significant discrepancies for the largest value. In particular, the time evolution of the two 
force components Fx, Fy is reported in figure 2 for Kc = 1.0. In this figure, after an initial transient of about 
one wave period during which the viscous (black lines) and the inviscid solutions (red lines) are substantially 
superimposed, the viscous loads oscillate with different amplitudes with respect to the inviscid ones. In both 
cases the time behavior of the force displays an apparent non-sinusoidal shape which manifests the non-linear 
effects in the wave-body interaction. 

Since the detected differencies between the two solutions are related to the generation and to the following 
evolution of the vorticity, it is worthwhile to discuss the dynamics of the rotational field. A typical vorticity 
distribution is shown in figure 3 where cyan-blue region denote the positive values (i.e. clockwise) and red- 
yellow region the negative ones. Two intense vorticity layers of opposite sign which are driven by the rotating 
flow induced by the waves may be observed. Then, due to the diffusion, the vorticity is furtherly spread away 
from the cylinder, a thickened structure is generated and new vortex layers, of opposite sign, possibly appear 
on the body. Finally, the interaction of opposite signed layers takes place, originating the well defined structure 
observed in the figure above the cylinder. Near the body the vorticity field becomes periodic soon after the 
beginning of the flow evolution while the far field dynamics does not significantly affect the forces acting on the 
body. 

A quantitative assessment of this behaviour can be gained through the analysis of the mean value over a 
period of the circulation along circles concentric with the cylinder, figure 4. In particular the black, red and 
green lines refer to t/Ts = 18, 19 and 20, respectively. A steady mean circulation is estabilished about the 
cylinder while farther from the body the dynamics of the far field vorticity still maintains a considerable time 
dependance. In his analysis of the nonlinear behaviour of wave induced loads, Chaplin pointed out the mean 
circulation about the cylinder as the key feature to explain the marked decreasing of the actual inertia coefficient 
with respect to the potential flow prediction. This difference emerges from figure 5, where the present inviscid 
solution (black line) always exceeds Chaplin's experimental data. The correct behaviour is fully recovered by 
the viscous solution shown in the same plot (red symbols), thus confirming the relevance of the diffusion for 
this force components. 
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Figure 1:  Free surface profiles for Kc = 0.75 and t/Ts = 10.  Comparison of viscous (solid line) and inviscid 
(dashed line) solutions. 
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Figure 2: Evolution in time of horizontal (upper plot) and vertical (lower plot) force components (Kc = 0.75) 
Comparison of the viscous (solid lines) and inviscid (dashed lines) solutions. 
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Figur« 3: Vorticity field around the circular cylinder at //7s = 10, /ve = 0.75. 

Figure 4: Total mean circulation about circles of increasing radius r (A', = 0.75), The three curve» refer to 
t/ts « 18, 19, 20 (solid, dashed and dotted lines respectively), 
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Numerical investigations into non-uniqueness in the 
two-dimensional water-wave problem 

by CM. Linton 
Department of Mathematical Sciences, Loughborough University, 

Leicestershire, LEU 3TU, UK 

Introduction 
The proof, by Mclver (1996), of the existence of eigenvalues (trapped modes) in the two- 
dimensional water-wave problem has answered the general question of uniqueness in the 
negative but has created many new and interesting questions for investigation. For example, 
given a particular geometry for which there is no uniqueness proof, we have no general 
method for determining whether or not eigenvalues exist. 

In this work we will consider a class of geometries, namely pairs of symmetrically-placed 
surface-piercing angled barriers in water of infinite depth, and use an integral equation ap- 
proach to investigate the existence or otherwise of eigenvalues. This particular class of 
geometries has been chosen for three reasons. First the problem is not known to be unique, 
though recent results of N. Kuznetsov (Linton and Kuznetsov 1997) provide ranges of the 
frequency parameter for which uniqueness is assured. Secondly it is sensible to choose a 
geometry which shares as many of the characteristics of those computed numerically by 
Mclver (1996) as possible, and her results were for pairs of surface-piercing bodies. Thirdly 
we must choose a geometry for which mathematical progress can be made. The problem of 
wave scattering by a single surface-piercing angled barrier has been solved using hypersingu- 
lar integral equations by Parsons and Martin (1994) and it is their approach that has been 
followed here. 

Formulation 
We consider the case of an inclined surface-piercing barrier next to a vertical wall. By 
symmetry any eigenvalues for this problem will correspond to trapped modes for a pair 
of symmetrically-placed surface-piercing barriers. The geometry is illustrated in Figure 1. 
Following Parsons and Martin (1994) we set the problem up as a hypersingular integral 
equation. Trapped modes then correspond to non-trivial velocity potentials <j> for which the 
discontinuity across the plate, [<j>], satisfies 

where p and q are points on the plate, T, the integral is a Hadamard finite-part integral and 
G{P, Q) is the standard free-surface Green's function. The free-surface boundary condition 
satisfied by G is KG + dG/dy = 0 on y = 0 and if a trapped mode exists for a particular 
Ka (= u2a/g) then Ka is the corresponding eigenvalue. 

The unknown function [</>] is approximated as a finite sum of Chebyshev polynomials of the 
second kind leading to an equation of the form 

N 
Y/Amn(Ka,b/a,6)cn = 0,        m = 1, ,N. 
n=l 

Eigenvalues correspond to values of Ka for which the determinant of the matrix A with 
elements Amn, m,n = 1,... ,N, vanishes in the limit as N -> oo.   It is clear that with 
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x = b 

y " 

Figure 1: Definition sketch 

this approach we are unlikely to be able to prove the existence or otherwise of eigenvalues. 
However we are able to provide strong numerical evidence for the existence of eigenvalues and 
also to show that if the eigenvalues do indeed exist then they are unstable to perturbations 
in the geometry in a sense which will be made precise. Even if eigenvalues do not exist, we 
can show that there are values of Ka in the vicinity of which a related scattering problem 
has qualitatively different behaviour from that at more typical values. 

Results and discussion 
A number of results will be presented, both illustrating the powerful evidence for existence of 
eigenvalues and computations of the eigenvalues themselves. A key point is that the elements 
of A are complex and so, in general, is its determinant. One way of looking at the problem 
is to find zeros of the real and imaginary parts of the determinant, which is numerically 
straightforward as each is a real-valued function which passes through zero, and then to see 
if these zeros occur at the same point. 

For a particular example we fix the inclination of the barrier at 6 = ir/4. The values of Ka at 
which zeros of the real and imaginary parts of the determinant occur are plotted in Figure 2 
for a range of values of b/a. The solid line represents a zero of the real part and the dotted 
lines represent zeros of the imaginary part. We see that the real part of the determinant has 
a zero for all values of b/a in the range shown in the figure whereas the imaginary part has a 
pair of zeros which coalesce and disappear near b/a = 2.21. An eigenvalue exists if the lower 
dotted line actually touches the solid line. The qualitative behaviour shown in the figure is 

typical. 

Numerical results suggest that eigenvalues, if they exist, are unstable in the sense that it is 
possible that an arbitrarily small change to the geometry will cause the eigenvalue to be lost. 
This is in contrast to previously discovered trapped-mode phenomena in water waves. For 
example, in the case of a submerged horizontal cylinder, edge waves exist whatever the cross- 
section and so the geometry can be changed arbitrarily without the eigenvalue disappearing. 
However in the problem considered here arbitrarily small perturbations to the geometry can 
lead to the disappearance of an eigenvalue. It is possible, however, to vary b/a and 6 at the 
same time in such a way as to retain the eigenvalue. In other words the numerical evidence 
suggests that eigenvalues exist on curves in (b/a, 6) space. 
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Figure 2:  Values of Ka at which the real part (—) and the imaginary part (• • •) of the 
determinant vanish. 

Simple continuity considerations show that the unstable nature of the eigenvalues is related to 
the tangential nature of the contact in Figure 2 and to the need to consider a complex-valued 
determinant rather than a real one (which would be more convenient). This is illustrated 
schematically in Figure 3. In diagrams a) and b), which are to be compared with Figure 2, 
the solid curves represent the value of Ka at which the real part of the determinant vanishes 
and the dotted curves the value at which the imaginary part vanishes. Diagram b) (top) 
shows the situation as we find it in Figure 2 whereas diagram a) (top) shows the situation 
where the curves intersect at a non-zero angle. In the lower figures we see the possible effect 
of a small perturbation. The fact that we observe behaviour like that in case b) suggests 
that arbitrarily small perturbations exist which totally destroy the eigenvalues. 

Diagram c) represents the situation where we are looking for a zero of a real-valued determi- 
nant. The horizontal line represents zero and the curve is the value of the determinant. Here 
again the figures illustrate that provided the determinant passes through zero, sufficiently 
small perturbations will not destroy the eigenvalue. In our problem this is not the case and 
diagram d) shows why finding the zero of a complex-valued determinant is then appropriate. 
The curve again represents the value of the determinant, now plotted in the complex plane, 
with Ka varying as we move along the curve. In this case the determinant can be displaced 
from the origin by an arbitrarily small perturbation. 

We can also shed light on the situation by considering a circular cylinder on the centreline of a 
two-dimensional parallel-plate waveguide, as considered by Callan, Linton, and Evans (1991) 
who showed that trapped modes, antisymmetric about the centreline of the guide, exist for 
such a geometry. If we impose the antisymmetry the problem reduces to one of finding 
the zeros of a real determinant and the eigenvalues are stable (in the sense we have used 
the word in this paper), always remembering that we cannot consider perturbations which 
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Figure 3: Unstable nature of eigenvalues. See text for details. 

destroy the symmetry. This is what we would expect since Evans, Levitin, and Vassiliev 
(1994) have shown that trapped modes exist for bodies of any shape (subject to some mild 
restrictions) on the centreline of a waveguide provided the geometry is symmetric about this 
line. However if we make no assumptions about symmetry, thus allowing us to consider 
arbitrary perturbations in the geometry, we find that we must consider a complex-valued 
determinant. Again this is expected since an arbitrarily small displacement of the cylinder 
from the centreline (a perturbation which destroys the symmetry) causes the eigenvalue to 
disappear. 
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DISCUSSION 

Tuck E.O.: Your instability argument is very interesting. However, it is possible 
that small perturbations might change the "touching" phenomenon in the opposite 
direction. That is, instead of eliminating the non-uniqueness at a particular 
wavenumber k = k0, it might create non-uniqueness at two neighbouring 
frequencies k = k0±e. 

Linton CM.: Whilst this is true the fact that the eigenvalue also corresponds to a 
complex-valued function passing through zero suggests that a transition to zero 
eigenvalues rather than to two is more likely. 
Also in other fields, notably quantum mechanics, eigenvalues embedded in the 
continous spectrum (as those considered in this paper are) are known to be 
unstable to small perturbations. 
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Finite Element Analysis of Non-linear Transient Waves   in a Three 
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+   Department of Mechanical Engineering, University College London, Torrington Place, 
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Numerical simulation of propagating waves in a tank has been mainly based on the 
boundary element method (BEM), see for example Comtek, Contento et al ^ Dold & 
Peregrine^].Grilli et al W and Lin et alfö. Although BEM has many known advantages, 
its storage and CPU requirement increase at a rate proportional to the square of the number 
of nodes. Because of this, most analyses based on BEM provided results only for a short 
tank. Wang at al I® combined a multi-subdomain approach with BEM and dealt with the 
problem of two dimensional waves in a long tank. It appears, however, that the 
effectiveness of this approach in three dimensions is less certain. 

The finite element method (FEM) has recently been used in the nonlinear transient 
water wave problem t7>8l It has been observed that FEM has several advantages for this 
problem. In particular, its matrix is banded and its influence coefficients can be obtained 
from the volumes of the elements when the linear shape function is used. It has been 
noticed [7.8] that FEM normally requires far less CPU and memory than BEM. However 
when the computational domain increases, these requirements of FEM are still excessive as 
reported by the authors [$l, who adopted domain decomposition to reduce the memory 
requirement. Since that work, the authors have invested considerable efforts to improve the 
methodology and the CFD code. Changes are made mainly in two areas. Firstly we have 
replaced the Gaussian elimination method for solving the matrix equation with an iterative 
method. In the former method, all the coefficients within the band width have to be stored 
even if they are zero. In the latter method, however, only those non-zero terms have to be 
kept. The number of non-zero terms is usually less than one tenth of the band width. Thus 
the iterative method requires far less memory. Furthermore, zero operations have been 
eliminated in the iterative method, which makes the computation far more efficient. Also 
when the iteration is used in the time domain, the initial solution can be taken from that at the 
last step. All these have improved the efficiency of the computation significantly. 

The second change we have made is based on the fact that the wave created by the 
wavemaker propagates towards the far end gradually. This means that the computational 
domain can be divided into disturbed and undisturbed domains as shown in Figure 1. In the 
undisturbed region, the free surface is considered as unchanged and as a result the 
coefficients corresponding to the nodes in this region can be kept constant. 

When these changes were made, the CPU and memory requirement were significantly 
reduced. We calculated a case with about 203,520 elements and 1,000 time steps in the last 
ONR conference [81. It took about 193 hours CPU time. The same job now takes about 10 
hours on the same machine. 

For the cases considered below, various parameters have been nondimensionalised as 
follows 

(x,y,z)->d(x,y,z)   f-^(pgR2
0d)f 

t->(d/g)'/2t cü-H?/d);/-'co 
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where d is the water depth, p is the density, g is the acceleration due to gravity, 0) is the 
frequency, R0 is the radius of the cylinder and/is the force acting on the cylinder 

The first case considered is the transient wave generated by a wavemaker. The length 
of the tank is L = lOOrf . The motion of the wave maker is governed by 

U(t) = aO)sin(ox) 

with the frequency co = 1.45 and the amplitude «=0.016. The total number of elements used 
in the 3D model is 2,127,943 and the calculation is over 14,400 steps (At = 0.021666). A 
numerical beach is applied at the far end. The total CPU for this case is about 147 hours on 
a DEC ALPHA 255233. Figure 2 gives the wave history at the centre point of the tank 
(x=L/2). It can be seen that the calculated wave remains steady over a long period of time, 
which means that the reflection has no significant effect on the result yet. Figure 3 provides 
the wave profiles at two different time steps. The solid line corresponds to t=59T and the 
dashed line to t=72T ( where T is the period of the wavemaker). They coincide with each 
other very well. However, as can be seen, the amplitude becomes smaller and smaller away 
from the wavemaker. This may be due to numerical dissipation but it requires further 
investigation. 

The second case considered is a vertical cylinder in a wave tank with length L = 40.5rf 
while the water depth and the motion of the wavemaker are the same as above. The cylinder 
is placed at the centre of the tank and its diameter is .05d. 649,728 elements are used and the 
calculation is made over 10,000 time steps. The total CPU is 103 hours. Figure 4 gives the 
horizontal force on the cylinder. 

Figure 5 shows the nonlinear effects on the force acting on the cylinder. All 
parameters are the same as those in figure 4 except the length of the tank has now been taken 
as 16.5d. The results correspond to three different motion amplitudes of the wavemaker: 
a = 0.004,0.016,0.032. The nondimensionalised forces defined above have been here 
divided by the nondimensionalised amplitude. The figure shows that when the amplitude is 
0.032, the non-linear effects on the force become evident. Further results and discussions 
will be given in the workshop. 
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Figure 1 The division of disturbed and undisturbed regions 
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Figure 2. The wave history at the middle point of the tank 
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Figure 3 The wave profiles in the longitudinal plane y=0 at two particular time steps 
(dashed line: t=59T ; Solid line: t=72T) 
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Figure 4 The force history acting on a cylinder in a tank with length=40.5d 
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Figure 5 The force history on a cylinder at different motion amplitudes 
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DISCUSSION 

Molin B.: Aren't you concerned by wall effects in your numerical tank, which 
seems to be rather narrow? 

Ma Q.W., Wu G.X., Eatock Taylor R.: Yes, we would be concerned if these 
results were intended to simulate the open sea. The wall effects can be reduced by 
using a wider tank or by applying appropriate lateral beaches (the beach at the far 
end has been implemented in our work). Our future work will be investigating 
simulations of the open sea. At this stage we are more concerned by the other 
challenges of long time simulations. Our current set up is of course similar to what 
is done in many physical experiments. 

Schultz W.: You indicate that regridding is quite dissipative. Have you tried 
various interpolating schemes during this process? 

Ma Q.W., Wu G.X., Eatock Taylor R.: Yes, we have also tried higher order 
interpolation but the improvement did not meet our expectations, particularly in 
the case of steep waves. Reducing the amount of remeshing does reduce the 
dissipation but it may cause numerical instability. Further investigation is needed 
to find the optimum between remeshing and dissipation. 

Grilli S.: I am surprised by your preliminary observation that FEM solutions are 
more efficient than BEM solutions for a Laplace's equation in 3D. It is my 
experience and there are results in the literature showing just the opposite, i.e., 
when comparing similarly accurate solution of a benchmark problem, using two 
similarly optimized FEM and BEM codes, the BEM method is always faster, 
sometimes by up to an order of magnitude, than the FEM method. And I am not 
even talking about multipole expansions that may be used in BEM. 
Hence I think you might not have used a properly optimized BEM code in your 
comparisons (In particular, just dividing the domain in sub-regions with artificial 
matching boundaries may speed up BEM solutions by a factor equal to the 
number of sub-regions). Another advantage of the BEM vs FEM is that it is exact 
inside the domain, due to Green's identity. Can you comment on this? 
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Ma Q.W., Wu G.X., Eatock Taylor R.: We made our conclusion based on our 
own experience with BEM and FEM. We made clear that our BEM is not 
optimised and there might be better ways of programming the BEM code. To the 
best of our knowledge, however, it has yet to be shown that BEM can achieve the 
same efficiency as we achieved here. The only work we have seen, which used the 
multi-subdomain approach, is by Wang, Yao and Tulin (1995) for the 2D long 
wave tank problem. When the domain decomposition is optimised, the total 
number of coefficients is about 6M(2N + \), where M and N are total numbers of 
nodes on the free surface and the wave maker, respectively. This is comparable 
with the 2D version of our FEM, which has about 1MN coefficients. There are, 
however, several important points here: 
(1) In our FEM code, the total number of coefficients is always linearly 
proportional to the total number of nodes, no matter how complicated the fluid 
domain is. In BEM, it very much depends on the shape of the domain. For example, 
it will be interesting to see how optimisation can be applied to a square shape or 
indeed to an arbitrary shape. Similarly, the efficiency of this technique is also 
uncertain for an arbitrary 3D domain, even for a 3D square wave tank. 
(2) Even when the number of coefficients of BEM and FEM becomes comparable, 
the calculation of FEM coefficients is far more efficient. This is particularly 
important when millions of nodes are used. 
(3) This work is part of our research effort in CFD. We are currently also 
undertaking research into viscous flows with a free surface. BEM is not applicable 
in this case. 
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APPLICATIONS USING A SEAKEEPING SIMULATION CODE 

by 

Allan Magee 
Bassin d'Essais des Carenes 

The computer code RATANA has been developed in order to simulate nonlinear and large- 
amplitude effects in ship motions. (See King, 1990). The present paper reports on progress in 
the continuing development of this package. The kernel of the code solves a coupled system 
of equations in body-fixed coordinates (Euler's equation). Various subroutines compute the 
forces required to solve the equations of motion. In principle, any type of force can be included, 
for example, Froude-Krylov and hydrostatics, linearised time-domain radiation and diffraction, 
nonlinear roll damping and active stabilisers. The use of a time-domain solver greatly eases the 
modeling of nonlinear external forces. 

In the large-amplitude approach, adopted here, Froude-Krylov and hydrostatic forces are 
computed on the instantaneous hull position while the time-domain radiation and diffraction 
forces are computed using the linearised mean body position. The method is similar to that 
utilised by Adegeest, 1995 and appears to offer a good compromise between computational time 
and accuracy of the results produced. In order to use the instantaneous wetted surface in the 
calculations, the entire hull up to the highest waterline to be immersed must be paneled. The 
pressure due to the incident wave (Froude-Krylov pressure) is modified by so-called Wheeler 
stretching (Wheeler, 1970) 

pi(x,y,z,t) = pgYlAnekn^-ri^e-ik^xcosßn+vtia'3nhiUnt     - oo < z < m 
n 

where the incident wave elevation is taken as 

r}!(x,y,t) = £4ne-«"Mrco8/5„+»sin/Mciw„t 
n 

To calculate radiation forces, the impulse response functions can be entered directly if available, 
or can be obtained by Fourier transform of the added mass and damping coefficients obtained 
from a frequency-domain code such as DIODORE. A harmonic analysis is employed as a post- 
processor to decompose the temporal signals of motion, forces or other responses into mean 
values and harmonics of the fundamental frequency. 

Using the mean body position for all the forces and linearising the equations of motion leads 
to a strictly linear time-domain simulation model. After transients have died out, the linear 
time-domain model yields purely sinusoidal responses, and the results should be identical to 
those obtained from frequency-domain calculations as well as to the fundamental component 
obtained from the large-amplitude model in the limit of vanishing wave amplitude. 

Large-amplitude effects become important in roll motion in oblique seas. The effects 
of separation on active stabilisers with large incidence angles can be modeled. The large- 
amplitude formulation also appears to give good results for phenomena which are dominated by 
synchronous pitch motion in head seas. The calculation of drift forces (vertical for submarines, 
the hydrostatic term for added resistance of surface ships), has been treated with success. 
Treatment of the slamming problem, where relative motions and velocities in the bow region are 
important has recently been discussed, Fontaine, et a.1., 1996. 

As an example of calculations using the large-amplitude approach, a typical Naval vessel 
at 15 knots forward speed in head seas was chosen. A number of simulations in regular 
waves of varying frequency and amplitude were performed.   Figures 1 and 2 show the heave 
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and pitch transfer functions obtained from the harmonic analysis of the motion signals. The 
coefficients presented in the figures are the amplitudes of the various harmonic components 
of the signals normalised by the incident wave amplitude to the appropriate power. For 
example, for the heave transfer functions the mean, first, second, and third harmonics are 
denoted rj^/Ä2, TJI/A, T)%/A

2
, TJ^/A

3
, respectively. Thus normalised, the coefficients vary 

only slightly as functions of the wave-amplitude. For reasons of confidentiality, the values have 
been divided by a reference value, denoted max, which is dimensionless constant. 

The effects of large amplitude motion are strongest at frequencies near the peak of the pitch 
transfer function corresponding to a wavelength A = 130m, or about 1.15 times the ship length, 
but the heave and pitch motions do not show very strong nonlinearities. For example, at this 
frequency there is a slight reduction (about 4%) of the peak of the fundamental pitch transfer 
function for the maximum value of the parameter X/A — 30 shown in the figure, corresponding 
to a wave amplitude of 4.2m. The mean heave displacement coefficient attains its maximum 
positive value of approximately 0.035 of the maximum where the coefficient of the fundamental 
is about 0.5 times the maximum. The mean heave displacement would thus reach less than 30% 
of the fundamental oscillatory component. The results obtained using the linearised version 
of the code (denoted 'LIN') are also shown for comparison along with the frequency-domain 
results. These latter two are in agreement to graphical accuracy. 

Recent applications of the large-amplitude method include the calculation of shear forces 
and bending moments which show nonlinear effects even in moderate seas. Figure 3 shows the 
contribution of the Froude-Krylov and hydrostatic forces to the vertical shear force at various 
stations along the hull as functions of time. The frequency chosen corresponds to the maximum 
of the second harmonic shear force coefficient. The values of the shear forces in still water have 
been subtracted off, so only the contributions due to unsteady effects are presented. Only the 
last two periods of the simulation, those used in the harmonic analysis, are shown. 

While the heave and pitch motions themselves are not found to be very nonlinear, the shear 
forces do contain strong mean, double-frequency and higher-order components at all the stations. 
These are clearly evident for the top figure (X/A = 30), but much less so in the bottom figure 
where the signals appear much more sinusoidal, because of the small wave amplitude. 

In figures 4 and 5 the results of the harmonic analysis of the signals at station 5 (solid line 
in figure 3) are shown. Note that the peak of the second harmonic response (shown in figure 
5) is about 23% of the fundamental at the corresponding frequency. Thus, for the same 4.2m 
wave amplitude, the second harmonic component is approximately equal to the fundamental. 
Experiments are currently being performed on a segemented model of this ship. Comparisons 
with numerical results will allow assessment of the importance of nonlinenearities in structural 
loadings and the validition of the present model. If they can be made available, results will be 
presented at the workshop. 

This work is the result of research supported partly by DGA/DRET, under contract number 
95/2011 J. This support is gratefully acknowledged. 
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Higher order wave diffraction of water waves 
by an array of vertical circular cylinders 

Sime MALENICA 
Bureau Veritas - CRD, 10 rue Jacques Daguerre 

92565 Rueil Malmaison, FRANCE 

It is well known that the wave forces exerted on a multicolumn offshore structure (TLP, semi-sub, GBS,...) can 
be seriously affected by the effects of interaction between cylinders. The calculation of forces by simply sum- 
ming the forces for isolated cylinders is usually wrong. As far as the linear theory is considered, there exist 
today numerous numerical models which calculate these interaction effects correctly. However, at second order 
there is only few of them and the calculations involved are very time consuming. That is the reason why some 
authors try to seek for semianalytical solutions, in idealized configurations, which are considerably less expen- 
sive and more precise. At first order, this was done by different authors but the most complete methodology was 
presented in [2]. At second order there are two approachs recently proposed [3,5]. Even if these two methods are 
similar there are some important differences in the methodology and in the numerical implementation. The pur- 
pose of this paper is to discuss more in detail the method proposed in [3] and to give some clarifications about 
the numerical implementation which has to be adopted in order to support eventual third order calculations. 

General methodology 

The main difficulty associated with higher order problems is the treatement of the free surface integral which is 
involved in the solution. The free surface condition, which is the main difficulty of the problem, at higher order 
is given by: 

-0«|H-^ = Q (1) 

and use of any method involves the evaluation of an integral over the entire free surface in order to take account 
for the forcing term Q. The method that we use to solve this problem is the combination of the Linton and 
Evans method [2] for first order diffraction for an array of vertical cylinders, and the semi-analytical solution for 
the second order diffraction by a single cylinder [1,4]. 
All notations correspond to the following configuration : 

YA 

X 

Figure 1. Basic configuration. 
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The well known Green's identity for one point outside of the fluid domain, can be written (for the sake of clarity 
we consider homogeneous Neuman boundary condition on the body): 

dG 
■JJ  vir«ff = -JJ °QdS J

sBo    on ]
SF 

(2) 

where \|/ is the higher order potential, Q is its forcing term on the free surface and G is the Green function which, 
in the coordinate system of the fc-th cylinder, can be written as : 

G(rhQhZkVk,Vk£k)= £   j -yC0 

Hm(Kork)Jm(KoPk) 

Jm(.Kork)Hm(Kopk) /o(z)/o(0 

71 n=\ 

Km(Knrk)Im(Knpk)' 

Im(Knrk)Km(KnPk) Uz)fn® J eim^ 

where K^tanhiCo// = -K„tanK„// = a,H being the water depth, and : 

rk>Pk 

rk<Pk 
(3) 

coshKofe+ff) COSKJ^+H) n[,...r| 

-w 

0 

■f 
-H COShKo// COSK„tf 

We develop now the potential on the k-th cylinder in the eigenfunction expansion as follows: 

v= £ [ßio/o(0+zo»(oi ^ 
m=-°° n=l 

Cn=[2}/^(z)*r' (4) 

(5) 

After writing the equation (2) for one point inside the cylinder k->(rk=ak-§ , 0<8<a^), carrying out the integra- 
tion by £, using the orthogonality of the functions fn(z), using the Graffs addition theorem for Bessel functions, 
exploiting the orthogonality of the functions e""e and rearranging the different terms we obtain for the part asso- 
ciated with the Bk

m 0 coefficients : 

k dj     °°       .      JniKQÜj) i(n-m)a/t 
Hn-m(K<)Rjk)e 

I JHm(Kopk)e-imx>kQ(pk,vk)dS   ,       k=l,N   ;   m=-»,= 

This expression represent the final system of equations for the unknown coefficients Bm0. 
Similarly the expression for the coefficients Bk

mn can be obtained : 

*L+£^ £ B{a^^(-l)%_m(KnRjk)e^-^a^ 
j*kak /=-~       Km(K„ak) 

jJKm(Knpk)e-imVkQ(pk,vk)dS   ,       k=\,N   ;   m=-~,e 

(6) 

7W*K«*m(K/.«*)    sf 

(7) 

Second order diffraction 

The main difficulty in solving the above equations is the evaluation of the free surface integrals which should 
exclude the cylinder surfaces. In order to minimize the 2D integration the following procedure can be adopted 
for 4 equaly spaced cylinders : 
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We recall the first order solution [2]: 

igA 
*'= -^/o<z) X *'m(^~ß)^(*oro)* 

im Go <t>D =/o(z)Z Z A^ffm(V*)e    ' (8) 

and the expression for the forcing term Q in the second order diffraction problem : 

ßg} = -^(3v2-*g)(<MD+2MD)+—(V04>DV0<t)D+2V04)/Vofe) (9) 

Using the Graffs theorem we can write the first order diffraction potential §D in the global coordinate system 
(X, Y) i.e. in terms of (r0,90): 

m=-oo   I   jt=ln =—oo 

Jm(k0r0)e" r0<Rb (10) 

fD=/o(z) Z   i   Z Z A*Zjy„^(ifcoÄol)e'("-*XaotHO     Hm(k0r0)eim°° r0>Re (11) 
m=^»   [ it=ln=-~ J 

This allows us to write the forcing term Q%) in the form (in the regions r0<Rb and r0>Re): 

At the same time we write the term Hm(KQpk)e ""Vk [ eqn. (6) ] in terms of (po.^o) [similar procedure apply for 
Km(Knpk)e~'mVk in eqn. (7)]: 

tfm(KoP*)e-/mt* = £ ^-n(K0Äo.)e'(m"")('t"a<Ä)-/n(KbPo)e";"Uo = Z aLin(KoPo)^'"U0 Po<*o* (13) 

i(m-«)(7C-aot) ^(Kop*)^ = Z Jm-n(KoRok)e'(m-">(K-aok>Hn(KoPo)e-nvo = £ ßL#„(KoPo)e    ^ Po>*o*(14) 
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The free surface integral in (6) is now divided into three parts : 

2K "ft 2it =» 

JJ-JWJ + JJ <15) 
SF      O   0 Sd      0 Re 

where Sd is the surface between Rb and Re without cylinder surfaces. 
In the first and third integral, the integration by i) can be carried out explicitly : 

2lt «ft oo Rb 

J I //„(KoP^e^^ßg'po^Po^o = 27t X < p„(KoPo)ög^(Po)Porfpo (16) 
o   o "=-°° ° 

j j HjKopJe'^QWpodpodVo = 2n £ ßl f tf„(KoPo)Ö$(Po)P<Wpo (17) 
0 «e «=-~        Re 

In this way we reduced the 2D integration to ID and, in the same time, the most difficult integral (from Re to °°) 
is put in the same form as in the single cylinder case and the same method can be used for its evaluation. So the 
only "real" 2D integral evaluation needed is over the surface Sd, and since this surface is relatively small, this 
integration can be done with little computational effort. 
Knowing the second order potential on the surfaces of the cylinders, the second order potential at any point in 
the fluid can be calculated by using the Green's theorem : 

^=h^j i [ß4o^(Koa;)/o(z)Wm(KoO)+£ßL^4(K„ay)/rt(Z)^jKnr0)].''m9^-JJGßg^5 (18) 

The reduction to the global coordinate system (ro,0o).in *e free surface integral, can again be very useful. 

What about third order ? 

The task seems to be very difficult, but not hopeless. If we are interested only in the forces we can use the well 
known Haskind relations to avoid the explicit calculation of the third order potential: 

fff-JJ^V* ~Sl^äS + l*jQ$>äS (19) 

where F$ is the part of the third order forces induced by the third order diffraction potential \|/g\ \|/J3) is the 
third order incident potential, fy is the assisting radiation potential and ßg) is the third order forcing term [4]. 
The main problem in the evaluation of this forces is the calculation of the free surface integral which requires 
the knowledge of the second order potential and some of its derivatives over the entire free surface. Even if the 
expression (18) can be used directly for the calculation of the potential y$, some important numerical problems 
(treatement of the logaritmic singularity at the free surface, calculation of the derivatives, problems of conver- 
gence, ...) should be solved, and this is a rather complicated task. 

References 

[1]    CHAU F.P., EATOCK TAYLOR R., 1992. : "Second order wave diffraction by a vertical cylinder", 
JPluid Mech., Vol.240, pp. 571-599. 

[2]   LINTON CM., EVANS D.V., 1990. : "The interaction of waves with arrays of vertical circular 
cylinders", J.Fluid Mech., Vol.215, pp. 549-569. 

[3]    MALENICA S., 1995. : "Second order wave diffraction for an array of vertical cylinders", Note Bureau 
Veritas95-10c. 

[4]    MALENICA S., MOLIN B., 1995 : "Third harmonic wave diffraction by a vertical cylinder", J.Fluid 
Mech., Vol. 302, pp. 203-229. 

[5]    HUANG J.B., EATOCK TAYLOR R., 1996. : "Second-order interaction between waves and multiple 
bottom-mounted vertical circular cylinders", 11th WWWFB, Hambourg, Germany. 

170 



Wave tank simulations using a fractional-step method in a 
cell-centered Finite Volume Implementation 

Stefan Mayer, Antoine Garapon and Lars S0rensen 
International Research Centre for Computational Hydrodynamics (ICCH), 

Agern Alle 5, DK-2970 H0rsholm, Denmark, e-mail: icch@dhi.dk 

Introduction. Many attempts have been made 
in the past to solve the unsteady incompressible 
Euler or Navier Stokes equations with full nonlin- 
ear free surface description, without the assump- 
tion of irrotational flow and use of the Bernoulli 
type dynamic boundary condition. Unfortunately, 
it seems that these methods usually have suffered 
from relatively large numerical errors and especially 
numerical damping, which did not allow accurate 
long term simulations of travelling gravity waves, 
see e.g. Tsai and Yue (1996) [4]. 

Here, an attempt is made to extend the applica- 
tion range of free surface Euler equations, so that 
unsteady wave problems can be simulated with ac- 
curacies, which are comparable to those of potential 
flow methods. In the present paper, the method 
has been applied to travelling waves in channels 
with submerged bars, and results are compared to 
experimental data. Furthermore, steady currents 
are introduced and wave current interaction is de- 
scribed, including wave blocking conditions. 

Method.    The two-dimensional Euler equations, 

V ■ u = 0, 

9u _ _ 
— + u • Vu = - Vp, 

(1) 

(2) 

are solved for the Cartesian velocity u = (ux,uy) 
and dynamic pressure p. The usual inviscid dy- 
namic boundary conditions are imposed, 

p = pgr) ,    Vu • n = 0, (3) 

a time-varying grid in a conservative formulation. 
The elevation r\ is discretized at every grid cell face 
along the free surface, and (4) is then integrated 
in time by an explicit Adam Moulton third order 
multistep method. An adaptive curvilinear grid is 
generated algebraically and the time integration of 
the fluid motion is performed by a second order 
fractional step method, to some extend following 
Zang et al. (1994) [5]. Assuming that solutions 
for velocity and pressure exist up to time step tn, 
and grid and boundary conditions have been set for 
tn+1, the velocity field at time tn+1 is split into a 
predictor velocity field u* and an irrotational cor- 
rection V(/>, 

T) denoting the free surface elevation and n being 
the surface normal vector. The kinematic boundary 
condition is expressed in terms of the local volume 
flux f = u   n through the free surface 

~di dnv 
(4) 

A finite volume code employing a cell-centered 
variable layout on general curvilinear grids has 
been extended by the arbitrary Lagrangian Eu- 
lerian (ALE) formulation [1] expressing the dis- 
cretized mass and momentum balance equations on 

u n+l u* + V(j>. (5) 

u* is updated by time-integrating to second order 
the momentum equations (2) 

^=^    +    ±((u3(Vu*) + ufl(Vu")) 

=  \vpn-\vpn~l 

-    |(u(Vu))"-i(u(Vu))"-\(6) 

employing QUICK interpolation for the convective 
terms. The grid velocity ug reflects the motion of 
grid lines from time step n to n + 1 according to 
the ALE approach. The correction V<^> is deter- 
mined by restricting un+1 to satisfy the continuity 
equation (1), hence 

VV = -Vu*. (7) 

The pressure is computed by the divergence of the 
momentum equation (2) 

VV+  = - V • (u • Vu) n+l (8) 

together with boundary condition (3). While the 
implicit part of the discretized momentum equa- 
tion (6) is solved iteratively by either point- or line- 
relaxation, the Poisson equations (7) and (8) are 
solved by a standard multigrid method. 
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Waves are generated by imposing second order 
Stokes velocity profiles at one side of the fluid do- 
main of the form 

ux = (Ui(y) sin(^) + U2(y) sin(2y>)),       (9) 

with <p = ut + 0. At the opposite end both the 
elevation 77 and the fluid velocity u are relaxed at 
every timestep towards prescribed values, r\v and 
up, respectively, by following procedure 

7j = (1 - a)r) + arjp ,  u = (1 - a)u + aup.   (10) 

a denotes a relaxation parameter, which increases 
softly as the waves are entering into the numerical 
sponge layer. 

Results. The method has been tested for stand- 
ing and travelling waves in both deep and shal- 
low water. With numerical resolutions in time and 
space of L/Ax >= 50 and T/At >- 50, respec- 
tively, the linear dispersion relation is fulfilled to 
an accuracy better than 1%. Errors in mass con- 
servation can be neglected in all cases, because the 
kinematic condition is expressed in terms of the lo- 
cal volume flux and the discretization of the trans- 
port equations is conservative. However, since in 
contrast to potential flow methods, no energy equa- 
tion is solved, but energy balance has to emerge 
out of the numerical solution of mass and momen- 
tum transport equations, the main problem are er- 
rors in energy conservation. With a resolution of 
LI Ax « 50 and T/At « 50 about 0.5% of the en- 
ergy of a deep water standing wave is dissipated 
during a wave period. Using L/Ax « 50 and 
T/At « 100 that number is decreased to about 
0.1%. 

The method has been used to study the propa- 
gation of regular incident waves with period T = 
2.02 s and height H = 0.02 m over a submerged 
bar on a horizontal bottom, see Fig. 1, this test 
being investigated experimentally by Luth et al. 
(1994) [2]. On the upward slope the incoming waves 
are shoaling, nonlinearity hereby generating bound 
higher harmonics, which travel phase locked to the 
primary wave. On the downward slope these har- 
monics are released as free waves resulting in an 
irregular wave pattern. 

In the simulation waves are generated for 80 s in 
fluid initially being at rest. The computed elevation 
history and its Fourier transform has been com- 
pared to measurements at selected locations, see 
Figs. 2 and 3. On the upward slope good agreement 
with measurements is found, the nonlinear shoal- 
ing process being well described even with rather 
coarse discretization. On the lee side of the bar fine 
spatial discretization is required to resolve the re- 
leased higher harmonic waves, which are otherwise 

damped by numerical dissipation. However, given 
sufficient discretization, the model describes phase 
accurate the resulting irregular wavetrain behind 
the bar. 

In a channel with a submerged bar a steady cur- 
rent is introduced by modifying the sponge layer 
and the wave generating boundary condition, see 
Fig. 4. The local Froude number on top of the bar 
takes values of about Fr « 0.4. Waves of height 
H = 0.005 m and with periods T = 2 s and T = 1 
s, respectively, are generated during 100 s and prop- 
agate against the mean flow direction. In the case, 
T = 2 s waves travel in close agreement with linear 
theory with regard to amplitude and wave number, 
almost recovering to their initial shape after the 
bar, see Fig. 5. 

In the case of T — 1 s, however, waves are blocked 
on the upward slope, since the current velocity ex- 
ceeds the group velocity of the wave. The blocking 
point agrees precisely to the location estimated by 
linear wave theory. In order to resolve more closely 
the blocking process, discretization is refined to 
At = 0.005 s and Ax « 0.01 m around the block- 
ing point and waves with initial heights of both 
H = 0.001 m and H = 0.005 m are generated. The 
elevation profile clearly shows the incoming wave to 
be superposed by short reflected waves, with wave- 
length being shortened with increasing depth and 
dissipated by numerical damping, see Fig. 6. 

Integral mass and energy equations can be solved 
to estimate the mean velocity U and the mean ele- 
vation T)m as function of the horizontal position x. 
The expression for the apparent frequency 

a = u + kU ,   cr = 2n/T, (11) 

can then be solved together with the linear disper- 
sion relation, 

u2 = <?fctanhfc(/i + rjm), (12) 

having two solutions for k, the smaller k{ being the 
wave number of the Doppler shifted incident wave, 
and the greater kT being the wave number of the 
reflected wave, if blocking occurs, see e.g. [3]. 

By identifying the wave crests in the computed 
elevation profile t]{x), or the vertical fluid veloc- 
ity uy(x), respectively, the wave number of the re- 
flected wave is estimated as function of x, see Fig. 8. 
The estimated wave numbers are seen to be scat- 
tered, but found in average to follow quite closely 
the theoretical estimate. The scattering increases 
with the increasing initial height of the generated 
wave, and seems to be due to the Doppler shift, 
by which the incident waves influence the shorter 
reflected waves. 

Conclusion A finite volume code employing a 
modified fractional step method has been applied to 
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unsteady, incompressible free-surface flow. The nu- 
merical damping characteristics are not good com- 
pared to state of the art potential flow methods 
using equivalent resolution in time and space. How- 
ever, the numerical accuracy in the present method 
is sufficiently good to allow phase-accurate simu- 
lation of nonlinear 2D waves within 0(100) wave 
lengths or wave periods, which we believe is an im- 
provement compared to results in the past. Both 
steady and non steady rotational currents can be 
introduced directly, the example of wave blocking 
being a demonstration of the special capabilities of 
the present method. 

The method is intended to be a supplement for 
investigation of interaction of wave motion with 
other processes as wave-current interaction, inter- 
action with laminar and turbulent bottom bound- 
ary layers, etc. Finally, we believe that the present 
method is a good basis on which models describing 
the effect of wave breaking on wave driven currents, 
turbulence, etc., can be developed. 

-0.020 
40.0 

Figure 2: Surface elevations as funtion of time of 
waves propagating over submerged bar, see Fig. 1. 
(a) x = 13.5 m (top of bar), (b) x = 21 m, (behind 
bar),  (o) meas., Luth et al.   (1994), (—) comp., 
As = 0.015 m, At = 0.01 s, ( ) comp., Ax = 
0.03 m, At = 0.02 s, (- ) comp., Ax = 0.06 m, 
At = 0.04 s. 
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Figure 1: Wave Flume with submerged bar on hor- 
izontal bottom. Waves are generated with inital 
height H = 0.02 m and period T = 2.02 s. 

25.0 

10.0 15.0 
x(m) 

25.0 

Figure 3: Propagation of regular waves over a sub-   * 
merged bar, see Fig. 1. (a-d) Amplitudes of 1st to 
4th harmonic, respectively, as function of x-location 
along the channel, (o) measurements by Luth et al. 
(1994), (—) Ax = 0.015 m, At = 0.01 s, ( ) 
Ax = 0.03 m, At = 0.02 s, ( ) Ax = 0.06 m, 
At = 0.04 s. 
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Figure 4: Wave Flume with submerged bar on hor-     (b 
izontal bottom for studying wave current interac- 
tion. 

(a) 0.01 

—     0.00 

7 -0.01 
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Figure 7: Fluid domain and velocity vectors around 
blocking point of waves with period T = 1 s and ini- 
tial height H = 0.005 m propagating against steady 
current, see Fig. 4. (a) t = 95.00 s, (b) t = 95.50T s. 

(b)   o. 
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Figure 5: Propagation of waves over a submerged 
bar with opposing current, see Fig. 4. Elevation 
profiles at 5 phases within a period at t = 95 s. 
Initial wave height, H = 0.005 m, and current Uc = 
0.1 m/s at 0.4 m depth,    (a) Wave period T = 
2 s.   (b) Wave period T = 1 s.   ( ) envelope 
according to linear wave theory. 
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Figure 6: Wave with period T = 1 s and initial 
height H = 0.001 m propagating against steady 
current, see Fig. 4. (a) Elevation at t = 95 s. (b) 
Elevation profiles at 10 phases within a period bew- 
teen t - 95 s and t = 96 s. 

(a) 

(b) 

x(m) 

Figure 8: Estimate of wavenumber of wave, being 
reflected by current, as function of the location x. 
(a) initial wave height H = 0.001 m, (b) initial 
wave height H = 0.005 m. (o) estimate based on 
surface elevation, (•) estimate based on vertical sur- 
face velocity, (—) theoretical value based on (11) 
and (12). 
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DISCUSSION 

Borthwick A.: Is the algebraically generated curvilinear grid essentially the same 
as a sigma transformed mesh? If so, could not additional savings in computer time 
be gained by using the sigma transformed approach given that the mapped 
equations would be simpler? 

Mayer S.: Since the code is derived from a general purpose CFD code, the Finite 
Volume discretization scheme is implemented for general non-orthogonal grids, 
including cross derivative terms in both the interior of the grid and along grid 
boundaries. 
However, the automatic grid generation algorithms used in the present work are 
almost equivalent with the use of sigma transformed meshes, since the considered 
geometries are simple and, in particular, the channel side walls are vertical. In 
general, both memory requirement and CPU-consumption could probably be 
reduced quite a lot, if our algorithm would be written specifically for the numerical 
wave flume application. This is not only due to the possible simplification of grid 
generation and discretization schemes, but also because the solution algorithm for 
the algebraic equation systems could take advantage of the simple grid structure. 

Schultz W.W.: Does most of your numerical dissipation come from the Euler 
prediction step or the potential correction step? 

Mayer S.: Generally, most numerical damping comes from the predictor step, in 
particular, from the QUICK upwind schemes, which we employ for the convective 
terms. Additionally, some dissipation is introduced in the spatial discretization of 
the kinematic boundary condition. For time steps, used here, the dissipation due to 
the potential correction is negligible. (However, for very small timesteps - 1000 
time steps or more per wave period - it may become significant). 
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Resonance in the unbounded water wave problem 
Maureen Mclver 

Loughborough University, Loughborough, Leicestershire, LEU 3TU, U.K. 

Introduction 
In recent work, Mclver (1996) demonstrated that there exist configurations of bodies in two 
dimensions for which the linearised water wave problem does not have a unique solution 
at a certain frequency. Non-uniqueness was proved by establishing the existence of a non- 
zero solution to the homogeneous boundary value problem at the relevant frequency. Such 
a solution, which decays at infinity and has finite energy, is called a trapped mode. In 
this work, it is shown that for such bodies the solution to certain forced boundary value 
problems, such as the heave problem, do not exist at the trapped mode frequency. The 
non-existence of the heave potential means that there is no steady state solution to the 
problem in which the bodies are forced to make small vertical oscillations about their mean 
position and similar interpretations may be made of the non-existence of other potentials. 
In related problems in waveguides, Werner (1987) has shown that trapped modes are closely 
related to resonances in certain initial value problems. By investigating the solution to 
a specific initial value problem in which an oscillatory pressure forcing is given to the 
free surface, it is shown that the steady state potential does not exist because resonance 
occurs. Work is currently underway to investigate the links between trapped modes and 
resonances in the more general initial value problem, using the spectral theory techniques 
of Goldstein (1969). 

Construction of the trapped mode potential 
An example of a system of bodies for which non-uniqueness occurs is found by constructing 
a potential which decays to zero at infinity and interpreting some of its streamlines as body 
boundaries. The potential is constructed by placing two infinite depth wave sources in the 
free surface, separated by a distance of half a wavelength. (Other suitable potentials may 
be constructed from sources placed any odd number of half wavelengths apart or a source 
and a sink placed an even number of wavelengths apart.) Thus the potential is given by 

f°° e~ky f°° e~ky 

<f) = l/l — cos k(x — a) dk + l/l — cos k(x +a) dk, (1) 
Jo    k-K J0    k-K 

where the contour of integration passes below the pole in each integral and Ka = ir/2. 
Coordinate axes are chosen so that the origin is in the mean free surface and the y—axis 
points vertically downwards. The distance between the sources is 2a and K = u2/g, where 
u is the angular frequency and g is the acceleration due to gravity. As the sources are half 
a wavelength apart, the waves produced by each source cancel at either infinity and the 
potential decays to zero. In addition, the contributions to the integrals arising from the 
integration below the poles cancel and so the potential is purely real. The streamlines for 
the potential are illustrated in figure 1, where the variables have been nondimensionalised 
so that x' = Kx and y' = Ky and so the sources are at the positions (±7r/2,0). 
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Figure 1 - The streamline pattern for two wave sources a nondimensional distance ?r apart 

The half-plane y' < 0 represents the region above the free surface and so the potential 
has no physical meaning there but the continuation of the streamlines into that region 
has been included to illustrate how the streamlines cross the free surface. Any parts of 
streamlines which remove the singularities from the fluid may be chosen to represent body 
boundaries and an example of such bodies is given in figure 2. 

Figure 2 - Two surface-piercing bodies for which non-uniqueness occurs 

For the remainder of this work attention will be confined to a pair of bodies such as those 
given in figure 2 for which a trapped mode exists at frequency u> = u0 (wavenumber 
K = KQ). The trapped mode potential will be denoted by </>o(x,y). 

Non-existence of the heave potential 
The boundary value problem for the heave potential <j>h(x,y) at frequency u0 is the same 
as that for the trapped mode potential <j)0 except that <f>h produces outgoing waves at 
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infinity and the normal derivative of <j>h on the bodies is given by 

Wh _ „ (2) 
dn ~ny' 

where ny denotes the component of the inward normal to the bodies in the vertical direc- 
tion. Under the assumption that <f>h exists, an application of Green's theorem to </>0 and 
4>h in the fluid region outside the bodies gives 

/ 
Jb 

0o ny dS = 0. (3) 
bodies 

Thus equation (3) is a necessary condition for the existence of <f>h- (It is equivalent to 
the orthogonality condition which appears in the Fredholm alternative.) However, an 
application of Green's theorem to 0O and u = y - 1/K0 in the fluid region outside the 
bodies, closed by a large semicircle, shows that 

/        (f)0nydS = -irKopi. (4) 
J bodies 

where pi is the coefficient of the vertical dipole in 0O at a large distance from the origin. 
For the particular trapped mode given by the potential in (1), pi = —2/KQ ^ 0 and so 
the heave potential does not exist at the trapped mode frequency for the pair of bodies 
illustrated in figure 2. 

Existence of the diffraction potential 
Once the incident wave has been subtracted out from the diffraction potential the remaining 
scattered potential satisfies 

dfo d_teiK0x-K0y} (5) 
dn dn 

on the bodies, assuming that the wave is incident from large negative x. Under the 
assumption that the diffraction potential exists an application of Green's theorem to <f)0 

and 0d in the fluid region outside the bodies gives 

f       4>0^-[eiKoX-Koy}dS = 0, (6) 
./bodies       "n 

which is a necessary condition for the existence of </><*• However, an application of Green's 
theorem to </>0 and e

iKo*-Kov snows tnat (6) is true when 0O is any trapped mode poten- 
tial. Under the assumption that the Fredholm alternative applies this is sufficient for the 
diffraction potential to exist. 

Resonance in a specific initial value problem 
In order to investigate the physical significance of the non-existence of a steady-state 
potential, an initial value problem in which the fluid is given an oscillatory pressure forcing 
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on the free surface is investigated. Let $p(x,y,t) satisfy Laplace's equation, have zero 
normal derivative on the bodies, decay to zero at large depths and satisfy the condition 

^-9^ = 0o(z,O)cosu,ot,    *>0' (?) at2 ay 

on the free surface outside the bodies with initial conditions 

$p(x,0,0) = ^(x,0,0)=0. (8) 

If a steady state solution to this problem were sought in the form $p = Re[<f)p(x, y)e~tWo% 
a boundary value problem for <j>p would be obtained which does not have a solution. (The 
necessary condition for the existence of <j)p(x, y) is / <^(x, 0) dx - 0, where the integral is 
taken over the whole free surface outside the bodies. As 0O is real and not equal to zero 
everywhere on y = 0, this condition is not satisfied.) However, from the equations and 
boundary conditions satisfied by the trapped mode potential <£0 it is straightforward to 
show that the solution to the initial value problem is given by 

$p = -—4>Q{x,y)smuJot. (9) 
ZU)Q 

Clearly the amplitude of the oscillation of the resulting fluid motion grows with time and 
resonance occurs. Physically the problem may be interpreted as a situation in which energy 
is continually fed into a local oscillation and is not carried away from the vicinity of the 
body through any wave motion. 

Conclusion 
An example has been given which shows that resonance can occur in the two-dimensional, 
linear, water wave problem in an unbounded region when there is at least one trapped 
mode solution of the related frequency domain problem. The more general initial value 
problem in which the free surface condition (7) is replaced by 

^-g^ = Re{f(x)e-^%    t>0, (10) 

where f(x) is square integrable, is currently under investigation. In particular, it is hoped 
to extend the results of Goldstein (1969) for waveguides and expand f(x) as an integral 
over all scattering potentials plus a sum over all trapped mode potentials and then derive 
an explicit expression for $p with the use of a Laplace transform in time. 
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DISCUSSION 

Evans D.V.: What are the implications of your non-uniqueness on, say, the heave 
added mass of a catamaran having hull cross-section precisely of the form which 
gives your non-uniqueness? 

Mclver M.: The heave added mass doesn't actually exist at the exact frequency at 
which non-uniqueness occurs. Although I haven't done the computations, in the 
corresponding case for a body in a channel, the added mass tends to plus or minus 
infinity either side of the trapped mode frequency. I would expect the same thing 
to happen in this case. 

Schultz W.: To apply the Fredholm alternative theorem as you have described 
requires the solution to be self-adjoint. What new insights could be found if this 
constraint were dropped? Could asymmetric solutions be found? 

Mclver M.: I agree that the operator in this case is self-adjoint. However, I don't 
think that you need to have a non-self-adjoint operator in order to obtain an 
asymmetric configuration of bodies. In the example I presented you could 
construct 2 bodies of different size by taking parts of different streamlines. 

Tuck E.O.: If non-uniqueness occurs at some particular wavenumber k = k0, this 
means that output quantities like added mass do not exist at k = k0. An interesting 
question is what then happens at k = k0 ± e where e is arbitarily small. Can one 

make the output as large as one likes by choosing e sufficiently small? That is, on 
a graph, does the output appear to "go to infinity" as £ -»£0? 

Mclver M.: I think this is correct. Certainly when you get trapped modes about a 
cylinder in a channel the added mass goes to plus or minus infinity either side of 
the trapped mode frequency. 

181 



182 



On uniqueness and trapped modes in the water-wave problem for a 

surface-piercing axisymmetric body 

P. Mclver1 and N. Kuznetsov2 

1 Department of Mathematical Sciences, Loughborough University, UK 
2Russian Academy of Sciences, St Petersburg, Russia 

1 Introduction 
The problem of uniqueness of the frequency-domain solution to the linearised water-wave problem is 

fundamental, as was recently highlighted by Ursell (1) who placed it first in his list of (at the time) 

unsolved problems. A number of uniqueness results have been established for specific geometries. 

In particular, John (2) proved the most widely known theorems for surface-piercing obstacles in 
two and three dimensions. Simon &; Ursell (3) generalised John's 2D theorem to cover a wider 

class of obstacles including totally submerged ones. The first uniqueness theorem for a 2D obstacle 
separating a portion of the free surface from infinity was obtained by Kuznetsov (4). Simon &; 

Kuznetsov (5) generalised this result to the case of a toroidal surface-piercing body. However, there 

is no general theorem giving necessary and sufficient criteria for either two- or three-dimensional 

geometries. The fact that some necessary conditions must be fulfilled for uniqueness follows from 

the recent achievement of M. Mclver (6) who constructed the first examples of non-uniqueness for 

the two-dimensional water-wave problem. These 'trapped modes' were constructed from two equal- 

strength wave sources placed in the free surface and positioned so that the waves radiated to each 
infinity by one source are cancelled by the other. She proved that there exist families of stream- 

line pairs surrounding the sources that can be interpreted as two surface-piercing structures. The 
corresponding three-dimensional problem was considered by Mclver &i Mclver (7) who constructed 
solutions from a ring source with a vertical axis of symmetry placed in the free surface. The radius 
of the ring is chosen to eliminate the radiated wave; this results in a standing-wave motion that 
decays more quickly in the radial direction than any propagating wave solution. The stream surfaces 
of the flow correspond to toroidal structures floating in the free surface. 

The present work extends the work of Mclver & Mclver (7) in two ways. First of all it is shown 
that, for certain toroidal structures, uniqueness for any mode of the fluid motion may be established 

over particular ranges of frequency. Secondly, trapped mode solutions are constructed numerically 
for non-axisymmetric modes in the presence of an axisymmetric structure. 

2 Formulation 
An inviscid, incompressible fluid occupies the half-space y > 0 with Cartesian coordinates (x, y, z) 

chosen so that y = 0 corresponds to the free surface and y is directed vertically downwards. Hor- 
izontal polar coordinates (r,9) are defined by x = rcosO, z = rsinö. A structure, axisymmetric 

about the y axis and with submerged volume D and wetted surface S, floats in the free surface. 
The fluid domain is denoted by W and the free surface by F. The structure is toroidal in shape so 

that the free surface is in two distinct parts; the outer free surface is denoted by F+ and the inner 

free surface of radius b is denoted by F-. The geometry is sketched in Fig. 1. 
Within the framework of the linearised theory, a time-independent potential </> corresponding to 

a trapped wave motion must satisfy 

V2<£ = 0    in    W, (1) 

the free-surface condition 

W+^=0   on   F = f-UF+ (2) 
ay 
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Figure 1: Sketch of geometry 

and the body boundary condition 

dn 
= 0   on   S, (3) 

where d/dn indicates differentiation in a direction normal to the surface S of the structure. Here 

K = u2/g, where g is the acceleration due to gravity. The radiation condition requires that 4> and 

V0 decay at infinity in such a way that the energy of a trapped fluid motion is finite and therefore 

/   |V</>|2dxdyd2+ / \<j>\ 
JW JF 

2 dx dz < oo. 

3  A uniqueness theorem 
For modes of the form 

(f> = <pn(r,0,y) = <p{n)(r,y) cos no,    n = 0,1,... , 

(4) 

(5) 

energy arguments related to those used by John (2) and Simon k Ursell (3) may be used to obtain 

the following: 

Theorem Consider the axisymmetric fluid domain W illustrated in Fig. 1 where the torus D is 

strictly bounded by two vertical cylinders that intersect D at the free surface F (the so called 'John' 

condition); the inner cylinder has radius b. For a given azimuthal mode number n, suppose that for 

some value of the non-dimensional frequency parameter Kb 

jn,m < Kb < j'nrn+1, (6) 

where jn,m denotes the m-th zero of the Bessel function Jn and j'nm denotes the m-th zero of J'n. 

Ifn = 0, then m G {1,2,...}. Ifn>\, then m G {0,1,...} with jn_0 = 0. Then, for this value of 

Kb, the boundary-value problem (1-4) has only trivial solutions in the form (5). 

In other words, for toroidal geometries satisfying the John condition, the solution of the water 

wave problem with azimuthal mode number n is unique provided that (6) is satisfied. 

4  Trapped mode solutions 
Trapped mode solutions to the problem (1-4) are sought in the form (5) where <£(n) is taken as the 
potential of a ring source of radius c in the free surface. The potential for such a source (8, equation 

3.10) singular on (r,y) = (c, 0) is 

Rn(r,y;c)   =   A^iKc^ J^Kr^H^iKr^ 

/•oo 

+ 8c /    (vcosuy - Ksm^Iniur^Knii/r^-^        2, 
vdv 

(7) 
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where r> = max{r, c}, r< = min{r,c}, and Jn, In, Kn and Hn denote standard Bessel, modified 

Bessel and Hankel functions of order n. In general, at large radial distances the ring source gives 

outgoing waves as a result of the Hankel function in the first term. It may be shown that the 

integral term decays like r-3 as r —> oo. Radiating waves in r > c are annulled by taking c to satisfy 

Jn(Kc) = 0; that is Kc is chosen to be a zero of the Bessel function Jn. Any surface in the fluid 

domain that is always parallel to the local velocity may be interpreted as the surface of a structure. 

The purely axisymmetric case n — 0 was considered by Mclver k. Mclver (7). It was proved us- 

ing the Stokes' stream function that for a given non-radiating ring source a family of corresponding 

toroidal structures can be constructed that exclude the source from the fluid domain, thus estab- 

lishing the existence of trapped mode solutions. For n > 1 no stream function is available so here 

the evidence given for the existence of trapped modes is purely numerical. 
On the surface of any structure it is required that there is no flow in the normal direction. 

For axisymmetric structures, surfaces independent of 9 are sought in the form r = r(y) and the 

condition of no flow in the direction of the local normal n may be written 

dr 

dy 
0r 

4>y 
(8) 

This differential equation may be solved numerically using standard procedures. A typical calcula- 
tion is given in Fig. 2 for the case of azimuthal mode number n = 1, the radius of the ring source 
is chosen as its smallest possible value Kc = j\y\. The figure shows typical stream surfaces; any 

surface, or combination of surfaces, for which the singularity is enclosed may be interpreted as a 

structural surface. It should be noted that these stream surfaces do not satisfy the John condition 

required by the theory of §3. 

-i—i—i—[—r- 1    '    I Tl 

10 

Figure 2: Axial plane cross section of stream surfaces for mode number n = 1. The 
source position Kc = j\t\ is marked •. 

5  Discussion 

Fig. 3 shows numerical calculations of the values of Kb corresponding to the intervals of existence 

for trapped modes that may be constructed using a single ring source. Also shown are the intervals 
for uniqueness given in (6). These intervals are complementary despite the fact that the trapped 
mode solutions violate the conditions under which the uniqueness theorem was derived. 

It is apparent from that there are intervals in Kb for which there may be uniqueness for all 
modes (disregarding for the moment the requirement that John condition must be satisfied). For 

example, for n — 1 no trapped modes have been found for Kb G (2.51,3.05) while uniqueness of the 
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n =0 

n =1 

n =2 

n =3 

0 

0.98 2.40       3.83 3.87    4.24       5.52 7.02 7.06 7.39 

1.84 2.03 2.51 3.83 5.33 5.41 5.75       7.02     8.54 

_\L7       4 \L/      L_^ 
3.05 3.34 3.84 5.14        6.71   6.81   7.16 

4.20 4.56 5.09 6.38 8.02 

_A L J        { ^ 

Kb 

Figure 3: Values of the inner radius Kb for which uniqueness has been established 
( ), provided the structure satisfies the John condition, and values of Kb for 
which trapped modes may be constructed ( ) using a single ring source. 

The integer n is the azimuthal wave number. 

solution has been established in this interval for all other modes. However, it should be pointed out 

that in the equivalent two-dimensional problem of two-surface piercing bodies, Linton k Kuznetsov 
(9) have found evidence of modes trapped by bodies violating the John condition within the region 

for which uniqueness is predicted by the theory that requires the John condition. 

6  Conclusion 
The uniqueness of the solution to linear water-wave problems with axisymmetric floating bodies 

has been considered. Uniqueness of the solution has been established for a restricted class of body 

geometries over certain ranges of frequency. Further, examples of non-uniqueness, or trapped modes, 
have been constructed numerically for geometries that do not satisfy the restrictions required by the 

uniqueness theorem but, nevertheless, the frequency ranges where they occur are entirely consistent 

with that theorem. Further work is required to extend the uniqueness theorem to a wider class of 

geometries and to explore the range of trapped mode solutions that are possible. 
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DISCUSSION 

Clark P.: When engineers hear about uniqueness and trapped modes they 
instinctively think that these are issues of concern to mathematicians only. Could 
the axisymmetric wave trap described in your paper be the basis of an effective 
wave power device, where the energy in the trapped modes would be extracted 
by, say, a Well's turbine? This woul be of great interest to engineers. 

Mclver P., Kuznetsov N.: Resonance will occur when forcing is applied at a 
trapped mode frequency. Whether the bandwidth around a trapped mode 
frequency is substantially different from that for the near-resonant motions already 
familiar to designers of wave-power devices is still an open question, but one that 
we will investigate in the near future. There is certainly a possibility that improved 
oscillating water column devices may result from this work. 
Another reason the existence of pure (as opposed to leaky) trapped modes should 
be of concern to engineers is because standard numerical methods will fail at, or 
very close to, a trapped mode frequency. 

Eatock Taylor R.: Is it significant that these bulbous shapes are not "wall-sided" 
at the water line? Is the trapped modes "industry" interested in wall-sided bodies 
which are concave below the water-line? Such structures can presumably 
experience cancellation in the vertical wave force. 

Mclver P., Kuznetsov N.: In the water-wave problem, there is still a great deal to 
be understood about the circumstances under which trapped modes can occur. In 
particular, it is not known whether the first examples of "open-sea" trapped modes 
presented at this workshop have geometries which are in some way typical; their 
particular character may be just a result of the method of construction. We 
certainly cannot rule out the existence of trapped modes for the type of wall-sided 
bodies you describe. 
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On the Non-Uniqueness in the 2D Neumann-Kelvin Problem 
for a Tandem of Surface-Piercing Bodies 

by Oleg Motygin and Nikolay Kuznetsov 

Laboratory on Mathematical Modelling in Mechanics, 
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences 

1. Introduction 

The present note is concerned with a tandem of horizontal cylindrical bodies moving forward 
with constant velocity U in the free surface of an inviscid, incompressible fluid under gravity. 
The resulting fluid motion is described by the linearized water-wave theory (the corresponding 
boundary value problem is usually referred to as the Neumann-Kelvin problem). For a totally 
submerged body in the fluid of infinite depth Kochin (1937) and Vainberg & Maz'ya (1973) 
had given almost exhaustive mathematical theory of this problem. The case of surface-piercing 
bodies is much more complicated. A number of significant results have been obtained for this 
case by Ursell (1981), Lenoir (1982), Kuznetsov k Maz'ya (1989), Kuznetsov & Motygin (1995), 
but a lot of questions still remains unsolved for it. 

Treating the special case of semi-submerged circular cylinder Ursell (1981) found that the 
Neumann-Kelvin problem has a two-parameter set of solutions. He proposed two conditions 
complementing the original problem to make it well-posed (uniquely solvable for all values of 
U with possible exception for a sequence tending to zero). The corresponding "least singu- 
lar" solution gives a bounded velocity field near corner points. This result was generalized by 
Kuznetsov & Maz'ya (1989), who proved that the least singular statement is well-posed for an 
arbitrary contour having non-acute angles with the free surface. A number of other supplemen- 
tary conditions appeared in Lenoir (1982), Kuznetsov & Maz'ya (1989), Motygin k, Kuznetsov 
(1995) and Kuznetsov & Motygin (1995). The "resistanceless" supplementary conditions con- 
sidered in the last paper provide that the total resistance (a sum of wave resistance and spray 
resistance) vanishes for a surface-piercing tandem. 

Recently Mclver (1996) demonstrated the existence of a non-uniqueness example for the 2D 
sea-keeping problem. She applied the so-called inverse procedure for simultaneous construction 
of two surface-piercing bodies and of the potential of mode trapped by these bodies. Here 
we use the same method for the Neumann-Kelvin problem. Actually, our example delivers 
non-uniqueness to two statements of the problem, namely, to the least singular and to the 
resistanceless statements for a surface-piercing tandem. 

2. Statement of the problem 
The geometrical notations are given in figure 1. 

\V 

F_     Pi(a-10) iM-Q,0)    J'ofisM) P4(a+,0)     F+ 

Assuming that the fluid motion is steady-state in a coordinate system attached to the tandem 
we describe it by a velocity potential u, which must satisfy the boundary value problem: 

V2u = 0 in W,   uxx + uuy = 0 on F0 U F+ U F_,   du/dn = U cos(n, x) on S+öS-,     (1) 

lim^+oo |Vu| = 0,        sup{\S7u\:(x,y)eW\E}<oc,    jWnE \Vu\2dxdy < oo.     (2) 
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Here u = gU 2, where g is the acceleration due to gravity; S± denotes an open arc lying in R_ 

and E is a compact set in R2,, containing D_ U D+ with contiguous parts of JP0, F+ and F_. 
The last condition in (2) allows to avoid strong singularities at the corner points Pk, k = 

1,2,3,4, because according to Kuznetsov & Maz'ya (1989) 

' C + Bp*'2ß sin(7T0/2/?) + Ap cos(0 - a) + 0(pl+s) when ß > TT/2, 

u=\  C + B[plog p sm 6 - p(6 - x/2) cos 6]+ Apcos(0-a)+ 0{p1+s)   when ß = TT/2,    (3) 
_ C + Ap cos(0 - a) + 0(/91+5) when /? < TT/2. 

as p —► 0. Here (/?£, öfc) are polar coordinates with a pole at Pk and (~l)k • i directed along the 
polar axis. The angles #ii3 (#2,4) are measured counterclockwise (clockwise) and 0 < 0k < ßk- 
The subscript k indicating the dependence of variables, coefficients and 6 > 0 on Pk is omitted. 

If ßk > TT/2 and Bk ^ 0, then the velocity vector Vit is singular when approaching Pk 
along all non-horizontal directions. However, ux has finite limits along the rc-axis which will be 
denoted by ux(Pk). Following Ursell (1981) we say that u satisfying (1), (2) is the least singular 
solution (solution to Problem (L)) if every Bk = 0 in the asymptotics (3) for u. 

Let us turn to the resistanceless statement of the Neumann-Kelvin problem for a tandem. 
We remind that any solution to (1), (2) has the following asymptotics as \z\ —>■ 00: 

w(ar, y) = C + Q \og{u\z\) + H{-x)el/y(Asm vx + B cos ux) + *p{x, y). (4) 

Here z = x + iy, C is an arbitrary constant, H is the Heaviside function, and the estimates 
if, = 0(|z|-1), |V?/>| = 0(\z\-2) hold. The constants Q and A are determined by 

KUQ + Y,Mp3±i) - Ux(P2±i)] 
± 

du . 

A 
2 

u-T-(e"y cos ux) - ■^■el/y cos ux  ds + Y\ ±[u~1ux(x, 0) cos ux + u(x, 0) sin i/x]*I±t> 
■an on 1 ± 

where ^± means summation of two terms. The last formula with cos and sin replaced by - sin 
and cos respectively gives the coefficient B. 

Let u satisfy (1), (2), and let the following supplementary conditions A = 0, B = 0, 
ux(Pi) = ux(P2), ux(P3) = ux(P4) hold. Then we say that u is the resistanceless potential 
(solution to Problem (R)). The term resistanceless becomes clear if we take into account the 
formula expressing the total resistance to forward motion (see Motygin k Kuznetsov (1995)): 

R=-^V+B2) - £{[«fc, o)]~:: + [ui(xMZ7al 

where p is fluid's density. 
Using the source method proposed by Kuznetsov & Maz'ya (1989) one can prove that 

problems (L) and (R) (with an arbitrary right hand side in the Neumann condition) are solvable 
for all u > 0 with possible exception for a discrete sequence of values (own for each problem). 

3. Non-uniqueness examples 
For construction of examples we use the inverse procedure, which replaces finding a solution 
to a given problem by determining physically reasonable fluid region for a given solution. We 
define the latter with the help of Green's function 

G(z, () = -^og(u*\(z - ()(z -0\)-l [ COSf ! ; ° *k{y+n) dfc - e^} sin u(x - fl, 

which describes the forward motion of a source placed at ( = £ + in. Putting 

u(z) = (n/u) [Gx(z, ir/u) - Gx(z, -*»], (5) 
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we obtain a solution to the problem (1), (2) for a surface-piercing tandem if at least one of the 
streamlines of the flow connects the z-axis on either side of a dipole point and another streamline 
similarly surrounds the other dipole point (we interpret these streamlines as contours of two 
bodies). The streamlines are level lines of the stream function v, which is a harmonic conjugate 
to u. We use the following representations: 

v{z) 
' cos k{x + TT/V) — cos k(x — TT/V)   . 

dk (6) 

Re{e~il/Z [Ei(iu(z - *») - Ei(ti/(* + a»)]} 

where the second formula in terms of the exponential integral follows from 8.212.5, Ryzhik k 
Gradshteyn (1980) Table of Integrals. The asymptotics of Ei implies that v(z) ~ ± log \z ± ir/v\ 
as^-> TTT/^- Thus, the streamlines enclosing the dipoles do exist for sufficiently large values 
of v, and these lines are close to semicircles which are the level lines of log \z ± ir/v\. 

The particular combination of dipoles (5) is chosen to cancel wave terms in the asymptotics 
of u. The latter fact is an immediate consequence of the following formula 

G(z; C) ~ -TT
1
 log(v\z\) - 2e"(y+r,) sin i/(x -()ass^ -oo. 

Therefore, u delivers a solution to Problem (R), because the second pair of supplementary 
conditions in the definition of this problem is also fulfilled. Really, the direct calculation based 
on (6) shows that vy — vv — 0 when y = 0 and x ^ ±n/v, and hence, the derivatives vy — ux 

have the same value at both end-points (belonging to the x-axis) of any streamline enclosing 
one of the dipoles. 

Actually, u has no singular points on the z-axis except for ±ir/v. Hence, if ßy. > IT/2, 

k — 1,2,3,4 (see fig. 1 for definition of ßk) for the streamlines which we interpret as bodies, 
then u delivers a solution to Problem (L) as well. The latter is the case because we have 

tan ßk = (-l)kuy(Pk)/ux(Pk) = (-l)k+1vx(Pk)/vy(Pk). 

From this and from the behavoiur of derivatives shown on figure 3(a) one obtains that all angles 
ßk are non-acute for the streamlines given by (6). 

4. Discussion 

A new type of non-uniqueness for the Neumann-Kelvin problem is described. The well-known 
non-uniquness (see Introduction) is a consequence of sub-definiteness of this boundary value 
problem for surface-piercing bodies, and occurs for all such bodies and all values of v.   The 

yv 

XV 

Figure 2.    Streamlines for v = 0 (bold line), 0.2, 0.4, 0.6, 1.0. 
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Figure 3.    a) v~xux{x, 0) and v~xuy(x, 0) (dashed line) are plotted against xv; b) shows stream- 
lines for v = -0.5, -1.0, -2.0, -4.0 (dashed lines), v - 0 (bold line) and v = 0.2, 0.6, 1.0. 

new type of non-uniqueness takes place only for special values of v depending on the geometry. 
These values are point eigenvalues corresponding to modes of finite energy (known as trapped 
modes) embedded in the continuous spectrum of the relevant pseudo-differential operator. The 
latter spectrum is known to be (0, +oo). 

We use a pair of horizontal dipoles for obtaining trapped modes, whereas Mclver (1996) 
applies a pair of sources in her construction. The reason is that dipoles deliver an example 
for two statements simultaneously. The potential generated by two sources gives an example 
of non-uniqueness only for the least singular statement and cannot satisfy the second pair of 
supplementary conditions in Problem (R). 

There is no unique set of supplementary conditions vanishing the total resistance to the 
forward motion of more than two surface-piercing bodies. At the same time, the least singular 
solution can be naturally defined for any number of bodies. The corresponding non-uniqueness 
examples can be easily constructed. In particular, the potential (5) delivers examples of non- 
uniqueness for Problem (L) with 3 and 4 cylinders (see fig. 3(b) for the corresponding stream- 
lines). 
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DISCUSSION 

Tuck E.O.: Could you explain why you are studying the Neumann-Kelvin 
problem? This is a serious question, since there are matters raised in the paper such 
as singularities at the body-FS junction points, which relate directly to the question 
of the practical relevance of the N-K problem. Although my own opposition to the 
N-K problem is well known, it is possible that critics like me could be converted to 
believe in it, if studies like this were motivated to explain these singularities, or to 
use them as an outer expansion is a systematic approximation. 

Motygin O., Kuznetsov N.: We consider the N-K problem as a phenomenological 
model. The so-called full non linear problem is also only a model, because it 
involves the assumption that the fluid motion is irrotational everywhere. However, 
this is hardly true near body-FS junction points. Since the linear N-K problem 
requires supplementary conditions, their choice can be used for an appropriate 
phenomenological description of fluid motion near junction points. Different 
supplementary conditions could be good for different ranges of the Froude 
number. 
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STEADY WAVE SYSTEMS IN A TWO-LAYER FLUID OF FINITE DEPTH 

Thai Nguyen   and   Ronald W. Yeung 
Naval Architecture and Offshore Engineering 

University of California at Berkeley, Berkeley, CA 94720-1780, USA. 

1. Introduction 

Density stratification occurs frequently in the open oceans. Surface or sub-surface marine vehicles can 
operate in such an environment. This gives rise to some hydrodynamic problems of intrinsic interest. If 
the pycnocline thickness is small, a common model is to treat the medium as a two-layer fluid. A review of 
this subject indicates that existing derivations of the source potential in a two-layer fluid usually assume the 
lower fluid to be infinitely deep [1-3] or upper fluid bound by a rigid lid [2]. A more recent formulation [4] 
does allow each fluid layer to have finite depth but requires the density difference between the two layers to 
be small. Under this latter assumption, the surface and internal wave systems are only weakly coupled. In 
this paper, the translating source potential for a two-layer fluid of finite depth is derived in a form amenable 
to numerical evaluation. The source is restricted, for illustration purpose, to the upper layer, but the density 
difference between the two layers can be finite. Surface and internal wave patterns are computed for a density 
difference large enough so that some coupling between the surface and internal wave systems exists and their 
intertwined behavior is observed and illustrated. 

2. Mathematical Formulation 

Let's define a rectangular coordinate system moving with a point source at a constant speed U along the 
positive z-axis. The (x, y) plane of this system coincides with the undisturbed interface between the two 
fluid layers, and the z-axis is positive upward. Let pi, hi and p2, /12 denote the densities and depths of the 
upper and lower layers, respectively. If the velocity potential in each layer is given by G(m\£, -q, £; a;, y, z), 
where (£, 77, Q is the location of the source and m = 1, 2 refers to the upper and lower fluid layer, respectively, 
then the governing equations for G^ra''s are 

V2GLV=6(x-t,y-ri,z-a V2G<2> = 0 (1) 

The linearized boundary conditions on the free surface z — hi, the interface 2 = 0, and the rigid bottom 
z = —hi are: 

k0GW + GW-fiGW = 0 z = hl (2) 

70b.cS1> + C£ - „(#>) = k0G^ + G<V - ,.G?) z = 0 (3) 

G^ = G<2> 2 = 0 (4) 

Gi2> = 0 z = -h2 (5) 

where k0 = g/U2 and 7 = Pi/pi- The fictitious viscosity fi, introduced in the above formulation to facilitate 
the satisfaction of the radiation condition, will be taken to zero in the final results. Finally, the radiation or 
asymptotic condition is given by 

lim   v/RVG(m) = o(l), lim   >/ßVG(ra) = 0(1). (6) 
X —* + O0 X—>~ OO 

where R — ^/(x — £)2 + (y — rj)2. 

3. Solution of the Source Functions 

The solutions for G^m^'s are assumed to have the following forms 

G<1) = -+G«1> &
2)
 = GW (7) 
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where r2 = (x - £)2 + (v ~ v)2 + (* - C)2 and Glm)'s are some harmonic functions in their respective 

domains.   Using Fourier transform, represented here by the symbol F{}, we can express Qa    (k,8,z) = 

TSQ^mhx v z)\ as 
1   ° Gim\kAz) = A^(k,9)e'"+B^(k,9)e-k' (8) 

where A^ and ß(m) are unknown functions of k and 9. Substituting the above expression of Qa (fc, Ö, z) 
into the Fourier transforms of Eqns. (2)-(5), and (7), we obtain a system of linear equations which can be 

solved for A<TO> and B^m\ Once A™ and B^ are known, gim\k,9,z) can be inverted to the (x,y,z) 
space, and by using Eqn. (7) again, we obtain the following expressions for the G<m>'s. 

;,2e*(h-*-<) 
G(i)    =    i_J_ ['   /00{2ea6e-fcdcosh[fc(z-C)] + 2a(a + 76)e"fc'1cosh[fc(z-C)]-^2 

r     2TT J_T J0 

+ea
ae-*(fc-*-« - b(a + 7b)ek(d-z-U + a(7a + b)e-k^-'~^}^-dkd9 (9) 

G(2) = 2. ['   r{b(a + b)[ek(h+*-U + e^-'-U] - a{a + b)[e-k^h+^ + e-*(«-*-0]}! 
2TT y_, j0 

pikw 
■ -—dkde 

A 

■kh 

where     e = 1 — 7 
d=hi-h2 h = hi + h2 

a = k + k0 sec2 6 + in sec 6 b = k - k0 sec2 9 + in sec 9 
w = (x - Ocosfl + (y - T])sin9 A(k,9) = 2ea&cosh(fcd) + b(ya + b)ekh + a{a + jb)e' 

It is possible to show that if we let h2 in Eqn. (9) goes to infinity, we will recover the two-layer Green 
function for the case of infinitely deep lower fluid layer as given in [2]. In another scenario, G^l> and G< > can 
be reduced to the potential of a source moving in a uniform fluid of depth h by letting pi = p2. Alternatively, 
GW can be reduced to the same uniform source potential of depth hi when we take 7 = 0, or h2 = 0. ^ 

To obtain the final results for G^'s, we will now take the limit of the expressions in Eqn. (9) with \i 
goes to zero . The 6 integration in Eqn. (9) can be redefined to range from (-§, §) by taking advantage of 

some symmetry properties of the integrand. We can therefore write G0     as 

/      /    H^m\k,9)—dkdß\ (10) 

where 5Re{} represents the real part of the complex expression inside the {}, and #<m)(fc, 0)'s are some known 
functions. The roots of the equation A = 0 are of critical importance. They are given implicitly by: 

I       I ^JJ<i+«a + (-l)"+1K«i+«a)
a-^i«»(l + ^2)]* _.•,,.„„        n = 1|2 (U) 

fcn-fc0sec 0 2(1 + 7*1*2) 

where U = tanh(ifc„/u), t2 = tanh(fc„/i2). The roots fci and k2 can be assigned to be associated with the 
surface wave mode and internal wave mode, respectively. Note that Eqn. (11) does not always yield a 
solution for ifcn for all values of 6. A useful way of characterizing this complex relation is to define the 
following two critical Froude numbers Frx and Fr2 corresponds to the maximum phase velocity a of the 
surface wave mode and c2 of the internal wave mode, respectively: 

1 ,4., /I       hih 

*i=*H+<-""+,(i-W-     "=1'J <12) 

By definition, Fr2 < fn. It can be shown that when Fr = U/y/gh > Frn, a "supercritical" case, kn does 
not exist for |0| < 9n = cos-^Fi-n/Fr). By contrast, when Fr < Frn, the "subcritical" case, kn exists for 
all values of 9 within the range of integration. Note that fci > k2, and as n approaches zero, both roots 
approach the positive real axis from the lower half of the complex plane. The inner (*-) integral of Eqn. 
(10) can now be evaluated using one of the contours as shown in Figs. 1 and 2 depending on whether u > 0 
or u < 0 (see, e.g. [5]). In the limit of R — 00, the integrals along the path T2 and T4 vanish. Cauchy's 

residue theorem can be applied to yield: 

G(
"

I)=*e{-/_* LH(m)^e)^)dade}+2T
S*m{JT Him){k-e)J^j)de} (13) 
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where A' = dA/dk and V = tan_1[y/(-x)]. The integrals along T3 and T5 are complex conjugates of each 
other and have been combined to obtain this final expression, which is amenable to numerical treatment. 
Note that when Fr > Fr„, kn does not exist for all 9, and the range of integration of the single integral should 
be modified accordingly. For example, if f - rp > 9n > 0, the range of integration is actually (-f, -0„) and 

(0„,f-</>)• 

4. Surface Waves and Internal Waves 

The surface waves and internal waves due to a translating point source can now be calculated as follows 

(14) C(I)(*,»)= j<#> C(2,(l.iy)=^(G(2)_7G(l>; 

z=0 

If we restrict our analysis of the wave patterns to the far field of the source, then we only need to focus on 
the single integrals in Eqn. (13). In the far field, C(m) can be written as 

C(mW)~ £*«{ r~Vm)(*»,*)e<*-fc'<w} (15) 

According to Eqn. (15), both surface and internal waves contain contributions from the poles fci and k2, 
where, as mentioned earlier, we associate the contribution from fci with the surface wave mode and the 
contribution from k2 with the internal wave mode. The method of stationary phase can be applied to Eqn. 
(15) in the usual manners. The term eik"u can be rewritten as e

iRfn(e^\ where R = s/{x - O2 + (v ~ V)'2/h 
and fn(S, V>) = -hkn cos(0 + rj>). The number of stationary points of /„ depends on the values of t/> and Fr. 

When Fr < Frn, the function /„ has two stationary points for t/> < ipn. Each of these can be identified 
with a system of transverse or divergent waves. The half-angle of the wave pattern, ^„, increases from 19°28 
to f as Fr goes from zero to Frn. This angle then decreases as sm~1(Frn/Fr) when Fr > Frn. Also, when 
Fr > Frn, there exists only one stationary point which corresponds to the divergent waves. In this case, the 
source is travelling faster than the fastest waves of the n mode, and transverse waves are not possible for this 
steady-state problem. Since Frr > Fr2, the surface and internal wave patterns can be classified into three 
different regimes with respect to Fr. When Fr < Fr2, the wave system due to each mode contains both 
transverse and divergent waves. When Fr2 < Fr < Fri, the wave system due to the surface wave mode still 
contains both transverse and divergent waves, but the wave system due to the internal wave mode has only 
divergent waves. As Fr increases past Frlt both wave systems now contain only divergent waves. 

As an example, Figs. 3-8 illustrate how the surface and internal wave patterns vary as Fr increases from 
a value less than Fr2 to a value greater than Frx. The physical parameters are: hx/h = 0.5, 7 = 0.5, and 
corresponding to these parameters, Frt = 0.924 and Fr2 = 0.383. The source is located in the middle of 
the upper layer, i.e., C/h = 0.25. In these figures, the scales in the vertical direction are stretched for clarity, 
and the scale factors are given in the captions. Also, the nondimensional C(m) is defined as ^m>/h. Figs. 3 
and 4 show the surface and internal waves for Fr = 0.37 < Fr2. In this case, both the surface and internal 
wave modes contain transverse and divergent waves, and the coupling effect can be clearly seen on the free 
surface where the amplitude of the surface waves due to the internal wave mode are comparable to that due 
to the surface wave mode. Figs. 5 and 6 show the surface and internal waves for Fr2 < Fr = 0.5 < Frv 

At this Froude number, the internal wave mode only has divergent waves. The transverse waves on the 
interface in Fig. 6 are due to the surface wave mode. Figs. 7 and 8 show the surface and internal waves for 
Fr - 1.3 > Frx > Fr2. Here, only divergent waves are present since the Froude number is greater than the 
critical Froude numbers of both modes. These and other features of the flow will be further discussed at the 

Workshop. 
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Figure 1: Integration Contour for u > 0 

w<0 

Figure 2: Integration Contour for u < 0 

Figure 3: Surface Waves,4£4 x C(1),-F'- = -37 Figure 4: Internal Waves,3^4 x &2\Fr - .37 

Figure 5: Surface Waves,4.E4 x C(1),Fr = .5 Figure 6: Internal Waves ,6.154 x C<2>,Fr - .5 

Figure 7: Surface Waves,7£4 x C(1\Fr = 1.3 Figure 8: Internal Waves,3£5 x CW,Fr = 1.3 

198 



DISCUSSION 

Kuznetsov N.: Have you any physical explanation of phase shift for internal 
waves? 

Nguyen T., Yeung R.W.: The amplitudes of the surface waves and internal waves 
due to the surface wave mode are in phase, but the amplitudes are 180° out-of- 
phase for the internal wave mode. This situation is similar to the oscillations of two 
point masses connected by linear, elastic springs and suspended in a vertical plane. 
In the first mode of vibration at the natural frequency (Oj, the masses move 

together and their oscillations are in phase. In the second mode of vibration at 
frequency co2, the masses move in opposite directions and their displacements are 
180° out-of-phase. 
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Wavelet and spline methods for the solution of 
wave-body problems 

by 

Jens Olav Nygaard and John Grue 
Mechanics Division, Department of mathematics, 

University of Oslo, Norway 

1    Introduction 

Integral equation methods represent powerful alternatives in computation of potential flow 
around geometries and bodies, where an important example is interaction between water 
waves and floating bodies. Numerical implementation of the integral equation has often 
been based on a low-order method, where the boundary of the geometry is subdivided 
into piecewise straight lines in two dimensions or quadrilaterals in three dimensions. The 
unknown potential or source-strength is assumed to be constant over each subdivision of 
the boundary. For complex geometries like e.g. the wetted part of an oil platform, this 
method leads to a large number of unknowns (n), if a reasonable accuracy of the potential 
and the flow shall be obtained. 

The rather extensive applications of the low-order method illustrate its power. It 
is, however, desirable to investigate higher order integral methods which have features 
not included in a low-order method: possibility of finding derivatives of the potential, 
reduction of the number of unknowns and thereby the size of the matrices, fast convergence 
of the method, and adaptivity. Another aspect relates to geometrical design. Most 
practical geometries today are designed by advanced mathematical procedures, e.g. using 
splines. It is therefore desirable to make available wave analysis tools which are based on 
the same mathematical procedures as in the modelling of the geometry. The purpose is to 
integrate efficient and accurate computations of the flow and forces in the design process. 

We investigate wavelet and spline methods, which have rather different properties, see 
Nygaard et al. (1996). One of the advantages of the wavelet method is the possibility 
of performing compression of the coefficient matrix of the system. According to Beylkin, 
Coifman and Rokhlin (1991), it is possible to devise an 0(n) algorithm for certain integral 
operators, where n is the number of unknowns. We test the methods on Fredholm integral 
equations of the second kind. Preliminary results for the wavelet method show that the 
order of convergence for the present integral operator depends on the geometry. We 
compare the wavelet and spline methods. The latter method has, in the context of wave 
analysis, been discussed by Lee et al. (1996). 

For simplicity we assume two-dimensional motion and consider a half-immersed rect- 
angular cylinder floating in a free surface, responding to incoming waves. Coordinates 
(x, y) are introduced, with x being horizontal and y vertical. Assuming time harmonic 
motion with frequency w, the potential is on the form $ = Re(xeiujt), where x satisfies 
the Laplace equation in the fluid domain, dx/dy = A'x at y = 0 (K = uJ2/g), radiation 
conditions in the far field and dx/dn — Vn at the contour S of the cylinder, n is the inward 
pointing normal vector. From Green's theorem we obtain the usual integral formulation 
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where r, r' = [(x - £)2 + (yT ??)2]1/2, 

G(£,x)]dSi 
-TTX(X)  on S 
-27rx(a5)   in the fluid (1) 

G(£,a;) = lnr-lnr' + 2Re H 
Z f,-w 

w 
dw I + 2iriez 

and Z = -iK(£ -x) + K(n + y), -3TT/2 < argZ < -TT/2. 

2    The wavelet method - multiresolution analysis 

The wavelet method is a Galerkin scheme with a basis which decomposes functions into 
pieces of different frequency content locally in space. We expand a function / as 

/ = /o + go + 9i + = £« + £« + £<« + 
k k k 

(2) 

where the basis consists of the functions $. and ij>3
k. The subscript indices denote a 

translation in space (k), and the superscript indices give the location of the frequency (j). 
The translation in space is uniform, so the function is defined on a uniform grid. Where 
the function is reasonably smooth, the frequency content will be concentrated. This means 
that the coefficients corresponding to this particular localization in space will be dominant 
for a few frequencies. Correspondingly, frequencies which are not so dominating will have 
small coefficients. Depending on the regularity of the function and necessary accuracy of 
approximation, a number of these coefficients may be discarded. This makes it feasible 
to design an adaptive procedure for the solution of our problem, based on a hierarchical 
structure of multiresolution analysis. In short, the term multiresolution analysis is coined 
for the collection of nested approximation spaces spanned by the functions (fPk and ip3

k. 
For details on the multiresolution analysis, see e.g. Jawerth and Sweldens (1994). We use 
the Daubechies wavelet basis indexed by the number N, as in Daubechies (1992). We use 
N = 3 and N = 8. The scaling and wavelet functions for N = 3 is depicted in fig. 1. 

Th« «WWW (unction of Bw Dlub«EMw-buJi N .3 

0       tS        1        IS       1        21       3       3J       4       4.9       S 

Figure 1: Scaling and wavelet function 
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3 Spline method 

Using splines, we get the simplicity of piecewise polynomials, and for many applications, 
the geometry will also naturally be defined by splines. This is the case for our examples. 
The potential is represented by the linear combination of a number of B-splines Bi, for 
i = 1,... , m. In our case, the knot-vector will always be a refinement of the knot vec- 
tor for the geometry, but that is no requirement. A number of projection schemes are 
appropriate to use, and we start by inserting the expansion x(t) — S£Li XiBi(t) into the 
parameterized integral equation. Collocation with five collocation points between each 
knot gives an overdetermined system which is solved by a least-squares method. For the 
Galerkin case we use the B-splines both as trial and test functions, and multiply (1) 
(after parameterization and application of the spline-expansion,) by Bi(t) for all i, and 
integrate along the contour. This leads to a square system of exactly m equations. 

4 Numerical results 

We have implemented the methods and compared them with respect to accuracy (L2- 
error) and the corresponding number of non-zero matrix elements of the linear systems. 
The problems are well conditioned, and the systems can be solved by an iterative method 
utilising only matrix-vector multiplications, with a constant number of iterations. 

Our results show that 

• The wavelet method results in a matrix which may easily be compressed, resulting 
in a very sparse system yielding an accurate solution. 

• For smaller problems, or when high accuracy is not needed, a spline implementation 
will be both simple and efficient. 

• For larger problems, e.g. when the geometry is complicated or a high degree of 
accuaracy is needed, an efficient implementation of the wavelet method will be able 
to outperform the spline method. 

We show an example for the case of a square cylinder in the long wave approximation 
(K = 0) in fig. 2. The figure illustrates that large parts of the coefficient matrix in the 
wavelet method may be discarded, and that a higher accuracy is obtained in the wavelet 
case than in the spline case. In this particular example we also compare with analytical 
results by using the Schwarz-Christoffel transform. We find convergence, also at the 
corners of the square cylinder. Further results, for different wave frequencies, will be 
presented at the workshop. 
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Basls-3 J-3 6 Geometry-boksd Compr.method-threshold 

L2-error 

Figure 2: Accuracy of potentials for half-immersed square cylinder, surge motion, no in- 
coming waves. K = 0. Solid line: spline-Galerkin solution with quadratic splines. Dashed 
and dotted lines: wavelet solutions, basis N = 3, varying degrees of matrix-compression. 
The number of unknowns before compression is 2J+1, J = 3,4,5,6. Horizontal axis: L2 

error (accuracy). Vertical axis: Number of non-zero matrix elements in the linear system. 
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DISCUSSION 

Huang J.: 

1) Normally, when a function f(x) is expanded in wavelet space, it is expanded in 
one wavelet space {vm}, i.e. at scale m. Why did you expand f(x) (as shown in 

eq. 2) using different {Vm} and superimpose them? 

2) You showed the results of potential derivative, did you involve the direct 

evaluation of wavelet in your computation? The derivative of Daubechies wavelet 
is highly oscillated. 

Nygaard J.O., Grue J.: 

1) The functions decomposed into multiresolution analyses are indeed decomposed 
only in one space Vj (a space spanned by translates of the scaling function <j>,) 

but it is then decomposed further into the wavelet spaces (spanned by translates 
and dilations of the actual wavelet \\f) Wj, for ;' = J0,..., J -2, J -1, together with a 

remainder in V0. Here, Vj = Uj~iWj\jV0. (Note that V0 is just a convenient way of 

denoting the coarsest space where the sequence of nested spaces is truncated.) 
2) No, the direct evaluation of the scaling function § or the wavelet function \\f 

were not used at any stage. The Daubechies wavelets (and scaling functions) are 

indeed highly oscillating for large N, and they are not very smooth for small N. 

This carries over to the derivatives of the functions, but we note that there are 
Daubechies bases with arbitrarily smooth scaling functions avd wavelets, and 
therefore also arbitrarily smooth derivatives. However, there is a connection 

between the smoothness and the oscillatory behaviour. (As well as length of 

support, length of discrete filters and so on, so any choice of N will be a 
compromise.) 

When, for final plots and other uses of the functions expanded in the wavelet 

bases, evaluations are needed, the recursive refinement scheme (also denoted the 

pyramid scheme,) gives a stable and efficient way of obtaining large numbers of 
evaluations of the functions. This applies also to the more irregular of the 
Daubechies bases. 

Magee A.: 

1) In the compression method, you must search through the matrix to find the 

smallest value. Is this a significant computational burden? 
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2) Your results for the spline method seem to indicate that the results are improved 
with higher discretization (that is, the irregular behaviour is reduced for finer 
discretization). But is the exact (theoretical) irregular frequency equal to one of 
those used in the calculations? Have you checked frequencies nearby to be sure 
you are not missing the most irregular behavior of the numerical solutions which 
may change as a function of the discretization? 

Nygaard J.O., Grue J.: 
1) Yes, this is a burden in our implementation. However, this is done in this 
particular way because we have wanted to investigate whether or not the wavelet 
method will be able to compete with methods based on splines before putting 
effort into developing more efficient code. For an efficient implementation, larger 
portions of the elements to be discarded in the compression process have to be 
predicted without their actual computation. 
2) Irregular frequencies are always present in the formulation, however, for a 
successively finer discretization of the spline knot vector, we find that the ill- 
behaved frequency domain is reduced. We shall look into more detail regarding 
the dependence of the observed irregular frequencies on the discretization. 
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Hydroelastic Response of a Floating Thin Plate in Very Short Waves 

M. Ohkusu & Y.Nanba 

Research Institute for Applied Mechanics, Kyushu University, Japan 

1.Introduction 

A thin membrane with small bending rigidity floating on the water surface is a model of a floating 
structure with huge horizontal size as large as several kilometers and very small draft of a few meters; 
this configuration is a recent conceptual design of floating airport. We present a theoretical method 
to predict hydroelastic response of such membrane to the wave action of incident wave at a constant 

frequency u. 

2.Formulation 

The dynamic condition and the kinematic condition for the velocity potential <f>(x, y, z)e%U}t of the flow to 
be satisfied underneath the membrane occupying the part of z = 0 surface represented by flM in Fig.l 
are : 

+ a2 
E.(JL 
pg\dx2 T dy 

2     u,2 

 d+1 

iu> dz 

dz 
-<f> = 0   at z = 0 on fi M 

at   z = 0 on Q M 

(1) 

(2) 

where D is the bending rigidity, d the draft of the membrane, p the density of water and w{x,y)eiUt the 
vertical displacement of the membrane from the equilibrium position (Ohkusu & Namba (1996)). Notice 
that those conditions are imposed at z = 0 because the draft d is negligibly small. Obviously the free 
surface condition on the water surface ttw, z = 0 plane other than ttM, is given by 

d<t> 
Tz 9 

= 0    at z — 0 on Clw 

Our problem is to solve a boundary value problem of 

V2</> = 0 

(3) 

(4) 

with the boundary conditions (1) and (3) and other condtions such as radiation condition and the edge 
condition of the membrane when a wave is incident on the membrane. Once <j> is known we compute the 
deflection w of the membrane by using (1) and (2). 

This problem may be considered as a problem of the wave propagation on two different media UM 

and Qw, whose characteristics are represented by a quasi-free surface condition (1) and a free surface 
condtion (3) respectively. The "wave" elevation on the surface fiM is given by equation (2). The wave 
elevation on the real water surface ftw is also written similar way. 

Dispersive relation corresponding to the quasi-free surface condition (1) will be written in the form 

pg 
-d+l)k* =0    on  ÜM 

9 
(5) 

where K is the wave number of the "waves" occuring in the region fiM. One of five roots of equation 
(5) is a real number kA. Two of other roots are complex numbers corresponding to the evanescent waves 
prevailing at the edge of the membrane. Another two roots have negative real part and not legitimate 
for our problem of deep water because the wave motion increases infinitely as z approches -co. 

The wave number k = w2/g on the Qw is not equal to kA on the QM- This means the waves incident 
on the membrane are refracted following Snell's law when they propgate from the water surface into the 
membrane surface. Since k > kA generally, the incident waves do not penetrate into the membrane when 
the incident angle is less than a critical angle. 
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Let us consider the case when the wave length of the incident waves coming from the positive x is 
very small compared with B the breadth and L the length of the membraneas. It is a natural situation 
because the horizontal size of the structure is huge. So we assume kL » O(l) and kB » 0(1). 
The waves penetrating through the edge EF at x = 0 into the region UM at 0 << y << B will be 
approximately two dimensional waves uniform to the y direction, which would occur if the membrane 
extended from y — -co to y = +oo without any edge. This is because the waves in that location many 
wavelengths away ffrom the edges is hardly affected by the existence of the edges at y = 0, B. Ohkusu & 
Nanba (1996) gave this 2D solution. ,, 

The velocity potential 4>ID of the 2D wave with uniform crest along the y direction and propagating 
into the positive x will be written in the form 

<!>2D=hD(x,z)e-ik*x (6) 

when it propagates deep at x » O(l) into flw We can assume kA is large and 

d(j>2D «kA (7) 
dx 

in this location. The wave elevation near the edge FG (y ~ 0) and HE (y ~ B) on ÜM must have a 
component matched with the form (6), which will be expressed in the form 

4>A = M*,v,*>~ikAX (8) 

Another component of the wave elevation to occur near y — 0 or y = B will be 

4,0 = Mx,y,zY~ikx (9) 

This will be a penetrated wave through the edge FG at y - 0 or HE at y = B from the water surface into 
the UM- Nevertheless the incident waves e~ikx are travelling into the direction paralel to both the edges 
and their incidence angle to the edges is zero, much less than the critical angle; since the progressing 
waves can not penetrate into the region UM and the wave (9) must be the evanescent wave significant 
only near the edges, at y = 0{k~l) or y = B - 0(/c_1). 

Our final solution for the velocity potential <j> is a summation of kA component (8) and k component 
(9). 

3. /cA-component 

(f>A of (8) will be derived as follows. d^jjA/dx « kA transforms V2^ to 

£ + £_»£)♦,_„ (,0) 
The condition (1) on UM is approximated by 

2 

-(-« + £)   --d+1 
dtpA     J1 

dz        g 
ipA = 0   at  z = 0  on ClM (11) 

pg\   'A     dy2J        g 

The edge conditions of the membrane will be given by 

■r-ö - (2 - v)kA-r-   -T— = 0 
KdV]   9 °VJ ^ at   y = 0 (12) 

Here v is Poisson's ratio but we assume u = 0 in the article for simlicity. 

The free surface condition on Qw is equation (3). It is straightforward to find radiation condition 
on the water surface side, which is 

^A „ AeikyJ\-{kA/kyv   at   y _^ _00 (13) 

208 



The solution should match with (6) on the ÜM side when it is away from the edge of y = 0: 

1>K~faD{x,z)    at   y = Y    (0 « Y « B) (14) 

The solution V» satisfying all the conditions (10) to (13) is given by 

V>A(z,y,0) = /(z)<M(2/,0) (15) 

Here T/>A is a solution of a linear Fredholm integral equation 

My,z) = ekAZ + kAf(My'>z)--j^l   9(v',v)Mri,0)dv)S(v,*\v',0W    at    z = 0       (16) 

where S(y, z; y', z') is wave source function of the Helmoholtz equation satisfying (10) and the radiation 
(13) which has been extensively studied. One expression of the wave source function is 

cr   n   * n\        fcA  [°° yKx{k^{y - y')2 + M2) , _j__c-ifcAl)/-y'l (17) 

The Green function #(',17) in the equation (16) is a solution of 

f^.a^ + ^-i+iUy'j^^vO (is) 
V«7<V        /93     «V2      99 9 ) 

with the boundary conditions (12) [y = 0 is assumed ) and 

ff=^£=0    at   y = y    • (19) 
dy 

The condition (11) is readily transformed into an integral form using g{y,y') as 

d4L = kfY g{y,y')i>K{y'^)dy' (20) 
oz J0 

which was used in deriving the integral equation (16) from the Green's second identity 

The unknown f(x) will be determined with the condition (14) and given by 

/(X) = 02D(X,O)/^A(Y;O) (21) 

4. fc-component 

<Po of equation (9) is the effect due to the wave penetration through the edge y = 0 from the water surface 
side {y < 0) is significant only close to the edge. It is obtained as a solution when head seas are incident 
on a slender membrane; the method is given in Ohkusu & Nanba (1996). The solution is written as 

V-o(x>y^) = F(x)[e-fcz + Vio(y,^] (22) 

where i/>o is a solution of an integral equation 

Mv,o)= I*kG(y,,0;y',o)\(My,Q) + i)- I fiy'^iMv^ + i)^ dy' (23) 
Jo L Jo J 

G{y,z : y', z') is a wave source function not increasing exponentially at \y\ -> oo given by Ursell (1968). 

Unknown F{x) is determined such that the outer approximation of (22) will match with the inner 
approximation of the outer potential. The matching condition is: 

l-i+irp = F(x) (24) 
2\hk Jo   Vx-£ 

209 



Q(x) = F(x)k2f   \(My,0) + l)-j   f(y',v)(Mv,0) + \)dv dy' (25) 

in those expressions f{y,y') is the Green function similar to g{y,y'). f{y,y') is a solution of (18) with 
kA replaced by k satisfying the boundary conditions (12) at y - 0 as well as y = B with k substituted in 
hA. 

5. Numerical example 
One example of numerical results by the present method is illustrated in Fig.l. This picture shows the de- 
flection of the membrane at one time instant. Feature of the combined effect due to k and kA components 
is seen. Details of numerical calculation and another results will be presented at the Workshop. 

References 
Ohkusu,M. and Nanba.Y. (1996): Hydroelastic behavior of a very large floating platform in waves, 11th 
WWWFB, Hamburg 

Urseh\F. (1968): On head seas travelling along a horizontal cylinder, J.of Inst.Maths. Applies. 4 

Fig.l     Numerical Example 
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Recent results on trapped modes and their influence on finite arrays 
of vertical cylinders in waves 

R. Porter and D. V. Evans 
School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK 

Introduction 

At the last Workshop in Hamburg, Maniar & Newman showed that at particular frequencies the 
in-line first-order exciting forces on those cylinders near the centre of a large number of identical 
bottom-mounted vertical circular cylinders in a linear array become extremely large, compared to the 
force on an isolated cylinder. These frequencies coincide with those associated with certain trapped 
modes around a corresponding cylinder on the centre-plane of a wave channel. These trapped modes 
are of two types. The Neumann trapped modes, satisfying Neumann conditions on all solid boundaries 
and a Dirichlet condition on the centre-plane, were discovered by Callan et al (1991) and have been 
proved to exist for all values of 0 < a/d < 1 where la is the cylinder diameter and 2d is the width 
of the channel. See Evans et al (1994). Numerical computations by Callan et al (1991) indicate that 
there is just one such trapped mode having a unique wavenumber, kN, satisfying kN < n/2d where the 
angular velocity uN is given by uiN = (gkN tanh/c^/i)1/2 with h the depth of the channel. Physically 
the Neumann trapped mode describes an antisymmetric sloshing motion about the centre-plane of 
the channel which is confined to the vicinity of the cylinder and decays rapidly down the channel. 
Mathematically, the value (A;^)2 is an eigenvalue of the Laplacian operator in the unbounded region 
contained between one channel wall, the centre-plane of the channel and one half of the cylinder, and 
(kN)2 lies below the continuous spectrum which for this problem is [7r2/4d2,oo). 

The second type, discovered by Maniar & Newman (1996) and described as Dirichlet trapped 
modes, satisfy a Neumann condition of no normal flow through the cylinder surface but Dirichlet con- 
ditions on both the channel walls and the centre-plane. They have no obvious physical interpretation 
in the context of water waves but are well-known in the acoustical literature where they are termed 
acoustic resonances. For a review, see Parker & Stoneman (1989). 

In contrast to the Neumann trapped modes, the Dirichlet trapped modes only appear to exist for a 
restricted range of a/d. Thus the computations of Maniar & Newman (1996) suggest that a Dirichlet 
trapped mode exists provided 0 < a/d < 0.677, a figure which the present authors have refined to 
0.6788 using the same method. 

Convincing experimental evidence for the Neumann trapped modes have been given recently by 
Retzler (private communication, 1996). Maniar & Newman (1996) pointed out that long finite periodic 
arrays of identical bottom-mounted cylinders have applications to structures such as long bridges or 
proposed designs for offshore airports. In practice, however, it is clear that at least a double array of 
supporting cylinders will be needed so that it is important to predict the corresponding trapped mode 
frequencies for more than a single cylinder on the centre-line. In fact we have solved the problem 
of determining all the trapped modes which can occur when any number of rigid bottom-mounted 
vertical circular cylinders are placed on the centre plane of a channel. The cylinders can have any 
radii and can be spaced arbitrarily and the trapped modes are antisymmetric about the centre plane 
and satisfy either Neumann or Dirichlet conditions on the channel walls. 

The method is based on the multipole method, in which singular solutions of the Helmholtz 
equation satisfying an antisymmetry condition on the channel centre plane are modified to include 
the boundary conditions on the channel walls. The total potential about any cylinder may then be 
expressed as a Fourier-type sum over all relevant multipoles and the total potential anywhere in the 
channel as the sum over all cylinders.   The remaining condition to be satisfied, that of no-flow on 
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Figure 1: Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies as \i varies in the case 
of two cylinders for different values of the spacing parameter A (shown against the curves). Symmetric 

modes ( ), antisymmetric modes ( ). 

A A 
Figure 2:  Variation of (a) Neumann and (b) Dirichlet trapped mode frequencies for two cylinders, 

both /i=|as the spacing parameter, A, varies. 

the cylinder surfaces, is achieved by use of a Bessel function addition theorem, as in Linton k Evans 
(1990), yielding a homogeneous determinant system whose non-trivial solutions correspond to the 
trapped mode frequencies. The same method has recently been used by Linton & Mclver (1996) to 
determine the scattering properties of any number of circular cylinders of arbitrary size and position 
in a channel. The method is an extension of that used by Callan et al (1991) for the single cylinder. 

The number of possible configurations of cylinders we could consider to illustrate the results is 
of course limitless so we shall concentrate mainly on the case of two identical cylinders because of 
its connection with finite double arrays of cylinders which occur in offshore structures. The non- 
dimensional trapped mode wavenumber kd is in this case a function of two dimensionless parameters 
li and A describing the size and spacing of the centres of the cylinders. We choose \i = a/d and let 
the centres of the cylinders be located at (±Aa, 0) so that A is a spacing parameter being the ratio of 
cylinder separation to cylinder diameter. When A = 1 the cylinders are touching and as A -> oo we 
would expect results for the trapped modes to approach the single cylinder results as the interaction 
between them diminishes. This proves to be the case as figure 1 illustrates. Here, Neumann and 
Dirichlet trapped mode wavenumbers kd are plotted against p for different A. Also shown is the 
unique curve for both the Neumann and Dirichlet trapped modes for an isolated cylinder which we 
label A = oo. We consider the Neumann modes first, all of whose wavenumbers satisfy kd < 7r/2. The 
solid curves are symmetric Neumann trapped modes whilst the dashed curves above the A = oo curve 
are all antisymmetric Neumann trapped modes. We can draw the following conclusions about the 
Neumann modes from figure 1. For sufficiently large \i there exist two trapped modes, a low frequency 
symmetric mode and a higher frequency antisymmetric mode, for each value of A. However, for fixed 
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kd/n kd/ir 

Figure 3: Maximum exciting force against non-dimensional wavenumber kd in the case of head seas 
interacting with a double array of 2 x 9 cylinders all of radius a. The two rows are 4a apart and in 
each row the centres are 2d apart, (a) a/d = 5, (b) a/d = \. 

A, as /i decreases a value is reached at which the antisymmetric mode disappears. 
It appears from figure 1 that, as expected, the curves for increasing A approach the single cylinder 

results. This is more clearly seen in figure 2 which plots kd against A for /i = \. Both the Dirichlet 
and the Neumann curves rapidly approach the corresponding single cylinder trapped mode frequency 
as A increases. Notice how the antisymmetric Neumann mode cuts off below a certain value of A > 1 
whilst the antisymmetric Dirichlet mode persists down to touching at A = 1. This behaviour can also 
be seen from figure 1 by considering the intersection of \x = \ with curves of different A. However it 
is also clear from figure 1 that in general the behaviour of the Dirichlet modes is more complicated 
than the Neumann modes. 

It is possible to remove the channel walls and regard both types of trapped modes as oscillations 
between adjacent pairs of cylinders in a doubly-infinite row, the Neumann modes having an antinode 
at each mid-plane between pairs of cylinders and the Dirichlet modes a node. Following the discussion 
of Maniar & Newman (1996) that & finite single row containing many cylinders could experience large 
forces and at frequencies close to the Neumann and Dirichlet trapped modes for a single cylinder in a 
channel, or its equivalent infinite row of cylinders, we should expect that the peaks in figures 3(a) and 
3(b) which give the maximum in-line exciting force on the middle pair of cylinders in a double row of 
2x9 cylinders due to head seas to be close to the corresponding symmetric trapped modes. In figures 
3(a),(b) the distance between two cylinders in a pair is 4a so that in both figures the corresponding 
doubly-infinite row requires A = 2. It is clear from figure 1 at A = 2 that this is indeed the case. Thus 
the computed values of the symmetric Neumann and Dirichlet trapped mode wavenumbers for // = \ 
are kd = 1.29771 and kd = 3.02157 respectively compared to the peaks at 1.256 and 3.024 in figure 
3(a) whilst for n = | the trapped modes at kd = 1.46567 and 2.90894 compare to the peaks at 1.400 
and 2.856 respectively in figure 3(b). The other peaks in figures 3(a),(b) correspond to nearly-trapped 
waves. However, recent careful numerical calculations have confirmed, using two independent methods 
that it is possible to find a pure trapped mode of both Neumann and Dirichlet type, at the very precise 
values of a/d = 0.3520905 with kNd = 1.488884TT and for a/d = 0.2670474 with kDd = 1.991867TT 

respectively. Notice that these trapped modes are embedded in the continuous wavenumber spectrum. 
Surface elevations for each trapped mode are presented in figure 4. 

The effect of increasing the number of cylinders in a channel is generally to increase the number 
of trapped mode frequencies to be equal to the number of cylinders. It can be anticipated that the 
exciting force on cylinders in the centre of an array consisting of four lines of periodically-spaced 
identical cylinders would show large values at the four wavenumbers corresponding to the equivalent 
trapped modes. 

Finally it is not necessary to have large numbers of cylinders to obtain large forces. As a result 
of near-trapping effects it is possible for as few as four bottom-mounted cylinders to manifest large 
forces, in this case, 50 times that on a single cylinder, when excited by a particular incident wave 
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Figure 4: Surface elevation for Neumann and Dirichlet trapped modes embedded in the continuous 
spectrum. 
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Figure 5: (a) Non-dimensional forces on four cylinders arranged in a square in head seas as wavenumber 
ka varies; (b) Free surface elevation at near-trapping (ka = 4.08482). 

frequency, as shown in figure 5(a) using the interaction theory of Linton & Evans (1990). Notice from 
figure 5(b), which describes the free surface at near-trapping that the force acts radially and alternates 
in sign from one cylinder to the next. 

Conclusion 

We have illustrated the importance of an understanding of trapped modes in order to anticipate 
possible large forces on finite arrays of bottom-mounted cylinders. We have derived results for any 
number of cylinders in a wave channel and shown how these affect a finite double array of cylinders. 
We have also shown how near-trapping can account for large forces for as few as four cylinders when 
the spacing is sufficiently small, and we have presented results for pure trapped modes which are 
embedded in the continuous spectrum. Further results will be described at the Workshop. 
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VIOLENT SURFACE MOTION AROUND VERTICAL CYLINDERS IN LARGE, STEEP WAVES - IS IT THE 
RESULT OF THE STEP CHANGE IN RELATIVE ACCELERATION? 

R.C.T.RAINEY 

Centre for non-linear dynamics, University College London, and WS Atkins London 

Abstract 
Violent surface motions are seen around fixed vertical cylinders in large, steep waves. They are also 
predicted, by the small-time expansion method, when a vertical cylinder moving horizontally in still water 
undergoes a step change in its horizontal acceleration. But a sharp (classically 120 degree) crest, which is 
the defining feature of steep waves, necessarily implies a step change in horizontal particle acceleration in 
the incident wave (since surface slope = a/(gr + aj where ax and az are horizontal and vertical components of 
particle acceleration).This observation suggests that the violent surface motion is the result of a step change 
in the relative cylinder acceleration. 

The leading-order small-time expansion result on the moving cylinder is derived and discussed below. 
Despite the violence of the surface motion, it is noteworthy that the hydrodynamic force per unit length on the 
cylinder actually reduces near the surface. In terms of slender body theory, the total effect of the free surface 
is of a higher order in slenderness than the other forces acting. 

1. Background 
There is considerable current interest in the oil industry in the violent motion of the water surface produced 
around a vertical cylinder by a wave which is relatively large (height/diameter = 2, say) and also very steep 
(height/length = 0.1, say). Figures 1, 2 and 3 illustrate the effect at realistic scales. Its importance is not only 
in the potentially damaging effect on the superstructures of offshore oil platforms, but also in the "ringing" 
vibration produced by the associated sudden load fluctuations. From a theoretical point of view, the interest in 
the phenomenon is that it is highly non-linear (the vibration can be at ten times the wave frequency), and that 
Stokes expansion methods widely employed (see e.g. Malenica & Molin, 1995) for calculating wave loads are 
probably irrelevant, see Chaplin, Rainey & Yemm, 1997. 

Figure 1. Large wave at the AR-MEN lighthouse, Brittany; diameter approximately 8m 
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Figure 2. Focused wave at the large flume at De Voorst; cylinder diameter 0.5m 

Figure 3. Focused wave passing a cylinder of diameter 0.1m in recent experiments on "ringing" 
(after Chaplin, Rainey & Yemm, 1997) 

2. The small-time expansion solution for a vertical cylinder moving horizontally from rest in still water 
In the well-known small-time expansion scheme, which has recently been applied to this problem by Wang 
and Chwang (1989), the velocity potential cp and surface elevation r\ are expanded as power series thus: 

0 = 0,? + 02r2 + </>3t
3+.... Tl = 7llt + TJ2t

2+ri3t
3+.... (1) 
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By Taylor series expansion of <|> about the still-water position (z = 0), the free-surface boundary conditions can 
then be applied at z = 0, as a series of conditions of successively higher order in the time t. The process is 
closely analogous to Stokes' expansion, with f replacing the Stokes expansion parameter. The leading-order 
boundary conditions are: 

*i=0 T],=0,     2r]2=d^xldz (2) 

This potential-flow problem can be easily solved, for finite depth in the case of Wang and Chwang, and for 
infinite depth here. We simply observe (see e.g. Bland (1961) p. 108-9) that there are solutions of the form: 

<t> = (j)lt = at[kKx' (kb)Yl Kx (kr) cosö sin kz (3) 

where the cylinder velocity is at (i.e. a step change in acceleration from zero to a), b is its radius, and r, 0, z 
are the usual cylindrical co-ordinates, with 0 = 0 being the direction of motion and z being positive upwards. 
Rather than the required normal velocity on the cylinder surface of ateosG , these solutions have a velocity of 
atcosBsmkz; they must therefore be combined by means of the Fourier sine transform: 

2 7 sin kz 
— I——dk = sgn(z) 
K{    k 

to give the required solution as: 

(4) 

-2 7 aK. (kr) cos 8 sin kz „ 
0i = —   —■—ö & 

K {       k2K,'(kb) kAKx'{kb) 

so that the leading-order expression for the free surface elevation is: 

-1 }at2K,(kr)cosO 

(5) 

77 = —I- -dk (6) 
n J

0      kKx\kb) 

This is readily plotted with MATHCAD and is shown (out to a distance lOöfrom the axis) in Figure 4 below. 

X   , Y   , Z 

Figure 4. Free surface around a vertical cylinder accelerating from rest in still water 
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For present purposes the striking feature is the singularity at the cylinder surface, reminiscent of the flows in 
Figures 1-3. This feature has long been recognised in earthquake engineering, as occurring next to dams 
(Westergaard 1933) and cylindrical piers (Jacobsen 1949) undergoing impulsive motions. In this literature the 
surface boundary conditions (2) appear to be taken as axiomatic, without any formal justification by a small- 
time expansion. Indeed, the dam or pier motion is taken as a continuous vibration, from which the impulsive 
motion is later synthesised. 

Perhaps no less interesting is the force per unit length on the cylinder, which is readily obtained to leading 
order, by integrating the transient pressure -p<(>, = -p<t>i from (5), around the cylinder, to give: 

2pb) aKx{kb)s,mkz 
~k%\kb) 

dk (7) 

in the sense opposing the acceleration a of the cylinder, i.e. as an "added mass force". This expression can 
also readily be evaluated with MATHCAD, as shown (from z= -10Mo z=0) in Figure 5 below. 

~4 ;  

-6  

-8 ■■ - - - 4— ■ 

0 0.5 1.5 2 

f. 

2.5 3.5 

Figure 5. Variation of force per unit length /(normalised w.r.t. pb2a) with depth z 

As expected, it converges to npb2a at large depth (i.e. the 2-D "Morison" result), but tends to zero as the 
surface is approached. Thus the violent surface motion of Figure 4 is associated, somewhat surprisingly, with 
a reduction of the hydrodynamic load, compared with the 2-D result. The difference in the total load can be 
obtained by integrating the above curve with depth - according to MATHCAD the result is about npb3a. In 
terms of slender-body theory, the dependence on b3 makes the effect of higher order in slenderness than 
other "end effects". There is thus no contradiction with the "end effect" discussed by the author at the 10th 
Workshop (Rainey, 1995) - that was of lower order in slenderness, but evidently only important when the flow 
remains smooth (i.e. the Stokes' expansion case of small wave steepness), as indeed suggested then. 

This work was supported by EPSRC through MTD Ltd (grant GR/J23198), and jointly funded by the managed 
programme on uncertainties in loads on offshore structures. 
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DISCUSSION 

Schultz W.: The small time expansion is non-uniformly valid near the contact line 
(Joo, Schultz, Messitor 1991?; King & Needham 1995). A local expansion no 
longer has the §0 = 0 free surface condition and modifies the In tank singularity. It 

is likely that this modification might have negligible effect on a slamming force, 

based on your results. Any comment? 

Rainey R.C.T.: Indeed. In 1994, in the Journal of Fluid Mechanics, Vol 268 pp 

89-101, King and Needham treat the 2-D "wavemaker" problem rigorously, and I 
understand from Howell Peregrine that their methods ought to be applicable in the 

present case of a vertical cylinder. Such a rigorous treatment might show that the 

surface motion remains violent, and the slamming force is little changed, as you 

suggest. If you, or they, were to investigate this matter further, I would be 
delighted! 

Grilli S.: Two dimensional computations using fully nonlinear potential flow 

equations have shown that very large upward vertical accelerations can be created 
for certain types of so-called flip-through wave impacts on vertical structures. I 
would think that a similar phenomenon could occur for vertical cylinders, assuming 

some sort of wave focusing ensuring quasi-2D conditions. This hence could 

explain the violent upward motions you observed. We of course have to wait for 

the 3D codes to be efficient enough to get a more definite answer. Can you 

comment on this? 

Rainey R.C.T.: I assume you mean the type of "flip-through" impact described in 
the paper by Peregrine and Cooker at the 1990 WWWFB in Manchester, and 
subsequently e.g. in Coastal Engineering (1992). This is a very interesting 

suggestion, but actually I am not aware of it having been seen in model tests on 

cylinders. The phenomenon I am describing occurs well before wave breaking, and 

there is no vertical wall of water approaching the cylinder and "flipping through". 
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Two-Dimensional Inviscid Transom Stern Flow 
S. M. Scorpio and R. F. Beck 
University of Michigan, USA 

Introduction 
Two-dimensional fully nonlinear transom stern flow is investigated using the 

Desingularized Euler - Lagrange Time-domain Approach or DELTA method. Mixed Euler- 
Lagrange time stepping is due to Longuet-Higgins and Cokelet (1976). The field equation is 
solved using the desingularized boundary integral method described in Beck et al. (1994). 
The flow is unsteady in that the problem is started from rest and accelerated up to steady 
forward speed. The purpose of this study is to compare with previous steady calculations 
and to provide a starting point for extending to unsteady fully nonlinear three-dimensional 
transom stern flows. 

The cases studied herein correspond to those in Vanden-Broeck and Tuck (1977) and 
Vanden-Broeck (1980). They compute nonlinear waves behind a transom stern using a 
series expansion in the Froude number. The problem is solved in an inverse manner in 
which the coordinates x and y are the dependent variables and the velocity potential and 
stream function <p and v are the independent variables. The series expansions in x and 
y are everywhere divergent but can be summed by standard methods. Integro-differential 
equations with nonlinear boundary conditions are solved in the inverse space to obtain the 
expansion coefficients. 

c / 
/ 
/ 
/ 
/ 
/ 

////////////// 
SH 

SF 

IF 
Su 

A$ = 0 

SB 

SD 

Figure 1: Problem configuration 

Problem Formulation 
Figure 1 shows the problem configuration. The x — y coordinate system is translating 

with speed {";, in the negative x direction. Laplace's equation governs in the fluid domain 
and the velocity potential is $ = Ui,x + o. The surfaces which bound the fluid are: Sf = 
Free Surface; S'H — Body Surface; Sf = Upstream Truncation Surface; So = Downstream 
Truncation Surface; S'B = Bottom Surface. 
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Dr,          do 
Dt  -  d; 

Dö 
Dt   ~ -5r?+i|Vo|2 

do      ., 
'S- = -f 6"1 on 

VO-0 as      y —' -00 

The boundary conditions are: 

£ € SF 

x 6 5ß 

where jj~t = §1 + ^$ • V is the material or Lagrangian derivative, n = (n1.n2.n3) is the 
unit normal on the body pointing out of the fluid, g is the acceleration of gravity, 77 is the 
free surface elevation, and o is the perturbation potential. The boundaries Sf and So are 
unspecified. We have run cases with Sf and So prescribed to satisfy continuity and saw 
very little difference in the results as long as Sf and So are far enough up and downstream 
respectively. We placed the trunction boundaries about twelve wavelengths away from the 
transom for these calculations. 

Results 
Vanden-Broeck (1980) suggested that two realistic solutions exist for the steady flow 

behind a transom stern. For small values of the Froude number, the flow rises up the tran- 
som to a stagnation point. The free surface separates from the transom at the stagnation 
point creating waves downstream which increase in steepness with increasing Froude num- 
ber. We'll call this solution A. This solution is physically unreasonable for large values of 
Froude number because the ratio of stagnation height to transom depth goes to infinity 
as the Froude number goes to infinity. For large Froude numbers a second, more physi- 
cally realizable solution exists in which the flow separates cleanly from the bottom of the 
transom. We'll call this solution B. This solution reduces to the uniform stream as Froude 
number tends to infinity and the downstream waves steepen as Froude number becomes 
small. In fact. Vanden-Broeck (1980) found a minimum Froude number (= 2.26) below 
which the downstream waves would exceed the theoretical breaking wave steepness limit 
(2A/\ = 0.141). 

The problem is started from rest and the hull is accelerated up to steady forward speed. 
Using the DELTA method, the inviscid solution always tends towards configuration A as 
the hull reaches steady forward speed, regardless of the Froude number. In a viscous fluid, 
we know that the flow behaves like solution B for high Froude numbers. As the hull 
speed increases from rest, the flow separating from the bottom of the transom becomes 
turbulent, resulting in the "dead water" region commonly observed behind transom sterns. 
Consequently the pressure behind the transom is lowered. Eventually the falling pressure 
causes the free surface to drop to the bottom of the transom resulting in the solution B 
flow. Once the flow is separating cleanly from the transom, the turbulence is confined to 
the thin boundary layer (for high speeds) and viscous wake. Using an inviscid flow model, 
it appears to be impossible to proceed from transom wetted to transom dry. However, we 
did find two techniques which resulted in solution B. 

The first was to start the problem at steady forward speed with the transom out of the 
water. The hull is then lowered slowly into the water. As the hull is lowered, the free 
surface remains separated from the bottom of the transom and solution B results.   This 
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technique will not work for a problem starting from rest with the transom immersed. In 
order to obtain solution B for the problem starting from rest we tried a second technique 
in which we attempt to mimic the effect of the dead water region by artificially lowering 
the stagnation pressure on the transom. This pressure drop can be modeled in the inviscid 
flow code by modifying the boundary condition on the transom. The condition, 

do 
— = -Ubni 
an 

causes the stagnation pressure. We reduce the stagnation pressure by modifying the transom 
boundarv condition to: 

£ = -'*■ ("-"-o 
As the hull accelerates up to speed, the pressure on the transom drops until the free surface 
drops down to the bottom of the transom. When the hull reaches steady speed, solution B 
is recovered. 

The general numerical details are similar to those outlined in Beck et al. (1994). There 
is a double node where the free surface meets the transom in the solution A flow. One node 
satisfies the body boundary condition while the other satisfies the free surface boundary 
condition. Treating the intersection in this manner has consistently worked well in the 
desingularized method. There is one additional constraint (or Kutta condition) at the 
bottom of the transom in the solution B flow. The free surface nodes are allowed to move 
downstream with the fluid velocity during the intermediate time steps (we're using 4th order 
Runge-Kutta). At the end of a major time step the free surface nodes are regrided back to 
their original positions by interpolating elevations and potentials. The Kutta condition is 
imposed by regriding the first free surface node back to the bottom of the transom. The 
potential at this point is computed from the source strengths. 

1.5 r 

>    0.5 
M 

 Vanden-Broeck (1980) 

DELTA 

-0.5 ^ 

Figure 2: Solutions A and B at FH = 6.3 

Figure 2 shows the waves generated by the transom stern at Froude number based on 
transom depth of FH = Ub/s/gH — 6.3. The fully nonlinear solution starting from rest is 
compared with Vanden-Broeck's 1980 results which are also fully nonlinear. Both steady 
state solutions A and B are compared. The solutions agree quite well except there is a 
noticeable difference in wavelength for solution A. 
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a' A" 2a"IX" K K 

Vanden-Broeck 0.53 12.1 0.088 12.6 11.5 

DELTA 0.51 11.6 0.088 12.6 11.6 

Table 1: Comparison of downstream wave characteristics for solution A 

Table 1 shows downstream wave characteristics for the Vanden-Broeck (1980) and DELTA 
solution A. Here, a" = a2g/U2 is the nondimensional wave ampb'tude found by subtracting 
the minimum wave elevation from the maximum and dividing by two for the downstream 
waves and A* = X2g/U2 is the nondimensional wavelength. Since the phase speed of the 
waves equals Ub, we can use the deep water dispersion relation to estimate the wavelength. 
The linear wavelength is AJ = Xo2g/U2 = 4n = 12.6. Using the oth order dispersion 
relation for deep water Stokes waves (U2 = g/k(l + (ka)2 + 5/4{ka)4)) and the computed 
wave amplitude (a) we can solve for the wave number (k) and get an estimate for the 
nonlinear wavelength (A4 = A42ff/f/6

2). Although both computations show waves with the 
same steepness, Vanden-Broeck's waves do not satisfy 5th order dispersion. 

Conclusions 
For two-dimensional transom stern flow, the transition from transom wetted to transom 

dry at high Froude number is accomplished in the inviscid flow model by modifying the tran- 
som boundary condition. Perhaps a more appropriate transom boundary condition could be 
contrived which allows solution A for low Froude numbers and transitions appropriately to 
solution B as the Froude number increases through the critical value (Ffj = 2.26). Presum- 
ably this technique may be applied to the unsteady three-dimensional problem. Of course 
flow behind a three-dimensional transom is much more complex and requires further study. 
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DISCUSSION 

Tuck E.O.: Can you explain why the particular form of the body boundary 
condition was chosen, with the property that the RHS exactly changes sign as t 
goes from 0 to °°. As t -> °o, since no part of this boundary is wet, it surely doesn't 
matter what the limiting boundary condition is. 

Scorpio S., Beck R.: The boundary conditions was: -^ = -(V*i(2f?      ~ A- 
on \ ' 

At t = 0,   -3- = -Ubnx, as f -> «»,   -i -> H-L^. 
on on 

Initially we tried -^ = -£Vi e~ß'2 but -^ -> 0 as t ->«> was not strong enough to 
Ort Ort 

suck the free surface down to the bottom of the transom. --*- had to change sign in 
a« 

order to generate the necessary drop in pressure. Professor Tuck is absolutely 

correct in that there is no significance in -^ -> +Ubnx as /->«>. 
Ort 

In fact, the form of the boundary condition was arbirarily chosen to provide a 
smooth transition from transom wetted to dry. Surely there are many choices of 
boundary condition which would produce the same result. 

Yeung R.W.: In a recent work (Yeung, 1991, Math. Approaches to 
Hydrodynamics, SIAM Publ.) a number of "time-dependent" solutions were 
worked out in the context of "solution A". There was basic agreement with 
Van-den-Broeck's results. In the same article (see also Yeung & Ananthakrishnan, 
1992, 19th ONR Symposium), a solution with viscosity is given to illustrate how an 
entrained vortex is first formed at the "sharp stern", leading eventually to its 
"sheering off". Presumably, at sufficiently large time, the drop in water level in the 
stern will approach the keel point. These references may serve to explain what is 
happening at the stern physically. 

Scorpio S., Beck R.: We would like to thank Professor Yeung for his comments 
and for the references that we are sure will be most helpful. The mechanisms that 
cause the transom stern flow to proceed from wetted to dry as the ship accelerates 
from rest are very interesting. We think there is a good qualitative understanding 
of this process already. Perhaps some careful physical experiments, or numerical 
experiments as cited by Professor Yeung, can give us a better quantitative 
understanding of this process. 
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Stability Analysis 
of the 2D linearized unsteady free-surface condition 

Lisette M. Sierevogel and Aad J. Hermans 
Department of Applied Mathematics, Delft University of Technology, The Netherlands 

Introduction 

In recent years, many studies have been carried out to describe unsteady ship motions. These mo- 
tions are important to predict the seakeeping behaviour of a ship, which includes the interaction 
between waves and the velocity of the ship. Prins (1995) has developed a two- and three-dimensional 
time-domain algorithm to compute the behaviour of a cylinder, a sphere and a commercial tanker in 
current and waves. Since the results were satisfactory, we have extended this method by including a 
frequency-independent absorbing boundary condition, see Sierevogel (1996a), and apply it to a LNG 
carrier at higher speed, see Sierevogel (1996b). 
The increase in the speed causes some numerical instabilities on the free surface. However, the insta- 
bilities disappear by using upwind discretization instead of central discretization for the x-derivative. 
In this abstract, we carry out a theoretical study of the numerical dispersion and damping, and the 
stability. We follow the work of Raven (1996) and Nakos (1990). The analysis is restricted to the 
two-dimensional (2D) case for simplicity, while we did also computation in 3D. 

1    The time-domain algorithm 

In this abstract, we consider the 2D problem we described in Sierevogel (1996a): A cross-section of a 
horizontal circular cylinder with radius Ä, floating in water of infinite depth. A uniform stream flows 
with velocity U in the positive z-direction and regular waves are travelling in the positive or negative 
x-direction. The coordinate system is chosen such that the undisturbed free surface coincides with 
z = 0. We consider a potential flow with the velocity potential $, satisfying the Laplace equation. 
By using the dynamic and kinematic conditions and by dividing the potential into a steady <f> and 
an unsteady ~4> part, we get an linearized free-surface condition on the undisturbed free surface. We 
approximate the unsteady potential ^ by the undisturbed flow potential Ux. In Sierevogel (1996a), 
we don't do this approximation, but in this analysis it is done for simplicity. Now the linearized 
free-surface condition becomes 

1           2(7           U2 

<J>tt + 9<t>z + 2U<l>xt + U2(l>xx = 0     =>>     4>x = —fa <f>xt <t>xx      at 2 = 0, (1) 

To solve the problem, we introduce a Green function, G, satisfying the Laplace equation and we use 
Green's second theorem. We can use this Green's theorem to calculate the potential on every time 
step and every panel. Knowing the potential, we are able to calculate the first- and second-order forces 
and motions. However, in this abstract we are only interested in the stability of the potential on the 
free surface. Therefore, we are looking at Green's theorem for the potential on the free surface. When 
both x and £ are on the free surface, then G^ = 0 and the principal value of the integral along dSfs 

becomes zero. Combining equation (1) and Green's theorem, we get 

1 r   (1 ß2      211   ß2       U2 d2 \ 

i«".«>-/ {^ + TWt + TW}mmx-i)di = RHS   atz'c = 0-       (2) 
asfs  

v ' 

with the right hand side, which includes all integrals over the rest of the boundary, 

RES =     J    (4>GC - Gfy) dr :=  J f(t)G(x,t) d£ . 
dS\dSfs dSfs 
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In practice errors will also be introduced by the discretization of the potential on the hull surface. 
However, in this abstract we only look at the errors due to the discretization of the free-surface. 

2 Continuous Fourier Transform 

The Fourier transform of the continuous free-surface equation (2) is derived using the 2D Fourier 
Transform of the function fei) and its inverse are defined by the Mowing pair of equations 

+00 +9° 

few) =jj fet)e->'-te> dx dt  and   fei) = -^ J j fe«)^""-^ dw dfc , 
—00 —°° 

with k the Fourier wave number in the z-direction and with w the frequency in Fourier space.   By 
using Lighthill's (1959) definition of the Fourier Transform of a log function, we derive the Fourier 
Transform of the Green function. By using the convolution theorem, we get the Fourier Transform of 
equation (2). Next we can write continuous Fourier Transform of the potential as follows 

Transforming the solution back to physical space, leads to 

1    +r+f°   F(k,A - ,     w2     2tfwfc      U2k2 

*<*■<> = h J I %tz) e'M"", d"ih' with m'"] = ~m + 7 " — + T- ■ 
—00 —00 

with W the continuous spectrum In section 4, we evaluate the continuous and discrete spectrums, we 
compare the dispersion relation for the continuous problem with that of the discrete problem.  The 
dispersion relation of the continuous problem is the polar W(fc,w) = 0. 

3 Discrete Transformations 

In the discrete problem, the solution fez,i) is discretized over a free-surface grid of uniform spacing 
Ax in the x-direction. The collocation point is in the centre of the panel. The solution fez,i) is 
discretized in the time using a uniform time step At. To find the discrete form of the free-surface 

condition, we write equation (2) as follows 

2fe,i7l) 2^     ygQt2 +    g   d^m +    g   dgj Wr   n) J^  K 

We derive the Fourier Transforms of respectively the integral over the Green function, the x- and 
i-derivatives, and the free-surface condition, using the 2D Discrete Fourier Transform, and its inverse 

, which are defined as 
+ ii  rAt 

+OO +OO Iff" 'fl 
fe,W) = A*A*£     J2 fem,tn)e-'fl    and    <P(xm,tn) = ^ J    J   fe«)e«dfc dw , 

m= — 00 n——00 —S £- 
Ax      At 

where 6 = urn At - km Ax, and using the discrete convolution theorem. For the first- and second- 
order z-derivative we use either a central difference scheme or an upwind scheme. By introducing the 
non-dimensional wave number k = ^ and frequency w = ^ , which can been seen as one over the 
number of step per wavelength or period, the discrete dispersion relation can be written as 

W = -|fc|—^ - -A^ (2 - 5e~2™ + 4e-4^ - e"6™) - 
sin(/br)       9 47r2^2 V 
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4    Evaluation of the discretization schemes 

The evaluation is done first for the zero-speed case, and then the complete dispersion relation, first 
for waves travelling with the current to the right and then for waves travelling to the right. We 
compare the the roots of the dispersion relation computed by the continuous and discrete spectrums. 
We analyse the errors, try to find the wiggles and give some stability criterions. We follow the work 
of Raven (1996) and Nakos (1990), but our dispersion relation is more complex than theirs. Their 
continuous and discrete operator, applying linear Kelvin free-surface condition and considering a source 
contribution, are linear in the wave number. Therefore, the intersection of real part of Lh(k) with 
the line \/Fn\ indicates the wave number of the discretized case and the imaginary part of Lh(k) is 
proportional to the numerical damping. In our case we have the analyse the discrete wave number 
itself 

kd = kc {1 + CR{U>, AW, AX) + iCi(u, Aw, Ax)} . (4) 

When kc is negative the wave is travelling to the left and when kc is positive the wave is travelling to 
the right. The discrete wave numbers are the roots of the discrete dispersion relation W. The term 
CR indicates numerical dispersion, an increase (CR < 0) or decrease (CR > 0) of the characteristic 
length of the associated waves. The term Ci indicates numerical damping (Cj < 0) or numerical 
amplification (Cj > 0). Usually one root is nearly the continuous wave number. Any secondary root 
away from the continuous wave number indicates a spurious wave number. If the imaginary part of 
this root is positive, wiggles will appear. 

In figure 1 and 2, we show the numerical dispersion CR and damping Cj of the first wave numbers, cal- 
culated with equation (3) for downstream waves, as function of k. We see that for both discretizations 
for k < 0.08 the both the numerical dispersion and damping are small, but there is more numerical 
damping using the upwind scheme. We also notice that the wave number decreases for U > .1 using 
upwind discretization, while it increases using central discretization. 
Using central discretization, the dispersion relation sometimes has two roots for one frequency, see 
figure 3. The solid lines are the wave number of the continuous dispersion relation. The root far 
from the continuous wave number has a very large imaginary part, this means that the short waves 
with that wavelength will amplify rapidly, these numerical instabilities are called wiggles. Figure 3 
shows, for instance, that when k = 0.10 and U = 0.2, there are wiggles for w > 8, and no wiggles 
for w < 8. In figure 4, we show the critical grid Froude number Fn&x = U/^/gAx as function of U. 
This grid Froude number is used by Nakos (1990) and Raven (1996) in their analysis. In our analysis, 
we can say that the central discretization is stable that Fn&x < 0.15, however it seems that there is 
still a dependence of the grid size or k. More calculations for smaller k show the conditions remains 
FIIAX < 0.15. 
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Figure 1: The numerical dispersion CR and 
damping Cj for the first root, as in equation 
(4), as function of k, for different speed U, 
using central discretization 

Figure 2: The numerical dispersion CR and 
damping Cj for the first root, as in equation 
(4), as function of k, for different speed U, 
using upwind discretization 
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Figure 4: The maximum value of the grid 
Froude number as function of U, k and u, 
for which the central discretization is stable 

Figure 3: The spurious wave number, as 
function of the frequency, for different k, for 
u> = 0.01 and for different speed U, using 
central discretization 

5    Conclusions 

In this abstract, we developed a theoretical model for a stability analyse of the unsteady 2D linearized 
free-surface condition. The stability analyse shows us that the numerical method used in Prins(1995) 
and Sierevogel (1996a) is accurate if we use minimum 20 panels per wavelength and 50 time steps per 
period. We compare central and upwind discretization, and it turns out that downstream with both 
discretizations the numerical damping and dispersion is less than 1%. The disadvantage of central 
discretization is the numerical instability which appear when the grid Froude number Fn&x > .15. 
Upstream is the numerical dispersion using upwind discretization larger than using central discretiza- 
tion, but central discretization causes numerical instabilities. Therefore we need more time steps per 

period. 

An other possibility to eliminate the numerical instabilities is a upstream shift of the collocation point, 
see Raven (1996). A more accurate scheme using less panels can be obtain using higher-order basis 
functions on the panels, for example quadratic splines, see Nakos (1990). It is possible to evaluate the 
3D linearized free-surface condition the same way as we presented in this abstract, only the problem 
two times three unknowns: x, Ax, y, Ay, t, At, and therefore complex to evaluate. 

In our numerical program we use the double body potential instead of the undisturbed potential flow. 
We also use a Green's function which satisfies the bottom condition. These points may change the 
stability condition a little. 
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DISCUSSION 

Kim Y.: 

1) In the unsteady problem, temporal stability is also important. Could you explain 
your temporal stability criteria? 

2) Could you show that the limiting case of numerical dispersion when Ar, At H> 0 

goes to continuous dispersion relation? 

Sierevogel L. + Hermans A.:   The authors are grateful to Y. Kim for giving a 
copy of an unpublished article [1]. 

1) To examine the temporal stability we follow Kim, Kring & Sclavounos [1] and 

write the discrete dispersion relation as a third-order complex relation 

1    -Z3 + 
g(*Y 

-4 -U 
+ — D 

g(At)2    2gAtAx 
W Z2 + 

Kg(At)2    IgAtAx       j 
Z 

Ax       -2         -3U     <x)       U
2      (xx) ——-I 1 D    — ———— D      = i 

2G    g{Atf    2gAtAx g(Ax)2 

where Z = e~,aAt is the growth factor for each time step. When one of the three 

roots of this dispersion relation is outside the unit circle in the complex plane, the 

numerical scheme is temporal unstable. Satisfying the conditions in the paper, the 
numerical scheme seems to be temporal stable, but this case is too complex to 
derive a condition analytical, the way Kim, Kring & Sclavounos [1] did. 

2) The consistency of the discrete dispersion relation can be examined through 
using Taylor polynomials when lim^Q and limäl^0, then follows 

W = W + o((Ax,At)2) 

[1] Kim Y., Kring D.C., & Sclavounos, P.D. (1997). Linear and nonlinear 

interactions of surface waves with bodies by a three-dimensional Rankine panel 
method. Submitted for publication. 
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(12th Int. Workshop on Water Waves and Floating Bodies, Marseille, France, 16-19 March 1997) 

A Second Order 3D BEM for Wave-Structure Interaction 

Jesper Skourup1, Bjarne Büchmann2 & Harry B. Bingham1 

INTRODUCTION 

At the previous workshop a 3D Boundary Element Model with active absorption at the open boundaries 
was presented. The model was formulated correct to second order in the free surface conditions but only 
the linear part of it was implemented. The tests involved regular waves on a fixed structure and forced 
linear motions of a floating structure. Further details can be found in Skourup and Bingham (1996). 

The present abstract considers some of the extensions to the model, which have been implemented 
since the last workshop. The second order free surface conditions have now been implemented and active 
absorption is used at the lateral boundaries for both the first order scattered waves and for the second 
order scattered waves. Numerical results to second order of the run-up on a fixed vertical circular 
cylinder are presented and they agree well with the analytical second order results by Kriebel (1992). 
Results are also presented using first order irregular waves incident on a freely floating ship. The 
computed motions of the ship compare well with linearized frequency domain calculations using the well 
verified frequency domain code WAMIT. 

MATHEMATICAL FORMULATION 

A potential flow is assumed, with boundary conditions expanded up to second order and applied on the 
mean positions of the free surface and body boundaries (see Isaacson and Cheung, 1992, or Skourup, 
1996). The total velocity potential is separated into a known incident potential fa, and a scattering 
potential fe representing the effects of the body and its motions, 

<t>{x,t) = e\^\x,t) + <l>f{xj)\   +e2[tf\x,t) + fö)(x,t)] + ... (1) 

where s is the perturbation parameter, x is an observation point, t is the time and the superscripts denote 
the order of the expansion. By formulating the boundary value problem for the scattered field alone all 
waves in the domain are outgoing waves, and all lateral boundaries can thus be formulated as absorbing 
boundaries. 

The active wave absorption method used here is similar to the one used at the Danish Hydraulic 
Institute for wave absorption in physical flumes. The motion of a wave absorber is a function of the time 
history of the wave absorber position and of the free surface elevation at the wave absorber. These are 
transformed to an updated wave absorber position by use of a digital filter designed to match a 
theoretically determined transfer function (see Schäffer et al., 1994, for details). The same technique may 
also be used in a 3D model by considering a finite number of 2D wave absorbers placed next to each 
other and working independently. Each absorber is then governed by the same digital recursive filter and 
by the local time history of the position of the absorber and the elevation there. An extension to a fully 
3D active absorption method is given in Schäffer and Skourup (1996), but it has not yet been implemented 

i 
International Research Centre for Computational Hydrodynamics, Danish Hydraulic 
Institute, Agern Alle 5, DK-2970 H0rsholm, Denmark, e-mail:icch@dhi.dk 

Department of Hydrodynamics and Water Resources, Building 115,  Technical University 
of Denmark, DK-2 8 00 Lyngby, Denmark, e-mail:buchmann@isva.dtu.dk 
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into the present version of the program. In the numerical simulations the absorbers all work in the piston 
mode, but digital filters are also available for hinged flap wave absorbers. The wave absorber boundary 
condition is of the Neumann type. 

To compute the potential, the boundary value problem is re-cast as a boundary integral equation via 
Green's 2nd identity 

a(x)^(x,0 = l <f>(lt)Gn(x,l)-G(x'^„(lt)dT * (2) 
r 

where 4 = (4U42,43) is the position vector of an integration point situated at the boundary F of the domain, 

subscript n indicates differentiation along the outwards normal vector at }, and the factor a{x) depends 
on the position of the observation point («(*) = 2n for x  situated at a smooth part of the boundary). 

Equation (2) is discretized using a panel method with the kernel function G(x, £) = y|x-£|, and the 

variation over a panel of both the potential and the geometry is taken to be linear. Collocation is 
performed at the corners of each panel, and the resulting linear system of equations is solved by LU 
factorisation at the first time level (i.e. at t=0) and then by back-substitution at each time step. The free 
surface boundary conditions are integrated using 4th order Adams-Bashforth and Adams-Moulton 
schemes. Further details concerning the numerical solution can be found in Skourup (1996). 

NUMERICAL EXAMPLES 

Two numerical examples are given in this abstract. The first example considers second order wave run-up 
on a fixed vertical circular cylinder. The numerical wave tank is square with a side length equal to about 
3.5 times the length of the regular waves used in each test. The cylinder is situated with the centre at the 
symmetry line of the wave tank, and a Green's function accounting for the symmetry and satisfying the 
impermeability condition at the horizontal sea bed is used. Thus, the calculation domain can be reduced to 
half of the original domain and the sea bed can be excluded. For these tests the boundary of the domain is 
discretized using about 3500 nodes and a simulation covering 10 wave periods is performed using 2000 
time steps. The computing time for one simulation is 40 CPU minutes on an IBM RS6000 computer. 

The maximum run-up on the cylinder is determined as the average value of the wave crest height 
during a few wave cycles. The linear solution is well known and straightforward to compute (cf. 
MacCamy and Fuchs, 1954), while the second order solution is by no means simple to determine (see 
Kriebel, 1990). Kriebel (1992) gave results correct to second order for wave run-up on a vertical circular 
cylinder covering a range of ka and kh values (where k is the wavenumber, a is the cylinder radius and h 
is the water depth). These results are reproduced using the present second order Boundary Element 
Method. In Fig. 1 te = 0.271, kh=0J50 and the wave steepness is kH=0.2l5 (where H is the wave 
height). The agreement with the second order run-up curve from Kriebel (1992) is very good. Another 
example with te=0.684, kh = 1.894 and kH=0.39l is depicted in Fig. 2. Again the agreement with the 
results by Kriebel (1992) is excellent. A more comprehensive comparison with Kriebel's results will be 
given at the conference. 

As a second example we consider a Series 60 Cb=0.7 hull exposed to a sum of first order waves 
(corresponding to an irregular wave time series) incident from ahead. In order to minimize wave 
reflections (i.e. by generating waves in the optimal frequency range of the active absorber), and to retain 
an adequate spatial discretization for all wave components, eight waves distributed in the range 
1.29<co'<2.48 are used (where a'=a>Jhlg is the non-dimensional radian wave frequency). The 
boundary of the domain is discretized with 2000 nodes and a simulation covering 2048 timesteps takes 
about 15 CPU minutes on the IBM RS6000 computer. Figures 3, 4 and 5 show the response amplitude 
operators (RAO) and phases for the ship in the surge, heave and pitch modes. These results have been 
computed as the Fourier transform of the body motion relative to the Fourier transform of the incident 
wave elevation at the centre of the ship. The simulation results compare well with calculations made using 
the well verified frequency-domain code WAMIT (1995). The small discrepancies at the higher 
frequencies are attributed to a sparse discretization of the corresponding wave lengths. 

234 



2R/H 

Figure 1. Wave run-up on fixed vertical circular cylinder. ka=0.211, kh=0J50, £#=0.215. Linear 
solution (dashed), second order solution (solid). The analytical results by Kriebel (1992) are 
depicted by circles. 

2R/H 

Figure 2. Wave run-up on fixed vertical circular cylinder. ka=0.684, kh=l.S94 and £#=0.391. Linear 
solution (dashed), second order solution (solid). The analytical results by Kriebel (1992) are 
depicted by circles. 
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Figure 3. Surge RAO and phase (in degrees) for a Series 60 hull (Cb=0.7) exposed to irregular waves. 
The non-dimensional radian wave frequency co' is depicted on the x-axis, the WAMIT results 
are shown with a solid line and the present numerical results are depicted by circles. 

CONCLUSIONS 

A second order 3D Boundary Element Model for the interaction between waves and structures has been 
developed. For a fixed structure (vertical circular cylinder) the wave run-up correct to second order has 
been computed, and the numerical results agree well with the analytical solution by Kriebel (1990,1992). 
The interaction between irregular waves and a freely floating ship has been simulated using the linear part 
of the model and good agreement with the theoretical RAOs and phases are found. 

The interaction between waves, a current and a structure is also implemented and can be simulated by 
the present model. Results with the interaction of waves, current and a structure will be shown at the 
conference, but published elsewhere (see Büchmann et al., 1997). 
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Heave RAO and phase (in degrees) for a Series 60 hull (Cb=0.7) exposed to irregular waves. 
The non-dimensional radian wave frequency ©' is depicted on the x-axis, the WAMIT results 
are shown with a solid line and the present numerical results are depicted by circles. 
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Figure 5 
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Pitch RAO and phase (in degrees) for a Series 60 hull (Cb=0.7) exposed to irregular waves. 
The non-dimensional radian wave frequency co' is depicted on the x-axis, the WAMIT results 
are shown with a solid line and the present numerical results are depicted by circles. 
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A study on wave-drift damping by fully nonlinear simulation 

Katsuji Tanizawa *  and Shigeru Naito * 

f Ship Research Institute, Tokyo, Japan 
$ Osaka University, Osaka, Japan 

1 Introduction 

The low-frequency motion of floating marine struc- 
tures such as moored ships and oil platforms are 
one of the main concern in ocean engineering. The 
low-frequency motions are excited by slowly oscil- 
lating second-order wave forces and the resonance 
causes large amplitude horizontal motions. The ac- 
curate estimation of the amplitude is very important 
for the design of mooring system. The conventional 
damping force due to viscous effect and wave radi- 
ation are small and wave-drift damping, resulting 
from the interaction between an incident wave and 
low-frequency oscillatory motion of a floating body, 
is dominant. Therefore the accurate estimation of 
wave-drift damping is indispensable. 

Wave-drift damping has been studied experimen- 
tally and theoretically by Wicheres and Slujis l\ 
Saito, Takagi, Ohkubo and Hirashima2), Faltinsen3), 
Hearn and Tong A\ Nossen, Grue and Palm 5\ Zhao 
and Faltinsen 6), Eatock Taylor and Teng 7\ Suna- 
hara 9) and others. In their approach, wave-drift 
damping is analyzed in a quasi-steady manner, based 
on the rate of change of the added resistance in 
waves, with respect to small steady forward velocity. 
Newman 8) outlines a procedure for the more direct 
derivation of wave-drift damping from a perturbation 
analysis and extracted it from second order radiation 
force at low-frequency. 

In this study, a numerical approach is taken for the 
fully nonlinear analysis of the interaction between an 
incident wave and low-frequency oscillatory motion 
of a floating body. Using the fully nonlinear simu- 
lation method 12), three motions of a moored two- 
dimensional body are simulated in presence of a reg- 
ular wave field and the hydrodynamic force due to 
the interaction is extracted from horizontal hydrody- 
namic force act to the body. Based on this numerical 
study, added mass and damping coefficient due to 
the interaction are analyzed and a rational explana- 
tion of wave-drift damping is proposed. The relation 
between this explanation and the conventional expla- 
nation based on quasi-steady analysis is discussed. 

2 Target of the numerical simulation 

Motions of a moored two dimensional floating 
body in a regular wave is considered. Fig.l shows the 

target of the simulation. The ideal fluid is bounded 
by free surfaces, a piston wave maker, a flat bottom, 
a vertical wall and a floating body. The fluid motion 
is described by velocity potential and acceleration po- 
tential. Motion of the floating body coupled with the 
fluid motion is solved in the acceleration filed using 
the implicit body surface boundary condition. All 
three degrees of freedom are simulated. 

Following a preceding work of Cointe et al. 10\ 
artificial damping zones are applied to prevent wave 
reflection from both ends of wave basin. Inside of the 
damping zones, damping terms are added to both 
dynamic and kinematic free surface boundary con- 
ditions to give damping effect to free surface. These 
damping zones effectively work as a wave breaker and 
an absorbing wave maker. The motions of floating 
body can be simulated for long time without affected 
much by reflection waves. 

The detail of this simulation method with damping 
zone is presented in reference paper 12). 

3    The interaction between incident wave and 
low-frequency body motion 

To study the interaction between incident wave 
and low-frequency body motion, the hydrodynamic 
force purely due to the interaction is extracted from 
following four nonlinear simulations presented in §3.1, 
§3.2, §3.3 and §3.4. 

3.1    Simulation of moored body motions in 
still water 

To obtained the basic characteristic of the moor- 
ing system in still water, free oscillatory motion is 
simulated. Fig.2 shows the simulated velocity of the 
body and the horizontal hydrodynamic force acts to 
the body. Fourier analysis of the simulated results 
gives following information. 

• The natural frequency of the moored body mo- 
tion in still water is w0 = 0.384 rad/s . 

• The added mass of the motion is 
msd(ü0) = 155.75 kg . 

• The   damping   coefficient   of  the   motion   is 
c,d{üo) - 0.1091 N/im/s) . 

Since the radiation wave length correspond to   ü0 

is about   390m   and more than 520 times wider 
than body breadth, these hydrodynamic coefficients 
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are similar equal to the limit values   m,d(0)   = 
148.56 kg,   c,d(0) = 0 when w0 — 0 . 

3.2 Simulation of the moored body motions 
in a regular wave 

Next, free motion is simulated in the presence of a 
regular incident wave (wave length A = 2.7 m , wave 
amp. C = 5 cm , wave period Tw — 1.316 s ). 
Fig.3(a) shows the simulated sway motion and sway- 
ing force act to the body. For the analysis of the slow 
motion, low-frequency components are extracted by 
FFT from swaying velocity and swaying force. These 
are plotted in Fig.3(b) as U and Fx ■ Two differ- 
ences exist between Fig.2 and Fig.3(b). 

• The natural frequency of slow oscillatory mo- 
tion in the regular wave is w = 0.420 rad/s 
and different from that of in still water. 

• The significant damping is observed in the reg- 
ular wave meanwhile damping is weak in still 
water. 

Fx in Fig.3(b) is composed of steady wave-drift 
force Fx and slowly varying component Fx , which 
is considered to be the main cause of the differences. 

3.3 Simulation  of forced  oscillation  of the 
body in still water 

To obtain the hydrodynamic force purely due to 
the interaction between incident wave and slow os- 
cillatory motion, we have to remove the conventional 
hydrodynamic force F,d due to low-frequency os- 
cillation from Fx • F,d can be obtained from the 
simulation of forced oscillated body motion in still 
water. The bottom raw of Fig.4 shows the simulated 
Fsd ■ The added mass and damping coefficient for w 
can be obtained from Fourier analysis of this force. 
Then  F,d for arbitrary motions is given as 

row show sway motion, swaying velocity and hori- 
zontal hydrodynamic force magnified in time from 
t = 150 Tw to 200 Tw and the 5th to the 6th row 
show low-frequency components of them extracted by 
FFT. Since the amplitude and the phase of forced 
oscillating motion shown in Fig.4 are equally set to 
those of low-frequency motion in Fig.5, the hydrody- 
namic force due to the interaction is simply given as 
Fwd = Fx - F,d . Here, we call Fwj as wave-drift 
force, which is composed of steady wave drift force 
FWd = Fx and unsteady force FWd ■ The bottom 
row of Fig.5 shows Fwd 

3.5    Interaction between incident wave and 
slow oscillatory motion 

Using FWd and U presented in Fig.5, the inter- 
action can be quantitatively studied. Fourier analysis 
of FWd and  U gives following information. 

• The amplitude of Fwd is \Fwd\ = 1.814 N 
• The amplitude of U is  \U\ = 0.0551 m/s 
• The phase between Fwd and U is 

6 = 2.712 rod. 
When the simulation converges to the periodically 
steady state, the damping force balances with the 
exciting force. Above results, obtained from indepen- 
dent simulation shown in Fig.4 and Fig.5, well satisfy 
this condition |Fu,<i| = |Gx| and that demonstrate 
the accuracy of these simulations. 

Next, here we write 

Fsd = msd{w)Ü + csd(ü)U . (1) 

Theoretically, Fsd can be removed from Fx in 
Fig.3(b). But for quantitative study, the simulation 
of transient motion is not adequate and periodically 
steady state of low-frequency oscillation should be 
simulated. 

3.4 Simulation of the moored body motions 
oscillated by a low-frequency external 
force in the regular wave 

An external low-frequency force Gx , which is 
synchronized to w , is added to the body to oscil- 
late the periodically steady low-frequency motion in 
the presence of the regular wave. The results are 
plotted in Fig.5. The amplitude of Gx is set to 
\GX\ = 1-8 N ss 0.2FX   in this simulation. 

The top row of Fig.5 shows simulated sway mo- 
tion from   t = 0   to   250 Tw , the 2nd to the 4th 

U = \U\sinut (2) 

and decompose Fwd  into sin and cos components 

Fwd = \Fwd\cos6s'müit + \Fwd\sin0cosüt .     (3) 

Then added mass and damping coefficient due to the 
interaction are written as 

Bx = - 

\Fwd\sm6 

Z\U\ 
\Fwd\cos8 

(4) 

(5) 

Substituting the values of |.Ftud|,|^| and 6 in 
these equations, we have Ax = —32.65 kg, Bx = 
29.93 N/(m/s) . We should not confuse AX,BX 

with the conventional hydrodynamic coefficient 
i^ad,csd due to the oscillatory motion. Ax and 
Bx  do not exist without incident wave. 

Using Ax , the difference between ü>0 and w 
can be explained. The spring constant of the mooring 
5l.07N/m , the body mass 191.79fc<7 and the added 
mass in still water 155.75% gives the estimation of 
the natural frequency in still water 0.383rad/s fa 
w0 . Taking the added mass reduction Ax into ac- 
count, the natural frequency in the wave field be- 
comes  0.403rad/s « w . 
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3.6    Wave-drift damping 

Bx   is considered to be wave-drift damping for 
frequency ü . On the other hand, in the theoretical 
studies, wave-drift damping is defined in quasi-steady 
manner as 

dFx 
BX=- 

dU 

Bx 

u=o 

and  Bx  can be clearly The relation between 
shown as follows. 

Using eq.(2), eq.(3) can be written as 

\Fwd\cos8Tr     \Fwi\amOT-T 
fwd —  ~, v H =TTT; U  ■ P\ z\u\ 

4. The moored body motions oscillated by a low- 
frequency external force in frequency ü in the 
regular wave field is simulated to obtain the hy- 
drodynamic force Fwd = Fx — Fsd purely due 
to the interaction, 

and the rational explanation of added mass Ax and 
the damping coefficient Bx due to the interaction is 
given. This explanation reflects the dynamics of the 
interaction.  Series of simulations with different  ü 
will teach us the frequency dependency of Ax   and 

Bx- 

(')   References 

(6) 

When the slow drift motion is in periodically steady 
state, \Fwd\ and \U\ are constant. Therefore, par- 
tial derivative of Fwd with respect to U is given 
as 

dFwd      \Fwd\cos9 ,  \Fwd\sm9dU 
dU " dU \U\ 

Taking the relation 

8Ü 

+ 
Q\U\ (8) 

,U 

dU       W Ü 
(9) 

into account,  dU/dU  becomes zero at  17 = 0 and 
we have formula 

dF wd 

dU (7=0 

\Fwd\ cos 8 

Therefore, Eq.(5) is finally written as 

dFwd Bx au 

(10) 

(ii) 
u=o 

This definition of wave-drift damping is valid for 
ü > 0 . When w tends to zero, Fsd —► 0 and 
Fwd —*■ Fx can be substituted to eq.(ll) to have the 
conventional definition eq.(6). 

4    Conclusion 

The hydrodynamic force purely due to the interac- 
tion between incident wave and low-frequency body 
motion is extracted by following nonlinear simula- 
tions 

1. Free motions of the moored body in still wa- 
ter is simulated to obtain the natural frequency 
ü0  in still water. 

2. Free motions of the moored body in a regu- 
lar wave is simulated to obtain the natural fre- 
quency Ü) in the regular wave field. 

3. Forced oscillatory body motions in still water 
in frequency ü is simulated to obtain the con- 
ventional hydrodynamic force Fsd due to the 
low-frequency oscillation. 
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DISCUSSION 

Molin B.: 

1) It seems to me that your procedure to determine wave drift damping is a lot more 

complicated than what one usually does in a wave tank (i.e. decay tests in still 
water and regular waves). Can you comment why? 

2) Have you made comparisons with published experimental or numerical results? 

3) I want to comment that the often observed change in low frequency added 

mass has more to do with viscous effects than with potential effects. 

Tanizawa K. + Naito S.: 

1) For the estimation of the wave drift damping, free decay tests are not accurate 

enough because they are transient phenomena and affected by viscous force. 
What we usually do is low speed towing test in regular waves based on the 
conventional definition of the wave drift damping (i.e. the rate of change of the 

added resistance in waves with respect to small steady forward velocity). But, 

since this definition is derived from quasi-steady analysis, I proposed dynamic 

definition of wave drift damping and introduce series of fully nonlinear numerical 

simulations to determine the wave drift damping based on this dynamic definition. 
2) No, not yet. 

3) Thank you very much for you comment. Of course viscous effects may affect to 
the added mass change. What I explain in my talk is pure potential effect to the 
added mass change. 

Newman J.N.: Your approach seems analogous to the rationale in my 1993 paper 

except that I used a perturbation expansion in powers of the wave amplitude (A) 
and you use a fully nonlinear simulation. I ignored the 0(A2) added mass since it 

seemed unimportant compared to 0 (1) conventional added mass. This suggests 
that your shift in the natural period of slow drift motions is 0(A2). DO you have 

any results to confirm this? 

Tanizawa K. + Naito S.: I simulated the slow drift motions for various wave 

heights and checked the dependency of the natural frequency to the wave 

amplitude. The simulated results in Table A show that the change of natural 
frequency is almost proportional to 0[A2) and this can be a confirmation of your 

analysis. So, when wave amplitude is small, the change of frequency is not 

significant. But for larger amplitude wave, the change is not negligible. 
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Table A: Natural frequency of slow drift motion in regular waves 

A/B G>/w0 

0.0 1.0 
0.0169 1.0052 
0.0338 0.9948 
0.0507 1.0182 
0.0676 1.0938 
0.0845 1.1901 

A 
B 

Wave amplitude 
Body breadth 0.74 m 
The natural frequency in still water 0.384 radls 

Wave lenghth 2.7 m 
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Third-harmonic Diffraction Force on Axisymmetric Bodies 

Bin Teng 
Dalian University of Technology, CHINA 

Shunji Kato 
Ship Research Institute, Ministry of Transport,JAPAN 

1 Introduction 
It was observed in model tests and prototype experiments that tension leg platforms(TLPs) and gravity base struc- 
ture(GBSs) experience sudden bursts of highly amplified resonant activities (ringing) during storms. The ringing phe- 
nomenon will induce extreme stress in tethers, end even tethers breaking. It was found that ringing occurs at low 
frequency and ringing periods are about 3-5 times of the period of the corresponding incident waves. Thus, the calcula- 
tion of third order force will be significant in predicting ringing phenomenon. 

Nonlinear problems are characterized by forcing term in their boundary conditions. For the third order potential, the 
forcing term on the free surface includes both first and second order potentials. The difficulty in calculating third order 
force is that second order potential can not be expressed in an explicit form efficiently. Usually, it is represented by an 
integral equation and an infinite integration has to be carried out on the whole free surface. The present work proposed 
a one-step forward prediction method to calculate the second order potential on the free surface. Special concerns are 
also given to the treatment for the logarithmic singularity in the ring Green functions. Then, the third order forces are 
calculated by an indirect method, which is analogous to the indirect method for second order force. 

The method has been implemented for axisymmetric bodies, and no difficulty has been found for extending it to 
arbitrary bodies, like TLPs. For axisymmetric bodies, a novel integral equation is also proposed. 

2 Eree Surface Condition 
We assume the incident monochromatic waves have an incident frequency u. Then , the first, second and third order 
harmonic potentials with the frequencies of UJ\ = w, UJ2 = 2w and u>3 = 3w are considered for the present interest. We 
separate the time dependencies explicitly, and write potentials at each order of e as 

*ü)(*,y,*,0 = ?H[<l>w(x,y,z)e-^t] (1) 

Then, we can write the free surface conditions for each velocity potentials as 

urfW+rfP    =    qU)    j = 1,2,3,- ••    onz = 0 (2) 

Vj    =    t^j/a 

where the forcing terms 2^ at each order of e are 

0 (3) 1W 

.2 

2fl 9 9 

,(»)    =    ^v^^^-^1)^-^^)--^^-^) (4) 
9 *9 9 

_   J_v0(1) - V(V0(1) • V<£(1)) - -tf>(1)v^(1) • v4x) 

8g 9 

+    i(^(1Vi1) + gV0'1>.V^)(^-^1>) (5) 

3    Integral Equation 
We separate velocity potentials and forcing terms into incident and diffraction components as 
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Expanding the diffraction potential and the Green function into the following series 

oo 

^(x)    =    5>m*ä»(»-)coBm0 (ß) 
m—0 

OO 

G(x,xo)    =    ^emGm(r,z;ro,zo)cosm(0-0o) (7) 

for axisymmetric body, we can derive the integral equation for the mth mode of jth order potential as 

[i- - VJ f    GordrtäUro) - f  [^gL(n,) - f=*S>)]«fl 

-    /   Gm°§>rdl + j~Gm4Ur)rdr (8) 

after using a technique to weaken the singularity, where Gm is well known as the ring Green function and Go is the 
simple Green function which satisfies only the fixed free and bottom surface conditions. 

4    Numerical Implement 
For second order potential in fluid domain, two integrations have to be carried out both on body surface and on free 
surface when applying integral equation method. 

4.1    Integral on the free surface 
oo 

/Fm(ro,0o,O) = - /    rdrggi1(r)[t7rGoffm(fc2r>)Jm(fe2r<) + 2^G„^m(K„r>)/m(K„r<)] (9) 
Ja n=l 

Defining Lmn term as 
Lmn = 2CnKm{Knr>)Im(nnr<)Zn(Knz) (!0) 

The limitation of Lm„ term for large n is L'mn, and its infinite sum is L'm, which has a logarithmic singularity when the 
field point is close to the source point. 

To remove the logarithmic singularity, we rewrite the integral as 

£ /~ Wr)?£»,(r)rdr 
n=l Ja 

«    T        WrÄ(r)rdr-W ^„(r)^(r)rdr + / CWÄM* (11) 

For large modes, inside the range (r - Ar,r + Ar) the first two terms can be canceled each other; outside the range the 
difference can be neglected. For the third term, a transform is used to remove the singularity. Then the integration can 
be represented as 

M JV 

(12) /Fm(ro,0) = -[^C„Tron(ro) - ^ Vmn(ro) + Vmo(ro)] 
n=0 n=l 

where 

Vm0(r0)    =    -± n+A\Z(r)Hl-eM-l\r-ro\)}J^dr (13) 
JVQ—Ar V 

*-<*>    =    i/   A    ^l^p{-^r-ro\)^dr (14) 

Tm0(ro)    =    Smoi(ro)Jm{k2ro) + Sm02{ro)Hm(k2ro) (15) 
Tm„(r0)    =    Sm„i(ro)e-K"ro/m(/cnro)+Smn2(ro)eK"roKro(/£nro) (16) 

where 

Smoi(n)    =    % r <ÜL{r)Hm{k2T)rdr = Smoi(r0) - y jf ' «gL(r)fTm(fer)rdr 

Smoa(ri)    =    | r ggi,(r) Jm(fc2r)rdr = 5m02(r0) + y jf ' ggi,(r) JmCfcarJrdr 
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S„„i(n)    =     I   9^(r)/<'m(K„r)rdr = 5m„i(ro)e,c»<ri-ro)- f ' q%l(r)Km(Knr)rdreK«r* 
Jri JTQ 

Sm«a(n)    =     / ' «SL(r)/m(«»r)rdr = Sm„a(n>)e-,»(ri-*) + P g<2il(r)/ro(K„r)rdre-'c"ri 

4.2    Integration on the body surface 
For those points not close to body surface, we write the body integration as 

/Bm(ro, 0) =  f  [^(r, z) ££=• + d<t>"£,z)Gm]rcU = UmoHm(k2r0) + ]T C/mntfm(*»n>) (17) 

where £7roo and 17m„ are determined by the body integration. When the point is close to the body surface, a technique 
is also used to weaken the near singularity. 

5    Hydrodynamic Force 
We divide the third order force into three terms 

F(3) = »[(/<3) + fP + fi3) )e-3iu*] (18) 

where f[3\fP and /f} are 

85   JcB 

/f    =    -iff   pV4>WW2)nds-pV f   0<V2)ndc 
2J JsB JcB 

/f    =    j j   Ziuptt^+^nds (21) 

Similar to the second order force, the third order diffraction force can be further divided as 

/£> = 3»Wp /"J   [4,f)nj + rl>j^r]ds + 3wpff   jj^da (22) 

by using an auxiliary radiation potential ij/j at triple frequency of incident wave. 
Dividing the third order forcing term g(3) into two terms, ^'(consisting of only the first order potential) and q^ 

(consisting of the first and second order potentials), the most difficult integral on the free surface, i.e. J J VO'^BD^
8

! 
can 

be represented as 

(19) 

(20) 

ffs**&*    =    Jl ^(^-^-|^VE-|(2Vo^>-Vo^>-^ViV)) 

-   |^-*(,)*g,l«i.+ gjf W(1)*g)»i + ^(1)^]a (23) 
cB 

a   l a using some transforms, where Vo = (■§;, $:■§§) and 

6    Numerical results 
As the first step, a case of uniform cylinder with radius of a in a water depth of d/a = 10 is considered. Figure 2 shows 
the comparison of third order surge force of the present calculation with the Malenica and Molin's (M & M's), Faltinsen, 
Newman and Vinje's (FNV's) analytical solutions and experimental results. It can be seen that the present calculation 
agrees well with M & M's results except for /as component. 

Figure 3 shows the comparison of third order pitch moment about the free surface with experimental results. The 
experimental results are very scattered, and no conclusion can be found. From the calculation results it can be seen that 
there is a peak at low frequency. This maybe is the exciting source of ringing phenomenon on TLP and GBS. At that 
frequency, the corresponding force is not very high. The reason for this peak is the acting point of third order surge 
force is low. 

References 
1) Faltinsen, O.M., Newman, J.N. & Vinje,T.: Nonlinear loads on a slender vertical cylinder, J.Fluid Mech., Vol.289, 

pp.179-198, 1995. 
2) Malenica, S and Molin,B.:   Third -harmonic wave diffraction by a vertical cylinder, J. Fluid Mech., Vol.302, 

pp.203-229, 1995. 
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DISCUSSION 

Kim M.H.: The convergence test of the second-order diffraction computation is 

very complicated and cumbersome because of multiple parameters to be tested. 

Have you done any systematic convergence tests for the 3rd order diffraction 

problem? 

Teng B., Kato S.: We did make systematic convergence tests for the 3rd order 
diffraction problem. At first I found our results were not correct. Then I spent a lot 

of effort on the examination of its convergence. Firstly, I examined the 

convergence of each terms. After having gotten their convergence, I made 

convergence test for the whole system. 

Rainey R.C.T.: The authors are to be commended on the skill of their 

investigation of the difficult topic of 3rd order diffraction. However, I dispute its 

relevance to "ringing" because: 
1) in waves big enough to cause "ringing", the ratio (wave height)/(cylinder 
diameter) is generally greater than 1, so that Stokes's expansion has diverged. 

2) "ringing" can be at much higher frequencies than the 3rd harmonic, e.g. at 10 

times the wave frequency. 
See the forthcoming paper by J. Chaplin et al. (Journal of Fluid Mechanics, 

1997). 

Teng B., Kato S.:  This study deals with the estimation method of 3rd harmonic 
forces on axisymmetric floating bodies by means of straight forward perturbation 
technique. 
We do not claim that the cause of ringing of a uniform cylinder is due to 3rd 

harmonic wave forces. 
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STEADY SPLASHING FLOWS 

by 

E. 0. Tuck, S. T. Simakov and L. H. Wiryanto1 

The University of Adelaide, Australia 

Summary 

We consider steady two-dimensional free-surface flows involving a jet or splash which 
rises then falls under gravity. First we examine a stream which is uniform far upstream in a 
channel of finite constant depth that ends abruptly with a barrier in the form of a vertical 
or inclined wall, which first forces the flow upward, then either lets it continue in the same 
direction or bounce back. The resulting splash then falls forever as if into a bottomless 
chasm. The second configuration examined may be described as a very wide ship bow in 
water of infinite depth. Namely, we consider a flow past a semi-infinite flat-bottomed body 
of finite draft, terminated by a plane front face inclined at a prescribed angle. There is a 
submerged stagnation point on the front face, to which is attached a bifurcating streamline 
originating far upsteam, such that all of the fluid lying above that streamline is drawn into 
the splash, whereas all of the fluid below it passes beneath the body. In each case, depending 
on input parameters such as the angle and height of the front face or barrier, and the value 
of the far-upstream Froude number, the splash may fall either before or beyond the barrier. 
The problem is solved via an integral equation formulation, and results are presented in the 
form of graphs and video images. 

Mathematical formulation 

To derive the integral equations, we transform the physical plane z = x + \y into the 
plane of the complex potential f(z) and then map it into a lower half plane of an artificial 
variable C = f + "7- The relation between / and ( is given by / = - logC for the channel 
flow and / = £ - log £ for the bow flow. 

We introduce for both flows a positive constant a < 1 such that ( = a is the image of 
the point where separation of the splash from the barrier occurs. The intervals -oo < £ < 0 
and 0 < £ < a are the transformed free streamlines and (, = 0 corresponds to the jet far 
downstream. The point C, = 1 corresponds to the corner of the barrier for the channel flow, 
and to the submerged stagnation point for the bow flow. For the latter flow we also introduce 
a constant b > 1 to mark the image ( = b of the point where the front face of the bow meets 
the flat bottom surface of the ship. 

The flow problem is solved with the logarithmic hodograph 

n = T(()-i9(() = log f'(z) 

as a dependent variable. In the numerical solution we reduce the problem to an integral 
equation for the unknown 0(£) on the interval (-oo, a), that is, on the free surface, observing 
that 0 is wholly known on the interval £ > a, i.e. on the body. 

Permanent address: Mathematics Department, Institut Teknologi Bandung, Indonesia 
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The free-surface boundary condition is constancy of pressure, or from Bernoulli's equa- 
tion, 

i«* + »4 (i) 
where it is assumed that the far-upstream free-surface level is y = 0, and that the upstream 
uniform flow is of unit magnitude. Representing r and y in terms of 0 in equation (1), we 
turn it into an integral equation for $(£). To do so we note first that r(£) is the Hilbert 
transform of 0(£). The expression for the y-coordinate is found from 

| = |e-sinö, (2) 

valid for real ( = f, where df/d£ = -£_1 for the flow in the channel and df/d£ = (1 - £_1) 
for the flow past the ship. In both cases, equation (2) must be integrated separately in two 
intervals £ G (-co, 0) and £ G (0, a), as the singularity representing the ultimate fate of the 
jet does not permit integration through the origin ( = 0. The initial condition is y(-oo) = 0 
for the integration in the interval of negative £. Detachment at the junction point between 
body and free surface is in the present paper assumed to be smooth, with continuous slope 
and finite non-zero velocity. The appropriate initial condition at C = a for use in the interval 
(0, a) must be found by integrating (2) from a to 1 for the flow in the channel and from a to 
b for the flow past the ship. 

Results 

The integral equations so obtained can be solved numerically by reduction to a finite 
system of nonlinear equations as in Tuck k Goh (1985) or Tuck (1987). An alternative 
approach based on a semicircular parametrization and series truncation was used in Vanden- 
Broeck k Keller (1987), Dias k Tuck (1991), Dias k Christodoulides (1991) and Dias k 
Vanden-Broeck (1993). For the channel flow, Dias and Christodoulides (1991) solved the 
limiting problem for a very high vertical barrier where the detachment is via a stagnation 
point, producing a splash falling before the barrier. Dias and Tuck (1991) reduced the height 
of the vertical barrier and allowed smooth detachment from its top edge as in the present 
work, causing the splash to fall beyond the barrier. Vanden-Broeck and Dias (1993) solved 
a similar problem for a flow past a high vertical ship bow, again with stagnant detachment. 
Wiryanto and Tuck (1996) recomputed Dias and Christodoulides' solution using the integral 
equation method, obtaining somewhat more accurate results. 

Figures 1 and 2 are typical for the channel flow, showing two possible types of interaction 
of the stream with the barrier. A backward-diverted jet is observed when the barrier's angle 
to the horizontal is less than TT/2, but not too small, and the barrier is reasonably high; 
otherwise the jet falls beyond the barrier. For high walls, the present program fails just 
before the height of the topmost point of the free surface reaches the stagnation level, with 
some indication that this point is moving toward the junction point, as in the solutions of 
Dias and Christodoulides (1991) and Wiryanto and Tuck (1996). In those cases where the jet 
falls beyond the barrier, the height of the topmost point of the upper free surface increases 
as we decrease the angle or increase the height of the wall. The program then fails just 
before this point reaches stagnation level, with some indication that there would as usual be 
a 120° angle at that point if the limiting solution could be reached. 

Figures 3 and 4 exhibit computed flows past a ship bow and we can observe the same 
tendencies here as with the channel flow. Again there is a domain of parameter values where 
numerical solution was not achieved, and it may be that no solution exists with the assumed 
topology. For instance, by changing the slope of the front face, we move from a flow with a 
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backward-diverted splash "into the stream", to a splash falling forward "into the ship", but 
are confronted in between by an interval of angles at which the algorithm does not converge. 
This interval may contain a sub-interval in which the splash rises to a stagnation level, where 
it divides into two streams, one backward and one forward in a fountain-like manner, as in 
Vanden-Broeck (1993), but we have not yet computed such flows. 
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DISCUSSION 

Grilli  S.:    Did you calculate dynamic pressures induced by jets on solid 
boundaries? 

Tuck E., Simakov S., Wiryanto L.: Not yet. We hope to do this later. 
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Catamaran Seakeeping Predictions 

Riaan van 't Veer, Delft University of Technology 

1 Introduction 

To solve the motions of a vessel sailing in waves the strip theory is a widely used method. The 
results are in most cases satisfactory. However, the method becomes less accurate if 3D effects 
become more important. 

By research work done in the past [6] it became clear that for catamaran vessels at low 
and moderate forward speed the strip theory over predicts the heave and pitch motions if the 
interaction between the two hulls is included in the calculations. When a catamaran is sailing at 
high forward speed, the interaction between the two hulls will vanish since the waves generated 
by one hull can not reach the other hull of the catamaran. It was found that in that case the 
strip theory could predict the motions of the vessel with more satisfactory results. 

Thus, to take interaction effects between the two hulls of a catamaran correctly into account 
a 3D method is needed. 

2 The Boundary conditions 

A Rankine panel method has been designed for monohull and catamaran vessels. In this method 
the hull surface and still water free surface are discretised using fiat quadrilateral panels with a 
constant source strength singularity (1/r) in the collocation point of the panel. 

The total velocity potential is written as ty(x, t) = $(x) + <f>(x)+ip(x,t), where $ is the double 
body potential, 6 is the steady velocity potential and <p is the unsteady velocity potential. The 
assumption is made that the steady and unsteady potential are independent so that the steady 
and unsteady problem can be solved separately. 

The exact free surface boundary condition on the unknown free surface is linearised to the 
still water free surface, assuming that the wave elevation from the double body potential allows 
such a linearisation. The free surface boundary condition for the steady and unsteady problem 
read, respectively: 

86     1 9itz+ 2v' ^V(W ■v$)+v$ ■ v(v* ■V<^) - *«v* • W+ 
±V$ • V(V$ • V*) - ^(V$ • V$ - U2)($zz + 6ZZ) = 0 (1) 

and, 

8<£>k o 1 
9-Q^ ~ uifk + 2iweV$ • Vipk + V$ • V(V$ • Vy?fc) + ~ Vp* • V(V$ • V$) - 

*zz{iu>e<pk + V$.V<pk)-±(V*V*-U2)(g<pkzz + tpkztt) = 0       * = 1,..,7 (2) 

where k is the mode of oscillation with k = 7 being the diffraction potential. 
The hull boundary condition for each potential is that no water can penetrate the hull, thus: 

(3) 

where n is the normal vector pointing into the fluid domain. The incoming wave potential is 
given by y>o-  The m-terms in the unsteady hull boundary condition are calculated analytical, 
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using Newman [3] and de Koning Gans [1]. The m-terms contain second order derivatives and 
especially the rotation terms are sensitive for errors in these derivatives due to the length factors 
with which they are multiplied. In equation (4) the m-terms are written out: 

(mi,m2,m3) = -(n- V)V$ == -(ni$xx + n2$xy + n3$xz, 

ni^yx + n2$yy + n3$yz, m$rx + n2$zy + m$zz) 

(m4,m5,m6) = -(n- V)(ix V$) = (ym3 - zm2 -n2$z + n3$y, 

zm\ - xm3 - n3$z + ni$z,im2 - ym\ - n\<&y + n2<bx) 

3 Solving the steady or unsteady potential 

The Green's identity is used to solve the steady or unsteady potential. That is for the unsteady 

potential: 

2,*) - // »M^ + // d-^0MaS = 0 (5) 

FS,H Q FS,H q 

and a similar expression for the steady problem. 
Equation (5) is discretised using N number of flat quadrilateral panels. The unknown vari- 

ables are discretised using a spline representation, as was presented by Nakos [2]. The spline 
function is a C-2 function, thus upto the second derivative can be discretised. 

4 Some details of the Rankine panel method 

A typical free surface panel discretisation for a catamaran problem is presented in Figure (1). 
The free surface grid is divided into three different grid area's, called FS1, FS2 and TR. The 
transom grid is only pressent if the hull has a transom stern. 

Most catamaran vessels have a transom stern to install the waterjet units for propulsion. 
However, the flow around a transom is typical nonlinear if the transom ends below the still 
water free surface. Due to the linearisations carried out before, the depth of the transom below 

z = 0 must be limited. 
In solving the problem the different grid area's must be connected with each other using 

physical values at the connection lines. The extra conditions are introduced by assuming an 
extra set of unknowns, virtually positioned near each border panel of a grid area. 

The disturbance due to the vessel are assumed to vanish upstream of the vessel. Practily this 
means that in the unsteady problem the reduced frequency T must be greater than 0.25. Thus 
for the steady and the unsteady problem the conditions ( = 0 and d(/dx = 0 are discretised at 
the instream side of the grid. 

At the outer-border of the grid the second derivative of the potential in y direction is set to 

vanish. 
Since the problem is symmetric around the z-axis no flow is going through the xOz plane. 

This means that at y = 0 the velocity Vy must be zero. 
The continuity of the flow must be satisfied going from one grid to the other grid. This is 

carried out by discretising the potential itself and the normal vector of the velocity in the y 
direction and using these two conditions at the intersection. The same conditions are applied 
between the hull surface and the free surface grid. 

If a transom stern is present it is assumed that the flow is leaving the hull surface smoothly, 
thus the condition dC,/dx = a where a is the transom edge angle, is prescribed in the extra 
collocation point of the transom sheet. The wave elevation itself is also fixed by the transom 
edge depth. Using the transom edge angle the wave elevation in the first collocation point aft 
of the transom becomes ( = \hx tan« where hx is the first transom sheet panel length in the x 

direction. 
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5    Results 

In Figure (2) the steady seascape is given for a Wigley catamaran at Fn = 0.30. The stern and 
bow wave system are clearly spotted. Where the two bow waves meet each other a high peak 
in the wave system is found. 

In Figure (3) the heave and pitch motions of a wigley catamaran vessel are compared with 
data from experiments [5]. The 3D calculations are refered to as SEASCAPE. The strip theory 
calculations are performed with the program ASAP, in which ASAP 0 indicates that the inter- 
action between the two hulls is not included in the calculations and ASAP 2 indicates that the 
2D interaction between the hulls is taken into account. 

The added mass and fluid damping results are presented in Figure (3) as well. A reasonable 
comparison is found over almost the whole frequency range. 

To obtain an indication for the transom stern wave profile calculations, a comparison is 
presented, Fig. (4), between a non-linear calculation by Raven [4] and the linear calculation 
from SEASCAPE. 
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Figure 2: Steady Seascape, Wigley Cat L/B = 7, Fn = 0.30 
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Wigley Catamaran, L/B = 7, Fn = 0.45 

I 
H 
C3 
Z 
LU 
_l 
a. 
x 
CO 

N 

0.020 

0.010 

0.000 

-0.010 

RAPID     + 
SEASCAPE ^<— 

 r+-f  

- 
+/ 

+/ 
\ 

- + 

^.i-Kffl i     i     i ■ 

-1.2 -1.1 -1.0      -0.9      -0.8      -0.7      -0.6      -0.5 

X/SHIP LENGTH 

Figure 4: Transom stern wave, Fn = 0.40, RAPID results from Raven [4] 

258 



DISCUSSION 

Newman J.N.: The highly-tuned heave resonance at U = 0 is not really due to 
wave interactions between the hulls, but to a Helmholtz "pumping" mode in 2D or 
a longitudinal standing wave in 3D. Do you have any ideas about how this 
resonant mode is affected by forward velocity? 

Van't Veer R.: Thank you for your interesting question about interaction 
phenomena. 
At zero forward speed the added mass and damping coefficients are measured for 
several heaving twin cylinder configurations by Lee et. al (1971). In most of the 
measurements the heave added mass drops to negative values where at the same 
time the fluid damping value goes to zero. This 2D resonance frequency is indeed 
related to the Helmholtz pumping mode, or can be seen as the behaviour of a 
moonpool. The resonance frequency can be approximated using the horizontal 
watercolumn between the two hulls extended with half a circular cylinder 

underneath. Which yields  (ü = Jpgh/{phT + nh2/s)j   where   h  is the distance 

between the two hulls and T is the draft of the hull. 
With increasing forward speed the moonpool effect will decrease since the 
watercolumn is not bounded at the fore and aft side. In experiments lately carried 
out with a catamaran vessel, added mass values close to zero were measured at 
Fn = 0.30 at low frequencies. This indicates in my opinion that a weakened 
moonpool effect can exist in 3D, if forward speed is not to high. At higher Froude 
numbers the added mass values became more or less constant over the tested 
frequency range, indicating no profound interaction effects. 
Lee, CM., Jones, H. and Bedel, J.W.: 1971, Added mass and damping coefficients 
of heaving twin cylinders in a free surface, Technical Report 3695, Departement of 
the Navy Naval Ship Research and Development Center, Bethesda. 

Rainey R.C.T.: Standing on the extreme aft deck of the high-speed catamaran 
"Hoverspeed France", during her sea trials in Hobart (a harbour discovered by 
your countryman and my ancestor Abel Tasman, incidentally), I was much struck 
by the beautiful transom-shaped "groove" cut in the water behind the ship. Its 
effects appeared to dominate the wave pattern left behind. You mention this in 
connection with Figures 1 and 4. Can you tell me how the wave resistance of a 
catamaran compares with the simplest effects of this "groove", i.e. with the 
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horizontal hydrostatic force that would be felt on the transom at zero speed in still 
water (and thus is felt, in the opposite sense, by the rest of the hull)? Catamaran 
designers always appear to minimise the draught of the transom, at the expense of 
its breadth, which is consistent with minimising this hydrostatic force (since it is 
proportional to breadth X draught2). 

Van't Veer R.: Thank you for your question in relation to the wave resistance. 
The flow around a transom stern is an interesting topic and rather challenging 
since viscous effects can play an important role. This is especially the case at low 
Froude number where the transom flow does not leave the transom edge smoothly 
and a 'dead water' region behind the stern exists. Minimising the transom stern 
draught (or area) is expected to decrease the resistance since the flow separation 
will decrease and less energy is lost in the wake pattern. 
At higher forward speed or when the transom stern draught is decreased the flow 
is likely to detach smoothly at the transom edge leaving a nicely shaped 'groove' 
cut in the water behind. Since the transom stern remains dry there is no horizontal 
hydrostatic pressure present at the transom. I expect that to obtain a smooth flow 
detachment it is not always necessary to minimize the transom edge draught, but 
that it is more important to obtain a smooth hull curvature with a small buttock 
curvature. 
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A level set technique for computing 2D free surface flows 

Mathias Vogt 
Dept. of Naval Architecture and Ocean Engineering, Chalmers University of Technology.Sweden 

Kuk-Jin Kang 
Korea Research Institute of Ships and Ocean Engineering, Korea 

Introduction 
The free surface boundary conditions in viscous flow problems can be used in conjunction with basically two 

different kinds of grid arrangements at the surface. In the fixed grid approach the free surface is tracked and the 
cells through which the free surface pass include fractions of both fluids. In the moving grid approach a curvilin- 
ear grid is fitted to the free surface at every time step. A drawback with the moving grid method is its inability of 
handling breaking and merging. Due to this shortcoming a new fixed grid method, the level set technique, Suss- 
man et al. (1993), is here used to solve the Navier-Stokes equations for the flow over a bottom bump and around a 
submerged hydrofoil. Results from numerical simulations with the level set technique are compared to results 
from moving grid calculations, Kang (1996) and experiments. 

Level set method 
The level set is a scalar function defined in both fluids with opposite signs in the two fluids. Each level is a 

subset of the level set function and the subset with a value of zero, the zero level set, is here the free surface. Ini- 
tially, the function is set equal to the distance from the interface and for later times the value is obtained by setting 
its material derivative equal to zero. Depending of the sign of the level set function the density and the viscosity 
are given appropriate values. To smooth the jump at the interface the physical properties are smoothed in a band 
around the zero level set. One nice feature with this technique is that the interface does not have to be found 
explicitly but is stored in the information of the level set function. It is also straightforward to extend the formula- 
tion to three dimensions. 

Simulations presented elsewhere include: a rising air bubble in water, a falling water drop in air and a water 
drop hitting a pool of water, Sussman et al. (1993). Zhou and Chomiac investigated the Rayleigh-Taylor instabil- 
ity occurring when a light fluid supports or accelerates a heavier one. 

Numerical formulation 

Equations of motion 
The equations of motion are given by the dimensionless Navier-Stokes equations and the incompressible 

continuity equation. These are solved with the equation for the level set function, § and the following system of 
equations is obtained 

-   „-    ?VM   V\|/ 
u, = -u ■ VK + 2 1 

Ret?      C 
V-K = 0 

<!>, = -«■ V<|> 

where 

Fn = -== , Re = —  
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c' = 
if    <t>< -a 

1/     (|)>a 

£'-A£ sin(^-)      otherwise 

and ü = («, v) is the velocity, p is the pressure, U0 is the uniform flow velocity, L the chord length of the hydro- 

foil or the channel depth in the bottom bump case and g is the gravitational acceleration. C,'a and (^ are the den- 

sity (i=l) and dynamic viscosity (i=2) for air and water, respectively, a is half the prescribed width of the band 
where the physical properties change. 

Solution procedure 
The fluid domain is discretized by a finite-volume formulation and the velocity and pressure are defined on 

a staggered grid system. The method used to update the velocity and pressure is a time splitting fractional step 
method combined with a velocity and pressure simultaneous iteration method. Convection terms are approxi- 
mated by a third order upwind scheme and other spacial derivatives are discretized by second order differences, 
see Kang (1996). When the velocity has been computed within a time step the level set equation is solved. This 
moves the free surface according to the computed velocity field. Before updating the density and the viscosity the 
level set function is reinitialized by iterating 

*, = 1 - |V«>| 

to steady state. This ensures that the gradient of the level set function is one, which means that the bandwidth is 
constant in time. 

Boundary conditions 
For the level set function the Neumann condition is used at the inflow boundary and at the outflow boundary 

and linear extrapolation is used at the bottom boundary and at the top boundary. On bodies the no-slip condition, 

u = Ö is imposed, i.e. it is used at the bottom in the bottom bump case and on the foil surface in the submerged 
hydrofoil case. In the moving grid approach boundary conditions are applied on the free surface, Kang (1996). A 
uniform flow, u = 1 , v = 0 and zero pressure, p = 0 is used as boundary condition at the bottom in the hydro- 
foil case and when using the level set technique also at the top surface. The same conditions are imposed at the 
inflow boundary. At the outflow the velocity and the pressure are linearly extrapolated. To avoid reflections of 
waves at the outflow boundary the level set function is damped with an artificial wave damping function y in a 
damping zone as follows; 

<j>, = -ü-Vty-y(x)ty\y = 0 

where 

YU) = \Ao     Ad) 
if Xj<X<X() 

otherwise 

A is a constant, x   is the x-coordinate at the outflow boundary and xd is defined as 

x, = x -2nFn a o 
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Since the initial free surface not necessarily coincides with a node the level set function at y = 0, <j>|        is calcu- 

lated with linear interpolation. Both the level set function at y 
and stored. 

0 and the damping function are calculated once 

Numerical examples 
Two different cases have been numerically studied. A submerged NACA0012 hydrofoil and a bottom bump 

with the topography described by 

27E   .      ,.2 

4/ 

where E denotes the maximum height of the bump, / its length and x is the distance from the leading edge. Ini- 
tially the flow was accelerated sinusoidally one time unit. The grid used for the bottom bump case was a single- 
block grid and for the hydrofoil case a two-block H-grid. Computations were carried out for different Froude 
numbers and the results are in good agreement with the measurements for both methods of determining of the 
free surface. Results for the foil case are shown in fig. 1. For low enough Froude numbers the generated wave 
downstream of the bottom bump starts to overturn and break. This phenomenon can be captured with the level set 
technique, see fig. 2. The result is only qualitative since the resolution is insufficient, but it shows that this 
method is capable of handling changes in topology. 

NACA 0012, o=5°, Fn=0.567 

level set 

moving grid 

experiment 

Fig 1. Comparison between numerical methods 
and experiment. 

Fig 2. Overturning wave and the break-off of a 
water drop predicted by the level set technique. 
Four time steps are shown. 
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DISCUSSION 

Wu T.Y.: I would like to encourage the authors to further develop this interesting 
method for it seems to provide a great deal of potential to future applications to 
stratified flow motions. In this regard I wish to know: 
1) Have the authors applied this method to evaluate the interactions between 
sheared wind and ocean waves? 
2) Have you seriously pursued an error estimate of your computational method? 
3) Compared to your levelset equation d$/dt = 0, which is physically clear upon 
neglecting mass diffusion, your reinitiating condition seems artifical, empirical at 
best. To diffuse sharp transitions accross an interface for facilitating computations 
is fine but don't throw away its capability of predicting, e.g., when a sheared wind 
separates from an ocean wave. 

Vogt M., Kang K-J.: 
l)No 
2) No 
3) The numerical method cannot handle the steep gradients in the density that is 
present when the two fluids are water and air. The physical properties are therefore 
smoothed in a band around the interface. This is unphysical unless the band is 
extreemely thin. The reinitialization procedure itself does nothing but sets the 
gradient of the levelset function in the normal direction of the interface to one, 
without changing the position of the interface. 
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Application of pressure-impulse theory to water wave impact beneath a deck and on a 
vertical cylinder. 
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Introduction 

The impact of water waves on structures can result in very violent motion, in particular if the waves 
are breaking or near breaking. Many of the studies of wave impact are of impact on a vertical wall 
or breakwater structure. Here we present results for two slightly different geometrical shapes. Many 
coastal and offshore structures have openings, overhangs and projections which are open to impact by 
incident water waves. The first case we consider is the wave impact on the underside of a projecting 
surface. The example discussed is that of a flat deck close to the mean water level. Secondly, many 
structures at sea, are supported by circular cylinders, hence we consider wave impact on a circular 
cylinder. A pressure-impulse approach is used for both cases. 

Bagnold (1939) in considering wave impact on a wall, was the first to note that although pressure 
measurements show great variability between nominally identical wave impacts the integral of pressure 
over the duration of the impact, the pressure-impulse, is a more consistent measure of wave impact. 
Cooker and Peregrine (1990 a,b, 1992, 1995) exploited this theoretically to show that the pressure- 
impulse and its distribution is insensitive to the shape of the impacting water except in a region very 
close to the structure. Chan (1994) and Losada, Martin and Medina (1995) show good agreement 
with experiment for wave impact on a wall. 

The pressure-impulse satisfies Laplace's equation, with relatively simple boundary conditions. 
Thus for simple shapes there are standard solution methods which can be used. Further, once one 
solution has been found the pressure-impulse contours give solutions for other related 'wave' shapes. 

Pressure-impulse beneath a deck 

We present pressure-impulse calculations for an impact on a horizontal surface near the surface of 
water of finite depth. For convenience we refer to the rigid surface as a deck. For simplicity, the deck 
is taken to be at water level and the water is chosen to hit the deck with a uniform vertical velocity 
component. 

The boundary conditions for this problem have a square root singularity where the end of the deck 
meets the free surface. This singularity causes problems for many solution methods. However, one 
way to eliminate the problem of the singularity is to map the original problem using conformal maps 
as follows. First map to a half-space, then use another conformal map to perform a shift and stretch so 
that by using a final conformal map we can bend the problem back to a semi-infinite strip but with the 
boundary conditions shifted round to a convenient position, i.e. shift the boundary conditions on the 
deck round to the vertical wall. This means that the singularity is now eliminated by being mapped 
to a corner. As we only use conformal maps the pressure-impulse, P, continues to satisfy Laplace's 
equation, and so we solve using separation of variables. We have made the problem dimensionless by 
choosing units for which the length of the plate and velocity of the body of water before impact, are 
both unitary. Figure 1 shows the distribution of pressure-impulse in the water beneath the deck for 
depth to deck width ratio of 2.0 where the density, deck length and velocity of impact define the units. 

The value of total impulse on the deck as a function of a, (water depth)/(deck length), is given 
in figure 2.   This trend is for the impulse from impact of a given velocity and area to increase as 
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Figure 1: Pressure-impulse contours with a = 2.0. Total pressure-impulse on the deck and wall 
respectively are 0.81 and 1.02 

the body of impacting water becomes more confined. The same trend is described by Cooker and 
Peregrine (1995) for impact on the wall of a rectangular box and by Topliss (1994) for impact within 
a circular cylinder. Consideration of flow in the most confined circumstances, as a becomes small, 
has given the concept of 'filling flows' (Peregrine and Kalliadasis, 1995), which is more appropriate 
for large overhangs. Further, in Peregrine and Thais (1996), an estimate of how the compressibility 
of dispersed air bubbles, such as those entrained in waves during breaking, may soften wave impact is 
given. 

Total pressure impulse 

1.0 1.5 
Depth of box. 

Figure 2: Total impulse on deck against depth a, where a = (water depth)/(deck length). 
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Impact on a cylinder 

We now consider the pressure-impulse acting on a vertical cylindrical structure. For a first approx- 
imation in impact problems the water-hammer pressure-impulse is sometimes used. However, Cooker 
and Peregrine (1990) showed that predicted pressures are reduced significantly due to the effect of the 
free surface, where the pressure is atmospheric. Cooker and Peregrine (1995) noted that unless the 
thickness of the impacting water is quite small the actual shape of the wave away from the impact 
region is relatively unimportant. Hence, for simplicity, the shape of a wave impacting on a cylinder is 
considered to have a horizontal free surface. 

Again we use pressure-impulse theory, and solve Laplace's equation, this time in cylindrical co- 
ordinates, by separation of variables. Figure 3 shows the pressure-impulse contours on the cylinder in 
an infinite body of water with the impact on a patch of the cylinder just below water level. Figure 4 
shows the pressure-impulse contours in a wall of water impacting on the cylinder. In both these cases, 
which are chosen for mathematical convenience, the impact velocity is taken to be unidirectional. The 
angle <f> is angle in radians, where <j> = 0 is at the centre of the impact region. The velocity V will 
vary with position. However, for demonstration, it is adequate to choose a simple velocity field. For 
example, a typical velocity in a breaking wave in deep water would be about 1.4c, where c is the phase 
velocity of the linear wave of the same period. For simplicity of analysis the velocity of impact is 
scaled to unity in the present analysis. 

Figure 3: Distribution of pressure-impulse on a cylinder (unwrapped) with the wave impact on half 
of the top 10 % of the cylinder 

There is a high pressure gradient towards the top of the cylinder/wedge, giving a strong impulse 
away from the point of high pressure acting on any projections.   The method of direct solution of 
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Figure 4: Distribution of pressure impulse on a cylinder (unwrapped) with the wave impact from a 
wall of water. 

Laplace's equation by separation of variables used here is mathematically simple. However in practice 
it may be better to use a boundary integral method. 

Conclusion 

A readily evaluated solution is found for the pressure-impulse from waves hitting a deck from below. 
It is found that the impulse is greater if the water is shallow. Pressure-impulse theory can also give 
a model of impact on a cylinder. The total impulse for 2D impact on a wall of the same projected 
cross-sectional area is 1.016, on a cylinder it is 0.250 when the impact is surrounded by water and 
0.263 for the 'wedge' of angle TT bounded below by a fixed bed. We can compare this with the water 
hammer approach, which is dependent on how long the wave crest is. For example, if the wave crest 
has width /, with the unit density, velocity, and cylinder radius we are using, it gives an impulse due 
to momentum in the wave of 21. This is much bigger than the above case where I = l=radius of the 

We intend to compare the pressure-impulse model of impact on a cylinder with experimental data 
given in Chaplin, Greated, Flintham and Skyner (1992). 
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DISCUSSION 

Grilli S.: Knowing the pressure impulse acting on a very rigid structure (i.e. for 
which elasticity can be neglected), how would you estimate the impact duration, in 
order to obtain pressures and forces? 

Wood D., Peregrine H.: The pressure impulse technique is aimed at getting 
relatively simple solutions for complex events. Thus a simple time profile, a triangle, 
may be assumed, with an estimate of duration that depends on the actual physical 
scale. Wave impact studies indicate that, for the laboratory scale, durations around 
a milli-second occur for the most violent impacts. At larger scales 0.01 to (0.5) 
seconds may be appropriate. There are clear indications that at larger scales both 
air trapped by the impact, and air bubbles dispersed in the water are important. 

Kim Y.: I think it is not difficult to include simple compressibility model to 
pressure Poisson equation. Do you have any idea to consider the compressibility 
of fluid with simplified method? 

Wood D., Peregrine H.:   The simplest model of air trapped by an impact is to 
include a rebound velocity. We have just started such work. 
The effect of bubbles dispersed in the water as the cause of compressibility has 
been studied for a different but related flow in Peregrine & Thais (1996) "The 
effect of entrained air in violent water impacts", Journal of Fluid Mech. 325, pp 
377-397. 
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Resonant Interactions of Kelvin Ship Waves With 
Ambient Ocean Waves 

Qiang Zhu, Yuming Liu & Dick K.P. Yue 

Department of Ocean Engineering 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139, USA 

1    Summary 

In recent field experiments, Brown et al. (1989) observed that inside the Kelvin wake of 
a moving ship, there can be two soliton-like envelopes which extend to a long distance 
behind the ship. It is known that such solitary waves are not predicted by the steady 
ship-wave theory even with the inclusion of free-surface nonlinearity {e.g., Newman 1971; 
Akylas 1987). Upon including unsteady waves, Mei (1991) suggested that oscillations of an 
advancing ship may be the possible source for the generation of oblique solitary waves in 
the Kelvin wake. Despite a speculation of high-frequency heave and pitch oscillations of a 
ship moving in ambient sea waves, his theory gives qualitative predictions of only partial 
solitary features observed in field experiments. 

In this work, we provide an alternate mechanism for the generation of observed solitary 
waves in the ship wake by considering nonlinear resonant interactions of steady Kelvin 
waves and unsteady ambient waves in the spirit of Phillips (1960). We show that a new 
progressive wave along a particular ray inside the ship wake can be created due to third-order 
resonant interactions of Kelvin waves with an ambient incident wave. The wavenumber and 
propagation direction of the generated wave and the resonance-ray location, which depend 
on ship speed and ambient-wave wavenumber, are determined by the resonant conditions 
which we derive explicitly. To understand the development of the new wave, we derive the 
evolution equations for interaction wave components by a multiple-scale analysis. It is found 
that the generated wave has a solitary envelope in the lateral direction, and the envelope 
itself grows with the distance from the ship in the near wake while slowly oscillates in the 
far wake. Such theoretical predictions are confirmed in the near wake by direct time-domain 
simulations of a moving point source in an ambient incident wave field. 

2    Resonant conditions 
For a ship moving in an ambient incident wave field, let us examine the possibility of resonant 
interactions between the Kelvin ship wave and the incident wave. For convenience, let 
vector wavenumber ks represent the Kelvin ship wave and ki the incident wave. According 
to Phillips (1960), third-order interaction of the Kelvin wave and the incident wave, with 
the incident wave counted twice, can become resonant so that a new progressive wave can 
be generated if the following condition is satisfied: 

cos(0i - es) = 2rT1/2 + 8T7
1/2

 -377-6 (1) 

where 77 = |ki|/|ks| and 0i and 9S respectively denote propagation directions of the Kelvin 
wave and the incident wave relative to the ship velocity U. The generated free wave possesses 
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a wavenumber kr=2ki - ks and a frequency u>r=2ui - us with Ui and us representing 
frequencies of the incident wave and the Kelven wave respectively. 

Under the condition (1), the resonant interaction between the Kelvin wave and the incident 
wave occurs along a particular ray inside the ship wake since Kelvin wave wavenumber ks 

is constant on each ray. Once the new (free) wave is created, it propagates at its own group 
velocity, Vg=u;rkr/2|kr|

2. Meanwhile, the ray itself moves forward at speed U as the ship 
advances. In general, the new wave and the resonance ray will propagate away each other 
so that no significant energy built-up for the new free wave can be resulted except for the 
case where the normal component of Vg on the resonance ray is identical to the normal 
velocity of the resonance ray, i.e. 

Vg • n = U • n (2) 

where n denotes the unit normal of the resonance ray. Under the condition (2), the generated 
free wave propagates along the resonance ray and remains on the ray at any time as the 
ship moves forward. This leads to an energy built-up for the generated free wave along the 
resonance ray. 

We remark that unlike resonant interactions among plain waves for which only the condition 
(1) is required, the occurrence of (third-order) resonant interactions between the Kelvin ship 
wave and an plain incident wave requires the satisfaction of both conditions (1) and (2). 
For a given incident wave (k{), we can determine the ship speed (U) for the occurrence of 
resonances and the orientation of the resonance ray (a), from (1) and (2). Figure 1 shows 
the result as a function of the propagation angle (9i) of ambient incident waves (for the 
interaction with the transverse wave). 

Note that if ks and ki exchange their positions in (1), it follows that the resonance may 
also occur for third-order interactions with the Kelvin wave counted twice. 

3    Multiple-scale analysis 
To understand the development of the new progressive wave in the ship wake, we carry 
out a multiple-scale perturbation analysis to obtain evolution equations for envelopes of 
interaction wave components in the vicinity of the resonance ray. Referring to a coordinate 
system fixed with the ship, the evolution equation at steady state for the amplitude of the 
generated wave, Ar, for example, can be written in the form: 

d£ 
+ » (^ + *3^ + <rA^\ Ar + i {CXASA*S + CtAiAt + CzArA*r) Ar = C,A*SA

2 dAr     .(    d2 d2 

where * denotes the complex conjugate, and As and Ai are amplitudes of the Kelvin wave 
and the incident wave, respectively. Here £ are ( are coordinates along and perpendicular 
to the resonance ray. The coefficients ffi.2,3,4 and Ci,2,3,4 are given in terms of wavenumbers 
and frequencies of the interaction waves. 

After imposing proper boundary conditions in the lateral direction, the evolution equations 
can be easily solved by the use of numerical integration. Figure 2 shows a typical result for 
the envelope of the generated wave near the resonance ray. As expected, the generated wave 
grows by absorbing energy from the primary waves in the near wake while slowly oscillates 
due to an energy exchange with the primary waves in the far wake. 
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4 Direct numerical simulation 
To verify the theory, we perform a nonlinear time-domain simulation of a moving point 
source in an ambient incident wave field using a high-order spectral method (Liu, Dom- 
mermuth & Yue 1992). Simulation results confirm the theoretical prediction that nonlinear 
resonant interaction of the Kelvin wave and the incident wave can generate a soliton-like 
free wave in the ship wake. In particular, quantitative comparisons for the growth rate of 
the solitary wave in the near wake are obtained, which are shown in figure 3. 
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Figure 1: The resonance-ray location (a), and ship forward speed (U) and incident wave 
wavenumber (k;) for wave resonances as a function of incident angle (0j). 
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Figure 2: The envelope of the generated progressive wave in the neighbourhood of the 
resonance ray (cu=7.5°) in the Kelvin wake. (Incident-wave steepness |ki|Ai=0.15; in- 
cident angle 0j=12O°; ship forward speed C/=1.86(#/|ki|)1/2; and Kelvin-wave steepness 
|ks|A.=0.75£/(#r)~1/2 with r the distance from the ship.) 
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Figure 3:  The comparisons between the theoretical solution by a multiple-scale analysis 
( ) and the direct simulation result (- -0- -) for the initial growth of the generated 
progressive wave on the resonance ray (OJ=7.5°) in the Kelvin wake of a moving point source. 
(0i=12O°; C/=1.86(^/|ki|)

1/2; and ^A^OMUigr)-1'2.) 
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DISCUSSION 

Peregrine H.: 

a) This talk assumes considerable coherence in the ambient waves; 
b) Another explanation is that these features are due to the waves from the ship's 
stern passing through the wake and shear layer due to boundary layers (Peregrine, 
1971 J.F.M.) 

Zhu Q., Liu Y., Yue K.P.: 

a) Our theory shows that third-order quartet resonant interactions between steady 

ship waves and unsteady ambient incident waves can generate soliton-like 

progressive waves inside the Kelvin wake of a ship. Accordingly, the generated 
resonant wave becomes comparable in magnitude to the local ship wave over an 
interaction distance L ~ o(z~2\, where e is the steepness of the incident or steady 

ship waves. This is confirmed by our numerical results. For the case of Brown et al. 

(1989), L is estimated to be 0(150 ~ 200) m (corresponding to the ship forward 
speed of- 7.7m/s). Such distances are not unreasonably large to assume some 

coherence of the dominant ambient wave component which we assume to be 
present. 

b) Peregrine (1971) found that as a result of the presence of a ship wake, the stern 
waves diverge at an angle to the center-line of the ship smaller than that for the 
bow waves. However, this is unlikely to be the mechanism responsible for the 

observation of Brown et al. (1989) since the stern waves decay with distance R 

from the ship as R~1/2 which is much faster than the observed solitary wave decay 
rate (which is slower than /T1/3). 

Schultz W.: Your solutions do not appear to be symmetric behind the ship. Are 
they? [answer: beach reflection, etc]. This seems to be more far fetched than the 
ambient waves exciting the ship and analyzing the unsteady wave pattern as in 
the last presentation by Chen and Noblesse. Any comments? 

Zhu Q., Liu Y., Yue K.P.: For a single monochromatic incident wave, our theory 

predicts the generation of a soliton-like progressive wave on one side of the ship 

wake. In order for two soliton-like waves to be observed inside the Kelvin wake, 

the theory requires the presence an additional incident wave component. Since 

Brown et al. (1989) did not measure/report on the ambient wave environment of 
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the field experiments, the presence of additional ambient wave components can 
neither be ruled out nor confirmed. 
If the unsteady wave due to ship motions is considered, its cusp line angle, 
wavenumber and propagation direction depend on i = (üU/g, where (0 is the 
oscillation frequency and U the forward speed of the ship, and g the gravitational 
acceleration. From the aerial photograph of Brown et al. (1989) (cf. figure 2), the 
solitary wave appears at an angle of 13° ~ 14° (measured from the ship track) 
which requires x to be 0.5 ~ 0.7. At these values of x, the propagation direction 
and wavenumber of the unsteady wave should be close to those of the steady 
waves near the Kelvin cusp line. These are not supported by the field 

observations. 
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Georg Weinblum Special Meeting 

19-20 March 1997 

A Special Meeting was held after the Twelfth Workshop to celebrate the 100th 
anniversary of the birth of Georg Weinblum. Professor Weinblum was an 
international leader in ship theory. He inspired a generation of colleagues, 
including several who are still active participants in the Workshops. For this reason 
it was felt that the anniversary celebration should be held in conjunction with the 
Twelfth Workshop. 

Since Weinblum's death in 1974, a series of Memorial Lectures have been 
presented on an annual basis (the list is given at the end of this volume). All of the 
former Lecturers were invited to participate in the Special Meeting, and to present 
lectures. Thirteen among them contributed. Titles of their presentations and short 
written abstracts are given in the following pages. 

279 



Georg Weinblum 
22-01-1897 - 04-04-1974 



Georg Weinblum Special Meeting 

List of contributions 

Page 

K.J. Bai, C.W. Dawson, J.W. Kim, J.V. Wehausen: 'Stagnation 
points'  283 

M. Bessho: 'An integral representation of a wave function in the 
theory of the wave resistance of ships'  287 

J.P. Breslin: 'Some unexplored aspects of hydrofoil wave drag'  291 

O.M. Faltinsen and F. Solaas: 'Sloshing in two-dimensional 
tanks'  293 

L. Larsson: The CHAPMAN Projet - Development of a new 
Navier-Stokes solver with a free surface'  297 

H. Maruo: 'Fifty years of Yokohama National University Ship 
Hydrodynamics Laboratory"  299 

T. Miloh: 'There is no theorem like the Lagally theorem. The 
ellipsoid is God's gift to naval architects'  303 

J.N. Newman: 'Resonant diffraction problems'  307 

S.D. Sharma: 'On ship waves at transcritical speeds'  309 

E. Tuck: 'Multihulls'  311 

M.P. Tulin: 'Remarks on energy transport in water waves'  313 

F.J. Ursell: Notes on wave motion near a sphere between 
parallel walls'  317 

T.Y. Wu: 'On modeling nonlinear water waves'  321 

281 



282 



Stagnation Points 

K. J. Bai1, C. W. Dawson2, J.W.Kim3, and J. V. Wehausen3 

A rectilinear potential flow about a circle in the plane or about a sphere 
in three dimensions results in two stagnation points, one at each end of a 
diameter.  For any bounded simply connected region in the plane it follows 
from  Riemann's   Mapping Theorem   that there   is  an  analytic  function 
mapping the exterior of the unit circle into the exterior of the region and 
behaving like a rectilinear flow at infinity.     Hence  there  are only  two 
stagnation points on the boundary of the region in question.    Although 
harmonic functions in three dimensions share many properties with analytic 
functions in the plane, there is no analogue of the Riemann theorem.  In fact, 
there is only a very restricted set of transformations that preserve the property 
of being harmonic (see, e.g., Kellogg, Foundations  of Potential Theory , 1929, 
pp. 235-236).    It is natural to ask whether there can be more than two 
stagnation points in a potential flow about a bounded simply connected body 
in three dimensions. The question is raised in Kellogg (ibid., pp. 273-277) but 
not really answered. It is  shown in Kellogg (p. 273) that there cannot be a 
continuous surface distribution of stagnation points (unless, of course, the 
potential function is constant). On the other hand, one knows that there can 
be continuous linear distributions of stagnation points if Laplace's equation 
can be separated in a particular coordinate system, as in 4>(x,y,z ) = cp(x,y)Z(z) 
with Z(z) = const, or <D(r, 6, z) = R(r)0(8)Z(z) with O = const.  One might be led 
to     conjecture   that any continuous   line  of stagnation points   must  be 
associated with a coordinate system in which Laplace's equation may be 
separated.      However, the following is a counterexample  (JWK)  to this 
conjecture: 

<D(x,y,z) = (l/2)x2 f - (l/2)(x2 + yV + (l/6)z4, 

for both the x-axis and the y-axis are lines of stagnation points. 

A discussion by one of us (JVW) with Charles Dawson in June 1978 
concerning the possibilities of multiple stagnation points resulted in a letter 
from him dated 28 June 1978 describing his investigation of a 3-dimensional 
body generated by two dipoles of equal moment situated on a line 
perpendicular to an oncoming steady rectilinear flow. As is well known, 
when the separation of the dipoles is zero, one streamline will generate a 
sphere with stagnation points at opposite ends of a diameter. Dawson 
correctly predicts the dipole separation at which each of the two stagnation 
points will begin to separate into three stagnation points, and also the 

1 Seoul National University, 2 Formerly, David Taylor Model Basin, 
3 University of California at Berkeley 

283 



(further) separation at which the single body will divide into two bodies. In 
addition, he computed the positions of the stagnation points lying on the 
central streamline as long as there is only one body. 

Dawson died in January 1980 without having published any details 
concerning his calculations. In the present paper we present not only the 
analysis and computation necessary to substantiate Dawson's results, but also 
other relevant details accessible by exploiting modern computational 
capabilities, especially Mathematics In addition to the 3-dimensional 
problem, we also treat the analogous 2-dimensional problems for two dipoles 
and for two vortices. The analysis and the computation for these are simpler 
than for three dimensions, in particular, because of the presence of a stream 
function, but the results are relevant both for their similarities to and their 
differences from the 3-dimensional case. 

The qualitative difference between two and three dimensions is 
chiefly a result of the following facts. Let <P be the velocity potential, in either 
two or three dimensions, of the rectilinear flow in direction Ox about two 
dipoles at a distance 2fl apart and perpendicular to the oncoming flow. In 
two dimensions 4>xx and Oyy vanish together at the two stagnation points 
associated with the largest separation a before a single closed stream body 
splits into two bodies, with, of course, two stagnation points on each. In three 
dimensions, however, <l>yy = 0 at a stagnation point associated with a smaller 
value of a than that at which 4>xx = 0, which again occurs at the largest value 
of a before the single closed stream body divides into two bodies. It is 
shown, however, that Oyy > 0 is associated with the presence of two further 
stagnation points with y * 0, so that there exists an interval of dipole 
separations for which there is only one closed stream body but three 
stagnation points on each side. Furthermore, there exists an interval of 
separations for which 4> ^ 4>xx > 0, and this implies that the single body is 
not smooth at the waist, i. e. at the intersection of the stream body with the 
plane perpendicular to and bisecting the line joining the two dipoles. In two 
dimensions this nonsmooth behavior can occur only at the "last" single body 
when <I>XX = <|>yy = 0, the only separation at which 4>xx and 4>yy are equal. 

The following two pages show graphs illustrating the differing 
behaviors for different separations, both for two-dimensional vortex and 
dipole pairs and for three-dimensional dipole pairs. 
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Traces in the first quadrant are shown for the closed streamlines generated by 
two vortices (on the left), all of the same strength, and by two dipoles (on the 
right), all of the same moment, but at different spacings, indicated in each case by 
the value of a. For the vortex pair the largest value of a before two separate 
bodies are formed is a = 2, for the dipole pair this value is a = 1/2. In each case 
this is the value of a associated with 4>xx = 0. The value of a at the boundary 
between convex and concave behavior at the stagnation point is a = 3/2 for the 
vortices and a = 0.455 = [(21/2 - 1)/2]1/2 . In each case this is the value of a 
associated with 4>xyy = 0 at the stagnation point. 
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(1.3747,0) 

At (1.3747,0), 
*„ » 1.5643 
*„ . -0.40373 

*«~ » 0 

0.5  1.0  1.5  2.0  2.5 

2.5 

2.0 

a • 0.6 
Stagnation_Pointa: 

(1.3026,0) 

At (1.3026,0), 
«„ . 1.449 
*„ > -0.16065 
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0.5 

a ■ 0.63033 
Stagnation_Points: 

(1.2607,0) 

At (1.2607,0), 
*„ « 1.3598 

*yy - 0 
* -1.7259 
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a = 0.732 
Stagnation_Points: 
(1.2535,0.46994) 
(1.0033,0) 

At (1.0033,0), 
0„ . 0.53609 
tlhn  *  1.5011 

0.5  1.0  1.5  2.0  2.5 

a * 0.67 
Stagnation_Pointa: 

(1.2572,0.29462) 
(1.1929,0) 

2.5 

At (1.1929,0), 
*„ > 1.1958 
$„ . 0.29712 

0.5  1.0  1.5  2.0  2.5 

a = 0.73972 
Stagnation_Points: 

(1.2531,0.48734) 
(0.90628,0) 

At (0.90628,0), 

*„ *  0 
<t^  = 2.4799 

0.5  1.0  1.5  2.0  2.5 

a = 0.71236 
Stagnation_Points: 

(1.2545,0.42248) 
(1.0882,0) 

At (1.0882,0), 
« 0.87722 

*„   > 0.87722 

0.5  1.0  1.5  2.0  2.5 

Two dipoles in space 

Traces in the first quad- 
rant of the (x, y)-plane 
of the streambodies gen- 
erated by two dipoles, 
all of equal moment but 
with different spacings, 
as shown by the value 
of a. All streambodies 
are bodies of revolution 
about the y-axis and are 
symmetric about the 
(x, z)-plane. 

In the first four traces there is a single stagnation point, on the x-axis, in the 
quadrant shown, and hence one on each side of the streambody. The separation 
a = 0.63033, corresponding to <I>yy = 0, is the largest value of a for which there is 
only one such stagnation point. The value a = 0.53517, corresponding to <I>xyy = 0 
at the stagnation point, is the boundary between convex and concave behavior of 
the streamsurface at the stagnation point. The last four traces, for which 0.63033 
< a <; 0.73972, all show a second stagnation point at y > 0, hence three on each 
side. At a = 0.71236 <I>XX = <J>yy at the stagnation point, and the streamsurface has a 
corner at the (x ,z)-plane. For a > 0.71236 this corner becomes an inward-pointing 
cusp. The largest value of a before the streambody splits into two is a = 0.73972. 
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An Integral Representation of a Wave Function 
in the Theory of Wave Resistance of Ships 

By Masatoshi Bessho 

The kernel function of a singurality in the theory of wave resistance of ships is usually 
represented by a double integral, but it was shown in the memoirs by the author that 
the kernel function has a single integral representation which faciliates numerical works 
exeedingly3). 

However, the analysis of the memoirs is somewhat obscure and may have some errors. 
In fact some authors have indicated the errors in the formulas in the memoirs2)'4)'5^. 

In the present paper the integral representation of a wave function is reanalyzed and 
revised. 

A function which is treated here is as follows ; 

[1     f°° 
(1) 

where 

f(t)   =   ix cosh t — iy sinh t cosh t — z cosh21 
(2) ix cosh t — p cosh t cosh(t + ia), 

and p = \/y2 + z2,     t&na = y/z. 

Then, since we have an integral 

(t+ia/2) _       1 f°° e-£-ivcosh(t+ia/2)dv^ ß) -p cosh 

/np 

inserting this in equation (1) and shifting the path of the integration in the t-plane yields 

p{P~z)ß    too        „2 /-OO     .„      ,,     .,„.,. 
P-1{x,y,z) = Zr—  f      e-^dv e*Äcosh(t-Ha/2-.*)(ftj (4) 

Ay/Wp   J-oo J-oo 

where 

^       r~n Ö—Z ',—7ZZ , xsm(a/2) .„. 
R = Jx

2 +v2- 2OTCos(a/2),     tant/> = , v, '  ;    . (5) v xcos(a/2) — v 

Making use of the integral representation of Bessel function of the second kind 

YQ(R) = — /    eiRcoshudu, (6) 
7T J-oo 

We obtain the following formula : 

287 



(p-z)/2    -oo        „2 

P-i(x,ytz) = —j= /    e-*Y0{R)dv = h. (7) 
A.   nlir J-oo 

This formula is correct in the following special cases, that is, 

P^(0,y,z)=1-e-z/2K0(p/2), (8) 

P_1(arJ0,0) = ~yo(ar), (9) 

but does not contain a divergent wave component and is not correct in general. Moreover, 
equations (8) and (9) are special cases of the following expansions3). 

1 °° 
P-i(x,y,z) = -e~z'2 Yf(-l)nenKn{p/2)J2n(x)cosna, (10) 

^ n=0 

oo 

P_i(z,y,z) = --e~z/2 X>Jn(p/2)y2n(a;)cosna, (11) 
2 71=0 

Equation (10) is convergent and gives a correct value in the range of a moderate 
x2/(4p) value but it is not convergent numerically when the value largely increases. 

On the other hand, equation (11) is not convergent but is an asymptotic one. Some 
authors have discussed its defect which does not give a divergent wave component. 

In these circumstances, the present paper aims to revise equation (7). 
Now, we evaluate equation (4) using the path of the integration in the t-plane as shown 

in Fig.l where the angle ip takes zero at negative infinity of v and tends to n at positive 
infinity. 

However, the horizontal line iir/2 in the t-plane is singular for the integrand of the 
integral, so the pass cannot cross the line i7r/2 which causes the error. 

Hence, the absolute value of this angle ip must be confined within 7r/2 in order to 
correct this point. 

Now, if the value of v is complex in equation (4), the argument of the potential term 
of the integral becomes as follows refering to Fig. 2. 

Rcosh(t + »a/2 -1^) = Äe*7 cosh(r + t + ia/2 - iif>), (12) 

where 

R = y^,     e
T = Jn/r2, (13) 

01 + 02 = 7,     01~02 = ^ (14) 

Moreover, if we choose the path of the integration as shown in Fig.3 where 7 takes 
zero from negative infinity of v to the point B and takes —n from B to positive infinity, 
the dotted line in Fig.l becomes the solid line which has a jump at A,B,C. 

Thus, we obtain the same form as equation (4), but the argument of Bessel function 
of the second kind in the integrand must be multiplied by exp(-in). 

Since we have the relation ^ 

YoiRe-'*) = Y0(R) - 2iJ0(R), (15) 

288 



The real part becomes the same as the integral (7) but we must add the integral on 
the path A,B,C in Fig.3 where Y0 cancels out with each other but J0 remains. 

Therefore, equation (4) can be rewritten in the following form. 

P-1{x,y,z) = h + I2 (16) 

where h denotes equation (7) and I2 is the term to be added. Making use of equation 
(12) through (15), we obtain I2 as follows ; 

rB 

h=Be 

where     A = xcos(a/2) 

yir/pxe^-^2 f  e~^J0(R)dv 

B = xeia'\ 

(17) 

or 

Re. ^fpe(p-z)/2xsm | jf * e-ijQ{R)du 

where     v = a;cos(a;/2) + iux sin(a/2)    ,     R = x\/l -tt2sin(a/2), 

(18) 

Now, we examine the result equations (16) and (17) in the following manner. Firstly, 
when x becomes zero, then I2 vanishes clearly, and when both y and z tends to zero, then 
I2 vanishes owing to the exponential term of the integrand of (14) or (15). Therefore, the 
formulas (8) and (9) are correct. 

Secondly, let us consider an asymptotic character of the integral. We can integrate 
asymptotically as follows. 

j ~2 

Ja 
e  Apdv 

2p 
e  ip,     for   \ — | >1, 

4/> 

Then, we can evaluate the integral approximately for small p as follows. 

h —> Re. 
7T0     p-z     x2 rin i  iQr-a) 
r
e    2 Zp~e     +       2 

Ax 

(19) 

(20) 
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SOME UNEXPLORED ASPECTS 

OF HYDROFOIL WAVE DRAG 

J. P. Breslin 

A brief recounting of the milestones in the development of hydrofoil craft from 
the end of the last century and ending with the vessels built by the US Navy 
is given. An account of the evolution of theory for invicid flow about hydrofoil 
sections and the extension to finite aspect ratios is followed by three applications 
of lifting line theory to a foil tested at in a model basin. 

The wave resistance of an aspect ratio 10 hydrofoil as inferred from analysis 
of lift and drag measurements is compared with results of lifting-line theory for 
infinitely deep water, for the depth of the towing tank and for a channel of the 
same width and depth of the test basin. The poorest correlation is obtained for 
the latter condition. Suggestions for additional work on hydrofoil lift and drag 
are given. 
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SLOSHING IN TWO-DIMENSIONAL TANKS 

O.M. Faltinsen 
Division of Marine Hydrodynamics 

Norwegian University of Science and Technology 
N-7034 Trondheim, Norway 

F. Solaas 
MARINTEK, P.O.box 4125 Valentinlyst 

7002 Trondheim, Norway 

1. INTRODUCTION 

Environmental concern has lead to requirements about double bottoms and skin in new tankers. Since 
it is desirable to save steel, this has lead to wide oil tanks that can be smooth inside. This increases the 
danger of occurrence of sloshing and large slamming loads inside the tanks. The most violent fluid 
motions occur in the vicinity of the lowest natural period for the fluid motion inside the tank. When the 
tank is smooth, viscous effects are not important and potential flow theory can be used. Nonlinear free 
surface effects are significant. However, ship motions exciting sloshing are often not large. This means 
that the external hydrodynamic loads can be approximated by linear theory. However, the coupling 
between the external linear flow and the internal nonlinear flow should be considered. 

There exist commercial CFD codes based on Navier-Stokes Equations and nonlinear free surface 
conditions that are used to simulate sloshing. A difficulty occurs in describing simultaneously the 
slamming loads inside the tank. A reason is the much smaller time scale of slamming relative to the 
characteristic sloshing period. Hydroelasticity may also complicate the simultaneous solution of sloshing 
and slamming loads. 

The complexity of the sloshing flow can easily lead to inaccuracies in the numerical solution. Good 
verification procedures is therefore of great importance. This paper describes a verification procedure 
of a nonlinear numerical method for sloshing. 

2. THEORY 

The method is based on Moiseev's (1958) perturbation method. Details are described by Solaas (1995) 
and Solaas and Faltinsen (1997). The forced sway or roll motion of the tank is 0(E) and the fluid 
response is 0(e1/3). Here e is a small parameter and a measure of the ratio between the tank motions 
and the horizontal dimensions of the tank. Non-shallow water depth and two-dimensional flow are 
assumed. The tank oscillates with frequency w and a steady-state solution is found. The lowest natural 
frequency o[ for the fluid motion is related to co by 

o)2 = o2 + e2/3a (1) 

where a = 0(1). The total velocity potential for the fluid motion is expressed as 

<E>   = (J) e1/3 + (|>2e
2/3 + (J) e + <|) OoOcosoo? (2) 

where 4>c is of 0(e), satisfies the body boundary condition, but not the free surface condition. Further 
t is the time variable. The solution of  $l  can be written as I|J^x^Ncosmt, where   i|/j is the 
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eigenfunction for the fluid motion corresponding to the natural frequency a(. N is determined by a 
secularity condition in the 3.order solution. i|/, (and 4>2 

and 4>3) ^e determined by a low order panel 
method based on representing the velocity potential by Green's second identity. The second order 
potential (J>2 satisfies an inhomogeneous free surface condition which is a function of <j>, and follows 
by the perturbation scheme. The normal derivative of <|>2 on the mean position of tank surface is zero. 
The solution can be written as 

(J)2 = <y + Sil^Ocz)^—sin(2<Df) (3) 
n = l 2 

Here i|i are eigenfunctions for the fluid motion corresponding to eigenfrequency number n. aQ is a 
constant" and determined by conservation of fluid mass. It follows from this requirement that the 
perturbation scheme is only possible with vertical walls at the mean waterline. The third order potential 
4>3 satisfies an inhomogeneous free surface condition which is a function of <]>,, $2 and $c- 

The 

normal derivative of (J>3 on the mean position of the tank surface is zero. The right hand side of the free 
surface includes a term proportional to ty, cosotf. This leads to a secularity condition that determines 
N as the solution of 

a{N
3 + aN + «, = 0 (4) 

This means that up to three solutions of N is possible for any frequency o). 

3.      VERIFICATION 

Faltinsen (1974) derived an analytical solution for a rectangular tank based on Moiseev's procedure. This 
was used by Solaas (1995) and Solaas and Faltinsen (1997) to compare all details of the first, second 
and third order solution. It was found that many elements were needed in the low order panel method. 
For instance with 500 elements evenly distributed on the mean free surface, the third order potential 
oscillating with frequency 3Q have relative error of 0(10~3) on the free surface element closest to the 
intersection between the near body surface and the mean free surface. This verification of the numerical 
method demonstrates that great care has to be shown in the numerical analysis. 

4.      CONCLUDING REMARKS 

High numerical accuracy is needed in a numerical method describing sloshing in a tank. 
A perturbation solution based on Moiseev's procedure can only be used for tanks with vertical 

walls at the mean waterline. 
A perturbation solution based on Moiseev's procedures seems difficult to generalize to irregular 

sea. 
Sloshing and sloshing induced slamming have very different time scales, which makes an integrated 

analysis difficult. A possibility may be to generalize the hydroelastic slamming theory described by 
Faltinsen (1997). 

294 



REFERENCES 

Faltinsen, O.M., 1974, A nonlinear theory of sloshing in rectangular tank, Journal of Ship Research, Vol. 
22, No. 3, September, pp. 193-202. 

Faltinsen, O.M., 1997, The effect of hydroelasticity on ship slamming, Phil. Trans. R. Soc, A, 355, 1-17. 

Moiseev, N:N., 1958, On the Theory of nonlinear vibrations of a liquid of finite volume, Applied 
Mathematics and Mechanics (PMM), Vol. 22, No. 5. 

Solaas, F., 1995, Analytical and numerical studies of sloshing in tanks, Dr.Ing.thesis, Division of Marine 
Hydrodynamics, The Norwegian Institute of Technology, NTH, MTA-Report 1995:107. 

Solaas, F., Faltinsen, O.M., 1997, Combined numerical and analytical solution for sloshing in two- 
dimensional tanks of general shape, Journal of Ship Research, Vol. 41, No. 2, June. 

295 



296 



The CHAPMAN Project 

Development of a New Navier-Stokes Solver 

with a Free Surface 

Prof. Lars Larsson 
Chalmers Univ. of Technology 

Dept. of Naval Architecture and Ocean Engineering 

As shown in the 1990 and 1994 Workshops on hydrodynamics CFD the CFD technique may 
now be used for many practical purposes in ship design. Several obstacles remain however, as 
explained in the 18th Weinblum memorial lecture by the present author. The accuracy needs 
to be improved in resistance prediction and in the computation of the details of the wake field. 
To accomplish this, improvements may be necessary in the following areas: grid generation, 
turbulence modelling, free surface boundary conditions and numerics. 

CHAPMAN is a cooperative project between Chalmers and FLOWTECH International for 
developing a new Navier-Stokes solver with improvements in all four areas above. The method 
uses a structured multi-block overlapping grid generator CHALMESH, developed within the 
project. Thin curvilinear component grids are employed near the hull and all appendages, and 
these component grids are embedded into a global Cartesian grid. CHALMESH takes care of 
the interpolation in the overlapping regions. Singularities are avoided by introducing separate 
component grids around singularity lines. The propeller is represented in a cylindrical compo- 
nent grid, which rotates inside the hull grid and this will enable the blade flow to be computed 
when the propeller rotates in the behind condition. 

The solver has a free surface capability based on the level set approach, which is capa- 
ble of handling overturning waves and changes in topology, like when the wave breaks. The 
Reynolds-averaged Navier-Stokes equations are solved with an advanced turbulence model, and 
several alternatives for this model are now being tested for some generic test cases. A mixed 
explicit/implicit temporal solution scheme is under develoment where the implicit technique is 
used only in the normal direction in the thin curvilinear grids.In this way the small time steps 
required in the explicit technique due to the very thin cells close to the hull surface are avoided. 
To minimize numerical dissipation central differencing is used for all terms and the minimum 
amount of artificial dissipation needed to stabilise the solution for the given grid spacing is com- 
puted from a theory for the smallest scales by Henshaw and Kreiss. Alternatively, the theory 
may be used for finding the required grid spacing for stability without artificial dissipation. 
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50 YEARS OF YOKOHAMA NATIONAL UNIVERSITY 
SHIP HYDRODYNAMICS LABORATORY 

BY 
HAJIME MARUO 

YOKOHAMA NATIONAL UNIVERSITY 
Foreword 

In the occasion of the 100th anniversary of the late Professor Georg Weinblum, 50 years of the 
research activities at Ship Hydrodynamics Laboratory of Yokohama National University, of which 
I have been in charge since 1947 until my retirement in 1988, is reviewed briefly. 

This topic has much relevance to the memory of Prof.Weinblum, because most of the projects 
carried out in this laboratory have been motivated or stimmulated more or less by his work, 

especially at their earlier stage. I studied one of his earliest paper published in 1930 on ZAMM" 
in 1944,when I was a student of University of Tokyo, and I was much impressed by his work. This 
experience had become obviously the motivation of my first work on the study of planing hulls. 
Another example of his influence is through the work on the hull form of minimum wave resistance 
which was seemingly the subject of Weinblum's main interest 

The first time when I met Prof .Weinblum was in 1963 in the occsion of International Seminar on 
Theoretical Wave Resistance at Ann Arbor Michigan. My great surprise at that moment was that 
he had already known my earlier work. I still remember his encouragement through the work on 
the wave resistance of slender ships, which I was engaged in at the moment. Since that time, I was 
able to keep contact with him through the technical committee of ITTC until his death. Therefore 
the influence from him may appear throughout the period. 

The Ship Hydrodynamics Laboratory 
Ship Hydrodynamics Laboratory of Yokohama National University belongs to the Department of 

Naval Architecture and Ocean Engineering, which was founded in 1930 as a part of Yokohama 
College of Engineering founded in 1920.   The College was shifted to Yokohama National 
University in 1949 by the reformation of the educational system. The university moved to a new 
campus inl976. Main research facilities of the department is as follows. 

Towing Tank: 
Old Campus (1933 -1976)   L X B X D = 50.4m X 3.6m X 2.75m 
New Campus (1976 - - -  )   L X B X D = 110m X 8.0m X 3.5m 

Other Facilities: 
Circulating Water Channel 
Wind Tunnel 

On my retirement from Yokohama National University in 1988, Prof. Mitsuhisa Ikehata has 
succeeded to the position in charge of the laboratory. 

Outline of Research Projects 
Subjects of the research projects carried out at the Ship Hydrodynamics Laboratory since 1947 

are listed below in time sequence. Numbers in parentheses indicate the year when the first paper on 
the subject in each project was published, and the superscript gives the corresponding literature. 

Hydrodynamics of Planing Hulls: 
Two Dimensional Problem 

Theory of Resistance Components, Spray and Wave (1947)2) 

Pressure Distribution , Analytical Solution (1951)3) 
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Three Dimensional Problem 

Resistance Components (1949)4) 

High Aspect Ratio Approximation (1953)5) 

Low Aspect Ratio Approximation (1962)6) 

Nonlinear Phenomena in Shallow Water: 

Aerodynamic Analogy (1952) 7) 

Sinkage and Change of Trim (1981)8) 

Detection of the Boundary Layer Transition: 

Hot Wire Anemometry in the Towing tank (1953)9) 

Flow Visualization in the Towing Tank (1954)10) 

Motion of Bodies under Free Surface: 

Hydrofoil of Finite Span (1953)11) 

Non-uniform Motion of a Submerged Body (1955)12) 

Wave Force on an Obstacle: 

Submerged Cylinder (1954)13) 

Vertical Cylinder (1956)14) 

Drift Force of a Floating Body (I960)15) 

Added Resistance in Waves: 

Regular Waves (1957)16) 

Irregular Waves (I960)17) 

Theory of Slender Ships: 

Wave Resistance in Steady Forward Motion (1962)18) 

Seakeeping Problems (1966)19) 

Hull Pressure Distribution in Waves (1974)20) 

Ship Wave Pattern (1983)21) 

Hull Form Research: 

Minimum Wave Resistance Hull Forms (1963)22) 

Semi-submerged Hull of Minimum Wave Resistance (1964)23) 

Application of the Theory to Hull Form Design (1966)24) 

Mathematically Wave Free Form (1969)25) 

Application of the Nonlinear Optimization Technique (1979)26) 

Experimental Separation of Resistance Components: 

Implementation of the Wave Pattern Analysis in theTank Test Practice (1967)2') 

Decomposition of Resistance by the Wake Survey (1976)28) 
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Ship Waves and Wave resistance in Viscous Fluid: 

Effect of the Wake on Waves (1972)29) 

Ship Waves and Wave Resistance of a Thin Ship in Viscous Fluid (1973)30) 

Full Hull Forms at Low Froude Numbers: 

Double Body Linearization (1977)31) 

Bow Flow Phenomena (1983)32) 

Effect of Surface Tension to the Model Bow Flow (1985)33) 

Waves and Wave Resistance with Nonlinear Free Surface Condition (1985)34) 

Marine Propellers: 

Propeller Characteristics in Turbulent Wake (1981 )35) 

Unsteady Propellers in Non-uniform Wake (1984)36) 

Turbulent Flow in Ship's Wake: 

Turbulence Measurement in the Ship Model Wake (1982)37) 

Modelling of Turbulent Boundary Layer and Wake (1985)38) 

Two Dimensional Computation of Nonlinear Free Surface: 

Application to Slender Ships at Forward Speed (1994)39) 

Water Entry and Hydrodynamic Impact, Experimental Validation (1996)40) 

Concluding Remarks 
Half a century has passed since the Hydrodynamic Laboratory of Yokohama National University 

started. One may observe its research activities to have covered various field of ship hydro- 
dynamics. On arranging research projects, it has been intended to keep an even share between 
theory and experiment. This criterion seems to have been nearly attained. Another idea is that the 
practical usefulness, especially in the field of shipbuilding, of theoretical findings has been taken 
seriously. This concept may match the spirit of Prof. Weinblum. 
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"There is no theorem like the Lagally theorem." 
"The Ellipsoid is God's gift to naval architects." 

T. Miloh 
School of Engineering, Tel-Aviv University, 699 78 Ramat-Aviv, ISRAEL 

Georg P. Weinblum (1897-1974) was born about the same time when John H. Michell (1863-1940) had already com- 
pleted writing his seminal work on the wave resistance of thin ships (Michell 1898) - some hundred years ago. Thus, it 
was not a coincidence that G.P.W. chose to write his doctoral dissertation (submitted in 1929) on ships of minimum 
wave resistance using Michell's theory. It is also well known that MichelPs famous article did not get the proper at- 
tention (at least from the naval architects community) for over 25 years, although it was published in one of the most 
prestigious journals (Philosophical Magazine). Indeed it was Sir Thomas Havelock, probably the leading theoretician 
working on ship hydrodynamics at the beginning of the century, who rediscovered Michell's paper 25 years after it had 
appeared (Havelock 1923). The first reference to Michell's work in Havelock's paper appeared only as a side comment 
"On the other hand, Michell, in an extremely interesting paper, gave a general expression for wave resistance, but it 
suffers from serious limitations, in that the surface of the ship must be everywhere inclined at only small angle to its 
vertical meridian plane". A more well deserved credit to Michell's theory was given in a paper by Wigley (1926). It 
is believed that by that time Weinblum became acquainted with Michell's work and since then he became a strong 
advocate and promoter for using the Michell's wave resistance formula. Weinblum also tried to bridge the gap between 
theoreticians and naval architects practitioners and provided in his papers sample computations and comparisons be- 
tween theory and experiments. As an example, we mention his joint paper with Graff k Kracht on the wave resistance 
of a conventional merchant-ship hull which includes a comparison of drag measurments with numerical evaluations of 
the Michell integral (Graff et al. 1964). In his continuous efforts to exploit relevant theories to find how they can help 
ship designers, he has introduced, during the four year period (1948-1952) that he spent at the DTMB, the important 
paper of Lagally (1923) to the U.S. community of ship hydrodynamicists. In this context we cite a paragraph from 
Landweber's paper (1967) who wrote "About 20 years ago Georg Weinblum succeeded in convincing his incredulous 
colleagues at the David Taylor Model Basin that THERE IS NO THEOREM LIKE THE LAGALLY THEOREM 
... and pointed out the power of the LAGALLY theorem and new fields of research to many of us". Yet another 
off-repeated statement of Weinblum is "THE ELLIPSOID IS GOD'S GIFT TO NAVAL ARCHITECTS" (Newman 
1972). Weinblum suggested to use the concept of equivalent ellipsoids for approximating real ship forms (Weinblum 
1936). He was definitely inspired by the theoretical work of Havelock and was probably the first worker in ship theory 
to study and apply the hydrodynamics of spheroids and ellipsoids to more general bodies of revolution. The same 
citation regarding ellipsoidal forms, which is attributed to Weinblum, is also mentioned in Wu & Chwang (1974) and 
Miloh (1979). Stimulated by these two Weinblum quotations, we intend to present here an historical account of some 
theoretical methods for calculating potential flows about 3-D ellipsoidal shapes. Also presented is the development of 
the Lagally method for calculating hydrodynamic loads on 3-D arbitrary rigid and defformable moving bodies. 

Ellipsoid Theorem 

In order to determine the hydrodynamical loads on a moving body by using the Lagally theorem, it is necessary first 
to find the image singularity system within the body of the exterior potential flow field. For a general body this 
procedure usually involves solving numerically an integral equation of a Fredholm type. However, for the class of 
symmetric separable quadratic surfaces (i.e. spheres, spheroids and ellipsoids), the image singularity system can be 
found analytically using harmonic analysis. The idea is to analytically continue the exterior flow across the surface 
inside the body and to find the interior ultimate (minimal) singularity system. 
Let us first consider a spherical coordinate system (R,fi,ip) defined by 

x = Rfi,     y + iz = Ä(l - /i2)V^, (1) 

where (x, y, z) is a cartesian system. An arbitrary exterior potential flow field about a sphere which vanishes at infinity 
R—>oo, can be represented by a Neumann series of exterior spherical harmonics. Following Hobson (1955) a typical 
term of such a series can be written as 

where P™(n) denotes the Legendre polynomial. Thus, the ultimate system of singularities for exterior spherical 
harmonics consists of a system of multipoles at the origin.  A similar theorem for spheroidal exterior harmonics has 
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been given without proof by Havelock (1952).   A proof was provided later on by Miloh (1974).   The orthogonal 
transformation between a cartesian and a spheroidal coordinate system (£,p, VO is 

* = &!,     y + iz = (e- 1)*(1 -^)V'", (3) 

where the distance between the two foci is taken to be 2. Havelock theorem can then be written as 
m    rl   (C2 

2V% dzj      J-ly/{x_tf + y2 + g2 
(4) 

where Q™ represents the Legendre polynomial of the second kind. Thus, the ultimate image singularity system for 
an exterior spheroidal harmonic can be represented as a multipole distribution along the axis between the two foci. 
The axisymmetric case which corresponds to m = 0, renders a source distribution Pn(x) on 1 > \x\. The most general 
separable quadratic surface is the triaxial ellipsoid. 

2 2 2 
X V Z , , ,rN 

a2      62 c 

The orthogonal transformation between the cartesian (x,y, z) and the ellipsoidal coordinate system (p,p,v) is given 

_PJW 2  _{p2-h2){p2-h2){h2-U2) ,        (p2-k2)(k2-ß
2)(k2-U2) f6v 

A*'    y_ /i2(P-/i2) ' k2{k2-h2) ' w 

where /i2 = a2 - 62, k2 = a2 - c2 and -h<u<h<ß<k<p< oo. An arbitrary potential flow field past an ellipsoid 
can be represented in terms of ellipsoidal exterior harmonics F™(p)E™(p)E™(v) where E™ and F™ denote the Lame 
polynomials of the first and second kind respectively. There exist four different types of Lame polynomials of the first 
kind; class K and L ( both even in z) and class M and N ( both odd in z). The ellipsoidal theorem (Miloh 1974) then 
states that exterior ellipsoidal harmonics of class K and L may be generated by a source distribution <r{x, y) such that 

™™W = -/       ,      *Vf"« , (7) 
Js°   yj{x - x'f + (y- 2/')   + z2 

where (x',y') are the rectangular points in the (x,y) plane within the focal ellipse (the ultimate image system) 

and a(x',y') is given by 

y2 

SQ = ^—2 + -»—2 = l,     z = 0. (8) 
or — cl     bi — c* 

^^-M^^-^rF'^ • (9) 

In a similar manner, one can express an exterior ellipsoidal harmonic of class M or N as a normal doublet distribution 

F-(P)E^)E^)=1[ WfW , (10) 
Öz Js°   ^{x - x'f + (y - y1)2 + z2 

f(r,    ,,l?n + \)E™{n>)E™{v>)      - üff(fc) (n) 

^        '      2wkE^{k)^{k2 - h2) '      n vV2 - P' 

Finally, solving general potential flow problems past ellipsoidal bodies requires the expansion of the Green function 
^— (i.e. the inverse of the distance between two points P(p, p., v) and Q(p', p', v') where p' > p) in terms of ellipsoidal 

harmonics. Such an expansion has been given in Miloh (1973) 

rpq      ^0^(2n+l)T^ 

where 
m =  f"   ["       {p2-v2){EZ{p)EZ{v))2dpdv 

ln       J-hJh   V(V2 - h2)(p2 - ki){»-> - /i2)(^2 - P) 

and s(n) is defined below for the four classes of Lame polynomials; 

A' L M N * 
s{n)=      1 + f § 'j 2. for  n even (14) 

i(n + l)    |(n+l)    |(n+l)-   |(n ~ 1)    for n odd 
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Lagally Theorem 

Once the image singularity system of the exterior flow field past the body is known, one can directly compute the 
hydrodynamical loads experienced by the body in terms of these singularities. The so-called Lagally theorem is valid 
for both 2 — D and 3 — D deformable or rigid surfaces and for a line, surface, volume or discrete singularity distribution. 
Using this technique avoides the computation of the pressure distribution and its integration over the body surface. In 
many respects it is more direct and accurate than the method of pressure integration and may be also considered as an 
extension of the 2 - D Blasius method for 3 - D flows. Lagally (1922) gave only an expression for the force acting on 
a source of output m and on a doublet d both placed in a potential steady stream v. The corresponding Lagally force 
is -Airp[mv + (d • V)v] where p is the density of the fluid. It is also interesting to note that the particular expression 
for a point source has been derived earlier by Munk (1921). The so-called steady Lagally method has been revised 
by Betz (1932) who also provided a simpler derivation. Extensions for unsteady flows and multipoles have been first 
proposed by Cummins (1953, 1957). Further work on the subject of rigid body hydrodynamics is due to Landweber 
& Yih (1956) and Landweber (1967). The case of deformable bodies and the appropriate generalization of the Lagally 
theorem have been discussed and presented by Landweber k Miloh (1980). More recent applications for the case of a 
moving deformable body embedded in a non-uniform ambient flow field are given in Galper k Miloh (1994, 1995). 
Let the equation of the deformable surface in a body-fixed coordinate system be given by S(r,t). Then the deformable 
potential is found from the following Neumann boundary condition on S 

d<j>d _    dS    1 ,15^ 
dn dt |V5|' ^ 

Assume next that the image singularity system consists of multipoles mq of order q = a + ß + j located at (xs, ys, zs) 
where the internal flow field is given by 

4> = -m9D9(h,    Dq =        f ,R2 = (x-xsf + (y-ysf + (z-zs)
2. (16) 

The Lagally force acting on the deformable body is then given by 

v(t)yc-47rJ2mqDq(r)s + Kd\ - 47r]Tm9£>?(
V<«s> (17) 

F=d' (d) 

p      dt 

Kd 

where v(t) is the volume of the body, Vc is the instantaneous velocity of its centroid and K<j is the deformation Kelvin 
impulse defined by 

- / <t>d n dS. (18) 

Also £25 denotes the sum of all singularities and J2S ' excludes those due to 4>d- The above formulation can be applied 
to the problem of self-propulsion of a deformable body which was first discussed in Benjamin k Ellis (1966, 1990), 
Saffman (1967), Wu (1976) and Miloh (1983). It has been demonstrated in these papers that a deformable body 
can propel itself persistently starting from rest in an inviscid and incompressible fluid by applying a periodic surface 
deformation with zero-mean. The collinear velocity of self-propulsion Us can be expressed in terms of the deformation 
Kelvin-impulse Kd, the body mass Mj and its added-mass T as 

(Mb+T)Us+Kd = 0. (19) 

It is shown that the persistent self-propulsion motion arises from a non-linear interaction between symmetric and skew- 
symmetric surface deformation modes. Extension for the case of a maneuvering body (i.e. including auto-rotation) 
and self-propulsion in an ambient non-uniform stream, are given in Miloh k Galper (1993) and Galper k Miloh (1995). 
It is demonstrated that the presence of a flow non-uniformity may considerably amplify the order of magnitude of 
the self-propulsion velocity, as a result of parametric resonant interactions between surface deformations and flow 
non-uniformity. Applications to bubble dynamics including the problem of bubble coalesce in a cloud are discussed 
within the same framework in Galper k Miloh (1994, 1995). The same methodology can be also used for estimating 
the hydrodynamical loads on slender ocean structures in a non-uniform wave field ( Galper k Miloh (1996, 1997)). 
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(Special Weinblum Meeting, Carry-le-Rouet, 26-27 March 1997) 

Resonant Diffraction Problems 

By J. N. Newman 

Department of Ocean Engineering, MIT, Cambridge, MA 02139, U.S.A. 

Resonant motions of floating bodies are particularly important when the damping is 
small. Familiar examples include rolling of ships, and the heave response of slender spar 
buoys. In cases such as these the resonant motion is associated solely with the body dy- 
namics, that is to say with the force or moment coefficients of the radiation problem where 
the body is oscillating in otherwise calm water. The resonant frequency is determined from 
the condition that the inertial force due to the body mass and hydrodynamic added mass is 
equal and opposite to the hydrostatic restoring force; the amplitude at resonance is inversely 
proportional to the damping. 

Resonant motions of the free surface can occur independently of the body motions for 
certain special types of diffraction problems. Well known examples include moon pools, and 
wave-power devices with oscillating water columns, where an enclosed internal region of the 
fluid exists with a free surface, coupled to the exterior domain via a submerged opening. 
The lowest resonant frequency is associated with the Helmholtz mode, where the motion 
of the internal fluid is similar to a heaving rigid body with the same mass and waterplane 
area. 

The case of a moon pool is particularly important for certain types of offshore plat- 
forms. Computations are presented to illustrate the amplitude of free-surface elevation at 
the center of the moon pool, for a generic family of axisymmetric cylinders. The Helmholtz 
resonance is a prominent feature in the diffraction solution, with increasing peak amplitude 
and decreasing bandwidth as the moon pool radius is reduced. In the case where the body 
is free to heave in the presence of incident waves, we find from careful computations that 
there is no amplification of the moon pool response at the original resonant frequency of the 
diffraction problem, apparently because the free motions of the body adapt to and cancel 
out any large forcing pressure at the bottom of the moon pool. Instead, the moon pool res- 
onance occurs at a slightly higher frequency and wavenumber. This is due to the occurrence 
of a second heave resonant frequency, which in turn is caused by the rapid variation of the 
heave added mass with respect to frequency. 

Complete enclosure of the internal free surface is not necessary. Resonant motions, 
including the Helmholtz mode, can occur when there is an opening between the interior and 
exterior fluid regions, as in the case of a harbor with a small entrance (Mei, 1977). Another 
interesting example is where two vessels are close together in a catamaran configuration or, 
equivalently, a single vessel is close to a parallel wall (quay). In the long narrow interior 
domain resonant standing waves can occur with large amplitude, provided the frequency 
is such that the nodes of the standing wave coincide with the openings to the exterior 
domain at the ends of the two vessels. Numerical results to illustrate this phenomenon were 
presented by Newman and Sclavounos (1988). 
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At the last Workshop Maniar & Newman (1996) showed that resonant motions can 
occur in the gaps between adjacent circular cylinders in a long periodic array, although 
there is no clear distinction between the interior and exterior domains of the free surface. 
More extensive results and analysis are described by Maniar & Newman (1997). These 
resonant modes are associated with trapped waves which exist for diffraction past a single 
cylinder in a channel, but the connection with that problem is essentially mathematical 
and cannot be explained on a simple physical basis. This phenomenon is important even for 
small numbers of cylinders, as in the case of a tension-leg platform, but it is remarkably large 
for longer arrays with peak wave loads acting on individual cylinders which are more-or-less 
proportional to the total number of cylinders in the array. 

Both 'Neumann' and 'Dirichlet' trapped modes exist in correspondence with the bound- 
ary conditions imposed on the walls in the channel problem. The results for long arrays of 
cylinders also display secondary peaks and intermediate minima, just below these critical 
frequencies. In recent work Maniar has shown that the secondary features can be explained 
in terms of superposing end-to-end the diffraction fields of smaller arrays with one-half, 
one-third, one-quarter, etc. of the total number of cylinders. 

Porter and Evans (1997) have shown that analogous resonant modes can occur in the 
case of a circular array, especially when the gaps between adjacent cylinders are small. 
At first glance one might suppose that this phenomenon is more analogous to the case of 
a harbor with a small entrance, where the resonance is associated with the interior fluid 
domain and free surface. However the correspondence of their modes and wavenumbers 
with those found for the linear array suggests that the resonance is due to the gaps between 
the cylinders and not to the interior domain. Indeed, their findings help to explain why this 
phenomenon is relevant to tension-leg platforms. 
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ON SHIP WAVES AT TRANSCRITICAL SPEEDS 

Som D. Sharma 
Institute of Ship Technology 

Mercator University, D-47048 Duisburg, Germany 

Summary 

In a historical review extending back to the memorable International Symposium on 
Ship Theory held at Hamburg in 1962 to celebrate Georg Weinblum's 65th birthday 
it was shown how efficiently modern shallow-water ship-wave theory, developed 
largely by several Weinblum Memorial Lecturers attending this present meeting, 
has succeeded in explaining various exciting transcritical flow phenomena, origi- 
naly observed at full scale more than a century ago and repeatedly verified in ship 
model tanks. These include the dramatic rise and fall of wave resistance, reversal of 
squat, metamorphosis of wave pattern, and generation of forward solitons, all oc- 
curring as ship speed rises through its critical value in shallow water, particularly in 
a narrow channel. Systematic model experiments initiated by Weinblum at the 
Shallow Water Towing Tank in Duisburg (VBD) more than 35 years ago have pro- 
ved invaluable for validating recent theoretical computations. New wave pattern, 
side force and yaw moment measurements have corroborated the calculations in 
more detail. Further development of the theory by this Speaker's group at Duisburg 
has culminated in the discovery of "superconductive" channels and catamarans, 
characterized by zero wave resistance at a chosen supercritical design speed. This 
is achieved, in principle, by mutual cancelation of bow and stern waves, a bit akin to 
the classical Busemann's biplane proposed for hypersonic flight some 60 years 
ago. The superconductive catamaran, rendered independent of channel sidewalls 
by use of suitably cambered hulls, would, besides saving propulsive power by 
virtue of its vanishing wave resistance, have the additional environmental benefit of 
being a "no-wash" vehicle. Ongoing research is concerned with the conception of a 
cambered air-cushion catamaran, ideally eliminating the local wave also. 

References (in chronological order) 

CHEN, X.-N.; SHARMA, S. D. (1992 = 1995): A slender ship moving at a near-criti- 
cal speed in a shallow channel, J. of Fluid Mech., vol. 291, pp. 263-285. 
CHEN, X.-N.; SHARMA, S. D. (1994): Nonlinear theory of asymmetric motion of a 
slender ship in a shallow channel, Proc. 20th Symp. on Naval Hydrodynamics, 
Santa Barbara/CA, USA, pp. 386-407. 
JIANG, T.; CHEN, X.-N.; SHARMA, S. D. (1994): Numerical and experimental study 
of lateral force and yaw moment on a slender ship moving at high speed in shallow 
water, Proc. MCMC "94, Southampton, UK, pp. 361-374. 
CHEN, X.-N.; SHARMA, S. D. (1994): A slender ship moves in a shallow channel, 
Proc. ICHD '94, Wuxi, China, pp. 158-165. 
JIANG, T.; SHARMA, S. D.; CHEN, X.-N. (1995): On the wavemaking, resistance 
and squat of a catamaran moving at high speed in a shallow water channel, Proc. 
FAST 1995, Travemünde, Germany, pp. 1313-1325. 
CHEN, X.-N.; SHARMA, S. D. (1995 = 97): Zero wave resistance for ships moving in 
shallow channels at supercritical speeds, J. of Fluid Mech., vol. 335, pp. 305-321. 
CHEN, X.-N.; SHARMA, S. D. (1996): On ships at supercritical speeds, Proc. 21st 
Symp. on Naval Hydrodynamics, Trondheim, Norway. 
CHEN, X.-N.: Elimination of wave resistance by a cambered twin-hull at 
supercritical speed, Ship Technology Research (Schiffstechnik), Band 44, Heft 1, 
Feb. 1997, pp. 13-21. 
SHARMA, S. D.; CHEN, X.-N. (1997): Novel cambered-hull catamaran for high 
speed in shallow water, Proc. FAST '97, Sydney, Australia, pp. 125-132. 

309 



310 



MULTIHULLS 

E. TUCK 

University of Adelaide, Applied Math. Dept. 

A discussion of various problems involving one or more bodies at or near a free 
surface is given. The general problem of multihull wave resistance is discussed, 
including the generalised Michell integral and Krein's zero-drag caravans. Some 
work done at Adelaide over the past two years on minimising the total (viscous 
plus wave) drag of multihull ships using the genetic algorithm technique is sum- 
marised. Recent work on a pair of tandem submerged cylinders is also discussed, 
including identification of configurations having zero drag on each separate body. 
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Remarks on Energy Transport in Waves 

Marshall P. Tulin 
Director, Ocean Engineering Laboratory 
University of California, Santa Barbara 

Preface In 1950 I arrived at the Taylor Model Basin in Washington, age 
24, to begin work in naval hydrodynamics. George Weinblum was 53 then. He 
had arrived there 2 years earlier after a stay in England, and was to return 
to Hamburg two years later. He was a large man, with a very large head and 
twinkly eyes, of immense charm and diplomacy and talent, of great sharp wit, 
and with an international view of life. He seemed somewhat the bohemian. 

He had already made a large impact on the very talented people there, in- 
cluding John Wehausen, Manley St. Denis, Lou Landweber (our Boss), Phil 
Eisenberg, Bill Cummins, John Breslin, Dick Couch, and others. He loved 
young people, and he went out of his way to encourage us. His deep faith in the 
necessity to treat naval architecture problems in a scientific way made a deep 
and lasting impression on us all, especially considering that he was a man of 

practical experience. 
Despite the tentativeness of life away from his family and homeland, and 

without a fixed position, I believe that during this period his life was a very happy 
one. He was well liked by everyone and loved by more than a few persons. 

In tribute to him I want to point out that he had a very considerable positive 

influence on people there, who themselves went on to have a great effect on naval 
architecture and naval hydrodynamics in our country, and on education in those 

fields. 

Remarks 
Is it possible to say anything new about this subject, which is in all relevant texts 
covered by introduction of the notion of group velocity? Now it is true that the 
subject of the group velocity includes puzzling aspects. For example, the connection 
between the parallel and separate treatments of group velocity via kinematical and/or 
dynamical demonstrations, leading in the case of linear waves to identical results. 
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And, beyond that, the question as to the proper treatment and results in the case of 

finite amplitude waves. 
The present remarks are however not concerned directly with these questions. Our 

concern is even more basic. It can be put in this question: What is it that physically 
propagates at the group velocity? Obviously the difficulty in answering lies in the 
fact that the energy in surface waves is compartmented in two parts: kinetic and 
potential. It has been customary to treat these as a sum, and it is the sum of these 
which demonstrations suggest are propagated at the group velocity. Furthermore, the 
kinetic energy has been treated not only as averaged in time, but also in the vertical 

direction. 
Unfortunately, this customary treatment hides from our view the real mechanisms 

of energy transport in water waves, and obscures the real meaning of group velocity, 
which in actuality is an arithmetic mean. The answer to the question underlined above 
is: only the modulated wave envelope propagates physically at the group velocity. 

Proper understanding of the subject requires consideration of the kinetic energy 
flux vector at all points in the wave, and separate consideration of the surface energy, 
which itself consists of two parts, gravitational and surface tension. It is also neces- 
sary to conceptualize the waves not as a uniform Stokes wave, but as a wave whose 
amplitude is changing in space and time. It is only when these things are done that 
the actual mechanisms of wave energy transport reveal themselves clearly. 

Then it can be shown that in the case of monochromatic gravity waves, the time 
averaged kinetic energy at every depth below the wave trough propagates horizontally 
at speeds between one and two times the phase speed of the wave, depending on the 
water depth. In a frame moving with the wave speed, the kinetic energy at each 
point can be seen to propagate along flux lines which extend beneath the surface 
from one point to another on the wave surface, these lines are arranged in four cells 
per wavelength, Figure 1, and in shallow water the cells containing flux in the wave 
propagation direction are more dominant, resulting in a net forward flux relative to 

the moving wave. 
For all waves, the time averaged gravitational potential energy does not propagate 

at all, while the (linearized) surface tension energy propagates at twice the wave phase 
velocity. The net result is that the transport speed calculated as a weighted average of 
the transport of the separate components of energy yields the familiar group velocity. 

In the case of a modulating gravity wave the kinetic energy propagates vertically 
as well as horizontally and in this way provides the potential energy at the surface to 
the forward face of a wave group and extracts it from the surface in the opposite case, 
Figure 2. It is due to this mechanism of exchange between gravitational and kinetic 
energies that the modulation is allowed to propagate, and the speed of propagation 
for weak waves is precisely the group velocity. 
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NOTES ON WAVE MOTION NEAR A SPHERE 
BETWEEN PARALLEL WALLS 

BY F.URSELL 

DEPARTMENT OF MATHEMATICS, 
MANCHESTER UNIVERSITY, M13 9PL, U.K. 

1 Introduction 

The following problem was proposed to me by G.X. Wu at the 1996 Workshop in Hamburg . A sub- 
merged sphere of radius a is placed with its centre at depth / midway between parallel vertical walls 
x = ±£, where I > a, and performs prescribed simple harmonic oscillations of angular frequency OJ and 
small amplitude. How can the motion be calculated ? Problems of this type in two dimensions are well 
understood , how can the methods be generalized ? It will be seen that the three-dimensional solution 
involves much mathematical analysis, and only an outline will be given here. 

Rectangular cartesian axes (x, y, z) are taken with the origin 0 in the mean free surface y = 0, where y 
increases with depth. Let the corresponding velocity potential be denoted by <f>(x,y, z)exp(—iut). (The 
time-factor exp(—iwi) will henceforth be omitted. ) Then the governing equation is 

/a2       d2      d2 \   , 

with the boundary condition 

K4> + j£ = 0 on y = 0, (1.2) 

where K = u>2/g, and the boundary condition 

deb 
/=0oni = ±l (1.3) 
ox 

We take spherical polar coordinates (r, 9, a) about the centre (0, /, 0) of the sphere, such that 

x — r sin 0 sin a, y = f + r cos 9, z = r sin 0 cos a,   where r   — x2 + (y — f)2 + z2. (1-4) 

The boundary condition on the sphere r = a is assumed to be of the form 

fii oo       n 

—    =    U(6,a) = ]£ ]T t^P™(cos6>)cosma, say , (1.5) 
n=0 m=0 

where U(6, a) is a prescribed even function of a, and the coefficients tr™ are therefore assumed known. 
(Odd functions of a can be treated in the same way.) The functions P™ are the usual associated 
Legendre functions, see [Bateman. I, 1953]. There is also a radiation condition at infinity: the waves 
travel outwards towards z = ±oo. 

2 Outline of the solution 

The solution will make use of the method of multipoles. A typical solution of Laplace's equation singular 
at the centre of the sphere is r_n_1PJJl(cos 9) cos ma. In the absence of side walls the multipole potential 
(including the image in the free surface) can be shown to be 

(G™)oo    -    G™(*,y, 3;0,/,0;oo) 
P£(cos0) (-1)"     f°°k + K 

r-n+l 
cosma + -± '—I     —^—kne-kiy+f)Jm(kp)dkcosma,        (2.1) 

(n - m)\ J0     k - A 
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where Jm(Z) is the usual Bessel function of order m, see [Bateman, II 1953], and where the radiation 
Tonlition is satisfied if the contour of integration passes below the pole * = A. When side walls axe 
present then each multipole (2.1) has an image potential (GJTW »n the S1de walls. We wnte 

(G™)l = (G™)00 + (GZ)image, 

Evidently near the centre of the sphere the image potential (G?),mage must have an expansion of the 

form .. 00       r> /n n\ 

E E a(n'm; N'M) r" p*(cos 6) cos Ma' 
N=0 M=0 

For the solution of our boundary-value problem the coefficients a(n,m;N,M) in (2.2) must,he known 
expl citly and our recent work has shown that the coefficients in this expansion can actually be found 
La form involving single and double integrals. We shall now assume (and it should not be difficult to 

prove) that the solution of our problem can be expressed as the sum 

00      n .       , 

<£(*,</,*) = E E C(n,m)a"+1(G™),, (2-3) 
n=0 m=0 

where the coefficients C(n,m) are to be determined from the boundary condition on the sphere. This 
will be satisfied if the coefficients C(n, m) satisfy a doubly infinite system of the form 

C(n,m)+± t ^)N+n+1Kn,m:N,M)C(N,M) = U-, (2-4) 

and in this system the coefficients «„, m; N, M) are known explicitly as double «n«J^^^ 
coefficients depend on n, m, N and M, and also on the parameters A / and f/l, and it ~^C°^ 
them numerically. The doubly-infinite system (2.4 must then be solved for each set of values otthfi 
!hree p—s"*/,//* ^/a/L It should not be difficult to show that th,;system ha, ^solution m 
principle, except possibly at a certain discrete set of frequencies corresponding to trapped modes. 

3    Construction of the multipole potentials (G™)e 

In the construction of the multipoles (G™ )t an important part is played by various forms ^^ H-elock 
wavemaker theory, see [Havelock, 1929].  Havelock expansions axe expansions in which the variation 

the y-direction is expressed in the form 

/(y) = Ae~Ky + f    B{k)(k cos ky - K sin ky) dk, C3-1) 
Jo 

where /-oo /„ „•, 
A = 2K        f(y)e-h*dy, (3~) 

Jo 

D(i,\    /    f (y)(k cos ky-Ksin ky)dy. (3-3) 

This expansion is associated with the boundary condition (1.2) . Here we shall ^J^J^ 
n = m=0 which is typical, and we shall write G« and Gt in place of (Gg)oo and (G0), . As has already 

been seen in (2.1), we find that 

where it can be shown that the radiation condition is satisfied if the path of integration parses below 
TheTole * = K. We also need two Havelock expansions for Gx in rectangular coordinates. One of 
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is valid for x > 0, the other is valid for x < 0. These can be found explicitly, either by deforming the 
contour of integration in (3.4) or by using Green's Theorem. It is found that 

/OO J 

x (v* -K*y/> exPH*l("2 - tf2)1/2}e-'"z (3.5) 

2   t°°      dk 
+    ~ /     —ö ^(kcosky — Ksinky)(kcoskf — Ksinkf) x 

■K J0    A
2+F 

X /I (.*+%/» ^-W^ + fc2)1/2}e-'"r' (3-6) 
where the contour of integration in (3.5) passes above k = — K and below k = K. We next suppose that 
side walls are present. Then the image potential must have a Havelock expansion of the form 

/OO 

dv A{v) coshM*2 - A2)1'2 }e~ivz (3-7) 
-OO 

rt        i*00 /»OO 

+    -/    dk(k cos ky-K sin ky) /     di/ B(jfc,i/) cosher/2 + Jfe2)1/2}c-€l", 
T JO J-oo 

(3.8) 

because it is clearly an even function of x. From the boundary condition 

—(Goo(i) + Gimage(x)) = 0 on X = £ 

we can now find A(v) and B(k, v), using the Havelock expansions (3.5) and (3.6) for Goo- We find that 

(v2 - K2fl2A{v){sinhl{v2 - A'2)1/2} - 2üTe-*'exp{-*(i/2 - A2)1'2} = 0, (3.9) 

and 

B(k, v)(v2 + A:2)1/2 sinh{^2 + k2fl2} - kCOSk^~+
KJhlkf exp{-%2 + k2f'2} = 0. (3.10) 

This completes the construction of the potential Ge- 

4    Expansion near the centre of the sphere 
The integrals (3.7) and (3.8) are typically of the form 

I(x, y,z)=  / A(v) exp{£(v)x + rj(v)y + C(v)z} dv, (4.1) 

where the integrals may be single or double integrals, and where 

since the integral satisfies Laplace's equation. In the integral (4.1) we write 

£ = ii](v) cos ß(v), (,* = ii](v) sin ß(v) and x = r sin 0 sina,y = / + r cos 0,2 = r sin0cos a.        (4.2) 

Then 

I(x,y,z) =  I A(v)exp(Tj(v)f)exp(qr{cos9+ isin6sin(a +ß(v))}) dv. (4.3) 

In this integral we write 

oo    /      \JV 

exp(»7r{cos0 + ism0sin(a + /?(u))}) = ]T ^-{cos0 + isin0sin(a + ß(v))}N, (4.4) 
N=0 : 
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and in the series we use the known identity 

(cos 6 + i sin d cos(a + ß))N 

=    PN(cosO) 

4-    2Vf-if — P£?(cos0)(cos Ma cos Mß- sin Ma sin Mß). (4.5) 

Af=l v 

This argument shows that the coefficient of rNP#(cos0) cos Ma in (2.2) involves the integral 

/ A(v) exp{r)(v)f}{^(v)}N cos Mß(v) dv. 

In this way all the coefficients can be determined, and the boundary condition on the sphere can then 

be applied. 

5    Discussion 
There are still many aspects which we have not discussed. We mention only a few. 

(1) The precise form of the coefficients 6(n,m : N,M) in equation (2.4) must be studied; these in- 
volve six parameters . Calculations show that these coefficients actually depend on fewer parameters. 
Similarly in two dimensions the parameters depend on three parameters, not on four. 

(2) For \z\ > a there must be a modal expansion in each direction, of the form 

oo 

(G™)f = ^(y--;0^) + Ecosf^*«(y'2;s;^' (5'1} 

3=1 

where the functions 4™(y, z; s; t) must be found. It has been shown that these functions have Havelock 
expansions in the y-direction and can be found either by deformation of contours or by Green s Theorem. 

(3) The method can readily be extended to the general case where the centre of the sphere is not 

necessarily midway between the vertical walls. 

(4) We have not discussed the expansion of G^ near the sphere. This presents little difficulty We 
have already noted that the calculation of the expansion for the general multipole potential (G„ )/ is 
similar to the calculation for the source potential, given above. 
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On modeling nonlinear water waves 
by Theodore Yaotsu Wu 

California Institute of Technology, Pasadena, CA 91125, U.S.A. 

1 Introduction 

My interest in studying nonlinear dispersive long waves has an origin in the stimuli I received from 
Professor Georg Weinblum during my sabbatical visit in 1964-65 at the Schiffbau Instituet. Ap- 
parently, there had been in existence among a handful of the master experimentalists a puzzle that 
in conducting towing tank tests with ship models towed at transcritical velocities in shallow water, 
perplexing difficulties were invariably encountered in attempt to attain data with the ususal repeata- 
bility commonly known to their previous experience with noncritical cases. Subsequent studies later 
led to the interesting discoveries reported by Huang et al. (1982) and Wu & Wu (1982). 

In modeling weakly nonlinear and weakly dispersive long waves, it has been a common practice 

to taking two key parameters, namely 

e = h/\ , a = a/h, (1) 

for characterising waves of typical length A, amplitude a in water of undisturbed depth h. In this 
respect, it is so well said by Julian Cole (1968) that theories can be sought to show how different 
expansions based on different parametric regimes lead to different approximate equations. 

In making attempts to explore and determine the basic mechanism underlying the remarkable 
phenomenon of periodic generation of upstream-radiating solitons by disturbances moving steadily 
at transcritical velocity, efforts have been devoted to examine the effects of theoreticl models of 
accuracy higher than that of Boussinesq's equations, as demonstrated by a previous study by Wu 
k Zhang (1996). To facilitate further studies, this work is an attempt to establish an exact model 
for describing propagation and generaton of nonlinear dispersive gravity-capillary waves of arbitrary 
amplitude on water of uniform depth. With this study, I wish to join my colleagues to commemorate 

the Centennial Celebration of Georg Weinblum. 

2 The basic equations 
Here we consider the class of three-dimensional long waves on a layer of water of uniform depth 
h, when undisturbed. The fluid moving with velocity (u,w) = (u,v,w) occupies the flow field in 
— h < z < ((r,t), where z = -h is a rigid horizontal bottom, ((r,t) is the water surface elevation 
from the undisturbed plane at z = 0, measured at the horizontal position vector r = (x,y,0) at time 
t, and r is unbounded, \r\ < oo. Assuming the fluid incompressible, the velocity field irrotational, 
so the motion satisfies the Euler equations of continuity, horizontal and vertical momentum: 

V-u + wz   =   0, (2) 

du _ 1^ /oX 
— = ut + u ■ Vu + wuz   =   --Vp, [A) 
dt                                                  p 

dw _ 1 ,.s 
— = wt + u-Vw + wwz   =   —pz - g, (4) 
dt                                                     p 

where V = (dx,dy,0), (8X = d/dx, etc.) is the horizontal projection of the vector gradient operator, 
p is the pressure, p the density and g the gravitational acceleration.   Here, the subscripts t and z 
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denote differentiation. The boundary conditions are 

w = D(             {D = dt + u-V, on z = C(r,t)),                        (5) 

p = Pa(r,t) - /ryV • n              (z = ({r,t)), (6) 

w = 0              (z = -h), (7) 

where pa(r,t) is a given external pressure disturbance gaged over the constant basic pressure (which 
is zero), p~f is the uniform surface tension and n is the outward unit vector normal to the water 
surface. 

The continuity equation (1) can be averaged over the water column -h < z < ( under the 
kinematic boundary conditions (5) and (7), yielding the depth-mean continuity equation (Wu 1979, 

1981), 

m + W-{riü)   =   0     fo = Ä + C), (8) 

where the quantities with an overhead bar denote their depth-mean, 

7(r,*) = - /C f{r,z,t)dz     fo = Ä + C), (9) 
7] J-h 

On the other hand, the horizontal momentum equation can be converted into an equation for 
(A, C) where ü is the horizontal velocity at the water surface. For an arbitrary flow variable /(r, z, <), 
it assumes its free surface value 

/(r, C(r,«),*) = /(M), (10) 

say.  Clearly, the rates of variation of these functions with respect to r and t satisfy the following 

relations 

dtf = dj + ?f\dt(       (* = C), (n) 
Oz K 

V/ = V/ + |^|VC       (z = Q. (12) 
oz K 

iFvom these fundamental relations it immediately follows that we have the theorem (see e.g.  Choi 

1995) 

^1     =Df       (D = dt + u-V) (13) 
at 1z=C 

Making use of these formulas, we readily deduce from (2)-(4) the result 

DÜ + [g{t) + D2(]V( = --VPa + 7V • n (14) 

Here, we have extended our consideration to include the more general case of Faraday's waves pro- 
duced in a horizontal water tank under resonant vibration, a case which is equivalent to having 
a time-dependent gravity acceleration with refenence to the tank frame. This resulting equation, 
though superficially involving only (w,C), actually has incorporated the vertical momentum equa- 
tion as well as the kinematic and dynamic conditions at the free surface to yield this equation of 
overall equilibrium. Furthermore, it is exact. 

Thus, we have obtained two exact equations, one being the depth-mean continuity quation (8) 
for (w, C), and the other the momentum equation (14) for (u, (). This system of equations, however, 
is not closed because there are more unknown variables than the number of equations. Closure of 
the system can be achieved by further seeking the general solution to the field equation satisfied by 
the velocity potentail so as to provide an exact relation between the two sets of dependent variables, 
as will be shown below. 
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3    Nonlinear dispersive water wave models 
Since the two new equations for the continuity and momentum are exact, we may ignore the nonlin- 
earity parameter a by regarding it as arbitrary and consider first the special case of long waves by 
assuming the dispersion parameter e = h/\ to be small. (It turns out that this assumption can also 
be eventually relaxed.) 

Thus, with the vertical length scaled by /i, horizontal length by A, the three-dimensional Laplace 
equation satisfied by the velocity potential <j> involves the parameter e 

</>,, + e2VV = 0 (-1 <*<()• (15) 

Further, with <f> scaled by cA, where c = y/gh is the linear wave speed, <f> satisfying (12) may assume 
an expansion of the form 

oo oo    / i \n 

4>{r, z, t- a, e) = a £ e2n$n(r, *,t) = « E VM K1 + ZT ^M^t] e). (16) 
n=0 n=0   \Zn)- 

Here, </>, jointly with the horizontal velocity u (scaled by c) and the elevation ( (scaled by h) 
are assumed to be of order a, which is arbitrary. The function </>0(r,z, i; e), which is the only 
unknown involved in <j>, may depend on the parameter e resulting from appropriate regroupings of 
the complimentary solutions of the higher-order equations such that <j>0(r,z,t',e) = 0(1) as e —► 0. 
This regrouping is admissible provided the medium is uniform (h =const.) and unbounded, in 
the absence of any boundary effects of specific order in magnitude. From this expansion of (/>, we 
deduce the horizontal and vertical velocity components, u and w, both scaled by c, from u = V(j>, 
w = e~1d<f)/dz, giving 

oo oo    / 1 \n 

u   =   aEe2"m = Q£^r[£(l + «fVte+1Mr1t;«)1 (17) 
n=0 n=0   \Zn)- 

oo 

W 

oo        f_i\n 

a Y: z2n-Xwn = a E T^TH K1 + Z^2n~l V^M*. *; ^ (18) 
n=l n=l V / 

where u0(r,t) = V^>0- Now, the horizontal velocity at the bottom plane (z = —1) is simply 

au0 = aV</>0. (19) 

We further have the depth-mean velocity u and the on-surface velocity ü as 

oo      (_-\\n 

*   -   «E^fWl + OfV--., (20) 
oo   /_i\n 

« = «E77rTr[e(i + C)]2"v2^o. (2i) 
n=o (2n) 

The present solution is of significance in drawing the conclusion that if u0 is analytic everywhere 
in the flow domain, the above series are all convergent within their radius of convergence, which is 
infinite. In such circumstances, the last two equations then define the functions 

ü = ü(u0,Q        and        ü = ii(u0,Q (22) 

as analytic within the flow domain. Finally, from this result we may derive any one of the three basic 
sets of velocities, explicitly as a function of another by means of series inversion, the resulting series 
being noted to possess a finite radius of convergence. 
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In summary, we have now obtained three sets of models for describing nonlinear dispersive gravity- 
capillary waves on water of uniform depth in terms of the three sets of basic variables. In principle, 
these three models are equivalent in being exact for predicting this class of waves without limitation 
to the order of nonlinearity and dispersion, except that the fluid is taken to be incompressible and 
the flow, irrotational. For numerical computation based on these models, effective algorithms are 
being investigated. For the special case of nonlinear waves under small dispersive effects represented 

ith the series truncated to some high orders, reference is made to Wu and Zhang (1996). wi 
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