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SLENDER BODY APPROXIMATION FOR YAW VELOCITY TERMS
IN THE WAVE DRIFT DAMPING MATRIX

J.A.P.Aranha & M.R.Martins
Dep. of Naval Eng., USP, CP61548, S.P., Brazil

1. INTRODUCTION

Consider a slender ship with length L and beam B (¢ = B/L << 1) and suppose a
coordinated system with the x-axis being coincident with the longitudinal axis while the z-axis is
vertical, pointing upwards, the origin of the system being at the intersection of the free surface with
the mid section; the ship cross section is defined by the contour line 8C(x) and the ship water line
by OW. Points in 6C(x) are defined by the radius vector

r, =y j+zk €dC(x). 1)

Let pao(X,ro) be the steady second order pressure field due to a harmonic wave with
amnlitude A, frequency @ and incident in the B direction; one assumes here that pyo(¥.re) includes
Dirac 3-functions at the points where dC(x) intersects &W, these concentrated forces per unit of
length being related with the change in the wetted surface of the ship. The sectional steady drift
coeflicients are then defined by the expressions

d, (x;0,B) n (x,r.)
d,(x0.B) = [ pp(xr) n,(xr) 1doC(X), @
nz(X;m,B) octx) _chy(x’rc)

where (n,n,) are components of the normal n; defining the moments of (2) by the expressions

Mx,j L2 dx(x;(l),B)

MYJ = IXJ' dy(x;mQB) dx,j=0,1,29 (3)
M, ™ (n(x0,p)

the generalized steady drift force vector in the horizontal plane has obviously the components



D, (@,B) =M, (0,B);
D, (0,p) =M, (o.B); C))
Nz(m’ﬁ) = Mz,O(m’B) + My,l((n’B)‘

The intention now is to express all elements of the Wave Drift Damping matrix, including
the ones related to the yaw motion, in terms of the moments {Myj; Myj; M_;}. In the present study
the influence of the coupling between the second order steady potential and the slow ship motion

will not be considered, although it can be obtained by integration of quadratic functions of the first
order (linear) solution.

2. THE YAW TERMS IN WDD MATRIX

The first column of the WDD matrix, the one related with the surge velocity U,, is exactly
given by the expression

B, (@,B) 5 5 D, (®,B)
B, (@,8)} = 9[0) cosp -~ 2sin 2 + 4cosﬁ]- D,(@.B)(; (53)
B¢, (@,8) N,(®,B)
the second column, related to the sway velocity U, is given by
B, (@,8) , 5 D, (@,8)
B,,(@,B)} = 9[«) sinﬂgm—+2cosﬁ-56+4sinﬂ} D, (@,8)}, (5b)
Bg, (@,B) N,(»,B)

both results being proven in Aranha (1996).
Observing the essentially two-dimensional feature of the wave diffraction by a slender body,

one can introduce here, by inspection, the sectional WDD coefficients influenced by the sway
velocity, given by (see (Sb))

b,,(x;0,B) 5 5 d,‘(X;O),B)
b, (x;0,B) =9-[(o sinB-ég+2cosB-aE+4sinB}- d, (x;0,p) . (5¢)
b, (x;0,B) n,(x;0,p)

Expression (5¢) can be also proven exactly, as a blend of a two-dimensional result derived in
Aranha (1994) and the three dimensional one given in Aranha (1996), and it can be used to obtain a
slender body approximation for the elements of the WDD matrix related with the yaw motion. In



fact, for a slender body the yaw motion is seen, at the cross section x, as being a sway motion with

amplitude x.Q, Q being the yaw angular velocity; it turns out that the related seccional WDD
coefficients are then given by

b‘ls(X;maﬁ) =X-b),(%0,8);
b6 (%0,8) = x- by, (x;0,B); (5d)
b (X30,B) = X-bg(x;0,B).

Integrating (5d) along the ship length, observing the contribution of the sway term bzs to the
yaw moment and ignoring terms of relative order €2, one obtains finally, with the help of (3), that:

Bis(0,B) P 5 M,,(@.B)
B, (0,B) =-"l[m smﬂ$+2cosp£+4sinls]- M, ,(@.B). 6)
Bgs(@,B) M, ,(o,B)

3. GEOMETRIC OPTICS APPROXIMATION

The slender body approximation (6) can be checked directly against numerical results, as the
ones derived by Grue & Palm (1996), for instance. While waiting the slender body code that allows
one to determine the moments {M,j; Myj; My;}, one presents here analytical expressions for the
high ﬁ'equency limit, where geometric optics approximation can be used. These limits have an
importance in themselves, since they are analytic and hold in a range of frequencies where numerical
results are most questionable.

Consider a wave incident on a vertical wall with o being the angle between the wave

direction and the normal n. It is trivial to show in this case that the elementary drift force on an
element ds of the wall is given by

dF=%pgAzooszands.

In high frequency one can consider the body as if it were a vertical cylinder infinitely long
with cross section coincident with the water line 8W. Assuming symmetry with respect to y-axis
and that r(x) is the half beam of the body, the transition between the “illuminated” and “shadow”
zones in the geometric optics limit is defined by a single variable x«(B), given by the expression



Max |r'(x)| < |tanB| => x,(B) = %;
Max |r'(x)| > |tanB| = |r'(x, (B))| =tanB].

(7a)

Introducing the variables {& = 2x/L; £«(B) = 2x(B)/L} and the integrals

Er'(8)
b= j J1+(r'(8)) &
§o(B) 1

')
S,B)= l ——d£; C,(B) = I 23 g 7b

&) §2

_Ere
= dé; C >
c!1+(r’(§»2 5 GO %(I,,)H( o

The following expressions are then obtained in the high frequency limit:

(70)
A B 1
By -;ﬁﬁ?——( L) [5,(@ sing+C.(® cost

B =5 =2( %) [54(0) siap + Co(®) cosf]

Table (1) compares (7c) with high frequency numerical results obtained by Grue & Palm
(1996) for different values of B.

TABLE (1):Comparision between numerical results for KL.=16 and (7¢)

* % *



DISCUSSION

Eatock Taylor R.: I do not think one should try to draw conclusions about the
reliability of your drift damping formula for moving bodies by refering to the slow
convergence of results for a truncated cylinder. It is well known that the sharp
corners in this case lead to slow convergence, particularly in the surge-heave
coupling coefficient which is proportional to the slow forward speed (see the 1993
OTC paper by Teng and myself). The problem vanishes when a small corner radius
is used, but the hemisphere analysed by John Grue is a much better test case than

- the truncated cylinder in the context of this controversy.

Aranha J.: I agree, in some aspect at least, with you, since the cylinder problem
seems to be plagued with small numerical imprecisions to which the WDD formula
is very sensitive. If I recall well, Kinoshita & al. results, shown in the presentation,
were obtained by a quasi-analytic method and the convergence does not seem to
be very good when the cylinder is free to oscillate.

However, the cylinder problem is one of the most obvious in our field and it seems
natural, in this context, to look at it to confirm the validity of the formula.

With respect to your suggestion, that it would be better to look to the sphere,
Grue's results, shown in the conference, together with a similar result, shown in my
JFM (1996) paper, point both to a perfect agreement between the WDD formula
and numerical results.

Grue J.: Your abstract and presentation are based on the work Aranha (1996)
JFM, which you claim provides a formula for wave drift damping based on strict
proof. First you find an expression for the far-field amplitude of the diffracted-
radiated waves (with current), next conservation of momentum is applied to find
the force.

Denote the far-field amplitude of the diffracted-radiated waves by H,, which may
be expanded by H, =H,+t H|, where 1=U w/g.

Consider the difference between your and our formulae for H;. I have tried to
show that this difference is zero, however, it is generally not. The following figure
illustrates this. The body is a freely floating hemisphere moving with small forward
speed. Dashed line: Aranha (1996), solid line: Nossen et al. (1991).

In this example your and our wave drift damping coefficients (B;;) are in close
agreement, see figure la. For other geometries, e.g. ships, there is a general
disagreement, of the order 100 %, except possibly for long waves.



Bi1/pgA?a

LT g

|H'|/v/a

[ P ] {} ;“( A s ’LQ‘
T i)xw( L [\ )
Bimsse=t}: For a half immersed sphere, 400 panels on Sp and 880 panels on Sg, in head
waves, the figures shows: (a): Bj; computed by complete theory (solid line), and Aranha’s

formulae (dashed line). (b): The far-field amplitude function H! for translatory motion at
ka = 0.9, computed by complete theory (solid line), and Aranha’s theory (dashed line).



Aranha J.: Two things must be said about this:

1) I should thank J. Grue since he provided just another example of a 3D-body,
free to oscillate, where the agreement between the numerical results and WDD
formula is perfect.

2) With respect to the behavior of the H;(8) function one has obviously a
misunderstanding since, otherwise, how could one obtain a complete agreement in
the force computation with a complete disagreement in the far-field behavior? The
point is that in my work the far-field is well behaved, it does not have the secular
term that Grue's approach has (recall Malenica in the 10th IWWWFB, Oxford,
1995).

If Grue intends to make a comparison, 1t is not enough to differentiate the A,(0)
coefficient with respect to U ; it is necessary to differentiate also the wavenumber,
that depends also on U. In this way he would obtain secular terms in my
expression that should be matched to his secular terms.

The way he has done compares two distinct things and it has no relevance for the
discussion.






A time domain method to compute transient non linear hydrodynamic
flows

M. BA, A.FARCY (ENSMA) and M. GUILBAUD, (CEAT, Université de Poitiers)
Laboratoire d’Etudes Aérodynamiques-URA CNRS n°191,
43 rue de I'Aérodrome, 86036 Poitiers CEDEX, FRANCE

Introduction

Today, most of the numerical codes for the computations of ship seakeeping or for the diffrac-
tion-radiation motions for platforms are solved in the frequency domain using a linear form of
the free surface boundary conditions, called the Neumann-Kelvin approach. The water can be
considered as incompressible and inviscid and the flow around the body as irrotationnal except
on some lines or surfaces, so the Laplace equation is valid in the fluid domain. These problems
can be solved by panel methods using either Rankine (aerodynamic) or Kelvin singularities. For
more complicated (non harmonic) motions, the time domain has to be chosen instead of the
frequency one and in his case, the Green’s function is so complicated (Newman, 1995, Mas et
Clément, 1995) that no computational codes have been developed up to day. But these line-
arized approaches are limited to small harmonic motions with mean constant forward speed
and the body condition has to be satisfied on the mean position of the exact body surface. For
motions with larger amplitudes, this simplification is no more possible and the body condition
has to be satisfied of the body exact position, implying also that the free surface conditions
cannot more be linearized. So these previous problems are fully non linear and the flow
analysis is more easily done in the time domain.

If less developed than the computations in the frequency domain, the calculations using the
time domain (cf. Beck ,1994 for review) become more popular with the development of
computers. We present here the first results obtained with a non linear method to compute
transient free surface flows. To reduce the computational time, the surface source distribution
on the free surface and on the body are replaced by source points desingularized, as proposed
by Cao et al.(1990). To check the validity of the method, computations are presented on the
transient flow around a submerged source with impulsive start. The results are compared with

those of linearised computations. Finally some results on a submerged ellipsoid are also
presented.

Formulation of the non linear problem

The flow of an ideal and incompressible fluid of infinite depth is considered with the undis-
turbed free surface located in the plane z=0. The frame of co-ordinates uses the z-axis positive
upwards and the x-axis pointing in the direction of the mean velocity of the body. The surface
tension is neglected. As the problem starts from rest, the flow is irrotational implying the
existence of a velocity potential ¢, satisfying the Laplace equation in the fluid domain. This
potential must also satisfy the body condition on the surface Sp of the body :

X _5 .a
=V,-n on S (1),

—

where 7 is the unit normal vector directed into the fluid and VE is the local velocity of the

body. A condition of non perturbation when the depth of immersion goes to infinity must also
be satisfied. On the instantaneous free surface, the potential must also satisfy both the kine-

matic and the dynamic boundary conditions ; if the free surface elevation is given by z=E(x,y,t),
those conditions are given by :

OE _0p OEOp OE ¢ _ _
57 o”z+0”x§x+ﬁy§y_0 onz—E(x,y,z,t)., 2)



op 1
— + —_—

ot 2
Finally, the fluid disturbance must vanish at infinity, and the following initial conditions have
also to be satisfied :

$=0 for <0 in the whole fluid domain,and E(x,y,t)=0 for <0 (4).
The two previous conditions (2) and (3) can be written using the material derivatives, enabling
to compute the variation of a physical quantity following a fluid particle and leading to the
kinematic condition as :

2
+gE=0onz= E(x,y,t) (3).

grad ¢

DX, grad¢ (5

where X ,,(x(f), y(t),z(t),t) is the location of a fluid particle on the free surface. The dynamic

condition can be written as :
Bq_ﬁ =—gF + 1 ad ¢ d¢ (6)
Dt~ 2 & gra '

Method of resolution

At each time step, the potential is assumed to be known on the free surface, the real location of
which being also known. Conditions (4) is used at the beginning of this time marching pro-
cedure. For the next time step, equation (5) is used to compute the new free surface elevation
and equation (6) to obtain the new value of the potential on the free surface. So, at each time
step, a new mixed problem with a Neumann condition on the body (known normal potential
derivative) and a Dirichlet problem on the free surface (known potential) has to be solved. To
satisfy the boundary conditions, the body is divided into quadrilateral panels and a part of the
free surface, into rectangular panels. To reduce the computational time, point sources are dis-
tributed on the free surface instead of using surface source distribution on panels. The potential
and the velocity induced by these point sources being singular when the collocation points is
located on source positions, a desingularised technique has been followed (Cao et al., 1990 or
Beck, 1994). So point sources are located into the body or above the free surface. The source
displacement, with distance Lq, is done along the normal to the panel. The choice of Ly is
difficult and the values do not be too large or too small in order to obtain correct results. Beck
(1994) has proposed as optimum value Ls=(Sr)"* where S is the area of the panel containing
the source on the body or the mean value of the areas of the four panels surrounding a source
on the free surface.

Applications

Wave field due to an submerged doublet with a constant mean forward speed

The flow generated by the impulsive start of a doublet (source and sink of same intensity
located 0.1m apart in the x direction) from rest. The forward speed and doublet intensity are
quickly set to their steady values U, and Gousing the following relations:

V(t)= Uw(l - e“") and o(t) =0, (1 - e*“) .

This doublet travels along an axis parallel to the x axis, 1mm deep under the free surface. The
initial mesh on the free surface is located at 0<y<20m and -7.5<x<7.5m and is subdivided into
a mesh of 40x30 panels(figure 1). The nodes are equidistant in the x direction but in the y one,
the distance between two nodes increases of 10%, both in the positive and negative y direction.
The doublet intensity, o, is assumed to be known, the unknowns for this problem are the
intensities of the point sources on the free surface. These values are computed by writing that
the potential is given on the free surface. For each time step, a new location of the free surface
and the new distribution of the potential for the next time step are obtained from equations (5)

10



and (6). In these equations, the right hand sides are analytically computed because point
sources are used; the time derivatives in the left hand sides are computed by a fourth order
Runge-Kutta method.

On figure 2, the free surface elevation above the doublet is plotted for 3 values of o, (0.05-
0.75 and 0.9) for a fully converged computations (t=40s), with a time step At=0.2s. The results
obtained with the use of the steady forward speed Green’s function, so corresponding to a
linear and steady computation, are also plotted. It can be observed on this plot that, as the
doublet intensity increases, the non linear wave amplitudes become greater than that the ones
computed by the linear method. The difference is maximum for the first crest above the dou-
blet. The evolution of the free surface is presented on the figure 3 (6,=0.05) and for four val-
ues of the time t=4-10-16 and 25s, showing the evolution of the unsteady solution towards the
steady one.

Wave field due to a submerged ellipsoid starting from rest

- Computations have been done on a ellipsoid with horizontal axis a=5m and lateral one, b=1m.
The horizontal axis is located at the distance h=1.586m under the undisturbed free surface. In
this case, the mesh on the free surface is made of square panels (40 in the x direction and 20 in
the lateral one). The singularity intensities on the body are obtained from the body condition
(eq. 2). The expression proposed by Beck(1994) for the desingularisation distance has been
modified at both longitudinal ends of the ellipsoid. The evolution of the free surface with time
is presented on figure 4 for a Froude number based on the depth of immersion h,

F=U_/ .\ gh=126, for 4 time values. After the impulsive start, t=1.8s, a crest can be ob-

served on front part of the body and the level decreases on the rear part. As the time increases,
the wave becomes steepest and a second crest appears immediately upstream of the body. At
t=12s, the shape of the first wave become smoother and the second wave propagates with a V-
shape; at the same time, a second trough and a third crest appears. A second V-shape wave
appears and become important at t=30s, but its amplitude is weaker than the one of the first
wave. Finally at t=45s, a quasi-steady state is obtained.

Conclusion

First results obtained in the time domain using a non linear method to compute transient flows
close to a free surface are presented. The method uses desingularized source points, on the free
surface and on the body, modified at both ends of bodies, to avoid numerical difficulties,
keeping relatively low the computational time. The converged results have been first checked
for a submerged doublet with known strength by comparing with steady calculations achieved
with a panel method using the linear steady Green's function, showing good agreement. The
evolution of the free surface with time has been also studied. The second application presented
concerns a submerged ellipsoid. Work is on progress to optimise the computational time and to
extent the validity of the method to surface-piercing bodies.
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Time Domain Calculations in Finite Water Depth

A. K. Bratland® F. T. Korsmeyer! J. N. Newman?

1 Introduction

Hydrodynamic computations in the time domain using a free-surface Green function have been presented in
numerous papers [Bingham et al. 1994, Lin & Yue 1990, Beck & Magee 1990]. This abstract demonstrates
the extension of this type of analysis to finite depth. This transient approach may be used to compute the
first-order, frequency-domain hydrodynamic coefficients. We present these here to validate the method by

- comparison to computations made directly in the frequency domain for zero speed. With the addition of
-forward speed to the analysis the first-order steady force becomes important. It has been shown that this

steady force (with components referred to as resistance, sinkage, and trim) is the limit as time becomes
infinite of the force computed when the body is impulsively accelerated in surge. Since the prediction of
squat (maximum draught; sinkage plus trim) is particularly important in finite depth, we present these
results for various depth-based Froude numbers to demonstrate the forward-speed analysis.

The finite-depth analysis is carried out similarly to our previous infinite-depth approach. The potential
problem is cast as a boundary integral equation. The only boundary appearing in this equation is the body
boundary itself due to the choice of a Green function which satisfies the (transient) free-surface condition
and, in the present work, the bottom (no-flux) boundary condition. One advantage of the time-domain
approach is that the same Green function can be used both for moving-ship problems with nonzero forward
velocity U and for fixed structures where U = 0.

2 The Green function

The appropriate Green function may be written as the sum of a Rankine and a wave part, which we define
in the forms

1 1 o0 e—kh
@1, 1 [ e*
G St 2/0 o Fh cosh k(z + h) cosh k(c + h)Jo(kR)dk 1)
Gv =2 / _VOEGhER o ok tanh BR) cosh k(z + h) cosh k(e + h)Jo(kR)dk )
o coshkhsinhkh

[Newman 1992] describes effective algorithms for the integral in (1), and outlines the fundamental diffi-
culties associated with the efficient evaluation of (2). The approach which we have implemented here is to ex-
press (2) as the sum of two terms involving the normalized function F(X, V,T), as defined by [Newman 1992]
equation 25, and then to consider the difference function F — F, where F., can be evaluated from the cor-
responding infinite-depth Green function. Then we expand this difference function in triple Chebyshev
expansions, in unit squares of the rectangular domain 0 < X < 16 and 0 < T < 33. (Physically, the
variables X and T correspond to the horizontal distance from the source to the field point, and the time ¢,
nondimensionalized in terms of the depth h and gravity g.) The coefficients of these Chebyshev expansions
are pre-evaluated, and stored for routine use. At each time step of the convolution, T =constant and the
triple expansions are reduced to double expansions in the normalized horizontal and vertical coordinates X
and V, which are then evaluated for each combination of source and field points.

*Techpower, Norway
tResearch Laboratory of Electronics, Massachusetts Institute of Technology
{Department of Ocean Engineering, Massachusetts Institute of Technology
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One point to note is the large-time asymptotic behavior of the Green function, since this affects the
corresponding behavior of computed hydrodynamic forces. In the infinite-depth case (2) is exponentially
small, but for h < co G¥ — O(1/t). When U # 0, and coordinates are used which move with the ship,
G¥ — 01/t + Osin(w.t)/t, where w, denotes the critical frequency. This is given in the infinite-depth limit
by 7. = w.U/g = 1/4, while the variation of 7. with depth is shown in Figure 5.

3 Results

For zero speed we compare Fourier-transformed time-domain computations to computations made directly
in the frequency domain with a similar boundary integral method, for the surge and heave motions of a
hemisphere. From the asymptotic behavior of the Green function it is clear that the time record has to
be longer for finite water depth than infinite water depth. Alternatively we could approximate the large
time behavior based on the asymptotic analysis. For the added-mass and damping coefficients presented in
Figure 1 we have calculated to a maximum time of T=25 and assumed the impulse-response function to be
zero beyond that. The results from the frequency-domain code (“FD”) and time-domain code (“TD”) agree
within graphical accuracy. At low frequency, the heave added-mass rises steeply, in a manner which appears
consistent with the the result of [Yeung 1981] that A3z — oo asw — 0. Figure 2 shows the corresponding
results for the exciting force, with similar confirmation from the frequency-domain computations.

The large time limit of the radiation potential forced by impulsive surge acceleration, ¢", can be con-
sidered as the steady potential. That means the steady forces, with Neumann-Kelvin linearization, can be
written as the large time limit of

R = [[ ,, 2 s 3)

Figure 3 shows computations of F3(t) and F(t) for the Wigley hull. By applying the equations of hydrostatic
equilibrium

Ca3z3 + Caszs F3

Cszzz+ Csszs = Fs

the “steady” sinkage and trim are found. The sinkage is shown in Figure 4. The sinkage increases with
decreasing water depth, or with increasing values of the Froude number Fpp = T '

For large values of time, the transient results oscillate at the critical frequency, with slowly-decreasing
amplitude, about the steady limiting values. While computations at higher depth-based Froude number are
of interest, the finite computational domain for the evaluation of the Green function described in §2, poses a
restriction. Work is presently underway to remove this limitation, permitting the estimation of squat closer
to the critical Froude number.
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DISCUSSION

Tuck E.O.: I am encouraged by the fact that the rate of decay of transients seems
to be as rapid at the higher F,;, =0.400 as it is at the lower F,;, =0.283. As F,, —1,

one might expect that, since the flow is ultimately unsteady then, the transients
might decay less rapidly, perhaps not at all.

Bratland A.K., Korsmeyer T., Newman J.N.: In our results F,, <<1, and the
Green function has the asymptotic behaviour as written in abstract. As F,, =1

~ another asymptotic must be considered. Newman has shown that, as F,;, — 1 and

t— o0

G ~T A (—(%T)B/z(l - XZZ )J

where T =1./g/h X =-(—2—t—.

This must be examined closer, but we think you are right in suggesting slower
decay.

Clément A.: In preceeding Workshops (Kyushu, Oxford), I presented the results
of S. Mas' work about numerical computations of the time-domain Green function
in finite water depth, and we observed that the gradient of the function was much
more difficult to obtain through series and asymptotic expansions. Do you need to
compute the gradient of the Green function in your numerical method? If so, did
you observe this difference in the divergence of the algorithms?

Bratland A.K., Korsmeyer T., Newman J.N.: The gradient is required in the
kernel of the integral equation. The Green function is represented by Chebyshev
expansions which can be differentiated term-by-term. This avoids the analytic

difficulties which have been discussed at past Workshops, but we are limited to a
finite computational domain in (X,T) as noted in Section 2 of our abstract.
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A time-domain algorithm for motions of high speed vessels using a
new free surface condition.

Tim H.J. Bunnik and Aad J. Hermans
Department of Applied Mathematics, Delft University of Technology, The Netherlands

1 Introduction

When a ship is designed, it is important to know its behaviour in real sea-keeping at forward speed.
This behaviour can be predicted performing model tests in towing tanks, but this is quit expensive.
The introduction of fast and large computers has given the possibility to write simulation programs
that can partly replace physical tests. A lot of research has therefore been carried out recent years.
Prins [2] developed a time-domain algorithm to compute the behaviour of several floating bodies in
current and waves based on potential flow. Sierevogel [1] contributed an absorbing boundary condition
independent of frequency. Both used the double body potential to approximate the steady potential.
This approximation is valid for low speeds, but when we increase speed, non-linear effects in the steady
potential become more important. At MARIN a program has been developed (RAPID) by Raven (3]
that calculates the steady potential satisfying the exact non-linear free surface condition. We use this
potential to linearize the time dependent free surface condition. We solve the potential flow problem
with this boundary condition in the time domain using a Rankine source distribution. We put the
source panels at some distance above the free surface. This promising ’raised panel approach’ was also
used by Raven [3]. It has the advantage of resulting in a much smoother potential. Besides it is easier
to include non-linear effects in the future. Because we assume the speed to be high, upwind differences
must be used to obtain a stable iteration procedure. An absorbing boundary condition seems not to
be necessary in the frequency range we’re interested in (Strouhal number 7 > 1). The calculations
are carried out for a fictive analytical hull shape. For this hull hydrodynamic coefficients like added
mass and damping are calculated. In our presentation we will compare these coefficients with results
from other methods, investigate the influence of some of our most important parameters and look at
the influence of reflected waves.

2 Mathematical model

We consider a ship moving at constant speed U. A coordinate system Ozyz is introduced in the frame
of reference following the forward speed of the body, with the z- and y-axes in the mean free surface
and the z-axis vertical upward. The forward speed is in the direction of the negative z-axis. The fluid
is assumed to be incompressible and inviscid, and the flow irrotational. We can therefore introduce a
velocity potential ® whose gradient equals the fluid velocity and that satisfies the Laplace equation.
On the free surface z = ((z,y) this potential must satisfy:

0%® 0% 0o
Sz T2ve- V<a>+ 5V8.V (Ve-V8) +95-=0 atz=( W
We linearize this condition by splitting the potential in a steady and unsteady part:
@ (,t) = ¢ (Z,1) + PR (F) (2)

The steady potential satisfies the exact time-independent free surface condition and a zero normal
velocity condition on the hull and is calculated by RAPID (RAised Panel Iterative Dawson). If we
assume the unsteady potential to be small (small amplitudes of motion and waves), we can neglect
higher order terms in ¢ and find:
0%¢ o 09

o T2VeR Vo + Ver -V (Vo Vor) +:
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The last term is a transfer term that occurs because we linearize around the steady free surface in
stead of the actual free surface. Most of the terms contain derivatives of steady velocities. First
order derivatives can be calculated accurate. The transfer term contains second order derivatives. We
are still busy finding a numerical scheme to obtain these derivatives. Until then the transfer term is
omitted. On the hull of the ship we have the same linearized boundary condition Prins and Sierevogel
used:

0¢ 0a

on Bt
with & the displacement vector. Again, we need stationary speed derivatives. We solve the Laplace
equation with these linear boundary condition using a source distribution on the hull and above the
free surface. The boundaries are divided in N panels, and on each panel the source strength o is
assumed to be constant. The potential is now given by:

e B} _ -1
qS(z,t)—j;o](t)//(‘(z,Z)dSC G (5)

47r
3q,

i+ ((Vor-V)a- (a-V)Veg) - (4)

If we choose N collocation points on the hull and free surface and apply the corresponding boundary
conditions, we obtain N equations for the N unknown source strengths.

3 Test case

Before developing a numerical algorithm we have to choose some kind of hull. The calculations will
be made for a mathematical hull shape given by the formula:

() + (i) =

b(z) = ;2% (1-82%+ 162*)

Figure 1: Mathematical hull shape used in calculations

We use % = 0.1 and —g— = 0.2. The advantage of a mathematical hull is the easy refinement of the
grid. In our test study, that’s very useful.

4 Numerical method

In our new free surface condition, time and spatial derivatives of the unsteady potential occur. The
time derivatives are discretized by second order explicit schemes, therefore using only the current
potential and potentials on previous time levels. The spatial derivatives are more complicated. They
are decomposed in a derivative in a direction perpendicular and parallel to the free surface (see figure
2). The derivative parallel to the free surface is obtained using upwind differences because of it’s well
known stabilising properties. We found out that in our case it’s absolutely necessary to use upwind
differences to avoid wiggles in the solution. The difference becomes this way:

m

o9 .
ol (Z) = ]z:’ﬁj(f’(“’j) (6)
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free surface

Figure 2: Decomposition of differentiation direction

with m the number of collocation points on the free surface. The coefficients %i; are non-zero only for
some nearby collocation points upstream of the point ;. In case of a rectangular grid and uniform
flow, this means for example:

Bh(7) — = 1o(m _ ‘
ﬁq,R 6(1)(51) =U 2¢(:L‘,) 2(15(:1:, 2;”) + 2¢($z QAIB) +0 ((Am)z) (7)

The derivative in a direction perpendicular to the stationary free surface is obtained by changing the
order of integration and differentiation in (5):

0 X G /_,
o :;aj(t)m//—a—l: (£,0) ds. ®)

Second order derivatives of the unsteady potential are treated the same way. After discretizing the
boundary conditions, the boundaries are divided in panels and collocation points are chosen. Applying

the discretized boundary conditions in each collocation point gives us a matrix equation for the
unknown source strengths:

Ad=f (9)
Initially all source strengths are put zero. The time iteration starts by giving the ship one of possible
6 sinusoidal motions (translational or rotational). After a few periods a periodical wave pattern
arises around the ship. When there is no reflection, the wave pattern is the same after each period
of movement. When that state has been reached, the forces on the ship can be calculated and
hydrodynamic coefficients like added mass and damping can be calculated.

5 Results

We mentioned we don’t need an absorbing boundary con- 210"
dition because we consider high speeds and frequencies.
In that case, the waves propagate downstream. The up-
wind difference scheme causes the waves not to reflect
against the edge of the computational domain behind
the ship. We only get reflections from the edge beside
the ship. If we choose that edge far away enough, the
reflected wave will end up behind the ship and not affect
the wave pattern around the ship. Because our main goal
is to calculate forces on the hull we can accept these re-
flections. If we want to predict the total wave pattern, or
decrease the speed of the ship, we must add an absorbing
boundary condition.

>

*+0—-—— — 12345 periods|

@

wave height

L

!
.

Figure 3: Wave pattern behind ship.
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In figure (3), (4) and (5) is shown what happens to the
wave pattern after 1,2,3,4 and 5 periods behind the ship
if we change the size of the computational domain. In the
absence of reflections the wave pattern should not change
anymore after a few periods. The pictures show a change
in wave pattern at some distance behind the ship, an indi- 9
cation of the presence of reflected waves there. Choosing .
the edge of the free surface behind the ship further away 2
doesn’t influence the reflections. If we choose the edge
of the free surface beside the ship further away, the re-
flections end up further downstream. In figure (3) the
the free surface edge beside the ship was 0.75 wavelength
away from the ship and the edge behind the ship one

>

©

wave height

Figure 4: Wave pattern behind ship.
Distances : 0.75A and 2A

. 8rF2 Lorre o
wavelength away, with the wavelength A= ———ﬂ——f(l_ Vo N qos —_ S12345 eriodJ
All calculations were done for Fy, = % = 0.4 and £ o
T = ﬂgg = 2.55. In figure (4) we see the same reflections 'E) of
if we choose the edge behind the ship further away and L -os
don’t change the distance to the free surface edge beside £ -
the ship. In figure (5) is shown that the reflections occur =
closer to the ship if the distance to the free surface edge e
beside the ship is 0.25A. 25
In our presentation we will also look at hydrodynamic e e e
coefficients like added mass and damping and compare 208
these with results from other methods. Figure 5: Wave pattern behind ship.

Distances : 0.25) and A

6 Conclusions and further research

We have developed an algorithm to determine added mass and damping of a ship at high speed using
a new boundary condition. Because of the high speed the reflected waves don’t spoil the results. Next
step is to add an absorbing boundary condition so we can decrease speed. After that we want to
determine drift forces by introducing an incoming wave field. Also some attention still has to be paid
to the transfer term in our free surface condition.
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DISCUSSION

Ferrant P.: I would like to know how you plan to account for incoming waves in
your model. It is not clear to me how you can combine a linearised incident wave
with the non-linear steady solution given by RAPID.

Bunnik T.H.J., Hermans A.J.: There are two ways of doing this. The first and
easiest way is to split up the time-dependent potential ¢ into an incoming potential
and an extra potential: ¢,,, = 0,,. + 6.

The separate potentials no longer represent physical waves close to the body, but
the sum does.

If this approach doesn't work a wavemaker can be introduced, upstream of the
body. The interaction between incoming wave and steady wavefield is then
automatically included when the wave travels downstream.

Bertram V.:

1) The 'new' condition has been derived already by Newman (1978), but it is
satisfying to see it now implemented in codes.

2) I would recommend modifying RAPID for a frequency approach for 1>0.25 ;
the problem is then very similar to a shallow-water steady wave resistance
problem. So all techniques including radiation and open-boundary conditions
work just as well. Since the computations are easily parallelized in the frequency
domain, this approach is in my experience very efficient.

Congratulations on a most interesting paper!

Bunnik T.H.J., Hermans A.J.:

1) Thank you for noticing.

2) It is possible in a time-domain approach to obtain information about a range of
frequencies by using some kind of impulse response functions.

If we want to extend the method to non-linear, we can't use the frequency-domain
approach because of its limitation to linear problems.

Magee A.: Since you have developed a time-domain method, why not calculate
the impulse response functions to obtain the added mass and damping at all
frequencies? This may help as well with wave reflection difficulties as you can
finish the calculations before the wave reflections reach the ship.
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Bunnik T.H.J., Hermans A.J.: We are certainly going to try this. The main
problem is, that when waves of all frequencies are generated, high frequencies
cannot be resolved on the frequency-independent grid (short waves) and low-
frequency waves travel very fast and their reflections will reach the ship before

stopping the calculation.
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NONLINEAR WAVE-BODY INTERACTIONS IN A
NUMERICAL WAVE TANK

M. Serdar CELEBI and Moo-Hyun KIM'
Texas A&M University
College Station, TX 77843, USA

1 Introduction

The time-domain nonlinear free-surface waves and wave-body interactions
are investigated in a 3-dimensional numerical wave tank using an Indirect
Boundary Integral Method (IBIM). Simple Rankine sources are used outside
the solution domain to desingularize boundary integrals (Cao et al., 1991). To
update the position of the fluid particles on the free surface, fully-nonlinear
free-surface boundary conditions are integrated with respect to time using
the Eulerian-Lagrangian time marching technique. A regridding algorithm
is used to eliminate the possible instabilities in the region of high gradients
without using artificial smoothing. The input waves entering from the up-
stream boundary are generated by either a piston-type wave maker or by
prescribing actual wave data or analytic solutions. The energy of outgoing
waves are gradually removed in the artificial damping zone by viscous dissi-
pation rather than by being transmitted out of the solution domain. When
simulating open-sea conditions instead of a numerical wave tank, the artifi-
cial damping zone (absorbing beach) is employed at all side walls to prevent
possible contamination due to wall reflection. Unlike Cao et al. (1991), side
walls and ¢,-type damping zone are used in the present numerical wavetank.
The developed computer program was verified through mass and energy con-
servations and comparisons with experiments as well as analytic first- and
second-order diffraction solutions.

2 Mixed boundary value problem

The ideal fluid is assumed so that a velocity potential exists and the fluid
velocity is given by its gradient. The value of the potential, at each time step,
is given on the free surface (Dirichlet boundary condition) and the value of the

25



normal derivative of the potential (Neumann boundary condition) is known
on the body surface and the bottom surface. The free-surface potentials and
elevations are determined by integrating the following nonlinear free-surface
boundary conditions with respect to time.

bn _ 0¢ an
—(S—t = oz - (V¢ - V)VT] Uo(t)a—x on SF (1)
o _ P 9¢
5= 9 1/2V¢p.Vo +v.V¢ i Us(t) P on Sp (2)
where
6 0
is the time derivative following the moving node, U, is forward velocity, and
v = —U,i + V¢ dictates the material node approach. V¢ on the right-

hand side can be determined after solving the boundary value problem for ¢.
Using the material node approach, V7 term drops in eq.(1). A Lagrangian-
Eulerian method, in which a mixed BVP is solved at each time step, is
used on the free surface to time step the unknown potentials and wave el-
evations. A Runge-Kutta-Fehlberg method is employed for this purpose.
Indirect boundary integral methods utilize the source density o(7,) which is
used to determine the unknown velocity potential. Then, a weighted resid-
ual method (collocation method) is used to solve the integral equations for
the unknown o(7;). In order to determine the unknown source strengths,
an efficient iterative method called Generalized Minimal Residual (GMRES)
Technique (Saad and Schultz, 1986) is used.

For an accurate free-surface flow computation, mass/volume, momentum,
and energy conservations should be satisfied in the computational domain.
For instance, the total energy conservation in a wave tank, following Contento
and Casole (1995), can be expressed as

£(t) = Ww (t) + Eo(t) — Wal(t) — Ealt) 3)
where Wiy (t) is the power delivered by the wavemaker and given by

Ww(t) 2/ p%ﬁds
ow
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E,(t) is the rate of energy flux through the open boundary and given by

E,(t) = %%Sds (4)
Wo

W(t) is the rate of work done by fluid on the body and given by
. 0
Wat) = [ palds )

Eq(t) is the rate of energy in the fluid and defined by a potential and
kinetic contribution

Eﬂ(t) = EQPOT(t)+EQKIN(t) (6)
d. 1 1 0¢
= —l5r9 / 7’ dS — 5/)6/0455; dS]

OWUAFUAB

where (2 is the boundary of 3-D solution domain. Then, &(f) can be
compared with the amplitude of the power delivered by the wavemaker to
obtain the absolute error in the solution domain.

3 INumerical results

First, the developed computer program was verified through mass, momen-
tum, and energy conservation. The performance of artificial damping zone
was tested for various wave conditions. As can be seen in Figure 1, the
¢n-type beach is more effective for shorter waves. Second, we conducted
two fully-nonlinear diffraction computations with bottom-mounted and trun-
cated uniform vertical cylinders. The simulation results are compared with
Mercier & Niedzwecki’s (1994) experiments and Kim & Yue’s (1989) second-
order diffraction computation. The comparison with Mercier & Niedzwecki
(1994) showed that the present fully-nonlinear computation agreed better
with experiments than the second-order diffraction computation, as can be
seen in Figure 2.
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DISCUSSION

Berkvens P.J.F.: In your results on waves diffracting around a cylinder, some
very short waves are visible along the waterline. Do you think there is a relation
between these short waves and the problems that P. Ferrant encounters when he
has waves diffracting around a cylinder in the presence of current?

Celebi S., Kim M-H.: The very small kinks along the waterline is just a graphical
noise and short waves around the cylinder are diffracted waves. The
desingularized BIEM method is relatively robust at the body-free surface
intersection line and we did not experience any numerical problems there.

Grilli S.: Which phase velocity did you use in your Orlanski condition for the bi-
chromatic problem?
And what did you do in case of singularity of the celerity?

Celebi S., Kim M-H.: We numerically calculated the phase velocity on the free
surface directly from Orlanski condition. In doing this, we selected several points
close to the open boundary and the phase velocities are averaged.

In this procedure, the point where singularity occurs is excluded.

Laget O.: Can you tell some precisions on the outside boundary condition you
have used?

Do you use both the absorbtion beach and the Orlanski condition? How do you
compute the phase velocity and on which variable do you apply the Orlanski
condition (free surface deformation, velocity, pressure?)

Celebi S., Kim M-H.: We applied Orlanski condition for the velocity potential
and the phase velocity was numerically obtained. For the time derivative of the
velocity potential, dynamic free-surface condition was used. We did not combine
Orlanski and numerical beach yet.
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Dispersion relation and far-field waves

Xiao-Bo CHEN, Bureau Veritas, CRD, Rueil-Malmaison, (France)
Francis NOBLESSE, DTMB, NSWC-CD, Bethesda, MD (USA)

A theoretical formulation of wave diffraction-radiation by ships or offshore structures, motivated by the
practical and theoretical importance of free-surface potential flows and the formidable complexities of existing
calculation method based on free-surface Green function, is recently developed and summarized in Noblesse,
Chen and Yang (1996). One of important results is the analysis of the classical Fourier representation of free-
surface effects, as a two-dimensional linear superposition of elementary plane progressive waves exp[—i(af+
Bn+ ft)], given in Noblesse and Chen (1995), which defines the wave potential ¢" (¢,7) in terms of the single
Fourier integral

1ng" =iy [ dsfign(Dy) + sign(eDa-+nDp)] expl-i(ca+nB)|A/IVD] (1)

along every curve, called dispersion curve, defined in the Fourier plane (a, 3) by the dispersion relation D=0.
Here, ds is the arc length along a dispersion curve, |VD|? = D? +D% and f is the frequency. The Fourier
representation (1) is valid for steady and time-harmonic free-surface flows, in infinite or finite water depth,
generated by an arbitrary distribution of singularities defined by the generic amplitude function A, which is
given by a distribution of the elementary wave function exp[kz + i(az + By)] over the surface of the wave
generator (e.g. ship or offshore structure) . Here, k=+/a2+ 2 is the wavenumber.

Considerable information about important far-field features of the waves defined by the Fourier representa-
tion (1) have been revealed in Chen (1996), via a stationary-phase analysis of (1). Specifically, the constant-
phase curves (e.g. crest lines) and the related wavelengths, directions of wave propagation, and phase and
group velocities can be determined explicitly from the dispersion function D. This stationary-phase analysis
of (1), which provides direct relationships between the dispersion curves D =0 in the Fourier plane and the
corresponding wave systems in the physical plane, is briefly summarized here for the generic case of dispersive
waves characterized by an arbitrary dispersion function D, and for the specific case of time-harmonic ship waves
in deep water.

Generic dispersive waves

The far-field features of " are determined by the stationary points of the phase function ¢=_£a+n3 along
the dispersion curves. The stationary points are defined by ¢’ =¢a’+n8' =0 and satisfy the relation :

&Dg — Do = 0 = h|VD|sin(y — ) (2)

Here, h and @ are the polar coordinates of the field point (£,7) = h (cosf,sinf). Furthermore, « is defined by
(cosy,siny) = (D, Dg)/§VD] and thus represents the angle between the unit vector normal to a dispersion
curve and the o axis. The wavelength of the waves corresponding to a stationary point (2) is given by A=2x/k
where k is the wavenumber at the stationary point.

Expression (2) shows that a point of stationary phase on a given dispersion curve is defined by v =48 or
v=0+m. Thus, a point of a dispersion curve generates waves in the physical space in a direction normal to the
dispersion curve. The sign function sign(§¢ Do +7Dg) in (1) is equal to 1 if y=0 or —1 if y=8+=. Expression
(1) therefore indicates that a point of a dispersion curve generates waves in the direction of the normal vector
VD to the dispersion curve if sign(Dg)=1, or in the opposite direction if sign(D;)=-1. Furthermore, at the
stationary point ¢’ =0, the second derivative of the phase function is expressed as :

¢"=c\/a'?+4%d with d=h(&' —nB')/(2n) 3)

where o’ and ' are differentiation of & and 8 with respect to the integral variable along the dispersion curves,
and the curvature c is given by :

¢=(-D.Dgp +2DaDgDap — DiDaq)/|IVD|? (4)
As d # 0 in the expression (3), ¢"” =0 only at the point of inflection where ¢=0. Two points on both sides of

the inflection point may have the same unit normal and then two groups of waves may propagate in the same
direction but with different wave number. In fact, an inflection point (., 8.) of a dispersion curve, determined
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by ¢=0, defines a cusp line along which two distinct wave systems are found. The corresponding angle 7. is
defined by

Ye = tan_l(Dﬂ/Da)c (5)

where the subscript ¢ indicates evaluation at (ac, f.) -
The curves along which the phase ¢ is constant, equal to CF =+2r — sign(¢"')m /4, are given by

(€,m) = CX(Da, Dg)/(aDa + fDp) with sign(C5) = sign(aDa + BDg)sign(Dy) (6)
The phase velocity &/, determined by the stationary-phase relation (2), is given by
o = —(a, B)f ¥ (7)

which is orthogonal to constant-phase curves (6) and different, both in magnitude and in direction, from the
group velocity ©9, at which wave energy is transported, defined by

#9 = —(0f/8,0f/08) = (Da> D)/ Dy (8)

Expresions (8) and (6) yield (¢,7) - #® > 0, which shows that wave energy is propagated away from a wave
generator in accordance with the radiation condition.

Far-field features of time-harmonic ship waves

The foregoing results, valid for generic dispersive waves, are now applied to the particular case of time-
harmonic ship waves in deep water, for which the dispersion function is given by

D=(f-Fa)? -k 9

For 7= fF <1/4, three dispersion curves defined by D=0 intersect the axis =0 at four values of ¢, denoted
af and a?:. The ring, inner V and outer V waves correspond to the interior curve comprised between o
and af, the exterior right curve located in o} <o < oo, and the exterior left curve located in —co<a<ay,,
respectively. For 7>1/4, only two distinct dispersion curves intersect the axis §=0 at a;-*' and o . The ring-fan
and inner V waves are respectively associated with the dispersion curves in the left (—oo <a<af) and right
(o} <a< o0) regions.

The wavelengths of the transverse waves (the waves at the ship track n=0), in the various component wave
systems described above, have already been given in Noblesse, Chen and Yang (1996). In th same way, the
wavelengths at the edges (cusp lines) of the wedges containing the inner and outer V waves and the ring-fan
waves are given by A.=27/k. where k. is the wavenumber at the inflection points determined by the relation

FAk2 — (3/2)Fk, + sign(f —Fa)4rF\/k. — 37* =0 (10)
The corresponding wedge angle . is

e = tan~}(£1/v/6F2k. — 1) (11)

The group velocity (8) is now written as

¥ = ~[F +sign(f~ Fa)a/ (2k*/%),sign(f ~ F) B/ (2*/*)] (12)
in the system of coordinates moving with the mean forward motion of the ship, and
V9 = + (F,0) = —sign(f - Fa)(e, )/ (2k°/*) (13)

in the absolute system of coordinates. The absolute velocity V9 is orthogonal to the constant-phase curves,
whereas the relative velocity @9 is not.

The foregoing simple analytical relationships between the dispersion curves in the Fourier plane and impor-
tant features of the corresponding far-field waves in the physical plane are illustrated in the attached figures for
the four distinct cases which must be considered for time-harmonic flows with forward speed.
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Figure 1: Inner V waves
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The right exterior dispersion curve (o} < a < o0) is associated with the inner V waves, for 7 > 0. Two
groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersion curve
(o} <k < k) and (k. < k < 00), respectively.

Figure 2: Ring waves
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The interior dispersion curve comprised between o] and o is associated with the ring waves, for 7 < 1/4.
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Figure 3: Outer V waves
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The left exterior dispersion curve (—oo < a < @) is associated with the outer V waves, for 7 < 1/4. Two
groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersion curve
(—a; <k <k and (k. <k < 00), respectively.

Figure 4: Ring-fan waves
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The left dispersion curve (—oo < @ < ) is associated with the ring-fan waves, for 7 > 1/4. Three groups

of waves systems (the partial-ring waves, the outer-fan waves and the inner-fan waves) correspond to three
portions of the dispersion curve (af <k < k.), (k. <k < 4f?) and (4 < k < 00), respectively.
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DISCUSSION

Schultz W.W.: What new conclusions (or discrepancies) are obtained in your
Fourier analysis over the simple ray theory of Eggers (1957)?

Chen X.B., Noblesse F.: The results and the analysis we have summarized differ
from those given in Eggers (1957) and elsewhere, in a number of ways. First of all,
our results are valid for generic dispersive waves generated by arbitrary
distributions of singularities. Thus, the results can directly be applied to a broad
class of dispersive waves, including steady and time-harmonic water waves with or
without forward speed in homogeneous or density-stratified water of infinite or
finite depth. The results we have given provide simple and elegant explicit
relationships between the so-called dispersion curves, defined in the Fourier plane
by the dispersion relation and the corresponding far-field waves. These
relationships include expressions, both in fixed (attached to the earth) and moving
(attached to a translating distribution of singularities) systems of coordinates, for
the phase and group velocities of the various wave components associated with
each distinct dispersion curve. It is also shown that cusp lines of far-field wave
patterns are explicitly related to inflection points of the dispersion curves, which
yield closed-form expressions for cusp-angles. In particular, for the case of time-
harmonic ship waves in deep water considered for illustrative purposes, two
particular exact values of T, namely ‘r=\/2/_27 (at which no waves propagate
upstream) and T =+/8/3 (where unsteady waves are contained within the wedges
of the steady waves), are given (to the authors' knowledge, only numerical
approximations to these exact values of T have previously been given).

Magee A.: Using the relation you developed for group velocity, for a given T and
F, can you calculate the time for a disturbance to reflect off tank walls and return
to the ship. In other words, can you find the T and F values free from tank

reflections?
Chen X.B., Noblesse F.: Indeed, the relationship we have given, specifically the
expressions for the wave propagation angles and the group velocity, can be
directly used to determine the time required for the various components of the
waves diffracted-radiated by a ship model advancing at constant speed in a water
tank to be reflected at the walls of the tank.
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A shortcut for computing time-domain free-surface potentials
avoiding Green function evaluations.

A. CLEMENT

ECOLE CENTRALE de NANTES
Laboratoire de Mécanique des Fluides - division Hydrodynamique Navale
CNRS URA 1217, E.C.N , Nantes, FRANCE

The numerical solution of transient hydrodynamic problems in the frame of the linearized
potential theory requires the computation of convolution integrals. These integrals may
be regarded as the memory of the free-surface fluid. Since they extend from the initial
state of rest up to the current time ¢, the mass storage and cpu time required for their
computation grow quickly with time, roughly quadratically. Consequently, in time-domain
seekeeping computations, the major part of cpu is spent in evaluating these convolutions
(Magee 1991).
Let us consider, for instance, the generation of surface waves by the prescribed motion
(V) of a body around its equilibrium position (S) in a perfect fluid.
The resulting velocity potential ®(M,#) must satisfy the following boundary integral
equation ;
LAY _[1 a9 2 CLM gy - - [[ v.nr 06,1, Mds

JF(M,M',t-1)

on’ (1)
where G, and F are respectively the impulsive and the memory part of the Green
function. In the present study we focus our attention on the convolution integrals in the
RHS of (1). They may be written in the general form :

+ _Usds'j oM, 1) dr- | jsds'jv. n(M',)F (M, M’,t - 1)d<
0 0

T
S=[QWF(r,Z+2"t-)dt ()
0

where, when the water depth is infinite (Finkelstein 1957, Wehausen & Laitone 1960) :

F@r,(,8)= T«/E sin(WK &) Jo(Kr)eX*dK  (3)
0

with : r=y(X - X2 +(Y -Y")2 z)
Up to now, the efforts made to speed up the +« M&X.Y,-Z')
numerical computation of integrals like (2) in
the numerical implementations of BEM to
solve integral equations like (1) were

essentially : / ~~~~~~~~~~~~~

- derivation of alternative faster expres- — — £ |&e=="" <
sions of the Green function F, better suited 1 r %/ MEXY.Z)
to numerical calculation (Jami (1982), Newman - "/’/ feld ;)O;m
(1985), Beck & Liapis (1987), ...), | /2

- tabulation of the memory part of the 7
Green function in order to replace the s o s
evaluation of F by a bi-linear interpolation in M&Y.Z")

source point

Fig.1 : Definition sketch.
37



a precomputed table (Ferrant-1988, Magee & Beck-1989).

An alternative method to evaluate the convolution products (2) without computing
explicitly the Green function was proposed by Clément (1991). It is based on the
identification of the Green function considered as a SISO (Single-Input-Single-Output)
linear time-invariant process. The identification parametric model of the process is a
linear ODE linking the input Q(M’,t), the output S(M,t), and their derivatives. Once such a
model has been found, S can be recovered from the knowledge of @ by simply integrating
the ODE from a time step to the next one, instead of computing convolution integrals like
(). Doing so could save a huge amount of computer time and memory (Clément 1992).

1. A parametric time-varying model

In our first papers related to this topic (1991-1992), we attempted to identify the Green
function with discrete time invariant models. These kind of models, often called ARX in
process science literature, are characterized by discretized ODEs with constant
coefficient.

They were shown later (Clément 1995) to be inadequate for the time domain Green function
(3) which behaves asymptotically like a “chirp” process. This feature results in increasing
considerably the model order to maintain a reasonable accuracy as both source point and
field points approach the free surface (i.e : u— 0).

Thus, we were led to adopt a more refined model (4) where the ODE coefficients are
themselves function of time.

i=n i=n-1
> A @S @)=Y R®Q®) 4
i=0 i=0
where we use the notation : S9(¢)= d—d%(ﬁ

In such a differential model, the causality of the process ensures the right-hand side order
to be less than the left-hand side order. This property which is well known when the
coefficients are constant, still holds for time-varying models (Zadeh et al. 1963).

2. The auto-regressive terms A,(t)
The left-hand side of (4) is generally referred to as the auto-regressive part of the model. It
can be obtained from the response of the process to an impulsive input Q(t)=6().
Here, the impulse response function of the process is, by definition, the Green function
itself F(M,M',¢t).
Taking advantage of the fact that the kernel of the integral (3) can be expressed by an
hypergeometric function, an exact fourth order differential equation for F may be derived
making use of the general confluent equation :

9°F TtdF 9

*'F PF (t*
R2 +[LR1t—a?+(I+4[LR1) ———+—F=0 (5)

T EAEAY

with: u= ~(Z+2)Jr*+(Z+2)* . Thus, from (5), the auto-regressive coefficients A;(t) are
found to be polynomials at most of degree two in the time variable. Their coefficients are
very simple functions of the geometric parameters p and R,. A detailed derivation of (5)
will appear in a more lengthy paper (Clément 1997).

As a first step toward computations speed up, one may use this ODE instead of the
ciassical series developments (Newman 1985) for the in-line evaluation of the Green
function in the numerical computation of the integral (3). To do so, one need also the initial
conditions which can be easily deduced from (3) and its time derivatives by using the
integral form of Legendre polynomials. After some algebra, we obtain :
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FOr,£,0)=0

— k —

F(Q}“D(T,C,O): ( 1)}3(5-: 1)'Pk+1(/l) k=0,1,... (6)
1

which give the complete set of the time derivatives at the origin ; all the even order

derivatives are null. It should be noticed to conclude this section that (5) and (6) are exact

analytical results.

3. The forcing terms

The right-hand side of eq.(4) is generally referred to as the forcing term. Its form is a priori
unknown, and a direct combination of (2) and (5) would lead to reintroduce convolution
integrals in the RHS of the model. Thus, referring to time invariant models for which the
property is formally established, we made the hypothesis that the forcing term of the
present model can be expressed by a differential form similar to LHS (i.e with polynomial
coefficients), and we sought it in the form :

3 =B
RHS(4)=Y QP®) Y p;t’ 7
i=0 j=0
The determination of the unknown coefficients p, was made easy by the knowledge of all
the Markov parameters of the process through eq.(6). The method consists in expressing
the model (4) and its successive time derivatives at the origin of time. At each level of
differentiation, one can show that the lowest order unknown parameters p, may be

expressed as a linear combination of the coefficients of (5), and of the Markov parameters
F9(,.,0).

4. continuous models of the Green function and its gradient.

The above method was applied first to the Green function itself , and gave :
13
2 Ml -3ut+—
£ o . Tt 9 % ( 4 ) 1+u°
R2S“ + uR,tS® +[Z+4#Rl )S(“’ +_4_S(1> +ZS=#Q® +!;_1Q(n + T N ;,L: Q (8)

The maximum order of the polynomials P was assumed to be at most equal to the order

of the A, to ensure a stable asymptotic behaviour; whatever the input of the process ;

nevertheless, it should be pointed out that the iterative method in §3 could provide higher

order polynomials.
1.5

1 1 i
----- Model output
/-/\ = System output l

Results of a simulation of the
process output for an har-
monic input Q(¢)=sin(6t) are
03 plotted on Fig.2 . Both methods
\ /\'\ were applied : a standard
\ / N~ T trapezoidal integration
o \ method using (2) and (3), and
' , \// the present time-varying
model (8). Discrepancies
o 2 4 6 8 1 12 14 1 18 22 2 between these two curves
Time appear to remain negligible in

this precise case.

0.0

System output

Fig.2 : Output S(t) for input Q(t)=sin(6¢),
computed by both methods. y=.3714
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Because the solution of the integral equations of time-domain hydrodynamics may require
also convolution integrals involving the gradient of the Green function, the present
approach was applied to the horizontal and vertical gradient as well.

We simply give below the results after calculations.

Horizontal gradient .
Rl’%+mlt%+(%+ewlj§;—f+%%t§+%s;—?’%—”—; n® +%Q“’ + #(—5:;;7) £+ 1;;:2 Q@ ©
Vertical g;:gdignt Rlﬁ_‘:T‘S+#Rl,;Z_3$+(§+6#Rl)‘;_2t‘f_+l_f._‘?§+%§s= (10)

Numerical simulations were also performed for these two models with the same input,
and a comparable accuracy was observed. Thus, the proposed models seem to be useful
for our purpose in that frequency range. Nevertheless, the results are not so good as the
input frequency decreases, and refining the models of the forcing terms seems to be

necessary in that range.

Conclusion The time-domain Green function and its gradient were found to be solutions
of fourth order ordinary differential equations with time-varying coefficients. These
coefficients functions are low order polynomials of the time variable, and their own
coefficients are simple functions of the geometrical parameters of the problem.

These time varying models may be used to compute the convolution integrals in time-
domain seakeeping codes without computing the Green function itself (nor its gradient).
The accuracy is excellent for high frequency, but remain to be improved in the low
frequency range.
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DISCUSSION

Newman J.N.: Equation 5 is remarkable. One consequence is that the
corresponding frequency-domain Green function integral satisfies a 2nd order
ODE with respect to the wavenumber!

Magee A.: I wish to congratulate the author on a truly original contribution on
the use of time-domain Green functions. If a more accurate method for the forcing
terms can be found, this shortcut should soon supplant all available methods for
computing the time-domain Green function, because it will permit a gain of about
80 % in memory requirements for typical calculations. It is clear that equation (5) is
exact. Is it possible to find exact solutions for the forcing terms (second part of
eqn. 8)7 What are the steps necessary to find these terms?

Secondly, you have treated the case applicable to linearised motions at zero
forward speed, that is, the positions of the source and field points are not functions
of time. However, we already have well-developed frequency-domain calculation
methods for this case, at least in infinite depth. The real benefit of the time-domain
method is its applicability to more complex cases such as steady forward speed and
arbitrary large-amplitude motions because the Green function retains its relatively
simple form in these cases as well.

According to my calculations, equation (5) is also valid in a steadily moving

coordinate system (linearised problem with steady forward speed U) provided we

replace the partial time derivative 9 with the total derivative —a——U 9 in the

ot ox
steadily moving frame. In this case we would have:

3 a3} 3 aY. (¢ 3 aY . 7t(d a) 9 .
RRIZL_uvllF A § S — ——U— —|=-U—|F+=F=0(5b
l(at Uax) +uR1t(8t Uax) F+[4 +4HR1](81? Uax) F+ 4 (Bt Uax +4 (5bis)

M (2) (3) (4) (5)

where R; and p are functions of time. In order to calculate the Green function in
this case, we would need to "simulate" the Green function and its first four x-

derivatives, which I have not done here. However, I have tested (5bis) by other
means.

The attached figure presents the five terms of equation (5bis) and the sum of the
terms, which should equal zero, if the relation holds. The Green function values
were calculated using a Romberg method to assure a good precision, and the
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derivatives were calculated using finite-difference schemes. The results seem to
indicate that the relation holds and this is true for all values of the parameters
tested. This calculation is confirmed by an analytical calculation (Maple) using the
series expansion of the Green function (up to the order of the truncated series).

Furthermore, I believe the same equation should generalise to the case of arbitrary

motion of the source and field points (large-amplitude motions case) by using

d

E_V'V' where V is the relative velocity between M and M’ in place of the

partial time derivative % of equation (5). If this is true, then the large-amplitude

calculations would be only slightly more time-consuming than linearised ones-a
great advance indeed! Could you please comment?

I ]
Term 1 ----
9 - Term 2 --=_|
ON Term 3 ----
\
Y R Term 4 -
! ! PEN N Term 5 ——
. . N ) - = cm—
1 = /f\§ ‘\ oy, \ 7/ \\ " ' ! \' ', ¥ o Sum I
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Fig. 1. The 5 terms of eqn (5bis) and their sum, in the case of steady forward speed U = 0.25,
z=1,y=0,2=-2

Clément A.: Itis indeed possible to find exact solutions for the forcing term. The
simplest method consists in differentiating (2) four times using the Leibnitz rule,
and then integrating (5) after having multiplied it by Q(¢). After a few lines of
calculations, the exact forcing term of (4) is obtained. Unfortunately, it contains
new convolution integrals, which is exactly what we want to avoid in our model!

Thus, we chose the present approximation by a differential form, with no guarantee
of convergence.
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The Green function F does not depend on the trajectory of the source, due to the
impulsive nature of its strength, and then (5) is also valid in that case, expressed in
a fixed reference frame, provided R, and p are understood as R;(0) and u(0).

It can be indeed expressed in a moving reference frame by changing the derivative
operator as you did, and taking into account the induced dependence of the space
parameters on time. Thus, your numerical check of the ODE in these conditions is
not surprising. As you mention, it involves higher horizontal derivatives of F.
Differential equation similar to (5) could be easily derived for them, from the
general lemma established in Clément (1997), to appear shortly.
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VISCOUS FREE SURFACE FLOW PAST A SHIP IN STEADY DRIFT MOTION

A. Di Mascio, R. Penna, M. Landrini, E.F. Campana
INSEAN - Italian Ship Model Basin, Via di Vallerano 139, 00128 Roma, Italy

Abstract

The Reynolds averaged Navier-Stokes (RANS) equations with non linear free surface boundary conditions have been
solved to simulate the flow field past a ship hull advancing with a drift angle. A Finite Volume technique has been used
to discretize the equations, leading to a nonlinear algebraic system solved by a standard multigrid algorithm. Preliminary
numerical results obtained for the Series 60 hull have been compared with experimental data.

Introduction

The computation of the unsteady incompressible viscous flow past a ship in maneuvering remains a great challenge. In
fact, the general problem is a formidable one. The nonsymmetric flow over the hull is fully three-dimensional, boundary
layers are turbulent, flow separation is common and may be followed by reattachment, and large wakes and complicated
wave pattern are formed.

In principle, a fully viscous computation allows the prediction of the generation and transport of vorticity in the
boundary layer and in the wake, and the coupled free surface and boundary layer interaction. However, the numerical
solution of the gencral problem is in practice still strongly constrained by computer resourches. Reliable simulations of
the flow past a manouvering ship are at present only feasible for steady drift motion.

Nevertheless, numerical computations of the RANS equations for the steady problem are particularly important also
for the development of improved simplified models. Indeed they may provide useful detailed information on the location
of the separation lines and on the evolution of the wake and may be used to calibrate and validate inviscid rotational
models. As an example, the influence of an approximate choice of the location of the separation line on the values of
the hydrodynamical lateral force and the yaw moment is still to be investigated. In fact, inviscid rotational models give
satisfactory results once the separation line is known, as for a flat plate [1] or for a Wigley model. Unfortunately, this
can be easily done only when the geometry is such to force the separation (i.e. sharp edges). Furthermore, to define the
separation line in the case of 3D ship flows may not be an easy task.

A previous computation of the viscous free surface flow around a yawed Wigley model was attempted by using a
domain decomposition approach [2]. In the present paper a large domain solution has been developed.

Mathematical model

We consider the steady flow past a ship hull B moving in an incompressible viscous fluid. The flow domain is bounded
by the free surface S, by the hull surface and extends to infinity. We assume a body-fixed reference frame with the z-axis
aligned with the uniform flow and the z-axis positive upwards. The variables have been nondimensionalized by the ship
length L and the free stream velocity U.

The velocity field is divergence free

V-u=0 in D n

and the momentum equation has to be satisfied

u-Vu+VP=V-1 in D (2

In the previous equation P is the ‘total’ pressure, i.e. the sum of the pressure term and the gravity term

_Vp,  k _ P z 3)
VP—-p—-{-Frz—V[ + }
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k being the unit vector aligned with the z-axis. 7 is the stress tensor, including the turbulent stresses

= (Rlz +v2) [(Vu) + (V)T] = @)

v, being the kinematic eddy viscosity. In the present work the Baldwin-Lomax turbulence model has been used.

The boundary conditions to be imposed are the standard ones for Navier-Stokes computations. At the solid wall no
slip conditions are enforced, i.e. velocity is set to zero at the boundary (no conditions are required for the pressure). On
the free surface H(z, y), neglecting the effects of surface tension and viscosity, the following kinematic and dynamic
(constant pressure on S) boundary conditions are to be satisfied:

oH OH
L= 5
u@x v@y v ©
H
_ 6
P Fp? ©

Numerical Solution

The Series 60 model (C;=0.6) has been sclected for simulation of this type of flow. In fact, for this model, detailed
experimental data are available [3]. Furthermore, we have performed also some comparisons with measured data obtained
at INSEAN.

Since the study is devoted to the simulation of the rectilinear motion of a ship advancing with a drift angle, in the
numerical solution we cannot exploit the symmetry of the problem about the (z, z)-plane and therefore port and starboard
sides are discretized. Hence the computational domain is decomposed into a port and a starboard block, the topology of
each block being of H-O type. RANS equations have been written in a pscudo-transient formulation and a Finite Volume
technique has been used to discretize the problem. Time integration has been carried out by a Runge—Kutta algorithm,
second order accurate in time. The convergence has been accelerated by a FMG-FAS (Full Multi grid-Full Approximation
Storage) multigrid technique.

As first test case, we simulate the flow past a Series 60 advancing in a oblique course for a drift angle o = 5° and for
Fr = 0.316, Re = 1.5 x 107. In this computation we have used 128 x 64 x 32 cells in each block (port, starboard) of
the fluid domain (streamwise, normal, and girthwise directions respectively).

The wave profile along the hull for both port and starboard side is shown in fig. 1 in comparison with some experimental
data obtained by Longo [3]. The wave profile at the bow is dramatically modified with respect to the case o = 0, since the
different pressure values in that area, between pressure and suction side, imply respectively an increase and a lowering of
the wave height. The numerical simulation was able to catch the main features of the flow. The agreement is satisfactory
from z = 0.2 to z = 1.2 (the hull is located between 0 and 1). The flow at the bow (z < 0.2) is qualitatively predicted
but the maximun free surface elevation in this region are underestimated. The unsufficient longitudinal grid resolution is
this area is obviously a major factor in the loss of accuracy of the numerical prediction.

Forces and moments acting on the hull have been also predicted and compared with eperimental data obtained at
INSEAN for the fixed hull case. Measurements were made on a model 6.096 m long, following the ASME guidelines [4]
for the uncertainty analysis. As a preliminary check, numerical results for the force and moment coefficients for a drift
angle o = 5° and for F'r = 0.316, Re = 1.5 x 107, are compared with the experimental data in Table 1. The computed
normal force coefficient C,, shows a satisfactory agreement with the measured data, while the moment coefficient Cps,
and the lateral force coefficient C', are overpredicted.

In fig. 2 the history of the convergence for Cy, has been reported as a funtion of the work, defined as the cost of one
iteration on the finest grid. The best performance, from the point of view of the CPU time requirements, has been found
with a five level computation. C,, values obtained on each level can be easily followed from the coarsest to the finest grid
and compared with the reported measured data.

C, C, Cra
Euxp. Num. Ezp. | Num. | Ezp. | Num.
0.0155 | -0.0141 | 0.0222 | 0.0314 | 0.0106 [ 0.0133

Table 1: Computed and measured forces and moment coefficients for o = 5°, Fr=0.316,Re = 1.5 x 107
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Figure 1: Wave profile along the hull: Fr = 0.316, Re = 5 x 10%, o = 5°. Solid lines, numerical simultation ; A,
experimental data by [3]

A typical wave pattern is depicted in fig. 3 for F'r = 0.316, Re = 1.5 x 107, = 5° As espected, the free surface
elevation in the starboard side is less pronunced, expecially near the bow. The wave patiern is stretched in the port side
and spread in the starboard side.

Finally, for the same case as before, the visualization of the computed wake shed from the keel and the stern lines is
reported in fig. 4.
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Figure 2: Convergence history for C, as a function of the work. Five grid levels have been used in the multigrid

algorithm. Correspondingly the value of C, varies from the coarsest grid to the finest one. The experimentai
value is reported with the dashed line.
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Figure 4: The wake shed from the keel and the stern lines of a Series 60 advancing with a drift angle « = 5°
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Solitary waves with algebraic decay

F. DIAS

Institut Non-Linéaire de Nice
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1361 route des Lucioles, 06560 Valbonne, FRANCE

1 Introduction

The study of capillary—gravity solitary waves is fairly recent. Among these waves, the most
relevant from a physical point of view are the waves which bifurcate from a train of infinitesimal
periodic waves with the property that their phase and group velocities are equal. These waves
exist both in finite and in infinite depth. However, their properties differ with the depth.
These waves were first computed numerically in infinite depth by Longuet-Higgins (1989). A
physical interpretation was provided simultaneously by Akylas (1993) and Longuet-Higgins
(1993). They showed that these waves correspond to stationary solutions of the nonlinear
Schrodinger equation that governs slow modulations in space and in time of capillary—gravity
waves. In certain regions of parameter space, it is well-known that the nonlinear Schrédinger
equation (nlS) admits solutions in the form of wave packets, characterized by two length scales,
the length of the envelope and the wavelength of the oscillations inside the envelope. The
envelope travels at the group velocity while the oscillations travel at the phase velocity. It is
therefore natural to obtain steady wave packets when phase and group velocities are equal.
Additional numerical results were provided in infinite depth by Vanden—Broeck & Dias (1992)
and in finite depth by Dias, Menasce & Vanden-Broeck (1996).

The important difference between finite and infinite depth comes from the properties of
the dispersion relation. Let A denote the depth, k the wave number, g the acceleration due to

gravity, ¢ the phase velocity, o the coefficient of surface tension. In finite depth, the dispersion
relation is

= (% + ak) tanh(kh), (1.1)

while in infinite depth it becomes

&= <I%I + a|k|) , (1.2)

which is singular at £ = 0. This singularity leads to nonlocal terms, which are not present
in the nlS equation. In the context of modulated waves, these nonlocal terms represent the
interaction between the wave envelope and the induced mean flow. For gravity waves, they
were computed first by Dysthe (1979) and recomputed by Stiassnie (1984) by using the so-
called Zakharov’s equations. Hogan (1985) extended Stiassnie’s analysis to capillary—gravity
waves. In this abstract, we construct an analytical solution of Hogan’s equation which shows
that the presence of the nonlocal terms leads to an algebraic decay in 1/z2 of the solitary waves.
Note that Longuet-Higgins (1989) predicted such a decay purely on physical grounds and that
the numerical results of Vanden-Broeck & Dias (1992) also show such a decay.
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2 Analytical results

Let the free surface elevation be described by
n(z,t) = 3 { Az, t)e'9 + cc} . (2.1)

Using as a basis the so-called Zakharov’s equations, Hogan (1985) derived a higher-order nlS
equation, similar to Dysthe’s equation which was obtained by the method of multiple scales.
Dimensionless variables (denoted with primes) are introduced by taking o/pc? as unit length
[L] and o/pc® as unit time [T]. In addition we introduce a small parameter € (see below) as
well as slow variables:
ot ’ ’ - 2 [L]Q—" ror oy
(z,2) = [L)(&',7), t=[T{t', A=¢l]A, ¢=c¢ —[TT('b , (X,Z2,T)=e(2,2,t).

¢ is the velocity potential, z the vertical coordinate. From now on, the primes will be dropped.
The amplitude A satisfies the equation

A +cgAx —ie(pAxx + glAPA) + € (rAxxx +uA?A% +0|APAx) +i€kAdx|z=0 =0, (2.2)

where
Y a + 3k? ~i3k4+6ak2—a2
97k 2(a+k?)’ P= % " 8a+k2)?
i 8a? + k2o + 2k* N (o — k?)(a? + 6ak? + k)
= 16(a — 26%) (e + k%) k3 16(c + k2)° ’
(802 + K2 + 2k*) (o — k?) 4k8 + 40k’ — 902k + o®k? — 8o
u=wk , v=-3wk ,
32(a — 2k2)(a + k?)? 16(a — 2k2)%{(a + k2)?
with go
2 _ 2 —
w —k(a—l-k), a——;&z.
The potential ¢ satisfies Laplace’s equation
bxx +z22z=0, (2.3)
with boundary conditions
é -1 i(|A|2) (Z=0), ¢z—0, (Z——o0) 2.4
zZ = 2 w 8x ’ - ’ Z * . ( . )
Capillary-gravity solitary waves bifurcate when a = ap = %, k=ky = %, w=uwy = %
The corresponding values of the coefficients are pg = %, go = %6, 70 =0, up =0, vp = 33—2
In terms of ¢ = X — ¢, T and of 7 = €T, the evolution equations for A and ¢ read
iA, + pAge + qlAPPA + ie(r Agee + uA’Af +v| AP A¢) — ekAdglz—0 =0, (2.5)
agg +¢z2=0, (2.6)
with boundary conditions
— 1 o 2 -
¢Z:§w_éz(|Al)’ (Z=0), ¢;—0, (Z— —00). (2.7)
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Solutions in the form of envelope solitons can be sought as

A = R(¢)exp {i(x7 +f ()}, (2.8)

which leads to the following system, correct to order €2:

2pRefe + pRfee + 1 Rege + uRzRé + ’URzRg = 0, (2.9)
PRgc — xR + qR® — ekRe¢|z=0 = 0. (2.10)
Let us now expand R in powers of e:
R=Rof¢) +eRi(€) + -+
One finds that R satisfies the differential equation
pRoge — xRo +qR3 =0, (2.11)
which gives .
X = 1ga®. (2.12)

Ro = coshla(g5)1/%¢]”’

Now we explain the meaning of the small parameter e. The branch of solitary waves bifurcates
at o = %. € measures how far « is from ap. Let g = @ — . One finds easily that

11 5,
=956 ¢ -

Therefore 1

16
Ry = .
< =TUm \/ﬁcosh[\/;?(m —1)]
The integration of the first equation of the system leads to

ef = —%\/ﬂtanh[\/ﬁ(x —t)].

So far, we have only dealt with the central part of the envelope. Let us now compute the
nonlocal term ®:

. +oo | -~ +o0 —~
F=liw / ¢ sgn K R2dK = —1 / sin(K¢) R dK .
_ 0

o0

One finds that
64 [~ Ksin(K¢)

“11Jo sinh (af}fﬁK)

This induced mean flow leads to a change 7] of the free surface elevation, given in unscaled
variables by

d= dK .

Lo 1 (16Y g [, cos2K VE(z—1)]
nN— —— = —-— | — K T K .

n a b 22 (77) s /0 sinh K d
The behavior as /i(z — t) becomes large is given by

_ 512 1
T~ VR
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Figure 3.1: Solitary wave for u = 0.02. Profile and algebraic decay.

It follows that the algebraic tail dominates the exponential tail if

(a:—t)>—1£—-.

JE

For small amplitude waves, when the algebraic tails starts to dominate, it is already quite small
and therefore one can conclude that the effect of the algebraic tail is more pronounced for larger
amplitude waves. In the next section, numerical results on the full Euler equations are used to
show that it is indeed the case.

3 Numerical results

In this section, we present numerical results for several values of . For large values of p, it is
clear that the tail decays algebraically (see plot of In7 versus Inz). The numerical solutions
are obtained by using the scheme of Vanden-Broeck & Dias (1992).
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Recent progress in dealing with the singular behavior
of the Neumann-Kelvin Green function

Y. Doutreleau* and J.-M. Clarisset

The Neumann-Kelvin formulation of the linear wave-resistance problem is considered. Due to the
singular behavior of the Neumann-Kelvin Green function, special care is required when dealing with
surface piercing bodies. Consequently, an element integration technique is proposed as a discretization
paradigm. This method, which alleviates the singular behavior of the Green function, is implemented
within the frame of a bounded domain formulation for the Neumann-Kelvin problem. Advantages and
drawbacks are presented, and possible improvements discussed.

A bounded domain formulation for the Neumann-Kelvin problem

We consider the wave-resistance problem of a body moving at constant speed, —Up &, in the half space
z < 0 occupied by an ideal fluid at rest. In the Neumann-Kelvin approach, the velocity potential
is decomposed, in the co-moving reference frame, as the sum Up z + ., where @, is solution of the
Neumann-Kelvin problem.

Panel methods making use of the Neumann-Kelvin Green function, define the perturbation poten-
tial e in terms of dipole and source distributions over the body boundary I'. The potential ¢,, which
has then the following integral representation:

(1) 0e(M) = [ [p(P) 02, GL(M, P) - f(P) Gu(M, P)] T,

where G, is the Neumann-Kelvin Green function, v = g/UZ and f(P) = —Up (#ip - £), is obtained as
solution of an integral equation on T'.

However, rather than solving this integral equation, we here consider a bounded domain prob-
lem which is derived using a variational formulation/integral representation coupling method [4]. In
addition to its theoretical interest, this approach presents some practical advantages: for example,
equation (1) can now be defined on an arbitrary coupling surface ¥ thus avoiding the 1/r singularities
of the Green function. Furthermore, in order to avoid computing second order derivatives of G, the
bounded domain formulation is herein modified by introducing a potential @;, solution of a Dirichlet
problem in (;, an interior domain of the body (Figure 1-a). Consequently, solving the Neumann-

Kelvin problem for a submerged body is shown to be equivalent to finding the solution (¢, @;) of the
problem:

r/ V%-Vzﬁe—%/ﬁacheazzﬁed5+p/2%@dz /[:f'tﬁedr
+/ (rf* (p) + #1) - V9 = —/Ezﬁe/rf(P) G, dlpdSy
/a / 7‘1““ (pe) + ¢i) -V (rllfa + r};ﬂ) (G)do + %/atﬁe/rﬂp) G dTp doy

|+ / Pe / £ (0e) + </3,-) -V (r{?° + r}a) (G,)dT

(2)4

for any test function (%, 12),) In this formulation, the conventions are:

— Gu(M, P) = (0z,, - +1-)G,(M, P), where p is a complex number of non-zero imaginary part so as
to avoid irregular frequencies;

- Gz(M, P) = 8,,,G,(M, P) (' - ), where ' is the vector lying in SL and normal to o at M;
— rf2(4) is such that r&*(¢) = ¢ on T and rf*(4) = 0 on F,, and conversely for re .

*Bassin d’Essais des Carénes, Chaussée du Vexin, 27100 Val de Reuil, France
YCEA/LV, 94195 Villeneuve-St-Georges, France
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Unfortunately, because of the singular behavior of G, (M, P) for P downstream of M, the latter being
on the free surface (see [7]), the equivalence between the Neumann-Kelvin problem and (2) could
not be established for surface piercing bodies. In view of this difficulty, we shall restrict ourselves to
the devising of a discretized formulation of (2) for submerged bodies which remains numerically well
behaved in the limit of zero depth.

A
SL o G,

T T T T T ¥ 1
1] o1 02 0 04 05 os

y
Fi1G. 1-a: Coupling method FiG. 1-b: Singular behavior of G',

For this purpose, the bounded domain formulation is solved numerically using a finite element
method: the different terms in (2) are discretized with the help of basis functions w; which depend on
the volume discretization of the domains ; and 2., and on the type of interpolation functions being
used. The singular behavior of the Green function forbids however the use of classical discretization
techniques for the terms of (2) which involves G, (M, P) at its singular regime [1]. Consequently, a
specific discretization method must be devised.

An element integration method

The Green function G, can be decomposed as the sum of a near-field and a far-field component, G!,
the latter accounting entirely for its singular behavior. The difficulties which arise when discretizing
the terms involving G% in (2), can be circumvented by first, interchanging the orders of integration
between the points M and P in (2), then, performing analytically the spatial integration with respect to
M. An approach following this principle has also been proposed for the diffraction-radiation problem
with forward speed: see [6]. The present procedure leads to computing analytically the integrals:

3) /151 0rp GL(2,y,2') (@ - £) dopr  and ‘/;'u“)l (0z,, - +1) GL(2,9,2") dEp
o

with the notations z = zp — zpm, ¥y = yp — Yym, and 2’ = zp + zp. In performing this task, we benefit
here from the ability of choosing an arbitrary coupling surface ¥. Hence by imposing . to be a
rectangular prism (Figure 2-a), analytical integration of (3) is only required for M on o and X;—the
portions of o and ¥ directly upstream of the body.

~

2| Yao, | M, M, M,

03 O T >
G ; x 0.2
Ly
C
0.075
Fic. 2-a: Particular choice of 2. FiG. 2-b: Discretization of ¥

Based on experience with computations for submerged bodies, Lagrange elements of degree 2 are
retained as they provide satisfactory rates of convergence for a limited number of unknowns. Therefore,
evaluating the integrals in (3) for a triangular element 7 = (M, My, M3) of ¥ is equivalent to
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computing the element integrals:

T'=/ w; 8z, G (z,y,2) dom i=123
@) J My Ma] 7 Oz (z,9,7)
TJT = ,/;'wj 6zMle(z’ Y, ZI) dXpm, T; = [ij Gi(zvyv zl) drm j=1.6.

For this purpose, we retain the representation of G! used in {2]. We are thus led to consider the

following complex contour integrals:

exp [~ I cosh(2u — ia) + i cosh u]
5 = 2 k=0.2,
(8) Gi(r o, ) /L+ (cosh u)T(sinh u)F 1 du, for

’ k=071’2 ’
K¥=1,23

exp [—%cosh(Zu——ia)+qu+i£coshu] iy for {q: -1,0,1

6 E{ (0., =_/ '
(6) bw(re:6,Q) Ly (coshu)k(zq coshu — iygsinh u)f

with § = vjz|, r = vV/¥2 + 2%, a = arctan(—y/2'), and where L, is a path joining —oco to +00 and
avoiding the poles of the integrand. As the integrals Gy and EZ' . are similar to the expression of G,
the various approximations described in [2] are extended to the present case. Two complementary
approximations per integral are thus derived which provide numerical results with an absolute accuracy
of at least five significant digits, and this for £ in a range sufficiently large for the present applications.
These approximations consist in: a) convergent series expansions for values of the parameter M =
£2/4r < 16, and b) asymptotic expansions along with highly oscillatory integrals when M > 16. These
oscillatory integrals, similar to that introduced in 8], are evaluated following [5]. The main difference
between G, and the functions G and Ez,k, lies in the fact that the latters are defined and continuous
for £ > 0, 7 =0, |a| = 7/2, whereas the former is singular there.

Applications
Submerged ellipsoid

The present element integration approach has been compared, for the case of a submerged ellispoid,
with a classical discretization method as well as with the semi-analytical results of Farell [3]. Wave-
resistance results show good agreement between the element integration method and Farell’s results
for an ellipsoid with an aspect ratio of 5 at a submergence depth of a quarter of the focal distance:
see Figures 3-a, b.
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FiG. 3-a: Small Froude number FIG. 3-b: Large Froude number

Surface piercing ellipsoid

Computations with the same ellipsoid, but now half submerged, have been performed. Wave-resistance
results appear to be strongly unstable with respect to mesh refinements. An analysis of the line and
surface integral contributions in (3) furnishes a possible explanation for this behavior. Indeed these
contributions present oscillations near the tracks of the discretization points lying on oy. These
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oscillations, which cannot be resolved with a reasonably fine mesh, render the element integrals T
acutely sensitive to the location of the point P. This peculiarity is illustrated in Figures 4-a, b for
the element integrals Tj and 7] associated to the point M, of coordinates z = 14,y=2=0 (see
Figure 2-b): significant peaks are clearly visible about the points yp = 0, £0.075. The fact that these
peaks are more pronounced for T; than for 77, and that their magnitude increases with the distance
¢, indicates that they are inherent to the highly oscillatory behavior of G
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F1G. 4-a: Behavior of Ty F1G. 4-a: Behavior of T
Discussion

Analytical evaluations of the line and surface integral contributions in (3) has alleviated the singular

behavior of G, thus resulting in a proper numerical discretization of the bounded domain formula-

tion (2). However, at this stage, numerical results could not be obtained for surface piercing bodies due

to the strongly oscillatory behaviors of the element integrals T;. Such behaviors are associated with

the discretization of the boundary £, and the particular choice of basis functions with discontinuous

slopes. Significant improvements could be achieved in several ways, namely:

— by performing analytically the spatial integration with respect to the field point P: while this task
does not present further difficulties, the required analytical computations are significantly heavier.

— through the use of C™ elements, m > 0: the current finite element procedure based on Lagrange
element would need to be taylored to such a case. '

— through the use of spectral elements: substantial work would be needed to devise a practical
method capable of handling an arbitrary shaped boundary such as T
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DISCUSSION

Kuznetsov. N.: The finite element method usually leads to tridiagonal matrix while
matrices arising from discretization of boundary integral equations are complete.
Does the matrix in your coupled approach have the advantage of the FEM to be
tridiagonal?

Doutreleau Y., Clarisse J-M.: No, it's not the case because of the coupling terms
between the hull T" and the coupling surface .. So we have more unknowns than
in boundary integral method, but not so many because in many problems, only one
layer of finite elements is needed. The real advantage of the coupling method
consists in involving no singularities of Rankine type in the Green function.

The second advantage in the precise problem involved in this talk is that we can

decrease the analytical work drastically by choosing an appropriate coupling
surface. '
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Impulsive diffraction by an array of three cylinders

Thomas H. Farstad*

It has recently been discovered that trapped waves are present in an array of cylinders.
Frequency-domain work reported by Maniar and Newman [3] and others, includes both ana-
lytical solutions and computational results. One of the important questions this phenomenon
raises is how long it will take to build up a trapped wave or nearly trapped wave, and how
important this will be in the generation of time series. It is also of interest to understand when
the interaction between the cylinders occurs.

Impulsive-diffraction analysis by an array consisting of three cylinders has been performed
to answer these questions. Results have been reported in the frequency-domain on arrays of
the size of 100 cylinders using a B-spline methodology, but the computational expense using
a planar, constant strength panel method in the time-domain has so far limited this study to
three cylinders. However, the phenomenon found in the frequency-domain are recovered.

During work with arbitrary generalized modes in the time-domain, it was found that a wide
variety of problems could be addressed [2]. Generalized modes were therefore used to study the
diffraction by the three cylinders. The total potential & describing the flow satisfies Laplace’s
equation. The free surface condition is linearized and the body boundary condition is implied
on the mean wetted surface of the global structure. The total potential is decomposed by

J
d=¢r+o¢s+ Yo (1)

7=1

where the incident potential is ¢7, the scattered potential is ¢s and for all rigid body modes
and deformation modes there is an associated radiation potential ¢;. If the number of bodies
is N then J=6N.

J normal vectors are also defined, in an N body problem such that n; is zero on all other
bodies except the first. The same is true for ny to ng. The normal vectors n7 to ny2 are nonzero
on the second body and so on. The diffraction force can then easily be obtained by

Fj= /§(¢[+¢s)n,-ds 2)

where § is the mean wetted surface of the global body. The problem is solved using an integral
formulation and a free-surface Green function as explained by Bingham et al. [1]. Giving the
body an impulsive velocity in a mode, impulse-response functions for the influence on all modes
are obtained.

*Aker Norwegian Contractors, Boks 1358 Vika, 0113 Oslo, Norway (thomasfa@chf.mit.edu)
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- The global problem includes three truncated cylinders in infinite depth of radius and draft
a. The separation distance between cylinder centroids is 2d = 4a. The wave heading is parallel
to the array. Each cylinder consists of 240 panels total.

Figure 1 presents the exciting force coefficient vs. nondimensional wavenumber for each
of the three cylinders. The exciting force coefficients are found by Fourier transform of the
diffraction impulse-response functions. The existence of trapped modes is evident. The results
from the time-domain are compared to quantities produced by the frequency-domain code
WAMIT, and the comparison confirms the method used. The peak occurring close to Kd/m =
1/2 is the Neumann trapped wave whereas the peak at Kd/r =~ 1 is the Dirichlet trapped
wave. These names correspond to the boundary conditions for the trapped waves, for further
explanation see [3]. Peaks for higher wavenumbers are present as well, all peaks will become
sharper in a larger array and with larger draft for each cylinder.

The diffraction impulse-response functions for each of the three cylinders is presented in
Figure 2. The response function is compared with the impulsive diffraction of a single cylinder
at the same spatial location. To interpret the results it is important to understand that the
impulsive wave is a delta function in time at z = 0, the same spatial location as the center of
the second cylinder. As one would expect, it is found that no interaction is present before the
wave-packet is close to the second cylinder. From the time when the majority of this wave-
packet is coming close to the second cylinder the interaction is evident from Figure 2-a, where
trapped waves are present for t/(L/g)}/? > 0. As scattered waves of the second cylinder are
becoming important, there is a rapid build-up of a nearly trapped wave-force acting on the
first cylinder. The trapped wave has a slow decay rate and when the computation was stopped
interaction effects could still be found. Figure 2-a indicates that it takes 4-5 wave periods to
dissipate the energy associated with the trapped wave for this geometry.

Figure 2-b indicates that the interaction effects on the second cylinder take place earlier, as
can be expected. The sheltering effect is easily seen for t/(L/g)}/? < 0, whereas a trapped wave
is seen for larger time. The magnitude of the wave is initially about the same as for cylinder
one, but the decay rate is faster, of the order of 2-3 wave periods. This might be due to the
interaction with the third cylinder, but results reported in the frequency-domain indicate that
the separation distance is important as well. The third cylinder experiences a strong sheltering
effect, and the trapped wave is not so clearly defined in Figure 2-c. The Fourier transform of
the impulse-response function confirms this.

Applying generalized modes theory, the feasibility of computing impulsive diffraction in the
time-domain for an array has been demonstrated, and it is shown that frequency-domain results
can be reproduced. This gives confidence in the method. For the particular case studied we
find that the trapping effect has a fast build-up, but the decay rate is different for each cylinder.
This might be connected with the separation distance between the cylinders, and further studies
should therefore include variation of the spatial separation. Further work will also be to study
this problem in finite depth with bottom-mounted, rigid, cylinders. Interaction effects have
been found to be strongest for this case, and by convolving an arbitrary wave-packet with the
diffraction impulse-response function one will be able to study the duration of a nearly trapped
wave in a random sea. In the generation of a time series this will be of importance.
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Figure 1: Magnitude of the exciting force coefficient in head seas for an array consisting of 3
truncated cylinders. Cylinder 1 is the first in the row. The separation distance is 2d = 4a,
where a is the radius. The baseline is the force on a single cylinder with no other bodies present.
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DISCUSSION

Clément A.: Your results are for evenly spaced cylinders; what would happen to
the trapped modes in the case of uneven spacing?

Farstad T.H.: I have not studied this problem, but I believe the resonance will
disappear if the geometry of the problem is non-symmetric. This can be uneven
spacing or cylinders with different diameters, for instance.

Eatock-Taylor R.: Have you encountered any numerical difficulties associated
with the high frequency content in the impulsive wave?

Farstad T.H.: The formulation calculating the impulsive wave and performing the
water line integral was developed by Bingham, Korsmeyer et. al [1]. The waterline
integral is performed at a distance d/2 below the free surface, where d is the
average height of the panels along the waterline. This attenuates the signal
somewhat, and the high frequency problem is avoided.

Molin B.: You seem to hint that one could end up with different design values
when using a time domain approach, as compared to the usual frequency domain
one. If linearity is assumed, identical values are finally obtained.

On the other hand experiments on TLP like structures show quite different
behavior in regular and irregular waves. In regular waves, quasi resonant sloshing
motions of the free surface are observed at some frequencies leading to non-linear
effects coming into play and ultimately breaking. In irregular waves these resonant
sloshing motions get initiated in long wave groups at critical frequencies then
disappears. So an aspect of the problem is how many waves it takes for the
resonant state to be attained. In this respect your work is quite helpful.
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NONLINEAR WAVE-CURRENT INTERACTIONS
IN THE VICINITY OF A VERTICAL CYLINDER

Pierre Ferrant
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INTRODUCTION

This paper is dedicated to the analysis of wave-current interactions in the vicinity of a
three-dimensional body.

Most recently published numerical methods for the solution of this problem were
developed within the frame of frequency-domain analysis, with significant contributions
including Nossen et al (1991), Emmerhof & Sclavounos (1992), Teng & Eatock-Taylor (1995),
Malenica et al (1995), among others. The advantage of this first approach is to provide results of
interest such as wave forces and runups on the structures in a relatively straightforward
manner. On the other hand, the mathematical formulation is significantly more complicated
than with zero current speed, with specific problems such as secularity (Malenica 1995). There are
also a number of practical limitations, such as regular incoming waves and uniform bottom
topography only. At last, the perturbation expansion of boundary conditions with respect to wave
steepness and current speed limits the analysis to linear or weakly nonlinear phenomena, and
up to the author's knowledge, only linearized formulations have been published to date.

In these conditions, as for a number of other problems (Ferrant 1996b), time domain
analysis represents a very attractive alternative. Using a time domain Rankine panel method, it
is theoretically possible to implement any level of boundary condition approximation, from
linearized conditions to fully nonlinear ones, and there is no limitation on the geometry. Of
course, due to their computational demand which may be very important, even for recent
workstations, the convergence of the numerical models, their stability and accuracy have not yet
been sufficiently studied. Generally speaking, there is a remaining lack of confidence in this
class of numerical models which will undoubtedly progressively disappear with their
development and validation. The applications of time domain analysis to wave-current
interaction problems are still scarce, see for example Kim & Kim (1995), and are restricted to the
simulation of problems developed to first order in the wave amplitude parameter £ and in the
current speed parameter .

In the present paper, we present some results of the application of fully nonlinear time-
domain analysis to the wave-current interaction problem in the presence of a three-dimensional
body. The incoming flow, including regular waves and current, is modelized using a stream
function theory (Fenton & Rienecker 1981), and the problem is formulated in terms of the
nonlinear perturbation induced to the incident flow by the body, using a formulation initially
developed in Ferrant (1996a) for the capture of higher order diffraction effects in the time domain.
The nonlinear free surface boundary conditions are updated using a 4th order Runge-Kutta
scheme, the boundary value problem being solved at each step using a linear isoparametric
boundary element method. An absorbing layer method is implemented for the absorption of
diffracted waves. Results presented at the end of this paper concern the computation of the runup
on a vertical cylinder in finite depth due to waves and current.
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PROBLEM FORMULATION - NUMERICAL PROCEDURE

The simulation strategy is the same as described in Ferrant (1996a). The incident flow,
including here acurrent, is prescribed by a stream function theory (Rienecker & Fenton 1981),
and the diffraction problem is solved for the perturbation (®p, np) induced by the body, defined by:

(1) (D(X,y) = d)e + (DD
(2) n(x,y) ="Ne + ND

where the subscript e denotes the pure incident flow. With this definition, we obtain the kinematic
and dynamic free surface conditions for the perturbation flow:

an dT] - R d(¢) +¢D)

dt " d < Ve T

(3) dt 3 £ed(0.+0p).grad(n, + M) + ——
d_¢i P _ _ l - 2 B dq)e

(4) dat —Ne ~TMp Q[gmd(q;e +¢D)] "

where terms from the incident flow at the right-hand side can be evaluated exactly from the
stream function wave model, without influence from time or space discretization. The problem
being fully non linear, equations (3) and (3) must be satisfied on the instantaneous free surface
position, and thus the incident potential may possibly be evaluated above the undisturbed incident
wave. This is possible here because of the continuous prolongation of the incident potential above
the incident wave. Of course, the formulation described above is not universal and depends on the
availability of an explicit model for the incident wave.
On the body surface, the no-flux condition is written:

(5) ®pp = - P(t) . Pen
where b(t) is a scalar function vaying smoothly from O to 1 during the first wave period, the
simulation starting with ®p=0 everywhere in the fluid domain and np=0 on the free surface.

A boundary element method is used for the solution of the boundary integral equation
formulation of the problem. The method is based on isoparametric triangular elements
distributed over the different boundaries. A piecewise linear, continuous variation of the solution
over the boundary is thus assumed, and collocation points are placed at panel vertices. Meshes are
made of an assembly of different patches, with the assumption of continuous normal on each of
them. On intersection lines between two patches, two collocation points are kept at the same
geometrical position, and the boundary conditions corresponding to the two surfaces are both
satisfied. At the intersection between two solid patches, two Neumann conditions for the two
different normals are enforced, whereas at the intersection between solid boundaries and the free
surface, both a Neumann (N) condition on the solid surface and a Dirichlet (D) condition on the
free surface are satisfied. This discretization scheme reduces the integral formulation to a linear
algebraic system to be solved for the normal velocity on Dirichlet boundaries (free surface) and
the potential on Neumann boundaries. This system is made of the influence coefficients of
linearly varying distribution of sources on boundary elements. Analytical formulas for the near
field, and different approximate formulas for the intermediate and far field of the different
panels are implemented. These coefficients are factorized with respect to sources or dipoles
density at panel vertices, which are selected as control points. This scheme results in square
systems of equations for the singularity distribution on the boundaries of the computational
domain, which are solved using a preconditioned GMRES scheme.

After the solution of the boundary value problem and the computation of fluid velocities at
the free surface, free surface conditions considered as ODE's for ¢ and n are integrated in time.
A fourth order Runge-Kutta method is used for that purpose, requiring four solutions of the
boundary value problem per time step.

The radiation condition is enforced by adding dissipative terms in equations (3) and (4)
on the outer part of the free surface mesh.
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NUMERICAL RESULTS

The numerical scheme has been applied to the simulation of the diffraction of regular
waves by a vertical cylinder in water of finite depth, with or without current. The cylinder radius
is equal to the water depth, i.e. R/H=1. and the wavenumber is koH=1.0. The wave amplitude is
A/H=0.1, and computations have been performed for current speeds U/sqrt(g/H)=-0.1, 0.0, 0.1.

Figure 1 and 2 compare the time series of the wave elevation at the weather side (Fig.1)
and at the lee side (Fig. 2), for the three different values of the current speed. Figure 3 compares
the maximum runups along the cylinder waterline in the three cases. Present nonlinear results
at zero Froude number seem to be close to the second order model of Biichmann et al (1997).
However, sensible differences in the influence of the current are observed between their approach,
which is based on a perturbation analysis up to second order in the wave steepness and to first
order in the current speed, and the present fully nonlinear model.

CONCLUSION

Wave-current-body interactions simulations presented in this paper were based on a
fully nonlinear model in which no assumptions regarding the relative magnitudes of wave
steepness and current speed are necessary. With the present values of the current and wave
parameters, we observe sensible differences between the present fully nonlinear approach and the
perturbation analysis results of Biichmann et al (1997). These differences remain to be clarified,
first by comparing both approaches for lower values of the wave amplitude and current speed, but
also by comparing numerical results and experimental values. We hope to be able to report on
such comparisons in the near future.
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DISCUSSION

Grilli S.: Did I correctly understand that you initialize your computations with a
streamfunction, wave everywhere in the domain? Wouldn't this cause initial
transient response that may affect the initial oscillation observed in your runup
height. These, hence, may not be entirely physical.

Ferrant P.: Yes, the initial conditions correspond to the undisturbed incident
wave in the domain, without body. The body is introduced through the Neumann
condition which is multiplied by a smooth ramp function going from 0 to 1 during
the first wave period.

Of course this procedure produces unphysical transients, but they die out very
quickly and a periodic steady state is reached within less than two periods.
Relevant results such as forces and runups are then derived from the steady state
part of the solution.
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Higher-order wave drift forces on bodies with a small
forward speed based on a long wave approximation

S.Finne

Department of Mathematics, Mechanics Division University of Oslo, Norway

1 Introduction

The mean wave force acting on bodies, stationary or moving with a small forward speed in a wave
field is considered. This force, the so called wave drift force, has shown to be of great importance
within offshore technology. The change in the drift force because of the small speed, the wave drift
damping, may be an important damping mechanism.

Calculation of the wave drift forces has traditionally been based on linear theory giving the drift
force consistently to second order in the wave amplitude, the mean second order wave force. We
here refer to Grue & Biberg (1993), who extended the theory to include a finite depth. In this
work we use a long wave approximation to calculate higher order wave drift forces on a vertical
cylinder in shallow water, but of interest is also the time-dependent higher order wave force. The
latter is among others also considered by Jiang & Wang (1995), for stationary bodies. As a model
we use one version of the weakly nonlinear and dispersive Boussinesq equations, see. e.g. Wu
(1981), Pedersen (1989). We remark that the Boussinesq equations contain the fully nonlinear
hydrostatic equations. The equation set is then modified to include a small current. It is necessary
to point out that in many practical problems, the water depth is outside the limit of the long wave
approximation. One of the intentions with the present work is however to indicate higher order
effects on the wave drift force.

The body is exposed to incoming cnoidal waves, and the wave field around the body is solved
numerically in space and time by the finite element method. Then the drift force is computed by
first integrating the pressure over the body surface, and then time-averaging the periodic force.
The wave drift damping is calculated by numerical differentiation of the drift force with respect to
the small current.

2 Mathematical formulation

The problem is considered in a frame of reference (z,y, 2) moving with the body, in which there
is a small constant current Up in the positive z-direction. Assuming potential theory, the velocity
field may be expressed by a velocity potential ®(z,y, z,t), where ¢ is the time. According to the

long wave approximation used here, we then introduce a depth average velocity potential ¥ (z,y,1)
by

n
IR

Here n(z,y,t) denotes the surface elevation, and the constant h is the mean water depth. We
observe that the unknowns 1 and 7 are only functions of the horizontal coordinates. Furthermore
% is divided into two parts ¥(z,y,t) = ¢(z,y,t) + ¢o(z,y) where ¢ and ¢y represent the velocity
potential due to the waves and the small current respectively. Typical wave length Ag, and typical
wave height Hy are then defined, and three important dimensionless parameters og, o and € given

¥(z,y,t) O(z,y, 2,t)dz (1)
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will be present in the model. The gravitational acceleration is denoted by g. The actual version
of the Boussinesq equations that will be used, and modified to include a small current, has the
advantage of containing the unknown velocity potential instead of the two horizontal velocity-
components. This reduces the total number of unknowns. The equation set for the unknown
potentials ¢o and ¢, and the surface elevation 7 is

Vigo =0 (3)

0 1 h%*_,0
—65?+g77+ §(V¢)2—§V2£+V¢O'V¢=O (4)
011V ((h+m)V6) + Voo V=0 (5)

where neglected terms are O(ad, agae, a’e, ae?). Eq. (4) represents conservation of momentum,
while eq. (5) represents mass conservation.

The force acting on the body is obtained by integrating the pressure over the body surface. The
depth integration is done analytically, and for the time dependent force F(t) we then obtain the
following expression in terms of ¢o, ¢ and 7
0 1
P =ph [ (58 + 2o - 5(V8)* = Véo- Ve)ndr Q
I'p

Here I'g denotes the contour line of the body, n is the normal vector pointing out of the fluid
domain and p is the fluid density. By time-averaging the force with respect to the wave period, we
obtain the drift force F

— g 1 1,00
= ph Zp? — — 2 - Vo - - =(=)?)nd
Feph [ (g0 = 5(V9)7 = Voo Vo= g (G mar (7
In this expression neglected terms are O(of, aoc?e, o¢, a¢?), which is consistent with (3) - (5).
The wave drift force is then expanded in order of ap by F = Fo + aoF;, where Fy is the zero speed
drift force, and aoF; is the wave drift damping force.

3 Numerical simulation

The numerical solution is performed by using the finite element method, with the ability of easily
consider bodies of arbitrary shapes. Differentiation with respect to time is approximated by finite
difference. For further details about the numerical method, we refer to Irmann-Jacobsen (1989)
where (4)-(5) have been solved numerically when ¢o = 0.

The model is applicable to an arbitrary fluid domain, but in the present study we want to calculate
the drift force on a body in an unbounded fluid, with the incident wave field propagating in positive
x-direction. We therefore define the simulating area as a square basin, (see. Fig 1), and solve (3)-(5)
with the following initial and boundary conditions.

Eq. (3) for the unknown ¢o:
0o

79"”— = —UO,UO on FL,FR (8)

0o _
on
Eq. (4) and (5) for the unknowns ¢ and 7:

0 on TIgTIp 9)

¢:7]:0 t=20 (10)
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¢=9¢r1(t)y n=nr(t) on I (11)

0¢ _
o 0 on Ip,IsT'r (12)

Considering the solution of (4) and (5), (11) is the essential and (12) the natural boundary condition,
the latter being the rigid wall condition. The incident waves given by 7y and ¢; with given wave
length ), and given wave height H, are the cnoidal wave solution of (4)-(5).

It is necessary to discuss some aspects about the discretization and the choice of boundary con-
ditions. The time-averaging of the force must not be done before the wave field around the body
has become nearly periodic in time. We must therefore either impose a radiation condition, or use
a very large simulating area. The problem with the first is that it is difficult to ensure that the
boundary does not reflect any significant waves, this has been the outcome from simulations where
a radiation condition has been applied. In the latter case, one normally need a large number of
elements. It is however found, by simulation of solitary waves propagating in one direction, that
by increasing gradually and not to fast the element size, reflection because of grid-variation may
bee neglected. We therefore use a large basin, with increasing element sizes in the outgoing region
(i.e. downstream and to the side of the body see. Fig 1). It is then like wise to use the rigid
wall condition on I's and I'g. A time-averaging procedure is then established, and the drift force
may be computed within a reasonable CPU time. An analytical solution of the second order drift
force based on (4)-(5) when ¢p = 0, has been developed for a circular cylinder. The mean second
order wave force has then been computed numerically and convergence-tested with the analytical
solution, with very good accuracy.

4 Results

In the first example, the body is a circular cylinder, with radius R = 5h, the size of the basin is
110h X 110k with 11745 elements in half of the fluid domain. The body is exposed to an incident
cnoidal wave train, and Fig. 2a shows an example of the z-component of F(t) at two different
values of Up. Fig. 2b and Fig. 2c then shows the z-component of the zero speed drift force and the
wave drift damping at different values of the wave height, as a function of the wave length. The
numerical differentiation of the drift force is done about Uy = 0.0 with AUy = 0.04/gh. H = 0.0
means second order theory. What is interesting to note is that both the wave drift coefficient W—fﬁ*’ﬁ

and the wave drift damping coefficient E—gﬁlﬁ are decreasing with increasing values of % In the
last example, Fig. 2d, the body is a model of a ship with length L = 10A and beam B = 1.79A. In
this case we see that the wave drift damping coefficient is not always less for the steepest waves.
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STEADY FLOW NEAR A WEDGE SHAPED BOW

E. FONTAINE
Ecole Centrale de Nantes, 1 rue de la Noé, 44072 Nantes Cedex, France.

O.M. FALTINSEN
Division of Marine Hydrodynamics,

Norwegian University of Science and Technology, N-7034 Trondheim, Norway.

1 Introduction

The free surface steady potential flow around
a fine wedge shaped bow is studied. The con-
cept of a bow flow solution was first introduced
by Ogilvie (1972) and has recently been studied by
(among others) Faltinsen & Zhao (1991), Fontaine
& Cointe (1997), and Fontaine (1996). When the
so called 2D +1/2 or 2D +t theory is used to find
the bow solution, good agreement is generally re-
ported between the measured and computed wave
profile along the hull. The main differences appear
at the “nose” (apex) of the wedge where an ini-
tial elevation is observed but is not predicted. To
over-come this misfit, a local analysis of the flow
in the near-bow domain is performed (see fig. 1).
The near-bow solution matches on the one hand
to the bow-flow solution and on the other hand
to the far-field solution. It also leads to an esti-
mate of the wave elevation at the nose of the bow.
Comparison with experiments are given. Exten-
sion of the theory to general cross-sections will be
discussed in the oral presentation.

2 The near-bow flow

The two non-dimensional parameters describing
the wedge shaped bow are tana = b/L and § =
h/L. The near-bow domain is based on a length
scale equal to the draft h and a velocity scale equal

to U. The non-dimensional variables are defined
as :

=2 Y s_Z2 L_¥ -_7
‘z‘_h? y_h$ ~ h, ()0 Ub? n_b

where ¢ is the velocity perturbation potential and
7 the free surface elevation. Assuming the ship to
be slender or thin (a < 1, § < 1), the following
asymptotic expansions are introduced :

9:’;(‘%1975:0’75) = [21(&,5)@1(@‘!).5)+0(ﬂ1)
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(&9 0,0) = (e, 8) m(£, )+ o()
Since there is no dilation of the space variables,
the leading order perturbation potential ¢; sat-
isfies the three-dimensional Laplace equation in
the fluid domain. Using the non-dimensional vari-
ables, the body boundary condition gives :

- El—?—f—l- -+ 0(1) =90

0¢ )
6 0y

(1+#1“(§§;

The principle of least degeneracy implies that
f2i = 6. When the ship is thin (o < §), the re-
sulting condition is :

%%(:e, 0,2) =1
on the center plane of the hull.
The kinematic free surface condition is imposed
on 2 = (a/d) ¥ 7, and takes the form :

(1)

d¢y, 0
(1+ tan v )_(%
991 O 8 O¢y
St L R .3 1)=0
a5 " ez oW

The principle of least degeneracy implies that 7; =
d so that the resulting condition at first order is :

9

195~ 5@ 80 =0 e

The dynamic free-surface condition is then :
0y 1 01,2 | O0¢1.2  ,0P1 2)
% T 2“‘““((8—:&) + (55 + (55
gL .
+ tana>= +o(1) =0 (3)

U?
Since 7y is of order O(1), a non-trivial solution can
then only be found if :

gL 1
— <
Uz — O(tana

) (4)



Figure 1: illustration of the different domains of the composite solution.

Fontaine & Cointe (1997) obtained a similar con-
dition for the different approximations to be co-
herent in the bow flow problem :

L

7 <00)
Since we study both the bow flow and the near-
bow flow, we must satify the condition (5) which
is the more restrictive. In that case, 2D+t theory
can be used to compute the bow solution and the
previous near-bow approximations remain valid.
As a consequence, gravity effect can be neglected
at first order in equation (3). Assuming the per-
turbation potential vanishes at infinity in front of
the ship (£ — —o0), the resulting condition is :

(6)

The perturbation potential satisfies the three-
dimensional Laplace equation subject to the
boundary conditions (1) and (6). The solution of
this problem can be expressed in term of a distri-
bution on the center plane of the hull of Rankine
sources and mirror sinks above 2=10:

()

¢1(2,9,0) = 0

1 0 L/ o
*bl:%%%/_ld‘/() d€ G(2,,%,€,0,()
G = [(j_€)2+92+(5+c)2]—1/2

-2+ i+ (2= 0N

with :
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Taking the limit and performing the integral leads

. _-1_ 0 —§:+\/§72+g2+(2_c)2
¢1_2n£1 [_j+\/§2+g2+(2+c)2}dc (7)

3 Matching of the different
solutions

Fontaine & Cointe (1997) use the method of
matched asymptotic expansions to define an in-
ner solution valid in the bow region, and an outer
solution valid far from the ship. Even if the outer
solution remains valid in front of the ship, these
two solutions are not of same order of magnitude
in the near-bow domain so that they do not match
at first order (Fontaine, 1996). The introduction
of the near-bow domain removes this gap since the
near-bow solution matches on the one hand to the
bow flow solution and on the other hand to the
far-field solution. ‘
Using the following non-dimensional variables :

31
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the perturbation potential is given by?! :
o §¢1(2,9,2)  in the near-bow domain
Ub

d¢1(£,9,2) in the bow domain

82 $1(%,7,%) in the far-field domain
The far-field solution is given by a distribution
of three-dimensional vertical dipoles on the axis
% > 0. Using 6 = tan=1(2/§), @1 is given by :

s (a = © —u(s 7 sin{f
(5,50 = [P

o AT [@-9r 47
The dipole density is given by the behaviour of
the bow flow solution as # — 400 :

ds (8)

3
2

s B(E) sin(f)
R s

3.1 Matching of the near-bow and bow
solutions

In order to match the near-bow flow solution
to the bow flow one, we define an intermediate
variable 2, = Z/x(6) where § < x(8) < 1.
is of order O(1) in the overlap domain and the
matching condition at first order is :

im 618 % 5,2) - 61 (002 5,2)] = 0

Ty >0
zy=0(1)

This condition states that the behaviour of the
bow solution at origin must be the same as the
behaviour of the near-bow solution as & — -+oo.
Taking (7) into account, this condition implies

that :

A o 1 0 ~2 + 53— 2

991(0’ Y, 2) = p [—l In [%] d¢ (10)
This can be recognised as a solution of the bow
flow problem. Indeed, this expression satisfies
the two-dimensional Laplace equation subject to
the body boundary condition and an homoge-
neous Dirichlet condition on the unperturbed free-
surface. As a result, the two solutions match if the
initial conditions for the bow flow problem are :

$1(0,9,00=0 and #(0,9) =0

These are the same initial conditions as used in the
bow flow solution by Fontaine & Cointe (1997) and
Faltinsen & Zhao (1991). However, this matching
is more precise since the bow flow and the near-
bow flow solutions have the same order of mag-
nitude in the overlap domain. As we will see in
section 4, it also leads to an initial wave elevation.

lwhere the subscript 1 indicates that the quantity is of
order O(1)
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3.2 Matching of the near-bow and far-
field solutions

3.2.1 Bow side matching

The behaviour of the near-bow solution far aside
the ship bow (as & = O(1) and # — 400) must be
the same as the behaviour of the far-field solution
in the vicinity of the ship bow side, i.e. as # — 0.
As before, we define an intermediate variable r, =
7/x(8) (6§ < x(6) < 1) which is of order O(1) in
the overlap domain. The matching condition is at
first order :

. .. x(6 P
fim (618, X0, 0) — 561(68, x(0)r,0)] = 0

rx=0(1)

When ¢ — 0, it follows from (7) and (8) that :

o x(6) 1 ¢ sinf 62
@12, Trx, 6) = Q;X((s) r + O[X((S)z]
§¢1(82,x(0)ry,0) = _#4(7(:) Xfé) SI:LO + O[XZ?)]

The dipole density p(0) is determined by using
equations (9) and (10). This leads to p(0) = —2
so that the two solutions match.

3.2.2 Matching in front of the bow

The behaviour of the near-bow flow solution far
ahead of the bow, as # = O(1) and & — —o0
must equal the behaviour of the far-field solution
in front of the bow (as Z — 07). Using an interme-
diate variable z, = #/x(0) so that § < x(é) < 1,
the matching condition is at first order :

O TN -
i[53, 7,0) - 61 (1(0)2,57,6)] = 0
zx=zgl)
zx

When 6 — 0, it follows from (7) and (8) that :

) 2(@ ) _ 1 8% #siné 82

@1 ( 5 Ty, 7, 0) = X0 222 +0[X(5)2]

) oo p(0) & Fsing 52
SE1 (O, 67,0) =~ + ol

As a result, the two solutions match.



4 Composite solution

The composite solution is obtained by adding
the near-bow to the bow solution and by sub-
stracting the common part (given by eq. (10) for
the potential). In front of the bow (& < 0), the
composite solution for the wave elevation is equal
to the near-bow solution and can be found by inte-
grating the kinematic free-surface condition (2) :

o T
42249241
+/82 4 g2 = \fi2 + g2+ 1]

The wave elevation in front of the bow is therefore
independant of the speed and the wave elevation
at the nose is :

ah

n(0,0) = T

(11)
These results differ from the results of Sclavounos
(1994). He predicted half the value of eq. (11).
The theoretical result has been compared with ex-
periments presented by Fontaine (1996). Because
of the small size of the tested model, the effect
of surface tension is important. The experimen-
tal results can be scaled to full scale by introduc-
ing a surface tension parameter (see fig. 2). Full
scale corresponds to that surface tension parame-
ter goes to zero. The results show that eq. (11) is
reasonable.
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Figure 2: Initial elevation as a function of the sur-
face tension parameter. o = 15°, Fj, = U/\/gh,
o = surface tension.

For the wave elevation along the hull (£ > 0), the
following three-dimensional correction should be
added to the bow flow solution :

An =
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z/h 0~ |0.05| 01 |0.15] 0.2 |0.3
7An/(ah) | 1.0 | 0.83]0.73 | 0.66 | 0.6 | 0.5
z/h 04 ] 05 | 1. 2. 5 | o
wAn/(ah) | 0.43 | 0.38 | 0.22 | 0.12 [ 0.05| 0

Table 1: Numerical values of the wave profile cor-
rection.

However, this three-dimensional correction is not
sufficient to completely explain the differences
between experiments and the bow solution by
Fontaine & Cointe (1997). One reason to this
is surface tension effects like in fig. 2. There
were not done measurements for the wave eleva-
tion along the hull for small surface tension pa-
rameter to see any trend for full scale situation.
This need futher investigations.
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DISCUSSION

Tuck E.O.: I applaud this study, which corrects a well-known deficiency in the
2.5 D theory, namely absence of a rise in FS at the bow. But I am not sure how it
was achieved, since surely matching between the local bow flow and the 2.5 D
expansion should have supplied a non-zero initial condition to the latter.

Fontaine E.: Thank you for your comments. The matchings have been performed
using the classical technique of matched asymptotic expansions and the details of
the procedure will be published soon. It appears that 3D effects arise in the
composite solution which is the sum of the 2.5 D expansion and the local bow
flow, substracting the common part of the two expansions.

79






On new mode of wave generation by moving pressure
disturbance.

A .M .Frank
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The problem of waves generation by moving surface pressure disturbance
is well known and well enough studied in the works of many authors. Here we
present the results of numerical simulation of 2D plain waves generation by
negative pressure disturbance, which revealed a new regime when moving with
a critical speed disturbance doesn’t generate upstreame-advancing solitons.
1. Mathematical model

Numerical model used in computations is the so-called discrete nonlinear-
dispersive shallow water model [1]. The essence of this approach is that an
incompressible flow with a free surface is simulated by a finite mechanical sys-
tem of material particles with some holonomic constraints which represent an
incompressibility condition. The governing equations are obtained then from
Hamilton principle. The main advantage of such models is that they provide
exact conservation of mass, momentum, angular momentum and energy even
for coarse spatial discretization. So they give, in particular, the numerical
solutions which are real solitary waves advancing with constant amplitude,
shape and phase speed without any numerical dissipation or radiation. This
property seems to be important for long-time calculations and played, in par-
ticular, significant role in solving Mach reflection problem [2].

In a shallow water case some additional simplifications can be made which,
as in case of usual fluid motion equations, allow to reduce the dimension of a
model. A detailed description of the model and the results of numerical testing
it’s accuracy are given in [1]. There was shown also that for even bottom this
model gives a finite-dimensional approximation of well known Green-Naghdi
(1976) equations. As far as the problem under consideration deals only with
even bottom, one may assume that the discrete model used here is just a
kind of difference scheme for Green-Naghdi equations in lagrangian variables,
which conserves exactly the horizontal momentum and total energy.

2. Numerical results

An infinite fluid layer of constant depth H with a free surface is considered.

The moving surface pressure disturbance is given by

pocos?(wE/2L). || < L
0. if |€] > L.




where ¢ = z — 29 — Ut. Hereafter we assume the depth H, fluid density p and
gravity acceleration g being unit, and the pressure disturbance being moved
with a critical speed U = 1. The computational domain moves step by step
after disturbance with the boundary conditions corresponding to the quies-
cent liquid at the right end and a kind of ”open” condition at the left one.
It is known that for py > 0 such disturbance, pushing a fluid ahead, gener-
ates periodically upstream-advancing solitons. The wave resistance coefficient
always remains positive oscillating near some mean value.

When py < 0 the solitons are also generated but the mechanism is different.
This rarefaction region first pulls out a wave of large amplitude which, having
a large speed, quickly overtakes the pressure source and losing an amplitude
becomes a soliton. The wave resistance coefficient periodically changes sign,
but the mean value, as far as a radiation of solitons takes place, is usually
nonzero. It appeared, however, that the halfwidth L of a rarefaction region
can be specially chosen so that a new periodic mode arises when no upstream-
advancing soliton are generated. This effect first was observed for the solitons
of large amplitude, wich exist only in shallow water approximation but break
down in reality. Then it was found to be the case for all amplitudes.

In fig.1 an example of such mode for py = —0.12 is given. It is well seen that
the pressure disturbance pulls out a wave, which coming to the right end of
pressure region loses it’s amplitude and dissapears there completely. At this
time the next wave appears near the left end of pressure region and so on. The
wave resistance coefficient Cy versus time ¢ plot shows periodic behaviour with
almost zero mean value. In our calculations this periodic mode took place for
some 8-10 periods and then a soliton of small amplitude was emitted (see fig.1
(f)), which probably means that this mode is unstable. Still it seems to be
interesting as an example of new nonlinear and nontrivial solutions.

In fig.2 the values of L versus py are plotted for which this mode is realized.
Fig.3 shows the maximal values of wave amplitudes which arise in this regime.
It can be seen that this mode exists for moderate amplitudes and so it is
possible trying to observe it in experiment.

1. Frank A.M. Discrete nonlinear-dispersion shallow water model. J. of Appl.

Mech. and Techn. Phys.(transl.),1994,v.35,No.1,p.34-42.

9. Serebrennikova O.A., Frank A.M. Numerical modeling of Mach reflection

for solitary waves. J. of Appl. Mech. and Techn. Phys.(transl.),1993,v.34,No.5,
p.610-618. .\
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MOTION SIMULATION OF A TWO-DIMENSIONAL BODY AT THE SURFACE
OF A VISCOUS FLUID BY A FULLY COUPLED SOLVER

L. GENTAZ, B. ALESSANDRINI, G. DELHOMMEAU
Laboratoire de Mécanique des Fluides
Ecole Centrale de Nantes B.P. 92101 44321 Nantes Cedex 3
phone : (33) 02 40 37 25 96, fax : (33) 02 40 37 25 23, e-mail : Lionel.Gentaz@ec-nantes.fr

INTRODUCTION

We present here an original solver [1] to compute two-dimensional free surface flows in viscous and
incompressible fluid by a finite difference method. In most of the methods used nowadays for
solving such problems, free surface elevation is updated at each time step by integration of the
kinematic condition after computation of velocity and pressure fields [2] [6]. In these methods non-
physical boundary conditions must be introduced to solve linear systems and non-linear free surface
boundary conditions cannot be computed accurately. In the method presented here exact non-linear
free surface boundary conditions are implemented on the real position of the free surface. At each
time step the totally coupled linear system for velocity, pressure and free surface elevation unknowns
is solved by a CGSTAB algorithm. Results for a free surface-piercing cylinder in forced heave, sway
or roll motion are presented.

EQUATIONS AND NUMERICAL RESOLUTION

Navier-Stokes equations for laminar flows are written under convective form in a cartesian system
x',x?) defining the physical fluid domain. The dependant unknowns are the cartesian components
u',u*) of velocity, the dynamic pressure p = P+ pgx’® including gravitational effects and the free

surface elevation 4. A curvilinear system (81,82) is used to simplify the implementation of boundary

conditions. Here €' = 0is the equation of the immersed part of the body and £* =0 the equation of
the free surface. A partial transformation of the moving physical space in a fixed curvilinear
computational space is then defined.

In classical uncoupled methods a linear system issued from discretisation of transport and continuity

equations is solved by weakly-coupled algorithms such as PISO or SIMPLER. Thus new velocity

and pressure fields are obtained at each time step. The free surface elevation is updated by integration
of the kinematic condition. This method leads to several theorical or numerical problems :

- a free surface boundary condition for velocities is lacking because of the use of kinematic condition

for free surface elevation calculation. A supplementary non-physical condition must be used and does

not allow an accurate calculation of viscous or surface tension effects. Moreover the normal dynamic
condition is used as a Dirichlet condition for the pressure what leads to a poor mass conservation just
under the free surface.

- the singularity of the kinematic condition at the intersection of free surface and solid body can be

solved by introducing a meniscus. For very refined grids in the vicinity of the body this meniscus can

become too important and lead to numerical divergence of the computation.

- the use of the SIMPLER algorithm gives a poor convergence of non-linear residuals (fig. 1) and it is

a serious problem to compute unsteady flows.

In the new method proposed here the kinematic condition is used as a free surface boundary condition
for velocity. The tangential dynamic condition is the other condition on the free surface for velocities
(as in the uncoupled method). The discrete pressure unknowns are yet located at the centre of the cells
(velocity unknowns are located at the nodes of the mesh) and no pressure boundary conditions are
required. With these choices we have only physical boundaries conditions on the free surface. The
normal dynamic condition gives a relation between pressure and free surface and will be used to
compute the free surface elevation.

A totally-coupled solution is chosen to ensure mass conservation.

The mass conservation is represented by a pressure equation which is discretised by a Rhie and




Chow procedure to avoid checkerboard oscillations. This procedure is generalised for cells located
near the free surface to take free surface effects into account and to make the pressure block
invertible. At each iteration the following linear system for discrete velocity, pressure and free surface
elevation unknowns (respectively called U, P and H) is solved and inverted by the iterative CGSTAB
algorithm [8]:

transport equations — | M, | My

u i My UY (S
pressure equation — | Mg, | Mg, | P(=|fp
normal dynamic condition —| ™"\ Mg, | Mg \H) \ fa

With the coupled method the convergence of non-linear residuals is very good (fig. 1) compared to
the convergence of the uncoupled method. Moreover the total CPU time is decreased by the totally
coupled method (two or three twice as fast than the uncoupled method for the same global simulation
time). :

Uncoupled method
(numerical resolution by SIMPLER)

log. of non-linear residuals on velocities

Totally-coupled method
15t , B
0.0 0.5 1.0 1.5 20 2.5 3.0 3.5
CPU time (mn)

Fig. 1 : Convergence of non-linear residuals with
the present method and an uncoupled method

RESULTS

The monoblock structured grids used here are generated by an direct algebraic method.
Heave forced motion has been first computed for a circular cylinder. The flow is supposed to be
symmetric and simulated only in half the fluid domain.
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Fig. 2 : Added mass in heaving Fig. 3 : Damping coefficient in heaving

A Fourier transform of the computed time series of the hydrodynamic forces acting on the body leads
to non-dimensional hydrodynamic coefficients.

Numerical results are in good agrement with Yamashita [10] and Tasai et al. [7] experiments even for
the 3rd-order force amplitude [3] and perfect flow computations [5]. Added mass and damping
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coefficients are presented on figures 2 and 3.

For numerical simulations of a rectangular cylinder in forced sway or roll motion [4] the fluid domain
comprises two free surface boundaries which are not connected. These two interfaces are defined by
the equations e?=0ande? = E%ax =1 (see fig. 4).
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Fig. 4 : Shape of the grid during a computation in roll
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For the sway motion the beam-to-draft ratio B/T was 2 (B=0.4 m in the present computation and in
Vugts experiments [9]) and the forced motion of the form y(¢) = y, sin(@¢) with y,=0.02 m. The
present method leads to a good accordance of the computed added mass with the experimental results
or perfect fluid computations of Vugts (fig. S) but under-estimates the damping coefficient for non-
dimensional frequencies upper than 0.75 (fig. 6).
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Fig. 5 : Added mass in swaying Fig. 6 : Damping coefficient in swaying
(for a rectangle) (for a rectangle)

For roll motion the beam-to-draft ratio B/T was 2 and the forced motion of the form
¢(1) = ¢, sin(at) with @,=0.1 rad. Results are compared with viscous flow computations of Yeung
et al. [11] (made with @;=0.05 rad) based on the Free-Surface Random-Vortex Method and Vugts
experiments with @,=0.1 rad (non-dimensional experimental results for @,;=0.1 rad and &,=0.05 rad
are nearly the same) or inviscid flow computations.

The CM;; and CAjj with i different from j are the mass coupling and the damping coupling
coefficients in the i-equation by motion in the j-mode respectively (with 1 for sway motion, 2 for
heave motion and 3 for roll around an axis perpendicular to the plang of the flow). The hydrodynamic
coefficients are non-dimensionalised according to CM;; = ajj /pAB2 and CA;; =b;+/B/2g/ pAB2.
A is the area coefficient. A 10000 nodes-grid (IOJO on the body) was used for most of the
computations with a time step of 0.01 s. For lower motions frequencies a 23000 nodes-grid (230
nodes on the body) was required and the time step was 0.005 s.

Added roll moment of inertia (fig. 7) is well-predicted and close from Vugts experiments. However
the damping coefficient in roll is highly over-predicted (fig. 8) for all motion frequencies. On the
contrary the mass and damping coupling coefficients are in good agreement with Vugts experiments
and perfect fluid computations (fig. 9 and 10) except for the mass coefficient for the lowest computed
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frequency.
These first results are satisfying and show the interest of viscous-flow computations for such quite

complex flows. However other computations must be undertaken particularly for the calculation of
the damping coefficient in sway and roll. More refined grids in the vicinity of the body will be used to
try to compute viscous effects (particularly vortices shedding near solid walls and comers of the body

in motion) with more accuracy and should improve present results. .
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Fig. 7 : Added mass moment of inertia Fig. 8 : Damping coefficient in roll
in roll (for a rectangle) (for a rectangle)
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Fig. 9 : Mass coupling coefficient Fig. 10 : Damping coupling coefficient
of roll in sway (for a rectangle in roll) of roll in sway (for a rectangle in roll)
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