
PACIFIC SOFTWARE RESEARCH CENTER
TECHNICAL REPORT

Initial Suite of Small Language Definitions and
Implementations for DSDL

Pacific Software Research Center
April 22,1998

CONTRACT NO. F19628-96-C-0161
CDRL SEQUENCE NO. [CDRL 0002.3]

Prepared for:
USAF

OREGON

GRADUATE

INSTITUTE OF

SCIENCE &

TECHNOLOGY

DTIC QUALITY INSPECTED *

Initial Suite of Small Language Definitions and
Implementations for DSDL

Pacific Software Research Center
April 22,1998

CONTRACT NO. F19628-96-C-0161
CDRL SEQUENCE NO. [CDRL 0002.3]

Prepared for:
USAF

Electronic Systems Center/AVK

Prepared for:
Pacific Software Research Center

Oregon Graduate Institute of Science and Technology
PO Box 91000

Portland, OR 97291

DISTRIBUTION STATEMENT A

Approved, for public release;
Distribution Unlimited

19980508 006

Initial Suite of Seven Embedded Languages

Jeffrey R. Lewis and John Launchbury

April 22, 1998

Abstract

Domain-specific languages are small, special purpose languages cre-
ated to describe computational solutions in a particular problem domain.
Domain-specific languages have proven themselves useful many times over;
however, the cost of defining and implementing a domain specific language
can be high. An approach that avoids the overhead of domain-specific
language definition is to define an embedded language—i.e. a collection
of definitions in a sufficiently expressive host language. Embedding a
domain-specific language places high demands on a host language. The
host languge must be able to express the essence of the domain, while not
sacrificing too much in syntax. This report, presents a suite of seven exam-
ples of embeddings using the functional programming language Haskell.

Contents

Preface Introduction to the suite

Volume I Monadic Parser Combinators by Graham Hutton and Erik
Meijer

Volume II The Design of a Pretty-printing Library by John Hughes

Volume III Microprocessor Specification in Hawk by John Matthews,
John Launchbury, Byron Cook

Volume IV Composing Reactive Animations by Conal Elliot

Volume V Haskore Music Tutorial by Paul Hudak

Volume VI Perl for Swine: CGI Programming in Haskell by Erik
Meijer and Joost van Dijk

Volume VII Scripting COM components in Haskell by Simon Peyton
Jones, Erik Meijer, Daan Leijen

1 Introduction
Domain-specific languages are small, special purpose languages created to de-
scribe computational solutions in a particular problem domain. They vary
greatly in presentation, level of abstraction and intended audience. They typi-
cally incorporate the fundamental abstractions of the problem domain directly,
without requiring that concepts be encoded. For example, in the widely used
parser generator yacc, grammar productions can be expressed directly. Contrast
this with the typical hand-written parser where a programmer had to translate
the grammar productions into a program in some general purpose language.
The most effective DSLs use notations that are closely related to the nota-
tions already used by experts to communicate. In yacc, for example, ambiguous
grammars can be annotated with precedence declarations to resolve ambiguity,
reflecting standard practice in grammar specification.

An embedded language is a DSL that is implemented as a collection of defini-
tions in a host language. Many DSLs are implemented as stand-alone languages,
with their own interpreters, translators and/or compilers. However, the devel-
opment of such tools may require a lot of effort and careful design. An embedded
language offers an alternative approach that leverages off of existing tools and
language designs. However, for an embedded language to work well, the host
language must have sufficient expressive power such that the embedding is nat-
ural and doesn't distract the user with details irrelevant to the domain.

We can view the role of an embedded language as lying along the spectrum
from recognition of the particular problem domain to canonization as a separate
domain specific language. This final step, where the problem domain is captured
as a stand-alone DSL, is the final mature stage in the life of a problem domain.
The role of embedded languages plays a part in the middle of the life cycle,
where details and properties of the problem space are still being explored. At
this stage, the designer doesn't want to be bogged down by the difficult issues
of language design; rather, he wants to leverage off the framework provided by
the existing language to quickly test ideas and construct solutions that are both
extensible and modifiable.

1.1 Embedded Languages and Stand-alone Languages

One of the interesting aspects of embedded languages is that they don't have
their own syntax. Their syntax is entirely borrowed from the host language. In
fact, to a certain degree, it is hard to distinguish the embedded language from
the host language. Or rather, it's hard to say where the embedded language
stops and the host language picks up. The lack of a fixed boundary defining
the language gives us great flexibility. It is easy to add new "features" to the
embedded language just by defining new types or operations.

The embedded language approach is often contrasted with the more tra-
ditional approach of defining a stand-alone language with its own syntax and
semantics.

Advantages of embedded languages:

• greater flexibility

• language-level re-use (leverage off of the features of the host language)

• it is often desirable to have the ability to step outside of a domain spe-
cific language to the more general features of a general purpose language.
Many domain specific languages are incrementally extended to general
purpose languages, often with bad results (e.g. Tel, Perl). The embed-
ded language approach avoids this pitfall by starting with a well-designed
general purpose language.

• No need to develop new logic for reasoning about domain specific pro-
grams. You borrow the well-developed logic of the host language.

• Programs can be optimized using existing facilities already developed for
the host language. Partial evaluation would be particularly useful here.

Advantages of stand-alone languages:

• Direct expression of domain concepts—not encoded in syntax of general-
purpose language

• complete control over interpretation of syntax. For example, in the parsing
domain, we are typically limited to recursive descent parsers, forcing the
programmer to write the grammar in such a manner as to avoid left recur-
sion. Yacc is able to translate its input into a bottom-up parser, allowing
the programmer to write grammars in a much more natural style.

• Programming errors can be interpreted with respect to the syntax and
semantics of the language and their reporting tailored to language. For an
embedded language, errors are reported by the host language, and may
require expert knowledge to resolve.

• Users of a domain specific language may find the generality of a general
purpose language to hinder more than help.

• A domain specific language can have a more refined type system than a
general purpose host language.

• Arguing about the correctness of an embedded language can be difficult,
because it's hard to say what the language is. Any reasoning must be done
in the logic of the host language, without being able to take advantage of
the narrowing afforded by a specific domain.

Of course, there's nothing to say that a mixture of embedded and stand-
alone languages can't be employed in the same system. The Isabelle theorem
prover, for example, expresses tactics as an embedded language in SML, while
it expresses theories in a domain specific language interpreted by Isabelle.

2 The Suite of Embedded languages

We introduce the fundamental principles of the seven embedded languages. Full
details may be found in the attached papers.

2.1 Parsing
In functional programming, a popular approach to building recursive descent
parsers is to model them as functions, and to define higher-order functions
(or combinators) that implement grammar constructions such as productions,
and alternatives. The parser combinators of Hutton and Meijer is a library of
functions for constructing parsers [Volume I].

The key abstraction of the parser combinators is that of an annotated BNF.
Productions are annotated with values—when the given production is recog-
nized, the result of parsing is the indicated value. However, parser combinators
are much more flexible because we are not restricted to the traditional rigid
model of productions, terminals and non-terminals. With the combinators, we
construct values of type Parser a, where a is the type of the result. For exam-
ple, a parser that parsed integer literals would be a value of type Parser Int.
We can combine parsers in all the ways available to us in the language: they may
be stored, passed as an argument, or returned as a result. This simplified view
of parsers also makes unnecessary the traditional distinction between scanners
and parser. We can combine the two in a single specification quite naturally.
Regardless, BNF-style grammars are straightforward to express using the parser
combinators and we will continue using the terminology of BNF as a convenient
way of talking about them.

A final feature of note regarding the parser combinators is that they aren't
restricted to a particular class of grammars, such as LALR(l) for yacc. An
ambiguous grammar is implemented as a parser that yields multiple results.
Laziness allows us to use the generality of non-deterministic parsing without
necessarily having to explore all possible parses.

Productions are built using monadic do notation so that it's easy to bind a
name to any part of a production. The following example parses an if state-
ment, and constructs the appropriate abstract syntax out of the relevant parts
of the if using buildlf.

plf = do symbol "if"
b <- expr
symbol "then"
x <- expr
symbol "else"
y <- expr
return (buildlf b x y)

By using the do notation, the programmer is able to name the results, x and y
in this case, that will be used later, and easily discard the results of parses that
don't return values of interest, such as if, then and else.

Alternative parses are indicated by the ++ combinator. For example, if we
had another parser pCase that parsed case statements, we could form a parser
that recognizes either if or case by joining the two as follows: plf ++ pCase.

2.2 Pretty Printing

Pretty printing is another example of a domain long known to be well-suited to
embedding. The pretty printing combinators of Hughes is a library of functions
for constructing pretty printers [Volume II].

The key abstraction is that of an "intelligent document"—a document which
can have a variety of textual layouts depending on its context (position on page,
line width, ribbon width, etc). The combinators build intelligent documents that
can be layed out horizontally, vertically, or selectively based on what fits on the
line. In addition, there's also a combinator for indicating indentation in vertical
layouts.

The pretty printing combinators can be summarized as follows:

• text construct a document consisting of a literal string

• <> put two documents next to each other

• $$ put two documents over each other

• sep takes a list of documents and creates a single document, separated
either by <> or $$, depending on which gives the best layout.

• nest increases the indentation of a document that's layed out vertically

context.
For example, we can layout the if statement parsed by the previous example:

pplf (If (b, x, y)) = sep [text "if " <> ppExpr b,
nest 2 (text "then " <> ppExpr y),
nest 2 (text "else " <> ppExpr z)]

This can produce either of the following two layouts, depending on which one
fits best.

if x then y else z
if x
then y
else z

2.3 Hawk

Hawk is a library for building executable specifications of microprocessors that
concentrates on the level of micro-architecture. Hawk has been used to spec-
ify modern microarchitectures similar to the Pentium Pro with features such
as super-scalar execution, out-of-order execution and register renaming [Vol-
ume III].

The key abstraction in Hawk is signals—discrete time-dependent values.
Computer signals are typically binary (Signal Bool), although we can, for ex-
ample, model a bundle of binary signals more conveniently as a (fixed-precision)
integer (Signal Int), or model a control signal as an enumerated datatype
(Signal Reg). Processing units are expressed as functions on signals. Circuits
are formed out of mutually recursive definitions of processing units. For exam-
ple, the following is the top-level definition of an simple processor

data Reg = RO I Rl I R2 I R3
data OpCode = ADD I SUB I INC

simple :: (Signal OpCode, Signal Reg,
Signal Reg, Signal Reg) ->

(Signal Reg, Signal Int)
simple (opcode, destReg, srcRegA, srcRegB) =

(destReg', aluOutput')
where

(aluInputA, aluInputB) = regFile (destReg', aluOutput')
(srcRegA, srcRegB)

aluOutput = alu opcode aluInputA aluInputB
aluOutput' = delay 0 aluOutput
destReg' = delay RO destReg

2.4 Fran
Fran (Function Reactive Animation) is a library for composing interactive mul-
timedia animations [Volume IV].

The two key abstractions in Fran are behaviors and events. A behavior is
a value which varies over time. It could be a time-dependent number, such as
a sine wave, or even a time-dependent image, such as an animation. An event
is a value at a particular time, such as a button-press. Behaviors are used to
describe animations, and events are used to describe how those animations react
to events in the outside world.

The basic combinator for describing (2-D) animations is moveXY. For exam-
ple, the following describes an image, called charlotte, that moves smoothly
back and forth.

leftRightCharlotte = moveXY wiggle 0 charlotte
charlotte = importBitmap "charlotte.bmp"

wiggle is a real-valued behavior that oscillates between negative one and pos-
itive one and describes the desired behavior along the X axis. Animations can
be combined using combinators such as over, which lays one animation on top
of another. For example, we could define another animation that moves up and
down.

upDownPat = moveXY 0 waggle pat

And then we could combine the two into a kind of dance:

charlottePatDance = leftRightCharlotte 'over' upDownPat

The basic combinator for describing the interaction of behaviors with events
is untilB. untilB pastes together two animations in time with the transition
from one to the other indicated by an event. For example, the following indicates
a red color attribute that will transition to a blue color attribute when the left
mouse button is pressed.

red 'untilB' (lbp -=> blue)

2.5 Haskore
Haskore is a collection of Haskell modules designed for expressing musical struc-
tures in the high-level, declarative style of functional programming [Volume V].
In Haskore, musical objects consist of primitive notions such as notes and rests,
operations to transform musical objects such as transpose and tempo-scaling,
and operations to combine musical objects to form more complex ones, such as
concurrent and sequential composition.

The key abstractions in Haskore are those of a score, i.e. notated music, and
a player, i.e. an interpretation of the score. The notion of a player is interpreted
broadly, including both performers (like a MIDI-capable sound card) and the
layout and printing of sheet music.

The basic building block in Haskore is a Note, which specifies pitch, duration
and any attributes, such as accents, or grace notes. Melodies are composed by
stringing together notes sequentially using : + :. Harmonies are composed by
combining melodies in parallel using : =:.

For example, here's the first line of "Row row row your boat."

rowl = c 5 qn []
: + : c 5 qn []
: + : c 5 (trn * 2) [] : + : d 5 trn []
: + : e 5 qn []

Each note on the scale has an associated function of the same name. In the
example above, we use the notes c, d and e. Each note takes three arguments:,
the first indicates which octave the note lies in, the second the duration of the
note, and the third, a list of any attributes the note has (like dynamic marking
or grace notes—this example contains no attributes). The durations used are
qn for quarter note, trn for eighth-note triplet, and shortly we'll use hn for half
note.

It's easy to make a round. If the whole melody is called row, the following
function will form a round with n singers, each starting a half note after the
last.

rown 0 = Rest 0
rown n = rown (n - 1) :=: delay ((n - 1) * hn) row

2.6 CGI

HTML, the language in which web pages are written, is a static layout language.
However, many web pages need to respond to the actions of remote users, such as
taking information for credit card orders. This interaction is done by the use of
CGI scripts—programs running on the server that generate HTML in response
to data sent by the remote browser. The CGI library provides combinators
for generating HTML and a nicer interface to the awkward argument passing
convention of CGI scripts [Volume VI].

The underlying abstraction is that of hypertext—text annotated with mark-
up indicating the document structure, as well as the relationship with other
documents (hyper-links). The abstraction for CGI scripts is essentially program
generation in the simplified case where the programs are HTML.

The following is a script that gives positive reinforcement for choosing a
radio button labelled Haskell, instead of one labelled Java.

script env =
case lookup "language" env of

Nothing -> page "Language Choice" [] [choice]

Just "Haskell" ->
page "Chose Haskell" D Chi ("You chose well!")]

Just "Java" ->
page "Chose Java" [] [hi ("Well, If you insist.")]

choice =

gui "choice.cgi" [buttons,
submit "" "Submit",

reset "" "Reset"]

buttons = (radio 'group' "language") ["Haskell", "Java"]

2.7 Agent Script

AgentScript is a library of functions for controlling MicroSoft agents, animated
entities that interact with the user by gestures and synthesized speech [Vol-
ume VII]. Scripts for the agents are put together with parallel and sequential
combinators that make specification of interactions with multiple agents par-
ticularly easy. This is because synchronization is taken care of by AgentScript,
unlike how it is done in C+-f- or Visual Basic, where the action of each agent
must be carefully synchronized by hand with the other agents—a fairly error-
prone process.

The basic combinators are <*> for sequential composition (do one thing
after another), and < I > for parallel composition (do them simultaneously). For
example, the following is the top-level code for a demo involving three interacting
agents. seqAnim composes the elements of the list using sequential composition.

demo erik simon daaii =

seqAnim [erik introduces,

simon helps,

daan showUpsUp <|> simon looksAround

<|> erik moves,

(erik wantsCompiler <*> daan hasDonelt)

<|> simon looksAtRod,

simon isPleased,
erik wantsAnimation,

daan explains,

simon wantsReport,

daan isSurprised,

daan writes 'while'

(erik searches 'while'

(simon goesHome)

),
daan looksGood <|> erik wavesGoodbye,

erik goesSurfing,
daan endsTheShow

]

3 Implementation Needs

The language Haskell offers a number of powerful features that aid in embedding
languages. Here is a list of those that are exploiting by the examples in the
previous section.

Higher-order functions give us the ability to abstract over common patterns
of control, which allows us to hide unnecessary details and cleanly construct new
components from old ones.

Polymorphism gives us the ability to abstract over common patterns of data.

Lazy evaluation allows us to abstract away from evaluation order. Part
of what makes popular languages a poor choice for embedding languages is
that they enforce a strict evaluation order that may not be appropriate for a
given problem domain. This is most often the case for domains that deal with
conceptually infinite concepts such as streams.

Type inference is another aid in reducing levels of detail, reducing the clutter
by avoiding unnecessary declarations, and at the same time assuring that terms
are used consistent to their interfaces.

Type classes in Haskell support a structured method for defining overloaded
operators. They give two main benefits. First, overloading is natural, and is
a notational occurance in many problem domains. Supporting it helps make
embedding more natural. Further, type inference can be used to identify misuse
of overloading. Second, it reduces clutter by providing a way of hiding and
propagating implicit parameters.

Monad support aids in explicit management of computation. Most lan-
guages have fixed notions of computation, such as evaluation order, how excep-
tions are handled, and how I/O is done. How these features interact is also
hard-coded into the language. It is awkward or impossible to escape the under-
lying model of computation. A poor match between the builtin computational
model of language and the computational model of the problem domain spells
trouble for an embedded language. A currently popular technique for man-
aging computational details in functional programming languages is to use a
monad, a structure borrowed from mathematics which encapsulates notions of
computation. Successful use of monads, however, requires a fairly sophisticated
language. Monadic programming is Haskell is supported by all of the features
so far listed, plus a language construct, the do notation, for writing programs
using monads.

Garbage collection aids in abstracting away from details of resource alloca-
tion. These details are a major distraction to C and C++ programmers, and a
major source of errors.

Fixity control aids in providing syntax that looks more natural and avoids
unnecessary use of parentheses.

10

Monadic Parser Combinators

Graham Hutton
University of Nottingham

Erik Meijer
University of Utrecht

Appears as technical report NOTTCS-TR-96-4,
Department of Computer Science, University of Nottingham, 1996

Abstract

In functional programming, a popular approach to building recursive descent parsers is
to model parsers as functions, and to define higher-order functions (or combinators) that
implement grammar constructions such as sequencing, choice, and repetition. Such parsers
form an instance of a monad, an algebraic structure from mathematics that has proved
useful for addressing a number of computational problems. The purpose of this article is
to provide a step-by-step tutorial on the monadic approach to building functional parsers,
and to explain some of the benefits that result from exploiting monads. No prior knowledge
of parser combinators or of monads is assumed. Indeed, this article can also be viewed as
a first introduction to the use of monads in programming.

2 Graham Hutton and Erik Meijer

Contents

1 Introduction 3
2 Combinator parsers 4

2.1 The type of parsers 4
2.2 Primitive parsers 4
2.3 Parser combinators 5

3 Parsers and monads 8
3.1 The parser monad 8
3.2 Monad comprehension syntax 10

4 Combinators for repetition 12
4.1 Simple repetition 13
4.2 Repetition with separators 14
4.3 Repetition with meaningful separators 15

5 Efficiency of parsers 18
5.1 Left factoring 19
5.2 Improving laziness 19
5.3 Limiting the number of results 20

6 Handling lexical issues 22
6.1 White-space, comments, and keywords 22
6.2 A parser for A-expressions 24

7 Factorising the parser monad 24
7.1 The exception monad 25
7.2 The non-determinism monad 26
7.3 The state-transformer monad 27
7.4 The parameterised state-transformer monad 28
7.5 The parser monad revisited 29

8 Handling the offside rule 30
8.1 The offside rule 30
8.2 Modifying the type of parsers 31
8.3 The parameterised state-reader monad 32
8.4 The new parser combinators 33

9 Acknowledgements 36
10 Appendix: a parser for data definitions 36
References 37

Monadic Parser Combinators 3

1 Introduction

In functional programming, a popular approach to building recursive descent parsers
is to model parsers as functions, and to define higher-order functions (or combina-
tors) that implement grammar constructions such as sequencing, choice, and repe-
tition. The basic idea dates back to at least Burge's book on recursive programming
techniques (Bürge, 1975), and has been popularised in functional programming by
Wadler (1985), Hutton (1992), Fokker (1995), and others. Combinators provide a
quick and easy method of building functional parsers. Moreover, the method has the
advantage over functional parser generators such as Ratatosk (Mogensen. 199H) and
Happy (Gill & Marlow, 1995) that one has the full power of a functional language
available to define new combinators for special applications (Landin, 1966).

It was realised early on (Wadler, 1990) that parsers form an instance of a monad,
an algebraic structure from mathematics that has proved useful for addressing a
number of computational problems (Moggi, 1989; Wadler, 1990; Wadler, 1992a;
Wadler, 1992b). As well as being interesting from a mathematical point of view,
recognising the monadic nature of parsers also brings practical benefits. For exam-
ple, using a monadic sequencing combinator for parsers avoids the messy manip-
ulation of nested tuples of results present in earlier work. Moreover, using monad
comprehension notation makes parsers more compact and easier to read.

Taking the monadic approach further, the monad of parsers can be expressed in
a modular way in terms of two simpler monads. The immediate benefit is that the
basic parser combinators no longer need to be defined explicitly. Rather, they arise
automatically as a special case of lifting monad operations from a base monad m
to a certain other monad parameterised over m. This also means that, if we change
the nature of parsers by modifying the base monad (for example, limiting parsers
to producing at most one result), then new combinators for the modified monad of
parsers also arise automatically via the lifting construction.

The purpose of this article is to provide a step-by-step tutorial on the monadic
approach to building functional parsers, and to explain some of the benefits thai
result from exploiting monads. Much of the material is already known. Our contri-
butions are the organisation of the material into a tutorial article; the introduction
of new combinators for handling lexical issues without a separate lexer; and a new
approach to implementing the offside rule, inspired by the use of monads.

Some prior exposure to functional programming would be helpful in reading this
article, but special features of Gofer (Jones, 1995b) — our implementation language
— are explained as they are used. Any other lazy functional language that supports
(multi-parameter) constructor classes and the use of monad comprehension notation
would do equally well. No prior knowledge of parser combinators or monads is
assumed. Indeed, this article can also be viewed as a first introduction to the use of
monads in programming. A library of monadic parser combinators taken from this
article is available from the authors, via the World-Wide-Web.

4 Graham Hutton and Erik Meijer

2 Combinator parsers

We begin by reviewing the basic ideas of combinator parsing (Wadler, 1985; Hutton,
1992; Fokker, 1995). In particular, we define a type for parsers, three primitive
parsers, and two primitive combinators for building larger parsers.

2.1 The type of parsers

Let us start by thinking of a parser as a function that takes a string of characters as
input and yields some kind of tree as result, with the intention that the tree makes
explicit the grammatical structure of the string:

type Parser = String -> Tree

In general, however, a parser might not consume all of its input string, so rather
than the result of a parser being just a tree, we also return the unconsumed suffix
of the input string. Thus we modify our type of parsers as follows:

type Parser = String -> (Tree,String)

Similarly, a parser might fail on its input string. Rather than just reporting a
run-time error if this happens, we choose to have parsers return a list of pairs
rather than a single pair, with the convention that the empty list denotes failure of
a parser, and a singleton list denotes success:

type Parser = String -> [(Tree.String)]

Having an explicit representation of failure and returning the unconsumed part
of the input string makes it possible to define combinators for building up parsers
piecewise from smaller parsers. Returning a list of results opens up the possibility
of returning more than one result if the input string can be parsed in more than
one way, which may be the case if the underlying grammar is ambiguous.

Finally, different parsers will likely return different kinds of trees, so it is useful
to abstract on the specific type Tree of trees, and make the type of result values
into a parameter of the Parser type:

type Parser a = String -> [(a,String)]

This is the type of parsers we will use in the remainder of this article. One could
go further (as in (Hutton, 1992), for example) and abstract upon the type String
of tokens, but we do not have need for this generalisation here.

2.2 Primitive parsers

The three primitive parsers defined in this section are the building blocks of com-
binator parsing. The first parser is result v, which succeeds without consuming
any of the input string, and returns the single result v:

result :: a -> Parser a
result v = \inp -> C(v,inp)]

Monadic Parser Combinators 5

An expression of the form \x -> e is called a A-abstraction, and denotes the func-
tion that takes an argument x and returns the value of the expression e. Thus
result v is the function that takes an input string inp and returns the single-
ton list [(v.inp)]. This function could equally well be defined by result v inp
= [(v.inp)], but we prefer the above definition (in which the argument inp is
shunted to the body of the definition) because it corresponds more closely to the
type result :: a -> Parser a, which asserts that result is a function that takes
a single argument and returns a parser.

Dually, the parser zero always fails, regardless of the input string:

zero :: Parser a
zero = \inp -> []

Our final primitive is item, which successfully consumes the first character if the
input string is non-empty, and fails otherwise:

item :: Parser Char
item = \inp -> case inp of

D "> □
(x:xs) -> [(x,xs)]

2.3 Parser combinators

The primitive parsers defined above are not very useful in themselves. In this section
we consider how they can be glued together to form more useful parsers. We take
our lead from the BNF notation for specifying grammars, in which larger gram-
mars are built up piecewise from smaller grammars using a sequencing operator —
denoted by juxtaposition — and a choice operator — denoted by a vertical bar |.
We define corresponding operators for combining parsers, such that the structure
of our parsers closely follows the structure of the underlying grammars.

In earlier (non-monadic) accounts of combinator parsing (Wadler. 1985; Hutton,
1992; Fokker, 1995), sequencing of parsers was usually captured by a combinator

seq :: Parser a -> Parser b -> Parser (a,b)
p 'seq' q = \inp -> C((v,w),inp'') I (v.inp') <- p inp

, (w.inp'') <- q inp']

that applies one parser after another, with the results from the two parsers being
combined as pairs. The infix notation p 'seq' qis syntactic sugar for seq p q; any
function of two arguments can used as an infix operator in this way, by enclosing
its name in backquotes. At first sight, the seq combinator might seem a natural
composition primitive. In practice, however, using seq leads to parsers with nested
tuples as results, which are messy to manipulate.

The problem of nested tuples can be avoided by adopting a monadic sequencing
combinator (commonly known as bind) which integrates the sequencing of parsers
with the processing of their result values:

bind :: Parser a -> (a -> Parser b) -> Parser b
p 'bind' f = \inp -> concat [f v inp' I (v.inp') <- p inp]

6 Graham Hutton and Erik Meijer

The definition for bind can be interpreted as follows. First of all, the parser p is
applied to the input string, yielding a list of (value,string) pairs. Now since f is a
function that takes a value and returns a parser, it can be applied to each value
(and unconsumed input string) in turn. This results in a list of lists of (value.string)
pairs, that can then be flattened to a single list using concat.

The bind combinator avoids the problem of nested tuples of results because the
results of the first parser are made directly available for processing by the second,
rather than being paired up with the other results to be processed later on. A
typical parser built using bind has the following structure

pi 'bind' \xl ->
p2 'bind' \x2 ->

pn 'bind' \xn ->
result (f xl x2 ... xn)

and can be read operationally as follows: apply parser pi and call its result value
xl; then apply parser p2 and call its result value x2; ...; then apply the parser pn
and call its result value xn; and finally, combine all the results into a single value
by applying the function i. For example, the seq combinator can be defined by

p 'seq' q = p 'bind' \x ->
q 'bind' \y ->
result (x,y)

(On the other hand, bind cannot be defined in terms of seq.)
Using the bind combinator, we are now able to define some simple but useful

parsers. Recall that the item parser consumes a single character unconditionally. In
practice, we are normally only interested in consuming certain specific characters.
For this reason, we use item to define a combinator sat that takes a predicate (a
Boolean valued function), and yields a parser that consumes a single character if it
satisfies the predicate, and fails otherwise:

sat :: (Char -> Bool) -> Parser Char
sat p = item 'bind' \x ->

if p x then result x else zero

Note that if item fails (that is, if the input string is empty), then so does sat p,
since it can readily be observed that zero 'bind' 1 = zero for all functions f of
the appropriate type. Indeed, this equation is not specific to parsers: it holds for
an arbitrary monad with a zero (Wadler, 1992a; Wadler, 1992b). Monads and their
connection to parsers will be discussed in the next section.

Using sat, we can define parsers for specific characters, single digits, lower-case
letters, and upper-case letters:

char :: Char -> Parser Char
char x = sat (\y -> x == y)

Monadic Parser Combinators 7

digit :: Parser Char

digit = sat (\x -> '0' <= x && x <= '9')

lower :: Parser Char

lower = sat (\x -> 'a' <= x &ft x <= 'z')

upper :: Parser Char

upper = sat (\x -> 'A' <= x &ft x <= 'Z')

For example, applying the parser upper to the input string "Hello" succeeds with
the single successful result [('H' ,"ello")], since the upper parser succeeds with
'H' as the result value and "ello" as the unconsumed suffix of the input. On the
other hand, applying the parser lower to the string "Hello" fails with [] as the
result, since 'H' is not a lower-case letter.

As another example of using bind, consider the parser that accepts two lower-case
letters in sequence, returning a string of length two:

lower 'bind' \x ->
lower 'bind' \y ->
result [x,y]

Applying this parser to the string "abed" succeeds with the result [("ab" , "cd")] .
Applying the same parser to "aBcd" fails with the result [], because even though
the initial letter 'a' can be consumed by the first lower parser, the following letter
' B' cannot be consumed by the second lower parser.

Of course, the above parser for two letters in sequence can be generalised to a
parser for arbitrary strings of lower-case letters. Since the length of the string to
be parsed cannot be predicted in advance, such a parser will naturally be defined
recursively, using a choice operator to decide between parsing a single letter and
recursing, or parsing nothing further and terminating. A suitable choice combinator
for parsers, plus, is defined as follows:

plus :: Parser a -> Parser a -> Parser a
p 'plus' q = \inp -> (p inp ++ q inp)

That is, both argument parsers p and q are applied to the same input string, and
their result lists are concatenated to form a single result list. Note that it is not
required that p and q accept disjoint sets of strings: if both parsers succeed on
the input string then more than one result value will be returned, reflecting the
different ways that the input string can be parsed.

As examples of using plus, some of our earlier parsers can now be combined to
give parsers for letters and alpha-numeric characters:

letter :: Parser Char
letter = lower 'plus' upper

alphanum :: Parser Char
alphanum = letter 'plus' digit

8 Graham Hutton and Erik Meijer

More interestingly, a parser for words (strings of letters) is defined by

word :: Parser String
word = neWord 'plus' result ""

where
neWord = letter 'bind' \x ->

word 'bind' \xs ->
result (x:xs)

That is, word either parses a non-empty word (a single letter followed by a word,
using a recursive call to word), in which case the two results are combined to form
a string, or parses nothing and returns the empty string.

For example, applying word to the input "Yes!" gives the result [("Yes","!"),
("Ye","s!"), ("Y'V'es!"), (""."Yes!")]. The first result, ("Yes"," !"),is the
expected result: the string of letters "Yes" has been consumed, and the unconsumed
input is " !". In the subsequent results a decreasing number of letters are consumed.
This behaviour arises because the choice operator plus is non-deterministic: both
alternatives can be explored, even if the first alternative is successful. Thus, at each
application of letter, there is always the option to just finish parsing, even if there
are still letters left to be consumed from the start of the input.

3 Parsers and monads

Later on we will define a number of useful parser combinators in terms of the
primitive parsers and combinators just defined. But first we turn our attention to
the monadic nature of combinator parsers.

3.1 The parser monad

So far. we have defined (among others) the following two operations on parsers:

result :: a -> Parser a
bind :: Parser a -> (a -> Parser b) -> Parser b

Generalising from the specific case of Parser to some arbitrary type constructor
M gives the notion of a monad: a monad is a type constructor M (a function from
types to types), together with operations result and bind of the following types:

result :: a -> M a
bind :: M a -> (a -> M b) -> H b

Thus, parsers form a monad for which M is the Parser type constructor, and result
and bind are defined as previously. Technically, the two operations of a monad must
also satisfy a few algebraic properties, but we do not concern ourselves with such
properties here; see (Wadler, 1992a; Wadler, 1992b) for more details.

Readers familiar with the categorical definition of a monad may have expected
two operations map : : (a -> b) -> (M a -> M b) and join : : M (M a) -> M
a in place of the single operation bind. However, our definition is equivalent to the

Monadic Parser Combinators 9

categorical one (Wadler, 1992a; Wadler, 1992b), and has the advantage that bind
generally proves more convenient for monadic programming than map and join.

Parsers are not the only example of a monad. Indeed, we will see later on how
the parser monad can be re-formulated in terms of two simpler monads. This raises
the question of what to do about the naming of the monadic combinators result
and bind. In functional languages based upon the Hindley-Milner typing system
(for example, Miranda* and Standard ML) it is not possible to use the same names
for the combinators of different monads. Rather, one would have to use different
names, such as resultM and bindH, for the combinators of each monad M.

Gofer, however, extends the Hindley-Milner typing system with an overloading
mechanism that permits the use of the same names for the combinators of different
monads. Under this overloading mechanism, the appropriate monad for each use of
a name is calculated automatically during type inference.

Overloading in Gofer is accomplished by the use of classes (Jones, 1995c). A class
for monads can be declared in Gofer by:

class Monad m where
result :: a -> m a
bind :: m a -> (a -> m b) -> m b

This declaration can be read as follows: a type constructor ra is a member of the
class Monad if it is equipped with result and bind operations of the specified types.
The fact that m must be a type constructor (rather than just a type) is inferred
from its use in the types for the operations.

Now the type constructor Parser can be made into an instance of the class Monad
using the result and bind from the previous section:

instance Monad Parser where
— result :: a -> Parser a
result v = \inp -> [(v.inp)]

— bind :: Parser a -> (a -> Parser b) -> Parser b
p 'bind' 1 = \inp -> concat [f v out I (v.out) <- p inp]

We pause briefly here to address a couple of technical points concerning Gofer.
First of all, type synonyms such as Parser must be supplied with all their argu-
ments. Hence the instance declaration above is not actually valid Gofer code, since
Parser is used in the first line without an argument. The problem is easy to solve
(redefine Parser using data rather than type, or as a restricted type synonym),
but for simplicity we prefer in this article just to assume that type synonyms can be
partially applied. The second point is that the syntax of Gofer does not currently
allow the types of the defined functions in instance declarations to be explicitly
specified. But for clarity, as above, we include such types in comments.

Let us turn now to the following operations on parsers:

' Miranda is a trademark of Research Software Ltd.

10 Graham Hutton and Erik Meijer

zero :: Parser a
plus :: Parser a -> Parser a -> Parser a

Generalising once again from the specific case of the Parser type constructor, we

arrive at the notion of a monad with a zero and a plus, which can be encapsulated

using the Gofer class system in the following manner:

class Monad m => MonadOPlus m where

zero :: m a
(++) :: m a -> m a -> m a

That is, a type constructor m is a member of the class MonadOPlus if it is a member

of the class Monad (that is, it is equipped with a result and bind), and if it is also

equipped with zero and (++) operators of the specified types. Of course, the two

extra operations must also satisfy some algebraic properties; these are discussed

in (Wadler, 1992a; Wadler, 1992b). Note also that (++) is used above rather than

plus, following the example of lists: we will see later on that lists form a monad

for which the plus operation is just the familiar append operation (++).

Now since Parser is already a monad, it can be made into a monad with a zero

and a plus using the following definitions:

instance MonadOPlus Parser where

— zero :: Parser a

zero = \inp -> []

— (++) :: Parser a -> Parser a -> Parser a

p ++ q = \inp -> (p inp ++ q inp)

3.2 Monad comprehension syntax

So far WP have seen one advantage of recognising the monadic nature of parsers: the

monadic sequencing combinator bind handles result values better than the conven-

tional sequencing combinator seq. In this section we consider another advantage of

the monadic approach, namely that monad comprehension syntax can be used to

make parsers more compact and easier to read.
As mentioned earlier, many parsers will have a structure as a sequence of binds

followed by single call to result:

pi 'bind' \xl ->

p2 'bind' \x2 ->

pn 'bind' \xn ->

result (f xl x2 ... xn)

Gofer provides a special notation for defining parsers of this shape, allowing them

to be expressed in the following, more appealing form:

[f xl X2 ... xn I xl <- pi

string : String

string ■f ii = [""]

string (x xs) = [x:xs

Monadic Parser Combinators 11

, x2 <- p2

> * ■ •

, xn <- pn]

In fact, this notation is not specific to parsers, but can be used with any monad
(Jones, 1995c). The reader might notice the similarity to the list comprehension
notation supported by many functional languages. It was Wadler (1990) who first
observed that the comprehension notation is not particular to lists, but makes sense
for an arbitrary monad. Indeed, the algebraic properties required of the monad op-
erations turn out to be precisely those required for the notation to make sense. To
our knowledge, Gofer is the first language to implement Wadler's monad compre-
hension notation. Using this notation can make parsers much easier to read, and
we will use the notation in the remainder of this article.

As our first example of using comprehension notation, we define a parser for
recognising specific strings, with the string itself returned as the result:

-> Parser String

_ <- char x, _ <- string xs]

That is, if the string to be parsed is empty we just return the empty string as
the result; [""] is just monad comprehension syntax for result "". Otherwise,
we parse the first character of the string using char, and then parse the remaining
characters using a recursive call to string. Without the aid of comprehension
notation, the above definition would read as follows:

string :: String -> Parser String
string "" = result ""
string (x:xs) = char x 'bind' _ ->

string xs 'bind' _ ->
result (x:xs)

Note that the parser string xs fails if only a prefix of the given string xs is
recognised in the input. For example, applying the parser string "hello" to the
input "hello there" gives the successful result [("hello"," there")]. On the
other hand, applying the same parser to "helicopter" fails with the result [],
even though the prefix "hel" of the input can be recognised.

In list comprehension notation, we are not just restricted to generators that bind
variables to values, but can also use Boolean-valued guards that restrict the values
of the bound variables. For example, a function negs that selects all the negative
numbers from a list of integers can be expressed as follows:

negs :: [Int] -> [Int]
negs xs = [x 1 x <- xs, x < 0]

In this case, the expression x < 0 is a guard that restricts the variable x (bound
by the generator x <- xs) to only take on values less than zero.

Wadler (1990) observed that the use of guards makes sense for an arbitrary

12 Graham Hutton and Erik Meijer

monad with a zero. The monad comprehension notation in Gofer supports this use
of guards. For example, the sat combinator

sat :: (Char -> Bool) -> Parser Char
sat p = item 'bind' \x ->

if p x then result x else zero

can be defined more succinctly using a comprehension with a guard:

sat :: (Char -> Bool) -> Parser Char
sat p = [x I x <- item, p x]

We conclude this section by noting that there is another notation that can be
used to make monadic programs easier to read: the so-called "do" notation (Jones,
1994; Jones k Launchbury, 1994). For example, using this notation the combinators

string and sat can be denned as follows:

string :: String -> Parser String
string "" = do { result "" }
string (x:xs) = do { char x ; string xs ; result (x:xs) >

sat :: (Char -> Bool) -> Parser Char
sat p = do { x <- item ; if (p x) ; result x }

The do notation has a couple of advantages over monad comprehension notation:
we are not restricted to monad expressions that end with a use of result; and
generators of the form _ <- e that do not bind variables can be abbreviated by e.
The do notation is supported by Gofer, but monad expressions involving parsers
typically end with a use of result (to compute the result value from the parser),
so the extra generality is not really necessary in this case. For this reason, and for
simplicity, in this article we only use the comprehension notation. It would be an
easy task, however, to translate our definitions into the do notation.

4 Combinators for repetition

Parser generators such as Lex and Yacc (Aho et al., 1986) for producing parsers
written in C, and Ratatosk (Mogensen, 1993) and Happy (Gill k Marlow, 1995) for
producing parsers written in Haskell, typically offer a fixed set of combinators for
describing grammars. In contrast, with the method of building parsers as presented
in this article the set of combinators is completely extensible: parsers are first-class
values, and we have the full power of a functional language at our disposal to define
special combinators for special applications.

In this section we define combinators for a number of common patterns of rep-
etition. These combinators are not specific to parsers, but can be used with an
arbitrary monad with a zero and plus. For clarity, however, we specialise the types
of the combinators to the case of parsers.

In subsequent sections we will introduce combinators for other purposes, includ-
ing handling lexical issues and Gofer's offside rule.

Monadic Parser Combinators 13

4.1 Simple repetition

Earlier we defined a parser word for consuming zero or more letters from the input
string. Using monad comprehension notation, the definition is:

word :: Parser String
word = [x:xs I x <- letter, xs <- word] ++ [""]

We can easily imagine a number of other parsers that exhibit a similar structure to
word. For example, parsers for strings of digits or strings of spaces could be defined
in precisely the same way, the only difference being be that the component parser
letter would be replaced by either digit or char ' '. To avoid defining a number
of different parsers with a similar structure, we abstract on the pattern of recursion
in word and define a general combinator, many, that parses sequences of items.

The combinator many applies a parser p zero or more times to an input string.
The results from each application of p are returned in a list:

many :: Parser a -> Parser [a]
many p = [x:xs I x <- p, xs <- many p] ++ [[]]

Different parsers can be made by supplying different arguments parsers p. Ebr
example, word can be defined just as many letter, and the other parsers mentioned
above by many digit and many (char ' ')•

Just as the original word parser returns many results in general (decreasing in
the number of letters consumed from the input), so does many p. Of course, in
most cases we will only be interested in the first parse from many p, in which p is
successfully applied as many times as possible. We will return to this point in the
next section, when we address the efficiency of parsers.

As another application of many, we can define a parser for identifiers. For sim-
plicity, we regard an identifier as a lower-case letter followed by zero or more alpha-
numeric characters. It would be easy to extend the definition to handle extra char-
acters, such as underlines or backquotes.

ident :: Parser String
ident = [x:xs I x <- lower, xs <- many alphanum]

Sometimes we will only be interested in non-empty sequences of items. For this
reason we define a special combinator, manyl, in terms of many:

manyi :: Parser a -> Parser [a]
manyi p = [x:xs I x <- p, xs <- many p]

For example, applying manyl (char 'a') to the input "aaab" gives the result
[("aaa'V'b"), ("aa'V'ab"), ("a" , "aab")] , which is the same as for many (char
'a'), except that the final pair ("", "aaab") is no longer present. Note also that
manyl p may fail, whereas many p always succeeds.

Using manyl we can define a parser for natural numbers:

nat :: Parser Int
nat = Ceval xs I xs <- manyl digit]

14 Graham Huttori and Erik Meijer

where
eval xs = foldll op [ord x - ord '0' I x <- xs]
m 'op' n = 10*m + n

In turn, nat can be used to define a parser for integers:

int :: Parser Int
int = C-n I _ <- char '-', n <- nat] ++ nat

A more sophisticated way to define int is as follows. First try and parse the negation
character '-'. If this is successful then return the negation function as the result
of the parse; otherwise return the identity function. The final step is then to parse
a natural number, and use the function returned by attempting to parse the '-'
character to modify the resulting number:

int :: Parser Int
int = [f n I f <- op, n <- nat]

where
op = [negate 1 _ <- char '-•] ++ [id]

4-2 Repetition with separators

The many combinators parse sequences of items. Now we consider a slightly more
general pattern of repetition, in which separators between the items are involved.
Consider the problem of parsing a non-empty list of integers, such as [1,-42,17].
Such a parser can be defined in terms of the many combinator as follows:

ints :: Parser [Int]
ints = [n:ns I _ <- char '['

, n <- int
, ns <- many [x I _ <- char ',', x <- int]
, _ <- char ']']

As was the case in the previous section for the word parser, we can imagine a
number of other parsers with a similar structure to ints, so it is useful to abstract
on the pattern of repetition and define a general purpose combinator, which we
call sepbyl. The combinator sepbyl is like manyl in that it recognises non-empty
sequences of a given parser p, but different in that the instances of p are separated
by a parser sep whose result values are ignored:

sepbyl :: Parser a -> Parser b -> Parser [a]
p 'sepbyl' sep = [x:xs I x <- p

, xs <- many [y I . <- sep, y <- p]]

Note that the fact that the results of the sep parser are ignored is reflected in the
type of the sepbyl combinator: the sep parser gives results of type b, but this type
does not occur in the type [a] of the results of the combinator.

Now ints can be defined in a more compact form:

Monadic Parser Combinators 15

ints = Cns I _ <- char '['
, ns <- int 'sepbyl' char ','
, _ <- char '3']

In fact we can go a little further. The bracketing of parsers by other parsers whose
results are ignored — in the case above, the bracketing parsers are char ' [' and
char '] ' — is common enough to also merit its own combinator:

bracket :: Parser a -> Parser b -> Parser c -> Parser b
bracket open p close = [x I _ <- open, x <- p, _ <- close]

Now ints can be denned just as

ints = bracket (char '[')
(int 'sepbyl' char ',')
(char ']')

Finally, while manyl was defined in terms of many, the combinator sepby (for
possibly-empty sequences) is naturally defined in terms of sepbyl:

sepby :: Parser a -> Parser b -> Parser [a]
p 'sepby' sep = (p 'sepbyl' sep) ++ [[]]

4-3 Repetition with meaningful separators

The sepby combinators handle the case of parsing sequences of items separated by
text that can be ignored. In this final section on repetition, we address the more
general case in which the separators themselves carry meaning. The combinators
defined in this section are due to Fokker (1995).

Consider the problem of parsing simple arithmetic expressions such as l+2-(3+4),
built up from natural numbers using addition, subtraction, and parentheses. The
two arithmetic operators are assumed to associate to the left (thus, for example,
1-2-3 should be parsed as (l-2)-3), and have the same precedence. The standard
BNF grammar for such expressions is written as follows:

expr ::= expr addop factor | factor
addop ::= + | -
factor ::= nat | (expr)

This grammar can be translated directly into a combinator parser:

-> Int -> Int)

expr = [f x y I x <- expr, f <- addop, y <- factor] ++ factor

addop = [(+) I _ <- char '+'] ++ [(-) I _ <- char •->]

factor = nat ++ bracket (char '(') expr (char ')')

expr : Parser Int
addop : Parser (Int

factor : Parser Int

16 Graham Hutton and Erik Meijer

In fact, rather than just returning some kind of parse tree, the expr parser above
actually evaluates arithmetic expressions to their integer value: the addop parser
returns a function as its result value, which is used to combine the result values
produced by parsing the arguments to the operator.

Of course, however, there is a problem with the expr parser as denned above.
The fact that the operators associate to the left is taken account of by expr being
lefl-recursive (the first thing it does is make a recursive call to itself). Thus expr
never makes any progress, and hence does not terminate.

As is well-known, this kind of non-termination for parsers can be solved by re-
placing left-recursion by iteration. Looking at the expr grammar, we see that an
expression is a sequence of factors, separated by addops. Thus the parser for ex-
pressions can be re-defined using many as follows:

expr = [... I x <- factor
, fys <- many C(l,y) I f <- addop, y <- factor]]

This takes care of the non-termination, but it still remains to fill in the "..." part
of the new definition, which computes the value of an expression.

Suppose now that the input string is "1-2+3-4". Then after parsing using expr,
the variable x will be 1 and fys will be the list [((-),2), ((+),3), ((-),4)].
These can be reduced to a single value 1-2+3-4 = ((1-2)+3)-4 = -2 by folding:
the built-in function foldl is such that, for example, foldl g a [b,c,d,e] =
((a 'g' b) 'g' c) 'g' d) 'g' e. In the present case, we need to take g as the
function \x (f ,y) -> f x y, and a as the integer x:

expr = [foldl (\x (f,y) -> f x y) x fys
I x <- factor
, fys <- many C(f,y) I f <- addop, y <- factor]]

Now, for example, applying expr to the input string "l+2-(3+4)" gives the result
C(-4,""), (3,"-(3+4)M, (l,"+2-(3+4)")], as expected.

Playing the generalisation game once again, we can abstract on the pattern of
repetition in expr and define a new combinator. The combinator, chainll, parses
non-empty sequences of items separated by operators that associate to the left:

chainll :: Parser a -> Parser (a -> a -> a) -> Parser a
p 'chainll' op = [foldl (\x (f,y) -> f x y) x fys

I x <- p
, fys <- many [(f,y) I f <- op, y <- p]]

Thus our parser for expressions can now be written as follows:

expr = factor 'chainll' addop

addop = [(+) I _■<- char •+'] ++ [(-) I _ <- char •-']

factor = nat ++ bracket (char '(') expr (char ')')

Most operator parsers will have a similar structure to addop above, so it is useful
to abstract a combinator for building such parsers:

Monadic Parser Combinators 17

ops :: [(Parser a, b)3 -> Parser b
ops xs = foldrl (++) [Cop I _ <- p] I (p,op) <- xs]

The built-in function foldrl is such that, for example, ioldrl g [a,b,c,d] = a
'g' (b 'g' (c 'g' d)). It is defined for any non-empty list. In the above case
then, foldrl places the choice operator (++) between each parser in the list. Using
ops, our addop parser can now be defined by

addop = ops [(char '+', (+)), (char '-', (-))]

A possible inefficiency in the definition of the chainll combinator is the con-
struction of the intermediate list fys. This can be avoided by giving a direct re-
cursive definition of chainll that does not make use of f oldl and many, using an
accumulating parameter to construct the final result:

chainll :: Parser a -> Parser (a -> a -> a) -> Parser a
p 'chainll' op = p 'bind' rest

where
rest x = (op 'bind' \f ->

p 'bind' \y ->
rest (f x y)) ++ [x]

This definition has a natural operational reading. The parser p ' chainll' op first
parses a single p, whose result value becomes the initial accumulator for the rest
function. Then it attempts to parse an operator and a single p. If successful, the
accumulator and the result from p are combined using the function f returned from
parsing the operator, and the resulting value becomes the new accumulator when
parsing the remainder of the sequence (using a recursive call to rest). Otherwise,
the sequence is finished, and the accumulator is returned.

As another interesting application of chainll, we can redefine our earlier parser
nat for natural numbers such that it does not construct an intermediate list of
digits. In this case, the op parser does not do any parsing, but returns the function
that combines a natural and a digit:

nat :: Parser Int
nat = [ord x - ord '0' I x <- digit] 'chainll' [op]

where
m 'op' n = 10*m + n

Naturally, we can also define a combinator chainrl that parses non-empty se-
quences of items separated by operators that associate to the right, rather than to
the left. For simplicity, we only give the direct recursive definition:

chainrl :: Parser a -> Parser (a -> a -> a) -> Parser a
p 'chainrl' op =

p 'bind' \x ->
[f x y I f <- op, y <- p 'chainrl' op] ++ [x]

That is, p ' chainrl' op first parses a single p. Then it attempts to parse an oper-
ator and the rest of the sequence (using a recursive call to chainrl). If successful,

18 Graham Hutton and Erik Meijer

the pair of results from the first p and the rest of the sequence are combined us-
ing t.he function f returned from parsing the operator. Otherwise, the sequence is
finished, and the result from p is returned.

As an example of using chainri, we extend our parser for arithmetic expressions
to handle exponentiation; this operator has higher precedence than the previous
two operators, and associates to the right:

expr = term 'chainll' addop

term = factor 'chainri' expop

factor = nat ++ bracket (char '(') expr (char ')')

addop = ops [(char '+', (+)), (char '-', (-))]

expop = ops [(char '"', ("))]

For completeness, we also define combinators chainl and chainr that have the
same behaviour as chainl 1 and chainri, except that they can also consume no
input, in which case a given value v is returned as the result:

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainl p op v = (p 'chainl1' op) ++ [v]

chainr :: Parser a -> Parser (a -> a -> a) -> a -> Parser a
chainr p op v = (p 'chainri' op) ++ [v]

In summary then, chainl and chainr provide a simple way to build parsers for
expression-like grammars. Using these combinators avoids the need for transfor-
mations to remove left-recursion in the grammar, that would otherwise result in
non-termination of the parser. They also avoid the need for left-factorisation of the
grammar, that would otherwise result in unnecessary backtracking; we will return

to this point in the next section.

5 Efficiency of parsers

Using combinators is a simple and flexible method of building parsers. However,
the power of the combinators — in particular, their ability to backtrack and return
multiple results — can lead to parsers with unexpected space and time performance
if one does not take care. In this section we outline some simple techniques that can
be used to improve the efficiency of parsers. Readers interested in further techniques
are referred to Rojemo's thesis (1995), which contains a chapter on the use of heap
profiling tools in the optimisation of parser combinators.

Monadic Parser Combinators 19

5.1 Left factoring

Consider the simple problem of parsing and evaluating two natural numbers sepa-
rated by the addition symbol'+', or by the subtraction symbol'-'. This specification
can be translated directly into the following parser:

eval :: Parser Int
eval = add ++ sub

where
add = Cx+y x <- nat, _ <- char '+', y <- nat]

sub = [x-y x <- nat, _ <- char '-', y <- nat]

This parser gives the correct results, but is inefficient. For example, when parsing
the string "123-456" the number 123 will first be parsed by the add parser, that
will then fail because there is no '+' symbol following the number. The correct parse
will only be found by backtracking in the input string, and parsing the number 123
again, this time from within the sub parser.

Of course, the way to avoid the possibility of backtracking and repeated parsing
is to left factorise the eval parser. That is, the initial use of nat in the component.
parsers add and sub should be factorised out:

eval = [v | x <- nat, v <- add x ++ sub x]
where

add x = [x+y I _ <- char '+', y <- nat]
sub x = [x+y I _ <- char '-', y <- nat]

This new version of eval gives the same results as the original version, but requires
no backtracking. Using the new eval, the string "123-456" can now be parsed in
linear time. In fact we can go a little further, and right factorise the remaining
use of nat in both add and sub. This does not improve the efficiency of eval. but
arguably gives a cleaner parser:

eval = [f x y I x <- nat
, f <- ops [(char '+', (+)), (char '-', (-))]
, y <- nat]

In practice, most cases where left factorisation of a parser is necessary to improve
efficiency will concern parsers for some kind of expression. In such cases, manually
factorising the parser will not be required, since expression-like parsers can be built
using the chain combinators from the previous section, which already encapsulate
the necessary left factorisation.

The motto of this section is the following: backtracking is a powerful tool, but it
should not be used as a substitute for care in designing parsers.

5.2 Improving laziness

Recall the definition of the repetition combinator many:

many :: Parser a -> Parser [a]
many p = [x:xs I x <- p, xs <- many p] ++ [[]]

20 Graham Hution and Erik Meijer

For example, applying many (char 'a') to the input "aaab" gives the result
[("aaa'V'b"), ("aa'V'ab"), ("a" , "aab"), ("" ,"aaab")3. Since Gofer is lazy,
we would expect the a's in the first result "aaa" to become available one at a time,
as they are consumed from the input. This is not in fact what happens. In practice
no part of the result "aaa" will be produced until all the a's have been consumed.
In other words, many is not as lazy as we would expect.

But does this really matter? Yes, because it is common in functional programming
to rely on laziness to avoid the creation of large intermediate structures (Hughes,
1989). As noted by Wadler (1985; 1992b), what is needed to solve the problem with
many is a means to make explicit that the parser many p always succeeds. (Even
if p itself always fails, many p will still succeed, with the empty list as the result
value.) This is the purpose of the force combinator:

force :: Parser a -> Parser a
force p = \inp -> let x = p inp in

(fst (head x), snd (head x)) : tail x

Given a parser p that always succeeds, the parser force p has the same behaviour
as p, except that before any parsing of the input string is attempted the result of
the parser is immediately forced to take on the form (-L, 1) : 1, where 1 represents
a presently undefined value.

Using force, the many combinator can be re-defined as follows:

many :: Parser a -> Parser [a]
many p = force (Cx:xs I x <- p, xs <- many p] ++ [[]])

The use of force ensures that many p and all of its recursive calls return at least
one result. The new definition of many now has the expected behaviour under lazy
evaluation. For example, applying many (char 'a') to the partially-defined string
'a' : J- gives the partially-defined result ('a' : _L, _L) : ±. In contrast, with the old
version of many, the result for this example is the completely undefined value _L.

Some readers might wonder why force is defined using the following selection
functions, rather than by pattern matching?

fst :: (a,b) -> a head :: [a] -> a
snd :: (a,b) -> b tail :: [a] -> [a]

The answer is that, depending on the semantics of patterns in the particular im-
plementation language, a definition of force using patterns might not have the
expected behaviour under lazy evaluation.

5.3 Limiting the number of results

Consider the simple problem of parsing a natural number, or if no such number is
present just returning the number 0 as the default result. A first approximation to
such a parser might be as follows:

number :: Parser Int
number = nat ++ [0]

Monadic Parser Combinators 21

However, this does not quite have the required behaviour. For example, applying
number to the input "hello" gives the correct result [(0,"hello")]. On the other
hand, applying number to "123" gives the result [(123,""), (0, "123")], whereas
we only really want the single result [(123,"")].

One solution to the above problem is to make use of deterministic parser com-
binators (see section 7.5) — all parsers built using such combinators are restricted
by construction to producing at most one result. A more general solution, however,
is to retain the flexibility of the non-deterministic combinators, but to provide a
means to make explicit that we are only interested in the first result produced by
certain parsers, such as number. This is the purpose of the first combinator:

first :: Parser a -> Parser a
first p = \inp -> case p inp of

[] -> □
(x:xs) -> [x]

Given a parser p, the parser first p has the same behaviour as p, except that
only the first result (if any) is returned. Using first we can define a deterministic
version (+++) of the standard choice combinator (++) for parsers:

(+++) :: Parser a -> Parser a -> Parser a
p +++ q = first (p ++ q)

Replacing (++) by (+++) in number gives the desired behaviour.
As well as being used to ensure the correct behaviour of parsers, using (+++) can

also improve their efficiency. As an example, consider a parser that accepts either
of the strings "yellow" or "orange":

colour :: Parser String
colour = pi ++ p2

where
pi = string "yellow"
p2 = string "orange"

Recall now the behaviour of the choice combinator (++): it takes a string, applies
both argument parsers to this string, and concatenates the resulting lists. Thus in
the colour example, if pi is successfully applied then p2 will still be applied to the
same string, even though it is guaranteed to fail. This inefficiency can be avoided
using (+++), which ensures that if pi succeeds then p2 is never applied:

colour = pi +++ p2
where

pi = string "yellow"
p2 = string "orange"

More generally, if we know that a parser of the form p ++ q is deterministic (only
ever returns at most one result value), then p +++ q has the same behaviour, but is
more efficient: if p succeeds then q is never applied. In the remainder of this article
it will mostly be the (+++) choice combinator that is used. For reasons of efficiency,

22 Graham Huiion and Erik Meijer

in the combinator libraries that accompany this article, the repetition combinators
from the previous section are denned using (+++) rather than (++).

We conclude this section by asking why first is defined by pattern matching,
rather than by using the selection function take :: Int -> [a] -> [a] (where,
for example, take 3 "parsing" = "par"):

first p = \inp -> take 1 (p inp)

The answer concerns the behaviour under lazy evaluation. To see the problem, let
us unfold the use of take in the above definition:

first p = \inp -> case p inp of

[] -> □
(x:xs) -> x : take 0 xs

When the sub-expression take 0 xs is evaluated, it will yield []. However, under
lazy evaluation this computation will be suspended until its value is required. The
effect is that the list xs may be retained in memory for some time, when in fact
it can safely be discarded immediately. This is an example of a space leak. The
definition of first using pattern matching does not suffer from this problem.

6 Handling lexical issues

Traditionally, a string to be parsed is not supplied directly to a parser, but is
first passed through a lexical analysis phase (or lexer) that breaks the string into
a sequence of tokens (Aho ei al., 1986). Lexical analysis is a convenient place to
remove white-space (spaces, newlines, and tabs) and comments from the input
string, and to distinguish between identifiers and keywords.

Since lexers are just simple parsers, they can be built using parser combinators,
as discussed by Hutton (1992). However, as we shall see in this section, the need
for a separate lexer can often be avoided (even for substantial grammars such as
that for Gofer), with lexical issues being handled within the main parser by using
some special purpose combinators.

6.1 White-space, comments, and keywords

We begin by denning a parser that consumes white-space from the beginning of a
string, with a dummy value () returned as result:

spaces :: Parser ()

spaces = C() I _ <- manyl (sat isSpace)]

where

isSpace x =

(x == ' ') I I (x == '\n') II (x == '\t')

Similarly, a single-line Gofer comment can be consumed as follows:

comment :: Parser ()

comment = CO I _ <- string "—"

, _ <- many (sat (\x -> x /= '\n'))]

Monadic Parser Combinators 23

We leave it as an exercise for the reader to define a parser for consuming multi-line
Gofer comments {- ... -}, which can be nested.

After consuming white-space, there may still be a comment left to consume from
the input string. Dually, after a comment there may still be white-space. Thus we
are motivated to defined a special parser that repeatedly consumes white-space and
comments until no more remain:

junk :: Parser ()
junk = [() I <- many (spaces +++ comment)]

Note that while spaces and comment can fail, the junk parser always succeeds. We
define two combinators in terms of junk: parse removes junk before applying a
given parser, and token removes junk after applying a parser:

parse :: Pars er a -> Parser a

parse P = Cv 1 - <- junk, v <-p]

token :: Pars er a -> Parser a

token P = [v 1 V <- P. - <" junk]

With the aid of these two combinators, parsers can be modified to ignore white-
space and comments. Firstly, parse is applied once to the parser as a whole, ensur-
ing that input to the parser begins at a significant character. And secondly, token
is applied once to all sub-parsers that consume complete tokens, thus ensuring that
the input always remains at a significant character.

Examples of parsers for complete tokens are nat and int (for natural numbers
and integers), parsers of the form string xs (for symbols and keywords), and
ident (for identifiers). It is useful to define special versions of these parsers — and
more generally, special versions of any user-defined parsers for complete tokens —
that encapsulate the necessary application of token:

natural :: Parser Int
natural = token nat

integer :: Parser Int
integer = token int

symbol :: String -> Parser String
symbol xs = token (string xs)

identifier :: [String] -> Parser String
identifier ks = token [x I x <- ident, not (elem x ks)]

Note that identifier takes a list of keywords as an argument, where a keyword
is a string that is not permitted as an identifier. For example, in Gofer the strings
"data" and "where" (among others) are keywords. Without the keyword check,
parsers defined in terms of identifier could produce unexpected results, or involve
unnecessary backtracking to construct the correct parse of the input string.

24 Graham Hutton and Erik Meijer

6.2 A parser for X-expressions

To illustrate the use of the new combinators given above, let us define a parser for
simple A-expressions extended with a "let" construct for local definitions. Parsed
expressions will be represented in Gofer as follows:

data Expr = App Expr Expr ~ application
I Lam String Expr — lambda abstraction
I Let String Expr Expr — local definition
I Var String — variable

Now a parser expr :: Parser Expr can be defined by:

expr = atom 'chainll' [App]

atom = lam +++ local +++ var +++ paren

lam = [Lam x e I _ <- symbol "\\"
, x <- variable
, _ <- symbol "->"
, e <- expr]

local = [Let x e e' I _ <- symbol "let"
x <- variable

<- symbol "="

e <- expr
_ <- symbol "in"
e' <- expr]

var = [Var x I x <- variable]

paren = bracket (symbol "(") expr (symbol ")")

variable = identifier ["let","in"]

Note how the expr parser handles white-space and comments by using the symbol
parser in place of string and char. Similarly, the keywords "let" and "in" are
handled by using identifier to define the parser for variables. Finally, note how
applications (f el e2 . . . en) are parsed in the form (((f ei) e2) ...) by
using the chainll combinator.

7 Factorising the parser monad

Up to this point in the article, combinator parsers have been our only example of
the notion of a monad. In this section we define a number of other monads related
to the parser monad, leading up to a modular reformulation of the parser monad
in terms of two simpler monads (Jones, 1995a). The immediate benefit is that, as

Monadic Parser Combinators 25

we shall see, the basic parser combinators no longer need to be denned explicitly.
Rather, they arise automatically as a special case of lifting monad operations from
a base monad m to a certain other monad parameterised over ?7?.. This also means
that, if we change the nature of parsers by modifying the base monad (for example,
limiting parsers to producing at most one result), new combinators for the modified
monad of parsers are also defined automatically.

7.1 The exception monad

Before starting to define other monads, it is useful to first focus briefly on the
intuition behind the use of monads in functional programming (Wadler, 1992a).

The basic idea behind monads is to distinguish the values that a computation
can produce from the computation itself. More specifically, given a monad m and
a type a, we can think of m a as the type of computations that yield results of
type a, with the nature of the computation captured by the type constructor m.
The combinators result and bind (with zero and (++) if appropriate) provide a
means to structure the building of such computations:

result

bind

zero

(++)

m a
m a -> (a -> m b) -> m b
m a
m a -> m a -> m a

From a computational point of view, result converts values into computations
that yield those values; bind chains two computations together in sequence, with
results of the first computation being made available for use in the second: zero is
the trivial computation that does nothing; and finally, (++) is some kind of choice
operation for computations.

Consider, for example, the type constructor Maybe:

data Maybe a = Just a I Nothing

We can think of a value of type Maybe a as a computation that either succeeds with
a value of type a, or fails, producing no value. Thus, the type constructor Maybe
captures computations that have the possibility to fail.

Defining the monad combinators for a given type constructor is usually just a
matter of making the "obvious definitions" suggested by the types of the combina-
tors. For example, the type constructor Maybe can be made into a monad with a
zero and plus using the following definitions:

instance Monad Maybe where

— result :: a -> Maybe a

result x = Just x

— bind :: Maybe a -> (a -> Maybe b) -> Maybe b

(Just x) 'bind' f = f x

Nothing 'bind' 1 = Nothing

26 Graham Hutton and Erik Meijer

instance MonadOPlus Maybe where
— zero :: Maybe a
zero = Nothing

— (++) :: Maybe a -> Maybe a -> Maybe a

Just x ++ y = Just x

Nothing ++ y = y

That is, result converts a value into a computation that succeeds with this value;
bind is a sequencing operator, with a successful result from the first computation
being available for use in the second computation; zero is the computation that
fails; and finally, (++) is a (deterministic) choice operator that returns the first
computation if it succeeds, and the second otherwise.

Since failure can be viewed as a simple kind of exception, Maybe is sometimes
called the exception monad in the literature (Spivey, 1990).

1.2 The non-determinism monad

A natural generalisation of Maybe is the list type constructor []. While a value of
type Maybe a can be thought of as a computation that either succeeds with a single
result of type a or fails, a value of type [a] can be thought of as a computation
that has the possibility to succeed with any number of results of type a, including
zero (which represents failure). Thus the list type constructor D can be used to
capture non-deterministic computations.

Now □ can be made into a monad with a zero and plus:

instance Monad [] where
— result :: a -> [a]
result x = [x]

-- bind :: [a] -> (a -> Cb]) -> [b]
[] 'bind* f = D
(x:xs) 'bind' f = f x ++ (xs 'bind' f)

instance MonadOPlus [] where
— zero
zero

[a]
D

-- (++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

That is, result converts a value into a computation that succeeds with this single
value; bind is a sequencing operator for non-deterministic computations; zero al-
ways fails; and finally, (++) is a (non-deterministic) choice operator that appends
the results of the two argument computations.

Monadic Parser Combinators 27

7.3 The state-transformer monad

Consider the (binary) type constructor State:

type State s a = s -> (a,s)

Values of type State s a can be interpreted as follows: they are computations that
take an initial state of type s, and yield a value of type a together with a new state
of type s. Thus, the type constructor State s obtained by applying State to a
single type s captures computations that involve state of type s. We will refer to
values of type State s a as stateful computations.

Now State s can be made into a monad:

instance Monad (State s) where
— result :: a -> State s a
result v = \s -> (v,s)

— bind : : State s a -> (a -> State s b) -> State s b
st 'bind' f = \s -> let (v,s') = st s in f v s'

That is, result converts a value into a stateful computation that returns that value
without modifying the internal state, and bind composes two stateful computations
in sequence, with the result value from the first being supplied as input to the
second. Thinking pictorially in terms of boxes and wires is a useful aid to becoming
familiar with these two operations (Jones &c Launchbury, 1994).

The state-transformer monad State s does not have a zero and a plus. However.
as we shall see in the next section, the parameterised state-transformer monad over
a given based monad ra does have a zero and a plus, provided that m does.

To allow us to access and modify the internal state, a few extra operations on
the monad State s are introduced. The first operation, update, modifies the state
by applying a given function, and returns the old state as the result value of the
computation. The remaining two operations are defined in terms of update: set
replaces the state with a new state, and returns the old state as the result; fetch
returns the state without modifying it.

update
set
fetch

(s -> s) -> State s s
s -> State s s
State s s

update f = \s -> (s, f s)
set s = update (_ -> s)
fetch = update id

In fact State s is not the only monad for which it makes sense to define these
operations. For this reason we encapsulate the extra operations in a class, so that
the same names can be used for the operations of different monads:

class Monad m => StateMonad m s where
update :: (s -> s) -> m s

28 Graham Hutton and Erik Meijer

set :: s -> m s
fetch :: m s

set s = update (_ -> s)
fetch = update id

This declaration can be read as follows: a type constructor m and a type s are
together a member of the class StateMonad if m is a member of the class Monad,
and if m is also equipped with update, set, and fetch operations of the specified
types. Moreover, the fact that set and fetch can be denned in terms of update is
also reflected in the declaration, by means of default definitions.

Now because State s is already a monad, it can be made into a state monad
using the update operation as defined earlier:

instance StateMonad (State s) s where
— update :: (s -> s) -> State s s
update f = \s -> (s, f s)

7-4 The. parameterised state-transformer monad

Recall now our type of combinator parsers:

type Parser a = String -> [(a,String)]

We see now that parsers combine two kinds of computation: non-deterministic com-
putations (the result of a parser is a list), and stateful computations (the state is the
string being parsed). Abstracting from the specific case of returning a list of results,
the Parser type gives rise to a generalised version of the State type constructor
that applies a given type constructor m to the result of the computation:

type StateM m s a = s -> m (a,s)

Now StateM m s can be made into a monad with a zero and a plus, by inheriting
the monad operations from the base monad m:

instance Monad m => Monad (StateM m s) where
— result :: a -> StateM m s a
result v = \s -> result (v,s)

— bind :: StateM m s a ->

(a -> StateM m s b) -> StateM m s b

stm 'bind' f = \s -> stm s 'bind' \(v,s') -> f v s'

instance MonadOPlus ra => MonadOPlus (StateM m s) where

— zero :: StateM m s a

zero = \s -> zero

— (++) :: StateM m s a -> StateM m s a -> StateM m s a

stm ++ stm' = \s -> stm s ++ stm' s

Monadic Parser Combinators 29

That is, result converts a value into a computation that returns this value without
modifying the internal state; bind chains two computations together; zero is the
computation that fails regardless of the input state; and finally, (++) is a choice
operation that passes the same input state through to both of the argument com-
putations, and combines their results.

In the previous section we denned the extra operations update, set and fetch
for the monad State s. Of course, these operations can also be defined for the
parameterised state-transformer monad StateM m s. As previously, we only need
to define update, the remaining two operations being denned automatically via
default definitions:

instance Monad m => StateMonad (StateM m s) s where
— update :: Monad m => (s -> s) -> StateM m s s
update f = \s -> result (s, i s)

7.5 The parser monad revisited

Recall once again our type of combinator parsers:

type Parser a = String -> [(a,String)]

This type can now be re-expressed using the parameterised state-transformer monad
StateM m s by taking [] for m, and String for s:

type Parser a = StateM [] String a

But why view the Parser type in this way? The answer is that all the basic parser
combinators no longer need to be defined explicitly (except one, the parser item for
single characters), but rather arise as an instance of the general case of extending
monad operations from a type constructor m to the type constructor StateM m s.
More specifically, since D forms a monad with a zero and a plus, so does State []
String, and hence Gofer automatically provides the following combinators:

result
bind
zero

(++)

a -> Parser a
Parser a -> (a -> Parser b) -> Parser b

Parser a
Parser a -> Parser a -> Parser a

Moreover, defining the parser monad in this modular way in terms of StateM
means that, if we change the type of parsers, then new combinators for the modified
type are also defined automatically. For example, consider replacing

type Parser a = StateM □ String a

by a new definition in which the list type constructor C3 (which captures non-
deterministic computations that can return many results) is replaced by the Maybe
type constructor (which captures deterministic computations that either fail, re-
turning no result, or succeed with a single result):

30 Graham Hutton and Erik Meijer

data Maybe a = Just a I Nothing

type Parser a = StateM Maybe String a

Since Maybe forms a monad with a zero and a plus, so does the re-defined Parser
type constructor, and hence Gofer automatically provides result, bind, zero, and
(++) combinators for deterministic parsers. In earlier approaches that do not exploit
the monadic nature of parsers (Wadler, 1985; Hutton, 1992; Fokker, 1995), the basic
combinators would have to be re-defined by hand.

The only basic parsing primitive that does not arise from the monadic structure
of the Parser type is the parser item for consuming single characters:

item :: Parser Char
item = \inp -> case inp of

[] -> C]
(x:xs) -> [(x,xs)]

However, item can now be re-defined in monadic style. We first fetch the current
state (the input string); if the string is empty then the item parser fails, otherwise
the first character is consumed (by applying the tail function to the state), and
returned as the result value of the parser:

item = [x I (x:_) <- update tail]

The advantage of the monadic definition of item is that it does not depend upon
the internal details of the Parser type. Thus, for example, it works equally well for
both the non-deterministic and deterministic versions of Parser.

8 Handling the offside rule

Earlier (section 6) we showed that the need for a lexer to handle white-space,
comments, and keywords can be avoided by using special combinators within the
main parser. Another task usually performed by a lexer is handling the Gofer offside
rule. This rule allows the grouping of definitions in a program to be indicated
using indentation, and is usually implemented by the lexer inserting extra tokens
(concerning indentation) into its output stream.

In this section we show that Gofer's offside rule can be handled in a simple and
natural manner without a separate lexer, by once again using special combinators.
Our approach was inspired by the monadic view of parsers, and is a development
of an idea described earlier by Hutton (1992).

8.1 The offside rule

Consider the following simple Gofer program:

a = b + c
where

b = 10

Monadic Parser Combinators 31

c = 15 - 5
d = a * 2

It is clear from the use of indentation that a and d are intended to be global
definitions, with b and c local definitions to a. Indeed, the above program can be
viewed as a shorthand for the following program, in which the grouping of definitions
is made explicit using special brackets and separators:

{ a = b + c
where

-C b = 10
; c = 15 - 5 }

; d = a * 2 >

How the grouping of Gofer definitions follows from their indentation is formally
specified by the offside rule. The essence of the rule is as follows: consecutive defi-
nitions that begin in the same column c are deemed to be part of the same group.
To make parsing easier, it is further required that the remainder of the text of each
definition (excluding white-space and comments, of course) in a group must occur
in a column strictly greater than c. In terms of the offside rule then, definitions a
and d in the example program above are formally grouped together (and similarly
for b and c) because they start in the same column as one another.

8.2 Modifying the type of parsers

To implement the offside rule, we will have to maintain some extra information
during parsing. First of all, since column numbers play a crucial role in the offside
rule, parsers will need to know the column number of the first character in their
input string. In fact, it turns out that parsers will also require the current line
number. Thus our present type of combinator parsers,

type Parser a = StateM [3 String a

is revised to the following type, in which the internal state of a parser now contains
a (line,column) position in addition to a string:

type Parser a = StateM [] Pstring a

type Pstring = (Pos,String)

type Pos = (Int,Int)

In addition, parsers will need to know the starting position of the current defini-
tion being parsed — if the offside rule is not in effect, this definition position can
be set with a negative column number. Thus our type of parsers is revised once
more, to take the current definition position as an extra argument:

type Parser a = Pos -> StateM [] Pstring a

32 Graham Hution and Erik Meijer

Another option would have been to maintain the definition position in the parser
state, along with the current position and the string to be parsed. However, defini-
tion positions can be nested, and supplying the position as an extra argument to
parsers — as opposed to within the parser state — is more natural from the point
of view of implementing nesting of positions.

Is the revised Parser type still a monad? Abstracting from the details, the body
of the Parser type definition is of the form s -> m a (in our case s is Pos, m is the
monad StateM [] Pstring, and a is the parameter type a.) We recognise this as
being similar to the type s -> m (a,s) of parameterised state-transformers, the
difference being that the type s of states no longer occurs in the type of the result:
in other words, the state can be read, but not modified. Thus we can think of s ->
m a as the type of parameterised state-readers. The monadic nature of this type is

the topic of the next section.

8.3 The parameterised state-reader monad

Consider the type constructor ReaderM, defined as follows:

type ReaderM msa=s->ma

In a similar way to StateM m s, ReaderM m s can be made into a monad with a

zero and a plus, by inheriting the monad operations from the base monad m:

instance Monad m => Monad (ReaderM m s) where

— result :: a -> ReaderM m s a

result v = \s -> result v

— bind :: ReaderM m s a ->

(a -> ReaderM m s b) -> ReaderM m s b

srm 'bind' f = \s -> srm s 'bind' \v -> f v s

instance MonadOPlus m => MonadOPlus (ReaderM m s) where

— zero :: ReaderM m s a

zero = \s -> zero

— (++) :: ReaderM m s a ->
ReaderM m s a -> ReaderM m s a

srm ++ srm' = \s -> srm s ++ srm' s

That is, result converts a value into a computation that returns this value without
consulting the state; bind chains two computations together, with the same state
being passed to both computations (contrast with the bind operation for StateM,
in which the second computation receives the new state produced by the first com-
putation); zero is the computation that fails; and finally, (++) is a choice operation
that passes the same state to both of the argument computations.

To allow us to access and set the state, a couple of extra operations on the
parameterised state-reader monad ReaderM m s are introduced. As for StateM, we

Monadic Parser Combinators 33

encapsulate the extra operations in a class. The operation env returns the state as
the result of the computation, while setenv replaces the current state for a given
computation with a new state:

class Monad m => ReaderMonad m s where
env :: m s
setenv :: s -> m a -> m a

instance Monad m => ReaderMonad (ReaderM m s) s where
— env :: Monad m => ReaderM m s s
env = \s -> result s

— setenv :: Monad m => s ->
ReaderM m s a -> ReaderM m s a

setenv s srm = _ -> srm s

The name env comes from the fact that one can think of the state supplied to a
state-reader as being a kind of environment. Indeed, in the literature state-reader
monads are sometimes called environment monads.

8.4 The new parser combinators

Using the ReaderM type constructor, our revised type of parsers

type Parser a = Pos -> StateM [] Pstring a

can now be expressed as follows:

type Parser a = ReaderM (StateM [] Pstring) Pos a

Now since [] forms a monad with a zero and a plus, so does StateM [] Pstring.
and hence so does ReaderM (StateM [] Pstring) Pos. Thus Gofer automatically
provides result, bind, zero, and (++) operations for parsers that can handle the
offside rule. Since the type of parsers is now defined in terms of ReaderM at the top
level, the extra operations env and setenv are also provided for parsers. Moreover,
the extra operation update (and the derived operations set and fetch) from the
underlying state monad can be lifted to the new type of parsers — or more generally,
to any parameterised state-reader monad — by ignoring the environment:

instance StateMonad m a => StateMonad (ReaderM m s) a where
— update :: StateMonad m a => (a -> a) -> ReaderM m s a
update f = _ -> update f

Now that the internal state of parsers has been modified (from String to Pstring),
the parser item for consuming single characters from the input must also be mod-
ified. The new definition for item is similar to the old,

item :: Parser Char
item = [x I (x:_) <- update tail]

34 Graham Hutton and Erik Meijer

except that the item parser now fails if the position of the character to be consumed
is not onside with respect to current definition position:

item :: Parser Char
item = [x I (pos,x:_) <- update newstate

, defpos <- env
, onside pos defpos]

A position is onside if its column number is strictly greater than the current defi-
nition column. However, the first character of a new definition begins in the same
column as the definition column, so this is handled as a special case:

onside :: Pos -> Pos -> Bool
onside (l,c) (dl.dc) = (c > dc) II (1 == dl)

The remaining auxiliary function, newstate, consumes the first character from the
input string, and updates the current position accordingly (for example, if a newline
character was consumed, the current line number is incremented, and the current

column number is set back to zero):

newstate :: Pstring -> Pstring
newstate ((l,c),x:xs)

= (newpos.xs)
where

newpos = case x of
'\n' -> (1+1,0)
>\f -> (l,((c 'div' 8)+l)*8)

-> (l,c+i)

One aspect of the offside rule still remains to be addressed: for the purposes
of this rule, white-space and comments are not significant, and should always be
successfully consumed even if they contain characters that are not onside. This can
be handled by temporarily setting the definition position to (0, -1) within the junk
parser for white-space and comments:

junk :: Parser ()
junk = CO I _ <- setenv (0,-1) (many (spaces +++ comment))]

All that remains now is to define a combinator that parses a sequence of defini-
tions subject to the Gofer offside rule:

manyi_offside :: Parser a -> Parser [a]
manyl_offside p = [vs I (pos,_) <- fetch

, vs <- setenv pos (manyl (off p))]

That is, manyl_off side p behaves just as manyl (off p), except that within this
parser the definition position is set to the current position. (There is no need to
skip white-space and comments before setting the position, since this will already
have been effected by proper use of the lexical combinators token and parse.) The
auxiliary combinator off takes care of setting the definition position locally for

Monadic Parser Combinators 35

each new definition in the sequence, where a new definition begins if the column
position equals the definition column position:

off :: Parser a -> Parser a
off p = [v I (dl,dc) <- env

, ((l,c),_) <- fetch
, c == dc
, v <- setenv (l,dc) p]

For completeness, we also define a combinator many.of f side that has the same
behaviour as the combinator manyl_off side, except that it can also parse an empty
sequence of definitions:

many_offside :: Parser a -> Parser [a]
many_offside p = manyi_offside p +++ [[]]

To illustrate the use of the new combinators defined above, let us modify our
parser for A-expressions (section 6.2) so that the "let" construct permits non-
empty sequences of local definitions subject to the offside rule. The datatype Expr of
expressions is first modified so that the Let constructor has type [(String,Expr)]
-> Expr instead of String -> Expr -> Expr:

data Expr = ...
I Let [(String,Expr)] Expr

I ...

The only part of the parser that needs to be modified is the parser local for local
definitions, which now accepts sequences:

local = [Let ds e I _ <- symbol "let"
, ds <- manyl_offside defn
, _ <~ symbol "in"
, e <- expr]

defn = [(x,e) I x <- identifier
, _ <- symbol "="
, e <- expr]

We conclude this section by noting that the use of the offside rule when laying out
sequences of Gofer definitions is not mandatory. As shown in our initial example, one
also has the option to include explicit layout information in the form of parentheses
"{" and "}" around the sequence, with definitions separated by semi-colons ";".
We leave it as an exercise to the reader to use many.of f side to define a combinator
that implements this convention.

In summary then, to permit combinator parsers to handle the Gofer offside rule,
we changed the type of parsers to include some positional information, modified
the item and junk combinators accordingly, and defined two new combinators:
many 1 _off side and many-offside. All other necessary redefining of combinators
is done automatically by the Gofer type system.

36 Graham Hutton and Erik Meijer

9 Acknowledgements

The first author was employed by the University of Utrecht during part of the
writing of this article, for which funding is gratefully acknowledged.

Special thanks are due to Luc Duponcheel for many improvements to the im-
plementation of the combinator libraries in Gofer (particularly concerning the use
of type classes and restricted type synonyms), and to Mark P. Jones for detailed
comments on the final draft of this article.

10 Appendix: a parser for data definitions

To illustrate the monadic parser combinators developed in this article in a real-life
setting, we consider the problem of parsing a sequence of Gofer datatype definitions.
An example of such a sequence is as follows:

data List a = Nil I Cons a (List a)

data Tree a b = Leaf a
I Node (Tree a b, b, Tree a b)

Within the parser, datatypes will be represented as follows:

type Data = (String, — type name
[String], — parameters
[(String,[Type])]) — constructors and arguments

The representation Type for types will be treated shortly. A parser datadecls ::
Parser [Data] for a sequence of datatypes can now be defined by

datadecls = many_offside datadecl

datadecl = [(x,xs,b) I _ <- symbol "data"
, x <- constructor
, xs <- many variable
, _ <- symbol "="
, b <- condecl 'sepbyl' symbol "I"]

constructor = token [(x:xs) I x <- upper
■ , xs <- many alphanum]

variable = identifier ["data"]

condecl = [(x,ts) I x <- constructor
, ts <- many type2]

There are a couple of points worth noting about this parser. Firstly, all lexical
issues (white-space and comments, the offside rule, and keywords) are handled by
combinators. And secondly, since constructor is a parser for a complete token, the
token combinator is applied within its definition.

Monadic Parser Combinators 37

Within the parser, types will be represented as follows:

data Type = Arrow Type Type — function
I Apply Type Type -- application

I Var String — variable

I Con String — constructor

I Tuple [Type] — tuple
I List Type — list

A parser typeO :: Parser Type for types can now be defined by

typeO = type! 'chainrl' [Arrow I _ <- symbol "->"]

typei = type2 'chain.ll' [Apply]
type2 = var +++ con +++ list +++ tuple

var = [Var x I x <- variable]

con = [Con x I x <- constructor]

list = [List x I x <- bracket
(symbol "[")

typeO
(symbol "]")]

tuple = [f ts I ts <- bracket
(symbol "(")
(typeO 'sepby' symbol ",")

(symbol ")")3

where 1 [t] = t

f ts = Tuple ts

Note how chainrl and chainll are used to handle parsing of function-types and

application. Note also that (as in Gofer) building a singleton tuple (t) of a type t

is not possible, since (t) is treated as a parenthesised expression.

References

Aho, A., Sethi, R., &c Ullman, J. (1986). Compilers — principles, techniques and tools.
Addison-Wesley.

Bürge, W.H. (1975). Recursive programming techniques. Addison-Wesley.

Fokker, Jeroen. 1995 (May). Functional parsers. Lecture notes of the Baastad Spring
school on functional programming.

Gill, Andy, & Marlow, Simon. 1995 (Jan.). Happy: the parser generator for Haskell.
University of Glasgow.

Hughes, John. (1989). Why functional programming matters. The computer journal,
32(2), 98-107.

Hutton, Graham. (1992). Higher-order functions for parsing. Journal of functional pro-
gramming, 2(3), 323-343.

38 Graham Hutton and Erik Meijer

Jones, Mark P. (1994). Gofer 2.30a release notes. Unpublished manuscript.

Jones, Mark P. (1995a). Functional programming beyond the Hindley/Milner type system.
Proc. lecture notes of the Baastad spring school on functional programming.

Jones, Mark P. (1995b). The Gofer distribution. Available from the University of Not-
tingham: http: //www. cs .nott. ac.uk/Department/Staff/mpj/.

Jones, Mark P. (1995c). A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of functional programming, 5(1), 1-35.

Jones, Simon Peyton, &c Launchbury, John. (1994). State in Haskell. University of Glasgow.

Landin, Peter. (1966). The next 700 programming languages. Communications of the
ACM, 9(3).

Mogensen. Torben. (1993). Ratatosk: a parser generator and scanner generator for Gofer.
I'niversit.v of Copenhagen (DIKU).

Moggi, Eugenio. (1989). Computation lambda-calculus and monads. Proc. IEEE sympo-
sium on logic in computer science. A extended version of the paper is available as a
technical report from the University of Edinburgh.

Röjemo, Niklas. (1995). Garbage collection and memory efficiency in lazy functional lan-
guages. Ph.D. thesis, Chalmers University of Technology.

Spivey, Mike. (1990). A functional theory of exceptions. Science of computer programming,
14, 25-42.

Wadler, Philip. (1985). How to replace failure by a list of successes. Proc. conference on
functional programming and computer architecture. Springer-Verlag.

Wadler, Philip. (1990). Comprehending monads. Proc. ACM conference on Lisp and
functional programming.

Wadler, Philip. (1992a). The essence of functional programming. Proc. principles of
programming languages.

Wadler, Philip. (1992b). Monads for functional programming. Broy, Manfred (ed), Proc.
Marktoberdorf Summer school on program design calculi. Springer-Verlag.

Due to copyright restrictions, the following article is not included in this collection, but can
be found in:

The Design of a Pretty-printing Library by John Hughes
Lecture Notes in Computer Science 925
Johan Jeuring, Erik Meijer (Eds.)
Springer Verlag Berlin Heidelberg 1995

September 22,1997

Microprocessor Specification in Hawk

John Matthews, John Launchbury, Byron Cook
Oregon Graduate Institute

Abstract. Modern microprocessors require an immense investment of time and effort to create and
verify, from the high-level architectural design downwards. We are exploring ways to increase the
productivity of design engineers by creating a domain-specific language tor specifying and simulat-
ing processor architectures. We believe that the structuring principles used in modern functional pro-
gramming languages, such as static typing, parametric polymorphism, first-class functions, and lazy
evaluation provide a good formalism for such a domain-specific language, and have made initial
progress by creating a library on top of the functional language Haskell. We have specified the inte-
ger subset of a pipelined DLX microprocessor, including bypass logic, load-hazard resolution, and
speculative branch execution. Two key abstractions of this library are the signal abstract data type
(ADT), which models the simulation history of a wire, and the transaction ADT, which models the
state of an entire instruction as it travels through the microprocessor. We are currently using the same
techniques to model the architecture of modern superscalar microprocessors.

Introduction

Modern microprocessor technologies have substantially increased processor performance. For exam-
ple, pipelining allows a processor to overlap the execution of several instructions at once. With
superscalar execution, multiple instructions are read per clock cycle. Out-of-order execution, where
some instructions that logically come after a given instruction may be executed before the given
instruction, can also greatly increase processor speed [Jon91]. All of these technologies dramatically
increase design complexity. In fact, creating and verifying these designs is a significant proportion of
the total microprocessor development lifecycle. As the number of possible gates in future micropro-
cessors increases exponentially, so too does design complexity.

At OGI, we have developed the Hawk library for building executable specification* of microproces-
sors, concentrating on the level of micro-architecture. The Hawk library constitutes the initial phase
of a project that we hope will lead towards an independent language. In the meantime we have in
essence embedded our language into Haskell, a strongly-typed functional language with lazy
(demand-driven) evaluation, first-class functions, and parametric polymorphism [HPF96] [Pet97].

The library makes essential use of these features. As an example, we have used Hawk to specify and
simulate the integer portion of the DLX [HP95] microprocessor. The DLX is a complete micropro-
cessor and is a widely used model among researchers. Several DLX simulators exist, as well as a ver-
sion of the Gnu C compiler that generates DLX assembly instructions [DLX97]. The processor

The authors are supported by Intel and Air Force Material Command (Contract F19628-93-C-0069)

John Matthews is supported through an NSF fellowship

The Hawk Library

includes the most common instructions found in commercial RISC processors. Our specification,
including data and control hazard resolution, is only two pages of Hawk code. A non-pipelined ver-
sion of the processor was specified in half of a page.

In this report, we introduce the concepts behind the Hawk library. Rather than attempting a patient
explanation of the whole of the DLX with all of its inherent complexity, we have chosen to exhibit
the techniques on a considerably simplified model. A corresponding annotated specification of the
DLX itself can be found in [Hawk97].

The Hawk Library

We start with a simple example that introduces several functions used in later examples. Consider the
resettable counter circuit of Figure 1.

reset

Constant 0
output

Increment

Delay

FIGURE 1. Resettable Counter. A simple circuit that counts the number of
clock cycles between reset signals.

The reset wire is Boolean valued, while the other wires are integer valued. Of course, in silicon, inte-
ger-valued wires are represented by a vector of Boolean wires, but as a design abstraction, a Hawk
user may choose to use a single wire. The circuit counts (and outputs) the number of clock cycles
since reset was last asserted.

Signals Notice that there is no explicit clock in the diagram. Rather, each wire in the diagram carries a signal
(integer or boolean valued) which is an implicitly clocked value. The output of a circuit only changes
between clock cycles. We build signals using an abstract type constructor called Signal. As a men-

Microprocessor Specification in Hawk

The Hawk Library

tal model we could think of a value of type Signal a as a function from integers to values of type

a".

type Signal a = (Int -> a)

The integers denote the current time, measured as the number of clock cycles since the start of the
simulation. Circuits and components of circuits are represented as functions from signals to signals.
This view of signals is used extensively in the hardware verification community [Mel88] [WC94].

In the resettable counter example above, the constant 0 circuit outputs zero on every clock cycle. The
select component chooses between its inputs on each clock cycle depending on the value of reset. If
reset is asserted on a given cycle (has value true), then the output is equal to select's top input, in this
case zero. If reset is not asserted, then its output is the value of its bottom input. In either case.
select's output is the output of the entire circuit, as well as the input to the increment component,
which simply adds 1 to its input. The output of increment is fed into the delay component. A delay
component outputs whatever was on its input in the previous clock cycle: it "delays" its input by one
cycle. However, on the first clock cycle of the simulation there is no previous input, so on the first
cycle delay outputs whatever is on its init input, which is zero in this circuit.

Components The components used in the resettable counter are trivial examples of the sorts of things provided by
the Hawk library, but let's look at a specification of each component in turn.

The simplest component is constant:

constant :: a -> Signal a
constant val = (X. time . val)

The constant function takes an input of any type a, and returns an output of type Signal a, that
is, a function from time to a value of type a. (Function definition and application in Haskell are
denoted by simply placing the function arguments after the function symbol, separated by spaces).
The X symbol in the body of constant constructs a function with a single parameter, here called
time. The return value of a X-function is the value of the expression that follows the "." symbol. In
this case the X-function ignores its time argument and always returns val. Thus for every clock
cycle, (constant x) always has the same value x.

The next component is select:

select :: Signal Bool -> Signal a -> Signal a -> Signal a
select boolSig xSig ySig =

X time . if (boolSig time) then
xSig time

else (ySig time)

The first line declares select to be a function. In a Haskell type declaration, anything to the left of
an arrow is a function argument. Thus, the select function takes one Boolean input signal and two
polymorphic input signals, that is, two functions from time to a, and returns the X-function repre-
senting the output signal. The function being returned from select applies boolSig to its time

1. We actually implement signals using lazy lists, so that type Signal a= List a. This implementation
choice will be explained later in the paper.

Microprocessor Specification in Hawk

The Hawk Library

argument. If (boolSig time) equals True, then we apply xSig to time and return the result,
otherwise we return the result of applying ySig to time.

The increment component is also quite simple:

increment :: Signal Int -> Signal Int
increment xSig = A. time . (xSig time) + 1

Given the xSig input signal, we return a function (built with a X) that takes its time parameter,
applies xSig to it, adds one, and returns the result.

The delay component is more interesting:

delay :: a -> Signal a -> Signal a
delay initVal xSig = k time . if (time == 0) then

initVal
else (xSig (time - 1))

This function takes an initial value of type a, and an input signal of type Signal a, and it returns a
value of type Signal a (the input arguments are in reverse order from the diagram). If time is
equal to zero, we just return initVal, otherwise we return whatever value xSig had at clock cycle
(time - 1). This function can thus propagate values from one clock cycle to the next. Note that the
delay function is polymorphic, and can be used to delay signals of any type.

Using the Once we have denned primitive signal components like the ones above, we never refer to time values
components explicitly. This can be seen in the definition of the resettable counter itself:

resetCounter :: Signal Bool -> Signal Int
resetCounter reset = output
where

output = select reset (constant 0)
(delay 0 (increment output))

The resetCounter definition takes reset as a Boolean signal, and returns an integer signal. The
reset signal is passed into select. On every clock cycle where reset returns True, select
outputs 0, otherwise it outputs the result of the delay function. On the first clock cycle delay out-
puts 0, and thereafter outputs the result of whatever (increment output) was on the previous
clock cycle. The output of the whole circuit is the output of the select function, here called out-
put. Notice that output is used twice in this function: once as the input to increment, and once
as the result of the entire function. This corresponds to the fact that the output wire in Figure 1 is
split and used in two places. Whenever a wire is duplicated in this fashion, we must use a where
statement in Hawk to name the wire.

Recursive There is something else curious about the output variable. It is being used recursively in the same
definitions place it is being denned! Most languages only allow such recursion for functions with explicit argu-

ments. In Haskell, one can also define recursive data-structures and functions with implicit argu-
ments, such as the one above. If we didn't have this ability, we would have had to define resetCounter
as follows:

resetCounter reset = output
where

output time = (select reset (constant 0)

Microprocessor Specification in Hawk

A Simple Microprocessor

(delay 0 (increment oucpuc))) time

Every time we have a cycle in a circuit, we have to create a local recursive function, passing an
explicit time parameter. This breaks the abstraction of the Signal ADT. In fact, in the real imple-
mentation of signals, we don't use functions at all. We use infinite lists instead. Each element of the
list corresponds to a value at a particular clock cycle; the first list element corresponds to the first
clock cycle, the second element to the second clock cycle, and so on. By storing signals as lazy lists,
we compute a signal value at a given clock cycle only once, no matter how many times it is subse-
quently accessed.

Haskell allows recursive definitions of abstract data structures because it is a lazy language, that is. it
only computes a part of a data structure when some client code demands its value. It is lazy evalua-
tion that allows Haskell to simulate infinite data structures, such as infinite lists.

A Simple Microprocessor

As we noted in the introduction, the DLX architecture is too complex to explain in fine detail in an
introductory report. Thus for pedagogical purposes we show how to use similar techniques to specify
a simple microprocessor called SHAM (Simple HAwk Microprocessor). We begin with the simplest
possible SHAM architecture (unpipelined), and then add features: pipelining, and a memory-cache.

command srcRegA srcRegB destReg

' \ '

RO

input eiintenisB

RegisterFile

wriicRcg
Delay

writeCuntems contentsA
Delay

input

inii

0

input 1

ALU
tnpui2

/

FIGURE 2. Unpipelined version of SHAM.

The unpipelined SHAM diagram is shown in Figure 2. The microprocessor consists of an ALU and a
register file. The ALU recognizes three operations: ADD. SUB, and INC. The ADD and SUB opera-
tions add and subtract, respectively, the contents of the two ALU inputs. The INC operation causes

Microprocessor Specification in Hawk

A Simple Microprocessor

the ALU to increment its first input by one and output the result. The register file contains eight inte-
ger registers, numbered RO through R7. Register RO is hardwired to the value zero, so writes to RO
have no effect. The register file has one write-port and two read-ports. The write-port is a pair of
wires; the register to update, called writeReg, and the value being written, called writeContents. The
input to each read-port is a wire carrying a register name. The contents of the named read-port regis-
ters are output every cycle along the wires contentsA and contentsB. If a register is written to and
read from during the same clock cycle, the newly written value is reflected in the read-port's output.
This is consistent with the behavior of most modern microprocessor register files.

SHAM instructions are provided externally; in our drive for simplicity there is no notion of a pro-
gram counter. Each instruction consists of an ALU operation, the destination register name, and the
two source register names. For each instruction the contents of the two source registers are loaded
into the ALU's inputs, and the ALU's result is written back into the destination register.

Unpipelined
SHAM
Specification

Let us assume we have already specified the register file and ALU, with the signatures below:

data Reg = RO | Rl | R2 | R3 | R4 | RS | R6 | R7

regFile :: (Signal Reg, Signal Int) ->
(Signal Reg, Signal Reg) ->
(Signal Int, Signal Inc)

(write port inputs)
(read port inputs)
(read port outputs)

data Cmd = ADD 1 SUB INC

alu :: Signal Cmd -> Signal Int -> Signal Int -> Signal Int

The alu specification takes a command signal and two input signals, and returns a result signal.
Given these signatures and the previous definition of delay, it is easy in Hawk to specify an unpipe-

lined version of SHAM:

sham_l ::(Signal Cmd,Signal Reg,Signal Reg,Signal Reg) ->
(Signal Reg,Signal Int)

sham_l (cmd,destReg,srcRegA,srcRegB) = (destReg',aluOutput')

where
(aluInputA,aluInputB) = regFile (destReg',aluOutput')

(srcRegA.srcRegB)

aluOutput = alu cmd aluInputA aluInputB
aluOutput' = delay 0 aluOutput
destReg' = delay RO destReg

The definition of sham_l takes a tuple of signals representing the stream of instructions, and returns
a pair of signals representing the sequence of register assignments generated by the instructions. The
first three lines in the body of sham_l read the source register values from the register file and per-
form the ALU operation. The next two lines delay the destination register name and ALU output, in
effect returning the values of the previous clock cycle. The delayed signals become the write-port for
the register file. It is necessary to delay the write-port since modifications to the register file logically
lake effect for the next instruction, not the current one.

Pipelining Suppose we wanted to increase SHAM's performance by doubling the clock frequency. We will
assume that, while sham_l could perform both the register file and ALU operations within one
clock cycle, with the increased frequency it will take two clock cycles to perform both functions sen-

Microprocessor Specification in Hawk

A Simple Microprocessor

ally. We use pipelining to increase the overall performance. While the ALU is working on instruction
n, the register file will be writing the result of instruction n -1 back into the appropriate register, and
simultaneously reading the source registers of instruction n + I.

destReg command srcRegA srcRegB

RO
inn input

Delay

ADD
inn input

Delay

RegisterFile

lmil '"i"" ^

Delay

writcReg

RO

Delay
input

Delay

ifTruc

Select

Delay
input

HTruu

Select

input 1

inpui2

ALU

FIGURE 3. Pipelined version of SHAM. Since the register file and the ALU each
now take one clock cycle to complete, we have to introduce pipeline register
delay circuits. The pipeline registers in turn require us to add Select circuits to
act as bypasses. The logic controlling the Select circuits is not shown.

But now consider the following sequence of instructions:

R2 <- Rl ADD R3
R4 <- R2 SUB R5

When the ADD instruction is in the ALU stage, the SUB instruction is in the register-fetch stage. But
one of the registers that is being fetched (R2), has not been written back into the register file yet,
because the ALU is still calculating the result. The SUB instruction will read an out-of-date value for
R2. This is an example of a data hazard, where naive pipelining can produce a result different from

Microprocessor Specification in Hawk

A Simple Microprocessor

the unpipelined version of a microprocessor. To resolve this hazard, we will first add bypass logic to
the pipeline, then later abstract away from this added inconvenience.

Figure 3 contains the diagram of a pipelined version of SHAM with bypass logic. By the time the
source operands to the SUB instruction (R2 and R5) are ready to be input into the ALU, the up-to-
date value for R2 is stored in the delay circuit between the ALU and the register file's write-port. The
bypass logic uses this stored value of R2 as the input to the ALU, rather than the out-of-date value
read from the register file. The bypass logic examines the incoming instructions to determine when
this is necessary. Figure 4 contains the Hawk specification.

sham_2 :: (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) ->
(Signal Reg,Signal Int)

sham_2 (cmd,destReg,srcRegA,srcRegB) = (destReg" ,aluOut')

where
(registerA,registerB) = regFile (destReg'',aluOut')

(srcRegA,srcRegB)

registerA' = delay 0 registerA
registers' = delay 0 registerB
destReg' = delay RO destReg
cmd' = delay ADD cmd

aluInputA = select inputValidA registerA' aluOut'
aluInputB = select inputValidB registerB' aluOut'

aluOut = alu cmd' aluInputA aluInputB

aluOut' = delay 0 aluOut
destReg'' = delay RO destReg'

 Control logic

inputValidA = delay True (noHazard srcRegA)
inputValidB = delay True (noHazard srcRegB)

noHazard :: Signal Reg -> Signal Bool
noHazard srcReg =
sigOr(sigEqual destReg' (constant RO))
(sigNotEqual destReg' srcReg)

FIGURE 4. A Hawk specification of the pipelined SHAM ^^

The first two lines of the code read the contents of the source registers from the register file. The next
four lines delay the source register contents, the ALU command, and the destination register name by
one cycle. The two select commands decide whether the delayed values should be bypassed. The
decision is made by the Boolean signals inputValidA and inputValidB, which are defined in
the control logic section. The next line performs the ALU operation. The last two lines in the data-
flow section delay the ALU result and the destination register. The delayed result, called aluOut',
is written back into the register file in the register named by destReg' ', as indicated in the first
two lines of the section.

Microprocessor Specification in Hawk

A Simple Microprocessor

The control logic section determines when to bypass the ALU inputs. The signals inputValidA
and inputValidB are set to True whenever the corresponding ALU input is up-to-date. The def-
inition of these signals uses the function noHazard, which tests whether the previous instruction's
destination register name matches a source register name of the current instruction. If they do, then
the function returns False. The exception to this is when the destination register is RO. In this case
the ALU input is always up-to-date, so noHazard returns True.

Transactions The definition of sham_2 highlights a difficulty of many such specifications. Although the data flow
section is relatively easy to understand, the control logic section is far from satisfactory. In fact, it
takes nearly as many lines of Hawk code to specify the control logic as it does to specify the data
flow, and mistakes in the control logic may not be easy to spot. We need a more intuitive way of
defining control logic sections in microprocessors.

We use a notion of transactions within Hawk to specify the state of an entire instruction as it travels
through the microprocessor (similar in spirit to Aagaard and Leeser [AL941). A transaction holds an
instruction's source operand values, the ALU command, and the destination operand value. Transac-
tions also record the register names associated with the source and destination operands:

data Transaction = Trans DestOperand Cmd [SrcOperand]

type DestOperand = Operand
type SrcOperand = Operand
type Operand = (Reg,Value)

data Value = Unknown | Val Int

An operand is a pair containing a register and its (possibly unknown) value.

For example, the instruction (R3 <- R2 ADD Rl), when it has completed, would be encoded as
shown below (assume that register R2 holds the value 3, and Rl holds 4):

Trans (R3,Val 7) ADD [(R2,Val 3),(Rl,Val 4)]

This expression states that register R3 should be assigned the value 7 as a result of adding the con-
tents of register R2 and Rl.

Not all of the register values in a transaction are known in the early stages of the pipeline. When a
register name does not have an associated value yet, it is assigned the value Unknown. For example,
if the above instruction had not reached the ALU stage yet, then the corresponding transaction would
be:

Trans (R3,Unknown) ADD [(R2,(Val 3)),(Rl,Val 4))]

Figure 5 shows how a transaction's values are filled in as it travels down the pipeline

Microprocessor Specification in Hawk

A Simple Microprocessor

Input

Trans (R3,Unknown) ADD [(R2,Unknown), (Rl,Unknown)]

RegisterFile

NopTransaction
linU

Delay

Trans (R3,Unknown) ADD [(R2,Val 3),(Rl,Val 4)]

ALU

Trans (R3,Val 7) ADD [(R2,Val 3),(Rl,Val 4)]

FIGURE 5. A transaction as it flows down the pipeline.

Transaction In general, the Transaction datatype contains three subfields. The first field holds the destination
structure register name and its current state. The state of a register indicates the current value for the register at

a given stage of the pipeline. Possible state values are Unknown, or (Val k). The second field is
the instruction's ALU operation, in this case the ADD command. The third field holds a list of source
operand register names and their corresponding states. In this example, it holds the names and states
for the source operands R2 and Rl.

The instruction (R3 <- R2 ADD Rl), before it enters the SHAM pipeline, is encoded as the transac-

tion:

Trans (R3 , Unknown) ADD [(R2,Unknown),(Rl,Unknown)]

10 Microprocessor Specification in Hawk

A Simple Microprocessor

Changes to
handle
transactions

At this point, none of the register values are known.

We change the regFile and alu functions so that they take and return transactions:

regFile :: Signal Transaction ->
Signal Transaction ->
Signal Transaction

alu :: Signal Transaction ->
Signal Transaction

Because the register file needs to both write new values to the CPU registers and read values from
them, the regFile function takes a xvrite-transaction and a read-transaction as inputs. The func-
tion examines the destination register field of the write-transaction and updates the corresponding
register in the register file. It outputs the read-transaction, modified so that all of the source register
fields contain current values from the register file. For example, suppose regFile is applied to the
completed write-transaction:

Trans (Rl.Val 4) INC [(Rl.Val 3)]

and uses as the read transaction:

Trans (R3,Unknown) ADD [iR2 Jp.Known) , , f.- , 'ji'.r'.r.j'AT

Unpipelined
SHAM

Further, assume that register Rl is assigned 20 and R2 is assigned 3 before regFile's application.
Then regFile will update Rl to contain 4 from the write-transaction, and will output a new trans-
action that is identical to the read-transaction, except that all of the source registers have been
assigned current values from the register file:

Trans (R3,Unknown) ADD [(R2,Val 3), (Rl.Val 4)]

The revised alu function takes a transaction whose source operands have values, performs the
appropriate operation, and outputs a modified transaction whose destination field has been filled in.
Thus if the ADD transaction above were given to alu, it would return:

Trans (R3,Val 7) ADD [(R2,Val 3), (Rl.Val 4)]

Using transactions, the unpipelined version of SHAM is even easier to specify than it was before.

sham_l_Trans :: Signal Transaction -> Signal Transaction
sham_l_Trans instr = aluOutput'
where

alulnput = regFile aluOutput' instr
aluOutput = alu alulnput
aluOutput' = delay nop aluOutput

nop = Trans (RO.Val 0) ADD [(RO.Val 0),(R0,Val 0)]

But the real benefit of transactions comes from specifying more complex nucio-urchiieauio.. u.s wc
shall see next.

SHAM_2 with Transactions are designed to contain the necessary information for concisely specifying control
Transactions logic. The control logic needs to determine when an instruction's source operand is dependent on

Microprocessor Specification in Hawk 11

A Simple Microprocessor

another instruction's destination operand. To calculate the dependency, the source and destination
register names must be available. The transaction carries these names for each instruction. Because
of this additional information, bypass logic is easily modeled with following combinator:

bypass :: Signal Transaction -> Signal Transaction ->
Signal Transaction

The bypass function usually just outputs its first argument. Sometimes, however, the second argu-
ment's destination operand name matches one or more of the first argument's source operand names.
In this case, the source operand's state values are updated to match the destination operand state
value. The updated version of the first argument is then returned.

So if at clock cycle n the first argument to bypass is:

Trans (R4,Unknown) ADD [(R3,Val 12) , (R2,Val 4)]

and the second argument at cycle n is:

Trans (R3,Val 20) SUB [(R8,Val 2) , (Rll,Val 10)]

then because R3 in the second transaction's destination field matches R3 in the first transaction's
source field, the output of bypass will be an updated version of the first transaction:

Trans (R4,Unknown) ADD [(R3,Val 20),(R2.Val 4)]

One special case to bypass's functionality is when a source register is R0. Since R0 is a constant
register, it does not get updated. The pipelined version of SHAM with bypass logic is now straight-
forward. Notice that no explicit control logic is needed, as all the decisions are taken locally in the
bypass operations.

SHAM_2_Trans : : Signal Transaction -> Signal Transaction
SHAM_2_Trans instr = aluOutput'
where

preppedlnstr = regFile aluOutput' instr
preppedlnstr' = delay nopTrans preppedlnstr
alulnput = bypass preppedlnstr' aluOutput'
aluOucput = aiu alulnput
aluOutput' = delay nopTrans aluOutput

The first line takes instr and fills in its source operand fields from the register file. The filled-in
transaction is delayed by one cycle in the second line. In the third line bypass is invoked to ensure
that all of the source operands are up-to-date. Finally the transaction result is computed by alu and
delayed one cycle so that the destination operand can be written back to the register file.

Hazards There are some microprocessor hazards that cannot be handled through bypassing. For example, sup-
pose we extended the SHAM architecture to process load and store instructions:

R3 4- MEM[R2]
MEM[?-5] «- R2

The first instruction above is a load instruction; it loads the contents of the address pointed to by R2
into R3. The second instruction is a store; it stores the contents of R2 into the address pointed to by
R5. A block diagram of the extended SHAM architecture is shown in Figure 5. There is now a load/

12 Microprocessor Specification in Hawk

A Simple Microprocessor

store pipeline stage after the ALU stage. However, this introduces a new problem. Suppose SHAM

executes the following two instructions in sequence:

R2
R4

MEM[R1]
R2 ADD R3

These two instructions have a data hazard, just as before, but we can not use bypassing to resolve it.
Bypassing depends on having a value to bypass at the beginning of a clock cycle, but R2's value
won't be known until the end of the cycle, after the memory contents have been retrieved from the
memory cache. To resolve this hazard, we have to stall the pipeline at the register-fetch stage. When
the first instruction has reached the end of the ALU stage, the second instruction will have reached
the end of the register-fetch stage. At this point the pipeline registers between the register-fetch stage
and the ALU stage are overridden; on the next clock cycle they instead output the equivalent of a no-
op instruction. The register-fetch stage itself re-reads the second instruction on the next clock cycle.
In effect, the pipeline stall inserts a no-op instruction between the two instructions involved in the

hazard:

R2 f- MEMtRl]
NOP
R4 <- R2 ADD R3

Now when the ADD instruction is about to be processed by the ALU. the load instruction has alread>
completed the memory stage. R2's value is held in the pipeline registers after the memory stage, so
bypass logic can be used to bring the ALU's input up-to-date. In order to stall correctly, we have m
re-read the second instruction. Thus stalling reduces the performance of the pipeline.

Hawk
Specification of
Extended SHAM

In this section we will give more evidence of the simplifying power of transactions by specifying
the extended SHAM architecture. The load/store extension significantly complicates the control
logic for the SHAM architecture. We shall see that even though this version of SHAM is still quite
simple, the Hawk specification without transactions is much more verbose than the specification with
transactions.

To start, we need to define some additional Hawk circuits. The first circuit, def aul tDelay, aug-
ments the normal delay circuit so that when a stall hazard is detected, the augmented circuit will
output a default value on the next clock cycle, rather than its current input value:

defaultDelay :: Signal Bool -> a -> Signal a -> Signal a
defaultDelay emitDefault default input =
delay default (select emitDefault (constant default) input)

The defaultDelay circuit uses delay to store values between clock cycles. The value it stores
for the next clock cycle is default if emitDefault is equal to True on the current cycle, other-
wise it stores input. On the first cycle of the simulation defaultDelay always returns
default.

The isLoadCmd circuit returns True whenever its argument signal is equal to

isLoadCmd :: Signal Cmd -> Signal Bool
isLoadCmd cmdFunc = (X time . (cmdFunc time) LOAD)

We also need a function that acts as a Boolean inverter on each clock cycle:

Microprocessor Specification in Hawk 13

A Simple Microprocessor

destReg command srcRegA srcRegB

/ ^

>' \r
cunienuB

RegisterFile

writeReg

t

writeCunienu

<

\

contentsA

t w

Pipeline Registers
ulufiypuss

i

1 ">

inpul2
1 M \ input 1

cmd
ALU

v i v 1 V

^ mem Bypass

Pipeline Registers <

*
mcmCuntenu

1 V \ mem Address

cmd Memory

\ / ' t

Pipeline Registers

FIGURE 6. Block diagram of extended SHAM pipeline. Each Pipeline Register
circuit is made up of multiple Delay and Select circuits. The Select circuits are
used for bypassing, ensuring that the source operands are up-to-date.

14 Microprocessor Specification in Hawk

A Simple Microprocessor

sigNot :: Signal Bool -> Signal Bool
sigNot boolFunc = (X time . not (boolFunc time))

Although we previously passed SHAM instructions as parameters, we now need to call a function,
instrCache, to explicitly retrieve them:

instrCache :: Signal Bool -> (Signal Cmd,Signal Reg,Signal Reg,Signal
Reg)

Since the pipeline can stall, we need a way to ask for the same instruction two cycles in a row. The
instrCache function takes a Boolean signal and returns the components of the instruction as sep-
arate signals. Whenever the argument signal is True, then on the next cycle instrCache returns
the same instruction as it did for the current clock cycle. Otherwise, it returns the next instruction as
normal.

We need to add the commands LOAD and STORE to the Cmd type:

data Cmd = ADD | SUB | INC | LOAD | STORE

We also need a circuit that actually performs the loads and stores:

mem ::Signal Cmd -> Signal Int -> Signal Int -> Signal In:

The mem circuit takes a Cmd signal and two Int signals, and returns an Int signal. On those clock
cycles where the Cmd signal is anything but LOAD or STORE, the mem function simply returns the
current value of its first Int signal. On a LOAD command, mem uses the first Int signal as the
address to load from, and returns the contents at that memory location. The second argument is
ignored. On a STORE command, mem again uses the first Int signal as the memory address, and
uses the second Int signal as the value to store at that memory location. The mem circuit always
returns 0 on stores, since the return value is never used.

Finally, we have to extend the definition of alu (although not its signature) to simply return its first
Int signal argument on all clock cycles where its Cmd signal argument is cither LOAD or 370RE.

Without Given the above circuits, we can now define the Hawk specification of the extended SHAM pipeline
Transactions without transactions. Don't read this specification: just observe how complex it is.

SHAM_3 :: (Signal Reg,Signal Int)
SHAM_3 = (destReg'',aluOut')
where

-- register-fetch stage --
(cmd,destReg,srcRegA,srcRegB) = instrCache loadHazard
(registerA,registerB) = regFile(destReg'''.memOut')
(srcRegA,srcRegB)

-- register-fetch stage pipeline registers --
registerA' = defaultDelay loadHazard 0 registerA
registerB' = defaultDelay loadHazard 0 registerB
destReg' = defaultDelay loadHazard RO destReg
cmd' = defaultDelay loadHazard ADD cmd

Microprocessor Specification in Hawk 15

A Simple Microprocessor

— ALU stage bypassing —
prelnputA = select hazardTwoA' memOut' registerA'
aluInpuCA = select hazardOneA' aluOut' prelnputA
prelnputB = select hazardTwoB' memOut' registerB'
aluInputB = select hazardOneB' aluOut' prelnputB

— ALU stage —
aluOut = alu cmd' aluInputA aluInputB

-- ALU stage pipeline registers --
aluInputB' = delay 0 aluInputB
aluOut' = delay 0 aluOut
destReg'' = delay RO destReg'
cmd'' = delay ADD cmd'

— memory stage bypassing --
memAddress = select hazardOneA" memOut' aluOut'
memContents = select hazardOneB" memOut' aluInputB'

-- memory stage --
memOut = mem cmd'' memAddress memContents

-- memory stage pipeline registers —
memOut' = delay 0 memOut
destReg'" = delay RO destReg"

 Control logic

— hazard detection logic —
preHazardOneA = hazard destReg' srcRegA
preHazardOneB = hazard destReg' srcRegB
loadHazard = sigAnd(isLoadCmd cmd')
(sigOr preHazardOneA preHazardOneB)
noLoadHazard = sigNot loadHazard
hazardOneA = sigAnd noLoadHazard preHazardOneA
hazardTwoA = sigAnd noLoadHazard (hazard destReg" srcRegA)
hazardOneB = sigAnd noLoadHazard preHazardOneB
hazardTwoB = sigAnd noLoadHazard (hazard destReg" srcRegB)

-- bypass commands for ALU stage inputs —
hazardTwoA' = delay False hazardTwoA
hazardOneA' = delay False hazardOneA
hazardTwoB' = delay False hazardTwoB
hazardOneB' = delay False hazardOneB

-- bypass commands for memory stage inputs —
hazardOneA'' = delay False hazardOneA'
hazardOneB'' = delay False hazardOneB'

hazard ::Signal Reg -> Signal Reg -> Signal Bool

hazard dstReg srcReg =
sigAnd(sigNotEqual dstReg (constant RO))

(sigEqual dstReg srcReg)

16 Microprocessor Specification in Hawk

A Simple Microprocessor

Even though we have only added one additional pipeline stage, and still have no notion ol a program
counter or conditional instructions, we can see that the specification is becoming unmanagable. We
need to use abstractions like transactions to keep the specifications appropriately compact. In other
cases, other abstractions are appropriate. The hardware specification language needs to be powerful
enough to enable the designer to invent them at will.

With We will see how transactions greatly simplify the specification of extended SHAM. We first have to
Transactions modify some of the additional Hawk functions to handle transactions:

instrCache :: Signal Bool -> Signal Transaction

mem :: Signal Transaction -> Signal Transaction

isLoadTrans :: Signal Transaction -> Signal Bool

We also define a new Hawk function, transHazard, that returns True whenever its two transac-
tion arguments would cause a hazard, if the first transaction preceeded the second transaction in a
pipeline:

transHazard :: Signal Transaction -> Signal Transaction ->
Signal Bool

The extended Hawk specification using transactions is given below:

SHAM_3_Trans :: Signal Transaction
SHAM_3_Trans = memOutput'
where

-- register-fetch stage --
instr = instrCache loadHazard
preppedlnstr = regFile memOutput' instr

— register-fetch stage pipeline register --
preppedlnstr' = defaultDelay loadHazard nopTrans preppedlnstr

— ALU stage bypassing --
alulnput = bypass (bypass preppedlntr' memOutput') aluOutput'

-- ALU stage —
aluOutput = alu alulnput

— ALU stage pipeline register —
aluOutput' = delay nopTrans aluOutput

— memory stage bypassing --
memlnput = bypass aluOutput' memOutput'

— memory stage —
memOutput = mem memlnput

— memory stage pipeline register --
memOutput' = delay nopTrans memOutput

Control logic

Microprocessor Specification in Hawk * '

Modelling the DLX

— hazard detection logic —
loadHazard = sigAnd (isLoadTrans preppedlnstr')
(transHazard preppedlnstr' preppedlnstr)

The register-fetch stage retrieves the instruction and fills in its source operands from the register file.
The register-fetch pipeline register delays the transaction by one clock cycle, although if there is a
load hazard, the register instead outputs a nop-instruction on the next cycle. The ALU stage first
updates the source operands of the stored transaction with the results of the two preceding transac-
tions (memOutput' and aluOutput') by invoking bypass twice. It then performs the corresponding
ALU operation, if any, on the transaction and stores it in the ALU-stage pipeline register. The mem-
ory stage again updates the stored transaction with the immediately preceding transaction, performs
any required mem operation, and stores the transaction. The stored transaction is written back to the
register rile on the next clock cycle. The control logic section determines whether a load hazard
exists for the current transaction, that is, whether the immediately preceding transaction was a load
instruction that is in hazard with the current transaction.

As we can see, the body of the specification has been reduced from 42 to 13 uncommented source
code lines. The overall specification is also much more intuitive. In particular, the control logic sec-
tion is now only a small minority of the overall specification. We feel the transaction ADT is close to
the level of abstraction design engineers use informally when reasoning about microprocessor archi-
tectures.

Modelling the DLX

Using techniques comparable to those described in this report we have modeled several DLX archi-
tectures:

• An unpipelined version, where each instruction executes in one cycle.

• A pipelined version where all branching instructions cause the pipeline to stall for two cycles.

• A more complex pipelined version where branches cause a one-cycle pipeline stall.

• A pipelined version with branch prediction and speculative execution. Branches are predicted
using a one-level branch target buffer. Whenever the guess is correct, the the branch instruction
incurs no pipeline stalls. If the guess is incorrect, the pipeline stalls for two cycles.

The microarchitectural specification for the unpipelined DLX is written in a quarter page of uncom-
mented source code; the most complicated pipelined version takes up just over half a page.

Executing the We used the Gnu C compiler that generates DLX assembly to test our specifications on several pro-
model grams. These test cases include a program that calculates the greatest common divisor of two inte-

gers, and a recursive procedure that solves the towers of Hanoi puzzle.

We have not made detailed simulation performance measurements yet. Although we plan to test
Hawk on several benchmark programs, we do not expect to break simulation-speed records. Hawk is
built on top of a lazy functional language, which imposes some performance costs. Transactions also
perform some run-time tests that are "compiled-away" in a lower-level pipeline specification. While
it would be nice to get high performance, Hawk is primarily a specification language, and only sec-
ondarily a simulation tool.

18 Microprocessor Specification in Hawk

Related Work

Related Work

Modeling
Specific
Domains with
Haskell

Modeling
Hardware in
Programming
Languages

There are several research areas that bear a relation on this work, some more closely than others. In
particular, modeling specific application domains with Haskell, especially those that depend on time,
modeling hardware in various programming languages, and verifying microprocessors wiih theorem
provers. We will pick an example or two from each of these categories. Of course, some ol the exam-
ples lie in more than one category.

Haskell compared favorably in an experiment comparing several prototyping languages [HJ94], The
application domain involved modeling the Geometric Region Server module, which tracks the
regions surrounding ships and planes in a military theatre. The module is required to answer such
questions as when an enemy plane will enter a friendly ship's weapons range, or whether a plane has
entered a commercial airspace corridor. Experts in each of several languages including Haskell, C++,
Awk, and Griffin wrote a prototype program based on the same requirements document. The Haskell
solution was considered the most concise and understandable of all the submitted entries. The
authors claim their major success factors were: their heavy use of higher-order functions. Haskell's
simple syntax, and the availability of powerful list-manipulating primitives in the standard Haskell
library.

Haskell has been used to specify several time-varying domains. For instance. RBMH [EH97] is a
Haskell library that models interactive multimedia animations. The authors provide ADTs for time-
varying behaviors, events, and interactions between behaviors and events. Unlike Hawk. RBMH's
model of time is continuous. Also, an RBMH function can examine the values of future events, while
Hawk signals only depend on current and past signal values. This non-monotonicity of time in
RBMH requires a more sophisticated time-interval analysis than is required for Hawk.

Haskell has also been used to directly model hardware circuits at the gate level. O'Donnell [OD95]
has developed a Haskell library called Hydra that models gates at several levels of abstraction, rang-
ing from implementations of gates using CMOS and NMOS pass-iransisiwrs. up u> abstract gate rep-
resentations using lazy lists to denote time-varying values. Hydra has been used to teach advanced
undergraduate courses on computer design, where students use Hydra to eventually design and test a
simple microprocessor. Hydra is similar to Hawk in many ways, including the use of higher-order
functions and lazy lists to model signals. However, Hydra does not allow users to define composite
signal types, such as signals of integers or signals of transactions. In Hydra, these composite types
have to be built up as tuples or lists of Boolean signals. While this limitation does not cause problems
in an introductory computer architecture course, composite signal types significantly reduce specifi-
cation complexity for more realistic microprocessor specifications.

There are many other languages for specifying hardware circuits at varying levels of abstraction. The
most widely used such languages are Verilog and VHDL. Both of these languages are more general
than Hawk in that they can model asynchronous as well as synchronous circuits. However, Verilog
and VHDL are large languages with complex semantics, which makes circuit verification more diffi-
cult. Also, neither of these languages support polymorphic circuits, nor higher-order circuit combi-
nators, as well as Hawk.

The Ruby language, created by Jones and Sheeran [JS90], is a specification and simulation language
based on relations, rather than functions. Ruby is more general than Hawk in thai relations can
describe more circuits than functions can. On the other hand, existing Ruby simulators require Ruby

Microprocessor Specification in Hawk 19

Related Work

Verifying
Microprocessos
with Theorem
Provers

relations to be causal, i.e. to be implementable as functions. Thus Hawk is equal in expressive power
to executable Ruby programs. In addition, much of Ruby's emphasis is on circuit layout. There are
combinators to specify where circuits are located in relation to each other and to external wires.
Hawk's emphasis is on circuit correctness, so we do not need to address layout issues.

The Voss system [Seg93] lies at a still higher level of abstraction. Voss is a specialized theorem
prover with a lazy functional meta-language and support for symbolic Boolean expressions. For
example, the expressions (X A Y) and ((X v Y) =* Z) are symbolic Boolean terms. Voss can manipu-
late such terms directly through an efficient encoding called Ordered Binary Decision Diagrams
(OBDDs). Although OBDDs allow for efficient verification of Boolean-valued circuits, it is not yet
clear how to generalize them to arbitrary datatypes, which currently reduces their usefulness in
Hawk.

Two other languages that are strongly related are HML [LL95] and MHDL. HML is a hardware
modelling language based on the functional language ML. It also has higher-order functions and
polymorphic types, allowing many of the same abstraction techniques that are used in Hawk, with
similar safety guarantees. On the other hand. HML is not lazy, so does not easily allow the recursive
circuit specifications that turned out to be key in specifying micro-architectures. The goal of HML is
also rather different from Hawk, concentrating on circuits that can be immediately realized by trans-
lation to VHDL.

MHDL is a hardware description language for describing analog microwave circuits, and includes an
interface to VHDL [Bar95]. Though it tackles a very different part of the hardware design spectrum,
like Hawk. MHDL is essentially an extended version of Haskell. The MHDL extensions have to do
with physical units on numbers, and universal variables to track frequency and time etc.

One goal of hardware specification languages is to formally verify circuit correctness. There is much
active research related to Hawk on using general-purpose theorem provers to verify microprocessors.
Typically the specification language is some form of logic, often either higher-order or temporal. For
example, Burch and Dill [BD94] were able to verify the control logic of a simplified version of the
DLX. Starting with an untyped functional specification language, they compiled a specification of
the DLX's behavior, as well as a description of its architecture, into a pair of state-transition func-
tions using a form of quantifier-free predicate logic, with uninterpreted functions and a notion of
equality between them. They were able to verify that the architectural description implements the
behavior specification, using a restricted form of theorem proving called model checking.

Wmdlcv and Cue |WC94| have used the HOL theorem prover [GM931 to specify a simple pipelined
microprocessor called UINTA. which has control and data hazards. UINTA has a five-stage pipeline,
with data forwarding, load stall detection, and two branch-delay slots. The authors modeled the
architecture as a series of four higher-order logic specifications, each specification in the series being
more abstract than the previous one. For each adjacent pair of specifications, they verified that the
lower-level specification implemented the functionality of the higher-level specification. They then
verified that the top-most specification implemented the functionality of the microprocessor's
instruction set. Through a transitivity argument, they were then able to prove that the lowest-level
specification, which corresponded to the actual microprocessor circuits, implemented the instruction
set functionality.

Eventually we would like to apply verification techniques such as those presented above to verify
Hawk designs. We feel that Haskell's strong typing and executability will be helpful in this regard.

20 Microprocessor Specification in Hawk

Conclusion and Future Directions

For instance, the parametricity theorem is a technique for verifying certain strong properties of poly-
morphic functions in Haskell, based only on the function's type. Furthermore, because Hawk is exe-
cutable we can apply symbolic simulation techniques to prove program equivalences. Verification
efforts that rely on non-executable or untyped specification languages cannot take advantage of these
methods.

Conclusion and Future Directions

We have just completed the specification of a superscalar version of DLX. with speculative and oui-
of-order instruction execution. The use of transactions has scaled well to this architecture: ii turns
out that superscalar components like reservation stations and reorder buffers are naturally expressed
as queues of transactions.

Beyond this, we intend to push in a number of directions.

• We hope to use Hawk formally to verify the correctness of microprocessors through the mechan-
ical theorem prover Isabelle [Pau94]. Isabelle is well-suited for Hawk; it has built-in support for
manipulating higher-order functions and polymorphic types. It also has well-developed rewriting
tactics. Thus simplification strategies like partial evaluation and deforestation [GLP93] can be
directly implemented.
We believe that Hawk is well-suited for formal verification. Often hardware-verification libraries
use relations, rather than functions, to specify circuits. Functions have the advantage of being
amenable to equational reasoning, where terms can be simplified through rewriting without
changing their meaning. We hope eventually to take a pipelined specification and through equa-
tional rewriting reduce it to an unpipelined version (with of course the extra delay and stall cir-
cuits that the pipeline makes necessary).
We also expect that transactions will aid the verification process. Transactions make explicit
much of the pipeline state needed to prove correctness. In lower-level spccilicatioiis this data !ia-
to be inferred from the pipeline context.

• We are working on a visualization tool which will enable the microprocessor designer to inspect
values passing along internal wires, at any level in the design hierarchy. We have a probe function
with type

probe : : String -> Signal a -> Signal a

that acts as the identity function on the wire (so has no effect on the simulation) but passes the
values of the wire to the outside world, as they are demanded by the simulation. The string
parameter allows each probe to be named.

• We have made initial progress on formally extracting stand-alone control logic from the transac-
tion-based models of pipelines. This is potentially a very different approach to proving correct-
ness of control logic from the methods usually repoerted in the literature.

• We intend to stabilize a definition for the Hawk library. We have discovered that as we specify
more and more architectures, the same themes keep recurring, and we intend to fix on these pat-
terns.

Haskell as a We have achieved such compact specifications by relying on the powerful abstractions made possible
host language by Haskell. Lazy evaluation and first-class functions allow us to abstract time-varying signals into a

single value, which in turn can be defined by recursive definitions. We can abstract away from vec-
tors of wires representing binary numbers or entire instructions by relying on Haskell's type system

Microprocessor Specification in Hawk -1

Acknowledgements

to represent these vectors by a single wire. We rely on polymorphism to reuse circuit definitions
across multiple signal types.

Once we have stabilized the definition for the Hawk library, we will in effect have defined yet
another embedded domain-specific language in Haskell, this one for specifying microprocessors.
Haskell has proved to be a very flexible medium for this. Some other examples include animation
specification, CGI programming, parser and pretty printer specification, and COM agent scripting.

Acknowledgements

We wish to thank Simon Peyton Jones. Carl Seger. Boris Agapiev, Dick Kieburtz. and Elias Sinder-
MMi tor their valuable contributions to this research.

References

[AL94] Mark Aagaard and Miriam Leeser. Reasoning about Pipelines with Structural Hazards. In Proceed-
ings of the Second International Conference on Theorem Provers in Circuit Design. Bad Herrenalb,
Germany, September 1994, pp. 13-32

[Bar95] David Barton, Advanced Modeling Features of MHDL. Proceedings of International Conference on
Electronic Hardware Description Languages (ICEHDL'95), Society for Computer Simulation, Jan

95.

|BD94| Jerry Birch and David Dill. Automatic Verification of Pipelined Microprocessor Control. In Proceed-
ings of the 6th International Conference of Computer Aided Verification. Stanford, California. June
1994. pp. 68-80

[DLX97] DLX software resources available at:
http://www.mkp.eom/books_catalog/ca/hp2e_res.htm#dlx

[EH97] Conal Elliott and Paul Hudak. Functional Reactive Animation. To appear in Proceedings of the Inter-
national Conference on Functional Programming 97. Amsterdam, The Netherlands, June 1997

fGLP931 Andrew Gill. John Launchbury, and Simon Peyton Jones. A Short-cut to Deforestation. In Proceed-
ings of the ACM Conference on Functional Programming and Computer Architecture 93. Copen-
hagen. Denmark. 1993

|CiM93| Mike Cordon and Tom Melham. Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic. Cambridge University Press, Cambridge, Great Britain, 1993

[Hawk97] Hawk library and example specifications available at: http://www.cse.ogi.edu/PacSoft/hawk/

[HJ94] Paul Hudak and Mark Jones. Haskell vs. Ada vs. C++ vs. Awk vs....
An Experiment in Software Prototyping Productivity. Yale Technical Report YALEU/DCS/RR-1049,
October 1994. Available from
ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/NSWC/

[HP951 John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, San Francisco. 2nd edition, 1995

rHPF9(Sl Paul Hudak. John Peterson, and Joseph Fasel. A Gentle Introduction to Haskell. Available from
www.haskell.ora. December 1996

22 Microprocessor Specification in Hawk

References

[Jon91] Miks Johnson. Superscalar Microprocessor Design. Prentice Hall. fcinglewnod dills. N.J. IWI

[JS90] Geraint Jones and Mary Sheeran. Circuit Design in Ruby. In J. Siaunsirup. editor. Formal Methods
for VLSI Design. North-Holland, New York, 1990, pp. 13--70.

[LL95] Y. Li and M. Leeser. HML: An Innovative Hardware Design Language and Its Translation to VHDL,
Proceedings CHDL'95

[Mel88] Thomas Melham. Abstraction Mechanisms for Hardware Verification. In G. Birtwhistle and P. A.
Subrahmanyam, editors, VLSI Specification, Verification and Synthesis. Kluwer Academic Publish-
ers, 1988

[OD95] John O'Donnell. From Transistors to Computer Architecture: Teaching Functional Circuit Specifica-
tion in Hydra. In Symposium on Functional Programming Languages in Education. Springer-Verlag
LNCS 1022, 1995, pp. 195-214

[Pau94] Lawrence Paulson, with contributions by Tobias Nipkow. Isabelle: A Generic Theorem Proven
Springer-Verlag LNCS 828, 1994

[Pet97] John Peterson, et al. Report on the Programming Language Haskell: A Non-strict. Purely Functional
Language, Version 1.4. Available atwww.haskeil.org, April 1997

[Seg93] Carl-Johan Seger. Voss ~ A Formal Hardware Verification System, User's Guide. Technical Report
93-45, University of British Columbia, Vancouver, B.C., 1993

[WC94] Philip Windley and Michael Coe. A Correctness Model for Pipelined Microprocessors. In Proceed-
ings of the Second International Conference on Theorem Provers in Circuit Design. Bad Herrenalb.
Germany, September 1994. pp. 33--51

Microprocessor Specification in Hawk 23

Due to copyright restrictions, the following article is not included in this collection, but can
be found on the web at:

Composing Reactive Animations by Conal Elliott
http://www.research.microsoftxom/research/graphics/elliott/fran/tutorial.htm

Haskore Music Tutorial

' Paul Hudak
Yale University

Department of Computer Science
New Haven, CT 06520
hudakQcs.yale.edu

February 14, 1997

1 Introduction

Haskore is a collection of Haskell modules designed for expressing musical structures in the high-
level, declarative style of functional programming. In Haskore, musical objects consist of primitive
notions such as notes and rests, operations to transform musical objects such as transpose and
tempo-scaling, and operations to combine musical objects to form more complex ones, such as
concurrent and sequential composition. From these simple roots, much richer musical ideas can
easily be developed.

Haskore is a means for describing music—in particular Western Music—rather than sound. It
is not a vehicle for synthesizing sound produced by musical instruments, for example, although
it does capture the way certain (real or imagined) instruments permit control of dynamics and

articulation.

Haskore also defines a notion of literal performance through which observationally equivalent
musical objects can be determined. From this basis many useful properties can be proved, such
as commutative, associative, and distributive properties of various operators. An algebra of music

thus surfaces.

In fact a key aspect of Haskore is that objects represent both abstract musical ideas and their
concrete implementations. This means that when we prove some property about an object, that
property is true about the music in the abstract and about its implementation. Similarly, trans-
formations that preserve musical meaning also preserve the behavior of their implementations. For
this reason Haskell is often called an executable specification language: i.e. programs serve the role
of mathematical specifications that are directly executable.

Building on the results of the functional programming community's Haskell effort has several
important advantages: First, and most obvious, we can avoid the difficulties involved in new
programming language design, and at the same time take advantage of the many years of effort
that went into the design of Haskell. Second, the resulting system is both extensible (the user is
free to add new features in substantive, creative ways) and modifiable (if the user doesn't like our
approach to a particular musical idea, she is free to change it).

Haskore->Midi
Translator

Standard
Midi File

Midi File Player

Midi

.4..
Midi Instruments i

•
/

1

\
\
\

1
1 Haskore i

/
\ /
^N y--v \

Haskore->CSound Haskore->MusicKlt
Translator Translator

1 1
CSound MusicKit

Score File ScoreFile

I 1
CSound MusicKit

.snd File

I
Sound File Player

Haskore->Notatlon
Translator

I
CMN
code

A
CMN

4
notated score

Figure 1: Overall System Diagram

In the remainder of this paper I assume that the reader is familar with the basics of functional
programming and Haskell in particular. If not, I encourage reading at least A Gentle Introduction
to Haskell [HF92] before proceeding. I also assume some familiarity with equational reasoning; an
excellent introductory text on this is [BW88].

2 The Architecture of Haskore

Figure 1 shows the overall structure of Haskore. Note the degree of independence of high level
structures from the "music platform"—it is desirable for Haskore compositions to run equally
well as conventional midi-files [IMA90], NeXT MusicKit score files [JB91], and csound score files
[Ver86], and to print Haskore compositions in traditional notation using the CMN (Common Music
Notation) subsystem. This independence is accomplished by having abstract notions of musical
object, player, instrument, and performance that are eventually mapped down to a particular
music platform. In this paper I will provide only the details of the mapping to Midi, since it is
likely to be the most popular platform for users. In any case, of most interest is the box labeled
"Haskore" in the diagram.

At the module level, Haskore is organized as follows:

> module Haskora (module Haskore, module Basics, module Performance,

> module HaskToMidi) — module Players

> where

>
> import Basics — described in Section 3
> import Performance — described in Section 4
> — import Players — described in Section 5
> import HaskToMidi — described in Section 6

As I present various musical ideas in Haskell, I urge the reader to question, at every step, the
decisions that I make. There is no supreme theory of music that dictates my decisions, and what I
present is actually one of several versions that we have developed (this version is much richer than
the one described in [HMGW96]; it is the "Haskore in practice" version alluded to in Section 6 of
that paper). I believe this version is suitable for many practical purposes, but the reader may wish
to modify it to better satisfy her intuitions and/or application.

This document was written in the literate programming style, and thus the J^TgX manuscript file
from which it was generated is an executable Haskell program. It can be compiled under ETgX in
two ways: a basic mode provides all of the functionality that most users will need, and an extended
mode in which various pieces of lower-level code are provided and documented as well (see file
header for details). This version was compiled in basic mode. The document can be retrieved
via WWW from ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore (consult
the README file for details). It is also delivered with the standard joint Nottingham/Yale Hugs
release.

The code conforms to Haskell 1.4, although it does not adequately use any of the newer fea-
tures in Haskell. since most of it was written when Haskell 1.2 was the latest release. Parts of
the code should clearly be rewritten to take advantage of some Haskell 1.4 features, in particular
"named fields" in datatype declarations. Haskore has been tested under the February. 1997 Not-
tingham/Yale release of Hugs 1.4. which unfortunately does not yet support mutually iTcursivc
modules. For this reason all references to the module Players in this document are commented
out, which in effect makes it part of module Performance (with which it is mutually recursive).

3 The Basics

> module Basics where

> infixr 5 :+:, :=:

Perhaps the most basic musical idea is that of a pitch, which consists of a pitch class (i.e. one of
12 semi-tones) and an octave:

> type Pitch = (PitchClass, Octave)
> data PitchClass = Cf I C I Cs I Df I D
> | Gf I G I Gs I Af I A

> deriving (Eq.Ord.Ix.Show)
> type Octave = Int

Ds
As

I Ef I
I Bf |

E I Es
B I Bs

I Ff I F | Fs

So a Pitch is a pair consisting of a pitch class and an octave. Octaves are just integers, but we
define a datatype for pitch classes, since distinguishing enharmonics (such as G# and Ab) may be
important (especially for notation!). By convention, A440 = (A,4).

Musical objects are captured by the Music datatype:1

> data Music = Mote Pitch Dur [NoteAttribute]
> I Rest Dur

> I Music :+: Music

> I Music :=: Music

> I Tempo Int Int Music

> I Trans Int Music

> I Instr IName Music

> I Player PName Music

> I Phrase [PhraseAttribute] Music

>

>

deriving Show

> type Dur = Float
> type IName = String
> type PName = String

a note \ atomic
a rest / objects
sequential composition
parallel composition
scale the tempo
transposition
instrument label
player label
phrase attributes

in whole notes

Here a Note is its pitch paired with its duration (in number of whole notes), along with a list
of NoteAttributes (denned later). A Rest also has a duration, but of course no pitch or other

attributes.
H prefer to call these "musical objects" rather than "musical values" because the latter may be confused with

musical aesthetics.

From these two atomic constructors we can build more complex musical objects using the other
constructors, as follows:

• ml : +: m2 is the sequential composition of ml and m2; i.e. ml and m2 are played in sequence.

• ml : =: m2 is the parallel composition of ml and m2; i.e. ml and m2 are played simultaneously.

• Tempo a b m scales the rate at which m is played (i.e. its tempo) by a factor of a/b.

• Trans i m transposes m by interval i (in semitones).

• Instr iname m declares that m is to be performed using instrument iname.

• Player pname m declares that m is to be performed by player pname.

• Phrase pas m declares that mis to be played using the phrase attributes (described later) in
the list pas.

It is convenient to represent these ideas in Haskell as a recursive datatype because we wish to
not only construct musical objects, but also take them apart, analyze their structure, print them
in a structure-preserving way, interpret them for performance purposes, etc.

3.1 Convenient Auxiliary Functions

For convenience we first create a few names for familiar notes, durations, and rests, as shown in
Figure 2. Treating pitches as integers is also useful in many settings, so we define some functions for
converting between Pitch values and AbsPitch values (integers). These also are shown in Figure
2, along with a definition of trans, which transposes pitches (analogous to Trans, which transposes
values of type Music).

Exercise 1 Show that abspitch . pitch = id. and. up to enharmonic equivalences.
pitch . abspitch = id.

Exercise 2 Show that trans i (trans j p) = trans (i+j) p.

3.2 Some Simple Examples

With this modest beginning, we can already express quite a few musical relationships simply and
effectively. For example, two common ideas in music are the construction of notes in a horizontal
fashion (a line or melody), and in a vertical fashion (a chord):

> line, chord :: [Music] -> Music
> line = foldr (:+:) (Rest 0)
> chord = foldr (: = :) (Rest 0)

cf,c,cs,df,d,ds,ef,a,es,ff,f,fs,gf,g,gs,af,a,as,bf ,b,bs

Octave -> Dur -> [NoteAttribute] -> Music

cf o = Note (Cf,o)
df o = Note (Df,o)
ef o = Note (Ef,o)
ff o = Note (Ff,o)
gf o = Note (Gf,o)
af o = Note (Af.o)
bf o = Note (Bf.o)

c o = Note (C,o)
d o = Note (D,o)

e o = Note (E,o)

f o = Note (F,o)

g o = Note (G,o)

a o = Note (A,o)

b o = Note (B,o)

es o = Note (Cs,o)
ds o = Note (Ds,o)

es o = Note (Es,o)

fs o = Note (Fs,o)

gs o = Note (Gs,o)

as o = Note (As,o)

bs o = Note (Bs,o)

wn, hn, qn, en, sn, tu :: Dur

wnr, hur, qnr, eur, snr, tnr :: Music

wn = 1

Im = 1/2
qn = 1/4
en = 1/8
sn = 1/16

tn = 1/32

wnr = Rest wn

hnr = Rest hn

qnr = Rest qn
enr = Rest en

snr = Rest sn

tnr = Rest tn

pitchClass :: PitchClass -> Int

pitchClass pc = case pc of

Cf -> -1; C -> 0

Df -> 1 D -> 2 Ds -> 3

Ef -> 3 E -> 4 Es -> S

Ff -> 4 F -> 5 Fs -> 6
Gf -> 6 G -> 7 Gs -> 8
Af -> 8 A -> 9 As -> 10

Bf -> 1(); B. -> 1 L; Bs -> 12

Cs -> 1

— whole note rest

— half note rest
— quarter note rest

— eight note rest
— sixteenth note rest

— thirty-second note rest

— or should Cf be 11?

or should Bs be 0?

type AbsPitch = Int

absPitch :: Pitch -> AbsPitch
absPitch (pc.oct) = 12*oct + pitchClass pc

pitch :: AbsPitch -> Pitch
pitch ap = ([C.Cs.D.Ds.E.F.Fs.G.Gs.A.As.B] !! mod ap 12,

quot ap 12)

trans :: Int -> Pitch -> Pitch

trans i p = pitch (absPitch p + i)

Figure 2: Convenient note names and pitch conversion functions.

From the notes in the C major triad in register 4,1 can now construct a C major arpeggio and

chord as well:

> cMaj = map (\f->f 4 qn G) Cc, Q, g] ~ octave 4, quarter notes
>
> cHajArp = line cMaj
> cMajChd = chord cMaj

Suppose now we wish to describe a melody m accompanied by an identical voice a perfect 5th
higher. In Haskore we simply write "m : =: Trans 7 m." Similarly, a canon-like structure involving
m can be expressed as "m : = : delay d m," where:

> delay :: Dur -> Music -> Music
> delay d m = Rest d :+: m

Of course, Haskell's non-strict semantics also allows us to define infinite musical objects. For
example, a musical object may be repeated ad nauseum using this simple function:

> repeatM :: Music -> Music
> repeatM m = m : + :■ repeatM m

Thus an infinite ostinato can be expressed in this way, and then used in different contexts that
extract only the portion that's actually needed.

The notions of inversion, retrograde, retrograde inversion, etc. used in 12-tone theory are also
easily captured in Haskore. First let's define a transformation from a line created by line to a list:

> lineToList :: Music -> [Music]
> lineToList n<3(Rest 0) = G '
> lineToList (n :+: ns) = n : lineToList ns
>
> retro,- invert, retrolnvert, invertRetro :: Music -> Music
> retro = line . reverse . lineToList
> invert m = line (map inv 1)
> where 19(Note r : _) = lineToList m
> inv (Note p d nas) = Mote (pitch (2*(absPitch r) - absPitch p)) d nas
> inv (Rest d) = Rest d
> retrolnvert = retro . invert

> invertRetro = invert . retro

I——™ 1

I 3:2 —| |— 3:2 —1

JM M J J MM
prl

, 7:6 ■ 1

p 3S 1 f- 5M -j r 3Ä 1

pr2

Figure 3: Nested Polyrhythms

Exercise 3 Show that "retro . retro.." "invert . invert," and* "retrolnvert . invertRetro*

are the identity on values created by line.

For some rhythmical ideas, consider first a simple triplet of eighth notes; it can be expressed as
"Tempo 3 2 m," where m is a line of 3 eighth notes. So in fact Tempo can be used to create quite
complex rhythmical patterns. For example, consider the "nested polyrhythms" shown in Figure 3.
They can be expressed quite naturally in Haskore as follows (note the use of the where clause in

pr2 to capture recurring phrases):

> prl, pr2 :: Pitch -> Music
> pri p = Tempo 5 6 (Tempo 4 3 (mkLn 1 p qn :+:
> Tempo 3 2 (mkLn 3 p en :+:
> mkLn 2 p sn :+:
> mkLn 1 p qn) :+:
> mkLn 1 p qn) :+:
> Tempo 3 2 (mkLn 6 p en))
>
> pr2 p = Tempo 7 6 (ml :+:
> Tempo 5 4 (mkLn 5 p en) :+:
> ml :+:
> mkLn 2 p en)
> where ml = Tempo 5 4 (Tempo 3 2 m2 :+: m2)
> m2 = mkLn 3 p en
>
> mkLn n p d = line (take n (repeat (Note p d D)))

To play polyrhythms prl and pr2 in parallel using middle C and middle G, respectively, we would
do the following (middle C is in the 5th octave):

> prl2 :: Music
> prl2 = prl (C,5) :=: pr2 (G,S)

As a final example in this section, we can can compute the duration in beats of a musical object,
a notion we will need in Section 4, as follows:

> dur
>

> dux

:: Music -> Dur

(Note . d _) = d
> dur (Rest d) = d
> dur (ml :+: m2) = dur ml + dur m2

> dur (ml :=: m2) = dur ml 'max' dur m2

> dur (Tempo a b m) = dur m * float b / f

> dur (Trans _ m) = dur m

> dur (Instr _ m) = dur m

> dur (Player _ m) = dur m

> dur (Phrase _ m) = dur m

> float = fromlnteger . toInteger :: Int ■> Float

Using dur we can define a function revM that reverses any Music value (and is thus considerably
more useful than retro defined earlier). Note the tricky treatment of (: = :).

> revM Music -> Music
> revM n®(Note) = n
> revM r<3(Rest _) = r
> revM (Tempo il i2 m) = Tempo il i2 (revM m)

> revM (Trans i m) = Trans i (revM m)

> revM (Instr i m) = Instr i (revM m)

> revM (Phrase pas m) = Phrase pas (revM m)

> revM (ml :+: m2) = revM m2 :+: revM ml

> revM (ml :=: m2) = let dl = dur ml

> d2 = dur m2

> in if dl>d2 then revM ml :=:

> (Rest (dl-d2) :+: revM m2)

> else (Rest (d2-dl) :+: revM ml)

> revM m2

Exercise 4 Find a simple piece of music written by your favorite composer, and transcribe it into
Haskore. In doing so, look for repeating patterns, transposed phrases, etc. and reflect this in your
code, thus revealing deeper structural aspects of the music than that found in common practice

notation.

Appendix C shows the first 28 bars of Chick Corea's "Children's Song No. 6" encoded in

Haskore.

3.3 Phrasing and Articulation

Recall that the Note constructor contained a field of NoteAttributes. These are values that are
attached to notes for the purpose of notation or musical interpretation. Likewise, the Phrase
constructor permits one to annotate an entire musical object with PhraseAttributes. These two
attribute datatypes cover a wide range of attributions found in common practice notation, and are
shown in Figure 4. Beware that use of them requires the use of a player that knows how to interpret
them! Players will be described in more detail in Section 5.

Note that some of the attributes are parameterized with a numeric value. This is used by a
player to control the degree to which an articulation is to be applied. For example, we would expect
Legato 1.2 to create more of a legato feel than Legato 1.1. The following constants represent
default values for some of the parameterized attributes:

> legato, staccato :: Articulation
> accent, bigAccent :: Dynamic
>
> legato = Legato 1.1
> staccato = Staccato 0.5
> accent = Accent 1.2
> bigAccent = Accent 1.5

To understand exactly how a player interprets an attribute requires knowing how players are
defined. Haskore defines only a few simple players, so in fact many of the attributes in Figure
4 are to allow the user to give appropriate interpretations of them by her particular player. But
before looking at the structure of players we will need to look at the notion of a performance (these
two ideas are tightly linked, which is why the Players and Performance modules are mutuaUy

recursive).

10

> data NoteAttribute = Volume Float — by convention: 0=min, 100=max

> I Fingering Int

> I Dynamics String

> deriving Show
>

> data PhraseAttribute = Dyn Dynamic
> I Art Articulation

> I Qrn Ornament

> deriving Show
>

> data Dynamic = Accent Float I Crescendo Float I Diminuendo Float
> | PPP I PP I P I MP | SF | MF ! MF I FF | FFF I Loudness Float

> I Ritardando Float I Accelerando Float

> deriving Show
>

> data Articulation = Staccato Float I Legato Float 1 Slurred Float
> I Tenuto I Marcato I Pedal I Fermata I FermataDown I Breath

> I DownBow I UpBow I Harmonic I Pizzicato I LeftPizz

> I BartokPizz I Swell I Wedge I Thumb I Stopped

> deriving Show
>

> data Ornament = Trill I Mordent I InvMordent I DoubleMordent

> I Turn | TrilledTurn I ShortTrill
> I Arpeggio I ArpeggioUp I ArpeggioDown

> I Instruction String I Head NoteHead

> deriving Show
>

> data NoteHead = DiamondHead I SquareHead I XHead I TriangleHead
> I TremoloHead ! SlashHead I ArtHarmonic I NoHead

> deriving Show

Figure 4: Note and Phrase Attributes.

11

4 Interpretation and Performance

> module Performance (module Performance, module Basics) — module Players

> where

>

> import Basics

> — import Players

Now that we have defined the structure of musical objects, let us turn to the issue of performance,
which we define as a temporally ordered sequence of musical events:

> type Performance = [Event]
>
> data Event = Event Time IName AbsPitch DurT Volume
> deriving (Eq,0rd,Show)
>
> type Time = Float
> type DurT = Float
> type Volume = Float

An event is the lowest of our music representations not yet committed to Midi, csound, or the
MusicKit. An event Event s i p d v captures the fact that at start time s, instrument i sounds
pitch p with volume v for a duration d (where now duration is measured in seconds, rather than

beats).

To generate a complete performance of, i.e. give an interpretation to, a musical object, we must
know the time to begin the performance, and the proper volume, key and tempo. We must also
know what players to use; that is, we need a mapping from the PNames in an abstract musical
object to the actual players to be used. (We don't yet need a mapping from abstract INames to
instruments, since this is handled in the translation from a performance into, say, Midi, such as

defined in Section 6.)

We can thus model a performer as a function perform which maps all of this information and

a musical object into a performance:

> perform :: PMap -> Context -> Music -> Performance
>
> type PMap = PMame -> Player
> type Context = (Time,Player,IName,DurT,Key.Volume)
> type Key - AbsPitch

12

perform pmap cQ(t,pl,i,dt,k,v) m =

case m of
Note p d nas -> playNote pi c p d nas

Rest d -> D
ml :+: m2 -> perform pmap c ml ++

perform pmap (setTime c (t+(dur ml)*dt)) m2
ml :=: m2 -> merge (perform pmap c ml) (perform pmap c m2)
Tempo a b m -> perform pmap (setTempo c (dt * float b / float a)) m
Trans p m -> perform pmap (setTrans c (k+p)) m
Instr nm m -> perform pmap (setlnstr c nm) m
Player nm m -> perform pmap (setPlayer c (pmap nm)) m
Phrase pas m -> interpPnrase pi pmap c pas m

Some things to note:

1. The Context is the running ;'state" of the performance, and gets updated in several different
ways. For example, the interpretation of the Tempo constructor involves scaling dt appro-
priately and updating the DurT field of the context. Figure 5 defines a convenient group of
selectors and mutators for contexts and events.

2. Interpretation of notes and phrases is player dependent. Ultimately a single note is played by
the playNote function, which takes the player as an argument. Similarly, phrase interpreta-
tion is also player dependent, reflected in the use of interpPnrase. Precisely how these two
functions work is described in Section 5.

3. The DurT component of the context is the duration, in seconds, of one whole note. To make it
easier to compute, we can define a "metronome" function that, given a standard metronome
marking (in beats per minute) and the note type associated with one beat (quarter note,
eighth note, etc.) generates the duration of one whole note:

> metro :: Float -> Dur -> DurT
> metro setting dur = 60 / (setting*dur)

Thus, for example, metro 96 qn creates a tempo of 96 quarter notes per minute.

4. In the treatment of (: +:), note that the sub-sequences are appended together, with the start
time of the second argument delayed by the duration of the first. The function dur (denned
in Section 3.2) is used to compute this duration. Note that this results in a quadratic time
complexity for perform. A more efficient solution is to have perform compute the duration
directly, returning it as part of its result. This version of perform is shown in Figure 6.

5. In contrast, the sub-sequences derived from the arguments to (: = :) are merged into a time-
ordered stream. The definition of merge is given below.

13

setTime, satlnstr, setTempo, setTrans, and setVolume

have type: Context -> X -> Context, where X is obvious.

> setTime (t,pl,i,dt,k,v) t' = (f,pl,i,dt,k,v)
> setPlayer (t,pl,i,dt,k,v) pi' = (t,pl',i,dt,k,v)
> setlnstr (t.pl.i.dt,k,v) i' = (t.pl.i',dt,k,v)
> setTempo (t,pl,i,dt,k,v) dt' = (t,pl,i,df,k,v)
> setTrans (t,pl,i,dt,k,v) k' = (t,pl,i,dt,k',v)
> setVolume (t,pl,i,dt,k,v) v' = (t,pl,i,dt,k,V)

getEventTime, getEventlnst, getEventPitch, getEventDur, and getEventVol

have type: Event -> X, where X is obvious

> getEventTime (Event t _ _ _ _

> getEventlnst (Event _ i _ _ _

> getEventPitch (Event _ _ p _ _

> getEventDur (Event _ _ _ d _

> getEventVol (Event _ _ _ _ v

= t
= i

= P
= d
= v

setEventTime, setEventlnst, setEventPitch, setEventDur, and setEventVol

have type: Event -> X -> Event, where X is obvious.

> setEventTime (Event t i p d v) t' = Event t' i p d v
> setEventlnst (Event t i p d v) i' = Event t i' p d v

> setEventPitch (Event t i p d v) p' = Event t i p' d v
> setEventDur (Event t i p d v) d' = Event t i p d' v

> setEventVol (Event t i p d v) v' = Event t i p d v'

Figure 5: Selectors and mutators for contexts and events.

14

> perform pmap c m = fst (perf pmap c m)

>

> perf :: PMap -> Context -> Music -> (Performance, DurT)

> perf pmap c@(t,pl,i,dt,k,v) m =

> case m of
d nas -> (playNote pi c p d nas, d*dt)

-> CD, d*dt)
m2 -> let (pfl.dl) = perf pmap c ml

(pf2,d2) = perf pmap (setTime c (t+dl)) m2
in (pfl++pf2, dl+d2)

m2 -> let (pfl.dl) = perf pmap c ml
(pf2,d2) = perf pmap c m2

in (merge pfl pf2, max dl d2)
a b m -> perf pmap (setTempo c (dt * float b / float a)) m
p m -> perf pmap (setTrans c (k+p)) m
mi -> perf pmap (setlnstr c nm) m

Player nm m -> perf pmap (setPlayer c (pmap nm)) m
Phrase pas m -> interpPhrase pi pmap c pas m

Figure 6: The "real" perform function.

> Note p
> Rest d

> ml : + :
>

>

> ml : = :
>
>

> Tempo
> Trans
> Instr
> Player
> Phrase

15

> merge :: Performance -> Performance -> Performance

merge a@(el:esl) b<3(e2:es2) =
if el < e2 then el : merge esl b

else e2 : merge a es2
merge Q es2 = es2
merge esl D = esl

Note that merge compares entire events rather than just start times. This is to ensure that it is
commutative, a desirable condition for some of the proofs used in Section 8. Here is a more efficient
version that will work just as well in practice:

> merge a<a(elQ(Event tl) : esl) bQ(e2Q(Event t2) : es2) =
> if tl < t2 then el : merge esl b
> else e2 : merge a es2
> merge [] es2 = es2
> merge esl [] = esl

16

5 Players

module Players (module Players, module Music, module Performance)

where

import Music

import Performance

In the last section we saw how a performance involved the notion of a player. The reason for
this is the same as for real players and their instruments: many of the note and phrase attributes
(see Section 3.3) are player and instrument dependent. For example, how should "legato" be
interpreted in a performance? Or "diminuendo?" Different players interpret things in different
ways, of course, but even more fundamental is the fact that a pianist, for example, realizes legato
in a way fundamentally different from the way a violinist does, because of differences in their
instruments. Similarly, diminuendo on a piano and a harpsichord are different concepts.

With a slight stretch of the imagination, we can even consider a "notator" of a score as a kind of
player: exactly how the music is rendered on the written page may be a personal, stylized process.
For example, how many, and which staves should be used to notate a particular instrument?

In any case, to handle these issues, Haskore has a notion of a player which "knows" about
differences with respect to performance and notation. A Haskore player is a 4-tuple consisting of a
name and 3 functions: one for interpreting notes, one for phrases, and one for producing a properly
notated score.

> data Player = MkPlayer PName NoteFun PhraseFun NotateFun
>
> type NoteFun = Context -> Pitch -> Dur -> [NoteAttribute] -> Performance
> type PhraseFun = PMap -> Context -> [PhraseAttribute] -> Music -> (Performance,Dur)
> type NotateFun = ()

The last line above is temporary for this executable version of Haskore, since notation only works
on systems supporting CMN. The real definition should read:

type NotateFun = [Glyph] -> Staff

Note that both NoteFun and PhraseFun return a Performance (imported from module Perform).
whereas NotateFun returns a Staff (imported from module Notation).

For convenience we define:

> pName :: Player -> PName

> pName (MkPlayer nm _ _ _) = nm

>

> playNote :: Player -> NoteFun

> playNote (MkPlayer _ nf) = nf

>

> interpPhrase :: Player -> PhraseFun

> interpPhrase (MkPlayer pf _) = pf

>

> notatePlayer :: Player -> NotateFun

> notatePlayer (MkPlayer nf) = nf

5.1 Examples of Player Construction

A "default player" called defPlayer (not to be confused with "deaf player"!) is denned for use
when none other is specified in the score; it also functions as a base from which other players can
be derived. defPlayer responds only to the Volume note attribute and to the Accent, Staccato,
and Legato phrase attributes. It is defined in Figure 7. Before reading this code, recall how players
are invoked by the perform function defined in the last section; in particular, note the calls to
playNote and interpPhase defined above. Then note:

1. def PlayNote is the only function (even in the definition of perform) that actually generates
an event. It also modifies that event based on an interpretation of each note attribute by the

function defHasHandler.

2. def NasHandler only recognizes the Volume attribute, which it uses to set the event volume

accordingly.

3. def InterpPhrase calls (mutually recursively) perform to interpret a phrase, and then modi-
fies the result based on an interpretation of each phrase attribute by the function def PasHandler.

4. defPasHandler only recognizes the Accent, Staccato, and Legato phrase attributes. For
each of these it uses the numeric argument as a "scaling" factor of the volume (for Accent) and
duration (for Staccato and Lagato). Thus (Phrase [Legato 1.1] m) effectively increases
the duration of each note in m by 10% (without changing the tempo).

It should be clear that much of the code in Figure 7 can be re-used in denning a new player. For
example, to define a player weird that interprets note attributes just like defPlayer but behaves
differently with respect to phrase attributes, we could write:

weird :: Player
weird - MkPlayer "Weirdo" (defPlayNote defNasHandler)

(deflnterpPhrase myPasHandler)
(defNotatePlayer 0)

18

> defPlayer :: Player
> defPlayer = MkPlayer "Default" (defPlayNote defNasHandler)
> (deflnterpPhrase defPasHandler)

> (defNotatePlayer ())

>

> defPlayNote : : (Context->NoteAttribute->Event->Event) -> NoteFun

> defPlayNote nasHandler c<3(t ,pl,i,dt,k,v) p d nas =

> [foldr (nasHandler c)
> (Event t i (absPitch p + k) (d*dt) v)

> nas]
>

> defNasHandler :: Context-> NoteAttribute -> Event -> Event

> defNasHandler (_,_,_,_,_,v) (Volume v') ev = setEventVol ev (v*v'/100.0)

> defNasHandler _ _ ev = ev

>

> deflnterpPhrase :: (PhraseAttribute->Performance->Performance) '-> PhraseFun

> deflnterpPhrase pasHandler pmap cfi(t,pl,i,dt,k,v) pas m =

> let (pf,dur) = perf pmap c m
> in (foldr pasHandler pf pas, dur)

>
> defPasHandler : : PhraseAttribute -> Performance -> Performance

> defPasHandler (Dyn (Accent x)) pf =
> map (\e -> setEventVol e (x * getEventVol e)) pf

> defPasHandler (Art (Staccato x)) pf =
> map (\e -> setEventDur e (x * getEventDur e)) pf

> defPasHandler (Art (Legato x)) pf =
> map (\e -> setEventDur e (x * getEventDur e)) pf

> defPasHandler _ pf = pf

>
> defNotatePlayer :: () -> NotateFun

> defNotatePlayer _ = 0

Figure 7: Definition of default Player def Player.

19

and then supply a suitable definition of myPasHandler. That definition could also re-use code, in
the following sense: suppose we wish to add an interpretation for Crescendo, but otherwise have
myPasHandler behave just like def PasHandler.

myPasHandler :: PhraseAttribute -> Performance -> Performance
myPasHandler (Dyn (Crescendo x)) pf = ...
myPasHandler pa pf » defPasHandler pa pf

Exercise 5 Fill in the ... in the definition of myPasHandler according to the following strategy:
Assume 0 < x < 1. Gradually scale the volume of each event by a factor of 1.0 through 1.0 + x,

using linear interpolation.

Exercise 6 Choose some of the other phrase attributes and provide interpretations of them, such

as Diminuendo. Slurred. Trill, etc.

In a system that supports it, the default notation handler sets up a staff with a treble clef for
the player and appends any glyphs to the end of the staff:

defNotatePlayer gs = Staff "Default" 1.0 5 (Clef Treble : gs)

Figure 8 defines a relatively sophisticated player called f ancyPlayer that knows all that def Player
knows, and much more. Note that Slurred is different from Legato in that it doesn't extend the
duration of the last note(s). The behavior of (Ritardando x) can be explained as follows. We'd
like to "stretch" the time of each event by a factor from 0 to x, linearly interpolated based on how
far along the musical phrase the event occurs. I.e., given a start time t0 for the first event in the
phrase, total phrase duration D, and event time t, the new event time t' is given by:

t' = {l+t-^-x)(t-to) + t0

Further, if d is the duration of the event, then the end of the event t + d gets stretched to a new
time t'd given by:

t'd = (1 + t + dD~
t0x)(t + d-t0) + t0

The difference t'd - t' gives us the new, stretched duration d', which after simplification is:

. 2(t-t0) + d
d! = (1 + - ^ x)d

Accelerando behaves in exactly the same way, except that it shortens event times rather than
lengthening them. And, a similar but simpler strategy explains the behaviors of Crescendo and
Diminuendo.

20

> fancyPlayer :: Player
> fancyPlayer = MkPlayer "Fancy" (defPlayNote defNasHandler)
> fancylnterpPhrase

> (defNotatePlayer ())

>
> fancylnterpPhrase :: PhraseFun
> fancylnterpPhrase pmap c D m = pert pmap c m

> fancylnterpPhrase pmap c<a(t,pl,i,dt,k,v) (pa:pas) m =

> let pfd<a(pf ,dnr) = fancyInterpPhrase pmap c pas m
> loud x = fancylnterpPhrase pmap c (Dyn (Loudness x) : pas) m

> stretch, x = let tO = getEventTime (head pf)

> r = x/dur
> upd (Event t i p d v) = let dt = t-tO
> t' = (l+dt*r)*dt + tO

> d' = (l+(2*dt+d)*r)*d

> in Event t' i p d' v

> in (map upd pf, (l+x)*dur)
> inflate x = let tO = getEventTime (head pf)

> r = x/dur
> upd (Event t i p d v) = let dt = t-tO
> in Event t i p d ((l+dt*r)*v)

> in (map upd pf, dur)

> in case pa of
> Dyn (Accent x) -> (map (\e-> setEventVol e (x * getEventVol e)) pf, dur)

> Dyn PPP -> loud 40
> Dyn MP -> loud 70
> Dyn NF -> loud 100

Dyn P -> loud 60
Dyn MF -> loud 90
Dyn FFF -> loud 120

Dyn PP -> loud 50
Dyn SF -> loud 80
Dyn FF -> loud 110

> Dyn (Loudness x) -> fancylnterpPhrase pmap (t,pl,i,dt,k,v*x/100) pas m

> Dyn (Crescendo x) -> inflate x
> Dyn (Diminuendo x) -> inflate (-x)

> Dyn (Ritardando x) -> stretch x
> Dyn (Accelerando x) -> stretch (-x)
> Art (Staccato x) -> (map (\e-> setEventDur e (x * getEventDur e)) pf, dur)

> Art (Legato x) -> (map (\e-> setEventDur e (x * getEventDur e)) pf, dur)

> Art (Slurred x) ->
> let lastStartTime = foldr (\e t -> max (getEventTime e) t) 0 pf
> setDur e = if getEventTime e < lastStartTime
> then setEventDur e (x * getEventDur e)

> else e

> in (map setDur pf, dur)
> Art _ -> pfd — Remaining articulations:
> — Tenuto I Marcato I Pedal I Fermata I FermataDown

> — I Breath I DownBow I UpBow I Harmonic I Pizzicato
> — I LeftPizz I BartokPizz I Swell I Wedge I Thumb I Stopped

> Orn _ -> pf d — Remaining ornamenations:
> — Trill I Mordent I InvHordent I DoubleMordent I Turn

> —| TrilledTurn I ShortTrill I Arpeggio I ArpeggioUp
> — I ArpeggioDown I Instruction String I Head NoteHead

> — Design Bug: To do these right we need to keep the KEY SIGNATURE

> — around so that we can determine, for example, what the trill note is.

> — Alternatively, provide an argument to Trill to carry this info.

21

Figure 8: Definition of Player fancyPlayer.

6 Midi

Midi ("musical instrument digital interface") is a standard protocol adopted by most, if not all,
manufacturers of electronic instruments. At its core is a protocol for communicating musical events
(note on, note off, key press, etc.) as well as so-called meta events (select synthesizer patch,
change volume, etc.). Beyond the logical protocol, the Midi standard also specifies electrical signal
characteristics and cabling details. In addition, it specifies what is known as a standard Midi file
which any Midi-compatible software package should be able to recognize.

Over the years musicians and manufacturers decided that they also wanted a standard way to
refer to common or general instruments such as "acoustic grand piano," "electric piano," "violin,"
and "acoustic bass," as well as more exotic ones such as "chorus aahs," "voice oohs," "bird tweet,"
and "helicopter." A simple standard known as General Midi was developed to fill this role. It is
nothing more than an agreed-upon list of instrument names along with a program patch number
for each, a parameter in the Midi standard that is used to select a Midi instrument's sound.

Most "sound-blaster"-like sound cards on conventional PC's know about Midi, as well as General
Midi. However, the sound generated by such modules, and the sound produced from the typically-
scrawny speakers on most PC's, is often poor. It is best to use an outboard keyboard or tone
generator, which are attached to a computer via a Midi interface and cables. It is possible to
connect several Midi instruments to the same computer, with each assigned a different channel.
Modern keyboards and tone generators are quite amazing little beasts. Not only is the sound quite
good (when played on a good stereo system), but they are also usually multi-timbrai which means
they are able to generate many different sounds simultaneously, as well as polyphonic, meaning that
simultaneous instantiations of the same sound are possible.

Note: If you decide to use the General midi features of your sound-card, you need to know
about another set of conventions known as "Basic Midi" which is not discussed here. The most
important aspect of Basic Midi is that Channel 10 is dedicated to percussion. A future release of
Haskore should make these distinctions more concrete.

Haskore provides a way to specify a Midi channel number and General Midi instrument selection
for each IName in a Haskore composition. It also provides a means to generate a Standard Midi File,
which can then be played using any conventional Midi software. In this section the top-level code
needed by the user to invoke this functionality will be described; the extended document contains
all of the gory details.

> module HaskToMidi (module HaskToMidi, module GeneralMidi, module MidiFils)
> where

>

> import Basics
> import Performance

> import MidiFile
> import GeneralMidi

> import List(partition)
> import Char(toLower.toUpper)

22

Instead of converting a Haskore Performance directly into a Midi file. Haskore first converts it
into a datatype that represents a Midi file, which is then written to a file in a separate pass. This
separation of concerns makes the structure of the Midi file clearer, makes debugging easier, and
provides a natural path for extending Haskore's functionality with direct Midi capability (in fact
there is a version of Haskore that does this under Windows '95, but it is not described here).

A UserPatchMap is a user-supplied table for mapping instrument names (IName's) to Midi
channels and General Midi patch names. The patch names are by default General Midi names,
although the user can also provide a PatchMap for mapping Patch Names to unconventional Midi

Program Change numbers.

> type UserPatchMap = [(IName,GenMidiName,MidiChannel)]

See Appendix A for an example of a useful user patch map.

Given a UserPatchMap. a performance is converted to a datatype representing a Standard Midi
File using the perf ormToMidi function.

> performToMidi :: Performance -> UserPatchMap -> MidiFile
> performToMidi pf pMap =
> MidiFile mfType (Ticks division)
> (map (performToMEvs pMap) (splitBylnst pf))

A table of General Midi assignments called genMidiMap is imported from GeneralMidi in Ap-
pendix E. The Midi file datatype itself and functions for writing it to files are imported from the
module MidiFile. briefly described below. The remaining details are omitted in the basic version
of this document.

> module MidiFile where
>
> import Monads(Output, runO, outO)
> import MonadUtils(zeroOrMore, oneOrMore)
> import Utils(unlinesS, rights, concatS)
> import IOExtensions (readBinaryFile, writeBinaryFile)

OutputMidiFile is the main function for writing MidiFile values to an actual file: its first
argument is the filename:

> outputMidiFile :: String -> MidiFile -> 10 ()
> outputMidiFile fn mf = writeBinaryFile fn (midiFileToString mf)

23

Exercise 7 Take as many examples as you like from the previous sections, create one or more
UserPatchMaps, write the examples to a file, and play them using a conventional Midi player.

Appendix A defines some functions which should make the above exercise easier. Appendices B,
C, and D contain more extensive examples.

24

jtitlei Haskore Tutorial: Chordsj/titlei,

7 Representing Chords

I have described how to represent chords as values of type Music. However, sometimes it is con-
venient to treat chords more abstractly. Rather than think of a chord in terms of its actual notes,
it is useful to think of it in terms of its chord "quality," coupled with the key it is played in and
the particular voicing used. For example, we can describe a chord as being a "major triad in root
position, with root middle C." Several approaches have been put forth for representing this infor-
mation, and we cannot cover all of them here. Rather, I will describe two basic representations,
leaving other alternatives to the skill and imagination of the reader.2

First, one could use a pitch representation, where each note is represented as its distance from
some fixed pitch. 0 is the obvious fixed pitch to use, and thus, for example, CO,4,7] represents
a major triad in root position. The first zero is in some sense redundant, of course, but it serves
to remind us that the chord is in "normal form." For example, when forming and transforming
chords, we may end up with a representation such as [2,6,9], which is not normalized; its normal
form is in fact [0,4,7]. Thus we define:

A chord is in pitch normal form if the first pitch is zero, and the subsequent pitches are
monotonically increasing.

One could also represent a chord intervalically; i.e. as a sequence of intervals. A major triad in
root position, for example, would be represented as [4,3,-7], where the last interval "returns7' us
to the "origin." Like the 0 in the pitch representation, the last interval is redundant, but allows us
to define another sense of normal form:

A chord is in interval normal form if the intervals are all greater than zero, except for
the last which must be equal to the negation of the sum of the others.

In either case, we can define a chord type as:

> type Chord = [AbsPitch]

We might ask whether there is some advantage, computationally, of using one of these repre-
sentations over the other. However, there is an invertible linear transformation between them, as
defined by the following functions, and thus there is in fact little advantage of one over the other:

> pitToInt :: Chord -> Chord
> pitToInt ch = aux ch

2 For example, Forte prescribes normal forms for chords in an atonal setting [For73].

25

> where aux (nl:n2:ns) = (n2-nl) : aux (n2:ns)

> aux [n] = [head ch - n]

>

> intToPit :: Chord -> Chord

> intToPit ch = 0 : aux 0 ch

> where aux p [n] = D
> aux p (n:ns) = n' : aux n' ns where n' = p+n

Exercise 8 Show that pitToInt and intToPit are inverses in the following sense: for any chord
chl in pitch normal form, and ch2 in interval normal form, each of length at least two:

intToPit (pitToInt chl) = chl
pitToInt (intToPit ch2) = ch2

Another operation we may wish to perform is a test for equality on chords, which can be done
at many levels: based only on chord quality, taking inversion into account, absolute equality, etc.
Since the above normal forms guarantee a unique representation, equality of chords with respect
to chord quality and inversion is simple: it is just the standard (overloaded) equality operator on
lists. On the other hand, to measure equality based on chord quality alone, we need to account for
the notion of an inversion.

Using the pitch representation, the inversion of a chord can be defined as follows:

> pitlnvert (pl:p2:ps) = 0 : map (subtract p2) ps ++ [12-p2]

Although we could also directly define a function to invert a chord given in interval representation,
we will simply define it in terms of functions already defined:

> intlnvert = pitToInt . pitlnvert . intToPit

We can now determine whether a chord in normal form has the same quality (but possibly
different inversion) as another chord in normal form, as follows: simply test whether one chord is
equal either to the other chord or to one of its inversions. Since there is only a finite number of
inversions, this is well defined. In Haskell:

> samePitChord chl ch2 =
> let invs = take (length chl) (iterate pitlnvert chl)
> in or (map (==ch2) invs)
>

26

> samelntChord chl ch2 =
> let invs = take (length chl) (iterate intlnvert chl)

> in or (map (==ch2) invs)

For example, samePitChord CO,4,7] [0,5,9] returns True (since [0,5,9] is the pitch normal
form for the second inversion of [0,4,7]).

27

8 Equivalence of Literal Performances

A literal performance is one in which no aesthetic interpretation is given to a musical object.^ The
function perform in fact yields a literal performance; aesthetic nuances must be expressed explicitly
using note and phrase attributes.

There are many musical objects whose literal performances we expect to be equivalent. For
example, the following two musical objects are certainly not equal as data structures, but we would
expect their literal performances to be identical:

(ml :+: m2) :+: (m3 :+: m4)
ml :+: m2 :+: m3 :+: m4

Tims WP define a notion of equivalence:

Definition: Two musical objects ml and m2 are equivalent, written ml = m2, if and only if:

(Vimap.c) perform imap c ml = perform imap c m2

where •'=" is equality on values (which in HaskeU is defined by the underlying equational logic).

One of the most useful things we can do with this notion of equivalence is establish the va-
lidity of certain transformations on musical objects. A transformation is valid if the result of the
transformation is equivalent (in the sense defined above) to the original musical object; i.e. it is

"meaning preserving."
The most basic of these transformation we treat as axioms in an algebra of music. For example:

Axiom 1 For any rl, r2, r3, r4, and m:

Tempo rl r2 (Tempo r3 r4 m) = Tempo (rl*r3) (r2*r4) m

To prove this axiom, we use conventional equational reasoning (for clarity we omit imap and

simplify the context to just dt):

Proof:

perform dt (Tempo rl r2 (Tempo r3 r4 m))
= perform (r2*dt/rl) (Tempo r3 r4 m) — unfolding perform
= perform (r4*(r2*dt/rl)/r3) m — unfolding perform
= perform ((r2*r4)*dt/(rl*r3)) m ~ simple arithmetic
= perform dt (Tempo (rl*r3) (r2*r4) m) — folding perform

Here is another useful transformation and its validity proof (for clarity in the proof we omit

imap and simplify the context to just (t,dt)):

Axiom 2 For any rl, r2, ml, and m2:

Tempo rl r2 (ml : + : m2) = Tempo rl r2 ml : + : Tempo rl r2 m2

In other words, tempo scaling distributes over sequential composition.

28

Proof:

perform (t,dt) (Tempo rl r2 (ml :+: m2))
= perform (t,r2*dt/rl) (ml :+: m2) — unfolding perform
= perform (t,r2*dt/rl) ml ++ perform (f ,r2*dt/rl) m2 — unfolding perform
= perform (t,dt) (Tempo rl r2 ml) ++

perform (t'.dt) (Tempo rl r2 m2) ~ folding perform
= perform (t,dt) (Tempo rl r2 ml) ++

perform (t",dt) (Tempo rl r2 m2) ~ folding dur
= perform (t.dt) (Tempo rl r2 ml : + : Tempo rl r2 m2) — folding perform
where t' = t + (dur ml)*r2*dt/rl

t" = t + (dur (Tempo rl r2 ml))*dt

An even simpler axiom is given by:

Axiom 3 For any r and m:

Tempo r r m = m

In other words, unit tempo scaling is the identity.

Proof:

perform (t,dt) (Tempo r r m)
= perform (t,r*dt/r) m ~ unfolding perform
= perform (t,dt) m — simple arithmetic

Note that the above proofs, being used to establish axioms, all involve the definition of perform.
In contrast, we can also establish theorems whose proofs involve only the axioms. For example.
Axioms 1,2, and 3 are all needed to prove the following:

Theorem 1 For any rl, r2, ml, and m2:

Tempo rl r2 ml : + : m2 = Tempo rl r2 (ml : + : Tempo r2 rl m2)

Proof:

Tempo rl r2 (ml :+: Tempo r2 rl m2)
= Tempo rl r2 ml : + : Tempo rl r2 (Tempo r2 rl m2) — by Axiom 1
= Tempo rl r2 ml : + : Tempo (rl*r2) (r2*rl) m2 — by Axiom 2
= Tempo rl r2 ml : + : Tempo (rl*r2) (rl*r2) m2 ~ simple arithmetic
= Tempo rl r2 ml :+: m2 ~ by Axiom 3

29

P32T p3»T

JJ J = JJJ.
Figure 9: Equivalent Phrases

For example, this fact justifies the equivalence of the two phrases shown in Figure 9.

Manv other interesting transformations of Haskore musical objects can be stated and proved
correct using equational reasoning. We leave as an exercise for the reader the proof of the following
axioms (which include the above axioms as special cases).

Axiom 4 Tempo is multiplicative and Transpose is additive. That is, for any rl, r2, r3, r4, p,

and m:

Tempo rl r2 (Tempo r3 r4 m) = Tempo (rl*r3) (r2*r4) m
Trans pi (Trans p2 m) = Trans (pl+p2) m

Axiom 5 Function composition is commutative with respect to both tempo scaling and transposi-

tion. That is. for any rl. r2, r3. r4. pi and p2:

Tempo rl r2 . Tempo r3 r4 = Tempo r3 r4 . Tempo rl r2
Trans pi . Trans p2 = Trans p2 . Trans pi

Tempo rl r2 . Trans pi = Trans pi . Tempo rl r2

Axiom 6 Tempo scaling and transposition are distributive over both sequential and parallel com-

position. That is, for any rl, r2, p, ml. and m2:

Tempo rl r2 (ml : + : m2) = Tempo rl r2 ml : + : Tempo rl r2 m2
Tempo rl r2 (ml : = : m2) = Tempo rl r2 ml : = : Tempo rl r2 m2

Trans p (ml : + : m2) = Trans p ml : + : Trans p m2
Trans p (ml :=: m2) = Trans p ml : = : Trans p m2

Axiom 7 Sequential and parallel composition are associative. That is, for any mO, ml, and m2:

mO : + : (ml : + : m2) = (mO : + : ml) : + : m2
mO : = : (ml : = : m2) = (mO : = : ml) : = : m2

Axiom 8 Parallel composition is commutative. That is, for any mO and ml:

mO : = : ml = ml : = : mO

30

Axiom 9 Rest 0 is a unit for Tempo and Trans, and a zero for sequential and parallel composition.

That is, for any ri, r2, p, and m:

Tempo rl r2 (Rest 0) = Rest 0
Trans p (Rest 0) = Rest 0

m : + : Rest 0 = m = Rest 0 : + : m
m : = : Rest 0 = m = Rest 0 : = : m

Exercise 9 Establish the validity of each of the above axioms.

31

ititleiHaskore Tutorial: Related and Future Research!/titlei

9 Related and Future Research

Many proposals have been put forth for programming languages targeted for computer music com-
position [Dan89, Sch83, Col84, AK92, DFV92, HS92, CR84, OFLB94], so many in fact that it
would be difficult to describe them all here. None of them (perhaps surprisingly) are based on a
pure functional language, with one exception: the recent work done by Orlarey et al. at GRAME
[OFLB94], which uses a pure lambda calculus approach to music description, and bears a strong
resemblance to our effort (but unfortunately has not been implemented). There are some other
related approaches based on variants of Lisp, most notably Dannenberg's Fugue language [DFV92],
in which operators similar to ours can be found but where the emphasis is more on instrument syn-
thesis rather than note-oriented composition. Fugue also highlights the utility of lazy evaluation
in certain contexts, but extra effort is needed to make this work in Lisp, whereas in a non-strict
language such as Haskell it essentially comes "for free." Other efforts based on Lisp utilize Lisp
primarily as a convenient vehicle for "embedded language design," and the applicative nature of
Lisp is not exploited well (for example, in Common Music the user will find a large number of
macros which are difficult if not impossible to use in a functional style).

We are not aware of any computer music language that has been shown to exhibit the kinds of
algebraic properties that we have demonstrated for Haskore. Indeed, none of the languages that
we have investigated make a useful distinction between music and performance, a property that
we find especially attractive about the Haskore design. On the other hand, Balaban describes an
abstract notion (apparently not yet a programming language) of "music structure," and provides
various operators that look similar to ours [Bal92]. In addition, she describes an operation called
flatten that resembles our literal interpretation perform. It would be interesting to translate her
ideas into Haskell; the match would likely be good.

Perhaps surprisingly, the work that we find most closely related to ours is not about music at
all: it is Henderson"s functional geometry, a functional language approach to generating computer
graphics [Hen82]. There we find a structure that is in spirit very similar to ours: most importantly,
a clear distinction between object description and interpretation (which in this paper we have
been calling musical objects and their performance). A similar structure can be found in Arya's
functional animation work [Ary94].

There are many interesting avenues to pursue with this research. On the theoretical side, we
need a deeper investigation of the algebraic structure of music, and would like to express certain
modern theories of music in Haskore. The possibility of expressing other scale types instead of the
thus far unstated assumption of standard equal temperament scales is another area of investigation.
On the practical side, the potential of a graphical interface to Haskore is appealing. We are also
interested in extending the methodology to sound synthesis. Our primary goal currently, however,
is to continue using Haskore as a vehicle for interesting algorithmic composition (for example, see

[HB95]).

32

A Convenient Functions for Getting Started With Haskore

> module TestHaskore where

> import Haskore

> import System(system)
>
>

> — Given a PMap, Context, UserPatcnMap, and file name, we can

> — write a Music value into a midi file:
>

> mToMF :: PMap -> Context -> UserPatcnMap -> String -> Music -> 10 ()

> mToMF pmap c upm fn m =

> let pf = perform pmap c m

> mf = performToMidi pf upm
> in outputMidiFile fn mf
>
>

> — Convenient default values and test routines
>

> — a default UserPatcnMap

> — Note: the PC sound card I'm using is limited to 9 instruments

> defUpm :: UserPatchMap

> defUpm = [("piano","Acoustic Grand Piano",1),
> ("vibes","Vibraphone",2),
> ("bass","Acoustic Bass",3),

> ("flute","Flute",4),

> ("sax","Tenor Sax",5),
> ("guitar","Acoustic Guitar (steel)",6),
> ("violin","Viola",7),
> ("violins"/'String Ensemble 1",8),
> ("drums","Synth Drum",9)]
>

> — a default PMap that makes everything into a fancyPlayer

> defPMap :: String -> Player

> defPMap pname =
> MkPlayer pname nf pf sf
> where MkPlayer _ nf pf sf = fancyPlayer
>

> — a default Context
> defCon :: Context
> defCon = (0, fancyPlayer, "piano", metro 120 qn, 0, 100)
>

> — Using the defaults above, from a Music object, we can:

> — a) generate a performance

> testPerf :: Music -> Performance
> testPerf m = perform defPMap defCon m

> testPerfDur :: Music -> (Performance, Dur)

> testPerfDur m = perf defPMap defCon m
>

> — b) generate a midifile datatype

33

> testMidi :: Music -> MidiFile
> testMidi m = performToMidi (testPerf m) defUpm

>
> — c) generate a midifile
> test :: Music -> 10 0
> test m = outputMidiFile "test.mid" (testMidi m)

>
> ~ d) generate and play a midifile on Windows, Linux or NeXT
> testWin95, testNT, testLinux, testNext :: Music -> 10 ()

> testWin9S m = test m »
> system "mplayer test.mid" »
> return ()
> testNT m = test m >>
> system "mplay32 test.mid" »
> return ()
> testLinux m = test m >>

> system "playmidi -rf test.mid" »

> return ()
> testNext m = test m >>

> system "open test.midi" »
> return ()

Alternatively, just run "test m" manually, and then invoke the midi
player on your system using "play", defined below for NT:

> play = system "mplay32 test.mid" »
> return ()

>
> -- Some General Midi test functions (use with caution)

>

> — a General Midi user patch map; i.e. one that maps GM instrument names
-- to themselves, using a channel that is the patch number modulo 16.

> -- This is for use ONLY in the code that follows, o/w channel duplication
> — is possible, which will screw things up in general.

> gmUpm :: UserPatchMap
> gmUpm = map (\(gmn,n) -> (gmn, gmn, mod n 16 + D) genMidiMap

>
> — Something to play each "instrument group" of 8 GM instruments;
> — this function will play a C major arpeggio on each instrument.

> gmTest :: Int -> 10()
> gmTest i = let gMM = take 8 (drop (i*8) genMidiMap)
> mu = line (map simple gMM)
> simple (inm,_) = Instr inm cMajArp
> in mToMF defPMap defCon gmUpm "test.mid" mu

34

B Examples of Haskore in Action

> module HaskoreExamples (module Haskore, module TestHaskore,
> module CMldSong6, module Self Sim)

> where
>

> import Haskore
> import TestHaskore

> import ChildSong6

> import SelfSim

Simple examples of Haskore in action. Hote that this module also

imports modules ChildSong6 and SelfSim.

From the tutorial, try things such as prl2, cMajArp, cHajChd, etc. and
try applying inversions, retrogrades, etc. on the same examples. Also
try "childSong6" imported from module ChildSong. For example:

> to = test (Instr "piano" childSong6)

C Major scale for use in examples below:

> cMajScale = Tempo 2 1
> (line [c 4 en □ , d 4 en □ , e 4 en □ , f 4 en □ ,
> g 4 en [] , a 4 en D , b 4 en D , c 5 en []])
>
> cms = cMajScale

Test of various articulations and dynamics:

> tl = test (Instr "piano"
> (Phrase [Art (Staccato 0.1)] cms :+:

> cms :+:
> Phrase [Art (Legato 1.1)3 cms))
>

> t2 - test (Instr "vibes"
> (Phrase [Dyn (Diminuendo 0.75)] cms :+:
> Phrase [Dyn (Crescendo 4.0), Dyn (Loudness 25)] cms))

>

> t3 = test (Instr "flute"
> (Phrase [Dyn (Accelerando 0.3)] cms :+:
> Phrase [Dyn (Ritardando 0.6)] cms))

A function to recursively apply transformations f (to elements in a

35

sequence) and g (to accumulated phrases):

> rep :: (Music -> Music) -> (Music -> Music) -> Int -> Music -> Music

> rep f g 0 m = Rest 0
> rep f g n m = m :=: g (rep f g (n-1) (f m))

An example using "rep" three times, recursively, to create a "cascade"

of sounds.

> run = rep (Trans 5) (delay tn) 8 (c 4 tn D)
> cascade = rep (Trans 4) (delay en) 8 run
> cascades = rep id (delay sn) 2 cascade
> t4' x = test (Instr "piano" x)
> t4 = test (Instr "piano"
> (cascades :+: revM cascades))

What happens if we simply reverse the f and g arguments?

> run' = rep (delay tn) (Trans 5) 4 (c 4 tn 0)
> cascade' = rep (delay en) (Trans 4) 6 run'
> cascades' = rep (delay sn) id 2 cascade'
> tS = test (Instr "piano" cascades')

Example from the SelfSim module.

> tlOs = test (rep (delay durss) (Trans 4) 2 ss)

Example from the ChildSong6 module.

> cs6 = test childSong6

Midi percussion test. Plays all "notes" in a range. (Requires adding
an instrument for percussion to the UserPatchMap.)

> drums a b = Instr "drums"
> (line (map (\p-> Note (pitch p) sn D) Ca..b]))

> til a b = test (drums a b)

36

C Partial Encoding of Chick Corea's "Children's Song No. 6"

> module ChildSong6 where
> import Haskore
>
> — Preliminaries: define some dotted durations
> dhn, dqn, den, dsn, dtn :: Float
> dhn = 3/4; dqn = 3/8; den = 3/16; dsn = 3/32; dtn = 3/64
>
> — note updaters for mappings
>fddn=ndv
> vol n = n v
> v = [Volume 80]
> lmap f 1 = line (map f 1)
>
> — repeat something n times
> times 1 m = m
> times (n+1) m = m :+: (times n m)
>
> — Baseline:
> bl = lmap (fd dqn) [b 3, fs 4, g 4, fs 4]
> b2 = lmap (fd dqn) [b 3, es 4, fs 4, es 4]
> b3 = lmap (fd dqn) [as 3, fs 4, g 4, fs 4]
>
> bassLine = times 3 bl : + : times 2 b2 : + : times 4 b3 : + : times 5 bl
>
> — Main Voice:
> vi = via :+: vlb
> via = lmap (fd en) [a 5, e 5, d 5, fs 5, cs S, b 4, e S, b 4]
> vlb = lmap vol [cs 5 tn, d 5 (qn-tn), es S en, b 4 en]
>
> v2 = v2a :+: v2b :+: v2c :+: v2d :+: v2e :+: v2f
> v2a = lmap vol [cs 5 (dhn+dhn), d 5 dhn,
> f 5 hn, gs 5 qn, fs S (hn+en), g 5 en]
> v2b = lmap (fd en) [fs 5, e 5, cs 5, as 4] :+: a 4 dqn v :+:
> lmap (fd en) [as 4, cs 5, fs 5, e 5, fs 5, g 5, as S]
> v2c = lmap vol Cos 6 (hn+en), d 6 en, cs 6 en, e 5 en] : + : enr : + :
> lmap vol [as 5 en, a 5 en, g 5 en, d S qn, c 5 en, cs 5 en]
> v2d = lmap (fd en) [fs 5, cs 5, e 5, cs 5, a 4, as 4, d 5, e 5, fs S] : + :
> lmap vol [fs 5 tn, e 5 (qn-tn), d 5 en, e 5 tn, d 5 (qn-tn),
> cs S en, d 5 tn, cs 5 (qn-tn), b 4 (en+hn)]
> v2e = lmap vol [cs 5 en, b 4 en, fs S en, a 5 en, b 5 (hn+qn), a 5 en,
> fs 5 en, e 5 qn, d 5 en, fs S en, e 5 hn, d 5 hn, fs 5 qn]
> v2f = Tempo 3 2 (lmap vol [cs 5 en, d 5 en, cs 5 en]) : + : b 4 (3*dhn+hn) v
>
> mainVoice = times 3 vl :+: v2
>
> — Putting it all together:
> childSong6 = Instr "piano" (Tempo 3 1 (Phrase [Dyn SF] bassLine :=: mainVoice))

D Example of Simple Self-Similar (Fractal) Music

> module SelfSim where

>

> import Haskore
> import TestHaskore

An example of self-similar, or fractal, music.

> data Cluster = Cl SNote [Cluster] ~ this is called a Rose tree

> type Pat = [SNote]
> type SNote = [(AbsPitch.Dur)] — i.e. a chord

>
> sim :: Pat -> [Cluster]

> sim pat = map mkCluster pat
> where mkCluster notes = Cl notes (map (mkCluster . addmult notes) pat)

>
> addmult pds iss = zipWith addmult' pds iss
> where addmult' (p,d) (i.s) = (p+i,d*s)

>
> simFringe n pat = fringe n (Cl [(0,0)] (sim pat))

>
> fringe 0 (Cl note els) = [note]
> fringe n (Cl note els) = concat (map (fringe (n-1)) els)

>
> — this just converts the result to Haskore:

> simToHask s = let mkNote (p,d) = Note (pitch p) d G
> in line (map (chord . map mkNote) s)

>
> — and here are some examples of it being applied:

>
> siml n = Instr "bass"
> (Trans 36
> (Tempo 4 1 (simToHask (simFringe n patl))))

> t6 = test (siml 4)

>

> sim2 n = Instr "piano"
> (Trans 53
> (Tempo 4 1 (simToHask (simFringe n pat2))))

> t7 = test (sim2 4)
>
> siml2 n = siml n :=: sim2 n

> t8 = test (siml2 4)
>
> sim3 n = Instr "vibes"
> (Trans 48
> (Tempo 4 1 (simToHask (simFringe n pat3))))

> t9 = test (sim3 3)
>
> sim4 n = (Trans 60

38

> (Tempo 2 1 (simToHask (simFringe n pat4'))))
>
> sim4s n = let s = sim4 n
> 11 = Instr "flute" s
> 12 = Instr "bass" (Trans (-36) (revM s))
> in H :=: 12
>
> ss = sim4s 3
> durss = dur ss
>
> tlO = test ss
>
> patl,pat2,pat3,pat4,pat4' :: CSHote]
> patl = [[(0,1.0)],[(4,0.5)3,[(7,1.0)],[(5,0.5)]]
> pat2 = [[(0,0.5)],[(4,1.0)],[(7,0.5)],[(5,1.0)]]
> pat3 = [[(2,0.6)],[(5,1.3)],[(0,1.0)],[(7,0.9)]]
> pat4' = [[(3,0.5)],[(4,0.25)],[(0,0.25)],[(6,1.0)]]
> pat4 = [[(3,0.5),(8,0.5),(22,0.5)],[(4,0.25),(7,0.25),(21,0.25)],
> [(0,0.25),(5,0.25),(15,0.25)], [(6,1.0),(9,1.0), (19,1.0)]]

39

E General Midi

> module GensralHidi where

>

> import MidiFile
>

> type GenMidiName = String
> type GenMidiTable = [(GenMidiName,ProgNum)]

>

> genMidiMap :: GenMidiTable

> genMidiMap =[

> ("Acoustic Grand Piano",0) i
> ("Electric Grand Piano",2) >
> ("Rhodes Piano",4),

> ("Harpsichord",6),
> ("Celesta",8),

> ("Music Box",10),

> ("Marimba",12),
> ("Tubular Bells",14),

> ("Hammond Organ",16),
> ("Rock Organ",18),

> ("Reed Organ",20),
> ("Harmonica",22),
> ("Acoustic Guitar (nylon)" ,24),

> ("Electric Guitar (jazz)", 26),

> ("Electric Guitar (muted)" ,28),

> (."Distortion Guitar",30),

> (["Acoustic Bass",32),

> (["Electric Bass (picked)", 34),

> (["Slap Bass 1",36),

> ["Synth Bass 1",38),

> ["Violin",40),

> ["Cello",42),

> ["Tremolo Strings",44),

> ["Orchestral Harp",46),

> ["String Ensemble 1",48),

> ["Synth Strings 1",50),

> ["Choir Aahs",52),

> ["Synth Voice",54),

> ["Trumpet",56),

> ["Tuba",58),

> ["French Horn",60),

> ("Synth Brass 1",62),

> ("Soprano Sax",64),

("Bright Acoustic Piano",1),

("Honky Tonk Piano",3),

("Chorused Piano",5),

("Clavinet",7),
("Glockenspeil",9),

("Vibraphone",11),

("Xylophone",13),
("Dulcimer",15),

("Percussive Organ",17),

("Church Organ",19),

("Accordion",21),
("Tango Accordion",23),
("Acoustic Guitar (steel)",25) ,

("Electric Guitar (clean)",27) ,

("Overdriven Guitar",29),
("Guitar Harmonics",31),
("Electric Bass (fingered)",33),

("Fretless Bass",35),

("Slap Bass 2",37),

("Synth Bass 2",39),

("Viola",41),

("Contrabass",43),
("Pizzicato Strings",45),

("Timpani",47),

("String Ensemble 2",49),
("Synth Strings 2",51),

("Voice 0ohs",53),

("Orchestra Hit",55),
("Trombone",57),

("Muted Trumpet",59),

("Brass Section",61),

("Synth Brass 2",63),

("Alto Sax",65),

40

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

"Tenor Sax",66),

"Oboe",68),
"English Horn",70),

"Piccolo",72),

"Recorder",74),

"Blown Bottle",76),

"Whistle",78),

"Lead 1 (square)",80),

"Lead 3 (calliope)",82),

"Lead 5 (charang)",84),

"Lead 7 (fifths)",86),
"Pad 1 (new age)",88),

"Pad 3 (polysynth)",90),

"Pad 5 (bowed)",92),

"Pad 7 (halo)",94),

"FX1 (train)",96),

"FX3 (crystal)",98),
"FX5 (brightness)",100) ,

"FX7 (echoes)",102),

"Sitar",104),
"Shamisen",106),

"Kalimba",108),

"Fiddle",110),

"Tinkle Bell",112),
"Steel Drums",114),

"Taiko Drum",116),

"Synth Drum",118), .
"Guitar Fret Noise",120),

"Seashore",122),
"Telephone Ring",124),

"Applause",126),

("Barinote Sax",67),

("Basoon",69),

("Clarinet",71),

("Flute",73),

("Pan Flute",75),

("Shakuhachi",77),

("0ccarina",79),

("Lead 2 (sawtooth)",81),

("Lead 4 (chiff)",83),

("Lead 6 (voice)",85),

("Lead 8 (bass+lead)",87) ,

("Pad 2 (warm)",89),

("Pad 4 (choir)",91),
("Pad 6 (metallic)",93),

("Pad 8 (sweep)",95) ,

("FX2 (soundtrack)",97),

("FX4 (atmosphere)",99),

("FX6 (goblins)",101),

("FX8 (sci-fi)",103),

("Banjo",105),
("Koto",107),

("Bagpipe",109),

("Shanai",llD,

("Agogo",113),
("Woodblock",115),

("Melodic Drum",117),

("Reverse Cymbal",119),

("Breath Noise",121),

("Bird Tweet",123),
("Helicopter",125),

("Gunshot",127)]

41

References

[AK92] D.P. Anderson and R. Kuivila. Formula: A programming language for expressive
computer music. In Denis Baggi, editor, Computer Generated Music. IEEE Computer

Society Press, 1992.

[Ary94] K. Arya. A functional animation starter-kit. Journal of Functional Programming,

4(1):1-18, 1994.

[Bal92] M. Balaban. Music structures: Interleaving the temporal and hierarchical aspects of
music. In M. Balaban, K. Ebcioglu, and 0. Laske, editors, Understanding Music With
AI, pages 110-139. AAAI Press, 1992.

[BW88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, New

York, 1988.

[Col84] D. Collinge. Moxie: A languge for computer music performance. In Proc. Int'l Com-
puter Music Conference, pages 217-220. Computer Music Association. 1984.

[CR84] P. Cointe and X. Rodet. Formes: an object and time oriented system for music
composition and synthesis. In Proceedings of the 1984 ACM Symposium on Lisp and
Functional Programmming, pages 85-95. ACM, 1984.

[Dan89] R.B. Dannenberg. The Canon score language. Computer Music Journal, 13(l):47-56,

1989.

[DFV92] R.B. Dannenberg, C.L. Fraley, and P. Velikonja. A functional language for sound
synthesis with behavioral abstraction and lazy evaluation. In Denis Baggi, editor,
Computer Generated Music. IEEE Computer Society Press, 1992.

[For73] A. Forte. The Structure of Atonal Music. Yale University Press, New Haven, CT,

1973.

[HB95] P. Hudak and J. Berger. A model of performance, interaction, and improvisation.
In Proceedings of International Computer Music Conference. Int'l Computer Music

Association, 1995.

[Hen82] P. Henderson. Functional geometry. In Proceedings of the 1982 ACM Symposium on
Lisp and Functional Programmming. ACM, 1982.

[HF92] P. Hudak and J. Fasel. A gentle introduction to Haskell. A CM SIG PL AN Notices,

27(5), May 1992.

[HMGW96] P. Hudak, T. Makucevich, S. Gadde, and B. Whong. Haskore music notation - an
algebra of music. Journal of Functional Programming, 6(3), June 1996. available via
ftp: //nebula. systemsz. cs .yale. edu/pub/yale-fp/papers/haskore/hmn-lhs.ps.

[HS92] G. Haus and A. Sametti. Scoresynth: A system for the synthesis of music scores based
on petri nets and a music algebra. In Denis Baggi, editor. Computer Generated Music.
IEEE Computer Society Press. 1992.

42

[IMA90] Midi 1.0 detailed specification: Document version 4.1.1, February 1990.

[JB91] D. Jaffe and L. Boynton. An overview of the sound and music kits for the NeXT
computer. In S.T. Pope, editor, The Well-Tempered Object, pages 107-118. MIT
Press, 1991.

[OFLB94] 0. Orlarey, D. Fober, S. Letz, and M. Bilton. Lambda calculus and music calculi.
In Proceedings of International Computer Music Conference. Int'l Computer Music
Association, 1994.

[Sch83] B. Schottstaedt. Pia: A composer's idea of a language. Computer Music Journal.
7(l):ll-20,1983.

[Ver86] B. Vercoe. Csound: A manual for the audio processing system and supporting pro-
grams. Technical report, MIT Media Lab, 1986.

43

Perl for Swine: CGI Programming in Haskell

Erik Meijer Joost van Dijk
OGI and Utrecht University Utrecht University

Draft Lecture Notes

1 Introduction

Many documents on the web are static, i.e. they are the same each time they
are returned by the server in response to a request by a client. On the other
hand, dynamic documents are generated by running a CGI script on the server
when the document is requested; the generated documents can then depend on
the incoming request from the client.

Any programming language that can read from the standard input, write to the
standard output, and access the environment variables is suited for writing CGI
scripts. Most CGI scripts are written in languages like C or PERL. The latter
language is popular because it has rich features for manipulating text (regular
expressions).

This paper describes a library for writing CGI scripts in Haskell. Input and
output coding of CGI scripts is handled by a wrapper, a higher-order function
that decodes the incoming request, passes it to the worker, and encodes the
response that the worker produces. Thus the main part of the application,
the worker function inside the wrapper, need not be at all concerned with the
idiosyncrasies of the CGI protocol.

Unlike most CGI scripts written in Perl or C, our scripts build an explicit
representation (a model) of the generated content, which is printed in the right
form (a presentation) by the wrapper. For example, HTML is represented by
a simple tree type. A set of combinators is provided from which complicated
HTML pages can be assembled easily.

Many people ask "why bother writing CGI scripts now that we have Java,
ActiveX, VBScript and JScript?" The answer is that both serve complementary,
but equally useful purposes. CGI scripts perform server-side computations,
while the others do client-side computations.

2 The World Wide Web

The World Wide Web is based on the client-server model of computation. In
this model a server provides resources to potentially many clients. Server and
clients communicate via a protocol. The client sends a request to the server, to
which the server replies by sending a response back to tha'client.

HTTP/1.0 200 OK
Content-type: text/html

<HTML>...</HTHL>

Once such a cycle is completed, the client and server are no longer in contact;
the HTTP protocol is stateless.

A static document is the same every time it is returned by the server. A dynamic
document is generated by running a script on the server when the document is
requested; the generated documents can then depend on the incoming request
from the client. Moreover, the script can change the state of the server as a
side-effect of the interaction.

GET cgi-bin/script?name=value

REqUEST-METHOD=GET
QUERY _STRING=name=value

HTTP/1.0 200 OK
Content-type: text/html

<HTML>...</HTML>

Content-type: text/html

<HTMI.>...</HTML>

The communication interface between the server and content-generating script
is called the Common Gateway Interface (CGI). The server forwards the re-
quest from the client to the script via specific environment variables and the
standard input. The script returns the response for the client to the server via
the standard output in a format specified by the CGI standard.

The goal of this paper is to make programming of server-side scripts as simple
as possible (section 4). But first we explain how to access (dynamic) documents
from a client (section 3.1) and how to make the server distinguish between static
and dynamic documents (section 3.2).

3 Computerized HTTP clients

Communicating with an HTTP server is rather tedious and best left to a ma-
chine. A web browser such the Microsoft Internet Explorer does exactly this. It
takes an HTML document with embedded requests, or hyperlinks, and renders it
on the screen. HTML is a domain specific language for programming the client
side of the HTTP protocol, and a browser is an interpreter for this language.

For example the HTML document

<HTML>
<HEAD>
<TITLE>Internet Programming In HaskelK/TITl£>

</HEAD>
<B0DY>
Hello CISE participants.

</B0DY>

</HTML>

appears on the user's screen as

nrnfeme^FroytdMimBt^trelfa^elE-MiciaCTfgrntej^eeEMöietr Hfij!0d
fEpgt-EdiE.-fffr ^G^F^orit^'Herr^ " . -~ .-/■

' Hello CISE participants."
Euietotek?-
3 intmttm ,
»ExpMMWr|

Request for images are evaluated eagerly and displayed inline. Requests for
other pages are evaluated lazily, i.e. only when the user clicks on them. When
this happens, the browser sets up a connection with the server www. evergreen
.edu and the request GET user/CISE/ HTTP/1.0. Eventually, the browser re-
places the current document by the document contained in the server's response.

3.1 Accessing active documents

The client sees no difference between hyperlinks to static or dynamic documents.
You refer to cgi-scripts just as to any other URL. For example

http://www.cse.ogi.edu/~erik/cgi-bin/helloHTML. cgi

is a link to the simple "Hello World!" script of section 8.

/cgUn/heloNTMLcgj i*M

Hellb-Wbrldl

3.2 How the server tells static and dynamic documents
apart

But how does the server know that it has to execute the script and not return
the content of the file helloHTML.cgi as it does for a normal .html file?

There are two alternatives. The first is that the server expects scripts to be
in a special directory, usually called cgi-bin. It will treat any URL involving
cgi-bin as an executable script. The second posibility is that the server uses
a particular filename extension, usually . cgi, to distinguish scripts from other
type of documents. In this case scripts can reside anywhere in the directory
hierarchy.
The most common problem that occurs when using CGI scripts is that the
server does not recognize that it should execute a script. When the browser
tries to download a script, or displays its source, you know that the server has
not recognized the URL as a script. Another symptom of this problem is the
"Method not implemented" or "Cannot post to non-script" server error.

.^8-'^ :::.-;:^:".:..;jÄ;i:.;i;::'!

h^y;»N¥^.c(ftogLedu/"eiic/cgi-b^cweem.Nr

iMethodnot implemented r1

It can also happen that a script is executed, but that the server returns an
empty page or an internal server error.

3

Server Error
£lKt: serirer encountered art mtemAerfor oemiij

^KeaieV<S>aäfi'ife »w«»änSi5§^^ä»OT*^se|äxcS^SycÄaäm oEtfie|
timr the error occurred, «ndairyrbir«yoirr^iiayed(m»fatrr^havtc2ised

?>the error . . '< * •: ■,*•• _»_,-„,.--*> i» :Ü

This means that the server has tried to execute the script, but something has
gone wrong; usually because of wrong permissions or because the script crashed.
Of course, scripts should be world executable and readable for the server to ex-
ecute them. Under Unix, scripts run as user nobody, so all directories above
the script should be executable. Remember that scripts are executed in a dif-
ferent environment then when executed from the command-line, in particular
you should not rely on the PATH variable to search files or executables.
Under Unix, a handy way of debugging a script (say f oo. cgi) that is recognized

by the server, but still crashes, is by wrapping it in a shell script that simply
returns the exact output of the script:

#!/bin/sh
echo "Content-type: text/html"
echo
echo "<Hl>Start of script's output</Hl>"
echo "<PRE>"
foo.cgi
echo "</PRE>"
echo "<Hl>End of script's output</Hl>"

Of course, a script must run perfectly from the command-line to begin with.

4 Programming CGI scripts

Now that we know how to access dynamic documents from the client, where to
put them on the server, and how to debug them, we can start looking at coding
CGI scripts.

4.1 Worker/wrapper

The architecture of our CGI-library provides the programmer with the illusion
of an idealized HTTP client (the wrapper), which interacts with an idealized
HTTP server (the worker) to be supplied by the programmer:

: : Request -> IQ Response

wrapper worker :: 10 Q

All the low-level details of the communication between the actual HTTP server
and the script are handled by the wrapper function. As far as the server is
concerned, the wrapper is a standard CGI script that recieves the HTTP request
forwarded from the client via specific environment variables and the standard
input and returns the response to be returned to the client via the standard
output. As far as the wrapper is concerned, the worker is a function that
produces a result of type Response from an argument of type Request.

The work done by the wrapper is the same for all CGI scripts; the interesting
bits are performed by the worker; the wrapper decodes the HTTP request into
a value of the algebraic type Request, passes it to the worker to obtain a value
of type Response, and encodes this into an actual HTTP response:

wrapper :: (Request -> 10 Response) -> 10 ()
wrapper worker

= do-C request <- getRequest
; response <- worker request
; putResponse
}

The worker function need not be concerned with any of the gory details of
the CGI standard, it only has to produce an abstract response when given
an abstract request. Most other CGI libraries do not decouple abstract and
concrete requests and responses. The result is that scripts are less readable, less
modular, less flexible, and take longer to develop.

To understand the logic of a CGI script, we can study the worker function
in isolation. This is impossible if the decoding and encoding of requests and
responses is intertwined with the actual computation of responses from requests.

As we show in sections 6.2 and 8.5.2, we can recursively split the worker function
into a wrapper and a simplified worker and leverage of the claimed benefits yet
another time. If there is no a priori distinction between worker and wrapper,
this is obviously impossible.
Because the wrapper function abstracts all details of the CGI standard from
the worker, it is easy to adapt to a platform such as Windows, which prefers a
nonstandard interaction (ISAPI) between servers and scripts. In that case we
only have to change the wrapper function once, instead of having to modify all
our scripts.

4.2 Modelling requests and responses

The set of abstract HTTP requests is modelled by the data type Request. A
client can either request to retrieve a document (using GET), or deposit some
Mime content (using POST):

data Request = GET QueryString I POST Mime

The set of abstract HTTP responses is modelled by the data type Response. The
server can either return some Mime content, a redirection to another location,
or an error message:

data Response = Content Mime I Location Url I Status Code Reason

Mime types are the standard way of "typing" data transmitted over the inter-
net. Examples include plain text (text/plain, section 7), HTML documents
(text/html, section 8), url-encoded query strings (x-application/url-encoded,
section 5.1), GIF pictures (image/gif) and MPEG movies (video/mpeg).

data Mime

I TextPlain String
I TextHtml HTML
I UrlEncoded [(String.String)]
I ...

Besides the constructor functions for the data types Request and Response,
we assume only that we can get requests from the outside world via function
getRequest (section 5) and put responses to the outside world via function
putResponse (section 6):

getRequest :: 10 Request
putResponse :: Response -> 10 ()

To implement functions getRequest and putResponse, we must exchange Mime
types with the outside world, hence we also need:

getMime :
put Mime :
mimeType

10 Mime
Mime -> 10 0

Mime -> String

In order to implement functions getMime and putMime, we need to parse and
unparse the various alternatives of data type Mime:

showHTML :: HTML -> String

readQuery :: String -> [(String,String)]

5 Decoding requests

The most four important environment variables that the HTTP server passes to
the wrapper are REQUEST .METHOD, QUERY-STRING, CONTENT-LENGTH, and CONTENT
.TYPE. By inspecting these variables, the wrapper can decode the incoming re-
quest.

Function getRequest does a simple case analysis on the environment variable
REQUEST .METHOD to find out what request has been made:

getRequest
= do-C method <- getEnv "REQUEST_METHOD"

; case method of {"GET" -> getGET; "POST" -> getPOST}
>

If REQUEST-METHOD equals GET, then the variable QUERY-STRING contains an url-
encoded query string:

getGET
= do-C query <- getEnv "QUERY.STRING"

; return $ GET (readQuery query)
}

If REQUEST -METHOD equals POST, then function getMime decodes the Mime con-
tent the request:

getPOST
= do-C mime <- getMime

; return $ POST mime
>

Function getMime gets the first CONTENT-LENGTH bytes of the standard input,
and then reads a value of Mime type CONTENT-TYPE:

getMime
= do-C contentLength <- getEnv "CONTENT.LENGTH"

stdin <- getContents
let mime = take (read contentLength) stdin
contentType <- getEnv "CONTENT.TYPE"
case contentType of

" applicat ion/x-url-encoded"
-> return $ UrlEncoded (readQuery mime)

5.1 Reading Mime type application/x-url-encoded

An url-encoded query string consist of a sequence of zero or more url-encoded
name=value pairs separated by ampersands &:

query ::= [name=value{kname=value}]

We can directly translate this grammar into a parser using standard parser
combinators:

query :: Parser [(String,String)]
query

= do{ name <- urlEncoded; string "="; value <- urlEncoded
; return (name,value)
> 'sepby' (string "&")

Names and values are url-encoded, which the parser will decode:

urlEncoded :: Parser String
urlEncoded

= many (alphanum ++ extra ++ safe ++ space ++ hexencoded)

Alphanumeric characters and "safe" and "special" characters are unencoded:

extra :: Parser Char safe :: Parser Char
extra = sat (<elem< "!*'(),") safe = sat ('elem' "$-_.")

Spaces " " are encoded by plus signs "+":

space :: Parser Char
space = do-C char ' + ' ; return ' '}

Nonalphanumeric characters such as "'/." are hex-encoded via an escape sequence
that consists of a percent character */. followed by two hexadecimal digits, for
example the hex-encoding of'/. itself is 7.25.

hexencoded :: Parser Char
hexencoded

= do-C char "/.'; dl <- hexit; 62 <- hexit
; return $ chr (readHex [dl,d2])

>

Compare this with the Perl code of Steve Brenner's cgi-lib.pl, one of the
most popular libraries for writing CGI scripts in Perl:

sub ReadParse {
local (*in) =» a_ if 3_;
local ($i,$key,$val);

if (fcMethGetH
$in = $ENV-C'QUERY_STRING'};

} elsif {
read(STDIN,$in,$ENV{'CONTENT.LENGTH'});

}

9in = split (/[&;]/,$in);
f oreach $i (0.. $#in) {

$in[$i] =" s/W /g;
($key,lvalue) =» split (/=/,$in[$i] ,2);
$key =" s/7.(..)/pack("c",hex($l))/ge;
$val =- s/'/.C.J/packC'c-.hexCll^/ge;
$in-C$key} .= "\0" if (defined($in{$key}));
$in-C$key> .= $val;

return scalar(9in)

6 Encoding responses

Function putResponse puts a response to the standard output in the the exact

format that is required by the CGI standard:

putResponse :: Response -> 10 0
putResponse response

= case response of
Content mime
-> do-C putStr ("Content-type: " ++ mimeType mime)

; putStr "\n\n"
; putMime mime

>
Location url
-> do-C putStr ("Location: " ++ url)

; putStr "\n\n"

}
Status code reason
-> do-C putStr ("Status: " ++ code ++ " " ++ reason)

; putStr "\n\n"

>

6.1 Preventing caching

Most web browsers cache the documents they request, so that the next time a
document is requested it need not be downloaded from the server. For dynamic
documents this is clearly not the right thing to do. Now the advantages of
decoupling response generation and response presentation really kick in; we
can just change function putResponse to print an extra "Pragma: no-cache"
header in each response.

6.2 Specializing the wrapper

In practice, requests contain just url-encoded data and responses contain just
HTML documents. We can capture this pattern by providing another wrapper
function, which takes a simplified script into the general script that the wrapper

expects:

cgi :: ([(String,String)] -> 10 HTML) -> 10 ()
cgi script = \request -> wrapper $

do-C html <- script (fromRequest request)
; return (Content (HTML html))
}

Function fromRequest extracts the query string from either a GET or POST
request:

fromRequest ::. Request -> [(String.String)]
fromRequest request
= case request of

GET query -> query
POST (UrlEncoded query) -> query
otherwise -> Q

7 MIME type text/plain

Using mime type TextPlain we can write our first CGI script, the cut-and-dried
"Hello World!" program. It ignores its environment argument, and returns the
obvious content.

helloWorld :: 10 0
helloWorld = wrapper $ \request ->

do{ return (textplain "Hello World!") }

where function textplain wraps a string in a plain text response:

textplain :: String -> Response
textplain s = Content (TextPlain s)

10

7.1 A more interesting script

One of the environment variables that is passed to a CGI script is REMOTE-HOST,
which contains the fully qualified domain name of the client (such as tibet. cse
.ogi.edu) that has sent the request to the server. The top-level domain (the
name after the rightmost dot) gives us some information about the country
where the client is located, and we will use that to generate a personalized
salutation:

greetings :: Domain -> String
greetings d

= case (domain d) of
"edu" -> "Hi there!"
"com" -> "Can you find everything OK today?"
"nl" -> "Hoi, hoe gaat net?"
"uk" -> "Good afternoon!"

-> "Ahum, ..."

We can extract the top-level domain of a fully qualified domain name by first
splitting it at every ' .' and then taking the last element of the resulting list:

domain = last.split (== '.')

The function split (== '.') "tibet. cse. ogi. edu" returns the list ["tibet",
"cse", "ogi", "edu"].

The script itself is straightforward. We lookup the REMOTE-HOST in the environ-
ment, and compute the greeting:

helloWorld = wrapper $ \query ->
do-C host <- getEnv "REMOTE.HOST"

; return (textplain (greetings host))

}

8 MIME type text/html

Most CGI scripts written in C or Perl print concrete HTML directly on the
standard output. In Perl, the HTML variant of the "Hello World!" CGI script
would look something like:

print "Content-type: text/html\n\n";
print "<html>\n";
print "<head>\n";
print "<title>Hello, world!</title>\n";
printf "</head>\n";
printf "<body>\n";
printf "<hl>Hello, world!</hl>\n";
printf "</body>\n";
printf "</html>\n";

This is not very flexible, especially when we want to generate more complicated
HTML pages. Just for comparison, using the combinators we will develop in
this section (8.1), the script:

11

helloHTML = cgi $ \query ->
do-C return (page "Hello, world!" [hi "Hello, world!"]) }

generates the same HTML content.

An HTML document consists of a number of nested elements such as headers
(page title, section headings), paragraphs, lists (ordered, unordered), logical
markup (citation, computer code), visual markup (italic, bold), hypertext links,
images, fill-in forms etc.

Every HTML element is delimited by begin- and end-to^s of the form <tag>
respectively </tag>. Tags (and attributes) in HTML are not case sensitive,
so for example <HTML> is equivalent to <html> or <HtMl>. Also, most browsers
support elements that are not part of the official HTML standard. Nonstandard
elements of competing browsers, or unsupported elements, are just ignored.
Some tags such as <HR> and
 do not need a closing tag, but it does no
harm to use one anyway.

Most elements take (optional) arguments, which are given as name=value pairs
in the start tag. Boolean attributes are set by just giving their name, without

a value.

HTML can be represented by a simple universal tree type. An HTML value is
either just ordinary text, or a complex element with a tag, a list of attributes,
and an embedded list of HTML values.

data HTML
= Text-Ctext :: String}

I Element{ tag :: Tag
, attributes :: [(Name,Value)]
, html :: [HTML]
}

For simplicity, all HTML related types such as Tag, Name, Value, and later on
Color, Face, Size, etc. are synonyms for String.

8.1 Basic combinators

The basic HTML combinators set, attributedElement and element, and
prose provide an abstract interface to construct values of type HTML.

set :: [(Name.Value)] -> (HTML -> HTML)
attributedElement :: Tag -> [(Name,Value)] -> [HTML] -> HTML
element :: Tag -> [HTML] -> HTML
prose :: String -> HTML .

By hiding the construction of concrete HTML elements we can always decide
to change the representation of the HTML data type. The combinators whose
signatures are given in Figure 1 capture patterns that we have found convenient
when generating HTML programatically.

12

page : : String -> [HTML] -> HTML

format :: Tag -> String -> HTML

h :: Int -> String -> HTML

P - [HTML] -> HTML
font : : Color -> [Face] -> Size -> [HTML] -> HTML

href : : URL -> [HTML] -> HTML
name : : String -> [HTML] -> HTML
image :: String -> URL -> HTML

ul :: [[HTML]] -> HTML
ol :: [[HTML]] -> HTML
dl :: [(String, [HTML])] -> HTML

table :: [[[HTML]]] -> HTML

Figure 1: Advanced HTML combinators

8.2 Printing the environment

Script envPassed nicely formats the environemnt variables that are set by the
server. It maps a list of pairs like

[("SERVERJIAME","www.cse.ogi.edu") ,("REQUEST_METHOD,,,"GET") ,. .]

into the HTML definition list

dl [("SERVER_NAME", [prose "www.cse.ogi.edu"])
, ("REQUEST.METHOD",[prose "GET"])

]

A simple list comprehension does the job; for every (dt, dd) pair in the envi-
ronment we construct a pair (dt, [prose dd]), and then wrap the resulting list
in a definition list:

SREQUI^MEraOD;^

, dl [(dt,[prose dd]) m[

showEnv env
= page "Environment"

[hi "Environment"

I (dt.dd) <- env
]

The complete script first gets the list of all environment variables using function
getWnoleEnv, and then returns the requested HTML page:

13

envPassed = cgi $ \query ->
do{ env <- getWholeEnv

; return (showEnv env)
}

8.3 Forms

An interactive script can ask for input from the user by returning an HTML-
form:

When the user submits the form, the request that contains the form-data is
posted to the script that generated the form.

HTML forms can contain standard GUI elements such as text-fields, various
kinds of buttons, menus, etc.

gui :: [HTML] -> HTML
widget :: Widget -> (Name.Value) -> HTML
menu :: Name -> [Value] -> HTML
textarea :: Name -> Int -> Int -> Wrap -> Value -> HTML

The gui combinator takes list of HTML elements into a form that collects the
(name.value) pairs to be posted to the script which generated the form.

A widget widget w (.name,value) associates the name name with a value,
which is either the initial value value or a value that is supplied by the user.

gui
[widget "text" ("t","textfield")
, widget "password" ("p","password")
, widget "radio" ("r'V'rl")
, widget "radio" ("r","r2")
, widget "checkbox" ("c'V'cl")
, widget "checkbox" ("c","c2")
, widget "reset" ("x","Again")
, widget "submit" ("s","Enter")
, widget "hidden" ("h"/'invisible")

]

When the user clicks on the enter button, the url-encoded string

t=textiieldfcp=password&r=r2fcc=cl&c=c2fcs=Enterfth=invisible

14

is submitted to the script. Hidden fields have no visible rendering, but do turn
up in the request. Turning a radio button on turns off all others with the same
name. Also note that names might occur more than once (for example "c") in
an url-encoded query string.

The menu element menu name [..., value.i, ...] renders as a pull-down
menu that associates name name with the alternative chosen by the user.

menu "File"
["New"
, "Open ..."
, "Close"
, "Close All"
]

The combinator textarea name rows cols wrap value combinator renders
as a multiline textarea whose content is paired with its name when the form is
submitted.

This is a multi line textarea

EäO._ ^ J
8.4 A user feedback form

As an example application of HTML forms, we write a script that processes
user feedback.

resetd

XelLnaJ
*AMf&**Am,fyr' *^si- £- :

we ace doing*

^ths:ibnneo^en|^t>ug»p«ctx<orcaimttratrsirotirlArai7!r^;

geetr CSuggesttokCBugreportC Questions

a-mau «ddrssi.-|

"1.

"SandcömmäiisrV I

w^--u.CIäS-;-:--«.• •—J L
The script first parses its input into a mail message. If this fails it just returns
the original form so that the user can try again. Otherwise it mails the message
and returns an acknowledgement form.

15

feedback = \query -> cgi $
case check query of

{ Nothing -> do-C return feedbackForm}
; Just msg -> do-C sendMail msg; return (acknowledgeForm msg)>

}

8.5 N Queens

Our next script is an interactive version of the n-queens problem.

We first construct a function advance that computes the next solution from a
given board configuration (section 8.5.1). Only then we wrap this into a CGI
script (section 8.5.2).

8.5.1 Non interactive version

A board is represented by a list of row positions:

type Board = [ROH]

type Row = Int
n = 8 :: Row

A possible board has n queens, one in each row:

possible :: Board -> Bool
possible board

= and [length board == n, all ('elem' [l..n]) board]

A possible board is unsafe when other queens are on the same left-diagonal, the
same row, or the same right-diagonal as the left-most queen:

unSafe :: Board -> Bool
unSafe []

= False
unSafe (q:qs)

= or [onPath (\x -> x-1) q qs
, onPath (\x -> x) q qs
, onPath (\x -> x+1) q qs
]

16

Function advance moves the left-most queen forward until the board is safe. If
the queen already is in row n, the next queen is recursively advanced too, and
the left-most queen starts again in row 1.

advance :: Board -> Board
advance []

= □
advance (q:qs)

= getSafe (if q == n then 1: advance qs else q+l:qs)
where

getSafe qs = if unSafe qs then advance qs else qs

Function samePath checks wether there are other queens on the indicated path:

onPath :: (Row -> Row) -> Row -> Board -> Bool
onPath next q []

= False
onPath next q (q':qs)

= next q == q' II onPath next (next q) qs

8.5.2 Interactive version

We now continue by embedding this version of the n-queens problem into an
interactive CGI program.

nQueens = cgi $ \query ->
do{ return $ (showBoard.advance.readBoard) query }

Function readBoard reads variable "Board" from the query. If this is an im-
possible board, it will return the possible board [1. .n].

readBoard :: [(String.String)] -> Board
readBoard query

= if possible board then board else [l..n]
where

board = read (lookup query "Board")

Function showBoard uses a table to present the current board to the user. It
stores the actual configuration in the hidden field "Board".

showBoard :: Board -> HTML
showBoard board

= page (show n ++ " Queens")
[gui [showSolution board

, widget "submit" "Next", widget "hidden" (show board)
]

]

showSolution board
= table C [if q == i then [prose "Q"] else [prose "fenbsp;"]

I i <- [l..n]

17

]
I q <- board
]

9 Conclusions

To be written.

10 References and further reading

To be written.

Acknowledgements

Many thanks to Jim Hook, Tim Sheard, and Daan Leijen for reading draft
versions of these notes. Special thanks to Phil Wadler who encouraged me to
write this paper in the first place, and to Simon Peyton Jones for suggesting
some major restructuring.

18

Scripting COM components in Haskell

Simon Peyton Jones (simonpjQdcs.gla.ac.uk)
University of Glasgow and Oregon Graduate Institute

Erik Meijer (erikQcs.ruu.nl)
University of Utrecht and Oregon Graduate Institute

Daan Leijen (leijenQwins.uva.nl)
University of Amsterdam and Oregon Graduate Institute

Abstract

Designers of advanced languages, such as ML, Prolog, or
Haskell, face an uphill struggle to persuade potential users
of the merits of their approach. In fact, it has hitherto
been impossible to find other than niche applications be-
cause (foreign language interfaces notwithstanding) it has
been too difficult to integrate software components written
in new languages with large bodies of existing code.

Microsoft's Component Object Model (COM) offers this
community a new opportunity. Because the interface be-
tween objects is by design language independent and arms-
length, it is possible either to write glue programs that in-
tegrate existing COM objects, or to write software compo-
nents whose services can be used by clients written in more
conventional languages.

We describe our experience of exploiting this opportunity
in the purely-functional language Haskell. We describe a
design for integrating COM components into Haskell pro-
grams, and we demonstrate why someone might want to
script their COM components in this way.

This paper has been submitted to Software Reuse 1998.

keywords

Haskell, COM, CORBA, software components, lazy eval-
uation, functional programming, strong typing, polymor-
phism, scripting, interoperability, equational reasoning.

December 15, 1997
language interfaces, it has been hard to provide an evolu-
tionary path that would enable a potential customer to ex-
periment with a new language at a low level of commitment.

Microsoft's Component Object Model (COM) is a widely-
deployed, binary standard for software components [12]. Be-
cause its language independence. COM presents two new
opportunities for programming-language researchers. COM
makes it easier to use a new language either (a) to glue to-
gether, or script, a collection of existing COM components
to make a larger application or component, or (b) to imple-
ment a new COM component that a client can use without
knowledge of its implementation language.

We have begun to exploit the first of these opportunities in
the context of the purely functional programming language
Haskell [4]. In this paper we describe an interface between
Haskell and COM that makes it easy to script COM com-
ponents from a Haskell program. We make two main con-
tributions:

• A graceful and strongly typed accommodation of COM
within the host language is important. We present
a design for how COM could appear to the Haskell
programmer.

• If the exercise is to be more than just "Gosh, we can
script COM in Haskell as well as in Visual Basic" then
it is important to demonstrate some added value from
using a higher-order, typed language. We offer such a
demonstration, in the form of a case study.

2 The opportunity

1 Introduction

Programming-language researchers have a serious market-
ing problem. Apart from a relative handful of enthusiasts,
our languages are not widely used, because no potential cus-
tomer is prepared to revolutionize the way they build their
systems — and rightly so. Despite some work on foreign-

Until recently it has been much easier for a client program
to use software components (libraries, classes, abstract data
types) written in the same language:

1. The specification of the interface between the com-
ponent and its clients is usually given in a language-
specific way; for example, as C++ class descriptions.

2. The calling convention between client and component
is often language-specific, or perhaps even unspecified
(because both client and component are assumed to
be compiled with the same compiler)

3. Programmers can assume a rather intimate coupling
between the address spaces of client and component;
for example, the client might pass a pointer into the
middle of an array, to be side-effected by the compo-
nent.

COM encapsulates a software component in a way that con-
trasts with each of these three aspects:

• The interface between client and component is spec-
ified in DDL (COM's Interface Definition Language).
For each particular language, tools are provided to con-
vert IDL into the corresponding specification in that
language (section 3.4).

• COM specifies the client/component interface at a bi-
nary level, independently of any particular language
or compiler (section 3.1).

• Parameters are expected to be marshalled from the
client's address space to the component's address
space, and vice versa. Sometimes the two share an
address space, in which case marshalling need do no
copying, but all COM calls provide enough informa-
tion to do such marshalling.

• Interfacing between two languages often carries perfor-
mance overheads, because of differing data represen-
tation and memory-allocation policies. When the al-
ternative is a native-language interface between client
and component, these extra overheads can seem rather
unattractive.

However, anyone using COM has already bitten the
bullet: they have declared themselves wiling to accept
a hit in programming convenience, and perhaps a hit
in performance (for marshalling), in exchange for the
advantages that COM brings.

These are not COM's only advantages. For example, one
of the primary motivations for using COM concerns version
control and upgrade paths for software components, which
we have not mentioned at all so far. However, these addi-
tional properties are well described elsewhere, [11,12,1, 2, 3]
and do not concern us further in this paper, except in so far
as they serve as motivators for people to write and use COM
components.

Also, COM is not alone in having these properties. Nu-
merous research projects had similar goals, in particular
CORBA [13]. In fact, almost everything in the rest of this
paper would apply to CORBA as well as COM, because
CORBA is largelyCompatible with COM. We stick to COM
for the sake of being concrete (it has a well-defined, ma-
ture and stable specification) and because of its widespread
use. With more than 200 million systems worldwide using

it, COM offers designers of advanced languages the best op-
portunities for reusing software components.

3 How COM works

Although there are many very fat books about COM (e.g.
[12]), the core technology is quite simple, a notable achieve-
ment. This section briefly introduces the key ideas. We
concentrate exclusively on how COM works, rather on why
it works that deal; the COM literature deals with the latter
topic in detail.

Here is, in C, how a client might create and invoke a COM
object:

/* Create the object */
err.code = CoCreatelnstance (cls.id

, iface_id
, &iface_ptr
);

if (not SUCCEEDED(err.code)) {
...error recovery...

>

/* Invoke a method */
(»iface.ptr)[3](iface_ptr, x, y,);

The procedure CoCreatelnstance is best thought of as an
operating system procedure. (In real life, it takes more pa-
rameters than those given above, but they are unimportant
here.) Calling CoCreatelnstance creates an instance of an
object whose class identifier, or CLSID, is held in cls_id.
The class identifier is a 128-bit globally unique identifier, or
GUID. Here "globally unique" means that the GUID is a
name for the class that will not (ever) be re-used for any
other purpose anywhere on the planet. A standard utility
allows an unlimited supply of fresh GUIDs to be generated
locally, based on the machine's IP address and the date and
time.

The code for the class is found indirectly via the system
registry, which is held in a fixed place in the file system.
This double indirection of CLSIDs and registry makes the
client code independent of the specific location of the code
for the class. Next. CoCreatelnstance loads the class code
into the current process (unless it has already been loaded).
Alternatively, one can ask COM to create a new process
(either local or remote) to run the instance.

3.1 Interfaces and method invocation

A COM object supports one or more interfaces, each
of which has its own globally-unique interface identifier
or IID. That is why CoCreatelnstance takes a second
parameter, iface.id, the IID of the desired interface;
CoCreatelnstance returns the interface pointer of this in-
terface in iface.ptr. There is no such thing as an "ob-

(
Vtbl pointer"
lot shared)

"Virtual function table"
(shared by all instances)

Interface

pointer
—*" Querylnterface

—*" AddRef

Object —*■ Release

state ' "*" other

m methods

Figure 1: Interface pointers

ject pointer", or "object identifier"; there are only interface
pointers.

The IID of an interface uniquely identifies the complete sig-
nature of that interface; that is, what methods the interface
has (including what order they appear in), their calling con-
vention, what arguments they take, and what results they
return. If we want to change the signature of an interface,
we must give the new interface a different IID from the old
one. That way, when a client asks for an interface with a
particular IID, it knows exactly what that interface provides.

A COM interface pointer is (deep breath) a pointer to a
pointer to a table of method addresses (Figure 1). Notice
the double indirection, which allows the table of method ad-
dresses to be shared among all instances of the class. Data
specific to a particular instance of the class, notably the
object's state, can be stored at some fixed offset from the
"vtbl pointer" (Figure 1). The format of this information is
entirely up to the object's implementation; the client knows
nothing about it. Lastly, when a method is invoked, the in-
terface pointer must be passed as the first argument, so that
the method code can access the instance-specific state. Tak-
ing all these points together, we can now see why a method
invocation looks like this:

(*iface.ptr)[3](iface_ptr, x, y, z);

None of this is language specific. That is, COM is a binary
interface standard. Provided the code that creates an ob-
ject instance returns an interface pointer that points to the
structures just described, the client will be happy. In theory,
the parameter passing conventions for each method can be
different (but fixed in advance). In practice, they match the
 stdcall convention used by C and C++.

Interface pointers provide the sole way in which one can in-
teract with a COM object. This restriction makes it possible
to implement location transparency (a major COM war-cry),
whereby an object's client interacts with the object in the
same way regardless of whether or not the object is in the

same address space, or even in the same machine, as r.he
client. All that is necessarv is to build a proxy interface
pointer, that does point into the client's address space, but
whose methods are stub procedures that marshal the data
to and from across the border to the remote object.

3.2 Getting other interfaces

A single COM object can support more than one interface.
But as we have seen before CoCreatelnstance returns only
one interface pointer. So how do we get the others? Answer:
every interface supports the Querylnterface method, which
maps an IID to an interface pointer for the requested IID or
fails if the object does not support the requested interface.
So, from any interface pointer (if ace.ptr) on an object we
can get to any other interface pointer (if ace_ptr2) which
that object implements, for example:

err.code = (»iface_ptr)[0](iid2, &iface_ptr2);

Why "[0]"? Because querylnterface is at offset 0 in every
interface.

The COM specification requires that Querylnterface be-
haves consistently. The IUnkown interface on an object is
the identity of that object; queries for IUnknown from any
interface on an object should all return exactly the same
interface pointer. Queries for interfaces on the same ob-
ject should always fail or always succeed. Thus, the call
(»iface.ptr) [0] (iid2,S:if ace_ptr2) ; should not succeed
at one point, but fail at another. Finally, the set of interfaces
on an object should form an equivalence relation.

3.3 Reference counting

Each object keeps a reference count of all the interface point-
ers it has handed out. When a client discards an interface
pointer it should call the Release method via that inter-
face pointer; every interface supports the Release method.
Similarly, when it duplicates an interface pointer it holds,
the client should call the AddRef method via the interface
pointer; every interface also supports the AddRef method.
When an object's reference count drops to zero it can com-
mit suicide — but it is up to the object, not the client, to
cause this to happen. All the client does is make correct
calls to AddRef and Release.

3.4 Describing interfaces

Since every IID uniquely identifies the signature of the in-
terface, it is useful to have a common language in which to
describe that signature. COM has such a language, called
IDL (Interface Definition Language) [6], but IDL is not part
of the core COM standard. You do not have to describe an
interface using IDL, you can describe it in classical Greek

[object,
uuid(00000000-0000-0000-COOO-000000000046),

pointer.default(unique)

]
interface IUnknown {
HRESULT QueryInterface([in] REFID iid,

[out] void **ppv);

ULONG AddrRef(void);
ULONG Release(void);

> ^____

Figure 2: The IUnknown interface in IDL

yet another level of indirection), and are accessed in the
Haskell world using our previously developed foreign lan-
guage interface to C[9]. Green Card automatically generates
all required stub procedures and marshalling code to call C.
The M.hs module, together with a library Haskell module
Com.hs, is all that an application need import to access and
manipulate all the COM objects described by M.

4.1 What Green Card generates

So what does the Haskell module M export?

Midi

Application

J

Green
M.hs

r \

Card
i_ora.

1 J

Figure 3: The big picture

prose if you like. All COM says is that one IID must identify
one signature.

Describing an interface in IDL is useful, though, because it
is a language that all COM programmers understand. Fur-
thermore, there are tools that read IDL descriptions and
produce language-specific declarations and glue code. For
example, the Microsoft MIDL compiler can read IDL and
produce C++ class declarations that make COM objects
look exactly like C++ objects (or Java, or Visual Basic).

As a short example, Figure 2 gives the IDL description of
the IUnknown interface, the interface of which every other is
a superset. The 128 bit long constant is the GUID for the
IUnknown interface.

4 Interfacing Haskell and COM

Our goal is to provide a convenient and type-secure inter-
face between a Haskell program and the COM objects it ma-
nipulates. How could COM objects appear to the Haskell
programmer?

Our approach, illustrated in Figure 3, is broadly conven-
tional. We have built a tool, called Green Card, that takes
an IDL module M.idl, and from it generates a Haskell mod-
ule M.hs1. Object instances live in the C world (adding

• For each CLSID Baz in the IDL module, module M
exports a value baz of type Classld. This value repre-
sents the CLSID of class Baz. Classld is an abstract
type exported by Com.hs.

• For each IID IFoo in the IDL module, M exports:

- A new, abstract, Haskell data type IFoo. Sur-
prisingly, no operations are provided on values of
type IFoo.

- A value iFoo of type Interface IFoo. This value
represents the IID for IFoo. Interface is an ab-
stract type constructor exported by Com.hs.

An interface pointer for an interface whose IID is IFoo
is represented by a Haskell value of type Com IFoo. Com
is an abstract type constructor exported by Com.hs.

• For each method meth in the interface IFoo, module M
exports a Haskell function meth with the type:

meth oi -> -> a„ -> Com IFoo -> 10 r

Here, ai,...,a„ are the argument types expected by
meth, extracted from the method's IDL signature, and
r is its result type. (If there are many results then
meth would have a tuple result type 10 (n,..., r„).)
The interface pointer is passed as the last argument
for reasons we discuss later.
Notice that meth cannot be invoked on any interface
pointer whose type is other than Com IFoo, so the in-
terface is type-secure.
The result of meth has type "10 r" rather than sim-
ply V to signal that meth might perform some in-
put/output. In Haskell, a function that has type
Int -> Int, say, is a function from integers to integers,
no more and no less. In particular it cannot perform
any input/output. All functions that can perform I/O
have a result type of the form IO r. This so-called
monadic I/O has become the standard way to do in-
put/output in purely functional languages [8].

'In fact, rather than reading the IDL text directly, the tool inter-
rogates the type library for H, a COM object generated by a Microsoft

tool from the IDL. The Microsoft tool does all the parsing and type-
checking of the IDL. The type-library object it produces is essentially
a parse tree with methods that allow its clients to navigate the parse
tree. The tool itself is written in Haskell and has been bootstrapped
to generate the Haskell module to access type library components.

• The library module Com.hs provides a generic proce-
dure createlnstance:

createlnstance :: Classld
-> Interface i
-> 10 (Com i)

Like CoCreatelnstance, it takes a CLSID and and
IID, and returns an interface pointer. Unlike the C++
procedure CoCreatelnstance, however, we use poly-
morphism to record the fact that the interface pointer
returned "corresponds to" the IID passed as argument.
This somewhat unusual use of polymorphism elegantly
captures exactly what we want to say, and achieves
type safety without having to resort to type casts as
in C or Java.

The 10 type has an exception mechanism that is used
to deal with the failure of createlnstance.

• The library module Com.hs provides a generic proce-
dure queryInterface:

querylnterface :: Interface j
-> Com i
-> ID (Com j)

The first argument is the IID for the desired inter-
face. The second is the interface on which we want to
query for another interface. The result is an interface
for the desired interface. Again, we use polymorphism
to make sure that the interface that is returned by
query Interface (of type Com j) corresponds to the
IID (of type Interface j) passed as the first argu-
ment.

• There are no programmer-visible procedures corre-
sponding to AddRef and Release. Instead, when
Haskell's garbage collector discovers that a value of
type Com i is now inaccessible, it calls Release on the
interface pointer it encapsulates. This is just a form
of finalization, a well-known technique in which the
garbage collector calls a user-defined procedure when
it releases the store held by an object.

4.2 The Agent example

character in return2. Having got a character, we can make
it talk a sentence by calling speak, or play a little animation
by calling play.

Here is a complete example program:

module Main where
import Agent

main = comRun $
do server <- createlnstance

agentServer SERVER iAgent
rob_id <- server * load "robby.acs"
robby <- server # getCharacter rob_id
robby # moveTo centerScreen
robby <t show
robby # speak "Hello world"

To make sense of this, we need to know the following Haskell
lore:

• Left associative function application is written as jux-
taposition. Thus fab means "f applied to a and b".
Right associative function application is written as $.
Thus f $ g a means "f applied to g a".

• The function # is simply reverse function application.

(#) :: a -> (a->b) -> b
x # f = f x

It is used here to allow us to write the inter-
face pointer first in a method call, much as hap-
pens in an object oriented language. For ex-
ample, robby # speak "Hello" means the same as
speak "Hello" robby. It is for this reason that Green
Card arranges that the interface pointer is the last pa-
rameter of each method call.

• The "do" notation is used to sequence a series of I/O-
performing function calls. It is much more syntacti-
cally convenient than using the bind and unit func-
tions of the monad, as the first papers about monadic
I/O did [8, 10]. The statement robby <- server
getCharacter rob.id binds the result of perform-
ing the action server t getCharacter rob_id to the
name robby.

These points make more sense in the context of a particular
example. Suppose we took the IDL description for Microsoft
Agent. After being processed by Green Card, we would
have a Haskell module Agent.hs that exports (among other
things) the types, functions, and values given in Figure 4.

Microsoft Agent implements cartoon characters that pop up
on the screen and talk to you. The animation is supported
by an agent server whose CLSID is agentServer, and whose
main interface is IAgent. Once we have created an agent
server, we can load a character from a file, getting a Charld
in reply. Now we can generate instances of that charac-
ter using getCharacter, getting an interface pointer for the

Now we can read the example. The function comRun is ex-
ported by Com.hs and has type

comRun 10 a -> 10 ()

It encapsulates a computation that accesses COM, preceding
it with initialization and following it with finalization.

"It is quite common for COM calls to return interfaces. Here.
getCharacter plays the role of createlnstance, returning an interface
to the new character. The interface may be have been created in-
side the agent server by a call to CoCreatelnstance but that does not
concern us.

module Agent where

— The Agent class
agentServer :: ClassID

— The IAgent interface

data IAgent = ...
iAgent :: Interface IAgent

— Agent interface type
-- ...and its IID

type Charld = Int
load :: String -> Com IAgent -> 10 Charld
getCharacter :: Charld -> Com IAgent -> 10 (Com IAgentCharacter)

...etc other methods of IAgent...

— The AgentCharacter interface
data IAgentCharacter = ... ~ Ditto IAgentCharacter
iAgentCharacter :: Interface IAgentCharacter

type Reqld = Int

play
speak
»ait

String
String
Reqld

■> Com IAgentCharacter
■> Com IAgentCharacter

Com IAgentCharacter

-> 10 Reqld
-> 10 Reqld
-> 10 Reqld

etc other methods of IAgentCharacter.

Figure 4: Exports from module Agent

Next, the call to createlnstance creates an instance of
the agent server. The next two lines load the animation
file "robby. acs" and create one instance of the character.
The curious intermediate value, rob.id. is an artifact of the
Agent server design, and not relevant here. In practice we
would abstract from this design quirk and define a new func-
tion createCharacter as:

createCharacter :: String -> Com IAgent
-> 10 (Com IAgentCharacter)

createCharacter agent server =
do a <- server # load agent

server # getCharacter a

Finally, the character appears in the center of the screen
and is asked to speak a phrase. All the AddRef and Release
calls are handled implicitly.

5 Why use Haskell?

One can, of course, invoke COM objects from Visual Basic
or C++. So is this paper of any interest to a VB or C++
programmer? We believe that it may be, as we argue in this
section.

When we program our first example in C++ we see that we
need to do a lot more bookkeeping:

void main 0
{
IAgentServer* server = NULL;
IAgentCharacter* robby = NULL;

HRESULT hr; int reqid; int charid;

hr = Olelnitialize(NULL);
if (checkHR(hr))

hr - CoCreateInstance(CLSID.AgentServer, NULL,
CLSCTX.SERVER, IID.IAgentServer, ftserver);

if (checkHR(hr))

hr = server->load(L"robby.acs", ftcharid);

if (SUCCEEDED(hr))

{
server->getCharacter(charid, fcrobby);

}
if (checkHR(hr))

{
hr = robby->show(ftreqid);
hr = robby->speak(L"Hello world", fcreqid);

robby->Release();

}
server->Release();

}
OleUnitializeO;

}
}

int checkHR(HRESULT hr)

if (FAILED(hr)) showError(hr);
return (SUCCEEDED(hr));

}

The error checking clutters the code a lot and it is not at

all trivial to be sure to call Release or QleUnitialize when
an error happens. Maybe that is the reason that most C++
programs just leave it out.

For simple scripts, there is hardly any difference between
Haskell and say Visual Basic (or Java). Except for the dec-
laration of the variable Dim Robby our Agent example looks
similar. The COM initialization and finalization is done au-
tomatically as are the calls to Release.

Dim Robby
AgentControl.Connected = True
AgentControl.Characters.Load "Robby",

" \robby.acs"
Set Robby = AgentControl.Characters("Robby")

Robby.Move (300,400)
Robby.Show
Robby.Speak "Hello, World!"

The real difference shows when we want to abstract from
commonly occurring patterns in scripts.

5.1 Extending the characters' repertoire

The methods play and speak are rather limited. We would
like to be able to define new, compound method, so that

robby # dancesAndSings

would make robby execute a sequence of play and speak
actions. Here's how we can do that in Haskell:

type Action = Com IAgentCharacter -> 10 Reqld

dancesAndSings :: Action
dancesAndSings agent =

do agent # speak "La la la"
agent # play "Dance"

Here we have defined the type Action as a shorthand to
denote actions that can be performed by an agent (like
play "Dance" or dancesAndSings).

In C++ or Java one could define dancesAndSings as the
method of a class that inherits from IAgentCharacter, using
implementation inheritance to arrange to call the character's
own play or speak procedure. To us, it seems rather un-
natural to introduce a type distinction between agents that
can dance and sing and agents that can danceAndSing. Ob-
ject oriented languages are good in expressing new objects
as extensions of existing objects, functional languages are
good in expressing new functions in terms of existing func-
tions. In Visual Basic we could certainly define a procedure
like dancesAndSings, but than we could only call it using a
different syntax than native class methods.

Sub DancesAndSings (Byref Agent)
Agent.Speak ("La la la")
Agent.Play ("Dance")

End Sub

Robby.Speak ("Hello")
DancesAndSings (Robby)

If the sequence of actions a particular agent has to perform
gets long, it becomes a bit tiresome writing all the "agent #"
parts, so we can rewrite the definition as a little script, like
this:

dancesAndSings :: Action
dancesAndSings agent =

agent 9 sequence [speak "La la la", play "Dance"]

where sequence is a re-usable function that executes a list
of actions from left to right:

sequence :: [Action] -> Action
sequence [a] agent = agent # a
sequence (a:as) agent =

do agent # a; sequence as agent

Notice that the type of the first argument of sequence is
a list of functions that return I/O performing computa-
tions. The ability to treat functions and computations as
first-class values, and to be able to build and decompose
lists easily, has a real payoff. In Java, C++, or VB it is
much harder to define custom control structures such as
sequence. For example in Java 1.1 one would use the pack-
age Java.lang.reflect r.o reify classes and methods into
first class values, or use the Command pattern [5] to im-
plement a command interpreter on top of the underlying
language. Note that in our case sequence [. ..] is another
composite method on agents, just as dancesAndSings, and
is called in exactly the same way as a native method.

The low cost of abstraction in Haskell is even more convinc-
ing when we define a family of higher-order functions to ease
moving agents around the screen. First we define a function
movePath as:

type Pos = (Int,Int)

movePath :: [Pos] -> Action
movePath path agent =

agent # sequence [moveTo pos I pos <- path]

Function movePath path robby moves agent robby along all
the points in the list path. In Visual Basic (or Java) we can
define a similar function quite easily as well by using the
built-in For ... Each ... Next control structure:

Sub MovePath (Byref Agent, Byref Path)
For Each Point In Path

Agent.MoveTo (Point)
Next point

End Sub

However, in Haskell we don't have to rely on foresight of
the language designers no built, in (■■very control structure \vc
might ever need in advance, since we can define our own

custom control structures on demand. Lazy evaluation and
higher order functions are essential for this kind of extensi-
bility [7].

We can use function movePath to construct functions that
move an agent along more specific figures, such as squares
and circles:

moveSquara :: Pos -> Int -> Action
moveSquara (x,y) width agent =

agent # movePath square
where

w = width 'div' 2
square = C (x-w,y-w),

, (x+w,y+w),
, (x-w,y-v)
]

(x+w,y-w)
(x-w,y+w)

moveCircle :: Pos -> Int -> Action
moveCircle (x,y) radius agent =

agent it movePath circle
where

circle = [(x + (radius*cos t)
, y + (radius»sin t)
)

I t <- [0,pi/100..pi]
]

By re-using sequence and movePath we were able to define
moveSquare and moveCircle very easily. Because Haskell
uses lazy evaluation, the lists of points are generated on
demand and therefore never completely in memory.

5.2 Synchronization

The Agent server manages each character as a separate, se-
quential process, running concurrently with the other char-
acters. Suppose we want one character to sing while the
other dances, we just write:

do erik # sings
simon # dances

It looks as if these take place sequentially, but actually they
are done in parallel. Each character maintains a queue of
requests it has got from the server and performs these in
sequence. Hence a call such as erik # sings returns im-
mediately, while erik is still singing and then makes simon
dance in parallel.

Now suppose we want daan to do something else only when
bnth erik and simon have terminated: how can we ask the
Agent server to do that? The answer is that every Action
returns a request ID, of type Reqld, on which any character
can wait, to synchronize on the completion of that request.
Thus:

do erikDone <- erik * sings
simonDone <- simon # dances
daan # wait erikDone; daan # wait simonDone

daan # speak "They're both done"

You may imagine that in a complex animation it can be com-
plicated to get all these synchronizations correct. We might
easily wait for the wrong request ID, or get deadlocked, or
whatever. What we would like to be able to do instead is to
say something like:

(erik t sings) <l> (simon # dances)
<*>
(daan # speak "They're both done")

Here <*> is an infix operator used to compose two anima-
tions in sequence, and < I > composes two animations in par-
allel. Since all the synchronization is now implicit, it is much
harder to get things wrong. We can now say what we want,
since we have abstracted away from the details how we have
to encode all the low-level synchronization between agents.

How can we program these "animation abstractions" in
Haskell?

To perform two animations in sequence, we need to wait
until all actions in the first animation are performed before
we can start the second. If we assume that an animation
returns the request-id of the very last action it performs, we
can wait for that one and be sure that all other actions in
that animation are also completed. In order to be able to
make an animation wait for a request-id, we need to know all
characters that will perform in that animation — its "cast".
Hence, we represent animations by a pair of an action that
returns a request-id, and the cast for that action:

type Anim = (10 Reqld, [Com IAgentCharacter])

Using type Anim, we could (erroneously) try to define se-
quential composition of two animations as follows:

(actionl, castl) <*> (action2, cast2) =
(action, castl 'union' cast2)
where

action =
do rl <- actionl

cast2 'waitFor' rl
action2

Unfortunately, this solution does not work because we can
get a deadlock when an agent is part of both animations, in
which case it could be waiting for itself to terminate. We
therefore take the difference (\\) between the casts involved
in the two animations.

A more subtle problem occurs when more than two ani-
mations are composed in sequence. Suppose we compose
three animations thus, (si <*> s2) <*> s3, and suppose
that agent daan plays a role in si and s3 but not s2. The
deadlock-avoidance device means that daan will not wait for
s2 to conclude before starting whatever actions are scripted
for him in s3. The solution is a little counter-intuitive: in
the composition si <*> s2, make the cast of si who are not
involved in s2 wait for the the cast of s2 to finish.

Our final (and correct) version of <*> will therefore be:

(<*>) :: Anim -> Anim -> Anim
(actionl, castl) <*> (action2, cast2) =
(action, castl 'union' cast2)
where

action =
do reqidl <- actionl

(cast2 \\ castl) 'waitFor' reqidl
reqid2 <- action2
(castl \\ cast2) 'waitFor' reqid2

The operation waitFor cast reqid makes every agent a in
its input list cast wait on the given request-id reqid. Func-
tion as 'waitFor' reqid always returns reqid.

waitFor :: [Com IAgentCharacter] -> Reqid
-> 10 Reqid

□ 'waitFor' reqid = return reqid
(a:as) 'waitFor' reqid =
do a f wait reqid

as 'waitFor' reqid

The definition of parallel composition is now easy. We let all
the agents of the second animation wait for the first anima-
tion to complete and the other way around. Note the nice
duality in the implementation of the sequential and parallel
combinator: we just swap the middle two statements.

(<l>) :: Anim -> Anim -> Anim
(actionl, castl) <|> (action2, cast2) =
(action, castl 'union' cast2)
where

action =
do reqidl <- actionl

reqid2 <- action2
(cast2 // castl) 'waitFor' reqidl
(castl // cast2) 'waitFor' reqid2

In about 20 lines of code we have a very clear definition and
implementation of two non-trivial combinators. Using the
properties of a pure lazy language we can use equational
reasoning to prove various of laws that we expect to hold
for the combinators:

x <*> (y <*> z)
x <|> (y <|> z)

x <1> y

(x <*> y) <*> z
(x <l> y) <l> z
y <l> x

Proving properties like these is not just a technical nicety!
As we have already seen, obtaining correct synchronization
among the characters is somewhat subtle, and conducting
proofs of properties like these can reveal subtle bugs. This
happened to us in practice: when proving the associative law
for <*>, we discovered that our previous implementation was
incorrect in a subtle way.

to do this next, but there are some interesting new chal-
lenges. Chief among these is that a COM object imple-
mented in Haskell must be supported by a Haskell run-time
system and garbage-collected heap. While the code might
be shared, we would prefer not to create a separate heap
for each object; remember a COM object might represent
a rather lightweight thing like a button or a scroll-bar. In-
stead, we would like all the Haskell objects in a process to
share the same RTS and heap.

Besides encapsulating a Haskell program as a COM ob-
ject, we also plan to encapsulate a Haskell interpreter as
a COM object, which implements the IScriptEngine in-
terface. This allows us to use Haskell programs to script
interactive Web pages

<SCRIPT LANGUAGE="HaskellScript">
do yes <- confirm ("Do you like Haskell?")

document#write (if yes then "I knew it!"
else "Are you sure?"

)
</SCRIPT>

or as embedded macro language for MS Office applications
such as Word and Excell. Similar implementations already
exist for Visual Basic, Java Script, Perl and Phyton.

7 Summary

The theme of this paper is that it is not only possible, to
script COM components in Haskell. but also desirable to do
so.

We have described a simple way to incorporate COM objects
into Haskell's type system, making use of polymorphism r.o
enforce the connection between an IID and the interface
pointer returned by query Interface.

We have also shown how one can use higher-order functions,
and first-class computations (that is, values of type 10 T), to
define powerful new abstractions. In the Agent example, we
built a little custom-designed sub-language, or combinator
library, for expressing parallel behavior. The implementa-
tion of the combinators is terse enough that we were able to
perform simple algebraic proofs of their properties.

All of this can doubtless be done in any programming lan-
guage. Our only claim here is that higher-order, typed, func-
tional languages make the job considerably easier.

Acknowledgments

6 What next?

So far we have described how we may access COM ob-
jects from a Haskell program. The obvious dual is to en-
capsulate a Haskell program as a COM object. We plan

We acknowledge gratefully the support of the Oregon Grad-
uate Institute during our sabbaticals, funded by a contract
with US Air Force Material Command (F19628-93-C-0069).
Machines and software were supported in part by gifts from
Microsoft Research.

References

[I] Kraig Brockschmidt. Inside OLE (second edition). Mi-
crosoft Press, 1995.

[2] David Chappel. Understanding ActiveX and OLE. Mi-
crosoft Press, 1996.

[3] Adam Denning. ActiveX Controls Inside Out (second
edition). Microsoft Press, 1997.

[4] J. Peterson (editor). Report on the programming
language HASKELL version 1.4. Technical report,
http://www.haskell.org/, April 6 1997.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, 1995.

[6] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification (revision
1.2). Object Management Group, 1993. OMG Docu-
ment Number 93.12.43.

[7] John Hughes. Why Functional Programming Matters.
Computer Journal. 32(2):98-107. 1989.

[8] Simon L. Peyton Jones and Philip Wadler. Imperative
functional programming. In POPL 20, pages 71-84,
1993.

[9] Simon Peyton Jones, Thomas Nordin, and Alastair
Reid. Green card: a foreign-language interface for
haskell. In Proc. Haskell Workshop, 1997.

[10] SL Peyton Jones and J Launchbury. State in Haskell.
Lisp and Symbolic Computation, 8(4):293-341, 1995.

[II] Microsoft Press. Automation Programmers Reference,
1997.

[12] Dale Rogerson. Inside COM. Microsoft Press, 1997.

[13] Jon Siegel. CORBA Fundamentals and Programming.
John Wiley k Sons, 1996.

A Outline of proof of associativity of <*>

In order to prove that <*> is associative, we make some
assumptions on the agent implementation.

The first assumption is that the call as 'waitFor' r be-
haves like the identity function with a side effect of letting all
agents in as wait for request id r. We assume that waitFor
has no other visible side effect. It then follows that waitFor
distributes over set union:

(as 'union' bs) 'waitFor' r =
do as 'waitFor' r; bs 'waitFor' r

or equivalently that waiting is commutative and idempotent:

do as 'waitFor' r; as 'waitFor' r =

as 'waitFor' r

do as 'waitFor' r; bs 'waitFor' r =

bs 'waitFor' r; as 'waitFor' r

The next law states that agents don't have to wait twice in
a row:

as 'waitFor' rl;
(as 'union' bs) 'waitFor' r2 =

(as 'union' bs) 'waitFor' r2

When there is no interaction between the set of agents that
are waiting and the cast of a subsequent action then waiting
can be delayed.

as 'waitFor' rl; r2 <- action =

rl <- action; as 'waitFor' r2

Using the above laws plus standard set theory, it follows
that <*> is associative.

(actionl,cl) <*> ((action2,c2) <*> (action3,c3))

First, we unfold the definition of <*>

do rl <- actionl
(c2 'union' c3)\\cl 'waitFor' rl
r23 <- do r2 <- action2

c3\\c2 'waitFor' r2
r3 <- action3
c2\\c3 'waitFor' r3

cl\\(c2 'union' c3) 'waitFor' r23

Next we flatten the sequence of actions

do rl <- actionl
c2\\cl 'waitFor' rl
c3\\(cl 'union' c2) 'waitFor' rl
r2 <- action2
c3\\c2 'waitFor' r2
r3 <- action3
r23 <- (c2\\c3) 'waitFor' r3
cl\\(c2 'union' c3) 'waitFor' r23

We rearrange the statements by applying the various swap
laws

do rl <- actionl
c2\\cl 'waitFor' rl
r2 <- action2
cl\\c2 'waitFor' r2
c3\\(cl 'union' c2) 'waitFor' r2
r3 <- action3
c2\\c3 'waitFor' r3
cl\\(c2 'union' c3) 'waitFor' r3

and introduce nesting again

do rl2 <- do rl <- actionl

10

c2\\cl 'waitFor' rl
r2 <- action2
cl\\c2 'waitFor' r2

c3\\(cl 'union' c2) 'waitFor' rl2
r3 <- action3
(cl 'union' c2)\\c3 'waitFor' r3

so that finally, we can fold the definition of <*>

((actionl.cl) <*> (action2,c2)) <*> (action3,c3)

11

