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Abstract 

Domain-specific languages are small, special purpose languages cre- 
ated to describe computational solutions in a particular problem domain. 
Domain-specific languages have proven themselves useful many times over; 
however, the cost of defining and implementing a domain specific language 
can be high. An approach that avoids the overhead of domain-specific 
language definition is to define an embedded language—i.e. a collection 
of definitions in a sufficiently expressive host language. Embedding a 
domain-specific language places high demands on a host language. The 
host languge must be able to express the essence of the domain, while not 
sacrificing too much in syntax. This report, presents a suite of seven exam- 
ples of embeddings using the functional programming language Haskell. 
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1    Introduction 
Domain-specific languages are small, special purpose languages created to de- 
scribe computational solutions in a particular problem domain. They vary 
greatly in presentation, level of abstraction and intended audience. They typi- 
cally incorporate the fundamental abstractions of the problem domain directly, 
without requiring that concepts be encoded. For example, in the widely used 
parser generator yacc, grammar productions can be expressed directly. Contrast 
this with the typical hand-written parser where a programmer had to translate 
the grammar productions into a program in some general purpose language. 
The most effective DSLs use notations that are closely related to the nota- 
tions already used by experts to communicate. In yacc, for example, ambiguous 
grammars can be annotated with precedence declarations to resolve ambiguity, 
reflecting standard practice in grammar specification. 

An embedded language is a DSL that is implemented as a collection of defini- 
tions in a host language. Many DSLs are implemented as stand-alone languages, 
with their own interpreters, translators and/or compilers. However, the devel- 
opment of such tools may require a lot of effort and careful design. An embedded 
language offers an alternative approach that leverages off of existing tools and 
language designs. However, for an embedded language to work well, the host 
language must have sufficient expressive power such that the embedding is nat- 
ural and doesn't distract the user with details irrelevant to the domain. 

We can view the role of an embedded language as lying along the spectrum 
from recognition of the particular problem domain to canonization as a separate 
domain specific language. This final step, where the problem domain is captured 
as a stand-alone DSL, is the final mature stage in the life of a problem domain. 
The role of embedded languages plays a part in the middle of the life cycle, 
where details and properties of the problem space are still being explored. At 
this stage, the designer doesn't want to be bogged down by the difficult issues 
of language design; rather, he wants to leverage off the framework provided by 
the existing language to quickly test ideas and construct solutions that are both 
extensible and modifiable. 

1.1    Embedded Languages and Stand-alone Languages 

One of the interesting aspects of embedded languages is that they don't have 
their own syntax. Their syntax is entirely borrowed from the host language. In 
fact, to a certain degree, it is hard to distinguish the embedded language from 
the host language. Or rather, it's hard to say where the embedded language 
stops and the host language picks up. The lack of a fixed boundary defining 
the language gives us great flexibility. It is easy to add new "features" to the 
embedded language just by defining new types or operations. 

The embedded language approach is often contrasted with the more tra- 
ditional approach of defining a stand-alone language with its own syntax and 
semantics. 

Advantages of embedded languages: 



• greater flexibility 

• language-level re-use (leverage off of the features of the host language) 

• it is often desirable to have the ability to step outside of a domain spe- 
cific language to the more general features of a general purpose language. 
Many domain specific languages are incrementally extended to general 
purpose languages, often with bad results (e.g. Tel, Perl). The embed- 
ded language approach avoids this pitfall by starting with a well-designed 
general purpose language. 

• No need to develop new logic for reasoning about domain specific pro- 
grams. You borrow the well-developed logic of the host language. 

• Programs can be optimized using existing facilities already developed for 
the host language. Partial evaluation would be particularly useful here. 

Advantages of stand-alone languages: 

• Direct expression of domain concepts—not encoded in syntax of general- 
purpose language 

• complete control over interpretation of syntax. For example, in the parsing 
domain, we are typically limited to recursive descent parsers, forcing the 
programmer to write the grammar in such a manner as to avoid left recur- 
sion. Yacc is able to translate its input into a bottom-up parser, allowing 
the programmer to write grammars in a much more natural style. 

• Programming errors can be interpreted with respect to the syntax and 
semantics of the language and their reporting tailored to language. For an 
embedded language, errors are reported by the host language, and may 
require expert knowledge to resolve. 

• Users of a domain specific language may find the generality of a general 
purpose language to hinder more than help. 

• A domain specific language can have a more refined type system than a 
general purpose host language. 

• Arguing about the correctness of an embedded language can be difficult, 
because it's hard to say what the language is. Any reasoning must be done 
in the logic of the host language, without being able to take advantage of 
the narrowing afforded by a specific domain. 

Of course, there's nothing to say that a mixture of embedded and stand- 
alone languages can't be employed in the same system. The Isabelle theorem 
prover, for example, expresses tactics as an embedded language in SML, while 
it expresses theories in a domain specific language interpreted by Isabelle. 



2    The Suite of Embedded languages 

We introduce the fundamental principles of the seven embedded languages. Full 
details may be found in the attached papers. 

2.1    Parsing 
In functional programming, a popular approach to building recursive descent 
parsers is to model them as functions, and to define higher-order functions 
(or combinators) that implement grammar constructions such as productions, 
and alternatives. The parser combinators of Hutton and Meijer is a library of 
functions for constructing parsers [Volume I]. 

The key abstraction of the parser combinators is that of an annotated BNF. 
Productions are annotated with values—when the given production is recog- 
nized, the result of parsing is the indicated value. However, parser combinators 
are much more flexible because we are not restricted to the traditional rigid 
model of productions, terminals and non-terminals. With the combinators, we 
construct values of type Parser a, where a is the type of the result. For exam- 
ple, a parser that parsed integer literals would be a value of type Parser Int. 
We can combine parsers in all the ways available to us in the language: they may 
be stored, passed as an argument, or returned as a result. This simplified view 
of parsers also makes unnecessary the traditional distinction between scanners 
and parser. We can combine the two in a single specification quite naturally. 
Regardless, BNF-style grammars are straightforward to express using the parser 
combinators and we will continue using the terminology of BNF as a convenient 
way of talking about them. 

A final feature of note regarding the parser combinators is that they aren't 
restricted to a particular class of grammars, such as LALR(l) for yacc. An 
ambiguous grammar is implemented as a parser that yields multiple results. 
Laziness allows us to use the generality of non-deterministic parsing without 
necessarily having to explore all possible parses. 

Productions are built using monadic do notation so that it's easy to bind a 
name to any part of a production. The following example parses an if state- 
ment, and constructs the appropriate abstract syntax out of the relevant parts 
of the if using buildlf. 

plf = do    symbol "if" 
b <- expr 
symbol "then" 
x <- expr 
symbol "else" 
y <- expr 
return (buildlf b x y) 

By using the do notation, the programmer is able to name the results, x and y 
in this case, that will be used later, and easily discard the results of parses that 
don't return values of interest, such as if, then and else. 



Alternative parses are indicated by the ++ combinator. For example, if we 
had another parser pCase that parsed case statements, we could form a parser 
that recognizes either if or case by joining the two as follows: plf ++ pCase. 

2.2    Pretty Printing 

Pretty printing is another example of a domain long known to be well-suited to 
embedding. The pretty printing combinators of Hughes is a library of functions 
for constructing pretty printers [Volume II]. 

The key abstraction is that of an "intelligent document"—a document which 
can have a variety of textual layouts depending on its context (position on page, 
line width, ribbon width, etc). The combinators build intelligent documents that 
can be layed out horizontally, vertically, or selectively based on what fits on the 
line. In addition, there's also a combinator for indicating indentation in vertical 
layouts. 

The pretty printing combinators can be summarized as follows: 

• text    construct a document consisting of a literal string 

• <>   put two documents next to each other 

• $$    put two documents over each other 

• sep    takes a list of documents and creates a single document, separated 
either by <> or $$, depending on which gives the best layout. 

• nest   increases the indentation of a document that's layed out vertically 

context. 
For example, we can layout the if statement parsed by the previous example: 

pplf  (If  (b,  x, y)) = sep  [text "if " <> ppExpr b, 
nest 2  (text  "then "  <> ppExpr y), 
nest 2  (text  "else "  <> ppExpr z)] 

This can produce either of the following two layouts, depending on which one 
fits best. 

if x then y else z 
if x 
then y 
else z 

2.3    Hawk 

Hawk is a library for building executable specifications of microprocessors that 
concentrates on the level of micro-architecture. Hawk has been used to spec- 
ify modern microarchitectures similar to the Pentium Pro with features such 
as super-scalar execution, out-of-order execution and register renaming [Vol- 
ume III]. 



The key abstraction in Hawk is signals—discrete time-dependent values. 
Computer signals are typically binary (Signal Bool), although we can, for ex- 
ample, model a bundle of binary signals more conveniently as a (fixed-precision) 
integer (Signal Int), or model a control signal as an enumerated datatype 
(Signal Reg). Processing units are expressed as functions on signals. Circuits 
are formed out of mutually recursive definitions of processing units. For exam- 
ple, the following is the top-level definition of an simple processor 

data Reg = RO   I  Rl   I  R2  I  R3 
data OpCode = ADD  I  SUB  I   INC 

simple  ::   (Signal OpCode, Signal Reg, 
Signal Reg,  Signal Reg) -> 

(Signal Reg, Signal Int) 
simple  (opcode, destReg, srcRegA, srcRegB) = 

(destReg',  aluOutput') 
where 

(aluInputA,  aluInputB)  = regFile (destReg', aluOutput') 
(srcRegA,  srcRegB) 

aluOutput = alu opcode aluInputA aluInputB 
aluOutput'  = delay 0 aluOutput 
destReg'  = delay RO destReg 

2.4    Fran 
Fran (Function Reactive Animation) is a library for composing interactive mul- 
timedia animations [Volume IV]. 

The two key abstractions in Fran are behaviors and events. A behavior is 
a value which varies over time. It could be a time-dependent number, such as 
a sine wave, or even a time-dependent image, such as an animation. An event 
is a value at a particular time, such as a button-press. Behaviors are used to 
describe animations, and events are used to describe how those animations react 
to events in the outside world. 

The basic combinator for describing (2-D) animations is moveXY. For exam- 
ple, the following describes an image, called charlotte, that moves smoothly 
back and forth. 

leftRightCharlotte = moveXY wiggle 0 charlotte 
charlotte = importBitmap "charlotte.bmp" 

wiggle is a real-valued behavior that oscillates between negative one and pos- 
itive one and describes the desired behavior along the X axis. Animations can 
be combined using combinators such as over, which lays one animation on top 
of another. For example, we could define another animation that moves up and 
down. 

upDownPat = moveXY 0 waggle pat 



And then we could combine the two into a kind of dance: 

charlottePatDance = leftRightCharlotte 'over' upDownPat 

The basic combinator for describing the interaction of behaviors with events 
is untilB. untilB pastes together two animations in time with the transition 
from one to the other indicated by an event. For example, the following indicates 
a red color attribute that will transition to a blue color attribute when the left 
mouse button is pressed. 

red  'untilB'   (lbp -=> blue) 

2.5    Haskore 
Haskore is a collection of Haskell modules designed for expressing musical struc- 
tures in the high-level, declarative style of functional programming [Volume V]. 
In Haskore, musical objects consist of primitive notions such as notes and rests, 
operations to transform musical objects such as transpose and tempo-scaling, 
and operations to combine musical objects to form more complex ones, such as 
concurrent and sequential composition. 

The key abstractions in Haskore are those of a score, i.e. notated music, and 
a player, i.e. an interpretation of the score. The notion of a player is interpreted 
broadly, including both performers (like a MIDI-capable sound card) and the 
layout and printing of sheet music. 

The basic building block in Haskore is a Note, which specifies pitch, duration 
and any attributes, such as accents, or grace notes. Melodies are composed by 
stringing together notes sequentially using : + :. Harmonies are composed by 
combining melodies in parallel using : =:. 

For example, here's the first line of "Row row row your boat." 

rowl = c 5 qn  [] 
: + : c 5 qn  [] 
: + : c 5  (trn * 2)   []   : + :  d 5 trn  [] 
: + : e 5 qn  [] 

Each note on the scale has an associated function of the same name. In the 
example above, we use the notes c, d and e. Each note takes three arguments:, 
the first indicates which octave the note lies in, the second the duration of the 
note, and the third, a list of any attributes the note has (like dynamic marking 
or grace notes—this example contains no attributes). The durations used are 
qn for quarter note, trn for eighth-note triplet, and shortly we'll use hn for half 
note. 

It's easy to make a round. If the whole melody is called row, the following 
function will form a round with n singers, each starting a half note after the 
last. 

rown 0 = Rest 0 
rown n = rown (n - 1)   :=:  delay ((n - 1)  * hn) row 



2.6 CGI 

HTML, the language in which web pages are written, is a static layout language. 
However, many web pages need to respond to the actions of remote users, such as 
taking information for credit card orders. This interaction is done by the use of 
CGI scripts—programs running on the server that generate HTML in response 
to data sent by the remote browser. The CGI library provides combinators 
for generating HTML and a nicer interface to the awkward argument passing 
convention of CGI scripts [Volume VI]. 

The underlying abstraction is that of hypertext—text annotated with mark- 
up indicating the document structure, as well as the relationship with other 
documents (hyper-links). The abstraction for CGI scripts is essentially program 
generation in the simplified case where the programs are HTML. 

The following is a script that gives positive reinforcement for choosing a 
radio button labelled Haskell, instead of one labelled Java. 

script env = 
case lookup "language" env of 

Nothing -> page "Language Choice" [] [choice] 

Just "Haskell" -> 
page "Chose Haskell" D Chi ("You chose well!")] 

Just "Java" -> 
page "Chose Java" [] [hi ("Well, If you insist.")] 

choice = 

gui "choice.cgi" [ buttons, 
submit "" "Submit", 

reset "" "Reset" ] 

buttons = (radio 'group' "language")  ["Haskell", "Java"] 

2.7 Agent Script 

AgentScript is a library of functions for controlling MicroSoft agents, animated 
entities that interact with the user by gestures and synthesized speech [Vol- 
ume VII]. Scripts for the agents are put together with parallel and sequential 
combinators that make specification of interactions with multiple agents par- 
ticularly easy. This is because synchronization is taken care of by AgentScript, 
unlike how it is done in C+-f- or Visual Basic, where the action of each agent 
must be carefully synchronized by hand with the other agents—a fairly error- 
prone process. 

The basic combinators are <*> for sequential composition (do one thing 
after another), and < I > for parallel composition (do them simultaneously). For 
example, the following is the top-level code for a demo involving three interacting 
agents. seqAnim composes the elements of the list using sequential composition. 



demo erik simon daaii = 

seqAnim [ erik introduces, 

simon helps, 

daan showUpsUp <|> simon looksAround 

<|> erik moves, 

(erik wantsCompiler <*> daan hasDonelt) 

<|> simon looksAtRod, 

simon isPleased, 
erik wantsAnimation, 

daan explains, 

simon wantsReport, 

daan isSurprised, 

daan writes 'while' 

(erik searches 'while' 

(simon goesHome) 

), 
daan looksGood <|> erik wavesGoodbye, 

erik goesSurfing, 
daan endsTheShow 

] 

3    Implementation Needs 

The language Haskell offers a number of powerful features that aid in embedding 
languages. Here is a list of those that are exploiting by the examples in the 
previous section. 

Higher-order functions give us the ability to abstract over common patterns 
of control, which allows us to hide unnecessary details and cleanly construct new 
components from old ones. 

Polymorphism   gives us the ability to abstract over common patterns of data. 

Lazy evaluation allows us to abstract away from evaluation order. Part 
of what makes popular languages a poor choice for embedding languages is 
that they enforce a strict evaluation order that may not be appropriate for a 
given problem domain. This is most often the case for domains that deal with 
conceptually infinite concepts such as streams. 

Type inference is another aid in reducing levels of detail, reducing the clutter 
by avoiding unnecessary declarations, and at the same time assuring that terms 
are used consistent to their interfaces. 



Type classes in Haskell support a structured method for defining overloaded 
operators. They give two main benefits. First, overloading is natural, and is 
a notational occurance in many problem domains. Supporting it helps make 
embedding more natural. Further, type inference can be used to identify misuse 
of overloading. Second, it reduces clutter by providing a way of hiding and 
propagating implicit parameters. 

Monad support aids in explicit management of computation. Most lan- 
guages have fixed notions of computation, such as evaluation order, how excep- 
tions are handled, and how I/O is done. How these features interact is also 
hard-coded into the language. It is awkward or impossible to escape the under- 
lying model of computation. A poor match between the builtin computational 
model of language and the computational model of the problem domain spells 
trouble for an embedded language. A currently popular technique for man- 
aging computational details in functional programming languages is to use a 
monad, a structure borrowed from mathematics which encapsulates notions of 
computation. Successful use of monads, however, requires a fairly sophisticated 
language. Monadic programming is Haskell is supported by all of the features 
so far listed, plus a language construct, the do notation, for writing programs 
using monads. 

Garbage collection aids in abstracting away from details of resource alloca- 
tion. These details are a major distraction to C and C++ programmers, and a 
major source of errors. 

Fixity control aids in providing syntax that looks more natural and avoids 
unnecessary use of parentheses. 
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Abstract 

In functional programming, a popular approach to building recursive descent parsers is 
to model parsers as functions, and to define higher-order functions (or combinators) that 
implement grammar constructions such as sequencing, choice, and repetition. Such parsers 
form an instance of a monad, an algebraic structure from mathematics that has proved 
useful for addressing a number of computational problems. The purpose of this article is 
to provide a step-by-step tutorial on the monadic approach to building functional parsers, 
and to explain some of the benefits that result from exploiting monads. No prior knowledge 
of parser combinators or of monads is assumed. Indeed, this article can also be viewed as 
a first introduction to the use of monads in programming. 
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1 Introduction 

In functional programming, a popular approach to building recursive descent parsers 
is to model parsers as functions, and to define higher-order functions (or combina- 
tors) that implement grammar constructions such as sequencing, choice, and repe- 
tition. The basic idea dates back to at least Burge's book on recursive programming 
techniques (Bürge, 1975), and has been popularised in functional programming by 
Wadler (1985), Hutton (1992), Fokker (1995), and others. Combinators provide a 
quick and easy method of building functional parsers. Moreover, the method has the 
advantage over functional parser generators such as Ratatosk (Mogensen. 199H) and 
Happy (Gill & Marlow, 1995) that one has the full power of a functional language 
available to define new combinators for special applications (Landin, 1966). 

It was realised early on (Wadler, 1990) that parsers form an instance of a monad, 
an algebraic structure from mathematics that has proved useful for addressing a 
number of computational problems (Moggi, 1989; Wadler, 1990; Wadler, 1992a; 
Wadler, 1992b). As well as being interesting from a mathematical point of view, 
recognising the monadic nature of parsers also brings practical benefits. For exam- 
ple, using a monadic sequencing combinator for parsers avoids the messy manip- 
ulation of nested tuples of results present in earlier work. Moreover, using monad 
comprehension notation makes parsers more compact and easier to read. 

Taking the monadic approach further, the monad of parsers can be expressed in 
a modular way in terms of two simpler monads. The immediate benefit is that the 
basic parser combinators no longer need to be defined explicitly. Rather, they arise 
automatically as a special case of lifting monad operations from a base monad m 
to a certain other monad parameterised over m. This also means that, if we change 
the nature of parsers by modifying the base monad (for example, limiting parsers 
to producing at most one result), then new combinators for the modified monad of 
parsers also arise automatically via the lifting construction. 

The purpose of this article is to provide a step-by-step tutorial on the monadic 
approach to building functional parsers, and to explain some of the benefits thai 
result from exploiting monads. Much of the material is already known. Our contri- 
butions are the organisation of the material into a tutorial article; the introduction 
of new combinators for handling lexical issues without a separate lexer; and a new 
approach to implementing the offside rule, inspired by the use of monads. 

Some prior exposure to functional programming would be helpful in reading this 
article, but special features of Gofer (Jones, 1995b) — our implementation language 
— are explained as they are used. Any other lazy functional language that supports 
(multi-parameter) constructor classes and the use of monad comprehension notation 
would do equally well. No prior knowledge of parser combinators or monads is 
assumed. Indeed, this article can also be viewed as a first introduction to the use of 
monads in programming. A library of monadic parser combinators taken from this 
article is available from the authors, via the World-Wide-Web. 
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2 Combinator parsers 

We begin by reviewing the basic ideas of combinator parsing (Wadler, 1985; Hutton, 
1992; Fokker, 1995). In particular, we define a type for parsers, three primitive 
parsers, and two primitive combinators for building larger parsers. 

2.1   The type of parsers 

Let us start by thinking of a parser as a function that takes a string of characters as 
input and yields some kind of tree as result, with the intention that the tree makes 
explicit the grammatical structure of the string: 

type Parser = String -> Tree 

In general, however, a parser might not consume all of its input string, so rather 
than the result of a parser being just a tree, we also return the unconsumed suffix 
of the input string. Thus we modify our type of parsers as follows: 

type Parser = String ->  (Tree,String) 

Similarly, a parser might fail on its input string. Rather than just reporting a 
run-time error if this happens, we choose to have parsers return a list of pairs 
rather than a single pair, with the convention that the empty list denotes failure of 
a parser, and a singleton list denotes success: 

type Parser = String ->  [(Tree.String)] 

Having an explicit representation of failure and returning the unconsumed part 
of the input string makes it possible to define combinators for building up parsers 
piecewise from smaller parsers. Returning a list of results opens up the possibility 
of returning more than one result if the input string can be parsed in more than 
one way, which may be the case if the underlying grammar is ambiguous. 

Finally, different parsers will likely return different kinds of trees, so it is useful 
to abstract on the specific type Tree of trees, and make the type of result values 
into a parameter of the Parser type: 

type Parser a = String ->   [(a,String)] 

This is the type of parsers we will use in the remainder of this article. One could 
go further (as in (Hutton, 1992), for example) and abstract upon the type String 
of tokens, but we do not have need for this generalisation here. 

2.2 Primitive parsers 

The three primitive parsers defined in this section are the building blocks of com- 
binator parsing. The first parser is result v, which succeeds without consuming 
any of the input string, and returns the single result v: 

result  :: a -> Parser a 
result v = \inp -> C(v,inp)] 
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An expression of the form \x -> e is called a A-abstraction, and denotes the func- 
tion that takes an argument x and returns the value of the expression e. Thus 
result v is the function that takes an input string inp and returns the single- 
ton list [(v.inp)]. This function could equally well be defined by result v inp 
= [(v.inp)], but we prefer the above definition (in which the argument inp is 
shunted to the body of the definition) because it corresponds more closely to the 
type result :: a -> Parser a, which asserts that result is a function that takes 
a single argument and returns a parser. 

Dually, the parser zero always fails, regardless of the input string: 

zero   ::   Parser a 
zero    = \inp ->   [] 

Our final primitive is item, which successfully consumes the first character if the 
input string is non-empty, and fails otherwise: 

item ::  Parser Char 
item    = \inp -> case inp of 

D ">   □ 
(x:xs)  ->   [(x,xs)] 

2.3 Parser combinators 

The primitive parsers defined above are not very useful in themselves. In this section 
we consider how they can be glued together to form more useful parsers. We take 
our lead from the BNF notation for specifying grammars, in which larger gram- 
mars are built up piecewise from smaller grammars using a sequencing operator — 
denoted by juxtaposition — and a choice operator — denoted by a vertical bar |. 
We define corresponding operators for combining parsers, such that the structure 
of our parsers closely follows the structure of the underlying grammars. 

In earlier (non-monadic) accounts of combinator parsing (Wadler. 1985; Hutton, 
1992; Fokker, 1995), sequencing of parsers was usually captured by a combinator 

seq ::   Parser a -> Parser b -> Parser (a,b) 
p   'seq'   q =  \inp ->   C((v,w),inp'')   I   (v.inp')     <- p  inp 

,   (w.inp'') <- q inp'] 

that applies one parser after another, with the results from the two parsers being 
combined as pairs. The infix notation p 'seq' qis syntactic sugar for seq p q; any 
function of two arguments can used as an infix operator in this way, by enclosing 
its name in backquotes. At first sight, the seq combinator might seem a natural 
composition primitive. In practice, however, using seq leads to parsers with nested 
tuples as results, which are messy to manipulate. 

The problem of nested tuples can be avoided by adopting a monadic sequencing 
combinator (commonly known as bind) which integrates the sequencing of parsers 
with the processing of their result values: 

bind ::  Parser a ->  (a -> Parser b)   -> Parser b 
p  'bind' f = \inp -> concat  [f v inp'   I   (v.inp') <- p inp] 
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The definition for bind can be interpreted as follows. First of all, the parser p is 
applied to the input string, yielding a list of (value,string) pairs. Now since f is a 
function that takes a value and returns a parser, it can be applied to each value 
(and unconsumed input string) in turn. This results in a list of lists of (value.string) 
pairs, that can then be flattened to a single list using concat. 

The bind combinator avoids the problem of nested tuples of results because the 
results of the first parser are made directly available for processing by the second, 
rather than being paired up with the other results to be processed later on. A 
typical parser built using bind has the following structure 

pi   'bind'  \xl -> 
p2   'bind'   \x2 -> 

pn  'bind'  \xn -> 
result  (f xl x2  ...  xn) 

and can be read operationally as follows: apply parser pi and call its result value 
xl; then apply parser p2 and call its result value x2; ...; then apply the parser pn 
and call its result value xn; and finally, combine all the results into a single value 
by applying the function i. For example, the seq combinator can be defined by 

p 'seq' q = p 'bind' \x -> 
q 'bind' \y -> 
result  (x,y) 

(On the other hand, bind cannot be defined in terms of seq.) 
Using the bind combinator, we are now able to define some simple but useful 

parsers. Recall that the item parser consumes a single character unconditionally. In 
practice, we are normally only interested in consuming certain specific characters. 
For this reason, we use item to define a combinator sat that takes a predicate (a 
Boolean valued function), and yields a parser that consumes a single character if it 
satisfies the predicate, and fails otherwise: 

sat     ::   (Char -> Bool)  -> Parser Char 
sat p =  item  'bind'   \x -> 

if p x then result x else zero 

Note that if item fails (that is, if the input string is empty), then so does sat p, 
since it can readily be observed that zero 'bind' 1 = zero for all functions f of 
the appropriate type. Indeed, this equation is not specific to parsers: it holds for 
an arbitrary monad with a zero (Wadler, 1992a; Wadler, 1992b). Monads and their 
connection to parsers will be discussed in the next section. 

Using sat, we can define parsers for specific characters, single digits, lower-case 
letters, and upper-case letters: 

char    ::  Char -> Parser Char 
char x = sat  (\y -> x == y) 
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digit :: Parser Char 

digit = sat (\x -> '0' <= x && x <= '9') 

lower :: Parser Char 

lower = sat (\x -> 'a' <= x &ft x <= 'z') 

upper :: Parser Char 

upper = sat (\x -> 'A' <= x &ft x <= 'Z') 

For example, applying the parser upper to the input string "Hello" succeeds with 
the single successful result [('H' ,"ello")], since the upper parser succeeds with 
'H' as the result value and "ello" as the unconsumed suffix of the input. On the 
other hand, applying the parser lower to the string "Hello" fails with [] as the 
result, since 'H' is not a lower-case letter. 

As another example of using bind, consider the parser that accepts two lower-case 
letters in sequence, returning a string of length two: 

lower 'bind' \x -> 
lower 'bind' \y -> 
result  [x,y] 

Applying this parser to the string "abed" succeeds with the result [("ab" , "cd")] . 
Applying the same parser to "aBcd" fails with the result [], because even though 
the initial letter 'a' can be consumed by the first lower parser, the following letter 
' B' cannot be consumed by the second lower parser. 

Of course, the above parser for two letters in sequence can be generalised to a 
parser for arbitrary strings of lower-case letters. Since the length of the string to 
be parsed cannot be predicted in advance, such a parser will naturally be defined 
recursively, using a choice operator to decide between parsing a single letter and 
recursing, or parsing nothing further and terminating. A suitable choice combinator 
for parsers, plus, is defined as follows: 

plus ::   Parser a -> Parser a ->  Parser a 
p   'plus'  q    = \inp ->  (p  inp ++ q inp) 

That is, both argument parsers p and q are applied to the same input string, and 
their result lists are concatenated to form a single result list. Note that it is not 
required that p and q accept disjoint sets of strings: if both parsers succeed on 
the input string then more than one result value will be returned, reflecting the 
different ways that the input string can be parsed. 

As examples of using plus, some of our earlier parsers can now be combined to 
give parsers for letters and alpha-numeric characters: 

letter       ::   Parser Char 
letter        =  lower  'plus'  upper 

alphanum ::   Parser Char 
alphanum    = letter 'plus' digit 
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More interestingly, a parser for words (strings of letters) is defined by 

word  ::  Parser String 
word    = neWord  'plus' result "" 

where 
neWord = letter 'bind' \x -> 

word 'bind' \xs -> 
result  (x:xs) 

That is, word either parses a non-empty word (a single letter followed by a word, 
using a recursive call to word), in which case the two results are combined to form 
a string, or parses nothing and returns the empty string. 

For example, applying word to the input "Yes!" gives the result [("Yes","!"), 
("Ye","s!"), ("Y'V'es!"), (""."Yes!")]. The first result, ("Yes"," !"),is the 
expected result: the string of letters "Yes" has been consumed, and the unconsumed 
input is " !". In the subsequent results a decreasing number of letters are consumed. 
This behaviour arises because the choice operator plus is non-deterministic: both 
alternatives can be explored, even if the first alternative is successful. Thus, at each 
application of letter, there is always the option to just finish parsing, even if there 
are still letters left to be consumed from the start of the input. 

3 Parsers and monads 

Later on we will define a number of useful parser combinators in terms of the 
primitive parsers and combinators just defined. But first we turn our attention to 
the monadic nature of combinator parsers. 

3.1   The parser monad 

So far. we have defined (among others) the following two operations on parsers: 

result   ::   a -> Parser a 
bind       ::   Parser a ->  (a -> Parser b)  -> Parser b 

Generalising from the specific case of Parser to some arbitrary type constructor 
M gives the notion of a monad: a monad is a type constructor M (a function from 
types to types), together with operations result and bind of the following types: 

result   ::   a -> M a 
bind      ::  M a -> (a -> M b)  -> H b 

Thus, parsers form a monad for which M is the Parser type constructor, and result 
and bind are defined as previously. Technically, the two operations of a monad must 
also satisfy a few algebraic properties, but we do not concern ourselves with such 
properties here; see (Wadler, 1992a; Wadler, 1992b) for more details. 

Readers familiar with the categorical definition of a monad may have expected 
two operations map : : (a -> b) -> (M a -> M b) and join : : M (M a) -> M 
a in place of the single operation bind. However, our definition is equivalent to the 
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categorical one (Wadler, 1992a; Wadler, 1992b), and has the advantage that bind 
generally proves more convenient for monadic programming than map and join. 

Parsers are not the only example of a monad. Indeed, we will see later on how 
the parser monad can be re-formulated in terms of two simpler monads. This raises 
the question of what to do about the naming of the monadic combinators result 
and bind. In functional languages based upon the Hindley-Milner typing system 
(for example, Miranda* and Standard ML) it is not possible to use the same names 
for the combinators of different monads. Rather, one would have to use different 
names, such as resultM and bindH, for the combinators of each monad M. 

Gofer, however, extends the Hindley-Milner typing system with an overloading 
mechanism that permits the use of the same names for the combinators of different 
monads. Under this overloading mechanism, the appropriate monad for each use of 
a name is calculated automatically during type inference. 

Overloading in Gofer is accomplished by the use of classes (Jones, 1995c). A class 
for monads can be declared in Gofer by: 

class Monad m where 
result   ::   a -> m a 
bind       ::  m a ->   (a -> m b)   -> m b 

This declaration can be read as follows: a type constructor ra is a member of the 
class Monad if it is equipped with result and bind operations of the specified types. 
The fact that m must be a type constructor (rather than just a type) is inferred 
from its use in the types for the operations. 

Now the type constructor Parser can be made into an instance of the class Monad 
using the result and bind from the previous section: 

instance Monad Parser where 
— result   ::   a -> Parser a 
result v      = \inp ->  [(v.inp)] 

— bind      ::   Parser a ->  (a -> Parser b)  -> Parser b 
p   'bind'  1 = \inp -> concat   [f v out   I   (v.out)  <- p  inp] 

We pause briefly here to address a couple of technical points concerning Gofer. 
First of all, type synonyms such as Parser must be supplied with all their argu- 
ments. Hence the instance declaration above is not actually valid Gofer code, since 
Parser is used in the first line without an argument. The problem is easy to solve 
(redefine Parser using data rather than type, or as a restricted type synonym), 
but for simplicity we prefer in this article just to assume that type synonyms can be 
partially applied. The second point is that the syntax of Gofer does not currently 
allow the types of the defined functions in instance declarations to be explicitly 
specified. But for clarity, as above, we include such types in comments. 

Let us turn now to the following operations on parsers: 

' Miranda is a trademark of Research Software Ltd. 
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zero   ::   Parser a 
plus   ::   Parser a -> Parser a -> Parser a 

Generalising once again from the specific case of the Parser type constructor, we 

arrive at the notion of a monad with a zero and a plus, which can be encapsulated 

using the Gofer class system in the following manner: 

class Monad m => MonadOPlus m where 

zero  ::  m a 
(++)   :: m a -> m a -> m a 

That is, a type constructor m is a member of the class MonadOPlus if it is a member 

of the class Monad (that is, it is equipped with a result and bind), and if it is also 

equipped with zero and (++) operators of the specified types. Of course, the two 

extra operations must also satisfy some algebraic properties; these are discussed 

in (Wadler, 1992a; Wadler, 1992b). Note also that (++) is used above rather than 

plus, following the example of lists: we will see later on that lists form a monad 

for which the plus operation is just the familiar append operation (++). 

Now since Parser is already a monad, it can be made into a monad with a zero 

and a plus using the following definitions: 

instance MonadOPlus Parser where 

— zero   ::  Parser a 

zero = \inp ->   [] 

— (++)   ::  Parser a -> Parser a -> Parser a 

p ++ q      = \inp ->  (p  inp ++ q inp) 

3.2 Monad comprehension syntax 

So far WP have seen one advantage of recognising the monadic nature of parsers: the 

monadic sequencing combinator bind handles result values better than the conven- 

tional sequencing combinator seq. In this section we consider another advantage of 

the monadic approach, namely that monad comprehension syntax can be used to 

make parsers more compact and easier to read. 
As mentioned earlier, many parsers will have a structure as a sequence of binds 

followed by single call to result: 

pi   'bind'  \xl -> 

p2   'bind'  \x2 -> 

pn  'bind'  \xn -> 

result  (f xl x2   ...  xn) 

Gofer provides a special notation for defining parsers of this shape, allowing them 

to be expressed in the following, more appealing form: 

[ f xl X2   ...   xn   I   xl <- pi 



string : String 

string ■f ii = [""] 

string (x xs) = [x:xs 

Monadic Parser Combinators 11 

,  x2 <- p2 

>   * ■ • 

,  xn <- pn ] 

In fact, this notation is not specific to parsers, but can be used with any monad 
(Jones, 1995c). The reader might notice the similarity to the list comprehension 
notation supported by many functional languages. It was Wadler (1990) who first 
observed that the comprehension notation is not particular to lists, but makes sense 
for an arbitrary monad. Indeed, the algebraic properties required of the monad op- 
erations turn out to be precisely those required for the notation to make sense. To 
our knowledge, Gofer is the first language to implement Wadler's monad compre- 
hension notation. Using this notation can make parsers much easier to read, and 
we will use the notation in the remainder of this article. 

As our first example of using comprehension notation, we define a parser for 
recognising specific strings, with the string itself returned as the result: 

-> Parser String 

_ <- char x,  _ <- string xs] 

That is, if the string to be parsed is empty we just return the empty string as 
the result; [""] is just monad comprehension syntax for result "". Otherwise, 
we parse the first character of the string using char, and then parse the remaining 
characters using a recursive call to string. Without the aid of comprehension 
notation, the above definition would read as follows: 

string ::   String -> Parser String 
string "" = result "" 
string  (x:xs)  =  char x 'bind'  \_ -> 

string xs   'bind'  \_ -> 
result  (x:xs) 

Note that the parser string xs fails if only a prefix of the given string xs is 
recognised in the input. For example, applying the parser string "hello" to the 
input "hello there" gives the successful result [("hello"," there")]. On the 
other hand, applying the same parser to "helicopter" fails with the result [], 
even though the prefix "hel" of the input can be recognised. 

In list comprehension notation, we are not just restricted to generators that bind 
variables to values, but can also use Boolean-valued guards that restrict the values 
of the bound variables. For example, a function negs that selects all the negative 
numbers from a list of integers can be expressed as follows: 

negs       ::   [Int]   ->   [Int] 
negs xs =  [x  1   x <- xs,  x < 0] 

In this case, the expression x < 0 is a guard that restricts the variable x (bound 
by the generator x <- xs) to only take on values less than zero. 

Wadler (1990) observed that the use of guards makes sense for an arbitrary 
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monad with a zero. The monad comprehension notation in Gofer supports this use 
of guards. For example, the sat combinator 

sat     ::   (Char -> Bool) -> Parser Char 
sat p = item  'bind'   \x -> 

if p x then result x else zero 

can be defined more succinctly using a comprehension with a guard: 

sat     ::   (Char -> Bool)  -> Parser Char 
sat p =   [x   I   x <- item,  p x] 

We conclude this section by noting that there is another notation that can be 
used to make monadic programs easier to read: the so-called "do" notation (Jones, 
1994; Jones k Launchbury, 1994). For example, using this notation the combinators 

string and sat can be denned as follows: 

string ::  String -> Parser String 
string "" = do { result "" } 
string (x:xs) = do { char x ;  string xs  ; result  (x:xs) > 

sat ::   (Char -> Bool)  -> Parser Char 
sat p = do { x <-  item  ;   if   (p x)   ;  result x } 

The do notation has a couple of advantages over monad comprehension notation: 
we are not restricted to monad expressions that end with a use of result; and 
generators of the form _ <- e that do not bind variables can be abbreviated by e. 
The do notation is supported by Gofer, but monad expressions involving parsers 
typically end with a use of result (to compute the result value from the parser), 
so the extra generality is not really necessary in this case. For this reason, and for 
simplicity, in this article we only use the comprehension notation. It would be an 
easy task, however, to translate our definitions into the do notation. 

4 Combinators for repetition 

Parser generators such as Lex and Yacc (Aho et al., 1986) for producing parsers 
written in C, and Ratatosk (Mogensen, 1993) and Happy (Gill k Marlow, 1995) for 
producing parsers written in Haskell, typically offer a fixed set of combinators for 
describing grammars. In contrast, with the method of building parsers as presented 
in this article the set of combinators is completely extensible: parsers are first-class 
values, and we have the full power of a functional language at our disposal to define 
special combinators for special applications. 

In this section we define combinators for a number of common patterns of rep- 
etition. These combinators are not specific to parsers, but can be used with an 
arbitrary monad with a zero and plus. For clarity, however, we specialise the types 
of the combinators to the case of parsers. 

In subsequent sections we will introduce combinators for other purposes, includ- 
ing handling lexical issues and Gofer's offside rule. 
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4.1  Simple repetition 

Earlier we defined a parser word for consuming zero or more letters from the input 
string. Using monad comprehension notation, the definition is: 

word  ::  Parser String 
word    =  [x:xs   I   x <- letter, xs <- word]  ++  [""] 

We can easily imagine a number of other parsers that exhibit a similar structure to 
word. For example, parsers for strings of digits or strings of spaces could be defined 
in precisely the same way, the only difference being be that the component parser 
letter would be replaced by either digit or char ' '. To avoid defining a number 
of different parsers with a similar structure, we abstract on the pattern of recursion 
in word and define a general combinator, many, that parses sequences of items. 

The combinator many applies a parser p zero or more times to an input string. 
The results from each application of p are returned in a list: 

many     ::   Parser a -> Parser  [a] 
many p =  [x:xs   I   x <- p,  xs <- many p]  ++ [[]] 

Different parsers can be made by supplying different arguments parsers p. Ebr 
example, word can be defined just as many letter, and the other parsers mentioned 
above by many digit and many  (char  '   ')• 

Just as the original word parser returns many results in general (decreasing in 
the number of letters consumed from the input), so does many p. Of course, in 
most cases we will only be interested in the first parse from many p, in which p is 
successfully applied as many times as possible. We will return to this point in the 
next section, when we address the efficiency of parsers. 

As another application of many, we can define a parser for identifiers. For sim- 
plicity, we regard an identifier as a lower-case letter followed by zero or more alpha- 
numeric characters. It would be easy to extend the definition to handle extra char- 
acters, such as underlines or backquotes. 

ident  ::  Parser String 
ident    =   [x:xs   I   x <- lower,  xs <- many alphanum] 

Sometimes we will only be interested in non-empty sequences of items. For this 
reason we define a special combinator, manyl, in terms of many: 

manyi     ::   Parser a -> Parser  [a] 
manyi p =   [x:xs   I   x <- p,   xs <- many p] 

For example, applying manyl   (char   'a') to the input "aaab" gives the result 
[("aaa'V'b"),   ("aa'V'ab"),   ("a" , "aab")] , which is the same as for many  (char 
'a'), except that the final pair ("",   "aaab") is no longer present. Note also that 
manyl p may fail, whereas many p always succeeds. 

Using manyl we can define a parser for natural numbers: 

nat   ::   Parser Int 
nat    =  Ceval xs   I  xs <- manyl digit] 



14 Graham Huttori and Erik Meijer 

where 
eval xs    = foldll op   [ord x - ord  '0'   I   x <- xs] 
m  'op' n =  10*m + n 

In turn, nat can be used to define a parser for integers: 

int   ::   Parser Int 
int    =  C-n  I   _ <- char  '-', n <- nat]  ++ nat 

A more sophisticated way to define int is as follows. First try and parse the negation 
character '-'. If this is successful then return the negation function as the result 
of the parse; otherwise return the identity function. The final step is then to parse 
a natural number, and use the function returned by attempting to parse the '-' 
character to modify the resulting number: 

int  ::  Parser Int 
int    =  [f n  I  f <- op, n <- nat] 

where 
op =   [negate   1   _ <- char  '-•]  ++   [id] 

4-2 Repetition with separators 

The many combinators parse sequences of items. Now we consider a slightly more 
general pattern of repetition, in which separators between the items are involved. 
Consider the problem of parsing a non-empty list of integers, such as [1,-42,17]. 
Such a parser can be defined in terms of the many combinator as follows: 

ints  ::  Parser  [Int] 
ints    =   [n:ns   I   _    <- char   '[' 

,  n    <- int 
, ns <- many [x I _ <- char ',', x <- int] 
, _ <- char ']'] 

As was the case in the previous section for the word parser, we can imagine a 
number of other parsers with a similar structure to ints, so it is useful to abstract 
on the pattern of repetition and define a general purpose combinator, which we 
call sepbyl. The combinator sepbyl is like manyl in that it recognises non-empty 
sequences of a given parser p, but different in that the instances of p are separated 
by a parser sep whose result values are ignored: 

sepbyl ::  Parser a -> Parser b -> Parser  [a] 
p   'sepbyl'  sep =   [x:xs   I   x    <- p 

,  xs <- many  [y  I  . <- sep, y <- p]] 

Note that the fact that the results of the sep parser are ignored is reflected in the 
type of the sepbyl combinator: the sep parser gives results of type b, but this type 
does not occur in the type [a] of the results of the combinator. 

Now ints can be defined in a more compact form: 
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ints =  Cns   I   _    <- char  '[' 
,  ns <- int   'sepbyl'  char  ',' 
,  _    <- char  '3'] 

In fact we can go a little further. The bracketing of parsers by other parsers whose 
results are ignored — in the case above, the bracketing parsers are char ' [' and 
char  '] ' — is common enough to also merit its own combinator: 

bracket   ::  Parser a -> Parser b -> Parser c -> Parser b 
bracket open p close =   [x   I   _ <- open,  x <- p,  _ <- close] 

Now ints can be denned just as 

ints = bracket  (char  '[') 
(int  'sepbyl'  char  ',') 
(char  ']') 

Finally, while manyl was defined in terms of many, the combinator sepby (for 
possibly-empty sequences) is naturally defined in terms of sepbyl: 

sepby ::   Parser a -> Parser b -> Parser  [a] 
p   'sepby'   sep    =  (p   'sepbyl'  sep)  ++   [[]] 

4-3 Repetition with meaningful separators 

The sepby combinators handle the case of parsing sequences of items separated by 
text that can be ignored. In this final section on repetition, we address the more 
general case in which the separators themselves carry meaning. The combinators 
defined in this section are due to Fokker (1995). 

Consider the problem of parsing simple arithmetic expressions such as l+2-(3+4), 
built up from natural numbers using addition, subtraction, and parentheses. The 
two arithmetic operators are assumed to associate to the left (thus, for example, 
1-2-3 should be parsed as (l-2)-3), and have the same precedence. The standard 
BNF grammar for such expressions is written as follows: 

expr       ::=     expr addop factor  |   factor 
addop     ::=    +   |   - 
factor    ::=     nat   |   ( expr ) 

This grammar can be translated directly into a combinator parser: 

-> Int -> Int) 

expr  = [f x y I x <- expr, f <- addop, y <- factor] ++ factor 

addop = [(+) I _ <- char '+'] ++ [(-) I _ <- char •->] 

factor = nat ++ bracket (char '(') expr (char ')') 

expr : Parser Int 
addop : Parser (Int 

factor : Parser Int 



16 Graham Hutton and Erik Meijer 

In fact, rather than just returning some kind of parse tree, the expr parser above 
actually evaluates arithmetic expressions to their integer value: the addop parser 
returns a function as its result value, which is used to combine the result values 
produced by parsing the arguments to the operator. 

Of course, however, there is a problem with the expr parser as denned above. 
The fact that the operators associate to the left is taken account of by expr being 
lefl-recursive (the first thing it does is make a recursive call to itself). Thus expr 
never makes any progress, and hence does not terminate. 

As is well-known, this kind of non-termination for parsers can be solved by re- 
placing left-recursion by iteration. Looking at the expr grammar, we see that an 
expression is a sequence of factors, separated by addops. Thus the parser for ex- 
pressions can be re-defined using many as follows: 

expr =  [...   I  x      <- factor 
,  fys <- many  C(l,y)   I  f <- addop, y <- factor]] 

This takes care of the non-termination, but it still remains to fill in the "..." part 
of the new definition, which computes the value of an expression. 

Suppose now that the input string is "1-2+3-4". Then after parsing using expr, 
the variable x will be 1 and fys will be the list [((-),2), ((+),3), ((-),4)]. 
These can be reduced to a single value 1-2+3-4 = ((1-2)+3)-4 = -2 by folding: 
the built-in function foldl is such that, for example, foldl g a [b,c,d,e] = 
((a 'g' b) 'g' c) 'g' d) 'g' e. In the present case, we need to take g as the 
function \x  (f ,y)  -> f x y, and a as the integer x: 

expr =   [foldl  (\x  (f,y)  -> f x y)  x fys 
I   x      <- factor 
,   fys  <- many   C(f,y)   I   f  <- addop,  y <- factor]] 

Now, for example, applying expr to the input string "l+2-(3+4)" gives the result 
C(-4,""),   (3,"-(3+4)M,   (l,"+2-(3+4)")], as expected. 

Playing the generalisation game once again, we can abstract on the pattern of 
repetition in expr and define a new combinator. The combinator, chainll, parses 
non-empty sequences of items separated by operators that associate to the left: 

chainll ::  Parser a -> Parser (a -> a -> a)  -> Parser a 
p   'chainll'  op =   [foldl  (\x  (f,y)  -> f x y)  x fys 

I   x      <- p 
, fys <- many  [(f,y)   I  f <- op,  y <- p]] 

Thus our parser for expressions can now be written as follows: 

expr      = factor  'chainll'  addop 

addop    =  [(+)   I   _■<- char  •+']  ++  [(-)   I   _ <- char  •-'] 

factor = nat ++ bracket  (char  '(')   expr  (char  ')') 

Most operator parsers will have a similar structure to addop above, so it is useful 
to abstract a combinator for building such parsers: 
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ops       ::   [(Parser a,  b)3  -> Parser b 
ops xs = foldrl  (++)   [Cop  I  _ <- p]   I   (p,op)  <- xs] 

The built-in function foldrl is such that, for example, ioldrl g [a,b,c,d] = a 
'g' (b 'g' (c 'g' d)). It is defined for any non-empty list. In the above case 
then, foldrl places the choice operator (++) between each parser in the list. Using 
ops, our addop parser can now be defined by 

addop = ops   [(char '+',   (+)),   (char  '-',   (-))] 

A possible inefficiency in the definition of the chainll combinator is the con- 
struction of the intermediate list fys. This can be avoided by giving a direct re- 
cursive definition of chainll that does not make use of f oldl and many, using an 
accumulating parameter to construct the final result: 

chainll ::  Parser a -> Parser  (a -> a -> a)   -> Parser a 
p   'chainll'  op = p   'bind'  rest 

where 
rest x = (op 'bind' \f -> 

p 'bind' \y -> 
rest   (f x y))  ++  [x] 

This definition has a natural operational reading. The parser p ' chainll' op first 
parses a single p, whose result value becomes the initial accumulator for the rest 
function. Then it attempts to parse an operator and a single p. If successful, the 
accumulator and the result from p are combined using the function f returned from 
parsing the operator, and the resulting value becomes the new accumulator when 
parsing the remainder of the sequence (using a recursive call to rest). Otherwise, 
the sequence is finished, and the accumulator is returned. 

As another interesting application of chainll, we can redefine our earlier parser 
nat for natural numbers such that it does not construct an intermediate list of 
digits. In this case, the op parser does not do any parsing, but returns the function 
that combines a natural and a digit: 

nat   ::   Parser Int 
nat    =  [ord x - ord  '0'   I   x <- digit]   'chainll'   [op] 

where 
m  'op' n =  10*m + n 

Naturally, we can also define a combinator chainrl that parses non-empty se- 
quences of items separated by operators that associate to the right, rather than to 
the left. For simplicity, we only give the direct recursive definition: 

chainrl ::   Parser a -> Parser  (a -> a -> a)  -> Parser a 
p  'chainrl' op = 

p  'bind'  \x -> 
[f x y  I   f <- op,  y <- p   'chainrl'  op]   ++  [x] 

That is, p ' chainrl' op first parses a single p. Then it attempts to parse an oper- 
ator and the rest of the sequence (using a recursive call to chainrl). If successful, 
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the pair of results from the first p and the rest of the sequence are combined us- 
ing t.he function f returned from parsing the operator. Otherwise, the sequence is 
finished, and the result from p is returned. 

As an example of using chainri, we extend our parser for arithmetic expressions 
to handle exponentiation; this operator has higher precedence than the previous 
two operators, and associates to the right: 

expr      = term      'chainll'  addop 

term      = factor  'chainri'  expop 

factor = nat ++ bracket (char  '(')  expr (char  ')') 

addop    = ops  [(char  '+',   (+)),   (char '-',   (-))] 

expop    = ops   [(char  '"',   ("))] 

For completeness, we also define combinators chainl and chainr that have the 
same behaviour as chainl 1 and chainri, except that they can also consume no 
input, in which case a given value v is returned as the result: 

chainl   ::   Parser a -> Parser  (a -> a -> a)  -> a -> Parser a 
chainl p op v =   (p  'chainl1'  op)  ++   [v] 

chainr   ::   Parser a -> Parser  (a -> a -> a)  -> a -> Parser a 
chainr p op v =   (p  'chainri'  op)  ++   [v] 

In summary then, chainl and chainr provide a simple way to build parsers for 
expression-like grammars. Using these combinators avoids the need for transfor- 
mations to remove left-recursion in the grammar, that would otherwise result in 
non-termination of the parser. They also avoid the need for left-factorisation of the 
grammar, that would otherwise result in unnecessary backtracking; we will return 

to this point in the next section. 

5  Efficiency of parsers 

Using combinators is a simple and flexible method of building parsers. However, 
the power of the combinators — in particular, their ability to backtrack and return 
multiple results — can lead to parsers with unexpected space and time performance 
if one does not take care. In this section we outline some simple techniques that can 
be used to improve the efficiency of parsers. Readers interested in further techniques 
are referred to Rojemo's thesis (1995), which contains a chapter on the use of heap 
profiling tools in the optimisation of parser combinators. 
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5.1  Left factoring 

Consider the simple problem of parsing and evaluating two natural numbers sepa- 
rated by the addition symbol'+', or by the subtraction symbol'-'. This specification 
can be translated directly into the following parser: 

eval :: Parser Int 
eval = add ++ sub 

where 
add = Cx+y x <- nat, _ <- char '+', y <- nat] 

sub = [x-y x <- nat, _ <- char '-', y <- nat] 

This parser gives the correct results, but is inefficient. For example, when parsing 
the string "123-456" the number 123 will first be parsed by the add parser, that 
will then fail because there is no '+' symbol following the number. The correct parse 
will only be found by backtracking in the input string, and parsing the number 123 
again, this time from within the sub parser. 

Of course, the way to avoid the possibility of backtracking and repeated parsing 
is to left factorise the eval parser. That is, the initial use of nat in the component. 
parsers add and sub should be factorised out: 

eval =   [v   |   x <- nat,  v <- add x ++ sub x] 
where 

add x =   [x+y   I   _ <- char  '+',  y <- nat] 
sub x =  [x+y  I   _ <- char  '-', y <- nat] 

This new version of eval gives the same results as the original version, but requires 
no backtracking. Using the new eval, the string "123-456" can now be parsed in 
linear time. In fact we can go a little further, and right factorise the remaining 
use of nat in both add and sub. This does not improve the efficiency of eval. but 
arguably gives a cleaner parser: 

eval =   [f x y   I   x <- nat 
,  f <- ops   [(char  '+',   (+)),   (char  '-',   (-))] 
,  y <- nat] 

In practice, most cases where left factorisation of a parser is necessary to improve 
efficiency will concern parsers for some kind of expression. In such cases, manually 
factorising the parser will not be required, since expression-like parsers can be built 
using the chain combinators from the previous section, which already encapsulate 
the necessary left factorisation. 

The motto of this section is the following: backtracking is a powerful tool, but it 
should not be used as a substitute for care in designing parsers. 

5.2 Improving laziness 

Recall the definition of the repetition combinator many: 

many    ::  Parser a -> Parser [a] 
many p =  [x:xs  I  x <- p,  xs <- many p]  ++  [[]] 
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For example, applying many (char 'a') to the input "aaab" gives the result 
[("aaa'V'b"), ("aa'V'ab"), ("a" , "aab"), ("" ,"aaab")3. Since Gofer is lazy, 
we would expect the a's in the first result "aaa" to become available one at a time, 
as they are consumed from the input. This is not in fact what happens. In practice 
no part of the result "aaa" will be produced until all the a's have been consumed. 
In other words, many is not as lazy as we would expect. 

But does this really matter? Yes, because it is common in functional programming 
to rely on laziness to avoid the creation of large intermediate structures (Hughes, 
1989). As noted by Wadler (1985; 1992b), what is needed to solve the problem with 
many is a means to make explicit that the parser many p always succeeds. (Even 
if p itself always fails, many p will still succeed, with the empty list as the result 
value.) This is the purpose of the force combinator: 

force    ::  Parser a -> Parser a 
force p = \inp -> let x = p inp in 

(fst  (head x),  snd (head x))   :  tail x 

Given a parser p that always succeeds, the parser force p has the same behaviour 
as p, except that before any parsing of the input string is attempted the result of 
the parser is immediately forced to take on the form (-L, 1) : 1, where 1 represents 
a presently undefined value. 

Using force, the many combinator can be re-defined as follows: 

many     ::   Parser a ->  Parser  [a] 
many p = force  (Cx:xs   I   x <- p,  xs <- many p]   ++   [[]]) 

The use of force ensures that many p and all of its recursive calls return at least 
one result. The new definition of many now has the expected behaviour under lazy 
evaluation. For example, applying many (char 'a') to the partially-defined string 
'a' : J- gives the partially-defined result ('a' : _L, _L) : ±. In contrast, with the old 
version of many, the result for this example is the completely undefined value _L. 

Some readers might wonder why force is defined using the following selection 
functions, rather than by pattern matching? 

fst   ::   (a,b)  -> a head  ::   [a]  -> a 
snd  ::   (a,b)  -> b tail   ::   [a]   ->   [a] 

The answer is that, depending on the semantics of patterns in the particular im- 
plementation language, a definition of force using patterns might not have the 
expected behaviour under lazy evaluation. 

5.3 Limiting the number of results 

Consider the simple problem of parsing a natural number, or if no such number is 
present just returning the number 0 as the default result. A first approximation to 
such a parser might be as follows: 

number   ::   Parser Int 
number    = nat ++  [0] 



Monadic Parser Combinators 21 

However, this does not quite have the required behaviour. For example, applying 
number to the input "hello" gives the correct result [(0,"hello")]. On the other 
hand, applying number to "123" gives the result [(123,""), (0, "123")], whereas 
we only really want the single result [(123,"")]. 

One solution to the above problem is to make use of deterministic parser com- 
binators (see section 7.5) — all parsers built using such combinators are restricted 
by construction to producing at most one result. A more general solution, however, 
is to retain the flexibility of the non-deterministic combinators, but to provide a 
means to make explicit that we are only interested in the first result produced by 
certain parsers, such as number. This is the purpose of the first combinator: 

first     ::  Parser a -> Parser a 
first p = \inp -> case p inp of 

[] ->  □ 
(x:xs) ->   [x] 

Given a parser p, the parser first p has the same behaviour as p, except that 
only the first result (if any) is returned. Using first we can define a deterministic 
version (+++) of the standard choice combinator (++) for parsers: 

(+++)     ::  Parser a -> Parser a -> Parser a 
p +++ q = first   (p ++ q) 

Replacing (++) by (+++) in number gives the desired behaviour. 
As well as being used to ensure the correct behaviour of parsers, using (+++) can 

also improve their efficiency. As an example, consider a parser that accepts either 
of the strings "yellow" or "orange": 

colour  ::  Parser String 
colour    = pi ++ p2 

where 
pi = string "yellow" 
p2 = string "orange" 

Recall now the behaviour of the choice combinator (++): it takes a string, applies 
both argument parsers to this string, and concatenates the resulting lists. Thus in 
the colour example, if pi is successfully applied then p2 will still be applied to the 
same string, even though it is guaranteed to fail. This inefficiency can be avoided 
using (+++), which ensures that if pi succeeds then p2 is never applied: 

colour = pi  +++ p2 
where 

pi = string "yellow" 
p2 = string "orange" 

More generally, if we know that a parser of the form p ++ q is deterministic (only 
ever returns at most one result value), then p +++ q has the same behaviour, but is 
more efficient: if p succeeds then q is never applied. In the remainder of this article 
it will mostly be the (+++) choice combinator that is used. For reasons of efficiency, 
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in the combinator libraries that accompany this article, the repetition combinators 
from the previous section are denned using (+++) rather than (++). 

We conclude this section by asking why first is defined by pattern matching, 
rather than by using the selection function take :: Int -> [a] -> [a] (where, 
for example, take 3 "parsing" = "par"): 

first p = \inp -> take 1  (p inp) 

The answer concerns the behaviour under lazy evaluation. To see the problem, let 
us unfold the use of take in the above definition: 

first p = \inp -> case p inp of 

[]    -> □ 
(x:xs) -> x : take 0 xs 

When the sub-expression take 0 xs is evaluated, it will yield []. However, under 
lazy evaluation this computation will be suspended until its value is required. The 
effect is that the list xs may be retained in memory for some time, when in fact 
it can safely be discarded immediately. This is an example of a space leak. The 
definition of first using pattern matching does not suffer from this problem. 

6  Handling lexical issues 

Traditionally, a string to be parsed is not supplied directly to a parser, but is 
first passed through a lexical analysis phase (or lexer) that breaks the string into 
a sequence of tokens (Aho ei al., 1986). Lexical analysis is a convenient place to 
remove white-space (spaces, newlines, and tabs) and comments from the input 
string, and to distinguish between identifiers and keywords. 

Since lexers are just simple parsers, they can be built using parser combinators, 
as discussed by Hutton (1992). However, as we shall see in this section, the need 
for a separate lexer can often be avoided (even for substantial grammars such as 
that for Gofer), with lexical issues being handled within the main parser by using 
some special purpose combinators. 

6.1   White-space, comments, and keywords 

We begin by denning a parser that consumes white-space from the beginning of a 
string, with a dummy value () returned as result: 

spaces :: Parser () 

spaces = C() I _ <- manyl (sat isSpace)] 

where 

isSpace x = 

(x == ' ') I I (x == '\n') II (x == '\t') 

Similarly, a single-line Gofer comment can be consumed as follows: 

comment :: Parser () 

comment = CO I _ <- string "—" 

, _ <- many (sat (\x -> x /= '\n'))] 
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We leave it as an exercise for the reader to define a parser for consuming multi-line 
Gofer comments {-   ...   -}, which can be nested. 

After consuming white-space, there may still be a comment left to consume from 
the input string. Dually, after a comment there may still be white-space. Thus we 
are motivated to defined a special parser that repeatedly consumes white-space and 
comments until no more remain: 

junk ::  Parser () 
junk    =  [()   I       <- many (spaces +++ comment)] 

Note that while spaces and comment can fail, the junk parser always succeeds. We 
define two combinators in terms of junk: parse removes junk before applying a 
given parser, and token removes junk after applying a parser: 

parse :: Pars er a -> Parser a 

parse P = Cv 1 - <- junk, v <-p] 

token :: Pars er a -> Parser a 

token P = [v 1 V <- P. - <" junk] 

With the aid of these two combinators, parsers can be modified to ignore white- 
space and comments. Firstly, parse is applied once to the parser as a whole, ensur- 
ing that input to the parser begins at a significant character. And secondly, token 
is applied once to all sub-parsers that consume complete tokens, thus ensuring that 
the input always remains at a significant character. 

Examples of parsers for complete tokens are nat and int (for natural numbers 
and integers), parsers of the form string xs (for symbols and keywords), and 
ident (for identifiers). It is useful to define special versions of these parsers — and 
more generally, special versions of any user-defined parsers for complete tokens — 
that encapsulate the necessary application of token: 

natural ::  Parser Int 
natural = token nat 

integer ::   Parser Int 
integer = token int 

symbol ::   String -> Parser String 
symbol xs = token (string xs) 

identifier       ::   [String]  -> Parser String 
identifier ks = token  [x   I   x <- ident,  not  (elem x ks)] 

Note that identifier takes a list of keywords as an argument, where a keyword 
is a string that is not permitted as an identifier. For example, in Gofer the strings 
"data" and "where" (among others) are keywords. Without the keyword check, 
parsers defined in terms of identifier could produce unexpected results, or involve 
unnecessary backtracking to construct the correct parse of the input string. 
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6.2 A parser for X-expressions 

To illustrate the use of the new combinators given above, let us define a parser for 
simple A-expressions extended with a "let" construct for local definitions. Parsed 
expressions will be represented in Gofer as follows: 

data Expr = App Expr Expr ~ application 
I  Lam String Expr — lambda abstraction 
I  Let String Expr Expr — local definition 
I  Var String — variable 

Now a parser expr ::  Parser Expr can be defined by: 

expr = atom  'chainll'   [App] 

atom = lam +++ local +++ var +++ paren 

lam =   [Lam x e   I _ <- symbol "\\" 
, x <- variable 
, _ <- symbol "->" 
, e  <- expr] 

local        =   [Let x e  e'   I   _    <- symbol "let" 
x    <- variable 

<- symbol "=" 

e <- expr 
_ <- symbol "in" 
e' <- expr] 

var =  [Var x  I   x <- variable] 

paren        = bracket  (symbol "(")   expr (symbol ")") 

variable = identifier ["let","in"] 

Note how the expr parser handles white-space and comments by using the symbol 
parser in place of string and char. Similarly, the keywords "let" and "in" are 
handled by using identifier to define the parser for variables. Finally, note how 
applications (f el e2 . . . en) are parsed in the form (((f ei) e2) ... ) by 
using the chainll combinator. 

7 Factorising the parser monad 

Up to this point in the article, combinator parsers have been our only example of 
the notion of a monad. In this section we define a number of other monads related 
to the parser monad, leading up to a modular reformulation of the parser monad 
in terms of two simpler monads (Jones, 1995a). The immediate benefit is that, as 
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we shall see, the basic parser combinators no longer need to be denned explicitly. 
Rather, they arise automatically as a special case of lifting monad operations from 
a base monad m to a certain other monad parameterised over ?7?.. This also means 
that, if we change the nature of parsers by modifying the base monad (for example, 
limiting parsers to producing at most one result), new combinators for the modified 
monad of parsers are also defined automatically. 

7.1   The exception monad 

Before starting to define other monads, it is useful to first focus briefly on the 
intuition behind the use of monads in functional programming (Wadler, 1992a). 

The basic idea behind monads is to distinguish the values that a computation 
can produce from the computation itself. More specifically, given a monad m and 
a type a, we can think of m a as the type of computations that yield results of 
type a, with the nature of the computation captured by the type constructor m. 
The combinators result and bind (with zero and (++) if appropriate) provide a 
means to structure the building of such computations: 

result 

bind 

zero 

(++) 

m a 
m a ->  (a -> m b)  -> m b 
m a 
m a -> m a -> m a 

From a computational point of view, result converts values into computations 
that yield those values; bind chains two computations together in sequence, with 
results of the first computation being made available for use in the second: zero is 
the trivial computation that does nothing; and finally, (++) is some kind of choice 
operation for computations. 

Consider, for example, the type constructor Maybe: 

data Maybe a = Just a I Nothing 

We can think of a value of type Maybe a as a computation that either succeeds with 
a value of type a, or fails, producing no value. Thus, the type constructor Maybe 
captures computations that have the possibility to fail. 

Defining the monad combinators for a given type constructor is usually just a 
matter of making the "obvious definitions" suggested by the types of the combina- 
tors. For example, the type constructor Maybe can be made into a monad with a 
zero and plus using the following definitions: 

instance Monad Maybe where 

— result       :: a -> Maybe a 

result x        = Just x 

— bind        :: Maybe a -> (a -> Maybe b) -> Maybe b 

(Just x) 'bind' f = f x 

Nothing  'bind' 1  = Nothing 
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instance MonadOPlus Maybe where 
— zero        :: Maybe a 
zero = Nothing 

— (++)        :: Maybe a -> Maybe a -> Maybe a 

Just x ++ y    = Just x 

Nothing ++ y    = y 

That is, result converts a value into a computation that succeeds with this value; 
bind is a sequencing operator, with a successful result from the first computation 
being available for use in the second computation; zero is the computation that 
fails; and finally, (++) is a (deterministic) choice operator that returns the first 
computation if it succeeds, and the second otherwise. 

Since failure can be viewed as a simple kind of exception, Maybe is sometimes 
called the exception monad in the literature (Spivey, 1990). 

1.2  The non-determinism monad 

A natural generalisation of Maybe is the list type constructor []. While a value of 
type Maybe a can be thought of as a computation that either succeeds with a single 
result of type a or fails, a value of type [a] can be thought of as a computation 
that has the possibility to succeed with any number of results of type a, including 
zero (which represents failure). Thus the list type constructor D can be used to 
capture non-deterministic computations. 

Now □ can be made into a monad with a zero and plus: 

instance Monad []  where 
— result ::   a ->   [a] 
result x =   [x] 

-- bind ::   [a]  -> (a ->  Cb]) ->  [b] 
[] 'bind*  f  =   D 
(x:xs)   'bind' f = f x ++ (xs  'bind'  f) 

instance MonadOPlus   []   where 
— zero 
zero 

[a] 
D 

--  (++) ::   [a]   ->   [a]   ->   [a] 
[] ++ ys = ys 
(x:xs)  ++ ys        = x  :   (xs ++ ys) 

That is, result converts a value into a computation that succeeds with this single 
value; bind is a sequencing operator for non-deterministic computations; zero al- 
ways fails; and finally, (++) is a (non-deterministic) choice operator that appends 
the results of the two argument computations. 
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7.3  The state-transformer monad 

Consider the (binary) type constructor State: 

type State s a = s  ->  (a,s) 

Values of type State s a can be interpreted as follows: they are computations that 
take an initial state of type s, and yield a value of type a together with a new state 
of type s. Thus, the type constructor State s obtained by applying State to a 
single type s captures computations that involve state of type s. We will refer to 
values of type State s a as stateful computations. 

Now State s can be made into a monad: 

instance Monad (State s)  where 
— result     ::   a -> State s  a 
result v        = \s ->  (v,s) 

— bind : :   State s a ->  (a -> State s b)  -> State s b 
st   'bind' f = \s -> let  (v,s') = st s in f v s' 

That is, result converts a value into a stateful computation that returns that value 
without modifying the internal state, and bind composes two stateful computations 
in sequence, with the result value from the first being supplied as input to the 
second. Thinking pictorially in terms of boxes and wires is a useful aid to becoming 
familiar with these two operations (Jones &c Launchbury, 1994). 

The state-transformer monad State s does not have a zero and a plus. However. 
as we shall see in the next section, the parameterised state-transformer monad over 
a given based monad ra does have a zero and a plus, provided that m does. 

To allow us to access and modify the internal state, a few extra operations on 
the monad State s are introduced. The first operation, update, modifies the state 
by applying a given function, and returns the old state as the result value of the 
computation. The remaining two operations are defined in terms of update: set 
replaces the state with a new state, and returns the old state as the result; fetch 
returns the state without modifying it. 

update 
set 
fetch 

(s  ->  s)   -> State s  s 
s -> State s  s 
State s  s 

update f = \s ->  (s,  f s) 
set s        = update  (\_ ->  s) 
fetch        = update id 

In fact State s is not the only monad for which it makes sense to define these 
operations. For this reason we encapsulate the extra operations in a class, so that 
the same names can be used for the operations of different monads: 

class Monad m => StateMonad m s where 
update   ::   (s  -> s)  -> m s 
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set ::  s -> m s 
fetch     ::  m s 

set  s      = update  (\_ -> s) 
fetch      = update id 

This declaration can be read as follows: a type constructor m and a type s are 
together a member of the class StateMonad if m is a member of the class Monad, 
and if m is also equipped with update, set, and fetch operations of the specified 
types. Moreover, the fact that set and fetch can be denned in terms of update is 
also reflected in the declaration, by means of default definitions. 

Now because State s is already a monad, it can be made into a state monad 
using the update operation as defined earlier: 

instance StateMonad (State s)  s where 
— update  ::   (s -> s)  -> State s s 
update f      = \s ->  (s,   f  s) 

7-4   The. parameterised state-transformer monad 

Recall now our type of combinator parsers: 

type Parser a = String ->   [(a,String)] 

We see now that parsers combine two kinds of computation: non-deterministic com- 
putations (the result of a parser is a list), and stateful computations (the state is the 
string being parsed). Abstracting from the specific case of returning a list of results, 
the Parser type gives rise to a generalised version of the State type constructor 
that applies a given type constructor m to the result of the computation: 

type StateM m s  a =  s -> m (a,s) 

Now StateM m s can be made into a monad with a zero and a plus, by inheriting 
the monad operations from the base monad m: 

instance Monad m => Monad  (StateM m s)  where 
— result      ::  a -> StateM m s a 
result v = \s -> result (v,s) 

— bind    :: StateM m s a -> 

(a -> StateM m s b) -> StateM m s b 

stm 'bind' f = \s -> stm s 'bind' \(v,s') -> f v s' 

instance MonadOPlus ra => MonadOPlus (StateM m s) where 

— zero    :: StateM m s a 

zero       = \s -> zero 

— (++)    :: StateM m s a -> StateM m s a -> StateM m s a 

stm ++ stm' = \s -> stm s ++ stm' s 
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That is, result converts a value into a computation that returns this value without 
modifying the internal state; bind chains two computations together; zero is the 
computation that fails regardless of the input state; and finally, (++) is a choice 
operation that passes the same input state through to both of the argument com- 
putations, and combines their results. 

In the previous section we denned the extra operations update, set and fetch 
for the monad State s. Of course, these operations can also be defined for the 
parameterised state-transformer monad StateM m s. As previously, we only need 
to define update, the remaining two operations being denned automatically via 
default definitions: 

instance Monad m => StateMonad (StateM m s) s where 
— update :: Monad m => (s -> s) -> StateM m s s 
update f      = \s -> result  (s, i s) 

7.5 The parser monad revisited 

Recall once again our type of combinator parsers: 

type Parser a = String ->  [(a,String)] 

This type can now be re-expressed using the parameterised state-transformer monad 
StateM m s by taking [] for m, and String for s: 

type Parser a = StateM  []   String a 

But why view the Parser type in this way? The answer is that all the basic parser 
combinators no longer need to be defined explicitly (except one, the parser item for 
single characters), but rather arise as an instance of the general case of extending 
monad operations from a type constructor m to the type constructor StateM m s. 
More specifically, since D forms a monad with a zero and a plus, so does State [] 
String, and hence Gofer automatically provides the following combinators: 

result 
bind 
zero 

(++) 

a -> Parser a 
Parser a -> (a -> Parser b) -> Parser b 

Parser a 
Parser a -> Parser a -> Parser a 

Moreover, defining the parser monad in this modular way in terms of StateM 
means that, if we change the type of parsers, then new combinators for the modified 
type are also defined automatically. For example, consider replacing 

type Parser a = StateM □  String a 

by a new definition in which the list type constructor C3 (which captures non- 
deterministic computations that can return many results) is replaced by the Maybe 
type constructor (which captures deterministic computations that either fail, re- 
turning no result, or succeed with a single result): 
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data Maybe a    = Just a  I   Nothing 

type Parser a = StateM Maybe String a 

Since Maybe forms a monad with a zero and a plus, so does the re-defined Parser 
type constructor, and hence Gofer automatically provides result, bind, zero, and 
(++) combinators for deterministic parsers. In earlier approaches that do not exploit 
the monadic nature of parsers (Wadler, 1985; Hutton, 1992; Fokker, 1995), the basic 
combinators would have to be re-defined by hand. 

The only basic parsing primitive that does not arise from the monadic structure 
of the Parser type is the parser item for consuming single characters: 

item  ::  Parser Char 
item    = \inp -> case inp of 

[] ->   C] 
(x:xs)  ->   [(x,xs)] 

However, item can now be re-defined in monadic style. We first fetch the current 
state (the input string); if the string is empty then the item parser fails, otherwise 
the first character is consumed (by applying the tail function to the state), and 
returned as the result value of the parser: 

item    =   [x   I   (x:_)  <- update tail] 

The advantage of the monadic definition of item is that it does not depend upon 
the internal details of the Parser type. Thus, for example, it works equally well for 
both the non-deterministic and deterministic versions of Parser. 

8 Handling the offside rule 

Earlier (section 6) we showed that the need for a lexer to handle white-space, 
comments, and keywords can be avoided by using special combinators within the 
main parser. Another task usually performed by a lexer is handling the Gofer offside 
rule. This rule allows the grouping of definitions in a program to be indicated 
using indentation, and is usually implemented by the lexer inserting extra tokens 
(concerning indentation) into its output stream. 

In this section we show that Gofer's offside rule can be handled in a simple and 
natural manner without a separate lexer, by once again using special combinators. 
Our approach was inspired by the monadic view of parsers, and is a development 
of an idea described earlier by Hutton (1992). 

8.1   The offside rule 

Consider the following simple Gofer program: 

a = b + c 
where 

b =  10 
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c = 15 - 5 
d = a * 2 

It is clear from the use of indentation that a and d are intended to be global 
definitions, with b and c local definitions to a. Indeed, the above program can be 
viewed as a shorthand for the following program, in which the grouping of definitions 
is made explicit using special brackets and separators: 

{ a = b + c 
where 

-C b =  10 
;   c =  15 - 5 } 

;   d = a * 2 > 

How the grouping of Gofer definitions follows from their indentation is formally 
specified by the offside rule. The essence of the rule is as follows: consecutive defi- 
nitions that begin in the same column c are deemed to be part of the same group. 
To make parsing easier, it is further required that the remainder of the text of each 
definition (excluding white-space and comments, of course) in a group must occur 
in a column strictly greater than c. In terms of the offside rule then, definitions a 
and d in the example program above are formally grouped together (and similarly 
for b and c) because they start in the same column as one another. 

8.2 Modifying the type of parsers 

To implement the offside rule, we will have to maintain some extra information 
during parsing. First of all, since column numbers play a crucial role in the offside 
rule, parsers will need to know the column number of the first character in their 
input string. In fact, it turns out that parsers will also require the current line 
number. Thus our present type of combinator parsers, 

type Parser a = StateM  [3   String a 

is revised to the following type, in which the internal state of a parser now contains 
a (line,column) position in addition to a string: 

type Parser a = StateM  []   Pstring a 

type Pstring    =  (Pos,String) 

type Pos =   (Int,Int) 

In addition, parsers will need to know the starting position of the current defini- 
tion being parsed — if the offside rule is not in effect, this definition position can 
be set with a negative column number. Thus our type of parsers is revised once 
more, to take the current definition position as an extra argument: 

type Parser a = Pos -> StateM  []   Pstring a 
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Another option would have been to maintain the definition position in the parser 
state, along with the current position and the string to be parsed. However, defini- 
tion positions can be nested, and supplying the position as an extra argument to 
parsers — as opposed to within the parser state — is more natural from the point 
of view of implementing nesting of positions. 

Is the revised Parser type still a monad? Abstracting from the details, the body 
of the Parser type definition is of the form s -> m a (in our case s is Pos, m is the 
monad StateM [] Pstring, and a is the parameter type a.) We recognise this as 
being similar to the type s -> m (a,s) of parameterised state-transformers, the 
difference being that the type s of states no longer occurs in the type of the result: 
in other words, the state can be read, but not modified. Thus we can think of s -> 
m a as the type of parameterised state-readers. The monadic nature of this type is 

the topic of the next section. 

8.3  The parameterised state-reader monad 

Consider the type constructor ReaderM, defined as follows: 

type ReaderM msa=s->ma 

In a similar way to StateM m s, ReaderM m s can be made into a monad with a 

zero and a plus, by inheriting the monad operations from the base monad m: 

instance Monad m => Monad (ReaderM m s) where 

— result  :: a -> ReaderM m s a 

result v    = \s -> result v 

— bind    :: ReaderM m s a -> 

(a -> ReaderM m s b) -> ReaderM m s b 

srm 'bind' f = \s -> srm s 'bind' \v -> f v s 

instance MonadOPlus m => MonadOPlus (ReaderM m s) where 

— zero    :: ReaderM m s a 

zero       = \s -> zero 

— (++) ::  ReaderM m s a -> 
ReaderM m s a -> ReaderM m s a 

srm ++ srm'     = \s  -> srm s  ++ srm'   s 

That is, result converts a value into a computation that returns this value without 
consulting the state; bind chains two computations together, with the same state 
being passed to both computations (contrast with the bind operation for StateM, 
in which the second computation receives the new state produced by the first com- 
putation); zero is the computation that fails; and finally, (++) is a choice operation 
that passes the same state to both of the argument computations. 

To allow us to access and set the state, a couple of extra operations on the 
parameterised state-reader monad ReaderM m s are introduced. As for StateM, we 
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encapsulate the extra operations in a class. The operation env returns the state as 
the result of the computation, while setenv replaces the current state for a given 
computation with a new state: 

class Monad m => ReaderMonad m s where 
env ::   m s 
setenv  ::   s -> m a -> m a 

instance Monad m => ReaderMonad (ReaderM m s)   s where 
— env ::  Monad m => ReaderM m s  s 
env = \s -> result s 

— setenv      ::  Monad m => s -> 
ReaderM m s a -> ReaderM m s  a 

setenv s srm = \_ -> srm s 

The name env comes from the fact that one can think of the state supplied to a 
state-reader as being a kind of environment. Indeed, in the literature state-reader 
monads are sometimes called environment monads. 

8.4   The new parser combinators 

Using the ReaderM type constructor, our revised type of parsers 

type Parser a = Pos -> StateM  []   Pstring a 

can now be expressed as follows: 

type Parser a = ReaderM (StateM  []   Pstring)  Pos a 

Now since [] forms a monad with a zero and a plus, so does StateM [] Pstring. 
and hence so does ReaderM (StateM [] Pstring) Pos. Thus Gofer automatically 
provides result, bind, zero, and (++) operations for parsers that can handle the 
offside rule. Since the type of parsers is now defined in terms of ReaderM at the top 
level, the extra operations env and setenv are also provided for parsers. Moreover, 
the extra operation update (and the derived operations set and fetch) from the 
underlying state monad can be lifted to the new type of parsers — or more generally, 
to any parameterised state-reader monad — by ignoring the environment: 

instance StateMonad m a => StateMonad (ReaderM m s)  a where 
— update   ::   StateMonad m a =>  (a -> a)  -> ReaderM m s a 
update f      = \_ -> update f 

Now that the internal state of parsers has been modified (from String to Pstring), 
the parser item for consuming single characters from the input must also be mod- 
ified. The new definition for item is similar to the old, 

item :: Parser Char 
item    =  [x   I   (x:_)  <- update tail] 
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except that the item parser now fails if the position of the character to be consumed 
is not onside with respect to current definition position: 

item ::  Parser Char 
item    =  [x   I   (pos,x:_) <- update newstate 

,  defpos        <- env 
,  onside pos defpos] 

A position is onside if its column number is strictly greater than the current defi- 
nition column. However, the first character of a new definition begins in the same 
column as the definition column, so this is handled as a special case: 

onside ::   Pos -> Pos -> Bool 
onside  (l,c)   (dl.dc)  =  (c > dc)   II   (1 == dl) 

The remaining auxiliary function, newstate, consumes the first character from the 
input string, and updates the current position accordingly (for example, if a newline 
character was consumed, the current line number is incremented, and the current 

column number is set back to zero): 

newstate  ::  Pstring -> Pstring 
newstate  ((l,c),x:xs) 

=  (newpos.xs) 
where 

newpos = case x of 
'\n'  ->  (1+1,0) 
>\f  ->  (l,((c  'div'  8)+l)*8) 

->  (l,c+i) 

One aspect of the offside rule still remains to be addressed: for the purposes 
of this rule, white-space and comments are not significant, and should always be 
successfully consumed even if they contain characters that are not onside. This can 
be handled by temporarily setting the definition position to (0, -1) within the junk 
parser for white-space and comments: 

junk   ::   Parser  () 
junk    =   CO   I   _ <- setenv  (0,-1)   (many  (spaces +++ comment))] 

All that remains now is to define a combinator that parses a sequence of defini- 
tions subject to the Gofer offside rule: 

manyi_offside    ::  Parser a -> Parser [a] 
manyl_offside p =  [vs   I   (pos,_) <- fetch 

,  vs <- setenv pos  (manyl  (off p))] 

That is, manyl_off side p behaves just as manyl (off p), except that within this 
parser the definition position is set to the current position. (There is no need to 
skip white-space and comments before setting the position, since this will already 
have been effected by proper use of the lexical combinators token and parse.) The 
auxiliary combinator off takes care of setting the definition position locally for 
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each new definition in the sequence, where a new definition begins if the column 
position equals the definition column position: 

off     ::  Parser a -> Parser a 
off p =  [v  I   (dl,dc)      <- env 

,   ((l,c),_) <- fetch 
,  c == dc 
,  v <- setenv (l,dc) p] 

For completeness, we also define a combinator many.of f side that has the same 
behaviour as the combinator manyl_off side, except that it can also parse an empty 
sequence of definitions: 

many_offside  ::   Parser a -> Parser  [a] 
many_offside p = manyi_offside p +++  [[]] 

To illustrate the use of the new combinators defined above, let us modify our 
parser for A-expressions (section 6.2) so that the "let" construct permits non- 
empty sequences of local definitions subject to the offside rule. The datatype Expr of 
expressions is first modified so that the Let constructor has type [(String,Expr)] 
-> Expr instead of String -> Expr -> Expr: 

data Expr =   ... 
I   Let  [(String,Expr)] Expr 

I   ... 

The only part of the parser that needs to be modified is the parser local for local 
definitions, which now accepts sequences: 

local =  [Let ds  e   I _ <- symbol "let" 
, ds <- manyl_offside defn 
, _ <~ symbol "in" 
, e <- expr] 

defn = [(x,e) I x <- identifier 
, _ <- symbol "=" 
,   e <- expr] 

We conclude this section by noting that the use of the offside rule when laying out 
sequences of Gofer definitions is not mandatory. As shown in our initial example, one 
also has the option to include explicit layout information in the form of parentheses 
"{" and "}" around the sequence, with definitions separated by semi-colons ";". 
We leave it as an exercise to the reader to use many.of f side to define a combinator 
that implements this convention. 

In summary then, to permit combinator parsers to handle the Gofer offside rule, 
we changed the type of parsers to include some positional information, modified 
the item and junk combinators accordingly, and defined two new combinators: 
many 1 _off side and many-offside. All other necessary redefining of combinators 
is done automatically by the Gofer type system. 
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10 Appendix: a parser for data definitions 

To illustrate the monadic parser combinators developed in this article in a real-life 
setting, we consider the problem of parsing a sequence of Gofer datatype definitions. 
An example of such a sequence is as follows: 

data List a = Nil   I   Cons a (List a) 

data Tree a b = Leaf a 
I   Node  (Tree a b, b,  Tree a b) 

Within the parser, datatypes will be represented as follows: 

type Data =  (String, — type name 
[String], — parameters 
[(String,[Type])])      — constructors and arguments 

The representation Type for types will be treated shortly. A parser datadecls :: 
Parser [Data] for a sequence of datatypes can now be defined by 

datadecls      = many_offside datadecl 

datadecl        =   [(x,xs,b)   I _ <- symbol "data" 
, x <- constructor 
, xs <- many variable 
, _ <- symbol "=" 
, b <- condecl   'sepbyl'  symbol "I"] 

constructor = token  [(x:xs)   I   x    <- upper 
■ ,  xs <- many alphanum] 

variable        = identifier  ["data"] 

condecl =  [(x,ts)   I   x    <- constructor 
,  ts <- many type2] 

There are a couple of points worth noting about this parser. Firstly, all lexical 
issues (white-space and comments, the offside rule, and keywords) are handled by 
combinators. And secondly, since constructor is a parser for a complete token, the 
token combinator is applied within its definition. 
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Within the parser, types will be represented as follows: 

data Type      = Arrow Type Type — function 
I  Apply Type Type -- application 

I   Var String — variable 

I   Con String — constructor 

I  Tuple  [Type] — tuple 
I  List Type — list 

A parser typeO  ::  Parser Type for types can now be defined by 

typeO = type!   'chainrl'   [Arrow  I   _ <- symbol "->"] 

typei = type2   'chain.ll'   [Apply] 
type2 = var +++ con +++ list +++ tuple 

var =  [Var x   I   x <- variable] 

con =   [Con x   I   x <- constructor] 

list =  [List x   I   x <- bracket 
(symbol "[") 

typeO 
(symbol "]")] 

tuple =   [f ts   I   ts  <- bracket 
(symbol "(") 
(typeO 'sepby' symbol ",") 

(symbol ")")3 

where 1 [t] = t 

f ts = Tuple ts 

Note how chainrl and chainll are used to handle parsing of function-types and 

application. Note also that (as in Gofer) building a singleton tuple (t) of a type t 

is not possible, since (t) is treated as a parenthesised expression. 
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Microprocessor Specification in Hawk 
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Abstract. Modern microprocessors require an immense investment of time and effort to create and 
verify, from the high-level architectural design downwards. We are exploring ways to increase the 
productivity of design engineers by creating a domain-specific language tor specifying and simulat- 
ing processor architectures. We believe that the structuring principles used in modern functional pro- 
gramming languages, such as static typing, parametric polymorphism, first-class functions, and lazy 
evaluation provide a good formalism for such a domain-specific language, and have made initial 
progress by creating a library on top of the functional language Haskell. We have specified the inte- 
ger subset of a pipelined DLX microprocessor, including bypass logic, load-hazard resolution, and 
speculative branch execution. Two key abstractions of this library are the signal abstract data type 
(ADT), which models the simulation history of a wire, and the transaction ADT, which models the 
state of an entire instruction as it travels through the microprocessor. We are currently using the same 
techniques to model the architecture of modern superscalar microprocessors. 

Introduction 

Modern microprocessor technologies have substantially increased processor performance. For exam- 
ple, pipelining allows a processor to overlap the execution of several instructions at once. With 
superscalar execution, multiple instructions are read per clock cycle. Out-of-order execution, where 
some instructions that logically come after a given instruction may be executed before the given 
instruction, can also greatly increase processor speed [Jon91]. All of these technologies dramatically 
increase design complexity. In fact, creating and verifying these designs is a significant proportion of 
the total microprocessor development lifecycle. As the number of possible gates in future micropro- 
cessors increases exponentially, so too does design complexity. 

At OGI, we have developed the Hawk library for building executable specification* of microproces- 
sors, concentrating on the level of micro-architecture. The Hawk library constitutes the initial phase 
of a project that we hope will lead towards an independent language. In the meantime we have in 
essence embedded our language into Haskell, a strongly-typed functional language with lazy 
(demand-driven) evaluation, first-class functions, and parametric polymorphism [HPF96] [Pet97]. 

The library makes essential use of these features. As an example, we have used Hawk to specify and 
simulate the integer portion of the DLX [HP95] microprocessor. The DLX is a complete micropro- 
cessor and is a widely used model among researchers. Several DLX simulators exist, as well as a ver- 
sion of the Gnu C compiler that generates DLX assembly instructions [DLX97]. The processor 
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includes the most common instructions found in commercial RISC processors. Our specification, 
including data and control hazard resolution, is only two pages of Hawk code. A non-pipelined ver- 
sion of the processor was specified in half of a page. 

In this report, we introduce the concepts behind the Hawk library. Rather than attempting a patient 
explanation of the whole of the DLX with all of its inherent complexity, we have chosen to exhibit 
the techniques on a considerably simplified model. A corresponding annotated specification of the 
DLX itself can be found in [Hawk97]. 

The Hawk Library 

We start with a simple example that introduces several functions used in later examples. Consider the 
resettable counter circuit of Figure 1. 

reset 

Constant 0 
output 

Increment 

Delay 

FIGURE 1. Resettable Counter. A simple circuit that counts the number of 
clock cycles between reset signals. 

The reset wire is Boolean valued, while the other wires are integer valued. Of course, in silicon, inte- 
ger-valued wires are represented by a vector of Boolean wires, but as a design abstraction, a Hawk 
user may choose to use a single wire. The circuit counts (and outputs) the number of clock cycles 
since reset was last asserted. 

Signals Notice that there is no explicit clock in the diagram. Rather, each wire in the diagram carries a signal 
(integer or boolean valued) which is an implicitly clocked value. The output of a circuit only changes 
between clock cycles. We build signals using an abstract type constructor called Signal. As a men- 
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tal model we could think of a value of type Signal a as a function from integers to values of type 

a". 

type Signal a =   (Int  -> a) 

The integers denote the current time, measured as the number of clock cycles since the start of the 
simulation. Circuits and components of circuits are represented as functions from signals to signals. 
This view of signals is used extensively in the hardware verification community [Mel88] [WC94]. 

In the resettable counter example above, the constant 0 circuit outputs zero on every clock cycle. The 
select component chooses between its inputs on each clock cycle depending on the value of reset. If 
reset is asserted on a given cycle (has value true), then the output is equal to select's top input, in this 
case zero. If reset is not asserted, then its output is the value of its bottom input. In either case. 
select's output is the output of the entire circuit, as well as the input to the increment component, 
which simply adds 1 to its input. The output of increment is fed into the delay component. A delay 
component outputs whatever was on its input in the previous clock cycle: it "delays" its input by one 
cycle. However, on the first clock cycle of the simulation there is no previous input, so on the first 
cycle delay outputs whatever is on its init input, which is zero in this circuit. 

Components The components used in the resettable counter are trivial examples of the sorts of things provided by 
the Hawk library, but let's look at a specification of each component in turn. 

The simplest component is constant: 

constant   ::   a ->  Signal  a 
constant val  =   (X. time   .   val) 

The constant function takes an input of any type a, and returns an output of type Signal a, that 
is, a function from time to a value of type a. (Function definition and application in Haskell are 
denoted by simply placing the function arguments after the function symbol, separated by spaces). 
The X symbol in the body of constant constructs a function with a single parameter, here called 
time. The return value of a X-function is the value of the expression that follows the "." symbol. In 
this case the X-function ignores its time argument and always returns val. Thus for every clock 
cycle, (constant x) always has the same value x. 

The next component is select: 

select :: Signal Bool -> Signal a -> Signal a -> Signal a 
select boolSig xSig ySig = 

X  time . if (boolSig time) then 
xSig time 

else (ySig time) 

The first line declares select to be a function. In a Haskell type declaration, anything to the left of 
an arrow is a function argument. Thus, the select function takes one Boolean input signal and two 
polymorphic input signals, that is, two functions from time to a, and returns the X-function repre- 
senting the output signal. The function being returned from select applies boolSig to its time 

1. We actually implement signals using lazy lists, so that type Signal a=  List a. This implementation 
choice will be explained later in the paper. 
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argument. If (boolSig  time)   equals True, then we apply xSig to time and return the result, 
otherwise we return the result of applying ySig to time. 

The increment component is also quite simple: 

increment   ::   Signal  Int  ->  Signal  Int 
increment xSig = A. time   .   (xSig time)   +  1 

Given the xSig input signal, we return a function (built with a X) that takes its time parameter, 
applies xSig to it, adds one, and returns the result. 

The delay component is more interesting: 

delay  ::  a -> Signal a -> Signal a 
delay initVal xSig  = k time   .   if   (time ==  0)   then 

initVal 
else   (xSig   (time  -   1)) 

This function takes an initial value of type a, and an input signal of type Signal a, and it returns a 
value of type Signal a (the input arguments are in reverse order from the diagram). If time is 
equal to zero, we just return initVal, otherwise we return whatever value xSig had at clock cycle 
(time - 1). This function can thus propagate values from one clock cycle to the next. Note that the 
delay function is polymorphic, and can be used to delay signals of any type. 

Using the Once we have denned primitive signal components like the ones above, we never refer to time values 
components explicitly. This can be seen in the definition of the resettable counter itself: 

resetCounter :: Signal Bool -> Signal Int 
resetCounter reset = output 
where 

output = select reset (constant 0) 
(delay 0 (increment output)) 

The resetCounter definition takes reset as a Boolean signal, and returns an integer signal. The 
reset signal is passed into select. On every clock cycle where reset returns True, select 
outputs 0, otherwise it outputs the result of the delay function. On the first clock cycle delay out- 
puts 0, and thereafter outputs the result of whatever (increment output) was on the previous 
clock cycle. The output of the whole circuit is the output of the select function, here called out- 
put. Notice that output is used twice in this function: once as the input to increment, and once 
as the result of the entire function. This corresponds to the fact that the output wire in Figure 1 is 
split and used in two places. Whenever a wire is duplicated in this fashion, we must use a where 
statement in Hawk to name the wire. 

Recursive There is something else curious about the output variable. It is being used recursively in the same 
definitions place it is being denned! Most languages only allow such recursion for functions with explicit argu- 

ments. In Haskell, one can also define recursive data-structures and functions with implicit argu- 
ments, such as the one above. If we didn't have this ability, we would have had to define resetCounter 
as follows: 

resetCounter reset  =  output 
where 

output   time =   (select  reset   (constant 0) 
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(delay 0   (increment  oucpuc)))    time 

Every time we have a cycle in a circuit, we have to create a local recursive function, passing an 
explicit time parameter. This breaks the abstraction of the Signal ADT. In fact, in the real imple- 
mentation of signals, we don't use functions at all. We use infinite lists instead. Each element of the 
list corresponds to a value at a particular clock cycle; the first list element corresponds to the first 
clock cycle, the second element to the second clock cycle, and so on. By storing signals as lazy lists, 
we compute a signal value at a given clock cycle only once, no matter how many times it is subse- 
quently accessed. 

Haskell allows recursive definitions of abstract data structures because it is a lazy language, that is. it 
only computes a part of a data structure when some client code demands its value. It is lazy evalua- 
tion that allows Haskell to simulate infinite data structures, such as infinite lists. 

A Simple Microprocessor 

As we noted in the introduction, the DLX architecture is too complex to explain in fine detail in an 
introductory report. Thus for pedagogical purposes we show how to use similar techniques to specify 
a simple microprocessor called SHAM (Simple HAwk Microprocessor). We begin with the simplest 
possible SHAM architecture (unpipelined), and then add features: pipelining, and a memory-cache. 

command srcRegA    srcRegB destReg 

' \ ' 

RO 

input eiintenisB 

RegisterFile 

wriicRcg 
Delay 

writeCuntems contentsA 
Delay 
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input 1 

ALU 
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/ 

FIGURE 2. Unpipelined version of SHAM. 

The unpipelined SHAM diagram is shown in Figure 2. The microprocessor consists of an ALU and a 
register file. The ALU recognizes three operations: ADD. SUB, and INC. The ADD and SUB opera- 
tions add and subtract, respectively, the contents of the two ALU inputs. The INC operation causes 
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the ALU to increment its first input by one and output the result. The register file contains eight inte- 
ger registers, numbered RO through R7. Register RO is hardwired to the value zero, so writes to RO 
have no effect. The register file has one write-port and two read-ports. The write-port is a pair of 
wires; the register to update, called writeReg, and the value being written, called writeContents. The 
input to each read-port is a wire carrying a register name. The contents of the named read-port regis- 
ters are output every cycle along the wires contentsA and contentsB. If a register is written to and 
read from during the same clock cycle, the newly written value is reflected in the read-port's output. 
This is consistent with the behavior of most modern microprocessor register files. 

SHAM instructions are provided externally; in our drive for simplicity there is no notion of a pro- 
gram counter. Each instruction consists of an ALU operation, the destination register name, and the 
two source register names. For each instruction the contents of the two source registers are loaded 
into the ALU's inputs, and the ALU's result is written back into the destination register. 

Unpipelined 
SHAM 
Specification 

Let us assume we have already specified the register file and ALU, with the signatures below: 

data Reg = RO | Rl | R2 | R3 | R4 | RS | R6 | R7 

regFile :: (Signal Reg, Signal Int) -> 
(Signal Reg, Signal Reg) -> 
(Signal Int, Signal Inc) 

(write port inputs) 
(read port inputs) 
(read port outputs) 

data  Cmd  = ADD   1   SUB INC 

alu :: Signal Cmd -> Signal Int -> Signal Int -> Signal Int 

The alu specification takes a command signal and two input signals, and returns a result signal. 
Given these signatures and the previous definition of delay, it is easy in Hawk to specify an unpipe- 

lined version of SHAM: 

sham_l ::(Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> 
(Signal Reg,Signal Int) 

sham_l (cmd,destReg,srcRegA,srcRegB) = (destReg',aluOutput') 

where 
(aluInputA,aluInputB) = regFile (destReg',aluOutput') 

(srcRegA.srcRegB) 

aluOutput = alu cmd aluInputA aluInputB 
aluOutput' = delay 0 aluOutput 
destReg' = delay RO destReg 

The definition of sham_l takes a tuple of signals representing the stream of instructions, and returns 
a pair of signals representing the sequence of register assignments generated by the instructions. The 
first three lines in the body of sham_l read the source register values from the register file and per- 
form the ALU operation. The next two lines delay the destination register name and ALU output, in 
effect returning the values of the previous clock cycle. The delayed signals become the write-port for 
the register file. It is necessary to delay the write-port since modifications to the register file logically 
lake effect for the next instruction, not the current one. 

Pipelining Suppose we wanted to increase SHAM's performance by doubling the clock frequency. We will 
assume that, while sham_l could perform both the register file and ALU operations within one 
clock cycle, with the increased frequency it will take two clock cycles to perform both functions sen- 
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ally. We use pipelining to increase the overall performance. While the ALU is working on instruction 
n, the register file will be writing the result of instruction n -1 back into the appropriate register, and 
simultaneously reading the source registers of instruction n + I. 
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inn input 
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inn input 
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FIGURE 3. Pipelined version of SHAM. Since the register file and the ALU each 
now take one clock cycle to complete, we have to introduce pipeline register 
delay circuits. The pipeline registers in turn require us to add Select circuits to 
act as bypasses. The logic controlling the Select circuits is not shown. 

But now consider the following sequence of instructions: 

R2   <-  Rl  ADD  R3 
R4   <-  R2   SUB  R5 

When the ADD instruction is in the ALU stage, the SUB instruction is in the register-fetch stage. But 
one of the registers that is being fetched (R2), has not been written back into the register file yet, 
because the ALU is still calculating the result. The SUB instruction will read an out-of-date value for 
R2. This is an example of a data hazard, where naive pipelining can produce a result different from 
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the unpipelined version of a microprocessor. To resolve this hazard, we will first add bypass logic to 
the pipeline, then later abstract away from this added inconvenience. 

Figure 3 contains the diagram of a pipelined version of SHAM with bypass logic. By the time the 
source operands to the SUB instruction (R2 and R5) are ready to be input into the ALU, the up-to- 
date value for R2 is stored in the delay circuit between the ALU and the register file's write-port. The 
bypass logic uses this stored value of R2 as the input to the ALU, rather than the out-of-date value 
read from the register file. The bypass logic examines the incoming instructions to determine when 
this is necessary. Figure 4 contains the Hawk specification. 

sham_2 :: (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> 
(Signal Reg,Signal Int) 

sham_2 (cmd,destReg,srcRegA,srcRegB) = (destReg" ,aluOut') 

where 
(registerA,registerB) = regFile (destReg'',aluOut') 

(srcRegA,srcRegB) 

registerA' = delay 0 registerA 
registers' = delay 0 registerB 
destReg' = delay RO destReg 
cmd' = delay ADD cmd 

aluInputA = select inputValidA registerA' aluOut' 
aluInputB = select inputValidB registerB' aluOut' 

aluOut = alu cmd' aluInputA aluInputB 

aluOut' = delay 0 aluOut 
destReg'' = delay RO destReg' 

  Control logic   

inputValidA = delay True (noHazard srcRegA) 
inputValidB = delay True (noHazard srcRegB) 

noHazard :: Signal Reg -> Signal Bool 
noHazard srcReg = 
sigOr(sigEqual destReg' (constant RO)) 
(sigNotEqual destReg' srcReg) 

FIGURE 4. A Hawk specification of the pipelined SHAM  ^^ 

The first two lines of the code read the contents of the source registers from the register file. The next 
four lines delay the source register contents, the ALU command, and the destination register name by 
one cycle. The two select commands decide whether the delayed values should be bypassed. The 
decision is made by the Boolean signals inputValidA and inputValidB, which are defined in 
the control logic section. The next line performs the ALU operation. The last two lines in the data- 
flow section delay the ALU result and the destination register. The delayed result, called aluOut', 
is written back into the register file in the register named by destReg' ', as indicated in the first 
two lines of the section. 
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The control logic section determines when to bypass the ALU inputs. The signals inputValidA 
and inputValidB are set to True whenever the corresponding ALU input is up-to-date. The def- 
inition of these signals uses the function noHazard, which tests whether the previous instruction's 
destination register name matches a source register name of the current instruction. If they do, then 
the function returns False. The exception to this is when the destination register is RO. In this case 
the ALU input is always up-to-date, so noHazard returns True. 

Transactions The definition of sham_2 highlights a difficulty of many such specifications. Although the data flow 
section is relatively easy to understand, the control logic section is far from satisfactory. In fact, it 
takes nearly as many lines of Hawk code to specify the control logic as it does to specify the data 
flow, and mistakes in the control logic may not be easy to spot. We need a more intuitive way of 
defining control logic sections in microprocessors. 

We use a notion of transactions within Hawk to specify the state of an entire instruction as it travels 
through the microprocessor (similar in spirit to Aagaard and Leeser [AL941). A transaction holds an 
instruction's source operand values, the ALU command, and the destination operand value. Transac- 
tions also record the register names associated with the source and destination operands: 

data Transaction = Trans DestOperand Cmd [SrcOperand] 

type DestOperand = Operand 
type SrcOperand = Operand 
type Operand = (Reg,Value) 

data Value = Unknown | Val Int 

An operand is a pair containing a register and its (possibly unknown) value. 

For example, the instruction (R3   <- R2  ADD Rl), when it has completed, would be encoded as 
shown below (assume that register R2 holds the value 3, and Rl holds 4): 

Trans   (R3,Val  7)   ADD   [(R2,Val  3),(Rl,Val  4)] 

This expression states that register R3 should be assigned the value 7 as a result of adding the con- 
tents of register R2 and Rl. 

Not all of the register values in a transaction are known in the early stages of the pipeline. When a 
register name does not have an associated value yet, it is assigned the value Unknown. For example, 
if the above instruction had not reached the ALU stage yet, then the corresponding transaction would 
be: 

Trans   (R3,Unknown)   ADD   [(R2,(Val  3)),(Rl,Val  4))] 

Figure 5 shows how a transaction's values are filled in as it travels down the pipeline 
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Input 

Trans (R3,Unknown) ADD [ (R2,Unknown), (Rl,Unknown)] 

RegisterFile 

NopTransaction 
linU 

Delay 

Trans (R3,Unknown) ADD [(R2,Val 3),(Rl,Val 4)] 

ALU 

Trans (R3,Val 7) ADD [(R2,Val 3),(Rl,Val 4)] 

FIGURE 5. A transaction as it flows down the pipeline. 

Transaction In general, the Transaction datatype contains three subfields. The first field holds the destination 
structure register name and its current state. The state of a register indicates the current value for the register at 

a given stage of the pipeline. Possible state values are Unknown, or (Val  k). The second field is 
the instruction's ALU operation, in this case the ADD command. The third field holds a list of source 
operand register names and their corresponding states. In this example, it holds the names and states 
for the source operands R2 and Rl. 

The instruction (R3  <- R2 ADD Rl), before it enters the SHAM pipeline, is encoded as the transac- 

tion: 

Trans   (R3 , Unknown)   ADD   [(R2,Unknown),(Rl,Unknown)] 
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Changes to 
handle 
transactions 

At this point, none of the register values are known. 

We change the regFile and alu functions so that they take and return transactions: 

regFile :: Signal Transaction -> 
Signal Transaction -> 
Signal Transaction 

alu :: Signal Transaction -> 
Signal Transaction 

Because the register file needs to both write new values to the CPU registers and read values from 
them, the regFile function takes a xvrite-transaction and a read-transaction as inputs. The func- 
tion examines the destination register field of the write-transaction and updates the corresponding 
register in the register file. It outputs the read-transaction, modified so that all of the source register 
fields contain current values from the register file. For example, suppose regFile is applied to the 
completed write-transaction: 

Trans   (Rl.Val   4)    INC   [(Rl.Val   3)] 

and uses as the read transaction: 

Trans    (R3,Unknown)   ADD   [iR2 Jp.Known) , , f.- , 'ji'.r'.r.j'AT 

Unpipelined 
SHAM 

Further, assume that register Rl is assigned 20 and R2 is assigned 3 before regFile's application. 
Then regFile will update Rl to contain 4 from the write-transaction, and will output a new trans- 
action that is identical to the read-transaction, except that all of the source registers have been 
assigned current values from the register file: 

Trans   (R3,Unknown)   ADD   [(R2,Val  3), (Rl.Val  4)] 

The revised alu function takes a transaction whose source operands have values, performs the 
appropriate operation, and outputs a modified transaction whose destination field has been filled in. 
Thus if the ADD transaction above were given to alu, it would return: 

Trans   (R3,Val  7)   ADD   [(R2,Val  3), (Rl.Val   4)] 

Using transactions, the unpipelined version of SHAM is even easier to specify than it was before. 

sham_l_Trans :: Signal Transaction -> Signal Transaction 
sham_l_Trans instr = aluOutput' 
where 

alulnput = regFile aluOutput' instr 
aluOutput = alu alulnput 
aluOutput' = delay nop aluOutput 

nop = Trans (RO.Val 0) ADD [(RO.Val 0),(R0,Val 0)] 

But the real benefit of transactions comes from specifying more complex nucio-urchiieauio.. u.s wc 
shall see next. 

SHAM_2 with Transactions are designed to contain the necessary information for concisely specifying control 
Transactions logic. The control logic needs to determine when an instruction's source operand is dependent on 
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another instruction's destination operand. To calculate the dependency, the source and destination 
register names must be available. The transaction carries these names for each instruction. Because 
of this additional information, bypass logic is easily modeled with following combinator: 

bypass   ::   Signal Transaction -> Signal Transaction -> 
Signal Transaction 

The bypass function usually just outputs its first argument. Sometimes, however, the second argu- 
ment's destination operand name matches one or more of the first argument's source operand names. 
In this case, the source operand's state values are updated to match the destination operand state 
value. The updated version of the first argument is then returned. 

So if at clock cycle n the first argument to bypass is: 

Trans   (R4,Unknown)   ADD   [(R3,Val  12) , (R2,Val  4)] 

and the second argument at cycle n is: 

Trans   (R3,Val  20)   SUB   [(R8,Val  2) , (Rll,Val  10)] 

then because R3 in the second transaction's destination field matches R3 in the first transaction's 
source field, the output of bypass will be an updated version of the first transaction: 

Trans    (R4,Unknown)   ADD   [(R3,Val   20),(R2.Val   4)] 

One special case to bypass's functionality is when a source register is R0. Since R0 is a constant 
register, it does not get updated. The pipelined version of SHAM with bypass logic is now straight- 
forward. Notice that no explicit control logic is needed, as all the decisions are taken locally in the 
bypass operations. 

SHAM_2_Trans : : Signal Transaction -> Signal Transaction 
SHAM_2_Trans instr = aluOutput' 
where 

preppedlnstr = regFile aluOutput' instr 
preppedlnstr' = delay nopTrans preppedlnstr 
alulnput = bypass preppedlnstr' aluOutput' 
aluOucput = aiu alulnput 
aluOutput' = delay nopTrans aluOutput 

The first line takes instr and fills in its source operand fields from the register file. The filled-in 
transaction is delayed by one cycle in the second line. In the third line bypass is invoked to ensure 
that all of the source operands are up-to-date. Finally the transaction result is computed by alu and 
delayed one cycle so that the destination operand can be written back to the register file. 

Hazards There are some microprocessor hazards that cannot be handled through bypassing. For example, sup- 
pose we extended the SHAM architecture to process load and store instructions: 

R3   4- MEM[R2] 
MEM[?-5]    «-   R2 

The first instruction above is a load instruction; it loads the contents of the address pointed to by R2 
into R3. The second instruction is a store; it stores the contents of R2 into the address pointed to by 
R5. A block diagram of the extended SHAM architecture is shown in Figure 5. There is now a load/ 
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store pipeline stage after the ALU stage. However, this introduces a new problem. Suppose SHAM 

executes the following two instructions in sequence: 

R2 
R4 

MEM[R1] 
R2  ADD  R3 

These two instructions have a data hazard, just as before, but we can not use bypassing to resolve it. 
Bypassing depends on having a value to bypass at the beginning of a clock cycle, but R2's value 
won't be known until the end of the cycle, after the memory contents have been retrieved from the 
memory cache. To resolve this hazard, we have to stall the pipeline at the register-fetch stage. When 
the first instruction has reached the end of the ALU stage, the second instruction will have reached 
the end of the register-fetch stage. At this point the pipeline registers between the register-fetch stage 
and the ALU stage are overridden; on the next clock cycle they instead output the equivalent of a no- 
op instruction. The register-fetch stage itself re-reads the second instruction on the next clock cycle. 
In effect, the pipeline stall inserts a no-op instruction between the two instructions involved in the 

hazard: 

R2   f- MEMtRl] 
NOP 
R4   <-  R2   ADD  R3 

Now when the ADD instruction is about to be processed by the ALU. the load instruction has alread> 
completed the memory stage. R2's value is held in the pipeline registers after the memory stage, so 
bypass logic can be used to bring the ALU's input up-to-date. In order to stall correctly, we have m 
re-read the second instruction. Thus stalling reduces the performance of the pipeline. 

Hawk 
Specification of 
Extended SHAM 

In this section we will give more evidence of the simplifying power of transactions by specifying 
the extended SHAM architecture. The load/store extension significantly complicates the control 
logic for the SHAM architecture. We shall see that even though this version of SHAM is still quite 
simple, the Hawk specification without transactions is much more verbose than the specification with 
transactions. 

To start, we need to define some additional Hawk circuits. The first circuit, def aul tDelay, aug- 
ments the normal delay circuit so that when a stall hazard is detected, the augmented circuit will 
output a default value on the next clock cycle, rather than its current input value: 

defaultDelay   ::   Signal  Bool  ->  a  ->  Signal  a  ->  Signal  a 
defaultDelay emitDefault default  input = 
delay default   (select  emitDefault   (constant default)   input) 

The defaultDelay circuit uses delay to store values between clock cycles. The value it stores 
for the next clock cycle is default if emitDefault is equal to True on the current cycle, other- 
wise it stores input. On the first cycle of the simulation defaultDelay always returns 
default. 

The isLoadCmd circuit returns True whenever its argument signal is equal to 

isLoadCmd   ::   Signal  Cmd  ->   Signal   Bool 
isLoadCmd  cmdFunc   =   (X  time   .    (cmdFunc   time) LOAD) 

We also need a function that acts as a Boolean inverter on each clock cycle: 
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FIGURE 6. Block diagram of extended SHAM pipeline. Each Pipeline Register 
circuit is made up of multiple Delay and Select circuits. The Select circuits are 
used for bypassing, ensuring that the source operands are up-to-date.  
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sigNot   ::   Signal  Bool  ->  Signal  Bool 
sigNot boolFunc  =   (X  time   .   not   (boolFunc  time)) 

Although we previously passed SHAM instructions as parameters, we now need to call a function, 
instrCache, to explicitly retrieve them: 

instrCache   ::   Signal  Bool   ->   (Signal  Cmd,Signal  Reg,Signal   Reg,Signal 
Reg) 

Since the pipeline can stall, we need a way to ask for the same instruction two cycles in a row. The 
instrCache function takes a Boolean signal and returns the components of the instruction as sep- 
arate signals. Whenever the argument signal is True, then on the next cycle instrCache returns 
the same instruction as it did for the current clock cycle. Otherwise, it returns the next instruction as 
normal. 

We need to add the commands LOAD and STORE to the Cmd type: 

data Cmd = ADD | SUB | INC | LOAD | STORE 

We also need a circuit that actually performs the loads and stores: 

mem ::Signal Cmd ->  Signal Int -> Signal Int -> Signal In: 

The mem circuit takes a Cmd signal and two Int signals, and returns an Int signal. On those clock 
cycles where the Cmd signal is anything but LOAD or STORE, the mem function simply returns the 
current value of its first Int signal. On a LOAD command, mem uses the first Int signal as the 
address to load from, and returns the contents at that memory location. The second argument is 
ignored. On a STORE command, mem again uses the first Int signal as the memory address, and 
uses the second Int signal as the value to store at that memory location. The mem circuit always 
returns 0 on stores, since the return value is never used. 

Finally, we have to extend the definition of alu (although not its signature) to simply return its first 
Int signal argument on all clock cycles where its Cmd signal argument is cither LOAD or 370RE. 

Without Given the above circuits, we can now define the Hawk specification of the extended SHAM pipeline 
Transactions without transactions. Don't read this specification: just observe how complex it is. 

SHAM_3 :: (Signal Reg,Signal Int) 
SHAM_3 = (destReg'',aluOut') 
where 

-- register-fetch stage -- 
(cmd,destReg,srcRegA,srcRegB) = instrCache loadHazard 
(registerA,registerB) = regFile(destReg'''.memOut') 
(srcRegA,srcRegB) 

-- register-fetch  stage pipeline  registers   -- 
registerA' = defaultDelay loadHazard 0 registerA 
registerB' = defaultDelay loadHazard 0 registerB 
destReg' = defaultDelay loadHazard RO destReg 
cmd' = defaultDelay loadHazard ADD cmd 
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— ALU stage bypassing  — 
prelnputA = select hazardTwoA' memOut' registerA' 
aluInpuCA = select hazardOneA' aluOut' prelnputA 
prelnputB = select hazardTwoB' memOut' registerB' 
aluInputB = select hazardOneB' aluOut' prelnputB 

— ALU stage  — 
aluOut = alu cmd' aluInputA aluInputB 

-- ALU stage pipeline registers  -- 
aluInputB' = delay 0 aluInputB 
aluOut' = delay 0 aluOut 
destReg'' = delay RO destReg' 
cmd'' = delay ADD cmd' 

— memory stage bypassing  -- 
memAddress = select hazardOneA" memOut' aluOut' 
memContents = select hazardOneB" memOut' aluInputB' 

-- memory stage -- 
memOut = mem cmd'' memAddress memContents 

-- memory stage pipeline registers  — 
memOut' = delay 0 memOut 
destReg'" = delay RO destReg" 

  Control logic   

— hazard detection  logic  — 
preHazardOneA = hazard destReg' srcRegA 
preHazardOneB = hazard destReg' srcRegB 
loadHazard = sigAnd(isLoadCmd cmd') 
(sigOr preHazardOneA preHazardOneB) 
noLoadHazard = sigNot loadHazard 
hazardOneA = sigAnd noLoadHazard preHazardOneA 
hazardTwoA = sigAnd noLoadHazard (hazard destReg" srcRegA) 
hazardOneB = sigAnd noLoadHazard preHazardOneB 
hazardTwoB = sigAnd noLoadHazard (hazard destReg" srcRegB) 

-- bypass  commands   for ALU stage inputs  — 
hazardTwoA' = delay False hazardTwoA 
hazardOneA' = delay False hazardOneA 
hazardTwoB' = delay False hazardTwoB 
hazardOneB' = delay False hazardOneB 

-- bypass commands  for memory stage inputs  — 
hazardOneA'' = delay False hazardOneA' 
hazardOneB'' = delay False hazardOneB' 

hazard ::Signal Reg -> Signal Reg -> Signal Bool 

hazard dstReg srcReg = 
sigAnd(sigNotEqual dstReg (constant RO) ) 

(sigEqual dstReg srcReg) 
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Even though we have only added one additional pipeline stage, and still have no notion ol a program 
counter or conditional instructions, we can see that the specification is becoming unmanagable. We 
need to use abstractions like transactions to keep the specifications appropriately compact. In other 
cases, other abstractions are appropriate. The hardware specification language needs to be powerful 
enough to enable the designer to invent them at will. 

With We will see how transactions greatly simplify the specification of extended SHAM. We first have to 
Transactions modify some of the additional Hawk functions to handle transactions: 

instrCache :: Signal Bool -> Signal Transaction 

mem :: Signal Transaction -> Signal Transaction 

isLoadTrans :: Signal Transaction -> Signal Bool 

We also define a new Hawk function, transHazard, that returns True whenever its two transac- 
tion arguments would cause a hazard, if the first transaction preceeded the second transaction in a 
pipeline: 

transHazard :: Signal Transaction -> Signal Transaction -> 
Signal Bool 

The extended Hawk specification using transactions is given below: 

SHAM_3_Trans :: Signal Transaction 
SHAM_3_Trans = memOutput' 
where 

-- register-fetch stage  -- 
instr = instrCache loadHazard 
preppedlnstr = regFile memOutput' instr 

— register-fetch stage pipeline register -- 
preppedlnstr' = defaultDelay loadHazard nopTrans preppedlnstr 

— ALU stage bypassing  -- 
alulnput = bypass (bypass preppedlntr' memOutput') aluOutput' 

-- ALU stage  — 
aluOutput = alu alulnput 

— ALU stage pipeline register  — 
aluOutput' = delay nopTrans aluOutput 

— memory stage bypassing  -- 
memlnput = bypass aluOutput' memOutput' 

— memory stage  — 
memOutput = mem memlnput 

— memory stage pipeline register  -- 
memOutput' = delay nopTrans memOutput 

Control logic 
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— hazard detection logic  — 
loadHazard = sigAnd (isLoadTrans preppedlnstr') 
(transHazard preppedlnstr' preppedlnstr) 

The register-fetch stage retrieves the instruction and fills in its source operands from the register file. 
The register-fetch pipeline register delays the transaction by one clock cycle, although if there is a 
load hazard, the register instead outputs a nop-instruction on the next cycle. The ALU stage first 
updates the source operands of the stored transaction with the results of the two preceding transac- 
tions (memOutput' and aluOutput') by invoking bypass twice. It then performs the corresponding 
ALU operation, if any, on the transaction and stores it in the ALU-stage pipeline register. The mem- 
ory stage again updates the stored transaction with the immediately preceding transaction, performs 
any required mem operation, and stores the transaction. The stored transaction is written back to the 
register rile on the next clock cycle. The control logic section determines whether a load hazard 
exists for the current transaction, that is, whether the immediately preceding transaction was a load 
instruction that is in hazard with the current transaction. 

As we can see, the body of the specification has been reduced from 42 to 13 uncommented source 
code lines. The overall specification is also much more intuitive. In particular, the control logic sec- 
tion is now only a small minority of the overall specification. We feel the transaction ADT is close to 
the level of abstraction design engineers use informally when reasoning about microprocessor archi- 
tectures. 

Modelling the DLX 

Using techniques comparable to those described in this report we have modeled several DLX archi- 
tectures: 

• An unpipelined version, where each instruction executes in one cycle. 

• A pipelined version where all branching instructions cause the pipeline to stall for two cycles. 

• A more complex pipelined version where branches cause a one-cycle pipeline stall. 

• A pipelined version with branch prediction and speculative execution. Branches are predicted 
using a one-level branch target buffer. Whenever the guess is correct, the the branch instruction 
incurs no pipeline stalls. If the guess is incorrect, the pipeline stalls for two cycles. 

The microarchitectural specification for the unpipelined DLX is written in a quarter page of uncom- 
mented source code; the most complicated pipelined version takes up just over half a page. 

Executing the We used the Gnu C compiler that generates DLX assembly to test our specifications on several pro- 
model grams. These test cases include a program that calculates the greatest common divisor of two inte- 

gers, and a recursive procedure that solves the towers of Hanoi puzzle. 

We have not made detailed simulation performance measurements yet. Although we plan to test 
Hawk on several benchmark programs, we do not expect to break simulation-speed records. Hawk is 
built on top of a lazy functional language, which imposes some performance costs. Transactions also 
perform some run-time tests that are "compiled-away" in a lower-level pipeline specification. While 
it would be nice to get high performance, Hawk is primarily a specification language, and only sec- 
ondarily a simulation tool. 
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There are several research areas that bear a relation on this work, some more closely than others. In 
particular, modeling specific application domains with Haskell, especially those that depend on time, 
modeling hardware in various programming languages, and verifying microprocessors wiih theorem 
provers. We will pick an example or two from each of these categories. Of course, some ol the exam- 
ples lie in more than one category. 

Haskell compared favorably in an experiment comparing several prototyping languages [HJ94], The 
application domain involved modeling the Geometric Region Server module, which tracks the 
regions surrounding ships and planes in a military theatre. The module is required to answer such 
questions as when an enemy plane will enter a friendly ship's weapons range, or whether a plane has 
entered a commercial airspace corridor. Experts in each of several languages including Haskell, C++, 
Awk, and Griffin wrote a prototype program based on the same requirements document. The Haskell 
solution was considered the most concise and understandable of all the submitted entries. The 
authors claim their major success factors were: their heavy use of higher-order functions. Haskell's 
simple syntax, and the availability of powerful list-manipulating primitives in the standard Haskell 
library. 

Haskell has been used to specify several time-varying domains. For instance. RBMH [EH97] is a 
Haskell library that models interactive multimedia animations. The authors provide ADTs for time- 
varying behaviors, events, and interactions between behaviors and events. Unlike Hawk. RBMH's 
model of time is continuous. Also, an RBMH function can examine the values of future events, while 
Hawk signals only depend on current and past signal values. This non-monotonicity of time in 
RBMH requires a more sophisticated time-interval analysis than is required for Hawk. 

Haskell has also been used to directly model hardware circuits at the gate level. O'Donnell [OD95] 
has developed a Haskell library called Hydra that models gates at several levels of abstraction, rang- 
ing from implementations of gates using CMOS and NMOS pass-iransisiwrs. up u> abstract gate rep- 
resentations using lazy lists to denote time-varying values. Hydra has been used to teach advanced 
undergraduate courses on computer design, where students use Hydra to eventually design and test a 
simple microprocessor. Hydra is similar to Hawk in many ways, including the use of higher-order 
functions and lazy lists to model signals. However, Hydra does not allow users to define composite 
signal types, such as signals of integers or signals of transactions. In Hydra, these composite types 
have to be built up as tuples or lists of Boolean signals. While this limitation does not cause problems 
in an introductory computer architecture course, composite signal types significantly reduce specifi- 
cation complexity for more realistic microprocessor specifications. 

There are many other languages for specifying hardware circuits at varying levels of abstraction. The 
most widely used such languages are Verilog and VHDL. Both of these languages are more general 
than Hawk in that they can model asynchronous as well as synchronous circuits. However, Verilog 
and VHDL are large languages with complex semantics, which makes circuit verification more diffi- 
cult. Also, neither of these languages support polymorphic circuits, nor higher-order circuit combi- 
nators, as well as Hawk. 

The Ruby language, created by Jones and Sheeran [JS90], is a specification and simulation language 
based on relations, rather than functions. Ruby is more general than Hawk in thai relations can 
describe more circuits than functions can. On the other hand, existing Ruby simulators require Ruby 
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relations to be causal, i.e. to be implementable as functions. Thus Hawk is equal in expressive power 
to executable Ruby programs. In addition, much of Ruby's emphasis is on circuit layout. There are 
combinators to specify where circuits are located in relation to each other and to external wires. 
Hawk's emphasis is on circuit correctness, so we do not need to address layout issues. 

The Voss system [Seg93] lies at a still higher level of abstraction. Voss is a specialized theorem 
prover with a lazy functional meta-language and support for symbolic Boolean expressions. For 
example, the expressions (X A Y) and ((X v Y) =* Z) are symbolic Boolean terms. Voss can manipu- 
late such terms directly through an efficient encoding called Ordered Binary Decision Diagrams 
(OBDDs). Although OBDDs allow for efficient verification of Boolean-valued circuits, it is not yet 
clear how to generalize them to arbitrary datatypes, which currently reduces their usefulness in 
Hawk. 

Two other languages that are strongly related are HML [LL95] and MHDL. HML is a hardware 
modelling language based on the functional language ML. It also has higher-order functions and 
polymorphic types, allowing many of the same abstraction techniques that are used in Hawk, with 
similar safety guarantees. On the other hand. HML is not lazy, so does not easily allow the recursive 
circuit specifications that turned out to be key in specifying micro-architectures. The goal of HML is 
also rather different from Hawk, concentrating on circuits that can be immediately realized by trans- 
lation to VHDL. 

MHDL is a hardware description language for describing analog microwave circuits, and includes an 
interface to VHDL [Bar95]. Though it tackles a very different part of the hardware design spectrum, 
like Hawk. MHDL is essentially an extended version of Haskell. The MHDL extensions have to do 
with physical units on numbers, and universal variables to track frequency and time etc. 

One goal of hardware specification languages is to formally verify circuit correctness. There is much 
active research related to Hawk on using general-purpose theorem provers to verify microprocessors. 
Typically the specification language is some form of logic, often either higher-order or temporal. For 
example, Burch and Dill [BD94] were able to verify the control logic of a simplified version of the 
DLX. Starting with an untyped functional specification language, they compiled a specification of 
the DLX's behavior, as well as a description of its architecture, into a pair of state-transition func- 
tions using a form of quantifier-free predicate logic, with uninterpreted functions and a notion of 
equality between them. They were able to verify that the architectural description implements the 
behavior specification, using a restricted form of theorem proving called model checking. 

Wmdlcv and Cue |WC94| have used the HOL theorem prover [GM931 to specify a simple pipelined 
microprocessor called UINTA. which has control and data hazards. UINTA has a five-stage pipeline, 
with data forwarding, load stall detection, and two branch-delay slots. The authors modeled the 
architecture as a series of four higher-order logic specifications, each specification in the series being 
more abstract than the previous one. For each adjacent pair of specifications, they verified that the 
lower-level specification implemented the functionality of the higher-level specification. They then 
verified that the top-most specification implemented the functionality of the microprocessor's 
instruction set. Through a transitivity argument, they were then able to prove that the lowest-level 
specification, which corresponded to the actual microprocessor circuits, implemented the instruction 
set functionality. 

Eventually we would like to apply verification techniques such as those presented above to verify 
Hawk designs. We feel that Haskell's strong typing and executability will be helpful in this regard. 
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Conclusion and Future Directions 

For instance, the parametricity theorem is a technique for verifying certain strong properties of poly- 
morphic functions in Haskell, based only on the function's type. Furthermore, because Hawk is exe- 
cutable we can apply symbolic simulation techniques to prove program equivalences. Verification 
efforts that rely on non-executable or untyped specification languages cannot take advantage of these 
methods. 

Conclusion and Future Directions 

We have just completed the specification of a superscalar version of DLX. with speculative and oui- 
of-order instruction execution. The use of transactions has scaled well to this architecture: ii turns 
out that superscalar components like reservation stations and reorder buffers are naturally expressed 
as queues of transactions. 

Beyond this, we intend to push in a number of directions. 

• We hope to use Hawk formally to verify the correctness of microprocessors through the mechan- 
ical theorem prover Isabelle [Pau94]. Isabelle is well-suited for Hawk; it has built-in support for 
manipulating higher-order functions and polymorphic types. It also has well-developed rewriting 
tactics. Thus simplification strategies like partial evaluation and deforestation [GLP93] can be 
directly implemented. 
We believe that Hawk is well-suited for formal verification. Often hardware-verification libraries 
use relations, rather than functions, to specify circuits. Functions have the advantage of being 
amenable to equational reasoning, where terms can be simplified through rewriting without 
changing their meaning. We hope eventually to take a pipelined specification and through equa- 
tional rewriting reduce it to an unpipelined version (with of course the extra delay and stall cir- 
cuits that the pipeline makes necessary). 
We also expect that transactions will aid the verification process. Transactions make explicit 
much of the pipeline state needed to prove correctness. In lower-level spccilicatioiis this data !ia- 
to be inferred from the pipeline context. 

• We are working on a visualization tool which will enable the microprocessor designer to inspect 
values passing along internal wires, at any level in the design hierarchy. We have a probe function 
with type 

probe : : String -> Signal a -> Signal a 

that acts as the identity function on the wire (so has no effect on the simulation) but passes the 
values of the wire to the outside world, as they are demanded by the simulation. The string 
parameter allows each probe to be named. 

• We have made initial progress on formally extracting stand-alone control logic from the transac- 
tion-based models of pipelines. This is potentially a very different approach to proving correct- 
ness of control logic from the methods usually repoerted in the literature. 

• We intend to stabilize a definition for the Hawk library. We have discovered that as we specify 
more and more architectures, the same themes keep recurring, and we intend to fix on these pat- 
terns. 

Haskell as a We have achieved such compact specifications by relying on the powerful abstractions made possible 
host language        by Haskell. Lazy evaluation and first-class functions allow us to abstract time-varying signals into a 

single value, which in turn can be defined by recursive definitions. We can abstract away from vec- 
tors of wires representing binary numbers or entire instructions by relying on Haskell's type system 
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to represent these vectors by a single wire. We rely on polymorphism to reuse circuit definitions 
across multiple signal types. 

Once we have stabilized the definition for the Hawk library, we will in effect have defined yet 
another embedded domain-specific language in Haskell, this one for specifying microprocessors. 
Haskell has proved to be a very flexible medium for this. Some other examples include animation 
specification, CGI programming, parser and pretty printer specification, and COM agent scripting. 
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1    Introduction 

Haskore is a collection of Haskell modules designed for expressing musical structures in the high- 
level, declarative style of functional programming. In Haskore, musical objects consist of primitive 
notions such as notes and rests, operations to transform musical objects such as transpose and 
tempo-scaling, and operations to combine musical objects to form more complex ones, such as 
concurrent and sequential composition. From these simple roots, much richer musical ideas can 
easily be developed. 

Haskore is a means for describing music—in particular Western Music—rather than sound. It 
is not a vehicle for synthesizing sound produced by musical instruments, for example, although 
it does capture the way certain (real or imagined) instruments permit control of dynamics and 

articulation. 

Haskore also defines a notion of literal performance through which observationally equivalent 
musical objects can be determined. From this basis many useful properties can be proved, such 
as commutative, associative, and distributive properties of various operators. An algebra of music 

thus surfaces. 

In fact a key aspect of Haskore is that objects represent both abstract musical ideas and their 
concrete implementations. This means that when we prove some property about an object, that 
property is true about the music in the abstract and about its implementation. Similarly, trans- 
formations that preserve musical meaning also preserve the behavior of their implementations. For 
this reason Haskell is often called an executable specification language: i.e. programs serve the role 
of mathematical specifications that are directly executable. 

Building on the results of the functional programming community's Haskell effort has several 
important advantages: First, and most obvious, we can avoid the difficulties involved in new 
programming language design, and at the same time take advantage of the many years of effort 
that went into the design of Haskell. Second, the resulting system is both extensible (the user is 
free to add new features in substantive, creative ways) and modifiable (if the user doesn't like our 
approach to a particular musical idea, she is free to change it). 
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Figure 1: Overall System Diagram 

In the remainder of this paper I assume that the reader is familar with the basics of functional 
programming and Haskell in particular. If not, I encourage reading at least A Gentle Introduction 
to Haskell [HF92] before proceeding. I also assume some familiarity with equational reasoning; an 
excellent introductory text on this is [BW88]. 

2    The Architecture of Haskore 

Figure 1 shows the overall structure of Haskore. Note the degree of independence of high level 
structures from the "music platform"—it is desirable for Haskore compositions to run equally 
well as conventional midi-files [IMA90], NeXT MusicKit score files [JB91], and csound score files 
[Ver86], and to print Haskore compositions in traditional notation using the CMN (Common Music 
Notation) subsystem. This independence is accomplished by having abstract notions of musical 
object, player, instrument, and performance that are eventually mapped down to a particular 
music platform. In this paper I will provide only the details of the mapping to Midi, since it is 
likely to be the most popular platform for users. In any case, of most interest is the box labeled 
"Haskore" in the diagram. 

At the module level, Haskore is organized as follows: 



> module Haskora (module Haskore, module Basics, module Performance, 

> module HaskToMidi)       — module Players 

> where 

> 
> import Basics — described in Section 3 
> import Performance        — described in Section 4 
> — import Players — described in Section 5 
> import HaskToMidi — described in Section 6 

As I present various musical ideas in Haskell, I urge the reader to question, at every step, the 
decisions that I make. There is no supreme theory of music that dictates my decisions, and what I 
present is actually one of several versions that we have developed (this version is much richer than 
the one described in [HMGW96]; it is the "Haskore in practice" version alluded to in Section 6 of 
that paper). I believe this version is suitable for many practical purposes, but the reader may wish 
to modify it to better satisfy her intuitions and/or application. 

This document was written in the literate programming style, and thus the J^TgX manuscript file 
from which it was generated is an executable Haskell program. It can be compiled under ETgX in 
two ways: a basic mode provides all of the functionality that most users will need, and an extended 
mode in which various pieces of lower-level code are provided and documented as well (see file 
header for details). This version was compiled in basic mode. The document can be retrieved 
via WWW from ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore (consult 
the README file for details). It is also delivered with the standard joint Nottingham/Yale Hugs 
release. 

The code conforms to Haskell 1.4, although it does not adequately use any of the newer fea- 
tures in Haskell. since most of it was written when Haskell 1.2 was the latest release. Parts of 
the code should clearly be rewritten to take advantage of some Haskell 1.4 features, in particular 
"named fields" in datatype declarations. Haskore has been tested under the February. 1997 Not- 
tingham/Yale release of Hugs 1.4. which unfortunately does not yet support mutually iTcursivc 
modules. For this reason all references to the module Players in this document are commented 
out, which in effect makes it part of module Performance (with which it is mutually recursive). 



3 The Basics 

> module Basics where 

> infixr 5 :+:, :=: 

Perhaps the most basic musical idea is that of a pitch, which consists of a pitch class (i.e. one of 
12 semi-tones) and an octave: 

> type Pitch = (PitchClass, Octave) 
> data PitchClass = Cf  I  C  I  Cs  I Df  I D 
> |  Gf   I  G  I  Gs   I  Af   I  A 

> deriving (Eq.Ord.Ix.Show) 
> type Octave = Int 

Ds 
As 

I Ef  I 
I Bf  | 

E  I  Es 
B  I  Bs 

I  Ff   I  F   |  Fs 

So a Pitch is a pair consisting of a pitch class and an octave. Octaves are just integers, but we 
define a datatype for pitch classes, since distinguishing enharmonics (such as G# and Ab) may be 
important (especially for notation!). By convention, A440 = (A,4). 

Musical objects are captured by the Music datatype:1 

> data Music = Mote Pitch Dur  [NoteAttribute] 
> I Rest Dur 

> I Music :+: Music 

> I Music :=: Music 

> I Tempo Int Int Music 

> I Trans Int Music 

> I Instr IName Music 

> I Player PName Music 

> I Phrase [PhraseAttribute] Music 

> 

> 

deriving Show 

> type Dur      = Float 
> type IName = String 
> type PName = String 

a note \ atomic 
a rest /        objects 
sequential composition 
parallel composition 
scale the tempo 
transposition 
instrument label 
player label 
phrase attributes 

in whole notes 

Here a Note is its pitch paired with its duration (in number of whole notes), along with a list 
of NoteAttributes (denned later). A Rest also has a duration, but of course no pitch or other 

attributes. 
H prefer to call these "musical objects" rather than "musical values" because the latter may be confused with 

musical aesthetics. 



From these two atomic constructors we can build more complex musical objects using the other 
constructors, as follows: 

• ml  : +:    m2 is the sequential composition of ml and m2; i.e. ml and m2 are played in sequence. 

• ml  : =:    m2 is the parallel composition of ml and m2; i.e. ml and m2 are played simultaneously. 

• Tempo a b m scales the rate at which m is played (i.e. its tempo) by a factor of a/b. 

• Trans i m transposes m by interval i (in semitones). 

• Instr iname m declares that m is to be performed using instrument iname. 

• Player pname m declares that m is to be performed by player pname. 

• Phrase pas m declares that mis to be played using the phrase attributes (described later) in 
the list pas. 

It is convenient to represent these ideas in Haskell as a recursive datatype because we wish to 
not only construct musical objects, but also take them apart, analyze their structure, print them 
in a structure-preserving way, interpret them for performance purposes, etc. 

3.1 Convenient Auxiliary Functions 

For convenience we first create a few names for familiar notes, durations, and rests, as shown in 
Figure 2. Treating pitches as integers is also useful in many settings, so we define some functions for 
converting between Pitch values and AbsPitch values (integers). These also are shown in Figure 
2, along with a definition of trans, which transposes pitches (analogous to Trans, which transposes 
values of type Music). 

Exercise 1 Show that  abspitch  .  pitch = id. and. up to enharmonic equivalences. 
pitch  .   abspitch = id. 

Exercise 2 Show that   trans  i  (trans j p)  = trans  (i+j)  p. 

3.2 Some Simple Examples 

With this modest beginning, we can already express quite a few musical relationships simply and 
effectively. For example, two common ideas in music are the construction of notes in a horizontal 
fashion (a line or melody), and in a vertical fashion (a chord): 

> line, chord :: [Music] -> Music 
> line = foldr (:+:) (Rest 0) 
> chord = foldr (: = :) (Rest 0) 



cf,c,cs,df,d,ds,ef,a,es,ff,f,fs,gf,g,gs,af,a,as,bf ,b,bs 

Octave -> Dur -> [NoteAttribute] -> Music 

cf o = Note (Cf,o) 
df o = Note (Df,o) 
ef o = Note (Ef,o) 
ff o = Note (Ff,o) 
gf o = Note (Gf,o) 
af o = Note (Af.o) 
bf o = Note (Bf.o) 

c o = Note (C,o) 
d o = Note (D,o) 

e o = Note (E,o) 

f o = Note (F,o) 

g o = Note (G,o) 

a o = Note (A,o) 

b o = Note (B,o) 

es o = Note (Cs,o) 
ds o = Note (Ds,o) 

es o = Note (Es,o) 

fs o = Note (Fs,o) 

gs o = Note (Gs,o) 

as o = Note (As,o) 

bs o = Note (Bs,o) 

wn, hn, qn, en, sn, tu :: Dur 

wnr, hur, qnr, eur, snr, tnr :: Music 

wn = 1 

Im = 1/2 
qn = 1/4 
en = 1/8 
sn = 1/16 

tn = 1/32 

wnr = Rest wn 

hnr = Rest hn 

qnr = Rest qn 
enr = Rest en 

snr = Rest sn 

tnr = Rest tn 

pitchClass :: PitchClass -> Int 

pitchClass pc = case pc of 

Cf -> -1;  C -> 0 

Df -> 1 D -> 2 Ds -> 3 

Ef -> 3 E -> 4 Es -> S 

Ff -> 4 F -> 5 Fs -> 6 
Gf -> 6 G -> 7 Gs -> 8 
Af -> 8 A -> 9 As -> 10 

Bf -> 1( ); B. -> 1 L; Bs -> 12 

Cs -> 1 

— whole note rest 

— half note rest 
— quarter note rest 

— eight note rest 
— sixteenth note rest 

— thirty-second note rest 

— or should Cf be 11? 

or should Bs be 0? 

type AbsPitch = Int 

absPitch :: Pitch -> AbsPitch 
absPitch (pc.oct) = 12*oct + pitchClass pc 

pitch   :: AbsPitch -> Pitch 
pitch   ap     = ( [C.Cs.D.Ds.E.F.Fs.G.Gs.A.As.B] !! mod ap 12, 

quot ap 12) 

trans   :: Int -> Pitch -> Pitch 

trans i p = pitch (absPitch p + i) 

Figure 2: Convenient note names and pitch conversion functions. 



From the notes in the C major triad in register 4,1 can now construct a C major arpeggio and 

chord as well: 

> cMaj = map (\f->f 4 qn  G)   Cc,  Q,  g]    ~ octave 4, quarter notes 
> 
> cHajArp = line    cMaj 
> cMajChd = chord cMaj 

Suppose now we wish to describe a melody m accompanied by an identical voice a perfect 5th 
higher. In Haskore we simply write "m : =: Trans 7 m." Similarly, a canon-like structure involving 
m can be expressed as "m : = :  delay d m," where: 

> delay  ::  Dur -> Music -> Music 
> delay d m = Rest d  :+:  m 

Of course, Haskell's non-strict semantics also allows us to define infinite musical objects. For 
example, a musical object may be repeated ad nauseum using this simple function: 

> repeatM  ::  Music -> Music 
> repeatM m = m  : + :■ repeatM m 

Thus an infinite ostinato can be expressed in this way, and then used in different contexts that 
extract only the portion that's actually needed. 

The notions of inversion, retrograde, retrograde inversion, etc. used in 12-tone theory are also 
easily captured in Haskore. First let's define a transformation from a line created by line to a list: 

> lineToList  ::  Music ->   [Music] 
> lineToList n<3(Rest 0)  =   G        ' 
> lineToList (n  :+:  ns)  = n  :  lineToList ns 
> 
> retro,- invert,  retrolnvert,  invertRetro  ::  Music -> Music 
> retro        = line   .  reverse   .   lineToList 
> invert m = line  (map inv 1) 
> where 19(Note r  :  _)    = lineToList m 
> inv (Note p d nas)  = Mote (pitch (2*(absPitch r)  - absPitch p))  d nas 
> inv  (Rest d) = Rest d 
> retrolnvert = retro . invert 

> invertRetro = invert . retro 
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Figure 3: Nested Polyrhythms 

Exercise 3 Show that "retro  . retro.." "invert  .  invert," and* "retrolnvert  .  invertRetro* 

are the identity on values created by line. 

For some rhythmical ideas, consider first a simple triplet of eighth notes; it can be expressed as 
"Tempo 3 2 m," where m is a line of 3 eighth notes. So in fact Tempo can be used to create quite 
complex rhythmical patterns. For example, consider the "nested polyrhythms" shown in Figure 3. 
They can be expressed quite naturally in Haskore as follows (note the use of the where clause in 

pr2 to capture recurring phrases): 

> prl, pr2  ::  Pitch -> Music 
> pri p = Tempo 5 6  (Tempo 4 3  (mkLn 1 p qn  :+: 
> Tempo 3 2 (mkLn 3 p en :+: 
> mkLn 2 p sn  :+: 
> mkLn 1 p qn        )   :+: 
> mkLn 1 p qn)   :+: 
> Tempo 3 2 (mkLn 6 p en)) 
> 
> pr2 p = Tempo 7 6  (ml   :+: 
> Tempo 5 4  (mkLn 5 p en)   :+: 
> ml   :+: 
> mkLn 2 p en) 
> where ml = Tempo 5 4  (Tempo 3 2 m2   :+: m2) 
> m2 = mkLn 3 p en 
> 
> mkLn n p d = line (take n (repeat (Note p d D))) 

To play polyrhythms prl and pr2 in parallel using middle C and middle G, respectively, we would 
do the following (middle C is in the 5th octave): 



> prl2  ::  Music 
> prl2 = prl (C,5) :=: pr2 (G,S) 

As a final example in this section, we can can compute the duration in beats of a musical object, 
a notion we will need in Section 4, as follows: 

> dur 
> 

> dux 

:: Music -> Dur 

(Note . d _) = d 
> dur (Rest d) = d 
> dur (ml :+: m2) = dur ml  +  dur m2 

> dur (ml :=: m2) = dur ml 'max' dur m2 

> dur (Tempo a b m) = dur m * float b / f 

> dur (Trans _ m) = dur m 

> dur (Instr _ m) = dur m 

> dur (Player _ m) = dur m 

> dur (Phrase _ m) = dur m 

> float = fromlnteger . toInteger :: Int ■> Float 

Using dur we can define a function revM that reverses any Music value (and is thus considerably 
more useful than retro defined earlier). Note the tricky treatment of (: = :). 

> revM Music -> Music 
> revM n®(Note ) = n 
> revM r<3(Rest _) = r 
> revM (Tempo il i2 m) = Tempo il i2 (revM m) 

> revM (Trans i m) = Trans i    (revM m) 

> revM (Instr i m) = Instr i    (revM m) 

> revM (Phrase pas m) = Phrase pas (revM m) 

> revM (ml :+: m2) = revM m2 :+: revM ml 

> revM (ml :=: m2) = let dl = dur ml 

> d2 = dur m2 

> in if dl>d2 then revM ml :=: 

> (Rest (dl-d2) :+: revM m2) 

> else (Rest (d2-dl) :+: revM ml) 

> revM m2 



Exercise 4 Find a simple piece of music written by your favorite composer, and transcribe it into 
Haskore. In doing so, look for repeating patterns, transposed phrases, etc. and reflect this in your 
code, thus revealing deeper structural aspects of the music than that found in common practice 

notation. 

Appendix C shows the first 28 bars of Chick Corea's "Children's Song No. 6" encoded in 

Haskore. 

3.3    Phrasing and Articulation 

Recall that the Note constructor contained a field of NoteAttributes. These are values that are 
attached to notes for the purpose of notation or musical interpretation. Likewise, the Phrase 
constructor permits one to annotate an entire musical object with PhraseAttributes. These two 
attribute datatypes cover a wide range of attributions found in common practice notation, and are 
shown in Figure 4. Beware that use of them requires the use of a player that knows how to interpret 
them! Players will be described in more detail in Section 5. 

Note that some of the attributes are parameterized with a numeric value. This is used by a 
player to control the degree to which an articulation is to be applied. For example, we would expect 
Legato 1.2 to create more of a legato feel than Legato 1.1. The following constants represent 
default values for some of the parameterized attributes: 

> legato,  staccato     ::  Articulation 
> accent,  bigAccent  ::   Dynamic 
> 
> legato = Legato  1.1 
> staccato    = Staccato 0.5 
> accent        = Accent 1.2 
> bigAccent = Accent 1.5 

To understand exactly how a player interprets an attribute requires knowing how players are 
defined. Haskore defines only a few simple players, so in fact many of the attributes in Figure 
4 are to allow the user to give appropriate interpretations of them by her particular player. But 
before looking at the structure of players we will need to look at the notion of a performance (these 
two ideas are tightly linked, which is why the Players and Performance modules are mutuaUy 

recursive). 
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> data NoteAttribute = Volume Float      — by convention: 0=min, 100=max 

> I Fingering Int 

> I Dynamics String 

> deriving Show 
> 

> data PhraseAttribute = Dyn Dynamic 
> I Art Articulation 

> I Qrn Ornament 

> deriving Show 
> 

> data Dynamic = Accent Float I Crescendo Float I Diminuendo Float 
> | PPP I PP I P I MP | SF | MF ! MF I FF | FFF I Loudness Float 

> I Ritardando Float I Accelerando Float 

> deriving Show 
> 

> data Articulation = Staccato Float I Legato Float 1 Slurred Float 
> I Tenuto I Marcato I Pedal I Fermata I FermataDown I Breath 

> I DownBow I UpBow I Harmonic I Pizzicato I LeftPizz 

> I BartokPizz I Swell I Wedge I Thumb I Stopped 

> deriving Show 
> 

> data Ornament = Trill I Mordent I InvMordent I DoubleMordent 

> I Turn | TrilledTurn I ShortTrill 
> I Arpeggio I ArpeggioUp I ArpeggioDown 

> I Instruction String I Head NoteHead 

> deriving Show 
> 

> data NoteHead = DiamondHead I SquareHead I XHead I TriangleHead 
> I TremoloHead ! SlashHead I ArtHarmonic I NoHead 

> deriving Show 

Figure 4: Note and Phrase Attributes. 
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4    Interpretation and Performance 

> module Performance (module Performance, module Basics) — module Players 

> where 

> 

> import Basics 

> — import Players 

Now that we have defined the structure of musical objects, let us turn to the issue of performance, 
which we define as a temporally ordered sequence of musical events: 

> type Performance =  [Event] 
> 
> data Event = Event Time IName AbsPitch DurT Volume 
> deriving (Eq,0rd,Show) 
> 
> type Time = Float 
> type DurT = Float 
> type Volume        = Float 

An event is the lowest of our music representations not yet committed to Midi, csound, or the 
MusicKit. An event Event s i p d v captures the fact that at start time s, instrument i sounds 
pitch p with volume v for a duration d (where now duration is measured in seconds, rather than 

beats). 

To generate a complete performance of, i.e. give an interpretation to, a musical object, we must 
know the time to begin the performance, and the proper volume, key and tempo. We must also 
know what players to use; that is, we need a mapping from the PNames in an abstract musical 
object to the actual players to be used. (We don't yet need a mapping from abstract INames to 
instruments, since this is handled in the translation from a performance into, say, Midi, such as 

defined in Section 6.) 

We can thus model a performer as a function perform which maps all of this information and 

a musical object into a performance: 

> perform ::  PMap -> Context -> Music -> Performance 
> 
> type PMap        = PMame -> Player 
> type Context =  (Time,Player,IName,DurT,Key.Volume) 
> type Key - AbsPitch 
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perform pmap cQ(t,pl,i,dt,k,v) m = 

case m of 
Note p d nas -> playNote pi c p d nas 

Rest d     -> D 
ml   :+: m2        -> perform pmap c ml ++ 

perform pmap (setTime    c (t+(dur ml)*dt)) m2 
ml   :=: m2        -> merge (perform pmap c ml)   (perform pmap c m2) 
Tempo    a b m -> perform pmap (setTempo    c (dt * float b / float a)) m 
Trans    p      m -> perform pmap (setTrans    c (k+p)) m 
Instr   nm   m -> perform pmap (setlnstr   c nm ) m 
Player nm   m -> perform pmap  (setPlayer c (pmap nm)) m 
Phrase pas m -> interpPnrase pi pmap c pas m 

Some things to note: 

1. The Context is the running ;'state" of the performance, and gets updated in several different 
ways. For example, the interpretation of the Tempo constructor involves scaling dt appro- 
priately and updating the DurT field of the context. Figure 5 defines a convenient group of 
selectors and mutators for contexts and events. 

2. Interpretation of notes and phrases is player dependent. Ultimately a single note is played by 
the playNote function, which takes the player as an argument. Similarly, phrase interpreta- 
tion is also player dependent, reflected in the use of interpPnrase. Precisely how these two 
functions work is described in Section 5. 

3. The DurT component of the context is the duration, in seconds, of one whole note. To make it 
easier to compute, we can define a "metronome" function that, given a standard metronome 
marking (in beats per minute) and the note type associated with one beat (quarter note, 
eighth note, etc.) generates the duration of one whole note: 

> metro   ::  Float -> Dur -> DurT 
> metro setting dur = 60 /  (setting*dur) 

Thus, for example, metro 96 qn creates a tempo of 96 quarter notes per minute. 

4. In the treatment of (: +:), note that the sub-sequences are appended together, with the start 
time of the second argument delayed by the duration of the first. The function dur (denned 
in Section 3.2) is used to compute this duration. Note that this results in a quadratic time 
complexity for perform. A more efficient solution is to have perform compute the duration 
directly, returning it as part of its result. This version of perform is shown in Figure 6. 

5. In contrast, the sub-sequences derived from the arguments to (: = :) are merged into a time- 
ordered stream. The definition of merge is given below. 
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setTime, satlnstr, setTempo, setTrans, and setVolume 

have type: Context -> X -> Context, where X is obvious. 

> setTime  (t,pl,i,dt,k,v) t' = (f,pl,i,dt,k,v) 
> setPlayer (t,pl,i,dt,k,v) pi' = (t,pl',i,dt,k,v) 
> setlnstr (t.pl.i.dt,k,v) i' = (t.pl.i',dt,k,v) 
> setTempo (t,pl,i,dt,k,v) dt' = (t,pl,i,df,k,v) 
> setTrans (t,pl,i,dt,k,v) k' = (t,pl,i,dt,k',v) 
> setVolume (t,pl,i,dt,k,v) v' = (t,pl,i,dt,k,V) 

getEventTime, getEventlnst, getEventPitch, getEventDur, and getEventVol 

have type: Event -> X, where X is obvious 

> getEventTime (Event t _ _ _ _ 

> getEventlnst (Event _ i _ _ _ 

> getEventPitch (Event _ _ p _ _ 

> getEventDur  (Event _ _ _ d _ 

> getEventVol  (Event _ _ _ _ v 

= t 
= i 

= P 
= d 
= v 

setEventTime, setEventlnst, setEventPitch, setEventDur, and setEventVol 

have type: Event -> X -> Event, where X is obvious. 

> setEventTime (Event t i p d v) t' = Event t' i p d v 
> setEventlnst (Event t i p d v) i' = Event t i' p d v 

> setEventPitch (Event t i p d v) p' = Event t i p' d v 
> setEventDur  (Event t i p d v) d' = Event t i p d' v 

> setEventVol  (Event t i p d v) v' = Event t i p d v' 

Figure 5: Selectors and mutators for contexts and events. 
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> perform pmap c m = fst (perf pmap c m) 

> 

> perf :: PMap -> Context -> Music -> (Performance, DurT) 

> perf pmap c@(t,pl,i,dt,k,v) m = 

> case m of 
d nas ->  (playNote pi c p d nas,  d*dt) 

->  CD,  d*dt) 
m2        -> let  (pfl.dl)  = perf pmap c ml 

(pf2,d2)  = perf pmap  (setTime c  (t+dl))  m2 
in (pfl++pf2, dl+d2) 

m2        -> let  (pfl.dl)  = perf pmap c ml 
(pf2,d2)   = perf pmap c m2 

in  (merge pfl pf2, max dl d2) 
a b m -> perf pmap  (setTempo    c  (dt * float b / float  a))  m 
p m      -> perf pmap  (setTrans    c (k+p)) m 
mi    -> perf pmap  (setlnstr    c nm ) m 

Player nm m    -> perf pmap  (setPlayer c (pmap nm)) m 
Phrase pas m -> interpPhrase pi pmap c pas m 

Figure 6: The "real" perform function. 

> Note p 
> Rest d 

> ml : + : 
> 

> 

> ml : = : 
> 
> 

> Tempo 
> Trans 
> Instr 
> Player 
> Phrase 
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> merge  ::  Performance -> Performance -> Performance 

merge a@(el:esl) b<3(e2:es2)  = 
if el < e2 then el  : merge esl b 

else e2  : merge a es2 
merge  Q  es2 = es2 
merge esl D = esl 

Note that merge compares entire events rather than just start times. This is to ensure that it is 
commutative, a desirable condition for some of the proofs used in Section 8. Here is a more efficient 
version that will work just as well in practice: 

> merge a<a(elQ(Event tl )   :   esl)  bQ(e2Q(Event t2 )   :   es2)  = 
> if tl < t2 then el   :  merge esl b 
> else e2   :  merge a es2 
> merge   []   es2 = es2 
> merge esl   []  = esl 
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5 Players 

module Players (module Players, module Music, module Performance) 

where 

import Music 

import Performance 

In the last section we saw how a performance involved the notion of a player. The reason for 
this is the same as for real players and their instruments: many of the note and phrase attributes 
(see Section 3.3) are player and instrument dependent. For example, how should "legato" be 
interpreted in a performance? Or "diminuendo?" Different players interpret things in different 
ways, of course, but even more fundamental is the fact that a pianist, for example, realizes legato 
in a way fundamentally different from the way a violinist does, because of differences in their 
instruments. Similarly, diminuendo on a piano and a harpsichord are different concepts. 

With a slight stretch of the imagination, we can even consider a "notator" of a score as a kind of 
player: exactly how the music is rendered on the written page may be a personal, stylized process. 
For example, how many, and which staves should be used to notate a particular instrument? 

In any case, to handle these issues, Haskore has a notion of a player which "knows" about 
differences with respect to performance and notation. A Haskore player is a 4-tuple consisting of a 
name and 3 functions: one for interpreting notes, one for phrases, and one for producing a properly 
notated score. 

> data Player        = MkPlayer PName NoteFun PhraseFun NotateFun 
> 
> type NoteFun      = Context -> Pitch -> Dur ->   [NoteAttribute]   -> Performance 
> type PhraseFun = PMap -> Context ->   [PhraseAttribute] -> Music ->  (Performance,Dur) 
> type NotateFun = () 

The last line above is temporary for this executable version of Haskore, since notation only works 
on systems supporting CMN. The real definition should read: 

type NotateFun =  [Glyph]   -> Staff 

Note that both NoteFun and PhraseFun return a Performance (imported from module Perform). 
whereas NotateFun returns a Staff (imported from module Notation). 

For convenience we define: 



> pName      :: Player -> PName 

> pName      (MkPlayer nm _ _ _) = nm 

> 

> playNote    :: Player -> NoteFun 

> playNote    (MkPlayer _ nf  ) = nf 

> 

> interpPhrase :: Player -> PhraseFun 

> interpPhrase (MkPlayer   pf _) = pf 

> 

> notatePlayer :: Player -> NotateFun 

> notatePlayer (MkPlayer   nf) = nf 

5.1    Examples of Player Construction 

A "default player" called defPlayer (not to be confused with "deaf player"!) is denned for use 
when none other is specified in the score; it also functions as a base from which other players can 
be derived. defPlayer responds only to the Volume note attribute and to the Accent, Staccato, 
and Legato phrase attributes. It is defined in Figure 7. Before reading this code, recall how players 
are invoked by the perform function defined in the last section; in particular, note the calls to 
playNote and interpPhase defined above. Then note: 

1. def PlayNote is the only function (even in the definition of perform) that actually generates 
an event. It also modifies that event based on an interpretation of each note attribute by the 

function defHasHandler. 

2. def NasHandler only recognizes the Volume attribute, which it uses to set the event volume 

accordingly. 

3. def InterpPhrase calls (mutually recursively) perform to interpret a phrase, and then modi- 
fies the result based on an interpretation of each phrase attribute by the function def PasHandler. 

4. defPasHandler only recognizes the Accent, Staccato, and Legato phrase attributes. For 
each of these it uses the numeric argument as a "scaling" factor of the volume (for Accent) and 
duration (for Staccato and Lagato). Thus (Phrase [Legato 1.1] m) effectively increases 
the duration of each note in m by 10% (without changing the tempo). 

It should be clear that much of the code in Figure 7 can be re-used in denning a new player. For 
example, to define a player weird that interprets note attributes just like defPlayer but behaves 
differently with respect to phrase attributes, we could write: 

weird  :: Player 
weird    - MkPlayer "Weirdo"  (defPlayNote defNasHandler) 

(deflnterpPhrase myPasHandler ) 
(defNotatePlayer 0 ) 
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> defPlayer :: Player 
> defPlayer = MkPlayer "Default" (defPlayNote   defNasHandler) 
> (deflnterpPhrase defPasHandler) 

> (defNotatePlayer ()        ) 

> 

> defPlayNote : : (Context->NoteAttribute->Event->Event) -> NoteFun 

> defPlayNote nasHandler c<3(t ,pl,i,dt,k,v) p d nas = 

> [ foldr (nasHandler c) 
> (Event t i (absPitch p + k) (d*dt) v) 

> nas ] 
> 

> defNasHandler :: Context-> NoteAttribute -> Event -> Event 

> defNasHandler (_,_,_,_,_,v) (Volume v') ev = setEventVol ev (v*v'/100.0) 

> defNasHandler _ _ ev = ev 

> 

> deflnterpPhrase :: (PhraseAttribute->Performance->Performance) '-> PhraseFun 

> deflnterpPhrase pasHandler pmap cfi(t,pl,i,dt,k,v) pas m = 

> let (pf,dur) = perf pmap c m 
> in (foldr pasHandler pf pas, dur) 

> 
> defPasHandler : : PhraseAttribute -> Performance -> Performance 

> defPasHandler (Dyn (Accent x))    pf = 
> map (\e -> setEventVol e (x * getEventVol e)) pf 

> defPasHandler (Art (Staccato x))  pf = 
> map (\e -> setEventDur e (x * getEventDur e)) pf 

> defPasHandler (Art (Legato  x))  pf = 
> map (\e -> setEventDur e (x * getEventDur e)) pf 

> defPasHandler _ pf = pf 

> 
> defNotatePlayer  :: () -> NotateFun 

> defNotatePlayer _ =  0 

Figure 7: Definition of default Player def Player. 
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and then supply a suitable definition of myPasHandler. That definition could also re-use code, in 
the following sense: suppose we wish to add an interpretation for Crescendo, but otherwise have 
myPasHandler behave just like def PasHandler. 

myPasHandler :: PhraseAttribute -> Performance -> Performance 
myPasHandler (Dyn (Crescendo x)) pf =  ... 
myPasHandler    pa pf » defPasHandler pa pf 

Exercise 5 Fill in the ... in the definition of myPasHandler according to the following strategy: 
Assume 0 < x < 1. Gradually scale the volume of each event by a factor of 1.0 through 1.0 + x, 

using linear interpolation. 

Exercise 6 Choose some of the other phrase attributes and provide interpretations of them, such 

as Diminuendo. Slurred. Trill, etc. 

In a system that supports it, the default notation handler sets up a staff with a treble clef for 
the player and appends any glyphs to the end of the staff: 

defNotatePlayer gs = Staff  "Default"  1.0 5  (Clef Treble  :  gs) 

Figure 8 defines a relatively sophisticated player called f ancyPlayer that knows all that def Player 
knows, and much more. Note that Slurred is different from Legato in that it doesn't extend the 
duration of the last note(s). The behavior of (Ritardando x) can be explained as follows. We'd 
like to "stretch" the time of each event by a factor from 0 to x, linearly interpolated based on how 
far along the musical phrase the event occurs. I.e., given a start time t0 for the first event in the 
phrase, total phrase duration D, and event time t, the new event time t' is given by: 

t' = {l+t-^-x)(t-to) + t0 

Further, if d is the duration of the event, then the end of the event t + d gets stretched to a new 
time t'd given by: 

t'd = (1 + t + dD~
t0x)(t + d-t0) + t0 

The difference t'd - t' gives us the new, stretched duration d', which after simplification is: 

.             2(t-t0) + d 
d! = (1 + - ^ x)d 

Accelerando behaves in exactly the same way, except that it shortens event times rather than 
lengthening them. And, a similar but simpler strategy explains the behaviors of Crescendo and 
Diminuendo. 
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> fancyPlayer :: Player 
> fancyPlayer = MkPlayer "Fancy" (defPlayNote   defNasHandler ) 
> fancylnterpPhrase 

> (defNotatePlayer () ) 

> 
> fancylnterpPhrase :: PhraseFun 
> fancylnterpPhrase pmap c D    m = pert pmap c m 

> fancylnterpPhrase pmap c<a(t,pl,i,dt,k,v) (pa:pas) m = 

> let pfd<a(pf ,dnr) = fancyInterpPhrase pmap c pas m 
> loud x     = fancylnterpPhrase pmap c (Dyn (Loudness x) : pas) m 

> stretch, x = let tO = getEventTime (head pf) 

> r = x/dur 
> upd (Event t i p d v) = let dt = t-tO 
> t' = (l+dt*r)*dt + tO 

> d' = (l+(2*dt+d)*r)*d 

> in Event t' i p d' v 

> in (map upd pf, (l+x)*dur) 
> inflate x = let tO = getEventTime (head pf) 

> r = x/dur 
> upd (Event t i p d v) = let dt = t-tO 
> in Event t i p d ((l+dt*r)*v) 

> in (map upd pf, dur) 

> in case pa of 
> Dyn (Accent x)     -> (map (\e-> setEventVol e (x * getEventVol e)) pf, dur) 

> Dyn PPP -> loud 40 
> Dyn MP -> loud 70 
> Dyn NF -> loud 100 

Dyn P -> loud 60 
Dyn MF -> loud 90 
Dyn FFF -> loud 120 

Dyn PP -> loud 50 
Dyn SF -> loud 80 
Dyn FF -> loud 110 

> Dyn (Loudness x)   -> fancylnterpPhrase pmap (t,pl,i,dt,k,v*x/100) pas m 

> Dyn (Crescendo x)  -> inflate  x 
> Dyn (Diminuendo x)  -> inflate (-x) 

> Dyn (Ritardando x) -> stretch  x 
> Dyn (Accelerando x) -> stretch (-x) 
> Art (Staccato x)   -> (map (\e-> setEventDur e (x * getEventDur e)) pf, dur) 

> Art (Legato  x)   -> (map (\e-> setEventDur e (x * getEventDur e)) pf, dur) 

> Art (Slurred x)   -> 
> let lastStartTime = foldr (\e t -> max (getEventTime e) t) 0 pf 
> setDur e    = if getEventTime e < lastStartTime 
> then setEventDur e (x * getEventDur e) 

> else e 

> in (map setDur pf, dur) 
> Art _ -> pfd — Remaining articulations: 
> —  Tenuto I Marcato I Pedal I Fermata I FermataDown 

> — I Breath I DownBow I UpBow I Harmonic I Pizzicato 
> — I LeftPizz I BartokPizz I Swell I Wedge I Thumb I Stopped 

> Orn _ -> pf d — Remaining ornamenations: 
> —  Trill I Mordent I InvHordent I DoubleMordent I Turn 

> —| TrilledTurn I ShortTrill I Arpeggio I ArpeggioUp 
> — I ArpeggioDown I Instruction String I Head NoteHead 

> — Design Bug: To do these right we need to keep the KEY SIGNATURE 

> — around so that we can determine, for example, what the trill note is. 

> — Alternatively, provide an argument to Trill to carry this info. 
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6    Midi 

Midi ("musical instrument digital interface") is a standard protocol adopted by most, if not all, 
manufacturers of electronic instruments. At its core is a protocol for communicating musical events 
(note on, note off, key press, etc.) as well as so-called meta events (select synthesizer patch, 
change volume, etc.). Beyond the logical protocol, the Midi standard also specifies electrical signal 
characteristics and cabling details. In addition, it specifies what is known as a standard Midi file 
which any Midi-compatible software package should be able to recognize. 

Over the years musicians and manufacturers decided that they also wanted a standard way to 
refer to common or general instruments such as "acoustic grand piano," "electric piano," "violin," 
and "acoustic bass," as well as more exotic ones such as "chorus aahs," "voice oohs," "bird tweet," 
and "helicopter." A simple standard known as General Midi was developed to fill this role. It is 
nothing more than an agreed-upon list of instrument names along with a program patch number 
for each, a parameter in the Midi standard that is used to select a Midi instrument's sound. 

Most "sound-blaster"-like sound cards on conventional PC's know about Midi, as well as General 
Midi. However, the sound generated by such modules, and the sound produced from the typically- 
scrawny speakers on most PC's, is often poor. It is best to use an outboard keyboard or tone 
generator, which are attached to a computer via a Midi interface and cables. It is possible to 
connect several Midi instruments to the same computer, with each assigned a different channel. 
Modern keyboards and tone generators are quite amazing little beasts. Not only is the sound quite 
good (when played on a good stereo system), but they are also usually multi-timbrai which means 
they are able to generate many different sounds simultaneously, as well as polyphonic, meaning that 
simultaneous instantiations of the same sound are possible. 

Note: If you decide to use the General midi features of your sound-card, you need to know 
about another set of conventions known as "Basic Midi" which is not discussed here. The most 
important aspect of Basic Midi is that Channel 10 is dedicated to percussion. A future release of 
Haskore should make these distinctions more concrete. 

Haskore provides a way to specify a Midi channel number and General Midi instrument selection 
for each IName in a Haskore composition. It also provides a means to generate a Standard Midi File, 
which can then be played using any conventional Midi software. In this section the top-level code 
needed by the user to invoke this functionality will be described; the extended document contains 
all of the gory details. 

> module HaskToMidi (module HaskToMidi, module GeneralMidi, module MidiFils) 
> where 

> 

> import Basics 
> import Performance 

> import MidiFile 
> import GeneralMidi 

> import List(partition) 
> import Char(toLower.toUpper) 
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Instead of converting a Haskore Performance directly into a Midi file. Haskore first converts it 
into a datatype that represents a Midi file, which is then written to a file in a separate pass. This 
separation of concerns makes the structure of the Midi file clearer, makes debugging easier, and 
provides a natural path for extending Haskore's functionality with direct Midi capability (in fact 
there is a version of Haskore that does this under Windows '95, but it is not described here). 

A UserPatchMap is a user-supplied table for mapping instrument names (IName's) to Midi 
channels and General Midi patch names. The patch names are by default General Midi names, 
although the user can also provide a PatchMap for mapping Patch Names to unconventional Midi 

Program Change numbers. 

> type UserPatchMap =  [(IName,GenMidiName,MidiChannel)] 

See Appendix A for an example of a useful user patch map. 

Given a UserPatchMap. a performance is converted to a datatype representing a Standard Midi 
File using the perf ormToMidi function. 

> performToMidi  ::  Performance -> UserPatchMap -> MidiFile 
> performToMidi pf pMap = 
> MidiFile mfType  (Ticks division) 
> (map  (performToMEvs pMap)   (splitBylnst pf)) 

A table of General Midi assignments called genMidiMap is imported from GeneralMidi in Ap- 
pendix E. The Midi file datatype itself and functions for writing it to files are imported from the 
module MidiFile. briefly described below. The remaining details are omitted in the basic version 
of this document. 

> module MidiFile where 
> 
> import Monads(Output, runO, outO) 
> import MonadUtils(zeroOrMore, oneOrMore) 
> import Utils(unlinesS, rights, concatS) 
> import IOExtensions (readBinaryFile, writeBinaryFile) 

OutputMidiFile is the main function for writing MidiFile values to an actual file: its first 
argument is the filename: 

> outputMidiFile  ::  String -> MidiFile -> 10  () 
> outputMidiFile fn mf = writeBinaryFile fn (midiFileToString mf) 
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Exercise 7 Take as many examples as you like from the previous sections, create one or more 
UserPatchMaps, write the examples to a file, and play them using a conventional Midi player. 

Appendix A defines some functions which should make the above exercise easier. Appendices B, 
C, and D contain more extensive examples. 
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jtitlei Haskore Tutorial: Chordsj/titlei, 

7    Representing Chords 

I have described how to represent chords as values of type Music. However, sometimes it is con- 
venient to treat chords more abstractly. Rather than think of a chord in terms of its actual notes, 
it is useful to think of it in terms of its chord "quality," coupled with the key it is played in and 
the particular voicing used. For example, we can describe a chord as being a "major triad in root 
position, with root middle C." Several approaches have been put forth for representing this infor- 
mation, and we cannot cover all of them here. Rather, I will describe two basic representations, 
leaving other alternatives to the skill and imagination of the reader.2 

First, one could use a pitch representation, where each note is represented as its distance from 
some fixed pitch. 0 is the obvious fixed pitch to use, and thus, for example, CO,4,7] represents 
a major triad in root position. The first zero is in some sense redundant, of course, but it serves 
to remind us that the chord is in "normal form." For example, when forming and transforming 
chords, we may end up with a representation such as [2,6,9], which is not normalized; its normal 
form is in fact [0,4,7]. Thus we define: 

A chord is in pitch normal form if the first pitch is zero, and the subsequent pitches are 
monotonically increasing. 

One could also represent a chord intervalically; i.e. as a sequence of intervals. A major triad in 
root position, for example, would be represented as [4,3,-7], where the last interval "returns7' us 
to the "origin." Like the 0 in the pitch representation, the last interval is redundant, but allows us 
to define another sense of normal form: 

A chord is in interval normal form if the intervals are all greater than zero, except for 
the last which must be equal to the negation of the sum of the others. 

In either case, we can define a chord type as: 

> type Chord =  [AbsPitch] 

We might ask whether there is some advantage, computationally, of using one of these repre- 
sentations over the other. However, there is an invertible linear transformation between them, as 
defined by the following functions, and thus there is in fact little advantage of one over the other: 

> pitToInt   ::   Chord -> Chord 
> pitToInt ch = aux ch 

2 For example, Forte prescribes normal forms for chords in an atonal setting [For73]. 
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> where aux (nl:n2:ns) = (n2-nl) : aux (n2:ns) 

> aux [n]      = [head ch - n] 

> 

> intToPit :: Chord -> Chord 

> intToPit ch = 0 : aux 0 ch 

> where aux p [n]   = D 
> aux p (n:ns) = n'   :   aux n'  ns    where n'  = p+n 

Exercise 8 Show that pitToInt and intToPit are inverses in the following sense: for any chord 
chl in pitch normal form, and ch2 in interval normal form, each of length at least two: 

intToPit  (pitToInt chl) = chl 
pitToInt  (intToPit ch2) = ch2 

Another operation we may wish to perform is a test for equality on chords, which can be done 
at many levels: based only on chord quality, taking inversion into account, absolute equality, etc. 
Since the above normal forms guarantee a unique representation, equality of chords with respect 
to chord quality and inversion is simple: it is just the standard (overloaded) equality operator on 
lists. On the other hand, to measure equality based on chord quality alone, we need to account for 
the notion of an inversion. 

Using the pitch representation, the inversion of a chord can be defined as follows: 

> pitlnvert  (pl:p2:ps)  = 0  :  map  (subtract p2)  ps ++  [12-p2] 

Although we could also directly define a function to invert a chord given in interval representation, 
we will simply define it in terms of functions already defined: 

> intlnvert = pitToInt   .  pitlnvert  .   intToPit 

We can now determine whether a chord in normal form has the same quality (but possibly 
different inversion) as another chord in normal form, as follows: simply test whether one chord is 
equal either to the other chord or to one of its inversions. Since there is only a finite number of 
inversions, this is well defined. In Haskell: 

> samePitChord chl ch2 = 
> let invs = take (length chl)   (iterate pitlnvert chl) 
> in   or (map (==ch2)  invs) 
> 
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> samelntChord chl ch2 = 
> let invs = take (length chl) (iterate intlnvert chl) 

> in or (map (==ch2) invs) 

For example, samePitChord CO,4,7]   [0,5,9] returns True (since [0,5,9] is the pitch normal 
form for the second inversion of [0,4,7]). 
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8    Equivalence of Literal Performances 

A literal performance is one in which no aesthetic interpretation is given to a musical object.^ The 
function perform in fact yields a literal performance; aesthetic nuances must be expressed explicitly 
using note and phrase attributes. 

There are many musical objects whose literal performances we expect to be equivalent. For 
example, the following two musical objects are certainly not equal as data structures, but we would 
expect their literal performances to be identical: 

(ml   :+:    m2)   :+:     (m3  :+:    m4) 
ml   :+:    m2  :+:    m3  :+:    m4 

Tims WP define a notion of equivalence: 

Definition:    Two musical objects ml and m2 are equivalent, written ml = m2, if and only if: 

(Vimap.c)    perform imap c ml = perform imap c m2 

where •'=" is equality on values (which in HaskeU is defined by the underlying equational logic). 

One of the most useful things we can do with this notion of equivalence is establish the va- 
lidity of certain transformations on musical objects. A transformation is valid if the result of the 
transformation is equivalent (in the sense defined above) to the original musical object; i.e. it is 

"meaning preserving." 
The most basic of these transformation we treat as axioms in an algebra of music. For example: 

Axiom 1 For any rl, r2, r3, r4, and m: 

Tempo rl r2 (Tempo r3 r4 m)    =    Tempo (rl*r3)   (r2*r4) m 

To prove this axiom, we use conventional equational reasoning (for clarity we omit imap and 

simplify the context to just dt): 

Proof: 

perform dt  (Tempo rl r2  (Tempo r3 r4 m)) 
= perform (r2*dt/rl)   (Tempo r3 r4 m) — unfolding perform 
= perform (r4*(r2*dt/rl)/r3) m — unfolding perform 
= perform ((r2*r4)*dt/(rl*r3)) m ~ simple arithmetic 
= perform dt  (Tempo (rl*r3)   (r2*r4) m) — folding perform 

Here is another useful transformation and its validity proof (for clarity in the proof we omit 

imap and simplify the context to just (t,dt)): 

Axiom 2  For any rl, r2, ml, and m2: 

Tempo rl r2  (ml   : + :  m2)    =    Tempo rl r2 ml  : + : Tempo rl r2 m2 

In other words, tempo scaling distributes over sequential composition. 
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Proof: 

perform (t,dt) (Tempo rl r2 (ml :+: m2)) 
= perform (t,r2*dt/rl) (ml :+: m2) — unfolding perform 
= perform (t,r2*dt/rl) ml ++ perform (f ,r2*dt/rl) m2  — unfolding perform 
= perform (t,dt) (Tempo rl r2 ml) ++ 

perform (t'.dt) (Tempo rl r2 m2) ~ folding perform 
= perform (t,dt) (Tempo rl r2 ml) ++ 

perform (t",dt) (Tempo rl r2 m2) ~ folding dur 
= perform (t.dt) (Tempo rl r2 ml : + : Tempo rl r2 m2)   — folding perform 
where t' = t + (dur ml)*r2*dt/rl 

t" = t + (dur (Tempo rl r2 ml))*dt 

An even simpler axiom is given by: 

Axiom 3 For any r and m: 

Tempo r r m    =    m 

In other words, unit tempo scaling is the identity. 

Proof: 

perform (t,dt)   (Tempo r r m) 
= perform (t,r*dt/r) m ~ unfolding perform 
= perform (t,dt) m — simple arithmetic 

Note that the above proofs, being used to establish axioms, all involve the definition of perform. 
In contrast, we can also establish theorems whose proofs involve only the axioms. For example. 
Axioms 1,2, and 3 are all needed to prove the following: 

Theorem 1 For any rl, r2, ml, and m2: 

Tempo rl r2 ml   : + : m2    =    Tempo rl r2 (ml  : + :  Tempo r2 rl m2) 

Proof: 

Tempo rl r2 (ml :+: Tempo r2 rl m2) 
= Tempo rl r2 ml : + : Tempo rl r2 (Tempo r2 rl m2) — by Axiom 1 
= Tempo rl r2 ml : + : Tempo (rl*r2) (r2*rl) m2 — by Axiom 2 
= Tempo rl r2 ml : + : Tempo (rl*r2) (rl*r2) m2 ~ simple arithmetic 
= Tempo rl r2 ml :+: m2 ~ by Axiom 3 
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JJ  J   =   JJJ. 
Figure 9: Equivalent Phrases 

For example, this fact justifies the equivalence of the two phrases shown in Figure 9. 

Manv other interesting transformations of Haskore musical objects can be stated and proved 
correct using equational reasoning. We leave as an exercise for the reader the proof of the following 
axioms (which include the above axioms as special cases). 

Axiom 4 Tempo is multiplicative and Transpose is additive.  That is, for any rl, r2, r3, r4, p, 

and m: 

Tempo rl r2 (Tempo r3 r4 m)    =    Tempo (rl*r3)   (r2*r4) m 
Trans pi  (Trans p2 m)    =    Trans (pl+p2) m 

Axiom 5 Function composition is commutative with respect to both tempo scaling and transposi- 

tion.  That is. for any rl. r2, r3. r4. pi and p2: 

Tempo rl r2  .  Tempo r3 r4    =    Tempo r3 r4  . Tempo rl r2 
Trans pi   .  Trans p2    =    Trans p2  .  Trans pi 

Tempo rl r2  .  Trans pi    =    Trans pi  . Tempo rl r2 

Axiom 6  Tempo scaling and transposition are distributive over both sequential and parallel com- 

position.  That is, for any rl, r2, p, ml. and m2: 

Tempo rl r2  (ml   : + :  m2)     =    Tempo rl r2 ml  : + : Tempo rl r2 m2 
Tempo rl r2  (ml   : = :  m2)     =    Tempo rl r2 ml  : = :  Tempo rl r2 m2 

Trans p  (ml   : + : m2)     =    Trans p ml  : + : Trans p m2 
Trans p (ml   :=: m2)    =    Trans p ml  : = : Trans p m2 

Axiom 7 Sequential and parallel composition are associative. That is, for any mO, ml, and m2: 

mO   : + :   (ml   : + :  m2)     =     (mO  : + : ml)   : + : m2 
mO   : = :   (ml   : = : m2)    =    (mO  : = : ml)   : = : m2 

Axiom 8 Parallel composition is commutative. That is, for any mO and ml: 

mO   : = :  ml    =    ml   : = : mO 
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Axiom 9 Rest 0 is a unit for Tempo and Trans, and a zero for sequential and parallel composition. 

That is, for any ri, r2, p, and m: 

Tempo rl r2 (Rest 0)    =    Rest 0 
Trans p  (Rest 0)    =    Rest 0 

m  : + :  Rest 0    =    m    =    Rest 0  : + : m 
m  : = :  Rest 0    =    m    =    Rest 0   : = :  m 

Exercise 9 Establish the validity of each of the above axioms. 
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ititleiHaskore Tutorial: Related and Future Research!/titlei 

9    Related and Future Research 

Many proposals have been put forth for programming languages targeted for computer music com- 
position [Dan89, Sch83, Col84, AK92, DFV92, HS92, CR84, OFLB94], so many in fact that it 
would be difficult to describe them all here. None of them (perhaps surprisingly) are based on a 
pure functional language, with one exception: the recent work done by Orlarey et al. at GRAME 
[OFLB94], which uses a pure lambda calculus approach to music description, and bears a strong 
resemblance to our effort (but unfortunately has not been implemented). There are some other 
related approaches based on variants of Lisp, most notably Dannenberg's Fugue language [DFV92], 
in which operators similar to ours can be found but where the emphasis is more on instrument syn- 
thesis rather than note-oriented composition. Fugue also highlights the utility of lazy evaluation 
in certain contexts, but extra effort is needed to make this work in Lisp, whereas in a non-strict 
language such as Haskell it essentially comes "for free." Other efforts based on Lisp utilize Lisp 
primarily as a convenient vehicle for "embedded language design," and the applicative nature of 
Lisp is not exploited well (for example, in Common Music the user will find a large number of 
macros which are difficult if not impossible to use in a functional style). 

We are not aware of any computer music language that has been shown to exhibit the kinds of 
algebraic properties that we have demonstrated for Haskore. Indeed, none of the languages that 
we have investigated make a useful distinction between music and performance, a property that 
we find especially attractive about the Haskore design. On the other hand, Balaban describes an 
abstract notion (apparently not yet a programming language) of "music structure," and provides 
various operators that look similar to ours [Bal92]. In addition, she describes an operation called 
flatten that resembles our literal interpretation perform. It would be interesting to translate her 
ideas into Haskell; the match would likely be good. 

Perhaps surprisingly, the work that we find most closely related to ours is not about music at 
all: it is Henderson"s functional geometry, a functional language approach to generating computer 
graphics [Hen82]. There we find a structure that is in spirit very similar to ours: most importantly, 
a clear distinction between object description and interpretation (which in this paper we have 
been calling musical objects and their performance). A similar structure can be found in Arya's 
functional animation work [Ary94]. 

There are many interesting avenues to pursue with this research. On the theoretical side, we 
need a deeper investigation of the algebraic structure of music, and would like to express certain 
modern theories of music in Haskore. The possibility of expressing other scale types instead of the 
thus far unstated assumption of standard equal temperament scales is another area of investigation. 
On the practical side, the potential of a graphical interface to Haskore is appealing. We are also 
interested in extending the methodology to sound synthesis. Our primary goal currently, however, 
is to continue using Haskore as a vehicle for interesting algorithmic composition (for example, see 

[HB95]). 
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A    Convenient Functions for Getting Started With Haskore 

> module TestHaskore where 

> import Haskore 

> import System( system ) 
> 
>  

> — Given a PMap, Context, UserPatcnMap, and file name, we can 

> — write a Music value into a midi file: 
>  

> mToMF :: PMap -> Context -> UserPatcnMap -> String -> Music -> 10 () 

> mToMF pmap c upm fn m = 

> let pf = perform pmap c m 

> mf = performToMidi pf upm 
> in outputMidiFile fn mf 
> 
>  

> — Convenient default values and test routines 
>  

> — a default UserPatcnMap 

> — Note: the PC sound card I'm using is limited to 9 instruments 

> defUpm :: UserPatchMap 

> defUpm = [("piano","Acoustic Grand Piano",1), 
> ("vibes","Vibraphone",2), 
> ("bass","Acoustic Bass",3), 

> ("flute","Flute",4), 

> ("sax","Tenor Sax",5), 
> ("guitar","Acoustic Guitar (steel)",6), 
> ("violin","Viola",7), 
> ("violins"/'String Ensemble 1",8), 
> ("drums","Synth Drum",9)] 
> 

> — a default PMap that makes everything into a fancyPlayer 

> defPMap :: String -> Player 

> defPMap pname = 
> MkPlayer pname nf pf sf 
> where MkPlayer _ nf pf sf = fancyPlayer 
> 

> — a default Context 
> defCon :: Context 
> defCon = (0, fancyPlayer, "piano", metro 120 qn, 0, 100) 
> 

> — Using the defaults above, from a Music object, we can: 

> — a) generate a performance 

> testPerf :: Music -> Performance 
> testPerf m = perform defPMap defCon m 

> testPerfDur :: Music -> (Performance, Dur) 

> testPerfDur m = perf defPMap defCon m 
> 

> — b) generate a midifile datatype 
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> testMidi :: Music -> MidiFile 
> testMidi m = performToMidi (testPerf m) defUpm 

> 
> — c) generate a midifile 
> test    :: Music -> 10 0 
> test   m = outputMidiFile "test.mid" (testMidi m) 

> 
> ~ d) generate and play a midifile on Windows, Linux or NeXT 
> testWin95, testNT, testLinux, testNext :: Music -> 10 () 

> testWin9S m = test m » 
> system "mplayer test.mid" » 
> return () 
> testNT   m = test m >> 
> system "mplay32 test.mid" » 
> return () 
> testLinux m = test m >> 

> system "playmidi -rf test.mid" » 

> return () 
> testNext m = test m >> 

> system "open test.midi" » 
> return () 

Alternatively, just run "test m" manually, and then invoke the midi 
player on your system using "play", defined below for NT: 

> play = system "mplay32 test.mid" » 
> return () 

>  
> -- Some General Midi test functions (use with caution) 

> 

> — a General Midi user patch map; i.e. one that maps GM instrument names 
-- to themselves, using a channel that is the patch number modulo 16. 

> -- This is for use ONLY in the code that follows, o/w channel duplication 
> — is possible, which will screw things up in general. 

> gmUpm :: UserPatchMap 
> gmUpm = map (\(gmn,n) -> (gmn, gmn, mod n 16 + D) genMidiMap 

> 
> — Something to play each "instrument group" of 8 GM instruments; 
> — this function will play a C major arpeggio on each instrument. 

> gmTest :: Int -> 10() 
> gmTest i = let gMM = take 8 (drop (i*8) genMidiMap) 
> mu = line (map simple gMM) 
> simple (inm,_) = Instr inm cMajArp 
> in mToMF defPMap defCon gmUpm "test.mid" mu 
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B    Examples of Haskore in Action 

> module HaskoreExamples (module Haskore, module TestHaskore, 
> module CMldSong6, module Self Sim) 

> where 
> 

> import Haskore 
> import TestHaskore 

> import ChildSong6 

> import SelfSim 

Simple examples of Haskore in action. Hote that this module also 

imports modules ChildSong6 and SelfSim. 

From the tutorial, try things such as prl2, cMajArp, cHajChd, etc. and 
try applying inversions, retrogrades, etc. on the same examples. Also 
try "childSong6" imported from module ChildSong. For example: 

> to = test (Instr "piano" childSong6) 

C Major scale for use in examples below: 

> cMajScale = Tempo 2 1 
> (line [c 4 en □ , d 4 en □ , e 4 en □ , f 4 en □ , 
> g 4 en [] , a 4 en D , b 4 en D , c 5 en [] ]) 
> 
> cms = cMajScale 

Test of various articulations and dynamics: 

> tl = test (Instr "piano" 
> (Phrase [Art (Staccato 0.1)] cms :+: 

> cms :+: 
> Phrase [Art (Legato  1.1)3 cms   )) 
> 

> t2 -  test (Instr "vibes" 
> (Phrase [Dyn (Diminuendo 0.75)] cms :+: 
> Phrase [Dyn (Crescendo 4.0), Dyn (Loudness 25)] cms)) 

> 

> t3 = test (Instr "flute" 
> (Phrase [Dyn (Accelerando 0.3)] cms :+: 
> Phrase [Dyn (Ritardando 0.6)] cms   )) 

A function to recursively apply transformations f (to elements in a 
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sequence) and g (to accumulated phrases): 

> rep :: (Music -> Music) -> (Music -> Music) -> Int -> Music -> Music 

> rep f g 0 m = Rest 0 
> rep f g n m = m :=: g (rep f g (n-1) (f m)) 

An example using "rep" three times, recursively, to create a "cascade" 

of sounds. 

> run = rep (Trans 5) (delay tn) 8 (c 4 tn D) 
> cascade = rep (Trans 4) (delay en) 8 run 
> cascades = rep id     (delay sn) 2 cascade 
> t4' x = test (Instr "piano" x) 
> t4 = test (Instr "piano" 
> (cascades :+: revM cascades)) 

What happens if we simply reverse the f and g arguments? 

> run'     = rep (delay tn) (Trans 5) 4 (c 4 tn 0) 
> cascade' = rep (delay en) (Trans 4) 6 run' 
> cascades' = rep (delay sn)  id     2 cascade' 
> tS      = test (Instr "piano" cascades') 

Example from the SelfSim module. 

> tlOs  = test (rep (delay durss) (Trans 4) 2 ss) 

Example from the ChildSong6 module. 

> cs6 = test childSong6 

Midi percussion test. Plays all "notes" in a range.  (Requires adding 
an instrument for percussion to the UserPatchMap.) 

> drums a b = Instr "drums" 
> (line (map (\p-> Note (pitch p) sn D) Ca..b])) 

> til a b = test (drums a b) 
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C    Partial Encoding of Chick Corea's "Children's Song No. 6" 

> module ChildSong6 where 
> import Haskore 
> 
> — Preliminaries: define some dotted durations 
> dhn,  dqn,  den,  dsn,  dtn   ::  Float 
> dhn = 3/4;     dqn = 3/8;     den = 3/16;    dsn = 3/32;    dtn = 3/64 
> 
> — note updaters for mappings 
>fddn=ndv 
> vol    n = n      v 
> v =   [Volume 80] 
> lmap f 1 = line (map f 1) 
> 
> — repeat something n times 
> times    1        m = m 
> times (n+1) m = m  :+:   (times n m) 
> 
> — Baseline: 
> bl = lmap  (fd dqn)   [b    3,  fs  4,  g    4,  fs 4] 
> b2 = lmap  (fd dqn)   [b    3,   es 4,  fs 4,   es 4] 
> b3 = lmap  (fd dqn)   [as 3,  fs 4,  g    4,  fs 4] 
> 
> bassLine = times 3 bl   : + :  times 2 b2  : + :  times 4 b3   : + :   times 5 bl 
> 
> — Main Voice: 
> vi    = via  :+:   vlb 
> via = lmap  (fd en)   [a 5,   e 5,  d 5,  fs 5,   cs S,  b 4,   e S,  b 4] 
> vlb = lmap vol [cs 5 tn,  d 5  (qn-tn),  es S en, b 4 en] 
> 
> v2    = v2a   :+:   v2b   :+:   v2c   :+:   v2d   :+:  v2e  :+:   v2f 
> v2a = lmap vol   [cs  5  (dhn+dhn),  d 5 dhn, 
> f  5 hn,   gs 5 qn,  fs S  (hn+en),  g 5 en] 
> v2b = lmap (fd en) [fs 5, e 5, cs 5, as 4] :+: a 4 dqn v :+: 
> lmap (fd en) [as 4, cs 5, fs 5, e 5, fs 5, g 5, as S] 
> v2c = lmap vol Cos 6 (hn+en), d 6 en, cs 6 en, e 5 en] : + : enr : + : 
> lmap vol [as 5 en, a 5 en, g 5 en, d S qn, c 5 en, cs 5 en] 
> v2d = lmap (fd en) [fs 5, cs 5, e 5, cs 5, a 4, as 4, d 5, e 5, fs S] : + : 
> lmap vol [fs 5 tn, e 5 (qn-tn), d 5 en, e 5 tn, d 5 (qn-tn), 
> cs S en, d 5 tn, cs 5 (qn-tn), b 4 (en+hn)] 
> v2e = lmap vol [cs 5 en, b 4 en, fs S en, a 5 en, b 5 (hn+qn), a 5 en, 
> fs 5 en, e 5 qn, d 5 en, fs S en, e 5 hn, d 5 hn, fs 5 qn] 
> v2f = Tempo 3 2 (lmap vol [cs 5 en, d 5 en, cs 5 en]) : + : b 4 (3*dhn+hn) v 
> 
> mainVoice = times 3 vl :+: v2 
> 
> — Putting it all together: 
> childSong6 = Instr "piano" (Tempo 3 1 (Phrase [Dyn SF] bassLine :=: mainVoice)) 



D    Example of Simple Self-Similar (Fractal) Music 

> module SelfSim where 

> 

> import Haskore 
> import TestHaskore 

An example of self-similar, or fractal, music. 

> data Cluster = Cl SNote [Cluster] ~ this is called a Rose tree 

> type Pat    = [SNote] 
> type SNote  = [(AbsPitch.Dur)]   — i.e. a chord 

> 
> sim :: Pat -> [Cluster] 

> sim pat = map mkCluster pat 
> where mkCluster notes = Cl notes (map (mkCluster . addmult notes) pat) 

> 
> addmult pds iss = zipWith addmult' pds iss 
> where addmult' (p,d) (i.s) = (p+i,d*s) 

> 
> simFringe n pat = fringe n (Cl [(0,0)] (sim pat)) 

> 
> fringe 0 (Cl note els) = [note] 
> fringe n (Cl note els) = concat (map (fringe (n-1)) els) 

> 
> — this just converts the result to Haskore: 

> simToHask s = let mkNote (p,d) = Note (pitch p) d G 
> in line (map (chord . map mkNote) s) 

> 
> — and here are some examples of it being applied: 

> 
> siml n = Instr "bass" 
> (Trans 36 
> (Tempo 4 1 (simToHask (simFringe n patl)))) 

> t6 = test (siml 4) 

> 

> sim2 n = Instr "piano" 
> (Trans 53 
> (Tempo 4 1 (simToHask (simFringe n pat2)))) 

> t7 = test (sim2 4) 
> 
> siml2 n = siml n :=: sim2 n 

> t8 = test (siml2 4) 
> 
> sim3 n = Instr "vibes" 
> (Trans 48 
> (Tempo 4 1 (simToHask (simFringe n pat3)))) 

> t9 = test (sim3 3) 
> 
> sim4 n = (Trans 60 
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> (Tempo 2 1 (simToHask (simFringe n pat4')))) 
> 
> sim4s n = let s = sim4 n 
> 11 = Instr "flute" s 
> 12 = Instr "bass"    (Trans (-36)   (revM s)) 
> in H  :=: 12 
> 
> ss = sim4s 3 
> durss    = dur ss 
> 
> tlO = test  ss 
> 
> patl,pat2,pat3,pat4,pat4'   ::   CSHote] 
> patl =  [[(0,1.0)],[(4,0.5)3,[(7,1.0)],[(5,0.5)]] 
> pat2 =  [[(0,0.5)],[(4,1.0)],[(7,0.5)],[(5,1.0)]] 
> pat3 =  [[(2,0.6)],[(5,1.3)],[(0,1.0)],[(7,0.9)]] 
> pat4'  =   [[(3,0.5)],[(4,0.25)],[(0,0.25)],[(6,1.0)]] 
> pat4 =  [[(3,0.5),(8,0.5),(22,0.5)],[(4,0.25),(7,0.25),(21,0.25)], 
> [(0,0.25),(5,0.25),(15,0.25)], [(6,1.0),(9,1.0), (19,1.0)]] 
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E    General Midi 

> module GensralHidi where 

> 

> import MidiFile 
> 

> type GenMidiName = String 
> type GenMidiTable = [(GenMidiName,ProgNum)] 

> 

> genMidiMap :: GenMidiTable 

> genMidiMap =[ 

> ( "Acoustic Grand Piano",0) i 
> ( "Electric Grand Piano",2) > 
> ( "Rhodes Piano",4), 

> ( "Harpsichord",6), 
> ( "Celesta",8), 

> ( "Music Box",10), 

> ( "Marimba",12), 
> ( "Tubular Bells",14), 

> ( "Hammond Organ",16), 
> ( "Rock Organ",18), 

> ( "Reed Organ",20), 
> ( "Harmonica",22), 
> ( "Acoustic Guitar (nylon)" ,24), 

> ( "Electric Guitar (jazz)", 26), 

> ( "Electric Guitar (muted)" ,28), 

> ( ."Distortion Guitar",30), 

> ( ["Acoustic Bass",32), 

> ( ["Electric Bass (picked)", 34), 

> ( ["Slap Bass 1",36), 

> ["Synth Bass 1",38), 

> ["Violin",40), 

> ["Cello",42), 

> ["Tremolo Strings",44), 

> ["Orchestral Harp",46), 

> ["String Ensemble 1",48), 

> ["Synth Strings 1",50), 

> ["Choir Aahs",52), 

> ["Synth Voice",54), 

> ["Trumpet",56), 

> ["Tuba",58), 

> ["French Horn",60), 

> ("Synth Brass 1",62), 

> ("Soprano Sax",64), 

("Bright Acoustic Piano",1), 

("Honky Tonk Piano",3), 

("Chorused Piano",5), 

("Clavinet",7), 
("Glockenspeil",9), 

("Vibraphone",11), 

("Xylophone",13), 
("Dulcimer",15), 

("Percussive Organ",17), 

("Church Organ",19), 

("Accordion",21), 
("Tango Accordion",23), 
("Acoustic Guitar (steel)",25) , 

("Electric Guitar (clean)",27) , 

("Overdriven Guitar",29), 
("Guitar Harmonics",31), 
("Electric Bass (fingered)",33), 

("Fretless Bass",35), 

("Slap Bass 2",37), 

("Synth Bass 2",39), 

("Viola",41), 

("Contrabass",43), 
("Pizzicato Strings",45), 

("Timpani",47), 

("String Ensemble 2",49), 
("Synth Strings 2",51), 

("Voice 0ohs",53), 

("Orchestra Hit",55), 
("Trombone",57), 

("Muted Trumpet",59), 

("Brass Section",61), 

("Synth Brass 2",63), 

("Alto Sax",65), 
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> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

> 

"Tenor Sax",66), 

"Oboe",68), 
"English Horn",70), 

"Piccolo",72), 

"Recorder",74), 

"Blown Bottle",76), 

"Whistle",78), 

"Lead 1 (square)",80), 

"Lead 3 (calliope)",82), 

"Lead 5 (charang)",84), 

"Lead 7 (fifths)",86), 
"Pad 1 (new age)",88), 

"Pad 3 (polysynth)",90), 

"Pad 5 (bowed)",92), 

"Pad 7 (halo)",94), 

"FX1 (train)",96), 

"FX3 (crystal)",98), 
"FX5 (brightness)",100) , 

"FX7 (echoes)",102), 

"Sitar",104), 
"Shamisen",106), 

"Kalimba",108), 

"Fiddle",110), 

"Tinkle Bell",112), 
"Steel Drums",114), 

"Taiko Drum",116), 

"Synth Drum",118), . 
"Guitar Fret Noise",120), 

"Seashore",122), 
"Telephone Ring",124), 

"Applause",126), 

("Barinote Sax",67), 

("Basoon",69), 

("Clarinet",71), 

("Flute",73), 

("Pan Flute",75), 

("Shakuhachi",77), 

("0ccarina",79), 

("Lead 2 (sawtooth)",81), 

("Lead 4 (chiff)",83), 

("Lead 6 (voice)",85), 

("Lead 8 (bass+lead)",87) , 

("Pad 2 (warm)",89), 

("Pad 4 (choir)",91), 
("Pad 6 (metallic)",93), 

("Pad 8 (sweep)",95) , 

("FX2 (soundtrack)",97), 

("FX4 (atmosphere)",99), 

("FX6 (goblins)",101), 

("FX8 (sci-fi)",103), 

("Banjo",105), 
("Koto",107), 

("Bagpipe",109), 

("Shanai",llD, 

("Agogo",113), 
("Woodblock",115), 

("Melodic Drum",117), 

("Reverse Cymbal",119), 

("Breath Noise",121), 

("Bird Tweet",123), 
("Helicopter",125), 

("Gunshot",127)] 
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Perl for Swine: CGI Programming in Haskell 

Erik Meijer Joost van Dijk 
OGI and Utrecht University Utrecht University 

Draft Lecture Notes 

1    Introduction 

Many documents on the web are static, i.e. they are the same each time they 
are returned by the server in response to a request by a client. On the other 
hand, dynamic documents are generated by running a CGI script on the server 
when the document is requested; the generated documents can then depend on 
the incoming request from the client. 

Any programming language that can read from the standard input, write to the 
standard output, and access the environment variables is suited for writing CGI 
scripts. Most CGI scripts are written in languages like C or PERL. The latter 
language is popular because it has rich features for manipulating text (regular 
expressions). 

This paper describes a library for writing CGI scripts in Haskell. Input and 
output coding of CGI scripts is handled by a wrapper, a higher-order function 
that decodes the incoming request, passes it to the worker, and encodes the 
response that the worker produces. Thus the main part of the application, 
the worker function inside the wrapper, need not be at all concerned with the 
idiosyncrasies of the CGI protocol. 

Unlike most CGI scripts written in Perl or C, our scripts build an explicit 
representation (a model) of the generated content, which is printed in the right 
form (a presentation) by the wrapper. For example, HTML is represented by 
a simple tree type. A set of combinators is provided from which complicated 
HTML pages can be assembled easily. 

Many people ask "why bother writing CGI scripts now that we have Java, 
ActiveX, VBScript and JScript?" The answer is that both serve complementary, 
but equally useful purposes. CGI scripts perform server-side computations, 
while the others do client-side computations. 



2    The World Wide Web 

The World Wide Web is based on the client-server model of computation. In 
this model a server provides resources to potentially many clients. Server and 
clients communicate via a protocol. The client sends a request to the server, to 
which the server replies by sending a response back to tha'client. 

HTTP/1.0 200 OK 
Content-type: text/html 

<HTML>...</HTHL> 

Once such a cycle is completed, the client and server are no longer in contact; 
the HTTP protocol is stateless. 

A static document is the same every time it is returned by the server. A dynamic 
document is generated by running a script on the server when the document is 
requested; the generated documents can then depend on the incoming request 
from the client. Moreover, the script can change the state of the server as a 
side-effect of the interaction. 

GET cgi-bin/script?name=value 

REqUEST-METHOD=GET 
QUERY _STRING=name=value 

HTTP/1.0 200 OK 
Content-type:     text/html 

<HTML>...</HTML> 

Content-type:    text/html 

<HTMI.>...</HTML> 

The communication interface between the server and content-generating script 
is called the Common Gateway Interface (CGI). The server forwards the re- 
quest from the client to the script via specific environment variables and the 
standard input. The script returns the response for the client to the server via 
the standard output in a format specified by the CGI standard. 

The goal of this paper is to make programming of server-side scripts as simple 
as possible (section 4). But first we explain how to access (dynamic) documents 
from a client (section 3.1) and how to make the server distinguish between static 
and dynamic documents (section 3.2). 



3    Computerized HTTP clients 

Communicating with an HTTP server is rather tedious and best left to a ma- 
chine. A web browser such the Microsoft Internet Explorer does exactly this. It 
takes an HTML document with embedded requests, or hyperlinks, and renders it 
on the screen. HTML is a domain specific language for programming the client 
side of the HTTP protocol, and a browser is an interpreter for this language. 

For example the HTML document 

<HTML> 
<HEAD> 
<TITLE>Internet Programming In HaskelK/TITl£> 

</HEAD> 
<B0DY> 
Hello <A HREF="http://wwv.evergreen.edu/user/CISE/">CISE</A> participants. 
<IMG SRC="http: //tibet. cse. ogi. edu/Personal/imaratf/ie.animated. gif "> 
</B0DY> 

</HTML> 

appears on the user's screen as 

nrnfeme^FroytdMimBt^trelfa^elE-MiciaCTfgrntej^eeEMöietr Hfij!0d 
fEpgt-EdiE.-fffr ^G^F^orit^'Herr^ " .    -~ .-/■ 

' Hello CISE participants." 
Euietotek?- 
3 intmttm , 
»ExpMMWr| 

Request for images are evaluated eagerly and displayed inline. Requests for 
other pages are evaluated lazily, i.e. only when the user clicks on them. When 
this happens, the browser sets up a connection with the server www. evergreen 
.edu and the request GET user/CISE/ HTTP/1.0. Eventually, the browser re- 
places the current document by the document contained in the server's response. 

3.1    Accessing active documents 

The client sees no difference between hyperlinks to static or dynamic documents. 
You refer to cgi-scripts just as to any other URL. For example 

http://www.cse.ogi.edu/~erik/cgi-bin/helloHTML. cgi 

is a link to the simple "Hello World!" script of section 8. 

/cgUn/heloNTMLcgj i*M 

Hellb-Wbrldl 



3.2    How the server tells static and dynamic documents 
apart 

But how does the server know that it has to execute the script and not return 
the content of the file helloHTML.cgi as it does for a normal .html file? 

There are two alternatives. The first is that the server expects scripts to be 
in a special directory, usually called cgi-bin. It will treat any URL involving 
cgi-bin as an executable script. The second posibility is that the server uses 
a particular filename extension, usually . cgi, to distinguish scripts from other 
type of documents. In this case scripts can reside anywhere in the directory 
hierarchy. 
The most common problem that occurs when using CGI scripts is that the 
server does not recognize that it should execute a script. When the browser 
tries to download a script, or displays its source, you know that the server has 
not recognized the URL as a script. Another symptom of this problem is the 
"Method not implemented" or "Cannot post to non-script" server error. 

.^8-'^ :::.-;:^:".:..;jÄ;i:.;i;::'! 

h^y;»N¥^.c(ftogLedu/"eiic/cgi-b^cweem.Nr 

iMethodnot implemented r1 

It can also happen that a script is executed, but that the server returns an 
empty page or an internal server error. 

3 

Server Error 
£lKt: serirer encountered art mtemAerfor oemiij 

^KeaieV<S>aäfi'ife »w«»änSi5§^^ä»OT*^se|äxcS^SycÄaäm oEtfie| 
timr the error occurred, «ndairyrbir«yoirr^iiayed(m»fatrr^havtc2ised 

?>the error .    .   '<     * •:       ■,*•• _»_,-„,.--*>    i» :Ü 

This means that the server has tried to execute the script, but something has 
gone wrong; usually because of wrong permissions or because the script crashed. 
Of course, scripts should be world executable and readable for the server to ex- 
ecute them. Under Unix, scripts run as user nobody, so all directories above 
the script should be executable. Remember that scripts are executed in a dif- 
ferent environment then when executed from the command-line, in particular 
you should not rely on the PATH variable to search files or executables. 
Under Unix, a handy way of debugging a script (say f oo. cgi) that is recognized 



by the server, but still crashes, is by wrapping it in a shell script that simply 
returns the exact output of the script: 

#!/bin/sh 
echo "Content-type:   text/html" 
echo 
echo "<Hl>Start of script's output</Hl>" 
echo "<PRE>" 
foo.cgi 
echo "</PRE>" 
echo "<Hl>End of script's output</Hl>" 

Of course, a script must run perfectly from the command-line to begin with. 

4    Programming CGI scripts 

Now that we know how to access dynamic documents from the client, where to 
put them on the server, and how to debug them, we can start looking at coding 
CGI scripts. 

4.1    Worker/wrapper 

The architecture of our CGI-library provides the programmer with the illusion 
of an idealized HTTP client (the wrapper), which interacts with an idealized 
HTTP server (the worker) to be supplied by the programmer: 

: :     Request ->  IQ Response 

wrapper worker :: 10 Q 

All the low-level details of the communication between the actual HTTP server 
and the script are handled by the wrapper function. As far as the server is 
concerned, the wrapper is a standard CGI script that recieves the HTTP request 
forwarded from the client via specific environment variables and the standard 
input and returns the response to be returned to the client via the standard 
output. As far as the wrapper is concerned, the worker is a function that 
produces a result of type Response from an argument of type Request. 

The work done by the wrapper is the same for all CGI scripts; the interesting 
bits are performed by the worker; the wrapper decodes the HTTP request into 
a value of the algebraic type Request, passes it to the worker to obtain a value 
of type Response, and encodes this into an actual HTTP response: 

wrapper  ::   (Request -> 10 Response)  -> 10  () 
wrapper worker 

= do-C request <- getRequest 
; response <- worker request 
; putResponse 
} 



The worker function need not be concerned with any of the gory details of 
the CGI standard, it only has to produce an abstract response when given 
an abstract request. Most other CGI libraries do not decouple abstract and 
concrete requests and responses. The result is that scripts are less readable, less 
modular, less flexible, and take longer to develop. 

To understand the logic of a CGI script, we can study the worker function 
in isolation. This is impossible if the decoding and encoding of requests and 
responses is intertwined with the actual computation of responses from requests. 

As we show in sections 6.2 and 8.5.2, we can recursively split the worker function 
into a wrapper and a simplified worker and leverage of the claimed benefits yet 
another time. If there is no a priori distinction between worker and wrapper, 
this is obviously impossible. 
Because the wrapper function abstracts all details of the CGI standard from 
the worker, it is easy to adapt to a platform such as Windows, which prefers a 
nonstandard interaction (ISAPI) between servers and scripts. In that case we 
only have to change the wrapper function once, instead of having to modify all 
our scripts. 

4.2    Modelling requests and responses 

The set of abstract HTTP requests is modelled by the data type Request. A 
client can either request to retrieve a document (using GET), or deposit some 
Mime content (using POST): 

data Request = GET QueryString  I   POST Mime 

The set of abstract HTTP responses is modelled by the data type Response. The 
server can either return some Mime content, a redirection to another location, 
or an error message: 

data Response = Content Mime   I   Location Url   I   Status Code Reason 

Mime types are the standard way of "typing" data transmitted over the inter- 
net.  Examples include plain text (text/plain, section 7), HTML documents 
(text/html, section 8), url-encoded query strings (x-application/url-encoded, 
section 5.1), GIF pictures (image/gif) and MPEG movies (video/mpeg). 

data Mime 

I TextPlain String 
I TextHtml  HTML 
I UrlEncoded [(String.String)] 
I ... 

Besides the constructor functions for the data types Request and Response, 
we assume only that we can get requests from the outside world via function 
getRequest (section 5) and put responses to the outside world via function 
putResponse (section 6): 



getRequest  ::     10 Request 
putResponse ::    Response -> 10  () 

To implement functions getRequest and putResponse, we must exchange Mime 
types with the outside world, hence we also need: 

getMime : 
put Mime : 
mimeType 

10 Mime 
Mime -> 10  0 

Mime -> String 

In order to implement functions getMime and putMime, we need to parse and 
unparse the various alternatives of data type Mime: 

showHTML ::    HTML -> String 

readQuery ::    String ->  [(String,String)] 

5    Decoding requests 

The most four important environment variables that the HTTP server passes to 
the wrapper are REQUEST .METHOD, QUERY-STRING, CONTENT-LENGTH, and CONTENT 
.TYPE. By inspecting these variables, the wrapper can decode the incoming re- 
quest. 

Function getRequest does a simple case analysis on the environment variable 
REQUEST .METHOD to find out what request has been made: 

getRequest 
= do-C method <- getEnv "REQUEST_METHOD" 

;   case method of  {"GET"    -> getGET;   "POST"  -> getPOST} 
> 

If REQUEST-METHOD equals GET, then the variable QUERY-STRING contains an url- 
encoded query string: 

getGET 
= do-C query <- getEnv "QUERY.STRING" 

;  return $ GET  (readQuery query) 
} 

If REQUEST -METHOD equals POST, then function getMime decodes the Mime con- 
tent the request: 

getPOST 
= do-C mime <- getMime 

;   return $ POST mime 
> 

Function getMime gets the first CONTENT-LENGTH bytes of the standard input, 
and then reads a value of Mime type CONTENT-TYPE: 



getMime 
= do-C contentLength <- getEnv "CONTENT.LENGTH" 

stdin <- getContents 
let mime = take (read contentLength) stdin 
contentType <- getEnv "CONTENT.TYPE" 
case contentType of 

" applicat ion/x-url-encoded" 
-> return $ UrlEncoded (readQuery mime) 

5.1    Reading Mime type application/x-url-encoded 

An url-encoded query string consist of a sequence of zero or more url-encoded 
name=value pairs separated by ampersands &: 

query   ::=   [name=value{kname=value}] 

We can directly translate this grammar into a parser using standard parser 
combinators: 

query ::  Parser  [(String,String)] 
query 

= do{ name <- urlEncoded; string "="; value <- urlEncoded 
;  return (name,value) 
>  'sepby'   (string "&") 

Names and values are url-encoded, which the parser will decode: 

urlEncoded ::  Parser String 
urlEncoded 

= many (alphanum ++ extra ++ safe ++ space ++ hexencoded) 

Alphanumeric characters and "safe" and "special" characters are unencoded: 

extra ::  Parser Char safe  :: Parser Char 
extra = sat   (<elem<   "!*'(),") safe = sat  ('elem'   "$-_.") 

Spaces " " are encoded by plus signs "+": 

space   ::  Parser Char 
space = do-C char ' + '   ; return '   '} 

Nonalphanumeric characters such as "'/." are hex-encoded via an escape sequence 
that consists of a percent character */. followed by two hexadecimal digits, for 
example the hex-encoding of'/. itself is 7.25. 

hexencoded ::  Parser Char 
hexencoded 

= do-C char  "/.';  dl <- hexit; 62 <- hexit 
;  return $ chr (readHex [dl,d2]) 

> 



Compare this with the Perl code of Steve Brenner's cgi-lib.pl, one of the 
most popular libraries for writing CGI scripts in Perl: 

sub ReadParse  { 
local  (*in)  =» a_ if 3_; 
local ($i,$key,$val); 

if  (fcMethGetH 
$in = $ENV-C'QUERY_STRING'}; 

} elsif { 
read(STDIN,$in,$ENV{'CONTENT.LENGTH'}); 

} 

9in = split (/[&;]/,$in); 
f oreach $i   (0..   $#in) { 

$in[$i]  =" s/W /g; 
($key,lvalue) =» split (/=/,$in[$i] ,2); 
$key =" s/7.(..)/pack("c",hex($l))/ge; 
$val =- s/'/.C.J/packC'c-.hexCll^/ge; 
$in-C$key} .= "\0" if (defined($in{$key})); 
$in-C$key> .= $val; 

return scalar(9in) 

6    Encoding responses 

Function putResponse puts a response to the standard output in the the exact 

format that is required by the CGI standard: 

putResponse :: Response -> 10 0 
putResponse response 

= case response of 
Content mime 
-> do-C putStr ("Content-type: " ++ mimeType mime) 

; putStr "\n\n" 
; putMime mime 

> 
Location url 
-> do-C putStr ("Location: " ++ url) 

; putStr "\n\n" 

} 
Status code reason 
-> do-C putStr ("Status: " ++ code ++ " " ++ reason) 

; putStr "\n\n" 

> 



6.1 Preventing caching 

Most web browsers cache the documents they request, so that the next time a 
document is requested it need not be downloaded from the server. For dynamic 
documents this is clearly not the right thing to do. Now the advantages of 
decoupling response generation and response presentation really kick in; we 
can just change function putResponse to print an extra "Pragma: no-cache" 
header in each response. 

6.2 Specializing the wrapper 

In practice, requests contain just url-encoded data and responses contain just 
HTML documents. We can capture this pattern by providing another wrapper 
function, which takes a simplified script into the general script that the wrapper 

expects: 

cgi  ::   ([(String,String)] -> 10 HTML) -> 10 () 
cgi script = \request -> wrapper $ 

do-C html <- script  (fromRequest request) 
; return (Content (HTML html)) 
} 

Function fromRequest extracts the query string from either a GET or POST 
request: 

fromRequest ::. Request -> [(String.String)] 
fromRequest request 
= case request of 

GET query -> query 
POST (UrlEncoded query) -> query 
otherwise -> Q 

7    MIME type text/plain 

Using mime type TextPlain we can write our first CGI script, the cut-and-dried 
"Hello World!" program. It ignores its environment argument, and returns the 
obvious content. 

helloWorld  ::   10   0 
helloWorld = wrapper $ \request -> 

do{ return (textplain "Hello World!")  } 

where function textplain wraps a string in a plain text response: 

textplain ::  String -> Response 
textplain s = Content (TextPlain s) 
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7.1    A more interesting script 

One of the environment variables that is passed to a CGI script is REMOTE-HOST, 
which contains the fully qualified domain name of the client (such as tibet. cse 
.ogi.edu) that has sent the request to the server. The top-level domain (the 
name after the rightmost dot) gives us some information about the country 
where the client is located, and we will use that to generate a personalized 
salutation: 

greetings  ::  Domain -> String 
greetings d 

= case (domain d)  of 
"edu" -> "Hi there!" 
"com" -> "Can you find everything OK today?" 
"nl"    -> "Hoi, hoe gaat net?" 
"uk"    -> "Good afternoon!" 

-> "Ahum,   ..." 

We can extract the top-level domain of a fully qualified domain name by first 
splitting it at every ' .' and then taking the last element of the resulting list: 

domain = last.split (==  '.') 

The function split  (==  '.') "tibet. cse. ogi. edu" returns the list ["tibet", 
"cse", "ogi", "edu"]. 

The script itself is straightforward. We lookup the REMOTE-HOST in the environ- 
ment, and compute the greeting: 

helloWorld = wrapper $ \query -> 
do-C host <- getEnv "REMOTE.HOST" 

; return (textplain (greetings host)) 

} 

8    MIME type text/html 

Most CGI scripts written in C or Perl print concrete HTML directly on the 
standard output. In Perl, the HTML variant of the "Hello World!" CGI script 
would look something like: 

print  "Content-type:   text/html\n\n"; 
print "<html>\n"; 
print "<head>\n"; 
print "<title>Hello, world!</title>\n"; 
printf "</head>\n"; 
printf "<body>\n"; 
printf "<hl>Hello, world!</hl>\n"; 
printf "</body>\n"; 
printf "</html>\n"; 

This is not very flexible, especially when we want to generate more complicated 
HTML pages. Just for comparison, using the combinators we will develop in 
this section (8.1), the script: 

11 



helloHTML = cgi $ \query -> 
do-C return (page "Hello, world!"  [hi "Hello, world!"]) } 

generates the same HTML content. 

An HTML document consists of a number of nested elements such as headers 
(page title, section headings), paragraphs, lists (ordered, unordered), logical 
markup (citation, computer code), visual markup (italic, bold), hypertext links, 
images, fill-in forms etc. 

Every HTML element is delimited by begin- and end-to^s of the form <tag> 
respectively </tag>.   Tags (and attributes) in HTML are not case sensitive, 
so for example <HTML> is equivalent to <html> or <HtMl>. Also, most browsers 
support elements that are not part of the official HTML standard. Nonstandard 
elements of competing browsers, or unsupported elements, are just ignored. 
Some tags such as <HR> and <BR> do not need a closing tag, but it does no 
harm to use one anyway. 

Most elements take (optional) arguments, which are given as name=value pairs 
in the start tag. Boolean attributes are set by just giving their name, without 

a value. 

HTML can be represented by a simple universal tree type. An HTML value is 
either just ordinary text, or a complex element with a tag, a list of attributes, 
and an embedded list of HTML values. 

data HTML 
= Text-Ctext  ::  String} 

I   Element{ tag  ::  Tag 
,  attributes  ::   [(Name,Value)] 
,  html  ::   [HTML] 
} 

For simplicity, all HTML related types such as Tag, Name, Value, and later on 
Color, Face, Size, etc. are synonyms for String. 

8.1    Basic combinators 

The basic HTML combinators set, attributedElement and element, and 
prose provide an abstract interface to construct values of type HTML. 

set  ::     [(Name.Value)]  ->  (HTML -> HTML) 
attributedElement ::    Tag ->  [(Name,Value)] ->  [HTML]  -> HTML 
element   ::     Tag ->   [HTML]   -> HTML 
prose  ::    String -> HTML . 

By hiding the construction of concrete HTML elements we can always decide 
to change the representation of the HTML data type. The combinators whose 
signatures are given in Figure 1 capture patterns that we have found convenient 
when generating HTML programatically. 
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page : : String -> [HTML] -> HTML 

format :: Tag -> String -> HTML 

h :: Int -> String -> HTML 

P - [HTML] -> HTML 
font : : Color -> [Face] -> Size -> [HTML] -> HTML 

href : : URL -> [HTML] -> HTML 
name : : String -> [HTML] -> HTML 
image :: String -> URL -> HTML 

ul :: [[HTML]] -> HTML 
ol :: [[HTML]] -> HTML 
dl :: [(String, [HTML])] -> HTML 

table ::  [[ [HTML] ]] -> HTML 

Figure 1: Advanced HTML combinators 

8.2    Printing the environment 

Script envPassed nicely formats the environemnt variables that are set by the 
server. It maps a list of pairs like 

[("SERVERJIAME","www.cse.ogi.edu") ,("REQUEST_METHOD,,,"GET") ,. .] 

into the HTML definition list 

dl  [  ("SERVER_NAME",       [prose "www.cse.ogi.edu"]) 
,   ("REQUEST.METHOD",[prose "GET"]) 

] 

A simple list comprehension does the job; for every (dt, dd) pair in the envi- 
ronment we construct a pair (dt, [prose dd]), and then wrap the resulting list 
in a definition list: 

SREQUI^MEraOD;^ 

,  dl  [ (dt,[prose dd])    m[ 

showEnv env 
= page "Environment" 

[ hi "Environment" 

I   (dt.dd)  <- env 
] 

The complete script first gets the list of all environment variables using function 
getWnoleEnv, and then returns the requested HTML page: 
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envPassed = cgi $ \query -> 
do{ env <- getWholeEnv 

; return (showEnv env) 
} 

8.3    Forms 

An interactive script can ask for input from the user by returning an HTML- 
form: 

When the user submits the form, the request that contains the form-data is 
posted to the script that generated the form. 

HTML forms can contain standard GUI elements such as text-fields, various 
kinds of buttons, menus, etc. 

gui   ::     [HTML]   -> HTML 
widget  ::    Widget ->  (Name.Value) -> HTML 
menu  ::    Name ->   [Value]   -> HTML 
textarea ::    Name -> Int -> Int -> Wrap -> Value -> HTML 

The gui combinator takes list of HTML elements into a form that collects the 
(name.value) pairs to be posted to the script which generated the form. 

A widget widget w  (.name,value) associates the name name with a value, 
which is either the initial value value or a value that is supplied by the user. 

gui 
[ widget "text" ("t","textfield") 
, widget "password" ("p","password") 
, widget "radio" ("r'V'rl") 
, widget "radio" ("r","r2") 
, widget "checkbox" ("c'V'cl") 
, widget "checkbox" ("c","c2") 
, widget "reset" ("x","Again") 
, widget "submit" ("s","Enter") 
,  widget  "hidden" ("h"/'invisible") 

] 

When the user clicks on the enter button, the url-encoded string 

t=textiieldfcp=password&r=r2fcc=cl&c=c2fcs=Enterfth=invisible 
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is submitted to the script. Hidden fields have no visible rendering, but do turn 
up in the request. Turning a radio button on turns off all others with the same 
name. Also note that names might occur more than once (for example "c") in 
an url-encoded query string. 

The menu element menu name [..., value.i, ...] renders as a pull-down 
menu that associates name name with the alternative chosen by the user. 

menu "File" 
[ "New" 
,   "Open ..." 
,   "Close" 
,   "Close All" 
] 

The combinator textarea name rows cols wrap value combinator renders 
as a multiline textarea whose content is paired with its name when the form is 
submitted. 

This is a multi line textarea 

EäO._ ^ J 
8.4    A user feedback form 

As an example application of HTML forms, we write a script that processes 
user feedback. 

resetd 

XelLnaJ 
*AMf&**Am,fyr' *^si- £-   : 

we ace doing* 

^ths:ibnneo^en|^t>ug»p«ctx<orcaimttratrsirotirlArai7!r^; 

geetr CSuggesttokCBugreportC Questions 

a-mau «ddrssi.-| 

"1. 

"SandcömmäiisrV I 

w^--u.CIäS-;-:--«.• •—J L 
The script first parses its input into a mail message. If this fails it just returns 
the original form so that the user can try again. Otherwise it mails the message 
and returns an acknowledgement form. 
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feedback = \query -> cgi $ 
case check query of 

{ Nothing -> do-C return feedbackForm} 
; Just msg -> do-C sendMail msg; return (acknowledgeForm msg)> 

} 

8.5 N Queens 

Our next script is an interactive version of the n-queens problem. 

We first construct a function advance that computes the next solution from a 
given board configuration (section 8.5.1). Only then we wrap this into a CGI 
script (section 8.5.2). 

8.5.1    Non interactive version 

A board is represented by a list of row positions: 

type Board =  [ROH] 

type Row      = Int 
n = 8   ::   Row 

A possible board has n queens, one in each row: 

possible :: Board -> Bool 
possible board 

= and [length board == n,  all ('elem'   [l..n]) board] 

A possible board is unsafe when other queens are on the same left-diagonal, the 
same row, or the same right-diagonal as the left-most queen: 

unSafe   ::  Board -> Bool 
unSafe  [] 

= False 
unSafe  (q:qs) 

= or  [ onPath  (\x -> x-1)  q qs 
,  onPath (\x -> x)      q qs 
,  onPath (\x -> x+1)  q qs 
] 

16 



Function advance moves the left-most queen forward until the board is safe. If 
the queen already is in row n, the next queen is recursively advanced too, and 
the left-most queen starts again in row 1. 

advance :: Board -> Board 
advance  [] 

=   □ 
advance (q:qs) 

= getSafe (if q == n then 1: advance qs else q+l:qs) 
where 

getSafe qs = if unSafe qs then advance qs else qs 

Function samePath checks wether there are other queens on the indicated path: 

onPath  ::   (Row -> Row)  -> Row -> Board -> Bool 
onPath next q  [] 

= False 
onPath next q (q':qs) 

= next q == q'   II  onPath next  (next q) qs 

8.5.2    Interactive version 

We now continue by embedding this version of the n-queens problem into an 
interactive CGI program. 

nQueens = cgi $ \query -> 
do{ return $  (showBoard.advance.readBoard)  query } 

Function readBoard reads variable "Board" from the query. If this is an im- 
possible board, it will return the possible board [1. .n]. 

readBoard ::   [(String.String)] -> Board 
readBoard query 

= if possible board then board else  [l..n] 
where 

board = read  (lookup query "Board") 

Function showBoard uses a table to present the current board to the user. It 
stores the actual configuration in the hidden field "Board". 

showBoard  ::  Board -> HTML 
showBoard board 

= page  (show n ++ " Queens") 
[ gui   [ showSolution board 

,  widget "submit"  "Next",  widget  "hidden"   (show board) 
] 

] 

showSolution board 
= table   C   [  if q ==  i then  [prose "Q"]   else   [prose  "fenbsp;"] 

I   i <-   [l..n] 
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] 
I  q <- board 
] 

9 Conclusions 

To be written. 

10 References and further reading 

To be written. 
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Abstract 

Designers of advanced languages, such as ML, Prolog, or 
Haskell, face an uphill struggle to persuade potential users 
of the merits of their approach. In fact, it has hitherto 
been impossible to find other than niche applications be- 
cause (foreign language interfaces notwithstanding) it has 
been too difficult to integrate software components written 
in new languages with large bodies of existing code. 

Microsoft's Component Object Model (COM) offers this 
community a new opportunity. Because the interface be- 
tween objects is by design language independent and arms- 
length, it is possible either to write glue programs that in- 
tegrate existing COM objects, or to write software compo- 
nents whose services can be used by clients written in more 
conventional languages. 

We describe our experience of exploiting this opportunity 
in the purely-functional language Haskell. We describe a 
design for integrating COM components into Haskell pro- 
grams, and we demonstrate why someone might want to 
script their COM components in this way. 

This paper has been submitted to Software Reuse 1998. 
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language interfaces, it has been hard to provide an evolu- 
tionary path that would enable a potential customer to ex- 
periment with a new language at a low level of commitment. 

Microsoft's Component Object Model (COM) is a widely- 
deployed, binary standard for software components [12]. Be- 
cause its language independence. COM presents two new 
opportunities for programming-language researchers. COM 
makes it easier to use a new language either (a) to glue to- 
gether, or script, a collection of existing COM components 
to make a larger application or component, or (b) to imple- 
ment a new COM component that a client can use without 
knowledge of its implementation language. 

We have begun to exploit the first of these opportunities in 
the context of the purely functional programming language 
Haskell [4]. In this paper we describe an interface between 
Haskell and COM that makes it easy to script COM com- 
ponents from a Haskell program. We make two main con- 
tributions: 

• A graceful and strongly typed accommodation of COM 
within the host language is important. We present 
a design for how COM could appear to the Haskell 
programmer. 

• If the exercise is to be more than just "Gosh, we can 
script COM in Haskell as well as in Visual Basic" then 
it is important to demonstrate some added value from 
using a higher-order, typed language. We offer such a 
demonstration, in the form of a case study. 

2    The opportunity 

1    Introduction 

Programming-language researchers have a serious market- 
ing problem. Apart from a relative handful of enthusiasts, 
our languages are not widely used, because no potential cus- 
tomer is prepared to revolutionize the way they build their 
systems — and rightly so.   Despite some work on foreign- 

Until recently it has been much easier for a client program 
to use software components (libraries, classes, abstract data 
types) written in the same language: 

1. The specification of the interface between the com- 
ponent and its clients is usually given in a language- 
specific way; for example, as C++ class descriptions. 



2. The calling convention between client and component 
is often language-specific, or perhaps even unspecified 
(because both client and component are assumed to 
be compiled with the same compiler) 

3. Programmers can assume a rather intimate coupling 
between the address spaces of client and component; 
for example, the client might pass a pointer into the 
middle of an array, to be side-effected by the compo- 
nent. 

COM encapsulates a software component in a way that con- 
trasts with each of these three aspects: 

• The interface between client and component is spec- 
ified in DDL (COM's Interface Definition Language). 
For each particular language, tools are provided to con- 
vert IDL into the corresponding specification in that 
language (section 3.4). 

• COM specifies the client/component interface at a bi- 
nary level, independently of any particular language 
or compiler (section 3.1). 

• Parameters are expected to be marshalled from the 
client's address space to the component's address 
space, and vice versa. Sometimes the two share an 
address space, in which case marshalling need do no 
copying, but all COM calls provide enough informa- 
tion to do such marshalling. 

• Interfacing between two languages often carries perfor- 
mance overheads, because of differing data represen- 
tation and memory-allocation policies. When the al- 
ternative is a native-language interface between client 
and component, these extra overheads can seem rather 
unattractive. 

However, anyone using COM has already bitten the 
bullet: they have declared themselves wiling to accept 
a hit in programming convenience, and perhaps a hit 
in performance (for marshalling), in exchange for the 
advantages that COM brings. 

These are not COM's only advantages. For example, one 
of the primary motivations for using COM concerns version 
control and upgrade paths for software components, which 
we have not mentioned at all so far. However, these addi- 
tional properties are well described elsewhere, [11,12,1, 2, 3] 
and do not concern us further in this paper, except in so far 
as they serve as motivators for people to write and use COM 
components. 

Also, COM is not alone in having these properties. Nu- 
merous research projects had similar goals, in particular 
CORBA [13]. In fact, almost everything in the rest of this 
paper would apply to CORBA as well as COM, because 
CORBA is largelyCompatible with COM. We stick to COM 
for the sake of being concrete (it has a well-defined, ma- 
ture and stable specification) and because of its widespread 
use. With more than 200 million systems worldwide using 

it, COM offers designers of advanced languages the best op- 
portunities for reusing software components. 

3    How COM works 

Although there are many very fat books about COM (e.g. 
[12]), the core technology is quite simple, a notable achieve- 
ment. This section briefly introduces the key ideas. We 
concentrate exclusively on how COM works, rather on why 
it works that deal; the COM literature deals with the latter 
topic in detail. 

Here is, in C, how a client might create and invoke a COM 
object: 

/* Create the object */ 
err.code = CoCreatelnstance ( cls.id 

,  iface_id 
,  &iface_ptr 
); 

if  (not SUCCEEDED(err.code))   { 
...error recovery... 

> 

/* Invoke a method */ 
(»iface.ptr)[3]( iface_ptr,  x,  y, ); 

The procedure CoCreatelnstance is best thought of as an 
operating system procedure. (In real life, it takes more pa- 
rameters than those given above, but they are unimportant 
here.) Calling CoCreatelnstance creates an instance of an 
object whose class identifier, or CLSID, is held in cls_id. 
The class identifier is a 128-bit globally unique identifier, or 
GUID. Here "globally unique" means that the GUID is a 
name for the class that will not (ever) be re-used for any 
other purpose anywhere on the planet. A standard utility 
allows an unlimited supply of fresh GUIDs to be generated 
locally, based on the machine's IP address and the date and 
time. 

The code for the class is found indirectly via the system 
registry, which is held in a fixed place in the file system. 
This double indirection of CLSIDs and registry makes the 
client code independent of the specific location of the code 
for the class. Next. CoCreatelnstance loads the class code 
into the current process (unless it has already been loaded). 
Alternatively, one can ask COM to create a new process 
(either local or remote) to run the instance. 

3.1    Interfaces and method invocation 

A COM object supports one or more interfaces, each 
of which has its own globally-unique interface identifier 
or IID. That is why CoCreatelnstance takes a second 
parameter, iface.id, the IID of the desired interface; 
CoCreatelnstance returns the interface pointer of this in- 
terface in iface.ptr.   There is no such thing as an "ob- 
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Figure 1: Interface pointers 

ject pointer", or "object identifier"; there are only interface 
pointers. 

The IID of an interface uniquely identifies the complete sig- 
nature of that interface; that is, what methods the interface 
has (including what order they appear in), their calling con- 
vention, what arguments they take, and what results they 
return. If we want to change the signature of an interface, 
we must give the new interface a different IID from the old 
one. That way, when a client asks for an interface with a 
particular IID, it knows exactly what that interface provides. 

A COM interface pointer is (deep breath) a pointer to a 
pointer to a table of method addresses (Figure 1). Notice 
the double indirection, which allows the table of method ad- 
dresses to be shared among all instances of the class. Data 
specific to a particular instance of the class, notably the 
object's state, can be stored at some fixed offset from the 
"vtbl pointer" (Figure 1). The format of this information is 
entirely up to the object's implementation; the client knows 
nothing about it. Lastly, when a method is invoked, the in- 
terface pointer must be passed as the first argument, so that 
the method code can access the instance-specific state. Tak- 
ing all these points together, we can now see why a method 
invocation looks like this: 

(*iface.ptr)[3](  iface_ptr,   x,   y,   z ); 

None of this is language specific. That is, COM is a binary 
interface standard. Provided the code that creates an ob- 
ject instance returns an interface pointer that points to the 
structures just described, the client will be happy. In theory, 
the parameter passing conventions for each method can be 
different (but fixed in advance). In practice, they match the 
 stdcall convention used by C and C++. 

Interface pointers provide the sole way in which one can in- 
teract with a COM object. This restriction makes it possible 
to implement location transparency (a major COM war-cry), 
whereby an object's client interacts with the object in the 
same way regardless of whether or not the object is in the 

same address space, or even in the same machine, as r.he 
client. All that is necessarv is to build a proxy interface 
pointer, that does point into the client's address space, but 
whose methods are stub procedures that marshal the data 
to and from across the border to the remote object. 

3.2    Getting other interfaces 

A single COM object can support more than one interface. 
But as we have seen before CoCreatelnstance returns only 
one interface pointer. So how do we get the others? Answer: 
every interface supports the Querylnterface method, which 
maps an IID to an interface pointer for the requested IID or 
fails if the object does not support the requested interface. 
So, from any interface pointer (if ace.ptr) on an object we 
can get to any other interface pointer (if ace_ptr2) which 
that object implements, for example: 

err.code =  (»iface_ptr)[0](   iid2,  &iface_ptr2  ); 

Why "[0]"? Because querylnterface is at offset 0 in every 
interface. 

The COM specification requires that Querylnterface be- 
haves consistently. The IUnkown interface on an object is 
the identity of that object; queries for IUnknown from any 
interface on an object should all return exactly the same 
interface pointer. Queries for interfaces on the same ob- 
ject should always fail or always succeed. Thus, the call 
(»iface.ptr) [0] (iid2,S:if ace_ptr2) ; should not succeed 
at one point, but fail at another. Finally, the set of interfaces 
on an object should form an equivalence relation. 

3.3    Reference counting 

Each object keeps a reference count of all the interface point- 
ers it has handed out. When a client discards an interface 
pointer it should call the Release method via that inter- 
face pointer; every interface supports the Release method. 
Similarly, when it duplicates an interface pointer it holds, 
the client should call the AddRef method via the interface 
pointer; every interface also supports the AddRef method. 
When an object's reference count drops to zero it can com- 
mit suicide — but it is up to the object, not the client, to 
cause this to happen. All the client does is make correct 
calls to AddRef and Release. 

3.4    Describing interfaces 

Since every IID uniquely identifies the signature of the in- 
terface, it is useful to have a common language in which to 
describe that signature. COM has such a language, called 
IDL (Interface Definition Language) [6], but IDL is not part 
of the core COM standard. You do not have to describe an 
interface using IDL, you can describe it in classical Greek 



[object, 
uuid(00000000-0000-0000-COOO-000000000046), 

pointer.default(unique) 

] 
interface IUnknown { 
HRESULT QueryInterface( [in] REFID iid, 

[out] void **ppv ); 

ULONG  AddrRef( void ); 
ULONG  Release( void ); 

>  ^____ 

Figure 2: The IUnknown interface in IDL 

yet another level of indirection), and are accessed in the 
Haskell world using our previously developed foreign lan- 
guage interface to C[9]. Green Card automatically generates 
all required stub procedures and marshalling code to call C. 
The M.hs module, together with a library Haskell module 
Com.hs, is all that an application need import to access and 
manipulate all the COM objects described by M. 

4.1    What Green Card generates 

So what does the Haskell module M export? 
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Figure 3: The big picture 

prose if you like. All COM says is that one IID must identify 
one signature. 

Describing an interface in IDL is useful, though, because it 
is a language that all COM programmers understand. Fur- 
thermore, there are tools that read IDL descriptions and 
produce language-specific declarations and glue code. For 
example, the Microsoft MIDL compiler can read IDL and 
produce C++ class declarations that make COM objects 
look exactly like C++ objects (or Java, or Visual Basic). 

As a short example, Figure 2 gives the IDL description of 
the IUnknown interface, the interface of which every other is 
a superset. The 128 bit long constant is the GUID for the 
IUnknown interface. 

4    Interfacing Haskell and COM 

Our goal is to provide a convenient and type-secure inter- 
face between a Haskell program and the COM objects it ma- 
nipulates. How could COM objects appear to the Haskell 
programmer? 

Our approach, illustrated in Figure 3, is broadly conven- 
tional. We have built a tool, called Green Card, that takes 
an IDL module M.idl, and from it generates a Haskell mod- 
ule M.hs1.    Object instances live in the C world (adding 

• For each CLSID Baz in the IDL module, module M 
exports a value baz of type Classld. This value repre- 
sents the CLSID of class Baz. Classld is an abstract 
type exported by Com.hs. 

• For each IID IFoo in the IDL module, M exports: 

- A new, abstract, Haskell data type IFoo. Sur- 
prisingly, no operations are provided on values of 
type IFoo. 

- A value iFoo of type Interface IFoo. This value 
represents the IID for IFoo. Interface is an ab- 
stract type constructor exported by Com.hs. 

An interface pointer for an interface whose IID is IFoo 
is represented by a Haskell value of type Com IFoo. Com 
is an abstract type constructor exported by Com.hs. 

• For each method meth in the interface IFoo, module M 
exports a Haskell function meth with the type: 

meth oi -> -> a„ -> Com IFoo -> 10 r 

Here, ai,...,a„ are the argument types expected by 
meth, extracted from the method's IDL signature, and 
r is its result type. (If there are many results then 
meth would have a tuple result type 10 (n,..., r„).) 
The interface pointer is passed as the last argument 
for reasons we discuss later. 
Notice that meth cannot be invoked on any interface 
pointer whose type is other than Com IFoo, so the in- 
terface is type-secure. 
The result of meth has type "10 r" rather than sim- 
ply V to signal that meth might perform some in- 
put/output. In Haskell, a function that has type 
Int -> Int, say, is a function from integers to integers, 
no more and no less. In particular it cannot perform 
any input/output. All functions that can perform I/O 
have a result type of the form IO r. This so-called 
monadic I/O has become the standard way to do in- 
put/output in purely functional languages [8]. 

'In fact, rather than reading the IDL text directly, the tool inter- 
rogates the type library for H, a COM object generated by a Microsoft 

tool from the IDL. The Microsoft tool does all the parsing and type- 
checking of the IDL. The type-library object it produces is essentially 
a parse tree with methods that allow its clients to navigate the parse 
tree. The tool itself is written in Haskell and has been bootstrapped 
to generate the Haskell module to access type library components. 



• The library module Com.hs provides a generic proce- 
dure createlnstance: 

createlnstance :: Classld 
-> Interface i 
-> 10 (Com i) 

Like CoCreatelnstance, it takes a CLSID and and 
IID, and returns an interface pointer. Unlike the C++ 
procedure CoCreatelnstance, however, we use poly- 
morphism to record the fact that the interface pointer 
returned "corresponds to" the IID passed as argument. 
This somewhat unusual use of polymorphism elegantly 
captures exactly what we want to say, and achieves 
type safety without having to resort to type casts as 
in C or Java. 

The 10 type has an exception mechanism that is used 
to deal with the failure of createlnstance. 

• The library module Com.hs provides a generic proce- 
dure queryInterface: 

querylnterface   ::   Interface  j 
-> Com i 
->  ID   (Com j) 

The first argument is the IID for the desired inter- 
face. The second is the interface on which we want to 
query for another interface. The result is an interface 
for the desired interface. Again, we use polymorphism 
to make sure that the interface that is returned by 
query Interface (of type Com j) corresponds to the 
IID (of type Interface j) passed as the first argu- 
ment. 

• There are no programmer-visible procedures corre- 
sponding to AddRef and Release. Instead, when 
Haskell's garbage collector discovers that a value of 
type Com i is now inaccessible, it calls Release on the 
interface pointer it encapsulates. This is just a form 
of finalization, a well-known technique in which the 
garbage collector calls a user-defined procedure when 
it releases the store held by an object. 

4.2    The Agent example 

character in return2. Having got a character, we can make 
it talk a sentence by calling speak, or play a little animation 
by calling play. 

Here is a complete example program: 

module Main where 
import Agent 

main = comRun $ 
do server <- createlnstance 

agentServer SERVER iAgent 
rob_id <- server * load "robby.acs" 
robby    <- server # getCharacter rob_id 
robby # moveTo centerScreen 
robby <t show 
robby # speak "Hello world" 

To make sense of this, we need to know the following Haskell 
lore: 

• Left associative function application is written as jux- 
taposition. Thus fab means "f applied to a and b". 
Right associative function application is written as $. 
Thus f $ g a means "f applied to g a". 

• The function # is simply reverse function application. 

(#)   ::   a ->   (a->b)   -> b 
x # f = f x 

It is used here to allow us to write the inter- 
face pointer first in a method call, much as hap- 
pens in an object oriented language. For ex- 
ample, robby # speak "Hello" means the same as 
speak "Hello" robby. It is for this reason that Green 
Card arranges that the interface pointer is the last pa- 
rameter of each method call. 

• The "do" notation is used to sequence a series of I/O- 
performing function calls. It is much more syntacti- 
cally convenient than using the bind and unit func- 
tions of the monad, as the first papers about monadic 
I/O did [8, 10]. The statement robby <- server 
# getCharacter rob.id binds the result of perform- 
ing the action server t getCharacter rob_id to the 
name robby. 

These points make more sense in the context of a particular 
example. Suppose we took the IDL description for Microsoft 
Agent. After being processed by Green Card, we would 
have a Haskell module Agent.hs that exports (among other 
things) the types, functions, and values given in Figure 4. 

Microsoft Agent implements cartoon characters that pop up 
on the screen and talk to you. The animation is supported 
by an agent server whose CLSID is agentServer, and whose 
main interface is IAgent. Once we have created an agent 
server, we can load a character from a file, getting a Charld 
in reply. Now we can generate instances of that charac- 
ter using getCharacter, getting an interface pointer for the 

Now we can read the example. The function comRun is ex- 
ported by Com.hs and has type 

comRun 10 a -> 10  () 

It encapsulates a computation that accesses COM, preceding 
it with initialization and following it with finalization. 

"It is quite common for COM calls to return interfaces. Here. 
getCharacter plays the role of createlnstance, returning an interface 
to the new character. The interface may be have been created in- 
side the agent server by a call to CoCreatelnstance but that does not 
concern us. 



module Agent where 

— The Agent class 
agentServer :: ClassID 

— The IAgent interface 

data IAgent = ... 
iAgent :: Interface IAgent 

— Agent interface type 
-- ...and its IID 

type Charld = Int 
load       :: String -> Com IAgent -> 10 Charld 
getCharacter :: Charld -> Com IAgent -> 10 (Com IAgentCharacter) 

...etc other methods of IAgent... 

— The AgentCharacter interface 
data IAgentCharacter = ...  ~ Ditto IAgentCharacter 
iAgentCharacter :: Interface IAgentCharacter 

type Reqld = Int 

play 
speak 
»ait 

String 
String 
Reqld 

■> Com IAgentCharacter 
■> Com IAgentCharacter 

Com IAgentCharacter 

-> 10 Reqld 
-> 10 Reqld 
-> 10 Reqld 

etc other methods of IAgentCharacter. 

Figure 4: Exports from module Agent 

Next, the call to createlnstance creates an instance of 
the agent server. The next two lines load the animation 
file "robby. acs" and create one instance of the character. 
The curious intermediate value, rob.id. is an artifact of the 
Agent server design, and not relevant here. In practice we 
would abstract from this design quirk and define a new func- 
tion createCharacter as: 

createCharacter  ::  String -> Com IAgent 
-> 10  (Com IAgentCharacter) 

createCharacter agent server = 
do a <- server # load agent 

server # getCharacter a 

Finally, the character appears in the center of the screen 
and is asked to speak a phrase. All the AddRef and Release 
calls are handled implicitly. 

5    Why use Haskell? 

One can, of course, invoke COM objects from Visual Basic 
or C++. So is this paper of any interest to a VB or C++ 
programmer? We believe that it may be, as we argue in this 
section. 

When we program our first example in C++ we see that we 
need to do a lot more bookkeeping: 

void main  0 
{ 
IAgentServer* server   = NULL; 
IAgentCharacter* robby = NULL; 

HRESULT hr; int reqid; int charid; 

hr = Olelnitialize(NULL); 
if (checkHR(hr)) 

hr - CoCreateInstance( CLSID.AgentServer, NULL, 
CLSCTX.SERVER, IID.IAgentServer, ftserver ); 

if (checkHR(hr)) 

hr = server->load( L"robby.acs", ftcharid ); 

if (SUCCEEDED(hr)) 

{ 
server->getCharacter( charid, fcrobby ); 

} 
if (checkHR(hr)) 

{ 
hr = robby->show( ftreqid ); 
hr = robby->speak( L"Hello world", fcreqid ); 

robby->Release(); 

} 
server->Release(); 

} 
OleUnitializeO; 

} 
} 

int checkHR( HRESULT hr ) 

if  (FAILED(hr))  showError(hr); 
return  (SUCCEEDED(hr)); 

} 

The error checking clutters the code a lot and it is not at 



all trivial to be sure to call Release or QleUnitialize when 
an error happens. Maybe that is the reason that most C++ 
programs just leave it out. 

For simple scripts, there is hardly any difference between 
Haskell and say Visual Basic (or Java). Except for the dec- 
laration of the variable Dim Robby our Agent example looks 
similar. The COM initialization and finalization is done au- 
tomatically as are the calls to Release. 

Dim Robby 
AgentControl.Connected = True 
AgentControl.Characters.Load "Robby", 

" \robby.acs" 
Set Robby = AgentControl.Characters("Robby") 

Robby.Move (300,400) 
Robby.Show 
Robby.Speak "Hello, World!" 

The real difference shows when we want to abstract from 
commonly occurring patterns in scripts. 

5.1    Extending the characters' repertoire 

The methods play and speak are rather limited. We would 
like to be able to define new, compound method, so that 

robby # dancesAndSings 

would make robby execute a sequence of play and speak 
actions. Here's how we can do that in Haskell: 

type Action = Com IAgentCharacter -> 10 Reqld 

dancesAndSings   ::   Action 
dancesAndSings  agent  = 

do agent # speak "La la la" 
agent  # play "Dance" 

Here we have defined the type Action as a shorthand to 
denote actions that can be performed by an agent (like 
play  "Dance" or dancesAndSings). 

In C++ or Java one could define dancesAndSings as the 
method of a class that inherits from IAgentCharacter, using 
implementation inheritance to arrange to call the character's 
own play or speak procedure. To us, it seems rather un- 
natural to introduce a type distinction between agents that 
can dance and sing and agents that can danceAndSing. Ob- 
ject oriented languages are good in expressing new objects 
as extensions of existing objects, functional languages are 
good in expressing new functions in terms of existing func- 
tions. In Visual Basic we could certainly define a procedure 
like dancesAndSings, but than we could only call it using a 
different syntax than native class methods. 

Sub DancesAndSings   (Byref  Agent) 
Agent.Speak   ("La la la") 
Agent.Play     ("Dance") 

End Sub 

Robby.Speak   ("Hello") 
DancesAndSings   (Robby) 

If the sequence of actions a particular agent has to perform 
gets long, it becomes a bit tiresome writing all the "agent #" 
parts, so we can rewrite the definition as a little script, like 
this: 

dancesAndSings   ::   Action 
dancesAndSings  agent  = 

agent 9 sequence   [speak  "La la la",   play "Dance"] 

where sequence is a re-usable function that executes a list 
of actions from left to right: 

sequence  ::   [Action]   -> Action 
sequence   [a] agent  = agent  # a 
sequence   (a:as)   agent  = 

do agent # a;  sequence as agent 

Notice that the type of the first argument of sequence is 
a list of functions that return I/O performing computa- 
tions. The ability to treat functions and computations as 
first-class values, and to be able to build and decompose 
lists easily, has a real payoff. In Java, C++, or VB it is 
much harder to define custom control structures such as 
sequence. For example in Java 1.1 one would use the pack- 
age Java.lang.reflect r.o reify classes and methods into 
first class values, or use the Command pattern [5] to im- 
plement a command interpreter on top of the underlying 
language. Note that in our case sequence [. ..] is another 
composite method on agents, just as dancesAndSings, and 
is called in exactly the same way as a native method. 

The low cost of abstraction in Haskell is even more convinc- 
ing when we define a family of higher-order functions to ease 
moving agents around the screen. First we define a function 
movePath as: 

type Pos    =   (Int,Int) 

movePath   ::   [Pos]   -> Action 
movePath path agent = 

agent # sequence   [ moveTo pos   I   pos  <- path ] 

Function movePath path robby moves agent robby along all 
the points in the list path. In Visual Basic (or Java) we can 
define a similar function quite easily as well by using the 
built-in For  ...    Each  ... Next control structure: 

Sub MovePath  (Byref Agent,  Byref Path) 
For Each Point In Path 

Agent.MoveTo   (Point) 
Next point 

End Sub 

However, in Haskell we don't have to rely on foresight of 
the language designers no built, in (■■very control structure \vc 
might ever need in advance, since we can define our own 



custom control structures on demand. Lazy evaluation and 
higher order functions are essential for this kind of extensi- 
bility [7]. 

We can use function movePath to construct functions that 
move an agent along more specific figures, such as squares 
and circles: 

moveSquara  ::  Pos -> Int -> Action 
moveSquara  (x,y)  width agent = 

agent # movePath square 
where 

w = width 'div'  2 
square =  C  (x-w,y-w), 

,   (x+w,y+w), 
,   (x-w,y-v) 
] 

(x+w,y-w) 
(x-w,y+w) 

moveCircle   ::  Pos -> Int -> Action 
moveCircle  (x,y)  radius agent = 

agent it movePath circle 
where 

circle =  [ ( x +  (radius*cos t) 
,  y +  (radius»sin t) 
) 

I  t <-  [0,pi/100..pi] 
] 

By re-using sequence and movePath we were able to define 
moveSquare and moveCircle very easily. Because Haskell 
uses lazy evaluation, the lists of points are generated on 
demand and therefore never completely in memory. 

5.2    Synchronization 

The Agent server manages each character as a separate, se- 
quential process, running concurrently with the other char- 
acters. Suppose we want one character to sing while the 
other dances, we just write: 

do erik    # sings 
simon # dances 

It looks as if these take place sequentially, but actually they 
are done in parallel. Each character maintains a queue of 
requests it has got from the server and performs these in 
sequence. Hence a call such as erik # sings returns im- 
mediately, while erik is still singing and then makes simon 
dance in parallel. 

Now suppose we want daan to do something else only when 
bnth erik and simon have terminated: how can we ask the 
Agent server to do that? The answer is that every Action 
returns a request ID, of type Reqld, on which any character 
can wait, to synchronize on the completion of that request. 
Thus: 

do erikDone    <- erik * sings 
simonDone  <- simon # dances 
daan # wait erikDone;   daan # wait  simonDone 

daan # speak "They're both done" 

You may imagine that in a complex animation it can be com- 
plicated to get all these synchronizations correct. We might 
easily wait for the wrong request ID, or get deadlocked, or 
whatever. What we would like to be able to do instead is to 
say something like: 

(erik t sings)  <l>  (simon # dances) 
<*> 
(daan # speak "They're both done") 

Here <*> is an infix operator used to compose two anima- 
tions in sequence, and < I > composes two animations in par- 
allel. Since all the synchronization is now implicit, it is much 
harder to get things wrong. We can now say what we want, 
since we have abstracted away from the details how we have 
to encode all the low-level synchronization between agents. 

How can we program these "animation abstractions" in 
Haskell? 

To perform two animations in sequence, we need to wait 
until all actions in the first animation are performed before 
we can start the second. If we assume that an animation 
returns the request-id of the very last action it performs, we 
can wait for that one and be sure that all other actions in 
that animation are also completed. In order to be able to 
make an animation wait for a request-id, we need to know all 
characters that will perform in that animation — its "cast". 
Hence, we represent animations by a pair of an action that 
returns a request-id, and the cast for that action: 

type Anim = (10 Reqld,   [Com IAgentCharacter]) 

Using type Anim, we could (erroneously) try to define se- 
quential composition of two animations as follows: 

(actionl,   castl)   <*>   (action2,   cast2)   = 
(action,   castl   'union'   cast2) 
where 

action = 
do rl <- actionl 

cast2  'waitFor'  rl 
action2 

Unfortunately, this solution does not work because we can 
get a deadlock when an agent is part of both animations, in 
which case it could be waiting for itself to terminate. We 
therefore take the difference (\\) between the casts involved 
in the two animations. 

A more subtle problem occurs when more than two ani- 
mations are composed in sequence. Suppose we compose 
three animations thus, (si <*> s2) <*> s3, and suppose 
that agent daan plays a role in si and s3 but not s2. The 
deadlock-avoidance device means that daan will not wait for 
s2 to conclude before starting whatever actions are scripted 
for him in s3. The solution is a little counter-intuitive: in 
the composition si <*> s2, make the cast of si who are not 
involved in s2 wait for the the cast of s2 to finish. 

Our final (and correct) version of <*> will therefore be: 



(<*>) :: Anim -> Anim -> Anim 
(actionl, castl) <*> (action2, cast2) = 
(action, castl 'union' cast2) 
where 

action = 
do reqidl <- actionl 

(cast2 \\ castl) 'waitFor' reqidl 
reqid2 <- action2 
(castl \\ cast2) 'waitFor' reqid2 

The operation waitFor cast reqid makes every agent a in 
its input list cast wait on the given request-id reqid. Func- 
tion as 'waitFor' reqid always returns reqid. 

waitFor :: [Com IAgentCharacter] -> Reqid 
-> 10 Reqid 

□    'waitFor' reqid = return reqid 
(a:as) 'waitFor' reqid = 
do a f wait reqid 

as 'waitFor' reqid 

The definition of parallel composition is now easy. We let all 
the agents of the second animation wait for the first anima- 
tion to complete and the other way around. Note the nice 
duality in the implementation of the sequential and parallel 
combinator: we just swap the middle two statements. 

(<l>)   ::  Anim -> Anim -> Anim 
(actionl,  castl) <|>  (action2,   cast2)    = 
(action,  castl  'union'   cast2) 
where 

action = 
do reqidl  <- actionl 

reqid2  <- action2 
(cast2  // castl)   'waitFor'   reqidl 
(castl  // cast2)   'waitFor'   reqid2 

In about 20 lines of code we have a very clear definition and 
implementation of two non-trivial combinators. Using the 
properties of a pure lazy language we can use equational 
reasoning to prove various of laws that we expect to hold 
for the combinators: 

x <*>   (y <*> z) 
x <|>   (y <|> z) 

x <1> y 

(x <*> y)   <*> z 
(x <l> y)   <l> z 
y <l> x 

Proving properties like these is not just a technical nicety! 
As we have already seen, obtaining correct synchronization 
among the characters is somewhat subtle, and conducting 
proofs of properties like these can reveal subtle bugs. This 
happened to us in practice: when proving the associative law 
for <*>, we discovered that our previous implementation was 
incorrect in a subtle way. 

to do this next, but there are some interesting new chal- 
lenges. Chief among these is that a COM object imple- 
mented in Haskell must be supported by a Haskell run-time 
system and garbage-collected heap. While the code might 
be shared, we would prefer not to create a separate heap 
for each object; remember a COM object might represent 
a rather lightweight thing like a button or a scroll-bar. In- 
stead, we would like all the Haskell objects in a process to 
share the same RTS and heap. 

Besides encapsulating a Haskell program as a COM ob- 
ject, we also plan to encapsulate a Haskell interpreter as 
a COM object, which implements the IScriptEngine in- 
terface. This allows us to use Haskell programs to script 
interactive Web pages 

<SCRIPT LANGUAGE="HaskellScript"> 
do yes  <- confirm  ("Do you like Haskell?") 

document#write  ( if yes then "I knew it!" 
else  "Are you sure?" 

) 
</SCRIPT> 

or as embedded macro language for MS Office applications 
such as Word and Excell. Similar implementations already 
exist for Visual Basic, Java Script, Perl and Phyton. 

7    Summary 

The theme of this paper is that it is not only possible, to 
script COM components in Haskell. but also desirable to do 
so. 

We have described a simple way to incorporate COM objects 
into Haskell's type system, making use of polymorphism r.o 
enforce the connection between an IID and the interface 
pointer returned by query Interface. 

We have also shown how one can use higher-order functions, 
and first-class computations (that is, values of type 10 T), to 
define powerful new abstractions. In the Agent example, we 
built a little custom-designed sub-language, or combinator 
library, for expressing parallel behavior. The implementa- 
tion of the combinators is terse enough that we were able to 
perform simple algebraic proofs of their properties. 

All of this can doubtless be done in any programming lan- 
guage. Our only claim here is that higher-order, typed, func- 
tional languages make the job considerably easier. 
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A    Outline of proof of associativity of <*> 

In order to prove that <*> is associative, we make some 
assumptions on the agent implementation. 

The first assumption is that the call as 'waitFor' r be- 
haves like the identity function with a side effect of letting all 
agents in as wait for request id r. We assume that waitFor 
has no other visible side effect. It then follows that waitFor 
distributes over set union: 

(as  'union'  bs)   'waitFor'  r = 
do as   'waitFor'   r;  bs   'waitFor'   r 

or equivalently that waiting is commutative and idempotent: 

do as  'waitFor'  r;   as  'waitFor'  r = 

as  'waitFor'  r 

do as  'waitFor'  r;  bs  'waitFor'  r = 

bs 'waitFor'  r;  as  'waitFor'  r 

The next law states that agents don't have to wait twice in 
a row: 

as 'waitFor'  rl; 
(as  'union'  bs)   'waitFor'   r2  = 

(as  'union'  bs)   'waitFor'  r2 

When there is no interaction between the set of agents that 
are waiting and the cast of a subsequent action then waiting 
can be delayed. 

as  'waitFor'  rl;  r2 <- action  = 

rl <- action;  as  'waitFor'  r2 

Using the above laws plus standard set theory, it follows 
that <*> is associative. 

(actionl,cl)  <*>  ((action2,c2)   <*>   (action3,c3)) 

First, we unfold the definition of <*> 

do rl    <- actionl 
(c2 'union'  c3)\\cl     'waitFor'  rl 
r23 <- do r2 <- action2 

c3\\c2  'waitFor'   r2 
r3 <- action3 
c2\\c3    'waitFor'  r3 

cl\\(c2  'union'  c3)   'waitFor'  r23 

Next we flatten the sequence of actions 

do rl <- actionl 
c2\\cl    'waitFor'  rl 
c3\\(cl  'union'  c2)     'waitFor'  rl 
r2 <- action2 
c3\\c2    'waitFor'  r2 
r3 <- action3 
r23 <-  (c2\\c3)   'waitFor'  r3 
cl\\(c2  'union'   c3)   'waitFor'  r23 

We rearrange the statements by applying the various swap 
laws 

do rl <- actionl 
c2\\cl    'waitFor'  rl 
r2 <- action2 
cl\\c2     'waitFor'   r2 
c3\\(cl  'union'  c2)     'waitFor'  r2 
r3 <- action3 
c2\\c3    'waitFor'  r3 
cl\\(c2  'union'  c3)     'waitFor'   r3 

and introduce nesting again 

do rl2 <- do rl <- actionl 
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c2\\cl   'waitFor'  rl 
r2 <- action2 
cl\\c2  'waitFor'  r2 

c3\\(cl   'union'   c2)   'waitFor'  rl2 
r3 <- action3 
(cl  'union'   c2)\\c3  'waitFor'  r3 

so that finally, we can fold the definition of <*> 

((actionl.cl)  <*>  (action2,c2))  <*>  (action3,c3) 
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