
PACIFIC SOFTWARE RESEARCH CENTER
TECHNICAL REPORT

Language Definition DSDL for Hawk

Pacific Software Research Center
April 22, 1998

CONTRACT NO. F19628-96-C-0161
CDRL SEQUENCE NO. [CDRL 0002.4]

Prepared for:
USAF

Electronic Systems Center/AVK

OREGON

GRADUATE

INSTITUTE OF

SCIENCE &

TECHNOLOGY

jyriC QUALITY INSPECTED'

Language Definition DSDL for Hawk

Pacific Software Research Center
April 22, 1998

CONTRACT NO. F19628-96-C-0161
CDRL SEQUENCE NO. [CDRL 0002.4]

Prepared for:
USAF

Electronic Systems Center/AVK

Prepared for:
Pacific Software Research Center

Oregon Graduate Institute of Science and Technology
PO Box 91000

Portland, OR 97291

Microprocessor Specification in Hawk*

John Matthews Byron Cook John Launchbury
johnm@cse.ogi.edu byron@cse.ogi.edu jl@cse.ogi.edu

Abstract

Modern microprocessors require an immense invest-
ment of time and effort to create and verify, from
the high-level architectural design downwards. We are
exploring ways to increase the productivity of design
engineers by creating a domain-specific language for
specifying and simulating processor architectures. We
believe that the structuring principles used in modern
functional programming languages, such as static typ-
ing, parametric polymorphism, first-class functions,
and lazy evaluation provide a good formalism for such
a domain-specific language, and have made initial
progress by creating a library on top of the functional
language Haskell. We have specified the integer sub-
set of an out-of-order, superscalar DLX microproces-
sor, with register-renaming, a reorder buffer, a global
reservation station, multiple execution units, and spec-
ulative branch execution. Two key abstractions of this
library are the signal abstract data type (ADT), which
models the simulation history of a wire, and the trans-
action ADT, which models the state of an entire in-
struction as it travels through the microprocessor.

1 Introduction

Modern microprocessor technologies have substan-
tially increased processor performance. For example,
pipelining allows a processor to overlap the execution
of several instructions at once. With superscalar exe-
cution, multiple instructions are read per clock cycle.
Out-of-order execution, where some instructions that
logically come after a given instruction may be ex-
ecuted before the given instruction, can also greatly

•Copyright 1998 IEEE. Published in the Proceedings of
ICCL'98, May 1998 Chicago, Illinois. Persona! use of this ma-
terial is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

increase processor speed [6]. All of these technologies
dramatically increase design complexity. In fact, cre-
ating and verifying these designs is a significant pro-
portion of the total microprocessor development life-
cycle. As the number of possible gates in future micro-
processors increases exponentially, so too does design
complexity.

At 0GI, we have developed the Hawk language
for building executable specifications of microproces-
sors, concentrating on the level of micro-architecture.
In the long term we plan for Hawk to be a stand-
alone language. In the meantime we have embedded
our language into Haskell, a strongly-typed functional
language with lazy (demand-driven) evaluation, first-
class functions, and parametric polymorphism [5] [12].

The library makes essential use of these features.
As an example, we have used Hawk to specify and
simulate the integer portion of a pipelined DLX
microprocessor[4]. The DLX is a complete micropro-
cessor and is a widely used model among researchers.
Several DLX simulators exist, as well as a version of
the Gnu C compiler that generates DLX assembly
instructions. The processor includes the most com-
mon instructions found in commercial RISC proces-
sors. Our specification, including data and control
hazard resolution, is only two pages of Hawk code. A
non-pipelined version of the processor was specified in
half of a page.

In this report, we introduce the concepts behind
Hawk. Rather than attempting a detailed explana-
tion of the whole of the DLX with all of its inherent
complexity, we have chosen to exhibit the techniques
on a considerably simplified model. A corresponding
annotated specification of the DLX itself can be found
in [13].

2 The Hawk Library

We start with a simple example that introduces sev-
eral functions used in later examples. Consider the
resettable counter circuit of Figure 1.

The reset wire is Boolean valued, while the other

reset

\! control

Constant 0 ifTrue
output

Select
v

Increment

\

0

Mnit

ueia y inpu

Figure 1: Resettable Counter. A simple circuit
that counts the number of clock cycles between
reset signals.

wires are integer valued. Of course, in silicon, integer-
valued wires are represented by a vector of Boolean
wires, but as a design abstraction, a Hawk user may
choose to use a single wire. The circuit counts (and
outputs) the number of clock cycles since reset was
last asserted.

2.1 Signals

Notice that there is no explicit clock in the diagram.
Rather, each wire in the diagram carries a signal (in-
teger or boolean valued) which is an implicitly clocked
value. The output of a circuit only changes between
clock cycles. We build signals using an abstract type
constructor called Signal. As a mental model we
could think of a value of type Signal a as a function
from integers to values of type a.

type Signal a = (Int -> a)

The integers denote the current time, measured as
the number of clock cycles since the start of the simu-
lation. Circuits and components of circuits are repre-
sented as functions from signals to signals. This view
of signals is used extensively in the hardware verifica-
tion community [9] [14]. Equivalently, we can think of
signals as infinite sequences of values.

In the resettable counter example above, the
constant 0 circuit outputs zero on every clock cycle.
The select component chooses between its inputs on
each clock cycle depending on the value of reset. If
reset is asserted on a given cycle (has value true), then
the output is equal to select's top input, in this case

zero. If reset is not asserted, then its output is the
value of its bottom input. In either case, select's out-
put is the output of the entire circuit, as well as the
input to the increment component, which simply adds
1 to its input. The output of increment is fed into the
delay component. A delay component outputs what-
ever was on its input in the previous clock cycle: it
"delays" its input by one cycle. However, on the first
clock cycle of the simulation there is no previous in-
put, so on the first cycle delay outputs whatever is on
its init input, which is zero in this circuit.

2.2 Components

The components used in the resettable counter are
trivial examples of the sorts of things provided by the
Hawk library, but let's look at a specification of each
component in turn.

The simplest component is constant

constant :: a -> Signal a

The constant function takes an input of any type
a, and returns an output of type Signal a, that is,
a sequence of values of type a. For every clock cycle,
(constant x) always has the same value x.

The next component is select:

select :: Signal Bool ->
Signal a ->
Signal a ->
Signal a

This declares select to be a function. In a
Hawk declaration, anything to the left of an ar-
row is a function argument. Thus, the expression
(select bs xs ys), where bs is a Boolean signal,
and xs and ys are signals of type a, will return an
output signal of type a. The values of the output sig-
nal are drawn from xs and ys, decided each clock tick
by the corresponding value of bs. For example, if

bs = <True,False,True,False,.
xs = <xl,x2,x3,x4,...>,
ys = <yl,y2,y3,y4,...>

>,

then (select bs xs ys) is equal to the signal
<xi,y2,x3,y4,...>.

Hawk treats functions as first-class values, allowing
them to be passed as arguments to other functions
or returned as results. First-class functions allow us
to specify a generic lift primitive, which "lifts" a
normal function from type a to type b into a function
over the corresponding signal types:

lift :: (a -> b) -> Signal a -> Signal b

The expression (lift f xs), where
xs = <xl,x2,x3,.. .>, is equal to the signal
<f xl, f x2, f x3, ...>.

The increment component is denned in terms of
lift:

increment :: Signal Int -> Signal Int
increment xs = lift (+ 1) xs

Given the xs input signal, increment adds one to
each component of xs and returns the result.

The delay component is more interesting:

delay :: a -> Signal a -> Signal a

This function takes an initial value of type a, and
an input signal of type Signal a, and returns a value
of type Signal a (the input arguments are in reverse
order from the diagram). At clock cycle zero, the ex-
pression (delay initVal xs) returns initVal. Oth-
erwise the expression returns whatever value xs had at
the previous clock cycle. This function can thus prop-
agate values from one clock cycle to the next. Note
that delay is polymorphic, and can be used to delay
signals of any type.

2.3 Using the components

Once we have defined primitive signal components like
the ones above, we can define the resettable counter:

resetCounter :: Signal Bool -> Signal Int
resetCounter reset = output

where
output =

select reset
(constant 0)
(delay 0 (increment output))

The resetCounter definition takes reset as a
Boolean signal, and returns an integer signal. The
reset signal is passed into select. On every clock cy-
cle where reset returns True, select outputs 0, oth-
erwise it outputs the result of the delay function. On
the first clock cycle delay outputs 0, and thereafter
outputs the result of whatever (increment output)
was on the previous clock cycle. The output of the
whole circuit is the output of the select function,
here called output. Notice that output is used twice
in this function: once as the input to increment, and
once as the result of the entire function. This corre-
sponds to the fact that the output wire in Figure 1 is
split and used in two places. Whenever a wire is dupli-
cated in this fashion, we must use a where statement
in Hawk to name the wire.

2.4 Recursive Definitions

There is something else curious about the output vari-
able. It is being used recursively in the same place it is
being defined! Most languages only allow such recur-
sion for functions with explicit arguments. In Hawk,
one can also define recursive data-structures and func-
tions with implicit arguments, such as the one above.

If we didn't have this ability, we would have had to
define resetCounter as follows:

resetCounter reset = output
where

output time =
(select reset

(constant 0)
(delay 0 (increment output))) time

Every time we have a cycle in a circuit, we have to
create a local recursive function, passing an explicit
time parameter. This breaks the abstraction of the
Signal ADT. In fact, in the real implementation of
signals, we don't use functions at all. We use infinite
lists instead. Each element of the list corresponds to a
value at a particular clock cycle; the first list element
corresponds to the first clock cycle, the second element
to the second clock cycle, and so on. By storing signals
as lazy lists, we compute a signal value at a given
clock cycle only once, no matter how many times it is
subsequently accessed.

Haskell allows recursive definitions of abstract data
structures because it is a lazy language, that is, it
only computes a part of a data structure when some
client code demands its value. It is lazy evaluation
that allows Haskell to simulate infinite data structures,
such as infinite lists.

3 A Simple Microprocessor

As we noted in the introduction, the DLX architec-
ture is too complex to explain in fine detail in an in-
troductory report. Thus for pedagogical purposes we
show how to use similar techniques to specify a sim-
ple microprocessor called SHAM (Simple HAwk Mi-
croprocessor). We begin with the simplest possible
SHAM architecture (unpipelined), and then add fea-
tures: pipelining, and a memory-cache.

The unpipelined SHAM diagram is shown in Fig-
ure 2. The microprocessor consists of an ALU and a
register file. The ALU recognizes three operations:
ADD, SUB, and INC. The ADD and SUB operations
add and subtract, respectively, the contents of the two
ALU inputs. The INC operation causes the ALU to in-
crement its first input by one and output the result.

command srcRegA srcRegB destReg

' r H

RO

y init

RegisterFile

writeReg
Delay

input

writeContents
Delay

input

' r
inPutl , (inpu a

A init

0

ATT I

Figure 2: Unpipelined version of SHAM.

The register file contains eight integer registers, num-
bered RO through R7. Register RO is hardwired to the
value zero, so writes to RO have no effect. The reg-
ister file has one write-port and two read-ports. The
write-port is a pair of wires; the register to update,
called writeReg, and the value being written, called
writeContents. The input to each read-port is a wire
carrying a register name. The contents of the named
read-port registers are output every cycle along the
wires contentsA and contentsB. If a register is writ-
ten to and read from during the same clock cycle, the
newly written value is reflected in the read-port's out-
put. This is consistent with the behavior of most mod-
ern microprocessor register files.

SHAM instructions are provided externally; in our
drive for simplicity there is no notion of a program
counter. Each instruction consists of an ALU opera-
tion, the destination register name, and the two source
register names. For each instruction the contents of
the two source registers are loaded into the ALU's in-
puts, and the ALU's result is written back into the
destination register.

3.1 Unpipelined SHAM Specification

Let us assume we have already specified the register
file and ALU, with the signatures below:

data Reg = RO I Rl I R2 I R3 I R4 I R5 | R6 I R7

regFile :: (Signal Reg, Signal Int) ->
Signal Reg ->
Signal Reg ->
(Signal Int, Signal Int)

data Cmd = ADD I SUB I INC

alu :: Signal Cmd -> Signal Int
Signal Int

-> Signal Int ->

The regFile specification takes a write-port input,
two read-port inputs, and returns the corresponding
read-port outputs. The alu specification takes a com-
mand signal and two input signals, and returns a re-
sult signal. Given these signatures and the previous
definition of delay, it is easy in Hawk to specify an
unpipelined version of SHAM:

shaml :: (Signal Cmd,Signal Reg,
Signal Reg,Signal Reg) ->

(Signal Reg,Signal Int)

shaml (cmd,destReg,srcRegA.srcRegB) =
(destReg'.aluOutput')
where

(aluInputA.aluInputB) =
regFile (destReg',aluOutput')

srcRegA srcRegB
aluOutput = alu cmd aluInputA aluInputB
aluOutput' = delay 0 aluOutput
destReg' = delay RO destReg

The definition of shaml takes a tuple of signals rep-
resenting the stream of instructions, and returns a pair
of signals representing the sequence of register assign-
ments generated by the instructions. The first three
lines in the body of shaml read the source register val-
ues from the register file and perform the ALU opera-
tion. The next two lines delay the destination register
name and ALU output, in effect returning the values of
the previous clock cycle. The delayed signals become
the write-port for the register file. It is necessary to
delay the write-port since modifications to the regis-
ter file logically take effect for the next instruction,
not the current one.

3.2 Pipelining

Suppose we wanted to increase SHAM's performance
by doubling the clock frequency. We will assume that,
while shaml could perform both the register file and
ALU operations within one clock cycle, with the in-
creased frequency it will take two clock cycles to per-
form both functions serially. We use pipelining to

increase the overall performance. While the ALU is
working on instruction n, the register file will be writ-
ing the result of instruction n — 1 back into the appro-
priate register, and simultaneously reading the source
registers of instruction n + 1.

But now consider the following sequence of instruc-
tions, such as:

R2
R4

Rl ADD R3
R2 SUB R5

When the ADD instruction is in the ALU stage, the
SUB instruction is in the register-fetch stage. But one
of the registers that is being fetched (R2), has not been
written back into the register file yet, because the ALU
is still calculating the result. The SUB instruction will
read an out-of-date value for R2. This is an example
of a data hazard, where naive pipelining can produce
a result different from the unpipelined version of a
microprocessor. To resolve this hazard, we will first
add bypass logic to the pipeline, then later abstract
away from this added inconvenience.

Figure 3 contains the diagram of a pipelined version
of SHAM with bypass logic. By the time the source
operands to the SUB instruction (R2 and R5) are ready
to be input into the ALU, the up-to-date value for R2 is
stored in the delay circuit between the ALU and the
register file's write-port. The bypass logic uses this
stored value of R2 as the input to the ALU, rather
than the out-of-date value read from the register file.
The bypass logic examines the incoming instructions
to determine when this is necessary. The following
code contains the Hawk specification:

sham2 :: (Signal Cmd,Signal Reg,
Signal Reg,Signal Reg)

->
(Signal Reg,Signal Int)

sham2 (cmd,destReg,srcRegA,srcRegB) =
(destReg",aluOut')
where

(valueA,valueB) = regFile (destReg''.aluOut')
srcRegA srcRegB

valueA' = delay 0 valueA
valueB' = delay 0 valueB
destReg' = delay RO destReg
cmd' = delay ADD cmd

aluInputA = select validA valueA' aluOut'
aluInputB = select validB valueB' aluOut'

aluOut = alu cmd' aluInputA aluInputB

aluOut' = delay 0 aluOut
destReg'' = delay RO destReg'

 Control logic

validA = delay True (noHazard srcRegA)
validB = delay True (noHazard srcRegB)

noHazard :: Signal Reg -> Signal Bool
noHazard srcReg =

sigOr (sigEqual destReg' (constant RO))
(sigNotEqual destReg' srcReg)

The first two lines after the where keyword read
the contents of the source registers from the register
file. The next four lines delay the source register con-
tents, the ALU command, and the destination register
name by one cycle. The two select commands decide
whether the delayed values should be bypassed. The
decision is made by the Boolean signals validA and
validB, which are defined in the control logic section.
The next line performs the ALU operation. The last
two lines in the data-flow section delay the ALU re-
sult and the destination register. The delayed result,
called aluOut', is written back into the register file in
the register named by destReg'', as indicated in the
first two lines of the section.

The control logic section determines when to by-
pass the ALU inputs. The signals validA and validB
are set to True whenever the corresponding ALU in-
put is up-to-date. The definition of these signals uses
the function noHazard, which tests whether the pre-
vious instruction's destination register name matches
a source register name of the current instruction. If
they do, then the function returns False. The ex-
ception to this is when the destination register is RO.
In this case the ALU input is always up-to-date, so
noHazard returns True.

3.3 Transactions

The definition of sham2 highlights a difficulty of many
such specifications. Although the data flow section is
relatively easy to understand, the control logic section
is far from satisfactory. In fact, it often takes nearly as
many lines of Hawk code to specify the control logic
as it does to specify the data flow, and mistakes in
the control logic may not be easy to spot. We need a
more intuitive way of defining control logic sections in
microprocessors.

We use a notion of transactions within Hawk to
specify the state of an entire instruction as it trav-
els through the microprocessor (similar in spirit to

destReg command srcRegA srcRegB

inputs'

Figure 3: Pipelined SHAM. Since the register file and the ALU each now take one clock cycle to
complete, we now need Delay circuits. The Delay circuits in turn require us to add Select circuits
to act as bypasses. The logic controlling the Select circuits is not shown.

Aagaard and Leeser [1]). A transaction holds an in-
struction's source operand values, the ALU command,
and the destination operand value. Transactions also
record the register names associated with the source
and destination operands:

data Transaction = Trans DestOp Cmd [SrcOp]

type DestOp = Operand
type SrcOp = Operand
type Operand = (Reg,Value)

data Value = Unknown I Val Int

An operand is a pair containing a register and its
value. Values can either be "unknown" or they can be
known, e.g. Val 7.

For example, the instruction (R3 <- R2 ADD Rl),
when it has completed, would be encoded as shown
below (assume that register R2 holds the value 3, and
Rl holds 4):

Trans (R3,Val 7) ADD [(R2,Val 3),(Rl,Val 4)]

This expression states that register R3 should be
assigned the value 7 as a result of adding the contents
of register R2 and Rl.

Not all of the register values in a transaction are
known in the early stages of the pipeline. When a
register name does not have an associated value yet,
it is assigned the value Unknown. For example, if the
above instruction had not reached the ALU stage yet,
then the corresponding transaction would be:

Trans (R3,Unknown) ADD [(R2,(Val 3)),(Rl.Val 4))]

Figure 4 shows how a transaction's values are filled
in as it flows through the pipeline.

3.4 Transaction structure

In general, the Transaction datatype contains three
subfields. The first field holds the destination register
name and its current state. The state of a register indi-
cates the current value for the register at a given stage
of the pipeline. Possible state values are Unknown, or
(Val k). The second field is the instruction's ALU
operation, in this case the ADD command. The third
field holds a list of source operand register names and
their corresponding states. In this example, it holds
the names and states for the source operands R2 and
Rl.

The instruction (R3 <- R2 ADD Rl), before it en-
ters the SHAM pipeline, is encoded as the transaction:

Input

Trans (R3,Unknown)
. .ADD

[(R2,Unknown),(Rl,Unknown)]

NopTransaction

Wii

Trans (R3,Unknown)
:: ADD

[(R2,Val 3),(Rl,Val 4)]

Trans (R3,Val 7)
ADD
[(R2,Val 3),(Rl,Val 4)]

Figure 4: A transaction as it flows through the
pipeline. As the transaction progresses, its
operands become more refined.

Trans (R3,Unknown) ADD [(R2,Unknown),(Rl,Unknown)]

At this point, none of the register values are known.

3.5 Changes to handle transactions

We change the regFile and alu functions so that they

take and return transactions:

regFile :: Signal Transaction ->
Signal Transaction ->
Signal Transaction

alu :: Signal Transaction ->
Signal Transaction

Because the register file needs to both write new
values to the CPU registers and read values from
them, the regFile function takes a write-transaction
and a read-transaction as inputs. The function ex-
amines the destination register field of the write-
transaction and updates the corresponding register in

the register file. It outputs the read-transaction, mod-
ified so that all of the source register fields contain cur-
rent values from the register file. For example, suppose
regFile is applied to the completed write-transaction:

Trans (Rl.Val 4) INC [(Rl.Val 3)]

and uses as the read transaction:

Trans (R3,Unknown) ADD [(R2,Unknown), (Rl,Unknown)]

Further, assume that register Rl is assigned 20 and
R2 is assigned 3 before regFile's application. Then
regFile will update Rl to contain 4 from the write-
transaction, and will output a new transaction that
is identical to the read-transaction, except that all of
the source registers have been assigned current values
from the register file:

Trans (R3,Unknown) ADD [(R2,Val 3),(Rl.Val 4)]

The revised alu function takes a transaction whose
source operands have values, performs the appropriate
operation, and outputs a modified transaction whose
destination field has been filled in. Thus if the ADD
transaction above were given to alu, it would return:

Trans (R3,Val 7) ADD [(R2,Val 3),(Rl,Val 4)]

3.6 Unpipelined SHAM

Using transactions, the unpipelined version of SHAM
is even easier to specify than it was before.

shamlTrans :: Signal Transaction ->
Signal Transaction

shamlTrans instr = aluOutput'
where

alulnput = regFile aluOutput' instr
aluOutput = alu alulnput
aluOutput' = delay nop aluOutput

nop = Trans (R0,Val 0) ADD [(R0,Val 0),(R0,Val 0)]

But the real benefit of transactions comes from
specifying more complex micro-architectures, as we
shall see next.

3.7 SHAM2 with Transactions

Transactions are designed to contain the necessary in-
formation for concisely specifying control logic. The
control logic needs to determine when an instruction's
source operand is dependent on another instruction's
destination operand. To calculate the dependency, the

source and destination register names must be avail-
able. The transaction carries these names for each
instruction. Because of this additional information,
bypass logic is easily modeled with following combi-
nator:

bypass :: Signal Transaction ->
Signal Transaction ->
Signal Transaction

The bypass function usually just outputs its first
argument. Sometimes, however, the second argu-
ment's destination operand name matches one or more
of the first argument's source operand names. In this
case, the source operand's state values are updated to
match the destination operand state value. The up-
dated version of the first argument is then returned.

So if at clock cycle n the first argument to bypass
is:

Trans (R4,Unknown) ADD [(R3,Val 12),(R2,Val 4)]

and the second argument at cycle n is:

Trans (R3,Val 20) SUB [(R8,Val 2),(Rll,Val 10)]

then because R3 in the second transaction's desti-
nation field matches R3 in the first transaction's source
field, the output of bypass will be an updated version
of the first transaction:

Trans (R4,Unknown) ADD [(R3,Val 20),(R2,Val 4)]

One special case to bypass's functionality is when a
source register is R0. Since R0 is a constant register, it
does not get updated. The pipelined version of SHAM
with bypass logic is now straightforward. Notice that
no explicit control logic is needed, as all the decisions
are taken locally in the bypass operations.

SHAM2Trans :: Signal Transaction ->
Signal Transaction

SHAM2Trans instr = aluOutput'
where

readyInstr = regFile aluOutput' instr
readyInstr' = delay nopTrans readyInstr
alulnput = bypass readyInstr' aluOutput'
aluOutput = alu alulnput
aluOutput' = delay nopTrans aluOutput

The first line takes instr and fills in its source
operand fields from the register file. The filled-in
transaction is delayed by one cycle in the second line.
In the third line bypass is invoked to ensure that all of
the source operands are up-to-date. Finally the trans-
action result is computed by alu and delayed one cycle
so that the destination operand can be written back
to the register file.

3.8 Hazards

There are some microprocessor hazards that cannot
be handled through bypassing. For example, suppose
we extended the SHAM architecture to process load
and store instructions:

R3 <- MEM[R2]
HEH[R5] <- R2

The first instruction above is a load instruction;
it loads the contents of the address pointed to by R2
intoR3. The second instruction is a store; it stores the
contents of R2 into the address pointed to by R5. A
block diagram of the extended SHAM architecture is
shown in Figure 5. There is now a load/store pipeline
stage after the ALU stage. However, this introduces a
new problem. Suppose SHAM executes the following
two instructions in sequence:

R2 <- MEM[R1]
R4 <- R2 ADD R3

These two instructions have a data hazard, just as
before, but we can not use bypassing to resolve it.
Bypassing depends on having a value to bypass at the
beginning of a clock cycle, but R2's value won't be
known until the end of the cycle, after the memory
contents have been retrieved from the memory cache.
To resolve this hazard, we have to stall the pipeline
at the register-fetch stage. When the first instruc-
tion has reached the end of the ALU stage, the second
instruction will have reached the end of the register-
fetch stage. At this point the delay circuits between
the register-fetch stage and the ALU stage are overrid-
den; on the next clock cycle they instead output the
equivalent of a no-op instruction. The register-fetch
stage itself re-reads the second instruction on the next
clock cycle. In effect, the pipeline stall inserts a no-op
instruction between the two instructions involved in
the hazard:

R2 <- MEM[R1]
NOP
R4 <- R2 ADD R3

Now when the ADD instruction is about to be pro-
cessed by the ALU, the load instruction has already
completed the memory stage. R2's value is held in the
pipeline registers after the memory stage, so bypass
logic can be used to bring the ALU's input up-to-
date. In order to stall correctly, we have to re-read
the second instruction. Thus stalling reduces the per-
formance of the pipeline.

destReg command srcRegA srcRegB

' '

' ' ' '

RegisterFile
writeReg

i

\

content sA

\ ' <

contentsB

Pipeline Registers ~
pass

i

i

i

aluBy

inpi •>, ,inp ut2

cmd ALU

' i r '
Jypass Pipeline Registers meml

memAddre ss
' \

nx mContcnls

cmd Memory

\ ' ' 1

Pipeline Registers

Figure 5: Block diagram of extended SHAM
pipeline. Each Pipeline Register circuit is
made up of multiple Delay and Select circuits.
The Select circuits are used for bypassing, en-
suring that the source operands are up-to-date.

3.9 Hawk Specification of Extended
SHAM

In this section we will give more evidence of the simpli-
fying power of transactions by specifying the extended
SHAM architecture. The load/store extension signif-
icantly complicates the control logic for the SHAM
architecture. We shall see that transactions hold up
well when we must add stalling logic to the pipeline.

To start, we need to add the commands LOAD and
STORE to the Cmd type:

data Cmd = ADD | SUB I INC I LOAD I STORE

We also need to define some additional Hawk cir-
cuits. The first circuit, def aultDelay, augments the
normal delay circuit so that when a stall hazard is
detected, the augmented circuit will output a default
value on the next clock cycle, rather than its current
input value:

defaultDelay Signal Bool
Signal a

■> a -> Signal a ->

defaultDelay emitDefault default input =
delay default (select emitDefault

(constant default)
input)

The def aultDelay circuit uses delay to store values
between clock cycles. The value it stores for the next
clock cycle is default if emitDefault is equal to True
on the current cycle, otherwise it stores input. On
the first cycle of the simulation def aultDelay always
returns default.

The isLoadTrans circuit returns True whenever its
argument signal is a load transaction:

isLoadTrans :: Signal Transaction -> Signal Bool
isLoadTrans ts = lift isLoad ts

where
isLoad (Trans _ cmd _) = (cmd == LOAD)

Although we previously passed SHAM instruc-
tions as parameters, we now need to call a function,
instrCache, to explicitly retrieve them:

instrCache :: Signal Bool -> Signal Transaction

Since the pipeline can stall, we need a way to
ask for the same instruction two cycles in a row.
The instrCache function takes a Boolean signal
and returns the current transaction. Whenever the
argument signal is True, then on the next cycle
instrCache returns the same transaction as it did for
the current clock cycle. Otherwise, it returns the next
transaction as normal.

We also need a circuit that actually performs the
loads and stores:

men :: Signal Transaction -> Signal Transaction

On those clock cycles where the input transaction is
anything but a load or store transaction, the mem func-
tion simply returns the transaction unchanged. On
loads, mem updates the destination operand of the in-
put transaction, based on the input load address. On
stores, mem updates its internal memory array accord-
ing to the address and contents given in the input
transaction. The destination operand value is set to
zero.

We also define a new Hawk function, transHazard,
that returns True whenever its two transaction argu-
ments would cause a hazard, if the first transaction
preceded the second transaction in a pipeline:

transHazard :: Signal Transaction ->
Signal Transaction ->
Signal Bool

The extended Hawk specification using transactions
is given below:

SHAM3Trans :: Signal Transaction
SHAM3Trans = mentOut'

where

— register-fetch stage —
instr = instrCache loadHzd
readyInstr = regFile memOut' instr
readyInstr' =

defaultDelay loadHzd nopTrans readylnstr

— ALU stage —
aluln = bypass (bypass readylnstr' MemOut')

aluOut'
aluOut = alu aluln
aluOut' = delay nopTrans aluOut

— memory stage —
memln = bypass aluOut' memOut'
memOut - mem memln
memOut' = delay nopTrans memOut

Control logic

loadHzd =
sigAnd (isLoadTrans readylnstr')

(transHazard readylnstr'
readylnstr)

The register-fetch stage retrieves the instruction and
fills in its source operands from the register file. The
register-fetch pipeline register delays the transaction
by one clock cycle, although if there is a load hazard,
the register instead outputs a nop-instruction on the

next cycle. The ALU stage first updates the source
operands of the stored transaction with the results of
the two preceding transactions (memOut' and aluOut')
by invoking bypass twice. It then performs the cor-
responding ALU operation, if any, on the transaction
and stores it in the ALU-stage pipeline register. The
memory stage again updates the stored transaction
with the immediately preceding transaction, performs
any required memory operation, and stores the trans-
action. The stored transaction is written back to the
register file on the next clock cycle. The control logic
section determines whether a load hazard exists for the
current transaction, that is, whether the immediately
preceding transaction was a load instruction that is in
hazard with the current transaction.

As we can see, the body of the specification remains
manageable. The small control logic section to detect
load hazards is straightforward and is a minority of
the overall specification. In contrast, an equivalent
specification of this pipeline where the components of
each transaction were explicitly represented contained
over three times as many source lines. The lower-level
specification's control section was almost as large as
the dataflow section, and not nearly as intuitive.

We feel the transaction ADT is close to the level
of abstraction design engineers use informally when
reasoning about microprocessor architectures.

4 Modelling the DLX

Using techniques comparable to those described in this
report we have modeled several DLX architectures:

• An unpipelined version, where each instruction
executes in one cycle.

• A pipelined version where branches cause a one-
cycle pipeline stall.

• A more complex pipelined version with branch
prediction and speculative execution. Branches
are predicted using a one-level branch target
buffer. Whenever the guess is correct, the branch
instruction incurs no pipeline stalls. If the guess
is incorrect, the pipeline stalls for two cycles.

• An out-of-order, superscalar microprocessor with
speculative execution. The microarchitecture
contains a reorder buffer, register alias table,
reservation station, and multiple execution units.
Mispredicted branches cause speculated instruc-
tions to be aborted, with execution resuming at
the correct branch successor.

The microarchitectural specification for the un-
pipelined DLX is written in a quarter page of uncom-
mented source code; the most complicated pipelined
version takes up just over half a page.

4.1 Executing the model

We used the Gnu C compiler that generates DLX as-
sembly to test our specifications on several programs.
These test cases include a program that calculates the
greatest common divisor of two integers, and a recur-
sive procedure that solves the towers of Hanoi puzzle.

We have not made detailed simulation performance
measurements yet. Although we plan to test Hawk
on several benchmark programs, we do not expect to
break simulation-speed records. Hawk is built on top
of a lazy functional language, which imposes some per-
formance costs. Transactions also perform some run-
time tests that are "compiled-away" in a lower-level
pipeline specification. While it would be nice to get
high performance, Hawk is primarily a specification
language, and only secondarily a simulation tool. Our
main interest is in using Hawk to formally verify mi-
croarchitectures, while at the same time retaining the
ability to directly execute Hawk programs on concrete
test cases.

5 Related Work

There are several research areas that bear a relation
on this work, in particular, modeling specific appli-
cation domains with Haskell, and modeling hardware
in various programming languages. We will pick an
example or two from these two categories.

Haskell has been used to directly model hardware
circuits at the gate level. O'Donnell [10] has devel-
oped a Haskell library called Hydra that models gates
at several levels of abstraction, ranging from imple-
mentations of gates using CMOS and NMOS pass-
transistors, up to abstract gate representations using
lazy lists to denote time-varying values. Hydra has
been used to teach advanced undergraduate courses on
computer design, where students use Hydra to even-
tually design and test a simple microprocessor. Hydra
is similar to Hawk in many ways, including the use of
higher-order functions and lazy lists to model signals.
However, Hydra does not allow users to define compos-
ite signal types, such as signals of integers or signals
of transactions. In Hydra, these composite types have
to be built up as tuples or lists of Boolean signals.
While this limitation does not cause problems in an
introductory computer architecture course, composite

signal types significantly reduce specification complex-
ity for more realistic microprocessor specifications.

There are many other languages for specifying
hardware circuits at varying levels of abstraction.
The most widely used such languages are Verilog and
VHDL. Both of these languages are well suited for
their roles as general-purpose, large-scale hardware de-
sign languages with fine-grained control over many cir-
cuit properties. Both of these languages are more gen-
eral than Hawk in that they can model asynchronous
as well as synchronous circuits. However, Verilog and
VHDL are large languages with complex semantics,
which makes circuit verification more difficult. Also,
neither of these languages support polymorphic cir-
cuits, nor higher-order circuit combinators, as well as
Hawk.

The Ruby language, created by Jones and Sheeran
[7], is a specification and simulation language based on
relations, rather than functions. Ruby is more general
than Hawk in that relations can describe more circuits
than functions can. On the other hand, existing Ruby
simulators require Ruby relations to be causal, i.e. to
be implementable as functions. Thus Hawk is equal
in expressive power to currently executable Ruby pro-
grams. In addition, much of Ruby's emphasis is on cir-
cuit layout. There are combinators to specify where
circuits are located in relation to each other and to
external wires. Hawk's emphasis is on behavioral cor-
rectness, so we do not need to address layout issues.

Two other languages that are strongly related are
HML [8] and MHDL[2]. HML is a hardware modeling
language based on the functional language ML. It also
has higher-order functions and polymorphic types, al-
lowing many of the same abstraction techniques that
are used in Hawk, with similar safety guarantees. On
the other hand, HML is not lazy, so does not easily al-
low the recursive circuit specifications that turned out
to be key in specifying micro-architectures. The goal
of HML is also rather different from Hawk, concen-
trating on circuits that can be immediately realized
by translation to VHDL.

MHDL is a hardware description language for de-
scribing analog microwave circuits, and includes an
interface to VHDL. Though it tackles a very differ-
ent part of the hardware design spectrum, like Hawk,
MHDL is essentially an extended version of Haskell.
The MHDL extensions have to do with physical units
on numbers, and universal variables to track frequency
and time etc.

6 Future Directions

We have just completed the specification of a super-
scalar version of DLX, with speculative and out-of-
order instruction execution. The use of transactions
has scaled well to this architecture; it turns out that
superscalar components like reservation stations and
reorder buffers are naturally expressed as queues of
transactions.

Beyond this, we intend to push in a number of di-
rections.

• We hope to use Hawk to formally verify the cor-
rectness of microprocessors through the mechan-
ical theorem prover Isabelle [11]. Isabelle is well-
suited for Hawk; it has built-in support for manip-
ulating higher-order functions and polymorphic
types. It also has well-developed rewriting tac-
tics. Thus simplification strategies for functional
languages like partial evaluation and deforesta-
tion [3] can be directly implemented.

We also expect that transactions will aid the veri-
fication process. Transactions make explicit much
of the pipeline state needed to prove correctness.
In lower-level specifications this data has to be
inferred from the pipeline context.

• We are also working on a visualization tool which
will enable the microprocessor engineer to inspect
values passing along internal wires.

• We have made initial progress on formally
extracting stand-alone control logic from the
transaction-based models of pipelines. Stand-
alone control logic may be more amenable to con-
ventional synthesis techniques.

7 Acknowledgements

We wish to thank Simon Peyton Jones, Carl Seger,
Borislav Agapiev, Dick Kieburtz, and Elias Sinderson
for their valuable contributions to this research.

The authors are supported by Intel Strategic CAD
Labs and Air Force Material Command (F19628-93-C-
0069). John Matthews recieves support from a grad-
uate research fellowship with the NSF

References

[1] AAGAARD, M., AND LEESER, M. Reasoning about
pipelines with structural hazards. In Second Interna-
tional Conference on Theorem Provers in Circuit De-
sign (Bad Herrenalb, Germany, Sept. 1994).

[2] BARTON, D. Advanced modeling features of MHDL. In
International Conference on Electronic Hardware De-
scription Languages (Jan. 1995).

[3] GILL, A., LAUNCHBURY, J., AND JONES, S. P. A
short-cut to deforestation. In ACM Conference on
Functional Programming and Computer Architecture
(Copenhagen, Denmark, June 1993).

[4] HENNESSY, J. L., AND PATTERSON, D. A. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann, 1995.

[5] HUDAK, P., PETERSON, J., AND FASEL, J. A gentle
introduction to Haskell. Available at www.haskell.org,
Dec. 1997.

[6] JOHNSON, M. Superscalar Microprocessor Design.
Prentice Hall, 1991.

[7] JONES, G., AND SHEERAN, M. Circuit design in Ruby.
In Formal Methods for VLSI Design, J. Staunstrup,
Ed. North-Holland, 1990.

[8] Li, Y., AND LEESER, M. HML: An innovative hard-
ware design language and its translation to VHDL.
In Conference on Hardware Design Languages (June
1995).

[9] MELHAM, T. Abstraction mechanisms for hardware
verification. In VLSI Specification, Verification and
Synthesis, G. Birtwhistle and P. A. Subrahmanyam,
Eds. Kluwer Academic Publishers, 1988.

[10] O'DONNELL, J. From transistors to computer ar-
chitecture: Teaching functioned circuit specification in
Hydra. In Symposium on Functional Programming
Languages in Education (July 1995).

[11] PAULSON, L. Isabelle: A Generic Theorem Prover.
Springer-Verlag, 1994.

[12] PETERSON, J., AND ET AL. Report on the program-
ming language Haskell: A non-strict, purely functional
language, version 1.4. Available at www.haskell.org,
Apr. 1997.

[13] SINDERSON, E., AND ET AL. Hawk: A hard-
ware specification language, version 1. Available at
www.cse.ogi.edu/PacSoft/projects/Hawk/, Oct. 1997.

[14] WlNDLEY, P., AND COE, M. A correctness model
for pipelined microprocessors. In Second Interna-
tional Conference on Theorem Provers in Circuit De-
sign (Sept. 1994).

Specifying superscalar microprocessors in Hawk

Byron Cook, John Launchbury, and John Matthews
{byron,jl,johnm}öcse.ogi.edu

Oregon Graduate Institute

Abstract. Hawk is a language for the specification of microprocessors
at the microarchitectural level. In this paper we use Hawk to specify a
modern microarchitecture based on the Intel P6 with features such as
speculation, register renaming, and superscalar out-of-order execution.
We show that parametric polymorphism, type-classes, higher-order func-
tions, lazy evaluation, and the state monad are key to Hawk's concision
and clarity.

1 Introduction

As the performance of cutting edge microprocessors increases, so too does their
microarchitectural complexity. For example:

• A superscalar processor that fetches multiple instructions must cache in-
structions that cannot be immediately executed.

• A processor with out-of-order execution must usually record the original
instruction sequence for exception handling.

• A processor that renames registers must allocate and then recycle virtual
register names.

While today's hardware description languages (HDLs) suffice for simple mi-
croarchitectures, the features of modern designs are difficult to specify without
a richer language. Hawk is a specification language based on Haskell [15] that,
for the following reasons, provides a strong foundation for a new generation of
HDLs:

• Parametric polymorphism allows generic specifications to be used in different
contexts.

• Type-classes provide a convenient mechanism for abstracting over instruction
sets, register sets, and microarchitectural components.

• Higher-order functions enable a designer to structure specifications in elegant
and concise ways.

• Lazy evaluation naturally supports the simulation of multiple mutually de-
pendent streams of instructions and data.

• The state monad facilitates a disciplined style when specifying components
with mutable state.

In this paper we explore a Hawk specification of a microarchitecture based
on the Intel P6 [4]. We give an overview of the top-level design, and describe in
detail our specification of the Reorder Buffer. The purpose of this paper is to
show that complex microarchitectures can be formally specified in a clear, concise
and intelligible way that facilitates understanding, design review, simulation, and
verification.

We assume the reader is familiar with the basic concepts of functional lan-
guages and microarchitectural design (such as branch prediction and pipelining).
For an in-depth introduction to Haskell, read Hudak, Peterson, and Fasel's tuto-
rial [5]. For more information on microarchitectures, refer to Johnson's textbook
[6].

The remainder of this paper is organized as follows: in Section 2 we introduce
an architecture; in Section 3, we provide an introduction to Hawk; in Section 4
we use Hawk to specify the architecture; and in Section 5 we highlight how the
features of Hawk are used in the specification.

2 A modern microarchitecture

2.1 Machine instruction notation

Throughout this paper we use the following notation for machine instructions:

rl <- r2 + r3

The register ri is the destination register or destination operand. Registers r2
and r3 are source registers.

When the contents of a register is known we may choose to pair the register
name and its value:

rl <- (r2,5) + r3

In this case, 5 is a source register value.
When an instruction's destination register value has been computed, we de-

note this by pairing the destination register with its value:

(rl,8) <- (r2,5) + (r3,3)

We sometimes refer to a destination register value as the instruction's value.

2.2 Superscalar microarchitectures

In general, superscalar architectures employ aggressive strategies to resolve inter-
instruction dependencies and mask the latency of memory accesses. These in-
clude speculative execution, the use of virtual register names, and out-of-order
instruction issue. The internal microarchitectures often resemble that of a data-
flow processor using speculative parallel evaluation. They are thus able to exploit
instruction level parallelism to execute sequential, scalar programs.

Instruction Fetch
Unit (IFU)

One Cycle Delay

Reorder Buffer (ROB)

vl

v2

v3

v4

v5

v6

Instruction Queue (IQ)

Reservation
Station (RS)

Subtraction
Unit

Addition
Unit

Other Execution Units

Fig. 1. Microarchitecture

The focus of this paper is on the speculative, superscalar, out-of-order, regis-
ter renaming microarchitecture shown in Fig. 1. In the remainder of this section
we provide an informal introduction to the architecture.

A Reorder Buffer (ROB) maintains the sequential programming model of
an architecture while instructions are executed out-of-order and in parallel else-
where in the processor. In Fig. 1 the ROB is shown as the composite of a circular
Instruction Queue, a Register Alias Table, and a Register File for the real register
set.

The Instruction Queue (IQ) stores instructions in the order in which they
are received from the Instruction Fetch Unit (IFU). The IQ also behaves like a
register file for the virtual register set, where the instruction's position in the IQ
is its virtual register name.

The Register Alias Table (RAT) is an array of virtual register names indexed
by the real register set. For a given real register name, r, the RAT contains
either the location of the youngest instruction in the IQ using r as a destina-
tion operand; or nothing, if no instruction in the ROB contains the destination
operand r. For example, if the instruction r5 <- r2 + r3 is placed into position
vl of the IQ (as in Fig. 2), then the real register r5 is aliased in the RAT to the
virtual register vl. If r4 <- r5 + r2 is then inserted into the IQ (Fig. 3), its
reference to r5 is updated to vl, and r4 is aliased to v2 in the RAT.

vl

v2

v3

r5 <- r2 + r3 r4
r5 vl

Fig. 2. Inserting r5 <- r2 + r3 into the ROB

vl

v2

r5 <- r2 + r3

r4 <- vl + r2

r4
r5

v2
vl

v3

Fig. 3. Inserting r4 <- r5 + r2 into the ROB

Each instruction, after it has been placed into the ROB, is passed onto the
Reservation Station (RS) to be executed. The RS is a data-flow circuit that can
execute instructions out-of-order and in parallel. Upon completion in the RS, an
instruction's value is returned to the ROB and forwarded to other instructions
still in the RS.

2.3 Retiring instructions

An instruction is retired from the ROB when it is at the front of the IQ and its
value has been calculated. To retire an instruction in location v with destination
operand r, the ROB must write the instruction's value to position r in the
Register File, and remove the alias from the RAT if r is still aliased to v.

Why isn't r always aliased to vl Consider the scenario in Fig. 4, where the
ROB contains two instructions with r5 as their destination operand. The virtual
register vl is no longer an alias of r5 in the RAT. When retiring the instruction
from vi, the alias in the r5 position of the RAT should not be removed. Doing so
would remove the unrelated alias from r5 to v3. However, in Fig. 5, because only

rl
r2
r3
r4
r5

v2

v3
vl

v2

(r5,0) <- ...

(r3,3) <- ...

(r5,l) <- ... v3

Fig. 4. IQ contains two instructions that alter r5

one instruction contains the destination operand r5, r5 remains aliased to vl.
In this case, when retiring instruction vl from the IQ, the alias at the position
r5 in the RAT should be erased.

rl
r2
r3
r4
r5

v3

v2

vl
vl

v2

(r5,0) <- ...

(r3,3) <- ...

(rl.l) <- ... v3

Fig. 5. IQ contains one instruction that alters r5

2.4 Example

To illustrate the microarchitecture in action, we trace the execution of a four
instruction program:

r2 <- rl + r3

r4 <- r4 + r2
r2 <- rl + rl
rl <- r5 - r3

Rather than demonstrating the potential performance of the microarchitecture,
this example is tailored to show the amount of bookkeeping that the processor
must maintain.

In Fig. 6, execution begins in Cycle 1 with the fetch of four instructions, the
last of which requires a different execution unit. In Cycle 2 the fetched instruc-
tions are inserted into the IQ. Source register references are modified in one of
two ways. Either the operand is replaced with a virtual register reference if it
is aliased in the RAT, or the register's value is filled in from the Register File.
During Cycle 3 the first and last instructions are executed in parallel. In Cycle
4 the ROB begins retiring instructions based on their position in the instruction
sequence. Although the first and last instructions have both completed, to main-
tain the sequential programming model, only the first instruction can be retired.
The last instruction remains in the ROB until its predecessors have all been
retired. In Cycle 5, v2 is computable because the value of vl has been forwarded
to the source operand. In Cycle 6, because instruction v2 has completed, the
remaining instructions are retired.

3 The Hawk specification language

This section introduces concepts and abstractions used in Hawk. At the risk of
incompleteness, we will rely on the reader's intuition to fill in the meanings of
functions and syntax that are not described.

3.1 Signals

A signal represents a wire, where at each clock cycle the value of a signal may
change. For example, a signal could alternate between True and False. Or a
signal might contain a series of primes numbers. Informally, we can think of a
signal as an infinite sequence where the clock cycle is the index:

toggle = True, False, True, False, True, False
primes = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Like the synchronous language Lustre [3], Hawk provides a built-in signal
type and functions to construct and manipulate them. The function constant,
from Fig. 7, returns a signal that does not change over time:

constant 5 = 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

The function before delays a signal with a list of initial values1:

[-1,0] 'before' primes = -1, 0, 2, 3, 5, 7, 11

'before' denotes that before is used as an infix operator

r2 <- rl + r3
r4 <- r4 * r2
r2 <- rl + rl
rl <- r5 - r3

1 rl v4 1 r2 v3
T

vl r2 <- (rl.O) + (r3,5) r4 v2

v2 r4 <-

r2 <-

rl <-

(r4,3)

(rl.O)

(r5,4)

+ vl

* (rl.O)

- (r3,5)

r5

v3

v4
rl 0

v5 r2 3

v6
r3

r4

r5

5

3

4 1 t
Cycle 1 Cycle 2

r2 <- (rl.O) * (r3,5)

r4 <- (r4,3l * vl

r2 <- (rl.O) ♦ (rl.O)

rl <- (rS,4) - (r3,5)

v3 <-

v4 <-

5

vl

0

5

rl v4
r2 v3
r3
r4 v2
r5

rl 0
r2 3
r3 5
r4 3
r5 4

1 1 rl

r2

r3

r4

r5

v4

v3

v2 vl

v2 r4 <- (r4,3) * (vl.5)

r2 <- (rl.O) * (rl.O)

(rl,-l)

v3

v4

v5

v6

rl

r2

r3

r4

r5

0

5

5

3

4

' 1 t

v2 <- 3 * 5

0 + 0

Cycle 3 Cycle 4

r4 <- (r4,3) * (vl,5)

(r2,0)

(rl.-l)

o

Cycle 5

rl v4
r2 v3
r3
r4 v2
r5

rl 0
r2 5
r3 5
r4 3
rS 4

v2 <- 3 * 5

3*5

rl
i r2

vl r4

v2 r5

v3

rl -1
v5 r2 0

v6 r3

r4

5

8

4 1 t r5

Cycle 6

Fig. 6. Example execution trace

constant
delay
before
bundle
unbundle
lift

a -> Signal a
a -> Signal a -> Signal a
[a] -> Signal a -> Signal a
(Signal a,Signal b) -> Signal (a,b)
Signal (a,b) -> (Signal a, Signal b)
(a -> b) -> Signal a -> Signal b

Fig. 7. Type signature of primitive Signal functions

The function bundle takes a pair of signals and returns a signal of pairs:

bundle (primes,toggle) = (2,True), (3,False)

The function lift applies its argument to each value in a signal:

lift f primes = f 2, f 3, f 5, f 7, f 11

Conditional statements are overloaded for signaled expressions. For example:
if toggle then primes _

T ^ ^ n — *, U, O, U, 11, else constant 0

Later in this paper we use the function delay, which is defined in terms of
before:

delay x s = [x] 'before' s

So, for example:

delay 6 primes = 6, 2, 3, 5, 7, 11, 13, 17

3.2 Transactions

Transactions [1] formalize the notation of instructions introduced in Subsec-
tion 2.1. A transaction is a machine instruction grouped together with its state.
This state might include:

• Operand values.

• A flag indicating that the instruction has caused an exception.
• A predicted jump target, if the instruction is a branch.
• Other obscure information, such as predicted operand values if we choose to

implement value locality [12] optimizations.

Transactions are provided as a library of functions, written in Hawk, for
creating and modifying transactions. For example, bypass takes two transactions
and builds a new transaction where the values from the destination operands of
the first transaction are forwarded to the source operands of the second. If i is
the transaction:

(r4,8) <- (r2,4) + (rl,4)

and j is the transaction:

rlO <- (r4,6) + (rl,4)

then bypass i j produces the transaction:

rlO <- (r4,8) + (rl,4)

In our experience, specifications that operate on transactions are more con-
cise than those that treat instructions and state separately. When designed in
this style, a processor fetches a transaction containing only the machine instruc-
tion which is later refined by the various microarchitectural components until
the destination operand value is calculated. Transactions are an example of a
user-defined abstraction designed to aid the development of a complex microar-
chitecture. The concept of an instruction's local state as it acquires its operands,
is executed, and finally retired, is the essential concept of a superscalar processor.
Transactions also aid the verification process because they make explicit much
of the state needed to prove correctness. In lower-level specifications this data
has to be inferred from the context.

4 Specifying the microarchitecture

Fig. 8 contains the top-level Hawk specification of the microarchitecture in Fig. 1.
Using lazy evaluation, a Hawk simulation will solve the specification's system
of mutually dependent equations, producing a computational simulation. The
components of the microprocessor are modeled as functions from input signals
to output signals. For example, as Fig. 9 illustrates, the ROB is a component
with two inputs and four outputs. The inputs and outputs may each represent
very wide connections — perhaps enough to move numerous transactions in a
single cycle. The arguments and results of the function rob from Fig. 8,

(retired,ready,n,err) = rob 6 (fetched,computed)

except for the size parameter, correspond to those in Fig. 9.

4.1 Top-level structural specification

In Fig. 8 the first equation specifies how transactions are fetched from the in-
struction memory, mem:

(instrs.npc) = ifu 5 mem pc err ([5,5] 'before' n)

The Instruction Fetch (IFU) function, ifu, uses its first parameter, 5, to deter-
mine the maximum number of transactions to fetch at each cycle. The IFU re-
trieves consecutive transactions beginning at the program counter, pc. Initially,
during the first and second cycles, 5 transactions are fetched. In later cycles
feedback from the ROB, n, is used to determine the number of transactions to
fetch.

Execution begins with the transaction at location 256 in the instruction
memory. After the first cycle, the value of pc depends on the location of the

processor mem = retired

where

(instrs,npc) = ifu 5 mem pc err ([5,5] 'before' n)

pc = delay 256 (if err then lastpc retired else npc)

fetched = delay [] (annotate instrs)

(retired,ready,n,err) = rob 6 (fetched, computed)

computed = rs (6,execUnits) (delay False err,delay [] ready)

memU = mob fetched retired

execUnits = [addU.subU,jmpU.intü.fltü.memU]

Fig. 8. Top-level microprocessor specification

previously fetched transaction, and the possibility of a mispredicted branch or
exception. In the event of a mispredicted branch or exception, the signal err is
set, and the pc comes from the last retired transaction:

pc = delay 256 (if err then lastpc retired else npc)

For simplicity we employ a naive branch prediction algorithm — all branch
transactions are simply assumed to jump to the next consecutive transaction.
The function annotate places this guess into the state of branch transactions:

fetched = delay [] (annotate instrs)

The Reservation Station (RS) function, rs, is parameterized on its size and
execution units:

computed = rs (6,execUnits) (delay False err,delay [] ready)

During the initialization of rs, the execution units are clustered together with
a function. The execution units can be pipelined or blocking. Execution units
can also complete in multiple clocks. The RS accepts two input signals: an error
flag and transactions from the ROB. The transactions computed contains the
transactions that are complete and ready to be updated in the ROB.

4.2 ROB specification

Whereas the top-level specification of the microarchitecture is easily constructed
as a purely functional application of components, the ROB is more complicated.
Certainly the ROB could be specified in the applicative style used in Fig. 8.
However, at a higher level of abstraction, the ROB can be thought of as a circuit

ROB

Fetched
Instructions

Retired
Instructions

Instructions
for the RS

Computed
Instructions
from RS

Space Available

Branch
Prediction
Miss

Fig. 9. Inputs and outputs of the ROB

that sequences destructive updates on mutable components. Our approach in
this paper is to specify the ROB in a behavioral style using imperative language
features. In Fig. 10, the specification of the ROB is provided in the state monad
and then encapsulated with Hawk's state thread encapsulation construct runST
[9]. The advantage of using runST is that the language guarantees that rob
neither depends on nor alters mutable state in other components or an outside
environment [10]. We can therefore treat the ROB as a pure function that, on a
given input, always returns the same output.

In Fig. 10, during the beginning of the simulation, the ROB constructs its
mutable sub-components (much of this work would be fabricated into the pro-

q <- IQ.new n
rat <- RAT.new
rf <- RF.new

At each cycle the ROB takes the fetched and computed signals signals

cycle(fetched,computed)

and performs the following tasks:

• Update the computed transactions in the queue. For each transaction in the
computed list, the function update obtains the virtual register reference from
the destination register, and uses it as the index when updating the queue:

update q computed

• Insert the fetched transactions into the queue (see Subsection 4.3):

instrs <- insert rat q rf fetched

• Find transactions from the front of the queue that are ready to be retired. If
a retired transaction was a mispredicted branch or raised an exception, then
only retire the transactions before it (see Subsection 4.4):

(retired,err) <- retire rat q rf

• If a retired transaction was a mispredicted branch or raised an exception,
then clear the IQ and RAT:

if err then do {q.clear; rat.clear}

• Measure the capacity of the queue for the IFU:

capacity <- q.space

• If a retired transaction was mispredicted or raised an exception then do not
send fetched transactions to the RS:

let ready = if err then [] else instrs

• Return the retired transactions, the transactions ready to pass onto the RS,
the measured capacity, and the error flag:

return (retired,ready,capacity,err)

rob n (fetched,computed)
= runST (

do { q <- IQ.new n
; rat <- RAT.new
; rf <- RF.new
; cycle(fetched,computed)

{ update q computed
instrs <- insert rat q rf fetched
(retired,err) <- retire rat q rf
if err then do {q.clear; rat.clear}
capacity <- q.space
let ready = if err then [] else instrs
return (retired,ready,capacity,err)

}
)

Fig. 10. ROB behavioral specification

insert rat q rf instrs

= foreach t in instrs

do { (reg,alias) <- q.assignAddr (head (getDestRegs t))

; src <- mapM (rat.replace) (getSource t)

; rat.write reg alias

; dest <- mapM (rat.replace) (getDest t)

; new <- regRead q rf (trans dest (getOp t) src)

; q.enQueue new

; return new

}

Fig. 11. Insertion specification

4.3 Inserting new instructions

Fig. 11 contains the specification of the function insert. When inserting new
transactions into the ROB, insert takes a list of transactions, instrs, and
performs the following actions:

• Calculate the new position in the queue for the transaction:

(reg,alias) <- q.assignAddr (head (getDestRegs t))

• Substitute references to real registers with virtual registers in the source
operands:

src <- mapM (rat.replace) (getSource t)

• Update the RAT:

rat.write reg alias

• Substitute the reference from the real destination register to the virtual
destination register:

dest <- mapM (rat.replace) (getDest t)

• Read real register references:

new <- regRead q rf (trans dest op src)

• Enqueue the transactions:

q.enQueue new

• Return the updated transactions:

return new

retire rat q rf
= do { perhaps <- q.deQueueWhile complete

; let (retired,err) = hazard findErr perhaps
; mapM (writeOut rf rat) retired
; return (retired,err)
}

where findErr t = jmpMiss o exceptionRaised

jmpMiss t = do { x <- getPC t
; y <- getSpecPC t
; return (x /= y)

}
'catchEx' False

writeOut rf rat t =
do { let [Reg (Virtual vr real) (Val x)] = getDest t

; rf.write real x
; a <- rat.read real
; do { v <- a ; guard (v == vr) ; return (rat.remove real) }

'catchEx' return ()

}

Fig. 12. Retirement specification

4.4 Retiring instructions

Fig. 12 contains the specification of the function retire. When retiring trans-
actions from the ROB, retire performs the following actions:

• Remove transactions from the front of the queue until a transaction is found
that has not been computed:

perhaps <- q.deQueueWhile complete

• If a branch was mispredicted or an exception was raised then ignore all of
the transactions after that transaction:

let (retired,err) = hazard findErr perhaps

• Write the values of the destination registers to the Register File :

mapM (writeOut rf rat) retired

• Return the retired transactions and a flag indicating a branch miss or raised
exception:

return (retired,err)

5 Conclusions

The design of correct superscalar microarchitectures is difficult. The language of
discourse must be powerful enough to describe a wide range of processors, and
concise enough that designers can maintain intellectual control of their work.
Moreover, the language must scale to the designs of the future. In this sec-
tion we highlight how polymorphism, type-classes, higher-order functions, lazy
evaluation and the state monad improve the concision, clarity, and perhaps the
provability of our specification.

5.1 Polymorphism

Many of Hawk's library functions are polymorphic. For example, delay accepts
an argument of type a (where a could be any type), a signal of a, and returns a
new signal of a:

delay :: a -> Signal a -> Signal a

In Fig. 8, delay is used on both Booleans and lists of transactions:

(delay False error, delay [] ready)

Without parametric polymorphism, a delay function would be required for each
specific type. In many specification languages, because the types that can be
passed through signals are limited, ad hoc solutions are usually sufficient. How-
ever, signals in Hawk are unrestricted and therefore must be accompanied by
truly polymorphic functions.

5.2 Type-classes

The RAT, used in Fig. 10, is abstracted over the register set used in the under-
lying machine language. For example, the function RAT.new is of type:

RAT.new :: Register r => ST s (RAT s r v)

This reads "for any type r that is a register set, RAT.new constructs a new RAT
indexable by r". Because r is an instance of Register, the variables minBound
and maxBound are overloaded to the smallest and largest values of r:

minBound :: Register r => r
maxBound :: Register r => r

RAT. new uses minBound and maxBound to determine the size of the constructed
RAT.

Without type-classes, the RAT would either be useful for only one particular
register type, or a number of extra parameters (such as the bounds and compar-
ison functions) would need to be passed to the functions rob, RAT.new, insert,
etc. Type-classes allow us to easily adapt the RAT to other machine languages,
such as IA-64 or PowerPC.

5.3 Higher-order functions

Higher-order functions allow designs to be parameterized in new and powerful
ways. For example, in Fig. 8 the RS is parameterized over a list of execution units.
At the start of a simulation, the RS builds a single execution unit by clustering
the list of circuits. When testing various microarchitectural configurations, the
designer can easily modify the execution units at the top-level.

We might also want to abstract the RS on the scheduling function:

computed = rs (6,cluster,[addU.subU,jmpU,mltU])
(delay False error,delay [] ready)

This way we might use the same RS specification in many instantiations with
different configurations of scheduling functions and execution units.

5.4 Lazy evaluation

Without Hawk's lazy semantics we would not be able to write the dependent
equations in Fig. 8. Consider the simple clock circuit in Fig. 13. The design is

clock

Fig. 13. Clock circuit

easily specified as a Hawk expression where the value depends on itself:

clock = delay 0 (clock +1)

In a strict semantics, the meaning of this expression would be undefined.

5.5 Encapsulated state

While maintaining the mathematically consistent features of Hawk, such as poly-
morphism and lazy evaluation, the state monad adds the ability to use mutable
state directly rather than encoding state with delays and other lower level sig-
nal constructs. The use of runST facilitates the safe integration of imperative
specifications in an applicative framework.

6 Future work

Currently, using the Glasgow Haskell Compiler, the simulator derived from the
specification in this paper retires 800 instructions per second when executed on
a UltraSPARC-1 processor. We hope that to improve performance using domain
specific optimizations or compilation to better simulation packages.

We have not sufficiently explored the synthesis and analysis of Hawk spec-
ifications. Although Hawk is at a higher level of abstraction than mainstream
HDLs from our initial results we believe that, within limits, automatic synthesis
is feasible.

We have just completed a correctness proof of a microarchitecture based on
this paper in which the ROB, RS, and IFU are specified axiomatically [8]. We
now hope to prove that the ROB, RS, and IFU presented here implement the
axioms.

We hope to use Hawk formally to verify the correctness of microprocessors
with a mechanical theorem prover (for example, Isabelle [14]). A theorem proving
environment for Hawk must have support for manipulating higher-order func-
tions and polymorphic types.

7 Related work

Ruby [7] is a specification language based on relations, rather than functions.
Relations can describe more circuits than functions. Much of Ruby's emphasis
is on circuit layout. Ruby provides combinators to specify where circuits are
located in relation to each other and to external wires. Hawk's emphasis is on
circuit correctness, so we do not address layout issues.

Lava is a Haskell library for the specification of Field Programmable Gate
Arrays. Lava is intended to be used at a lower level of abstraction than Hawk.
Like Ruby, Lava specifications focus much attention on issues related to layout.

Like Hawk, Lustre [3] and the other reactive synchronous languages (Signal,
Esterel, Argos, etc) provide mechanisms for constructing expressions over time-
varying domains. However, research on these languages has emphasised reactive
features rather than the issues addressed in this paper.

The Haskell library Hydra [13] allows modeling of gates at several levels of
abstraction, ranging from implementations of gates using CMOS and NMOS
pass-transistors, up to abstract gate representations using lazy lists to denote
time-varying values. Hydra is similar to Hawk in many respects. However com-
posite signal types, such as signals of integers, must be constructed as tuples or
lists of Boolean signals. This restriction severely limits Hydra's application to
the domain of complex microarchitectures.

HML [11] is a hardware modelling language based on ML. It supports higher-
order functions and polymorphic types, allowing many of the same abstraction
techniques that are used in Hawk. On the other hand, HML is not lazy, so it does
not easily allow the dependent circuit specifications that are key in specifying

microarchitectures in Hawk. Also, HML does not clearly separate its imperative
and functional features.

MHDL [2] is a hardware description language for describing analog microwave
circuits, and includes an interface to VHDL. Though it tackles a very different
area of the hardware design spectrum, like Hawk, MHDL is essentially an ex-
tended version of Haskell. The MHDL extensions have to do with physical units
on numbers, and universal variables to track frequency, time, etc.

8 Acknowledgements

For their contributions to this research, we thank Borislav Agapiev, Mark Aa-
gaard, John O'Leary, Robert Jones, Todd Austin, and Carl Seger of Intel Cor-
poration; Elias Sinderson and Neil Nelson of The Evergreen State College; Dick
Kieburtz, Jeff Lewis, Sava Krstic, Walid Taha, and Andrew Tolmach of the Ore-
gon Graduate Institute; Simon Peyton-Jones of the University of Glasgow; and
the members of BWERT.

This research was supported by Intel and Air Force Material Command
(F19628-93-C-0069). John Matthews is supported by a fellowship from the Na-
tional Science Foundation.

Note: This paper appears in the proceedings of the 1998 Workshop on Formal
Techniques for Hardware (Marstrand, Sweden)

References

1. AAGAARD, M., AND LEESER, M. Reasoning about pipelines with structural haz-
ards. In Second International Conference on Theorem Provers in Circuit Design
(Bad Herrenalb, Germany, Sept. 1994).

2. BARTON, D. Advanced modeling features of MHDL. In International Conference
on Electronic Hardware Description Languages (Jan. 1995).

3. CASPI, P., PILAUD, D., HALBWACHS, N., AND PLAICE, J. Lustre: A declarative
language for programming synchronous systems. In Symposium on Principles of
Programming Languages (Munich, Germany, Jan. 1987).

4. GWENNAP, L. Intel's P6 uses decoupled superscalar design. Microprocessor Report
9, 2 (1995).

5. HUDAK, P., PETERSON, J., AND FASEL, J. A gentle introduction to Haskell.
Available at www.hciskell.org, Dec. 1997.

6. JOHNSON, M. Superscalar Microprocessor Design. Prentice Hall, 1991.
7. JONES, G., AND SHEERAN, M. Circuit design in Ruby. In Formal Methods for

VLSI Design, J. Staunstrup, Ed. North-Holland, 1990.
8. KRSTIC, S., COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. A correctness proof

of a speculative, superscalar, out-of-order, renaming micro-architecture. Submitted
to 1998 Formed Methods in Computer Aided Design, Apr. 1998.

9. LAUNCHBURY, J., AND JONES, S. P. Lazy functional state threads. In Programming
Languages Design and Implementation (Orlando, Florida, 1994), ACM Press.

10. LAUNCHBURY, J., AND SABRY, A. Monadic state: Axiomatization and type
safety. In International Conference on Functional Programming (Amsterdam, The
Netherlands, June 1997).

11. Li, Y., AND LEESER, M. HML: An innovative hardware design language and its
translation to VHDL. In Conference on Hardware Design Languages (June 1995).

12. LlPASTl, M. H. Value Locality and Speculative Execution. PhD thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA, 1997.

13. O'DONNELL, J. From transistors to computer architecture: Teaching functional cir-
cuit specification in Hydra. In Symposium on Functional Programming Languages
in Education (July 1995).

14. PAULSON, L. Isabelle: A Generic Theorem Prover. Springer-Verlag, 1994.
15. PETERSON, J., AND ET AL. Report on the programming language Haskell: A non-

strict, purely functional language, version 1.4. Available at www.haskell.org, Apr.
1997.

A correctness proof of a speculative, superscalar,
out-of-order, renaming microarchitecture —

extended technical report

Sava Krstic, Byron Cook, John Launchbury, and John Matthews
{krstic,byron, j 1, j ohnm}@cse.ogi. edu

Oregon Graduate Institute

Abstract

Microarchitects are increasingly using techniques such as speculation, regis-
ter renaming, and superscalar out-of-order execution to make use of instruction-
level parallelism. However, the growing complexity of modern microprocessors
exacerbates the difficulty of relating them to the simple machines that they em-
ulate. Flaws found later in lower-level validation are often microarchitectural
in nature.

In this paper we provide high-level mathematical specifications for a basic
machine and for a speculative, superscalar, out-of-order, renaming machine
based on the Intel P6 microarchitecture. We then prove that the visible outputs
of the two machines are equivalent.

1 Introduction

As the performance of microprocessors increases, so too does their microarchitec-
tural complexity. Modern architectures employ aggressive strategies to resolve inter-
instruction dependencies. These include rich combinations of speculative, superscalar,
and out-of-order execution with the use of virtual register names. Proving that a mi-
croarchitecture with these features implements the architecture's programming model
is extremely difficult. However, it is an important aspect of design because flaws found
later during lower-level validation are frequently manifestations of errors in the mi-
croarchitectural specification.

The limited real use of verification in practice is primarily attributable to the
immaturity of the techniques, rather than a lack of desire. Industry is working hard
to find formal verification methods that scale to the problem sizes they face. Our
paper attempts to address some aspects of this issue

Our research is based on a fairly detailed model of a P6-like microarchitecture
[4, 6] expressed using Hawk [7]. To prove its correctness, we have constructed a more
abstract specification in which each major component is axiomatically specified. We
are then able to prove that, for any given program, the visible output computed by
the microarchitecture is identical to that of the simple reference machine.

1

The model described in this paper implements speculation, prediction, superscalar
out-of-order execution, and renaming. Following Intel convention, we will refer to this
combination of microarchitectural optimizations as dynamic execution. Actually, our
axiomatization does not limit us to a single microarchitecture. The proof is applica-
ble to any combination of components that satisfy the axioms, so our result should
be relatively easily adaptable to other architectures that use elements of dynamic
execution, such as the MIPS T5, HP's PA8000, Digital's Alpha, etc.

We believe this approach to demonstrating correctness would be feasible for use
in industry. Of course, even the moderately complex model we have here is several
orders of magnitude simpler than a commercial design, but the hierarchical nature of
the proof is promising. As each design team is developing an RTL description of a
component, the particular axioms make explicit the assumptions that other teams can
rely on. If these axioms have to change during development then there is opportunity
to determine that the global correctness property still holds, and if not, what explicit
changes need to be made to other units.

This paper is organized as follows: we specify a simple machine, provide a spec-
ification of the dynamic machine, and prove that the microarchitectures are visibly
equivalent.

2 Defining correctness: the standard machine

A microprocessor's correctness is typically defined by the instruction set architecture
(ISA), which gives semantics to each instruction in terms of the machine's states
(register files, caches, etc). We adopt a slightly different perspective, abstracting away
the ISA in the concept of a simple standard machine. This decision stems from the
fact that top-level specifications of dynamic architectures are largely independent of
the concrete ISA. Instead, they are distinguished by the way they treat dependencies
and branching in programs, and those essentials are captured in our standard machine.

Concrete ISAs should be thought of as refinements of the standard machine, and
for each such refinement there is a corresponding refinement of the dynamic machine
described in the next section. This makes our correctness proof, with some extra
work to define refinements, valid for a wide class of ISAs.

We assume that the standard machine executes a fixed program, so its result can
simply be described as a sequence of pairs of the form (instruction, result). Two
sorts are needed for this: Pgmldx for indices (addresses) of instructions, and Value
for results and operands. We make three assumptions about the standard machine:

• It executes a sequence of instructions, where each instruction in the sequence is
determined by the preceding instruction and its result.

• The result of any instruction can be computed if the values of the two operands
are known.

• The operands of each instruction are results of some previously executed in-
structions, or a default value.

Three functions suffice to model this situation:

compute: Pgmldx, Value, Value —> Value,
next: Pgmldx, Value -> Pgmldx,

getSources: Pgmldx, PgmldxSeq -> N + (), N + (),

where N + () is the set of natural numbers plus a distinguished value ().
The result of the execution of the standard machine, or the visible output, is an

infinite sequence
standard = (i0, v0), (ij, ui),...

defined inductively by the following axioms.

Axiom SM-1. ?o = start I dx.

Axiom SM-2. im = next(im_i,uTO_i), for m > 0.

Axiom SM-3. vm = compute(im,(up,ug)),
where (p, q) — getSources(«m, (ii,..., im_i)), and VQ = def aultValue.

Axiom GS. If getSources(i, (i1?..., im)) = (p, q), then each of p, q is either () or
an integer smaller than m.

These axioms assume two constants, the starting instruction startldx G Pgmldx
and defaultValue € Value.

We think of the standard machine as executing one instruction per cycle. Axiom
SM-2 states that the function next determines the location of the program counter at
cycle m based on the instruction and value from m — 1. So, for example, next(i, v) =
i + 1 for all but branch instructions. Axiom SM-3 states that getSources returns the
cycles (p and q) at which the source operands for instruction im are calculated. The
value vm is then defined in terms of the values at cycles p and q.

The virtue of the standard machine is in its unified treatment of instructions
and its use of a small number of functions capable of expressing the inter-instruction
relationships which are at the basis of more sophisticated execution algorithms. With
this simplicity there comes an important limitation: the standard machine does not
have enough specification details to properly model dependencies between instructions
that manipulate the memory. These dependencies are established only after address
computation, and our getSources is "static" in that respect.

The standard machine models register dependencies fully. As regards the memory
dependencies, it only supports the basic model in which these instructions are done in-
order. This is achieved by defining getSources so that each load or store instruction
is dependent on the last preceding store.

3 Specifying the dynamic microarchitecture

In this section we introduce the specification of the dynamic microarchitecture in
Figure 1, which is based on the Intel P6 microarchitecture. It is composed of the
following components:

fetched

retired

t
ready

Instruction Fetch
Unit (IFU)

Reorder Buffer
(ROB)

Reservation
Station (RS) lastRet computed

t ii

Figure 1: Top-level dynamic microarchitecture

Instruction Fetch Unit (IFU). The IFU provides multiple instructions at each
clock cycle and sends them to the ROB through the fetched wire. The IFU
also adds information to the fetched instructions. For example, since the IFU
would typically use branch prediction, each branch instruction in fetched is
annotated with its speculative program counter.

Reorder Buffer (ROB). The ROB maintains the sequential programming model
of the ISA while instructions are executed in parallel elsewhere in the processor.
In essence the ROB is a queue of instructions. After enqueing instructions
from the fetched wire, the ROB passes them on to the Reservation Station
through the ready wire. An instruction can be dequeued when its value has
been computed in the Reservation Station and all of the instructions that were
fetched before it have been dequeued. In the case of a mispredicted branch,
the ROB asserts the error signal and returns the program counter to the IFU
through the lastRet signal. The visible output of the microarchitecture is the
retired wire, which represents the instructions retired at each clock cycle.

Reservation Station (RS). The RS is the data-flow execution component of the
microarchitecture. Instructions placed into the ROB are passed on to the RS
through the ready wire. The RS can execute instructions dynamically. Upon
completion in the RS, an instruction's value is forwarded to other instructions
still in the RS, and eventually returned to the ROB through the computed wire.

3.1 Concepts used in the formal specification

3.1.1 Transactions

We think of instructions in the execution process as entities which come into being at
a certain cycle and evolve thereafter. To formalize those entities, we use the concept
of transactions [1, 7]. A transaction is a package of information which (directly or
indirectly) contains the identity of the unique instruction it is associated with plus
various data contained in the current machine state that are relevant for the execution
of that instruction. Pairs (i, v) in the description of the standard machine are a simple
example of transactions. In general, the structure of transactions depends on the

machine being considered and is a matter of choice. Here we use six components:

Trans = Pgmldx, Pgmldx, Name, Ops, Result, Status.

The first component is the index of the instruction in the (fixed) program and the
second is the index of the speculative next instruction. The Name component pro-
vides unique identifiers to instructions; we take Name to be the set of positive in-
tegers, so that the name of an instruction will be its index in the sequence of all
fetched instructions. Next we have Result = Value + Name and Ops = Value +
Name, Value + Name. Thus, all instructions have two operands, and the sort Value
is conveniently extended with Name to include references to values that are not yet
computed. This is the essence of register renaming. Finally, Status is the finite set
of letters {A, C, D, E, N, R}, abbreviating the words Active, Computed, Dropped,
Error, New, and Retired respectively.

The projections from Trans to its six components will be denoted pc, spc, name,
ops, res, and sts respectively. Angle brackets will be used for projections onto several
components; for example, (pc, res): Trans -» Pgmldx,Result. The two operands will
be denoted by opl and op2; thus, ops(t) = (opl(t),op2(t)).

3.1.2 Signals

Another important concept in the specification is that of signals. A signal represents
a wire, where at each clock cycle the value may change. We think of signals as infinite
sequences indexed by the clock cycles. If s is a signal, then sn denotes its nth element,
i.e., the value of s at clock cycle n.

Particularly convenient in high-level specifications are signals of transactions.
Even though a physical wire would never contain a whole transaction, its content
is usually associated with a unique transaction. Refinements to lower level specifica-
tions could replace transaction signals with the relevant data components.

3.2 Top-level specification and correctness statement

Recall that the dynamic machine is composed of an IFU, ROB, and RS (Figure 1).
The top-level specification of the dynamic machine is given by mutually recursive
equations

fetched = z/u(lastRet, error)

(retired, ready, lastRet, error) = rob(f etched, computed)

computed = rs(ready, error)

which define the signals fetched, computed, ready, retired, error, and lastRet.
The functions Z/M, rs and rob modeling the three components of the dynamic machine
have the following types (defined formally in 3.2.2):

ifu: TransSig,BoolSig ->• TransSeqSig

rob: TransSeqSig, TransSetSig -> TransSeqSig, TransSetSig,TransSig,BoolSig

rs: TransSetSig, BoolSig -> TransSetSig

/i /2 h /4 /s /e h /s

00

01 nil] 0i [2] (7! [3] <n[4]
02 ^2[l] 02[2] 02[3] 02[4]
03 0-3[l] 03[2] 03[3] 03[4]
04 <74[l] 04[2] 04[3] 04[4] 04[5] 04[6] 04 [7]
05 *B[1] 0s[2] 05 [3] *B[4] 05[5] <M6] 05[7] 05[8]

; :
: .■

: :
;

: : '•.

Figure 2: Example history of computational state

The following sections contain axiomatic specifications for if v., rs and rob. Later
in the paper we prove that any dynamic machine satisfying these specifications re-
produces the result sequence standard of the standard machine. This is our main
theorem.

Theorem, (pc, res)(retired! retired2 • • •) = standard.

Here retiredi retired2 • • • is the concatenation of finite sequences retired!,
retired2, etc.

3.2.1 Computational state

Our approach to proving top-level specifications of complex machines is based on the
idea of using transactions to explicitly describe the current state of computation at
any cycle. We found it convenient to represent the state of computation at the cycle n
as a sequence crn = i1? i25 • • •> consisting of transactions that have been considered since
the beginning of computation. Thus, we start with uo = 0, and if an = U,t2,... ,tk,
then o~n+i = t[, t'2,..., t'k, tk+i, ■ ■ ■ ,ti, where the transactions t'^t^,... are descendants
of ti,t2,-.- and tk+i, • • • ,ti is the package of freshly fetched transactions. Of course,
t'i = ti is possible for some i; t\ ^ t{ means that the computation of the ith instruction
has made progress in the last cycle. It is clear that understanding the passage from
an to an+i means understanding the way the machine works. In our example, the
computational state is conveniently used as the ROB state, but different variations
are possible.

It is appropriate to picture all sequences «To, 0i,cr2,... as rows of a table, as in
the example in Figure 2. Then each column of the table is an infinite sequence
0m[i],0m+i[*],0m+2W,-• • where m corresponds to the cycle when the ith instruction
(/; in Figure 2) was fetched. This is the personal history of an instruction as it
goes through the stepwise computation. A useful observation is that there are only
finitely many essentially different possibilities where crn[i] ^ <rn+i[z']. That is, there
are only finitely many "elementary" steps involved in the computation of a single
instruction. We make this explicit by using the status letters to describe what stage
of computation a transaction is in. If status letters are correctly chosen, then every
change from crn[i] to <rn+i[z] is recorded in a change of status letter. Thus, the "status
words" r„ = sts(crn) and transitions from Tn to rn+1 suffice to present much of the

qualitative analysis of the computation.
For example, the status words are always in the form {R, D}*{A, C, E}*N*, which

means that the computational state consists of a sequence of retired (R) and dropped
(D) instructions followed by a sequence of currently active (A) and computed but not
retired (C, E) instructions, followed by a sequence of instructions whose computation
in the RS has not yet begun (N). The ROB axiomatics gives a precise description of
what changes can occur in the passage from crn to crn+i.

Since the computation of every instruction takes finite time, the axioms should
make sure that every sequence <rn[i] for fixed i stabilizes (becomes constant eventu-
ally). This in turn defines the "limit state" (Too, where a^i] is defined as the limit
of an[i] as n -> oo. The limit state is a convenient way of representing the result
of the whole infinite computation. For example, the axioms of the components of
the machine should be powerful enough to ensure that every transaction in the limit
state is either retired or dropped as part of a mispredicted branch, and also that the
subsequence of retired transactions essentially coincides with the result sequence of
the standard machine.

3.2.2 Miscellaneous sorts and notations

It is convenient to define the sorts TransSeq (sequence of transactions) and TransSet
(set of transactions) with a requirement that none of their members can contain two
transactions with the same name. We also write the sort TransSeqSig for the sort
of signals of TransSeq, and analagously define the sorts TransSetSig and BoolSig.
The functions pc, ..., sts extend naturally to TransSeq and TransSet; for example,

pc(f i •■•*«) = pc(*i) • • • pc(t») and pc{tu ...,*„} = {pc(*i),..., pc(*n)}.
The constituent sorts and operations of the standard machine will occur in the

specification of the dynamic machine as well. We shall also need a default transaction
i() whose only property required is res(t()) = def aultValue.

Suppose a = ^i • • -tk € TransSeq. If (p,q) = getSources(pc(i,-),pc(<i ■ • -i.-i))
we say that tp and tq are the first and the second transaction sources of £; in a. If, in
addition, ops(tf,-) = (res(Jp),res(ig)), then we say that <,• has correct operands in a.

We define nextpc(i) = next((pc, res)(<)) and say that a transaction t is faulty if
spc(t) 7^ nextpc(t).

We shall use the notation a[i] for the ith element of the transaction sequence a and
a(n) for its element whose name is n. Similarly, for a transaction set S, its member
whose name is n will be denoted S{n). The empty sequence and the empty set will
be both denoted 0, and the length of a sequence a will be denoted by \a\.

Two useful functions replace and dif f are defined for both transaction sets and
transaction sequences. If each of X and Y is either a transaction set or a transaction
sequence, then replace^, Y) is obtained from X by replacing elements X(i) with
Y(i) for every i for which it is possible, and dif f (X, Y) is obtained by removing from
X all elements X(i) such that X(i) = Y(i).

For a G TransSeq and S C Status, define <7S to be the subsequence of a consisting
of all transactions whose status belongs to S. We will shorten this notation and, for
example, write aRD instead of a^-R'D\ Define also cr° = <rs, where S = {R, A, C, E}.

3.3 IFU specification

In the IFU axioms below we assume that lastRet, error and fetched are signals
satisfying the relation i/«(lastRet, error) = fetched.

Axiom IFU-1. If fetched« = tx ■ • • tp and fetched,- = 0 for all i < n, then
pc(ii) = startldx.

Axiom IFU-2. If fetched« = U---tp, then pc(U) — spc(*,_i) for every i €
{2,...,p}.

Axiom IFU-3. Let m < n, fetched«, = ti---tp, fetched« = t'1---t'q, and
fetched,- = 0 for i between m and n. Then:
(a) If error,- is false for all i such that m < i < n, then pc(i'1) = spc(tp);
(b) If i is the smallest integer such that m < i < n and error,- is true, then
pc(t[) = nextpc(lastRet,).

Axiom IFU-4. For every m there exists n such that n > m and fetched« ^ 0.

The axioms are conditions that the function ifu is required to satisfy. Axiom IFU-
1 states that when the IFU fetches the first instruction, it will fetch from startldx.
Axiom IFU-2 indicates that the IFU fetches "consecutive" instructions, and defines
"consecutive" for branch instructions to be the instruction pointed to by the branch's
speculative program counter. Axiom IFU-3 clarifies the relationship between two
consecutive non-empty fetches. If the error signal was set at the time of the first
fetch or in the meantime, then the first instruction of the second fetch should be
the correct successor of the last retired instruction. Otherwise (when there are no
errors between the two fetches), speculative fetching continues. Finally, Axiom IFU-4
simply states that fetching never ceases.

3.4 RS specification

In the RS axioms we assume the signals ready, error, and computed satisfy the equal-
ity rs(ready, error) = computed. We use two sets contents« and justComputedn

to describe the state of the RS. The set contents« is meant to contain the trans-
actions present in the RS at the nth cycle, and justComputed^ corresponds to a
subset of computedn whose elements have "correct" res components. We also need
an auxiliary function updtOps: TransSet —> TransSet whose effect is to replace all
"reference" operands of the form name(s) with the available values res(s).

Definition 1. updtOps(S') = {f(t,S)\t e S}, where /:Trans,TransSet ->• Trans
is the function defined by: f(t,S) = t' if and only ift andf have the same components
except ops, and

. ,. _ J res(s) ifopl(t) = name(s) for some s € S
^ ^ ' ~ 1 opl(/) otherwise

and similarly for op2.

Axiom RS-1. computed^ C {t | t G contentsn and res(i) G Value}.

Axiom RS-2. For every t € justComputedn there exists s G contents« such that
res(t) = compute((pc, ops)(s)) and the other components of t are the same as those
of 5.

Axiom RS-3. If n > 0, error„_i is false, and the sets of names of transactions in
readyn_1 and contents«_i are disjoint, then

contents« = updtOps(readyn_1 U c„_i) \ computedn_1

where c«_i = replace(contents„_i,justComputec^.j). In all other cases,
contents« = 0.

Axiom RS-4. If a transaction t belongs to contents« and if opl(i),op2(i) €
Value, then there exists m > n such that contentsm does not contain a transaction
whose name is name(i).

Axiom RS-1 states that transactions returned by the RS through the computed
signal have no further need of computation. It also constrains the computed signal to
contain instructions that have come from somewhere, i.e. the RS cannot create hoax
transactions to pass through computed. Axiom RS-2 clarifies the relationship between
justComputedn and contentsn. Again, this axiom precludes the RS from creating
new transactions with no correspondence to the state of the RS. It also states that
the result of a computation in the RS should be equivalent to the result computed in
the standard machine. Axiom RS-3 inductively defines the persistent state of the RS.
If no exception is raised, then the contents at cycle n equals the contents at n — 1,
combined with the new instructions sent from the ROB, and minus the instructions
computed at n — 1. Also, the results of newly computed transactions are forwarded in
the process to those transactions which need them as operands. Finally, Axiom RS-4
states that each instruction that is present in the RS and has values as operands will
eventually disappear from RS—it will either be passed back through the computed
wire, or squashed if error occurs in the future.

3.5 ROB specification

We treat the ROB as a state machine by specifying the function

rob': TransSeq, TransSet, State —> State, TransSeq, TransSet, Trans, Boolean.

Precisely, the equality rob(f etched, computed) = (retired, ready, lastRet, error)
holds if and only if, for every n > 0, the equality rob'(f etched«, computed^, staten) =
(staten+i, retired«, readyn, lastRet«, error«) holds. The axioms below are stated
as conditions on fetched«, computed^, state«, state«+1, retired«, readyn, lastRet«,
error«.

As indicated in Subsection 3.2.1, the state of the ROB contains all transactions
ever considered. We put them in a sequence respecting the order of fetching. The

Status word sts(cr) of any state a always has a certain form and it is convenient to
put that restriction into the sort definition:

State = {<r € TransSeq | sts(cr) G {R, D}*{A, C, E}*N*}.

The specification of the ROB uses four auxiliary functions:

acceptFtchd: State,TransSeq-)- State

getOps: State —> State

acceptCptd: State, TransSet ->■ State

retire: State —>• State

Definition 2. acceptFtchd(cr,a) = aß, where \ß\ - \a\ and for every i such that

1 < • < \ß\
(a) name(/?[i]) = res(ß[i]) = \cr\ + i;
(b) sts(/?[i]) = N;
(c) The remaining components of ß equal the corresponding components of a.

Definition 3. getOps(cr) = u if and only if u is obtained from a by replacing the
first transaction t of a whose status is N (if it exists) with a transaction t' so that f
has status A and correct operands in u, and has all other components same as t.

Definition 4. Given S G TransSet and a e State, let S' consist of all transactions
t of S whose status letter is modified so that sts(t) is E or C depending on whether
t is faulty or not. Define acceptCptd(cr, S) = replace^, 5").

Definition 5. Define retire': Status* -» Status* as follows. For r € Status*, let
rRD be the maximal prefix of r which uses only letters R,D. If r = T

RD
C6, then

retire'(r) = rRDR9. If r = rRDE6, then retire'(r) = T
RD

RD^. In all other
cases, retire'(r) = r.

Definition 6. retire(o-) = u> if and only if sts(u) = retire'(sts(cr)) and all other
components of u are equal to the corresponding components of a.

Axiom ROB-1. The initial state stateo is empty. For every n > 0, there exist
fi>6>£3 £ State and integers k > 0 and I > 1 such that

£x = acceptFtchd(state„,fetchedri)

e2 = getops^en
£3 = acceptCptd(£2,computedn)

state„+i = retire'(£3)

Axiom ROB-2. With &,&,& as in Axiom ROB-1,
(a) readyn is the set determined by the sequence diif(£2,£i);
(b) retiree^ = diff(state*+1,££);
(c) If retiredn / 0, then lastRetn is the last element in retired^
(d) error„ = true if and only if retired« ^ 0 and lastRetn is faulty.

Axiom ROB-3. If state^ = 0 and state^ ^ 0, then readyn ^ 0.

10

The axiom ROB-1 deserves a detailed explanation. To shorten the notation, let
us use an for state«, rn = sts(crn), and pn = retired«. We want to look closely
at the transitions from an to crn+1 and from T„ to r„+1 through three intermediate
stages. Let d, C2, C3 ^e the status words of the intermediate states £1, £2 and £3 of
ROB-1. Suppose rn = r*DuNp. Then Ci = T*

D
U)N

P+,!
, where q = |f etched«|. Note

that an survives intact as a prefix of £1. Now (2 = r^DüjAkNp+q~k, for some k (equal
to the length of ready«). Clearly, £2[i] # £1[i] implies £i[i] = N and £2[i] = A. As a
result of the next step, £3 = r^Duj'Np+q~k

1 where u/ is the result of replacing some
y-L's in toAk with C or 2?. Again, every change is recorded in a change of status letter:
if 6[*] 7^ 6[*1»then &[*] = A and Cs[»] is C or £.

The last passage, from (3 to r„+1, is the most complicated. If the first letter of u/
is not C or E, then £3 = rn+\ and £3 = an+i. Otherwise, we can write u/ = Cr~lEu"
or u/ = Crw", where r > 1 and, in the second case, u>" does not begin with C or E.
Let us call this prefix C~lE or Cr of u/ the critical segment of (3. What happens now
is that letters of some prefix of the critical segment get replaced with R. If / < r, that
is all that happens, but if / = r and if the critical segment is Cr~lE, then, aside from
the transformation of the critical segment into Rr, a dramatic change occurs to the
right of the critical segment—all its letters get replaced with D. This special situation
requires a special treatment in many arguments that follow, so we shall refer to n as
being singular if the change from an to crn+1 involves this "flushing" of transactions.
Otherwise, n will be called regular. Note that retired« is the subsequence of £3
that corresponds to the subword of (3 that is replaced with Rr. We still need to
consider the case when I > r, but it brings nothing new, since, as we can easily check,
retire'(£3) = retirer(£3) if / > r. Observe finally that crn+1[z] / £3[i] implies that
either T„+i[i] = R and (3[i] is C or E, or rn+i[z] = D and £3[i] is A, C, E or N.

4 Correctness proof

So far we have axiomatized the individual units. Now we demonstrate that the
axiomatization is sufficient to obtain a global correctness property.

In addition to shorthands <Tn,rn, we will also use pn for retired«. Recall that our
goal is to show (pc, res)(p(X>) — standard, where p^ = p\p2 • • -.

4.1 State transitions and the limit state
Lemma 1 (Name is index). Whenever defined, crn[i] = an(i). Consequently, name(cr„)
is an initial segment of the sequence of positive integers.

Proof. This is a matter of checking the property name(er[i]) = i for all states a = an.
The empty state obviously has that property. Arguing by induction, assume an has
the property. We use ROB-1 and its notation. The first thing to observe is that £1 has
our property by Definition 2. Then we have name(£i) = name(£2) = name(£3) =
name(crn+i), where the three equalities are justified by Definitions 3,4, 6 respectively.
Thus, <r„+i has the property considered. D

11

Figure 3: Transaction status transition diagram

Lemma 2 (Retired). If n is regular, then <r^ = cr^Dpn. If n is singular, then
pn ^ 0 and crn+1 = cr^j = al^Dpn8n, for some 8n such that sts(5n) G D*. D

It follows that cr^+1 = <7^/9n and so p^ = lim cr^. However, at this point it is not
even clear that p^ is an infinite sequence.

Every change in the four step transition from an[i] to <rn+i[i] is reflected in a
change of status letter. The following lemma states this precisely.

Lemma 3 (State transition). If o-n+i[i] ^ crn[i], then Tn+i[i] ^ Tn[i]. The arrows
in the transition diagram in Figure 3 correspond to all possible pairs (rn[i],rn+i[i]).
0

Lemma 4. Ifrn[i] € {R, C, E}, then res(an[i]) G Value. D

Lemma 5 (Faulty). Ifrn[i] = E then t is faulty, and ifTn[i] = C then is not faulty.

Proof. Suppose Tn[i] is E or C. Let m + 1 be the smallest integer such that T„i+i[i] =
Tn[i] and let t = <rm+i[i]. By Lemma 3, o~n[i] and t are at the same time faulty or not.
If £1162 >£3 are the intermediate states in the transition from crm to erm+1, it follows
from the the commentary to ROB-1 that £3[i] = sts{t) = r„[i] and £2[i] = A. By
Lemma 1, £3[i] = £3(1), and, by Definition 4, ^(i) is obtained from t' == computedm(i),
and t is faulty or not depending on whether ^[i] is C or E. Now t and t' are at the
same time faulty or not because the passage from £3 to <rTO+i does not affect the
components pc, spc, res in terms of which being faulty is defined. D

12

Lemma 6 (Faulty retired). Suppose t is a transaction occurring in some pn. Then
t is faulty if and only if n is singular and t is the last transaction in pn.

Proof. Referring again to the commentary to ROB-1, sts(pn) = Rr corresponds to
the subword Cr~lE or C of (3, depending on whether n is singular or regular. The
desired result follows then from Lemma 5. D

Lemma 7 (Error). An integer n is singular if and only if errorn is true.

Proof. If pn = 0, then n is regular (Lemma 2) and errorn is false (ROB-2). Assume
then pn is non-empty. By ROB-2, we have errorn is true if and only if the last
element of pn is faulty. Lemma 6 then finishes the proof. D

We turn now to the whole personal history of an instruction as it goes through
the execution process, that is, the sequence an{i) for fixed i. Recall that crn[i] = an(i)
so that the instruction named i remains in the ith place in all states an in which it
occurs.

The ROB axioms imply that |crn+1| = |CT„| + |f etched^, and it follows then from
IFU-4 that lim \an\ = 00. Moreover, for any i there exist n such that \crn-i\ < i < |crn|,
and thus o-m[i] exists if and only if m > n.

Lemma 8 (Stabilization). For fixed i, the sequence an[i] is eventually constant.

Proof. In view of Lemma 3, it suffices to show that the sequence rn[i] is eventually
constant. Indeed, the sequence rn[i] corresponds to a (directed) path in the graph of
Figure 3, and that graph has no non-trivial loops. D

Since each sequence an[i] (for fixed i) stabilizes, there exists a limit state «Too =
limcrn. It follows immediately that the sequence rn of status words has a limit r^,
and that r^ = sts(<7oo). Since lim \an\ = 00, the limit state a^ is an infinite sequence.

Since o-^D is a prefix of <r„, it follows that lim<T^D is a prefix of <7oo- We would like
to show that the two are in fact equal or, equivalently, that a^ = <T^°. This means
that every transaction is eventually retired or dropped, and we need to derive some
results about the interaction between ROB and RS in order to prove that.

4.2 In the Reservation Station

From now on we shall use a shorthand Sn for content s„. The first result shows that
ROB has information about the contents of RS.

Lemma 9 (RS-contents). name(5n) = name(cr^).

Proof. We argue by induction, the case n = 0 being trivial since, by definition,
both £0 and a0 are empty. Assume then the lemma is true for some n. If n is
singular, then a^+1 = 0 because crn+1 = a^ (Lemma 2), and contentsn+i = 0 by
RS-3 and Lemma 7. It remains to consider the case when n is regular. By RS-1,

13

computedn C contents«. By induction, name(S„) C U,-<„name(readyi). Since the
sets name(readyi) are pairwise disjoint, we obtain from RS-3 that

name(5'n+i) = (name(5„) U name(readyn)) \ name(computedJ.

We prove now that name(^+I) and name(cr^) satisfy the same relation. Using
the notation of ROB-1, we have name(ff) = name(a^) by definition of acceptFtchd.
Then name(^) = name(ft*)Uname(readyn) by definition of get Ops. Then name(^)
name(^) \ name(computedn) by definition of acceptCptd. Finally, name(^+1) =
name(^) because the transition from £3 to crn+1 only involves status letter changes
from C to R when n is regular. Thus,

name(^+1) = (name(ff^) U name(readyj) \ name(computedn). D

Let span(i) denote the set of all n such that i € Sn. By the previous lemma,
span(i) can be viewed as the set of all n such that rn[i] = A. Suppose span(i)
is non-empty. Then it is a set of consecutive integers; there exists n such that i €
name(readyn), and n +1 is the smallest element of span(i). The maximal element of
span(z) (if it exists!) is that n for which errorn is true or computedn exists. All these
facts follow easily from the relation between name(S'„) and name(S'n+i) established
in the proof of Lemma 9.

In view of definition of updtOps and ßS-axioms, the evolution of a transaction
in RS affects only the res and ops components. The following lemma makes this
observation more precise. To state it properly, we introduce the concept of RS-
status of transactions. We define rs-sts(^) to be a three-letter word xyz, where the
x,y,z e {n,v}. The letter z is defined to be n if res(i) G Name, and to be v if
ves{t) G Value. In the same manner, opl(tf) and op2(i) determine the values of x
and y respectively.

The formula in the axiom RS-3 implies that there are three steps in the transition
from Sn to Sn+i when n is regular:

5„i—> S' = replace^, justComputedJ
i—► S" = updtOps(readyn U S')

Sn+i = S" \ computed^.

If one of Sn{i), Sn+i(i) exists and the other does not, that is the responsibility
of readyn or computedn, as we have already observed. Suppose both exist. Then
S'(i) and S"(i) exist and the later is equal to Sn+i{i). Thus, if S„(i) ^ Sn+i(i), then
either Sn(i) ^ S'(i) or S'(i) ^ Sn+i(i) (or both, which we will see shortly does not
happen). Suppose t = Sn(i) and t' = S'(i) are not equal. By definition of replace,
we have t' € justComputed^ and the axiom RS-2 implies rs-sts(f') = vvv. Axiom
RS-2 also gives us ops(t) = ops(t'), so rs-sts(tf) is either vvn or vvv. We will prove
that the latter case does not occur. The second case to consider is when f = S'(i)
and t" = Sn+i(i) are non-equal. This is an application of updtOps, and it follows
that one or both operands of f are names and the corresponding operands of t" are
values. It follows immediately that one cannot have both t / t' ^ t"—one inequality
requires t' to have value operands, the other asks for at least one name operand.

Let us look at the whole set span(i); denote tk = Sk(i)- Suppose m = minspan(z').
Then there exists t G readyOT_j such that tm has all components equal to those

14

Figure 4: Transaction values transition diagram

of t except perhaps ops. Since res(i) = name(i) = i (by definition of ready) it
follows that res(tm) = i. Consider now two consecutive members tn and tn+i of the
sequence tm,tm+1,... As shown in the previous paragraph, if res(tn) ^ res(i„+i),
then res(/„) is a name (necessarily i), and res(in+i) is a value. Referring again to
the paragraph above, it follows that rs-sts(t„) = vvn and rs-sts(in+i) = vvv. It
also follows that tk = tn+i for all k > n, so ops(^) ^ ops(ifc+i) is possible only when
res(ik) = res(tk+i) G Name.

Summarizing, we have the following.

Lemma 10 (RS-transition). Let t = Sn{i) and t' = Sn+i(i). Then (pc,spc)(2) =
(pc,spc)(t'). The inequality t ^ t' occurs only when rs-sts(i) ^ rs-sts(i'). The
transition diagram in Figure 4 describes all possible pairs (rs-sts(i),rs-sts(t')). D

Corollary 1. Ift,t' are transactions in an and Sn respectively, and if name(f) =
name(f'), then (pc,spc)(t) = (pc,spc)(i'). D

Now we need to deal with the simultaneous evolution of a transaction and its
sources. Suppose span(i) is non-empty, let n be its minimum, and t0 G readyn_1 be
the element giving rise to Sn{i), as in the paragraph before Lemma 10. By definition
of ready, opl(f0) is either def aultValue or res(£i[p]) for some p < i determined by
the function getSources, where £i is the first intermediate state between crn-i and
an\ see ROB-1. Let us say that p is the first source of i, and similarly define the
second source of i (if it exists).

Lemma 11 (Forwarding). Suppose t = Sn(i) and p is the first source ofi.
(a) If Sn(p) does not exist, then opl(i) = res(crn[p]) G Value.
(b) If s = Sn(p) exists, then opl(t) = res(s) (which is either in Name or in ValueJ.

(Analogous results hold for the second source/operands.)

Proof. The proof is by induction on n G span(i). The difficult part is the initial
case n = minspan(i). Let to G readyri_1 be as above. Recall that all components
of t0 and t are the same except possibly that some operand of t0 is in Name, and

15

the corresponding operand of t is in Value. We consider three cases separately. Let
S' = replace(5,„_i, justComputed^j) and S" = updtOps(readyri_1 U S'). We have
t = S"(i) and opl(t) = res(S'{p}) if S'(p) exists; otherwise opl(<) = opl(t0). The
proof splits into three cases.
Case 1: opl(t) € Name. We prove that Sn{p) necessarily exists and that opl(tf) =
p = res(Sn(p}); that will prove the lemma in the case considered.

First we have opl(t) = opl(t0) = res(£i[p]) = p. We claim that an\p] =
£i[p]. Indeed, £2[p] = £t[p] ls obvious, and crn+1[p] ^ £2[p] 1S possible only if p £
name(computedn). This would imply that res(Sn(p)) G Value, and then that
res(t) € Value, which is not true. Thus, res(crn\p\) is not in Value, and by Lemma 4,
rn\p] £ {R,C,E}. By definition of ready, sts(£i[p]) ^ D and this implies rn[p] ^ D,
because no new elements with status D arise in transition from cr„_i to an (n — 1
is regular as Sn ^ 0). Since rn[i] = A (Lemma 9) and p < i, we have rn\p] ^ N.
The only remaining possibility is rn\p] = A, and so s = Sn(p) exists. It remains
to prove that res(s) = p. Assume the contrary; then res(s) € Value and Sn-i(p)
exists. Moreover, we have either s' = s or s' € justComputedn_1. Now S'(i) = s'
and by definition of updtOps, the first operand of t = S"(i) is res(s'), contradicting
opl{t)=p.
Case 2: opl(t0) € Value. Now res(£i[p]) is in Value and so is equal to res(<7n_i[p]) =
res(<7n[p]). By Lemma 4 r„_i[p] ^ A, so Sn~i{p) does not exist. Thus, opl(t) =
opl(to) = res(fi[p]) = res(an\p\).
Case 3: opl(t) € Value and opl(£0) € Name. We have opl(i) = res(S'(p)). If
p £ name(computedn_1), then Sn(p) exists and opl(i) = res(S'(p)) = res(5'n(jo)).
If jo € name(computedn_1), then opl(i) = res(computedn_1(p)). Moreover, Sn{p)
does not exist, but res(cr„[p]) = res(computedn_1(p)) by Definition 4, so the lemma
is true in both cases.

Suppose now n ^ minspan(i) and the lemma is true for n — 1. Let t' = Sn-i(i).
If Sn-i{p) does not exist, then opl(tf') = res(<rn_i[p]) £ Value, by the induction
hypothesis. But then Sn{p) does not exist either, and res(crn[p]) = res(<rn_i[p]),
proving the lemma.

Suppose now s' = Sn-i{p) exists. By induction hypothesis, opl(f') = res(s').
If Sn(p) does not exist, then p € name(computedn_1), and we obtain opl(i) =
res(<7n[p]) € Value as in the corresponding situation in Case 1 above. Finally, if
s = Sn(p) exists, we either have s = s' which implies opl(i) = opl(f') = res(s') =
res(s), or s € justComputed,^ which also implies opl(i) = res(s). D

Axiom RS-4 implies that span(?) is finite if for some n both operands of contentsn(z)
are in Value. Using the previous lemma one can show that this is true unconditionally.

Lemma 12 (Span). For every i € N, the set span(i) is finite.

Proof. We argue by induction on i. Axiom RS-4 implies that span(i) is finite if for
some n both operands of Sn(i) are in Value. Suppose that span(ji) is finite for all
j < i and that Sn(i) has at least one operand in Name, say opl(S'n(i)) = p. By
Lemma 11(a), Sn{p) exists. By induction hypothesis, for some m > n, Sm(p) does
not exist. Then Lemma 11(a) again implies that opl(5m(i)) is in Value. If both
operands of Sn(i) are in Name, it is clear now that we can take m large enough to
ensure that both operands of Sm(i) are in Value. D

16

4.3 Retiring never stops

Lemma 13 (No deadlock). One has r^ = limr,fD
; and so r^ is an infinite se-

quence involving only letters R and D.

Proof. Since TRD
 is a prefix of r^g (Lemma 2), there exists a limit TRD

 = limr^D. If
T

RD
 is infinite, we are done. So suppose rRD is finite. Then there is a letter X ± R, D

such that rn = rRDXun for all large enough n. Denote k = \T
RD

\.

Suppose X = A. By Lemma 9, the set contentsn contains a transaction named

k + 1 for all large n, which contradicts Lemma 12.
Suppose X = N. Then uin G N", so a* = 0 and <r^ ^ 0 for large n. By ROB-3,

we must have readyn ^ 0 then. From pn = 0 (implied by a^g = <r*D) we have
error« = false, so cr£+1 ^ 0 (by proof of Lemma 9), and this contradicts un+i G N*.

Finally, suppose X = C or X = E. By ROB-1, namely the condition / > 1 there,
it follows that <rn+1 [k + 1] = R, which is again a contradiction. D

Now we obtain a useful factorization of a^. Recall from Lemma 2 that crn+1 =
o-RDpnSn, where sts(8n) € D*, and (1) Sn = 0 if n is regular, and (2) pn ^ 0 if n is
singular. Write ij)n = pn5n and note that ^„^1 implies pn ^ 0. Lemma 13 implies

that
O-oo = ^1^2 • • * = (/>l£l)(/>2&2) • • •

Since cr^ is infinite there are infinitely many nonempty factors ^>n, and each nonempty
tj;n begins with a non-empty pn. Consequently, there is no end to retiring:

Lemma 14 (Retiring). The sequence p^ is infinite. D

The fetching process defines another natural factorization of a^:

Coo = 0102 * • • ,

where <j)n are simply defined by |0„| = |f etched^.

Lemma 15. (pc,spc)(<7oo) = (pc,spc)(fetchedifetched2 • ••)•

Proof. It suffices to show (pc,spc)(an+i) = (pc,spc)(cr„f etched«). Using the ROB
axioms and notation again, our claim follows from a sequence of equalities: (pc, spc)(crnf etched«)

(pc,spc)(6) = (pc,spc)(e2) = (pc,spc)(£3) = (pc,spc)(an+i). The third equality
follows from Corollary 1. The other three follow easily from definitions. D

The two factorizations of «Too are related as follows.

Lemma 16 (Factorizations). Ifn is regular, then tpi---^n is a prefix offa • • • <j>n-i.
Ifn is singular, then tpi • • • t})n = 4>\ • ■ • <$>n and Sn contains <f>n.

Proof. By Lemma 2, a™ = vRD^n, so Vi • • • ^n = ^n+i- Going back to the tran-
sition process analyzed at the beginning of §6, we can now use the information
from Lemma 9 to describe the passage from £2 to £3 more precisely. Recall that
£2 = TRDu>AkNp+q-k and & = rRDu'Np+q~k, where u' is obtained from uAk by

17

replacing some A's with C's or £"s. We claim that these changes in fact occur en-
tirely within u. The reason is in that the subword Ak of £2 corresponds to readyn,
and the names of transactions in readyn do not occur among the names of transac-
tions in computed^ Indeed, using the proof of Lemma 9 and its notation, we have
name(computedJ C name(contentsn) C U!<„name(readyi).

Thus, the critical segment of £3 is entirely within the image of rn in (3, so the
suffix of length p + q of £3 does not intersect the critical segment. If n is regular, that
implies |r^| < |r„| = l^l + • • • + |</>n-i|- Similarly, if n is singular, it follows that
the suffix of length p + q of <rn+1 = a^ belongs to 8n. The two statements of the
lemma immediately follow. D

4.4 Axioms of the standard machine

Proof of SM-1.

We want to prove pc(poo[l]) = startldx. Let n be the smallest integer such
that f etched,,. ^ 0. By IFU-1, pc(t) = startldx, where t is the first transaction in
fetched«. In view of Lemma 15, cr^ begins with a transaction t' such that pc(t) =
pc(i'), so it suffices to check that t' is in p^. Indeed, t' is the first transaction in the
first non-empty ißm, so it belongs to pm (see the paragraph after Lemma 13).

Proofof SM-2.

Since /9oo is infinite, what needs to be checked is that pc(tf') = next((pc, res)(t))
for any two consecutive transactions t,t' in p^. First we consider the case when t
is faulty. By Lemma 6, t is the last element of some pn, where n is singular. Thus,
t = lastRet„. By Lemma 16, tpi • • ■ fa = fa • • • (f>n. Let m be the smallest integer such
that fa • • • fa = <j)i • ■ • <ßm and <f)m ^ 0. We claim that every i such that m < i < n
is regular. Indeed, if such an i were singular, we would have ^1""" V'«' = 4>\''' 4>i
(Lemma 16). Since <j>i • • • <f>n = <^>i • • • fa, it would follow that xßi • ■ ■ ipn = ^1' * • i>i>
which is not true since ^n is not empty.

As for t', we have that it is the first element of the first non-empty ij>j that comes
after tpn. Since rpi ■ ■ ■ i\>n = cf>i • • • <f>n, it follows that t' is also the first element of
the first non-empty fa that comes after <j>m. Since n is the smallest singular integer
among m, m + 1,..., k — 1, it follows from IFU-3b that pc(i') = nextpc(lastRetn) =
nextpc(i), finishing the proof in the case when t is faulty.

Assume now t is not faulty. Since every transaction of every pn has a corresponding
transaction in computec^ which differs from it only in the status letter (ROB-1,2), it
follows from Lemma 6 that spc(i) = nextpc(i). This reduces our problem to showing
that pc(i') = spc(i). If t, t' are consecutive elements of some fa, this is exactly what
we get from IFU-2 with the aid of Lemma 15. Now, we do have that t and f are
consecutive in a^ = (pi^iX/^^O • • •» because otherwise t would have to be the last
element of a pn, where 5n ^ 0, which would mean that n is singular (Lemma 2),
and so by Lemma 6, that t is faulty, which is absurd. Thus, the only remaining case
to consider is when t is the last in some (j>m and t' is the first in fa, where fa — 0
for i between m and n. The desired result pc(i') = spc(f) follows from IFU-3a and
Lemma 15 provided error*; is false for every k such that m < k < n. this last
condition does not necessarily hold, so suppose finally that k is the smallest integer

18

in this interval for which errors is true. Thus, k is singular (Lemma 7), so fa • ■ • fa =
<f>i ■ ■ ■ <f>k = 4>i • • ■ 4>m- It follows that t is the last element of fa = pk$k, so 8k = 0
and i = lastRet*. The axiom IFU-3b applies, so pc(i') = nextpc(lastRetn) =

nextpc(i), finishing the proof.

Proof of SM-3.

As mentioned above, every transaction of p<x, has a corresponding transaction in
some computedn which differs from it only in the status letter. Thus, in view of RS-2,
res(tf) = compute((pc,ops)(i)) holds for every t in p^. Therefore, to prove that
(pc, res)(poo) satisfies SM-3, it suffices only to check that all transactions in p^ have
correct operands. This amounts to the following two lemmas.

Lemma 17. If OcJj)] is the first source transaction of o~oo[i] in p,*,, then p is the first
source of i. (Similarly for the second sources.)

Proof. Suppose cr^i] belongs to (j)m and ipn. Then m < n and every k such that
m < k < n is regular. For some m' (m < rri < n), the set readyTO, contains a
transaction with name i, and the first source p' of i is determined by this condition:
£i[p'] is the first transaction source of £x[z] in £°, where £i is the first intermediate step
in the transition from am> to am>+\. Since m' is regular, sts(£i) = sts(<rm»+i). The
definition of transaction sources depends only on the pc components, so we obtain
(using Corollary 1) that crm/+1[p'] is the first transaction source of crm/+1[i] in cr^,+1.
Since all numbers between m' and n are regular, we obtain, arguing by induction, that
o~k\p'\ 1S the first transaction source of ak[i] in a% for every k such that m' < k < n.
Since sts(cr„[i]) = R, and cr^D is a prefix of cr^, it follows that crooty] is the first
transaction source of o~<x>[i] in cr^, = P°°- Thus, p = p', proving the lemma. D

Lemma 18. If Coolp] and o-<x>[i] o,re in /><*, and if p is the first source of i, then
opl(croo[i]) = res(<7oo[p]). (Similarly for the second source/operand.)

Proof. Let m and be such that Sm(p) € computed^ and Sn(p) € computec^. We
have res(cr00[i]) = res(S'n(i)) and ops(cr00[p] = ops(5TO(p)), so it suffices to prove
that opl(Sn(i)) = res(Sm(p))- If m < n, then res(an\p\) = res(Sm(p)) and the
result follows from Lemma 11(a). If m > n then Sn(p) exists, and by Lemma 11(b),
res(an\p]) = res(Sn(p)). Since res(5'n(jo)) is in Value, it must be equal to res(Sm(p)),
and again the desired result follows. D

5 Related work

Burch and Dill's seminal paper [2] developed the concept of a, pipeline flushing abstrac-
tion function to prove an equivalence between an ISA and a pipelined implementation.
Any instructions in flight are made to complete by an appropriate insertion of null
operations. Since then, Burch [3], Windley and Burch [12], and Skakkebask, Jones
and Dill [11] have extended the approach to superscalar pipelined microprocessors.
Using a non-deterministic intermediate machine, Damm and Pnueli [5] constructed

19 -

a refinement relation between a sequential and Tomasulo-style implementation of an
out-of-order processor core. McMillan [8] verifies the same processor using composi-
tional model-checking techniques. The machine transitions are defined by next-state
operations on the full states of the ISA and the Tomasulo machines. This results in
a large conjunctive formula, each conjunct of which is checked independently.

Arguably, techniques like these that expose all of the microarchitecture's state do
not fit well with hierarchical design methodologies. In developing the proof in this
paper, we attempted to hide as much as possible of the local state of each component.
The external behavior of each component is constrained by the component's axioms,
but within those constraints the component's state is unspecified. This encapsulation
may provide an additional level of abstraction and modularity to the verification
effort, and allow separate teams to develop each component, while ensuring that
global processor invariants are maintained.

Shen and Arvind [10] describe a term-rewriting methodology for verifying super-
scalar, speculative, out-of-order multiprocessors. Their approach can be considered
to be at an even higher level of abstraction than our Hawk designs which provided the
basis for our axiomatization. As a result, their specifications are simpler than ours.
However, most state transitions are defined across the machine as a whole rather
than localized to each component and subject only to the inputs ofthat component.
Furthermore, their model does not contain any explicit clocking mechanism, so it
is not clear how to derive cycle-accurate microarchitectural specifications. As their
models rely on being able to apply rewrite rules in any order, it is not clear how their
correctness result would translate to a lower-level implementation that did not have
this flexibility.

In a very recent paper, Sawada and Hunt [9] describe a microprocessor verification
that has many similarities to our work. They also construct a sequence of transaction-
like records, called a Micro-Architecture Execution Trace Table (MAETT). Like our a
state, the MAETT is permanently enlarged with every completed instruction. Each
entry in the MAETT stores a unique instruction identifier, all operands and results
of the instruction as ISA states, and the pipeline state in which the instruction is
currently located, plus other fields. These entries correspond strongly to the trans-
actions we use. The requirements the MAETT must satisfy are given abstractly in
terms of the ISA state and the microarchitecture state, in a similar way to our com-
ponent axioms. However, the structure of their proof also requires them to construct
an invariant between successive microarchitectural states. This invariant is likely to
reference most of the state elements of the micro-architecture. It is the most difficult
construction in their proof.

6 Conclusions

Rather than rely on "flushing" dynamic state to show equality with the ISA state, we
define correctness in terms of visible outputs. This means that we can avoid having to
demonstrate equivalence between internal states of the ISA and the dynamic machine,
so long as the outcome of the computations are the same. This may be important in
practice because the models constructed from a realistic machine are commonly too
big even to construct, let alone verify. By imposing a hierarchical view on the design,
we hope to mitigate this problem to some extent.

20

Our axiomatization can be satisfied by a family of microarchitectures. This means
that it retains a good deal of flexibility as the structure of individual components is
developed. Each component is specified independent of other components, in the same
way RTL design is organized. Once the overall microarchitecture has been developed,
the implementation and proof can be carried out independently. Although flaws found
during the proof might affect the microarchitectural design, this is true for other
analyses such as time and performance estimating. Furthermore, the specification and
its correctness proof are independent of many configurations that effect performance.
For example, the specification does not explicitly set the latency of the RS and its
execution units, the number of execution units, the width of the computed wire, or the
accuracy of branch prediction. Therefore, many design decisions based on simulation
may be made without adversely affecting the global correctness proof.

We intend to repeat this work for a number of related microarchitectural forms,
and so to build a framework, based on the concept of signals of transactions, for
axiomatizing the major components of dynamic execution machines, and proving
global correctness properties. We would identify the most useful axioms for common
components and prove consequent lemmas about those components or about typical
interactions between them.

We also need to confirm that the axiomatizations can be related to specific mi-
croarchitecures. As mentioned earlier, we developed an executable P6-like speci-
fication in Hawk using the same structure described here. We plan to prove the
correctness of this executable model by proving that the component axioms hold for
the specifications of the RS, ROB, and IFU. We foresee a couple of complications in
achieving this. First, the Hawk model supports full memory instructions, and these
are present in the current work only in a very rudimentary fashion. Secondly, the
Hawk model contains extra inter-unit communication for dealing with finite bounds.
These facilities need to be included in the axiomatic model before the two can be
formally related.

7 Acknowledgments

For their contributions to this research, we thank Mark Aagaard, Borislav Agapiev,
Robert Jones, and John O'Leary of Intel Strategic CAD Labs; Tito Autrey and Dick
Kieburtz of OGI; and Arvind of MIT.

The authors are supported by Intel Strategic CAD Labs and Air Force Material
Command (F19628-93-C-0069). John Matthews recieves support from a graduate
research fellowship with the National Science Foundation.

References

[1] AAGAARD, M., AND LEESER, M. Reasoning about pipelines with structural
hazards. In Second International Conference on Theorem Provers in Circuit
Design (Bad Herrenalb, Germany, Sept. 1994).

21

[2] BlRCH, J., AND DILL, D. Automatic verification of pipelined microprocessor
control. In 6th International Conference of Computer Aided Verification (Stan-
ford, California, June 1994).

[3] BURCH, J. Techniques for verifying superscalar microprocessors. In 33rd annual
Design Automation Conference (Las Vegas, Nevada, June 1996).

[4] COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. Specifying superscalar
microprocessors with Hawk. In Workshop on Formal Techniques for Hardware
(Maarstrand, Sweden, June 1998).

[5] DAMM, W., AND PNüELI, A. Verifying out-of-order executions. In Conference
on Correct Hardware Design and Verification Methods (Montreal, Canada, 1997).

[6] GwENNAP, L. Intel's P6 uses decoupled superscalar design. Microprocessor
Report 9, 2 (1995).

[7] MATTHEWS, J., LAUNCHBURY, J., AND COOK, B. Specifying microprocessors
in Hawk. In IEEE International Conference on Computer Languages (Aug.
1998).

[8] MCMILLAN, K. Verification of an implementation of tomasulo's algorithm by
compositional model checking. In International Conference on Computer-Aided
Verification (Vancouver, Canada, July 1998).

[9] SAWADA, J., AND HUNT, W. Processor verification with precise exceptions and
speculative execution. In International Conference on Computer-Aided Verifica-
tion (Vancouver, Canada, July 1998).

[10] SHEN, X., AND ARVIND. Design and verification of speculative processors.
In Workshop on Formal Techniques for Hardware (Maarstrand, Sweden, June
1998).

[11] SKAKKEBAEK, J., JONES, R., AND DILL, D. Formal verification of out-of-order
execution using incremental flushing. In International Conference on Computer-
Aided Verification (Vancouver, Canada, July 1998).

[12] WlNDLEY, P., AND BURCH, J. Mechanically checking a lemma used in an
automatic verification tool. In Formal Methods in Computer-Aided Design (Palo
Alto, California, 1996).

22

