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Abstract 

Modern microprocessors require an immense invest- 
ment of time and effort to create and verify, from 
the high-level architectural design downwards. We are 
exploring ways to increase the productivity of design 
engineers by creating a domain-specific language for 
specifying and simulating processor architectures. We 
believe that the structuring principles used in modern 
functional programming languages, such as static typ- 
ing, parametric polymorphism, first-class functions, 
and lazy evaluation provide a good formalism for such 
a domain-specific language, and have made initial 
progress by creating a library on top of the functional 
language Haskell. We have specified the integer sub- 
set of an out-of-order, superscalar DLX microproces- 
sor, with register-renaming, a reorder buffer, a global 
reservation station, multiple execution units, and spec- 
ulative branch execution. Two key abstractions of this 
library are the signal abstract data type (ADT), which 
models the simulation history of a wire, and the trans- 
action ADT, which models the state of an entire in- 
struction as it travels through the microprocessor. 

1    Introduction 

Modern microprocessor technologies have substan- 
tially increased processor performance. For example, 
pipelining allows a processor to overlap the execution 
of several instructions at once. With superscalar exe- 
cution, multiple instructions are read per clock cycle. 
Out-of-order execution, where some instructions that 
logically come after a given instruction may be ex- 
ecuted before the given instruction, can also greatly 
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increase processor speed [6]. All of these technologies 
dramatically increase design complexity. In fact, cre- 
ating and verifying these designs is a significant pro- 
portion of the total microprocessor development life- 
cycle. As the number of possible gates in future micro- 
processors increases exponentially, so too does design 
complexity. 

At 0GI, we have developed the Hawk language 
for building executable specifications of microproces- 
sors, concentrating on the level of micro-architecture. 
In the long term we plan for Hawk to be a stand- 
alone language. In the meantime we have embedded 
our language into Haskell, a strongly-typed functional 
language with lazy (demand-driven) evaluation, first- 
class functions, and parametric polymorphism [5] [12]. 

The library makes essential use of these features. 
As an example, we have used Hawk to specify and 
simulate the integer portion of a pipelined DLX 
microprocessor[4]. The DLX is a complete micropro- 
cessor and is a widely used model among researchers. 
Several DLX simulators exist, as well as a version of 
the Gnu C compiler that generates DLX assembly 
instructions. The processor includes the most com- 
mon instructions found in commercial RISC proces- 
sors. Our specification, including data and control 
hazard resolution, is only two pages of Hawk code. A 
non-pipelined version of the processor was specified in 
half of a page. 

In this report, we introduce the concepts behind 
Hawk. Rather than attempting a detailed explana- 
tion of the whole of the DLX with all of its inherent 
complexity, we have chosen to exhibit the techniques 
on a considerably simplified model. A corresponding 
annotated specification of the DLX itself can be found 
in [13]. 

2    The Hawk Library 

We start with a simple example that introduces sev- 
eral functions used in later examples. Consider the 
resettable counter circuit of Figure 1. 

The reset wire is Boolean valued, while the other 
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Figure 1: Resettable Counter. A simple circuit 
that counts the number of clock cycles between 
reset signals. 

wires are integer valued. Of course, in silicon, integer- 
valued wires are represented by a vector of Boolean 
wires, but as a design abstraction, a Hawk user may 
choose to use a single wire. The circuit counts (and 
outputs) the number of clock cycles since reset was 
last asserted. 

2.1    Signals 

Notice that there is no explicit clock in the diagram. 
Rather, each wire in the diagram carries a signal (in- 
teger or boolean valued) which is an implicitly clocked 
value. The output of a circuit only changes between 
clock cycles. We build signals using an abstract type 
constructor called Signal. As a mental model we 
could think of a value of type Signal a as a function 
from integers to values of type a. 

type Signal a = (Int -> a) 

The integers denote the current time, measured as 
the number of clock cycles since the start of the simu- 
lation. Circuits and components of circuits are repre- 
sented as functions from signals to signals. This view 
of signals is used extensively in the hardware verifica- 
tion community [9] [14]. Equivalently, we can think of 
signals as infinite sequences of values. 

In the resettable counter example above, the 
constant 0 circuit outputs zero on every clock cycle. 
The select component chooses between its inputs on 
each clock cycle depending on the value of reset. If 
reset is asserted on a given cycle (has value true), then 
the output is equal to select's top input, in this case 

zero. If reset is not asserted, then its output is the 
value of its bottom input. In either case, select's out- 
put is the output of the entire circuit, as well as the 
input to the increment component, which simply adds 
1 to its input. The output of increment is fed into the 
delay component. A delay component outputs what- 
ever was on its input in the previous clock cycle: it 
"delays" its input by one cycle. However, on the first 
clock cycle of the simulation there is no previous in- 
put, so on the first cycle delay outputs whatever is on 
its init input, which is zero in this circuit. 

2.2    Components 

The components used in the resettable counter are 
trivial examples of the sorts of things provided by the 
Hawk library, but let's look at a specification of each 
component in turn. 

The simplest component is constant 

constant :: a -> Signal a 

The constant function takes an input of any type 
a, and returns an output of type Signal a, that is, 
a sequence of values of type a. For every clock cycle, 
(constant x) always has the same value x. 

The next component is select: 

select  ::  Signal Bool -> 
Signal a -> 
Signal a -> 
Signal a 

This declares select to be a function. In a 
Hawk declaration, anything to the left of an ar- 
row is a function argument. Thus, the expression 
(select bs xs ys), where bs is a Boolean signal, 
and xs and ys are signals of type a, will return an 
output signal of type a. The values of the output sig- 
nal are drawn from xs and ys, decided each clock tick 
by the corresponding value of bs. For example, if 

bs = <True,False,True,False,. 
xs = <xl,x2,x3,x4,...>, 
ys = <yl,y2,y3,y4,...> 

>, 

then   (select bs xs ys)   is  equal   to   the   signal 
<xi,y2,x3,y4,...>. 

Hawk treats functions as first-class values, allowing 
them to be passed as arguments to other functions 
or returned as results. First-class functions allow us 
to specify a generic lift primitive, which "lifts" a 
normal function from type a to type b into a function 
over the corresponding signal types: 

lift  ::   (a -> b)  -> Signal a -> Signal b 



The        expression (lift f xs), where 
xs = <xl,x2,x3,.. .>, is equal to the signal 
<f xl,  f x2, f x3,   ...>. 

The increment component is denned in terms of 
lift: 

increment ::  Signal Int -> Signal Int 
increment xs = lift  (+ 1) xs 

Given the xs input signal, increment adds one to 
each component of xs and returns the result. 

The delay component is more interesting: 

delay ::  a -> Signal a -> Signal a 

This function takes an initial value of type a, and 
an input signal of type Signal a, and returns a value 
of type Signal a (the input arguments are in reverse 
order from the diagram). At clock cycle zero, the ex- 
pression (delay initVal xs) returns initVal. Oth- 
erwise the expression returns whatever value xs had at 
the previous clock cycle. This function can thus prop- 
agate values from one clock cycle to the next. Note 
that delay is polymorphic, and can be used to delay 
signals of any type. 

2.3    Using the components 

Once we have defined primitive signal components like 
the ones above, we can define the resettable counter: 

resetCounter ::   Signal Bool -> Signal Int 
resetCounter reset = output 

where 
output = 

select reset 
(constant 0) 
(delay 0  (increment output)) 

The resetCounter definition takes reset as a 
Boolean signal, and returns an integer signal. The 
reset signal is passed into select. On every clock cy- 
cle where reset returns True, select outputs 0, oth- 
erwise it outputs the result of the delay function. On 
the first clock cycle delay outputs 0, and thereafter 
outputs the result of whatever (increment output) 
was on the previous clock cycle. The output of the 
whole circuit is the output of the select function, 
here called output. Notice that output is used twice 
in this function: once as the input to increment, and 
once as the result of the entire function. This corre- 
sponds to the fact that the output wire in Figure 1 is 
split and used in two places. Whenever a wire is dupli- 
cated in this fashion, we must use a where statement 
in Hawk to name the wire. 

2.4    Recursive Definitions 

There is something else curious about the output vari- 
able. It is being used recursively in the same place it is 
being defined! Most languages only allow such recur- 
sion for functions with explicit arguments. In Hawk, 
one can also define recursive data-structures and func- 
tions with implicit arguments, such as the one above. 

If we didn't have this ability, we would have had to 
define resetCounter as follows: 

resetCounter reset = output 
where 

output time = 
(select reset 

(constant 0) 
(delay 0  (increment output))) time 

Every time we have a cycle in a circuit, we have to 
create a local recursive function, passing an explicit 
time parameter. This breaks the abstraction of the 
Signal ADT. In fact, in the real implementation of 
signals, we don't use functions at all. We use infinite 
lists instead. Each element of the list corresponds to a 
value at a particular clock cycle; the first list element 
corresponds to the first clock cycle, the second element 
to the second clock cycle, and so on. By storing signals 
as lazy lists, we compute a signal value at a given 
clock cycle only once, no matter how many times it is 
subsequently accessed. 

Haskell allows recursive definitions of abstract data 
structures because it is a lazy language, that is, it 
only computes a part of a data structure when some 
client code demands its value. It is lazy evaluation 
that allows Haskell to simulate infinite data structures, 
such as infinite lists. 

3    A Simple Microprocessor 

As we noted in the introduction, the DLX architec- 
ture is too complex to explain in fine detail in an in- 
troductory report. Thus for pedagogical purposes we 
show how to use similar techniques to specify a sim- 
ple microprocessor called SHAM (Simple HAwk Mi- 
croprocessor). We begin with the simplest possible 
SHAM architecture (unpipelined), and then add fea- 
tures: pipelining, and a memory-cache. 

The unpipelined SHAM diagram is shown in Fig- 
ure 2. The microprocessor consists of an ALU and a 
register file. The ALU recognizes three operations: 
ADD, SUB, and INC. The ADD and SUB operations 
add and subtract, respectively, the contents of the two 
ALU inputs. The INC operation causes the ALU to in- 
crement its first input by one and output the result. 
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Figure 2: Unpipelined version of SHAM. 

The register file contains eight integer registers, num- 
bered RO through R7. Register RO is hardwired to the 
value zero, so writes to RO have no effect. The reg- 
ister file has one write-port and two read-ports. The 
write-port is a pair of wires; the register to update, 
called writeReg, and the value being written, called 
writeContents. The input to each read-port is a wire 
carrying a register name. The contents of the named 
read-port registers are output every cycle along the 
wires contentsA and contentsB. If a register is writ- 
ten to and read from during the same clock cycle, the 
newly written value is reflected in the read-port's out- 
put. This is consistent with the behavior of most mod- 
ern microprocessor register files. 

SHAM instructions are provided externally; in our 
drive for simplicity there is no notion of a program 
counter. Each instruction consists of an ALU opera- 
tion, the destination register name, and the two source 
register names. For each instruction the contents of 
the two source registers are loaded into the ALU's in- 
puts, and the ALU's result is written back into the 
destination register. 

3.1    Unpipelined SHAM Specification 

Let us assume we have already specified the register 
file and ALU, with the signatures below: 

data Reg = RO  I  Rl   I  R2  I  R3  I  R4  I  R5  |  R6  I  R7 

regFile ::   (Signal Reg, Signal Int)  -> 
Signal Reg -> 
Signal Reg -> 
(Signal Int, Signal Int) 

data Cmd = ADD  I   SUB  I   INC 

alu ::  Signal Cmd -> Signal Int 
Signal Int 

-> Signal Int -> 

The regFile specification takes a write-port input, 
two read-port inputs, and returns the corresponding 
read-port outputs. The alu specification takes a com- 
mand signal and two input signals, and returns a re- 
sult signal. Given these signatures and the previous 
definition of delay, it is easy in Hawk to specify an 
unpipelined version of SHAM: 

shaml ::   (Signal Cmd,Signal Reg, 
Signal Reg,Signal Reg)  -> 

(Signal Reg,Signal Int) 

shaml  (cmd,destReg,srcRegA.srcRegB) = 
(destReg'.aluOutput') 
where 

(aluInputA.aluInputB) = 
regFile (destReg',aluOutput') 

srcRegA srcRegB 
aluOutput = alu cmd aluInputA aluInputB 
aluOutput' = delay 0 aluOutput 
destReg' = delay RO destReg 

The definition of shaml takes a tuple of signals rep- 
resenting the stream of instructions, and returns a pair 
of signals representing the sequence of register assign- 
ments generated by the instructions. The first three 
lines in the body of shaml read the source register val- 
ues from the register file and perform the ALU opera- 
tion. The next two lines delay the destination register 
name and ALU output, in effect returning the values of 
the previous clock cycle. The delayed signals become 
the write-port for the register file. It is necessary to 
delay the write-port since modifications to the regis- 
ter file logically take effect for the next instruction, 
not the current one. 

3.2    Pipelining 

Suppose we wanted to increase SHAM's performance 
by doubling the clock frequency. We will assume that, 
while shaml could perform both the register file and 
ALU operations within one clock cycle, with the in- 
creased frequency it will take two clock cycles to per- 
form both functions serially.    We use pipelining to 



increase the overall performance. While the ALU is 
working on instruction n, the register file will be writ- 
ing the result of instruction n — 1 back into the appro- 
priate register, and simultaneously reading the source 
registers of instruction n + 1. 

But now consider the following sequence of instruc- 
tions, such as: 

R2 
R4 

Rl ADD R3 
R2 SUB R5 

When the ADD instruction is in the ALU stage, the 
SUB instruction is in the register-fetch stage. But one 
of the registers that is being fetched (R2), has not been 
written back into the register file yet, because the ALU 
is still calculating the result. The SUB instruction will 
read an out-of-date value for R2. This is an example 
of a data hazard, where naive pipelining can produce 
a result different from the unpipelined version of a 
microprocessor. To resolve this hazard, we will first 
add bypass logic to the pipeline, then later abstract 
away from this added inconvenience. 

Figure 3 contains the diagram of a pipelined version 
of SHAM with bypass logic. By the time the source 
operands to the SUB instruction (R2 and R5) are ready 
to be input into the ALU, the up-to-date value for R2 is 
stored in the delay circuit between the ALU and the 
register file's write-port. The bypass logic uses this 
stored value of R2 as the input to the ALU, rather 
than the out-of-date value read from the register file. 
The bypass logic examines the incoming instructions 
to determine when this is necessary. The following 
code contains the Hawk specification: 

sham2  ::   (Signal Cmd,Signal Reg, 
Signal Reg,Signal Reg) 

-> 
(Signal Reg,Signal Int) 

sham2  (cmd,destReg,srcRegA,srcRegB) = 
(destReg",aluOut') 
where 

(valueA,valueB) = regFile (destReg''.aluOut') 
srcRegA srcRegB 

valueA' = delay 0 valueA 
valueB' = delay 0 valueB 
destReg' = delay RO destReg 
cmd' = delay ADD cmd 

aluInputA   = select validA valueA' aluOut' 
aluInputB   = select validB valueB' aluOut' 

aluOut = alu cmd' aluInputA aluInputB 

aluOut'        = delay 0 aluOut 
destReg''    = delay RO destReg' 

  Control logic   

validA = delay True (noHazard srcRegA) 
validB = delay True  (noHazard srcRegB) 

noHazard ::  Signal Reg -> Signal Bool 
noHazard srcReg = 

sigOr (sigEqual destReg'  (constant RO)) 
(sigNotEqual destReg' srcReg) 

The first two lines after the where keyword read 
the contents of the source registers from the register 
file. The next four lines delay the source register con- 
tents, the ALU command, and the destination register 
name by one cycle. The two select commands decide 
whether the delayed values should be bypassed. The 
decision is made by the Boolean signals validA and 
validB, which are defined in the control logic section. 
The next line performs the ALU operation. The last 
two lines in the data-flow section delay the ALU re- 
sult and the destination register. The delayed result, 
called aluOut', is written back into the register file in 
the register named by destReg'', as indicated in the 
first two lines of the section. 

The control logic section determines when to by- 
pass the ALU inputs. The signals validA and validB 
are set to True whenever the corresponding ALU in- 
put is up-to-date. The definition of these signals uses 
the function noHazard, which tests whether the pre- 
vious instruction's destination register name matches 
a source register name of the current instruction. If 
they do, then the function returns False. The ex- 
ception to this is when the destination register is RO. 
In this case the ALU input is always up-to-date, so 
noHazard returns True. 

3.3    Transactions 

The definition of sham2 highlights a difficulty of many 
such specifications. Although the data flow section is 
relatively easy to understand, the control logic section 
is far from satisfactory. In fact, it often takes nearly as 
many lines of Hawk code to specify the control logic 
as it does to specify the data flow, and mistakes in 
the control logic may not be easy to spot. We need a 
more intuitive way of defining control logic sections in 
microprocessors. 

We use a notion of transactions within Hawk to 
specify the state of an entire instruction as it trav- 
els through the microprocessor (similar in spirit to 
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complete, we now need Delay circuits. The Delay circuits in turn require us to add Select circuits 
to act as bypasses. The logic controlling the Select circuits is not shown. 

Aagaard and Leeser [1]). A transaction holds an in- 
struction's source operand values, the ALU command, 
and the destination operand value. Transactions also 
record the register names associated with the source 
and destination operands: 

data Transaction = Trans DestOp Cmd [SrcOp] 

type DestOp = Operand 
type SrcOp = Operand 
type Operand =  (Reg,Value) 

data Value = Unknown I  Val Int 

An operand is a pair containing a register and its 
value. Values can either be "unknown" or they can be 
known, e.g. Val 7. 

For example, the instruction (R3 <- R2 ADD Rl), 
when it has completed, would be encoded as shown 
below (assume that register R2 holds the value 3, and 
Rl holds 4): 

Trans  (R3,Val 7) ADD  [(R2,Val 3),(Rl,Val 4)] 

This expression states that register R3 should be 
assigned the value 7 as a result of adding the contents 
of register R2 and Rl. 

Not all of the register values in a transaction are 
known in the early stages of the pipeline. When a 
register name does not have an associated value yet, 
it is assigned the value Unknown. For example, if the 
above instruction had not reached the ALU stage yet, 
then the corresponding transaction would be: 

Trans (R3,Unknown) ADD [(R2,(Val 3)),(Rl.Val 4))] 

Figure 4 shows how a transaction's values are filled 
in as it flows through the pipeline. 

3.4    Transaction structure 

In general, the Transaction datatype contains three 
subfields. The first field holds the destination register 
name and its current state. The state of a register indi- 
cates the current value for the register at a given stage 
of the pipeline. Possible state values are Unknown, or 
(Val k). The second field is the instruction's ALU 
operation, in this case the ADD command. The third 
field holds a list of source operand register names and 
their corresponding states. In this example, it holds 
the names and states for the source operands R2 and 
Rl. 

The instruction (R3 <- R2 ADD Rl), before it en- 
ters the SHAM pipeline, is encoded as the transaction: 
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Trans (R3,Unknown) ADD [(R2,Unknown),(Rl,Unknown)] 

At this point, none of the register values are known. 

3.5    Changes to handle transactions 

We change the regFile and alu functions so that they 

take and return transactions: 

regFile :: Signal Transaction -> 
Signal Transaction -> 
Signal Transaction 

alu :: Signal Transaction -> 
Signal Transaction 

Because the register file needs to both write new 
values to the CPU registers and read values from 
them, the regFile function takes a write-transaction 
and a read-transaction as inputs. The function ex- 
amines the destination register field of the write- 
transaction and updates the corresponding register in 

the register file. It outputs the read-transaction, mod- 
ified so that all of the source register fields contain cur- 
rent values from the register file. For example, suppose 
regFile is applied to the completed write-transaction: 

Trans (Rl.Val 4)  INC  [(Rl.Val 3)] 

and uses as the read transaction: 

Trans (R3,Unknown) ADD  [(R2,Unknown), (Rl,Unknown)] 

Further, assume that register Rl is assigned 20 and 
R2 is assigned 3 before regFile's application. Then 
regFile will update Rl to contain 4 from the write- 
transaction, and will output a new transaction that 
is identical to the read-transaction, except that all of 
the source registers have been assigned current values 
from the register file: 

Trans  (R3,Unknown) ADD  [(R2,Val 3),(Rl.Val 4)] 

The revised alu function takes a transaction whose 
source operands have values, performs the appropriate 
operation, and outputs a modified transaction whose 
destination field has been filled in. Thus if the ADD 
transaction above were given to alu, it would return: 

Trans  (R3,Val 7)  ADD  [(R2,Val 3),(Rl,Val 4)] 

3.6 Unpipelined SHAM 

Using transactions, the unpipelined version of SHAM 
is even easier to specify than it was before. 

shamlTrans :: Signal Transaction -> 
Signal Transaction 

shamlTrans instr = aluOutput' 
where 

alulnput = regFile aluOutput' instr 
aluOutput = alu alulnput 
aluOutput' = delay nop aluOutput 

nop = Trans (R0,Val 0) ADD [(R0,Val 0),(R0,Val 0)] 

But the real benefit of transactions comes from 
specifying more complex micro-architectures, as we 
shall see next. 

3.7 SHAM2 with Transactions 

Transactions are designed to contain the necessary in- 
formation for concisely specifying control logic. The 
control logic needs to determine when an instruction's 
source operand is dependent on another instruction's 
destination operand. To calculate the dependency, the 



source and destination register names must be avail- 
able. The transaction carries these names for each 
instruction. Because of this additional information, 
bypass logic is easily modeled with following combi- 
nator: 

bypass :: Signal Transaction -> 
Signal Transaction -> 
Signal Transaction 

The bypass function usually just outputs its first 
argument. Sometimes, however, the second argu- 
ment's destination operand name matches one or more 
of the first argument's source operand names. In this 
case, the source operand's state values are updated to 
match the destination operand state value. The up- 
dated version of the first argument is then returned. 

So if at clock cycle n the first argument to bypass 
is: 

Trans  (R4,Unknown) ADD [(R3,Val 12),(R2,Val 4)] 

and the second argument at cycle n is: 

Trans  (R3,Val 20)  SUB   [(R8,Val 2),(Rll,Val 10)] 

then because R3 in the second transaction's desti- 
nation field matches R3 in the first transaction's source 
field, the output of bypass will be an updated version 
of the first transaction: 

Trans  (R4,Unknown) ADD  [(R3,Val 20),(R2,Val 4)] 

One special case to bypass's functionality is when a 
source register is R0. Since R0 is a constant register, it 
does not get updated. The pipelined version of SHAM 
with bypass logic is now straightforward. Notice that 
no explicit control logic is needed, as all the decisions 
are taken locally in the bypass operations. 

SHAM2Trans  ::   Signal Transaction -> 
Signal Transaction 

SHAM2Trans instr = aluOutput' 
where 

readyInstr = regFile aluOutput' instr 
readyInstr' = delay nopTrans readyInstr 
alulnput = bypass readyInstr' aluOutput' 
aluOutput = alu alulnput 
aluOutput' = delay nopTrans aluOutput 

The first line takes instr and fills in its source 
operand fields from the register file. The filled-in 
transaction is delayed by one cycle in the second line. 
In the third line bypass is invoked to ensure that all of 
the source operands are up-to-date. Finally the trans- 
action result is computed by alu and delayed one cycle 
so that the destination operand can be written back 
to the register file. 

3.8    Hazards 

There are some microprocessor hazards that cannot 
be handled through bypassing. For example, suppose 
we extended the SHAM architecture to process load 
and store instructions: 

R3 <- MEM[R2] 
HEH[R5]  <- R2 

The first instruction above is a load instruction; 
it loads the contents of the address pointed to by R2 
intoR3. The second instruction is a store; it stores the 
contents of R2 into the address pointed to by R5. A 
block diagram of the extended SHAM architecture is 
shown in Figure 5. There is now a load/store pipeline 
stage after the ALU stage. However, this introduces a 
new problem. Suppose SHAM executes the following 
two instructions in sequence: 

R2 <- MEM[R1] 
R4 <- R2 ADD R3 

These two instructions have a data hazard, just as 
before, but we can not use bypassing to resolve it. 
Bypassing depends on having a value to bypass at the 
beginning of a clock cycle, but R2's value won't be 
known until the end of the cycle, after the memory 
contents have been retrieved from the memory cache. 
To resolve this hazard, we have to stall the pipeline 
at the register-fetch stage. When the first instruc- 
tion has reached the end of the ALU stage, the second 
instruction will have reached the end of the register- 
fetch stage. At this point the delay circuits between 
the register-fetch stage and the ALU stage are overrid- 
den; on the next clock cycle they instead output the 
equivalent of a no-op instruction. The register-fetch 
stage itself re-reads the second instruction on the next 
clock cycle. In effect, the pipeline stall inserts a no-op 
instruction between the two instructions involved in 
the hazard: 

R2 <- MEM[R1] 
NOP 
R4 <- R2 ADD R3 

Now when the ADD instruction is about to be pro- 
cessed by the ALU, the load instruction has already 
completed the memory stage. R2's value is held in the 
pipeline registers after the memory stage, so bypass 
logic can be used to bring the ALU's input up-to- 
date. In order to stall correctly, we have to re-read 
the second instruction. Thus stalling reduces the per- 
formance of the pipeline. 
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Figure 5: Block diagram of extended SHAM 
pipeline. Each Pipeline Register circuit is 
made up of multiple Delay and Select circuits. 
The Select circuits are used for bypassing, en- 
suring that the source operands are up-to-date. 

3.9    Hawk   Specification   of Extended 
SHAM 

In this section we will give more evidence of the simpli- 
fying power of transactions by specifying the extended 
SHAM architecture. The load/store extension signif- 
icantly complicates the control logic for the SHAM 
architecture. We shall see that transactions hold up 
well when we must add stalling logic to the pipeline. 

To start, we need to add the commands LOAD and 
STORE to the Cmd type: 

data Cmd = ADD  |   SUB   I   INC  I   LOAD  I  STORE 

We also need to define some additional Hawk cir- 
cuits. The first circuit, def aultDelay, augments the 
normal delay circuit so that when a stall hazard is 
detected, the augmented circuit will output a default 
value on the next clock cycle, rather than its current 
input value: 

defaultDelay Signal Bool 
Signal a 

■> a -> Signal a -> 

defaultDelay emitDefault default input = 
delay default  (select emitDefault 

(constant default) 
input) 

The def aultDelay circuit uses delay to store values 
between clock cycles. The value it stores for the next 
clock cycle is default if emitDefault is equal to True 
on the current cycle, otherwise it stores input. On 
the first cycle of the simulation def aultDelay always 
returns default. 

The isLoadTrans circuit returns True whenever its 
argument signal is a load transaction: 

isLoadTrans ::  Signal Transaction -> Signal Bool 
isLoadTrans ts = lift isLoad ts 

where 
isLoad  (Trans _ cmd _)  =  (cmd == LOAD) 

Although we previously passed SHAM instruc- 
tions as parameters, we now need to call a function, 
instrCache, to explicitly retrieve them: 

instrCache :: Signal Bool -> Signal Transaction 

Since the pipeline can stall, we need a way to 
ask for the same instruction two cycles in a row. 
The instrCache function takes a Boolean signal 
and returns the current transaction. Whenever the 
argument signal is True, then on the next cycle 
instrCache returns the same transaction as it did for 
the current clock cycle. Otherwise, it returns the next 
transaction as normal. 

We also need a circuit that actually performs the 
loads and stores: 



men ::  Signal Transaction -> Signal Transaction 

On those clock cycles where the input transaction is 
anything but a load or store transaction, the mem func- 
tion simply returns the transaction unchanged. On 
loads, mem updates the destination operand of the in- 
put transaction, based on the input load address. On 
stores, mem updates its internal memory array accord- 
ing to the address and contents given in the input 
transaction. The destination operand value is set to 
zero. 

We also define a new Hawk function, transHazard, 
that returns True whenever its two transaction argu- 
ments would cause a hazard, if the first transaction 
preceded the second transaction in a pipeline: 

transHazard :: Signal Transaction -> 
Signal Transaction -> 
Signal Bool 

The extended Hawk specification using transactions 
is given below: 

SHAM3Trans  ::  Signal Transaction 
SHAM3Trans = mentOut' 

where 

— register-fetch stage — 
instr = instrCache loadHzd 
readyInstr = regFile memOut' instr 
readyInstr' = 

defaultDelay loadHzd nopTrans readylnstr 

— ALU stage — 
aluln = bypass (bypass readylnstr' MemOut') 

aluOut' 
aluOut = alu aluln 
aluOut' = delay nopTrans aluOut 

— memory stage — 
memln = bypass aluOut' memOut' 
memOut - mem memln 
memOut' = delay nopTrans memOut 

Control logic 

loadHzd = 
sigAnd (isLoadTrans readylnstr') 

(transHazard readylnstr' 
readylnstr) 

The register-fetch stage retrieves the instruction and 
fills in its source operands from the register file. The 
register-fetch pipeline register delays the transaction 
by one clock cycle, although if there is a load hazard, 
the register instead outputs a nop-instruction on the 

next cycle. The ALU stage first updates the source 
operands of the stored transaction with the results of 
the two preceding transactions (memOut' and aluOut') 
by invoking bypass twice. It then performs the cor- 
responding ALU operation, if any, on the transaction 
and stores it in the ALU-stage pipeline register. The 
memory stage again updates the stored transaction 
with the immediately preceding transaction, performs 
any required memory operation, and stores the trans- 
action. The stored transaction is written back to the 
register file on the next clock cycle. The control logic 
section determines whether a load hazard exists for the 
current transaction, that is, whether the immediately 
preceding transaction was a load instruction that is in 
hazard with the current transaction. 

As we can see, the body of the specification remains 
manageable. The small control logic section to detect 
load hazards is straightforward and is a minority of 
the overall specification. In contrast, an equivalent 
specification of this pipeline where the components of 
each transaction were explicitly represented contained 
over three times as many source lines. The lower-level 
specification's control section was almost as large as 
the dataflow section, and not nearly as intuitive. 

We feel the transaction ADT is close to the level 
of abstraction design engineers use informally when 
reasoning about microprocessor architectures. 

4    Modelling the DLX 

Using techniques comparable to those described in this 
report we have modeled several DLX architectures: 

• An unpipelined version, where each instruction 
executes in one cycle. 

• A pipelined version where branches cause a one- 
cycle pipeline stall. 

• A more complex pipelined version with branch 
prediction and speculative execution. Branches 
are predicted using a one-level branch target 
buffer. Whenever the guess is correct, the branch 
instruction incurs no pipeline stalls. If the guess 
is incorrect, the pipeline stalls for two cycles. 

• An out-of-order, superscalar microprocessor with 
speculative execution. The microarchitecture 
contains a reorder buffer, register alias table, 
reservation station, and multiple execution units. 
Mispredicted branches cause speculated instruc- 
tions to be aborted, with execution resuming at 
the correct branch successor. 



The microarchitectural specification for the un- 
pipelined DLX is written in a quarter page of uncom- 
mented source code; the most complicated pipelined 
version takes up just over half a page. 

4.1    Executing the model 

We used the Gnu C compiler that generates DLX as- 
sembly to test our specifications on several programs. 
These test cases include a program that calculates the 
greatest common divisor of two integers, and a recur- 
sive procedure that solves the towers of Hanoi puzzle. 

We have not made detailed simulation performance 
measurements yet. Although we plan to test Hawk 
on several benchmark programs, we do not expect to 
break simulation-speed records. Hawk is built on top 
of a lazy functional language, which imposes some per- 
formance costs. Transactions also perform some run- 
time tests that are "compiled-away" in a lower-level 
pipeline specification. While it would be nice to get 
high performance, Hawk is primarily a specification 
language, and only secondarily a simulation tool. Our 
main interest is in using Hawk to formally verify mi- 
croarchitectures, while at the same time retaining the 
ability to directly execute Hawk programs on concrete 
test cases. 

5    Related Work 

There are several research areas that bear a relation 
on this work, in particular, modeling specific appli- 
cation domains with Haskell, and modeling hardware 
in various programming languages. We will pick an 
example or two from these two categories. 

Haskell has been used to directly model hardware 
circuits at the gate level. O'Donnell [10] has devel- 
oped a Haskell library called Hydra that models gates 
at several levels of abstraction, ranging from imple- 
mentations of gates using CMOS and NMOS pass- 
transistors, up to abstract gate representations using 
lazy lists to denote time-varying values. Hydra has 
been used to teach advanced undergraduate courses on 
computer design, where students use Hydra to even- 
tually design and test a simple microprocessor. Hydra 
is similar to Hawk in many ways, including the use of 
higher-order functions and lazy lists to model signals. 
However, Hydra does not allow users to define compos- 
ite signal types, such as signals of integers or signals 
of transactions. In Hydra, these composite types have 
to be built up as tuples or lists of Boolean signals. 
While this limitation does not cause problems in an 
introductory computer architecture course, composite 

signal types significantly reduce specification complex- 
ity for more realistic microprocessor specifications. 

There are many other languages for specifying 
hardware circuits at varying levels of abstraction. 
The most widely used such languages are Verilog and 
VHDL. Both of these languages are well suited for 
their roles as general-purpose, large-scale hardware de- 
sign languages with fine-grained control over many cir- 
cuit properties. Both of these languages are more gen- 
eral than Hawk in that they can model asynchronous 
as well as synchronous circuits. However, Verilog and 
VHDL are large languages with complex semantics, 
which makes circuit verification more difficult. Also, 
neither of these languages support polymorphic cir- 
cuits, nor higher-order circuit combinators, as well as 
Hawk. 

The Ruby language, created by Jones and Sheeran 
[7], is a specification and simulation language based on 
relations, rather than functions. Ruby is more general 
than Hawk in that relations can describe more circuits 
than functions can. On the other hand, existing Ruby 
simulators require Ruby relations to be causal, i.e. to 
be implementable as functions. Thus Hawk is equal 
in expressive power to currently executable Ruby pro- 
grams. In addition, much of Ruby's emphasis is on cir- 
cuit layout. There are combinators to specify where 
circuits are located in relation to each other and to 
external wires. Hawk's emphasis is on behavioral cor- 
rectness, so we do not need to address layout issues. 

Two other languages that are strongly related are 
HML [8] and MHDL[2]. HML is a hardware modeling 
language based on the functional language ML. It also 
has higher-order functions and polymorphic types, al- 
lowing many of the same abstraction techniques that 
are used in Hawk, with similar safety guarantees. On 
the other hand, HML is not lazy, so does not easily al- 
low the recursive circuit specifications that turned out 
to be key in specifying micro-architectures. The goal 
of HML is also rather different from Hawk, concen- 
trating on circuits that can be immediately realized 
by translation to VHDL. 

MHDL is a hardware description language for de- 
scribing analog microwave circuits, and includes an 
interface to VHDL. Though it tackles a very differ- 
ent part of the hardware design spectrum, like Hawk, 
MHDL is essentially an extended version of Haskell. 
The MHDL extensions have to do with physical units 
on numbers, and universal variables to track frequency 
and time etc. 



6 Future Directions 

We have just completed the specification of a super- 
scalar version of DLX, with speculative and out-of- 
order instruction execution. The use of transactions 
has scaled well to this architecture; it turns out that 
superscalar components like reservation stations and 
reorder buffers are naturally expressed as queues of 
transactions. 

Beyond this, we intend to push in a number of di- 
rections. 

• We hope to use Hawk to formally verify the cor- 
rectness of microprocessors through the mechan- 
ical theorem prover Isabelle [11]. Isabelle is well- 
suited for Hawk; it has built-in support for manip- 
ulating higher-order functions and polymorphic 
types. It also has well-developed rewriting tac- 
tics. Thus simplification strategies for functional 
languages like partial evaluation and deforesta- 
tion [3] can be directly implemented. 

We also expect that transactions will aid the veri- 
fication process. Transactions make explicit much 
of the pipeline state needed to prove correctness. 
In lower-level specifications this data has to be 
inferred from the pipeline context. 

• We are also working on a visualization tool which 
will enable the microprocessor engineer to inspect 
values passing along internal wires. 

• We have made initial progress on formally 
extracting stand-alone control logic from the 
transaction-based models of pipelines. Stand- 
alone control logic may be more amenable to con- 
ventional synthesis techniques. 
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Byron Cook, John Launchbury, and John Matthews 
{byron,jl,johnm}öcse.ogi.edu 

Oregon Graduate Institute 

Abstract. Hawk is a language for the specification of microprocessors 
at the microarchitectural level. In this paper we use Hawk to specify a 
modern microarchitecture based on the Intel P6 with features such as 
speculation, register renaming, and superscalar out-of-order execution. 
We show that parametric polymorphism, type-classes, higher-order func- 
tions, lazy evaluation, and the state monad are key to Hawk's concision 
and clarity. 

1    Introduction 

As the performance of cutting edge microprocessors increases, so too does their 
microarchitectural complexity. For example: 

• A superscalar processor that fetches multiple instructions must cache in- 
structions that cannot be immediately executed. 

• A processor with out-of-order execution must usually record the original 
instruction sequence for exception handling. 

• A processor that renames registers must allocate and then recycle virtual 
register names. 

While today's hardware description languages (HDLs) suffice for simple mi- 
croarchitectures, the features of modern designs are difficult to specify without 
a richer language. Hawk is a specification language based on Haskell [15] that, 
for the following reasons, provides a strong foundation for a new generation of 
HDLs: 

• Parametric polymorphism allows generic specifications to be used in different 
contexts. 

• Type-classes provide a convenient mechanism for abstracting over instruction 
sets, register sets, and microarchitectural components. 

• Higher-order functions enable a designer to structure specifications in elegant 
and concise ways. 

• Lazy evaluation naturally supports the simulation of multiple mutually de- 
pendent streams of instructions and data. 

• The state monad facilitates a disciplined style when specifying components 
with mutable state. 



In this paper we explore a Hawk specification of a microarchitecture based 
on the Intel P6 [4]. We give an overview of the top-level design, and describe in 
detail our specification of the Reorder Buffer. The purpose of this paper is to 
show that complex microarchitectures can be formally specified in a clear, concise 
and intelligible way that facilitates understanding, design review, simulation, and 
verification. 

We assume the reader is familiar with the basic concepts of functional lan- 
guages and microarchitectural design (such as branch prediction and pipelining). 
For an in-depth introduction to Haskell, read Hudak, Peterson, and Fasel's tuto- 
rial [5]. For more information on microarchitectures, refer to Johnson's textbook 
[6]. 

The remainder of this paper is organized as follows: in Section 2 we introduce 
an architecture; in Section 3, we provide an introduction to Hawk; in Section 4 
we use Hawk to specify the architecture; and in Section 5 we highlight how the 
features of Hawk are used in the specification. 

2    A modern microarchitecture 

2.1 Machine instruction notation 

Throughout this paper we use the following notation for machine instructions: 

rl <- r2 + r3 

The register ri is the destination register or destination operand. Registers r2 
and r3 are source registers. 

When the contents of a register is known we may choose to pair the register 
name and its value: 

rl <-  (r2,5) + r3 

In this case, 5 is a source register value. 
When an instruction's destination register value has been computed, we de- 

note this by pairing the destination register with its value: 

(rl,8) <-  (r2,5) + (r3,3) 

We sometimes refer to a destination register value as the instruction's value. 

2.2 Superscalar microarchitectures 

In general, superscalar architectures employ aggressive strategies to resolve inter- 
instruction dependencies and mask the latency of memory accesses. These in- 
clude speculative execution, the use of virtual register names, and out-of-order 
instruction issue. The internal microarchitectures often resemble that of a data- 
flow processor using speculative parallel evaluation. They are thus able to exploit 
instruction level parallelism to execute sequential, scalar programs. 
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The focus of this paper is on the speculative, superscalar, out-of-order, regis- 
ter renaming microarchitecture shown in Fig. 1. In the remainder of this section 
we provide an informal introduction to the architecture. 

A Reorder Buffer (ROB) maintains the sequential programming model of 
an architecture while instructions are executed out-of-order and in parallel else- 
where in the processor. In Fig. 1 the ROB is shown as the composite of a circular 
Instruction Queue, a Register Alias Table, and a Register File for the real register 
set. 

The Instruction Queue (IQ) stores instructions in the order in which they 
are received from the Instruction Fetch Unit (IFU). The IQ also behaves like a 
register file for the virtual register set, where the instruction's position in the IQ 
is its virtual register name. 

The Register Alias Table (RAT) is an array of virtual register names indexed 
by the real register set. For a given real register name, r, the RAT contains 
either the location of the youngest instruction in the IQ using r as a destina- 
tion operand; or nothing, if no instruction in the ROB contains the destination 
operand r. For example, if the instruction r5 <- r2 + r3 is placed into position 
vl of the IQ (as in Fig. 2), then the real register r5 is aliased in the RAT to the 
virtual register vl. If r4 <- r5 + r2 is then inserted into the IQ (Fig. 3), its 
reference to r5 is updated to vl, and r4 is aliased to v2 in the RAT. 

vl 

v2 

v3 

r5 <- r2  + r3 r4 
r5 vl 

Fig. 2. Inserting r5 <- r2 + r3 into the ROB 

vl 

v2 

r5 <- r2 + r3 

r4 <- vl + r2 

r4 
r5 

v2 
vl 

v3 

Fig. 3. Inserting r4 <- r5 + r2 into the ROB 

Each instruction, after it has been placed into the ROB, is passed onto the 
Reservation Station (RS) to be executed. The RS is a data-flow circuit that can 
execute instructions out-of-order and in parallel. Upon completion in the RS, an 
instruction's value is returned to the ROB and forwarded to other instructions 
still in the RS. 



2.3    Retiring instructions 

An instruction is retired from the ROB when it is at the front of the IQ and its 
value has been calculated. To retire an instruction in location v with destination 
operand r, the ROB must write the instruction's value to position r in the 
Register File, and remove the alias from the RAT if r is still aliased to v. 

Why isn't r always aliased to vl Consider the scenario in Fig. 4, where the 
ROB contains two instructions with r5 as their destination operand. The virtual 
register vl is no longer an alias of r5 in the RAT. When retiring the instruction 
from vi, the alias in the r5 position of the RAT should not be removed. Doing so 
would remove the unrelated alias from r5 to v3. However, in Fig. 5, because only 

rl 
r2 
r3 
r4 
r5 

v2 

v3 
vl 

v2 

(r5,0) <- ... 

(r3,3) <- ... 

(r5,l) <- ... v3 

Fig. 4. IQ contains two instructions that alter r5 

one instruction contains the destination operand r5, r5 remains aliased to vl. 
In this case, when retiring instruction vl from the IQ, the alias at the position 
r5 in the RAT should be erased. 
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r4 
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v3 

v2 
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vl 

v2 

(r5,0) <- ... 

(r3,3) <- ... 

(rl.l) <- ... v3 

Fig. 5. IQ contains one instruction that alters r5 

2.4    Example 

To illustrate the microarchitecture in action, we trace the execution of a four 
instruction program: 

r2 <- rl + r3 



r4 <- r4 + r2 
r2 <- rl + rl 
rl <- r5 - r3 

Rather than demonstrating the potential performance of the microarchitecture, 
this example is tailored to show the amount of bookkeeping that the processor 
must maintain. 

In Fig. 6, execution begins in Cycle 1 with the fetch of four instructions, the 
last of which requires a different execution unit. In Cycle 2 the fetched instruc- 
tions are inserted into the IQ. Source register references are modified in one of 
two ways. Either the operand is replaced with a virtual register reference if it 
is aliased in the RAT, or the register's value is filled in from the Register File. 
During Cycle 3 the first and last instructions are executed in parallel. In Cycle 
4 the ROB begins retiring instructions based on their position in the instruction 
sequence. Although the first and last instructions have both completed, to main- 
tain the sequential programming model, only the first instruction can be retired. 
The last instruction remains in the ROB until its predecessors have all been 
retired. In Cycle 5, v2 is computable because the value of vl has been forwarded 
to the source operand. In Cycle 6, because instruction v2 has completed, the 
remaining instructions are retired. 

3    The Hawk specification language 

This section introduces concepts and abstractions used in Hawk. At the risk of 
incompleteness, we will rely on the reader's intuition to fill in the meanings of 
functions and syntax that are not described. 

3.1    Signals 

A signal represents a wire, where at each clock cycle the value of a signal may 
change. For example, a signal could alternate between True and False. Or a 
signal might contain a series of primes numbers. Informally, we can think of a 
signal as an infinite sequence where the clock cycle is the index: 

toggle = True, False, True, False, True, False  
primes = 2,  3,  5,  7,   11,   13,   17,   19,  23,  29  

Like the synchronous language Lustre [3], Hawk provides a built-in signal 
type and functions to construct and manipulate them. The function constant, 
from Fig. 7, returns a signal that does not change over time: 

constant 5 = 5,  5,   5,  5,  5,  5,  5,  5,  5,  5,  5  

The function before delays a signal with a list of initial values1: 

[-1,0]   'before' primes = -1,  0,  2,  3,  5,  7,   11  

'before' denotes that before is used as an infix operator 
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constant 
delay 
before 
bundle 
unbundle 
lift 

a -> Signal a 
a -> Signal a -> Signal a 
[a]  -> Signal a -> Signal a 
(Signal a,Signal b)  -> Signal  (a,b) 
Signal   (a,b)   ->  (Signal a,  Signal b) 
(a -> b)  -> Signal a -> Signal b 

Fig. 7. Type signature of primitive Signal functions 

The function bundle takes a pair of signals and returns a signal of pairs: 

bundle (primes,toggle) =  (2,True),  (3,False)  

The function lift applies its argument to each value in a signal: 

lift f primes = f 2, f 3, f 5, f 7, f  11  

Conditional statements are overloaded for signaled expressions. For example: 
if toggle then primes _ 

T ^ ^     n —     *,      U,     O,      U,      11,       .... else constant 0 

Later in this paper we use the function delay, which is defined in terms of 
before: 

delay x s =  [x]   'before' s 

So, for example: 

delay 6 primes = 6,  2, 3, 5, 7,   11,  13,   17  

3.2     Transactions 

Transactions [1] formalize the notation of instructions introduced in Subsec- 
tion 2.1. A transaction is a machine instruction grouped together with its state. 
This state might include: 

• Operand values. 

• A flag indicating that the instruction has caused an exception. 
• A predicted jump target, if the instruction is a branch. 
• Other obscure information, such as predicted operand values if we choose to 

implement value locality [12] optimizations. 

Transactions are provided as a library of functions, written in Hawk, for 
creating and modifying transactions. For example, bypass takes two transactions 
and builds a new transaction where the values from the destination operands of 
the first transaction are forwarded to the source operands of the second. If i is 
the transaction: 

(r4,8)  <- (r2,4) + (rl,4) 



and j is the transaction: 

rlO <-  (r4,6) +  (rl,4) 

then bypass i j produces the transaction: 

rlO <-  (r4,8) + (rl,4) 

In our experience, specifications that operate on transactions are more con- 
cise than those that treat instructions and state separately. When designed in 
this style, a processor fetches a transaction containing only the machine instruc- 
tion which is later refined by the various microarchitectural components until 
the destination operand value is calculated. Transactions are an example of a 
user-defined abstraction designed to aid the development of a complex microar- 
chitecture. The concept of an instruction's local state as it acquires its operands, 
is executed, and finally retired, is the essential concept of a superscalar processor. 
Transactions also aid the verification process because they make explicit much 
of the state needed to prove correctness. In lower-level specifications this data 
has to be inferred from the context. 

4    Specifying the microarchitecture 

Fig. 8 contains the top-level Hawk specification of the microarchitecture in Fig. 1. 
Using lazy evaluation, a Hawk simulation will solve the specification's system 
of mutually dependent equations, producing a computational simulation. The 
components of the microprocessor are modeled as functions from input signals 
to output signals. For example, as Fig. 9 illustrates, the ROB is a component 
with two inputs and four outputs. The inputs and outputs may each represent 
very wide connections — perhaps enough to move numerous transactions in a 
single cycle. The arguments and results of the function rob from Fig. 8, 

(retired,ready,n,err) = rob 6  (fetched,computed) 

except for the size parameter, correspond to those in Fig. 9. 

4.1    Top-level structural specification 

In Fig. 8 the first equation specifies how transactions are fetched from the in- 
struction memory, mem: 

(instrs.npc) = ifu 5 mem pc err ([5,5]   'before' n) 

The Instruction Fetch (IFU) function, ifu, uses its first parameter, 5, to deter- 
mine the maximum number of transactions to fetch at each cycle. The IFU re- 
trieves consecutive transactions beginning at the program counter, pc. Initially, 
during the first and second cycles, 5 transactions are fetched. In later cycles 
feedback from the ROB, n, is used to determine the number of transactions to 
fetch. 

Execution begins with the transaction at location 256 in the instruction 
memory. After the first cycle, the value of pc depends on the location of the 



processor mem = retired 

where 

(instrs,npc) = ifu 5 mem pc err ([5,5] 'before' n) 

pc = delay 256 (if err then lastpc retired else npc) 

fetched = delay  []   (annotate instrs) 

(retired,ready,n,err)  = rob 6  (fetched,  computed) 

computed = rs  (6,execUnits)   (delay False err,delay  []  ready) 

memU = mob fetched retired 

execUnits =  [addU.subU,jmpU.intü.fltü.memU] 

Fig. 8. Top-level microprocessor specification 

previously fetched transaction, and the possibility of a mispredicted branch or 
exception. In the event of a mispredicted branch or exception, the signal err is 
set, and the pc comes from the last retired transaction: 

pc = delay 256  (if err then lastpc retired else npc) 

For simplicity we employ a naive branch prediction algorithm — all branch 
transactions are simply assumed to jump to the next consecutive transaction. 
The function annotate places this guess into the state of branch transactions: 

fetched = delay []   (annotate instrs) 

The Reservation Station (RS) function, rs, is parameterized on its size and 
execution units: 

computed = rs  (6,execUnits)   (delay False err,delay []  ready) 

During the initialization of rs, the execution units are clustered together with 
a function. The execution units can be pipelined or blocking. Execution units 
can also complete in multiple clocks. The RS accepts two input signals: an error 
flag and transactions from the ROB. The transactions computed contains the 
transactions that are complete and ready to be updated in the ROB. 

4.2    ROB specification 

Whereas the top-level specification of the microarchitecture is easily constructed 
as a purely functional application of components, the ROB is more complicated. 
Certainly the ROB could be specified in the applicative style used in Fig. 8. 
However, at a higher level of abstraction, the ROB can be thought of as a circuit 
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Fig. 9. Inputs and outputs of the ROB 

that sequences destructive updates on mutable components. Our approach in 
this paper is to specify the ROB in a behavioral style using imperative language 
features. In Fig. 10, the specification of the ROB is provided in the state monad 
and then encapsulated with Hawk's state thread encapsulation construct runST 
[9]. The advantage of using runST is that the language guarantees that rob 
neither depends on nor alters mutable state in other components or an outside 
environment [10]. We can therefore treat the ROB as a pure function that, on a 
given input, always returns the same output. 

In Fig. 10, during the beginning of the simulation, the ROB constructs its 
mutable sub-components (much of this work would be fabricated into the pro- 

q <- IQ.new n 
rat <- RAT.new 
rf <- RF.new 

At each cycle the ROB takes the fetched and computed signals signals 

cycle(fetched,computed) 

and performs the following tasks: 

• Update the computed transactions in the queue. For each transaction in the 
computed list, the function update obtains the virtual register reference from 
the destination register, and uses it as the index when updating the queue: 

update q computed 

• Insert the fetched transactions into the queue (see Subsection 4.3): 

instrs <- insert rat q rf fetched 



• Find transactions from the front of the queue that are ready to be retired. If 
a retired transaction was a mispredicted branch or raised an exception, then 
only retire the transactions before it (see Subsection 4.4): 

(retired,err) <- retire rat q rf 

• If a retired transaction was a mispredicted branch or raised an exception, 
then clear the IQ and RAT: 

if err then do {q.clear; rat.clear} 

• Measure the capacity of the queue for the IFU: 

capacity <- q.space 

• If a retired transaction was mispredicted or raised an exception then do not 
send fetched transactions to the RS: 

let ready = if err then []  else instrs 

• Return the retired transactions, the transactions ready to pass onto the RS, 
the measured capacity, and the error flag: 

return (retired,ready,capacity,err) 

rob n  (fetched,computed) 
= runST  ( 

do { q <- IQ.new n 
;  rat <- RAT.new 
;  rf <- RF.new 
;  cycle(fetched,computed) 

{ update q computed 
instrs <- insert rat q rf fetched 
(retired,err)  <- retire rat q rf 
if err then do {q.clear; rat.clear} 
capacity <- q.space 
let ready = if err then [] else instrs 
return (retired,ready,capacity,err) 

} 
) 

Fig. 10. ROB behavioral specification 



insert rat q rf instrs 

= foreach t in instrs 

do { (reg,alias) <- q.assignAddr (head (getDestRegs t)) 

; src <- mapM (rat.replace) (getSource t) 

; rat.write reg alias 

; dest <- mapM (rat.replace) (getDest t) 

; new <- regRead q rf (trans dest (getOp t) src) 

; q.enQueue new 

; return new 

} 

Fig. 11. Insertion specification 

4.3    Inserting new instructions 

Fig. 11 contains the specification of the function insert. When inserting new 
transactions into the ROB, insert takes a list of transactions, instrs, and 
performs the following actions: 

• Calculate the new position in the queue for the transaction: 

(reg,alias) <- q.assignAddr (head (getDestRegs t)) 

• Substitute references to real registers with virtual registers in the source 
operands: 

src <- mapM (rat.replace)   (getSource t) 

• Update the RAT: 

rat.write reg alias 

• Substitute the reference from the real destination register to the virtual 
destination register: 

dest <- mapM  (rat.replace)   (getDest t) 

• Read real register references: 

new <- regRead q rf  (trans dest op src) 

• Enqueue the transactions: 

q.enQueue new 

• Return the updated transactions: 

return new 



retire rat q rf 
= do { perhaps <- q.deQueueWhile complete 

; let (retired,err) = hazard findErr perhaps 
; mapM (writeOut rf rat) retired 
; return (retired,err) 
} 

where findErr t = jmpMiss o exceptionRaised 

jmpMiss t = do { x <- getPC t 
; y <- getSpecPC t 
; return (x /= y) 

} 
'catchEx' False 

writeOut rf rat t = 
do { let [Reg (Virtual vr real) (Val x)] = getDest t 

; rf.write real x 
; a <- rat.read real 
; do {  v <- a ; guard (v == vr) ; return (rat.remove real) } 

'catchEx' return () 

} 

Fig. 12. Retirement specification 

4.4    Retiring instructions 

Fig. 12 contains the specification of the function retire. When retiring trans- 
actions from the ROB, retire performs the following actions: 

• Remove transactions from the front of the queue until a transaction is found 
that has not been computed: 

perhaps <- q.deQueueWhile complete 

• If a branch was mispredicted or an exception was raised then ignore all of 
the transactions after that transaction: 

let  (retired,err) = hazard findErr perhaps 

• Write the values of the destination registers to the Register File : 

mapM (writeOut rf rat) retired 

• Return the retired transactions and a flag indicating a branch miss or raised 
exception: 

return (retired,err) 



5    Conclusions 

The design of correct superscalar microarchitectures is difficult. The language of 
discourse must be powerful enough to describe a wide range of processors, and 
concise enough that designers can maintain intellectual control of their work. 
Moreover, the language must scale to the designs of the future. In this sec- 
tion we highlight how polymorphism, type-classes, higher-order functions, lazy 
evaluation and the state monad improve the concision, clarity, and perhaps the 
provability of our specification. 

5.1 Polymorphism 

Many of Hawk's library functions are polymorphic. For example, delay accepts 
an argument of type a (where a could be any type), a signal of a, and returns a 
new signal of a: 

delay ::  a -> Signal a -> Signal a 

In Fig. 8, delay is used on both Booleans and lists of transactions: 

(delay False error, delay [] ready) 

Without parametric polymorphism, a delay function would be required for each 
specific type. In many specification languages, because the types that can be 
passed through signals are limited, ad hoc solutions are usually sufficient. How- 
ever, signals in Hawk are unrestricted and therefore must be accompanied by 
truly polymorphic functions. 

5.2 Type-classes 

The RAT, used in Fig. 10, is abstracted over the register set used in the under- 
lying machine language. For example, the function RAT.new is of type: 

RAT.new ::  Register r => ST s   (RAT s r v) 

This reads "for any type r that is a register set, RAT.new constructs a new RAT 
indexable by r". Because r is an instance of Register, the variables minBound 
and maxBound are overloaded to the smallest and largest values of r: 

minBound :: Register r => r 
maxBound :: Register r => r 

RAT. new uses minBound and maxBound to determine the size of the constructed 
RAT. 

Without type-classes, the RAT would either be useful for only one particular 
register type, or a number of extra parameters (such as the bounds and compar- 
ison functions) would need to be passed to the functions rob, RAT.new, insert, 
etc. Type-classes allow us to easily adapt the RAT to other machine languages, 
such as IA-64 or PowerPC. 



5.3    Higher-order functions 

Higher-order functions allow designs to be parameterized in new and powerful 
ways. For example, in Fig. 8 the RS is parameterized over a list of execution units. 
At the start of a simulation, the RS builds a single execution unit by clustering 
the list of circuits. When testing various microarchitectural configurations, the 
designer can easily modify the execution units at the top-level. 

We might also want to abstract the RS on the scheduling function: 

computed = rs  (6,cluster,[addU.subU,jmpU,mltU]) 
(delay False error,delay []  ready) 

This way we might use the same RS specification in many instantiations with 
different configurations of scheduling functions and execution units. 

5.4    Lazy evaluation 

Without Hawk's lazy semantics we would not be able to write the dependent 
equations in Fig. 8. Consider the simple clock circuit in Fig. 13. The design is 

clock 

Fig. 13. Clock circuit 

easily specified as a Hawk expression where the value depends on itself: 

clock = delay 0 (clock +1) 

In a strict semantics, the meaning of this expression would be undefined. 

5.5    Encapsulated state 

While maintaining the mathematically consistent features of Hawk, such as poly- 
morphism and lazy evaluation, the state monad adds the ability to use mutable 
state directly rather than encoding state with delays and other lower level sig- 
nal constructs. The use of runST facilitates the safe integration of imperative 
specifications in an applicative framework. 



6 Future work 

Currently, using the Glasgow Haskell Compiler, the simulator derived from the 
specification in this paper retires 800 instructions per second when executed on 
a UltraSPARC-1 processor. We hope that to improve performance using domain 
specific optimizations or compilation to better simulation packages. 

We have not sufficiently explored the synthesis and analysis of Hawk spec- 
ifications. Although Hawk is at a higher level of abstraction than mainstream 
HDLs from our initial results we believe that, within limits, automatic synthesis 
is feasible. 

We have just completed a correctness proof of a microarchitecture based on 
this paper in which the ROB, RS, and IFU are specified axiomatically [8]. We 
now hope to prove that the ROB, RS, and IFU presented here implement the 
axioms. 

We hope to use Hawk formally to verify the correctness of microprocessors 
with a mechanical theorem prover (for example, Isabelle [14]). A theorem proving 
environment for Hawk must have support for manipulating higher-order func- 
tions and polymorphic types. 

7 Related work 

Ruby [7] is a specification language based on relations, rather than functions. 
Relations can describe more circuits than functions. Much of Ruby's emphasis 
is on circuit layout. Ruby provides combinators to specify where circuits are 
located in relation to each other and to external wires. Hawk's emphasis is on 
circuit correctness, so we do not address layout issues. 

Lava is a Haskell library for the specification of Field Programmable Gate 
Arrays. Lava is intended to be used at a lower level of abstraction than Hawk. 
Like Ruby, Lava specifications focus much attention on issues related to layout. 

Like Hawk, Lustre [3] and the other reactive synchronous languages (Signal, 
Esterel, Argos, etc) provide mechanisms for constructing expressions over time- 
varying domains. However, research on these languages has emphasised reactive 
features rather than the issues addressed in this paper. 

The Haskell library Hydra [13] allows modeling of gates at several levels of 
abstraction, ranging from implementations of gates using CMOS and NMOS 
pass-transistors, up to abstract gate representations using lazy lists to denote 
time-varying values. Hydra is similar to Hawk in many respects. However com- 
posite signal types, such as signals of integers, must be constructed as tuples or 
lists of Boolean signals. This restriction severely limits Hydra's application to 
the domain of complex microarchitectures. 

HML [11] is a hardware modelling language based on ML. It supports higher- 
order functions and polymorphic types, allowing many of the same abstraction 
techniques that are used in Hawk. On the other hand, HML is not lazy, so it does 
not easily allow the dependent circuit specifications that are key in specifying 



microarchitectures in Hawk. Also, HML does not clearly separate its imperative 
and functional features. 

MHDL [2] is a hardware description language for describing analog microwave 
circuits, and includes an interface to VHDL. Though it tackles a very different 
area of the hardware design spectrum, like Hawk, MHDL is essentially an ex- 
tended version of Haskell. The MHDL extensions have to do with physical units 
on numbers, and universal variables to track frequency, time, etc. 
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Abstract 

Microarchitects are increasingly using techniques such as speculation, regis- 
ter renaming, and superscalar out-of-order execution to make use of instruction- 
level parallelism. However, the growing complexity of modern microprocessors 
exacerbates the difficulty of relating them to the simple machines that they em- 
ulate. Flaws found later in lower-level validation are often microarchitectural 
in nature. 

In this paper we provide high-level mathematical specifications for a basic 
machine and for a speculative, superscalar, out-of-order, renaming machine 
based on the Intel P6 microarchitecture. We then prove that the visible outputs 
of the two machines are equivalent. 

1    Introduction 

As the performance of microprocessors increases, so too does their microarchitec- 
tural complexity. Modern architectures employ aggressive strategies to resolve inter- 
instruction dependencies. These include rich combinations of speculative, superscalar, 
and out-of-order execution with the use of virtual register names. Proving that a mi- 
croarchitecture with these features implements the architecture's programming model 
is extremely difficult. However, it is an important aspect of design because flaws found 
later during lower-level validation are frequently manifestations of errors in the mi- 
croarchitectural specification. 

The limited real use of verification in practice is primarily attributable to the 
immaturity of the techniques, rather than a lack of desire. Industry is working hard 
to find formal verification methods that scale to the problem sizes they face. Our 
paper attempts to address some aspects of this issue 

Our research is based on a fairly detailed model of a P6-like microarchitecture 
[4, 6] expressed using Hawk [7]. To prove its correctness, we have constructed a more 
abstract specification in which each major component is axiomatically specified. We 
are then able to prove that, for any given program, the visible output computed by 
the microarchitecture is identical to that of the simple reference machine. 

1 



The model described in this paper implements speculation, prediction, superscalar 
out-of-order execution, and renaming. Following Intel convention, we will refer to this 
combination of microarchitectural optimizations as dynamic execution. Actually, our 
axiomatization does not limit us to a single microarchitecture. The proof is applica- 
ble to any combination of components that satisfy the axioms, so our result should 
be relatively easily adaptable to other architectures that use elements of dynamic 
execution, such as the MIPS T5, HP's PA8000, Digital's Alpha, etc. 

We believe this approach to demonstrating correctness would be feasible for use 
in industry. Of course, even the moderately complex model we have here is several 
orders of magnitude simpler than a commercial design, but the hierarchical nature of 
the proof is promising. As each design team is developing an RTL description of a 
component, the particular axioms make explicit the assumptions that other teams can 
rely on. If these axioms have to change during development then there is opportunity 
to determine that the global correctness property still holds, and if not, what explicit 
changes need to be made to other units. 

This paper is organized as follows: we specify a simple machine, provide a spec- 
ification of the dynamic machine, and prove that the microarchitectures are visibly 
equivalent. 

2    Defining correctness: the standard machine 

A microprocessor's correctness is typically defined by the instruction set architecture 
(ISA), which gives semantics to each instruction in terms of the machine's states 
(register files, caches, etc). We adopt a slightly different perspective, abstracting away 
the ISA in the concept of a simple standard machine. This decision stems from the 
fact that top-level specifications of dynamic architectures are largely independent of 
the concrete ISA. Instead, they are distinguished by the way they treat dependencies 
and branching in programs, and those essentials are captured in our standard machine. 

Concrete ISAs should be thought of as refinements of the standard machine, and 
for each such refinement there is a corresponding refinement of the dynamic machine 
described in the next section. This makes our correctness proof, with some extra 
work to define refinements, valid for a wide class of ISAs. 

We assume that the standard machine executes a fixed program, so its result can 
simply be described as a sequence of pairs of the form (instruction, result). Two 
sorts are needed for this: Pgmldx for indices (addresses) of instructions, and Value 
for results and operands. We make three assumptions about the standard machine: 

• It executes a sequence of instructions, where each instruction in the sequence is 
determined by the preceding instruction and its result. 

• The result of any instruction can be computed if the values of the two operands 
are known. 

• The operands of each instruction are results of some previously executed in- 
structions, or a default value. 



Three functions suffice to model this situation: 

compute: Pgmldx, Value, Value —> Value, 
next: Pgmldx, Value -> Pgmldx, 

getSources: Pgmldx, PgmldxSeq -> N + (), N + (), 

where N + () is the set of natural numbers plus a distinguished value (). 
The result of the execution of the standard machine, or the visible output, is an 

infinite sequence 
standard = (i0, v0), (ij, ui),... 

defined inductively by the following axioms. 

Axiom SM-1. ?o = start I dx. 

Axiom SM-2. im = next(im_i,uTO_i), for m > 0. 

Axiom SM-3. vm = compute(im,(up,ug)), 
where (p, q) — getSources(«m, (ii,..., im_i)), and VQ = def aultValue. 

Axiom GS. If getSources(i, (i1?..., im)) = (p, q), then each of p, q is either () or 
an integer smaller than m. 

These axioms assume two constants, the starting instruction startldx G Pgmldx 
and defaultValue € Value. 

We think of the standard machine as executing one instruction per cycle. Axiom 
SM-2 states that the function next determines the location of the program counter at 
cycle m based on the instruction and value from m — 1. So, for example, next(i, v) = 
i + 1 for all but branch instructions. Axiom SM-3 states that getSources returns the 
cycles (p and q) at which the source operands for instruction im are calculated. The 
value vm is then defined in terms of the values at cycles p and q. 

The virtue of the standard machine is in its unified treatment of instructions 
and its use of a small number of functions capable of expressing the inter-instruction 
relationships which are at the basis of more sophisticated execution algorithms. With 
this simplicity there comes an important limitation: the standard machine does not 
have enough specification details to properly model dependencies between instructions 
that manipulate the memory. These dependencies are established only after address 
computation, and our getSources is "static" in that respect. 

The standard machine models register dependencies fully. As regards the memory 
dependencies, it only supports the basic model in which these instructions are done in- 
order. This is achieved by defining getSources so that each load or store instruction 
is dependent on the last preceding store. 

3    Specifying the dynamic microarchitecture 

In this section we introduce the specification of the dynamic microarchitecture in 
Figure 1, which is based on the Intel P6 microarchitecture. It is composed of the 
following components: 
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Figure 1: Top-level dynamic microarchitecture 

Instruction Fetch Unit (IFU). The IFU provides multiple instructions at each 
clock cycle and sends them to the ROB through the fetched wire. The IFU 
also adds information to the fetched instructions. For example, since the IFU 
would typically use branch prediction, each branch instruction in fetched is 
annotated with its speculative program counter. 

Reorder Buffer (ROB). The ROB maintains the sequential programming model 
of the ISA while instructions are executed in parallel elsewhere in the processor. 
In essence the ROB is a queue of instructions. After enqueing instructions 
from the fetched wire, the ROB passes them on to the Reservation Station 
through the ready wire. An instruction can be dequeued when its value has 
been computed in the Reservation Station and all of the instructions that were 
fetched before it have been dequeued. In the case of a mispredicted branch, 
the ROB asserts the error signal and returns the program counter to the IFU 
through the lastRet signal. The visible output of the microarchitecture is the 
retired wire, which represents the instructions retired at each clock cycle. 

Reservation Station (RS). The RS is the data-flow execution component of the 
microarchitecture. Instructions placed into the ROB are passed on to the RS 
through the ready wire. The RS can execute instructions dynamically. Upon 
completion in the RS, an instruction's value is forwarded to other instructions 
still in the RS, and eventually returned to the ROB through the computed wire. 

3.1    Concepts used in the formal specification 

3.1.1    Transactions 

We think of instructions in the execution process as entities which come into being at 
a certain cycle and evolve thereafter. To formalize those entities, we use the concept 
of transactions [1, 7]. A transaction is a package of information which (directly or 
indirectly) contains the identity of the unique instruction it is associated with plus 
various data contained in the current machine state that are relevant for the execution 
of that instruction. Pairs (i, v) in the description of the standard machine are a simple 
example of transactions.   In general, the structure of transactions depends on the 



machine being considered and is a matter of choice. Here we use six components: 

Trans = Pgmldx, Pgmldx, Name, Ops, Result, Status. 

The first component is the index of the instruction in the (fixed) program and the 
second is the index of the speculative next instruction. The Name component pro- 
vides unique identifiers to instructions; we take Name to be the set of positive in- 
tegers, so that the name of an instruction will be its index in the sequence of all 
fetched instructions. Next we have Result = Value + Name and Ops = Value + 
Name, Value + Name. Thus, all instructions have two operands, and the sort Value 
is conveniently extended with Name to include references to values that are not yet 
computed. This is the essence of register renaming. Finally, Status is the finite set 
of letters {A, C, D, E, N, R}, abbreviating the words Active, Computed, Dropped, 
Error, New, and Retired respectively. 

The projections from Trans to its six components will be denoted pc, spc, name, 
ops, res, and sts respectively. Angle brackets will be used for projections onto several 
components; for example, (pc, res): Trans -» Pgmldx,Result. The two operands will 
be denoted by opl and op2; thus, ops(t) = (opl(t),op2(t)). 

3.1.2    Signals 

Another important concept in the specification is that of signals. A signal represents 
a wire, where at each clock cycle the value may change. We think of signals as infinite 
sequences indexed by the clock cycles. If s is a signal, then sn denotes its nth element, 
i.e., the value of s at clock cycle n. 

Particularly convenient in high-level specifications are signals of transactions. 
Even though a physical wire would never contain a whole transaction, its content 
is usually associated with a unique transaction. Refinements to lower level specifica- 
tions could replace transaction signals with the relevant data components. 

3.2    Top-level specification and correctness statement 

Recall that the dynamic machine is composed of an IFU, ROB, and RS (Figure 1). 
The top-level specification of the dynamic machine is given by mutually recursive 
equations 

fetched = z/u(lastRet, error) 

(retired, ready, lastRet, error) = rob(f etched, computed) 

computed = rs(ready, error) 

which define the signals fetched, computed, ready, retired, error, and lastRet. 
The functions Z/M, rs and rob modeling the three components of the dynamic machine 
have the following types (defined formally in 3.2.2): 

ifu: TransSig,BoolSig ->• TransSeqSig 

rob: TransSeqSig, TransSetSig -> TransSeqSig, TransSetSig,TransSig,BoolSig 

rs: TransSetSig, BoolSig -> TransSetSig 
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Figure 2: Example history of computational state 

The following sections contain axiomatic specifications for if v., rs and rob. Later 
in the paper we prove that any dynamic machine satisfying these specifications re- 
produces the result sequence standard of the standard machine. This is our main 
theorem. 

Theorem, (pc, res)(retired! retired2 • • •) = standard. 

Here retiredi retired2 • • • is the concatenation of finite sequences retired!, 
retired2, etc. 

3.2.1    Computational state 

Our approach to proving top-level specifications of complex machines is based on the 
idea of using transactions to explicitly describe the current state of computation at 
any cycle. We found it convenient to represent the state of computation at the cycle n 
as a sequence crn = i1? i25 • • •> consisting of transactions that have been considered since 
the beginning of computation. Thus, we start with uo = 0, and if an = U,t2,... ,tk, 
then o~n+i = t[, t'2,..., t'k, tk+i, ■ ■ ■ ,ti, where the transactions t'^t^,... are descendants 
of ti,t2,-.- and tk+i, • • • ,ti is the package of freshly fetched transactions. Of course, 
t'i = ti is possible for some i; t\ ^ t{ means that the computation of the ith instruction 
has made progress in the last cycle. It is clear that understanding the passage from 
an to an+i means understanding the way the machine works. In our example, the 
computational state is conveniently used as the ROB state, but different variations 
are possible. 

It is appropriate to picture all sequences «To, 0i,cr2,... as rows of a table, as in 
the example in Figure 2. Then each column of the table is an infinite sequence 
0m[i],0m+i[*],0m+2W,-• • where m corresponds to the cycle when the ith instruction 
(/; in Figure 2) was fetched. This is the personal history of an instruction as it 
goes through the stepwise computation. A useful observation is that there are only 
finitely many essentially different possibilities where crn[i] ^ <rn+i[z']. That is, there 
are only finitely many "elementary" steps involved in the computation of a single 
instruction. We make this explicit by using the status letters to describe what stage 
of computation a transaction is in. If status letters are correctly chosen, then every 
change from crn[i] to <rn+i[z] is recorded in a change of status letter. Thus, the "status 
words" r„ = sts(crn) and transitions from Tn to rn+1 suffice to present much of the 



qualitative analysis of the computation. 
For example, the status words are always in the form {R, D}*{A, C, E}*N*, which 

means that the computational state consists of a sequence of retired (R) and dropped 
(D) instructions followed by a sequence of currently active (A) and computed but not 
retired (C, E) instructions, followed by a sequence of instructions whose computation 
in the RS has not yet begun (N). The ROB axiomatics gives a precise description of 
what changes can occur in the passage from crn to crn+i. 

Since the computation of every instruction takes finite time, the axioms should 
make sure that every sequence <rn[i] for fixed i stabilizes (becomes constant eventu- 
ally). This in turn defines the "limit state" (Too, where a^i] is defined as the limit 
of an[i] as n -> oo. The limit state is a convenient way of representing the result 
of the whole infinite computation. For example, the axioms of the components of 
the machine should be powerful enough to ensure that every transaction in the limit 
state is either retired or dropped as part of a mispredicted branch, and also that the 
subsequence of retired transactions essentially coincides with the result sequence of 
the standard machine. 

3.2.2    Miscellaneous sorts and notations 

It is convenient to define the sorts TransSeq (sequence of transactions) and TransSet 
(set of transactions) with a requirement that none of their members can contain two 
transactions with the same name. We also write the sort TransSeqSig for the sort 
of signals of TransSeq, and analagously define the sorts TransSetSig and BoolSig. 
The functions pc, ..., sts extend naturally to TransSeq and TransSet; for example, 

pc(f i •■•*«) = pc(*i) • • • pc(t») and pc{tu ...,*„} = {pc(*i),..., pc(*n)}. 
The constituent sorts and operations of the standard machine will occur in the 

specification of the dynamic machine as well. We shall also need a default transaction 
i() whose only property required is res(t()) = def aultValue. 

Suppose a = ^i • • -tk € TransSeq. If (p,q) = getSources(pc(i,-),pc(<i ■ • -i.-i)) 
we say that tp and tq are the first and the second transaction sources of £; in a. If, in 
addition, ops(tf,-) = (res(Jp),res(ig)), then we say that <,• has correct operands in a. 

We define nextpc(i) = next((pc, res)(<)) and say that a transaction t is faulty if 
spc(t) 7^ nextpc(t). 

We shall use the notation a[i] for the ith element of the transaction sequence a and 
a(n) for its element whose name is n. Similarly, for a transaction set S, its member 
whose name is n will be denoted S{n). The empty sequence and the empty set will 
be both denoted 0, and the length of a sequence a will be denoted by \a\. 

Two useful functions replace and dif f are defined for both transaction sets and 
transaction sequences. If each of X and Y is either a transaction set or a transaction 
sequence, then replace^, Y) is obtained from X by replacing elements X(i) with 
Y(i) for every i for which it is possible, and dif f (X, Y) is obtained by removing from 
X all elements X(i) such that X(i) = Y(i). 

For a G TransSeq and S C Status, define <7S to be the subsequence of a consisting 
of all transactions whose status belongs to S. We will shorten this notation and, for 
example, write aRD instead of a^-R'D\ Define also cr° = <rs, where S = {R, A, C, E}. 



3.3    IFU specification 

In the IFU axioms below we assume that lastRet, error and fetched are signals 
satisfying the relation i/«(lastRet, error) = fetched. 

Axiom IFU-1.   If fetched« = tx ■ • • tp and fetched,- = 0 for all i < n, then 
pc(ii) = startldx. 

Axiom IFU-2.   If fetched« = U---tp, then pc(U) — spc(*,_i) for every i € 
{2,...,p}. 

Axiom IFU-3.    Let m < n, fetched«,  = ti---tp, fetched«  = t'1---t'q, and 
fetched,- = 0 for i between m and n. Then: 
(a) If error,- is false for all i such that m < i < n, then pc(i'1) = spc(tp); 
(b) If i is the smallest integer such that m < i < n and error,- is true, then 
pc(t[) = nextpc(lastRet,). 

Axiom IFU-4. For every m there exists n such that n > m and fetched« ^ 0. 

The axioms are conditions that the function ifu is required to satisfy. Axiom IFU- 
1 states that when the IFU fetches the first instruction, it will fetch from startldx. 
Axiom IFU-2 indicates that the IFU fetches "consecutive" instructions, and defines 
"consecutive" for branch instructions to be the instruction pointed to by the branch's 
speculative program counter. Axiom IFU-3 clarifies the relationship between two 
consecutive non-empty fetches. If the error signal was set at the time of the first 
fetch or in the meantime, then the first instruction of the second fetch should be 
the correct successor of the last retired instruction. Otherwise (when there are no 
errors between the two fetches), speculative fetching continues. Finally, Axiom IFU-4 
simply states that fetching never ceases. 

3.4    RS specification 

In the RS axioms we assume the signals ready, error, and computed satisfy the equal- 
ity rs(ready, error) = computed. We use two sets contents« and justComputedn 

to describe the state of the RS. The set contents« is meant to contain the trans- 
actions present in the RS at the nth cycle, and justComputed^ corresponds to a 
subset of computedn whose elements have "correct" res components. We also need 
an auxiliary function updtOps: TransSet —> TransSet whose effect is to replace all 
"reference" operands of the form name(s) with the available values res(s). 

Definition 1. updtOps(S') = {f(t,S)\t e S}, where /:Trans,TransSet ->• Trans 
is the function defined by: f(t,S) = t' if and only ift andf have the same components 
except ops, and 

. ,. _ J res(s)     ifopl(t) = name(s) for some s € S 
^ ^  ' ~ 1 opl(/)    otherwise 

and similarly for op2. 



Axiom RS-1. computed^ C {t | t G contentsn and res(i) G Value}. 

Axiom RS-2. For every t € justComputedn there exists s G contents« such that 
res(t) = compute((pc, ops)(s)) and the other components of t are the same as those 
of 5. 

Axiom RS-3. If n > 0, error„_i is false, and the sets of names of transactions in 
readyn_1 and contents«_i are disjoint, then 

contents« = updtOps(readyn_1 U c„_i) \ computedn_1 

where c«_i = replace(contents„_i,justComputec^.j). In all other cases, 
contents« = 0. 

Axiom RS-4. If a transaction t belongs to contents« and if opl(i),op2(i) € 
Value, then there exists m > n such that contentsm does not contain a transaction 
whose name is name(i). 

Axiom RS-1 states that transactions returned by the RS through the computed 
signal have no further need of computation. It also constrains the computed signal to 
contain instructions that have come from somewhere, i.e. the RS cannot create hoax 
transactions to pass through computed. Axiom RS-2 clarifies the relationship between 
justComputedn and contentsn. Again, this axiom precludes the RS from creating 
new transactions with no correspondence to the state of the RS. It also states that 
the result of a computation in the RS should be equivalent to the result computed in 
the standard machine. Axiom RS-3 inductively defines the persistent state of the RS. 
If no exception is raised, then the contents at cycle n equals the contents at n — 1, 
combined with the new instructions sent from the ROB, and minus the instructions 
computed at n — 1. Also, the results of newly computed transactions are forwarded in 
the process to those transactions which need them as operands. Finally, Axiom RS-4 
states that each instruction that is present in the RS and has values as operands will 
eventually disappear from RS—it will either be passed back through the computed 
wire, or squashed if error occurs in the future. 

3.5    ROB specification 

We treat the ROB as a state machine by specifying the function 

rob': TransSeq, TransSet, State —> State, TransSeq, TransSet, Trans, Boolean. 

Precisely, the equality rob(f etched, computed) = (retired, ready, lastRet, error) 
holds if and only if, for every n > 0, the equality rob'(f etched«, computed^, staten) = 
(staten+i, retired«, readyn, lastRet«, error«) holds. The axioms below are stated 
as conditions on fetched«, computed^, state«, state«+1, retired«, readyn, lastRet«, 
error«. 

As indicated in Subsection 3.2.1, the state of the ROB contains all transactions 
ever considered.  We put them in a sequence respecting the order of fetching.  The 



Status word sts(cr) of any state a always has a certain form and it is convenient to 
put that restriction into the sort definition: 

State = {<r € TransSeq | sts(cr) G {R, D}*{A, C, E}*N*}. 

The specification of the ROB uses four auxiliary functions: 

acceptFtchd: State,TransSeq-)- State 

getOps: State —> State 

acceptCptd: State, TransSet ->■ State 

retire: State —>• State 

Definition 2. acceptFtchd(cr,a) = aß, where \ß\ - \a\ and for every i such that 

1 < • < \ß\ 
(a) name(/?[i]) = res(ß[i]) = \cr\ + i; 
(b) sts(/?[i]) = N; 
(c) The remaining components of ß equal the corresponding components of a. 

Definition 3. getOps(cr) = u if and only if u is obtained from a by replacing the 
first transaction t of a whose status is N (if it exists) with a transaction t' so that f 
has status A and correct operands in u, and has all other components same as t. 

Definition 4. Given S G TransSet and a e State, let S' consist of all transactions 
t of S whose status letter is modified so that sts(t) is E or C depending on whether 
t is faulty or not. Define acceptCptd(cr, S) = replace^, 5"). 

Definition 5. Define retire': Status* -» Status* as follows. For r € Status*, let 
rRD be the maximal prefix of r which uses only letters R,D. If r = T

RD
C6, then 

retire'(r) = rRDR9. If r = rRDE6, then retire'(r) = T
RD

RD^. In all other 
cases, retire'(r) = r. 

Definition 6. retire(o-) = u> if and only if sts(u) = retire'(sts(cr)) and all other 
components of u are equal to the corresponding components of a. 

Axiom ROB-1.  The initial state stateo is empty. For every n > 0, there exist 
fi>6>£3 £ State and integers k > 0 and I > 1 such that 

£x = acceptFtchd(state„,fetchedri) 

e2 = getops^en 
£3 = acceptCptd(£2,computedn) 

state„+i = retire'(£3) 

Axiom ROB-2. With &,&,& as in Axiom ROB-1, 
(a) readyn is the set determined by the sequence diif(£2,£i); 
(b) retiree^ = diff(state*+1,££); 
(c) If retiredn / 0, then lastRetn is the last element in retired^ 
(d) error„ = true if and only if retired« ^ 0 and lastRetn is faulty. 

Axiom ROB-3. If state^ = 0 and state^ ^ 0, then readyn ^ 0. 

10 



The axiom ROB-1 deserves a detailed explanation. To shorten the notation, let 
us use an for state«, rn = sts(crn), and pn = retired«. We want to look closely 
at the transitions from an to crn+1 and from T„ to r„+1 through three intermediate 
stages. Let d, C2, C3 ^e the status words of the intermediate states £1, £2 and £3 of 
ROB-1. Suppose rn = r*DuNp. Then Ci = T*

D
U)N

P+,!
, where q = |f etched«|. Note 

that an survives intact as a prefix of £1. Now (2 = r^DüjAkNp+q~k, for some k (equal 
to the length of ready«). Clearly, £2[i] # £1[i] implies £i[i] = N and £2[i] = A. As a 
result of the next step, £3 = r^Duj'Np+q~k

1 where u/ is the result of replacing some 
y-L's in toAk with C or 2?. Again, every change is recorded in a change of status letter: 
if 6[*] 7^ 6[*1»then &[*] = A and Cs[»] is C or £. 

The last passage, from (3 to r„+1, is the most complicated. If the first letter of u/ 
is not C or E, then £3 = rn+\ and £3 = an+i. Otherwise, we can write u/ = Cr~lEu" 
or u/ = Crw", where r > 1 and, in the second case, u>" does not begin with C or E. 
Let us call this prefix C~lE or Cr of u/ the critical segment of (3. What happens now 
is that letters of some prefix of the critical segment get replaced with R. If / < r, that 
is all that happens, but if / = r and if the critical segment is Cr~lE, then, aside from 
the transformation of the critical segment into Rr, a dramatic change occurs to the 
right of the critical segment—all its letters get replaced with D. This special situation 
requires a special treatment in many arguments that follow, so we shall refer to n as 
being singular if the change from an to crn+1 involves this "flushing" of transactions. 
Otherwise, n will be called regular. Note that retired« is the subsequence of £3 
that corresponds to the subword of (3 that is replaced with Rr. We still need to 
consider the case when I > r, but it brings nothing new, since, as we can easily check, 
retire'(£3) = retirer(£3) if / > r. Observe finally that crn+1[z] / £3[i] implies that 
either T„+i[i] = R and (3[i] is C or E, or rn+i[z] = D and £3[i] is A, C, E or N. 

4    Correctness proof 

So far we have axiomatized the individual units. Now we demonstrate that the 
axiomatization is sufficient to obtain a global correctness property. 

In addition to shorthands <Tn,rn, we will also use pn for retired«. Recall that our 
goal is to show (pc, res)(p(X>) — standard, where p^ = p\p2 • • -. 

4.1    State transitions and the limit state 
Lemma 1 (Name is index).  Whenever defined, crn[i] = an(i). Consequently, name(cr„) 
is an initial segment of the sequence of positive integers. 

Proof. This is a matter of checking the property name(er[i]) = i for all states a = an. 
The empty state obviously has that property. Arguing by induction, assume an has 
the property. We use ROB-1 and its notation. The first thing to observe is that £1 has 
our property by Definition 2. Then we have name(£i) = name(£2) = name(£3) = 
name(crn+i), where the three equalities are justified by Definitions 3,4, 6 respectively. 
Thus, <r„+i has the property considered. D 
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Figure 3: Transaction status transition diagram 

Lemma 2 (Retired). If n is regular, then <r^ = cr^Dpn. If n is singular, then 
pn ^ 0 and crn+1 = cr^j = al^Dpn8n, for some 8n such that sts(5n) G D*. D 

It follows that cr^+1 = <7^/9n and so p^ = lim cr^. However, at this point it is not 
even clear that p^ is an infinite sequence. 

Every change in the four step transition from an[i] to <rn+i[i] is reflected in a 
change of status letter. The following lemma states this precisely. 

Lemma 3 (State transition). If o-n+i[i] ^ crn[i], then Tn+i[i] ^ Tn[i]. The arrows 
in the transition diagram in Figure 3 correspond to all possible pairs (rn[i],rn+i[i]). 
0 

Lemma 4. Ifrn[i] € {R, C, E}, then res(an[i]) G Value. D 

Lemma 5 (Faulty). Ifrn[i] = E then t is faulty, and ifTn[i] = C then is not faulty. 

Proof. Suppose Tn[i] is E or C. Let m + 1 be the smallest integer such that T„i+i[i] = 
Tn[i] and let t = <rm+i[i]. By Lemma 3, o~n[i] and t are at the same time faulty or not. 
If £1162 >£3 are the intermediate states in the transition from crm to erm+1, it follows 
from the the commentary to ROB-1 that £3[i] = sts{t) = r„[i] and £2[i] = A. By 
Lemma 1, £3[i] = £3(1), and, by Definition 4, ^(i) is obtained from t' == computedm(i), 
and t is faulty or not depending on whether ^[i] is C or E. Now t and t' are at the 
same time faulty or not because the passage from £3 to <rTO+i does not affect the 
components pc, spc, res in terms of which being faulty is defined. D 
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Lemma 6 (Faulty retired). Suppose t is a transaction occurring in some pn. Then 
t is faulty if and only if n is singular and t is the last transaction in pn. 

Proof. Referring again to the commentary to ROB-1, sts(pn) = Rr corresponds to 
the subword Cr~lE or C of (3, depending on whether n is singular or regular. The 
desired result follows then from Lemma 5. D 

Lemma 7 (Error). An integer n is singular if and only if errorn is true. 

Proof. If pn = 0, then n is regular (Lemma 2) and errorn is false (ROB-2). Assume 
then pn is non-empty. By ROB-2, we have errorn is true if and only if the last 
element of pn is faulty. Lemma 6 then finishes the proof. D 

We turn now to the whole personal history of an instruction as it goes through 
the execution process, that is, the sequence an{i) for fixed i. Recall that crn[i] = an(i) 
so that the instruction named i remains in the ith place in all states an in which it 
occurs. 

The ROB axioms imply that |crn+1| = |CT„| + |f etched^, and it follows then from 
IFU-4 that lim \an\ = 00. Moreover, for any i there exist n such that \crn-i\ < i < |crn|, 
and thus o-m[i] exists if and only if m > n. 

Lemma 8 (Stabilization). For fixed i, the sequence an[i] is eventually constant. 

Proof. In view of Lemma 3, it suffices to show that the sequence rn[i] is eventually 
constant. Indeed, the sequence rn[i] corresponds to a (directed) path in the graph of 
Figure 3, and that graph has no non-trivial loops. D 

Since each sequence an[i] (for fixed i) stabilizes, there exists a limit state «Too = 
limcrn. It follows immediately that the sequence rn of status words has a limit r^, 
and that r^ = sts(<7oo). Since lim \an\ = 00, the limit state a^ is an infinite sequence. 

Since o-^D is a prefix of <r„, it follows that lim<T^D is a prefix of <7oo- We would like 
to show that the two are in fact equal or, equivalently, that a^ = <T^°. This means 
that every transaction is eventually retired or dropped, and we need to derive some 
results about the interaction between ROB and RS in order to prove that. 

4.2    In the Reservation Station 

From now on we shall use a shorthand Sn for content s„. The first result shows that 
ROB has information about the contents of RS. 

Lemma 9 (RS-contents). name(5n) = name(cr^). 

Proof. We argue by induction, the case n = 0 being trivial since, by definition, 
both £0 and a0 are empty. Assume then the lemma is true for some n. If n is 
singular, then a^+1 = 0 because crn+1 = a^ (Lemma 2), and contentsn+i = 0 by 
RS-3 and Lemma 7.   It remains to consider the case when n is regular.   By RS-1, 
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computedn C contents«. By induction, name(S„) C U,-<„name(readyi). Since the 
sets name(readyi) are pairwise disjoint, we obtain from RS-3 that 

name(5'n+i) = (name(5„) U name(readyn)) \ name( computedJ. 

We prove now that name(^+I) and name(cr^) satisfy the same relation. Using 
the notation of ROB-1, we have name(ff) = name(a^) by definition of acceptFtchd. 
Then name(^) = name(ft*)Uname(readyn) by definition of get Ops. Then name(^) 
name(^) \ name(computedn) by definition of acceptCptd. Finally, name(^+1) = 
name(^) because the transition from £3 to crn+1 only involves status letter changes 
from C to R when n is regular. Thus, 

name(^+1) = (name(ff^) U name(readyj) \ name(computedn). D 

Let span(i) denote the set of all n such that i € Sn. By the previous lemma, 
span(i) can be viewed as the set of all n such that rn[i] = A. Suppose span(i) 
is non-empty. Then it is a set of consecutive integers; there exists n such that i € 
name(readyn), and n +1 is the smallest element of span(i). The maximal element of 
span(z) (if it exists!) is that n for which errorn is true or computedn exists. All these 
facts follow easily from the relation between name(S'„) and name(S'n+i) established 
in the proof of Lemma 9. 

In view of definition of updtOps and ßS-axioms, the evolution of a transaction 
in RS affects only the res and ops components. The following lemma makes this 
observation more precise. To state it properly, we introduce the concept of RS- 
status of transactions. We define rs-sts(^) to be a three-letter word xyz, where the 
x,y,z e {n,v}. The letter z is defined to be n if res(i) G Name, and to be v if 
ves{t) G Value. In the same manner, opl(tf) and op2(i) determine the values of x 
and y respectively. 

The formula in the axiom RS-3 implies that there are three steps in the transition 
from Sn to Sn+i when n is regular: 

5„i—> S' = replace^, justComputedJ 
i—► S" = updtOps(readyn U S') 

Sn+i = S" \ computed^. 

If one of Sn{i), Sn+i(i) exists and the other does not, that is the responsibility 
of readyn or computedn, as we have already observed. Suppose both exist. Then 
S'(i) and S"(i) exist and the later is equal to Sn+i{i). Thus, if S„(i) ^ Sn+i(i), then 
either Sn(i) ^ S'(i) or S'(i) ^ Sn+i(i) (or both, which we will see shortly does not 
happen). Suppose t = Sn(i) and t' = S'(i) are not equal. By definition of replace, 
we have t' € justComputed^ and the axiom RS-2 implies rs-sts(f') = vvv. Axiom 
RS-2 also gives us ops(t) = ops(t'), so rs-sts(tf) is either vvn or vvv. We will prove 
that the latter case does not occur. The second case to consider is when f = S'(i) 
and t" = Sn+i(i) are non-equal. This is an application of updtOps, and it follows 
that one or both operands of f are names and the corresponding operands of t" are 
values. It follows immediately that one cannot have both t / t' ^ t"—one inequality 
requires t' to have value operands, the other asks for at least one name operand. 

Let us look at the whole set span(i); denote tk = Sk(i)- Suppose m = minspan(z'). 
Then there exists t G readyOT_j such that tm has all components equal to those 
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Figure 4: Transaction values transition diagram 

of t except perhaps ops. Since res(i) = name(i) = i (by definition of ready) it 
follows that res(tm) = i. Consider now two consecutive members tn and tn+i of the 
sequence tm,tm+1,... As shown in the previous paragraph, if res(tn) ^ res(i„+i), 
then res(/„) is a name (necessarily i), and res(in+i) is a value. Referring again to 
the paragraph above, it follows that rs-sts(t„) = vvn and rs-sts(in+i) = vvv. It 
also follows that tk = tn+i for all k > n, so ops(^) ^ ops(ifc+i) is possible only when 
res(ik) = res(tk+i) G Name. 

Summarizing, we have the following. 

Lemma 10 (RS-transition). Let t = Sn{i) and t' = Sn+i(i). Then (pc,spc)(2) = 
(pc,spc)(t'). The inequality t ^ t' occurs only when rs-sts(i) ^ rs-sts(i'). The 
transition diagram in Figure 4 describes all possible pairs (rs-sts(i),rs-sts(t')). D 

Corollary 1. Ift,t' are transactions in an and Sn respectively, and if name(f) = 
name(f'), then (pc,spc)(t) = (pc,spc)(i'). D 

Now we need to deal with the simultaneous evolution of a transaction and its 
sources. Suppose span(i) is non-empty, let n be its minimum, and t0 G readyn_1 be 
the element giving rise to Sn{i), as in the paragraph before Lemma 10. By definition 
of ready, opl(f0) is either def aultValue or res(£i[p]) for some p < i determined by 
the function getSources, where £i is the first intermediate state between crn-i and 
an\ see ROB-1. Let us say that p is the first source of i, and similarly define the 
second source of i (if it exists). 

Lemma 11 (Forwarding). Suppose t = Sn(i) and p is the first source ofi. 
(a) If Sn(p) does not exist, then opl(i) = res(crn[p]) G Value. 
(b) If s = Sn(p) exists, then opl(t) = res(s) (which is either in Name or in ValueJ. 

(Analogous results hold for the second source/operands.) 

Proof. The proof is by induction on n G span(i). The difficult part is the initial 
case n = minspan(i). Let to G readyri_1 be as above. Recall that all components 
of t0 and t are the same except possibly that some operand of t0 is in Name, and 
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the corresponding operand of t is in Value. We consider three cases separately. Let 
S' = replace(5,„_i, justComputed^j) and S" = updtOps(readyri_1 U S'). We have 
t = S"(i) and opl(t) = res(S'{p}) if S'(p) exists; otherwise opl(<) = opl(t0). The 
proof splits into three cases. 
Case 1: opl(t) € Name. We prove that Sn{p) necessarily exists and that opl(tf) = 
p = res(Sn(p}); that will prove the lemma in the case considered. 

First we have opl(t) = opl(t0) = res(£i[p]) = p. We claim that an\p] = 
£i[p]. Indeed, £2[p] = £t[p] ls obvious, and crn+1[p] ^ £2[p] 1S possible only if p £ 
name(computedn). This would imply that res(Sn(p)) G Value, and then that 
res(t) € Value, which is not true. Thus, res(crn\p\) is not in Value, and by Lemma 4, 
rn\p] £ {R,C,E}. By definition of ready, sts(£i[p]) ^ D and this implies rn[p] ^ D, 
because no new elements with status D arise in transition from cr„_i to an (n — 1 
is regular as Sn ^ 0). Since rn[i] = A (Lemma 9) and p < i, we have rn\p] ^ N. 
The only remaining possibility is rn\p] = A, and so s = Sn(p) exists. It remains 
to prove that res(s) = p. Assume the contrary; then res(s) € Value and Sn-i(p) 
exists. Moreover, we have either s' = s or s' € justComputedn_1. Now S'(i) = s' 
and by definition of updtOps, the first operand of t = S"(i) is res(s'), contradicting 
opl{t)=p. 
Case 2: opl(t0) € Value. Now res(£i[p]) is in Value and so is equal to res(<7n_i[p]) = 
res(<7n[p]). By Lemma 4 r„_i[p] ^ A, so Sn~i{p) does not exist. Thus, opl(t) = 
opl(to) = res(fi[p]) = res(an\p\). 
Case 3: opl(t) € Value and opl(£0) € Name. We have opl(i) = res(S'(p)). If 
p £ name(computedn_1), then Sn(p) exists and opl(i) = res(S'(p)) = res(5'n(jo)). 
If jo € name(computedn_1), then opl(i) = res(computedn_1(p)). Moreover, Sn{p) 
does not exist, but res(cr„[p]) = res(computedn_1(p)) by Definition 4, so the lemma 
is true in both cases. 

Suppose now n ^ minspan(i) and the lemma is true for n — 1. Let t' = Sn-i(i). 
If Sn-i{p) does not exist, then opl(tf') = res(<rn_i[p]) £ Value, by the induction 
hypothesis. But then Sn{p) does not exist either, and res(crn[p]) = res(<rn_i[p]), 
proving the lemma. 

Suppose now s' = Sn-i{p) exists. By induction hypothesis, opl(f') = res(s'). 
If Sn(p) does not exist, then p € name(computedn_1), and we obtain opl(i) = 
res(<7n[p]) € Value as in the corresponding situation in Case 1 above. Finally, if 
s = Sn(p) exists, we either have s = s' which implies opl(i) = opl(f') = res(s') = 
res(s), or s € justComputed,^ which also implies opl(i) = res(s). D 

Axiom RS-4 implies that span(?) is finite if for some n both operands of contentsn(z) 
are in Value. Using the previous lemma one can show that this is true unconditionally. 

Lemma 12 (Span). For every i € N, the set span(i) is finite. 

Proof. We argue by induction on i. Axiom RS-4 implies that span(i) is finite if for 
some n both operands of Sn(i) are in Value. Suppose that span(ji) is finite for all 
j < i and that Sn(i) has at least one operand in Name, say opl(S'n(i)) = p. By 
Lemma 11(a), Sn{p) exists. By induction hypothesis, for some m > n, Sm(p) does 
not exist. Then Lemma 11(a) again implies that opl(5m(i)) is in Value. If both 
operands of Sn(i) are in Name, it is clear now that we can take m large enough to 
ensure that both operands of Sm(i) are in Value. D 
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4.3    Retiring never stops 

Lemma 13 (No deadlock). One has r^ = limr,fD
; and so r^ is an infinite se- 

quence involving only letters R and D. 

Proof. Since TRD
 is a prefix of r^g (Lemma 2), there exists a limit TRD

 = limr^D. If 
T

RD
 is infinite, we are done. So suppose rRD is finite. Then there is a letter X ± R, D 

such that rn = rRDXun for all large enough n. Denote k = \T
RD

\. 

Suppose X = A. By Lemma 9, the set contentsn contains a transaction named 

k + 1 for all large n, which contradicts Lemma 12. 
Suppose X = N. Then uin G N", so a* = 0 and <r^ ^ 0 for large n. By ROB-3, 

we must have readyn ^ 0 then. From pn = 0 (implied by a^g = <r*D) we have 
error« = false, so cr£+1 ^ 0 (by proof of Lemma 9), and this contradicts un+i G N*. 

Finally, suppose X = C or X = E. By ROB-1, namely the condition / > 1 there, 
it follows that <rn+1 [k + 1] = R, which is again a contradiction. D 

Now we obtain a useful factorization of a^. Recall from Lemma 2 that crn+1 = 
o-RDpnSn, where sts(8n) € D*, and (1) Sn = 0 if n is regular, and (2) pn ^ 0 if n is 
singular. Write ij)n = pn5n and note that ^„^1 implies pn ^ 0. Lemma 13 implies 

that 
O-oo = ^1^2 • • * = (/>l£l)(/>2&2) • • • 

Since cr^ is infinite there are infinitely many nonempty factors ^>n, and each nonempty 
tj;n begins with a non-empty pn. Consequently, there is no end to retiring: 

Lemma 14 (Retiring).  The sequence p^ is infinite. D 

The fetching process defines another natural factorization of a^: 

Coo = 0102 * • • , 

where <j)n are simply defined by |0„| = |f etched^. 

Lemma 15. (pc,spc)(<7oo) = (pc,spc)(fetchedifetched2 • ••)• 

Proof. It suffices to show (pc,spc)(an+i) = (pc,spc)(cr„f etched«). Using the ROB 
axioms and notation again, our claim follows from a sequence of equalities: (pc, spc)(crnf etched«) 

(pc,spc)(6) = (pc,spc)(e2) = (pc,spc)(£3) = (pc,spc)(an+i). The third equality 
follows from Corollary 1. The other three follow easily from definitions. D 

The two factorizations of «Too are related as follows. 

Lemma 16 (Factorizations). Ifn is regular, then tpi---^n is a prefix offa • • • <j>n-i. 
Ifn is singular, then tpi • • • t})n = 4>\ • ■ • <$>n and Sn contains <f>n. 

Proof. By Lemma 2, a™ = vRD^n, so Vi • • • ^n = ^n+i- Going back to the tran- 
sition process analyzed at the beginning of §6, we can now use the information 
from Lemma 9 to describe the passage from £2 to £3 more precisely. Recall that 
£2 = TRDu>AkNp+q-k and & = rRDu'Np+q~k, where u' is obtained from uAk by 
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replacing some A's with C's or £"s. We claim that these changes in fact occur en- 
tirely within u. The reason is in that the subword Ak of £2 corresponds to readyn, 
and the names of transactions in readyn do not occur among the names of transac- 
tions in computed^ Indeed, using the proof of Lemma 9 and its notation, we have 
name(computedJ C name(contentsn) C U!<„name(readyi). 

Thus, the critical segment of £3 is entirely within the image of rn in (3, so the 
suffix of length p + q of £3 does not intersect the critical segment. If n is regular, that 
implies |r^| < |r„| = l^l + • • • + |</>n-i|- Similarly, if n is singular, it follows that 
the suffix of length p + q of <rn+1 = a^ belongs to 8n. The two statements of the 
lemma immediately follow. D 

4.4    Axioms of the standard machine 

Proof of SM-1. 

We want to prove pc(poo[l]) = startldx. Let n be the smallest integer such 
that f etched,,. ^ 0. By IFU-1, pc(t) = startldx, where t is the first transaction in 
fetched«. In view of Lemma 15, cr^ begins with a transaction t' such that pc(t) = 
pc(i'), so it suffices to check that t' is in p^. Indeed, t' is the first transaction in the 
first non-empty ißm, so it belongs to pm (see the paragraph after Lemma 13). 

Proofof SM-2. 

Since /9oo is infinite, what needs to be checked is that pc(tf') = next((pc, res)(t)) 
for any two consecutive transactions t,t' in p^. First we consider the case when t 
is faulty. By Lemma 6, t is the last element of some pn, where n is singular. Thus, 
t = lastRet„. By Lemma 16, tpi • • ■ fa = fa • • • (f>n. Let m be the smallest integer such 
that fa • • • fa = <j)i • ■ • <ßm and <f)m ^ 0. We claim that every i such that m < i < n 
is regular. Indeed, if such an i were singular, we would have ^1""" V'«' = 4>\''' 4>i 
(Lemma 16). Since <j>i • • • <f>n = <^>i • • • fa, it would follow that xßi • ■ ■ ipn = ^1' * • i>i> 
which is not true since ^n is not empty. 

As for t', we have that it is the first element of the first non-empty ij>j that comes 
after tpn. Since rpi ■ ■ ■ i\>n = cf>i • • • <f>n, it follows that t' is also the first element of 
the first non-empty fa that comes after <j>m. Since n is the smallest singular integer 
among m, m + 1,..., k — 1, it follows from IFU-3b that pc(i') = nextpc(lastRetn) = 
nextpc(i), finishing the proof in the case when t is faulty. 

Assume now t is not faulty. Since every transaction of every pn has a corresponding 
transaction in computec^ which differs from it only in the status letter (ROB-1,2), it 
follows from Lemma 6 that spc(i) = nextpc(i). This reduces our problem to showing 
that pc(i') = spc(i). If t, t' are consecutive elements of some fa, this is exactly what 
we get from IFU-2 with the aid of Lemma 15. Now, we do have that t and f are 
consecutive in a^ = (pi^iX/^^O • • •» because otherwise t would have to be the last 
element of a pn, where 5n ^ 0, which would mean that n is singular (Lemma 2), 
and so by Lemma 6, that t is faulty, which is absurd. Thus, the only remaining case 
to consider is when t is the last in some (j>m and t' is the first in fa, where fa — 0 
for i between m and n. The desired result pc(i') = spc(f) follows from IFU-3a and 
Lemma 15 provided error*; is false for every k such that m < k < n. this last 
condition does not necessarily hold, so suppose finally that k is the smallest integer 
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in this interval for which errors is true. Thus, k is singular (Lemma 7), so fa • ■ • fa = 
<f>i ■ ■ ■ <f>k = 4>i • • ■ 4>m- It follows that t is the last element of fa = pk$k, so 8k = 0 
and i = lastRet*. The axiom IFU-3b applies, so pc(i') = nextpc(lastRetn) = 

nextpc(i), finishing the proof. 

Proof of SM-3. 

As mentioned above, every transaction of p<x, has a corresponding transaction in 
some computedn which differs from it only in the status letter. Thus, in view of RS-2, 
res(tf) = compute((pc,ops)(i)) holds for every t in p^. Therefore, to prove that 
(pc, res)(poo) satisfies SM-3, it suffices only to check that all transactions in p^ have 
correct operands. This amounts to the following two lemmas. 

Lemma 17. If OcJj)] is the first source transaction of o~oo[i] in p,*,, then p is the first 
source of i. (Similarly for the second sources.) 

Proof. Suppose cr^i] belongs to (j)m and ipn. Then m < n and every k such that 
m < k < n is regular. For some m' (m < rri < n), the set readyTO, contains a 
transaction with name i, and the first source p' of i is determined by this condition: 
£i[p'] is the first transaction source of £x[z] in £°, where £i is the first intermediate step 
in the transition from am> to am>+\. Since m' is regular, sts(£i) = sts(<rm»+i). The 
definition of transaction sources depends only on the pc components, so we obtain 
(using Corollary 1) that crm/+1[p'] is the first transaction source of crm/+1[i] in cr^,+1. 
Since all numbers between m' and n are regular, we obtain, arguing by induction, that 
o~k\p'\ 1S the first transaction source of ak[i] in a% for every k such that m' < k < n. 
Since sts(cr„[i]) = R, and cr^D is a prefix of cr^, it follows that crooty] is the first 
transaction source of o~<x>[i] in cr^, = P°°- Thus, p = p', proving the lemma. D 

Lemma 18. If Coolp] and o-<x>[i] o,re in /><*, and if p is the first source of i, then 
opl(croo[i]) = res(<7oo[p]). (Similarly for the second source/operand.) 

Proof. Let m and be such that Sm(p) € computed^ and Sn(p) € computec^. We 
have res(cr00[i]) = res(S'n(i)) and ops(cr00[p] = ops(5TO(p)), so it suffices to prove 
that opl(Sn(i)) = res(Sm(p))- If m < n, then res(an\p\) = res(Sm(p)) and the 
result follows from Lemma 11(a). If m > n then Sn(p) exists, and by Lemma 11(b), 
res(an\p]) = res(Sn(p)). Since res(5'n(jo)) is in Value, it must be equal to res(Sm(p)), 
and again the desired result follows. D 

5    Related work 

Burch and Dill's seminal paper [2] developed the concept of a, pipeline flushing abstrac- 
tion function to prove an equivalence between an ISA and a pipelined implementation. 
Any instructions in flight are made to complete by an appropriate insertion of null 
operations. Since then, Burch [3], Windley and Burch [12], and Skakkebask, Jones 
and Dill [11] have extended the approach to superscalar pipelined microprocessors. 
Using a non-deterministic intermediate machine, Damm and Pnueli [5] constructed 
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a refinement relation between a sequential and Tomasulo-style implementation of an 
out-of-order processor core. McMillan [8] verifies the same processor using composi- 
tional model-checking techniques. The machine transitions are defined by next-state 
operations on the full states of the ISA and the Tomasulo machines. This results in 
a large conjunctive formula, each conjunct of which is checked independently. 

Arguably, techniques like these that expose all of the microarchitecture's state do 
not fit well with hierarchical design methodologies. In developing the proof in this 
paper, we attempted to hide as much as possible of the local state of each component. 
The external behavior of each component is constrained by the component's axioms, 
but within those constraints the component's state is unspecified. This encapsulation 
may provide an additional level of abstraction and modularity to the verification 
effort, and allow separate teams to develop each component, while ensuring that 
global processor invariants are maintained. 

Shen and Arvind [10] describe a term-rewriting methodology for verifying super- 
scalar, speculative, out-of-order multiprocessors. Their approach can be considered 
to be at an even higher level of abstraction than our Hawk designs which provided the 
basis for our axiomatization. As a result, their specifications are simpler than ours. 
However, most state transitions are defined across the machine as a whole rather 
than localized to each component and subject only to the inputs ofthat component. 
Furthermore, their model does not contain any explicit clocking mechanism, so it 
is not clear how to derive cycle-accurate microarchitectural specifications. As their 
models rely on being able to apply rewrite rules in any order, it is not clear how their 
correctness result would translate to a lower-level implementation that did not have 
this flexibility. 

In a very recent paper, Sawada and Hunt [9] describe a microprocessor verification 
that has many similarities to our work. They also construct a sequence of transaction- 
like records, called a Micro-Architecture Execution Trace Table (MAETT). Like our a 
state, the MAETT is permanently enlarged with every completed instruction. Each 
entry in the MAETT stores a unique instruction identifier, all operands and results 
of the instruction as ISA states, and the pipeline state in which the instruction is 
currently located, plus other fields. These entries correspond strongly to the trans- 
actions we use. The requirements the MAETT must satisfy are given abstractly in 
terms of the ISA state and the microarchitecture state, in a similar way to our com- 
ponent axioms. However, the structure of their proof also requires them to construct 
an invariant between successive microarchitectural states. This invariant is likely to 
reference most of the state elements of the micro-architecture. It is the most difficult 
construction in their proof. 

6    Conclusions 

Rather than rely on "flushing" dynamic state to show equality with the ISA state, we 
define correctness in terms of visible outputs. This means that we can avoid having to 
demonstrate equivalence between internal states of the ISA and the dynamic machine, 
so long as the outcome of the computations are the same. This may be important in 
practice because the models constructed from a realistic machine are commonly too 
big even to construct, let alone verify. By imposing a hierarchical view on the design, 
we hope to mitigate this problem to some extent. 
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Our axiomatization can be satisfied by a family of microarchitectures. This means 
that it retains a good deal of flexibility as the structure of individual components is 
developed. Each component is specified independent of other components, in the same 
way RTL design is organized. Once the overall microarchitecture has been developed, 
the implementation and proof can be carried out independently. Although flaws found 
during the proof might affect the microarchitectural design, this is true for other 
analyses such as time and performance estimating. Furthermore, the specification and 
its correctness proof are independent of many configurations that effect performance. 
For example, the specification does not explicitly set the latency of the RS and its 
execution units, the number of execution units, the width of the computed wire, or the 
accuracy of branch prediction. Therefore, many design decisions based on simulation 
may be made without adversely affecting the global correctness proof. 

We intend to repeat this work for a number of related microarchitectural forms, 
and so to build a framework, based on the concept of signals of transactions, for 
axiomatizing the major components of dynamic execution machines, and proving 
global correctness properties. We would identify the most useful axioms for common 
components and prove consequent lemmas about those components or about typical 
interactions between them. 

We also need to confirm that the axiomatizations can be related to specific mi- 
croarchitecures. As mentioned earlier, we developed an executable P6-like speci- 
fication in Hawk using the same structure described here. We plan to prove the 
correctness of this executable model by proving that the component axioms hold for 
the specifications of the RS, ROB, and IFU. We foresee a couple of complications in 
achieving this. First, the Hawk model supports full memory instructions, and these 
are present in the current work only in a very rudimentary fashion. Secondly, the 
Hawk model contains extra inter-unit communication for dealing with finite bounds. 
These facilities need to be included in the axiomatic model before the two can be 
formally related. 
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