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Mundt, Michael David (Ph.D., Aerospace Engineering) 

Nonlinear Dynamics in a Two-Layer Model of Baroclinic Instability and the Effects 

of Varying Sidewall Boundary Conditions 

Thesis directed by Professor John E. Hart 

The behavior of two-layer, quasi-geostrophic flow in a channel, which is 

subject to baroclinic instability, is investigated using a high-resolution numerical 

model. Solutions are obtained for both free-slip sidewalls (which allow tangential 

velocities but zero stress) and rigid sidewalls (which enforce zero velocity). Results 

for the slippery model are presented first, and the physics underlying the observed 

behavior is examined. As the Froude number F is increased, the system exhibits a 

transition from steady flow to periodic, quasi-periodic, and finally chaotic behavior. 

As F is increased to about five times the linear critical value, the motion becomes 

chaotic, and for even larger values of F it moves toward a "geostrophic turbulence" 

regime. The route to chaos is determined to be the breakdown of a two-torus. 

A quasi-analytic method for predicting the instabilities of finite-amplitude 

baroclinic waves is then formulated, and the results are compared with the numerical 

solutions. This approach predicts the locations (in parameter space) where the equi- 

librium points of the system are unstable, and these correlate well with transitions in 

the numerical model. Surrogate models of the slippery case, obtained by computing 

the empirical orthogonal functions (EOFs) and using these as basis functions, are 

also generated. Such low-order models are used to better interpret the results and to 

examine the link between partial differential equations and low-dimensional dynam- 

ical systems. The empirical models provide a quantitatively accurate approximation 

of the full flow in steady, periodic, and simple quasi-periodic regimes; for more com- 

plex quasi-periodic and chaotic flows, the approach yields qualitative agreement. As 

the system approaches the region of geostrophic turbulence, the number of EOFs 
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required to accurately represent the flow rises rapidly. The EOFs are also shown to 

correlate well with the linear eigenfunctions of secondary instabilities in the slippery 

model. 

For the rigid-wall geometry, the linear stability problem is first formulated 

and the results interpreted and compared to the free-slip case. The rigid case can 

be more or less stable than its slippery counterpart, depending on the magnitude 

of the bottom friction. In the region applicable to laboratory results, however, the 

neutral curves for both models are similar. Numerical solutions are then examined 

and compared to both the free-slip case and also to laboratory experiments. The 

onset of chaos occurs for very small or even negative supercriticality. The sub critical 

behavior observed in the model is determined to be due to wave-mean interactions. 

In general, the rigid-wall system is far more unstable and chaotic than the slippery 

model, counter to intuition but in better accord with laboratory (rigid wall) results. 

The route to chaos is again found to be the breakdown of a two-torus. 
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CHAPTER 1 

INTRODUCTION 

The atmosphere and oceans both exhibit behavior which spans a wide range 

of temporal and spatial scales, from dust devils with meter-long spatial scales and 

time scales on the order of minutes to planetary waves (in the atmosphere) or iso- 

lated eddies (in the ocean) that have time scales on the order of months.  In the 

atmosphere, baroclinic instability is a phenomenon that occurs for large-scale flows 

(where the time scale of the flow is much longer than the rotation period of the 

Earth), and it is responsible for features such as mid-latitude cyclones and fronts. 

In the ocean, the Gulf of Mexico (among other areas) is known to shed eddies that 

possess time scales on the order of months. Detailed numerical models indicate that 

this eddy-shedding process is in large part due to baroclinic instability (Hurlburt 

and Thompson, 1980). Numerical investigations by Holland (1978), among others, 

indicate that baroclinic processes are also important in the generation of eddies in 

the general ocean circulation. 

Quasi-geostrophic motion is defined to be that where horizontal pressure 

gradients nearly balance Coriolis forces, a situation which occurs for large-scale geo- 

physical flows. The intent of this thesis is to investigate the dynamics of quasi- 

geostrophic flow in a channel geometry. This geometry is chosen to simulate a flow 

which is bounded by two constant-latitude lines. Depending on the boundary con- 

ditions implemented at the walls, the model can be applied either to an atmospheric 

or oceanic context, although the geometry is clearly oversimplified. Since the at- 

mosphere contains no bounding "walls", stress-free boundary conditions are more 

applicable for this case and have been ubiquitously applied in previous studies. In 
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the oceans, however, there are sidewalls in the form of land, so that no-slip boundary 

conditions are more relevant. This latter situation is particularly interesting because 

no investigation of a rigid-wall formulation of quasi-geostrophic baroclinic chaos has 

been done for the type of model presented in this thesis. 

There have been many studies of models, of varying complexity, with semi- 

stress-free walls (the term "semi" is used because the previously-studied systems 

typically have stress-free boundary conditions on the waves in the flow but have 

no-slip conditions on the zonally-averaged portion). Generally, the low-order sys- 

tems that have been examined exhibit much different behavior than highly-resolved 

models. For instance, the transitions to more complex temporal behavior occur at 

much different values of supercriticality in simple models than in large numerical 

simulations (the supercriticality can be defined as (F — Fc)/Fc, where F, the Froude 

number, is the typical stability parameter, and Fc is the value of F at which linear 

instability first occurs). In addition, the behavior exhibited by these models has been 

shown to be very sensitive to the amount and type of dissipation used. Pedlosky and 

Frenzen (1980) show that, in their low-order model, small changes in the dissipation 

parameter can change the behavior of the flow from periodic to chaotic, and vice 

versa. Moreover, the inclusion of interfacial friction in a single-wave model eliminates 

the possibility of vacillatory solutions (Pedlosky and Polvani, 1987), while the same 

friction in a multiple-wave model tends to make oscillatory solutions steady (Klein 

and Pedlosky, 1992). Finally, comparison with analogous laboratory experiments 

has thus far been disappointing. The onset of complex spatio-temporal behavior in 

laboratory experiments occurs at substantially less supercritical parameter settings 

than in the numerical models. The /-plane experiments of Hart (1985) show the 

onset of chaos to occur at about unit supercriticality, while numerical experiments 

undertaken to examine an analogous situation (Cattaneo and Hart, 1990) do not 
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show chaotic behavior until supercriticality of order 4 or so is achieved. This sug- 

gests that the previous numerical investigations are missing a crucial portion of the 

important physics. 

This thesis has several goals. The first objective is to better understand 

the effect of different boundary conditions on the solutions obtained. To this end, 

models with both consistently slippery and consistently rigid walls are investigated 

via high-resolution numerical simulations. The results are compared to previous 

numerical investigations using semi-stress-free walls. The second goal is to obtain 

results which better agree with laboratory experiments. The rigid-wall model is 

formulated especially for this reason, since the experiments carried out in a rotating 

cylinder necessarily possess a viscous sidewall. The final intent is to elucidate the 

physics underlying the various behavior exhibited by the numerical models. 

The structure of the thesis is as follows. The remainder of Chapter 1 is 

devoted to an overview of baroclinic instability. The physics of this phenomenon 

are briefly reviewed, and the two-layer model is introduced. The linear theory of 

this model is then summarized, and some aspects of the nonlinear problem are dis- 

cussed. Finally, the results of previous numerical and experimental investigations are 

reviewed. In Chapter 2, a model with fully stress-free boundaries is formulated and 

verified. The transition from steady flow to chaotic behavior in the model is then 

presented, and physical arguments are put forth to explain this change in behavior. 

Finally, the results are compared to those from a previous, semi-stress-free model. 

Chapter 3 is devoted to improving upon the predictions of linear theory. This is 

done with the afore-mentioned quasi-analytical approach, the essence of which is 

to use automated symbolic manipulation to compute secondary instabilities of the 

finite-amplitude, equilibrated primary instability. These predictions are then com- 

pared to the results of the full model discussed in Chapter 2. In Chapter 4, the 

method of Proper Orthogonal Decomposition is used to generate low-order models 
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to approximate the dynamics of the full numerical model in Chapter 2. The purpose 

of this endeavor is to understand the complexity of the flow in highly supercritical 

regimes and also to assess the degree to which complex spatio-temporal behavior 

can be explained by low-order dynamical systems. Next, Chapter 5 turns to a model 

with rigid walls and solves the linear stability problem for such a flow. The results 

are compared to results from a free-slip implementation, and the differences arising 

from the alteration of boundary conditions are explained. Chapter 6 examines the 

results from a numerical implementation of the rigid-wall model. The results are 

presented and interpreted. Comparisons of the behavior are made both with those 

for the slippery-wall model and also with laboratory experiments. Finally, Chapter 7 

summarizes the results and presents some conclusions and ideas for further research. 

1.1     Low Rossby Number Flows 

The Rossby number of a geophysical flow, denoted R0, is a nondimensional 

parameter that measures the ratio of the planetary rotation time scale (where the 

rotation rate is denoted as fi) to the fluid's advective time scale, which is defined 

as LjU (where L is a characteristic length and U is a characteristic velocity). R0 

is then defined as U/(2tiL), and large-scale flows, such as those alluded to above, 

are those for which R0 <C 1. For flows that satisfy this condition, a first-order 

approximation indicates that the horizontal flow is in geostrophic balance, in which 

horizontal pressure gradients balance the Coriolis force. In the vertical direction, 

the flow is in hydrostatic balance, which means that the vertical pressure gradient 

is balanced by the buoyancy force due to gravity. 

The main limitation of the geostrophic approximation is that it is not prog- 

nostic, i.e. although the velocities are given unambiguously as a function of the pres- 

sure field, there is no way to discern the pressure field itself from the equations. The 

quasi-geostrophic approximation alleviates this difficulty by appealing to terms in 
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the governing equations that are on the order of R0. The quasi-geostrophic relations 

can subsequently be cast entirely in terms of the 0(1) pressure fields, thus yielding 

a closed system of equations that allows one to follow the temporal evolution of the 

flow. At any given time, the velocities are still evaluated geostrophically, so that the 

flow is in instantaneous geostrophic balance. 

The seminal work of Charney (1947) and Eady (1949) showed that quasi- 

geostrophic waves of infinitesimal amplitude, when superposed on a zonal shear 

flow, could spontaneously grow by extracting energy from the background motion. 

Moreover, the fastest-growing wave in the Eady model possesses a wavelength on 

the order of 4,000 km, in good agreement with synoptic-scale disturbances in the 

Earth's atmosphere (Pedlosky, 1987). 

There exist many examples which support the hypothesis that baroclinic 

instability assumes an active role in atmospheric dynamics. Webster and Keller 

(1975) have analyzed data acquired in the Southern Hemisphere, and the results 

indicate that there is evidence for both barotropic and baroclinic instabilities being 

responsible for the observed atmospheric variability. In addition, Hart (1976) has 

computed energy transfers for a low-order model of baroclinic instability, and the 

magnitudes of the mean energy transfers corroborate well with those observed in the 

Northern Hemisphere in January (Oort and Peixoto, 1974). Finally, polar projections 

of atmospheric flow (usually given by contour plots of isobars) have been presented 

which show great similarity to laboratory implementations of baroclinically unstable 

flows (Pfeffer and Chiang, 1967). With regard to the oceans, three-dimensional 

modeling of the Gulf Stream by Orlanski and Cox (1973) indicates that the meanders 

of the Gulf are likely the manifestation of baroclinically unstable waves. The results 

may possibly be valid for other oceanic western boundary currents. Furthermore, 

as previously stated, Hurlburt and Thompson (1980) explained the eddy shedding 

seen in the Gulf of Mexico to be attributable to baroclinic instability. Similar eddies 
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are generally seen in western boundary currents and thus may have a physically 

similar basis. In fact, the results of a generic, quasi-geostrophic ocean model studied 

by Holland (1978) indicate that baroclinic processes are important in generating 

mesoscale eddies. 

1.2     Mechanisms of Baroclinic and Barotropic Instability 

Although the models discussed herein are intended to simulate baroclinic 

instability, secondary instabilities of a barotropic nature can also arise. The mecha- 

nisms responsible for the two types of instabilities are, however, very different from 

one another, and it is instructive to briefly elucidate the physical processes respon- 

sible for each. 

A schematic of a hypothetical geophysical flow situation is depicted in Fig- 

ure 1.1. In the figure, the y-axis is directed north, while the 2-axis points upward. 

The x-axis, then, is assumed to be directed into the page (toward the east). Suppose 

there is a basic zonal flow, U(y, z), that is in geostrophic and hydrostatic balance. 

Then, by the use of the thermal wind relation (Pedlosky, 1987), 

moA K J± (11) 
dz dy' {     } 

where 6 is the potential temperature of the fluid, defined as 

e /P„V
7-1

"
7 

In the above equation, ps is a reference pressure and 7 is the specific heat ratio. 

The result of Equation 1.1 is that the constant potential temperature surfaces are 

necessarily arranged as shown in Figure 1.1, with Ö2 > 61 required for static stability. 

The sloping distribution of 0 results in the condition that dU/dz ^ 0. 



Figure 1.1: Schematic of baroclinic instability. 
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Now consider the movement of a fluid parcel from point A to point B along 

the dotted line shown. If the parcel moves adiabatically, then the restoring force on 

the parcel (i.e., the force which would move it back toward its original position at 

A and is proportional to the difference between the densities of parcel A at point 

B and parcel B at point B) is negative for 0 < a < <f>. Thus, for fluid parcel 

trajectories that occur within the wedge defined by the angle ^>, there is a net force 

tending to further accelerate the parcels away from their original position, resulting 

in an instability. This is known as a baroclinic instability, and it is really a form 

of thermal convection (i.e. "slantwise thermal convection") in which less dense fluid 

rises and denser fluid sinks. In addition, the energy for the instability arises from 

the available potential energy of the fluid, which is a result of the sloping of 

the constant potential temperature surfaces with respect to the constant pressure 

surfaces (which are nearly horizontal). It should be emphasized that the instability 

does not depend on the vertical Reynolds stresses, ww. 

Barotropic instability, conversely, does not depend on the vertical shear of 

the basic flow in a fundamental way. Instead, it depends on the meridional (or y- 

dependent) structure of the background state. If the zonal mean flow and the zonal 

vorticity gradient satisfy certain requirements, then the kinetic energy of the basic 

flow can be converted into perturbation energy. The important points to keep in 

mind are that the barotropic instability depends primarily on the meridional (y), 

and not the vertical (z), variation of U(y,z), and also that a barotropic instability 

converts basic state kinetic energy directly into perturbation kinetic energy. 

It is not difficult to imagine that, under certain circumstances, U might 

have the proper dependence of y and z such that the basic flow is unstable to both 

barotropic and baroclinic instabilities. In fact, the above situation does occur, and 

the energy flow mechanisms then become more complicated. For the numerical 

results presented herein, this process seems to be rather ubiquitous and will be 



discussed in more detail later. 

1.3    Two Layer Model—Formulation 

In order to isolate the physics of baroclinic instability, it is desirable to 

simplify the situation as much as possible in order to eliminate extraneous effects. 

To accomplish this, layer models have been introduced and used extensively (see 

Pedlosky (1987) for a systematic derivation of layer models). In such a formulation, 

the stratification is simplified so that the system consists of two or more layers of fluid, 

each of which is constant density.   If the Taylor-Proudman theorem applies, each 

layer exhibits behavior that is independent of height. Baroclinic effects, then, arise 

only through the differences in behavior between the various layers.  This allows 

one to eliminate the complications that arise if one retains a system that allows 

density to vary continuously with height.   The simplest model which still retains 

baroclinic effects, of course, is a two-layer model, and this formulation will form the 

basis of this endeavor. Flierl (1978) compared the results of two-layer models with 

continuously-stratified systems; he found that, despite the simplification inherent 

in a layer formulation, qualitative agreement with a model possessing continuous 

stratification was possible. 

The model used herein is that which was introduced by Phillips (1954). 

The flow is defined in a rectangular channel, where x is the zonal direction and y is 

the meridional direction. Rotation may be present in the form of /-plane dynamics, 

where the rotation / = 2ft is constant; alternatively, a /3-plane may exist, which is 

where / varies linearly with y, the purpose of which is to account for the sphericity 

of the Earth in a simple and approximate manner. In the investigations to follow, 

the /-plane assumption is used exclusively. The geometry of the numerical model is 

shown schematically in Figure 1.2. 
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Figure 1.2: Schematic of model geometry 
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The flow is given by two potential vorticity equations 

a 

[äJ + J(flb,)][V2ft + F(-l)*(i'1-Pa)]   =   -QV!Pkl(k - 1)X + (2 - k)} + 

<K**-*m-ir + E_v4ptt (i3) 

where k = 1, 2, J(f,g) = (df/dx)(dg/dy)-{df/dy)(dg/dx),a.nd Pk is the pressure 

in the Ath layer. The meanings of the various terms deserve a brief explication. 

The second bracketed term on the left hand side of Equation 1.3 is the potential 

vorticity of the A;th layer. This term is operated on by a time derivative and by 

a Jacobian. The Jacobian represents advection by the flow in each layer. On the 

right hand side of the equation, the first term is the Ekman damping at the top and 

bottom of the channel, while the second term represents interfacial Ekman friction; 

Ekman dissipation is actually a parametrization of the viscous effect on the flow by 

surfaces normal to the rotation vector. Finally, the last term on the right hand side 

represents lateral friction. 

The parameters are as follows: F is the rotational Froude number, 

F   =    2nH2(p1 + P2) 
gS(Pl-P2) ' <M) 

Q is the bottom friction parameter, 

X is the viscosity ratio, 

* = v^' (L6> 
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E is the lateral Ekman number 

E =  5S* M 

and Ä0 is the Rossby number, 

* ■ is- <"> 

In this thesis, all parameters will generally be held constant except for F. Then 

we will examine the transitions to more complex behavior as F is increased past its 

critical value (where instability first occurs). This operating scenario is somewhat 

different than some laboratory experiments, where Q is often varied while F is fixed. 

The velocities in the two layers are evaluated geostrophically and are given 

by 

dPk n Q\ uk   =   --^ (1.9) 

and vk   =    ^. (1.10) 

The height of the interface (from its rest value) is given by 

h    =    R0F(P2-P!). (1.11) 

In the context of oceanic flows, the interface may be considered to be analogous to 

the thermocline, since there is a discontinuous density change across the interface 

(which can be related to a temperature difference). 

The above-mentioned nondimensional parameters contain several dimen- 

sional constants: L is the width of the channel, H is the height of each resting layer 
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(which are assumed to be equal), U is a characteristic velocity, g is the gravitational 

constant, and v and p are the layer viscosities and densities, respectively. One other 

constant that does not explicitly appear in the equations is A, the aspect ratio of 

the channel, which is defined as the ratio of the length to the width. This parameter 

determines the physical geometry. 

The boundary conditions can assume various forms depending on the spe- 

cific treatment of the sidewalls. If a slippery-wall is implemented, the stress on the 

fluid at the walls must vanish, so that 

if   =   °> (1-12) 
dük 

■%   = °' C1-13) 

where uk is given by Equation 1.9 and the prime and overbar indicates wavy and 

zonally (i.e. downchannel) averaged velocities, respectively. Drazin and Reid (1981) 

give a more complete discussion of the slippery-wall condition in a slightly different 

context. In addition, there must be no flow through the walls, so that vk = 0 at 

these bounding walls, where vk is given by Equation 1.10. For a rigid-wall channel 

(i.e. where the walls produce viscous effects), the boundary conditions are such that 

u'k   =   0, (1.14) 

fi*    =   0, (1.15) 

and again vk must be zero. The semi-stress-free models historically studied have 

utilized Equation 1.12 for the wavy portion of the flow and Equation 1.15 for the 

zonally-averaged quantity. In the absence of lateral friction, Pedlosky (1987) has 

shown that these are the proper boundary conditions, since the zonally-averaged 

velocity at the walls will decay to zero if not initially so. 
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One modification to Equation 1.3 which will be useful later is to cast the 

pressures in terms of their barotropic and baroclinic components. To do this, we 

first define 

*a   =   Pi + P2, and (1.16) 

#fc   =   P2-P1. (1.17) 

Then, Equation 1.3 becomes 

-|[(1 + x)V2$fct + (1 - x)V2*6c] + £v4$6t, (1.18) 

^[*w, *&c] = ~2( ^JO- - X2)V2$6t + (x2 + 6x + l)V2$6c] + 

#V4$fe, (1.19) 

The boundary conditions in terms of the barotropic and baroclinic velocities 

are identical to those for the layer velocities presented above. 

1.4    Linear Theory 

The linear instability problem for the two-layer model described in the pre- 

vious section is by now standard textbook fare (see, for example, Pedlosky (1987)). 

However, it is useful to quickly review the essentials of linear theory in order to 

establish a framework for the nonlinear theory to be discussed shortly. 

Assume that a basic mean zonal flow, whose streamfunction is given by 

¥n(y), exists in both layers of the two-layer model described above. Next we suppose 

that there is a disturbance streamfunction of infinitesimal amplitude, denoted by 
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<f>n(x,y,t), that exists in each layer. Then the total streamfunction in each layer is 

given by 

Pn   =   *»(») +&»(*»».*)■ (1.20) 

Substituting this into Equation 1.3, we obtain the following equation: 

-QV2(*n + <l>n)[(n-l)x+(2-n)] + 

3x[(V2(*i + fr)-V2(*2+ &)](-!)"      E 
(TM5 + ^V (*n+0n)'   (L21) 

for n=l,2, where qn is the perturbation potential vorticity and is defined as 

?n   =   V2(/>n - F(</>2 - &)(-l)n, (1.22) 

n„ is the potential vorticity of the basic state and has a gradient given by 

it = -^-w-^x-1)". a-23) 

and Un is the zonal basic state velocity in the nth layer, so that 

u» = -IT <»«> 

In order to formulate the linear stability problem, one first neglects terms that are 

nonlinear in (f>n, so that the J((f>n,qn) term is eliminated. Also, it is a great sim- 

plification to neglect the dissipative terms, i.e. the terms on the right hand side of 
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Equation 1.21. If this is done, the following inviscid, linear equation results for <f>n: 

(1.25) [■57 + Un^-\qn + — ^— = 0. 
dt dx dx   dy 

In addition, the boundary conditions require that 

d<j>n 

dx 
= 0,   y = 0,l, (1.26) 

so that there is no flow through the walls at the boundaries. 

Finally, if JJ\ and U2 are constants, then for stress-free boundaries a sepa- 

rable solution of the form 

(j)n   =   ReAnsin(ly)eik(-x-ct) (1.27) 

can be sought, where Re denotes the real part is to be taken. If Equation 1.27 is 

substituted into Equation 1.25, the two following algebraic equations result for A\ 

and A2: 

[(c - U^K2 + F) + F(Ur - U2)]A1 - F(c - UX)A2 = 0 (1.28) 

-F(c - U2)A1 + [(c - U2)(K
2 + F)- F{Ui - U2)]A2 = 0,        (1.29) 

where K2 = k2 + I2. In order for A\ and A2 to have non-trivial solutions, the 

determinant of their coefficients must vanish. Doing this, we find that the value c is 

given by 

U1 + U2, c   = ± 
(ET2 - Ui)2(K2 - 2F) 

2(K2 + 2F) 

1/2 

(1.30) 
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Instability then occurs for 

K2 

F   >   Fc = ~2~, (1.31) 

which is exactly the value of F that makes the imaginary part of c nonzero, thus 

yielding a wave whose amplitude grows exponentially with time. 

Linear stability theory provides the value of F at which the first instability 

might spontaneously grow from some zonal background flow, here considered to be 

uniform. For example, for the slippery model to be investigated herein, the smallest 

allowable value of K2 occurs for k = 7r/2,1 = ir and is thus given by 

K2
min   =   7r2/4 + 7r2 = 57T2/4, (132) 

which corresponds to the wave e^Msinfry). This yields a critical Froude number 

of F « 6.17, which corroborates very well with the onset of instability in the full 

numerical models when Q and E/R0 are small. The effect of friction on the neutral 

curves is to shift them upward by an amount that is 0(Q2), so that the critical 

Froude number is given (Pedlosky, 1987) by 

p - R2
 ,    Q

2R2 

C   ~     2   + 2k2(U1-U2f 
(L33) 

For our investigations, which are carried out for small Q, the modification to the 

neutral curve is a a wholly neglectable effect. Additionally, in a system allowing a 

continuous variation of wavelengths, very long waves (i.e. k -» 0) are also stabilized 

by the effect of friction, but these waves are not allowed in the quantized-wavelength 

models presented herein. 

There are two drawbacks to the linear theory presented above.   First of 
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all, growth rates of a given wave perturbation are calculated from a given back- 

ground flow that is zonal in nature. It does not apply to background flows that may 

themselves be wavy. The calculation of the linear stability of nonparallel flows is 

much more difficult and is discussed briefly by Pedlosky (1987). Second, and more 

importantly, linear theory only predicts whether a wave will initially grow from an 

infinitesimal amplitude. It makes no predictions regarding the asymptotic state of 

the system. Inevitably, the growth of the hypothesized wave will be halted by higher- 

order effects, and to address this issue we must return to the nonlinear problem. 

1.5    Nonlinear Theory 

Nonlinear effects become important when the wave field has grown large 

enough to influence, and indeed alter, the original zonal flow. In order to accurately 

determine the eventual fate of the system, these zonal flow alterations, and their 

subsequent return effect on the wave field (and its corresponding effect on the altered 

zonal field, ad infinitum) must be included via the nonlinear interactions. The 

resulting behavior of this nonlinear system can be quite complicated, exhibiting 

complex periodic, and even aperiodic, behavior. There are several topics of interest 

that are unique to the nonlinear regime, and these are discussed below. 

1.5.1 Energetics In order to better characterize and understand the 

behavior of the quasi-geostrophic channel model, it is useful to derive energy equa- 

tions for the flow. The procedure followed is similar to that of Holton (1972), who 

derives the energy equations for a continuously-stratified fluid. If Equation 1.3 is 

multiplied by —Pi and — P2 for k = 1,2, respectively, one obtains equations for the 

time rate of change of the sum of the potential and kinetic energy in each layer. 

Equation 1.11 can then be differentiated with respect to time and multiplied by 

(P2 — -Pi), which yields an equation for the time rate of change of potential energy. 

After some manipulation, the energy equations can be expressed in the following 
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format: 

dP -    - 
— =   {K.P} + {P'-P},                                          (1.34) 

dK .   - _    _       _      
-£ =   {K'-K}-{K-P}-F + EI,                         (1.35) 

dP' 
— =   {K'-P'}-{P'.P}, (1.36) 

dK' 
— =   {K-K'}-{K'.P'}-F\ (1.37) 

where K denotes kinetic energy, P denotes potential energy, and the overbars and 

primes indicate zonal and wavy quantities, respectively. The energies are defined as 

follows: 

P   =    -JJ(P2-Pi)2dxdy,<md (1.38) 

' ■ i§//[(^r+(f) dxdy. (1.39) 

The transfer of energy from one type to another is indicated by the terms 

of the form {A-B}, which is positive when energy is being transferred from A to B. 

Additionally, F' and F indicate frictional dissipation of the wavy and zonal fields, 

respectively, and El represents the energy input to the system required to maintain 

the basic zonal flow. The actual form of each term is generally long and not very 

illuminating, and for these reasons an exposition of them is relegated to Appendix 

A. However, it is useful to represent the energetics in graphical form. Figure 1.3 

displays a visual representation of the energetics of the flow field, following Hart 

(1976). This approach will be extremely helpful when deducing the behavior of the 

model presented in Chapter 2. 

1.5.2 Types of Vacillations Several types of vacillations (or nonlin- 

ear periodic oscillations) in quasi-geostrophic flows have been identified, both ex- 

perimentally and numerically. The first, and simplest, type is amplitude vacillation 
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Figure 1.3: Energy-flow diagram 
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(AV), which involves energy transfers mainly from zonal available potential energy 

to eddy available potential energy to eddy kinetic energy {P -> P' -> K') (Pfeffer 

and Chiang, 1967; Pfeffer et al., 1974). Amplitude vacillation, then, is primarily a 

baroclinic mechanism, following the same energy path as that described for baro- 

clinic instability itself. When nonlinear effects are included, the wavy kinetic energy 

grows while the zonal potential energy is depleted and vice versa, thus maintaining 

a periodic energy transfer between the two flow components. In the AV regime, the 

spatial structures of the waves are largely constant and thus do not change shape 

over the course of a vacillation cycle. 

Structural vacillation, conversely, is characterized by changes in the spatial 

structure of the wave field. The spatial variations cause fluctuations primarily in the 

meridional distribution of wave energy, but with little change in the overall wave 

energy (Pfeffer and Chiang, 1967; Pfeffer et al., 1980; Weng et al., 1986). Because 

the wave shape changes with time, the Reynolds stresses are important in structural 

vacillation (Pfeffer et al., 1980). Equivalently, the exchange of kinetic energy between 

the zonal and wavy portions of the flow (i.e. K -> K') seems to be of consequence, 

implying that the vacillation is caused (or at least characterized) by a barotropic 

instability. Holton (1972) shows that the kinetic energy transfer term, denoted by 

{K' ■ K} can be written for a continuously-stratified flow as 

where ip is the zonal streamfunction, M = ÜV, v! and v' are the eddy velocities, the 

overbar denotes a zonal average, and the integral is taken over the volume of the fluid. 

This relation, which is be extrapolated to a two-layer flow in Appendix A, indicates 

that changes in the zonal average of the horizontal Reynolds stress of the wave field 

(which would result from a change in its spatial structure), and which generally yield 
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a nonzero meridional second derivative of this quantity, result in fluctuations of the 

barotropic energy transfer term. Thus, shape changes in the wavy field can produce 

Reynolds stresses, which in turn may generate a barotropic energy transfer. 

Two other types of vacillation, which although they are not found in the 

/-plane numerical results presented herein, are briefly worth mentioning. Wavenum- 

ber vacillation (Pfeffer and Fowlis, 1968) is described by the periodic exchange of the 

stream function between two waves with different zonal wavenumbers. This vacilla- 

tion can arise from the dispersion of two waves of constant amplitude, thus giving 

the impression of a wave field whose energy vacillates in time but is actually con- 

stant. Additionally, the source of such behavior may arise from a mixed-wave state 

whose origin is a double Hopf bifurcation (Hart, 1981). Finally, Ohlsen and Hart 

(1989b) describe a type of interference vacillation on a /3-plane by which two waves 

can interact, via nonlinear couplings of their sidebands, to produce a low-frequency 

zonal flow oscillation. 

1.5.3 The Transition to Chaos A well-established and ubiquitous 

occurrence in nonlinear systems is chaos, which is sometimes described as determin- 

istic stochasticity. Chaos is characterized by irregular and aperiodic behavior in time 

(and sometimes in space), although it is not generally identified with fully-developed 

turbulence. There are two common routes to chaos that have historically been 

found in both numerical and laboratory experiments of baroclinic instability: quasi- 

periodicity (Farmer et al., 1982) and period-doubling (Hart, 1985). Quasi-periodic 

motions refers to a time-dependent fluctuation that consists of two or more inde- 

pendent frequencies whose ratios are irrational numbers. Ruelle and Takens (1971) 

proved that, if a three-frequency, quasi-periodic system is perturbed very slightly, it 

usually breaks down into chaotic behavior. More generally, a two-torus can directly 

break down into chaotic behavior without intervening three-torus motion (Berge et 

al., 1984). 
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Period-doubling behavior was first elucidated by Feigenbaum (1978). In 

this scenario, one begins with a periodic signal characterized by a dominant fre- 

quency, /0. As the relevant driving parameter is increased, the fundamental period 

of the signal successively doubles, which equivalently results in the appearance of 

frequencies /0/2, /0/4, /0/8, etc. Moreover, an infinite number of period-doublings 

occur within a finite parameter range, and the doublings follow well-defined scaling 

relations (Berge et al, 1984). At the completion of the period-doubling cascade, 

chaotic behavior ensues. As with quasi-periodicity, the period-doubling route to 

chaos, and the predicted scaling relations, have been observed experimentally. 

There exist many numerical algorithms with which to characterize and 

quantify the ostensibly-chaotic behavior of a given system. The interested reader 

will find a summary of the methods used in this thesis in Appendix F. 

1.6    Previous Results 

1.6.1 Single-Wave Models Pedlosky (1970,1971,1972) was the first 

to systematically include the effects of the nonlinear interactions on the baroclinic 

wave field. His weakly nonlinear analysis was predicated on the assumption that the 

flow was only slightly supercritical with respect to the first unstable wave, i.e. 

F   =   Fc + A, (1.41) 

where Fc is the critical Froude number (given by Equation 1.31 for the inviscid 

case and by Equation 1.33 for nonzero dissipation) and A is the supercriticality, 

where A < Fc. When the system is only slightly above the stability threshold for 

the primary unstable wave, the remaining waves are linearly stable and wave-wave 

interactions are negligible. This result formally arises from his perturbation theory. 

Thus, the retention of a single wavy mode is sufficient to characterize the structure 

of the perturbation. Pedlosky's expansion included a correction to the initial zonal 
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flow that eventually becomes significant and halts the growth of the initial wave 

perturbation. However, the asymptotic behavior of the system was found to be 

highly dependent on the magnitude of the dissipation parameter, Q. For Q = 0(1), 

the system eventually equilibrates to a nonzero steady state. For Q = 0, the wave 

field and the zonal flow correction both oscillate with periods and amplitudes that 

are dependent upon the initial conditions. This is to be expected, since there is no 

viscosity to erase the system's memory of its initial state. Finally, for Q = OdAI1/2), 

the system exhibits oscillatory behavior with oscillations that are independent of 

the initial conditions. Pedlosky (1971) notes the resemblance of these oscillations to 

the amplitude vacillation found in rotating annulus experiments and described by 

Pfeffer and Chiang (1967). 

In a later paper, Pedlosky and Frenzen (1980) reported the existence of 

chaotic behavior in the weakly nonlinear model. The model was somewhat modified 

from the previous analyses to include multiple zonal correction modes, but qualita- 

tively similar results can be obtained by retaining only a single zonal correction. For 

values of Q that lie between those which produce steady solutions and those which 

produce periodic behavior, the wavy and zonal fields can oscillate chaotically. As 

Pedlosky and Frenzen note, the most striking point to note is that the complex be- 

havior results not from a highly turbulent flow regime but rather from a system that 

has a simple spatial dependence and also is only very slightly supercritical. They 

also indicate that the results are very sensitive to the value of the dissipation pa- 

rameter. Pedlosky and Polvani (1987) found that the type of behavior exhibited by 

a single-wave model is critically related to the type, as well as the amplitude, of the 

dissipation included in the governing equations. When they made the damping pro- 

portional to the potential vorticity, the solutions became steady for all parameter 

values. 

Hart (1986) examined the behavior of a single-wave model with a generic 



25 

zonal flow correction in cylindrical geometry, which is analogous to an experimental 

setup. He retained one wave and several zonal flow correction terms. It was found, 

for /-plane motions, that there was some qualitative similarity between the model 

behavior and the experimental behavior inasmuch as both exhibited a truncated 

period-doubling route to chaos. However, the value of F for which the flow became 

chaotic was much lower in the experiments than in the model, and the vacillation 

periods differed by about 40%. This would suggest that the single-wave model is 

missing some crucial physics. 

The behavior exhibited by the single-wave model is important because the 

model is deduced from first principles and not from an arbitrary spectral truncation 

of the streamfunctions. Thus, the system is rigorously valid in the asymptotic limit 

A -> 0. However, it is not clear if the behavior of the single-wave model at larger 

supercriticality is even qualitatively, much less quantitatively, similar to that which 

would be shown by a model which retains many spatial modes and is thus capable 

of representing much more complex spatial behavior. 

1.6.2 Multi-Wave Models Boville (1980) considered the problem of 

quasi-geostrophic flow in a channel on an /-plane. He represented the streamfunc- 

tions with 8 zonal harmonics and 16 meridional modes, yielding a system with 128 

waves in each layer. The full model displayed behavior that differed substantially 

from that of the single-wave model; for instance, the transition to oscillatory flow 

required a larger supercriticality for the multi-wave implementation than for the 

single-wave representation. In addition, Boville discovered that the inclusion of 

zonal harmonics was more critical to the behavior than the inclusion of multiple 

meridional modes. This seems to suggest the inadequacy of single-wave models for 

any point in parameter space not near the neutral curve. Shortly after his /-plane 

treatise, Boville (1981) considered motions on a /?-plane. It was again found that 

substantial differences existed between a modestly-resolved model (with the same 
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number of modes as the /-plane case) and a single-wave model, again casting the 

latter's validity for finite supercriticality into doubt. Boville (1982) considered the 

/3-plane channel flow in a highly supercritical, and thus very nonlinear, regime. He 

found that the model, which now consisted of 16 zonal harmonics and 16 meridional 

wavenumbers (or 256 wavenumber pairs in each layer), exhibited both amplitude 

and structural vacillation, depending on the exact parameters chosen. Most im- 

portantly, Boville stated that the wave-wave interactions comprised a substantial 

portion of the energy conversions, justifying the inclusion of multiple waves into the 

model. Later, Klein and Pedlosky (1986) considered /-plane dynamics with a sim- 

ilar resolution as that of Boville. They reported that the behavior of the system, 

with increasing supercriticality, would generally proceed from steady to periodic to 

aperiodic behavior, although they noted many exceptions to this overall trend. In 

addition, they too reported that the inclusion of many zonal harmonics was impera- 

tive to the qualitative nature of the solution. They concluded that "the crucial role 

of the zonal harmonics is to allow a sufficiently accurate description of the merid- 

ional structure of the basic wave so that the correction to the zonal flow may be 

calculated directly". In other words, the higher wave-wave interactions are thought 

to act indirectly to regulate the meridional structure of the primary wave, which is 

subsequently imperative in generating the proper wave-mean flow interaction. In- 

vestigating the system in a different geometry, Yoshida and Hart (1986) considered a 

spectral model of quasi-geostrophic flow in a cylinder. They represented the stream- 

functions with 10 zonal harmonics and 12 (or more) radial modes. Consistent with 

the previous studies, they found significant differences in behavior between their full 

numerical model and the corresponding single-wave model. In addition, the model 

exhibited both period-doubling and quasi-periodic routes to chaos. Cattaneo and 

Hart (1990) used a resolution of 49 x 49 (or approximately 2500 wavenumber pairs 

in each layer) to study /-plane dynamics in a channel. Their model exhibited the 
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following transition:   steady flow, periodic amplitude vacillation (PAV)-»periodic 

structural vacillation (PSV)-»quasi-periodicity->chaos. Chaotic behavior ensued at 

about 0(4) supercriticality. As a final example, Klein and Pedlosky (1992) recently 

used a spectral model with a resolution of up to 49 x 49 to examine the effects of 

different dissipation mechanisms. Two important results from their paper are noted 

here.   First, the choice of dissipation parameterization greatly affected the results 

obtained; the inclusion of interfacial Ekman friction generated results that tended 

to be more stable than those obtained with only solid-surface Ekman friction (e.g. 

steady solutions instead of periodic flow).  The other important result is that, for 

large supercriticality, there is a barotropic fluctuation superimposed on the initial 

baroclinic vacillation.   Moreover, the appearance of this vacillation coincides with 

the Froude number at which the second harmonic of the fundamental wave possesses 

a linear growth rate larger than that of the fundamental itself.   This behavior is 

similar to that observed in this study (in which a higher resolution has been used). 

Unfortunately, Klein and Pedlosky did not perform extensive numerical integrations 

in order to ascertain the exact nature of the solutions as a function of F, negating 

the possibility of a direct comparison with the results to be presented herein. 

The results of all of the afore-mentioned models, with the exception of Cat- 

taneo and Hart (1990) and Klein and Pedlosky (1992), are obscured by the question 

of convergence. Additionally, all of the models neglect the effect of lateral friction 

at the sidewalls and thus inconsistently incorporate free-slip conditions on the waves 

but no-slip conditions on the zonal flow at the sidewalls. As will be shown in the next 

chapter, for the channel flow model at large supercriticality, the number of Fourier 

modes required to achieve quantitative convergence is more than an order of mag- 

nitude greater than the highest resolution used in most of the previously-discussed 

simulations. In addition, Klein and Pedlosky (1992) did not perform extensive calcu- 

lations at high resolution, so that their findings are certainly very sparse. Thus, while 
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the results axe certainly an improvement on the prognostics generated by single-wave 

models, it is dangerous to put too much faith in them. Moreover, the behavior of 

some of the models exhibit a return to simpler behavior as the supercriticality is 

increased. This is certainly not seen in experiments (Hart, 1985; Ohlsen and Hart, 

1989a), where the complexity of the flow increases with increasing supercriticality 

and decreasing friction. Furthermore, even high-resolution models show substantial 

differences in behavior, in terms of the supercriticality at which chaos first occurs, 

when compared to laboratory experiments. This would suggest that the previous 

models may be missing a crucial portion of the physics, in addition to lacking ade- 

quate resolution. 

1.6.3 Laboratory Experiments Two types of laboratory experi- 

ments have been performed and analyzed extensively in an effort to model baroclinic 

instability. The first consists of a rotating annulus which has a relatively hot outer 

(equatorward) boundary and a relatively cold inner (poleward) boundary (see Hide 

and Mason (1975) for a comprehensive review). As the relevant parameters (i.e. 

rotation rate and temperature gradient) are modified, the system first undergoes 

a transition from axisymmetric flow to amplitude vacillation (Pfeffer and Chiang, 

1967; Pfeffer et al., 1974), which is essentially a baroclinic phenomenon. At higher 

supercriticality, the amplitude vacillation yields to structural vacillation (Pfeffer et 

al., 1980). Finally, at even more supercritical settings, the flow becomes irregular 

(both temporally and spatially) and enters into the regime of geostrophic turbulence. 

At least some of the so-called turbulence can be analyzed in terms of low-dimensional 

chaotic dynamics. Read (1992) and Read et al. (1992) present data which indicates 

that particular vacillatory states give way to chaotic states which can be character- 

ized as evolution on a low-dimensional attractor. For some parameter settings, the 

transition to chaos was via quasi-periodicity, while for others it seemed to be via in- 

termittency (which is a third type of transition to chaos and has not been otherwise 
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documented for baroclinic flows). 

Of greater interest here is the two-layer experiment initiated by Hart (1972) 

(see review by Hart (1979)), which can be directly compared to numerical two-layer 

investigations.   The experimental configuration is very similar to the theoretical 

model described in Section 1.3, with the exception that the experimental geometry 

is cylindrical.   In any case, the various states observed in the annulus experiment 

are also observed in the two-layer flow, including steady waves, amplitude vacilla- 

tion, structural vacillation, and irregular (i.e. chaotic) flow (Hart, 1972; Hart, 1976; 

Hart, 1985; Ohlsen and Hart, 1989a). Both /-plane and /3-plane experiments dis- 

play a period-doubling route to chaos.  However, both experiments show only two 

doublings before becoming chaotic.  One possible explanation for this may simply 

be measurement limitations.  Since the successive period-doubled regimes occur in 

successively smaller windows of parameter space, the ability of experiments to access 

and measure these states is difficult. However, the apparent period-doubling may be 

the onset of a quasi-periodic flow with frequencies possessing a ratio very close to 2. 

This idea has consequences for the results to be presented later. 

The two-layer experiment is especially appealing because it can be modeled 

relatively easily, thus allowing comparison between theory and experiment. However, 

the test of the efficacy of weakly nonlinear theory has not been fruitful due to the 

theory's validity only very close to the neutral curve, a region which is not easily 

accessible experimentally. In addition, it is not evident that the region of conver- 

gence of weakly nonlinear theory includes behavior other than steady waves anyhow. 

Establishing a correspondence between theory and experiment is an ongoing task, 

and in the remaining chapters, some effort to forge this link will be undertaken. 



CHAPTER 2 

A STRESS-FREE MODEL OF BAROCLINIC INSTABILITY 

The purpose of this chapter is to introduce and examine the results of a 

two-layer model of baroclinic instability with fully-slippery walls. The motivation for 

investigating such a situation is first discussed briefly. Next, the general numerical 

method used to treat such models is summarized. A fully-stress-free model is then 

introduced and described; the model results are validated by a comparison with 

a low-order spectral model. Finally, the results of the full numerical simulations 

are described and compared to previous results utilizing mixed boundary conditions 

(which will be referred to as "semi-slippery"). 

2.1     Stress-Free Side walls 

Previous numerical models of two-layer baroclinic instability have utilized 

mixed boundary conditions at the sidewalls: stress-free conditions are imposed on 

the wavy portions, while a no-slip requirement is mandated for the zonal correc- 

tions. These conditions are valid in the absence of lateral friction (Pedlosky, 1987), 

but in the numerical models lateral friction is needed to halt the cascade of enstro- 

phy to higher wavenumbers. Aside from numerical reasons, the shortcoming of the 

above approach is that, physically, there is no reason to expect that the walls would 

affect one portion of the flow differently than another. Apart from the fact that 

it is internally consistent, the use of fully stress-free conditions at these bounding 

walls is more analogous to the atmosphere, which has no natural boundaries. In 

addition, although laboratory experiments necessarily have viscous sidewalls, the 

onset of instability in such experiments agrees very well with linear theory based 
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on a slippery-wall assumption (Hart, 1972). Thus, it was previously hoped that the 

results would be applicable to laboratory experiments in the nonlinear regime as 

well. 

2.2     Numerical Method 

The numerical method used for the slippery model is described in detail by 

Cattaneo and Hart (1990) (hereafter referred to as CH), but it is useful to briefly 

summarize it here. CH actually investigated the results of a semi-slippery implemen- 

tation, but the general method for both the semi-slippery and the fully stress-free 

models is essentially equivalent (with the exception of the implementation of the spe- 

cific boundary conditions).  The scheme used is a Fourier pseudo-spectral method; 

the advantages of a such a method are both its speed and accuracy. With this type 

of algorithm, the linear terms in the equation are computed in spectral space, while 

the nonlinear terms are computed in physical space. Furthermore, the linear terms 

are found using a centered Crank-Nicholson scheme, while the nonlinear terms are 

updated with a 3-level Adams-Bashforth method.   CH note that pseudo-spectral 

methods introduce aliasing when nonlinear terms are evaluated.  To eliminate this 

problem, a standard dealiasing scheme based on the 2/3 rule is adopted (Canuto et 

al., 1988). 

2.3    Model Formulation 

2.3.1 The Semi-Slippery Model In their paper, CH developed a 

high-resolution numerical model of the two-layer flow described in the previous chap- 

ter. They expand the pressures in the two layers as 

Pk{x,y,t)   =   Ty+f^f^4>knj(t)e2in^Asm(JTy) + 
n=lj=l 

oo 

Yt^WcosÜ'Ty),  A = 1,2, (2.1) 
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where the ^fy term indicates a uniform basic state and the constant A is the ratio of 

the length of the channel to its width. As stated by CH, the expansion is consistent 

with slippery boundary conditions for the wavy terms but not for the zonal flow. 

In other words, duk/dy |y=o,i= -d2Pk/dy2 |v=0,i is not necessarily zero since the 

expansion for the zonal portion of the streamfunction is in terms of cos(j'Ty) terms. 

The boundary conditions, then, are not truly slippery in the sense the stress vanishes 

at the walls. In fact, the use of cosines indicates that the zonally-averaged velocity 

is zero at the walls, which is consistent with a rigid-wall (i.e. viscous) boundary 

condition. 

Following Phillips (1954), one can derive a circulation condition for dük/dt, 

where the overbar denotes an average in x. Details of the derivation are given in 

Appendix B. In the absence of lateral friction, ük decays very rapidly from a given 

initial value and can then essentially be considered zero for all time. However, when 

lateral friction exists, Equations B.7,8 are necessary to determine the fate of üjf 

The model is thus inconsistent because it incorporates lateral friction but uses an 

expansion that results in the trivial relation ük = 0. As a mitigating factor, CH 

anticipated such effects of the order of E/(R0Q) « 1/300 < 1, possibly rendering 

the inconsistency unimportant. However, we shall see shortly that there are some 

significant differences between the purely stress-free results and those of CH, a result 

which emphasizes again the critical role that subtle changes in boundary conditions 

can have on the baroclinic chaos problem. 

Another complication with the CH model concerns the effect of wave-wave 

interactions. The Jacobian terms in Equation 1.3 generate wave-wave interactions, 

which in turn alter the zonal flow. The meridional dependence of these interactions 

can be written schematically as 
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sin(fary) cos(k'T?y)   =   -[sin((fc + k')iry) + sin((Ä - k')try)], (2.2) 
4tt 

so that wave-wave interactions have a meridional dependence that can be expanded 

in terms of sines. The functional representation is consistent with the expansion for 

the wavy terms but not for that of the zonal flow. Therefore, wave-wave interactions 

couple non-locally in Fourier space to the zonal flow. Because 

/•l k((-l)k+:i' - 1) 
I[k,j']   =   Jo 8in(fary)co8(Ay)<*y=        jl2 _ k2 (2-3) 

where k is the cross-stream wavenumber for the wavy mode and j' is the cross- 

stream wavenumber for the zonal mode, for k odd there is coupling to all cross- 

stream wavenumbers for which j' is even, and for k even there is coupling to all 

wavenumbers with j' odd. There is thus slower convergence in spectral space than is 

optimal, requiring the introduction of substantial lateral friction in order to maintain 

good spectral convergence. However, it is precisely the presence of lateral friction in 

the sidewall boundary conditions which invalidates the expansion. 

2.3.2 The Slippery Model The slippery model was formulated in 

order to correct the various deficiencies in the semi-slippery model and to see if 

better agreement with experiment might be found. In order to ensure that there 

are stress-free conditions at the walls, the zonally averaged pressures at the walls 

(y = 0,1) are expanded as sine functions. Thus, -d2Pk/dy2 = duk/dy = 0 at 

the walls, where k indicates the layer. In addition, with this type of expansion, 

Equation 2.2 indicates that the nonlinear interactions will have direct projections on 

the meridional structure, thus eliminating the problems associated with projecting 
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sine functions onto a cosine basis, as Equation 2.3 indicates. Finally, the proper 

circulation condition is included in the model. The derivation of this condition, 

which is a method by which to close the secondary circulation (induced by the Ekman 

layers) in terms of the primary circulation, is contained in Appendix B, along with 

the derivation of the mass conservation stipulation. It provides a constraint on the 

evolution of the zonally-averaged velocities at the walls, ü*. To properly account for 

these requirements, the following expansion is used: 

n=lj=l 

f; & (*) sin( jVy) + Uk(t)iv - 1/2) T *>(*)/2. (2-4) 
i'=i 

Because of the nature of the expansion, there is a complete set of cosine functions 

to describe u* = -dPk/dy (the zero wavenumber component arises from the second 

to last term in Equation 2.4). In addition, the no-stress stipulation is automatically 

satisfied, and the nonlinear interactions project directly onto the original functional 

expansion. Thus, it only remains to express the circulation condition and mass 

conservation requirement in terms of the quantities given in Equation 2.4, a full 

treatment of which is given in Appendix B. Owing to the nature of the chosen 

expansion, the Z4(f) terms decouple from the V(t) term, and the resulting relations 

are given by Equations B.13,14,15. These equations yield three additional constraints 

to the system described by Equation 1.3. 

The implementation of the extra boundary conditions, in terms of numeri- 

cal coding, is relatively straightforward but tedious. Note that Equations B.13,14,15 

couple all of the zonal coefficients together. Previously, because of the Fourier repre- 

sentation of the pressure fields, the solution matrix for the coefficients was diagonal, 

so that one needed only to solve a multiplicity of scalar equations to update the time 

coefficients.  Now, however, a sparse matrix must be solved for the zonal terms in 
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the model. In order to keep numerical errors to a minimum, the matrix solution is 

obtained in double precision at every time step. 

2.4    Model Verification 

Virtually all of the subroutines are identical to those used for the semi- 

slippery model, eliminating the necessity to comprehensively re-check each portion 

of the code. It was decided that the most efficient way to check the modified code 

was to test the results for a low resolution run against a low-order, fully spectral 

model. The spectral code assumed a spatial dependence in each layer that consisted 

of the following waves: sm(iry) cos(7rx/2), sin(7rT/)sin(7rx/2), and sin(2xy). This 

resulted in six equations for the two layers, and when added to the two equations 

for U\ and U2, resulted in a cumulative total of eight equations. The pseudo-spectral 

code was run at a resolution of 8x9, which is the lowest resolution at which aliasing 

effects can be removed. Although this resolution contains more wavenumbers than 

the spectral model, all waves except those listed above were zeroed out at each 

time step, resulting in a good approximation to the spectral model. The results are 

shown in Figure 2.1. The single line indicates the steady regime, while the double 

lines indicate the envelope of periodic solutions. There is essentially exact agreement 

between the two models. Figure 2.2 compares the phase-space diagrams between the 

two models for F = 30. The x-axis displays the barotropic wave amplitude, while the 

y-axis represents the baroclinic wave amplitude. The attractors are indistinguishable, 

which further indicates that the pseudo-spectral model is operating correctly. 

The other requirement from the model was that it be convergent in the sense 

that results are independent of resolution. Convergence tests were performed on the 

asymmetric state for three resolutions: 96x49, 128x65, and 192x97. In addition, for 

each resolution, results were obtained for F — 8,16,26, and 40 (these values of F 

were chosen to sample the system over the spectrum of temporal behavior).   The 
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Figure 2.1. Comparison of low-dimensional, spectral and pseudo-spectral slippery- 
models for 8 < F < 50. The single line indicates the steady regime, while the double 
lines indicate the envelope of periodic solutions. 
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asymmetric state was chosen because of its more complicated time dependence. All 

resolutions showed similar qualitative behavior with regard to the type of motion 

displayed (i.e. steady, periodic, chaotic) for a given value of F. In other words, the 

transition points (in terms of F) between different types of behavior were the same for 

all three resolutions. However, it was desired that the agreement be quantitative as 

well. To ascertain whether or not there in fact was quantitative agreement, the wavy 

baroclinic kinetic energy in the asymmetric state was used as a proxy measurement. 

The kinetic energy was used to ensure that the signal chosen contained input from 

many wavenumbers and thus represented the overall behavior of the system. Its 

mean and root-mean-square (rms) deviation were computed for F = 8,16,26, and 40 

for all three resolutions. The results were then differenced to determine the percent 

change in mean and rms deviation between successive resolutions. The percentage 

changes in the mean are extremely small and average about 3%. Table 2.1 shows 

the successive percentage change in rms deviation, which is a better measure of the 

differences between resolutions. 

Table 2.1.   Convergence of rms deviation of baroclinic wavy kinetic energy versus 

reso ntinn for various values of F. 

Froude 
Number 

Percent change in rms 
deviation between 96x49 
and 128x65 resolution 

Percent change in rms 
deviation between 128x65 
and 192x97 resolution 

8 n/a n/a 

16 21.9 % -4.06 % 

26 -100.5 % 21.6 % 

40 -6.15 % 3.41 % 

The rms deviations do show some differences as a function of resolution. 

However, the changes between the 128x65 case and the 192x97 case are minimal, 

with an average difference of around 9%. In addition, the time behavior for F > 24 

is not strictly periodic, so that very long time averages would be necessary in order 

to get an extremely accurate estimate of the rms deviation. Consequently, some of 
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the differences can be attributed to sampling for only a finite time. However, the 

differences in rms deviation at F = 26 are sufficiently large to suggest a real difference 

in behavior. The probable cause of this is the nature of the quasi-periodic behavior 

that exists at F = 26; the mode-locking that occurs sporadically as a function of F 

in this regime makes the system very sensitive (quantitatively) to small changes in 

parameters and/or resolution. An interesting item to note is that the chaotic regime 

is more robust than the quasi-periodic regime in the sense that its quantitative 

behavior changes very little with resolution. Overall, the differences between the 

128x65 and 192x97 resolutions are small, and it was thus decided that the 128x65 

resolution would be adequate to achieve a valid set of results in the expected states. 

2.5     Multiple States 

Various symmetries can exist in the channel model, and the successive 

breaking of symmetries correlates with the onset of more complex (e.g. chaotic) mo- 

tion in the flow. Identifying these symmetries is therefore crucial to understanding 

the changes in behavior that the system undergoes as parameters are varied. The first 

is a vertical symmetry. If the viscosities in the two layers are equal (i.e. x = 1) and 

there is no barotropic, or depth-averaged, basic zonal flow, then there exist wavy 

solutions which also generate no barotropic zonal corrections, thus preserving the 

vertical symmetry. In this case, the instability is termed zonoclinic, since only the 

baroclinic zonal corrections are entrained. If the barotropic wavy field is purely real 

(i.e. in the x-direction it consists only of cosine functions) and the baroclinic wavy 

field is purely imaginary (only sine functions), or vice versa, then a zonoclinic insta- 

bility is guaranteed. This is clearly a special requirement on the spectral occupation 

of the wavy fields. In contrast to the zonoclinic instability, another type entrains 

only the barotropic zonal corrections and is thus termed zonotropic. The presence 

of a zonotropic instability breaks the vertical symmetry of the problem, and it is 
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generated when the barotropic and baroclinic fields are both complex-valued. How- 

ever, the meridional modes of the wavy fields must be related in a specific manner 

such that no baroclinic zonal corrections are generated by the nonlinear terms. 

The other important symmetry in the problem involves the occupation, 

in wavenumber space, of the wavy fields, a symmetry which leads to the presence 

of "multiple states". CH elucidated the idea of multiple states in channel flows 

constrained to be quasi-geostrophic. They observe that there exist certain subsets 

of wavenumbers that do not propagate information outside of the subsets. These 

wavenumber subsets are then invariant under the action of the nonlinear operators 

in Equation 1.3. They discuss one type of invariant subset that is particularly im- 

portant. If there is energy in any zonal modes that are even with respect to the 

cross-stream midpoint of the channel then all wavenumber pairs can contain energy; 

this state is termed "asymmetric" (because the zonal flow velocity is then asym- 

metric about the mid-plane of the flow). However, if only the zonal modes that 

are odd with respect to the midpoint contain energy, then a "countable infinity of 

distinct wave states are possible" (Cattaneo and Hart, 1990) and the state is termed 

"symmetric". The symmetric state results from flows that have shift-reflect sym- 

metry in physical space (i.e. if one chooses a point, shifts by one-half the channel 

length, and reflects about the midpoint, the flow velocity is the same as at the orig- 

inal point). In terms of the wavenumbers themselves, if the gravest zonal (kx) and 

meridional (ky) wavenumbers are defined to be 1, then symmetric waves have the 

property that kx + ky is even. Figure 2.3 displays the symmetric state in wavenumber 

space. The wavenumber pairs denoted with a lowercase 'a' are the antisymmetric 

wavenumbers; these have the property that kx + ky is odd. Each forms a "checker- 

board" in wavenumber space. The antisymmetric state, however, is not invariant 

under the action of the nonlinear operators, and it interacts to affect the symmetric 

state. When this happens, an asymmetric state is generated, since all wavenumbers 
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now possess nonzero energy. 

These symmetries axe important because all of the instabilities observed in 

the numerical solutions appear to be one of four types: symmetric zonoclinic, sym- 

metric zonotropic, antisymmetric zonoclinic, and antisymmetric zonotropic. Thus, 

each instability is associated with a symmetry breaking of a particular type. The 

instabilities and their symmetries are summarized in Table 2.2. The second column 

indicates the symmetry of the waves, while the third column describes the symme- 

try of the zonal correction. The fourth column indicates whether each symmetry 

is preserved under the action of the nonlinear operators in the governing equations. 

Finally, the last column indicates the behavior generally exhibited by each type in 

the absence of other instabilities. The PAV behavior is associated with zonoclinic 

instabilities because the wavy fields do not change shape over time, while the PSV 

behavior is associated with zonotropic instabilities since the waves do change shape 

over the course of one vacillation cycle (resulting from the complex-valued nature 

of the wavy fields themselves). Because the antisymmetric wavenumber symmetry 

cannot be preserved under the action of the nonlinear terms, the resulting state is 

asymmetric. Therefore, when referring to a stability that is initially antisymmetric, 

the term "asymmetric" will also be used interchangeably. 

Table 2.2: Summary of instabilities and their associated symmetries. 

Type of 
Instability 

Wavy and Zonal 
Symmetry 

Type of Zonal 
Correction 

Preserves 
Wave #/Z.C. 
Symmetry? 

Typical 
Finite Amp. 
Behavior 

symmetric 
zonoclinic symmetric baroclinic yes/yes PAV 
antisymmetric 
zonoclinic antisymmetric baroclinic no/yes PAV 
symmetric 
zonotropic symmetric barotropic yes/no PSV 
antisymmetric 
zonotropic antisymmetric barotropic no/no PSV 
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Figure 2.3.   Wavenumber-space occupation of symmetric and antisymmetric sets. 
The 'Z' indicates the zonal correction terms. 
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2.6    Results for the Semi-Slippery Model 

Some results from our calculations with the CH semi-slippery model are 

shown below. For the numerical runs, parameters were set to the following values: 

Q = 0.06, (2.5) 

X = 1.0, 

E/Ro = 0.0002, 

A = 4, 

8< F <40. 

The parameter values are the same used by CH except for x, which they set equal to 

0.9. For the equal-viscosity case studied here, the wave disturbances are stationary 

instead of travelling (as is found for X ^ 1). A resolution of 96x49 was used, again 

consistent with CH. This resolution was found to provide convergent behavior for 

the model. Numerical runs were performed for both the symmetric and asymmet- 

ric states for the Froude number range listed above. F values were increased in 

increments of 2. The overall results are shown in Figure 2.4. 

As is evident from the figure, the symmetric case makes a transition from 

steady to periodic behavior (i.e. periodic amplitude vacillation) atjFw 16. Then, 

atf« 26, there is a transition from PAV to PSV. This state persists until F = 40, 

where the study was terminated. In addition, if the symmetric state is perturbed 

with asymmetric perturbations, for F > 12 it will evolve toward the asymmetric 

solution. For F < 12, however, the asymmetric state decays and approaches the 

symmetric steady solution. 

The asymmetric state shows slightly more complicated behavior. At F « 

12, the asymmetric case goes from a steady solution directly to PSV, which persists 
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Figure 2.4. Behavior of Semi-Slippery Model for 8 < F < 40. The vertical arrows 
indicate the range of F over which a particular type of behavior is realized. The 
horizontal arrows indicate the direction of transition between symmetric and asym- 
metric states (i.e. the asymmetric state decays to the symmetric state for F < 12, 
and the symmetric state, when perturbed, becomes asymmetric for F > 12) . S = 
steady, PAV = periodic amplitude vacillation, PSV = periodic structural vacillation, 
QP = quasi-periodic, C = chaotic. 
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until F « 32. The solution then becomes quasi-periodic for 32 < F < 38. Finally, for 

F > 38 « 5.FC, the system becomes chaotic. Thus, the semi-slippery model displays 

one of the quintessential routes to chaos, that of the breakdown of a torus (Berge et 

al., 1984). 

In summary, the semi-slippery model shows profound differences between 

the behaviors of the symmetric and asymmetric states. In addition, the symmetric 

state is unstable with respect to asymmetric perturbations for all values of F ex- 

cept those near the onset of initial instability. This would seem to indicate that the 

symmetric solution cannot be realized in any "real" (e.g. experimental or geophys- 

ical) flow. Finally, the temporal behavior of both states is relatively simple, with 

chaos occurring only for large values of F. As stated in the introduction, this is 

relatively disappointing in comparison to experimental results; although the experi- 

ments are performed in a cylindrical geometry, the laboratory flow becomes chaotic 

for F > 12 « 1.6FC (Hart, 1985). 

2.7    Results for the Slippery Model 

Numerical runs were made for 8 < F < 40 (in increments of 2) for both 

the symmetric and asymmetric cases, with the system parameters set equal to the 

values shown in Equation 2.5. The general behavior as a function of F is shown in 

Figure 2.5. 

When compared to the results of the semi-slippery model, the slippery 

model displays similar qualitative behavior, but there are some significant differences 

in the transition points. The results are indeed sensitive to the boundary conditions 

implemented. For example, in the symmetric state, the semi-slippery model never 

becomes quasi-periodic for F < 40, while the fully-slippery results display this be- 

havior for F > 34. In addition, for both the symmetric and asymmetric solutions, 

transitions to more complex temporal behavior occur at lower values of F than the 
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Figure 2.5. Behavior of Slippery Model for 8 < F < 40. The vertical arrows indicate 
the range of F over which a particular type of behavior is realized. The horizon- 
tal arrows indicate the direction of transition between symmetric and asymmetric 
states (i.e. the asymmetric state decays to the symmetric state for F < 9, and the 
symmetric state, when perturbed, becomes asymmetric for F > 9) . S = steady, 
PAV = periodic amplitude vacillation, PSV = periodic structural vacillation, QP = 
quasi-periodic, C = chaotic. 
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comparable transitions in the semi-slippery case. 

The symmetric solution exhibits steady-behavior just above the onset of 

instability. At slightly larger values of F, it enters a regime of periodic amplitude 

vacillation. The energetics in this regime exhibit the classic baroclinic signature 

(see Section 1.5.2). At still higher values of F, a barotropic instability causes a 

transition to structural vacillation. As the supercriticality is increased further, there 

is eventually a mixing between the PAV and PSV which results in a quasi-periodic 

flow. Since the symmetric solution is unstable and performs a transition to the 

asymmetric state over almost all values of F considered, the asymmetric state is the 

only realizable flow in a laboratory setting. In order to keep this discussion concise, a 

detailed summary of the symmetric state's behavior has been relegated to Appendix 

C and only the asymmetric solutions will be discussed further in this chapter. 

The energy diagram introduced in Section 1.5.1 is useful for showing the 

mean energies of the system, but the energy fluctuations have proven to be much 

more revealing in understanding the behavior at a particular parameter setting. For 

brevity, important results in the mean energy cycle will be simply stated rather 

than graphically illustrated. The asymmetric state first comes into existence at 

F = 9. The mean energies of the asymmetric state are much the same as those 

in the symmetric regime. A useful quantity is the percentage ratio of the mean 

barotropic energy transfer to the mean baroclinic energy transfer, which we define 

as 1Z, where 

At F = 9, TZ is about 6.9%, similar to the symmetric state at F = 8. The growth 

rate of the instability is extremely small at this value of F, and it subsequently 

takes many oscillations for this state to "equilibrate".   In addition, the amplitude 
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of the vacillation is very small, so that the state could be described as quasi-steady. 

An examination of the energetics indicates that the behavior is a form of PAV, 

since there is no barotropic zonal correction term involved (which means that the 

barotropic zonal kinetic energy is zero). 

At F = 10, the solution becomes quasi-periodic. The value of 1Z has grown 

to 11.6%. Figure 2.6 shows the energy transfers as a function of time. The behavior 

is largely the same as the symmetric solution at F = 12, but with an additional 

modulation that results in quasi-periodic behavior. Nonetheless, the system still 

appears to be exhibiting amplitude vacillation, and the baroclinic energy transfer 

terms have rms deviations an order of magnitude larger than the barotropic transfer 

term. In addition, the barotropic zonal kinetic energy is still zero (as it was for 

F = 9). Finally, an examination of the power spectra of the zonal coefficients 

indicates that the quasi-periodicity arises as a result of the previous solution at 

F = 9 interacting with the symmetric PAV solution. Thus, the difference between 

the symmetric and asymmetric solutions at this parameter setting seems to be that 

the asymmetric instability interacts just slightly with the original symmetric solution, 

producing a weak, quasi-periodic modulation of the flow. 

At F = 13, the asymmetric case enters a regime of periodic structural vac- 

illation, and the value of 1Z is now 13.7%. The cause of this dynamical behavior is a 

barotropic instability, just as in the symmetric state. This can be seen in Figure 2.7, 

which displays the barotropic and baroclinic sin(7ry) coefficients as a function of time. 

The barotropic portion of this coefficient grows with time until it reaches a simple 

periodic regime; the baroclinic component, conversely, decays to zero. In addition, 

this PSV regime possesses the property that the symmetric modes retain only a 

baroclinic component. Figure 2.8 displays the barotropic and baroclinic sin(27T7/) 

zonal components. The barotropic portion decays to zero, while the baroclinic por- 

tion alters in response to the instability and eventually reaches a periodic state. 
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Thus, the baroclinic nature of the flow is maintained in the symmetric modes, while 

the antisymmetric modes reflect the barotropic component. For clarity, the sym- 

metric modes are those for which the sum of the i-wavenumber and j/-wavenumber 

are even, while the antisymmetric modes are those for which the sum is odd. How- 

ever, the asymmetric state generally includes all waves, since it encompasses the 

symmetric as well as the antisymmetric modes. 

As is the case for the symmetric solution, profound changes arise in the 

fluctuations of the various energies and also the energy transfer terms between PAV 

and PSV. That the state can be characterized as structural vacillation is evidenced 

by Figure 2.9, which displays the meridional kinetic energy (for the upper layer) 

vs.   time.    The shape of the distribution clearly changes in shape as well as in 

amplitude, in contrast to the distribution of kinetic energy for F = 12, which retains 

its shape over the course of one vacillation cycle. The phase relationships between 

the energies are different in the asymmetric PSV regime than for the symmetric 

regime. The zonal potential and wavy potential energies are approximately in phase, 

as are the zonal and wavy kinetic energies. Moreover, these pairs are approximately 

out of phase with each other.   This may be contrasted with the behavior of the 

symmetric case at F = 26, where the zonal energies are in phase with each other 

and exactly out of phase with the wavy kinetic energy.   The clue to the origin of 

this difference seems to be contained in the magnitudes of the rms deviations of the 

energy transfer terms. Although, for F = 13, the system is in a structural vacillation 

regime that is generally characterized by a domination of barotropic energy transfers, 

the rms deviations of both the barotropic and the baroclinic transfer terms are 

approximately equal at this parameter setting. Recall that for the symmetric state 

at F = 26, the barotropic energy transfer dominates. Thus, it seems that the exact 

phase relationships between the various energies depend on the magnitudes of the 

transfers between these energies.   In contrast to the amplitude vacillation regime, 
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Figure 2.9. Zonally-integrated wavy kinetic energy, E(y), vs. y for several times, T, 
over one cycle, F = 13, Asymm. case 
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which is characterized largely by baroclinic transfers and fixed relationships between 

the various potential and kinetic energies, the PSV phenomenon is more complex 

and, in a sense, more generic than PAV. 

There is, however, some commonality between the various PSV solutions. 

The dominant frequency for the sm(2iry) coefficient at JP = 13 is about 0.53 nondi- 

mensional frequency units, compared to the peak frequency of 0.38 frequency units 

for the symmetric solution at F = 26. The discrepancy is not as large as it seems, 

because the frequency tends to decrease with increasing F, so that the two are prob- 

ably comparable at equal values of F. Thus, PSV seems to be generally associated 

with higher-frequency oscillations than does PAV. 

The transition from PAV (actually, the quasi-periodic state) to PSV is very 

abrupt. This is in contrast to the results of a low-order model studied by Weng 

et al. (1986), who observe a slow transition in which a mixed vacillation occurs 

between the two regimes. They do not comment as to whether the mixed vacillation 

is periodic or quasi-periodic. 

The spatial dependence of the flow at F = 20, near the upper limit of the 

PSV regime, is shown in Figures D.7,8. The counter-rotating eddy feature common 

to PSV behavior is clear in the baroclinic field, although the spatial representation 

of the flow is much different than in the symmetric regime. The barotropic field 

shows less of this counter-rotating tendency. Instead, it appears that eddies move 

meridionally in more of a "zig-zag" manner from the top of the flow domain to 

the bottom. Thus, the barotropic field also shows structural differences from the 

barotropic PSV solution in the symmetric regime. 

The next parameter setting to examine is F = 26, just after the asymmetric 

state has become quasi-periodic. The value of H has increased to 26.2%, so that the 

mean barotropic energy transfer continues to grow (relative to the mean baroclinic 
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energy transfer) with increasing F. The time return map of the U\ coefficient is ex- 

hibited in Figure 2.10a (the time return map is essentially the same as the maximum 

return map, but it measures the time between successive maxima). Figure 2.10b, 

which displays a circle map constructed from the time return map, displays slight 

noninvertibility near 6n = 2, a necessary condition for chaos (Baker and Gollub, 

1990). Thus, the system is near the onset of chaos but is still exhibiting regular (i.e. 

non-chaotic) behavior. 

The origin of the observed behavior is essentially the same as the transi- 

tion to quasi-periodicity in the symmetric solution—i.e., mixing of baroclinic and 

barotropic instabilities. Figure 2.11 displays the energy transfers versus time. In 

contrast to the flow at F = 20, the baroclinic transfer terms are larger than the 

barotropic transfer term, implying that the quasi-periodic behavior arises from the 

interaction of a baroclinic instability with a barotropic instability (however, unlike 

the symmetric solution, the baroclinic instability in this situation is asymmetric). 

This is evidenced by the fact that the asymmetric, baroclinic zonal terms, which are 

nonexistent at F = 20, grow to a finite value at F = 24. Additionally, the dom- 

inant temporal frequencies of the baroclinic sin(iry) zonal term and the baroclinic 

sin(27rT/) zonal term are 0.150 and 0.116 nondimensional frequency units, respectively. 

These values correspond to the respective oscillation frequencies in the earlier QP 

regime, which is governed by baroclinic instabilities. It can thus be concluded that 

the quasi-periodic behavior arises as the result of competition between barotropic 

and baroclinic instabilities (just as in the symmetric state), and it is also clear that 

the baroclinic instabilities are qualitatively similar to those that govern amplitude 

vacillation, so that it is likely the same instability experiencing a resurgence. 

One final aspect to examine at F = 26 is the phase relationships between 

the energies, which are displayed in Figure 2.12. Although the behavior is not 

strictly periodic, the relative phases of the energies are much like that found in a 
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pure amplitude vacillation. Specifically, P and K are in phase with one another and 

out of phase with K'\ additionally, P' is ninety degrees out of phase with K'. These 

are the energy cycles observed in a purely baroclinic flow. Thus, the barotropic 

instability simply acts to modulate this transfer of energy, adding complexity to the 

temporal behavior of the flow in the process. 

Between F = 24 and F = 30, the system alternates between phase-locked 

states (which are multiply-periodic) and quasi-periodicity. An example of the flow 

fields in a quasi-periodic state, at F = 28, is shown in Figures D.9,10. In con- 

trast to the symmetric regime's quasi-periodic flow, the spatial dependence is much 

more complicated than that exhibited for PSV, although the baroclinic field still 

shows some features of counter-rotation. There exist many transient, small-scale 

features, especially in the baroclinic field. The lack of correspondence with the pure 

PSV behavior is not surprising, since previously it was stated that baroclinic en- 

ergy transfers dominate the quasi-periodic behavior. Thus, the spatial dependence 

is likely a complex amalgamation of both PAV and PSV fields. 

AtF« 30.9, the system becomes chaotic. To understand the mechanics of 

the transition, the behavior at F = 30.5 is used as a reference. Figure 2.13a displays 

a phase-space plot of the U\ coefficient at F = 30.5, which is plotted against itself 

using the method of time delays, as well as the power spectrum of the time series 

shown in Figure 2.13b. The phase space plot shows a very orderly attractor, while 

the power spectrum consists of several distinct peaks and a relatively small noise 

floor, implying quasi-periodicity. 

A time return map constructed from the same time series is shown in Figure 

2.13c. The return map further indicates that the system is quasi-periodic. To confirm 

this numerically, one can normally resort to calculating the largest Lyapunov expo- 

nent of the system (see Appendix F). If it is positive, then the system is by definition 

chaotic; if it is zero, the dynamics are quasi-periodic. However, calculations of this 
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type failed to unambiguously determine whether or not the dynamics at F = 30.5 

are chaotic (the calculations revealed a positive, but very small, exponent, which 

is not numerically significant).   As a last option, a nonlinear prediction algorithm 

developed by Farmer and Sidorowich (1987) was used in order to determine whether 

the predictability extent was finite or infinite, the former indicating a chaotic system. 

For the flow at F = 30.5, the prediction error does not grow with time. Thus, the 

system is quasi-periodic and not chaotic. The results at F = 30.5 can now be con- 

trasted with those at F = 30.9. The phase-space plot and power spectrum of the U\ 

coefficient are displayed in Figure 2.14a,b. The phase-space trajectory is somewhat 

more convoluted than was the case for F = 30.5, and the power spectrum shows a 

broadening of the major peaks (a hallmark of the transition to chaos). In addition, 

the time return map constructed from the U\ time series, and shown in Figure 2.14c, 

is no longer a simple curve.   Finally, a use of the nonlinear prediction algorithm 

indicates that the prediction now grows with time, albeit slowly. The fact that the 

error grows at such a slow rate, and even seems to oscillate in phase with the actual 

signal, indicates that the dynamics are still largely determined by the quasi-periodic 

portion of the dynamics. This is also apparent when one examines the energetics of 

the flow.  There is almost no change in the relative magnitudes of the fluctuations 

of the energies or the energy transfer terms between the quasi-periodic and chaotic 

states. Since the onset of chaotic behavior is not reflected in a quantitative change 

in the energetics of the flow, what causes the chaos? According to the Ruelle-Takens 

scenario discussed in Section 1.5.3, the introduction of a third incommensurate fre- 

quency to a quasi-periodic flow generally results in an unstable situation. It would 

seem reasonable to conclude that a new instability becomes sufficiently potent to 

interact with the quasi-periodic flow, resulting in incipient chaos.   However, since 

there is no newly-detectable peak in the power spectrum at F = 30.9, the amplitude 

of the instability must be relatively weak. 
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Figure 2.14. F = 30.9. (a) Phase-space plot of Ux coefficient vs. itself with a time 
delay of .078 seconds, (b) Power spectrum of the same time series, (c) Time return 
map constructed from U\ time series. 
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Spatial fields at F = 32, just above the onset of chaos, are displayed in 

Figures D.11,12. The spatial dependence is not much more convoluted than that 

at F = 28, nor is there a shift toward domination by smaller scales. Rather, the 

same basic spatial structures are now simply modulated chaotically in time. This 

indicates that the final transition, from quasi-periodicity to chaos, is more important 

temporally, leaving the spatial behavior of the fields statistically intact. 

The system becomes chaotic quickly. Estimates of correlation dimension of 

the attractor (see discussion in Appendix F) produce the correct value of two for the 

quasi-periodic behavior at F = 30.5, but the results are inconclusive for the attrac- 

tor at F = 30.9, which must necessarily have a dimension greater than two. More 

specifically, there is an absence of a scaling region over which the dimension can be 

estimated. However, the dimension at any length scale never exceeds about 3.5, indi- 

cating the attractor dimension most likely lies between three and four, a reasonable 

conclusion to draw considering the nascent chaotic behavior under consideration. 

Given that it is impractical (from a data-gathering standpoint) to estimate the at- 

tractor dimension with any certainty at F = 30.9 (and Lyapunov exponents are 

also impractical, as Eckmann and Ruelle (1992) have asserted that the estimation of 

these requires even more data than does a dimension calculation), it is certainly not 

feasible to calculate the dimension at higher values of F, where one would intuitively 

expect behavior that is more chaotic than that at lower F. However, it is possible 

to make a rough visual assessment by viewing the attractor, power spectrum, and 

return map. Figure 2.15 displays these for the U\ coefficient at F = 40. 

The phase-space plot is much more convoluted and shows much less of the 

quasi-periodic dynamics than is evident at F = 30.9. The power spectrum and re- 

turn maps corroborate this; there is no well-defined peak in the power spectrum, 

and the return map shows no low-dimensional structure. It is thus certainly rea- 

sonable to assume that further increases in F would lead the system to a state of 
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geostrophic turbulence, where the spatial and temporal dynamics possess self-similar 

power spectra over a range of scales. To ascertain this, three numerical runs were 

made at a resolution of 256x129: JF* = 40, 70, and 100. The numerical results pre- 

sented herein have self-similar spatial spectra at all three parameter settings and 

are therefore not shown. The integrated, squared streamfunction as a function of 

wavenumber possessed a slope of approximately -8 to -9, on a log-log scale, for all 

cases considered, however. The temporal power spectra of the U\ coefficient at these 

parameter settings are shown in Figure 2.16. As F increases, the spectral peaks 

become broader and less apparent. At F = 100, only the dominant PAV peak, at 

about 0.1 frequency units, remains visible, and the power appears to decay alge- 

braically (linear on the log-log scale used) with a slope of approximately -3.3. This 

agrees with the experiments of Buzyna et al. (1984), who examined the transition 

to geostrophic turbulence in a heated, rotating annulus. In the turbulent regime, 

they found both the spatial and temporal power spectra to possess self-similarity. 

The wavenumber spectra showed a slope ranging from -2.4 to -4.8, depending on the 

thermal Rossby number; the frequency spectra exhibited a slope of approximately 

-4, which was not sensitive to parameter changes. In addition, the temporal spec- 

tra in the transition regime between ordered and turbulent flow displayed the same 

broadening and eventual disappearance of prominent spectral peaks as that seen in 

Figure 2.16. 

Judging from these results, the dynamics seen just above the transition to 

chaos bridge the gap between perfectly ordered flow (e.g. periodic) and turbulent 

processes. However, there is a very rapid transition, once the flow becomes chaotic, 

to very complicated spatial and temporal dependence; the system does not remain 

on a low-dimensional (i.e. almost quasi-periodic) attractor for long. Guckenheimer 

and Buzyna (1983) attempted to compute attractor dimension in the geostrophic 

turbulence regime for the experiment alluded to above. They found no evidence for 
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attractors of less than dimension 7. This result has important implications for the 

behavior of the actual atmosphere, which is thus presumably operating at a level of 

supercriticality at least comparable to that in the model presented herein. 

In summary, the asymmetric regime shows more complex behavior than 

the symmetric state. The initial transition to the asymmetric solution occurs at 

F = 9 in the form of PSV. At F = 10, a symmetric, baroclinic, secondary instability 

results in a quasi-periodic oscillation that persists until F = 13. At this point, 

structural vacillation, much like that seen in the symmetric state, occurs. This 

persists until F = 24, at which point an asymmetric, baroclinic, secondary instability 

interacts with the PSV oscillation to produce quasi-periodic behavior. In addition, 

the quasi-periodic flow is dominated by baroclinic energy transfers, in contrast to the 

symmetric state quasi-periodicity, which is dominated by barotropic energy transfers. 

Finally, for F > 30.9, the system becomes chaotic, and as F increases above this 

threshold, any evidence for evolution on a very-low-dimensional attractor disappears. 

2.8    Discussion 

The formulation and investigation of a two-layer model of baroclinic in- 

stability with fully-stress-free sidewalls has been carried out. The results show sig- 

nificant discrepancies with a mixed-boundary-condition model formatted by CH. 

The asymmetric regime shows a transition from periodic flow to quasi-periodicity to 

chaos. In addition, after the onset of chaos, the spatio-temporal behavior quickly 

becomes complicated. Numerical results at large values of F (« 100) show a transi- 

tion to self-similar spatial and temporal spectra, which would seem to indicate that 

the flow is becoming turbulent. The numerical results, which become chaotic at 

F « 5FC, are disappointing in comparison to laboratory experiments, which show a 

transition to chaos atFa 1.6FC. 



CHAPTER 3 

SECONDARY INSTABILITIES OF FINITE AMPLITUDE BAROCLINIC 

WAVES 

It is of great interest to understand the regime diagram shown in Figure 

2.4 from an analytical standpoint. This would aid in comprehending the transition 

from simple flow to more complex spatial and temporal behavior. Linear theory, 

however, is only capable of predicting the growth of single-wave perturbations on 

the zonal mean flow and is thus useless in understanding secondary instabilities such 

as PAV and PSV. Busse and Or (1986) and Or and Busse (1987) have had success 

with what will be termed a "quasi-linear" analysis. They utilized this analysis to 

examine secondary instabilities in convection in a rotating annulus. In the quasi- 

linear method, the state of the system due to the primary instability is directly 

calculated. The presence of secondary instabilities of this equilibrated state are then 

ascertained. This chapter introduces the methodology of this approach. The method 

is then applied to the stress-free model discussed in Chapter 2, and comparisons with 

those results are made. 

3.1    Methodology 

Conceptually, the implementation of such an analysis is straightforward. In 

a practical sense, however, it is rather difficult, and it would be virtually impossible 

without a symbolic manipulator such as Mathematica (Wolfram, 1991). We proceed 

by defining the barotropic and baroclinic streamfunctions as 

#fc   =   P1 + P2, (3.1) 

*6c   =   P2-P1, (3.2) 
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respectively (as was done previously in Equations 1.12,13), and expand them as the 

finite sums 

N N-j+l 

*w    =    X)   X)   sin(k7ry)[Ajk(t) COS(JTTX/2) + Bjk{t) sin(j7ri/2)] + 
j=i   A=i 

N 

£ S[{t) sm(lTry) + Ubt(t)(y - 1/2), (3.3) 
/=i 
N N-j+l 

*fe   =   J   E   sm(k7ry)[Cjk(t)cos(JTrx/2) +Djk(t) sin(JTx/2)] + 

JV 

X; £{(*) sin(Jiry) + Ubc(t)(y - 1/2) + V(t) + 2y. (3.4) 

Then one can insert these into Equations 1.14,15 and exploit the orthogonality of the 

above trigonometric functions to obtain a spectral model with approximately 2(iV + 

l)2 time-dependent coefficients (note that a triangular truncation in wavenumber 

space is used). Once this spectral model has been obtained, a Newton-Raphson 

method can be used in order to find the fixed points of the spectral equations, i.e. 

those values of Ajk, Bjk, Djk, Djk, B[, D'lt Ubc, Ubt, and V for which the time 

derivatives dAjk/dt, dBjk/dt, dCjk/dt, dDjk/dt, dB'Jdt, dD'Jdt, dUbc/dt, dUht/dt, 

and dV/dt are identically zero. The fixed point solution yields the steady-state 

of the system for a given set of parameters. Once this has been obtained, one 

can then examine the stability of the time-independent state by considering small 

perturbations from equilibrium. To accomplish this, we write the total barotropic 

and baroclinic streamfunctions, respectively, as 

N N-j+l 

*6t    =    X)   X)   sin(klry)KAJkf + Äjk(t)) cos(J7cx/2) + 
j=l   Jfc=l 

N 

(Bjkf + Bjk(t)) sin(J7rx/2)] + ^2(B'lf + Bftt)) sin(liry) + 
l=i 

(Z4t/+Z4t(i))(t/-l/2), (3.5) 
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N N-j+1 
§6c = E £ sHk*y)[(cjkf + cjk(t))Cos(jTx/2) + 

3=1    k=l 

(Djkf + Djk(t)) sin(jVx/2)] + £(2^ + £,'(*)) sin(Ziry) + 
l=i 

(Ubc, + Ubc(t))(y - 1/2) + (Vf + V{t)) + 2y, (3.6) 

where the / subscript indicates those coefficients which are the fixed point values 

and the "symbol indicates perturbation quantities. The total streamfunctions above 

are defined as the sum of the steady-state streamfunctions and the perturbation 

streamfunctions (i.e. $bt = $btf +#6t) etc.). The expansions given by Equations 3.5 

and 3.6 can then be substituted into a linearized form of Equations 1.14,15, which, 

after some simplification, can be written as 

dV2$bt/dt - l/2[J(V2$bt, §btf) + J(V2$6t/, 

ht) + JCv2^, $fc/) + /(v2^, 46c)] = 

-g/2[(l + x)V2$6t + (1 - x)V2$6c] + E/R0V^ht, (3.7) 

ö/ö<[V2$6c - 2F$6c] - l/2[J(V2$6c, *U/) + 

J(V2$6c,$6t/) + ^(V2$6tl#6c/) + 

J(V2$btf, *6c)] - F[J(*U, $6c,) + J(*te/, *fc)] = 

-<?/(2(x + 1))[(1 - X2)V2$6t + (X2 + 6X + l)V2$6c] + 

£/Ä0V
4$6c. (3.8) 

The above equations are linear in #6t and 46t once $6t/ and §6=/ are known. In 

addition, we assume that the perturbation functions possess a structure similar to 

the original stream functions (see Equations 3.5,6) above, so that the perturbation 

equations can also be cast in terms of a spectral model. The spectral model then 

consists of a set of linear, constant coefficient, ordinary differential equations, and 
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perturbations from the steady state will then grow or decay exponentially. Thus, we 

can assume that each variable has a solution that is proportional to eXt, and the task 

as stated is reduced to an eigenvalue problem.  Using Mathematica, one can solve 

for the spectrum of eigenvalues, {A;}, and their corresponding eigenvectors.   This 

yields, respectively, the growth rates of any unstable modes as well as their spatial 

structure. 

3.2    Results for Slippery Model 

3.2.1 Fixed-Point Solutions For the set of parameters considered 

in this study, only a single, symmetric fixed-point solution was found; this is the 

same result that was found for the full numerical model presented in Chapter 2. In 

other words, obtaining a solution for an asymmetric set of equations resulted in the 

asymmetric modes having values of zero. This finding suggests that there may be 

no asymmetric fixed point solution, stable or unstable. Thus, in the discussion that 

follows, it is implied that any steady solution referred to is a symmetric steady-state. 

The symmetric case is comprised of wavenumbers for which the sum of the 

x-wavenumber and y-wavenumber is even (i.e. j + k = 2,4,6,..., or I = 2,4,6,...). 

Due to computer limitations, especially the large memory overhead that symbolic 

manipulations require, the largest attainable value of N in Equations 3.3,4 is N = 8, 

despite the fact that for the symmetric state all wavenumbers with j + k = 3,5,7,... 

or I = 1,3,5,... are excluded a priori (Or and Busse (1987) use a similar resolution). 

Thus, the total number of equations, which is approximately (N + l)2 = 81, is much 

fewer than the O(104) equations used in the full numerical model. However, as will 

be shown below, there is good qualitative agreement between the behavior of the full 

numerical model and the instabilities calculated by the analytic, quasi-linear model. 

This gives confidence that at least the initial instabilities of steady, finite-amplitude 

baroclinic waves are predicted well by a model with N = 8. 
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Figure 3.1 shows the steady-state, area-integrated kinetic energy vs.   F 

for the various components of the stream functions: the baroclinic zonal and wavy 

portions, and the barotropic wavy portion. For all the results presented herein, the 

barotropic zonal kinetic energy has a steady-state value of 0, and it is therefore 

not plotted.   The figure also displays these energies as a function of N, which is 

proportional to the number of modes in the system. It is evident that this energy 

converges fairly rapidly to some asymptotic value despite the fact that the resolution 

(in terms of the number of modes) is relatively small. The baroclinic wavy kinetic 

energy shows a lesser tendency toward convergence but still does not change dras- 

tically between N = 6 and N = 8. Figure 3.2 shows the steady-state values of 1/2 

the area-integrated, squared streamfunction for the various components listed above. 

For the baroclinic wavy and zonal components, this quantity is proportional (by a 

factor of F) to the available wavy and zonal potential energy, respectively. As above, 

the barotropic zonal field has a steady-state value of zero. This quantity / $2/2dA 

also shows good convergence as a function of N, with the baroclinic wavy component 

again the least-convergent member. Taken together, the results presented in Figures 

3.1 and 3.2 indicate that a relatively modest resolution is capable of displaying a 

reasonably accurate steady solution of the full equations. 

The quasi-linear model yields the structure of the steady-state solutions, 

which are primary instabilities of the zonal flow, for a chosen set of parameters. 

Figure 3.3 displays the steady solutions for F = 7,10,20, and 30 for the barotropic 

wavy mode, the baroclinic wavy mode, and the baroclinic zonal mode, respectively. 

The barotropic zonal mode has a steady-state amplitude that is identically zero 

and is therefore not plotted. The steady, barotropic, wavy field essentially remains 

the same over the range of Froude numbers. It resembles the lowest possible wave 

and the one that first becomes unstable. The baroclinic zonal field also remains 

essentially constant for 7 < F < 30 and is largely comprised of the (y-1/2) term, as 
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Figure 3.1. Steady-state Kinetic Energy vs. F for the barotropic and baroclinic 
wavy and zonal components. The solid line is for N=2, the dotted line is for N=4, 
the dashed line is for N=6, and the dot-dashed line is for N=8. 
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can be seen from Figure 3.3. The baroclinic wavy field, on the other hand, is built 

from a mixture of wavenumbers, although an examination of Figure 3.4, which shows 

the wavenumber power spectrum of the baroclinic wavy field at F = 30, indicates 

that the j = l,k = 1 and j = 2,A = 2 waves give the largest contributions. This 

result, incidentally, indicates the inherent deficiencies in single-wave models, even 

for modest supercriticality. 

3.2.2    Symmetric Steady-State-Symmetric Perturbation Field 

Once the nonlinear, symmetric, steady-state solutions have been found, the next 

task is to establish the stability of the time-independent fields as a function of F 

and. to examine the nature of any instabilities that may occur.  Perturbations can 

be symmetric or asymmetric in nature (see Table 2.2); this subsection considers 

symmetric perturbations, while the next treats asymmetric perturbations.   Figure 

3.5 shows the real part of the positive eigenvalues as a function of the Froude number, 

F, which varies from 7 to 30.   The eigenvalues are all complex.   Since from the 

previous chapter it was demonstrated that the important system transitions occur for 

F < 30, it is probably neither useful nor particularly accurate to compute eigenvalues 

for larger values of F.   There are seven unstable modes that occur in the range 

7 < F < 30, as shown in Figure 3.5.   The first instability occurs at F = 9 and 

becomes stable again for F = 10. This is most probably a spurious instability, as 

such behavior does not occur in the numerical model (by spurious it is meant that the 

instability would disappear for larger N). Nonetheless, both this instability and that 

at F = 12 are zonoclinic, in which the barotropic zonal mode does not participate. 

Although the steady-state provides a meridional shear that in turn allows 

for a zonotropic instability, the shear is evidently weak enough that the system is 

still more prone to a secondary zonoclinic instability.   At F = 15, another mode 

becomes unstable.   This is also a zonoclinic instability and is very similar to the 

first two. However, the structures of the growing modes appear to be dominated by 
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(a)   Borotropic Wow Held, F-7 

Figure 3.3. (a) Steady-state barotropic wavy streamfunctions for JP=7, 10, 20, and 
30. The x (zonal) and y (meridional) directions are indicated, (b) Steady-state 
baroclinic wavy streamfunctions for F=7, 10, 20, and 30. The x (zonal) and y 
(meridional) directions are indicated, (c) Cross-section of steady-state baroclinic 
zonal streamfunctions for F=7, 10, 20, and 30. The y (meridional) direction is 
indicated. 
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spectrum is dominated by the j = 1, k = 1, and j = 2, A = 2 waves. 
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symmetric perturbation field, 7 < F < 30). The solid lines indicate zonoclinic 
instabilities, while the dashed line signify zonotropic instabilities. 
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higher wavemimbers than those present in the first two instabilities. At F = 17, two 

more instabilities axe born, one of which is short-lived. The one with the smaller 

growth rate (that quickly dies out) is another baroclinic instability. However, the 

faster-growing mode is a zonotropic instability. Finally, the instability at F = 27 is 

another zonoclinic instability, and that at F = 30 is another zonotropic instability. 

The instabilities are summarized in Table 3.1. 

Table 3.1. Summary of instabilities for symmetric basic state, symmetric perturba- 
tions. The type and symmetry of each instability is listed as a function of the initial 
value of F at which the instability is born. The label column indicates the respective 
curve in the figure. 

Label Froude Number Type of Instability Symmetry 

a 9 Zonoclinic Symmetric 
b 12 Zonoclinic Symmetric 
c 15 Zonoclinic Symmetric 
d 17 Zonotropic Symmetric 
e 17 Zonoclinic Symmetric 
f 27 Zonoclinic Symmetric 

g 30 Zonotropic Symmetric 

Qualitatively, the sequence of instabilities agrees with the results from the 

numerical model discussed in Chapter 2. Figure 2.4 shows that the symmetric state 

undergoes three major changes. The first change occurs between F = 10 and F = 12, 

where the model undergoes a transition from steady flow to periodic amplitude 

vacillation. In the numerical model (as discussed in Chapter 2), no barotropic zonal 

oscillations occur in this parameter range. At about F = 24, the barotropic zonal 

field grows from zero and oscillates about a small, finite value. From this value 

of F until F = 36, the system displays PSV. At F = 36, the system becomes 

quasi-periodic. This agrees qualitatively with the scenario presented in Table 3.1 

and Figure 3.5. The first type of instability to occur is a symmetric, zonoclinic 

instability. At higher supercriticality, a symmetric, zonotropic instability occurs. 

Following this, there is a succession of both types of instabilities at still larger values 

ofF. 
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At this resolution, the growth rate of the zonotropic instability never ex- 

ceeds that of the primary zonoclinic instability. This does not necessarily imply, 

however, that the preferred state of the system is the one with the largest growth 

rate. Therefore, PSV is not ruled out in the reduced model presented here. It also 

seems plausible, as discussed in Chapter 2, that the quasi-periodicity arises from 

some type of competition or mixed state between instabilities. The drawback to this 

analysis, of course, is that instabilities are only computed with respect to the steady 

state, while in the full numerical model, instabilites at higher F must occur on top 

of time-dependent (i.e. vacillating) states. 

All of the growing modes shown in Figure 3.5 have complex eigenvalues, 

which implies that the modes oscillate as they grow. We can compare the frequency in 

the PAV regime in the full numerical model with the oscillatory frequency of the first 

growing mode, which occurs at F = 12. This period of vacillation in the symmetric 

PAV regime is approximately 8.00 nondimensional time units. From the quasi-linear 

model, the period is calculated to be about 8.63 nondimensional time units. Thus, 

the modestly-resolved, quasi-linear model appears to predict correctly the frequency 

of the amplitude vacillation quite well. To compare the PSV frequency, the quasi- 

linear frequency was obtained at two places-at F = 17, where the instability first 

occurs, and also at F = 24, which is where the numerical model first displays PSV. 

At F = 17, the oscillation period is 2.18 time units, while at F = 24 it is 2.69 time 

units. The PSV vacillation period for the full model is 2.54 time units. Thus, there 

is good agreement for the PSV oscillation frequency as well. 

3.2.3 Symmetric Steady-State—Asymmetric Perturbation Field 

The other case to be considered is that of a symmetric steady-state with an asymmet- 

ric perturbation field. Because the asymmetric perturbation field requires a larger 

number of equations than does the symmetric case, the resolution is constrained 

by computer memory limitations to be N = 6, which results in approximately 
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(N + l)2 = 49 modes for the steady state and about 2(N + l)2 = 98 modes for 

the perturbations. 

Figure 3.6 shows the real parts of the eigenvalues of the growing modes for 

7 < F < 30. Again, the eigenvalues are all complex, which results in oscillatory 

instabilities, but the imaginary parts are not shown. Table 3.2 summarizes the type 

of each instability displayed in Figure 3.6. The first instability occurs at F = 9 and 

is a symmetric, zonoclinic instability. The disturbance is symmetric because only 

the symmetric wavenumbers yield a nonzero contribution to the growing modes. 

At F = 11, there are two more instabilities. The first unstable mode (i.e. the one 

that eventually achieves a larger maximum growth rate) is an asymmetric, zonoclinic 

instability. The second instability is an asymmetric, zonotropic instability. These in- 

stabilities are termed asymmetric because only those wavenumbers which are deemed 

asymmetric (i.e. the sum of the x-wavenumber and the y-wavenumber is odd) give 

nonzero contributions to the instability. At F = 20 occurs another zonoclinic, asym- 

metric instability which never achieves a very large growth rate. Another pair of 

instabilities occurs at F = 24. The slower-growing mode is a symmetric, zonoclinic 

instability. The faster-growing mode is an asymmetric, zonotropic instability. At 

F = 26, a symmetric, zonotropic instability occurs, while yet another asymmetric, 

zonotropic instability comes into existence at F = 29. Finally, for F = 30, there 

is an asymmetric, zonoclinic instability. It is important to note that the zonotropic 

instability born at F = 24 eventually dominates in terms of growth rate. This is 

in sharp contrast to the symmetric case, where the growth rate of the zonotropic 

instabilities never exceeds that of the largest zonoclinic instability. 

Although for this case the resolution of the quasi-linear model is lower than 

desirable, there is nonetheless good qualitative agreement with the numerical model. 

From Figure 2.4, recall that the full asymmetric solution undergoes several significant 

transitions in behavior. For 9 < F < 10, the system is governed by an asymmetric, 
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Table 3.2. Summary of instabilities for symmetric basic state, asymmetric perturba- 
tions. The type and symmetry of each instability is listed as a function of the initial 
value of F at which the instability is born. The label column indicates the respective 
curve in the figure. 

Label 

g 

Froude Number    Type of Instability 

11 
11 
20 
24 
24 

26 

29 
30 

Zonoclinic 
Zonoclinic 
Zonotropic 
Zonoclinic 
Zonoclinic 
Zonotropic 
Zonotropic 
Zonotropic 
Zonoclinic 

Symmetry 

Symmetric 
Asymmetric 
Asymmetric 
Asymmetric 
Symmetric 
Asymmetric 
Symmetric 
Asymmetric 
Asymmetric 
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Figure 3.6. Growth rates of unstable modes as a function of F (symmetric state, 
asymmetric perturbation field, 7<F< 30). The line-type legend is as follows: solid 
line, zonoclinic symmetric instabilities; dashed line, zonotropic symmetric instabil- 
ities; dotted line, zonoclinic asymmetric instabilities; dot-dashed line, zonotropic 
asymmetric instabilities. 
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zonoclinic instability. Then, for 10 < F < 13, the system is quasi-periodic, with, the 

behavior ostensibly caused by the weak interaction of the asymmetric, zonoclinic 

instability with a symmetric, zonoclinic instability. This behavior corresponds, with 

reference to the quasi-linear results, to the instabilities at F = 9 and (the faster- 

growing one) at F = 11. Next, for 13 < F < 24, the full model is dominated by a 

zonotropic instability that results in PSV. This correlates well with the emergence 

of the second instability at F = 11. Additionally, this instability decays by F = 26, 

at which point the two instabilites born at F = 24 both achieve large growth rates. 

Note that the full model undergoes a transition to quasi-periodicity at F = 24. These 

secondary instability calculations again suggest that this is the result of competition 

between zonotropic and zonoclinic instabilities. Eventually, this interaction, possibly 

coupled with interaction amongst the plethora of other instabilities generated at 

higher values of F, likely result in the chaotic behavior found for F > 30.9. The 

quasi-linear theory, however, provides a clue to the nature of the behavior found in 

the full model by revealing the types of secondary instabilities that may occur in the 

system. 

As with the symmetric state, the oscillating frequencies of the unstable 

modes compare favorably with the time scales inherent in the full, numerical model. 

At F = 9, where the full model exhibits a weak PAV phenomenon, the dominant 

period is approximately 7.3 time units. The unstable eigenmode that corresponds 

to this state is the asymmetric, zonoclinic instability born at F = 11 in the quasi- 

linear model, and its period is about 4.4 time units. Better agreement is obtained 

by comparing the vacillation frequency in the more robust PSV state at F = 13 

with the zonotropic, asymmetric instability which is born at F = 11. The vacillation 

period of the sm(iry) coefficient in the numerical model is about 3.8 nondimensional 

time units, while the quasi-linear theory yields a period of 4.8 time units at F = 13. 
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3.2.4    Spatio-Temporal Structure of Quasi-Linear Instabilities 

The instabilities discussed in the previous sections have a spatial dependence that 

oscillates and grows with time.   More specifically, one can associate one part of 

the instability with a cos(AJii)e
AJr' term and the other portion of the instability 

with sin(AJii)e
AJ'rt) where the r and i subscripts indicate, respectively, the real and 

imaginary parts. The superposition of these temporal functions, multiplied by their 

respective spatial dependence, yield the spatio-temporal behavior of the growing 

(and oscillating) disturbance. Additionally, one can make the two spatial functions 

associated with the given instability orthogonal in the sense that they have no mean 

projection onto each other. This is done by finding the eigenvectors of the covariance 

matrix of the spatial functions; the eigenvectors are then linear combinations of the 

original functions that are also orthogonal. The primary reason for doing this will be 

obvious in the next chapter, where direct comparisons are made with the empirical 

orthogonal functions (EOFs) of the full, nonlinear solutions, but it is nonetheless 

instructive to examine these orthogonal spatial instabilities at this point. 

The first solution to examine is the initial symmetric, zonoclinic instability 

in the symmetric perturbation case, which occurs at F = 12. Figure 3.7 shows the 

barotropic and baroclinic wavy field orthogonal functions of the initial symmetric, 

zonoclinic instability in the symmetric perturbation case, which occurs at F = 12. 

The structures are of course not comprised of single waves, but rather are constructed 

from many different wavenumbers. For the structures shown in Figure 3.7, the 

first eigenfunction in each field accounts for about 95% of the total variance of the 

instability, while the second eigenfunction contributes the remaining 5%. In Figure 

3.8, the eigenfunctions for the initial symmetric, zonotropic instability (which occurs 

at F = 17) are displayed for F = 24. These are much different than those shown 

in Figure 3.7; in this case, the first eigenfunctions of each field possess only about 

60% of the total variance.   In addition, the spatial eigenfunctions themselves are 
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rather complicated. This is of great consequence and will be discussed in detail in 

Chapter 4, but for now it is sufficient to note that this result is consistent with 

the observation of counter-rotating eddies observed in the PSV regime (which is 

associated with the onset of a zonotropic instability). The eigenfunctions for the 

initial zonotropic asymmetric instability (which occurs at F = 11) are displayed at 

F = 16 in Figure 3.9. In this situation, the first barotropic eigenfunction accounts 

for 82% of the total variance, while the first baroclinic eigenfunction accounts for 

about 63% of its total variance. The primary eigenfunctions are both dominated 

by a wavenumber-2 disturbance, while the secondary eigenfunctions are rather more 

convoluted. 

First «i8,anfunction, borotropic wovy field, F"12 

Figure 3.7. Eigenfunctions of barotropic and baroclinic wavy fields, F=12, symmetric 
case 

3.2.5 Relating Fixed-Point Solutions to Mean Quantities Dur- 

ing the course of this investigation, it was observed that the time-averaged (hereafter 

denoted as "mean") quantities in the numerical model seem to be very closely related 

to the fixed point solutions from the quasi-linear analysis, both in magnitude and 

spatial structure. For instance, Figure 3.10 compares mean kinetic energies (from the 

results presented in Chapter 2) versus fixed-point kinetic energies for the barotropic 

wavy component, the baroclinic wavy component, and also for the baroclinic zonal 
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Figure 3.8. Eigenfunctions of barotropic and baroclinic wavy fields, F=24, symmetric 
case 

Sacoinl tiq«nfunetion, barotropic Wrovy fidd, f-t6 

Figure 3.9.  Eigenfunctions of barotropic and baroclinic wavy fields, F=16, asym- 
metric case 



86 

component. The mean barotropic zonal component has a fixed-point value of 0 for 

all F and is are not shown. Nonetheless, there is very good agreement between the 

two quantities (i.e. mean fields versus steady-state fields) with the exception of the 

baroclinic wavy energy. However, this is a small quantity, and the nature of the 

discrepancy will hopefully be elucidated below. 

If the barotropic and baroclinic fields are written as follows, 

§bt(x,y,t)   =   <ßbtmean{x,y) + fa(x,y,t) (3.9) 

*6c(*,yi<)   =   <l>bcmean{x,y) + fa(x,y,t), (3.10) 

(i.e. the total field is written as the sum of a mean part, which is not a function 

of time, and a fluctuating, time-dependent portion), and if these expansions are 

then substituted into the governing equations, Eqns. 1.14,15, the resulting equa- 

tions would describe the time evolution of fa and fa. In addition, there would be 

nonlinear terms of three types: those involving two mean quantities, those involving 

a mean quantity with a perturbation quantity, and those involving two perturba- 

tion quantities. If the system were such that ||^wm„n(a!jy)|| >> ||&t(z,2f,t)|| and 

ll<^6cmean(a;>y)ll >> ||&c(s,y,Oil> where ||/|| indicates some suitable norm such as 

(/ / f2dxdy)1/2, then one could neglect, to a first approximation, any term contain- 

ing a perturbation quantity. What would remain, then, would be equations that 

balance nonlinear interactions of the mean quantities with dissipation of mean quan- 

tities. By definition, then, the mean fields would be the steady-state solutions of the 

equations. 

This seems to be the scenario that occurs in this model. Tables 3.3,4 show, 

for the symmetric and asymmetric solutions, respectively, the ratio of the mean ki- 

netic energies for the various zonal and wavy components to the standard deviations 

of the actual kinetic energies.   When this ratio is large, the scenario hypothesized 
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Figure 3.10. Comparison of mean and steady kinetic energies of barotropic wavy 
component, baroclinic wavy component, and baroclinic zonal component. The solid 
line indicates the steady values, the dotted line and asterisks indicate the symmetric 
state means, and the dashed line and X's indicate the asymmetric state means. 

Table 3.3.   Ratio of means to rms deviations for kinetic energy quantities of the 
various wavy and zonal portions of the stream function (symmetric solution' 

12 
20 
28 

Barotropic wavy 

9.70 
4.70 
445 

Baroclinic Wavy 

2.51 
1.73 
20.4 

Baroclinic Zonal 

16.0 
10.4 
4650 

Table 3.4.   Ratio of means to rms deviations for kinetic energy quantities of the 
various wavy and zonal portions of the stream function (asymmetric solution) 

12 

_20_ 
28 

Barotropic wavy 

12.2 
729 
12.1 

Baroclinic Wavy 

3.25 
10.3 
4.49 

Baroclinic Zonal 

20.1 
1890 
35.2 
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Figure 3.11: Mean fields at F = 20 for symmetric solution 
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Figure 3.12: Mean fields at F = 20 for asymmetric solution 
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Barotropic Wavy Field 

Baroclinic Zonal Field 

Baroclinic Wavy Field 

Figure 3.13: Steady-state fields at F = 20 
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above holds to a rough approximation. When the ratio becomes 0(1), the con- 

cept breaks down and one cannot necessarily expect the mean energies to reflect 

the steady-state values. Note that the ratio for the barochnic wavy component is 

often close to unity. This partially explains the discrepancies in Figure 3.10, al- 

though the differences in the baroclinic zonal kinetic energy, for example, cannot 

be explained by this phenomenon. Finally, it is interesting to note the correlation 

in spatial structure between the mean and steady-state quantities. Contour plots 

of the mean streamfields at F = 20 are displayed in Figure 3.11 for the symmetric 

solution and in Figure 3.12 for the asymmetric solution. These should be compared 

to the output of the analytical model, which is displayed in Figure 3.13. There is 

good agreement in the spatial structure of the streamfunctions, despite the fact that 

there are noticeable differences in the magnitudes of the fields. Although this is an 

a posteriori explanation of the situation, it nonetheless indicates that the particu- 

lar, steady-state low-order model presented here can predict the mean states of the 

highly-resolved numerical model with good accuracy. 

3.3    Discussion 

By utilizing a quasi-linear model, where the steady solution of the full set 

of nonlinear equations is first obtained, followed by an analysis of the stability of 

this steady state, the limited predictions made by classical linear instability theory 

can be extended. Due to computer limitations, our quasi-linear approach is limited 

to approximately O(102) degrees of freedom. However, the kinetic and potential 

energies show convergent properties even for this modestly-resolved system, allowing 

successful comparisons with the full numerical results. 

For the steady solutions, the barotropic wavy and baroclinic zonal compo- 

nents are comprised largely of single wavenumber pairs even for large supercriticality. 

In contrast, the baroclinic wavy field is represented by many different wave numbers, 
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which likely explains the inability of single-wave models to predict the experimental 

behavior of the two-layer system. Despite its relative complexity, though, the steady 

baroclinic wavy field has an approximately-constant shape for 10 < F < 30. 

When a symmetric perturbation field is applied to the steady-state solution, 

the resulting instabilities qualitatively agree with the results found in the highly- 

resolved numerical model. In the quasi-linear model, the first instability is zonoclinic, 

which is later followed by a zonotropic instability. This agrees with the numerical 

results. In addition, the oscillatory frequency of both the zonoclinic and zonotropic 

disturbances correspond very well to the dominant frequencies in the PAV and PSV 

regimes, respectively, of the numerical model, thus suggesting that the PAV and PSV 

oscillations have their origin as instabilities of the nonlinear steady waves. 

For an asymmetric perturbation field, the secondary bifurcations also agree 

with the regime diagram of the full numerical code. The initial instability is zon- 

oclinic and is later followed by a zonotropic instability. The predicted oscillatory 

frequency in the PSV regime is well predicted by the quasi-linear model. 

Due to the fact that the barotropic wavy and baroclinic zonal mean (i.e 

time-averaged) fields are much larger than the corresponding fluctuating quantities, 

the mean quantities are good approximations to the fixed-point values, both in am- 

plitude and spatial structure. Although the mean baroclinic wavy field does not 

agree as well in amplitude with its steady-state value, the spatial structure is very 

similar. This suggests that the steady-state quantities can be deduced to some ex- 

tent simply by extracting the mean quantities from the numerical model, and vice 

versa, unfortunately, this is not an a priori deduction but rather an a posteriori 

observation. 



CHAPTER 4 

EOF ANALYSES 

This chapter first introduces the concept of empirical orthogonal functions 

(hereafter denoted as EOFs) and explains their value in studying the models pre- 

sented herein. EOFs are then computed for the full numerical solutions found in 

Chapter 2, and the results of these computations are discussed. Next, EOFs are 

used to construct low-order dynamical systems, and their resulting behavior is com- 

pared to the full solutions. Finally, the correspondence between the eigenfunctions 

of secondary instabilities (discussed in Chapter 3) and the EOFs themselves is in- 

vestigated. 

4.1     Definitions and Preliminary Remarks 

The concept of utilizing EOFs as an analytical tool dates back well over a 

century (see Priesendorfer (1988) for a brief historical overview). The technique is 

also referred to as Principal Component Analysis (PCA) (Priesendorfer, 1988) and 

Proper Orthogonal Decomposition (POD) (Lumley, 1970), and the various naming 

conventions will be considered identical for this discussion. The modern form of the 

methodology is based on the Karhunen-Loeve (KL) procedure (Loeve, 1955). 

The crux of the KL procedure, which directly produces the EOFs, can be 

summarily described as follows. Given some field $, which is a function of space, x, 

and time, i, one can write the unknown function $ as 

N 

$(x,i)   =   $>(*)&(*), (4-1) 

where N may be arbitrarily large in order that $ is faithfully reproduced. In addition, 
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for any particular value of N, denoted by N, we desire the discrepancy between the 

original field and the approximation obtained by including N modes to be as small as 

possible. In essence, then, the KL procedure optimally compresses the information 

contained in $(x,i), thus yielding a measure of the complexity of the original field. 

The relatively recent discovery of chaos, and its possible link to fluid tur- 

bulence, has resulted in strong interest in utilizing the KL procedure to analyze and 

characterize fluid flows, although Lumley (1967) actually advocated the procedure 

over two decades ago for analyzing turbulence. A plethora of examples has appeared 

in recent literature.   Sirovich and Rodriguez (1987) and Rodriguez and Sirovich 

(1990) utilized the method in order to investigate solutions to the Ginzburg-Landau 

equation, a one-dimensional PDE. Sirovich (1989) and Deane and Sirovich (1991) 

also used the technique to analyze data from a numerical model of Rayleigh-Benard 

convection, while Sirovich et al.  (1990b) exploited the KL procedure to study co- 

herent structures in turbulent channel flow.  While all of the the above references 

utilized numerical data in order to extract the EOFs, there have been studies involv- 

ing experimental data as well. Aubry et al. (1988,1989) exploited the KL procedure 

to study turbulent boundary layers near a wall by utilizing experimental data; and 

Sirovich et al.  (1990a) used experimentally-obtained data to extract EOFs from a 

jet flow. Finally, Deane et al. (1991) applied the methodology to irregular flow do- 

mains by considering both the flow around a cylinder and also flow in a periodically 

grooved channel. 

4.2    Methodology of Obtaining EOFs 

The following derivation of the method follows Priesendorfer (1988) and is 

a relatively non-mathematical treatment. Consider a field $(t,x) that is a function 

of one space variable, x, and time, t. The one-dimensional formulation in space is 

done only for ease of understanding, and the Mowing analysis can be generalized 
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by making space a vector field. Additionally, in order to formulate the problem 

in matrix form, both time and space will be considered discrete, i.e. x = l,...,p, 

t = l,...,n, so that $(2,x) is now represented as an nxp matrix, denoted as <&. It 

is also assumed that at any value of x, the temporal mean, given by 

N 

t=i 

(4.2) 

is zero. Denoting the set of spatial values at any given time, t, by the pxl-dimensional 

matrix (f)(t) = [#(1), ...,0(p)]T, one can define the projection of (f>(t) onto some arbi- 

trary px 1-dimensional matrix, e = [e(l), ...,e(p)]T, as 

toe) = cj>T{t)B = eT<j>(t) = £ #(MM*), (4.3) 
s=i 

where e is normalized so that eTe = 1. A scalar function of the vector e, called *(e), 

is now defined as 

*(e)   =   EkTH2 = E[eT^)][^H' (4.4) 
t=i t=i 

which can be rewritten as 

*(e)    =   e1 ErtO^W 
,t=i 

e. (4.5) 

When scaled by a factor of n-1, *(e) simply measures the mean projection of 3>(cc, t) 

onto e, or how well e is "aligned" with the data in $. Finally, if one defines the pxp 

scatter matrix (which is actually a covariance matrix), S, as 

s = £*(t)^(<) = *r*. (4.6) 
t=i 
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Equation 4.5 can be written as 

*(e)   =   eTSe. (4.7) 

Note that S is a symmetric matrix, and Sti measures the temporal covariance be- 

tween the zth and jth spatial points. 

To complete the procedure, we now wish to find the values of e for which 

*(e) has local extrema. This determines those values of e along which * tends to 

be oriented. After several steps, it can be shown that the determination of these 

special values of e is reduced to an eigenvalue problem, i.e. 

Se   =   Ae. (4.8) 

Thus one obtains a hierarchy of eigenvectors and corresponding eigenvalues, each 

set of which satisfies the extrema requirement. In addition, it can be shown that 

the eigenvectors are orthogonal to each other, i.e. efek = 6jk, where 6jk is the 

Kronecker delta. If one orders the eigenvalues such that \x > \2 > ... > \ > 0 

then the following interpretation can be made: ei is the direction along which * 

is maximized;. e2 is the direction along which $ is maximized, given that e2 is 

orthogonal to eu e3 is the direction along which * is maximized, with the stipulation 

that e3 is orthogonal to both ex and e2; etc. 

The data matrix $ can now be written in terms of the new basis defined 

by the e^, which can be written in matrix form as E = [ei • • • ep]. Thus, we write 

*   =   AET, (4.9) 

where A = [ai • • • aj is an as-yet-undefined amplitude matrix. In order to find A, 

one can post-multiply Equation 4.9 by E, which, after noting that ETE = I (the 
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identity matrix), can be simplified to yield 

A   =    $E. (4.10) 

Thus, the original field can now be completely expanded in terms of the new basis 

functions and amplitudes as 

J=l 

where t — 1, ...,n and x = 1, ...,p. The KL procedure can be thought of as rotating 

the data set such that it lies along a new coordinate system, where the axes of the 

new coordinate system are given by the eigenvectors, and the projection of <fr onto 

these new axes is represented as amplitude coefficients. 

There are other interesting features of the KL procedure that merit some 

brief attention. First, if one regards the quantity $2 as representing an "energy", 

then by the following relation, 

££*2M = I>, (4.12) 
x=lt=l k=l 

so that the time- and space-integrated "energy" is simply the sum of the eigenvalues. 

A related interpretation states that the average percentage of energy possessed by the 

j'th eigenfunction is Aj/(Ai + ... + Ap) (Rodriguez and Sirovich, 1990). Additionally, 

if one approximates the rotated system given by Equation 4.11 with m modes, with 

m < p, such that 

m 

$(t,x) «$m(i,i)   =   ^(^(x), (4.13) 
3=1 
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then the error between * and $TO is a minimum for that value of m. More specifically, 

denoting the error as 

err,   =   < ||$ - $m||2 >, (4-14) 

where 

||/2||    =    E/2(*,x) (4.15) 
<r=l 

and < > denotes an average over the time variable, this error is a minimum for any 

m. Equivalently, the m eigenfunctions approximate as closely as possible (based on 

the norm presented in Equation 4.15) the original field, $ (Sirovich et al., 1990a). 

Sirovich (1991) has also shown that the representational entropy is also minimized 

for any m if one uses the EOFs as the basis set, as is shown in Equation 4.13. 

4.3    Approximate Dynamical Systems 

Typically, partial differential equations are solved by using a finite grid in 

the spatial domain and/or treating the spatial dependence as a sum of Fourier (or 

similar) modes. Moreover, the number of grid points or modes, which measures 

the number of degrees of freedom of the system, is often large-the slippery model 

possesses about 104 degrees of freedom. This is at odds, however, with the temporal 

behavior of the flow, which exhibits periodic, quasi-periodic, and chaotic (i.e. weakly 

turbulent) behavior. Taken together, these two observations indicate that most of 

the spatial modes must be slaved to one another, so that there are effectively many 

fewer degrees of freedom in the flow than an estimate based on the number of grid 

points would indicate. In turn, this implies that it may be possible to formulate a 

system that exploits the slaving of variables and is thus lower-dimensional than, but 

(approximately) equivalent to, the original system. 
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Sirovich (1989) discusses a systematic method for executing the above pro- 

cedure, which is in effect a modified Galerkin method that utilizes the EOFs as basis 

functions. First, denote the governing equations of some dynamical system by 

ft    =   *(*), (4-16) 

where v is the dependent variable and F is some operator particular to the exact 

equations under consideration (cf. Equation 1.3). If one then utilizes some subset of 

the KL eigenfunctions and projects v onto this subset, one obtains 

N 

vN = PNv = £] a.j(t)ej, (4.17) 

where P/y is a projection operator and N is some integer whose value will be discussed 

below. The intent is to approximate v with some small error by expanding it in terms 

of the empirical eigenfunctions. After doing this, one substitutes the expansion given 

by Equation 4.17 into Equation 4.16 and projects the resulting equation onto the 

empirical eigenfunctions themselves, i.e. 

(e;, g-tvN - F(vNf) = 0,  j = 1, ..., N, (4.18) 

where the ( , ) indicates the projection function (or an inner product) defined by 

Equation 4.3. The result is a system of N ordinary differential equations for the 

Oj(f) denoted by 

where a is the approximate state vector (a = (oi,..., ajy)). Thus, by utilizing the em- 

pirical orthogonal functions, one can reduce one or more partial differential equations 
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into a set of ordinary differential equations of order N, where N is possibly much 

smaller than the state space of the original PDEs.  A methodology is now needed 

for choosing an adequate value of N such that the approximate dynamical system 

given by Equation 4.19 mimics the behavior of the original equations.   Rodriguez 

and Sirovich (1990) invoke an ad hoc rule, demanding that N be chosen such that 

N p 

£V£V>.99, (4.20) 

so that the retained eigenfunctions capture, oh average, at least 99% of the energy 

of the flow. This criterion will, in general, also be adopted for the analyses presented 

herein. 

4.4    Practical Considerations 

The field $(i,x) must in practice be represented byannxp matrix, where 

n is the temporal index and p is the spatial index. Typically, the number of spatial 

points is very large, with p ranging from O(103) to O(104). Since the spatial index 

is so large, computational limits put constraints on the maximum allowable value of 

n. On the other hand, the number of nonzero eigenvalues obtainable from an nxp 

matrix is min(n,p), so that if n < p, the eigenfunctions do not form a complete basis 

for $(t,x). These two facts would seem to render the KL procedure impotent for 

systems with large values of p. However, Sirovich (1987) has alleviated this problem 

by introducing the method of snapshots. In essence, the method simply consists 

of taking a large enough number of temporal samples (at all the spatial points) such 

that the spectrum of eigenvalues is convergent. For systems that exhibit relatively 

low-dimensional behavior, the number of snapshots, n, need only be large enough 

such that n > N, where N is given by Equation 4.20 and gives a measure of the 

speed at which the eigenvalues approach zero (and hence, by conjecture, a relative 

measure of the dimension of the system). For the models considered herein, a value 
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of n of O(102) has proven to be sufficient, and the resulting matrix dimensions of 

O(102) x 0(1O3 — 104) are easily manageable by current computing standards. 

The other consideration is that of when to obtain the temporal snapshots. 

For a system exhibiting chaotic behavior, Rodriguez and Sirovich (1990) advocate 

using snapshots obtained at uncorrelated times, which ensures that the information 

contained within a given ensemble of snapshots is maximized. A more general crite- 

rion is that one would like to have a representative sample of all the different states 

the system can assume. Thus, for periodic behavior, it is only necessary to sample 

over one period of the flow. For quasi-periodic and chaotic flows, sampling at uncor- 

related times is probably a near-optimal strategy, as it ensures capturing the flow at 

many locations on the attractor. 

4.5     The Relationship Between Spatial and Temporal Complexity 

One question largely left unanswered in the literature is the relationship 

between the number of EOFs required to represent a flow and the spatio-temporal 

complexity of that flow. In other words, it is not clear how the spatial and tem- 

poral portions of the system interact to affect, and effect, the EOF spectrum. To 

understand this phenomenon, a simple model has been formulated and examined; 

the results of this are discussed in detail in Appendix G. The main conclusion drawn 

from this analysis is that the EOF spectrum depends directly on the spatio-temporal 

coupling of the field. If either the spatial complexity or the temporal complexity is 

small (e.g. the temporal field is steady or varies sinusoidally), then the number of 

EOFs necessary to capture the spatio-temporal variability is also small. The require- 

ment of a large number of temporal-spatial modes is the result of the interaction of 

the two domains. This conclusion will be borne out in the results presented below. 
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4.6    Results for Slippery Model 

4.6.1    Symmetric Case     As was shown in Chapter 2, the solutions of 

the symmetric state are relatively simple; therefore, the results provide a natural 

benchmark against which to measure more complicated behavior.  The EOF spec- 

trum was found at values of F ranging from 8 to 40 in increments of 4.   Figure 

4.1 displays the number of EOFs required to meet the 99% variance threshold, us- 

ing both pressure (i.e. stream function) and vorticity, as a function of F.  For the 

pressure EOFs, there are obvious discontinuities in the number of EOFS required in 

different regimes. For 8 < F < 24, the system is in a PAV regime, and fewer than 10 

total EOFs are required. However, for 24 < F < 36, the system exhibits structural 

vacillation, and the number of modes required almost doubles. This indicates that 

the PSV regime is more "complex" than the PAV regime.   For 36 < F < 40, the 

system is quasi-periodic, and the required number of EOFS again jumps substan- 

tially, with virtually twice as many modes needed in the quasi-periodic regime as in 

the PSV state.  Furthermore, in the quasi-periodic regime the number of required 

modes increases with F. Finally, the required number of vorticity EOFs is always 

greater than the required number of streamfunction EOFS, and their ratio varies 

between two and three.  This is consistent with the results shown in Appendix G, 

since in spectral space the vorticity, denoted as u(k), is k2i>(k), where V(&) is the 

streamfunction as a function of the wavenumber, k. Thus, the EOFS are calculated 

on statistics that decay with a slope of -7 (7 being some unknown constant) for 

streamfunction and a slope of -7 + 4 for vorticity. 

There are four distinct dynamical regimes in the symmetric state. The first 

is the steady-state regime. For this case, there are no EOFs to extract—there is only 

a mean spatial structure for each pertinent variable. Figure 4.2 displays the mean 

fields obtained at F = 8, near the onset of the initial wavy instability (the barotropic 

zonal field is nonexistent at this point). The barotropic wavy field can almost entirely 
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Figure 4.1. Number of EOFs needed to meet 99% variance threshold for Type-1 
state. Results are shown using both stream function and vorticity as generating 
fields. Required number of EOFs are shown for each component of the flow in 
addition to the total number. 
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be described by the function sin(7ri/2) simry, while the baroclinic zonal field is well- 

approximated by sin 2zy. Both of these are the lowest-wavenumber modes for their 

respective fields. However, the baroclinic wavy field is clearly an amalgamation of 

several waves. Recall that the validity of single-wave models (discussed in Chapter 

1) hinges on the assumption that the fields be confined to a single-wave disturbance. 

The lack of prognostic ability of single-wave models is to be expected given these 

results. 

Mwn Boroclinic Zono) F7»ld 

Figure 4.2: Contour plots of means for all fields, symmetric state, F = 8. 

The next state to examine is at F = 20, in the PAV regime. Figure 4.3 

displays the sorted, normalized eigenvalues, based on the streamfunctions, (or per- 

cent of the total variance captured by each EOF), for the baroclinic wavy and zonal 

components. The percent variance captured by each successive EOF falls off ap- 

proximately exponentially, eventually reaching a noise floor at which the percent 

variance shows no further decay with increasing mode number. At this parameter 

setting, eight total EOFs are required to meet the variance threshold. Figure 4.4 

displays contour plots of the EOFS for the baroclinic wavy stream function, along 

with their respective percent variance contributions. The EOFS are composed of 

many wavenumber pairs, indicating that the flow would not be well described by a 

simple Galerkin truncation. Figure 4.5 displays plots of the EOFs for the baroclinic 
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zonal flow. In contrast to the wavy fields, the EOFS here are simple and appear to 

be comprised of the two lowest symmetric zonal modes, sin 2iry and sin 47ry. Thus 

the coherent structures of the zonal field, at least in the PAV regime, are equivalent 

to the linear eigenfunctions. 

The scenario for F = 32, in the PSV regime, is quite different from that of 

PAV at F = 20. The eigenvalue spectra for the baroclinic fields are shown in Figure 

4.3. The spectrum for the wavy field has a curious step-like feature; this indicates 

eigenvalue pairing. Eigenvalue pairing occurs when traveling-wave phenomena are 

being investigated, as it takes two EOFs to represent the advance of the wave's phase 

with time. In this situation there are no waves traveling downstream. However, 

as seen in Figures D.3,4, the structural vacillation regime is characterized by two 

counter-rotating eddies, each comprising the entire meridional field and half of the 

zonal domain. Thus, the pairing of eigenvalues occurs when this rotation (which is 

really a form of a traveling wave) is decomposed into orthogonal functions. 

The contour plots of the EOFs of the baroclinic wavy field are shown in 

Figure 4.6, and the structure of the EOFs shows the pairing of coherent structures. 

Where the first mode of each pair tends to have eddies oriented in a particular 

configuration, the second tends to possess eddies of the same spatial scale but rotated 

through some angle so as to change their orientation. This allows the rotation of 

both the barotropic and baroclinic fields with time. Figure 4.7 displays the EOFs 

for the baroclinic zonal field. The baroclinic zonal flow requires three EOFs to meet 

the variance requirement, and their corresponding spatial stucture is now relatively 

complicated (compared to F = 20). 

The use of empirical orthogonal functions elucidates several salient points 

regarding the physics of the problem. First, amplitude vacillation is spatially "sim- 

pler" than structural vacillation and thus requires fewer spatial modes for adequate 

representation. Also, the pairing of eigenvalues in the EOF decomposition indicates 
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Figure 4.3. Normalized eigenvalue spectra for symmetric case. The dashed line 
corresponds to F = 20 (PAV); the solid line corresponds to F = 32 (PSV); the 
dot-dashed line corresponds to F = 36 (QP). 
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Figure 4.4. Contour plots of EOFs for baroclinic wavy field, symmetric state, F = 20. 
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Figure 4.5. Contour plots of EOFs for baroclinic zonal field, symmetric state, F = 20. 
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the presence of traveling waves for the PSV case. An examination of the spatial 

structure of the EOFs (and a comparison to the full flow field) reveals that the 

modes travel in a circulating pattern rather than zonally. This observation is con- 

sistent with the idea that the structural vacillation phenomenon is characterized by 

the meridional shift of kinetic energy. The circular motion of the eddy fields simply 

propagates kinetic energy from one side of the channel to the other in a periodic 

fashion. 

The final case to examine for the symmetric solution is F = 36, where the 

behavior is quasi-periodic in time. At this parameter setting, a total of 32 EOFs are 

needed to meet the 99% variance threshold. Figure 4.3 displays the EOF spectra 

for the baroclinic fields. There is now little pairing of EOFs in the wavy fields; 

the baroclinic field retains a few pairs in the higher-energy modes, but this does 

not persist for the smaller-energy EOFs. This corroborates the results presented in 

Chapter 2—essentially that the quasi-periodic regime appears to represent a mixing 

between amplitude vacillation and structural vacillation, so that the EOFs (and the 

corresponding eigenvalue spectrum) would be expected to possess properties of both 

vacillation states. In addition, Figure 4.3 shows that the eigenvalue spectra of the 

wavy fields decay much less rapidly than do the wavy-field spectra in the periodic 

cases, and they never actually reach a noise floor. Thus, the spatial complexity is 

much higher than in the periodic flows. Figure 4.8 displays the EOFs for the wavy 

baroclinic field. The coherent structures are similar to but not identical to those for 

the PSV case at F = 32. The first four EOFs are very similar to those at F = 32, 

but the next two are different; they are not obviously similar to the higher energy 

modes at F = 20, either. However, the barotropic wavy modes show similarities 

both to those found in the PSV regime and also those found in the PAV regime; 

this supports the mixing concept. Reflecting the slower decay of variance, the first 

six baroclinic fields possess about 92% of the total energy, but the remaining energy 
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Figure 4.6. Contour plots of EOFs for baroclinic wavy field, symmetric state, F - 32. 
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Figure 4.7. Contour plots of EOFs for baroclinic zonal field, symmetric state, F = 32. 
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is partitioned among many low-energy modes. Figure 4.9 displays the zonal EOFs. 

These axe similar to those found at F = 32, with the exception that the energy of 

the baroclinic zonal field is primarily partitioned among the first two modes rather 

than only the first EOF. 

4.6.2 Asymmetric Case With reference to Figure 2.4, there exist 

three distinct regimes of interest for the asymmetric solution. The first is the PSV 

regime that occurs for 14 < F < 24; the second is the quasi-periodic regime for 

24 < F < 30.9; the final regime is the chaotic regime that exists over the range 

30.9 < F < 40. As Figure 2.4 clearly indicates, there are small regions of both PSV 

and quasi-periodic behavior for F < 14, but these regions occur over very small 

ranges of F and are not included in this analysis. 

Figure 4.10 displays the number of EOFS required to meet the 99% variance 

threshold, using both stream function and vorticity measures, as a function of F. 

The general increase in EOFs needed versus temporal complexity is similar to that 

seen in the symmetric case. The PSV regime, sampled in Figure 4.10 at F = 16 

and F = 20, requires the fewest number of EOFs. The quasi-periodic region, which 

is represented by the data for F = 24 and F = 28, requires a much larger number 

of EOFs to meet the variance threshold. A large fraction of the increase is due to 

the baroclinic wavy field. Finally, the data for F > 30 is in the chaotic regime and 

requires the largest number of EOFs for representation. Because of the complex 

spatio-temporal behavior at the higher values of F, the number of vorticity EOFs 

required should be construed as a lower bound, since no unequivocal convergence of 

the required number was observed as the number of samples was increased (however, 

the number of streamfunction EOFs is accurate). 

The first parameter setting to be investigated is F = 20, in the PSV regime 

and near the transition to quasi-periodic flow. Figure 4.11 displays the eigenvalue 

spectrum for the flow's baroclinic components.  In this regime, 12 total EOFs are 
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Figure 4.8. Contour plots of EOFs for baroclinic wavy field, symmetric state, F - 36. 
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Figure 4.9. Contour plots of EOFs for baroclinic zonal field, symmetric state, F = 36. 
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needed to meet the 99% variance threshold. The "step-wise" appearance in the 

wavy fields' spectra is similar to the results for the symmetric PSV behavior and 

also indicates a traveling wave phenomenon in the form of counter-rotating eddies. 

In addition, the number of EOFs required is similar to the symmetric PSV solution. 

Figure 4.12 displays the EOFs for the baroclinic wavy field, from which it can be 

seen that the counter-rotating behavior is evident in the structure of the spatial 

functions. The structure of the EOFs is qualitatively, but not quantitatively, similar 

to the EOFs in the symmetric PSV regime, indicating that there are substantive 

differences between the symmetric and asymmetric solutions. The baroclinic zonal 

EOFs are shown in Figure 4.13. The baroclinic zonal structure is an admixture of 

waves and is somewhat different from the leading EOF in the symmetric PSV regime 

(see Figure 4.7). The barotropic field, in contrast to the symmetric state at F = 32, 

is dominated by the lowest asymmetric zonal term (i.e. sin(7ry)). 

The eigenvalue spectrum for F = 28, where the system exhibits quasi- 

periodicity, is shown in Figure 4.11. To meet the 99% variance criterion, 62 EOFs are 

required, and 37 of these are from the baroclinic wavy field. As with the symmetric 

results, the wavy eigenvalue spectra fall off much less rapidly in the quasi-periodic 

regime than in the periodic regions. Additionally, the spectra for this asymmetric 

QP behavior fall off less rapidly than even the symmetric QP solution, indicating 

that the asymmetric quasi-periodicity is of a more complex nature than that of the 

symmetric case. This is corroborated by examining the actual EOFs; the first eleven 

for baroclinic wavy field are shown in Figure 4.14 and account for 90% of the total 

variance. The spatial fields are extremely complicated, and a glance at the percentage 

of variance captured by each reveals that no single spatial scale dominates the flow. In 

addition, there is little vestige of the counter-rotating eddy structure seen in the PSV 

regime. The barotropic zonal flow is largely unchanged; the first EOF now simply 

captures slightly less of the total variance than previously. However, the baroclinic 
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Figure 4.12.   Contour plots of EOFs for baroclinic wavy field, asymmetric state, 
F = 20. 
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Figure 4.13.   Contour plots of EOFs for baroclinic zonal field, asymmetric state, 
F = 20. 
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zonal flow EOFs, shown in Figure 4.15, show substantial differences from the PSV 

results at F = 20. The lowest asymmetric mode (i.e. sin Try) dominates the first 

EOF; this is consistent with the asymmetric, baroclinic instability which correlates 

with the onset of the quasi-periodic behavior. The second mode is comprised largely 

of the lowest symmetric linear eigenfunction, sm(2Ty). The lower-energy EOFs are 

mixtures of other eigenfunctions and become increasingly convoluted. 

The final parameter setting to examine for the asymmetric solution is at 

F = 32, in the chaotic regime. About 87 EOFs are required to meet the 99% 

variance requirement, with 60 needed for the baroclinic wavy field alone. The only 

significant change between the quasi-periodic solution and the chaotic solution is 

that the required number of baroclinic wavy EOFs increases by about 50%. Figure 

4.11 displays the normalized eigenvalue spectra at F = 32. There is little change 

from the results at F = 28, except that the baroclinic wavy spectrum falls off even 

less rapidly than in the quasi-periodic regime. 

The first eleven EOFs for the baroclinic wavy field are shown in Figure 

4.16. Again, little is changed from F = 28, except that the dominant EOFs capture 

relatively less of the total energy as the complexity of the flow increases. For example, 

the first 11 baroclinic wavy fields only represent about 80% of the total energy, 

compared to 90% at F = 28. Especially for the baroclinic wavy field, a large portion 

of the energy is partitioned into a multitude of low-energy modes, which explains the 

need for such a large number of EOFs to meet the variance threshold requirement. 

Finally, Figure 4.17 displays the baroclinic zonal EOFs, the first two of which are 

also largely unchanged from F = 28. 

4.7    Approximate Dynamical Systems for the Slippery Model 

The EOFs found in the previous section can be exploited, via the methodol- 

ogy presented in Section 4.3, in order to produce low-order sets of ODEs that mimic 
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Figure 4.14.   Contour plots of EOFs for baroclinic wavy field, asymmetric state, 
F = 28. 
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Figure 4.15.   Contour plots of EOFs for baroclinic zonal field, asymmetric state, 

F = 28. 
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Figure 4.16.   Contour plots of EOFs for baroclinic wavy field, asymmetric state 
F = 32. 
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Figure 4.17.   Contour plots of EOFs for baroclinic zonal field, asymmetric state, 
F = 32. 
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the original model (which is equivalent to 0(1O4) ODEs). There is substantial moti- 

vation for doing this. For instance, the low-order set of ODEs is much more quickly 

integrated (numerically) on a computer. This allows a more thorough investigation 

of solutions, since much more data can be obtained in an equivalent amount of com- 

puter time. The resulting data can also be compressed for storage using the EOFs. 

Additionally, the ability to represent a result from a complex model with a relatively 

simple system places an upper bound on the "complexity" of the original solution. 

This yields physical insight as to the number of important degrees of freedom in 

the problem. Although, for example, it requires all of the EOFs to exactly represent 

a given flow field, the results of the previous section have shown that the field can 

be almost fully represented by a much smaller number of EOFs. 

4.7.1 Symmetric Case The first parameter setting to investigate is 

F = 8. For this value of F, as previously noted, the behavior is steady, so that 

only mean fields exist. However, in order to "test" the concept of obtaining ODEs 

from PDEs via EOFs, the mean fields can be assumed to possess time-dependent 

coefficients; then ODEs can be obtained for these coefficients, which should relax to 

unity upon integration in time. Doing this, one finds that the wavy and zonal fields 

do indeed approach unity with an error of about 1%, and the velocity correction 

term also approaches its proper value within an error of about 3%. 

This low-order model can now be used to answer other pertinent questions. 

First, how well does the model perform at "off-reference" values of F (i.e. values 

of F other than that at which the model was constructed)? Second, how well does 

its performance, with reference to the full numerical model, compare to a low-order 

model based on the gravest linear eigenfunctions? For comparison, the low-order 

system which was used for model verification (see Section 2.5) was again used (this 

will be referred to as the ad hoc model). This model retains two wavy modes each 

(sin(7ri/2)sin7T3/ and cos(7ri/2) simry) for both the barotropic and baroclinic wave 
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fields, one zonal mode (sin27rj/) for the baxoclinic zonal field, and the the baroclinic 

velocity correction, U?.—U\. Referring to Figure 4.2, both the barotropic wavy and 

baroclinic zonal fields are well represented by this choice of functions, but the actual 

baroclinic wavy field is much richer in structure than a single wave. Nonetheless, 

both low-order models predict the critical Froude number for the onset of instability 

to within less than 1% error. However, neither model predicts time-dependent be- 

havior to occur before F « 20, while the full model becomes oscillatory at F = 12. 

Both models thus fail at predicting the onset of amplitude vacillation. To compare 

results in the steady regime, Table 4.1 displays a comparison of behavior between 

the full model and the EOF approximate model, while Table 4.2 displays a com- 

parison between the full model and the ad hoc low-order model. The quantity used 

for comparison is one-half the area-integrated square of the stream function (i.e. 

1/2 jA *
2 dA) for each of the three fields. The ad hoc model performs abysmally 

at both F = 8 and F — 10, underestimating the magnitude of each field by an 

average of about 40% of its true value (and performing worst with the value of the 

baroclinic wavy field). However, when the actual spatial structure of the baroclinic 

waves are accounted for, a low-order model (i.e. the EOF model) does fairly well 

at predicting the behavior over a range of F. As Table 4.1 shows, the errors are 

negligible at F = 8, where the model is derived, and acceptable at F = 10. Again, 

the baroclinic wavy field shows the worst correspondence, and an examination of 

the full-model solution indicates that this is due to further changes in the shape of 

this quantity. Therefore, the full model's steady-state can be well described by a 

low-order dynamical system, but the spatial structures cannot be assumed a priori, 

at least with any validity. Instead, the approximate model must be constructed from 

results gleaned from the full code. 

The next approximate system constructed is at F = 20, near the upper end 

of the PAV regime. As Figure 4.1 demonstrates, relatively few EOFs are required 
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Table 4.1. Performance comparison between full model and low-order EOF model, 
symm. case. The quantity used for comparison is one-half the area-integrated 
squared streamfunction, 1/2JA^

2 dA, and the numbers represent the percentage 
error in this quantity. 

Froude 
Number 

Barotropic 
Wavy 
Field 

Baroclinic 
Wavy 
Field 

Baroclinic 
Zonal 
Field 

8 1.6% -.45 % -3.2 % 
10 -5.9 % -30.8 % 4.5% 

Table 4.2. Performance comparison between full model and low-order ad hoc model, 
symm. case. The quantity used for comparison is one-half the area-integrated 
squared streamfunction, 1/2JA^

2 dA, and the numbers represent the percentage 
error in this quantity. 

Froude 
Number 

Barotropic 
Wavy 
Field 

Baroclinic 
Wavy 
Field 

Baroclinic 
Zonal 
Field 

8 -33.5 % -48.5 % -53.5 % 
10 -22.8 % -59.2 % -42.6 % 
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to meet the 99% variance threshold at this Froude number. To help ensure that the 

system exhibited a stable limit cycle, the transient-sampling approach advocated by 

Deane et al. (1991) was used. At this parameter setting, it requires three barotropic 

wavy modes, three baroclinic wavy modes, and two baroclinic zonal modes to repre- 

sent 99% percent of the total energy, on average. This alone results in eight required 

equations. In addition, in order to attempt to use the resulting system at other 

values of F, the means have temporal coefficients attached to them so that their 

magnitude is allowed to vary with F. Finally, an equation for Z4c is needed, bringing 

the total to twelve equations. When these are integrated, the resulting system does 

exhibit periodic behavior: the typical error in the mean and rms deviation of the 

1/2 JA $
2 dA diagnostic for each of the three fields is 15%. More specifically, the rms 

deviations are all too large. In addition, the period of the oscillation is about 10% 

too high. 

This result is acceptable, but it can be improved upon if the following 

conjecture is made—that the higher-wavenumber, low-energy modes act primar- 

ily as energy sinks. These modes are linearly stable and would not spontaneously 

arise on their own; however, the presence of the large-scale, high-energy structures 

causes them to persist, where they act to funnel energy away from the large-scale 

modes. However, the very process of obtaining EOFS is concerned with extract- 

ing the high-energy behavior and ignoring those modes which contribute little to 

the overall energy balance. The idea, then, is to parameterize the effect of these 

modes by assuming they act only in a dissipative manner. Using this premise, the 

ODE representing the lowest-energy mode for each field can be damped by some 

extra amount to be determined empirically. Assuming that one of these hypotheti- 

cal modes is represented by the time coefficient aj, and is governed by a differential 

equation for dai/dt, one simply adds the quantity —pa{ to the right hand side of the 

equation. 
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The initial values of p were chosen such that they were on the order of 

the original dissipation values; then the error (which is denned as the sum of the 

percentage errors in mean and rms deviation for each field using the metric shown in 

Table 4.1) was simply tracked as p was varied. The value p = .295 was found to be 

optimal, resulting in a total error of 13.7%, much lower than the 90% error obtained 

for p = 0. In addition, the frequency of oscillation is now accurate to within less 

than 3%. 

Using p = .295, the results from the full model can be directly compared 

with those from the 12-ODE approximation. Figure 4.18 shows phase-space compar- 

isons for selected pairs of the three 1/2/^ *2 dA quantities, referred to as "energy" 

in the figure. The agreement in both the size and shape of the attractor is very good. 

The agreement in area-integrated quantities is necessary but not sufficient 

to show that the spatial dependence is the same between the two models. This 

may not occur if the various time coefficients possess different phase relationships 

in the approximate model than they do in the full model, a discrepancy which may 

not be apparent in comparing quantities with only temporal dependence. However, 

as Figures E.1,2 show, the spatial dependence of each of the wavy fields compares 

very favorably with the "exact" solution, shown in Figures D.1,2 (the phase of the 

approximate fields slightly lags that of the exact fields). The essential features of 

each of the variables are captured, despite the fact that the spatial dependence is 

highly non-trivial. Thus, the approximate model is highly successful in replicating 

the behavior of the full numerical integration for F = 20. 

One hope of creating approximate models is that systems derived at one 

parameter value can be used to also approximate the results at other parameter 

values. Otherwise, a new approximate model must be constructed at each parameter 

value that one wishes to study. It is the alteration of spatial structure as a function of 

parameter changes that dictates whether or not the same model can be successfully 
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utilized for a range of parameter values.   If the spatial field changes slowly with, 

for example, F, then the same set of equations can probably do an adequate job 

of mimicking the flow's real behavior over a reasonable range in F.   As can be 

seen from Figure 4.10, the number of EOFs needed in the PAV regime is relatively 

constant, so that one may also expect the shape of the EOFs to be relatively constant, 

further implying that the model derived at F = 20 may be valid over the entire 

realm of PAV. To measure the correspondence between the actual result and the 

approximate result, the quantity X = 1/2 JA *
2 dA was used. Figure 4.19 displays 

comparisons between the approximate and full models in the range 6 < F < 22 for 

all three variables. The outer lines indicate the envelope of the (periodic) solution, 

while the middle line indicates the mean value. The agreement is reasonably good 

considering that the mean baroclinic field changes appreciably with F. In addition, 

the approximate model makes the transition from steady zonal flow to steady waves 

at F « 5.8, which compares well to the theoretical value of F « 6.2; furthermore, 

the transition from steady to periodic behavior occurs at about F = 12 for both 

models. Therefore, the approximate model is successful in predicting both the onset 

of instability and the onset of periodic behavior. This is in sharp contrast to the four- 

equation model extracted from the steady state at F = 8 and the low-dimensional 

Lorenz-type model.   Finally, the EOF model is successful in its approximation of 

the mean and rms deviation of the three variables over the entire PAV regime, with 

the correspondence worsening as F becomes further away from its reference value 

of 20.   The baroclinic wavy field is the least accurate, and presumably this error 

occurs because the baroclinic field changes shape substantially with F. However, its 

amplitude is small enough relative to the other variables that both the barotropic 

wavy and baroclinic zonal fields remain largely accurate for the entire range of F. 

One shortcoming is that this model is incapable of predicting the onset of 

PSV that occurs at F ss 24. This is because the spatial structure in the PSV regime 
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Figure 4.19. Comparison of the behaviors between the full and approximate models 
for 6 < F < 22. The outer lines indicate the envelope of the periodic behavior, while 
the center lines indicate the mean value. The solid line indicates the full-model 
results, while the dashed line signifies the results of the approximate, 12-equation 
model. The ordinate is X = 1/2/^ *2 dA. 
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is more complicated than that in the realm of PAV, so that the included spatial 

fields are incapable of representing the PSV phenomenon. Instead, the 12-mode 

model becomes quasi-periodic at F tu 26. 

The next approximate dynamical system was constructed to capture the 

PSV phenomenon that occurs between F = 24 and F = 34. The EOFs were obtained 

at F = 32, near the upper end of the PSV regime.   The dynamical system for 

this setting is comprised of 15 ODEs (4 for the barotropic wavy field, 2 for the 

barotropic zonal field, 6 for the baroclinic wavy field, and 3 for the baroclinic zonal 

field, including the velocity correction equation). One additional modification that 

is made is to subtract the mean of the baroclinic velocity correction (U2 - U\) 

from its fluctuating component.   This is helpful because the rms deviation about 

the mean is about 10-3 as large as the mean itself, and the separation of the two 

keeps integration errors to a minimum. When the system is integrated, the behavior 

simulates structural vacillation well, except the amplitudes are again too large. Thus, 

an ad hoc dissipation parameter was again used, except for the wavy fields it was 

applied to the lowest-energy pair of modes, since the EOFs act in a pairwise manner 

to produce traveling disturbances. The optimal value was found to be p « 0.30, which 

produces an average error in the four rms deviations and means of 25%. Almost all 

of the error is in the baroclinic zonal term, whose amplitude is about two times its 

nominal value. The dominant frequency of oscillation is in error by only about 1%, 

a negligible amount. In the structural regime all rms deviations are very small, and 

the matter of prime importance is to create correct phase relationships between the 

various modes such that the spatial dependence is replicated. Figures E.3,4 display 

the behavior of the fields over one period, which can be compared to the full-model 

behavior shown in Figures D.3,4 (the phases between the approximate and actual 

fields are again different). As with the PAV case, there is very good correspondence 

between the full and approximate solutions, which indicates that the approximate 
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model, while slightly amiss in amplitude, nonetheless generates the correct phase 

relations between the variables to produce accurate spatial fields. 

Finally, the changes in rms deviations and means of the various flow quan- 

tities are almost negligible over the range in F for which PSV exists, so that the 

model trivially yields accurate predictions over a range in F. One important as- 

pect to note is that the model does not predict the transition from PAV to PSV at 

F « 24, nor does it reflect PAV behavior for JP < 24. This is due to the fact that the 

spatial fields for PAV are not contained in those seen in PSV, and vice versa. Thus, 

neither approximate system contains the information needed to display the alternate 

behavior. This is unfortunate, because it means that the model derived at F = 32 

is useless outside of a narrow range in F for which structural vacillation occurs, and 

the model derived at F = 20 is useful only until PSV becomes dominant. 

The last approximate system to be constructed is for the quasi-periodic 

regime that exists for 34 < F < 40. In the middle of this regime, at F = 36, 

Figure 4.1 indicates that 32 EOFs are needed to meet the 99% variance threshold. 

Instead of obtaining a 32-dimensional system, it was decided to attempt to extract 

the essential features of the flow from a lower-dimensional model. Thus, a total of 

16 equations were used: 4 for the barotropic wavy field, 2 for the barotropic zonal 

field, 6 for the baroclinic wavy field, and 3 for the baroclinic zonal field (as well as 

the requisite baroclinic correction equation). The percent of total variance captured 

by these EOFs is approximately 97%, 100%, 92%, and 99%, respectively, so that 

only the baroclinic wavy field is significantly truncated. 

When the resulting system is integrated, the system exhibits quasi-periodic 

transients but eventually "blows up." In order to stabilize the system, ad hoc dis- 

sipation again was used. However, in contrast to the approximate systems in the 

periodic regimes, adding extra damping to only the lowest-energy modes does not 

yield impressive results. Quasi-periodic states are obtained for proper values of the 
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damping coefficient, but the amplitudes of the lower-energy modes are too high. The 

probable cause of this is the slower fall-off of variance in the EOF spectrum (in com- 

parison to the periodic cases), which in turn results in a lack of dominance by the 

leading one or two modes. In order to mitigate this problem, a more sophisticated 

form of dissipation was used. Following Smith et al. (1991), dissipation was added 

to every mode in the form 

-^<x-PMa
ai. (4.21) 

In this equation, p is an arbitrary scale factor, M is the mode number (e.g. M — 1 

corresponds to the largest-energy mode), and a is a scaling constant. For example, 

then, the differential equation for the sixth baroclinic wavy mode will be damped by 

the additional amount p6aa6. The representation given by Equation 4.21 has the 

effect of damping all the modes, but it preys most on the lower-energy, higher-M 

modes, similar to the simple damping used in the periodic systems. In this analysis, 

a = 2 was chosen essentially arbitrarily, although the results do not seem to depend 

very strongly on this parameter. 

A range of p values was found to yield a system that exhibits quasi-periodic 

behavior; p = 0.002 gave the best correspondence with the actual flow. Retaining 

such a small number of modes virtually ensures that quantitative correspondence 

between the full and approximate fields is impossible, but qualitative agreement 

is a reasonable expectation, and this is indeed the case. Figure 4.20 displays the 

barotropic wavy / $2/2 dA for the actual and approximate systems. The rms devia- 

tion of the approximate system is too large, but the behavior is qualitatively similar. 

In addition, the dominant frequencies of the two differ by only about 4%. Agreement 

between other quantities of interest is similar. Thus, a relatively low-dimensional dy- 

namical system qualitatively captures the mixing between barotropic and baroclinic 
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instabilities that results in quasi-periodic behavior. A final analysis can be made by 

comparing the spatio-temporal behavior of the approximate fields, shown in Figures 

E.5,6, with the full solutions shown in Figures D.5,6. The agreement for this model 

is also very good, which is not too surprising since the behavior is much like the PSV 

state at F = 32. 

One item worth mentioning is that larger amounts of damping result in the 

system returning to a PSV-type behavior. Thus, the equations seem to embody the 

behavior that occurs at smaller supercriticality than that at which the equations were 

derived. A direct test of this was not possible, however, since the resulting equations 

were too large to leave Fas a free parameter. Also, higher-order systems were 

tried, but the difficulty in resolving the lower-energy modes, even with 300 temporal 

samples, resulted in numerical errors that prevented any significant improvement in 

model accuracy. In this case at least, the simplest model proved also to be the most 

accurate. 

4.7.2 Asymmetric Case Approximate dynamical systems were con- 

structed for three settings in the asymmetric regime: one in the PSV regime, one in 

the quasi-periodic region, and one where the flow is fully chaotic. The PSV system 

was derived at F = 20, near the transition to quasi-periodicity. The results are 

very similar to the approximate system obtained in the symmetric PSV regime. The 

number of equations used was 4 for the barotropic wavy field, 1 for the barotropic 

zonal field, 6 for the baroclinic wavy field, and 1 for the baroclinic zonal field (i.e. 

the number needed to meet the 99% variance criterion), along with the baroclinic 

velocity correction equation. This resulted in a system of 15 ODEs. Simple damping 

of the last pair of modes of each of the wavy fields was again necessary in order to 

obtain reasonable amplitudes. For a damping value of p = 0.2, the average error in 

the means and standard deviations of the / \£2/2cL4. values is about 25%, comparable 

to the symmetric-case results. However, in this instance, the barotropic wavy field 



133 

JY/2 dA for Actual Barotropic Wavy Field 
0.1300 - 
0.1295 A ■= 

■g   0.1290 /l~= 
=   0.1285 

<   0.1280 
/ \~^ 

0.1275 1/    -= 
0.1270 ~ .     .     .     . . i 

0.1330 

0.1320 

%  0.1310 

=   0.1300 

<   0.1290 

0.1280 

0.1270 

10 20 30 
Time 

40 

./V/2 dA for Approximate Barotropic Wavy Field 

50 

Figure 4.20.   Comparison of /*2/2 dA of barotropic wavy field between full and 
approximate models. F = 36, symmetric case. 
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rms deviation is in error by the greatest amount, being approximately two times 

too large. The apparent culprit is the subtle phase relationship between the various 

modes; the rms deviation of the above area-integrated quantity is actually smaller 

than the rms deviations of the individual modes, indicating that the phases of the 

various modes must be correctly aligned in order to produce a signal of the proper 

amplitude. Regardless, the approximate system does a credible job of reproducing 

the spatial and temporal behavior of the original flow. This can be seen in Figures 

E.7,8, which show the temporal evolution of the wavy fields for the approximate 

system (the full fields lag the approximate fields by about five frames). There is very 

close correspondence with the full flow shown in Figures D.7,8 (note that the phases 

between the full and approximate results are shifted with respect to each other). 

Thus, although the energy amplitudes of the approximate system are slightly askew, 

the spatial behavior of the flow is left intact. 

The second case considered is at F = 28, in the quasi-periodic regime. The 

crucial difference between this quasi-periodic case and the one seen in the symmetric 

state is the "complexity" of the system as quantified by the number of EOFs required 

to meet the 99% variance threshold. In both cases, the number of zonal EOFs 

required is small (< 5); however, in the symmetric solution, 8 barotropic wavy EOFs 

and 18 baroclinic wavy EOFs are needed, while the asymmetric solution requires 18 

barotropic wavy EOFs and 37 baroclinic wavy EOFs. Thus, the asymmetric regime 

requires about twice as many modes. Consequently, the approximate dynamical 

system needs to be that much larger in order to capture the essential dynamics. 

Unfortunately, however, the implementation used here to obtain the ODEs is very 

memory- and time-intensive computationally. It is simply not possible to represent 

the baroclinic wavy field with, for example, 30 modes. Therefore, the correspondence 

between the full and approximate systems is more qualitative than quantitative. 

The final choice for the approximate system includes 8 barotropic wavy modes, 
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2 barotropic zonal modes, 12 baroclinic wavy modes, 4 baroclinic zonal modes, a 

velocity correction term, and a mass correction term (this must now be included 

since it is nonzero in the full model), for a total of 28 equations. The baroclinic wavy 

field is clearly the most under-represented, with the first 12 modes accounting for 

about 90% of the total variance; the first 8 barotropic wavy modes account for 95% 

of its total variance, while both sets of zonal EOFs meet the original 99% threshold. 

The damping is again spread over the entire set of EOFs, just as was done with 

the symmetric quasi-periodic solution, with a = 2 and p = 0.0002. A comparison 

of the actual time series of the barotropic wavy f *2/2 dA with its reconstructed 

evolution is given in Figure 4.21.  The figure shows that the rms deviation of the 

reconstructed time series is too small relative to the actual time trace. Additionally, 

although the dominant frequency in the power spectrum of the reconstructed time 

series is the same as that of the full model, there is also a prominent high-frequency 

oscillation that doesn't appear in the original time series. This is possibly because 

the components related to the structural vacillation, which indeed are of a higher 

frequency, are not suppressed enough in the approximate model. A final comparison 

may be made by examining Figures E.9,10, which display, respectively, the baroclinic 

and barotropic wavy fields at uncorrelated times. The spatial scales are certainly the 

same as those seen in the full model (see Figures D.9,10), and there appears to be 

some quantitative correspondence in the actual spatial patterns. Overall, however, 

this approximate model should be taken as more of a qualitative reflection of the 

dynamics of the asymmetric, quasi-periodic solution. 

The final case to examine is in the chaotic regime at F = 32, which is just 

slightly above the quasi-periodic-chaotic transition point. At this value of F, a total 

of approximately 90 EOFs are required to meet the variance threshold. However, 

the construction of a set of 90 ODEs is obviously far beyond the capacity of even a 

relatively fast computer, at least given the algorithms used for this analysis. It should 
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be noted that the time required to perform an JV2-mode simulation with a pseudo- 

spectral code is approximately 0(N3). For a fully spectral model, however, the 

time is proportional to 0(N6). For large enough values of N, the spectral approach 

therefore becomes self-defeating. Thus, several smaller systems of various sizes were 

attempted. The final system used was equivalent to that constructed at F = 28, 

in the quasi-periodic region: 8 barotropic wavy modes, 12 baroclinic wavy modes, 2 

barotropic zonal modes, 4 baroclinic zonal modes, 1 baroclinic velocity correction, 

and 1 mass correction term, yielding a total of 28 equations. Again, the baroclinic 

wavy field is the least resolved, with the first 12 modes accounting for slightly more 

than 80% of the total variance. Damping equivalent to that used for F = 28 was 

implemented, with a = 2 and p = 0.0002. A comparison of the actual time series 

of the barotropic wavy / *2/2 dA with its reconstructed evolution is given in Figure 

4.22. The rms deviations are similar, but the presence of the higher-frequency is 

again too prominent in the approximate system in comparison to the full results. In 

addition, other quantities of the approximate system, such as the baroclinic wavy 

component, have rms deviations twice as large as in the full model. 

A visual comparison can be made by examining the evolution of the approx- 

imate spatial fields, shown in Figures E.11,12, with the full solutions displayed in 

Figures D.11,12. The baroclinic field displays the correct scales, if not the same quan- 

titative behavior, but the approximate barotropic field seems to be dominated by a 

wavenumber-2 disturbance. The full solution, conversely, tends to exhibit smaller 

scale disturbances. In summary, the agreement between full and approximate so- 

lutions in the more complex instances is not exemplary. There is some qualitative 

corroboration in terms of spatial and temporal scales, but the precise interactions 

are not well preserved. This is not unexpected in light of the severe truncations 

necessary to obtain a system that is of a manageable size. 
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4.8    EOFs Versus Linear Eigenfunctions 

One final analysis that can be performed with the EOFs is to compare 

them to the linear eigenfunctions displayed at the end of Chapter 3. It is conceivable 

that the linear disturbances, although necessarily modified by the nonlinear terms, 

may remain the dominant spatial structure of the flow at finite amplitude. This 

corroboration is of importance for at least two reasons. First of all, it gives a physical 

basis to the computed EOFs. In addition, it allows one to know the EOFs a priori, 

so that one may use them in a low-order analytical formulation. This is currently 

not possible with the numerically-obtained EOFs. The technique is most applicable 

at the onset of a primary instability, or where the full model is in a purely periodic 

state. 

Figure 3.7 shows the eigenfunctions at the onset of symmetric PAV, which 

for the quasi-linear calculations (done in Chapter 3) occurs at F = 12. For the 

full model, the onset is also at F = 12. Figure 4.23 displays the first two EOFS 

of both the barotropic wavy field and the baroclinic wavy field at F = 12 in the 

symmetric state. The first two modes in each field account for 99% of the total 

variance of their respective fields. Correlation coefficients were calculated for each 

mode. For the barotropic field, the coefficients are 0.98 and 0.86 for the first two 

eigenfunctions, respectively; for the baroclinic field, the coefficients are 0.97 and 0.93. 

This indicates that the linear eigenfunctions are indeed the main contributors to the 

spatial dependence of the flow, being modified only slightly by the nonlinearities. 

The onset of symmetric PSV occurs at F — 24, and Figure 4.24 displays the 

EOFs at this parameter value. The quasi-linear analysis indicates the onset of PSV 

to occur at F = 17; the corresponding linear eigenfunctions due to this instability, 

calculated at F = 24 for comparison, are shown in Figure 3.8. Again, there is very 

good agreement between the two resulting spatial maps. The correlation coefficients 

for the barotropic field are 0.96 and 0.94, while those for the baroclinic field are 
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Figure 4.23. First two EOFs of barotropic and baroclinic wavy fields, F=12, sym- 
metric case 
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0.80 and 0.79. The coefficients for the barotropic field compare to those in the PAV 

regime, while those for the baroclinic field are only slightly worse. However, the 

agreement should not be expected to be as good, because the first two barotropic 

wavy EOFs account for 98% of the total variance of that field, while the two pri- 

mary baroclinic wavy EOFs only account for 93% of the total variance of their field. 

This indicates that the nonlinear terms act to entrain other modes as well, so that 

the linear eigenfunctions are not the only spatial fields participating in the vacilla- 

tion. These results also indicate that the counter-rotating eddy structure is firmly 

entrenched in the linear eigenfunctions themselves and is not purely a consequence 

of the nonlinearity. 

Fint EOF, barotropic wovy field, F-24 Second EOF, borotropic wovy fiald, F-24 

■—   ■ ^-         '—       ^   "      -        -^ ■ ^—■■ — — 

Second EOF, boroclinic wovy field. F-24 

Figure 4.24. First two EOFs of barotropic and baroclinic wavy fields, F=24, sym- 
metric case 

Finally, a comparison can be made in the asymmetric regime. The quasi- 

linear analysis indicates that the initial asymmetric PSV instability occurs at F = 11, 

and Figure 3.9 shows the linear eigenfunctions from this instability at F — 16. The 

numerical model first exhibits asymmetric PSV at F = 13. EOFs were computed 

just slightly above this parameter value, at F = 16, and the first two of each wavy 

field are displayed in Figure 4.25. The first two barotropic EOFs represent 98% of 

the total variance, while the first two baroclinic EOFs represent only 88% of the 
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total variance. After a correction is made for the arbitrary phase shift between the 

fields, the correlation coefficients are calculated to be 0.94 and 0.73 for the barotropic 

fields, and 0.76 and 0.72 for the baroclinic fields. The agreement is thus not quite 

as good as for the symmetric PSV regime, but it nonetheless indicates that the 

full model's behavior in the asymmetric regime is partially described by the linear 

eigenfunctions. The agreement may not be as favorable because the resolution used 

by the quasi-linear analysis for the asymmetric solution is smaller than that used for 

the symmetric state. 

Firit EOF, borotrapic wow field. F-16 

Figure 4.25. First two EOFs of barotropic and baroclinic wavy fields, F=16, asym- 
metric case 

In summary, the linear eigenfunctions correlate well with the EOFs calcu- 

lated from the full model. This indicates that the nonlinearities act only to slightly 

modify these instabilities. One could possibly exploit this information to construct 

low-order analytical models that could be used to at least study PAV and PSV. It 

is not, however, clear whether one could improve upon the models generated using 

EOF basis functions, since these pseudo-optimally represent the actual flow field. 
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4.9    Discussion 

The use of EOFs provides one with a measure of the spatio-temporal "com- 

plexity" of the system under consideration. Furthermore, this complexity, as mea- 

sured by the number of EOFs needed to meet a particular variance threshold, is 

proportional to the temporal complexity of the flow (which also results in an in- 

crease in spatial complexity). Nonetheless, the actual number of spatio-temporal 

pairs needed can be quite astonishing, even for non-chaotic flows. The use of EOFs 

is also useful for extracting some of the relevant physics of the problem. For example, 

the pairing of eigenvalues seen in the PSV regimes indicates traveling wave phenom- 

ena in the form of counter-rotating eddies, which subsequently helps to explain the 

periodic, spatial transfer of energy that occurs in these regimes. 

EOFs were also used to created approximate dynamical systems which 

mimic the original flow, but with far fewer degrees of freedom. For the purely 

periodic and simpler quasi-periodic cases, the method is shown to be quite viable, 

yielding results very close to the original solutions. The result is qualitatively suc- 

cessful in the more complicated quasi-periodic and chaotic regimes, but the large 

number of modes required to meet the 99% variance threshold is a barrier to ob- 

taining a quantitatively-accurate model. The idea of inertial manifolds discussed by 

Sirovich et al. (1990c) is a possible solution to this computational problem, but it 

would require a comprehensive investigation in order to assess the viability of such 

an approach. Nonetheless, the results are still useful for the insight they give into the 

complexity of these highly-supercritical flows, and they also reveal the limitations of 

low-dimensional dynamical systems as paradigms for understanding such behavior. 

Finally, the primary EOFs at the onset of both PAV and PSV behavior 

are shown to correlate very highly with the linear eigenfunctions of the associated 

instabilities. This indicates that the flow, at least in the periodic regimes, is largely 

influenced by the structures of the secondary instabilities. 



CHAPTER 5 

A RIGID-WALL MODEL OF BAROCLINIC INSTABILITY: THE LINEAR 

INSTABILITY PROBLEM 

This chapter describes the two-layer, quasi-geostrophic model with rigid 

(i.e. no-slip) sidewalls. First, the governing equations are re-introduced with slightly 

different notation. Next, the exact basic-state solution and the boundary conditions 

are discussed. Finally, a solution method to the linear stability of the basic flow is 

formulated and its results interpreted. 

5.1     Governing Equations 

The equations governing the rigid model are identical to those governing 

the slippery version. However, the notation used is slightly different, and it is useful 

to briefly clarify the alterations. The barotropic and baroclinic streamfunctions can 

be written (similar but not identical to the form in Equations 1.16,17) as 

*K     =     l(Pl + P2), (5.1) 

*bc   =    \(Pi-P2), (5.2) 

respectively.    The vorticity equations, then, are nearly equivalent to Equations 

1.18,19 and are written as follows: 

jt v
2$6f - J[vHbt, $b<] - /[v2^, $fc] = 

-f [(1 + x)V2*6t - (1 - XJV2«^] + f-V4*6t, (5.3) 

0 
dt 
-[V2^ - 22?$6c] - JtV2*^, $6t] - J[V2$6t, Ste] - 
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2FJ[$bt, $6c] = -^-^[-(l - x
2)V2$6t + (x2 + 6X + ljV2^] + 

l-V4^. (5.4) 

The physical meanings of the various terms are unchanged from Chapter 1. 

In order to preserve the aspect ratio used in the slippery code while also facilitating 

computational solutions, the domain of the flow for the rigid code is 0 < x < 8, 

— 1 < y < 1 (the domain for the slippery code, recall, is 0 < x < 4, 0 < y < 1). The 

boundary conditions are 

UM = Vbt = 0, (5.5) 

Ubc = Vbc = 0, (5.6) 

at y = ±1. 

5.2    Basic State 

For the slippery model, the simplest flow that satisfies the equations is 

u = C, where C is an arbitrary constant. Thus, the basic flow has no dependence on 

either x or y. For the rigid model, however, the requirement that u = 0 at the walls 

indicates that the velocity must have some meridional dependence on y (unless u=0 

everywhere, which is rather uninteresting). The exact solution can be obtained by 

examining Equations 5.3,4. If one dictates that there be no barotropic basic state, 

then only Equation 5.4 survives, and it can subsequently be simplified to yield the 

exact equation 

d2*b       Ed^bc_ 
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The solution to this is 

sinhTy ,„ „. 

where 

r - m («) 
The boundary-layer thickness is 0(1/T) = 0(E1^4), and the problem is equivalent 

to that examined by Stewartson (1957). The resulting basic state velocity profile is 

then given by 

and can be normalized by the factor 1/(1 —(cosh T)-1) so that the maximum velocity 

in the channel is 1. For large T, the profile is essentially unity, except near the 

meridional boundaries where the velocity must approach zero; for T « 0(1), the 

profile more resembles that of a parabola. The velocity profile is shown in Figure 

5.1 for three values of T: y/lÖ, y/TÖÖ, and -\A000. 

It should be noted that plausible values of T are physically constrained. In 

terms of the fundamental physical parameters, 

r2  = 24-Ä=. (5.ii) 

The first term, L/H, is much greater than 0(1) for geophysical flows and is ap- 

proximately 0(1) for laboratory experiments. The second term is the ratio of the 

horizontal length scale of the flow to the Ekman layer thickness, a ratio whose value 
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Basic state velocity profile for various values of T 

solid line: r=V(1000) 
dashed line: T=V(100) 
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Figure 5.1. Basic state velocity profiles for T = -/TO (dot-dashed line), \/IÖÖ (dashed 
line), and ^1000 (solid line). 

is always much greater than one.   Thus T2, and subsequently T, should be much 

greater than one to be physically reasonable. 

5.3     Zonal Flow Boundary Conditions 

The boundary conditions on the zonal flow are obtained in a manner similar 

to that followed for the slippery model. As with the slippery model, the mass must 

be conserved, so that Equation. B.3 holds. In addition, an appeal must again be made 

to the zonally-averaged momentum equation at the walls. Equations B.7,8 give this 

relation in terms of the perturbation layer streamfunctions, where the perturbation 

is defined to be the total streamfunction minus the basic state. Converting these 

into relations for the total barotropic and baroclinic streamfunctions, and noting 

that the velocity at the walls is zero for the rigid case, one obtains 

d2 

dy2 

dy 

ü6c = r2, 

uht = 0. 

(5.12) 

(5.13) 

Here the quantities ü&c and übt are the total velocities (basic state plus perturba- 

tions). The right hand side of Equations 5.13 is zero as shown if no basic zonal 

barotropic flow exists. If instead a zonal, barotropic basic state is included, then the 
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right hand side of Equation 5.13 must equal T2/2. The basic-state solution given by 

Equation 5.10 already satisfies the conditions 5.12,13, so any perturbations to the 

basic state must satisfy 

|^4 = 0, (5.14) 

jjS*u = 0, (5.15) 

with the ' indicating a perturbation quantity. The above condition is analogous to 

that imposed by Equations B.7,8 for the slippery model, the difference being that 

the requirement applies to the velocity itself for the slippery implementation. 

5.4    Linear Theory 

The linear theory for the rigid code is approached in the same manner as 

that for the slippery model (see Section 1.4), but the details are somewhat differ- 

ent. Consequently, it is useful to briefly summarize the methodology. Linearizing 

Equations 5.3,4 yields the following relations: 

r d _L TT   
d i„   _i_ TT   d „    . d&t dn6t . d^bc dIi-bc 

L"S7 + ubt-£-\qbt + Ubc-x-qbc + -3 ST-+ ~~ dt dx dx dx   dy        dx    dy 

-QV2<f>bt + Y^bt, (5.16) 

r 9  X TT     d U    X TT     9        x d^ dILbt x fl&* dJ[^ 
[di + Ubtdi]qhc + Ubcdx-qbt + -dx—dy- + -dx^~dy- = 

-2QV2<t>bc + -f-V4&c (5.17) 

Similar to the results presented in Section 1.4, qa and g^ are, respectively, the 

barotropic and barocHnic perturbation potential vorticities and are defined as 

9*   =   V2&t, (5.18) 

qbc   =   V2<f>bc-2F(f>bc, (5.19) 



149 

litt and Ubc are the potential vorticities of the basic state and have gradients given 

by 

dEht d2Ubt ,. onv 

TT = -a** (5-20) 

TT*  =  -^ + 2i^6C = (i-^)r2 + 2i^bc, (5.21) 
ay ay2 

and C/fet and {7{,c are, respectively, the barotropic and baroclinic basic state zonal 

velocities. Ubc is given by Equation 5.8, while Ubt is generally chosen to be zero for 

the computations presented here. Equation 5.21 is obtained with the use of Equation 

5.10. 

For the slippery model, the governing equations have constant coefficients, 

since Ubc = constant. As a result, the form indicated by Equation 1.22 is an exact 

solution of the equations and is therefore eliminated upon substitution into Equations 

1.13,14 (this situation also necessitates that the ^-dependence of (f>n, denoted as 

fn(y), be such that f„(y) = —C fn{y), where C is an arbitrary constant). For the 

rigid model, the meridional dependence of the stream functions (i.e. pressure) is 

given by a family of functions, gn(y), n = 0,1,2, ...,where 

gn{y)   =   Tn+4(y)-^Tn+2(y)+^TM (5.22) 
n + 1 n + i 

and 

T„(y)   =   cos[ncos-1y] (5.23) 

is a Chebyshev polynomial of the first kind. The functions gn(y) have the property 

that <7„(±1) = 5^(±1) = 0 so that the boundary conditions on the velocity are 

satisfied (see Figure 5.2). 
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Figure 5.2. First four basis functions gi(y), i = 1,2,3,4, for the rigid, linear insta- 
bility problem. 
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A disturbance {(j>bt,<f>bc} is taken to be 

Af-1 

.    c/>bt   =   ReY,*n9n(.v)ea**-et\ (5.24) 
n=0 

Af-l 

<kc   =   Re  ^(»je^) (5.25) 
n=0 

where {<j)bt,<t>bc} = Wbv^'b^i = 0 at jf = ±1 (the prime denotes differentiation 

with respect to y). The expressions given in Equations 5.24,25 are substituted into 

Equations 5.16,17 and the resulting equations are projected back onto the basis 

functions gn(y) via a Galerkin projection. This results in a set of linear, homogeneous 

equations for the an and bn yielding an eigenvalue problem where c plays the role of 

the eigenvalue and the corresponding eigenvector yields the meridional structure of 

the disturbance. The parameter M is increased to include successively more modes 

until the results display convergent behavior. 

In order to be consistent with the stability calculations for the slippery 

configuration, the basic velocity is re-scaled (as previously discussed) in order to 

achieve a flow velocity of unity at y = 0. In addition, because T is the relevant 

parameter in shaping the basic flow profile, this quantity is kept fixed for stability 

calculations; a choice for Q then automatically determines the value of E/R0 that is 

to be used. The critical value of F required for instability can then be calculated in 

a straightforward manner for a particular (T,Q,E/R0) trio. 

5.5    Results 

5.5.1 Ubc 7^ 0,Ubt = 0: With the barotropic basic state equal to zero, 

the system has top-bottom symmetry. Therefore, the growing wavy modes are non- 

propagating (cr = 0) and the critical layers are at the wall. Figures 5.3,4,5 display the 

stability curves, for the rigid case, for M = 20 (i.e. 11 even modes) with T equal to 

\/lÖ, \/l00, and \/l000, respectively. Because the initial instability entrains only the 
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even Chebyshev modes (i.e. those which are symmetric about y = 0), the odd basis 

functions were not included in the calculations. The average difference in calculated 

values of Fc using M = 18 instead of M = 20 was found to be 0.33%, where the 

differences were calculated for all curves in Figures 5.3,4,5.  Moreover, the largest 

errors, which are about 3%, occur only when T is large and Q is small. Therefore, a 

resolution of M = 20 was deemed to give adequately-resolved results (valid results 

at higher values of M are difficult to achieve because of round-off errors that occur 

in the evaluation of integrals of products of Chebyshev functions and the basic state 

when high-order Chebyshev polynomials are included).  The counterintuitive effect 

that rigid-wall flows are more unstable for small dissipation is not an artifact of 

the resolution used.  Also plotted are the results for the slippery model (with the 

domain rescaled to 0 < x < 8, — 1 < y < 1).   For all three values of V, the rigid 

model is more stable at large values of Q (i.e., the bottom friction parameter) but 

less stable at small values of Q. In addition, the lowering of Fc with decreasing Q 

is more pronounced for smaller values of T. 

Insight as to the cause of the relative destabilization of the rigid-wall flow 

for small Q can be obtained analytically. We first assume that the perturbation 

boundary layer, which brings tangential velocities to zero at the walls, is much 

thinner than the zonal-flow boundary layer, which has a thickness of 1/r. Due to this 

constraint, Übe ~ 0 in the wave boundary layer that is attached to the no-slip sidewall. 

We also note that the numerical results reveal that the meridional dependences of 

4>bt and <pbc are such that one is purely real and the other is purely imaginary, which 

allows us to denote the barotropic meridional function as f(y) and the baroclinic 

function as g(y), where / and g are either purely real or purely imaginary functions. 

For y « ±1, then, Equations 5.16,17 simplify to yield boundary-layer equations near 
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Linear stability curves for slippery and rigid models, r=V(1000) 
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the walls: 

ikT2g(y)   =   f/'"(y), (5.26) 

ikT2f{y)   =   Yo9""{y)> (5.27) 

so that the meridional advection of basic-state vorticity is balanced by the dissipation 

of vorticity due to lateral friction. The wave boundary layer thus has a thickness 

\-rr)    =    r" (5-28) 

given that k « 0(1). Therefore, the ratio of the wave boundary layer thickness to 

the zonal boundary layer thickness is (20J1/4, so that our initial assumption of a 

small relative boundary-layer thickness is consistent for a parameter setting Q < 1. 

If the dissipation parameters (Q, E/R0) are small, the functions f(y) and 

g(y) outside the wave boundary layer should be similar to those obtained by exam- 

ining the inviscid form of Equations 5.16,17, where Q and E/R0 terms are neglected. 

An exact solution of these inviscid equations which satisfies no normal flow through 

the walls at y = ±1 is 

f   =   übe, (5.29) 

9   =   0, (5.30) 

a result identical to that found by Pedlosky and Klein (1991) (who impose rigid- 

sidewall conditions on the basic state but not on the wavy perturbations). This 

solution requires that Fe = k2/2. The dissipative terms are assumed only to give 

rise to a passive boundary layer of thickness A (given by Equation 5.28) so that 

the no-slip boundary conditions at y = ±1 are satisfied. At best a weak boundary 
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suction velocity will occur to modify slightly the boundary conditions on the interior 

solution shown in Equations 5.29,30. We can ask when the solution given by Equa- 

tions 5.29,30 is expected to be applicable. Roughly, the solution is valid when it 

consistently predicts the dissipative terms to be small compared to the other terms 

in the equations. A scale analysis reveals that this occurs when 

Q   «   £, (5-31) 

where Equation 5.28 is used as an estimate of the boundary-layer thickness for f(y). 

The details of obtaining Equation 5.31 are shown in Appendix H. For values of Q that 

do not satisfy Equation 5.31, there will be departures from the behavior of Equations 

5.29,30, and the slippery solution itself is a candidate when 1/r4 < Q < 1 (this is 

the case because in this region, Q is small enough so that dissipative terms can be 

neglected, and T may be large enough so that the flow appears largely uniform in 

the meridional direction). 

These predictions are borne out by numerical calculations of the meridional 

eigenfunctions of the wavy perturbations. Using up to M = 20 modes (only the 11 

even modes were included), the eigenfunctions were calculated for Q = 10" and T = 

V^IÖ, where the corresponding value of Fc is 0.428, slightly larger than the theoretical 

limit of Fc = k2/2 = 0.308 for k = TT/4. The barotropic meridional mode (normalized 

so that its maximum amplitude is 1) is shown in Figure 5.6, along with the basic 

state velocity profile. Except for the requisite boundary layers on the barotropic 

mode at y = ±1, there is very close agreement between the two shapes. In addition, 

the analysis that yields Equation 5.31 also predicts that the baroclinic amplitude 

(relative to the 0(1) barotropic amplitude) should be 0(Q^2T2) = OilQ'1) when 

Q < r~4. The numerical results yield an amplitude ratio of 0.135, which is in 

agreement with the prediction. 



157 

Comparison of barotropic eigenfunction and basic state velocity profile 
I.U -a-*»-"*""                                                    ""*-"■-""•--<-- 

O.B ~                                                                 "^^"^                                                                                                                                     ^*^^x^'                                                                  ~ 
SjT                                                                                                                                                                                                                                                                                       ^"V*"* ~                                                          / /^                                                                                                                                                                                                                                                                                                     ^\\                                                           — 


//                                                                                                                                                                                                                                                                                                                                                                     \\ 

0.4 —                    //                                                                                                                                                                                                                                                                                                                                                                                   \\                     — 
Z      t/                                        solid line: barotropic eigenfunction                       \A      I 

0.2 —./                                           dashed line: basic state velocity profile                  \\ — 

-//                                                                                                                                     \\- 
00 v                                             ,                                                .         .                                      ,                                            ^5 

•1.0 -0.5 0.0 
y 

0.5 1.0 
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158 

Eigenfunctions were also calculated for Q = 10"1 and I = \/l000, again 

using M = 20 Chebyshev modes. For this case, Fc = 1.556, while the slippery value 

is Fc = 1.593 when one includes factional effects which are small but nonzero. The 

rigid-case barotropic eigenfunction and the slippery case profile, which is COS(TTT//2), 

are shown in Figure 5.7. For comparison, the rigid-case profile is again normalized so 

that its maximum value is 1. Except for the boundary layers near y = ±1 for the rigid 

solution, there is almost exact agreement in the shapes of the profiles. Additionally, 

the linearized equations predict a baroclinic eigenfunction amplitude of O(Q) = 

O(10_1), while the numerical results yield a value of 0.185, so that the baroclinic 

eigenfunction is again consistent with the asymptotic analytical predictions.   For 

comparison, the barotropic eigenfunction obtained for Q = 10-1 and T = y/IÖÖ is 

shown in Figure 5.8, along with the cosine and basic state profiles. At this parameter 

setting, which lies in between the two extremes discussed above, the barotropic 

eigenfunction is very similar to that obtained for the slippery case (i.e.   a cosine 

solution). 

The above results indicate that there are two very different solutions for 

small Q, depending on the relative sizes of Q and T. For T~4 < Q < 1, the 

solution approaches that of the slippery case and Fc = (k2 + l2)/2, where I is the 

meridional wavenumber of the barotropic wavy perturbation. For Q < T-4, the 

solution approaches that given by Pedlosky and Klein (1991), where the barotropic 

wavy streamfunction is equal to Ubc while the baroclinic streamfunction is zero. The 

establishment of these two solutions as different limits of the nearly-inviscid case 

helps to provide an explanation of the lower stability threshold of the rigid case 

compared to the free-slip situation. In both limits, the absence of viscosity, coupled 

with the stipulation that Ubt = 0, leads to the result that ^ = q^ = 0 at F = Fc. 
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Therefore, at Fc Equation 5.16 vanishes, and Equation 5.17 reduces to 

TT   9 dfot dILbc     . 
Ubcdx-qbt + -dx—dy- = °- (5.32) 

Thus, at the onset of instability, the zonal advection of the relative vorticity of the 

barotropic wavy perturbation by the basic-state zonal flow balances the meridional 

advection of the basic-state potential vorticity by the meridional velocity of the 

barotropic perturbation.   In the slippery case, the basic-state potential vorticity 

gradient reduces to 2F, while in the rigid case, there is a nonzero curvature to 

Ubc which gives the basic state the relative vorticity gradient shown in Equation 

5.21.   In the limit Q < T~4, the meridional advection of the relative vorticity of 

the basic state by the perturbation meridional flow completely cancels the zonal 

advection of the du/dy portion of the perturbation relative vorticity by the basic 

flow (more specifically, it is the portion of the perturbation relative vorticity that 

gives rise to the l2/2 term in the free-slip case).  In between the limits where the 

two solutions are rigorously applicable, these two advective terms partially cancel so 

that k2/2 <FC< (k2 + l2)/2. 

In the intermediate region where r-4 < Q < 1 but T is relatively small, the 

slippery solution is not a good approximation to the rigid-case result. The decrease 

of Fc with decreasing T can be explained by appealing to the energy equation for 

the perturbations, which is given in Pedlosky (1987) and can be recast in terms of 

barotropic and baroclinic quantities to yield 

dK'     dP' _ f1 dUbc 
J-i   dy 

d<j>bt d<t>bc     c tybc d(j>bt 

dx   dy 
dy + dt        dt dx   dy 

f1 dUbt d<f>btd<t>bt , dcpbcd^bc 
dy - J-i  dy   [ dx   dy dx   dy 

2F j\ Ubc ,   d<j>bc 
dy- 
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The left hand side of the equation is the time rate of change of perturbation energy, 

partitioned into the perturbation kinetic energy (K1) and the perturbation potential 

energy (i"). The right hand side is comprised of several terms. The first two are 

the barotropic energy transfer terms. These depend on the meridional structure of 

the basic state. For our purposes, Ubt is zero and the second term thus vanishes. 

The first term represents the conversion of the basic-state kinetic energy directly 

into perturbation energy and will be referred to as Xht. The third term is the 

baroclinic transfer term, which converts available potential energy of the basic state 

into perturbation energy and depends only on the vertical structure of the basic 

state. This term is denoted as Xbc. The fourth and fifth terms denote the energy 

loss due to bottom friction and are denoted summarily as TB- Similarly, the last 

two terms represent the dissipation from lateral friction and are denoted as TL- 

Three values of r are examined: T = VTÖ, T = v/IÖÖ, and T = VlOOO. The 

friction parameter, Q, is set equal to 0.001, and the zonal wavenumber, k, is set to 

7r/4, the longest allowable and most unstable wave at these parameter settings. The 

critical Froude numbers for the respective V values listed above are 0.558, 0.698, and 

1.19. Once the critical values of F were determined for each case, energy fluctuations 

were calculated at the onset of instability (to within some small numerical error). 

The results are easily visualized via a box diagram, a template of which is shown in 
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Figure 5.9. In this diagram, the value of the box is zero as shown. Energy is input via 

the barotropic and baroclinic energy transfers, while friction drains energy from the 

system. The output is the perturbation energy, subdivided again into potential and 

kinetic energies. Since we are examining the system at the critical Froude number, 

the time rate of change of energy is identically zero. 

Figure 5.10 shows the results for T = vlÖÖO. In all of the cases to be pre- 

sented, the equation has been normalized by the magnitude of the baroclinic energy 

transfer term. In this case, Xbc itself is positive. The barotropic term is negative and 

is about 37% of Xbc- The size of Xbt indicates that even for relatively thin boundary 

layers, the barotropic energy transfer term is of a significant magnitude. However, 

the sign of the term is negative, which indicates that it acts to stabilize the flow. 

The next case, at T = y/IÖÖ, is shown in Figure 5.11, and it shows sub- 

stantial differences with the previous scenario. The barotropic transfer term, still 

negative, is now about 72% of the size of Xbc, which is positive. In addition, the 

friction is approximately 1/3 that of Xbt and is dominated by FL. Thus, the decrease 

in T has increased the magnitude of the barotropic energy transfer but has actually 

made it more negative. 

The final situation, T = y/TÖ, is shown in Figure 5.12. The ratio ||Afbt/-%i,c|| 

has decreased slightly from the previous case and is now about 0.71. The dissipative 

terms are again 1/3 as large as the barotropic term, as they must be to balance the 

equation. As is the case for T = y/lÖÖ, Tjj is an order of magnitude larger than TB- 

The preceding results show that as the horizontal shear layer of the mean 

flow widens (i.e. T decreases), there is a marked increase in the magnitude of the 

barotropic energy transfer term. However, this term is negative for all the cases 

considered here, which indicates that the barotropic transfer term is taking energy 

from the perturbations and placing it back in the basic Ubc profile. The barotropic 

energy transfer is thus not responsible for the lowering of Fc with decreasing T and 
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Figure 5.9: Generic energy transfer diagram for fluctuations. 
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in fact produces a stabilizing effect. However, the frictional terms in Equation 5.33 

become smaller as T decreases and in fact more than offset the barotropic transfer, 

resulting in a decrease of Fc. To see this more clearly, we first define 

&    =    ^ (5-34) 

At the onset of instability, dE'/dt = 0 in Equation 5.33, and we can therefore write 

Xbt _ FB_ _ ?L_ 

%bc       %bc       %bc 
F.  =   $l_5^_^k. (5.35) 

Thus, the critical Froude number can be written in terms of the ratios of the 

barotropic energy transfer, the bottom friction, and the lateral friction to the baro- 

clinic energy transfer (divided by Fc). Table 5.1 shows the magnitudes of these terms 

for T = \/lÖÖÖ, \/lÖÖ, and -/TO- The table shows that as V decreases, the total dis- 

sipation also decreases, and the reduction in the frictional terms more than offsets 

any increase in the barotropic transfer. Figure 5.13 shows the meridional structures 

of the barotropic and baroclinic wavy perturbation for the three values of T stud- 

ied. While the shape of the barotropic eigenfunction does not change substantially, 

the baroclinic eigenfunction is significantly affected by changes in T. In addition, 

for all three cases, the barotropic wavy amplitude (Abt) is substantially larger than 

the baroclinic wavy amplitude (Abe). The ratio Abt/Abe is approximately 5.1, 5.4, 

and 110, for T = VTÖ, \/lÖÖ, and VTÖÖÖ, respectively. The change in Fc between 

T = \/iÖ~ and T = N/IÖÖ is largely due to changes in the shapes of the eigenfunctions, 

since the relative amplitudes change very little. However, since the ratio of the dis- 

sipative terms to the baroclinic transfer term scales as Abt/Abc when Abt > Ac, the 

change in Fc between V = \/iÖÖ and V = \/l000 is due to changes in the relative 

amplitudes of the two eigenfunctions. In the intermediate Q region, then, the change 
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in Fc versus T for a specific value of Q is due both to changes in the shapes of the 

eigenfunctions and in their relative amplitudes. 

Table 5.1. Contributions from the barotropic transfer term and the dissipative terms 
to Fc versus T for T = \Zl000, -s/IÖÖ, and \/lÖ. Q = 0.001.  

VlOOO 
•s/100 
"7IÖ" 

1.19 
0.698 
0.558 

Xbt/Xbc 

0.444 
0.504 
0.395 

-Fß/Xbc 

0.223 
0.0162 
0.0123 

-ThiXbc 

0.526 
0.177 
0.151 

-(?B + fL)/Xbc 

0.749 
0.193 
0.163 

Finally, the behavior of the flow at large Q merits a brief discussion. Refer- 

ring to Figures 5.3,4,5, the large-Q solutions obtained for smaller T indicate that the 

flow is noticeably more stable than the free-slip case, while solutions for larger T ap- 

proach the slippery results. This phenomenon can be understood by again appealing 

to the energy transfers occurring within the system. The energetics are quite differ- 

ent from those seen at small Q. Table 5.2 displays the normalized energy transfers 

(similar to that shown in Table 5.1). The barotropic transfer is essentially zero for all 

values of T considered. Thus, at F = Fc there is a balance between baroclinic energy 

conversion and dissipation. Moreover, as T increases, the magnitude of the lateral 

dissipation decreases with respect to that of the bottom friction (which is not unex- 

pected, since E/R0 is decreasing), and the overall magnitudes of both friction terms 

decrease, thus lowering Fc. In the large-<5 limit, the free-slip solution is the same as 

that for small Q, i.e. the barotropic eigenfunction is cos(ny/2) and the baroclinic 

eigenfunction is Q cos(Try/2)/k. Now, however, the baroclinic wave dominates the 

dissipation, and the ratio of the frictional terms to the baroclinic conversion term 

scales as Abel At- For Q = 10, this ratio is calculated to be 59.8, 17.3, and 13.6 for 

T = \/lÖ, \/lÖÖ, andVlOOO, respectively, while the slippery-case value (Q/k) is 12.7. 

Thus, for smaller T the free-slip solution is not a good approximation due to the 

large boundary layers in the basic flow, and the actual solution results in a diminu- 

tion of the barotropic perturbation amplitude relative to the baroclinic amplitude. 
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Figure 5.13. (a) Meridional structure of barotropic wavy perturbations for T = 
-v/1000, y/IÖÖ, and \/lÖ. Q = 0.001. The amplitudes of the meridional functions 
are independently normalized to 1 for comparison, (b) Same as in (a) but for the 
baroclinic wavy perturbations. 
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This results in an increase in Fc from the free-slip value. The eigenfunctions for all 

three values of T at Q = 10 are shown in Figure 5.14. In this figure, the amplitudes 

of all the eigenfunctions are normalized to one for comparison, and the COS(7TT//2) 

profile is also shown. As T decreases, the wave boundary layer grows thicker and 

both the barotropic and baroclinic profiles depart from the slippery case solution, 

although the overall shape change is not overwhelmingly large. In summary, then, 

it is largely the change in the relative amplitudes of the eigenfunctions, along with 

the corresponding change in E/R0, that causes Fc to increase as V is decreased. 

Table 5.2. Contributions from the barotropic transfer term and the dissipative terms 
to Fc versus r for T = v/iooo, V. LOO, and \/lÖ. Q = 10. 

r Fc Xbt/Xbc -Fß/Xbc -ThlXbc -{?B + TL)lXhc 

Viooo 578 0 561 16.5 578 
Vioo 885 0 781 104 885 
v/10 5998 0 3011 2987 5998 

The results presented above indicate a substantial difference in the stability 

curves for the rigid-wall and free-slip cases at extreme small or large values of Q. For 

Q « 0(1), however, the differences can be rather small. Hart (1972) found that the 

stability curves of the free-slip model agreed well with those obtained from laboratory 

experiments in a cylinder (which necessarily has a single rigid wall). These laboratory 

results were obtained in the range O(10-1) < Q < 0(1) and with T « V2ÖÖ. As is 

evident from Figure 5.4, this is indeed the region where the two types of solutions 

closely coincide, so that the agreement found between experiment and free-slip theory 

is an artifact of being in a regime where stabilization due to rigid no-slip boundary 

conditions on the waves, and destabilization due to the presence of a ^-dependent 

basic state, roughly balance. 

5.5.2 Übe ^ 0, Uu #0: A final modification that can be made in 

order to better compare with experiment is to introduce a nonzero value of Ubt- In 

the laboratory, the upper layer is given a nondimensional velocity of 3, while the 
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Figure 5.14. (a) Meridional structure of barotropic wavy perturbations for T = 
•v/lÖÖÖ, -v/lÖÖ, and\/lÖ- Q = 10. The amplitudes of the meridional functions are in- 
dependently normalized to 1 for comparison, (b) Same as in (a) but for the baroclinic 
wavy perturbations. 
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lower layer has a nondimensional velocity of 1. This yields Uu = 2, Ubc = 1 in 

the interior of the flow. This problem differs fundamentally from that previously 

discussed because a barotropic basic state allows critical layers in the flow. In other 

words, the vertical asymmetry of the problem causes the wavy perturbations to have 

a phase speed which is approximately equal to Ubt. Therefore, since the velocity 

must approach zero near the walls, in the upper layer only there will be a value of 

y for which U\ = Cr, where cT is the phase speed of the wavy perturbation. At the 

onset of instability, c^ = 0, so that the inviscid form of the equations contains a 

singularity. Although the presence of dissipation avoids a singular set of equations, 

we may still expect significant changes in the eigenfunctions near the critical layer 

for small to moderate values of Q. 

To investigate this problem, a barotropic basic state of the form 

sinh ty 
*bt   =   2 -y + 

f cosh ty 
(5.36) 

is added, where 

r   = Q 
E/Rc 

= T/y/2. (5.37) 

The barotropic basic state velocity profile is 

*„ = =£*. 2 
ay 

1- 
cosh ty 

coshT 
(5.38) 

Linear stability curves for 0.01 < Q < 10 and V = \/l(J, VlÖÖ, and y/IÖÖÖ are shown 

in Figures 5.15,16,17. A value of M = 20 cross-stream modes (again including only 

the even eigenfunctions) was used for all calculations. Stability curves were also 

found using M = 18 and M = 24, and noticeable differences were found only for 

Q w 0.01. 
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Figure 5.15.   Linear stability curves for rigid model with Ubt = 0 and Übt ^ 0, 
T = y/IÖ. 
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Figure 5.16.   Linear stability curves for rigid model with Ubt = 0 and Übt ^ 0, 
r =-N/IÖÖ. 
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For T = vlO, there are substantial differences in the stability curves be- 

tween the two rigid-wall cases. The case with Ubt ^ 0 is generally more stable for 

Q > 1. For small values of Q, however, the k = 27r/4 and 37r/4 waves are less stable 

than their Ubt = 0 counterparts. For V = VlOO, shown in Figure 5.16, the situation 

is much the same. However, for large Q, the two cases agree much better. Finally, 

for T = vlOOO, where the zonal shear layers are trapped in a thin viscous region 

near the wall, the curves agree almost exactly for large Q. For intermediate values 

of Q, the situation with Ubt i1 0 is more stable for all k, and for small Q, Fc values 

are slightly lower when Übt ^ 0. 

In order to more quantitatively assess the effect of including a barotropic 

basic state, energy balances were calculated for both rigid-wall cases for Q = 0.1 

and T = \/lÖ, \/lÖÖ, and VlOOO. Table 5.3 shows the contribution to Fc from the 

various energy terms for the case where Ubt = 0, while Table 5.4 displays the same 

quantities when Ubt is nonzero. At these parameter settings, Fc is always higher in 

the latter case than in the former. In addition, the proportional contribution to Fc 

from the barotropic transfer term is enhanced when Ubt J^ 0. The eigenfunctions 

also show some differences between the two cases. Figure 5.18 shows the imaginary 

part of the barotropic eigenfunction for both situations for T = \/100. In the figure, 

the eigenfunctions have both been normalized to 1, and the critical layer (i.e. the 

value of y for which Ubt = Cr) for the second case is shown by the dashed vertical 

lines. When Übt ^ 0, the eigenfunction undergoes substantial variation as it passes 

through the critical layer. This does not occur when Ubt = 0. A similar variation in 

the eigenfunction when y is at or near the critical layer is observed for all values of 

r. 

The same analysis was also performed at Q = 10 in order to compare with 

the results for small friction. Table 5.2 shows the contributions to Fc from the various 

energy terms when Ubt = 0, while the results for Übt ^ 0 are shown in Table 5.5. The 
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Figure 5.18. Imaginary parts of eigenftmctions of barotropic perturbations with 
Ubt = 0 and Ubt ^ 0, V = \/lÖÖ, Q = 0.1. The dashed lines show the critical layer 

where Ubt — «V- 

Table 5.3. Contributions from the barotropic transfer term and the dissipative terms 
to Fc versus V for V = VlOOO, -s/IÖÖ, and y/lÖ. Q = 0.1, Uht = 0. 

r Fc Xbt/Xbc -Fß/Xbc -TLJXbc -(^B + Th)lXhc 

Viooo 1.56 0.120 1.14 0.298 1.44 

Vioo 1.51 0.179 0.819 0.510 1.33 

x/io 1.96 0.144 0.681 1.14 1.82 

Table 5.4. Contributions from the barotropic transfer term and the dissipative terms 
to Fc versus T for T = y^ÖÖÖ, VEÖ, and \/IÖ. Q = 0.1, Ubt ^ 0. 

r Fc Xbt/Xbc -FßlXbc -ThlXbc -(rB + ?L)/Xbc 

Viooo 1.73 0.378 1.12 0.235 1.36 

Vioo 1.82 0.578 0.796 0.450 1.25 

\/l0 2.42 0.421 0.764 1.24 2.00 
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energetics axe much the same for the two cases, and the barotropic transfer term is 

essentially zero for all the situations listed. Only at T = y/IÖ is there a noticeable 

difference in Fc and hence in the eigenfunctions. 

In summary, then, the presence of a barotropic basic state results in critical 

layers in the flow. These critical layers in turn affect the meridional eigenfunctions of 

the wavy perturbations, especially at or near the actual critical value of y. The extent 

of the effect on Fc depends on the particular T, Q combination under consideration. 

However, in regions of parameter space most relevant to experiment, the changes in 

the stability curves are minimal. 

Table 5.5. Contributions from the barotropic transfer term and the dissipative terms 
to Fc versus T for T = \/1000 yTÖÖ, and \/lÖ. Q = 10, Ubt ^ 0.  

Viooo 
VibT 
</l0 

578 
967 
28580 

Xbt/Xbc 
0 

20 

-Ps/Xbc 
562 
845 
6550 

-FL/Xbc 
16 
120 
22010 

■{FB + FL)/Xbc 
578 
965 
28560 

5.6    Discussion 

The stability curves for a rigid-wall model have been obtained numeri- 

cally. Because the basic flow must necessarily be a function of y, a series solution 

in Chebyshev polynomials is used to find both the meridional dependence of the 

perturbations and the resulting values of JF^. For the parameter range of interest, 

M = 20 cross-stream modes gives reasonably accurate results. Furthermore, the 

critical Froude number (Fc) required for instability is found to vary substantially 

with T. For Q < T-4, the barotropic eigenfunction at Fc is equal to Ubc while 

the baroclinic eigenfunction is essentially 0. In this situation, the advection of the 

perturbation vorticity by the basic-state velocity partially cancels the advection of 

basic-state vorticity by the perturbation velocity, resulting in Fc m k2/2. 

For r~4 < Q < 1, the solution approaches that of the free-slip case, so that 
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the barotropic eigenfunction is approximately equal to cos(7ry/2) and the baroclinic 

eigenfunction is approximately Q cos(xy/2)/k. In this case, Fc = {k2 + l2)/2. In 

between the two analytically-obtainable solutions, the eigenfunctions are more com- 

plicated and k2/2 < Fc < (k2 + l2)/2. For a fixed value of Q < 1, Fc decreases as 

T decreases and an examination of the energy balances reveals that this is due to 

both shape and amplitude changes in the eigenfunctions. At large values of Q, the 

physics governing Fc are different from those seen at small Q. In this situation, the 

barotropic transfer of energy is zero, and a large baroclinicity in the neutral wave is 

necessary to provide sufficient energy to balance the dissipation. Thus, at F = Fc 

there is a balance between baroclinic energy conversion and dissipation. Moreover, 

for large values of T, the solutions are nearly those of the free-slip case. However, 

for small T, the decreased relative amplitude of the barotropic eigenfunction causes 

an increase in Fc relative to the slippery solution. An investigation of previous ex- 

perimental findings, which are in good agreement with analytical calculations using 

a free-slip assumption, show that they lie in the parameter range where both the 

rigid-wall and slippery-wall models yield similar results. 

Finally, the analysis of the linear stability problem was expanded to include 

a nonzero value of the barotropic basic state, the purpose of which is to better 

simulate laboratory conditions that have a critical layer in the upper fluid near the 

outer wall. The results show that there are generally only minor differences between 

the two cases. Depending on the parameter setting, the case with Uu ^ 0 may 

be more or less stable than its counterpart with no barotropic basic flow, but the 

differences are only about 15% when Q = 0.1, T = VlOO, similar to laboratory 

settings. An analysis of the energetics reveals a somewhat enhanced barotropic 

energy transfer at Fc when Übt ^ 0, and the eigenfunctions in this situation show 

rapid variations in amplitude as they cross the critical layer. In the region applicable 

to experimental findings (i.e. 0.1 < Q < 1) the results for the two cases are similar. 



CHAPTER 6 

A RIGID-WALL MODEL OF BAROCLINIC INSTABILITY: NUMERICAL 

RESULTS 

This chapter examines the solutions of a high-resolution numerical model 

with rigid sidewalls. The investigation of such an implementation is important for 

several reasons. First, due to the presence of viscosity at the walls, the behavior may- 

be expected to deviate significantly from that seen in the slippery-wall model. In 

addition, laboratory experiments conducted in a cylinder necessarily possess a rigid 

sidewall, and the inclusion of such effects in the model will hopefully result in better 

agreement between theory and experiment. Finally, while the atmosphere has no 

"walls", the ocean certainly possesses the equivalent of sidewalls in the form of land. 

Thus, the investigation of a rigid-wall model may have particular applications to 

baroclinic instability in the ocean. The chapter is organized as follows. The numer- 

ical method used to obtain the solutions is briefly explained. Next, the validation 

of the model is discussed. The salient results are then summarized, and an effort is 

made to understand the physics underlying the observed behavior. This is done both 

by appealing to EOF-based surrogate models and also by quasi-analytical methods. 

6.1     Numerical Method 

The numerical method is similar to that used for the slippery model. A 

pseudo-spectral approach is again implemented, so that the linear terms are com- 

puted in spectral space, while the nonlinear terms are computed in physical space. 

Unlike the slippery code, however, the spatial discretization in the two directions 



178 

is different. In the zonal direction, Fourier modes are again used, but the merid- 

ional dependence is now represented in terms of Chebyshev polynomials. Since the 

Chebyshev functions do not individually satisfy the boundary conditions (i.e. no- 

slip and impenetrable), they are combined using a "tau" method in order to meet 

the necessary requirements (Canuto et al., 1988). Also unlike the slippery case, in 

the rigid-wall formulation there are no boundary conditions on the vorticity for the 

wavy portions of the flow. To overcome this problem, a modification of the influence 

matrix technique (Kleiser and Schumann, 1980) is used. A full description of this 

method by the author of the code (Brummell, 1993) is outlined in Appendix I. 

6.2    Validation of Model 

The model was run at two different resolutions: 64x33 and 128x65. The 

complexity of the code prevented runs at higher resolutions due to excessive com- 

putational times. The higher-resolution runs were compared to those performed at 

lower resolution near transition points in parameter space, especially near the onset 

of chaos. No substantial difference in results was found between the two resolutions. 

Consequently, a resolution of 64x33 was deemed adequate to provide convergent 

results. 

In order to validate the code itself, critical values of Fc obtained using the 

method outlined in Chapter 5 were used to test the onset of instability found in the 

numerical code. In all cases, the actual onset of instability was equal to the predicted 

value (within the numerical error expected from the quasi-analytical prediction). In 

addition, the linear eigenfunctions calculated from the linear model were compared to 

the eigenfunctions of the full model. Figure 6.1 displays the eigenfunctions obtained 

via both methods for F = 1.68, Q = 0.15, and E/R0 = 0.001. For this case, 

Fc = 1.67, so we are just above the onset of instability. The shapes of the predicted 

eigenfunctions agree almost exactly with those observed in the numerical model. 
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In addition, the amplitude ratios of the barotropic and baroclinic eigenfunctions 

calculated with the two methods agree to within less than 1%. Finally, energetics 

of the flow were calculated at chosen parameter settings, and the results show that 

the energies balance to within a small numerical error. In combination, these results 

instill confidence that the code is operating properly. 

6.3    Results 

The model was run for a variety of parameter values, and both Q and 

F were varied. The parameter E/R0 was kept fixed at 0.001 for all runs, so that 

changes in Q also changed the value of V used. Generally, a value of Q was chosen 

and F was successively increased until the system became chaotic. However, some 

runs were made with F fixed and Q variable. The regime diagrams are shown in 

Figures 6.2,3. 

Numerical runs were made for variable F with (5=0.08, 0.10, 0.125, 0.15, 

and 0.20. The critical values of F for the above parameter settings are approximately 

1.44, 1.52, 1.60, 1.67, and 1.81, respectively. One run was also made for variable Q 

with F = 1.90. Solutions for variable F were initially obtained by starting just above 

Fc and sequentially increasing F to examine any changes in behavior. These results 

are shown in Figure 6.2. For Q = 0.2, the bifurcation structure is similar to that 

seen in the slippery model, i.e. S -> PAV -* C, with the exception of a missing 

quasi-periodic regime. In this model, the quasi-periodic behavior is transient since 

two instabilities grow simultaneously from the PAV solution at the same parameter 

setting. For 0.08 < Q < 0.15, however, the initial behavior is not steady, but rather 

periodic or chaotic. The fact that the amplitudes of these motions does not approach 

0 at Fc further indicates that the instabilities born at Fc are subcritical. Because of 

this, one should be able to observe non-trivial behavior below Fc; this indeed occurs, 

and the results are summarized in Figure 6.3. In this figure, the solutions at fixed Q 
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Figure 6.1. Calculated and observed linear eigenfunctions, F = 1.68, Q = 0.15. The 
predicted eigenfunctions are shown by the solid lines, while the dashed lines show 
the actual eigenfunctions. 
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are obtained by starting with a solution for F > Fc and using this as an initial state 

to find a solution for F < Fc. The subcritical region is quite large for Q = 0.08 and 

nearly disappears for Q = 0.15. The cause of this behavior will be discussed in detail 

shortly. Hysteresis also occurs in the investigations made for F = 1.9 with variable 

Q. Referring to Figure 6.2, there is a transition (as Q decreases) from steady flow to 

PAV to chaos. Using the solution at Q = 0.1 as an initial condition and increasing Q, 

however, the solution stays chaotic until Q w 0.16, then enters a region of periodic 

structural vacillation. It eventually returns to a steady-wave state when Q « 0.18. 

Although not shown in Figures 6.2,3, a set of runs was performed for Q = 0.5. The 

results displayed only steady behavior until O(10) supercriticality and thus will not 

be discussed further. 

The behavior at Q = 0.1 is especially interesting because of the subcritical 

behavior at Fc = 1.52 and also due to the fact that the asymptotic state of the 

system is chaotic at Fc. Small, random initial conditions quickly settle into a sym- 

metric, PAV regime with no barotropic zonal corrections. A time trace of the lowest 

symmetric, baroclinic zonal correction, calculated at F = 1.53, is shown in Figure 

6.4. However, once the flow enters PAV, the asymmetric, barotropic zonal correction 

(also shown in Figure 6.4), which was zero during the initial growth of the wavy per- 

turbations, grows to finite amplitude.   This instability, whose dominant frequency 

is slightly less than 1/2 that of the amplitude vacillation, appears to result in an 

immediate transition to chaos. This, however, is illusory, for the chaotic transients 

eventually yield to a complex, quasi-periodic solution.  The transients are so long, 

though, that the remaining two growing instabilities (i.e. the asymmetric baroclinic 

and symmetric barotropic, shown in Figure 6.4) reach finite amplitude just after the 

system has settled into a QP state. It in fact appears that these two instabilities are 

induced to grow by the new behavior exhibited by the system. Figure 6.5 shows the 

lowest asymmetric, baroclinic zonal correction and the lowest symmetric, barotropic 
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zonal correction at F = 1.60. These modes have now both grown to finite amplitude, 

and the system behaves chaotically. 

As with the slippery case, an effort was made to ascertain the underlying 

dimension of the attractor in the chaotic regime.   However, attempts to calculate 

the correlation dimension were again inconclusive, evidently owing to the lack of 

extreme low-dimensionality seen in the system's behavior. A maximum return map 

calculated from the lowest symmetric, baroclinic zonal mode, shown in Figure 6.6, 

shows no evidence of structure when embedded in two dimensions.   In addition, 

the power spectrum of the same quantity, displayed in Figure 6.7, shows a distinct 

peak at the dominant PAV frequency (approximately 0.12 freq. units) and its first 

harmonic, but exhibits broad-band noise elsewhere.   Thus, we can conclude that 

the succession of instabilities seen at Fc eventually causes chaotic behavior, and 

the asymptotic state of the flow is not characterized by extremely low-dimensional 

chaos (i.e.   dimension < 3).   This is not surprising, since the two-torus motion is 

destroyed by two simultaneous instabilities. For this reason, we may anticipate that 

the solution moves on an attractor with dimension « 4. 

Figure 6.2 shows that at Q = 0.08 the flow also becomes chaotic immedi- 

ately. In this situation, there is an initial onset of PAV, just as for Q = 0.10. Subse- 

quent to this, however, all of the remaining zonal modes, i.e. symmetric barotropic, 

asymmetric barotropic, and asymmetric baroclinic, grow and reach finite amplitude 

nearly simultaneously. Thus, in this situation all the remaining symmetries of the 

problem are broken simultaneously. The end result is chaotic behavior similar to 

that seen at Q = 0.10. For Q = 0.15 and Q - 0.20 there exist stable PAV regimes 

over a finite range of F. In both situations, an asymmetric barotropic instability 

eventually grows and reaches finite amplitude, causing quasi-periodicity. The quasi- 

periodic solution is not asymptotically stable, however, as symmetric barotropic and 

asymmetric baroclinic instabilities reach finite amplitude shortly thereafter, resulting 
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Figure 6.4: Time traces of lowest zonal-correction modes, F = 1.53, Q = 0.10. 
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Figure 6.7. Power spectrum of lowest symmetric baroclinic zonal correction, F = 
1.60. 

in chaos. Thus, in all cases previously mentioned, both the shift-reflect symmetry 

and the vertical symmetry are broken via an asymmetric, barotropic instability, the 

asymptotic result of which is chaos. 

At Q = 0.125, the bifurcation sequence is slightly different. At Fc = 1.60, 

there is a transient PAV regime that is annihilated by the familiar asymmetric, 

barotropic instability. However, the flow remains in a periodic state largely charac- 

terized by the PAV behavior until F = 1.80. At this point, the symmetric, barotropic 

and asymmetric, baroclinic modes grow to finite amplitude, eventually causing chaos. 

At F = 2.20, the PAV regime returns and is stable until F = 2.30, at which point a 

symmetric, barotropic instability grows and causes the flow to become quasi-periodic. 

The quasi-periodic solution is stable until F = 2.40, when both asymmetric modes 

grow and again cause chaos. These solutions appear to bridge the gap between those 

seen at Q = 0.10 and those observed for Q = 0.15 or 0.20. At these larger values 

of Q, there is a standard transition from periodic solutions at lower values of F to 

chaotic solutions at higher values of F. At the lower values of Q, chaos is immediate. 

At Q = 0.125, the instabilities waver in strength as F is altered, thus resulting in 

intermittent chaos (in parameter space). 

One set of runs was done for F fixed at F = 1.9 with variable Q, the 

results of which are displayed in Figures 6.2,3.  This was done in order to ensure 
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the continuity of solutions in parameter space as Q was varied.   The results did 

indeed agree with those done at constant Q.   At Q = 0.2, a symmetric, steady 

solution is obtained.   This persists until Q w 0.16, at which point a symmetric 

PAV instability occurs.   The PAV regime gives way to chaos at Q = 0.10 in a 

manner consistent with the results presented for Q = 0.10 previously. As Q is now 

increased back towards its original value, however, the solutions are different (see 

Figure 6.3). The chaos persists until Q w 0.16; at this point, the asymmetric modes 

die altogether and the system enters a symmetric PSV state.   Thus, the system 

possesses multiple stable states in this parameter range.  The behavior seen upon 

increasing Q from its value of 0.10 was also observed by perturbing the symmetric 

solutions with asymmetric initial conditions.  The final state is thus dependent on 

the symmetry of the initial perturbations. The PSV behavior is curious because it 

is the only instance of PSV seen over the range of parameter values examined. Since 

the appearance of a symmetric barotropic instability superimposed on a symmetric 

baroclinic instability occurs quite frequently in the model without causing PSV, this 

particular state must have a rather small basin of attraction (i.e. must require very 

special initial conditions to be realized). 

The dominant frequencies of the particular instabilities seen in this model 

differ somewhat from those seen in the slippery case. The dominant PAV frequency 

(caused by a symmetric, baroclinic instability) is essentially the same in both models 

and has a value of approximately 0.12-0.13 frequency units. However, in the slippery 

case, the barotropic instabilities generally possess dominant frequencies about twice 

that of the PAV frequency. In the rigid case, when T is relatively large, the frequencies 

of the barotropic instabilities are indeed 1.3-2 times larger than the PAV frequency. 

However, as V is decreased, these frequencies also decrease, until at Q = 0.10, the 

asymmetric barotropic instability has a frequency about half that of the PAV solu- 

tion. This alteration in time scales in the higher instabilities will greatly affect the 
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structure of the resulting solution, since the instabilities interact nonlinearly. On a 

more physical level, changes in the basic flow must affect the nature of some of the 

instabilities in an 0(1) manner. 

Finally, it is important to note that the results discussed in this chapter 

were obtained by changing F and Q for a fixed value of E/R0. An alteration of Q 

thus effects an alteration of T. One can imagine fixing Q and varying E/R0, so that 

an increase (decrease) in E/R0 would decrease (increase) T. Thus, one would expect 

the subcritical behavior to occur as E/R0 is increased, and supercritical behavior 

to return for E/R0 adequately small. Of course, changes in E/R0 also affect the 

magnitude of the dissipation, so that these effects would have to be accounted for in 

the Emit E/R0 -* 0 or when E/R0 -» 0(1). 

6.4    Discussion 

The results discussed above are profoundly different from the behavior seen 

in the slippery model. First of all, for similar values of Q and E/R0, the rigid model 

becomes chaotic much sooner than the slippery case (unit supercriticality versus 

order four supercriticality). In this respect, the model results agree much better 

with experiments, which also become chaotic at unit supercriticality. Additionally, 

the rigid model displays subcritical behavior, so that a stable state obtained just 

above Fc is, for some values of Q, realizable below Fc as well. Furthermore, the 

amount of subcritical behavior can be quite large, as Figure 6.3 shows. Also evident 

from the figure is the fact that the subcritical region disappears for Q > 0.15. 

The existence of the subcritical behavior indicates a fundamental difference 

between the slippery and rigid models. Certain nonlinearities in the rigid case must 

be enhancing the initial instabilities near Fc. The physical basis of such a situ- 

ation warrants investigation. To understand the cause of the subcritical behavior, 

surrogate EOF models were utilized. These proved especially useful because of their 
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Baroclinic zonal amplitude vs. F (Q=0.1, r=V(200)) 
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Figure 6.8. Bifurcation structure near Fc = 1.52 for Q = 0.1, T = \/2ÖÖ. The solid 
line shows a stable fixed point (in this case demarcated by asterisks), the dashed 
lines reflect unstable fixed points, and the dot-dashed lines show the approximate 
envelope of the stable periodic solution. 

ability to accurately model the relatively complex spatio-temporal behavior with a 

small number of equations. Models were constructed at Q = 0.10, F = 1.55, and 

also at Q = 0.2, F = 2.50. These parameter settings were chosen in order to obtain 

one model representative of the subcritical region and one reflective of the super- 

critical regime. For both sets of parameter settings, the EOFs were obtained in a 

PAV regime. Although for Q = 0.10 this behavior is transient, the spatial fields 

were sampled well before the other instabilities reached a measurable amplitude. 

In both cases, 4 barotropic wavy EOFs, 4 baroclinic. wavy EOFs, and 3 baroclinic 

zonal EOFs were necessary to meet the 99% variance threshold. The resulting sets 

of ODEs were then used to find the fixed points of the system, and their stability, 

near Fc via the method outlined in Chapter 3. The results are shown in Figures 

6.8,9, where the amplitude of the baroclinic zonal correction is shown versus F. 

At Q = 0.1, there is a clear subcritical bifurcation with an unsteady, sub- 

critical fixed-point branch emanating from near Fc (numerical errors prevented the 

resolution of the unstable fixed-point branch near the origin for F > 1.36), a small 

region in which there is a stable fixed point (near F = 1.27) and a supercritical fixed- 

point branch which is unstable to a Hopf bifurcation (the approximate amplitude of 
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Figure 6.9. Bifurcation structure near Fc = 1.81 for Q = 0.2, T = </ÄÖÖ. The lines 
have the same meaning as in Figure 6.8. 

which is also shown). In contrast, for Q = 0.2, there is a supercritical, stable fixed- 

point branch that begins at F « 1.8 and becomes unstable to a Hopf bifurcation at 

F « 2.2. The surrogate EOF models therefore show that the bifurcation structure 

is subcritical for Q = 0.10 and supercritical for Q = 0.20, and it therefore must 

change from one to the other somewhere in the region 0.10 < Q < 0.20. One other 

interesting item that can be gleaned from the surrogate models is the behavior of the 

eigenvalues of the various instabilities. More specifically, Figure 6.8 shows that the 

value of F at which the stable steady state first appears almost coalesces with the 

point at which the Hopf bifurcation comes into existence. However, an examination 

of the eigenvalues at these two parameter values indicates that they do not coalesce. 

The saddle-node instability has a purely real eigenvalue, while the Hopf bifurcation 

possesses a complex eigenvalue whose imaginary part does not approach zero as it 

nears the saddle-node bifurcation. It is reasonable to assume that the instabilities 

will collide for some value of Q, and the resulting co-dimension two bifurcation can 

then generate complicated dynamics (see Guckenheimer and Holmes (1983)). 

The surrogate models offer little assistance in understanding the physical 

origin of the observed subcritical behavior because they are really just a shorthand 

method for representing the full numerical results. In order to gain this insight, a 



192 

perturbation method was used. The goal of this approach was to find the value of Q 

at which the cubic term in the Landau equation, which describes the evolution of the 

amplitude of the linear eigenfunctions near F = Fc, changes sign. If the bifurcation 

is supercritical, then we expect that this equation, which can be written as 

dA/dt   =   A-jA3 + h.o.t., (6.1) 

where A is the amplitude of the wavy perturbation and h.o.t. indicates "higher-order 

terms", will have 7 > 0. However, a subcritical bifurcation will have 7 < 0 so that the 

lowest nonlinearity of the equation actually destabilizes the steady-state, requiring 

a higher-order nonlinearity (e.g. A5, A7,...) to bring the system to equilibration. 

If we expand the perturbation series in terms of A, then we can write 

4>bt    =   A{<$ + A<t$ + A24$ + ...), (6.2) 

kc   =   A^ + A^ + A2^ + ...), (6.3) 

where the superscript indicates the order and $$ and <f>£ are all 0(1) variables. We 

also stipulate that 

d/dt   =   d/dt1 + Ad/dt2 + A2d/dt3 + ..., (6.4) 

F   =   F0 + AFX + A2F2 + ..., (6.5) 

where the ti and Fi are also 0(1). Isolating all terms of 0(.A), we obtain 

Mf&^f   =   0. (6.6) 

Here, L is a linear differential operator matrix. Solving this equation yields Fc and 

the linear eigenfunctions, just as in Chapter 5.  At 0{A2), the following equation 
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arises: 

.    LWLW = [42)42)]T (6.7) 

The right-hand side consists of the nonlinear interactions of the 0(A) solution. Prom 

this equation, we obtain two particular solutions—one that is proportional to e2ikx 

and one that is a function of y only. These are the second zonal harmonic and the 

mean-flow correction generated directly by the nonlinear interactions of the linear 

eigenfunctions. Finally, at third order, we obtain the following equation: 

um^f = rä'w. (6.8) 

In this case the right-hand side contains terms that resonate with the left-hand 

side. In order that the solution is valid, these terms must not project onto the 

original eigenfunctions, which are proportional to etkx. This creates a solvability 

condition that yields the Landau equation, allowing us to determine whether 7 is 

positive or negative. The results of this analysis are shown in Figure 6.10. The 

Coefficient is indeed negative for Q < 0.13, rendering the instability subcritical. In 

addition, it is the wave-mean flow interaction that yields a negative 7, as the wave- 

wave interactions are stabilizing for all Q. The results agree quite well with the full 

numerical solutions. However, the numerical results indicate that the transition from 

7 < 0 to 7 > 0 occurs for Q ta 0.15. Upon further examination, the full numerical 

code revealed that supercritical solutions do indeed exist near the origin, but that 

subcritical behavior exists for larger amplitudes. This situation may occur if the 

A3 term is stabilizing, but the A5 term is de-stabilizing, requiring a stabilizing A7 

term to bring the system to eventual equilibration. These various scenarios are best 
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understood visually, as shown in Figure 6.11. Figure 6.11a shows the subcritical 

bifurcation diagram that exists for Q « 0.10, similar to that shown in Figure 6.8. 

In this case, the A3 term is destabilizing and requires a higher order correction for 

equilibration. In Figure 6.11b, we see the situation when the A3 term is stabilizing 

but the A5 term is destabilizing. This is applicable for Q « 0.15. In this case, small 

initial conditions started near Fc will evolve to the small supercritical branch near 

the origin. However, if the initial perturbation is too large or F is large enough 

so that the supercritical branch cannot be reached, then the solution will jump 

up to the subcritical branch. Finally, for Q « 0.20, Figure 6.11c is.the applicable 

bifurcation diagram (compare to Figure 6.9), and in this case the instability is purely 

supercritical, with no hysteresis or multiple solutions observed. 

The final task is to identify the physical mechanism responsible for the 

negative Landau coefficient. To accomplish this, the nonlinear terms that combine 

to yield the wave-mean portion of the Landau coefficient (i.e., the destabilizing part) 

were compared with their counterparts in the fully slippery case, in which the wave- 

mean portion of the Landau coefficient is positive and thus stabilizing. Figure 6.12 

displays the contributions from the various nonlinear terms for the slippery case, 

while those for the rigid solution are displayed in Figure 6.13. The J{ terms are 

defined as follows: 

Ji    =    f_  ibti-Übc-^V'^dy, (6.9) 

J2    =   J^bti-vi^CJ^dy, (6.10) 

f1 - d _ 
h   =   y_ tbci-v'btß-u^dy, (6.11) 

JA   =   J^ikci-Ütc-^V'fädy, (6.12) 

h   =   j^bc{-v'H2F^-4>bc)dy, (6.13) 
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Landau coefficient versus Q 

solid line: total landau coeff 

dashed line: wave-wave contribution 

dot—dashed line: wave-mean contribution 

-30 

0.08 0.10 0.12 0.14 
Q 

0.16 0.18 0.20 

Figure 6.10. Landau coefficient (7) versus Q. The solid line shows the overall 
coefficient, while the dashed and dot-dashed lines show the wave-wave and wave- 
mean contributions, respectively. 
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Figure 6.11. Various bifurcation structures seen in the rigid model, (a) purely 
subcritical bifurcation, (b) mixed bifurcation, (c) purely supercritical bifurcation. 
In all cases, Fc = 1, and the amplitudes are arbitrary. 
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J\ is the zonal advection of wavy baroclinic relative vorticity by the zonal 

flow, J2 is the meridional advection of zonal relative vorticity by the baroclinic 

wavy perturbation, J3 is the meridional advection of zonal relative vorticity by the 

barotropic wavy perturbation, J4 is the zonal advection of wavy barotropic relative 

vorticity by the zonal flow, and J5 is the meridional advection of zonal baroclinic vor- 

ticity due to interface stretching by the barotropic wavy perturbation. In addition, 

the "indicates the adjoint solutions, the ' indicates wavy quantities, and the overbar 

indicates zonally-averaged variables. In the figures, the plots are normalized by the 

total contribution to the Landau coefficient at Q = 0.08. Although the respective 

magnitudes of the Ji are different between the two cases, only J3 in the rigid case 

possesses a sign opposite its slippery counterpart. Thus, the wavy barotopic field 

advects zonal vorticity in such a way that it enhances its own growth rate against 

the background state. 

The quantity J3, which has an 0(1) stabilizing effect in the free-slip case, 

has an 0(1) de-stabilizing contribution in the rigid formulation. In fact, the change 

of sign of J3 coincides closely with the change of sign of the entire contribution from 

the wave-mean interactions to the Landau coefficient. This is not simply a fortuitous 

occurrence. If one examines the slippery case for Q < 1, then J\ and J2 can be shown 

to be 0(Q2) with respect to the remaining Jt-. In addition, although J4 and J5 are 

0(1), their difference is also 0(Q2). Therefore, J3 is left as the only remaining 0(1) 

contribution to the Landau coefficient. Moreover, the difference between J3 in the 

slippery and rigid cases can be traced to a single term in J$, dübc/dy = d34>bc/dy3 

(since the product of the other two terms has almost the same shape in both the 

rigid and slippery cases, as Figure 6.14 shows). These are shown (for Q = 0.08) 

in Figure 6.15 for the slippery and rigid case, respectively, and the amplitudes are 

normalized to 1 for convenience. In the rigid case, the large amplitude deviations 

near the walls, which correspond to large vorticity gradients, change the sign of J3 
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Figure 6.12. Contribution by nonlinear wave-zonal interactions to Landau coefficient, 
slippery case. The plots have been normalized by the total wave-mean contribution 
to the Landau coefficient at Q = 0.08. The J, terms are denned in the text. 
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Wave-mean portion of Landau coeff. 

Figure 6.13. Contribution by nonlinear wave-zonal interactions to Landau coefficient, 
rigid case. The plots have been normalized by the total wave-mean contribution to 
the Landau coefficient at Q = 0.08. The J; terms are denned in the text. 
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from positive to negative for certain values of Q. Thus, the subcritical instability- 

owes its existence entirely to the presence of rigid sidewalls. As Q increases and 

the basic profile approaches that of the free-slip case, J3 becomes positive and the 

instability becomes supercritical. However, as just discussed, for some values of 

Q, higher-order terms act in such a manner as to make the solutions still exhibit 

subcritical behavior, even though the initial instability is supercritical. 

The profound differences in the vorticity gradients shown in Figure 6.15 

can be traced back to the shapes of the linearly unstable wavy eigenfunctions. The 

equation for the baroclinic zonal correction can be written schematically as 

~(2) 
where <%</ is the second-order, baroclinic zonal correction term. The equation is 

dominated on the left-hand side by the fourth derivative term, and the right-hand 

side is a result of the nonlinear interactions of the first-order terms. These nonlinear 

terms give rise to large derivatives near the walls, thus causing the shape of the zonal 

correction to deviate significantly from the free-slip case. The right-hand side is in 

fact dominated by the the term —kfig'"/2, where /i is the barotropic meridional 

eigenfunction and g\ is the baroclinic eigenfunction. The functions /1, g\, g"', and 

—*/i<7i"/2 for Q = 0.08 are shown in Figure 6.16. The shape of the nonlinear term 

is similar to that of the vorticity gradient for the rigid case shown in Figure 6.15 and 

thus reveals the origin of the zonal correction's shape (in fact, the antiderivative of 

—kfig"'/2 is approximately the vorticity gradient). In contrast, the eigenfunctions 

and nonlinear terms in the slippery case are sine and cosine functions. 

6.5     Conclusions 

Results for a rigid-wall model were obtained at many points in F — Q pa- 

rameter space, and the bifurcation structure of the flow is found to be fundamentally 
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Figure 6.14: v'bt ^ versus y for slippery and rigid cases, Q = 0.08. 
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Figure 6.15. Zonal vorticity gradients versus y for slippery and rigid cases, Q = 0.08. 
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different from that seen in the slippery-wall implementation. The transition to chaos 

in the rigid-wall model is abrupt and occurs at Fc in some instances. Even for larger 

values of Q (e.g. Q = 0.2), chaos occurs when the supercriticality is 0(1). Generally, 

the chaos is caused when an asymmetric barotropic instability grows on top of a sec- 

ondary, oscillatory baroclinic instability, and asymmetric baroclinic and symmetric 

barotropic instabilities are entrained in the process. The actual route to chaos is 

observed to be the breakdown of a torus, just as in the slippery model. For certain 

values of Q (corresponding to particular values of T), the initial instability at F = Fc 

is subcritical, i.e. the nonlinearities enhance the instability. Because of this, hystere- 

sis exists and finite-amplitude solutions can be found below Fc. For larger values of 

T, the initial instability is supercritical. The subcritical behavior was investigated via 

both surrogate EOF models and also using a perturbation analysis. The surrogate 

models confirm the presence of subcritical bifurcation diagrams for the proper values 

of Q. The perturbation analysis indicates that the behavior is caused by wave-mean 

flow interactions. Specifically, the meridional advection of the relative vorticity of 

the zonal baroclinic correction by the meridional velocity of the barotropic wave is 

found to be the main contributor to the subcritical behavior observed. 



CHAPTER 7 

CONCLUSIONS 

In this thesis, we have examined the behavior of a two-layer model of quasi- 

geostrophic flow in a channel. Solutions were obtained both for free-slip walls (which 

neglect viscous effects) and also rigid walls (which arise from the inclusion of viscosity 

at the boundaries). Both situations were investigated via the use of high-resolution 

numerical models. 

The fully-slippery case was formulated in order to correct the deficiencies in 

previous models, which use inconsistent boundary conditions on the zonal flow. So- 

lutions were obtained both for a symmetric wave state and an asymmetric solution. 

The symmetric wave state exhibits a transition from steady to periodic to quasi- 

periodic flow over the range of F studied. However, the symmetric state is unstable 

over a large range of F and is therefore not physically realizable. The asymmetric so- 

lution shows a clear transition from steady flow to periodic flow to quasi-periodicity 

and finally to chaos. Periodic solutions can take the form of periodic amplitude 

vacillation (PAV), in which the energy transfers are largely baroclinic, or they can 

alternately be in the form of periodic structural vacillation (PSV), where the trans- 

fers of energy are primarily barotropic. The quasi-periodic solutions are found to be 

caused by the interactions of two competing instabilities. This phenomenon occurs 

between instabilities of differing symmetries. When three time-dependent instabili- 

ties are simultaneously present, the system breaks down into chaos. In addition, the 

evidence of a low-dimensional attractor on which the system evolves quickly disap- 

pears as F is increased beyond the threshold for chaos. Numerical runs at values of F 

much greater than the critical value for chaos reveal that the flow eventually reaches 
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a point of presumed "geostrophic turbulence", although the scaling relations differ 

from the classic signature of geostrophic turbulence. Nonetheless, in this situation 

the spatial and temporal power spectra exhibit the beginnings of self-similarity (as in 

fully-developed turbulence) and the attractor of the flow becomes large. The results 

are disappointing in comparison to laboratory experiments, since the simulations 

produce chaos at F at 5FC, while laboratory flows become chaotic for F ss 1.6FC. 

In order to better understand the results from the slippery model, a quasi- 

analytical method was invoked in order to find the steady states of the system and 

also any secondary instabilities that may be present. Despite the fact that the resolu- 

tion of the quasi-linear model is limited to O(102) degrees of freedom in comparison 

to the full model (with 0(1O4) degrees of freedom), the results are consistent with 

the behavior of the large numerical simulations. Applying the technique to the sym- 

metric solution, the onset of the various instabilities in the quasi-analytical model 

agrees with that seen in the numerical results. In addition, the predicted frequencies 

of the barotropic and baroclinic disturbances match extremely well with the actual 

frequencies observed in the simulations. Moreover, the actual spatial structures of 

the growing eigenfunctions corresponding to PAV and PSV behavior correlate very 

highly with the dominant structures in the full flow in the respective regimes. This 

indicates that the PAV and PSV vacillations originate as simple instabilities of the 

steady-state solution. For the asymmetric case, the predicted sequence of secondary 

bifurcations also agrees with the behavior of the full numerical code. The observed 

PSV frequency corresponds to that predicted by the quasi-analytical method. As in 

the symmetric solution, the eigenfunctions calculated analytically correlate highly 

with the observed spatial structures of the flow in the applicable regimes. Finally, 

since the mean fields in the flow are much larger than their respective rms devia- 

tions, the mean quantities approximate well the steady state of the system (and vice 

versa). As a result, this implies that the steady-state solutions can be approximately 
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extracted by simply measuring the mean quantities. 

The solutions observed in the slippery model were also investigated by 

extracting the Empirical Orthogonal Functions (EOFs) of the system in various 

regimes. This method was employed for two reasons. First, the EOFs themselves 

can reveal a great deal of information regarding the underlying complexity of the 

flow, and in some instances it can also reveal physical processes. In addition, the 

EOFs can be used to generate approximate dynamical systems of the model in ques- 

tion, thus allowing one to (possibly) forge a link between low-dimensional systems 

and the behavior of complex numerical simulations. For both the symmetric and 

asymmetric solutions, the number of EOFs needed to adequately represent the flow 

is proportional to its temporal complexity, indicating that the spatial and temporal 

characteristics of the system are inextricably linked. In periodic regimes, O(10) total 

fields are adequate to describe the behavior accurately; however, for quasi-periodic 

flows, the required number is O(50), and for chaotic flows, O(100). Not surprisingly, 

the number of EOFs needed to adequately represent the vorticity at a chosen value of 

F is more (by a factor of 4 or so) than the number required to represent the stream- 

function. The number of modes needed to replicate the flow indicates that, although 

the temporal behavior of the system sometimes indicates low-dimensional evolution, 

the entire spatio-temporal field is far too complex to be described by a few equations. 

Despite the caveats, dynamical systems were constructed using the EOFs in several 

regimes. For purely periodic and simple quasi-periodic flows, the method works 

well, generating results very similar to the original solutions. In more complicated 

spatio-temporal regimes, the number of EOFs required forced severe truncations of 

the spatial fields. Nonetheless, the resulting systems yield qualitatively accurate 

representations of the original flows. 

Turning to the rigid-wall model, the linear stability curves were calculated 
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using a numerical approach. Numerical solutions are necessary because of the non- 

uniform nature of the basic state. The critical Proude number is found to depend 

greatly on T, where T = y/2Q/(E/R0).  For Q < T~4, the solution matches that 

predicted by Pedlosky and Klein (1991), i.e.   the barotropic eigenfunction at Fc 

is essentially equal to Ubc and the baroclinic eigenfunction is nearly 0.  When the 

above relation between Q and T holds, the advection by the basic-state velocity 

of the perturbation vorticity cancels the advection of basic-state vorticity by the 

perturbation velocity, resulting in Fc « k2/2.  In the region where T~4 < Q < 1 

and T is relatively large, the solution is nearly identical to the free-slip results. The 

barotropic eigenfunction is approximately equal to cos^y/2) while the baroclinic 

eigenfunction is Q cos(iry/2)/k, and Fc = (A2 + Z2)/2.   Between these two limits, 

k /2 < Fc < (k2 +l2)/2 and the eigenfunctions are more complicated and must be 

obtained numerically. At large values of Q and T, the solutions are nearly equivalent 

to those of the free-slip case, while for large Q and smaller T there is an increase 

in Fc over the slippery-model results.   The analysis was also expanded to include 

the situation with a basic-state barotropic flow, Ubt-  The inclusion of nonzero Ubt 

introduces the presence of critical layers into the interior of the flow, and it thus 

may be expected to alter Fc substantially.   The results indicate that, while the 

Ubt # 0 case may be more or less stable than its counterpart with Ubt = 0, the 

differences in Fc are only about 15% in the region applicable to laboratory results. 

Finally, an examination of the energy transfers in the flow shows that the presence 

of a barotropic basic state enhances the barotropic energy transfer at Fe, and the 

eigenfunctions show substantial shape variations as they move through the critical 

layers. 

Finally, solutions of the rigid-wall model were obtained numerically.   Re- 

sults were generated by fixing E/R0 = 0.001 and varying F and Q.   A constant 
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value for E/R0 indicates that changes in Q effect changes in T as well, thus alter- 

ing the basic-state profile. The results are profoundly different from the slippery 

model. The observed route to chaos is generally through the break-up of a tran- 

sient two-torus, and for certain values of Q chaos occurs at Fc. This phenomenon 

is due to the generation of multiple instabilities simultaneously in parameter space. 

Even for larger values of Q, the flow becomes chaotic at 0(1) supercriticality. In 

this manner, the results are in much better agreement with laboratory experiments 

(which exhibit chaos at similar supercriticality). Also observed for relatively small 

values of Q is subcritical behavior (and thus hysteresis) near F = Fc. The cause 

of this behavior was investigated via the use of surrogate EOF models and also by 

using a perturbation analysis. The surrogate models confirm the presence of a sub- 

critical instability by yielding appropriate bifurcation diagrams. The physical cause 

of the subcritical behavior, found by the perturbation method, is determined to be 

wave-mean flow interactions. The primary component of the wave-mean interaction 

responsible for the behavior is the meridional advection of the relative vorticity of 

the zonal baroclinic correction by the meridional velocity of the barotropic wavy per- 

turbation. Slight discrepancies were found between the results of the perturbation 

analysis and the full numerical solutions. The discrepancy is due to the presence 

of a mixed bifurcation state, over a small range of Q, where the third-order terms 

in the Landau equation are stabilizing (supercritical) but the fifth-order terms are 

destabilizing (subcritical). The presence of this situation was confirmed in the full 

numerical solutions. 

A logical extension of the analyses presented in this thesis is to examine 

the results in a cylindrical domain. A rigid-wall model with such a geometry would 

hopefully allow quantitative agreement with experiment and would presumably ex- 

plain the discrepancies found between experiment and previous numerical results 

using free-slip sidewalls.   Another topic of interest would be to extend the EOF 
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analyses to more realistic models of geophysical flows. This, however, would require 

a more detailed understanding of the problems associated with using approximate 

dynamical systems to replicate complex spatio-temporal behavior. In particular, the 

parameterization of low-energy modes needs to be accounted for in a systematic, 

physical manner before the method can be considered viable. 
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APPENDIX A 

QUANTITIES OF FLOW ENERGETICS 

Equations 1.31-34 describe the evolution of the zonal and wavy potential 

and kinetic energies. It is useful to briefly list the form of each term on the right- 

hand sides of the energy equations. In the following equations, Wint denotes the 

vertical velocity of the fluid interface, and the x and y subscripts denote partial 

differentiation with respect to that particular variable. 

{K-P} = J Jwint(P2-P1)dxdy, (A.l) 

{P'-P} = F J J{P2-Px)J{P^P[)dxdy, (A.2) 

{K'-K} = -JJ[p1J(P{,PiJ + P2J(P^Pij}dxdy, (A.3) 

{K'.P'} = J JwUP2-P[)dxdy, (A.4) 

F = -Q J J PlyP2ydxdy+^ J J(P?y + P*y)dxdy + 

Y0 j M2w + %»} dx dy>and (A-5) 

3fJJ(pC + p{y
2 + pL2 + pOd*dy+ 

4-1 f(p[ 2+p{ 2+p^ 2+i>2'2 
zp    II       xa yy mm vv 

+2P'2 + 2P'2)dxdy. (A.6) 

The equation describing the energy input depends on the specific model implemen- 

tation. However, it is useful to briefly describe the result obtained for the model to 
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be discussed in Chapter 2. Equations B.4,5 describe the evolution of the zonally- 

averaged flow at the walls, minus the basic-state flow. If the basic-state terms are 

included (i.e. üi = l,ü2 = -1), and the flow is assumed steady (which is of course 

the case in the basic flow regime), then the equations are inconsistent unless a +2Q 

term is added onto Equation B.4 and a -2Q term is added onto Equation B.5. 

Then, multiplying Equation B.4, modified by the +2Q term, by -üu and multiply- 

ing Equation B.5, augmented by a -2Q term, by -ü2, one obtains equations for the 

rate of change of zonal kinetic energy. If the resulting equations are integrated over 

the domain of the fluid, an energy input term materializes, and it is given by 

El   =   8Q(2 + M2(0-Wi(<)). (A.7) 

The quantities tyft) and U\(t) are zonal correction terms specific to the slippery 

model presented in Chapter 2 and are discussed further there. 



APPENDIX B 

DERIVATION OF ADDITIONAL CONDITIONS 

Appendix B contains the derivation of the additional conditions required 

for the slippery model. 

The first additional condition that must be satisfied is that of mass con- 

servation. If one imposes the reasonable requirement that the mass in each layer be 

constant for all time, then 

f1 f4h(x,y)dxdy = C, (B.l) 
Jo Jo 

where h(x, y) is the height of the interface between the two layers and C is a constant. 

Using Equation 1.11, this can be written as 

f1 /4 R0F(P2 - Pi) dx dy = C, (B.2) 
JO Jo 

or 

rl   r* 
'=rl   I R0F(P2 -P1)dxdy = 0. (B.3) 
at Jo Jo 

The wavy terms for both the semi-slippery and slippery models trivially satisfy this 

condition, but the zonal terms are somewhat more problematic. For the semi-slippery 

model, the use of cosine functions for the zonal flow also trivially satisfies the above 

requirement, but the sine function expansion used in the stress-free model does not. 

More specifically, zonal terms of the form sin(j'Try), with j' = 1,3,5,... (which are 
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zero in the symmetric state but nonzero in the asymmetric case) yield a nonzero value 

when integrated across the channel. As a result, an extra term must be added that 

will allow the mass conservation condition to be satisfied for all solutions. The exact 

implementation of this condition will be addressed once the circulation condition has 

been examined. 

The circulation condition can be obtained by appealing to the original mo- 

mentum equations for the two-layer flow. If one writes down the zonal momentum 

equation for the upper layer (i.e. layer 1), 

^IxA. t7„. _ ,, CD - _*J1) /fl. ± 1 
dt 

+ ui ■ Vtti - VlW = -dpY'/dx + p-V2Tn, (B.4) 

(where the M superscripts indicate ageostrophic quantities) and then takes a zonal 

average by performing the following operation on Equation B.4, 

1   (L 

(B.5) 

one finally obtains a zonally-averaged momentum equation, 

öüi , a. .    d)    E a2 

The term v{ is the ageostrophic meridional velocity and its x-average therefore 

does not necessarily vanish. Now, near the wall at y=l, there will be a meridional 

flux directed toward the wall in the upper Ekman layer. This flux is proportional 

to Wj and subsequently to üu a result derivable from an analysis of Ekman layers 

(see Pedlosky, 1987). However, because the wall is impermeable, the mass flux must 

be returned into the interior flow (via a thin boundary layer whose effects are not 

explicitly included), so that v[^ oc -üt near y=l. This condition must hold for all the 
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Ekman layers, and it also is valid at y=0. Thus, after implementing this condition at 

both walls, and noting that £-(üx~vx~) = 0 at y=0,l, the zonal momentum equations 

can be written for the two layers as 

düx 3Q_      Q_       E d2 

^   =   _^1 + ^2 + ^^1)  , = 0,1, (B.7) 

dü2 Q_      3Q_       E 82 _ .     . 
-^  =  -2^-Tu* + T0W

U2> v = 0'1' (R8) 

This is equivalent to the circulation condition derived by Davey (1978, 1980) for 

barotropic quasi-geostrophic flow and is a consequence of closing the secondary cir- 

culation (induced by the Ekman layers) in terms of the geostrophic variables. It 

should be noted that Equations B.7,8 are valid only in the equal-viscosity case (i.e. 

X = 1). For x^l, the frictional terms involving Q would have different coefficients, 

but the approach would be identical to that presented here. 

The above result is obtained by appealing to the original zonal momentum 

equation and by making a heuristic conservation of mass argument regarding the 

return of mass flux into the interior. It is useful to compare this to constraints 

derivable directly from the vorticity equations. If one takes the vorticity equation 

for layer 1, which is given by Equation 1.3, and integrates over the area of the 

channel, then one obtains. 

2- I        V2Pxdxdy + F- (P2-Px)dxdy + 
at Jo Jo dt Jo Jo 

f f J(Px, V2i\) dx dy = f f [-^V2Pi + |v2P2 + £v4Pi] dx dy. (B.9) 

Utilizing Equation B.3 and noting that the nonlinear term given by J( , ) is zero 

when averaged over the area of the channel, Equation B.9 becomes 

J;(A,)S =  -^(Av)ä + |(^v)ä + £(v2Piy)ä, (B.io) 
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where the limits are taken in the y direction.  Finally, noting that ü» = —dPi/dy, 

Equation B.10 can be written as 

|(üiÜ   =   -j(«i)J+f(fi2)ä + |(V2ü,)J, (B.ll) 

while the corresponding equation for layer 2 can be written as 

^)l = -^2)S + f(äi)ä + ^(v2ü2)S. (B.12) 

Equations B.ll and B.12 are just the differences of Equations B.7 and B.8 evaluated 

at the two walls, y=0 and y=l. Because these conditions are derivable from the 

vorticity equations, they should already be satisfied, without appeal to another 

external relation, by solving the vorticity equations. However, it should be noted 

that Equations B.11,12 are less generic and therefore are not completely equivalent 

to Equations B.7,8, so that there it is still necessary to satisfy Equations B.7,8 

separately. 

In order to do this, in addition to satisfying Equation B.3, the functional 

expansion shown in Equation 2.7 is used. In particular, the Uk(t) terms are coupled to 

a (y —1/2) spatial term, which is antisymmetric about y = 1/2. This first additional 

term is introduced in order to satisfy the circulation condition. The second additional 

term is purely temporal and is represented by V(t)\ it is used to satisfy conservation 

of mass. 

If one takes Equations B.7,8, evaluates them at both y = 0 and y = 1, and 

adds the two resulting equations for each layer separately, the following results: 

dU^dt+Y^j'Td^ldt   =   -^(EiWx   +%) + 

f (£ A^., +U2) - l-tf^V)3^  ),   j' even, (B.13) 
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dU2/dt+Y;3,*d$2.)/dt   =   -^(^jV^,+Wa) + 
j'=i i'=i 

f(£ A&., + %) - ^-(f-CA)3^,),   j' even, (B.14) 
1 j'=i K° ,-'=i 

where the ^i., coefficients correspond to layer 1 and the fa-, coefficients correspond 

to layer 2. These equations give two additional constraints to the system described 

by Equation 1.3. Note that the above equations couple the zonal harmonics which 

comprise the symmetric state with the Uk{t) terms, while the V(t) term is absent. 

This directly implies that V(t) is zero for the symmetric solutions, which is reasonable 

since the symmetric zonal flow trivially satisfies conservation of mass. 

As noted before, if one instead subtracts the relations obtained by evalu- 

ating Equations B.7,8 at the walls, Equations B.11,12 are obtained. This indicates 

that these constraints should be redundant statements of the vorticity equations. 

It can be shown that, if mass conservation is satisfied, this is indeed the case, so 

that additional terms need not be added to satisfy the circulation condition for the 

asymmetric zonal terms. 

Finally, by substituting the expansion for Pi and P2 (given by Equation 

2.7) into Equation B.3, one obtains the mass conservation equation, which can be 

written as 

dV     ^   2   d   - 

This ensures that mass is conserved in each layer for all time. In summary, then, 

the circulation condition is not necessarily satisfied for the symmetric state, and it 

requires the introduction of an additional term to see that this happens. The extra 

term also allows a full set of eigenfunctions (in terms of cosines) for the velocity 

fields of the two layers. The portion of the circulation condition that couples to the 
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asymmetric zonal terms is already satisfied if the vorticity equations and the mass 

conservation equation are solved simultaneously. 

As a final exercise, it is interesting to examine the effect on the circulation 

condition with no lateral friction, since this is the scenario assumed by the semi- 

slippery model. If we return to Equations B.7 and B.8 and let ■§- = {), then at either 

wall, 

dü-i 30 Q 

dü2 30 0 
S?   =   -f**f«.. (B.17) 

for the upper and lower layers, respectively. Assuming solutions of the form eAt, 

an eigenvalue problem results, with the corresponding solution being A = — O, —20. 

Thus, in the absence of lateral friction, the zonally-averaged zonal velocity at both 

walls decays to zero within the order of a spin-up time (i.e. tapinup ~ I/O). This is a 

generalization of the results presented by Pedlosky (1987), who derived similar results 

for two-layer flows without interfacial friction. Thus, if lateral friction is excluded, 

then the semi-slippery model's functional expansion becomes valid, although it is 

not at all clear that the semi-slippery model is asymptotically valid for jj- —► 0 (but 

not exactly zero), since the neglect of viscous effects is a singular perturbation of the 

vorticity equations. 



APPENDIX C 

RESULTS FOR SLIPPERY MODEL-SYMMETRIC STATE 

The symmetric solution displays steady behavior for 8 < F < 12, periodic 

amplitude vacillation for 12 < F < 24, periodic structural vacillation for 24 < F < 

34, and finally quasi-periodic behavior for 34 < F < 40. Figure C.l shows the 

transfer of energy for F = 8. The energy conversion process is primarily baroclinic, 

with the energy primarily flowing from K to P to P' to K'. The barotropic conversion 

term, {K1, K} is small and is about 4.3% of the baroclinic conversion terms (i.e. 

{K,P}, {P,P'}, and {P',K'}). However, the sign of {K',K} is negative, which 

indicates that the waves are extracting kinetic energy directly from the mean flow. 

This situation occurs for all parameter settings examined in this thesis. Although 

the diagram shown in Figure C.l is of great value in displaying the mean transfer of 

energy through the system, the important quantities in understanding the behavior 

in various regimes are the relative sizes of the rms deviations of the energy transfer 

terms. Thus, the box diagram is not of much practical value, and for the sake of 

brevity, any important results contained in these diagrams will simply be stated in 

the text rather than graphically illustrated. 

For F = 12, the system has entered a PAV state, similar to that seen 

in the CH model. The barotropic energy transfer term is approximately 12% of 

the baroclinic transfer terms, indicating that the barotropic mechanism is becoming 

more important as the flow becomes more supercritical. Figure C.2 shows the energy 

fluctuations as a function of time. As discussed in Chapter 1, periodic amplitude 

vacillation essentially involves periodic exchanges of energy between the wavy and 

zonal portions of the flow.  The zonal available potential energy and zonal kinetic 
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Figure C.l: Energy Flow Diagram for symmetric state, F = 8. 



226 

energy appear to be in phase with one another and 180 degrees out of phase with 

the wavy kinetic energy, so that the zonal energies reach a maximum as the wavy 

kinetic energy reaches a minimum (and vice versa). However, the wavy available 

potential energy reaches a maximum when the zonal energies are decreasing most 

rapidly and the wavy kinetic energy is increasing most rapidly. This is due to the 

fact that the phase lag of the upper layer wave with respect to the lower layer wave 

is greatest when the waves are growing most rapidly (and the zonal energies are, 

correspondingly, decreasing most rapidly). 

The fluctuations of the energy appear to be dominated by two terms, {P ■ 

P'} and {P'-K'}, which have rms deviations that are five to ten times larger than the 

rms deviations of the other two energy transfer terms. This suggests that the energy 

cycle can primarily be described as a transfer from zonal potential energy to wavy 

potential energy to wavy kinetic energy, the classic signature of baroclinic instability. 

Additionally, as noted in Section 1.5.2, amplitude vacillation is characterized by a 

spatial structure that is essentially constant with time. Figure C.3 displays the 

upper-layer, zonally-integrated, wavy kinetic energy as a function of y for eight time 

steps (which comprise one vacillation period). The quantity shown is the energy 

minus its mean value, which allows the fluctuations to be seen more readily. It 

is evident that the meridional distribution of energy is essentially constant and is 

characterized by the sin(27ry) cross-stream mode. Additionally, for the purpose of 

later comparison with the PSV regime, the dominant temporal frequency of the 

system, as measured from the upper layer sin(27ry) zonal correction term, is 0.125 

nondimensional frequency units. 

Figures D.1,2 show the baroclinic and barotropic wavy streamfunction 

fields, respectively, over one period. In these figures, F = .20, a value which is 

chosen to accommodate comparison with later results. However, the behavior shown 

is indicative of the PAV regime in general. For all of the spatio-temporal sequences 
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shown in Appendix D, the time-averaged spatial mean has been removed. It is ev- 

ident from Figures D.1,2 that there occur intricate and complex spatial patterns. 

Both barotropic and baroclinic fields are alternately dominated by several different 

waves. The multiplicity of waves involved is shown in Figure C.4, which displays 

the spatial power spectra (for the first 20 wavenumbers in each direction) for the 

barotropic and baroclinic wavy fields at a selected time. The barotropic field is dom- 

inated by just a few waves, but the baroclinic field spectrum shows significant power 

at many wavenumbers. This effectively negates the accuracy of low-order models 

based on single-wave hypotheses, even for relatively simple temporal behavior. 

Figure C.4. (a) Spatial power spectrum of barotropic wavy field, (b) Spatial power 
spectrum of baroclinic wavy field. F = 20, symmetric case. Only the first 20 
wavenumbers in each direction are shown. 

The transition to periodic structural vacillation occurs, for the symmetric 

state, at about F = 24. The energetics are examined at F = 26, just after the system 

has entered the PSV state. In terms of mean quantities, little is changed from the 

results at F = 22, in the PAV regime. The only significant difference is in the average 

value of P', which is only about 40% of its mean for F = 22. The barotropic transfer 

term, on average, is still about 25% of the mean value of the baroclinic quantities, 

which is equal to that found at F = 22. Figure C.5 displays the zonally-integrated, 

meridional wavy kinetic energy for several times over the course of one vacillation 

cycle. As before, the mean value has been subtracted out in order to better show the 
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fluctuations. In contrast to the PAV regime, the meridional distribution of energy 

undergoes dramatic changes during one oscillation period. This is consistent with 

the findings of Pfeffer et al. (1980), who found that structural vacillation can be 

characterized by a periodic radial re-distribution of energy with little variation in 

the total wave energy. 

The oscillations in energy are found to be the same as in the PAV regime. 

However, the disparity between the behavior of the two vacillation types becomes 

clear when one examines Figure C.6, which shows the energy transfer terms.  The 

rms deviation of all four quantities are reduced from their magnitudes at F = 22 

but the barotropic transfer term, {K ■ K'}, now has an rms deviation that is about 

three times larger than the largest deviation of the remaining transfer terms. This 

implies that the onset of PSV can be directly traced to the growth of a barotropic 

instability, which has superseded the largely baroclinic fluctuations that occur in the 

PAV regime. The hypothesis is corroborated when one considers the barotropic zonal 

kinetic energy.   For the steady and PAV regimes, this quantity is zero.   However, 

the barotropic zonal kinetic energy is now a small, but certainly finite, quantity. 

This suggests that for F < 24, the system is both barotropically and baroclinically 

unstable, but the baroclinic instability "wins" in the sense that it determines, and 

indeed dictates, the behavior of the two-layer model.   However, for F > 24, the 

barotropic instability of the wavy and zonal flow becomes the dominant instability 

in the system, and it becomes the governing mechanism for energy fluctuations. The 

barotropic zonal kinetic energy must necessarily become nonzero when this occurs. 

The frequency of oscillations is much higher in the PSV regime than for 

PAV. The peak frequency of the oscillation is about .381 nondimensional time units, 

which is about 3.4 times the frequency found in the PAV regime at F = 22 (which 

has a nondimensional dominant frequency of about .113 nondimensional frequency 

units, slightly lower than that found at F = 12). 
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Figure C.5: E(y) vs. y for several times, T, over one cycle, F = 26 
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Figure C.6: Energy transfers vs. time for symmetric state, F = 26 
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As is the case for the asymmetric solution, the PAV->PSV transition is 

abrupt, with no mixed vacillation occurring between the two. In a low-order model, 

Weng et al. (1986) observed a slow transition between the two states, with a mixed 

vacillation occurring between PAV and PSV. However, no mention of whether this 

vacillation is periodic or quasi-periodic is made. 

The baroclinic and barotropic streamfunction fields in the PSV regime are 

shown in Figures D.3,4, respectively.   The behavior is clearly much different than 

. than that in the PAV regime.   First of all, the characteristic spatial scale of the 

system has become smaller, with a corresponding increase in the spatial intricacy. 

In addition, it is evident, upon some scrutiny, that the temporal behavior of both 

wavy fields is actually comprised on two counter-rotating "eddies". In the top half 

of the flow domain, the blue and yellow "blobs" rotate counter-clockwise but remain 

in the top half of the flow field, while those in the bottom half rotate clockwise, 

again staying within their domain. This is consistent with the observation that the 

PSV behavior reflects a periodic meridional transport of energy with little change 

in the overall energy.   The wavy fields in this instance tend to transport energy 

from "equator to pole" and back again. The approximate location of the center of a 

chosen eddy in the baroclinic wavy field is shown in Figure C.7. The center moves 

clockwise in an approximate circle over the course of two periods (the eddy moves 

only halfway around in one period since the field possesses particular symmetries). 

At F = 36, the symmetric state is quasi-periodic. At this parameter value, 

the mean barotropic energy transfer is now about 30% of the baroclinic quantities, a 

slight increase from F = 26. Figure C.8a displays the upper layer sin(27ry) coefficient, 

which consists of the same oscillation as seen for F = 32, but which is now modulated 

by a lower frequency oscillation. Two observations indicate that the flow is indeed 

quasi-periodic, as opposed to chaotic. First, Figure C.8b displays the power spectrum 

of the data from Figure C.8a.  There are several peaks, each of which correspond 
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Figure C.7. Approximate location of eddy center (in baroclinic wavy field) over two 
periods, F=32, symmetric case, PSV regime. The eddy moves clockwise as time 
proceeds and reaches its starting point after two periods. 

to the different combinations of frequencies that naturally arise in a quasi-periodic 

system (Berge et al., 1984), but there is no broad-band noise associated with a chaotic 

time series. In addition, Figure C.9 shows a maximum return map of the same time 

series (for the uninitiated reader, Appendix E presents a brief introduction to return 

maps and other measures of chaos discussed in this thesis). The Poincare section 

clearly shows a one-dimensional loop, indicating that the full temporal behavior 

occurs on a 2-torus. 

The energetics, on average, are only slightly different from those at F = 32. 

However, an examination of the energy fluctuations and transfers as a function of 

time reveals profound differences between the PSV and quasi-periodic states. In 

Figure C.10, the various energies, instead of being plotted as functions of time, are 

plotted versus each other. Clearly, there no longer exists a simple phase lag between 

various energy quantities. Instead, the energies assume a complicated functional 

relationship with one another. 

Also, the rms deviation of the barotropic transfer term, {K -K'}, is still the 

dominant fluctuation, but both the {P ■ P'} and {P' ■ K'} terms now have rms devi- 

ations that are about 70-75% of the barotropic transfer term. This is very different 

from the situation at F = 32, where the baroclinic terms had rms deviations only 
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Figure C.8: sin(27ry) coefficient and power spectrum for layer 1, F = 36 
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Figure CIO: Phase-space plots of energy fluctuations, F = 36 
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about 1/3 the magnitude of the barotropic fluctuation. Consequently, it appears that 

the quasi-periodic behavior arises as a result of a mixing between the barotropic and 

baroclinic instabilities, each of which at lower Proude numbers is able to essentially 

dominate the system's behavior. The power spectrum shown in Figure C.8b supports 

this hypothesis.  The peak in the spectrum occurs at a non-dimensional frequency 

of about 0.34, which shall be denoted f\. However, there is a small peak at about 

0.077 frequency units, which shall be denoted as f2:  In addition, the other peaks 

can be explained in terms of linear combinations of /i and f2.  This suggests that 

these two frequencies are the fundamental frequencies in this quasi-periodic system, 

and a glance at Figure C.8a confirms that the fast oscillation is indeed modulated 

by a slower oscillation that repeats every 4-5 fast oscillation cycles (/i/f2 « 4.4). 

Clearly, fi corresponds to the barotropic instability, since it is nearly the same as 

the oscillation frequency for F = 32. It seems reasonable to assume, then, that f2 

corresponds to the amplitude vacillation, since the oscillation frequency at F = 22 is 

approximately 0.13 frequency units and the trend in the PAV regime is for the oscil- 

lation frequency to decrease with increasing F. In an attempt to more quantitatively 

determine the change in vacillation frequency with F, the dominant frequencies for 

six values of F in the PAV regime were calculated (F = 12 to 22 in increments of 

2). Then a least-squares fit was attempted in order to determine the frequency for 

PAV (at F = 36) by extrapolation. Since one would not expect that the dominant 

frequency (denoted as fa) would ever become negative, a plausible functional form 

would, at worst, allow fj to asymptotically approach zero for large F, ruling out 

polynomial fits between fd and F. Instead, to satisfy the asymptotic condition, the 

following fit was performed: 

log(fd)   =   c^logiF)]2 + c2log(F) + c3, (C.l) 
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which is equivalent to 

fd   =   Del°9^F^Cllo9^+c^ (C.2) 

where D = eCs. In addition, a fit to a cubic in log(F) was attempted, with the 

results being almost identical. The result, shown in Figure C.ll, is that the extrap- 

olated value of fd at F = 36 is approximately 0.085, which is reasonably close to 

the observed value of 0.077, although extrapolation is, admittedly, not a very robust 

method of approximation. Nonetheless, the result is consistent in supporting the 

notion that the low-frequency component of the quasi-periodicity results from a re- 

newed baroclinic instability exhibiting itself via a relatively low-frequency amplitude 

vacillation. 

Finally, one can again examine the temporal evolution of the wavy fields in 

order to better understand the nature of the quasi-periodic behavior. The baroclinic 

and barotropic fields are shown, respectively, in Figures D.5,6 for 16 uncorrelated 

times. The behavior looks much like the PSV regime shown in Figures D.3,4. How- 

ever, there is some added complexity to the fields which is presumably due to the 

PAV influence. Nonetheless, the behavior is not fundamentally different from that 

observed at F = 32, so that the presence of the lower frequency serves simply to 

modulate the PSV-type fields in time. 

In summary, the evolution of the symmetric state can be characterized as 

follows. The initial transition from the basic zonal flow to a steady-wave state is via 

baroclinic instability. This is to be expected, since the lack of a horizontal shear nec- 

essarily deprives the flow of an initial barotropic energy-transfer mechanism. How- 

ever, once the steady-state flow is established, the wave interaction produces a small 

but finite transport of kinetic energy directly from the zonal flow to the waves. At 

larger F, the steady-state becomes unstable to periodic amplitude vacillation, which 
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Figure C.ll: Estimation of dominant PAV frequency at F = 36 
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persists for 12 < F < 24.   The barotropic energy transfer has continued to grow 

and contributes substantially to the mean energetics of the system.   Nonetheless, 

the PAV regime is characterized essentially as a baroclinic phenomenon, since the 

fluctuations of the baroclinic transfers are several times larger than the barotropic 

term. For values of F between 24 and 34, the barotropic instability becomes domi- 

nant, and the system enters a state of periodic structural vacillation. In this regime, 

the amplitudes of the wave fields do not fluctuate much, but rather the shapes of 

the waves undergo substantial changes throughout a cycle. In the PSV regime, the 

fluctuation of the barotropic energy transfer term is about three times larger than 

the baroclinic terms. Additionally, the vacillation frequency is about three to four 

times that found for PAV. Finally, for 34 < F < 40, the flow becomes quasi-periodic. 

The quasi-periodicity arises from a mixing between the structural vacillation caused 

by a barotropic instability and a renewed amplitude vacillation that is ostensibly the 

result of a baroclinic instability. 



APPENDIX D 

SPATIAL SNAPSHOTS OF FULL SOLUTIONS OF SLIPPERY MODEL 

Appendix D contains snapshots of the barotropic and baroclinic wavy fields 

for various solutions of the fully slippery model. 
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APPENDIX E 

SPATIAL SNAPSHOTS OF APPROXIMATE SOLUTIONS OF SLIPPERY 

MODEL 

Appendix E contains snapshots of the barotropic and baroclinic wavy fields 

for the reconstructed, approximate systems (of the fully slippery model) at various 

parameter settings. 
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APPENDIX F 

MEASURES OF CHAOS 

There are several methods by which to test the existence of chaotic behavior 

in nonlinear systems, whether the data is obtained numerically or experimentally. 

A comprehensive explanation of these methods is given in textbooks (see Berge et 

al., 1984; Schuster, 1989; and Rasband, 1990), and only a brief overview will be 

presented here. 

A simple method by which to determine the existence of chaos is to examine 

the power spectrum of some measured output of the system in question. A periodic 

signal will, of course, show one or more well-defined peaks at particular frequencies, 

with some lower level of background noise permeating the remaining frequencies. A 

chaotic signal, conversely, will produce a power spectrum that exhibits broad-band 

noise with no necessarily-dominant frequencies. The power spectrum, then, is a 

first arbiter of distinguishing a periodic or noisy-periodic signal from a nonperiodic 

one. However, since the spectral representation of a chaotic signal resembles that 

of a random time series, the power spectrum alone is insufficient to distinguish 

deterministic, nonperiodic behavior from stochastic time evolution. For this, one 

must resort to geometric properties of the system. 

To understand the geometric measures of chaotic behavior that have his- 

torically been implemented, it is necessary to first introduce the idea of state-space 

(alternately referred to as phase space). Given an iV-dimensional dynamical system, 

one can completely specify the state of the system (at a particular time) with the 

values of the N variables at that time. This can be thought of as plotting a point in 

an iV-dimensional space, defined as a state space, where the various axes represent 
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the values of tke N variables. Time evolution of the system, then, is represented 

by tracing a trajectory in state space, which for dissipative systems evolves on the 

system's attractor (an attractor is simply the manifold to which initial conditions 

eventually become attracted). The difficulty with implementing this for experimental 

data, obviously, lies in the fact that it is essentially impossible to know all of the vari- 

ables that comprise the system under scrutiny. However, Packard et al. (1980) and 

Takens (1981) described a method by which the state space could be reconstructed 

using only one measured variable; the reconstructed state space exhibits the same 

properties as the original state space. The technique, known as the method of time- 

delay coordinates, is implemented as follows. First, presume that one possesses a 

signal from some dynamical system, either numerical or experimental, and that the 

time series can be denoted as {x(U)}, i = 1,..., M, where M is the length of the data 

set. One can then reconstruct an attractor in DE dimensions whose coordinates are 

given by the state-space vector 

K   =    (x(ti)MU + T),...,x(ti + [I>E + l]T)). (F.l) 

The variable r is the delay time, and its proper value has been the subject of 

much controversy. However, a generally-accepted estimate is to use the correlation 

time of the data set, so that the axes of the pseudo-state space are linearly inde- 

pendent. Additionally, Takens (1981) showed that using an embedding dimension 

DE = (2DT + 1)J where DT is the topological dimension of the manifold containing 

the attractor, is sufficient but not always necessary to recover the original dynam- 

ics of the system. The strength of the above method is clearly that it allows one 

to reconstruct the attractor of a system (assuming one exists), and thus measure 

its properties, without actually knowing the plethora of variables that define the 

dynamical system in question. 
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Due to dissipative influences (among others), dynamical systems often evolve 

on an attractor that has a much lower dimension than the state space of the system. 

This can be exemplified by considering that hydrodynamic systems, which exist in 

an infinite-dimensional state space due to the fact that they are described by partial 

differential equations (and are generally equivalent to an infinite set of ordinary dif- 

ferential equations), can exhibit steady-state behavior, which evolves on an attractor 

of dimension zero, or periodic behavior, which evolves on an attractor of dimension 

one. Chaotic systems evolve on attractors that are of non-integer, or fractal, dimen- 

sion. The measurement of the fractal attractor dimension is impractical due to the 

large data requirements even for low-dimensional attractors (Greenside et al., 1982). 

However, Grassberger and Procaccia (1983a,b) introduced a practical method by 

which a lower bound on the fractal dimension, known as the correlation dimension, 

could be calculated.  In order to calculate the correlation dimension, a correlation 

integral, defined as C(r), was introduced, where 

M M 
C^   =   EEe(r-Hft-Ä-|l).«9fei. (F.2) 

where Q(x) is the Heaviside step function (0(a;) = 1 for x > 0, 0 otherwise), j£ and 

yj are given by Equation 1.38, and M is the size of the data set. For r -> 0, C(r) 

will (hopefully) scale as a power of r as follows: 

C{T)   =   rD°, (F.3) 

where Dc is the correlation dimension of the attractor and is a lower bound on (but 

usually a good approximation to) the fractal dimension. 

In order to compute the correlation dimension, the correlation integral must 
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be computed for successively laxger values of DE- The scaling behavior should be- 

come independent of the embedding dimension for sufficiently large DE, implying 

that Dc approaches a constant value and shows no further increase with increasing 

values of DE (from the theorem of Takens outlined above, DE should not need to 

be larger than « (2Dc + 1))- The asymptotic value of Dc is then the correlation 

dimension, and the effective number of degrees of freedom of the system is given 

approximately by the lowest embedding dimension required to achieve a saturated 

value of Dc- Dimension estimates obtained via this method have been the subject 

of much controversy in recent years. Random data sets of finite length often yield a 

spurious, finite value of Dc despite the fact that random noise is infinite-dimensional 

(Theiler, 1991). Eckmann and Ruelle (1992) have shown that a given data set, re- 

gardless of its actual dimension, will yield a maximum value of correlation dimension 

that is approximately given by Dcmam = 2 log-^oM, where M is the number of points 

in the data set given that the delay time, r, is equal to one. This latter stipulation 

ensures that one does not artificially increase the length of the data set by over- 

sampling, a practice which obviously does not increase the amount of information 

present in the data. The above data requirement implies that dimension estimates 

that are not substantially less than 2logioM are suspect. If one inverts the above 

relationship, it is clear that the required number of points scales as lO1^'2, although 

Nerenberg and Essex (1990), using a more refined analysis, report that the number 

of required points is smaller for lower-dimensional systems. 

The other standard measure of chaotic systems is the Lyapunov exponent 

spectrum. Although there is no precise definition of "chaos", the standard view, and 

the one adopted here, is that for a system to be chaotic, it must possess at least 

one positive Lyapunov exponent, which results in the afore-mentioned "sensitive 

dependence on initial conditions." To define the Lyapunov exponents, imagine an 

infinitesimal hypersphere of initial conditions in a D-dimensional phase space, noting 
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that there will be one Lyapunov exponent for each degree of freedom. The evolution 

of the hypersphere with time is then observed; this hypersphere will be deformed into 

a hyper-ellipsoid as time passes. The j'th Lyapunov exponent can then be defined in 

terms of the length of the j'th principal axis, pj, of the ellipsoid by 

A,-   =    Hm -Zn^44 (F 4) 

where the A/s are ordered from largest to smallest in an algebraic sense (Wolf et 

al, 1985). A minimum condition for chaos, then, is that Ax be positive. Wolf et al. 

(1985) developed a method of determining Aa from a time series using a relatively 

simple procedure in both concept and practice.  Eckmann et al.  (1986) and Sano 

and Sawada (1985) independently developed a more complicated algorithm that is 

theoretically capable of computing all the Lyapunov exponents of the system. How- 

ever, the ability of the algorithm to determine the values of A2, A3, ..., XD diminishes 

substantially in the presence of noisy data and also for small data sets.   This is 

further exacerbated by the fact that the negative Lyapunov exponents characterize 

the decay of transients or small perturbations in the system, making them difficult 

to accurately determine. The main item of interest in this study is the calculation 

of the positive Lyapunov exponents, since these in turn yield the predictability time 

scale of the system. To facilitate this task, both algorithms will be used and their 

results compared, a procedure which will hopefully allow more robust estimates of 

the Lyapunov spectrum. 

It should be noted that, armed with the governing equations of a particular 

dynamical system, it is possible to compute all of the Lyapunov exponents. Wolf 

et. al (1985) describe the general method for ordinary differential equations, and 

assuming that partial differential equations can be cast in the form of a large set of 

ordinary differential equations, the method is applicable to PDEs as well. However, 
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to solve for all of the Lyapunov exponents of an N-dimensional system requires the 

integration of 0(N2) equations, rendering this procedure impractical for systems 

with large N. 

A qualitative, and relatively new, method of testing for chaos is the use 

of nonlinear forecasting algorithms (Farmer and Sidorowich, 1987). The given data 

can be used in order to predict future states of the system by reconstructing the 

attractor and exploiting its geometric properties. If the predictions degrade with 

time, this indicates the system is chaotic (or worse), while forecasting errors that do 

not grow with time indicate a periodic or quasi-periodic system. 

One final tool for measuring the chaotic nature of a system is also qualitative 

rather than quantitative, but it is nonetheless quite useful in assessing the dynamical 

character of the given flow. This is the first return map, which is constructed directly 

from a Poincare surface of section. A comprehensive discussion of surfaces of section 

and return maps is given by Berge et al. (1984) and Rasband (1990), and only a 

cursory summary will be given here. Given an attractor in D-dimensional space, 

one can imagine a (D — l)-dimensional hyper-plane (denoted as E) that intersects 

the attractor. The hyperplane S is then the surface of section. K one records . 

the locations of the successive intersections of an attractor trajectory with S, these 

locations can then be plotted against each other (e.g. one can plot the distance, from 

some arbitrary origin, of the rath crossing vs. the distance of the {n— l)st crossing). 

This is known as a first return map. The effective result of this is to create a discrete 

map of fractal dimension (Dp — 1), where Dp is the fractal dimension of the original 

attractor. For attractors with 2 < Dp < 3, the first return map then possesses 

a dimension between 1 and 2, allowing it to be visualized on a two-dimensional 

plane. Therefore, the qualitative nature of the flow can be gleaned from a time 

series without the need to resort to dimension or Lyapunov exponent calculations. 

For higher-dimensional flows, of course, the first return map loses its effectiveness 
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and one must resort to more computationally-intensive measures in order to assess 

the complexity of the flow. 



APPENDIX G 

THE RELATIONSHIP BETWEEN SPATIAL AND TEMPORAL COMPLEXITY 

A concern of some importance is the relationship between the temporal 

behavior and the spatial behavior of the system in question. For instance, one can 

construct low-order models by assuming some simple spatial dependence for the flow, 

such as a single wave. Then the spatial structure is implicitly fixed for all time, and 

the temporal behavior of the resulting ODEs dictates the system's actions. However, 

the models in this thesis involve the actions of many waves and are thus spatially 

complex. Conversely, an examination of either a time series taken at some point 

in the flow or else a temporal coefficient of some spatial mode often indicates low- 

dimensional (e.g. periodic, quasi-periodic, or chaotic) behavior; this fact indicates 

that the flow may be describable by a relatively small set of ODEs. To answer this 

question, a simple model was constructed, the purpose of which is to examine the 

role temporal and spatial dynamics, and their coupling, play in influencing the EOF 

spectrum. 

The model chosen is one-dimensional in both space and time. The field $ 

is thus written as 

$   =   f>(aO^(0, (G.l) 
i=i 

where N the number of modes chosen for inclusion. This is a very general repre- 

sentation and the critical portion of the problem arises from choosing the functional 

representation properly. For the present purposes, it was decided that choosing ran- 

dom spatial fields would be appropriate; this approach assumes that real dynamical 
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systems, while their behavior is certainly deterministic, often exhibit sufficient com- 

plexity that their behavior can be considered random. In addition, it was deemed 

appropriate to choose the temporal behavior to be periodic; this choice then allows 

one to fully observe the discrepancy between spatial and temporal complexity. To 

effect these choices, the following parameterization was made: the spatial functions 

were chosen to be sums of sines and cosines, so that 

N/2 

Mx)   =    X^'"cos(n7ra;) + 5«'nSin(n7ra:), (G.2) 
n=0 

and the temporal functions were chosen similarly, i.e., 

N/2 

lfc(0    =    SCinCos(n7r<) +J9,-„sin(7ixi). (G.3) 
n=l 

The only difference between Equations G.2 and G.3 is that the spatial fields allow 

mean values, while the temporal fields do not. This is to eliminate the tedious 

process of first removing the temporal mean from the spatial field, a quantity which 

does not reflect the dynamical complexity of the system. 

The final quantities to be chosen are the coefficients of the trigonometric 

functions, and these reflect the random nature of the system. It has been observed 

that the slippery model discussed in Chapter 2 exhibits the beginnings of spatial 

self-similarity. To simulate this, the amplitude, A(k), as a function of wavenumber, 

k, is chosen to scale as 

A(k)   ~   A-, (G.4) 

where a is some positive number (but necessarily an integer). In addition, periodic, 

temporal signals exhibit discrete spikes at the fundamental frequency of oscillation, 
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denoted as /, and its higher harmonics (given by nf, where n is some integer), and 

the amplitude of these also typically decrease with a power law, so that 

A(f)   ~   rß, (G.5) 

where ß is also a positive number but not necessarily an integer. These two heuristic 

rules furnish sufficient information to complete the choices for the coefficients. For 

the spatial modes, the amplitude for each wavenumber is given by 

Ak) = y/*l + Bl (G.6) 

and is normalized so that „4.(1) = 1. The relative sizes of Ain and Bin are chosen at 

random by using the'relation 

Ain   =   cos(2xZin), (G.7) 

Bin   =   sin(27rZin), 

where Z^ is a random variable distributed uniformly on [0,1] and is selected anew for 

each pair of i and n. Thus, the power law distribution of amplitudes is maintained, 

but the phases are chosen randomly in order to represent random fields. The effective 

result of this is to create data sequences of "colored" noise, the exact color depending 

on the scaling exponents a and ß. 

The intent of this particular construct is to qualitatively replicate the sta- 

tistical nature of the spatio-temporal behavior observed in the quasi-geostrophic 

models. The main limitation of this parametrization is its simplicity. With the sim- 

ple scaling laws invoked, the dominant temporal frequency and spatial wavenumber 

will always be the lowest of the set used. This does not always seem to be the case 

in the model. Similarly, although the scaling behavior is observed in the fluid model 
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for relatively high frequencies and wavenumbers, there are departures from this be- 

havior at longer temporal and larger spatial scales. Nonetheless, given that only an 

understanding of the intricacies involved is desired, and not a rigorous quantitative 

analysis, the above model was deemed satisfactory. 

There are two limits under which the field $ can be trivially decomposed. 

The first is when a becomes large. Then the spatial fields are all essentially comprised 

of three functions: a constant, cos(7rx) and sin(7rx), since the amplitudes of the higher 

harmonics are much smaller than these fundamental waves. In this case, three pairs 

of temporal and spatial functions are able to essentially describe the entire variability 

of $. The other limit, by symmetry considerations, is when ß approaches oo. Since 

no mean is allowed for the temporal fields, the time variability is dominated by the 

sin(7rf) and COS(TT<) modes.   The field $ can then be represented by two pairs of 

spatial modes and temporal coefficients. These results indicate that it is not simply 

temporal or spatial complexity that results in the requirement of a large number 

of EOFs for adequate representation.  Rather, it is the coupling between the two, 

which is generally reflective of the coherence or slaving between scales, that is the 

governing factor in determining the number of EOFs that will be required. This will 

be borne out by the following numerical examples. 

Numerical runs were made at all a, ß pairs for a = 0, 1, , ..., 5, ß = 

0, 1, , ..., 5. As expected, for a = 5 or ß = 5, the first two or three EOFs essen- 

tially capture all the variance of the original field. To analyze the more interesting 

parameter settings, the cumulative variance function, C(n), is used, and 

n 

C(n)   =   £A,-, (G.8) 

one. where the Aj's are the eigenvalues normalized such that their sum is equal to 

C(n) then measures the percent of total variance captured by the first n EOFs. 
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Figure G.l displays C(n) versus n for ß = 2 and a = 0,1,..., 5. Note that ß=2 is the 

smallest value for which the temporal fields are continuously differentiable. It is clear 

from the figure that, as a becomes larger, the cumulative variance asymptotes to 1 

more quickly. Figure G.2 displays C(3) vs. a, which also shows that the cumulative 

variance increases for fixed n as a increases. The results shown in the figures can 

be anticipated intuitively, since as a —*■ oo, the number of EOFS needed should be 

three, or alternatively, C(3) should approach one. The results for other values of ß 

are similar. 

To see if C(n) observes any scaling laws, the mean wavenumber, k, can be 

introduced, where 

N/2 N/2 N/2 N/2 

k = J2kA(kyJ2Ak) = 1Zk~a+1/Ek~a- (G.9) 
fc=i        *=i        *:=i        k=i 

One can then define a length scale, X, as X = fc_1. A point of minor importance is 

that the sums diverge when the exponent greater than -2.(a < 3). However, since 

we are using only finite sums, the mean wavenumber is always finite. The conjecture 

is that as k becomes smaller (X becomes larger), C(n) will increase (for some fixed 

n). This is borne out in Figure G.3, which displays log[C(3)]vs.log(£). The relation 

is nearly linear, indicating that there is an approximate scaling relation between the 

mean length scale of the spatial field and the convergence of C(n). Alternatively, the 

relation can be taken to imply that as the length scale becomes smaller, more and 

more EOFs will be required to meet a particular variance threshold. 

In order to compare with results for a more complicated temporal field, the 

ipi(t) functions were replaced with data from the Lorenz system (Lorenz, 1963) in a 

chaotic region of parameter space. The phase of the signal was. chosen at random by 

choosing a relatively small time series from a much larger, contiguous data set. The 

values of a again varied from 0 to 5. Figure G.4 displays C(3) vs. a. The general 
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Figure G.l. Cumulative variance functions, C(n), for ß=2, a = 0, 1, ..., 5, periodic 
temporal behavior. 
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Figure G.2: C(3) versus a for ß=2, periodic temporal behavior. 
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Figure G.3. Scaling behavior of C(3) versus mean wavenumber, k, for ß = 2, periodic 
temporal behavior. 
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behavior is much the same as for the periodic time series. Differences, arise, however, 

in scaling behavior, as is evident in Figure G.5. C(3) now varies with exp(7ÄJ), 

where 7 is some constant. This is at odds with the power-law behavior observed 

above. The origin of the difference is not quite clear, but it may be related to the 

differences in temporal power spectra. Whereas for the periodic case the temporal 

power spectrum scales as some power of the frequency, for the Lorenz system the 

temporal power spectrum decays exponentially (Brandstater and Swinney, 1987). 

Despite the differences, it appears that the convergence of the cumulative variance 

depends directly on the characteristic scales in the problem. 

In summary, this simplified model makes the important point that the 

results obtained by the EOF analysis depend on the coupling between spatial and 

temporal complexity.  When either the spatial or temporal complexity is null, the 

number of EOFs needed to represent the spatio-temporal variability is also small. 

It is the combination of variability in the two domains that necessitates a large 

number of time-space mode pairs.   In addition, there seem to exist some rough 

scaling relations that are affected by the particular representation of the spatial and 

temporal fields. This will not be investigated further here but is certainly a subject 

of some interest. Finally, the basic mechanism used in the above model to change the 

"complexity" are the scaling exponents, which affect the length and time scales of 

the system. Another possible avenue of investigation (but much more complicated) 

would be to keep the scaling exponent fixed, but to "color" the randomness in the 

phases shown in Equation G.7.  In other words, it would be possible to correlate 

the various length and time scales by some amount. Intuitively, one would expect 

that the number of EOFs required would be inversely proportional to the correlation 

between scales. However, the basic results presented here would likely not be altered. 
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APPENDIX H 

SOME DERIVATIONS CONCERNING THE RIGID-WALL, LINEAR 

INSTABILITY PROBLEM 

In this appendix we derive the condition given by Equation 5.31 such that 

Equations 5.29,30 are valid, i.e. the relation between the parameters Q and T such 

that / = Ubc, g = 0 is a solution for Fc = k2/2. 

If we write the perturbation streamfunctions as 

fat   =   Refiyy**-«), (H.l) 

&c   =   Reg(y)eik^-Ct\ (H.2) 

then by substitution into Equations 5.16,17, the following relations are obtained: 

ikUbcg" + ik[T2 - (k2 + V2)Ubc]g = 

-(Q + 2k2E/R0)f" + (Qk2 + E/R0k
4)f + E/RJ"", (H.3) 

ikUbcf" + ik[T2 + (2F -k2- T2)Ubc]f = 

-(2Q + 2k2E/R0)g" + (2Qk2 + E/RJc^g + E/Ro9"". (H.4) 

The solution given by Equations 5.29,30 is obtained by neglecting the terms on the 

right hand sides of Equations H.3,4. We expect that these terms are only important 

in giving rise to a boundary layer (of thickness A as defined in Equation 5.28) that 

brings the waves' zonal velocity to zero at the walls. We can then ask when this 

constraint is broken, i.e. when the solution given by Equations 5.29,30 does not 

consistently yield terms on the right hand sides of Equations H.3,4 that are indeed 
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small outside the wave boundary layer. We therefore choose to examine the sidewall 

at y = —1 (the results are invariant with respect to the wall chosen) and consequently 

define 

y   =   l + y, (H.5) 

so that y gives the distance away from the sidewall. Thus, using the fact that / = Ubc, 

f   «   Ty, (H.6) 

/"   »   -r2, (H.7) 

and/""   »    -r4 (H.8) 

for y <C 1. Furthermore, since the dissipative terms should be neglectable except 

inside the wave boundary layer, we set y equal to A = (2Q)1^4/T so that we evaluate 

the magnitudes of the terms at one e-folding distance from the sidewall. Finally, 

we expect that the baroclinic wave, which has an asymptotic amplitude of zero, 

will be small but nonzero and possesses an amplitude of 0(g). Making the above 

substitutions, Equations H.3,4 become 

ik(2Q)^0(g) + ik[T2 - (k2 + T2){2QflA]0{g) = 

-QT2 + E/R0T\ (H.9) 

zA(2Q)1/4r2 + [(2F - r2 - k2)(2Q)^4 + T2]ik(2Q)^4 = 

-2Q0(g) + E/Ro0(g). (H.10) 

In the above equations, only the dominant dissipative terms have been retained for 

simplicity. The two retained terms on the right hand side of Equation H.9 can 

be shown, with the aid of Equation 5.9, to always be the same order regardless of 
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the exact parameter values used, justifying the inclusion of both. Looking at the 

barotropic equation, the dissipative terms scale as QT2. Further assuming that the 

shape of the baroclinic perturbation is equivalent to Ubc (but with an unknown 

amplitude Ac), the terms on the left hand side of the barotropic equation are on 

the order of Q1/2Abc since the larger terms proportional to T2 tend to cancel each 

other. This immediately yields the relationship that 

Ate   =   OiQ^T2). (H.ll) 

With this knowledge, we can now turn to the baroclinic equation. In order for the 

baroclinic equation to yield Fc = k2/2, the dissipative terms must be essentially zero 

outside the wave boundary layer. This requires that the dissipation, which with the 

use of Equation H.ll can be shown to be 0(Q3/2T4), must be much smaller than the 

relevant terms on the left hand side, which are 0(<51/2). This results in the relation 

Q < r-4. (H.i2) 

If we return to Equation H.ll and make the additional requirement that Abe < 1 

in order to maintain the approximate validity of Equation 5.30, we again obtain 

Equation H.12. There is thus consistency in the requirement on the parameters such 

that / KUbc, $ « 0, and Fc « k2/2. The relation given by Equation 6.12 offers the 

following physical interpretation if one takes the fourth root of each side. Doing this, 

we find that 

,1/4 , r-i 
Ql'*<T-\ (H.13) 

which indicates that the ratio of the wave boundary layer thickness to the basic-flow 
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boundary layer thickness is less than the thickness of the basic-state boundary layer 

itself. 



APPENDIX I 

NUMERICAL METHOD FOR RIGID-WALL FORMULATION 

This appendix summarizes the influence-matrix technique used in the nu- 

merical code for the rigid-wall model. The following synopsis is from Brummell 

(1993). 

The problem for the rigid-wall streamfunction formulation, where there are 

no boundary conditions on the vorticity equation, is overcome by using a modifica- 

tion of the influence matrix technique (Kleiser and Schumann, 1980). First, some 

clarification of the standard influence matrix technique may be valuable. 

Discretization of the governing equations leads to problems of the form 

(p2-\2)u   =   R, (i.i) 

(D2-k2)i>   =   u, (1.2) 

where D = ^, u is the vorticity, if> is a streamfunction, k is the horizontal 

wavenumber, A is a constant depending upon the discretization, and R is a function 

of known quantities. An uncertainty arises since the boundary conditions for a rigid 

channel problem exist on ip only: 

^(±1)   =   0, (1.3) 

Z?V(±1)   =   0. (1.4) 

Since R is known, a normal method of proceeding would to be to solve the first 
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equation for u, substitute into the second equation and solve for tp. However, this is 

impossible because no boundary conditions exist for the first equation. Alternatively, 

the two equations could be combined into one biharmonic equation but this would 

require the inversion of a pentadiagonal problem for its solution. 

The influence matrix technique instead takes the solutions of easily solved 

systems and then uses the linearity of the problem to construct the correct solution. 

Consider the solutions of a homogeneous problem with inhomogeneous boundary 

conditions ("+" and "-" problems) and an inhomogeneous problem with homoge- 

neous boundary conditions ("p" problem) as follows: 

p problem: 

(D
2
-X

2
)UP   =   R, 

(i?2-fe2)Vp   =   a*, 

Wp(l) = 0,    afc(-l)   =   0, 

V>p(i) = o,. Vv(-i)  =  0. (1.5) 

+ problem: 

(D
2
-\

2
)U+ = 0, 

(p2-k2)il>+ = u>+, 

«+(1) = 1,    w+(-l) = 0, 

iMi) = o,   V+(-i) = 0. (1.6) 

problem: 

(Z>2-A2)c;_    =   0, 

(p2-k2)^    =   w_, 
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o/-(l) = 0,    w-(-l)   =   1, 

lMl) = 0,    V--(-l)   =   0. (1.7) 

Notice that the + and - problems do not depend on R and therefore can be solved 

once at the beginning of the calculation (possibly even analytically) and used for all 

time, whereas the p problem must be solved at each time step, since R depends on 

quantities from the previous time step. 

Now let 

ru\       (UP\ fu+\ (u- 
,       .       , +<M        )+6-\        )■ (1-8) 

Obviously, boundary condition 1.3 is automatically satisfied and so we are left to 

choose 6+ and 6- in order to satisfy boundary condition 1.4 i.e. choose 6+ and £_ 

such that 

/2ty+(+l)     ^-(+1)\  (6+\ /2typ(+l)\ 

Uv-+(-i)   Di>-(-i)J \sj~   U^P(-I)/' (L9) 

Having established 6+ and 6-, there are two ways to proceed. The solution 

may be constructed as the sum of the various p, + and - solutions, or, notice that 

£+ and 6- are precisely the boundary conditions we were seeking on u>, i.e. 

u(+l) = S+,    «(-!) = *_, (no) 

and so the original equations may now be solved. 

The methodology used in the current code is a little different to the general 

example given above. In the above, the p, + and - solutions were chosen to enforce 
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condition 1.3 immediately. We find that enforcing 1.4 in the sub-problems, i.e. using 

Neumann rather than Dirichlet boundary conditions on i/;, produces more accurate 

numerical representations. Also, the choice of a>p(±l) is arbitrary, and the use of a 

more realistic value than zero, say the vorticity on the boundary from the previous 

time step, reduces numerical instability at the boundaries. We also chose the vorticity 

boundary conditions on the ± problems to be either even or odd so that the boundary 

of each problem contains some vorticity at the walls for the same reasons. Notice 

that a problem of the above type must be solved for each k. For the system of 

equations under study here, the k = 0 component has different boundary conditions 

from the k ^ 0 i.e. 

DV(fc=0)(±l)   =   0, (1.11) 

2?V*=0)(±1) = DJk=0\±l)   =   Q2, (1.12) 

where Q is a constant. Condition 1.12 is actually a condition on the vorticity and 

hence the k — 0 components can be solved immediately without recourse to the 

influence matrix technique. However, 1.11 and 1.12 place some integral constraints 

on the solution which we must ensure are captured by the numerical method. 

First, for the barotropic streamfunction which is represented in discretized 

form exactly by Equations 1.1 and 1.2, substitution of 1.2 into 1.1 for k = 0, integration 

once with respect to y and use of condition 1.12 leads to the conclusion that 

f+1 R(>°=0)dy = 0. (1.13) 

Second, the baroclinic streamfunction solves a slightly modified equation 

[D
2
 - A2) Co,* + a^fcc   =Rbc, (1.14) 
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(Z)2-*2)^    =Ubc, (us) 

and so the constraint 1.13 becomes 

R contains terms from the previous time step which either have zero horizontal 

average (Jacobian terms) or are zero by the boundary conditions except for one 

term. This term involves the same integral as the right hand side of 1.16 except that 

it is evaluated at the previous time step, and so <f>£=0) will remain zero if originally 

set to zero. 

The equations ultimately solved are as follows: Barotropic part k ^ 0: 

(z?2-A2)a,+   =   0, 

w+(l) = l,    "+(-1)   =   1, 

2?V+(1) = 0,    DiJ>+(-l)   =   0. (1.17) 

(D
2
-\

2
)U,_ = 0, 

(D2-k2)l,_ = c;_, 

w-(l) = l,    w_(-l) = -1, 

£>V-(1) = 0,    i?V-(-l) = 0. (1.18) 
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where 

and so in 1.8 

fc = 0: 

{D2 - A2) up = Rbt, 

(D2-k2)il>p = up, 

up(l) = +Ri,    wp(-l) = -Ri, 

Di/;P(1) = 0,    D^p{-1) = 0. (1.19) 

R l r+1 
■i     =     j/     R^V, (L2°) 

6+ = _wi)+y-i)), (L21) 
2^+(l) 

2V-(1) 
,_ = J*w-%-i>>. (I,2) 

(l?2-A2)a; = £6i) 

(l>2-ife2)^ = a;, 

^(i) = g2,   i?a;(-i) = g2, 

Z?V(1) = 0,    JDV'(-I) = 0. (1.23) 

Baroclinic part k ^ 0: 

(Z>2 - A2) w+ + a^+        =       0, 



k = 0: 

(p2-k2)ij>+    =U+, 

«+(1) = 1,    u+(-l)       =       1, 

Zty+(1) = 0,    Di>+(-l)       =       0. 
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(1.24) 

(D2- 
•^) 

w_ + a^_ = o, 

(* - k2) i>. = w-, 

u.(l) = 1, "- ("I) = -1, 

Dtp -(1) = o, D^_ (-1) = 0. 

(1.25) 

(1.26) 

(z>2-A2)a,p + a^P — Rbt, 

(D2 - k2) i>v = ">p, 

c*(l) = W*(l),    wp(-l) = «•(-!), 

2?VP(1) = 0,    Xtyp(-1) = 0. (1.27) 

and so in 1.8 

6- 2V-(l) 

(1.28) 

(1.29) 

(z?2 - A2) u + atf,   =Rbc, 

(D2-k2)^     =u, 
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Du(l) = Ql    Du>(-1)    =Ql 

2ty(l) = 0,    JD^(-l)     =0. (1.30) 

Finally, the representation of the vertical dependences as Chebyshev poly- 

nomials reduces the differential operator in I.17-I.29 to a 3-point recurrence relation 

in the Chebyshev coefficients (Canuto et al., 1988) and the resulting algebraic matrix 

equations are solved by direct Gaussian elimination (individually for the uncoupled 

equations and by block elimination for the coupled). 


