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Abstract 
This work is concerned with coherent communication by means of acoustic signals 
over underwater communication channels. The estimated scattering functions of real 
data ranging from the Arctic environment to tropical waters show that underwater 
communication channels can not be captured by a single, simple channel model. 
This thesis considers mainly a subset of underwater communication channels where 
the Doppler spread is more severe than the delay spread. 

An appropriate representation of the linear time-variant channel is introduced, 
and the wide sense stationary uncorrelated scattering (WSSUS) channel assumption 
enables characterization in terms of scattering functions. The concept of Doppler 
lines, which are frequency domain filters, is used in the derivation of a receiver for 

Doppler spread channels. 
The channel is simulated by means of a ray representation for the acoustic field 

and a time-variant FIR filter. The impact of physical ocean processes on the Doppler 
spread is demonstrated, and from this modeling explanations for the Doppler spread 

observed in real data are obtained. 
A decision feedback equalizer (DFE) adapted with recursive least squares (RLS) 

is analyzed, and its limit with respect to pure Doppler spread is found. By using the 
DFE with a phase locked loop (PLL) suboptimal system behavior is found, and this 
is verified on real data. In the case of a simple Doppler shift the cross-ambiguity 
function is used to estimate the shift, and the received signal is phase rotated to 

compensate this before it enters the receiver. 
A modified RLS called the time updated RLS (TU-RLS) is presented, and it is 



used in a new receiver. This receiver is initialized by means of the cross-ambiguity 
function and the performance is characterized by probability of decoding error vs de- 
lay spread, Doppler spread and SNR. The receiver uses Doppler lines to compensate 
both discrete and continuous Doppler spread. The receiver stability depends on the 
conditioning of the block diagonal correlation matrix propagated by the TU-RLS. 
The receiver is used to decode both real and simulated data, and some of these data 
are severely Doppler spread. 
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Notation glossary 

This is an overview of the most commonly used symbols in this thesis with a brief 
explanation of each symbol. In general boldface symbols means vector quantities. 
Regular parentheses () are used for both continuous and discrete quantities, and the 
argument and context carries the information to distinguish these cases. The symbol 

a(n) : DFE coefficients. This is the filter coefficients of the decision feedback equal- 
izer. The feedforward and feedback coefficients are concatenated. 
A(t) : Signal amplitude envelope. This is used in the complex representation of the 

baseband transmitted signal. 
A, A0 : System matrix. The state space description of the channel as well as some 
of the receiver algorithms use a channel model involving this matrix. 
a : AR(1) parameter. This determines the bandwidth of the Doppler spread mod- 

eled as an AR(1) process. 
B : Doppler bandwidth. The frequency support of the time-variant modulation 

induced by the channel at a single delay. 
b : Reflection coefficient. A random variable modeling the varying reflection strength 

of a scatterer. 
ß : Attenuation. The frequency and range dependent attenuation of the acoustic 

signal. 
c : The speed of sound. The propagation speed of the acoustic signal carrying the 
communication signal through the water. 
c(n),c(n,Z) : Observation vector. Containing the signal that is used to update the 
recursive algorithms for receiver adaptation. 
S : Signal energy. The energy used to transmit one information symbol. 
S(t) : Dirac delta. 
8(n) : Kronecker delta. 
Av : Tap frequency spacing. The distance between adjacent taps in the Doppler 
lines used in the receiver to compensate Doppler spread. 
e(n) : Prediction error. The difference between the received signal and its estimate 

generated in the receiver. 
F(k) : Doppler line coefficients. The fc'th complex tap value of a Doppler line. 
f(n) : Inverse FFT of F(k). The time-variant gain multiplying the signal entering 

a Doppler line. 
/s :  Sample frequency.  The frequency used in the receiver to sample the received 

signal. 
fc : Carrier frequency. The frequency with which the information symbols is trans- 

mitted. 
f (•) : Vector of functions. 
<£(*), <£(n) : Signal phase. The phase part of the complex envelope representation of 

21 



the signal which carries the information in the coherent systems considered here. 
j(n) : Loop transfer function. The shaping filter in the phase locked loop used for 
Doppler tracking. 

7 :  Modulation constant.   A multiplier used in the receiver robustness derivation 
depending on the modulation format used. 
h(t,T),h(t),h(n),h(n,m) : Input delay-spread function.   Used to characterize the 
time variant channel in a similar manner as the time-variant impulse response. 
h(r),h(n),/i(n, m) :   Input delay-spread function estimate.   Generated in the re- 
ceiver in order to track the channel. 
hQ(n, m), ho(n) :  Decoder filter coefficients.  The Wiener filter implemented in the 
decoder at each time instant based on the input delay-spread function estimates. 
he(n) : Channel estimation error. The difference between the true channel and the 
receiver estimate. 

H(ej") : Frequency response. Digital filter gain and phase. 
H : Complex conjugate transpose. The Hermitian of vectors and matrices. I : Iden- 
tity matrix. 

J(-) : Cost function. A quadratic error measure, usually a difference between a 
quantity and its estimate. 

k(n) : Gain in RLS and TU-RLS. The factor that multiplies the prediction error 
when an estimate is updated. 
X : Steady state scaling factor. The recursive algorithms achieve a steady state after 
going through a startup transient. 
ij) : Grazing angle. The angle between the horizontal plane and a ray reflected from 
the ocean-surface or bottom. 
A : Exponential weighting factor. The factor used in the recursive algorithms in 
order to forget the past measurements. 
L : Number of coefficients, number of rays. The number of taps used in the receivers, 
and also the number of rays contributing to the received signal. 
n : Delay. Discrete formulation. 
p(-) : Probability density. 

P,P(n),P : Matrix propagated in RLS and TU-RLS. This matrix determines the 
gain used in the update of channel estimates. 

Pe : Probability of decoding error. The probability that the receiver makes an error. 
n(n) : Channel estimate error covariance. The matrix yielding the error covariances 
at each time step in the recursive algorithm. 
n(n) : Channel estimate error covariance approximation. A matrix obeying a sim- 
pler difference equation than II(n), yet a good approximation. 
q : Wave number. The spatial wavelength of the acoustic signal. 
Q(-) : QPSK quantizer. The nonlinear device mapping the receiver symbol estimate 
into the closest of symbols in the alphabet. 
Qo : Autocorrelation matrix. The autocorrelation of the estimated symbols in c(n). 
Qe : Autocorrelation matrix. The autocorrelation of the decision errors. 
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Rss{r), Rhh(r), R, Re, R*x{r), Ryy(n), Rww, RuU, V, ", /O, Mr, V, 0 ■ Autocorrelation. 
The subscript when present indicates the name of the random variable in question. 

r, RXy{r) '■ Cross correlation. 
S(C, u) : Scattering function. The distribution of energy in delay and Doppler as 

dispersed by the channel. 
s(t) : Ocean-surface Doppler spreading function. A random process modeling the 
Doppler spread due to the time-variant ocean-surface. 
cr2,o-2,<T2,cr? : Variance. The subscript indicates the random variable in question. 

T : Time interval, 
r : Delay. Continuous formulation. 
T(f, t) : Time variant transfer function. The frequency response of a linear time- 

variant system. 
d0(T,v),60(n,k) : Ambiguity function. Used for transmit signal characterization. 
6(T, U), 60(n, k) : Cross-ambiguity function. Used for scattering function estimation. 
x(t) : Channel input, transmitted data.  The signal that is output from the trans- 
mitter into the underwater communication channel. 

X(f) : Fourier transform of x(t). 
y(t),y(n),y : Channel output, received data. The signal that is propagated over the 

channel and is recorded in the receiver. 
Y(f) : Fourier transform of y(t). 
z(n),z : Transmitted symbol. One of four complex numbers in the case of QPSK 

that we use. 
z(n) : Soft estimate of symbol. The receiver decoder filter output. 
z\n) : Hard (quantized) estimate of symbol. The output of the receiver quantizer. 
ze(n) : Quantization error. The difference between the hard estimate of the symbol 

and the transmitted symbol. 
( : Condition number. The ratio of the largest to the smallest eigenvalue of a matrix. 
U(T,v),U(l,k),Ui,k(n),U(n) : delay-Doppler-spread function. A representation of 
the time-variant channel interpreted as the scattering strength at a specific delay 

and Doppler. 
uf : Scattering strength. The variance of the delay-Doppler-spread function, 

i/, v : Doppler frequency. 
vs : Speed. The speed of scatterers in the channel. 
v(n),v(n),v,we(n,k),w(t),w(n),w : Noise. Used in the channel models. 
V : FFS Doppler line based receiver. The coefficients of a receiver using FFS Doppler 
lines at different delays to compensate both time and frequency dispersion from the 

channel. 
W : Bandwidth. 
u>, UQ : Relative Doppler frequency. The ratio of the Doppler frequency to the sample 

frequency multiplied by 2ir. 
* : Conjugate of a complex number. 
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Abbreviations 

cw continuous wave 
DFE decision feedback equalizer 
DPSK differential phase shift keying 
FFT fast Fourier transform 
FIR finite impulse response 
FFS finite frequency spread 
FSK frequency shift keying 
IFS infinite frequency spread 
IIR infinite impulse response 
ISI inter symbol interference 
LMS least mean squares 
LTI linear time invariant 
LTV linear time variant 
MAP maximum aposteriori 
MFSK multiple frequency shift keying 
ML maximum likelihood 
MLSE maximum likelihood sequence estimation 
MMSE minimum mean square error 
PD phase detector 
PLL phase locked loop 
PSK phase shift keying 
QPSK quadrature phase shift keying 
RLS recursive least squares 
ROV remotely operated vehicle 
SNR signal to noise ratio 
TU-RLS time updated recursive least squares 
US uncorrelated scattering 
vco voltage controlled oscillator 
WHOI Woods Hole Oceanographic Institution 
wssus wide sense stationary uncorrelated scattering 
wss wide sense stationary 
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Chapter 1 

Introduction 

1.1    Background 

One way of establishing communication between two remote underwater sites is to 

connect a receiver and a transmitter with a cable. This solution has several dis- 

advantages when one is attempting underwater communication: It is expensive, 

maintenance and repair is especially difficult if the communication takes place in 

deep water, and the drag from the cable can be a problem if one of the platforms is 

small and mobile (e.g., an autonomous vehicle). Another way is to use the water to 

propagate the signal containing information. Electro-magnetic waves are used for 

this purpose in air, but they propagate poorly in water, and the attenuation is 40 

dB/km for light with frequencies in the blue-green region where an attenuation min- 

imum exists [29], [86]. At very low frequencies acoustic waves are able to propagate 

in the ocean over distances extending to several hundreds of kilometers, and even 

at 20 kHz the attenuation is only 2-3 dB/km and therefore this way of propagating 

information is chosen. The attenuation of acoustic waves is roughly proportional to 

the square of the frequency [29], making the communication channel severely band 

limited. This makes coherent communication more attractive because of its more 

efficient use of the available bandwidth. 
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There has been much work on acoustic wave propagation and modeling of un- 

derwater acoustic fields, e.g. [39], [51], and the characteristics in terms of boundary 

and medium interactions are strongly dependent on the frequency. In order to be 

able to perform underwater acoustic communication it is important to understand 

what happens to the information bearing signal on its way from the transmitter to 

the receiver. Only if this knowledge is in place one can hope to build an efficient 

and robust communication system. The physics of the signal propagation also plays 

a key role when one wants to characterize the limitations of a given communication 

system. Therefore, in order to understand the communication properties of an un- 

derwater communication channel, it is important to model the propagation of the 

acoustic waves in the water at the frequencies used for acoustic communication, and 

a common way of describing the acoustic sound field is by means of ray theory. This 

is a high frequency approximation to the sound field, and it is the same as the one 

used in geometrical optics where the sound is envisioned as arriving over different 

ray paths. A rough rule for the validity of ray theory is that it applies when the 

spatial scale of changes in the medium is large compared to the wavelength. In the 

underwater communication channel this translates to frequencies starting well below 

5 kHz and upwards. 

The communication channel structure and the obtainable bit rates depend in 

particular on the range between transmitter and receiver, and the depth of the wa- 

ter. We can sort the communication scenarios into short, medium and long range 

communication as shown in table 1.1. The table is based on the implemented under- 

water communication systems reported in the literature over approximately the last 

20 years, and thus the figures listed are not theoretical channel capacity measures 

but rather examples of existing systems. 

The short range channel has a dominant direct "line of sight" path. This path is 

usually very stable and much stronger than the other returns which, depending on 

the specific communication channel, may be either surface bounce paths or bottom 
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Carrier frequency Bit rates Range 
Short range 
Medium range 
Long range 

> 100kHz 
1 - 100kHz 
< IkHz 

< IMbit/s 
< 20kbit/s 
< 500bit/s 

< 1km 
1 - 50km 
> 50km 

Table 1.1: Classification of different communication channels. 

bounce paths or a blend of both. 

One characteristic of the medium range channel is that the water depth is less 

than the range. In the same way as the short range channel this channel has a direct 

path as well, but boundary interactions are significant. The channel is time-varying 

and .reverberant which means that it has a long impulse response. 

In the long range channel the refraction and fluctuation in the ocean is dominant, 

and there is no direct path; sound is propagating in ducts over ray paths. There is 

variation induced by the ocean on each ray path, and this causes it to break up into 

a number of closely propagating rays. It is often called the micro multipath [77], [1], 

as opposed to the macro multipath consisting of the different ray paths. 

The sorting of underwater communication channels according to table 1.1 is some- 

what arbitrary. The purpose of the classification is to provide a very general and 

rough way of recognizing a given scenario. There are many cases where the numbers 

in table 1.1 are inconsistent with the suggested definitions of short, medium and long 

range channels. Nevertheless, this way of sorting the channels is useful, and this is 

motivated by the fact that all the relevant references in this chapter fits in one of 

the scenarios. 

Communication by means of acoustic signals in an underwater environment has 

proven to be a challenging problem, but the need is demonstrated by the signifi- 

cant number of implementations of acoustic communication systems over the past 

20 years. There has to date not emerged as a standard any particular system archi- 

tecture or modulation scheme. The systems are very different, utilizing most known 
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signal processing techniques for communication. We now give an overview of existing 

communication systems for underwater use, and the systems are sorted in categories 

according to table 1.1. The overview is by no means exhaustive, but it serves as an 

indicator of where the emphasis has been in developing these systems. 

1.1.1    Short range, line of sight based systems 

An application is reported in [73] where a data logging platform is telemetering 

to a surface vessel, i.e., vertical communication. The modulation scheme used is 

differential phase shift keying (DPSK) and the carrier frequency is 10 kHz. By using 

error correcting codes (BCH, Reed-Solomon) the error probability of 10~3 for a 6 

km vertical distance is achieved. 

A system for transmitting 10 kbit/sec bursts of data is reported in [48], and in 

this system the average data rate is 1.5 kbit/sec over a relatively short channel of 

100 m. The modulation used is DPSK, and an array with 16 elements is used to 

spatially filter the received signal which has a center frequency of 50 kHz. 

A high frequency very short range system is reported in [56]. It has a carrier 

frequency of 1 MHz, and it is transmitting over a range of 60 m. The achieved data 

rate is 500 kbit/sec and the modulation scheme is 16-QAM (quadrature amplitude 

modulation). In this system an adaptive equalizer is employed to track the channel, 

and an error rate of 10~7 is achieved using an LMS equalizer weight adaptation 

algorithm. Without the LMS adapted equalizer the error rate is 10~4. The cause of 

channel fluctuation is not reported in this reference. 

A state of the art vertical communication system is reported in [95], and this is a 

4-DPSK system with carrier frequency of 20 kHz. It uses compression techniques for 

transmitting image data from the sea bottom at 6500 m depth to the surface, and 

the effective data rate is 16 kbit/sec. In this system the discrete cosine transform 

is used for image compression, and it is indicated that a compression factor of 12 is 

achieved on sonar images. 
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Communication from sub-bottom positions to a surface vessel is reported in [24], 

and this is an incoherent system using frequency shift keying (FSK) modulation. 

1.1.2 Medium range, reverberation limited systems 

One of the first systems [17] developed at Woods Hole Oceanographic Institution 

(WHOI) is an incoherent system using 8-FSK to send information at 4 kbit/sec. 

The system uses the fast Fourier transform (FFT) to decode the received signal and 

a Hamming code to make the system more robust. In addition to the information 

frequencies a continuous waveform (CW) is transmitted to track Doppler shifts. 

FSK signaling has proven to be a robust technique in shallow water channels. 

By using a large alphabet multiple FSK (MFSK) technique communication with 5 

kbit/sec over a range of 5 km is reported in [38]. 

Another system in the same category [20] is used for communication with rate 

5 kbit/sec using 64-FSK. The carrier frequency is 20-30 kHz, and it is also used 

successfully for telemetry over such different scenarios as a 4 km shallow water hori- 

zontal path, a 3 km vertical path and a highly reverberant 700 m very shallow water 

path (depth 6-18 m). 

A coherent DPSK system based on the direct-sequence spread spectrum tech- 

nique is reported in [36] where the range is 1 km, the water depth is 10 m, the data 

rate is 600 bit/sec and the bandwidth used is 10 kHz. 

1.1.3 Long range 

We may use the definition of a long range underwater communication channel as 

being one where sound propagates in ducts. Then it is clear that some of the medium 

range channels may turn into long range channels, and this depends on the sound 

speed profile. When the water temperature or salinity, largely determining the sound 

speed, changes on a specific site the propagation of sound can easily go from largely 
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boundary interacting ray paths to ducted ray paths, therefore some of the systems 

listed in the previous section also belong in this section. 

A system designed solely for long range communication between the mother vessel 

and several remotely operated vehicles (ROV) is reported in [69]. The ROV's were 

moving while receiving data, and the maximum speed is 10 knots. This is a low 

frequency system with carrier frequency 200 Hz and bandwidth 50 Hz. The system 

uses a Golay code to increase the reliability, and the modulation scheme is 4-FSK. 

Another system for very long range sound propagation (on the order of 1000 

km) using m-sequences at a carrier frequency of 57 Hz and a bandwidth of 14 Hz is 

reported in [70]. The main purpose of this system is a feasibility demonstration for 

long' range sound propagation and environmental monitoring but the system could 

also be viewed as a coherent communication system. The propagated signal is an 

m-sequence [61]. 

The systems described in [98], [15] demonstrates information transmission over 

a range of 50 km, where the bit rate is 212.5 bit/sec and the carrier is 1.7 kHz. 

The modulation is phase shift keying (PSK), and the transmitter is a single element 

whereas the receiver consists of one array at 150 m depth and one diversity combiner 

spanning 100-300 m depth. 

1.1.4    Simulation studies 

A large body of simulation studies is reported in many different periodicals and 

books. They cover all aspects of underwater acoustic communication systems such as 

channel identification and tracking, coding, modulation techniques, spatial diversity 

combining. 

Simulations on acoustic channel modeling with emphasis on the communication 

aspect is given in [28], [33], and this work addressed the stability of the channel 

multipath and phase. 

Channel identification algorithms have also received attention in the former So- 
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viet Union, and time delay simulation is reported in [87]. This work is employing 

bispectra assuming non-Gaussian statistics for signals and noise. 

A mode filtering approach is reported in [41]. This is an alternative way of 

resolving multipath, and the simulation uses vertical line arrays at the transmitter 

in order to excite a single mode, and at the receiver to accept a single mode. The 

Pekeris' waveguide is used for this simulation. 

The estimation of path time delay is extensively treated [32, 47, 66, 75, 16, 59, 

88, 2, 60, 68, 42, 21, 52, 49], and in some of these studies tracking of the channel 

is incorporated. An example of a typical approach used to study this problem is 

given in [72], where the model is deterministic signal in Gaussian nose and the max- 

imum aposteriori estimate of a parameter vector containing amplitudes and delays 

is computed. 

The multichannel receiver for both incoherent [18] and coherent [92] communica- 

tion is reported to give significant gain, and this work involves both simulations and 

demonstrations in shallow water environments. The problem of optimally combining 

multiple channels is also simulated in [102]. 

Studies and bounds on error probability for various receivers is the important 

issue in reliability judgments, and bounds in the case of a decision feedback equalizer 

is reported in [3]. The phenomenon of error propagation is one of the drawbacks for 

this equalizer [74], [93]. 

A powerful and general way to deal with low signal to noise ratio (SNR) rever- 

berant channels is various coding techniques, and this is also used in underwater 

telemetry [19], [79]. Transmission signals made up of m-sequences are commonly 

used because of their statistical properties, and the work in [61] combines coding 

with the use of m-sequences where both convolutional and block codes are used for 

error detection and correction. 

Emphasis in the literature for underwater acoustic communication is on incoher- 

ent reception, and an overview of the existing configurations before 1984 is in [6], 
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but also coherent schemes are reported in [92], [91] which comprise both single- and 

multi- channel results. 

Channel tracking 

The adaptive equalizer is widely used to track the time-varying underwater channel, 

and the combination of beamforming and adaptive equalization is reported in [84] 

where the equalizer is updated with the LMS algorithm, and ray tracing is used to 

extract significant paths. 

The discussion of the properties of the adaptive algorithms used in channel track- 

ing has received much attention [12], [26]. The two most commonly used are the 

LMS and recursive least square (RLS) algorithm. The problem of equalization of 

channels with spectral nulls is treated in [26], and in this reference an alternative 

recursive algorithm reminiscent of the RLS is used. The improved result is verified 

with simulations on a time-variant channel. 

The adaptive equalization for underwater acoustic telemetry is treated extensively 

in [78], and here emphasis is on the various algorithms for implementing RLS on 

decision feedback and maximum likelihood equalizers together with the resulting 

computational loads. 

Summary Modeling of the acoustic propagation is important in underwater com- 

munication, and ray theory is a good model at the frequencies of interest in this work. 

Communication in the ocean is sorted according to short, medium and long range as 

summarized in table 1.1. Emphasis both in the literature and in the implementation 

of working systems is on incoherent communication, but coherent communication is 

also in use. Adaptive systems are used since underwater communication channels 

are time-variant, and two widely used algorithms are the LMS and the RLS. 
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1.2    The problem of underwater communication 

Preview In this section we discuss in general the main issues of concern in under- 

water communication channels. We first mention the delay spread which is commonly 

encountered in many types of communication channels including underwater com- 

munication channels. The refraction of sound and the time variance of underwater 

communication channels caused by ocean internal factors and source/receiver motion 

are discussed, and one implication of this is Doppler spread. Another characteristic 

of many underwater communication channels is a sparse impulse response, and we 

discuss the importance of a receiver that is able to utilize this. An issue in a coher- 

ent communication system is the need for synchronization and we outline how this is 

accommodated. Underwater communication channels are in general doubly spread, 

and we argue that the Doppler spread becomes increasingly important for lower bit 

rates. This discussion motivates the importance of the constrained communication 

problem that we work on in this thesis which is coherent communication over doubly 

spread channels with more severe Doppler than delay spread, and it is outlined in 

the next section. 

The acoustic signal of underwater communication is in some cases significantly 

modified by interaction with boundaries, in which case we have a shallow water 

channel. In shallow water channels the interaction between the acoustic signal and 

the boundaries (top and bottom) may give delay spread (time dispersion), and then 

the received signal consists of several delayed and attenuated replicas of the trans- 

mitted signal. Delay spread is encountered in many communication channels, e.g., 

telephone wires, satellite communication, cellular phones, indoor wireless commu- 

nication. Consequently it has been extensively treated, but it remains an active 

research area. The underwater communication channel is different from these chan- 

nels in several aspects, and one important difference is that refraction of the ray 

paths is a first order effect that can seldom be neglected. Another difference is that 

35 



in the case of surface interacting ray paths there is a time-variant rough reflector 

present in the communication channel. 

The fluctuations in the ocean have many sources, and they are roughly sorted 

into small scale and large scale phenomena. Factors such as currents, eddies and 

tidal changes produce large scale fluctuations, and internal waves and turbulence 

give small scale fluctuations [37]. The impact of different sources of fluctuation is 

a function of acoustic wave frequency. In addition, at the frequencies in use for 

communication, the time-varying water surface and the transmitter/receiver motion 

are sources of time variability of the underwater communication channel. The time 

variability makes the channel Doppler spread (frequency dispersive), and this is 

observed through the simple experiment of transmitting a single frequency signal. 

The received signal from this transmission is amplitude modulated [58], and the 

received signal spectrum is broader than the transmitted signal spectrum. 

The speed and robustness of convergence for any adaptive algorithm, such as 

least mean squares (LMS) or recursive least squares (RLS), is a function of the 

number of parameters one is trying to adapt. The number of parameters, or the 

number of degrees of freedom, impacts the convergence and tracking properties of the 

adaptive algorithm. By increasing the number of degrees of freedom the robustness 

degrades, which is seen by the fact that the algorithm is unable to reach any form 

for meaningful steady state. One important difference between LMS and RLS is 

that the convergence speed of LMS depends on the spread of the eigenvalues of the 

autocorrelation matrix of the received data. High spread yields slow convergence 

for the LMS, whereas the RLS is not impacted by this. The LMS is described 

in [103], [45], and the RLS is found in [45], [64]. The latter reference also has a 

unified treatment of the algorithms. Regardless of the algorithm it is important to 

maintain good tracking capabilities and this means not to waste degrees of freedom. 

A general need for synchronization between the receiver and transmitter is always 

present, and this is also necessary when performing underwater communication. The 
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approach to achieve synchronization has been similar to the one taken in some of the 

systems for cellular phones, and that is to send a short sequence of known symbols 

(e.g., Barker sequence), a fixed time before a data packet is transmitted. The receiver 

constantly performs a matched filter operation to the Barker sequence and uses a 

threshold test to detect it and decide when a data packet is about to be received. 

The underwater communication channel is characterized by its range and Doppler 

spreading where range translates into delay. The main constraints of our communi- 

cation problem are available bandwidth, rate of change of the channel and available 

power. The tradeoff is then often between bit rate, reliability and range. To obtain 

more reliable communication or communication over a longer range the bit rate may 

be decreased. The effects of delay and Doppler spread are complementary in the 

sense that as the bit rate on the communication channel increases, a given delay 

spread spans more symbols, and this gives more intersymbol interference. When the 

bit rate decreases the channel variation from one symbol to the next increases so 

that a given Doppler spread requires better tracking bandwidth in the receiver. 

The time interval between two arriving ray paths is often large compared to the 

symbol duration of the transmitted sequence. Therefore the scattering function of 

the channel may have clusters of energy widely separated in time, and this is known 

as a sparse channel. Remembering the need to minimize the number of degrees of 

freedom this type of channel implies a receiver which is sparse in the sense that it 

must be able to combine non-contiguous pieces of the received signal. 

The bit rates obtained to date in underwater communication channels are rela- 

tively modest compared to e.g., satellite communication or cellular phone, and this 

difference is likely to persist because of the difference in available bandwidth. As 

pointed out earlier it is the Doppler spread relative to the bit rate that is the impor- 

tant parameter when it comes to channel tracking. At the higher bit rates used in 

the satellite or cellular phone communication channels the Doppler spread relative 

to the bit rate is much less than in the underwater communication channel. There- 
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fore the problem of communication in presence of Doppler spread has not been as 

extensively addressed as delay spread in these scenarios. 

When the signal is both delay and Doppler spread, we have a doubly spread 

channel, and this is sometimes the case in underwater communication channels. 

Doubly spread channels are thoroughly discussed in classical texts on communica- 

tion [101], [82], [57], but relatively few receivers have been implemented where the 

channel is assumed to be doubly spread. Rather, one result from the theory of dou- 

bly spread channels is heavily used: A channel where the delay-Doppler product 

is less than one is called underspread, and an underspread channel may be treated 

as a singly spread channel under certain circumstances. The consequence of this 

approach is always to sacrifice bit rate to make the channel look singly spread. 

Summary Underwater communication channels are time-variant and generally 

doubly spread, and the Doppler spread is sometimes significant. The fluctuations in 

the ocean calls for an adaptive communication system, and the sparseness of many 

of the impulse responses makes it important to use a minimum number of degrees 

of freedom. The lower bit rates emphasize the importance of compensating Doppler 

spread. 

1.2.1    A subset of communication channels 

It is shown in subsequent chapters that underwater communication channels are 

very different depending on propagation conditions. This is also reflected in the fact 

that among the numerous communication systems implemented there is no prevalent 

system architecture or modulation scheme. In this work we concentrate on a subset 

of the observed communication channels. A common feature of the underwater 

communication channel is that it is sparse, so the subset treated in this work includes 

sparse channels. As is pointed out above the underwater communication channel has 

lower obtainable bit rates than some other communication channels such as cellular 
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phone or indoor wireless. The consequence of this is that the Doppler spread is more 

important, and this is further emphasized by the fact that a subset of underwater 

communication channels exhibit Doppler spread significant relative to the bit rate. 

Thus the problem discussed in this thesis is identification of physical scenarios with 

doubly spread channels where the Doppler spread is more severe than the delay 

spread. Moreover, we are also concerned with how receivers commonly encountered 

in other communication channels behave in the presence of Doppler spread. We 

derive and discuss possible solutions that work better on the sparse doubly spread 

underwater communication channels that have more severe Doppler spread than 

delay spread. 

1.3    The approach 

Preview In this section we further discuss the problem of communication over 

doubly spread channels with emphasis on Doppler spread, and we suggest how this is 

accommodated. We follow an approach that consists of several parts in order to solve 

the problem of communication over a possibly doubly spread channel. The different 

parts are channel identification, channel tracking and optimal linear decoding. The 

acoustic signal is modeled as propagating over a number of rays, and each ray may 

have a different Doppler shift depending on the ray direction relative to the scatterer 

velocities. The emphasis is to derive a receiver that works satisfactorily with Doppler 

spread comprised of different possibly slowly varying Doppler shifts on different ray 

paths since not much work is reported in this area and it is increasingly important 

to deal with this distortion as the bit rate decreases. 

The first part is concerned with identifying the delay and Doppler spread struc- 

ture of the channel, and this is carried out by sending a channel probe which is a 

sequence of data symbols known to both the receiver and transmitter. Then the re- 

ceiver uses this information to obtain a scattering function estimate, and the quality 
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of this estimate depends on the signal to noise ratio and the duration in time and 

frequency of the data sequence. An important part of this work is to use this part 

of the receiver without even trying to communicate. If this channel identification 

procedure is tried in different underwater communication channels it measures the 

variability of the scattering functions over a wide variety of real ocean channels. This 

in turn gives a measure of how much delay and Doppler spread one should expect 

in a given scenario. The aim of the approach in this thesis is not to make a receiver 

that works well on all channel scattering functions, but rather to look at the subset 

of channels that are doubly spread with more significant Doppler spread than delay 

spread. Part of this task is also to simulate the underwater communication chan- 

nel to verify that the observed spreads can be obtained from reasonable physical 

mechanisms that we know take place in the ocean. 

Given that a reliable estimate of the scattering function of the channel is ob- 

tained with the channel probe one would like to incorporate this information in 

some optimal way for reconstructing the transmitted data sequence. The channel 

is time-variant and may change during the data sequence transmission, therefore 

it is necessary to track the channel during data reception. The proposed channel 

tracker can exploit both the estimated channel structure through its state space 

description, and can also be used to track changes in the channel by utilizing its 

recursive way of computing estimates. Therefore, the next part of the receiver is a 

channel tracker which has embedded in its model the delay-Doppler-spread func- 

tion for channel characterization and it uses the received data, the transmitted data 

and its internal model to recursively estimate the delay-Doppler-spread function. 

The channel tracker always has the received data sequence available, and the first 

part of the transmitted data i.e, the training set, is a sequence that is known to 

the receiver. Therefore the channel tracker can make use of the channel input, the 

channel output and the initially estimated scattering function to obtain initial con- 

vergence and tracking of the underwater communication channel. Each snapshot of 
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the delay-Doppler-spread function is used by the decoder, to be described below, 

and the decoder uses the received data and the delay-Doppler-spread function to 

estimate the nearest allowable data symbol drawn from the alphabet used by the 

transmitter and known to the receiver, and this is the decoded symbol. When the 

training sequence is ended, the presumably correctly decoded symbols are used by 

the channel tracker in place of the training sequence to provide the channel input, 

and this enables the channel tracker to continue tracking the channel throughout the 

data packet. 

The decoder uses the delay-Doppler-spread function as estimated by the channel 

tracker, and with this knowledge it optimally combines the different parts of energy 

that has been dispersed by the channel to estimate the transmitted signal. Varying 

the optimality criterion gives different decoder structures. The criterion adopted in 

this work is optimization with respect to the minimum mean square error between 

the estimated and true data symbol. 

The receiver/transmitter synchronization is obtained by means of a Barker se- 

quence, and the receiver continuously performs a matched filter operation to this 

sequence. When a packet start is detected by means of the matched filter output 

exceeding a threshold, the scattering function estimate starts after a fixed delay. 

To verify the receiver capability it is used on real and simulated data and com- 

pared with a different receiver structure that is currently in use. A summary of the 

receiver built up by this approach is shown in Fig. 1-1. 
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Figure 1-1: An overview of the proposed system for use in the underwater commu- 
nication channel. 
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1.4    Thesis overview 

The thesis is organized according to the approach outlined above. Chapter 2 gives 

the necessary definitions and introduces the theoretical framework for characteriza- 

tion of the time-variant channels. It introduces and discusses the scattering function 

and relates this channel characterization tool to the ambiguity function commonly 

used in sonar and radar, and also to a function used for characterizing linear time- 

variant (LTV) channels called the delay-Doppler-spread function. Another function 

commonly used for characterization of LTV channels called the input delay-spread 

function is also presented and discussed in this chapter. The random behavior of 

the underwater communication channel makes it convenient to use a statistical de- 

scription of the LTV. The concept of a wide sense stationary uncorrelated scattering 

(WSSUS) channel is central to the development of this description and also to the 

formulation of the channel tracker. Therefore this chapter introduces and discusses 

the WSSUS channel. The work in this chapter is not my own, but rather a compi- 

lation of pieces of work by various other authors [7], [101], [82], [83]. 

As discussed in the introduction of this chapter, the understanding and modeling 

of the acoustic wave propagation is essential in the understanding of how to make 

robust and efficient use of the underwater communication channel. Therefore, Chap- 

ter 3 develops a simulation tool based upon a raytrace representation of the acoustic 

field and a time-variant finite impulse response (FIR) filter, and it gives the connec- 

tion between observed Doppler and delay spread and the physical processes in the 

ocean. Herein, is also contained the estimated scattering functions of a few very dif- 

ferent underwater communication channels motivating the imposed constraint in the 

problem formulation to deal with a subset of underwater communication channels. 

Given the channel model developed in Chapter 2 and the verification of its rele- 

vance in Chapter 3 we derive the maximum likelihood (ML) receiver structure based 

on this channel model in Chapter 4. The doubly spread channel is a generalization 
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containing both the time-invariant delay spread channel and the purely Doppler 

spread channel, and the receivers for these channels are shown to be special cases of 

the doubly spread receiver. The ML receiver for a doubly spread channel gives a high 

computational load, therefore we resort to the suboptimal minimum mean square er- 

ror (MMSE) receiver outlined above. The main concern is on Doppler spread, and a 

common nonlinear receiver called the decision feedback equalizer (DFE) is analyzed 

in particular with respect to a Doppler spread signal. The verification and evaluation 

of the receiver design is carried out by testing it on both data obtained from the 

simulator described in Chapter 3, and also on data acquired from the ocean. 

Finally in Chapter 5 some conclusions and future directions are outlined. 

Thesis contributions 

The contributions of this thesis are roughly divided in three parts: 

1 The first part is on underwater communication channel identification. The mea- 

surements and scattering function estimates computed from a large number of trans- 

missions varying geographically from the Arctic, ice covered ocean to tropical waters 

bring out clearly that there is no such thing as "the" underwater communication 

channel. The characteristics in terms of delay and Doppler spread are so different 

that one can hardly hope for one particular communication system serving all these 

channels appropriately. An important result of the channel measurements is to high- 

light the presence and importance of Doppler spread in some of the channels. This 

spread is so far in the literature usually attributed to the "rapidly varying" nature 

of the ocean. The transmitter/receiver motion and the physical ocean processes 

producing time variability such as waves or currents are not taken into account, 

therefore the variability is modeled with random processes. It is shown in this thesis 

that some of the variation originates from different Doppler shifts on different ray 

paths or a time-variant Doppler on some of the ray paths.   This is supported by 
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acoustic measurements from the ocean combined with information about geometry, 

sound speed, surface conditions, etc. Moreover, through a simulator the explanation 

for some of the observed Doppler spread is linked to physical processes that we know 

take place in the ocean such as transmitter and receiver motion and surface waves. 

This serves as a justification for the adopted explanation of the Doppler spread. 

2 The second part is the analysis of the commonly used RLS algorithm with respect 

to Doppler spread. The analysis gives insight into the behavior of a receiver adapted 

with RLS during the reception of a Doppler spread signal, and this behavior is 

correctly predicting the result when running on real data. When a phase locked 

loop. (PLL) is employed to take care of the Doppler spread through tracking of the 

instantaneous frequency the analysis also brings out clearly the interaction between 

the two devices (the RLS algorithm and the PLL) and shows that the result is an 

ill-posed system. Specifically, some amount of the Doppler spread is compensated 

by the RLS and this produces tap rotation. As a result of this the RLS updating 

the taps is required to have large bandwidth because the PLL compensates the 

Doppler spread insufficiently. Related work and results are found in the literature, 

and is referenced at the relevant locations, but the detailed analysis of the composite 

system of the PLL and the RLS algorithm has not been found anywhere else. For 

simple Doppler shifts a good compensation is achieved by estimating the shift from 

the cross-ambiguity function and applying phase rotation of the signal before it 

enters the receiver. 

3 The third part is a contribution towards developing a receiver that works on a 

sparse doubly spread channel with emphasis on using a minimum number of de- 

grees of freedom. The model for the channel tracker in this receiver is motivated 

by the channel model developed and verified through real data measurements and 

simulations, and the insight gained from the analysis of the RLS algorithm is incor- 

porated in this channel tracker. A modified RLS algorithm with a time update step 
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incorporating the knowledge about Doppler is presented. This algorithm, called the 

time updated RLS (TU-RLS), is applied in the channel tracker that estimates the 

cross-ambiguity function of the channel. This estimate is used in a decoder that 

employs Doppler lines, which are frequency domain filters replacing the PLL, and 

the decoded data are used by the channel tracker to maintain the cross-ambiguity 

function estimate. This receiver configuration has neither been encountered in the 

literature that has been surveyed on underwater communication nor in any other 

communication channel, and it represents an attempt to deal with doubly spread 

channels without implicitly degenerating them to singly spread channels at the ex- 

pense of bit rate [101]. The operational capability of the receiver is verified on both 

simulated and real data. An experiment was performed in shallow water near New- 

port RI during February 1996. Some of the data collected in this experiment is 

severely Doppler spread, and efforts to decode this data with already existing re- 

ceivers have been unsuccessful. The data are successfully decoded with one of the 

receivers derived in this thesis! 
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Chapter 2 

Characterization of time-variant 

channels 

2.1    Preview and motivation 

For reasons that were pointed out in Chapter 1 the underwater communication chan- 

nel is modeled as an LTV system, and the purpose of this chapter is to present 

appropriate mathematical tools to analyze and work with these systems. The class 

of all LTV systems is very large and, for the purpose of the modeling of underwa- 

ter communication channels, we are interested in only a subset. The physics of the 

underwater communication channel helps us to identify the subclass that models 

the underwater communication channel well. The main constraint is the WSSUS 

assumption that is discussed in conjunction with (2.4). We know from acoustical 

modeling to be described in Chapter 3 that the channel can be thought of in various 

ways. One representation is as time-variant scatterers at different delays, and this 

gives the input delay-spread function in (2.1). Another representation is as constant 

in time scatterers at different delays moving at different speeds, and this gives the 

delay-Doppler-spread function in (2.2). 

The WSSUS assumption allows us to define the channel scattering function which 
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is a two dimensional power spectral density in delay and Doppler, and this function 

is defined in (2.7). The scattering function could be directly computed from the com- 

plete statistical description of the delay-Doppler-spread function, but this knowledge 

is seldom available. In a practical experiment we can not hope for much more than a 

characterization in terms of the second order statistics of the channel which are given 

by the scattering function. Thus to get the second order statistics we need a way 

to estimate the scattering function, and this can be found from the cross-ambiguity 

function as shown in (2.34). 

Delay spread and Doppler spread are distortions introduced by the underwater 

communication channel in time and frequency, respectively. When we want to com- 

municate over this channel we need to understand and take into account both of 

these dispersions. In Section 2.4 on Doppler lines and delay lines we make connec- 

tions between purely delay spread and purely Doppler spread channels. The concept 

of duality is utilized to draw on knowledge about the more common delay lines and 

transfer this to the less common Doppler lines. The Doppler lines play a similar role 

for modeling and equalizing Doppler spread channels as do the delay lines for delay 

spread channels, and this is illustrated in (2.62) and (2.66). Both the delay lines and 

Doppler lines are linear devices which can be characterized by their eigenfunctions, 

and this is performed in the discussion surrounding (2.73). 

2.2    Wide sense stationary uncorrelated scatter- 

ing channel 

The wide sense stationary uncorrelated scattering (WSSUS) assumption is essential 

to much work reported in the literature on LTV systems, some examples where 

this is implicitly or explicitly used are [82], [101], [44], [4], [63], [55]. The WSSUS 

assumption is embedded in the receiver that is derived later in this work, and we 

also need to invoke this assumption in order to make connections between the cross- 
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ambiguity function, the channel scattering function and the delay-Doppler-spread 

function all to be introduced in this chapter. All of these functions are useful for 

the channel identification work that we present in Chapter 3. The framework for 

the WSSUS assumption is developed in [7], [8], and we give a summary of some of 

the conclusions therein. In order to explain some of the consequences of the WSSUS 

assumption we introduce some useful functions for characterizing LTV systems. 

There are many equivalent ways of characterizing LTV systems, and [7] contains 

a thorough analysis of eight related system functions that can be used to describe 

LTV systems. It establishes connections between these and four other system func- 

tions introduced elsewhere [54], [107]. These system functions are commonly used in 

other areas where LTV systems occur and are sometimes referred to as the "Bello- 

functions" [89]. We do not present an exhaustive discussion of these functions, but 

introduce some of those that give insight into our problem. One main difference be- 

tween the various functions is the connection they have to distinct physical models. 

The input delay-spread function h(t,r) relates the input x(t) to the output y(t) of 

the LTV by 

y(t)    =    Jx(t-T)h(t,T)dT. (2.1) 

This equation can physically be depicted as a continuum of non-moving scintillating 

scatterers. Thus the physical interpretation in the context of an underwater com- 

munication channel is that we have scattering from all the volume and boundaries 

that are insonified by the sound, but the scattering strengths from different parts of 

the volume and boundaries vary with time. Another useful function in our case is 

the delay-Doppler-spread function given by 

y(t)   =    j f x{t-T)U{T,v)e^utdTdv (2.2) 

where the physical equivalent is a channel with scatterers moving at different veloc- 
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ities and at different locations (delays). The relationship between the input delay- 

spread function and the delay-Doppler-spread function is found from (2.1) and (2.2), 

and it is given by 

h(t,r)   =   jU(T,u)ej2lTl/tdu. (2.3) 

Thus one interpretation of the delay-Doppler-spread function is as the Fourier de- 

composition in the time variable of the input delay-spread function. U(T,U) is 

the complex scattering amplitude of the scatterers within the delay (r, r + dr) and 

Doppler (i/, v + du). A useful physical interpretation of this channel representation 

is that the scattering strength of each scatterer is not changing in time, because 

U(T, V) itself is not a function of time, and the time-variance of the channel enters 

only through the fact that the scatterers are moving. The presence of a Doppler 

shift due to a moving scatterer means, by definition, that the delay is also changing. 

Thus the physical interpretation is not in general valid but, as the following numbers 

show, it is useful in our scenario. A typical symbol rate is 1000 symb/sec so that a 

symbol extends 1500/1000 m=1.5 m when the sound speed is 1500 m/sec. A Doppler 

shift of 5 Hz at 20 kHz carrier means a scatterer speed of 0.38 m/sec. We transmit 

data in packets of typical length 2 sec, and the scatterer moves 0.38 x 2 m=0.76 m 

in this time. Thus the scatterer is within one symbol length (=1.5 m) during the 

entire transmission. This is the assumption that makes the physical interpretation 

above useful, and it should be used with care since it is obviously broken for higher 

Doppler, higher symbol rate or longer packet length. Thus we may think of U(T, V) 

as a short term stationary model. 

We allow U(T, V) to be a time-dependent function U(T, V\ t) in later chapters, but 

in order for this model to be useful we assume that the change in £/(r, v) is much 

slower than the time variance caused by the scatterer motion in accordance with 

the example above. If this assumption is violated the model looses its significance. 
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There is no need to factor out ej2nt/i in (2.2) if U(T, v\ t) varies at the same rate as 

ej27n/t. The assumption of slowly varying delay-Doppler-spread function is used in 

the derivation of the receiver in Chapter 4. 

Now let us assume that the channel is wide sense stationary (WSS), and by that 

we mean that h(t,(,) is a WSS random process with respect to its time variable t so 

that 

ÄÄ(M-r;i7,0   =   E[h(t,rj)h*(t-r,0]=Rh(r;r],0- (2-4) 

The absolute time t when we excite the channel is irrelevant to the computation of 

Rh in (2.4), and the WSS assumption implies that Rh(t,t- r; 77, £) is not a function 

off. 

In addition we assume that the channel is made up of uncorrelated scatterers, 

and by that we mean that no matter how close two scatterers are in the channel they 

produce uncorrelated scattering. This means that h(t,£) is a random process that is 

uncorrelated in its delay variable £, and it is called the uncorrelated scattering (US) 

assumption: 

Ä*(r;i7,0    =   Pk(rA)Hri-0 (2-5) 

where 

Pk(r,0   =   E[h(t,Oh*(t-r,0}- (2-6) 

In the case of the delay-Doppler-spread function the WSSUS assumption will 

give a particularly simple form of the autocorrelation function: 

Ru&wti   =   E[U(MU*(v,ri] = S(t,v)6{fi-v)6(r,-t) (2.7) 
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where S(£, v) is the channel scattering function which is a two dimensional power 

spectrum density in delay and Doppler. Equation (2.7) can be derived by using 

the WSS assumption to get impulsive behavior in the Doppler variable and the US 

assumption get impulsive behavior in the delay variable of Ru{£, *}', v, p)- The corre- 

sponding physical interpretation of the WSSUS channel is that it may be represented 

as a collection of uncorrelated non-scintillating scatterers which cause both delay and 

Doppler shift. The channel scattering function S(£, v) can be derived from h(t, £) 

and other LTV representations as well, but it is defined if and only if the WSSUS 

channel assumption is adopted, and in this case it gives exhaustive information about 

the second order statistics of the channel. Therefore £(£, v) is an essential parameter 

when characterizing the underwater communication channel, and we need to obtain 

estimates of it. 

In a regular experiment the only accessible data is the input and output of the 

channel, and we are not likely to have direct measurements of any of the quantities 

U(T, V) or h(t, £). Thus we present a function that will be useful for the purpose of 

estimating 5(£, v) from input and output channel data only, and it is called the cross- 

ambiguity function. In Section 2.3.1 we also show that different physical mechanisms 

for Doppler spread may generate similar cross-ambiguity functions, and we comment 

on the narrowband assumption inherent in the development that leads to (2.32) in 

Section 2.3.2. For this we need a convenient representation of the transmitted data 

sequence, and we now present the complex envelope of a signal which is a common 

way of representing narrowband signals. 

2.2.1     Representation of the transmit signal 

The sequence of information symbols is mapped into a continuous time waveform 

suitable for transmission over the underwater communication channel, and we now 

discuss how this can be carried out.   For this purpose we define the real valued 
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continuous time passband signal 

x0(t)   =   A(t) cos(2irfct + <f>(t)) (2.8) 

where fc is the carrier frequency which is in the range 5-50 kHz for the data shown 

in Chapter 3. The quantity <f>(t) is the phase of x0(t) which is used to carry the 

information in the phase coherent systems considered here. The variation of 4>(t) is 

such that the frequency content of x0(t) is concentrated in a narrow band around fc. 

The real signal A(t) is the amplitude envelope of x0(t), and it can be, e.g., a train 

of rectangular pulses or a train of raised cosines. Let us assume that it is given by 

a rectangular pulse train 

A(t)   =   1/Trect(t) (2.9) 

where 

1   for 0 < t < T, , 
rect(i)    =    \ (2-10) 

0   elsewhere. 

If we expand (2.8) we get another representation for the transmitted signal x0(t): 

x0(t)   =   [A(t) cos <f>{t)]cos{2irfct)-[A(t) sin <t>(t)]sm(2irfct) (2.11) 

where the two terms in the brackets are the quadrature components. This expression 

is also conveniently written as 

x0(t)   =   Re[A(t)ej*Mej2*f't] = Re[x(t)e>2*f<t) (2.12) 

where we have introduced the complex envelope x(t) — A(t)ej<t>^ which is a lowpass 

signal centered around 0 Hz. We use QPSK modulation, so the information sequence 
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phase (f)(t) is constant over the symbol period, and we write 

<j>(t)   =   <j>(n)  (n-l)T <t< nT (2.13) 

where 

The transmitted signal is written in terms of the complex envelope as 

(2.14) 

]T x(t - nT)   =   1/T £ A(t ~ nT)ejW-nT) = 1/T £ rect(< - nT)ej<t'^ 
n n n 

=   l/T^2z(n)iect(t-nT) (2.15) 

where 

z(n)€{-l,-j,l,j} (2.16) 

is the information symbol sequence. The three representations (2.8), (2.11) and 

(2.12) are all equivalent, and we use the complex envelope in (2.12). In order to 

recover the information from x{t) we proceed as shown in Fig. 2-1.    The multiplier 

x(t)e jMct 

Figure 2-1: Recovering the information sequence from the carrier modulated complex 
envelope. 
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to the left in Fig. 2-1 demodulates the received signal, and the integrator acts as a 

matched filter to the shaping pulse A(t). The real valued signal x0(t) that is trans- 

mitted has phase shifts of rnr/2 for n € {0,1,2,3} every symbol period, and this 

information is contained in the complex sequence z(n). Implicit in the interpreta- 

tion of Fig. 2-1 is the quadrature demodulator. This means that we multiply the 

received signal x0(t) with the two sinusoids cos(2trfct) and sin(27r/cf) and, as is seen 

from (2.11) and (2.12), the result is represented as the complex signal x(t). The 

introduction of x(t) is merely a convenient notation that is often used, and for this 

reason we adopt it in this work. 

We now have a representation of the transmitted signal that explicitly contains 

the ^sequence of information symbols, and we proceed with the discussion of the 

cross-ambiguity function. 

2.3    Ambiguity function 

The ambiguity function is often used in radar and sonar to characterize transmit 

waveforms, and in particular how the transmit waveform affects the estimation of 

the range and velocity of a point reflector. We follow closely the derivation in [101], 

and we define the complex envelope of the transmitted signal to be x(t). The relation 

between x(t) and the transmitted signal is 

x0(t)   =   V£Re[x(t)e>2"te] (2.17) 

where fc is carrier frequency. The transmitted signal has energy £, and x(t) is 

normalized according to 

/oo 
\x(t)\2dt   =   1 . (2-18) 

-oo 
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If there is a reflector at delay r moving to give Doppler shift vd, we model the 

complex envelope of the received signal as 

y(t)   =   VSbx(t - T)ej2^ + w(t) (2.19) 

where w(t) is complex Gaussian circular [97] white noise with covariance 

R(t,u)   =   NQS{t-u) (2.20) 

and b is a zero-mean, complex Gaussian random variable representing the reflection 

process, r and vd are unknown parameters for which we want to obtain maximum 

likelihood (ML) estimates. Thus we form the sufficient statistic 

L(T,vd)   =   jy{t)x*{t-T)e-i2T^dt. (2.21) 

If (f, vj) took on a finite number of values we would have a multi-hypothesis problem 

where the solution would be a set of tests involving likelihood ratios [101], [82]. In our 

problem (f, i>d) take on a continuum of values, and we have a parameter estimation 

problem. In this case we form the log likelihood function In A which is proportional 

to the magnitude squared of the sufficient statistic. Thus we look for the maximum 

of the likelihood function 

lnA(f,i>d)   ~   \L(r,ud)\
2 (2.22) 

as a function of f and vd. Then (2.19) and (2.21) give 

L{i,vd)   =   VSbf x(t-T)x'(t-T)e>2"(','t-i>d*dt 

+   jw(t)x*(t-T)e-j2™dtdt. (2.23) 
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By defining 

r    =   T — T 

vd    =    Vd~ VA 

n{r,vd)   =   Jw(t)x'(t-T)e-i2"**dt (2.24) 

we get the likelihood from (2.22) and (2.23) as 

In A(f, vd)   =   S\b\2 j x(t - r)x*(t - r - r')e-J'w-'<ft|2 

+   2VERe[bn*(T, ud) J x*(t - r)x(t - r - r'^2™'*1 dt) 

+   |n(f,i>,)|2. (2.25) 

In the absence of noise, the output of the ML receiver for (r, vd) scaled by £\b\2 is 

0o(r>i)   =    \Jx(z + T'/2)x*(z-r'/2)e-^^dz (2.26) 

where we have made the substitution z = t — r - T'/2 to emphasize that 80(T', v'd) 

is a function of r and vd only through the differences (r', v'd). This is a measure 

of the degree of similarity between the complex envelope and a replica shifted in 

time and frequency, and it is known as the ambiguity function [101], [106]. The 

likelihood function in (2.25) and also the cross-ambiguity function to be introduced 

in this section are random variables. An important measure of their performance is 

the ratio of their mean to standard deviation. This is discussed in Section 4.3.6 and 

Appendix C. 

The ambiguity function is used to characterize transmit waveforms with respect 

to their ability to detect and estimate the range and speed of moving point reflectors. 

In this work we are interested in characterizing communication channels, therefore 

we develop the concept of the ambiguity function a little further in this section. 
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We want to introduce the cross-ambiguity function which is a channel identification 

tool that is used with time-variant channels. For this purpose we make a parallel 

relation that shows the connection between the cross-correlation function and the 

identification of time-invariant systems. Let us consider the channel identification 

problem of Fig. 2-2, and let the system h(r) and thus ä(T) be linear time-invariant 

(LTI). Assume that the noise w(t) is uncorrelated with x(t) and that we want to find 

Figure 2-2: Channel identification problem, no inversion needed because both chan- 
nel input and output are known. 

h(r) so that E[\y(t) — y(t)\2] is minimized.  x(t) is a WSS process with covariance 

RXX{T)I and we have that 

y(t)   =     / h(r)x(t - r)dr + w(t) 

y(t)   =     I h(r)x(t - r)dr (2.27) 

The minimization of E[\y(t) - y(t)\2] over }I(T) is a well known problem and the 

solution can be found in [101]. Omitting the derivation we have that h{r) is given 

by 

Rxy{r)    —    j RXX(T — s)h(s)ds (2.28) 
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where 

Rxy(r)   =   E[x(t)y"(t-r)] 

R*X(T)   =   E[x(t)x*(t-T)]. (2.29) 

If x(t) is a white process the covariance RXX(T) of x(t) is given by 

Rxx(r)   =   <T
2

X6(T) (2.30) 

and if a2 — 1 we get from (2.28) 

h(r)   =   Rxy(r). (2.31) 

This is the parallel relation that can be used to motivate a generalization of the 

ambiguity function. We now use (2.26) to construct a new function that can be 

used for channel identification on a time-variant channel in a similar way as the 

cross-correlation (2.31) is used in the time-invariant channel. Consider the quantity 

0(T, ud) = \f x{t + r/2)y*(t - rl2)e-^^dt (2.32) 

which we call the cross-ambiguity function [10]. Note that in the case of vd = 0 we 

have the squared magnitude of a cross correlation estimate between x and y on the 

right hand side of (2.32). The purpose of presenting the derivation (2.27)-(2.31) is 

to make a connection between (2.32) and (2.26). The expression (2.31) shows how 

the channel in an LTI system can be identified from the knowledge of the input and 

output signal only. This suggests that 6(T, Vd) is an estimate of the channel response 

in the case of an LTV system. 

The ambiguity function in (2.26) is introduced by means of a parameter esti- 

mation problem where we want to find (f, £><*)•   The cross-ambiguity function is 
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introduced by means of the system identification problem in (2.31), where we want 

to find h(r). We note that these two problems are related, since part of a system 

identification problem is to find the delays r. The quantity inside the squared mag- 

nitude of (2.32) is called the time-frequency correlation function, and this is a more 

complete analogy to the system identification problem (2.31). 

The cross-ambiguity function uses only the input and output data from the 

channel, and we now show its relation to the channel scattering function that was 

introduced in (2.7). By this derivation we demonstrate that there is a relationship 

similar to (2.31) of the case of an LTV system, and for this purpose we consider the 

noise free case of (2.2). We return to the general case in Section 4.3.6. By inserting 

(2.2) in (2.32) we get 

8(T, vd) = J ■■■ J x{h + r/2)x*(f! - r/2 - 6)^>i, ^iK^1^1 

x*(t2 + r/2)x(t2 - r/2 - ^)U{u2,(2)e
i2^+^tHt1dt2duldv2d^di2   (2.33) 

where we have just written out the magnitude squared in (2.32) as two nested con- 

jugate integrals. We now take the expectation of this equation, and note that by 

means of (2.7) we can integrate over v2 and £2 to get 

E[e(r,ud)]    =   J J J J xfr + Tföx'ih-Tß-h) 

x*(t2 + T/2)x(t2 - r/2 - (JSiv^^e-i^+^-^dhd^d^dh 

=   J j\Jx(t'1 + ^)x*(t[ - I±l)e-iM^1K^i,25(z/ij6Mz/i^i 

=   j j Hi- + Zii"d + vx)S(£uu1)d£xdv1 (2.34) 

where we use the variable substitution tx — t[ + <fa/2, t2 = t'2 + &/2 and also use 

(2.26) to arrive at the last expression. The physical interpretation of this is that by 

computing the expectation of the cross-ambiguity function we view the true channel 

scattering function through a convolution with the signal ambiguity function [101]. 
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Therefore in order to get a best possible estimate of the channel scattering function 

the ambiguity function of the signal should be as impulsive as possible in both delay 

and Doppler, and this translates into the desire for a wide band signal of long dura- 

tion [101]. In this reference there is also a list of standard properties of the normalized 

ambiguity function, and one of these is the normalization property 0(0,0) = 1. For 

mathematical brevity we use unnormalized cross-ambiguity functions in Chapter 4 

because it is the relative shape of this function that is important. In particular we 

have that if 

e0(r,vd)   =   6(r)S(ud) (2.35) 

then (2.34) yields 

E[0{r,vd)}   =   S(r,ud) (2.36) 

and this further illustrate the relationship (2.34). 

2.3.1     Time-variant and multiple Doppler shifts 

The cross-ambiguity function can be interpreted as an estimate of the scattering 

function as was shown in (2.7) and (2.34), and one assumption is that the delay - 

Doppler-spread function is time-independent so that the strength and Doppler shift 

on each ray are constant vs time. This may be violated if the integration time T in 

the cross-ambiguity function increases. In the models for the receivers discussed in 

Section 4.3 the delay-Doppler-spread function is allowed to be slowly time varying. 

It is important when interpreting the cross-ambiguity function to understand that 

there may be different physical mechanisms generating the same shape of the cross- 

ambiguity function. We are in particular concerned with Doppler spread, and we 

now show an example of how different scenarios can give the same shape of the cross- 

61 



ambiguity function. In Fig. 2-3 is shown a simulated received signal with rectangular 

pulse shape arriving over a single ray path. The Doppler shift v of this ray is a 

function of time and is varying more than 3 Hz over the time window of roughly 2 

sec shown in the upper panel. This takes place if the ray interacts with an ocean- 
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Figure 2-3: The complex envelope (upper panel) and 3 dB contours of the cross- 
ambiguity function (lower panel) for a signal with time-variant Doppler. 

surface having a long swell, and the swell period is shorter than 2 sec. The upper 

panel of Fig. 2-3 shows the absolute value in linear scale of the complex envelope at 

2 samples per symbol. The lower panel shows the cross-ambiguity function contours 

for this signal, and it has a mean Doppler of -4 Hz but as the Doppler varies there 

are components on -5.5 Hz and -4.5 Hz. The exact shape of the cross-ambiguity 

function in the case of a time-variant Doppler will depend on the time variation. 

In order to compute the cross-ambiguity function as shown in Fig. 2-4 in a real- 

istic receiver synchronization is necessary. Our current interest is merely to demon- 
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strate different signals generating similar cross-ambiguity functions. Therefore we 

defer the synchronization discussion to Section 4.1.5 where we explain how this is 

carried out.   In Fig. 2-4 is shown a signal arriving over two ray paths with different 
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Figure 2-4: The complex envelope (upper panel) and 3 dB contours of the cross- 
ambiguity function (lower panel) for a signal with two Dopplers. 

Doppler shifts. This would take place if one ray is a direct path and the other is in- 

teracting with the moving ocean-surface and the transmitter is close to the surface so 

that the ray travel times are almost equal. The contour plot of the cross-ambiguity 

function in the lower panel shows the two Doppler components of this signal, and 

their relative strength is a function of the relative strength of the signal on the two 

ray paths. The composite signal represented by its complex envelope is shown in the 

upper panel, and as the two ray paths interfere constructively or destructively the 

envelope of the signal varies. We have coherent channel fades when the two ray paths 

interfere destructively, and the depth of the fade is given by the relative strength of 
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the two rays whereas the duration is given by the difference in Doppler. A coherent 

channel fade can only be compensated by use of redundancy in the symbol sequence 

in the way it is implemented with coding. 

Even though the cross-ambiguity function for the two figures are similar we can 

see a major difference in the complex envelope: A single time-variant Doppler is not 

accompanied by an envelope modulation, and we will show examples from real data 

in the following chapters where this is used to distinguish between the two cases. 

2.3.2    Narrowband assumption 

We now consider the approximation involved in the narrowband assumption, and 

first we comment on the complex envelope notation. The complex envelope x(t) of 

a signal xo(t) is convenient in the narrowband case partly because 

x0(t)   =   Re[\x{t)\eilx^e^^} (2.37) 

allows us to identify the complex envelope x(t) and the carrier frequency fc of the 

signal. If xQ(t) is a wide band signal we can still express it by (2.37) but the quantities 

x(t) and fc loose their meaning as the complex envelope and the carrier frequency. 

For ease of notation we retain this representation, and we take fc to be the center 

frequency of the frequency band of x0(t). 

The effect of Doppler is more profound than a shift in frequency. In its funda- 

mental form it involves the transformation from a stationary to a moving coordinate 

system resulting in time dilation. The distance between the coordinate systems is 

the range, and the motion is described by the time derivatives of the range. The 

relative motion is in general arbitrarily complex with non-zero relative speed, accel- 

eration, change in acceleration, etc. We assume that effects from acceleration and 

higher order derivatives of the range are small and negligible. The first order effect, 

not accounted for in the narrowband assumption, is non-zero speed. Specifically, if 
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we have a sound pulse x(t) traveling with speed c in one coordinate system we have 

x((l _|_ vs/c)t) in a coordinate system that is moving with speed vs relative to the 

first one, and we can find the Doppler shift v by 

^   =    -. (2.38) 
C Je 

In addition to the time dilation it can be shown that the Doppler effect also results 

in amplitude distortion of the reflected waveform for a moving scatterer, and this 

is reported both for electro magnetic [83] and acoustic [62] signals. Therefore a 

generalized cross-ambiguity function is given by [83] 

e(r,i/0,vi)   =   \b{v0)b{Vl)i x{(l + v0lfc){t + Tl2))y*{{l + Vllfc){t-Tl2))* 

eiM»o-^)tdtf (2.39) 

where 6(^0),K^i) accounts for the amplitude distortions at Doppler i/0, vx. The 

amplitudes affect the shape of the ambiguity function, but the effect is small [62] for 

reasonable Doppler shifts, therefore we neglect this effect. The generalized cross- 

ambiguity function (2.39) is identical with the narrowband cross-ambiguity function 

(2.32) if we neglect the amplitude distortions, use a matched filter at vQ = 0 and 

neglect the time dilation in the received signal y(t). We now turn to the time dilation, 

and we remember that the ambiguity function can be interpreted as a matched filter. 

Thus the effect of neglecting the time dilation in the envelope of x0(t) is to use a 

slightly mismatched filter which will introduce a coherence loss. A common rule for 

when we can neglect the time dilation, based on limiting this coherence loss [83], is 

given by 

TW < 0.1- (2.40) 
Vs 

where W is the bandwidth, T is the signal duration and vs/c is known as the acoustic 
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Mach number. This may or may not be violated in underwater communication 

channels, and we illustrate this with two examples. 

Example 1 A receiver using RLS in decoding mode has a forgetting factor of 

A = .99. Thus the number of samples used is approximately 1/(1 — A) and since the 

symbol duration is l/W the averaging window is T = 1/[(1 —A)W]. Thus TW = 100. 

For c = 1500 m/s and vs = 1 m/s, corresponding to u = 13 Hz for fc — 20 kHz, the 

narrowband assumption (2.40) holds. 

Example 2    We compute the cross-ambiguity function as given by (2.32) using 1 

sec of data with bandwidth 600 Hz.   For c = 1500 m/s and vs = 1 m/s (2.40) is 

violated. 

We note that the effect of violating (2.40) in Example 2 is a gradual coherence loss. 

It is not catastrophic, and it can be compensated. 

For a simple Doppler shift the time dilation is compensated by applying the 

inverse transformation of the one implied by the Doppler shift, and this can be 

carried out in the receiver if an estimate of the Doppler shift is available. 

2.4    Doppler lines and delay lines 

The doubly spread underwater communication channel exhibits both time and fre- 

quency dispersive fading that is caused by the Doppler and delay spread of the 

medium and by the transmit/receive platforms. Both delay spread and Doppler 

spread are forms of dispersion, and there is a close connection between channels 

exhibiting delay spread and channels exhibiting Doppler spread: If we think of the 

time domain and frequency domain as dual domains the delay and Doppler spread 

channels may be thought of as duals. This concept of duality is treated in depth 

in [8], and the reader should see this reference for definitions and implications of 

duality. We present here the concepts that are used in Chapter 4, and one of them is 
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the "Doppler line" filter. The notion of a filter is often used for a device that makes 

a weighted sum of differently delayed versions of a signal. We use the name "delay 

line" for this device, and "Doppler line" for the device that makes a weighted sum of 

differently Doppler shifted versions of the signal. They are both filters but in dual 

domains. 

The receivers derived and analyzed in Chapter 4 all work on discrete time signals, 

and the results from this section are used in the analysis and derivation of those 

receivers. Also the duality between delay lines and Doppler lines is developed by 

using the discrete time devices FIR and IIR delay lines, and for these reasons we 

now change to discrete time. The results from Section 2.3 all have straightforward 

discrete time counterparts, and they will be invoked as needed. 

Discrete time and frequency representation 

The delay-Doppler-spread function presented in (2.2) is discussed in [7], and this 

reference also contains a discussion of sampled channel models. We use in Chapter 4 

a channel representation that is discrete in both delay and Doppler, and the assump- 

tions in going both from continuous to discrete time and frequency is presented bo- 

using some results from [7]. The delay-Doppler-spread function is given by (2.2) 

and repeated here for convenience: 

y(t)   =   j Jx{t-t)U&v)e>™d£dv. (2.41) 

Our goal is a discrete representation of (2.41). We define the time-variant transfer 

function as 

T(f,t)   =   J jU&vy^-MdZdv (2.42) 
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where T(f, t) is related to the input delay-spread function by 

h(t,r)   =   jT(f,t)ej2*fTdf . (2.43) 

By inserting the inverse Fourier-transform of (2.42) in (2.41) we get 

y(t)   =   jX{f)T{f,t)e^df . (2.44) 

The reason for the name of T(/, i) is seen from (2.44) since this is the generalization 

of the time-invariant transfer function. There are various constraints that are nat- 

urally associated with a realistic communication system, and by imposing different 

constraints one can arrive at a discrete representation of (2.41) via different routes. 

We now assume that there is an input frequency and output time constraint, so that 

X(f)   =   0,   \f-fi\>Wi/2 

y(t)   =   0,   \t-t0\>T0/2. (2.45) 

The input signal, here represented by its complex envelope, is assumed to be band 

limited to the band W{ centered at /,• and the complex envelope of the output signal 

y(t) is assumed to be time limited to the time T0 centered at t0, therefore it can not 

be band limited. In order to obtain (2.46), and also to discretize y(t) in (2.53), we 

assume that y(t) has most of its energy in a band W0. Thus y(t) is approximately 

both time limited and band limited, and it is clear from the first part of (2.45) that 

(2.44) can be expressed as 

y(t)   =   J X(f)iect(f^\T(f,t)e>2*'tdf (2.46) 
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and also from the second part of (2.45) we write (2.46) as 

y(t) = y(t)rect(^)   =   /x(/)rect(^)T(/,i)rect(^) x 

e>2*ftdf. (2.47) 

We assume in (2.46) that y(t) is approximately band limited so that it has most of 

its energy in a band W0. Then we may consider it irrelevant what value T(/,i) has 

outside the intervals given in (2.45). Therefore (2.47) yields 

y(t)   =   J X(f)f(f,t)ej2*ftdf (2.48) 

where we have defined 

oo oo 

T(M   =     E    E  T(f-kWi,i-nT0) (2.49) 
k=—oo n=—oo 

and y(2) is the periodic extension of y(t), i.e., y(t) = y(t) for \t - t0\ < T/2. Since 

we are considering this time interval only we substitute y(t) for y(t) in the following. 

The Fourier-transform of (2.49) is 

1        °°      °° /     k I h 
*«.')   -   WrT.    T.  UlW,¥)t(t-WW»-¥) (2-50) 

and Ü(£,v) satisfies (2.41) in \t-t0\ < T/2 because f(/,i) satisfies (2.48). Therefore 

inserting (2.50) in (2.41) yields 

OO OO 7 

VW   =     E    E   t/(/,fc)x(^ - —)e^(W (2.51) 
l=—oo k=—oo ' 

where we have defined 

1   ^(777-^)   =   W*)- (2-52) T0Wi    KW{'T0' 
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Because y(t) is approximately time limited and band limited the sampling theorem 

approximately yields 

oo 

*(*)   ~     E   y(^r)^nc[W0(t - —)] (2.53) 
m=—oo 

where we define 

sin(7rx) 
sine (*)  =   -=r- (2-54) 

TTZ 

By using (2.53) in (2.51) we get 

y(t)    =    E^(^)x(^-^)sinc[^-^)]e^W(^).        (2 55) 

In a typical communication system we have that the Doppler spread is much less 

than W,-, and in practice we have W,- ~ W0. By using this in (2.55) and assuming 

that we want to obtain y(n/W0) we get 

y(n)   = .^2U(l,k)x(n-iy2vkA,/n (2.56) 

where we have defined Av = l/(T0W0) and changed notation so that y(n/W0) =$■ 

y(n) and x(n/W0) =^> x(n). 

We now look at some of the features of Doppler lines, and connect them to their 

duals the more frequently encountered delay lines. Let us assume a purely Doppler 

spread channel model. In continuous time we have 

y(t)   =   x(t)JF{u)ej2vi/tdu + w(t). (2.57) 

From (2.41) we see that this is a special case where 

U(t,v)   =   F(v)6(Q (2.58) 
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therefore from (2.56) we have 

y(n) = x(n)   £   F(k)e>2*k*" + w(n) . 
k=—oo 

If we assume that F(k) « 0 for k outside 0 < k < M (2.59) yields 

(2.59) 

Af-l 

y(n) = x(n) £ F(k)e>™*»» + w(n) 
fc=0 

(2.60) 

Note that the model (2.60) implies a time-variant channel, it is therefore expected 

that the device needed to compensate this channel is time-variant. Thus the Doppler 

line is a time-variant gain unlike its dual the delay line. 

Finite frequency spread (FFS) 

Consider the Doppler line in Fig. 2-5.    The structure is identical to that of a FIR 

x(n) •0~rr© 

gj2*Av: oj2xivi 

•0 
F(M-1) 0 

Figure 2-5: The FFS Doppler line. 

delay line the only difference being that the Doppler shift is used in place of the 

delay. The boxes with the multiplicators in Fig. 2-5 are mixers both supplying the 

next mixer and the local weight with its output. The FFS is the dual of the FIR 

because as an FIR delay line has finite impulse response, as will be shown below, its 
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dual the FFS has finite frequency spread. The picture in Fig. 2-5 is written as 

M-l 

y(n) = x(n) £ F(k)e^kA"n 

k=o 
(2.61) 

and by taking the discrete time discrete frequency Fourier-transform, assuming 

kAv = k/N with N being window length, we get 

M-l 

Y(k) = £ F(i)X(k - i) (2.62) 
»'=o 

where X(k) and Y(k) have period N. The nonzero support of F(i) is 

0<i<M-l (2.63) 

If x(n) is a single frequency so that X(k) = 6(k — fc0) for 0 < k < N we have a 

situation as shown in Fig. 2-6. We find from (2.62) that 

F(k) 

I 
M-l N-l 1 *  \c 1        K 

k0-N 

X(k) 

^o N-l 
N-M+l 

* k 

Figure 2-6: The convolution of the two signals yields the output of the FFS Doppler 
line. 
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Y(k)   =   F(k-k0), (2.64) 

and from Fig. 2-6 we see that no aliasing takes place if 

k0 < N - M + 1 . (2.65) 

Thus the single frequency k0 has been spread on the finite interval of width M and 

thereby this Doppler line gets the name "FFS". The aliasing requirement constrains 

the bandwidth of x(n) but for practical communication channels and signals M < N 

so that this constraint is not severe. 

Infinite frequency spread (IFS) 

The picture in Fig. 2-5 defines the relationship between x(n) and y(n) as given 

in (2.61), and conversely (2.61) can be depicted as shown in Fig. 2-5. The duality 

between the FFS Doppler line and the FIR delay line is shown in the previous section, 

and we now look for the dual of an IIR delay line. It is clear that this device must 

obey 
Af-1 

Y{k) = X(k) - £ F{i)Y(k - i) (2.66) 
t=i 

which is the dual of the equation for an IIR delay line. We note that this equation 

always gives aliasing but that in the communication systems of concern the condition 

M <C N may yield small aliasing. A necessary condition for the aliasing to be small 

is that the IFS is stable which means that all M roots r/ of 

M-l 

rk+^2 Fiiy-*   =   0 (2.67) 
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x(n) y(n) 

Figure 2-7: The IFS Doppler line. 

have magnitude less than unity. By taking the inverse Fourier-transform of (2.66) 

we get 

M-l 

y(n) £ F(ky2*kA"n = x(n) 
k=0 

(2.68) 

where we have defined F(0) — 1, and this equation suggests the picture in Fig. 2-7. 

Since there is no time delay the interpretation of this figure is ambiguous and it must 

be interpreted by means of (2.68). By defining 

M-l 

f(n)    =    Y, F{k)ej2*kAun 

k-0 
(2.69) 

and using (2.68) we have 

y(n)   = 
x{n) 

(2.70) 
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Assume that the communication channel is modeled as an FFS Doppler line, i.e., the 

received signal is composed of rays with different Doppler shifts and almost equal 

travel times. In this case the receiver that compensates this is an IFS Doppler line 

and this is used in Chapter 4. 

Eigenfunctions 

The eigenfunctions for delay lines are complex exponentials. When e
j2nkA,/n is the 

input to a delay line with frequency response H(k) the steady state output is 

\H(k)\eilHW+i2*kA,/n . (2.71) 

The output is a scaled version of the input which is the identifying feature of an 

eigenfunction. The eigenfunctions for Doppler lines are delta functions in time or 

complex exponentials in frequency which can be seen by insertion. In the case of an 

FFS we have that for an input 

x(n)   =   S(n — n0) 

X(k)   =   e
j27rkAun° (2.72) 

using (2.61), the output is 

y(n) = £ F(k)ej2*kAun°6(n - n0) (2.73) 
k=0 

which is a scaled version of the input. The scaling factor may be identified as the 

inverse Fourier-transform of F(k): 

M-l 

E 
fc=0 

m — i 

/(n0) = £ F{k)e^kA^ = \f(no)\eil'M . (2.74) 
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The quantity lH(k) in (2.71) is the phase delay of a delay line, and it tells how much 

the phase of the output lags the phase of the input sinusoid for a given frequency 

k. The dual quantity lf(n0) may be interpreted as the delay phase, because it 

tells what the phase difference between input and output is for a given delay. Some 

FFS's have linear delay phase, as some of their dual counterparts the FIR's have 

linear phase delay. Correspondingly no IIR's have linear phase delay, and no IFS's 

have linear delay phase. 

We can make some physical interpretation if we relate these facts to the under- 

water communication channel. If we use a CW signal at the fixed transmitter, and 

measure the phase angle with respect to the transmitted phase at the fixed receiver 

this'angle is constant and equal to LH{k) if the medium between the transmitter 

and receiver contains only fixed point reflectors of constant strength. If the point 

reflectors are moving, so that the medium is time-variant, the phase from the CW as 

it is scattered off a particular point reflector will change when it is measured at the 

receiver. The reason for this is that the total path length between the transmitter, 

point reflector and the receiver is changing (the point reflector is moving), therefore 

the phase also changes with time. This change is given by the delay phase lf(n0). 

Summary This concludes the presentation of the tools useful for characterization 

of the underwater communication channel, and they are used in Chapter 4. The LTV 

system is characterized by means of the input delay-spread function h(t, r) which has 

the physical interpretation of non-moving scintillating scatterers at different delays, 

and the delay-Doppler-spread function U(T, v) which has the physical interpretation 

of non-scintillating scatterers moving at different speeds and delays. The signal 

from each scatterer is interpreted as a WSS process and two scatterers produce 

uncorrelated scattering. This is the WSSUS assumption, and the importance of it is 

among other things that a channel scattering function 5(£, u) can be defined. The 

physical interpretation of this quantity is as a double power density spectrum in delay 
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and Doppler, so that it gives the distribution of energy vs these two variables. We 

present the ambiguity function and generalize this to the cross-ambiguity function 

which can be used to estimate the channel scattering function from the knowledge of 

input and output channel data only. We also point out that there may be different 

physical processes that give similar shapes for the cross-ambiguity function, and 

this is illustrated in the case of Doppler spread on synthetic data where we observe 

that composite information from both the cross-ambiguity function and the complex 

envelope of the signal enables us to distinguish between these two cases. We also 

develop the concept of duality and discuss the time-variant devices FFS and IFS 

Doppler lines, and these are used in the derivation of a receiver for doubly spread 

channels in Section 4.3.4. 
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Chapter 3 

Simulations and measurements of 

communication channels 

3.1     Simulation tool 

The purpose of any simulator is to realistically model some phenomenon under con- 

trolled conditions, and here we want to gain some insight into the important features 

when using the ocean to transmit information by means of acoustical waves. The 

frequencies in question may range from 5 kHz to 50 kHz, and this suggests that 

within limits a ray model for the acoustic field is appropriate. This is also the basis 

for the time-variant FIR model to be described below. The overall simulator setup 

is shown in Fig. 3-1. 

3.1.1    Time-variant FIR model 

The time-variant FIR model for the channel is expressed in terms of the time-variant 

attenuation coefficients from the ray model of the acoustic field. The total acoustic 

field at any reception point is decomposed into rays, so that the complex acoustic 

pressure from each ray is derived from each attenuation coefficient h{(t). The input 
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Figure 3-1: The simulator is based on ocean related parameters feeding a raytrace 
model. 

to the system is the transmitted signal x(t), and into the time-variant FIR filter 

goes x(<) which is given by 

x(0 = [x(t -t0)--- x(t - tL^)f (3.1) 

if the system order is L. L is also the number of eigenrays of the system, and ££-i 

is the maximum delay of the system. The complex attenuation coefficients h{(t) are 

contained in the filter tap vector given by 

h(*) = [Ao(*)"-**-i(t)]a (3.2) 

Each ray has a complex attenuation coefficient, and hi(t) is the coefficient for ray i 

arriving at time t. The received signal is given by 

y(t)   =   hTXL + w(t) 

=     J2hi(t)Xi + w(t) (3.3) 

where x,- is element number i of x(£) and w{t) is Gaussian complex white noise. Note 

that rays arriving arbitrarily close in time are allowed in this model. For example if 
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ray i and ray j have the same travel time this is incorporated by letting U = tj in 

(3.1). The analogy between the ray model acoustic field and the linear time-variant 

system is shown in Fig. 3-2,   where the signal arrives over four different paths and 

■> 
FIR 

filter 

time varying channel 

Figure 3-2: Time varying, clustered channel with four taps in the FIR filter. 

each of these paths has different attenuation and arrival time so that the FIR filter 

in this case has four taps. The number of significant rays depends on the channel 

geometry, sound speed profile and boundary interaction. It varies significantly as a 

function of these parameters. The analogy depicted in Fig. 3-2 shows an example 

of how the FIR parameters and delays are given by the ray model, and Fig. 3-3 

shows conceptually how the received signal is derived from the ray model. If the 

transmitted signal is a short pulse, indicated in Fig. 3-3, the ray model predicts that 

this pulse travels over the different ray paths, and arrives at the receiver as four 

delayed and attenuated replicas of the transmitted signal. The delays are given by 

computing the travel time for each ray, and the complex attenuation coefficients are 

modeled as 

hi{t) = ßi[l + SiMe*2™« (3.4) 
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Figure 3-3: The delay structure of the received signal can be derived from the ray- 
trace picture. 

where s,(i) is a Gaussian zero-mean random process that models the ocean-surface 

Doppler spread to be described below, and /?,• is the constant attenuation due to 

absorption, mean reflection loss and geometrical spreading. The filter taps &,•(£) are 

time varying random variables, and V{ can be either deterministic or random. If Vi 

is deterministic its value gives a Doppler shift modeling relative motion between the 

scattering boundaries, transmitter and receiver. We use the model with deterministic 

vi in which case we have 

E[hi] = ßi^Vit   ,   var[ht] = \ßi\2var(Si) . (3.5) 

The time correlation for each tap is 

Rhh(r) = |A|2e-j2™iT(l + RSS(T)) (3.6) 

where RSS(T) is the autocorrelation of Si(t). 

Modeling of surface Doppler spread 

When rays are reflected from the ocean-surface their frequency spectrum is broad- 

ened because the scatterers are moving at different speeds. The frequency spreading 
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of a ray due to ocean-surface motion can be estimated by characterizing the ocean- 

surface with its spatial wavenumber power density spectrum, and the dispersion 

relation for gravity waves can be used to obtain the frequency temporal spectrum. 

Thus, by assuming a known ocean-surface spectrum (e.g., Pierson-Moskowitz), the 

Doppler spread can be estimated [14]. We now consider a single ray that is scattered 

from a rough surface, and we temporarily drop the subscript i. If a single ray is 

scattered from the rough surface, which we want to characterize with s(t), the di- 

rection of the reflected ray varies over a wide range of angles as the surface changes 

over time. Fig. 3-4 shows a snapshot of the time varying rough surface at time t0. 

The process that we want to characterize is given by s(t, r0) = s(t) at some specific 

location r0 on the surface.    It can be shown [14] that the time-averaged reflection 

Figure 3-4: Surface Doppler spread, a snapshot of the time-variant rough surface 
which is modeled as a random process. We use the time-averaged reflection coeffi- 
cient, therefore only the specular direction is shown 

coefficient falls off rapidly for angles away from the specular direction with respect 

to the mean surface (which is horizontal). This leads to the simplification that 

only the ray in the specular direction is considered when we are trying to obtain the 

response from the rough surface, and it is sometimes called the Eckart formulation 

for rough surface scattering [14]. 

Fig. 3-5 shows the time-averaged reflection coefficient vs grazing angle [22] which 

is the angle between the horizontal plane and the ray direction.    The reflection 
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Figure 3-5: Average reflection coefficient vs grazing angle (angle with respect to the 
horizontal plane). The curves are parameterized by the rms roughness sO going from 
0.05-0.5 m. 

coefficient is also a strong function of the root-mean-square (rms) roughness of the 

surface, as shown in Fig. 3-5. There is a connection between the Eckart formulation 

and the model for h{(t) that we use here. The roughness parameter sO in Fig. 3-5 

is the temporal variance -RS5(0) of s(t). The average reflection coefficient given in 

this figure is also related to ß in (3.4) which for each ray is made up of several 

components. The components are geometrical spreading with power loss roughly 

proportional to r2 where r is the range, attenuation measured in dB/km which is 

proportional to r with a frequency dependent constant of proportionality, and finally 

in the case of boundary interaction there is a grazing angle (angle with respect to 

the horizontal) dependent loss given by Fig. 3-5. 

We now look for a way to characterize the surface Doppler spread when a complete 

statistical description of the Gaussian random process s(t) is given by means of its 

power spectrum 5(z/), see Fig. 3-6.    To find a sample path s(t) such that 
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Figure 3-6: A simplified representation of the impact of a rough time varying surface 

on a ray. 

HRss(r))   =   S{v) (3.7) 

where jF means Fourier transform we first discretize S(u) which is the power spectral 

density of the random process s(t). S(k Av)Av is approximately the power in the 

frequency band of width Av centered at kAv. Now we can write the sample path as 

s(t)   =   "£ ^S(k Av)Av w(k)e-j2vkA,/t (3.8) 
k 

where w(k) is Gaussian, zero-mean, white noise. This is verified by computing the 

autocorrelation of s(t): 

Rss(r)   =   E[s(t)s*(t - T)] 

=   Y^S(kAv)Ave-i2nkAl/T (3.9) 
k 

which shows the desired relationship between RSS(T) and S(u). We note that in 

order for S(kAv) to be an accurate representation of S(u) the corresponding time 

function i.e., Äss(r), is time limited. 

Limitation of the statistical description 

The scattering from a rough, time-variant ocean-surface causing Doppler spread 

is usually not captured in a deterministic framework. The major reason for this 

is that the computations involved in obtaining the field scattered from a rough 
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surface is rather involved. Therefore most attempts to characterize the ocean-surface 

scattering [14], [22], [99] resort to using statistical methods. This is the approach 

taken in this thesis. Both the Eckart formulation and the Pierson-Moskowitz surface 

wave spectrum are statistical descriptions of the sea surface. We use the Eckart 

formulation to argue that only the specular ray direction is significant for coherent 

signals, and the Pierson-Moskowitz spectrum to incorporate the frequency spread 

in the specular direction. These are both averages, and the Pierson-Moskowitz 

spectrum is obtained by observing sea surface wavenumber vectors over long time 

intervals which are averaged. In a similar manner the Eckart reflection coefficient [30] 

is obtained by repeatedly transmitting sound pulses and measuring the response of 

the scattered pulses. Fig. 3-5 is obtained in this way, and the original experiment has 

been repeated in slightly different ways. The results in a more controlled environment 

from an anechoic tank with a wind driven surface [23] are similar. 

Thus the two statistical formulations used herein are only valid for the average 

result over many transmissions. In particular, in order to capture the statistical be- 

havior, the duration of a data packet transmission should be long enough to capture 

the averaging effect. A typical data packet duration is 2 sec, and a surface swell may 

have a period of 5-10 sec. Thus the important feature of the surface in this scenario 

is the "snapshot" behavior rather than the statistical average. For example, for a 

long swell the most important feature is what the phase of the long wave is. This 

limits the accuracy of our models for ocean-surface Doppler spread, and this in turn 

impacts the data analysis. A more accurate way of calculating the effect of surface 

reflected rays is to use the simulator in the same manner as the Eckart reflection 

coefficient is obtained. I.e., to obtain the Doppler spread of a particular scenario we 

could run the simulator many times with a random surface at the top. Then the 

receptions should be averaged to capture the effect that is currently incorporated 

through the Eckart reflection coefficient. 

This is not carried out in this thesis, and it is a potential improvement that 
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would yield a more accurate Doppler spread. It would be an increasingly important 

modification as the packet length decreases, or as the low frequency content of the 

surface variation increases. The data analysis is also less accurate due to this fact. 

The simulator may be used to obtain statistics of the error by running it many times 

with different surface realizations. 

3.1.2    Ray trace 

The time-variant FIR model is in itself a sufficient model for the communication 

channel and it is used for this purpose [101], [82]. However, the input parameters 

are the time-variant filter tap values and locations and these must be specified when 

this approach is used. These parameters are not directly derived from quantities 

that can be measured in a real ocean communication channel, and the purpose of 

the raytrace is to supply the content and structure of the FIR filter tap vector h(i) in 

(3.3). The implementation of the time-variant FIR filter, given h(t), is as described 

in Section 3.1.1. This way of implementing the input to the time-variant FIR filter 

representing the communication channel assures that there is a physically sound 

coupling between the channel parameters and the real ocean. It enables the search 

for channels with pre-specified ambiguity function shapes such as large Doppler 

spreads. 

Input parameters 

The input parameters to the raytrace are 

• Sound speed profile 

• Vertical beamwidth for transmitter and receiver 

• Carrier frequency 

• Transmitter and receiver locations (range,depth) 
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• Transmitter and receiver velocity 

• Bottom and ocean-surface forward scatter values 

• Ocean-surface Doppler spread 

Sound speed profile The sound speed profile is constrained to be piecewise linear. 

There is no limit to how many line segments it contains, and thus arbitrary profiles 

can be modeled. The linearization modifies the ray trace, and it may introduce false 

regions of high intensity called false caustics. The effect is small and the deviation 

from the correct raytrace due to the linearization is negligible. 

Vertical beamwidth for transmitter and receiver The vertical beamwidth 

of the transmitter yields the insonification area, and the beam can be tilted and 

set to arbitrary widths. The receiver vertical beam can also be of arbitrary width. 

The beamwidths determine how much boundary interaction there is, and this is an 

important factor in determining the delay spread. 

Carrier frequency The carrier' frequency is used to get Doppler shifts from trans- 

mitter and receiver velocities. It can also be used to get the Rayleigh parameter for 

the ocean-surface and bottom roughness. 

Transmitter and receiver locations (range, depth) Transmitter and receiver 

locations obviously impacts both the delay and Doppler distributions. 

Transmitter and receiver velocity The relative velocities give different Doppler 

shifts for each ray connecting the receiver and transmitter, therefore the result is a 

Doppler spread. The spread in this case consists of differential Doppler between the 

rays. 
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Bottom and ocean-surface forward scatter values Bottom and ocean-surface 

forward scatter values are stored as look up tables, supplied via external files, and 

thus they can easily be modified. The Eckart formulation for rough surface scatter- 

ing is used to fill the tables [14], [22], but this may be changed by supplying new 

tables. There is one scattering value for each grazing angle. When a ray is traced 

its grazing angle is known, and this is used to get an attenuation value from the 

table. The main task of the simulator is not to derive and implement new surface 

scattering theories, but rather to use the most appropriate of the existing ones to 

realize communication channels. 

Ocean-surface Doppler spread The ocean-surface motion impacts the Doppler 

spread for surface reflected rays. A mean Doppler shift is in general present as a 

result of the fact that the water near the surface has a net velocity due to Stokes 

and Lagrangian drift [11]. This is not accounted for in the theory that we use, and 

thus it yields zero Doppler shift in the specular direction with respect to the mean 

surface. In the case of small Rayleigh parameter for the surface the method of small 

perturbation is used to estimate Doppler spread [14]. This method also yields zero 

Doppler spread in the specular direction. In the case of large Rayleigh parameter 

the Kirchoff approximation (tangent plane method) gives a Doppler spread Af in 

the specular direction [14]: 

Az/ = cqsin^yj2 (3.10) 

where c = 1.75 x 10-2 is a constant, q is the acoustic wavenumber, t/> is the grazing 

angle and vs is the wind speed. With 20 kHz carrier frequency 45 deg grazing angle 

and 10 m/s wind speed we get 12 Hz Doppler spread which is in good correspondence 

with some of the observed data. 
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Model limitations 

Ray modeling of the acoustic field is an approximation taken from geometrical op- 

tics. It is valid exactly as the carrier frequency goes to infinity but is usually a 

good approximation from well below 5 kHz, depending on the channel geometry and 

propagation conditions. 

Eigenrays One of the first reports of the phenomenon of ray chaos is [76]. In a 

range dependent environment it is known [96] that there exists chaotic ray pairs. 

Rays from the same point with very small difference in launch angle diverges ex- 

ponentially with range. This greatly complicates the localization of eigenrays even 

though this reference shows that it is possible. Other techniques for propagating 

the rays, by solving a boundary value problem rather than an initial value problem, 

is reported to make ray chaos scenarios easier to work with [25]. Most of the work 

reported suggests that the impact of ray chaos in a realistic ocean is only significant 

at ranges in excess of 100 km. Another characteristic of eigenrays [96], which is also 

true for the range independent case that we are using here, is that they arrive in 

clusters. We simplify the ray propagation even more by the way we treat eigenrays. 

The eigenrays are the rays exactly connecting the transmitter and receiver. The 

exact eigenrays are not computed in this simulation, but instead a finite number of 

rays with equal vertical launch angle increments at the transmitter are propagated. 

All the rays arriving at the receiver range are not contributing to the received acous- 

tic pressure. A rule to decide which rays that should be used is necessary. If they 

arrive at angles outside the receiver vertical beamwidth the rays are not used, but 

also the ray arrival depth is significant. The Fresnel zone can be used to determine 

the limit vertical distance between a ray and the receiver, and currently a rule based 

on both arrival angle and depth is used. The sector of arrival angles and the range 

of depths centered at the receiver are supplied externally to the simulator, and the 

Fresnel zone of a ray can be used as the range of depths where an arriving ray is 
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accepted. The rule is that a ray must have both angle of arrival and depth of arrival 

within the specified ranges in order to be used. 

Surface forward scatter The interface to the simulator for surface scattering is 

by means of en external table with scattering value vs grazing angle. As discussed 

above there is no sophisticated surface scattering calculation involved, but it can be 

incorporated by means of the fact that many models yield a forward scattering value 

vs grazing angle, therefore the only change is to replace the table. 

Ray density The physical significance of the extension of a ray is interpreted 

through the Fresnel zone. The simulator uses an arbitrary ray density, but physically 

only rays with non-overlapping Fresnel zones are different. Thus shooting many 

rays within one Fresnel zone gives many rays with essentially similar time-varying 

attenuation coefficients &,-(£). The Fresnel zone for a horizontally traveling ray at 

range r = 1000 m in a channel with constant sound speed profile c = 1500 m/s for 

a carrier frequency of /o = 20 kHz is 

A   =    ^2rf0/c = 163 m. (3.11) 

The Fresnel zone for each ray is not explicitly computed, so there may be a num- 

ber of rays with very similar attenuation coefficients. This has no impact on the 

characteristics of the communication channel that is simulated, and cross-ambiguity 

functions for realizations with different ray densities are not different as long as the 

major ray paths are present in all the different realizations. 

3.1.3     Simulator examples 

We now look at some examples of simulator output. The absolute travel time is not 

of interest, and all cross-ambiguity function plots in this section shows differential 

travel time along the delay axis where the first arriving ray arbitrarily is mapped 
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to 10 msec delay. Fig. 3-7 shows an isovelocity sound speed profile with no motion 

involved. The cross-ambiguity function shows the delay and Doppler resolution of 

the estimator (given by the signal bandwidth and duration). In this example we 

take advantage of one very common and powerful way of simplifying the underwater 

communication channel: The transmitter is not assumed to be omni directional, and 

its vertical beamwidth is indicated by only tracing rays in the sector shown in Fig. 3- 

7. By doing this we avoid later returns from surface and bottom which otherwise 

could be present depending on the bottom and ocean-surface properties. 

The example in Fig. 3-8 shows a realistic ocean sound speed profile taken during 

summer conditions in the Baltic Sea. We do not present other data from the Baltic 

Sea,; and this sound speed profile is included as a curiosity since the acoustic prop- 

agation conditions are very atypical here due to a very low salinity (pike and cod 

both live together in the Baltic Sea!). The transmitter is moving vertically with 1 

m/s, indicated with the bold arrow. The different rays have different travel times 

and Doppler shifts, resulting in the spread shown. We note that both positive and 

negative Doppler components result from this scenario. 

The example from outside New Jersey in Fig. 3-9 shows ducted propagation, and 

this is the way sound travels in the ocean when it propagates over long distances. In 

this example we have rays with different Doppler shifts that arrive at almost equal 

times, and this is one form of Doppler spread. The other form of Doppler spread at 

a single delay occurs when the Doppler shift on a single ray is time-variant. 

Fig. 3-10 is another example of such a sound channel at another location and 

opposite time of the year. This sound speed profile was measured outside Newport 

(RI) during winter conditions. The attenuation for the rays interacting many times 

with the ocean-surface and bottom is large, so they are not drawn since they will 

not contribute to the cross-ambiguity function. 

The last example in Fig. 3-11 shows maybe the simplest way of getting Doppler 

spread. The surface is assumed to be smooth, so there is no Doppler spread from it, 

92 



but the transmitter is moving, so that the projection of its velocity vector onto the 

different ray launch directions are different. Therefore the different rays get different 

Dopplers, and the composite response at the receiver is Doppler spread. 

Summary We simulate underwater communication channels by means of a time- 

variant FIR filter. Thus the received signal is a sum of differently delayed and 

Doppler spread rays. The structure of the FIR filter, i.e., the tap number, location, 

time evolution and magnitude is given by a ray model of the acoustic field. We 

compute travel time and attenuation for each ray arriving at the receiver. The 

rays interacting with the ocean-surface are Doppler spread, and we use the Eckart 

formulation to get an average reflection coefficient in the specular direction and the 

Pierson-Moskowitz surface wave spectrum to get the Doppler spread. The raytrace 

is range invariant and uses piecewise linear sound speed profile. The motion of 

transmitter, receiver and scatterers is accounted for by allowing different Doppler 

shifts on different rays. The ocean-surface and bottom attenuation is accounted for 

by externally supplying values of the attenuation as a function of the grazing angle. 

The simulator is demonstrated in Fig. 3-7-3-11, and we observe Doppler spread in 

the cross-ambiguity function of some of these figures. 
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Figure 3-7: Isovelocity example, there is no motion of receiver or transmitter and the 
vertical beamwidth of the transmitter prevents boundary interaction. The extent of 
the ambiguity function is given by signal bandwidth and duration. 
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Figure 3-8: Moving transmitter, no receiver motion. 
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Figure 3-9: Sound speed profile taken off New Jersey during summer conditions. 
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Figure 3-10: Sound speed profile taken outside Newport (RI) during an experiment 

in the winter. 
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Figure 3-11:   An example of a Doppler spread built up of separate Doppler shifts 
that are different on different ray paths. 
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3.2     Measured scattering functions 

Underwater communication channels are not simply characterized by any canoni- 

cal form. They vary a lot because such basic quantities as range, water depth and 

water temperature (giving sound speed profile) impose very drastic changes in the 

propagation conditions, and these quantities vary over a wide range. In this sec- 

tion we give some examples of this using the cross-ambiguity function to estimate 

the scattering function and measure the channel. The examples shown are by no 

means an exhaustive collection of scattering functions, but they serve to demonstrate 

some of the diversity that underwater communication channels exhibit and how the 

environment modifies the conditions for communication in a radical way. 

In all contour plots, two contour levels that are 3 dB apart are shown unless 

something else is explicitly stated. The normalization of the dB level is relative to 

the maximum value in each plot. The absolute travel times are not important. The 

time for the first arrival is merely a normalization issue, and we have not carried out 

this task. Therefore the first arrival is not shown at 0 msec. In the impulse response 

plots the magnitude axis units are obtained from the receiver number representation, 

and thus they do not reflect the sound pressure. 

3.2.1     Arctic data 

This experiment was conducted 1993 in an Arctic environment where the sea surface 

was covered with ice. Thus there was no Doppler spread due to surface motion. The 

carrier frequency was 15 kHz and the symbol rate was 2500 symb/sec with quadrature 

phase shift keying (QPSK) modulation. Data packets consisted of a 1023 symbol long 

m-sequence that was repeated 6 times. The ambiguity function of the m-sequence is 

shown in Fig. 3-13 to give an idea of the obtainable resolution in time and frequency. 

The transmitter and receiver were hanging vertically from the ice cover at a depth 

of approximately 50 m.    Transmissions were available for two ranges: 300 m and 3 
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Figure 3-12: The geometry of the Arctic experiment. Both transmitter and receiver 
were suspended from the ice. 

km, and the cross-ambiguity functions of the two channels are shown in Fig. 3-14 

and Fig. 3-15 together with impulse response estimates. The second return that is 

observed in Fig. 3-15 corresponds geometrically (from computing ray travel times) 

to a surface reflected ray, whereas the third return may be from a deeper refracted 

ray as suggested in Fig. 3-12 where the geometry is shown. None of the rays are 

Doppler spread. This scenario essentially gives a sparse delay-spread channel. 
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Figure 3-13: The ambiguity function of the transmitted signal. The extent in time 
is given by the signal bandwidth and the extent in frequency is given by the signal 
duration. 
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Figure 3-14: Impulse response and channel scattering function for 300 m range. 
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Figure 3-15: Impulse response and channel scattering function for 3 km range. 
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3.2.2    Autec data 

During the summer of 1994 acoustic transmissions were conducted in deep water 

outside Florida near the Bahama Islands. It was a several day long experiment and 

the surface wind speed varied in the range 5-20 knots. In the measurements that we 

look at the transmitter used a carrier frequency of 15 kHz to transmit QPSK data 

at 2500 symb/sec. The receiver was bottom mounted at a height of 4.5 m above 

the sea floor in 1800 m of water depth. The transmitter was hanging from a boat 

at a depth of 15 m, and the range (horizontal distance) between transmitter and 

receiver was 500 m. The experiment geometry is outlined in Fig. 3-16 where also 

the empirical summer profile for the area is shown.     The transmit sequence was 

sound speed 
£1 

1490 ^m/s 
\ /   /\ , 

smitter -15 m 

•L          \ 1800 m 

receiver^ 

depth 
500m 

4.5m 

Figure 3-16: The geometry of the Autec experiment. The transmitter is suspended 
from a boat and the receiver is bottom mounted. 

made up of an m-sequence that was repeated 6 times in the same way as the Arctic 

data. The impulse response and the cross-ambiguity function for one transmission 

is shown in Fig. 3-17, and in this figure the impulse response estimate is based on 0.2 

sec of data whereas the cross-ambiguity function is computed from 2 sec of data. In 

this plot we can see a direct path near (2 Hz, 2 msec), and also a strongly scattered 

return starting around 20 msec delay. This second return has consistent delay with 

a surface reflected path and the wind speed was about 15 knots, so the Doppler- 
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spread from the surface is significant. By using (3.10) with this wind speed we get 

a Doppler spread of Ai/ « 11 Hz which is in good accordance with Fig. 3-17. We 

observe a mean Doppler shift of the second return which is believed to come from 

net surface water transportation, since it is known that motion of water particles 

near a wind driven surface wave field is not purely circular [11]. To further illustrate 

this a series of scattering function estimates are shown in Fig. 3-18 where the time 

between adjacent plots is approximately 8 sec. We can see that the shift in Doppler 

of the surface reflected path is always in the same direction consistent with what a 

steady surface wind would cause. The series Fig. 3-18 demonstrates that Fig. 3-17 is a 

representative picture of this channel, and by averaging the series of cross-ambiguity 

functions we obtain the scattering function estimate for this channel. 

The difference between Fig. 3-15 and Fig. 3-17 is striking, even though the carrier 

frequency, bit rate and modulation method is the same the difference in environment 

gives two very different communication channels. 
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Figure 3-17: Impulse response and scattering function estimates. The channel has 
a direct path and a surface reflected path that has been Doppler and delay spread 
due to the surface motion. Three contour levels with distance between contours 3 
dB are shown. 
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Figure 3-18: Series of cross-ambiguity functions containing the direct path and a 
surface reflected path that has been Doppler and delay spread due to the surface 
motion. Three contour levels with distance between contours 3 dB are shown. 
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3.2.3    Florida data 

In the summer of 1995 an experiment was conducted off Ft.Lauderdale, Florida 

where both the transmitter and the receiver were on platforms that were towed from 

boats. The water depth was in the range 50-200 m and the range was constantly 

changing as the boats were moving.     The carrier frequency was 12.5 kHz and the 

2km 

sound speed 
1490 1540 \    / 

'      HA I     V 

Figure 3-19: The geometry of the Florida experiment. Both transmitter and receiver 
are suspended from moving boats. 

symbol rate was 1250 symb/sec using QPSK modulation. The depths of transmitter 

and receiver were in general unknown and were estimated from the amount of cable 

in the water and the speed of the boat. The transmit sequence was a sequence made 

with a number generator called "randn" in the software program Matlab, and the 

ambiguity function of the transmit sequence has roughly the same resolution as the 

m-sequence that was used in the previously described experiments. The site for 

the first transmission we look at had a water depth of approximately 150 m. The 

transmitter and receiver depths were 30 m and the range was 150 m. The two returns 

shown in Fig. 3-20 correspond to the direct path and a surface return. The shift 

in Doppler on the surface return relative to the direct path is believed to come from 

surface motion, and in fact a series of scattering function estimates around the one 

in Fig. 3-20 shows that the second return moves in Doppler with a time constant on 
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the order of a surface swell. 

The other transmission is shown in Fig. 3-21 with the geometry of this experiment 

outlined in Fig. 3-19, and here the boats were approximately 2 km apart. Of the two 

returns shown, one is the direct path whereas the other may be a bottom reflected 

path, but insufficient knowledge about bottom conditions and sound speed velocity 

profile makes it impossible to know for sure. This channel is another example of an 

extremely sparse channel. 
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Figure 3-20: The impulse response and channel scattering function for short range 
(300 m) data, showing one direct and one surface reflected path. 
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Figure 3-21: The impulse response and channel scattering function for long range (3 
km) data, showing one direct and one possibly bottom reflected path. 
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3.2.4    Gould Island data 

In an experiment performed in sheltered coastal environment near Newport, Rhode 

Island symbol rates in the range 600-10000 symb/sec were used. The modulation 

was QPSK and the experiment was conducted in February 1996. The water depth 

was roughly 15 m, and the range was varied from 100 m to 5 km during a period of 

3 days.    The receiver was mounted at 10 m depth off a dock, and the transmitter 

0.1-5km 

sound speed 

Figure 3-22: The geometry of the Gould Island experiment. The transmitter is 
suspended from a boat and the receiver is mounted in a dock. 

was hanging from a boat at 8 m depth. The presence of different frequencies on 

different ray paths can usually best be observed through the scattering function, 

but during this experiment some transmissions were carried out where the beating 

of different frequencies also could be seen in the complex envelope of the received 

signal. Fig. 3-23 shows the complex envelope sampled at 2 samples/symbol from 

one of the transmissions, and the symbol rate was 2500 symb/sec. The lower panel 

shows the complex envelope of a signal obtained with the simulator in a scenario with 

two dominant ray paths and a vertically moving transmitter with different Doppler 

shifts on each of the paths. Since the ray path directions have different projections 

onto the transmitter movement direction they get different Doppler shifts. It is 

believed that the beating of the two paths creates the periodic pattern seen in the 
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real data in the same way as it creates it in the simulated data. The beat frequency 

in this case is so slow (it corresponds to a Doppler spread of 0.8 Hz) that it is not a 

significant problem for a conventional receiver to decode. 

Fig. 3-24 shows a transmission with more Doppler spread, and the geometry of 

this transmission is outlined in Fig. 3-22 The range in this case was 4 km, and the 

symbol rate was 600 symb/sec. From varying the transmitter depth carefully and 

monitoring the received power level at the receiver it was obvious that there was 

a sound channel present. By moving the transmitter 1-2 m vertically a difference 

of 10 dB in received power was observed. The sound channel was later verified by 

processing of sound speed measurements that were taken in the area at the same 

time. The net Doppler shift is explained from that the boat was drifting, and the 

two peaks in the cross-ambiguity function giving a spread may be from different rays 

with different launch angles. The set of transmissions represented by Fig. 3-24 has 

not been decoded with any conventional single data channel receiver, even though 

the SNR is around 15 dB. 

Summary We present data acquired from the ocean at four different locations 

varying from the Arctic ice covered ocean to warm water south of Florida. We ob- 

serve a wide range of underwater communication channels varying from not spread 

in Fig. 3-14 via pure delay spread in Fig. 3-15 and pure Doppler spread in Fig. 3-24 

to doubly spread in Fig. 3-18 and Fig. 3-20. We also observe the time-varying mag- 

nitude of the complex envelope in Fig. 3-23 illustrating rays with different Doppler 

shifts. 
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Real data, Gould Island 1996 
1.5| 1 1 1 1 1 1 1 r 

0     02    0.4    0.6 1     1.2    1.4    1.6    1.8     2 
Time in samples 

Simulated data, moving source 
x10 

0     05    0.4    0.6    0.8     1      U    1.4    1.6    1.8     2 
Time in samples ^ 

Figure 3-23:   The complex envelope of real and simulated data.   Two paths with 
different Doppler shifts create a beating frequency. 
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Figure 3-24: Impulse response and channel scattering function of Doppler spread 
data from transmitter movement. Three contour level with spacing 3 dB are shown 

in the lower panel. 
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Chapter 4 

Receiver 

4.1    Maximum likelihood receiver 

4.1.1    Preview and motivation 

The best quality criterion for a communication system is the probability that a de- 

coding error takes place. If statistical models are imposed on the noise and signal 

this probability can be computed. The probability of error is therefore often used as 

a design criterion and it is well known that minimum probability of error decoding is 

the same as maximum aposteriori (MAP) decoding [40], [82]. When the transmitted 

symbols are equally likely, and the channel response is known, maximum aposteriori 

(MAP) decoding is the same as maximum likelihood (ML) decoding. In a realistic 

situation both the transmitted sequence and the channel response are unknown, and 

they would have to be estimated. The major point of this section is to show that, 

in the case of the underwater communication channel, the ML receiver is very com- 

putationally intensive even in the case of known channel response. This motivates 

the choice of the suboptimal minimum mean square error (MMSE) receiver that is 

introduced in Section 4.3. We assume that the channel response Ui,k is given in 

the derivations of Section 4.1.2-4.1.4, and we bear in mind that the channel iden- 

117 



tification and tracking should be performed simultaneously with the decoding in a 

realistic receiver. This is the way it is carried out when we discuss the decision 

feedback equalizer and the time updated RLS (TU-RLS) receiver in Section 4.2 and 

Section 4.3. The requirement of estimating the channel makes it necessary to have 

two receiver modes of operation called training and tracking mode. We qualitatively 

discuss the factors that determine the channel estimation error after the presenta- 

tion of the ML receivers, and we return to a quantitative discussion of the channel 

estimation error during training and tracking in Section 4.3.6 and Section 4.3.8. 

4.1.2    Doubly spread channel 

We use the delay-Doppler-spread function C/(r, v) to represent time and frequency 

dispersive channels, where we remember that U(T, v)dvdr is the complex scattering 

amplitude of the signal at delay r and Doppler shift v. We now transmit the signal 

xo(t) represented by the complex envelope x(t), and we receive yo(t) which can be 

represented by its complex envelope 

y(t)     =       f   f±(t-T)U(T,v)ej2nUtdvdT + w(t) (4.1) 

where w(t) is zero-mean complex Gaussian white noise. By using the discrete rep- 

resentation (2.56) we have 

y(n)   =   ^2U(l,k)z(n-l)^kAvn + w(n) (4.2) 

where z(n) is the transmitted data sequence and w(n) has variance a2
w. The ML 

estimate of z = [z(n) • • • z(n + L — 1)] is given by means of the conditional probability 

density p(y|z, U) where y = [y(n) ■ • ■ y(n + N — 1)] and U is the set of all coefficients 
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U(l,k). This distribution is Gaussian and given by 

-4-      exp(-   £   \y(m)-^{m-l)U(lyk) 
"K(Jw/ m=n l,k 

x    ejMl/m\2/<rl) (4.3) 

Therefore, remembering that the channel response Ui,k is considered known, we find 

the ML estimate by performing 

n+N-l 
min   £   \y(m)-yEz(m-l)U(ltk)e**kA™\* . (4.4) 

m=n l,k 

We comment on this estimator after the section below on delay spread. 

4.1.3    Delay spread channel 

When the channel is delay spread only we have a time-invariant channel which gives 

intersymbol interference (ISI). The ML receiver for this channel is a well known 

result [82], [100], and it can be viewed as a special case of the result from Section 4.1.2. 

The channel is now characterized by its impulse response h(r) and we can relate the 

delay-Doppler-spread function and the impulse response h(r) by 

U(T,V)    =    h(r)S(u) (4.5) 

where 8{v) is the Dirac delta function, and by means of this (4.1) yields 

y(t)   =   j x(t - r)h{T)dr + w(t) . (4.6) 

By using the discrete representation (2.56) we get 

y(n)    =   Y,z(n-l)h(l) + w(n). (4.7) 
i 
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The probability density for y conditioned on the transmit sequence z and the set h 

containing all h(l) is 

I    \N n+N-l 
P(yM)=    —y      exp(-   £   |y(m)-5>(m-/)Ä(0l7*i)        (4.8) 

K^^W/ m=n I 

and the ML receiver is obtained by maximizing p(y\z, h). This is the same as mini- 

mizing the exponent of (4.8), which is the same as minimizing 

n+N-l n+N-l 

J(z)   =   2Re[ £   y*(rn)z{m-l))-   £   £>(m -/)*>i-«>(/)Ä*(i)(.4.9) 

One commonly used method for minimizing J(z) is the Viterbi algorithm, but when 

the information symbols are M-ary, and the ISI spans L symbols, ML probabilities 

must be computed for each decision. A realistic pair of impulse response duration 

(taken from the ocean) and data rate may be (100 msec, 2500 symb/sec). If the 

modulation is QPSK in this case we get 

AT = AZbU (4.10) 

error probability computations for each decoded symbol.  This is a very high com- 

putational load, and it makes this approach less attractive. 

It is now clear that in the case of the doubly spread channel, that was treated 

in Section 4.1.2, the computational load associated with the ML receiver for this 

channel is even higher. 
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4.1.4    Doppler spread channel 

We now consider the other special case of the doubly spread channel which is the 

purely Doppler spread channel. We can write the delay-Doppler-spread function as 

U(T,V)   =   F{V)8(T) (4.11) 

and from (4.1) we get 

y(t)   =    / x{t)F(v)e'2rvtdi/ + w(t) . (4.12) 

By using (2.56) we get 

y(n)   =   z(n)^2F(k)eP2Tk/im + w{n). (4.13) 
k 

The probability density for y(n) conditioned on z(n) and the set F of all F(k) is 

Gaussian and given by 

p(y(n)\z(n),F) = -^e-lyW-^Z^W^-P/rl . (4.14) 
TTOT2 

The ML receiver for z(n) is obtained by minimizing the exponent of (4.14) which 

yields 

z(n)   =   min|z(n)-^   „.^"^ ,A    |. (4.15) 
*(n) Efc F{k)e'2vkAun' v       ' 

This amounts to dividing the current sample y{n) with a complex gain and then 

choosing the closest symbol. A receiver implementing (4.15) corresponds to the IFS 

Doppler line that is discussed in Section 2.4 because, referring to Fig. 2-7, in this 

case y(n) is the input signal whereas z(n) is the output signal. This receiver is not 

robust to modeling errors, since there is nothing that prevents the dividing gain from 
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being arbitrarily close to zero and this gives noise enhancement. 

By using the concept of duality that was discussed in Section 2.4 we observe that 

the dual of the receiver in (4.15), which would apply to the dual channel, is an IIR 

delay line. The dual channel is the delay spread (LTI) channel, and the dual of the 

receiver in (4.15) is the zero forcing equalizer [82]. This equalizer has the problem 

of noise enhancement when the delay spread channel has a spectral null. In the 

same way the IFS receiver in (4.15) has the problem of noise enhancement when the 

Doppler spread channel, which is the dual of the delay spread channel, has a fade. 

A fade is a temporal null which is the dual of a spectral null. One way of avoiding 

noise enhancement in the case of the delay spread channel is to constrain the receiver 

to be a FIR delay line instead of using the ML criterion that yields the IIR delay 

line. Thus it is straightforward by the concept of duality to motivate the constraint 

in the case of a Doppler spread channel: We can use a FFR Doppler line in order to 

avoid the noise enhancement in the case of a channel fade. This direction is utilized 

in Section 4.3.4 when we present a receiver for the Doppler spread channel. It is 

useful for the underwater communication channel when we have different rays that 

have the same travel time and different Doppler shifts. 

Summary The discrete representation in Section 2.3.2 is used to find the ML 

receiver in the case of doubly spread (4.4), delay spread (4.9) and Doppler spread 

(4.15) channel assuming the channel response is known. The computational load in 

the case of a delay spread channel for a realistic underwater communication channel 

is extensive (4.10) and even higher in the case of a doubly spread channel. 

4.1.5    Training vs tracking 

Motivation The ML receivers in Section 4.1 all rely on a known channel response. 

In practice they are used with a channel response that is derived simultaneously 

with the decoding, and the decoding error rate depends on the channel estimation 
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error. Before the receiver can start decoding it is initialized with a channel response 

estimate which is obtained from a training sequence, and this is referred to as training 

mode. This estimate is maintained during decoding, and this is referred to as tracking 

mode. We now discuss the factors that determine the channel estimate both in 

training and tracking mode. In order to synchronize the receiver and transmitter, 

a short sequence, usually a Barker sequence, is transmitted a fixed time before the 

training symbols. The receiver runs a filter matched to this sequence and thereby 

obtains synchronization. We show the total transmission of one packet in Fig. 4-1. 

Magnitude 
Used for TU-RLS 
convergence 

<-»! 

time      cross-ambiguity 

Figure 4-1: Data packet format containing synchronization, training sequence used 
for the cross-ambiguity function and the TU-RLS convergence and data symbols to 

be decoded. 

We find during the discussion of the cross-ambiguity function in Section 2.3 that 

this function enables the task of channel identification from the knowledge of input 

and output data to the channel. The channel output data are always available since 
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this is the received signal. The channel input data are the transmitted symbols which 

we want to detect and they are not known. The channel rate of variation is always 

much less than the symbol rate, as shown in Fig. 4-2, and this enables us to use 

previously detected symbols together with the received signal as the channel input 

and output. 

time 

t Symbol interval 

Figure 4-2: The time-variant channel modulates the received signal, but the channel 
variation is much slower than the symbol rate. 

We indicate in Fig. 4-1 that the training sequence is used for two purposes: 1) To 

compute the cross-ambiguity function that is used for tap allocation in Section 4.3.6 

and 2) to obtain initial convergence of the TU-RLS to be presented in Section 4.3.2. 

In this sense there are two "training modes", but the first involving the tap allocation 

is the most critical. The training time T below refers to the time of the sequence used 

to compute the cross-ambiguity function, and the time for TU-RLS convergence is 

usually a fraction of T. 

This is the way many practical receivers work [82]: They construct and track 

the channel response by using the previously detected symbols and the prediction 

for the current symbol as channel input and the received signal as channel output. 

The receiver operating in this way yields a delayed channel estimate. The delay is 

on the order of the number of taps L in the delay direction, and for the receiver and 
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channels presented in Chapter 4 L is on the order of 10. A channel is considered 

rapidly varying if the rate is variation is more than 1/100 of the symbol rate [63], [81]. 

Therefore the receiver delay is insignificant, and we use the delayed channel estimate 

as our current estimate. This approach assumes that the decoding is correct or else 

the channel input is not known. When the decoding is incorrect, the estimation of 

the channel response will be wrong, and this in turn gives more incorrectly decoded 

symbols. The phenomenon is known as error propagation and it is present in both 

the DFE and the TU-RLS receiver to be discussed in Section 4.2 and Section 4.3. 

Before we can decode a symbol correctly we must have a reasonable estimate 

for the channel response, and no previously detected symbols are available from 

which to construct this. A common way to resolve this is to transmit a sequence of 

training symbols known to the receiver. In this way the receiver can make use of 

both channel input and output to construct the channel response estimate. This is 

called a training sequence, and the necessary length and bandwidth of this sequence 

depends on the desired resolution and SNR of the channel response estimate. If we 

want to resolve rays with difference in travel time of 1 msec we need a bandwidth 

(frequency duration) of 1 kHz. If we have rays with different Doppler shifts the dual 

of this rule is that when we want to resolve Doppler components that are 1 Hz apart 

we need a signal time duration of 1 sec. Thus resolution in training mode is given 

by bandwidth and time duration of the training sequence. The finite SNR of the 

received signal also gives constraints on the training sequence. One interpretation 

of (2.32) is as the sample cross-covariance function at different Doppler shifts. If 

the signal model is as in (2.19), the noise term in (2.24) scaled by 1/T approaches 

the cross-covariance between the transmitted signal and the noise as the integration 

time T gets large. The signal and noise are assumed to be uncorrelated, therefore 

the SNR in the cross-ambiguity function increases with the training sequence length. 

The detailed procedure of allocating taps is presented in Section 4.3.6, and the reader 

is referred to this chapter for more details. However, the major constraints are the 
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ones that we have mentioned here. 

We note that there are contradicting concerns between time resolution and good 

SNR: For good time resolution we want large bandwidths which means more noise 

in the received signal because the noise is assumed to be white and we are admitting 

more noise by opening the bandwidth of our receiver filter. There is also a similar 

tradeoff between the Doppler resolution and the tracking of channel variation: If 

the Doppler shifts on the rays are time-variant we want to keep the integration 

time T small enough so that the Doppler is approximately constant over T, and 

this interferes with the requirement to use a signal of long duration in order to 

resolve Doppler shifts on different rays. In Section 4.3.6 we present the approach to 

update the receiver tap locations based on the training sequence and the previous tap 

locations. When initial convergence of the TU-RLS from the first training sequence 

from the first packet is achieved, the taps are started with non-zero values estimated 

by the cross-ambiguity function as described in Section 4.3.7. 

The algorithm for tracking used in this work is the RLS and the TU-RLS. The 

RLS is discussed in [64], and the forgetting factor A determines the tracking band- 

width of the algorithm. A rough rule [64] is that the RLS uses an averaging window 

of 1/(1 — A) samples corresponding to a time window of 

1 (4-16) 
(1 - A)/s 

to form the channel response estimate. This is a general and rough rule, and more 

specific behavior for a specific signal model is derived in the case of RLS in Sec- 

tion 4.2. The motivation for the rough rule is that it enables us to compare the 

tradeoffs in training mode with the tracking mode where data is being transmitted. 

In the training mode the averaging window that gives the SNR in the channel re- 

sponse estimate, the Doppler resolution and the tracking bandwidth is given by T. 

In tracking mode we can replace T with (4.16), and then the analysis of the tradeoffs 
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is the same as for training mode. Thus in tracking mode a small tracking bandwidth 

gives high robustness against noise and good Doppler resolution but low capability 

of tracking changes in the channel such as time-variant Doppler shifts or changing 

tap allocation vs delay. 

A typical communication scenario is that of a packet transmission: A packet of 

data symbols is prepended with a training sequence and transmitted, and then there 

is a certain pause before another packet is transmitted. We now discuss the issues 

involved in determining the ratio of the number of data symbols to training symbols. 

The length M of the training sequence is governed by the required resolution in 

delay and Doppler and by the SNR as discussed above. The resolution in delay and 

Doppler is roughly the reciprocal of the training sequence bandwidth and duration 

respectively. The noise is present in the cross-ambiguity function that is used for 

initializing the receiver as discussed in Section 4.3.6. The probability PQ for detecting 

that a signal is present at a given location (/0, k0) of the cross-ambiguity function is 

given by (4.178) and shown in Fig. 4-25. In order to maintain a given P0 we need a 

certain M. This number is a function of the signal strength present at (Z0, &o)- If we 

require detection of a weak signal with high probability M must be large. Thus the 

factors that constrain the minimum M are the requirements for Doppler resolution 

and tap assignment reliability for both delay and Doppler. 

The receiver that we develop in Section 4.3 is subject to the WSSUS assumption. 

As shown in Section 4.3.8, depending on the distribution of (/, k) and A, the receivers 

are stable. This means that for a WSSUS channel with given delay spread, Doppler 

spread and SNR the receiver reach a stable equilibrium where the probability of 

decoding error is constant. The SNR is defined as 101og(£/cr^) where £ is the energy 

per symbol and a^ is the noise variance. For a higher SNR than approximately 6 dB, 

a lower Doppler spread than 5 Hz at a symbol rate of 2500 symb/sec and under the 

assumption of the channel being WSSUS the receiver approaches steady state with 

a fixed error rate as shown in Section 4.3.8.   When it is re-initialized the receiver 
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converges to the same error rate as in steady state. Underwater communication 

channels are never perfectly WSSUS, and it is partly this fact that in a practical 

scenario makes it necessary to re-initialize the receiver. There are many ways in 

which the true channel deviates from a WSSUS channel, and the required rate of 

re-initialization can only be established when this deviation is characterized. To 

illustrate this we give an example. 

Example: Moving receiver Consider a receiver that moves away from a fixed 

transmitter at 1 m/s. The symbol rate is 600 symb/sec so that the delay resolution is 

1.7 msec for a system sampled at the symbol rate. A tap that is initially at the delay 

l0 has moved to l0 + 1 after 2.5 sec. If 3 taps were initially allocated and centered 

at this signal return we need to re-initialize after approximately 5 sec because this 

is the time it takes for the tap to move outside the receiver allocation range. 

Summary The requirement for delay resolution, Doppler resolution and the SNR 

gives the minimum length of the training sequence from which we compute the cross- 

ambiguity function in order to initialize the receiver with a certain reliability. By 

means of a rough rule for the averaging window in the tracking mode we point out 

a relationship between the channel estimates in the tracking mode and the training 

mode. One reason to re-initialize the receiver is that the channel is never perfectly 

WSSUS, and we give an example of a scenario where this assumption is broken. We 

re-emphasize that the tracking mode operation requires correctly decoded symbols, 

and that this is the assumption used in both receivers to be discussed in Section 4.2 

and Section 4.3. 
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4.2    Doppler analysis of a common receiver 

4.2.1    Preview 

We now consider a modification of a well known and extensively used receiver called 

a decision feedback equalizer (DFE). The modification is to add a phase locked loop 

(PLL) that operates jointly with the regular DFE on the data, and we discuss it in 

particular with respect to the Doppler dimension of the doubly spread underwater 

communication channel. We find that this receiver is not well suited for Doppler 

spread signals, and this is an important finding when we consider receivers for doubly 

spread channels. If this receiver was well suited it would be an obvious candidate 

because it is a popular receiver in many areas of communication. Since we have 

a time-variant channel that requires an adaptive receiver with high complexity we 

consider baseband realizations only. Thus we assume that the complex demodulation 

and subsampling of the received signal has been carried out, and that the input to 

the receiver is baseband complex samples at a rate of 2 samples per symbol. The 

complex demodulation has thus been performed prior to the receiver and is not 

considered as part of the process here. 

It can be argued that a decision feedback equalizer (DFE) should be a good 

receiver candidate for the underwater communication channel with its often long 

delay spread. Since the channel is time-variant the DFE needs to be adaptive and 

the recursive least squares (RLS) algorithm is used to update the taps in order to 

track the channel. The effect of a Doppler shift is that the signal is phase rotated 

from symbol to symbol. The receiver needs to apply the opposite phase rotation, and 

this is known as tap rotation. To account for common Doppler shifts a phase locked 

loop (PLL) is used outside the DFE, so that tap rotation due to common Doppler 

is avoided. We note that the adaptation of the taps as given by the RLS is designed 

to compensate any signal distortion, including that of Doppler spread. When the 

PLL is included, in the case of Doppler spread, we have two adaptive algorithms 
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compensating the same effect. From an intuitive viewpoint this is unwanted, and 

we show the consequences. This approach to construct a receiver is taken in [90], 

and we analyze this receiver with respect to Doppler spread. The signal model of a 

purely Doppler spread channel (4.20) is used to drive the RLS algorithm in (4.22) 

and (4.23). We show that the steady state result of this is (4.29). The consequence 

of this when a DFE is used with the RLS on the same signal is the receiver structure 

in Fig. 4-5, and we show the maximum Doppler this can accommodate before error 

propagation occurs. Two versions of the PLL are presented in (4.53) and (4.55), and 

the interaction between the PLL and the RLS is shown in a set of difference equations 

in (4.67) and (4.69). We show that there exists marginally stable stationary regions 

(4.70) and limit cycles (4.76) for his system. Examples of the system behavior is 

shown in Fig. 4-14-4-16 and the verification on real data is shown in Fig. 4-18 and 4- 

19. 

4.2.2     Signal models 

We first review the signal models that are used in the analysis. The transmission 

channel is a multipath channel, and more specifically it can be modeled as a delay and 

Doppler spread channel. The presence of Doppler changes, by definition, the delay 

structure of the channel because the scatterers are moving. We are not considering 

this effect in our analysis, and thus it is only valid over times that are short enough 

for this phenomenon not to be significant, see also the example in Section 2.2. The 

Doppler is different from path to path, and the reason for this may be that the 

various paths interact with different scatterers at different speeds. If there are L 

paths with distinct Doppler shifts u)\ impinging on the receiver the received signal is 

described by 

y(n) = £ Vi{n)e^ (4.17) 
/=o 
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where yi(n) is the signal that is received over ray path /. In terms of the transmitted 

symbols z(n) we write 

yi(n)   -   hi(n)z(n - ni) (4.18) 

where hi (n) is the time-varying complex attenuation coefficient and rc/ is the delay 

of the ray. Note that this allows us to model sparse channels, but this is a minor 

point in this context since we are now concerned with Doppler spread and not delay 

spread. Equation (4.17) can be generalized to 

2/W = X>(n)e^n> (4.19) 

where <f>{n) is the phase shift at time n which can be deterministic or stochastic. 

Since the objective in this section is analysis with respect to Doppler spread we 

assume no multipath spread (L — 1) and no noise added in the unity gain channel, 

so the received signal can be written 

y(n) = z(n)ej^n) . (4.20) 

This is a simple frequency dispersive channel well suited for analyzing Doppler 

spread, and we use the general (f>(n) in the first part of the analysis and then specialize 

to <j>(n) = u>on when this is appropriate. 

Another channel model is given by the impulse response h(n). When we consider 

constant Doppler shifts it is convenient to separate the common Doppler shift of 

the channel from its multipath structure. Thus h(n) denotes the channel for zero 

Doppler, and if there is a Doppler shift u>0 introduced by the channel we receive 

y(n) = [h(n) * z(n)]eju,°n (4.21) 
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where * denotes convolution and z(n) is the transmitted sequence which has been 

whitened. This implies that all paths have the same Doppler, and h(n) is only valid 

over times short enough to neglect the change is delay structure. 

This specifies the different channel models that are used, and they are all time- 

variant in accordance with the underwater communication channel. Thus the receiver 

is adaptive in order to track the channel, and we now discuss the adaptive algorithm 

that is used in the receiver. 

Summary We represent the received signal as a sum of differently attenuated and 

Doppler spread contributions arriving over a number of ray paths. The objective is 

analysis with respect to Doppler spread, and thus the model in (4.20), corresponding 

to a single Doppler spread ray, is especially useful. 

4.2.3    RLS algorithm 

The adaptive algorithm that is used in the DFE is the RLS algorithm, and this is 

chosen over the LMS because of its faster convergence. It is known that the con- 

vergence speed of the LMS depends on the spread in the eigenvalues of the channel 

covariance matrix. A large spread yields slow convergence whereas the RLS conver- 

gence speed is independent of this. The RLS is also related to the Kaiman filter and 

the TU-RLS presented in Section 4.3. The RLS algorithm is derived and discussed 

in e.g. [45], [64], but the objective here is to derive steady state expressions for the 

algorithm when it is driven with a Doppler spread signal. This information is used 

to interpret how the steady state DFE will process the received signal. The result 

and the assumptions we make to obtain the steady state in (4.29) and (4.35) are 

in accordance with [65], [31]. We now want to define and analyze the steady state 

characteristics of the RLS algorithm. The RLS equations are [45] 

z{n)    =   BLH(n)c(n) 
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e(n)    =   z(n) — z(n) 

a(n + l)    -   a(n) + k(n)e» (4.22) 

\P(n - l)c(n) 
k(n)   = 

1 + \cH(n)P(n - l)c(n) 

P(n)   =    jP(n - 1) - jk(n)cH(n)P(n - 1) (4.23) 

where k(n) is the X x 1 gain vector, e(n) is the scalar error and P(n) is an £ x L 

matrix. The symbol cH denotes complex conjugate transpose of c and A denotes the 

forgetting factor. The data is contained in the vector c(n): 

c(n) = [y(n)---y(n-L + l)]T. (4.24) 

a(n) is the Lxl parameter vector that is adapted to minimize the error, z(n) is the 

signal estimate and z(n) is the desired signal. L is the system order and y(n) is the 

observed data. 

Note The first and last equations of (4.22) are usually written a(n) = a(n — 

1) + k(n)e*(n), z(n) = a.H(n — l)c(n) in the traditional RLS context. We show in 

Section 4.3.2 that the RLS may be interpreted as a Kaiman filter where the system 

matrix A = I and A = 1. Thus the update step of the RLS in the Kaiman filtering 

context is a(n + 1) = ia(n) which is equivalent to a(n) = ia(n - 1). In order to 

unify the treatment we chose the form in (4.22). 

The recursion for P{n) can be written by means of (4.23) 

X2P(n)   +XP(n)(cH(n)P(n - l)c(n)) = \P{n - 1) 

+        P(n - l)cH(n)P(n - l)c(n) - P(n - l)c(n)cH(n)P(n - 1) (4.25) 

where P(0) is chosen to be a large number times the identity matrix.  The reason 
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for a large number is motivated by (4.23), because it will start the gain vector k(0) 

large so that initial convergence is fast. 

The equation (4.25) is a matrix difference equation with random coefficients be- 

cause the data c(n) is random. We now assume that there exists a matrix P that is 

independent of time and that is the solution to the mean of the equation above. Thus 

we insert P(n — 1) = P(n) = P and take expectations in (4.25). It is not obvious 

that we are justified in these assumptions, but if a solution exists under these as- 

sumptions it may be interpreted as a steady state value. A similar approach is taken 

in [31], [65], and the results in these references are in accordance with this work. In 

order to arrive at (4.26) these references neglect certain statistical dependencies be- 

tween variables, whereas we avoid this by assuming that P is a deterministic matrix. 

We obtain after some straightforward manipulations of (4.25) 

P(X2I + XE[cH(n)Pc{n)]I) = P(XI + E[cH(n)Pc(n)]I - E[c{n)cH(n)]P) . (4.26) 

P is assumed to be invertible, so we can multiply the equation by P~l and rearrange 

to get 

E[c(n)cH(n)]P = (1 - X)E[cH(n)Pc(n)]I - X(X - 1)1 (4.27) 

E[c(n)cH(n)]P   =   [(1 - X)E[cH(n)Pc(n)] - X(X - I)] I 

=   Xl- (4.28) 

The right hand side of (4.27) is a scalar x-> a* defined by (4.28), times the identity 

matrix, so we get 

P = x JB[c(n)cH(n)]-1 . (4.29) 

We note that the expected value of the outer product in (4.29) must be full rank 

in order for P to exist. The steady state value of P(n), which has been shown [65] 

to be close to P in a mean square sense, is a scalar times the inverse of the input 
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signal covariance. The following derivation shows that x iS not a function of P, so 

P is proportional to the inverse of the input signal covariance. By inserting (4.29) 

in (4.27) we get 

E[c(n)cH(n)}P = (1 - \)E[cH(n)X^[c(n)cH(n)]-1c(n)]/ - A(A - 1)/     (4.30) 

and this is solved to get an expression for the scaling factor x: 

 *(1 ~ A)  ,43n 

* - i _ (i _ A)£[c" (n)£[c(n)c* (n)]"1^)] ^ "    ; 

The expectation expression in the denominator equals L. This is seen by identifying 

the quadratic form inside the outer expectation as 

cff(n)E[c(n)cff(n)]-1c(n) = ir[cH(n)^[c(n)ciJ(n)]-1c(n)] . (4.32) 

Using tr(BA) = tr(AB) with B = cH(n) and A = E[c(n)cif(n)]-1c(n) we get 

tr[cH(n)E[c(n)cH(n)}-\(n)] = tr[E[c(n)cH(n)]-1 c(n)cH(n)) . (4.33) 

Now applying the outer expectation gives 

E[tr[E[c{n)cH(n)}-lc{n)cH{n)\]   = 

fr[E[c(n)ci/(n)]-1£[c(n)cH(n)]]   =   L. (4.34) 

Thus the scaling factor is given by 

x =     Vl-\)     . (4.35) 
x     1-(1-A)L v      ' 

This expression is shown in Fig. 4-3 where \ is plotted vs A with L as parameter. 

The expression (4.35), and the derivation in general, is only valid for L <C 1/(1 — A). 
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Scaling factor vs lambda 

0.94 0.95 0.96 0.97 
lambda 

0.98 0.99 

Figure 4-3: The scaling factor of the steady state solution vs A with the number of 
taps L as parameter. 

The reason for this is that P becomes close to rank deficient, and this is shown by the 

discussion of (4.37) below. Some additional insight can be obtained by examining 

the result if this assumption is violated. Therefore let us now allow L to be arbitrary, 

and then we have that 

X —> oo  as  L 
1 

1-A 
(4.36) 

The reason for this behavior of x is the following: The matrix P is computed from a 

number of the most recent data vectors. Due to the exponential windowing in RLS, 

the number of data vectors used, or the window length, is roughly 1/(1 — A). 

1/(1-A) 

P~    5Z   c(n + k)cH (n + k) 
k=0 

(4.37) 

where the sign ~ means "proportional to". The outer products c(n -j- k)cH(n + k) 
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are rank one, so the maximum rank of the right hand side sum in (4.37), which is 

approximately P, is 1/(1 — A). Thus, as L approaches 1/(1 — A), P becomes very 

close to singular. This is reflected in x approaching infinity for this value of L. 

The solution we get from the employed assumptions is a positive definite matrix, 

and the expressions correspond well with numerical values for P and x obtained by 

simulation of the difference equation (4.23) for P. This is performed as part of the 

verification of (4.29) where Gaussian noise is used to model the data in c(n), and 

both white and nonwhite noise give answers predicted by (4.29) and (4.35). 

Summary We analyze the RLS in presence of a Doppler spread signal, and the 

difference equation (4.23) that determines the gain is found to have a steady state 

solution given by (4.29) and (4.35). This solution suggests that the steady state of 

the matrix P, determining the gain, is given by the exponential weighting A and the 

input signal covariance matrix, and this is verified by simulations of (4.23). 

4.2.4    Receiver structure 

We now consider the DFE for acoustic underwater communication [90], which is 

shown in Fig. 4-4, and the modulation is assumed to be QPSK. The various parts 

of the receiver has different physical interpretations which we now list. 

• The FIR filter ai(n) is the feedforward part of the DFE, and it is used to 

combine signal energy from different time lags. 

• The FIR filter a.2(n) is the feedback part which subtracts out ISI generated 

by previous symbols. This filter is driven by the decoded signal z(n) which is 

identical to z(n) if the decoding is correct. 

• The sequences p\{n) and P2(n) are the outputs of the feedforward and feedback 

filters. 
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• The quantizer Q() takes the soft signal estimate z(n) into one of four legal 

symbols which in the case of QPSK are given by (2.16). 

The coefficients a of (4.22) are split into two parts a = [ax   a2] in order to obtain 

this interpretation. 

Consider the simple channel, dispersive in frequency, described by (4.20). We 

want to analyze how the receiver handles Doppler, so this channel model is sufficient 

for the issue addressed. If we transmit a whitened sequence z(n) and assume that 

the channel gain is unity we receive 

y(n) = z(n)e^(n) (4.38) 

The assumptions in (4.38) are a Doppler spread signal arriving over a single ray 

y(n) 
ax(n) 

Pi(n)        z(n) 

—0  Q( ) 
z(n) 

P2(n> 

a2(n) 

RLS 
e(n) 

Figure 4-4: A single channel receiver, all parameters adapted with RLS. 

path with no amplitude fluctuation, and the noise is assumed to be zero since this 

is not a major point for the analysis with respect to the Doppler spread. The phase 

<j)(n) is a correlated sequence that determines the Doppler spread. The maximum 

rate of variation is one of the concerns in this analysis, and we find an expression for 

this rate that is valid under specific assumptions. 

The channel model (4.38) gives no ISI caused by multipath in the received signal 

since there is no delay spread in the channel.  Thus it is plausible that the steady 
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state receiver feedback part converges to zero because the purpose of this part of the 

receiver is to remove ISI from previously detected symbols. By the same argument 

the feedforward section will have a single tap, since the purpose of this filter is to 

combine signal energy at different lags and the symbols in our case are not spread 

in delay. Thus we get the receiver in Fig. 4-5. The structure of the steady state 

DFE depends in general on the bandwidth of the process <j>(n). We assume that it 

is a correlated process that varies slowly compared to the symbol rate. The steady 

state configuration is verified by running the DFE on both real data with no ISI and 

simulated data with the channel model (4.38). We note that this receiver implies 

the special case of the scalar RLS equation which means that a(n),k(n), P(n) and 

c(n) are all scalars. 

y(n)=z(n)eJ*n 
a(n) 

z(n) z(n) 
vv ; 

, 

DT C e(n) 
*  

Figure 4-5:  The matched receiver that must handle the Doppler shift in the input 
signal. With no ISI the feedback part of the DFE is absent. 

For the very simple system considered here the solution P to (4.23) that is inde- 

pendent of time is given by inserting P(n) = P{n — 1) = P (by definition of steady 

state) into this equation. This yields 

P = l-\ (4.39) 

where we have used that zz* = 1 for QPSK modulation and that there is no noise in 

our channel model (4.38). This is in correspondence with the result obtained from 
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the more general (4.29). We find the steady state gain by using (4.23) and (4.39) 

which yields 

k(n) = (1 - A)y(n) . (4.40) 

We assume that the output of the decision device is the correct data, z{n) = z(n). 

This implies that the receiver is either in a training mode where correct decisions are 

supplied externally or that the receiver is decoding correctly. We also assume that 

the receiver has been able to converge to steady state, so that (4.39) and (4.40) are 

valid. Thus we get from (4.22) and (4.23) 

a{n + 1)   =   a{n) + (1 - A)z(n)e*<n>(*(n) - a»z(n)ej^n>)* 

=   \a(n) + (1 - X)ej^n) . (4.41) 

We can see that a(n) is obtained by passing e^^ through a first order IIR low pass 

filter where the dc gain is unity and the pole is at A, and the system is depicted in 

Fig. 4-6.    We now specialize to a constant Doppler shift with frequency WQ, 

y(n) = z(n) e j*„ 

<*> 
z(n) 

a(n) 

1- X 

Q( ) 
z(n) 

e(n) 

(   )" 

Figure 4-6: The equivalent RLS phase locked loop. S is a summer (discrete integra- 
tor). 

<j)(n) = (JüQTI (4.42) 
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so that now the signal model is 

y(n)    =    z(n)e^n (4.43) 

In the frequency domain we have from (4.41) and (4.42) 

1-A 

1 — AC 
(4.44) 

For large n the filter tap a(n) is a complex exponential with amplitude \H{e^°)\ and 

angle lH(eju)°).  This is valid as long as the decoding is correct, i.e., for QPSK as 

long as 

\Lz{n) - lz(n)\ < ^ . (4.45) 

When this condition is violated the decisions will be incorrect. This implies that 

(4.41) and (4.44) are violated, and the structure in Fig. 4-6 is invalid. The filter 

H{eiw) determining the filter tap a(n) is shown in Fig. 4-7.      When the RLS is 

Magnitude response 

 Upper:lambda=0.9 

 Middle:lambda=0.95 
 Lower:lambda=0.99 

0.05        0.1        0.15        02        0.25       0.3        0.35       0.4       0.45        0.5 
Normalized frequency(Nyquist=1) 

Phase response 

■ Uppenlambda=0.9 
- Middle:lambda=0.95 
- Lowerlambda=0.99 

0.05        0.1        0.15        0.2        0.25       0.3        0.35       0.4       0.45        0.5 
Normalized frequency(Nyquist=1) 

Figure 4-7: Magnitude (top) and phase of the filter determining the filter tap a(n) 
when the RLS algorithm is tracking a constant Doppler. 
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driven by a signal as in (4.20) the steady state filter tap a(n) tracks the phase of the 

input signal. This is the same function as a PLL. This RLS-PLL, not to be confused 

with the regular PLL discussed later, is tracking when (4.45) is satisfied. Ideally the 

incoming phase u0n should be compensated by lH(e3U'°), and we have that a(n) is 

generated by passing e'w°n through the filter H(ejw) as shown in Fig. 4-8.    Thus in 

Figure 4-8:  The filter tap is generated from a low pass filter driven by a complex 
sinusoid that is the Doppler shift. 

steady state we have 

a(n)   =    |#(eJ'"°)|eZH(eJW,V"on 

La{n)   =    LH(ej"°) + üJ0n. (4.46) 

When the incoming sample is y(n) = z(n)eju)°n (4.22) in steady state yields 

z(n)    =   y(n)a*(n) 

=   z(n)eiuj°na*(n) 

Lz(n)   =    Lz(n) + u0n — la(n) (4.47) 

and by inserting (4.46) we get 

lz(n)   =    lz(n) + uj0n - Zi?(ejw°) - u0n 

=    iz(n) + lH(ejoJ°) . (AAS) 

Thus in order for the phase estimate lz(n) to equal the true value Lz(n) the angle 

of H should be zero. If it is more than 7r/4 the correct decoding assumption (4.45) 
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is violated, and the RLS-PLL goes out of lock. This is satisfied when 

lH(e-jW0)   =   tan 

U)Q     =     COS 

_t     Asin(u>o) 7T 

1 — Acos(a>o)      4 

J_       I1        1 

2A+V2     4A2 
-i (4.49) 

Fig. 4-9 shows the maximum Doppler that can be handled by the RLS-PLL given 

by (4.49).     For a representative A of 0.98 we get u>0 = 0.0206 corresponding to a 

Dopptor shift vs forgetting factor 

o.es o.o 
Forgetting factor (lambda) 

Figure 4-9: The maximum Doppler shift that can be corrected by the RLS-PLL is 
a function of the forgetting factor A. 

Doppler shift of a fraction of a percent of the symbol rate. This corresponds to a 

Doppler shift of u0 = 2 Hz at a symbol rate of 600 symb/sec. Thus the RLS cannot 

handle significant Doppler shifts. The filter a(n) is usually started with a(0) = 0, 

and when z{n)e^°n arrives the phase of A(eJU,°) starts at zero and builds up towards 

its final value. By summing up (4.41) we get: 

a(n + 1) = (1 - A) — 
(Ae^°)n 

- Ae^o 
,3"on (4.50) 
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The speed with which the phase la(n) approaches its asymptote is given by the time 

constant A of the filter which is the same as the RLS forgetting factor. It is given by 

i     Ansin(o;on) ,     Asin(u>0n) 
la(n + 1   = tan"1 .     V  "      , - tan"1     V       '     + u0n . (4.51 

1 — An cos((jj0n) 1 — Xcos{u0n) 

Summary We present a DFE adapted with RLS in Fig. 4-4, and we show that the 

steady state of this receiver reduces to the configuration in Fig. 4-6 when driven with 

a purely Doppler spread signal from (4.20). The steady state solution for the RLS 

is used to find the amount of Doppler spread under which this receiver can operate 

satisfactorily, and the result is shown in Fig. 4-9. The limiting factor is the feedback 

of symbols used for decoding. 

4.2.5    Phase locked loop 

There are several ways for the transmitted signal to be distorted by Doppler, and 

some of them were mentioned earlier in this work. The analysis in Section 4.2.3 

shows that the RLS algorithm is very sensitive to Doppler, and not very capable 

of handling significant Doppler shifts. A way to overcome this is to use a phase 

locked loop to remove the Doppler shift from the signal before it enters the rest of 

the receiver. In this section we discuss some of the features of the phase locked loop 

(PLL). The PLL is embedded in the DFE, therefore some features that are from this 

part of the receiver are also discussed in this section. 

A classical PLL is built up of three components as shown in Fig. 4-10, and this 

PLL works on complex signals in discrete time. The PLL is derived from an extended 

Kaiman filter [105]. Consider the signal given in (4.21), and remember that the 

input signal y(n) is a baseband signal sampled at 2 samples per symbol. Thus the 

purpose of the PLL is not carrier recovery but tracking and elimination of a Doppler 

shift present in the demodulated data. If an m-sequence is used as the transmit 

signal and the modulation used is QPSK this signal can not be used to drive a PLL 
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Figure 4-10: Building blocks of a PLL. 

directly. The input signal spectrum is not centered in a narrow band around any 

frequency wc, and this violates a basic assumption of the PLL in Fig. 4-10. Thus 

the effect of the transmitted signal must be taken out before using a PLL to track 

u>0. Ideally the PLL should be driven with e^u°n. If we modulate the incoming signal 

with a signal containing z*(n) this effect is achieved. This modulation is used in a 

decision feedback PLL [80], [71], and the PLL characteristics are discussed in these 

references. 

Much of the literature on PLL's assumes a real input signal whereas we have 

a complex input signal, and this implies that the phase detector (PD) must be 

modified. Its function is to extract the phase of the incoming signal and compare it 

to the estimated phase as shown in Fig. 4-10. There are two ways of extracting the 

phase difference (i.e., two phase detectors) that are fairly common, and in current 

use in the receiver described in Section 4.2.6. They are hereafter called the imaginary 

part PD and the angle PD. 

Imaginary part PD 

The idea of jointly adapting the PLL and the DFE in the manner we discuss is 

reported in [90]. In this work an approach is taken where <f>(n) = u0n and the filter 

taps a(n) are treated as random variables.   The cost criterion is the mean square 
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error (MSE) of the decoded data sequence. It is interesting that joint optimization of 

a(n) and <f>(n) suggests that Im(pi(n)e*(n)) should be used to drive the PLL where 

Pi(n) is the output of the feedforward section of the receiver as shown in Fig. 4-4. 

The product Im(pi(n)e*(n)) suppresses the phase modulation imposed by z(n), and 

this is in line with the idea of a decision feedback PLL. This is seen for the case of 

scalar a{n) by inserting pi(n) = a*(n)y(n) and e(n) from (4.22) into Im(p1(n)e*(n)) 

using the signal model (4.20) (time indices are omitted for clarity): 

Imfae*) = Im(amze?+(zm - z*)) . (4.52) 

Since we are using QPSK modulation we have that zz* = 1 for the receiver used 

in [90]. With our signal model the steady state receiver is as in Fig. 4-5. This gives 

Im(pie*)    = Im(a*zeJ'*(z* - az*e~j*)) 

= Im(a*(e;'*-fl)) 

= Im(aV'*) 

= |a|sin(Z[aV'*]) (4.53) 

and thus Im(pie*) contains no phase modulation from z. We can also use standard 

identities and write 

Pie*   =   |p1e*|(cos(Z[pe*])+isin(Z[p1e*])) 

lm(Ple*)   =   |p1e*|sin(Z[p1e*]). (4.54) 

By using the usual small angle approximation sin(^) ~ <f> on Zfpxe*] this PLL follows 

the analysis in regular texts on PLL's [82]. 
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Angle PD 

The PD is sometimes modified, and the modification reported in [53] is in current 

,use for a receiver similar to the one we discuss. In an attempt to mimic the function 

of the PLL in Fig. 4-10 the phase detector is taken as a multiplier followed by phase 

angle extraction (time indices are dropped for clarity): 

Z[pie*] = Lxe = tan 
_i Im(xe) 

Re(xe) 
(4.55) 

where we define xe = p\e* for brevity. The idea is that the PD ideally should deliver 

the instantaneous phase difference between the feedback and input signal as shown 

in Fig. 4-11. Since we argue that p\e* should be used to drive the PLL (4.55) follows 

naturally. The PD of Fig. 4-10 corresponds to the multiplier and angle operator of 

Fig. 4-11, the filter g{n) of Fig. 4-11 is the loop filter in Fig. 4-10 and the sum and 

exponential operator of Fig. 4-11 are the VCO of Fig. 4-10. The loop filter has the 

same function and form as in Fig. 4-10. It changes the control characteristics of 

the feedback loop and modify important system parameters such as the sensitivity 

function of the closed loop system [5]. The voltage controlled oscillator (VCO) is an 

integrator followed by a complex sinusoidal generator.     The resulting PLL should 

Phase detector Loop filter 

X ! r^\ ** Z(.) g(n) 
1 V 

Y* 

ej(0 £ 

VCO 

Figure 4-11:  The structure of the digital PLL, working on complex signals.   £ is a 
summer (discrete integrator). 

be designed for tracking the angle of the input signal.   It is nonlinear, and it can 
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be interpreted as two linear subsystems that are coupled with a nonlinear equation. 

Fig. 4-11 gives us 

*Lf g    ■—■    Ju U — JL\Zr 
-j(-y*Zxe) (4.56) 

where j(n) is the composite effect of g(n) in Fig. 4-11 and the integrator, and it 

is called the loop transfer function. The symbol L means the physical, unwrapped, 

angle and not only the principal angle that is between ±7r. Taking the logarithm of 

the complex quantity xe we get 

log|xe|+ jlxe   —   log |a;| + jlx-jj*Lxe (4.57) 

The real and imaginary part of this equation must be separately satisfied, and thus 

we have the structure in Fig. 4-12 which can be written as 

Lxe Lx — 7r * lxe 

log|xe|    =   log|a;| + 7,-*Zxe . (4.58) 

The angle dynamics are given by the real part -fr of the loop filter and VCO (loop 

lOg [Xl      ^lOgW A   ^A, 

b 

Figure 4-12: The phase and modulus of the signal going into the PLL is found by 
considering these structures. 
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transfer function).   If the imaginary part 7,- of the loop transfer function is zero 

the absolute value is unaffected.   This enables us to apply control theory in the 

design and analysis of the PLL angle tracking performance.  The most important 

assumption for this analysis to be true is that the angle error lxe is small.  If the 

condition 

l^e| < V (4.59) 

is violated we get cycle skipping, because the complex logarithm in (4.58) delivers 

only the principal angle. When the PLL is in normal operation (4.59) is satisfied 

and when the PLL is out of lock the condition is violated. 

Summary We present the general PLL in Fig. 4-10, and discuss two realizations 

with different phase detectors called the imaginary part PD (4.52) and angle PD 

(4.55). The imaginary part PD corresponds to the classical PLL, using the small 

angle approximation in (4.54). The angle PD is motivated from heuristic arguments 

mentioned in the discussion of (4.55) and from its practical usefulness. 

4.2.6    Interaction between phase locked loop and filter adap- 

tation 

Preview We now combine the results on the RLS and the PLL presented in Sec- 

tion 4.2.3 and Section 4.2.5 to characterize the composite system. We find that in 

the two cases of imaginary part PD and angle PD the system is governed by the 

nonlinear, coupled sets of difference equations (4.67) and (4.69). We find the sta- 

tionary regions (4.70) and limit cycles (4.76) to these difference equations. Then 

we determine the stability of the stationary regions, and we show in Appendix A 

that they are unstable in the case of angle PD and marginally stable in the case of 

imaginary part PD. 

We now consider the composite coherent communication system as outlined above 
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and depicted in Fig. 4-13, using QPSK modulation. The information of this system 

is in the phase, and thus it is essential to have a reliable and robust phase estimate 

at the receiver. We see from the analysis of the steady state that the RLS algorithm 

can not handle significant mean Doppler. This motivates the use of a PLL outside 

the adaptive RLS receiver to compensate a Doppler shift. If we consider the signal 

model (4.19) there are L different Doppler shifts. Therefore if the bandwidth of the 

PLL is small, relative to the Doppler spread made up of the different Doppler shifts 

the PLL is at most able to remove one of the Doppler shifts or it locks on to an 

intermediate frequency. Nevertheless the residual Doppler is left for the filter taps 

to take care of. Thus we have a situation where both the PLL and RLS see Doppler 

in their input signals. The RLS steady state analysis shows that the RLS performs 

a PLL function. The RLS-PLL and the PLL are designed for the same purpose. 

y(n) D v(n) a (n) 
_   z(n) 

Q( ) 
z(n) 

s r 
e-J «n) 

S 
p/n) 

i . 

a/n) 

ii 

e(n) 
KJ ̂ 5/fLL 

Figure 4-13: The composite receiver, consisting of a decision feedback equalizer and 
a phase locked loop. 

Let us now analyze this situation when the PLL and RLS adaptation of the taps 

take place on the same data. We constrain ourselves to the simple example treated 

in Section 4.2.5, and y(n) is given by (4.20). The receiver structure is as in Fig. 4-5 

with no feedback taps and a single feedforward tap. In addition a PLL correcting 

the phase of y{n) is present as shown in Fig. 4-13. 
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Difference equations 

We now derive the system of equations that describes the simultaneous adaptation of 

the PLL and the RLS in presence of Doppler. We then look for stationary regions and 

limit cycles of the composite system of difference equations from the RLS algorithm 

and the PLL. As will be shown the angle PD has no stable stationary regions. Thus 

we derive stationary regions for both systems, but look for limit cycles only in the 

system comprising the imaginary part PD. 

First observe that there is no principal difference between Fig. 4-13 and a cor- 

responding situation where the PLL is absent when it comes to the input signal as 

seen by the filter a(n). The only difference is that the input signal to the feedforward 

filter is 

v(n) = z(n)ei(^(ri)-^"» (4.60) 

rather than 

v(n) = z{n)ej<t'{n) . (4.61) 

Thus the derivation of the filter tap evolution as driven by RLS is not changed. In 

particular (4.41) is valid: 

a{n + 1) = Xa(n) + (1 - A)e**<n>-*n» . (4.62) 

Angle PD    The output of the single tap feedforward section of the DFE is 

Pi(n)   =   a*(n)v(n) = z(n) (4.63) 

because there is no feedback part. By using (4.63), (4.38) and (4.22) we get 

pi(n)    =   a*(n)2(n)eJ'(*(n)-*<n)) 

e(n)    =    z(n) — z(n) 
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Pi(n)e*(n)   =   pi(n)z*(n) - Pi(n)p{(n) 

a*(n)e j(4>(n)-4>(n)) 
*(n)|2 (4.64) 

From this the phase detector output for the angle PD is 

Z[p1(n)e*(n)] = Z[a»eW<n>-*<n» - |a(n)|2] (4.65) 

Since the loop transfer function is 7(12) and (4.62) is valid we have the following 

nonlinear system of difference equations: 

x(n.+ 1) 
a(n + l) 

i(n + 1) 

Aa(n) + (1 - A)eW<B>-*<n» 

7(n) * Z[a*(n)c^*(B)-*<n)) - |a(n)|2] 
= f(x(n),*(n)) 

(4.66) 

For simplicity let 7(n) be an integrator (the loop filter is 1), and then we get 

f(x(n),#n)) = 
a(n + l) 

4>{n + 1) 

Aa(n) + (1 - \)eJWn)-kn)) 

4>{n) + Z[a*(n)e'Wn>-*<n» - |a(n)|2] 
(4.67) 

Imaginary part PD    The imaginary part PD output is from (4.53) and (4.54) 

Im[px(n)e*(n)]    =   Im[a*(n)ejMn^n»] (4.68) 

and by letting 7(n) be an integrator as with the angle PD, the imaginary part PD 

give another set of nonlinear coupled difference equations for the filter tap and PLL 

output: 

f(x(n),<Kn)) 
a(n + l) 

4>{n + 1) 

Aa(n) + (1 - A)e'WB)-*<B» 

<£(n) + Im[a*(n)eJ'Wn>-*(n»] 
(4.69) 

The set of nonlinear coupled difference equations are similar to the ones found 

in [35], [34] where a passband DFE is adapted with a stochastic gradient algorithm 
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and a PLL is used on the data at the same time. Some of the conclusions that we 

make here could also be drawn from this work. 

Stationary regions 

The trajectories of a(n) and <f>{n) vs n can be drawn in separate coordinate systems 

to visualize their evolution. Given initial conditions and input </>(n) the evolution of 

x(n) is well defined.  We note that the set of difference equations determining the 

evolution of the tap and the PLL are coupled in both the cases of angle part PD 

and imaginary part PD in (4.69) and (4.67). We show in the following that it is of 

interest to determine what we call stationary regions of these difference equations. 

A stationary region is a set of x(n) for which the difference equations 1) decouples 

and 2) exhibits fixed point behavior in some of its coordinates. We find in both PD 

cases that a stationary region exists for a{n) = e3^n'^n>' because by inserting this 

in (4.69) or (4.67) we have that <^(n + 1) = <f>(n). Thus <j>(n) is constant vs n and we 

have that 
eJ(Hn)-<i>°) 

x*(n) = 

is a stationary region. 

(4.70) 

Limit cycles 

We now look for limit cycles of the system under the constraint that the phase in 

the input signal is a linear function of time which corresponds to constant Doppler 

shift: 

<f>(n) = Lon (4.71) 

The analysis can be carried out by specializing some of the equations. We consider 

the case of imaginary part PD since it is, as is shown, at least marginally stable. 

From (4.50) we know that if a constant Doppler UJ0 is driving the RLS algorithm we 
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have 

«W « , l T A    eja,°n . (4.72) 

Since the PLL and the RLS are interacting we do not know if the RLS will receive 

the constant Doppler LO0 even if the input signal has a constant Doppler UJ. To show 

that the RLS actually receives a constant Doppler in this case we first assume that 

this is true: Assume there is a constant Doppler into the RLS i.e., (4.72) is assuming 

<f>(n) — (f>(n) = urn — uin = uQn . (4.73) 

Here u> is the total Doppler in the input signal, u>i is the Doppler compensated 

by the PLL and u>0 is the residual Doppler present at the input of the RLS. Thus 

the assumption that (4.72) is true implies (4.73) which assumes that the Doppler 

compensated by the PLL is constant equal to ui. We now show that this is true, and 

thereby make the assumptions of constant Doppler shift into both the PLL and the 

RLS a consistent pair: The Doppler driving the RLS comes from the PLL output, 

so the phase output of the PLL must be a linear function of time for (4.72) to be 

true. Equation (4.69) gives 

4>(n + 1) = <£(n) + lm[a*(n)ej"°n] = <£(n) + Im[   _^ ~ \j . (4.74) 

Indeed, the PLL is increased by a constant amount at each iteration, so the PLL 

output is a linear function of time. 

As mentioned earlier a limit cycle occurs when the filter tap a(n) repeats itself 

after a number of steps n. This will not be the case with the state x(n) made up of 

(4.72) and (4.74) unless 

2TT 
Uo   =   T 

2TT 
WI    =   y (4.75) 
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for k, I integers. Thus we have shown that 

x(n) = 
l-A    riuign 

l-Ae-""o c 

u>in 
(4.76) 

is a limit cycle to (4.69) when (4.75) is satisfied. But even when (4.75) is not 

satisfied the state trajectory for a is closed which means that the system is in a 

stable condition, and this is the important feature even if it is not a limit cycle. This 

is supported by simulation of the system of equations. 

Stability analysis 

We now return to the stationary region (4.70), and ask the question whether the 

stationary region is stable or not. The solution x* given in (4.70) is valid for both 

angle PD and imaginary part PD and a stable stationary region would imply that 

x(n) in the vicinity of x« would be attracted to x, and the trajectory would end up 

in x». The stability is determined by linearizing f (x) around the stationary region 

and examining the eigenvalues of the resulting matrix. This gives local behavior only 

since the system is nonlinear. 

Consider a perturbation of x away from the stationary region x». We can linearize 

the system by a first order Taylor series of f (x) around x», and if the linear system 

is stable we have a stable stationary region. 

8x.(n + 1)   =   A6x(n) = An6xo 

A   =   f |, (4.77) 

Stability    :     \ni(A)\ < 1 Vt (4.78) 

where AC,-(A) is the i'th eigenvalue of A, and expressions for these are given in Ap- 

pendix A in both the cases of angle PD and imaginary part PD. By using a per- 

turbation with arbitrary direction 8a == re3*, and letting r go to zero, the lineariza- 

155 



tion shows that the stationary region is unstable using the angle PD (4.65), and 

marginally stable (one eigenvalue has magnitude one for a specific direction) for the 

imaginary part PD (4.68). The reader is referred to Appendix A for details. 

In the case of using the angle PD the state trajectory fails to end in the stationary 

region when started from arbitrary initial conditions since the stationary region is 

unstable. This forces the system to find another way to go, and the result is a limit 

cycle. The limit cycle state trajectory and the number of time steps n in a limit 

cycle is determined in part by the loop filter of the PLL. In the case of a system 

described by (4.67) the result is a limit cycle with period 2, i.e., 

a(n + 2) = a(n)   j>(n + 2) = 4>{n) (4.79) 

and it is possible to find expressions for the limit values by solving 

x(n) = f(f(x(n),#n))). (4.80) 

The period of two in the limit cycle is specific for the loop filter that is assumed in 

(4.67), and limit cycles of arbitrary period occurs by changing this filter. 

Summary We use the steady state RLS solution and the recursion obeyed by the 

PLL to get a coupled set of non-linear difference equations in (4.67) and (4.69). 

We find stationary regions and limit cycles of these equations and we analyze their 

stability. A major point in our context is that the stationary region given by (4.70) is 

not a single point, but a region. We find that the angle PD has an unstable stationary 

region, and that the imaginary part PD has an infinite number of marginally stable 

limit cycles. Thus the operation of the PLL and filter tap adaptation is not well 

conditioned. Adding noise and modifying the PLL loop filter further changes the 

behavior of the system, but the main features discussed above prevail. 
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<ÜXo = (4.81) 

4.2.7    Simulation and real data examples 

The limit two-cycle for the angle PD in (4.79) is verified by simulations. Assume 

that we start the system in equilibrium, so that (4.70) is satisfied, and then at time 

zero we perturb it with 

Sa 

0 

where Sa is a random variable with jointly Gaussian real and imaginary parts of 

variance 0.1. The trajectories of a(n) in the complex plane are shown in Fig. 4-14. 

The upper panel shows ten trials of the output <j>(n) of the PLL vs time. We see 

that 4>{n) goes into the limit 2-cycle with the two values being symmetric around 

0 radians. This symmetry can be verified by looking at (4.67) because the lower 

equation for <j>(n + 1) is a difference between <^(n) and the PLL input. Difference 

equations of this kind are satisfied by symmetric <£(n) with period 2. The lower 

panel of Fig. 4-14 shows the filter tap a(n) in the complex plane, and in each of the 

ten trials it is started on the unit circle in accordance with (4.70). The perturbation 

causes \a(n)\ to decrease, and a(n) ends up in limit cycles with \a(n)\ < 1. This is 

in accordance with (4.67) which states that a(n) is the output of the IIR low pass 

filter discussed in an earlier section. The behavior of the system is modified by 

the introduction of a loop filter, but not fundamentally. Fig. 4-15 shows trajectories 

of <f>{n) and a{n) when 

4>{n)   =   O.Oln 

where V(z) is the z-transform of the loop transfer function j(n). The phase is linear 

(constant Doppler) and the loop filter is more complex, and in this example the 

angle PD is used in the PLL. In this case the real part steady state tap value a(n) 

in the lower panel of Fig. 4-15 always comes approximately back to one, but the 
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Figure 4-14: 10 trials of the state trajectories when perturbing the filter tap with 
a small random value 8a away from the stationary region. The top picture is PLL 
phase estimate, and the bottom picture is the complex filter tap values. 

imaginary part has arbitrary final value so that \a(n)\ fails to return to one after a 

perturbation. 

Examples of limit cycles in the case of constant Doppler and imaginary part PD 

is shown in Fig. 4-16. It shows the filter tap and the PLL output for a linear Doppler 

input, and in this is picture we can see the action of the IIR filter very clearly. As 

the PLL locks on to an arbitrary amount of the full Doppler present in the signal 

the RLS must take care of the rest by means of tap rotation. When the tap rotation 

is fast the low pass filter attenuates \a(n)\ so that it stays away from the unit circle 

where the stationary regions are. 

Also included is an example of RLS and PLL simultaneous adaptation on real 

data that illustrates the phenomena of the undetermined and unstable stationary 
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Figure 4-15: 10 trials of the state trajectories when a linear phase shift is applied to 
the input and the filter tap is perturbed away from the stationary region. The PLL 
phase estimate at the top, and the complex filter tap values at the bottom. The 
time arrows of all the trajectories of a(n) are pointing toward the middle where the 

Re(a) = 1. 

region of the system. The underwater communication channel used for transmissions 

consists of one main stable return, and a more rapidly varying delayed return. The 

receiver has 4 piezo-electric elements receiving the sound field, and they are mounted 

on a rigid platform spanning less than 1 meter. The platform is towed from a boat, 

and each of the data channels are connected to a receiver as shown in Fig. 4-17 

with one PLL for each data channel. The data channels in Fig. 4-17 are created by 

complex demodulation and sampling of each of the four transducer outputs, and the 

sampling rate is 2 samples per symbol. Thus each transducer is equivalent of one 

data channel of the same kind as is used for input in the previous section. The RLS 

works jointly on all DFE coefficients to minimize the error. In this configuration 

it is very unlikely that there should be any difference in Doppler among the data 

channels. The data are correctly decoded, so the receiver achieves convergence to 

steady state as assumed in the analysis above. Fig. 4-18 shows the PLL outputs 

for the data channels, and the left part is when all data channels are used whereas 
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Figure 4-16: The filter tap rotates at a constant rate, taking care of some of the 
Doppler at the expense of its amplitude. The rest of the Doppler is compensated by 
the PLL. It is arbitrary how the Doppler is shared between the PLL and the filter 
tap. There are three cases of Doppler handled by the RLS, LüQ = [.001  .01  .05]. 

the right part is with two channels used (decoding is still correct). The two lowest 

curves in the left picture are the same data channels as the two curves in the right 

picture. Thus the phase estimates on the same data channels are different, and this 

is due to the ill behaved dynamics of the interaction between the PLL and the filter 

tap adaptations. The connection between tap amplitude attenuation in (4.50) and 

Doppler handled by the RLS is shown for this real data example in Fig. 4-19. The 

tap with the smallest Doppler, corresponding to the channel with largest PLL phase 

estimate in Fig. 4-18, is the one with largest magnitude in Fig. 4-19. This is in 

accordance with (4.50) which suggests that the tap amplitude is attenuated when 

the Doppler compensated by the RLS is significant. 

Summary We demonstrate the behavior of the receiver in Fig. 4-13 by simulating 

the difference equations (4.67) and (4.69) for different cases of Doppler spread. In 

the case of a Doppler shift the receiver is compensating some fraction of this by 

means of the RLS and the rest by means of the PLL, and this results in attenuation 
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#1 
Senson 

Figure 4-17: The multichannel version of the DFE, running on four data channels. 
The RLS is jointly adapting all filter coefficients. 

of the tap amplitude estimated by the RLS. The system behavior as predicted by 

(4.67) is verified by looking at the receiver RLS and PLL output when running on 

real data in Fig. 4-18 and Fig. 4-19. 
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Figure 4-18: The PLL output phase estimate <^(n) when applied to channels 1-4 (left) 
and channels 1-2 (right) of real data. The four channels are believed to have the 
same Doppler because they were recorded from elements closely spaced and mounted 
on a rigid platform, but the PLL estimates are different. The two channels 1 and 2 
are estimated differently when channel 3 and 4 are not used. 
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Figure 4-19: The taps of the 4 channel equalizer running on real data. All taps are 
rotating. The magnitudes of the taps are significantly different, even though the 
noise has similar variance on all the channels. The highest magnitude tap is on the 
channel where the PLL phase estimate is largest. 
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4.3    A receiver for doubly spread channels 

4.3.1     Channel model 

We now propose a receiver that works on a sparse channel in the presence of Doppler 

spread made up of different rays with different Doppler shifts that may be slowly time 

varying. We consider the modified delay-Doppler-Spread function as our channel 

model where the modification is to allow the delay-Doppler-spread function to be a 

slowly varying function of time. The discrete representation of our channel is thus 

y(n) = VS<Tz(n- l)U,,k(n)e>2*kA™ + w(n) (4.83) 

where y(n) is output of the channel, Uitk(n) is the Delay-Doppler-Spread function 

which is the scattering amplitude at lag / and Doppler kAv for time n, z(n) is input 

to the channel, L is the number of signal returns, w(n) is measurement noise, £ is 

the energy in each symbol and Av is the Doppler spacing. The notation (/, k) in 

the index of the sum of (4.83) means that there are L pairs of (/, &), and there is 

no assumption on the distribution of these points. Specifically, some of the delays 

/,■ may be identical and also some of the Doppler coefficients k( may be identical. 

Thus we model doubly spread, pure delay spread and pure Doppler spread channels 

that may be sparse in both delay and Doppler. This channel model is used for all 

the receiver variants in this section. The basic receiver model, which is discussed in 

Section 4.3.3, applies to a restricted version of (4.83) which we now present. The 

restriction is to have only one Doppler coefficient for each delay, i.e., for each delay 

/ there is only one k. By collecting z(n) in the vector cH(n) we can write (4.83) as 

y(n)   =   cH(n) 

0j2irkoAi/n 0 

0j2-KkL_iAvn 

Ul0,k0(
n) 

UlL-l,kL-l(n) 

+ w(n) 
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cH(n)   =   VS[z(n-l0)---z(n-lL^)] (4.84) 

Now we define a state space description for a system aiming at deriving a recursive 

estimate of the state space vector h(n): 

h(n) 

Ui0,ko(n)e^^^n 

UiL_1,kL_1(
n)e j2irkjJ_1 At/n 

(4.85) 

We assume a first order autoregressive (AR(1)) model for {//,-,*; (n), so that 

Uiitki(n + 1) = ctiUu,ki{n) + v,-(n) 0 < i < L - 1 (4.86) 

where |a;| < 1 and v,-(n) is white noise. There is one a; for each pair (/,-,&,). The 

original delay-Doppler-spread model of C//,-,jfe,-(n) being constant random variables 

(not functions of time n) is contained in this model when the noise variance is zero 

and «,- = 1. The state space model for h(n) is now given by 

h(n + l)   = Ah(n) + v(n) 

aQeJ2*koAv 

y{n) 

0 OCL-IC 

cH(n)h(n) + w(n) 

j2irfci_j Af 

(4.87) 

where 

v   =    [v0(n) ■ ■ ■ vL-i(n)Y 
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(1 - al)ul 

R E[vwH] 

0 (1 - aU)uU 

U: 

Vi(n) 

E[\Ulukf] 

Vi(n)ej2vkiAl/(n+1) (4.88) 

The quantity u] is the scattering strength at (/,-, fc,-), and the introduction of u,(n) is 

merely a notational convenience. We note that if the assumption of one Doppler per 

delay is not satisfied, the resulting state space model is derived from 

(4.89) 

The coefficients £//,-,fc,-(n) are only observed through their sum over &,-, and it is 

possible to resolve this sum only if we have a number of time samples y(n) • • • y(n + 

N — 1). Even in the case of one Doppler per delay we use on the order of N ~^> 

L samples, where N is given by the exponential weighting A to be introduced in 

Section 4.3.2. The reason for large N in this case is to get noise suppression through 

averaging as discussed in Section 4.1.5. In the case of (4.89) we need N large in order 

to resolve the sum over A;,-, and this also depends on At/. This is used when the basic 

receiver is extended, and we comment further on this in Section 4.3.4. The diagonal 

form of A is obtained because we model the scattering from different lags and at 

different Dopplers as being uncorrelated with each scattering process being WSS, 

and this corresponds to the WSSUS assumption that is discussed in Section 2.2. 

The WSSUS assumption also implies a diagonal form of R. The channel model 

(4.87) is used to derive a receiver which also makes use of a modified RLS algorithm 

that we present in Section 4.3.2. 
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Summary We use the time-variant delay-Doppler-spread function Uitk(n) as our 

channel model in (4.83). The time evolution of Uitk(n) is modeled as an AR(1) 

process in (4.86) and by means of this a state space model (4.87) is presented. 

4.3.2    The modified RLS algorithm 

The regular RLS algorithm is given in (4.22) and (4.23), and it can be shown [64] 

that it minimizes a weighted sum of the errors given by 

£ An-m|e(m)|2 . (4.90) 
m=0 

When the forgetting factor A = 1 the RLS is identical with a Kaiman filter [45], [64] 

for the system with state space description 

h(n + l)   =   h(n) 

y(n)   =   cH(n)h(n) + w(n) (4.91) 

where the variance of w(n) is a2
w = 1 for the analogy to hold. Thus in Kaiman 

filter terminology [105] the system matrix of (4.91) is the identity matrix / and the 

observation matrix C is the data vector c(n). The analysis in Section 4.2 on the DFE 

identified one of the main problems as a model mismatch between the true channel 

model and the underlying model for the RLS given by (4.91). The mismatch in this 

case is in the time update of (4.91) where the model (4.87) predicts a rotation of h. 

Motivated by this, and also by findings in the literature [46] that address the same 

issue, we introduce a modified RLS with an improved model for the time update that 

incorporates the model (4.87) and (4.88). Thus we replace the regular RLS (4.22) 

with 

h(n + 1)    =   Ah(n) + k(n)e(n) 
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y(n)   =   cH(n)Ah(n) 

cH(n)   =    VS[z(n-l0)---z(n-lL^)} 

e(n)   =   y(n)-y(n) (4.92) 

\(AP(n - 1)AH + R)c(n) 
k(n) < + \cH(n)(AP{n - l)AH + R)c(n) 

P(n)   =   \(AP(n - l)AH + R) - \k(n)cH(n)(AP(n - l)AH + R)   (4.93) 
A A 

where w(n) has variance a^ and e(n) is the innovations sequence. We call this 

algorithm the time updated RLS (TU-RLS) and in (4.93) k(n) is the gain vector 

and P is a covariance matrix. If A = 1 we have that k is the Kaiman gain and P is 

the prediction error covariance matrix. This recursive algorithm is also reminiscent 

of the RLS since it degenerates to the regular RLS when the Doppler spread is 

zero, w(n) has unit variance and R — 0, and it could be called the Doppler spread 

RLS. The Doppler spread enters the TU-RLS through the A matrix which yields 

differential Doppler among ray paths, and also through R which yields the effect of 

a time-variant ray. Additional motivation for this modified RLS is revealed as we 

use the algorithm and analyze the'results in Section 4.3.3-4.3.8. We now combine 

the TU-RLS and the channel model (4.87) to present the receiver. 

Summary We propose a modified RLS algorithm with a time update step (TU- 

RLS) that incorporates the channel model (4.87) in (4.92) and (4.93). This recursive 

algorithm is identical to the regular RLS when the Doppler spread is zero, w(n) has 

unit variance and R = 0. It is identical to a Kaiman filter when the exponential 

weighting A is one and w(n) had unit variance. 
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4.3.3     Receiver for one Doppler shift at each delay 

Consider the receiver design in fig. 4-20, which is built according to a demand for 

simultaneous channel tracking and coherent signal combining to reduce dispersion 

in both time and frequency.       The system for channel tracking obeys the TU- 

r      i 1  

z(n) 
Channel 

y(n) Channel 
tracker 

fi(n) 

h(n) 
Decoder/ 

wfa ztn) 
 > QO 

z(n) 

Figure 4-20: Receiver built up of separate channel tracker and equalizer. 

RLS algorithm yielding a recursive estimate of h(n) and a recursive equation for 

the covariance P(n). To obtain the algorithm we apply the TU-RLS to the model 

(4.87), and this yields the estimate h(n) in (4.92) and a covariance matrix and gain 

vector varying according to (4.93). 

Before we characterize the receiver we now compare the tracking part of the 

receiver in Fig. 4-20 to the DFE in Fig. 4-13 with respect to Doppler. In order to 

make the comparison as relevant as possible we remember that one of the channel 

models used with the DFE is a time-invariant delay-Doppler-spread function. To 

accommodate this we require 

a,- = 1    V i (4.94) 

so that we can look for a steady state solution of the covariance equation in the same 
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way as for the DFE in Section 4.2. We show in Appendix B that the gain for this 

case is given by (B.6), (B.7) and (B.8) which yields 

k(n) « (1 - A)c(n)/£ . (4.95) 

Using (4.92) and (4.95) we get 

h(n + 1) = [7 - (1 - X)c(n)cH(n)/£]Ah(n) + (1 - X)c(n)y(n)/£ . (4.96) 

In a 1 x 1 system where the received signal is y(n) — y/£ej2irk°Al/nz(n) we get 

h(n + 1) = \ej2*koAuh(n) + (1 - \y2*k°A™ . (4.97) 

Note the intuitive interpretation of this: The filter tap is rotating at the correct 

Doppler rate by means of the embedded system matrix A as seen in the first term of 

(4.97). The second term of (4.97) is the correction to h(n) from the channel variation. 

The tracking to follow slow variations in the delay-Doppler-spread function is still a 

first order IIR filter, refer to (4.41), but now the Doppler frequency is not entering the 

filter. The first order IIR filter is not a lowpass filter but a bandpass filter centered 

approximately at the Doppler frequency, and this is the effect of the TU-RLS. 

The tap in (4.97) rotates in the same direction as the channel whereas the tap 

in (4.41) rotates in the opposite direction of the channel. This is consistent with 

the fact that the DFE (4.41) directly compensates the channel whereas the TU-RLS 

(4.97) only tracks the channel. 

Summary We present the basic receiver architecture in Fig. 4-20, and it comprises 

a channel tracker updated with TU-RLS, a linear decoder and a quantizer. We show 

the effect of a simple Doppler shift on the TU-RLS in (4.97) and compare it to the 

DFE in Section 4.2. 

170 



4.3.4    Generalized receiver 

We now consider a way to increase the amount of Doppler spread that can be present 

at a given delay. The state space model that is used to derive the channel tracker in 

Fig. 4-20 has only one nonzero Doppler coefficient at each delay, and we now discuss 

the situation where several values of the delay-Doppler-spread function at a specific 

delay are nonzero. This can be accommodated by a modified receiver which we now 

present. 

The signal model is given by (4.83) and in this section we assume £ = 1. In the 

receiver in Fig. 4-20 we assume correct decoding and use past decisions z(n) to track 

the channel. The channel variation is assumed to be much slower than the symbol 

rate, therefore we can introduce a small delay in the channel tracking and thereby 

have the transmitted sequence z(n) available. As will be further explained below 

this enables us to bring out single terms in the delay index of (4.83) by assuming 

that z(n) is an uncorrelated sequence, and at a specific delay l0 = 0 we can write 

U0,k0(
n)   =   #*(n) 

y„(n)    =   'z(n)J2Uk(ny*"kAvn+w(n). (4.98) 
A_o-l 

I 
k 

The physical interpretation of (4.98) is KQ rays with Doppler shifts kAv. Each ray 

is time variant since Uk(n) is a function of time. The Doppler spread on a ray is 

given by the bandwidth Bk of Uk(n). We now assume that there is only one ray with 

coefficient Uo(n) = U(n) present at k = 0 so that (4.98) yields 

y0(n)   =   z(n)U(n) + w(n) . (4.99) 

Thus U(n) is the time-variant gain of a single ray, and this ray is the only path for 

signal propagation in this particular channel. In the context of the general channel 

model (4.83) we have that L — 1 and Z0 = k0 = 0.  We observe the sequence U(n) 
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over a finite time N and thus U(n) can be represented by its Fourier transform Uk 

y0(n)   =   z(n)y£Üke
i2'kA,m+w(n) (4.100) 

k=zO 

where we assume that the number of non-zero Fourier coefficients is K <C N. 

Block processing 

We now derive an estimator for the coefficients £//,* in our signal model (4.83). In 

the derivation of the receiver in Fig. 4-20 it is argued that the channel estimation 

and the symbol decoding can be carried out separately. The selection of the taps 

{(I, k)} to track is carried out by means of the training sequence, and it is treated 

in Section 4.3.6. We now assume that this initialization has been performed and 

that we are in tracking mode. By introducing a small delay and assuming correct 

decoding z(n) is known, and we have a situation where y(n), z(n) and Ai/ are all 

known and the task is to find £//,*• We now define the vectors 

y   =   [y(m)---y(m + N-l)]T 

w   =   [w(m) ■ • ■ w(m + N - 1)]T (4.101) 

where w is a zero-mean white Gaussian random vector with covariance matrix cr^I. 

The probability density of y conditioned on h given by (4.85) is 

v „   -  I e-(y-myih)"(y-myih)/^ 

my|h   =   [J2z(m-l)U^J2^Al/m---EU'Mm + N-l-l)x 
(l,k) (I.*) 

eJ27rfcAi,(m+Ar-i)jr _ (4.102) 
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The ML estimate of h is 

m+N-l 

h   -   min   £    \y(n)-^z(n-l)Ul>ke^
k^n\2 

m+N-l 

=   min   £    |e(n)|2. (4.103) 

In order to find the minimum we solve 

m+N-l 

d   £   H/0tf, = O. (4.104) 

We note that (4.104) implies the derivative of the nonanalytic, real quantity in the 

minimization of (4.103) with respect to the complex variable Ui,p. This is interpreted 

in slightly different ways [45], [13] [85]. We use the interpretation of [13] in carrying 

out the derivative in (4.104) which yields 

m+N-l m+N-l 

£   y(n)z*(n-i)e-^A^   =      £    £ z(n - l)z*(n - i)UlJe x 
n=m n=m    (^fc) 

eJ2*{k-P)Avn (4.105) 

for the L pairs (z,p). This can be solved for Ui^ assuming that the L x L matrix 

with elements I, k given by the sum in the curly brackets of (4.106) is invertible. An 

approximate solution can be obtained by noting that the right hand side of (4.105) 

yields 

1    m+N-l 
NT,U'Ajf    £   z(n-l)z*(n-i)e*<k-^"n} (4.106) 

(i,k) n=m 

and identifying the term in curly brackets as the sample correlation between z(n — I) 

and z*(n — j)eJ27r(A:_p)A!/n. This will approach zero for large N when I ^ i because 

z{n) is an uncorrelated sequence, and also for I = i,k / p if we use Av = l/N. 

We note that this may not always be satisfied, but it is a realistic number since 
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N = 1024 yields a Doppler spacing of Av corresponding to 1.3 Hz at 1250 symb/sec. 

With these approximations (4.105) yields 

m+N-l 

£   y(n)z*(n - i)e~^^n   «   NUitP (4.107) 

Therefore the ML estimate at delay /,- is given approximately by choosing the largest 

peaks of the left hand side in (4.107). We note that this is carried out separately for 

each delay because z(n) is white. A block diagram of the channel tracker given by 

(4.107) is shown in Fig. 4-21. In this figure we are looking at the delay /0 = 0 and we 

assume that the number of coefficients at this delay is K.   The frequency tap spacing 

*(n) 

X(D 

K 

Pick K 

largest 

A 

\ x(n) 
FFT \ 

; 

Figure 4-21: The channel tracking of a doubly spread channel implemented with 
block processing. 

Av is chosen based on the Doppler spread, and it is discussed in Section 4.3.6. Thus 

it may not be possible to satisfy Av = 1/N. Moreover, as is shown in Section 4.3.8, 

the stability of the receiver in (4.105) and also its recursive counterpart in (4.109) is 

limited by Av. If Av is too small the matrix in (4.106) approaches a singular matrix, 

and we return to this case in Section 4.3.8. We also not that (4.107) is only valid 

for large N so that the expression in the curly brackets of (4.106) approximates the 

true correlation closely. 
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Recursive processing 

The signal model (4.83) also allows for recursive estimation of the channel, and the 

TU-RLS algorithm can be used to track its coefficients f/;,jt(n). We assume the AR(1) 

model (4.86) for the channel coefficients, and thus the state space model (4.87) is 

valid. Specifically, if we consider the exponentially weighted version of (4.103) which 

is 

J   =    JZ\n~m |e(m)|2 

m=0 

=    ^An-m|t/(m)-cff(m)Am-nh(n)|2 (4.108) 
771=0 

we have the cost function that is minimized by the TU-RLS algorithm. We define 

cH(n,l)   =   z(n-l)[l   ■■■   1]T 

cH(n)   =   [c"(n,/o)---c"(ra,/L-i)] 

h(n)    =    [Üh*(n)e>**^---ÜiL_1^1(n)e>™"^]T (4.109) 

where the dimension of c(n, /) is dim(c(n, I)) = K\ x 1 and K\ is the number of 

Fourier coefficients at lag /. The TU-RLS algorithm yields the recursion in (4.92), 

and a block diagram of the channel tracker given by (4.109) and (4.92) is shown in 

Fig. 4-22. 

Comparison of block and recursive estimates 

The recursive estimate (4.92) and (4.109) is related to the block estimate (4.107), 

and we now show this connection for the case of purely Doppler spread signal. In 

this case the AR(1) parameters are all identical and equal to 

a   =   2 - cos(u0/2L) - Jcos2(u0/2L) - 4cos(a;o/2L) + 3 (4.110) 
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z(n-l0) 

j2icKd Avn 

j2xKAv 11 

Figure 4-22: The channel tracking of a doubly spread channel implemented with 
recursive processing. There are 5 delay bins between the first energy cluster at 3 
msec and the second cluster at 5 msec. 

where u0 = 2TrB/fs is the 3 dB bandwidth of the Doppler spread B for a symbol rate 

of fs. Each of the L taps is now tracking a process of bandwidth B/L corresponding 

to u0/2L. The equation (4.110) is derived from the power spectrum of an AR(1) 

process in such a way that a for L = 1 corresponds to the 3 dB bandwidth of the 

AR(1) process. Thus we have L taps all at the same delay /0 and we assume l0 = 0 

so that (4.109) yields 

cH(n)    =   z(n)[l   •••   1]T 
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h(n)   =    [Ü0(ny2*koA"n • ■ ■ ÜL-i{n)e j2ivkL_1Ai/n-\T (4.111) 

In this case we have a purely Doppler spread channel model. The solution to (4.92) 

and (4.111) is presented in Appendix B and given by 

h(n)   =   [f^\n-m(AH)m-nc(m)cH{m)Am-T1^Xn-m(AH)m-nc{m)y(m) 
m=0 m=0 

R-i J2 \"-m(AH)m-nc(m)y(m) (4.112) 
m—0 

provided that the inverse in this expression exists. By inserting c(n) from (4.111) in 

the matrix Rc of (4.112) and using A from (4.87) with 0 < k < L we get 

Rc   =   ^\n-m(AH)m-nc(m)cHAm-n(m) 
m=0 

£(A/«2) .2\n—m 

m=0 

1 

Bj2ir(L—l)Ai/(n—m) 

. .     e-j2x(L-l)Av(n-m) 

(4.113) 

We note that the condition number of i?c, defined by the ratio of the largest to 

the smallest eigenvalue, determines the numerical accuracy needed to compute R'1 

in (4.112). We return to this issue when the receiver stability is discussed in Sec- 

tion 4.3.8. We now look at the structure of Rc in order to get an expression for h(n) 

that can be compared to the block estimate (4.107). The diagonal terms of Rc are 

all equal and given by 

[Rc]u   =    £(A/a2) 2^-m _ i - (V«2)"+1 

m=0 1 - (A/a2) 1 - (A/a2) 
(4.114) 

where the last approximation is good as n gets large. We do not consider the range 

of a for which a2 < X because this corresponds to a tracking bandwidth that is less 

than the bandwidth of the Doppler process we are tracking. In this case the receiver 
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is unable to converge due to insufficient tracking bandwidth, and (4.112) is invalid. 

An off-diagonal term at location (/, k) is given by 

m-0 
(X/a2)n+1 — ei

2^(k-l)Al/(n+1) eJ2*(k-l)Avn 

= (A/a2) - ei2^-0A^        ~ ei2^(fc-/)A, _ (A/a2) •      (4"115) 

The magnitude of (4.115) is a monotonically decreasing function of k — / and also 

of Ai/ for the ranges of these variables stated below. Thus the first diagonal, where 

k — I = 1, has the largest magnitude and Rc is a banded matrix where the width of 

the only band which is around the main diagonal is given by (A/a2) and Ai/. Each 

component in h(n) of (4.112) is a linear combination of the components of the vector 

on the right hand side of this equation. The expression (4.115) means that Rc has 

constant magnitude elements vs time n, therefore this is also true for R~x. Thus the 

coefficients in the linear combination, given by A"1, have approximately constant 

magnitude. The range of k — I is bounded by 2L <C iV, and this is always satisfied 

for realistic N and L. Thus eJ27r(fc-')A" m (4.115) never traverses more than a small 

fraction of a full rotation, and this enables us for the range of A and Ai/ 

A/a2   >   0.999 

1        -! 100(1 - A/a2)2 - 1 - (A/a2)2 

A,   <    -cos      —  (4.116) 

to write 

max[pcy]   <   0.1pc]„l- (4-117) 

Thus, for this range we neglect off-diagonal terms in Rc so that (4.112) yields 

h(n)   «   (1 - (A/a2))/(A/a2) £ (A/a2)n-"iu(m)[l • • • e^(L-i)A,m]H (4 ug) 

m=0 
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We have that A/a2 = .999 and Av = 1.6 x 10~3 satisfying (4.116) corresponds to 

0.95 Hz at 600 symb/sec. This suggests that the recursive estimate is approximately 

a windowed Fourier transform of U(n). In comparison the block estimate (4.107) in 

the purely Doppler spread case is a sliding window Fourier transform of U(n). In the 

recursive estimate we have an exponential window whereas the block estimate uses 

a rectangular window of length N. Thus if we replace the exponential weighting 

in (4.108) with a fixed length N rectangular window, corresponding to a version 

of the RLS known as sliding window RLS [65], the terms in (4.115) are all zero 

for Av = 1/N and the expression for h(n) corresponding to (4.118) is exact. The 

approximation in (4.118) gets poorer as A decreases, and in this case the recursive 

estimate is given by (4.112). 

The accuracy with which h(n) is estimated by (4.112) depends partially on the 

condition number of Rc, and we discuss this in Section 4.3.8. We assume that Rc 

is well conditioned so that Uitk yields a good estimate of £//,*. Having determined 

the receiver coefficients U^k we can use (4.83) for decoding, and we now derive two 

receivers making use of this knowledge. 

Decode using ML estimate 

Given the signal model of (4.83) and the estimate h in (4.92) we now estimate the 

transmitted data sequence z(n) by using the ML criterion. Thus we assume y(n) 

and Uitk known, and the task is to find z(n). By the Gaussian noise assumption the 

probability density of y conditioned on z is Gaussian and the ML estimate z follows 

readily 

m+N-l 

z   =   min   £    \y{n)-Y,<n-l)UUke^k^n\2 

n=m ltk 

m+N-l 

=   min[2ife[   J2    E2/>M"-0£W2*fcA""] 
n=m      }tk 
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m+N-1 

~      E    EE^- 0*> - iWuUtje-W-*)*™] . (4.119) 

This is the MLSE receiver when the channel is modeled with the delay-Doppler- 

spread function. To further illustrate this receiver we now assume the simple case of 

no delay spread, and we recognize the ML estimate as an IFS Doppler line since we 

can write 

There is nothing that prevents the denominator of (4.120) from going arbitrarily 

close to zero. This would result in noise enhancement, and it sometimes limits the 

usefulness of this receiver. This is avoided by adding to the denominator of (4.120) 

a small constant term so that it never goes to zero, but this makes the estimate z(n) 

biased. The fundamental problem is the channel fade manifested by the gain U(n) 

going to zero, and two ways to solve this is by means of diversity or coding. 

It is instructive to use the concept of time-frequency duality developed elsewhere 

to proceed with the receiver discussion. It is clear that the dual of (4.120) is the 

zero forcing equalizer [82], and it is well known that this equalizer, which is an 

IIR filter, performs poorly for channels containing spectral nulls. The dual of a 

spectral null is a (time) fade, and this is the problem causing noise enhancement in 

(4.120). One classical way to circumvent the problem of the zero forcing equalizer is 

to constrain the equalizer structure to be an FIR filter. The problem of a channel 

fade is not alleviated by this approach, but the noise enhancement due to the IIR 

filter is eliminated. The dual of the FIR filter is the FFS Doppler line, and this 

motivates the following derivation of an FFS Doppler line based receiver. 
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Decode using an FFS Doppler line 

We now impose the constraint that we want to determine an estimate z{n) by using 

FFS Doppler lines at each delay as shown in Fig. 4-23. We use a slightly different 

channel model (4.121) and before we derive the receiver this change is motivated. 

In the channel tracker we save many degrees of freedom by tracking nonzero taps 

only, and this is captured mathematically by not restricting the index / in z(n — I) 

from (4.83) to be consecutive numbers. We define the receiver coefficients V by 

means of (4.123) and (4.122). As will be shown below the solution for V involves a 

tensor which degenerates to matrices in the special cases of pure delay spread and 

pure Doppler spread. For example, in the case of pure delay spread the solution for 

V is given by the Wiener-Hopf equation which is solved by inverting a correlation 

matrix. When the channel response is sparse, as indicated by the values that / take 

on in (4.83), the correlation matrix is banded but the inverse of a banded matrix 

is in general dense. In the decoder, where we need the inverse matrix, there is no 

gain in keeping the banded formulation. It gives more complex notation, therefore we 

modify the model (4.83) by restraining the sequence (/, k). In (4.83) the L pairs (/, k) 

are arbitrary points. Now we consider (/, k) to take on all integer values between 

(0,0) and (L - l,K - 1). Therefore we write 

y(n) =EE <n ~ l)Ui,ke^
kA"n + w(n) 

l=o k=o 
Li/2-l    A'i/2-1 

*(*) =    E        E     V^y(n ~ l)ej2vkAl/n . (4.121) 
l=-L1/2k=-K1/2 

The lower bound (0,0) on (/, k) is merely a notational convenience, and negative 

Doppler frequencies are easily accommodated by modifying this. The criterion to 

determine the coefficients V is the MMSE which is 

min£[|z(m) - z(m)|2] (4.122) 
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Channel Receiver 

Figure 4-23: Decoding using FFS Doppler lines. 

where 

z(m)   =    [z(m) ■ ■ ■ z(m + N - 1)]T 

z(m)   =    [z(m) ■ • • z(m + N - l)]T 

V    =     [V-L1/2,-Ki/2"-VLl/2,Ki/2] (4.123) 

Thus we consider Uizk given, and-we determine V by inserting z(n) from (4.121) in 

(4.122) and carry out the minimization by taking the derivative with respect to VfiP. 

In this way V is determined, and the estimate z(n) is given by (4.122). 

We model z(n) and w(n) as jointly WSS white random processes, and in order 

to find the minimum in (4.122) we solve dE[-]/dVitP = 0 which yields 

m+N-l m+N-l        Li/2-1    A'j/2-1 

Y:   E[z(n)y*(n - i)e->2*pA™}   =      ^   E[   £        £    VJ,fcy(n - 7)y> - 0 * 
n=m n=m l=-Li/2 k=-Kx /2 

ej2,r(fc-p)Awij (4.124) 

where 

-Li/2 < i < Lj/2 - 1 
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-^1/2 < p < ÜTi/2 - 1 . (4.125) 

By inserting y(n) from (4.121) in (4.124), using Av = 1/N and carrying out the 

expectation and summation over N we get 

Li/2-l    Ki/2-l L-lK-l 

l=-L1/2k=-K1/2 g=0 r=0 

+   <£*(i-/)*(*-p)] (4.126) 

where £(fc) is the Kronecker delta and 

|/-t|    <   L 

\k-p\    <   K. (4.127) 

We have used that z(n) is white and that 

N~1 N       k = 0 
V e

j27rkn/N   =   \ (4.128) 
n=o 0     0 < k < N 

in order to evaluate (4.126). The integers n,ij,q are time indices and k,p, r are 

frequency indices. In the case of pure delay spread where K = Kx — 1 and p = k = 

r = 0 we have 

Uli   =      E    C^+aif(«-I)] (4-129) 
fc-Lj/2        9=0 

for 

-Lt/2<i < Li/2-1 

|/-i|<L (4.130) 
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which corresponds to the Wiener-Hopf equation. In the case of pure Doppler spread 

where L = L\ = 1 and i — I — 0 we have 

U%   =       £    Vk[jß UrW+k-p + °iW - P)] (4-131) 
fc=-A"i/2 r-0 

for 

—J^x/2 < p < J^i/2 - 1 

|Jfc-p|<# (4.132) 

which corresponds to the dual of the Wiener-Hopf equation. In (4.129) we have 

suppressed the frequency index of [/, V which in this case is zero, and in (4.131) we 

have suppressed the time index of £/, V which in this case is zero. The receiver in 

(4.126) is suboptimal in the sense that it fails to minimize the error probability, but 

the disadvantage of the noise enhancement problem of the IFS Doppler line is absent. 

In evaluating V from the equations (4.126), (4.129) and (4.131) we assume that the 

channel Uitk is known, so that in practice we use Uitk obtained from the channel 

tracker in these equations. We have assumed the Doppler spacing Az/ = 1/N in the 

derivations of this section, and as pointed out earlier this is a realistic spacing. If 

this spacing is not used the equations (4.129) and (4.131) yields only approximate 

MMSE solutions. In order to summarize the receiver structure and further illustrate 

Fig. 4-20 we show in Fig. 4-24 a more detailed picture of the receiver in the case of the 

recursive channel tracker and the FFS based decoder. The box marker "inversion" 

in Fig. 4-24 performs the operation of (4.126). 

We are particularly interested in Doppler spread channels and their corresponding 

receivers. In this case the FFS based receiver is given by (4.131), and in Fig. 4-25 

we show a detailed picture of the general receiver in Fig. 4-20 for the special case of 

a channel tracker for a purely Doppler spread channel and an FFS based decoder. 
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Figure 4-24: The FFS based receiver for a doubly spread channel. 

Constrained optimization 

We find in Section 4.4 that the unconstrained least squares solution (4.131) may give 

a Doppler line with excessive degrees of freedom exhibiting a behavior reminiscent 

of super directivity [67]. This is avoided by introducing a constrained solution to 

(4.122) which we now present in the case of purely Doppler spread channel. We use 

the constraint of unity white noise gain on the Doppler line coefficients which yields 

|V|2   =   1 (4.133) 
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Figure 4-25: The FFS based receiver for a purely Doppler spread channel. 

The solution in the purely Doppler spread case is given by (4.131) which is written 

in matrix form as 

SV   =   s (4.134) 

In order to find the constrained Doppler line we define the modified cost function 

J   =   £[|Z-z|2]+K|Vf-l) (4.135) 

where p is the Lagrange multiplier. The minimization of (4.135) over V yields 

V   =   {S-pI)~ls (4.136) 
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where p satisfies 

sH(S-piyH(S-PI)-1s   =   1. (4.137) 

We solve (4.137) numerically for p and insert this in (4.136) when we present an 

example of the constrained Doppler line in Section 4.4. 

Summary The receiver tracking bandwidth at a single delay can be increased 

by employing Doppler lines provided that the physical interpretation of the delay- 

Doppler spread function is changed. The delay-Doppler-spread function U[^(n) in- 

troduced in (4.83) is interpreted as the scattering amplitude at (/, k) whereas the re- 

cursive channel tracker (4.112) is approximately a sliding window Fourier-transform. 

This means that the tracked coefficients are the contribution to the delay-Doppler- 

spread function within a frequency band given by the Fourier-transform resolution. 

Thus the physical interpretation is that the channel tracker determines the Fourier 

coefficients of the time-varying scattering amplitude rather than the scattering am- 

plitude directly. The receiver structure performs channel tracking and symbol decod- 

ing in parallel. The delay-Doppler-spread function is estimated using the channel 

input and output data sequences. The ML estimate is approximately found by per- 

forming a demodulation and Fourier transform of the received signal as given by 

(4.107) and shown in Fig. 4-21 where the demodulation is with respect to the trans- 

mitted data. A recursive estimate is given in (4.109) and (4.93), and the structure of 

this estimator is shown in Fig. 4-22. This estimate is shown to be approximately a 

sliding window Fourier-transform in (4.118), and this approximation is good for the 

range of A, a and Av given in (4.116). This also relates the block estimate (4.107) 

and the recursive estimate (4.109): The block estimate is a Fourier-transform with a 

rectangular window that is moved so that blocks are non-overlapping. The recursive 

estimate is a Fourier-transform with an exponential window that is moved only one 

sample for each update. This is discussed in the comments to the equations (4.112) 
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and (4.118). Based on the channel estimate two receivers are presented in (4.119) 

and (4.126). The first receiver is derived from the ML criterion of decoding assuming 

that the channel is known. In the case of pure Doppler spread this receiver reduces 

to an IFS Doppler line in (4.120).The second receiver is derived from the MMSE 

criterion and its structure is constrained to only contain FFS Doppler lines. In the 

case of a purely Doppler spread channel this receiver reduces to an FFS Doppler line 

in (4.131) with a constrained version in (4.136). 

Decoders in the case of purely Doppler spread channel are suggested in (4.120) 

and (4.131). We further characterize the decoder part of our receiver in the general 

case by assuming that the TU-RLS is tracking the channel so that it delivers an 

h(n-) that is close to h(n), and we turn to the problem of how to use this knowledge 

optimally to recover the transmitted data sequence. This is the task of the signal 

combiner in our receiver. 

4.3.5     Signal combiner 

The coherent combiner denoted "MMSE FIR" ("minimum mean square error finite 

impulse response") in Fig. 4-20 is now given as the Wiener filter h0(n) based on the 

estimated channel response h(n), and we denote the m'th component of this vector 

h(n,m). Thus the equations to obtain the time-variant impulse response for the 

signal combiner, referring to Fig. 4-20, are 

y(n)   -    J2 h(n,m)z(n - lm) + w(n) 
m=0 
I,l/2-l 

z(n)    —        5Z     h0(n,m)y(n — m) (4.138) 

where L is the length of h(n) and L\ is the number of taps in the signal combiner 

filter h0(n, m). The time-variant impulse response ho(n, m) of this filter is described 
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by the Wiener-Hopf equation 

Ryy(n)ho(n) = rzy(n) . (4.139) 

The vector of values y(n) implicitly used in forming Ryy has length Lx which is 

different from the length of y in (4.101). Note that we now consider h(n,m) given, 

i.e., we assume that the channel tracker is working properly, and h(n,m) is not a 

stochastic quantity in this context. The autocorrelation matrix Ryy(n) and cross 

correlation vector rzy(n) are expressed in terms of h(n,m) rather than as time- 

averaged correlations: 

L-i A 

[Ryyi^ml   =    J2Hn-^°yh*(n-m^° + l-rn) + [Rwvj]ml 
0=0 

r7y(n)   =   h*(n-m,-m) (4.140) 

where -LJ2 < m < Li/2, -In/2 < I < Li/2 and r™(n) is element m of rzy(n). 

Note that this makes it necessary to estimate the noise covariance R^ explicitly, 

whereas when Ryy and rzy are estimated from received data the variance is implicitly 

estimated through the sample covariance of the received data. Also note that Ryy 

is a non-Toeplitz matrix as opposed to its time-invariant counterpart. To see the 

structure of (4.139) better let us make an example. Consider the noise w(n) to be 

white with variance a2^ and the time-variant, normalized impulse response 

h(n,m)   =   < 

h0ej2™on m = 0 

Ai m = 1 

h2 m = 2 

J2\H^m)\2   =    1   Vn (4.141) 

where i/Q = k0Au.  The physical interpretation of (4.141) may be a signal arriving 

over two direct ray paths h^ and h2 and one surface reflected ray path h0 with a long 
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swell producing a Doppler shift e^
k°Avn. For Ii = 6 (4.139) yields 
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l + ol 
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hoe&Mn-Vh* 
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l + ol 

h^e~i2imonh1 + hfh2 
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l + ol 

h*e-'2*'*ln+1'>h1 + h*h2 

h*e-(2™< ("+2)/i2          A*e 

hQ(n, —3) 0 

h0(n, -2) ^2 

Äo(n,-l) ÄI   ' 
^o(«,0) h*0e-

j27ri,°n 

Ä0(n, 1) 0 

^o(^, 2) 0 

0 

0 

^oeJ2™0(n+l)^ 

^oei2^o(n+l)^* + /^ 

l+< 
^e-j2^o(n+2)^* + /^* 

0 

0 

0 

£oei2™0(n+2)/j* 

^oei2^o(n+2)^* + lxl*2 

1 + <£ 

X 

(4.142) 

Thus the decoder is the solution to (4.139) which involves the inversion of the matrix 

Ryy with the structure shown in (4.142). This yields the linear filter used in (4.138) 

to compute z(n), and it is updated based on the channel tracker output at each 

sample. 

Summary The signal combiner is a FIR filter with its taps computed from the 

channel estimate by means of the Wiener-Hopf equation (4.139).   We show an ex- 
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ample of the structure of this matrix, which is updated every sample, in (4.142). 

4.3.6    Tap initialization 

Before the receiver can be used for decoding it needs to be initialized because the 

TU-RLS is based on knowledge of certain parameters. These are the positions of the 

signal returns in delay and Doppler, i.e., the pairs (/, k) in (4.83), and the number 

of taps L that is used in the channel tracker. The estimation of these parameters 

is carried out by means of a training sequence that is transmitted before the data, 

and it is known to the receiver. When the parameters are estimated the decoding of 

data starts. 

Preview 

We now discuss the problem of finding the number of taps and their locations that 

is used in the channel tracker in Fig. 4-20. We consider a scenario where the cross- 

ambiguity function has been computed from the training sequence, and thus we have 

available a picture similar to that in Fig. 4-26. 

Outline of derivation The starting point is the information contained in the 

cross-ambiguity function 6(1, k) as shown in Fig. 4-26 which is available prior to 

the tap initialization. Each location of 6(1, k) is a random variable due to the noise 

present in the received signal. The main idea is at each location (/, k) to pose a 

classical detection problem [100]: A signal return is either present or absent (4.143), 

and the problem is to choose between including or omitting a tap (4.144) at the 

location in question. This procedure is repeated over all locations. The locations are 

ordered according to descending 6(1, k), so that the locations with large values are 

considered first. Thus we have a binary hypothesis test, and there are two possible 

errors in this assignment problem. They are shown in the section called "Energy 

losses" and the first is called "Omit tap when signal is present" corresponding to 
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Figure 4-26: Contour plot of the cross-ambiguity function computed from the train- 
ing sequence and the received data. There are 5 symbol intervals between the arrival 
clusters at 3 and 5 msec. 

"ProbabilityfMiss]" in detection theory. The second is called "Include tap when 

signal is absent" corresponding to "Probability[False alarm]" in detection theory. 

The energy losses play the role of the cost in the Bayesian framework we are using, 

and we minimize the expected cost. This is carried out in the section called "Tap 

selection rule". The rule makes use of the hypothesis probability P0. P0 is a function 

of the noise and signal level at each location of 0(1, k). In the section "The hypothesis 

probability" P0 is expressed in terms of 6(1, k), and this completes the derivation. 

We show two examples in order to illustrate the rule. 

Assumptions There are a number of assumptions involved in the derivation of 

the rule, and we list the most important here. 
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• We order the locations where the binary hypothesis test is performed according 

to descending cross-ambiguity function. We assume that this is a good way to 

choose taps 

• The cost criterion is the MSE of the channel tracker output. The channel 

tracker is an exponentially weighted LS fit and not the MMSE solution. When 

it operates properly the resulting error is very close to the MMSE performance, 

and we assume that it achieves this performance in (4.149) 

• We assume that the steady state channel tracker error is as derived in Sec- 

tion 4.3.8 and presented in (4.152) 

• In expressing PQ as a function of 6(1, k) a number of assumptions are made 

0(1, k) is expressed as a number of terms in (4.164) and one term called 0i in 

(4.167) is assumed to be well approximated by (4.168). This is motivated 

in Appendix C 

Another term of 6(1, k) called 62 in (4.175) is neglected, and this is also mo- 

tivated in Appendix C 

The time variation of Uitk(n) over M is neglected in (4.169) 

• We assume no apriori information about whether there is a signal present at 

any location 

• We assume that a good estimate of the scattering strength is obtained from 

the mean of 0(1, k) in (4.190) 

Steps    The major steps of the derivation of the tap initialization rule and the 

corresponding equations are summarized in table 4.1. 

The initialization of the taps is part of a system identification problem [64]. There 

is a fundamental issue that has implications for the way we propose to assign taps, 
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Step Equations 
Pose the binary hypothesis problem (4.143),(4.144) 
Choose cost function (4.146),(4.149) 
Compute cost of errors (4.155),(4.158) 
Derive rule to minimize expected cost (4.161) 
Express the hypothesis probability in terms of 
the cross-ambiguity function (4.165),(4.177),(4.178) 

Table 4.1: The major steps and the associated equations in the derivation of the tap 
initialization rule. 

and we comment on this before proceeding with the assignment rule. As is shown 

in this chapter the rule we use for tap assignment is a function of how many taps 

that have already been assigned. The reason for this is that the noise level increases 

with the number of degrees of freedom in the channel tracker. Thus the order in 

which we assign taps is not arbitrary. Suppose in Fig. 4-26 we start assigning taps by 

considering, say, the lower left (delay,Doppler) location first. The result is different 

from the one obtained if we start with considering the largest signal returns around 

(3.5 msec, -2 Hz). When we start assigning taps we have the cross-ambiguity function 

available, so we choose to consider the tap locations according to descending cross- 

ambiguity function amplitude. This prevents the situation described in the example 

above, and it makes the tap assignment algorithm unique. As we populate the 

channel tracker there is a tradeoff between including a weak signal return, increasing 

the number of degrees of freedom, and loosing a small portion of the transmitted 

signal energy by omitting the tap. The rule presented below takes care of this by 

not including taps when the associated increase in adaptation noise is larger than 

the signal energy at the location in question. 

We now want to decide if a specific peak should be assigned to a tap. The tradeoff 

we have to make is the following: If we include a tap and the corresponding peak 

is noise the number of degrees of freedom increases and, as will be shown below, 
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the noise level increases. If we omit a tap and the cross-ambiguity function peak 

corresponds to a signal return we loose some of the energy from the signal. Given a 

peak of a certain height there are two hypotheses: 

H0 : The peak corresponds to a signal return 

Hi : The peak corresponds to noise (4.143) 

and we must decide between 

Ai : include tap 

A-i : omit tap . (4.144) 

The task of the channel tracker in Fig. 4-20 is to estimate and track the channel im- 

pulse response h(n). A useful alternative interpretation of the channel tracker [105] 

is that of an optimal signal predictor in the MMSE sense. This means that the 

channel tracker attempts to minimize 

J  '=   E[\y(n) - y(n)\2] (4.145) 

where y(n) is the prediction of the received signal y(n). We know that the MMSE is 

J   =   E[\y{n)\2]-E[\y(n)?}=al-o] (4.146) 

where we have used that E[y(n)y*(n)] — E[\y(n)\2} for the Wiener filter. Therefore 

in order to minimize J we maximize cr|. We have the channel model (4.83) and if we 

have assigned taps at the positions (/0, k0) ■ ■ ■ (IL-2, ^L-2) the TU-RLS obeys (4.87) 

and (4.92) which yields 

h(n + l)    =    Ah(n) + k(n)e(n) 
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y(n) 

e(n) 

c"(n) 

cH(n)Ah(n) 

y(n) - y(n) 

VS[z(n — 10) • 

A   = 

a0e J27TJ/0 

z(n - 7L_2)] 

0 

0 ÖL-2& J2-K1/L_2 

(4.147) 

where cH(n) contains the transmitted sequence which is known since we are in train- 

ing mode. We define the channel estimation error he by 

h(n)   =   h(n) + he(n) (4.148) 

and note that when the channel tracker works properly it gives the estimate h(n) 

close to the MMSE estimate, and we have approximately that 

£[hh"]   =   E[hhH] + £[hehf ] (4.149) 

This is known as the principle of orthogonality in the Wiener filter literature [100]. 

The total variance of all components of the channel estimate is 

a\   =   tr(E[hhH}) = tr(E[hhH]) - tr(E[heh?]) 

=   *l(L-l)-ol(L-l) = £h (4.150) 

and we assign taps by maximizing this quantity. We see the relation to (4.146) by 

means of (4.147), and we choose this criterion because it yields a simple rule for tap 

assignment. The signal model given by (4.83) can be written 

y(n)    =    VS £ z{n-l)Ultk(n)e^k^n 

(;,fc)/('L-l,*:L-l) 

+    z{n - lL-i)UlL_ukL_1(n)eP2'k^A,/n + w(n) 
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(4.151) 

where we have written explicitly the signal contribution at location (/L-I,&L-I) and 

Ui,k(n) is an AR(1) process given by (4.86) with variance given by (4.88). We consider 

a scenario where L - 1 taps have been assigned to the channel tracker so that h has 

dimension L-lxl. The channel estimation error is derived in Section 4.3.8. It is 

given by (4.221) which for this case yields 

£[hehf]   =   [I-PQ0}AE[heh?)AH[I-PQo}H + PQoPHcr2
w + R (4.152) 

where from (4.88) 

E[wH] = R   = 

(1 - al)ul 

(1 - al_2)u\_2 

(4.153) 

Q0 is the covariance matrix of c(n) and P is the matrix given by (B.7) in Appendix B. 

Note that £[hehf ] occurs on both sides of (4.152) because we are looking for the 

steady state solution of the difference equation (4.221). We find E[hehf ] by solving 

(4.152) numerically. The reader is referred to the discussion pertaining to (4.221) 

for a derivation of (4.152). We now want to decide if a tap should be included at 

location {IL-\, &L-I)- 

Energy losses 

There are two ways of making an error, and each has an associated energy loss. Both 

these errors give a decrease in the energy of h(n) and thus cr? is a function of the 

choice we make. The energy a\ = £-h before we process the L'th tap is given by 

(4.150) and we now proceed with quantifying the energy loss in each case. 
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Omit tap when signal is present We now consider the scenario under HQ where 

the tap in question corresponds to a signal return. We can write the energy of h(n) 

in each of the two cases 

A,:al   =   *l(L)-al(L) 

A2:al   =   al(L-l)-al(L-l) = Sk. (4.154) 

The energy loss is the difference between A\ and A2 which yields 

A0   -   «Li - <rl(L) + al{L - 1) (4.155) 

where we use 

*t(L)   =   !>?■ (4-156) 
t"=0 

The quantity A0 is the loss if we erroneously choose A2. We note that A0 may take 

on both positive and negative values, and this partly depends on the signal strength 

uf. If the signal component is strong, corresponding to large uj, it is more likely that 

A0 is positive, and then the gain is positive when we choose Ax. However, for a weak 

signal the increase in signal energy gained by including a tap may be canceled by the 

increased adaptation noise from including another tap. This is captured by A0 < 0 

for this case. Therefore the rule to be presented, based on A0, implies that weak 

signal components are omitted depending on their strength relative to the increase 

in adaptation noise. 

Include tap when signal is absent We now consider the other error which is to 

include a tap at a location where the signal is absent. In this case we make an error 
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if we include a tap at the location in question, and we get the energy in h(n) as 

Ax:a\   =   *l(L - I) - *l(L) 

M'.°l   =   ol(L-l)-ol(L-l) = £k. (4.157) 

This gives the loss 

A,   =   al(L)-*l(L-l) (4.158) 

if we erroneously choose A\. We now have quantified the energy losses associated 

with each error, and they will be used in the following when a rule for tap selection 

is derived. 

Tap selection rule 

We have no knowledge which of the two hypotheses H0 or Hi that is true, but if 

we find their probabilities of occurrence a selection rule based on the maximization 

of the expected energy can be found. Table 4.2 shows the value of the energy that 

results under each of the hypotheses. We now need the probabilities of occurrence 

Ho Hi 
Ai : include tap 
A2 '■ omit tap 

Table 4.2: The energy in h(n) for different cases of tap selection 

for the two hypotheses, and these probabilities are 

Pr[H0\6(lL_i, kL-i) > 9t]    =   Po = Prf'Peak is signal" | Peak height] 

Pr[H1\6(lL-1,kL-1)>0t]   =   l-Po (4.159) 
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where 6t is the measured value of the cross-ambiguity function 6(1 L-\, &L-I). From 

the table we see that the expected energy for each of the choices A or B is 

E[al\Ax]   =   £A + FoAo - Aj + PoAi 

E[*l\A2]   =   £k. (4.160) 

Thus the rule to maximize the expected energy is 

P0(A0 + Ai) - Ai > 0 : Choose Ax 

P0(Ao + Ai) - Ai < 0 : Choose A2 (4.161) 

We note that <r^(L) is a function of the frequency tap spacing Av because it enters 

through P as shown in (4.113) and (B.7). When the Doppler spread B at a certain 

delay is given we choose 

Av   =   ^- (4.162) 
i-'is 

where fs is the symbol rate. The implication of this is that when we add a tap, 

in addition to the increase in <rle(L) due to increased self noise and lag noise of 

the channel tracker, we get an increase in cr2he(L) due to an increasing condition 

number of P because Au — 0 renders P singular as seen from (4.113). We show in 

Section 4.3.8 that this limits the stability of the receiver. 

The hypothesis probability 

The rule in (4.161) makes use of P0, and we now find an expression for this proba- 

bility. The cross-ambiguity function from Section 2.3 is given by 

0(n,k)   =   S\ J2 z(m)y*{m-n)ej2*kAl/m\2 . (4.163) 
m=0 

201 



The signal model under Ho is given by (4.151) and by using this we find the cross- 

ambiguity function as 

M-l 
9(n, k)   =   S2\ E 52 z(rn)z*(m -n- l)U?i0(m - n)e-*«*>Mm-n)-km] p 

(/,<,) m=0 

M-l 

+   2£^2Re[YJ E <rn)z*(m -n- /)t/£,(m - n)c-i2*M°(m-n)-*m] x 

(l,o) m=0 

M-l 

E z(m)w*(m - n)ej2*kA"m] 
m=0 

M-l 

+   61 E z(m)w*(m - ny
2*kA"m\2 . (4.164) 

m=0 

We now without loss of generality assume that (/L-I, &L-I) = (0,0), and this yields 

M-l 
0(0,0)    =   52|^^2(m)/(m-/)[/,;(m)e-^a"raf 

(l,o) m-Q 

M-l 

+   2S3/2Re[J2 E z{m)zm{m - l)U^(m)e-j2™A,/m x 
(l,o) m=0 

M-l 

E z(m)w'(m)} 

+   u>fl(0,0) (4.165) 

where 

M-l 

u*(n,lb)    =   £| E -2(mK(m-n)ej2fffcAl/m|2. (4.166) 
TO=0 

The first term of (4.165) is 

M-l 

0i    =   ^lEE^(m)z*(m-0^>KitoA,,m|2. (4-167) 
(J,o) m=0 
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We show in Appendix C that the approximation of (4.167) by 

0i   =   ^ElE^H2V-0^>KjWra|2 (4-168) 
(l,o)    m=0 

leaves the mean and variance of this term unchanged, and thus we use (4.168) for 

the first term of (4.165). t/i,fc(m) varies slowly and if it is assumed to be constant 

over M we have 

6X   =   S2 £ \Ult0\
2\ X; z(m)z*(m - l)e-**oA*mf (4 m) 

(l,o) m-0 

We seek a simpler expression for 6X, and to obtain this we observe that the L — 1 

terms of (4.169) all contain the signal ambiguity function 

M-l 

O0(l,-o)   =   €2\'£z(m)z*(m-l)e-i2m*'m\2. (4.170) 
m=0 

We have that [101] 

M-lM-l 

X 52 0o(n,k)   =   M{M£)2 

71=0     k=0 

eo(Q,0)   =   {MS)2 (4.171) 

where the first equation is the volume invariance property of the ambiguity-function, 

and the second equation follows from (4.163). It is desirable to have the level of 

60(n, k) outside #0(0,0) as l°w as possible, and thus the best case scenario is when 

the rest of the volume of 60(n, k) is equally spread over (n, k). The level 0 of 60(n, k) 

outside (0,0) in this case is given by [101] 

{MS)2 + 0(M2 - 1)   =   M{MS)2 

0   «   MS2 . (4.172) 

203 



As noted in Section 2.3 we use unnormalized ambiguity functions, unlike [101] where 

0O(O,O) = 1. The difference is nothing but a multiplication by a constant, and it has 

no consequences for our derivation. Specifically, the distance from the peak to the 

noise floor of 0O(/, k) as given by (4.172) is the same independent of normalization. 

The m-sequence will determine 0o(n, k), and numerical computations for M in the 

range 64-1024 show that the peak level (worst case scenario) of 0o(n, k) outside (0,0) 

can be 4-5 times 0 for ranges of (n, k) corresponding to realistic delays and Doppler 

shifts. The distance to the peak 0O(0,0) is roughly M, so the best case scenario is 

reasonable to use. Thus we approximate 

0o(n, k) 
' (MS)2   (n,*) = (0,0) 

(4-173) 
MS2      (n,Jb)^(0,0) 

This property of the m-sequences when used in ambiguity functions is also suggested 

in [101], and by means of (4.173) we approximate (4.165) 

0(0,0)    «   \U0fi\
2(M£)2 +     J2     \UiA2ME2 

(»,°)*(o,o) 
Af-l 

+   2£*l2Re[Y, U;<0 £ z(m)z*(m - fy-*"*™ x 
(l,o) m=0 

M-l 

y^ z{m)w*(m)} 
m=0 

+   to,(0,0) . (4.174) 

The third term of (4.174) is a product of two uncorrelated random processes and we 

define 

62   =   283'2Re[J2 Ul0 Y, z(m)z*(m - l)e-*™*™ x 
(/,o) m=0 

M-l 

J2 z(m)w*(m)] . (4.175) 
m=0 

204 



We show in Appendix C that 82 is a zero-mean random variable with negligible 

impact on 0(0,0) of (4.174) compared to 6X. Thus we omit this term and write 

(4.174) as 

0(0,0)   =   \U0,o\2(MS)2 +    £     \UiA2MS2 + we(0,0). (4.176) 
(f,o)?i(0,0) 

The derivation in (4.165)-(4.176) is valid for the signal model (4.151) which is the 

model under hypothesis H0. It is clear that under #i the only difference in (4.164) is 

that the term containing U0,o is omitted, therefore by looking at the specific location 

(0,0) under the two hypotheses we have 

0(0,0)   = 
\U0,0\2(M£)2 + £(i,o)*(o,o) \Ult0\2MS2 + u;,(0,0)    H0 

k EM^O^I^OPM^ + ^^O) HL 
(4.177) 

We now express the hypothesis probability as 

P0   =   Pr[H0\e>$t] 
Pr[6 > et\H0] 

Pr{6 > 0t\HQ) + Pr[6 > Bt\Hi) 
(4.178) 

where we have omitted the location index (0,0) and Pr[H0] = Pr[Hi] = 1/2 reflects 

that we have no apriori information about the presence of a tap. We can evaluate 

(4.178) by using (4.177) if we find the probability distribution for 6. Uitk are mutually 

uncorrelated and WSS by the WSSUS assumption, and if the noise driving the AR(1) 

model in (4.86) is Gaussian they are in addition Gaussian random variables. The 

purpose of (4.177) is to find P0, and this probability is a function of the scattering 

strength for the path corresponding to U0,o relative to the scattering strengths of 

the other paths. The scattering strength is between 0 and 1, and it is given by the 

variance of U in (4.88). An interesting scenario is when we are trying to detect a 

weaker signal return in the presence of a number of stronger returns. Therefore we 
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assume that the Gaussian random variables £/),<> for (/, o) / (0,0) have unit variance 

and that /70,o has variance u\_x. Thus we have 

l^i2/«i-i - xl 

£     \U,ML-1)   ~   xl- (4.179) 
C.o)*(0,0) 

We observe from (4.177) that 6 is a sum of differently scaled xl variables under both 

hypotheses, and we can write 

Pr[0>6t\Ho]   =   e0e-e'f2a + ß0e-e^2b + 7oe-^2c 

Pr[e>et\H1]   =   Äe-fll/2t + 7ie-6t/2c (4.180) 

where 

1 
eo   = 

ßo    = 

7o   = 

ßi   = 

71 = ö^W) (4-181) 

and 

a   =   (M£uL^)2 

b   =   (L-l)MS2 

c   =   MSo-l . (4.182) 

Fig. 4-27 shows P0 vs the peak height 0t/(ME)2 parameterized by the training 
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Figure 4-27: The probability that a certain location in the cross-ambiguity function 
corresponds to a signal return vs the value of the cross-ambiguity function. There 
are L — 9 unit strength scatterers at other locations and the scatterer at (0,0), 
which we are trying to detect has strength 0.5. The normalization of the first axis 
is relative the ambiguity function peak value. 

sequence length M for an SNR of 6 dB, u\_x = .5 and L = 10. We note that in the 

tap assignment situation uf is not given, and we use the sample variance estimated by 

the cross-ambiguity function as shown in (4.190). This completes the specification 

of the rule (4.161) which is now determined by the cross-ambiguity function, and 

we present two examples illustrating the result of using the rule. 

Example 1: One Doppler coefficient for each delay The numerical approach 

necessary to find the solution of (4.152) precludes the presentation of a more trans- 

parent analytical form of (4.161). However, as discussed in Section 4.3.8, an ana- 

lytical form of .E[heh^] is found when P is diagonal corresponding to one Doppler 
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coefficients at each delay. This corresponds to one Doppler coefficient at each delay. 

We now show the rule for this case when we have tr(E[heh^)) given by (4.231) which 

yields 

£[hehf]   =   [I-tfAAfmi-Xfol/ei + R). (4.183) 

The energy £-h before assigning the Z/'th tap from (4.150) is found by inserting (4.183) 

and (4.156) in (4.150) which yields 

4   =    X>? - ,      \n i,[(l - XfcrllS + (1 - a?)«?] . (4.184) 

The energy when the signal is present at the location (IL-I, &L-I) is given by 

A,: 4   =   ek + u\_x - 1 _ (A^_i)2[(l ~ A)M/g + (1 ~ «taK-il 

A2:a\   =   £h. (4.185) 

corresponding to (4.154). We get the expression under A\ by using (4.184) and the 

definition of Z~h in (4.150), and observing that the only difference is that the index 

i ends at L — 1. The expression under A2 reflects that nothing has changed. The 

energy loss is 

Ao   =   «i_i ~ l _ (AlL_l)2[(1 " X)2°HS + (i - "i-i)*i-il       (4-186) 

corresponding to (4.155). The energy in the two cases A\ and A2 when the signal is 

absent is now given by 

M-.«l = eh-Y-^(i-xr*l/e 
A2:a\   =   £k. (4.187) 
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corresponding to (4.157). The expression under A\ follows from (4.184) by ending 

the index i at L — 1 with u\_x = 0 since the signal is absent. The energy loss 

corresponding to (4.158) is 

A> = T^S^-W- (4-188) 

We now write the rule (4.161) by using (4.186) and (4.188) as 

Poul-' ~ (i + AX^iK-, > ° :Al 

P°ul-> - (1 + WIOU <f>-M (4'189) 

where we see from (4.180)-(4.182) that PQ is a function of the scattering strength 

u2
L_x. We can find u2

L_x from (4.189), and the interpretation is to include a tap if 

its scattering strength is above a threshold depending on the Doppler spread of the 

tap, the SNR and the tracking bandwidth that will be used in the receiver. For 

representative symbol rates and Doppler spreads the range of possible values for a 

is very small and close to 1. It is therefore a good approximation to set a2
L_x = 1 in 

(4.189). 

The scattering strength is not readily available, and it can be estimated by the 

sample mean of the cross-ambiguity function since (4.177) under H0 yields 

L-2 

£[0(0,0)]   =   ul^iMSY + MS^u^ + MSal^ul^iMS)2 .    (4.190) 
t"=0 

The expected value of the cross-ambiguity function is a biased estimator for itf,^ 

where the bias is small when L — 1 <C M. By substituting the sample mean for the 

expected value in (4.190) we can estimate u\_x and use the rule (4.189) to assign 

taps in the channel tracker. 
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Example 2: All Doppler coefficients at a single delay The other extreme of 

P is when this matrix is fully populated, corresponding to a purely Doppler spread 

channel. In this case (4.152) is solved numerically, and to further illustrate (4.161) 

we show in Fig. 4-28 the number of taps as given by (4.161) vs A for this case. 

We show in Section 4.3.3 that the tracking bandwidth for each tap of the TU-RLS 

decreases with increasing A, therefore we see an increasing number of taps when A 

increases. The case shown in Fig. 4-28 is for an SNR of 6 dB and a Doppler spread 

of 5 Hz at a symbol rate of 2500 symb/sec. 

Number of taps vs lambda 

0.985 0.99 
lambda 

Figure 4-28: The number of taps used by the receiver vs A for a Doppler spread of 
5 Hz and a SNR of 6 dB. 

Summary We assume that the cross-ambiguity function is available, and at each 

location of this function we perform a binary hypothesis test on signal presence of 

absence.   The two possible errors of this test is to omit a tap at a location where 
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signal is present or include a tap at a location where signal is absent. Both errors 

will give energy loss in the data input to the decoder. We compute the losses which 

are used in a cost function, and we derive a rule based in the minimization of the 

expected va!ne of tiws cost. The rule makes use of the hypothesis probability, and 

we express this in terms of the cross-ambiguity function. We show two examples of 

the rule (4.161). In the first example, which is the case of one Doppler coefficient 

at each delay, the rule (4.189) suggests that we threshold each location (/Z,_I,&L-I) 

of the sample mean of the cross-ambiguity function. The threshold is given by the 

SNR and the tracking bandwidth as shown in (4.189). In the second example, which 

is the case of all Doppler coefficients at the same delay, we show the number of taps 

resulting from the rule (4.161) vs the tracking bandwidth represented by A. 

By assigning probabilities to error occurrences and costs to the energy losses a 

rule for tap selection is derived. 

4.3.7    Tap tracking 

Motivation The next task is then to update the initial channel response estimate 

by tracking the channel parameters Doppler and delay. This could be carried out on 

a sample by sample recursive basis by assuming statistical models for the evolution of 

Doppler and delay vs time. The discussion of the DFE in Section 4.2 shows that this 

may give unexpected system behavior. The case of tracking Doppler on a sample 

by sample basis leads directly to the use of a PLL since this is the result of the 

TU-RLS applied to this problem. The analysis pertaining to the DFE suggests not 

to use coupled adaptive algorithms running simultaneously on the same data. In 

our case we already have the TU-RLS (4.92) and (4.93) running to track the delay- 

Doppler-spread function t/;,fc(n), therefore we constrain ourselves to only updating 

delay and Doppler estimates on a less frequent basis than from sample to sample. 

We now derive a tracking algorithm for the delays and the Doppler shifts.  We 

use information from previous estimates, so we avoid retraining entirely for each 
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estimate but use the information from the last estimate in the computation of the 

new one. 

Doppler and delay tracking 

According to the model (4.83) the Doppler shifts t/= [i/0 ■ • • i/L_i]r are known con- 

stants. In a realistic situation depending on the relative transmitter, receiver and 

boundary motion it may be necessary to allow v to vary slowly. The initialization 

of the channel tracker by means of the choice of the number of taps and their loca- 

tions in delay and Doppler is described in Section 4.3.6. One interpretation of this 

procedure is to compute the cross-ambiguity function (4.163) and then perform a 

thresholded search (4.161) in delay and Doppler over this surface. In this scenario, 

where we assume the initialization to be correct, the task is to update the location 

of the taps. Therefore, from the initialization we know v = u0 at time n, and we 

assume 

t/ = t/0 + 6i/ (4.191) 

at time n + TV — 1 where 8u <C Vo is an unknown constant vector. The N new data 

samples are used to compute a restricted version of the updated cross-ambiguity 

function. The restriction is to only compute the cross-ambiguity function over the 

samples Si/. By this constraint we use the information from previous initialization, 

and we save computations by this constraint. Likewise we utilize the previous esti- 

mate in delay and write the new delays as 

n   =   n0 + <5n (4.192) 

where no is the estimate at time n and n is the estimate at time n + N — 1. Thus the 

updated cross-ambiguity function is computed in a number of smaller areas (<$n, 8v) 

centered at (n0, v0), and the taps in these areas are relocated in the same areas based 

on the new cross-ambiguity function in the same way as described in Section 4.3.6. 
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A typical scenario for the communication system is data transmitted in packets of 

a certain length with a fixed pause between packets. The update described above is 

a constrained search over a set of tap locations starting at the old positions of the 

taps. 

4.3.8    Receiver robustness 

Preview Section 4.3.6-4.3.7 describe the initialization and operation of the re- 

ceiver, and we now turn to the evaluation. In a practical scenario there will be 

estimation errors in the parameters used to initialize the receiver, and noise, delay 

spread and Doppler spread are always present in the data. This limits the receiver 

capability even with perfect initialization. The receiver is built up of a channel 

tracker, a linear MMSE decoder and a quantizer that are connected as shown in 

Fig. 4-20. One objective of this section is to find the limits of how much Doppler 

spread, delay spread and noise this receiver can handle before it stops working sat- 

isfactorily when it is in the tracking mode. Thus we assume correct initialization of 

tap locations, and we also assume that the channel tracker has converged by means 

of the training sequence. One important assumption when the receiver is decoding 

is that the decoded sequence z[n) is close to the transmitted sequence z(n) because 

the channel tracker relies on this to give good channel estimates. This way of de- 

cision feedback is known to cause error propagation in the DFE that was analyzed 

earlier. We observe that the receiver in Fig. 4-20 is likely to be more robust than 

the DFE in Fig. 4-13 because a DFE uses the feedback of symbols in both channel 

tracking, similar to the receiver in Fig. 4-20, and also directly in the decoding of 

symbols. This last feedback path is not present in the receiver in Fig. 4-20, and 

this justifies the improved robustness. The receiver structure makes it natural to at- 

tempt to analyze each of its three parts separately. We view them as three separate 

systems which are the MMSE decoder, the quantizer and the channel tracker, and 

the assumptions associated with the characterization of each device will be stated 
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when they are used. Thus the MMSE decoder is a linear filter with a given impulse 

response, and the received data is the input whereas the soft estimate of the transmit 

sequence is the output. The main result for this unit is in (4.199) which is a well 

known result from Wiener filtering and least squares estimation [104], [100]. The 

quantizer is a nonlinear system with the soft estimate of the transmit sequence as 

the input and the quantized transmit sequence estimate as the output. It will pro- 

duce the correct transmit sequence with a certain probability, and this probability 

is computed [82], [100] and given in (4.203) which is the main result for this device. 

The channel tracker is an adaptive filter using TU-RLS. Certain results from steady 

state analysis [64], [65] and also some results derived in this thesis are used to quan- 

tify the error in the channel estimate, and the main result is given in (4.221). This 

equation suggests that the channel estimation error covariance is evolving as a first 

order recursive, coupled matrix equation, and it is verified in Fig. 4-30. The stability 

is determined by the eigenvalue spread of the matrix P in (4.218) which is block 

diagonal. The two extremes of diagonal and fully populated P are discussed. When 

this matrix is diagonal the combination of the results (4.199), (4.203) and (4.221) 

yields an equation for the error probability involving the SNR, the Doppler spread 

and the delay spread in (4.232) which is the main result for this case. When P is 

fully populated the receiver stability is determined by the condition number of this 

matrix, and this is demonstrated in Fig. 4-31. The main result (4.221) is illustrated 

by a purely Doppler spread noisy channel in Fig. 4-34 and a more general doubly 

spread channel in Fig. 4-35. This equation gives an exhaustive characterization of 

the receiver performance when the receiver is in the tracking mode, and it is valid for 

the general doubly spread noisy channel under the assumptions stated throughout 

the section. Before we turn to this issue of channel distortion we present an example 

of initialization error in Fig. 4-29. This example illustrates that the receiver can tol- 

erate a certain amount of estimation error in the initialization, i.e., perfect channel 

knowledge is not necessary. 
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Doppler mismatch 

There will be mismatch due to noise in the estimation of v and n, and we now 

consider a situation where the Doppler shifts have been estimated and there is an 

error 

ue   =   v-v (4.193) 

where v are the true Doppler shifts and i/ are the estimates. We know from the 

analysis of the RLS in presence of Doppler spread, and also from the steady state 

expression (4.96) that the residual Doppler ue enters the TU-RLS to give tap rota- 

tion: If the transmitted signal z{n) is a whitened sequence and there is one Doppler 

coefficient per delay the expected value of the steady state vector equation for h(n), 

given by (4.96), decouples to a set of scalar equations therefore we consider the scalar 

case which yields 

E[h(n + l)]   =   \ej2™E[h(n)} + (1 - \)ei2icun . (4.194) 

As the analysis in (4.44)-(4.51) shows the steady state tap amplitude is affected. 

Fig. 4-9 shows the maximum relative Doppler shift at a given forgetting factor A be- 

fore a DFE would break down because of error propagation. The maximum Doppler 

mismatch that can be handled by the TU-RLS in (4.92) is a function of how much 

attenuation of the steady state value of h(n) that can be tolerated. If we arbitrarily 

require that |£[^(n)]| stays above 90% of its true value the contours of maximum 

allowable A vs symbol rate and percent Doppler mismatch 100i/e/f is shown in Fig. 4- 

29. When the modulation is QPSK one symbol corresponds to 2 bit, so the vertical 

axis represents bit rate. As discussed in relation to Fig. 4-9 it is the Doppler relative 

to the sample rate of the received signal that is significant, so a potential way to 

deal with Doppler at the expense of computational load and number of degrees of 
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Figure 4-29: Contours of maximum A for a given symbol rate and Doppler frequency 
mismatch that keep the amplitude of h(n) above 90% of h(n). 

freedom is to use higher sample rate in the receiver. The contours shown in Fig. 4-29 

are for a rate of 1 sample/symbol. 

We note that increasing the sample frequency of the receiver is different than 

increasing the symbol rate. Both these changes make a fixed Doppler spread less 

severe, because the change from sample to sample as seen by the TU-RLS decreases. 

Both the approaches have disadvantages that make them less tractable. The first 

approach increases the number of degrees of freedom and computational load in the 

receiver as discussed above. If we assume that fixed amount of energy is available at 

the transmitter the second approach results in less energy per symbol transmitted. 

This in turn increases the probability of detection error in the receiver. Therefore 

this approach is only attractive if more power is available as the symbol rate is 

increased. 

We now turn to the second issue of receiver robustness which is to quantify how 

much noise and spread the receiver can operate under with a given probability of 

decoding error. 
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MMSE decoder 

The received signal is modeled by (4.83). The decoder is an FIR filter with given 

impulse response, see Section 4.3.5, and the MMSE impulse response is given by the 

correlation matrix Ryy(n) and the cross correlation vector rzy(n) 

ho(n) = RyyinY^r^n) 

Ryyin) = E[y(n)y(n)H] 

r2y(n) = E[z*(n)y(n)} 

y(n) = [y{n-lo)---y{n-lL^)]T . (4.195) 

We introduce this filter with L taps whereas it has L\ taps in Section 4.3.5, and we 

introduce Lx and comment on this difference below. The impulse response for this 

filter is supplied by the TU-RLS channel tracker and it contains errors so we have 

from (4.148) that 

h(n)   =   h(n)-he(n) (4.196) 

where the error he is modeled as a random vector. Thus we have from (4.138) that 

z(n)   =   ho(n)y(») 

=   VSz(n) + ze{n) . (4.197) 

The Wiener filter has the well known minimum mean square error Jmtn [45], [104], 

and any suboptimal filter has an error variance that is expressed in terms of Jmtn 

and an additional term due to the deviation from the optimal Wiener filter [45]. In 

our case this deviation is he(n), and we have that the estimation error variance is 

£[|ze(n)|2|he]   =   J\K = S-rlR-y
lvzy + \^Ryyhe 
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-   Jmin + h?Ryyhe . (4.198) 

Jmin is the error variance of the MMSE filter and this is the lower bound on the error 

variance. The channel estimation error he increases the decoding error variance by 

h^Ryyhe. The variance of ze(n) is found by taking expectation over he and it is 

given by 

a\   =   E[J\he] = Jmin + tr(RyyE[heh?}) . (4.199) 

When the filter error he is zero the estimation error ze(n) is a white sequence un- 

correlated with z(n) and it is modeled as a Gaussian random process. This is ap- 

proximately true when he is small, and this characterization of ze(n) is used in the 

following. 

We know that Jmtn is the MMSE obtained when using the Wiener filter but in 

our case, where we are using a finite length FIR filter, this result leaves the filter 

order undetermined [82]. It only states that with a given number of taps L\ in the 

linear MMSE decoder in Fig. 4-20 Jmtn is the smallest obtainable error variance. 

Jmin decreases with L\ and the decoder is sometimes used with L\> L taps. There 

is no need for the channel tracker to have more than L taps, therefore we modify 

(4.198) and (4.199) to yield 

E[\ze(n)f\he]   =   J\he = £-T*R£rMy + h?Rmhe 

—     "min ~T ne TiyyIle 

a\   =   E[J\he} = Jmin + tr(RyyE[hehf)). (4.200) 

Ryy has Toeplitz structure, and we construct Ryy from Ryy by noting that Ryy has 

the same diagonals as Ryy for all diagonals n < L. For example, if L = 2 and L\ — 3 
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we have 

An R\2 
fh/y    ~ 

#21 Rn 

Rn R\2 0 

Ryy    = R21 Rn R\2 

0 R21 R\\ 

(4.201) 

Quantizer 

The operation of the quantizer is to assign z(n) to one of the symbols in the alphabet, 

and for QPSK we have 

z(n)  e   {—i, —i,i, 1} (4.202) 

The quantizer uses as criterion for assignment the minimum distance rule [40], which 

is that the value of z(n) that is closest to z(n) is chosen. This is the well known 

minimum distance receiver, and when the error is assumed to be Gaussian the error 

probability is [82], assuming that each symbol drawn from (4.202) is transmitted 

with energy £, 

Pe   =   Pr[z(n)^z(n)]=evic(J—)(l--evic(J-~)) (4.203) 
2<r? 2ol 

which is a function of the SNR £/of only. The complementary error function erfc is 

given by 

0       /•oo , 

erfc(x)   =    -p /    e-( dt . 
\flT Jx 

(4.204) 
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Thus we can interpret the quantizer output as 

z{n)    =   z(n) + ze(n) (4.205) 

where ze(n) is the error sequence from the quantizer output. It is assumed to be 

independent of z(n) and it is modeled as a stationary, white random process with 

ze(n)    e    {-2,-2i,-l-i,l-j,0,i-l,i + l,2i,2} 

Pr[ze(n) = 0]   =   1-Pe- (4.206) 

In the literature on quantizers the quantity ze(n) is called the granular noise, and 

the assumption amounts to consider the granular noise to be independent of the 

quantizer level z(n) [50]. The probability mass function of ze{n) follows from simple 

counting arguments assuming that all the sample values of z(n) are equally likely. 

It is given by 

P     =   prl   1  I   I   l-i   I  I   I   ±1 ^12' 12, 6, 6, pe     i, 6, 6, 12, 12J 

E[ze(n)}    =   0 

E[\ze(n)\2}   =   \Pe = lPe (4.207) 

where each vector component of PZe is the probability of ze(n) taking on the value 

of the corresponding entry in (4.206) and 7 = 8/3 is a constant depending on the 

modulation format that is used. The actual value of 7 is given in a straightforward 

manner from the evaluation of the variance in (4.207). To illustrate this we consider 

another example of binary PSK modulation. In this case (4.206) yields 

ze,PSK{n)   e   {-2,0,2} (4.208) 
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and (4.207) yields 

From this we get E[\zeiPsK(n)\2] - ((-2)2f + (2)2|)Pe = 4Pe so that 7 = 4 for 

binary PSK. The error probability Pe depends on the channel estimation error, and 

we now find an expression for this. 

Channel tracker 

The channel model is given by (4.84) and (4.87) but we explicitly want to show the 

noise originating from decision errors, therefore we denote the true symbol cH(n) 

with 

<f(n)   =    y/S[z(n-l0)---z(n - h-i)) ■ (4.210) 

The equation (4.87) models the channel variation as a collection of AR(1) processes 

with parameters at. The TU-RLS channel tracker operates according to (4.92) and 

(4.93) where 

cH(n)   =    VS[z(n - lo) ■ ■ ■ z(n - lL-i)] 

=   <#(«) +<f(n) 

cf(n)   =    y/S[ze{n-l0)---ze(n-lL-l)]. (4.211) 

We now split the error e(n) and the gain k(n) in two terms in order to identify the 

error from wrong decisions in the quantizer. Thus ko(n) and e0(n) refers to gain and 

error due to imperfect channel tracking and measurement noise. These errors are 

well known [45], [64]. The additional error in gain ke(n) and ee(n) due to decision 

feedback errors are written separately because we want to quantize explicitly the 
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effect of decision feedback errors. We find from (4.92) and (4.93) that 

e(n 

e0(n 

ee(n 

k(n 

k0(n 

ke(n 

e0(n) - ee(n) 

y(n) - cjf(n)h(n) 

cf(n)h(n) 

ko(n) + ke(n) 
^4P(n-l)Ag + Ä)c0(n) 

0-2, + ic0"H(AP(n - IM" + Ä)co(n) 
^(AP(n - 1) Ag + fi)ce(n) 

^ + lc0^(n)(AP(n - 1)A" + Ä)c0(n) 

where we have approximated 

(4.212) 

cH(n)(AP(n - l)AH + R)c(n)   «   c0
H(n)(v4P(n - 1)A" + Ä)c0(n) {4.213) 

The approximation in (4.213) is good when 

|ce(n)| < |co(n) (4.214) 

for large L, and this is satisfied for representative error probabilities Pe ~ 10-1—10~4. 

In many cases L is not large, and in these cases (4.213) is not satisfied. With the 

error rate in the range above the violation of (4.213) is infrequent enough so that 

the evolution of k0(n) and ke(n) as given in (4.212) is not severely impacted. By 

inserting (4.212) in (4.92) we get 

h(n + 1)   =   Ah(n) + k0(n)e0(n) + k0(n)ee(n) 

+    ke(n)e0(n) -f- ke(n)ee(n) . (4.215) 
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The estimation error as given by the combination of (4.215) and (4.87) is 

he(n + l)    = h(n + 1) - h(n + 1) 

= [I - k0(n)c%(n)][Ahe(n) + v(n)] - ko(n)w(n) 

+ k0(n)cf (n)A[h(n) - he(n)] - ke(n)c£(n)Ahe{n) 

- ke(n)cf (n)v(n) - ke(n)w(n) . (4.216) 

The first two terms in (4.216) are the standard terms as can be found in the lit- 

erature [105] and the remaining terms are due to decision feedback errors. We are 

interested in steady state properties as k(n) gets small, and we show in Appendix B 

that the TU-RLS gain is approximately 

ko(n)   =   xP(n)c0(n) 

ke(n)   =   xP(n)ce(n) (4.217) 

where x and P(n) are found in Appendix B and given by 

X 

P(n) 

1-A 

Po(n) 

PL-i(n) 

(4.218) 

We have that dim(Pi(n)) = K\ x K\ and K\ is the number of Doppler coefficients at 

delay /. P(n) is a block diagonal matrix whose structure is given by the distribution 

(/, k) of the taps. We note that our earlier derivation (4.35) and (4.29) suggests 

the same values for x and P{n) in the case of this matrix being diagonal, but that 

this result is valid only for \A\ = I. The assumption that the gain vectors are well 

modeled by (4.217) is tested by the simulation of the estimation error in Fig. 4-30 

and we comment further on this in the discussion pertaining to this figure. By the 
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assumption that the error ze(n) and data z{n) are uncorrelated 

£[c0(n)cf(n)]   =   0 (4.219) 

and in addition we assume 

E[v(n)w*(n)]   =   0 

£[n(n)hf(n)]   =   0. (4.220) 

The assumptions in (4.220) are often adopted in similar analyzes, and they amount to 

the measurement and the process noise being uncorrelated and the channel estimate 

and the channel estimation error being uncorrelated. The channel estimation error 

covariance is II(n) = ü?[he(n)hf(n)] and it can be found from (4.216). By squaring 

and taking expectation of (4.216) we get 

n(n)   = [I-xP(n)Qo]AU(n-l)AH[I-XP(n)Qo]H 

+ x2Hn)QoPH(n)al + R 

+ x2P(n)£2-yPe(L + 2tr(Atl(n - l)AH))PH{n) 

+ x2P{n)QevlPH(n) (4.221) 

where we have defined 

Qo   =   E[cQ(n)c%(n)] . (4.222) 

II is an approximation to IT where we have neglected certain dependencies be- 

tween variables, see Appendix B for the detailed derivation of (4.221). It has been 

proven [65] that ]I(n) is close to IT(n) for A = I and Pe = 0, and this further 

motivates the choice in (4.217). 

We show in Appendix B that P can be interpreted as the inverse of a sliding 
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window average that is an estimate of the input signal covariance matrix, and this is 

also pointed out in the literature [64], [104]. Essentially the recursive schemes such 

as TU-RLS perform an approximate solution to the Wiener-Hopf equation because 

this equation yields the MMSE estimate. To solve this equation the inversion of a 

correlation matrix is necessary, and this inversion is updated recursively by means 

of the matrix inversion lemma [43] in the TU-RLS algorithm. The main point in 

this context is that an inversion is required, and this operation requires improved 

numerical accuracy as the matrix P~l(n) that is to be inverted approaches a singular 

matrix. The structure of P(n) is shown in (4.218), and it varies from diagonal to 

fully populated. The diagonal structure occurs when we have only one Doppler shift 

at each delay, so that Kt = 1 V /. The fully populated structure occurs for a purely 

Doppler spread channel where K0 = L and there is only one delay. These two cases 

are the extremes of P(n). A convenient metric for how sensitive the inversion of 

a matrix is to noise and roundoff errors is the ratio of the largest to the smallest 

eigenvalue also known as the condition number. We observe from (4.218) that P(n) 

is always block diagonal so that the condition number in the case of a doubly spread 

channel is given by the eigenvalues for each block. This motivates the closer study 

of the two cases of diagonal and fully populated P(n) which we now present. 

One Doppler coefficient at each delay 

This is the case of I<i — 1 V /, and we now observe from (4.221) that II is a 

diagonal matrix if Ä, Qe, Qo and P are diagonal. R is always diagonal by the WSSUS 

assumption, from (4.222) Q0 is diagonal and by using (4.207) we get 

Qe = E[ce(n)c?(n)]   =   S1PJ. (4.223) 

We also note that tl(n) is given by a set of first order linear, coupled, recursive 

difference equations, therefore the stability of (4.221) is given by the eigenvalues of 
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the system matrix A0 which we now proceed with defining.  By using (B.8) for P, 

and observing that (4.222) yields Q0 = SI, (4.221) yields 

fi(n)   =   \2ATl(n - 1)AH+ 2(1-\)2"/Petr(Afl(n-I)AH)I 

+   (l-\)2al/SI + R + (l-\)2iPeLI 

+   (l-A)Ve^/. (4.224) 

To bring out AQ explicitly we introduce the L x 1 vector 7r(n) consisting of the 

diagonal elements of IT(n), so that 

7r(n)   =   diag(Tl(n)) (4.225) 

where diag(x) means the column vector of the main diagonal of a; if a: is a matrix, 

and a matrix with x as its main diagonal and zeros elsewhere if x is a vector. By 

defining 

«2 
2      -\H 

l«o • • • Ol'L-1 (4.226) 

we can write 

tr(Ail(n)AH)    =   tr(AAHtl(n)) = a%<ir(n) (4.227) 

Thus (4.224) is rewritten in vector version as 

7r(n)   =   (\2AAH + 2{l-\f1Pe 

a H 

at H 

)w(n-l) 

+   (l-m</£+lPe(</£ + L))l + diag(R) (4.228) 
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where 1 is a column vector of L Vs. We get 

A0   =   X2AAH + 2(1 -A)Ve 

ex. H 

a H 

(4.229) 

Thus the stability of the difference equation for the channel estimation error covari- 

ance is given by the constraint 

\Ki{Ao)\    <    1   Vi (4.230) 

where Ki(A0) is the i'th eigenvalue of A0. These eigenvalues determine the stability 

of the receiver in Fig. 4-20, and we can see that they depend explicitly on Doppler 

spread through A, the number of degrees of freedom through the size of A, tracking 

bandwidth through A and decision errors through Pe. The eigenvalues implicitly 

depend on the SNR and the delay spread through Pe. If (4.230) is satisfied steady 

state is given by 

£[he(n)hf (n)] « ft 

=   [/ - A0]-l{(l - \f{allS + iPetä/S + L)) 

+   R}. (4.231) 

By combining (4.203), (4.199) and (4.231) we get 

Pr erfc(< i^ftj)(1 - W^tft)» 
lzy al{Pe)    =   S-T*R£TM 

+   triRyyil-Aor'Ul-Xfal/S + R 

+   (l-A)Ve# + L)]) (4.232) 
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and this equation determines the performance of the composite receiver in Fig. 4-20 

when it is stable. This equation in combination with (4.88) and (4.110) yields the 

error probability as a function of SNR £/cr2, Doppler spread B and delay spread 

through Ryy. 

We verify that the steady state given by (4.231) is representative for the receiver 

in Fig. 4-20 by running this receiver on data with a time-variant SNR as shown in 

the upper panel of Fig. 4-30. This SNR evolution models a long channel fade in 

a simplified manner. The channel has only one time-variant tap so that the delay 

spread is zero. Thus the error degradation in the SNR around 0.4 sec is promptly 

reflected in the error probability shown in the middle panel of Fig. 4-30. The channel 

estimation error covariance given by (4.231) is shown as the dotted line in the lower 

panel, and the solid line in this panel is the channel error covariance estimated from 

the receiver output by running the receiver many times. We observe that the two 

curves in the lower panel are in good agreement, and this is a verification of the 

assumptions preceding the expression in (4.231) in this section. 

Interpretation of steady state covariance Some insight of the terms on (4.231) 

can be obtained by deriving the connection to some well known results from the litera- 

ture for the special case \A\ = /. We now proceed with performing the simplifications 

necessary to bring out the connections. We approximate 

A2   =   (1-(1-A))2 = 1-2(1-A) + (1-A)2 

«   1-2(1-A) (4.233) 

so that for |A| = I (4.224) can be written 

Ö(n)    =    n(n-l)-2(l-A)n(n-l) + 2(l-A)2
7Peir(^n(n-l)A//)/ 

+    (l-X)2al/€I + R+(l-\)fPeLI 
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Figure 4-30: Simulation of the channel estimation error covariance for a purely 
Doppler spread channel. The lower panel shows the comparison between the closed 
form and simulated channel estimation error covariance. 

+    (1 - Xf^PeCrl/SI (4.234) 

We neglect the term containing tr(tl(n - 1)) noting that it is more than one order of 

magnitude smaller than the other terms involving tl(n - 1). In steady state (4.234) 

yields 

1     1 
n = 5(i_AW/£/ + i_Ä + - Ä+I(l_A)(i + ^/£)7-PJ.     (4.235) 

The term 

l-(l - X)a2JSI (4.236) 
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is called the self noise [31], [63], and it is the noise due to coefficient variation in 

h(n) around the steady state. The term 

|(l-A)(L + ai/£)7Pe/ (4.237) 

is the noise due to wrong decisions in the MMSE decoder of Fig. 4-20.   It will be 

called the decision noise, and it is specific for this receiver structure. The term 

l^jR (4.238) 

is called the lag noise, and it is the noise in the coefficients h(n) due to imperfect 

tracking of the time-variant channel h(n) [31], [63]. Both the self noise and the 

decision noise are inversely proportional to the averaging window 1/(1 —A), and this is 

in correspondence with physical intuition since more averaging will cancel noise when 

the noise process is white. The lag error is proportional to the averaging window, and 

this is also physically intuitive; since the noise is due to lack of tracking it decreases 

if the tracking is made faster by shortening the averaging window. Thus we observe 

in (4.235) the well known tradeoff between tracking bandwidth and noise robustness 

inherent in any adaptive algorithm, as well as the effect of decision feedback errors. 

We now return to the case of general II as given by (4.221), and to gain further 

insight into the form of this equation we turn to the other extreme of P(n) occurring 

for a purely Doppler spread channel. 

All Doppler coefficients at a single delay 

In this case P(n) is fully populated, and (4.221) can only be solved numerically. 

However, we make the following observations regarding its solution: 

• For a fixed Doppler spread B the tap spacing Ai/ = B/fsL when we have L 

taps 
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• P(n) is increasingly ill-conditioned when Av decreases 

• The eigenvalues of P(n) determines the eigenvalues of the matrix F — [I — 

xPQo]A 

• The term 2x2PS2jPetr(AIlAH)PH of (4.221) is an order of magnitude smaller 

than the other terms involving fl because of its x2 factor. If we neglect this 

term the solution of (4.221) is 

ft(n)   =   FnU(0)(FH)n + J2 FnF0{F
H)n (4.239) 

m=0 

where 

F0   =   xP{Qo + Qe)PHcr2
w + R + X2£2lPeLPPH (4.240) 

provided that F is stable 

• The dimension of F is L x L and its ill-conditioning is severe if L >- BT where 

r = 1/((1 — A)/s) is the time constant of the TU-RLS 

The stability of F depends on the conditioning of P. In addition, the TU-RLS 

depends on this conditioning because the algorithm estimates P^fo) as discussed 

earlier in this section. Thus it is the eigenvalue spread of P that limits the receiver 

stability in this case. The practical issue of when P is close enough to singular to 

impose problems depends on, among other things, the receiver implementation. A 

rough rule [94] is that log10£ decimal places are lost in the inversion of a matrix 

with condition number (, therefore in practice the stability depends on the number 

of bits used in the receiver. A conservative rule is to require ( < 100, and for any 

( the receiver becomes unstable when L increases so that Av is small enough to 

render P(n) singular for practical purposes. This is illustrated in Fig. 4-31 where we 

show the total channel estimation error variance, involving the numerical solution of 
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(4.221), vs A and L for a fixed Doppler spread. When L increases and A decreases 

the condition number of P increases as shown in Fig. 4-32. This is the reason for 

the increase in II vs L. The theoretical result in Fig. 4-31 is verified by running the 

receiver on 15 trials of data as shown in Fig. 4-33. The SNR is 6 dB, the Doppler 

spread is 5 Hz and the symbol rate is 2500 symb/sec in these figures. The flat area 

of the unstable regions of Fig. 4-33 and Fig. 4-31 is a plot artifact in order to show 

in more detail the structure of the stable region. The level in the transition region of 

the simulation Fig. 4-33 is slightly higher than the analytical result in Fig. 4-31. Two 

reasons for this may be the limited number of trials used in Fig. 4-33 and unmodeled 

behavior in the transition region. These figures illustrate the receiver limitation in 

terms of how many taps that can be used for a given SNR and Doppler spread. 

Contour plot, theoretical channel estimation variance 
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Figure 4-31: The theoretical total channel estimation error variance vs the number 
of taps L and the forgetting factor A. The increase of the variance for low A and high 
L shows the receiver limitation due to ill conditioning of P. The Doppler spread is 
5 Hz and the SNR is 6 dB. 
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Condition number vs «taps, tap spacing =5/L Hz 

Figure 4-32:   The condition number of P vs the number of taps L for different 
forgetting factors A and a Doppler spread of 5 Hz at a symbol rate of 2500 symb/sec. 

In order to further illustrate (4.221) we now show two examples. The first example 

is a purely Doppler spread channel, and the second example is a doubly spread 

channel with 3 taps where one of them is time-variant. This example serves as a 

more realistic ocean channel. 

Example 1: Purely Doppler spread channel    In this case we have one tap only 

in the channel impulse response 

h0(n + l)    =   ah0(n) + v(n) (4.241) 

We choose u\ = 1, so the channel model is 

y(n)    —    V£h0(n)z(n) + w(n) 
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Contour plot, channel estimation variance 15 trials 
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Figure 4-33: The total channel estimation error variance vs the number of taps L 
and the forgetting factor A obtained by running the receiver on Doppler spread data. 
The increase of the variance for low A and high L is consistent with the theoretical 
prediction, and it shows the receiver limitation due to ill conditioning of P. 

R yy R yy S + a: (4.242) 

We get from (4.200) and (4.88) that 

"min     —     & \ 1 

R 

A 

+ £' 
=   1-a2 

—   a (4.243) 

The channel variation is assumed to be an AR(1) process, and we have that a is given 

by (4.110) Fig. 4-34 shows the numerical solution for Pe of (4.203), which involves 

the solution of (4.221), vs Doppler spread parameterized by the SNR. We remember 
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that all the three effects of self noise, decision noise and lag noise are accounted for in 

(4.203), and they are all present in Fig. 4-34. At 3 dB SNR the self noise is masking 

the other noises, making the error almost equal over the whole Doppler range. At 

10 dB SNR the self noise is low enough so that the lag noise becomes dominant at 

high Doppler spread, and at 15 dB SNR this effect is even more significant. The 

barely visible dotted lines show the probability of decoding error with no feedback 

errors present at the input to the channel tracker. This serves to show the effect 

of the decision error and it is negligible in this case. The dotted probability curves 

correspond to replacing the feedback of decoded symbols to the channel tracker in 

Fig. 4-20 with the correct symbol sequence. 

in0 
Error probability vs Doppler spread 
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Figure 4-34: The probability of decoding error vs Doppler spread for a purely Doppler 
spread channel with the SNR as parameter. The symbol rate is assumed to be 600 
symb/sec. The dotted lines are the probability of error when the decision errors are 
not fed back to the channel tracker. 
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Example 2:  Doubly spread channel    We now assume the channel impulse re- 

sponse to contain the three taps 

h0(n)   =   0.78 

hi(n)   =   0.62 

h2(n + l)   =   ah2(n) + v(n) (4.244) 

where the taps are chosen to model a channel with impulse response corresponding 

to a direct path ho, a bottom bounce hi and a surface bounce h2. The channel model 

is 

y(n)   =   y£ Y^ hi(n)z(n - i) + w(n) 

ll'W      — vyy 

■zy 

t'=0 

E + a2
w    Shoh 0 

Sh0hi    £ + a\ Eh0hi 

0 Shoh £ + al 

£[0 Ä!  h0]H . (4.245) 

The number of taps is L = 3 and by choosing u\ = 1 we get from (4.88) 

R 

I-a2 

A   = 

a 

(4.246) 

By using (4.246), (4.110) and choosing N = 8 in (4.200) we solve (4.203) numerically 

for different SNR and Doppler spreads. The result of this is shown in Fig. 4-35 and 
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by comparing this to Fig. 4-34 we see that the error probability is now higher at a 

given Doppler spread for the high SNR case. The reason for this is twofold: (1) The 

minimum possible error variance Jmin is higher for the delay spread channel of this 

example and (2) the self noise (4.236) and the decision noise (4.237) are increasing 

because of more taps. This causes al(Pe) in (4.203) to be higher at a given SNR and 

it explains some of the difference between the two examples. In this more realistic 

channel the decision noise is contributing significantly, and we can see the increase in 

error probability as the difference between the dotted and solid curves in Fig. 4-35. 

Error probability vs Doppler spread 

Figure 4-35: The probability of decoding error vs Doppler spread for a doubly spread 
channel with the SNR as parameter. The symbol rate is assumed to be 600 symb/sec 
and the delay spread is 5 msec. The dotted lines are the probability of error when 
the decision errors are not fed back to the channel tracker. 
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Summary The receiver operates in presence of both initialization errors and data 

corrupted by noise, delay spread and Doppler spread. We show that the result 

of Doppler initialization error is tap attenuation in the TU-RLS channel tracker. 

The errors in the feedback of symbols used in the channel tracker causes noise in 

the channel estimate, and we find an equilibrium where the probability of decoding 

error is consistent with the noise, delay spread and Doppler spread in the data. The 

stability is determined by the conditioning of P(n) and we treat the two extremes of 

diagonal and fully populated P(n), noting that the block diagonal structure of P(n) 

in the general case motivates that these two cases are the most important ones. We 

find the condition for the equilibrium to be stable in the case of diagonal P, and it 

is given by noise, delay spread, Doppler spread and forgetting factor A of the TU- 

RLS. In the case of fully populated P(n) the ill conditioning causes the receiver to 

become unstable when a certain number of taps, depending on the receiver number 

representation, is exceeded. The receiver is illustrated by two examples where the 

probability of decoding error is shown vs Doppler spread with noise as a parameter. 

238 



4.4    Verification of the receiver 

Preview The receiver structure in Fig. 4-20, called the TU-RLS in the following, 

is tried on both simulated and real data in order to demonstrate its capabilities 

and limitations. In Section 4.4.1 we treat the case when several rays with different 

Doppler shifts contribute to the received signal so that the Doppler spread contains 

several discrete frequencies at different delays. In this case the receiver in (4.92) is 

applicable, and results are shown in Fig. 4-36-4-38. In Section 4.4.2 we treat the 

case when the relative ray arrival times are less than one symbol interval. Thus 

the Doppler spread is made up of several frequencies at the same delay, and the 

receivers from Section 4.3.4 are used to achieve the results in Fig. 4-40-4-43. If the 

Doppler spread contains a continuous frequency band, which may be the case for 

a time-variant ray reflected from the ocean-surface, we use the IFS based receiver 

(4.120) with the recursive channel tracker 4.109 and the result is shown in Fig. 4-47. 

In Section 4.4.3 real data decoding from the Gould Island experiment described in 

Section 3.2.4 is shown in Fig. 4-51 for channels without significant Doppler spread 

and in Fig. 4-52-4-54 for three severely Doppler spread channels. 

4.4.1     One Doppler shift for each delay 

We simulate scenarios where the channel response is constructed from several rays 

with different Doppler shifts. This is discussed in Chapter 3 and it occurs as a result 

of transmitter or receiver relative motion, and also when some rays interacts with 

an ocean-surface that has a long swell. 

Common parameters For all figures in this section except Fig. 4-39 3 dB con- 

tours of the ambiguity function (2.32) are shown in the upper left panel, complex 

values of the TU-RLS taps h(n) as given by (4.92) in the upper right panel and the 

estimates of the decoded symbols z(n) from (4.138) in the lower left panel. The sym- 
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bol rate is 2500 symb/sec in all simulations of this section and the SNR is 15 dB. The 

channel tracker in (4.92) and (4.93) is started with h(0) = 0 and P(0) = 1007, and 

the training sequence duration is 512 symbols. The training sequence is used both 

to compute the cross-ambiguity function and to achieve initial convergence of the 

TU-RLS. The tap initialization is carried out by thresholding the cross-ambiguity 

function. In some of the figures parameters are listed in the lower right panel. The 

"#taps, tracking" is the channel tracker dimension L of (4.83), the "#taps, inver- 

sion" is the FIR filter order Lx of (4.138), the "SNR" is the ratio S/al, "lambda" 

is the exponential weighting factor A of the TU-RLS (4.93) and "# errors in" is the 

ratio of transmitted to erroneously decoded symbols. 

Fig. 4-36 shows the result of a channel where the signal is arriving over three rays 

with slightly different delays and different Doppler shifts. The delays and Doppler 

shifts are 

n   =   [0 12] symbols = [8 8.4 8.8] msec 

v   =   [4 0   - 4] Hz . (4.247) 

It demonstrates the ability to decode in presence of Doppler spread that contains 

several discrete tones. The circular patterns traced by the tap magnitudes in the 

upper right panel of Fig. 4-36 shows the fact that the channel tap magnitudes are 

constant. The channel is time variant only because each tap has a fixed Doppler 

shift. The complex tap values change because of this, but since their magnitudes are 

constant they stay on a circle in the complex plane. Therefore the tracking of the 

taps also stay on circles, and this is observed in the upper right panel of Fig. 4-36. 

The time between adjacent tick marks on the circles is 250 msec. 

Fig. 4-37 shows the limitation of the linear signal combiner to decode in the 

presence of delay spread. The reason for the much noisier symbol estimation is seen 

in the ambiguity function which shows that the communication channel has two 
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almost equal amplitude lags around 8 and 10 msec. The channel delays and Doppler 

shifts are 

n   =   [01234] symbols = [8 8.4 8.8 9.2 9.6] msec 

v   =   [4 0 8 0 0] Hz . (4.248) 

When the SNR is high the decoder (4.138) attempts to invert the channel response, 

and it is constrained to be a FIR filter. The inversion of a channel response with 

almost equal taps leads to a high order FIR filter, and we explain this in more detail 

in Section 4.4.2. 

Fig. 4-38 shows an example of a sparse communication channel with different 

Doppler shifts on the two widely spaced returns The channel parameters are 

n   =   [0 50] symbols = [8 28] msec 

v   =   [0 4] Hz . (4.249) 

The TU-RLS contains only two taps and the estimated symbols are based on a 

signal combiner with 8 taps. This scenario is the result when one direct path and 

one surface reflected path are present, and the ocean-surface has a swell with period 

significantly longer than the packet length. 

The adaptive DFE with a PLL that is discussed in Section 4.2 is unable to decode 

any of the cases shown in Fig. 4-36, Fig. 4-37 and Fig. 4-38 because the total Doppler 

spread is too large. The case where this receiver achieves its best performance is for 

the cross-ambiguity function shown in Fig. 4-38. This signal is made from a channel 

with one direct ray and one surface reflected ray with a slow swell on the surface 

that gives the Doppler shift shown. If there is no swell on the surface the channel is 

LTI, and the DFE decodes correctly as shown in the upper left panel of Fig. 4-39. 

The right column of this figure shows the predicted symbols for channels where the 
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first return is at 0 Hz as in Fig. 4-38 and the second return is at 0, 1 and 2 Hz in 

the upper, middle and lower panels respectively. The left column shows the mean 

square error in the predictions as computed by 

J(n)   =itUtZ-l\m-Hk)\2 (4.250) 

which is a moving average estimate of the power in the decision error that is used 

as input to the RLS. As can be seen from Fig. 4-39 it is found that the receiver can 

decode in the presence of a Doppler difference of 1 Hz between the two paths, but 

that it is unable to decode when the difference is 2 Hz. 

Summary We demonstrate the capability of the receiver presented in Section 4.3.3. 

Fig. 4-36 shows the decoding of a scenario corresponding to different Doppler shifts 

on rays arriving at different times. Fig. 4-37 demonstrates the result of the constraint 

that the decoder is linear, and Fig. 4-38 shows decoding of a sparse channel. We 

compare with results from the DFE in Fig. 4-39. 
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Ambiguity, 3dB contours Taps vs time 
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Figure 4-36: Decoding of Doppler spread data, the ambiguity function shows three 
returns at different Doppler shifts (upper left panel), the TU-RLS taps are shown 
to rotate at different amplitudes (upper right panel), and the eye pattern showing 

the decoding result is open (lower left panel). 
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Ambiguity, 3dB contours Taps vs time 
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Figure 4-37: Decoding of doubly spread data where the FIR signal combiner has more 
difficulty because there are returns of almost equal amplitude at different delays. 
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Ambiguity, 3dB contours Taps vs time 
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Figure 4-38: Decoding of a typical sparse underwater communication channel with 
many symbol intervals between the returns and the returns at different Doppler 
shifts. The second return is from a surface swell with much longer period than the 
packet length, so that a Doppler shift rather than a spread is the result. 
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Figure 4-39: Performance of the DFE receiver with a PLL on a Doppler spread 
signal. The predicted symbols in the right column and the MSE decision error in 
the right column for a two path signal with respectively 0, 1 and 2 Hz difference in 
Doppler between the paths in the upper, middle and lower panels. 
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4.4.2     Multiple Doppier shifts for each delay 

In the simulations and real data presented in Chapter 3 we find that different rays 

may arrive the receiver in the same symbol interval. If these rays have different 

Doppler shifts we have a scenario with discrete frequencies at the same delay so that 

the composite signal is Doppler spread. Depending on the surface roughness, as 

discussed in Chapter 3, a surface reflected ray may also have a continuous Doppler 

spread. We simulate both discrete and continuous Doppler spread. 

Common parameters The upper and lower left panels of all figures in this chapter 

shows the cross-ambiguity function and the decoding result; see Section 4.4.1 for 

more description and references. The initialization of the taps is carried out by 

thresholding the cross-ambiguity function based on 512 symbols, and the symbol 

rate is 2500 symb/sec in all the examples of Section 4.4.2. The lower left panel 

shows the decoding result. The information in the lower right panel of the figures in 

this section is described in Section 4.4.1. 

Discrete Doppler spread 

The Doppler line based receiver that we derive in Section 4.3.4 is used on purely 

Doppler spread data, and an example of decoding with the IFS Doppler line is shown 

in Fig. 4-40 where the cross-ambiguity function of the Doppler spread channel is in 

the upper left panel. It has 4 Doppler shifts and amplitudes at 

v   =   [-1  1 4 8] Hz 

U(0)   =   [.5  11  .8]T (4.251) 

where the amplitudes are evolving according to 

U(n)    =    diag(ot)V(n - 1) 
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a   =   [1.0001  1  .9999 .9995] . (4.252) 

We note that this implies a different channel model than the AR(1) (4.86) for which 

the receiver is derived, and the example illustrates tracking of slowly varying rays 

with constant Doppler shifts. The recursive estimator (4.109) and (4.93) for the 

channel tracker is used, and the upper right panel shows in absolute value the con- 

vergence of the channel tracker taps to the right coefficients when they are started 

from h(0) = 0. The first 256 values of the tap magnitudes in the upper right panel of 

Fig. 4-40 is the training of the TU-RLS. The tap frequency locations are found from 

thresholding the cross-ambiguity function as described in Section 4.3.6, therefore 

they are not perfectly matched to the values in (4.251). The tap values obtained by 

using the initialization rule in Section 4.3.6 are 

v   =   [-1.1  1.04 4.1  7.9] Hz . (4.253) 

The scenario of Fig. 4-40 corresponds to distinct rays with different Doppler shifts 

arriving within the same symbol interval. The receiver used in Fig. 4-40 is an 

IFS Doppler line, as given by (4.120), that is updated with the recursive TU-RLS 

channel tracker. 

We show the decoding of a channel with 

v   =   [0 3] Hz 

h   =   [1  .9]T. (4.254) 

in Fig. 4-41 and 

v   =   [0  1  2 3] Hz 

h   =    [1  .8  .7 .6]T. (4.255) 
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in Fig. 4-42. These results, as will be evident when we compare them to the results 

of the FFS receiver later in this chapter, illustrate the noise enhancement associated 

with an IFS receiver, and we use the block processing (4.107) to estimate the channel 

in these examples. 

We motivate and show in Section 4.3.4 that also the FFS Doppler line is useful 

for Doppler spread data, and we now use a receiver with the FFS Doppler line. In 

order to show how this receiver works in presence of Doppler spread we present two 

examples using the channels of Fig. 4-41 and Fig. 4-42. In this case the receiver is 

a single FFS Doppler line, and it is given by (4.131). The examples in this section 

use the block channel tracker (4.107), and the block estimate of the FFS coefficients 

is shown in the upper right panel of Fig. 4-43 and Fig. 4-45 as opposed to the time 

evolution of the Doppler line coefficients that is shown in Fig. 4-40. 

The first example in Fig. 4-43 where the channel is given by (4.254) shows an 

open eye over the symbols that are transmitted. The number of coefficients used 

is 20 which is a large number compared to the 2 frequencies actually present in 

the simulated data. The reason for this is that the relative amplitudes of these 2 

frequencies are almost equal so that many taps are needed in the FFS Doppler line 

in order to compensate this, and we now explain this by using duality. The dual 

scenario is when a FIR filter is used to equalize a delay spread channel with frequency 

response 

H(z)   =   1 + dz'1 . (4.256) 

The zero forcing (IIR) equalizer for this channel is 1/H(z), and when we use a FIR 

filter as equalizer its coefficients are determined by the best possible approximation 

to this transfer function which is 

1 - az'1 + a2z~2  (4.257) 
H(z) 
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If a is close to 1, which corresponds to the case of having almost equal frequency 

amplitudes as shown in the cross-ambiguity function of Fig. 4-43, we need many 

terms of the sum (4.257) in order to approximate the zero forcing equalizer. 

The more complex Doppler spread of (4.255) is shown in Fig. 4-45. The decoding 

in the lower left panel shows that the receiver works well on this relatively complex 

channel. 

The tap configuration in Fig. 4-43 shows adjacent taps with nearly equal mag- 

nitude and opposite sign. This is reminiscent of super directivity as discussed in 

Section 4.3.4, and we use the constrained least squares fit (4.136) in Fig. 4-44 in 

order to avoid this behavior. The upper right panel of Fig. 4-45 also shows adjacent 

coefficients of opposite sign and comparable magnitude. We show the constrained 

Doppler line solution (4.136) in Fig. 4-46 for the same channel as in Fig. 4-45. In 

both Fig. 4-44 and Fig. 4-46 the Doppler line is constrained to have unity white noise 

gain as given by (4.133), and we see the impact of this modification by comparing 

them to the upper right panels of Fig. 4-43 and Fig. 4-45. The more sensitive re- 

ceivers of Fig. 4-43 and Fig. 4-45 are replaced with the more robust receivers Fig. 4-44 

and Fig. 4-46 at the expense of" higher error rates as seen in the lower left panels 

of these figures. The eye pattern in Fig. 4-44 shows significant deviation from the 

unconstrained Fig. 4-43. This is due to the strength of the constraint we use, and a 

tradeoff exists between the strength of the constraint used to solve (4.135) and the 

resulting modification of the eye pattern. 

By comparing Fig. 4-42 with Fig. 4-45 and Fig. 4-41 with Fig. 4-43 we observe 

the noise enhancement effect as the lower number of errors with the FFS receiver for 

these two channels. 
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Figure 4-40: Decoding using the IFS Doppler line and recursive channel tracker. The 

tap locations are found by thresholding the cross-ambiguity function in the upper 
left panel. The initial convergence of the TU-RLS from training data is shown in 
the first 256 symbols in the upper right panel. 
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Figure 4-41: Decoding using the IFS Doppler lines and the block channel estimator. 
There are two rays with different frequencies. 
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Ambiguity, 3dB contours Doppler line coefficients 
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Figure 4-42: Decoding using the IFS Doppler lines and the block channel estimator. 
There are four rays with different frequencies. 
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Figure 4-43: Decoding of purely Doppler spread data with an FFS Doppler line. 
There are 2 frequencies in the received data. The channel cross-ambiguity function 
in upper left panel, the FFS coefficients in upper right panel and the decoded symbol 
estimates in the lower left panel. 
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Figure 4-44: Decoding of Doppler spread data with a constrained FFS Doppler line 
where the constraint is to have unity white noise Doppler line gain. The channel has 
two frequencies with almost equal magnitude. 
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Figure 4-45: Decoding of Doppler spread data with an FFS Doppler line. There 
are 4 Doppler shifts in the received signal. The channel cross-ambiguity function in 
upper left panel, the FFS coefficients in upper right panel and the decoded symbol 
estimates in the lower left panel. 
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Ambiguity, 3dB contours Doppler line coefficients 
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Figure 4-46: Decoding of Doppler spread data with a constrained FFS Doppler line 
where the constraint is to have unity white noise Doppler line gain. There are 4 
Doppler shifts in the received signal. The channel cross-ambiguity function in upper 
left panel, the FFS coefficients in upper right panel and the decoded symbol estimates 
in the lower left panel. 
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Continuous Doppler spread 

Some ocean processes that give Doppler spread are better modeled by a dense 

Doppler spectrum rather than a spectrum generated from discrete tones. An ex- 

ample of such a process can be the spreading in frequency of a ray reflected from a 

rough ocean-surface. We model this Doppler spread by passing white noise through 

a lowpass filter in order to generate U(n) in (4.99). In Fig. 4-47 we use a first order 

IIR filter with 3 dB bandwidth of 10 Hz so that U(n) is given by 

U(n)   =   aU(n-l) + v(n) (4.258) 

where v(n) is white Gaussian noise and a is the pole of the filter set to give 10 Hz 

bandwidth. The variance of v(n) is 1 — a2 so that U(n) has unit variance. The 

cross-ambiguity function shows the estimated spread of the channel, and there are 

5 taps in the Doppler line spaced with 2.5 Hz. The time evolution of each tap is a 

time-varying function and the combination of the taps to form the estimate U(n) 

of U(n) is shown together with U{n) in the upper right panel. U(n) is the barely 

visible dotted line on top of the solid line showing U[n). The decoding is shown in 

the lower left panel of Fig. 4-47. The variance of the difference between U{n) and 

U(n) is the total channel tracker error cr\e{L) in (4.150) and its relationship to A and 

L is shown in Section 4.3.8. 

The example in Fig. 4-47 is one trial of the communication over a Doppler spread 

channel with bandwidth 10 Hz. This is the reason for the observed peaks in the cross- 

ambiguity function of Fig. 4-47. By running the receiver many times with the same 

Doppler spread we compute empirically the probability of decoding error, and the 

result is shown in Fig. 4-49. This shows receiver performance vs Doppler spread 

when the delay spread is zero and the SNR is 12 dB. 

The result of the channel in Fig. 4-48 with the continuous Doppler spread of 

(4.258) using the FFS Doppler line of (4.131) shows unsuccessful decoding for the 
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Ambiguity, 3dB contours Doppler modulation vs time 
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Figure 4-47: Decoding using the IFS Doppler line and recursive channel tracker. The 
Doppler spread is generated from band limited white noise. 

following reasons: The Doppler spectrum is nearly flat over its bandwidth, so that 

there are many taps in the channel response that have nearly equal magnitude. The 

FFS receiver needs very many taps in order to compensate this channel; we explain 

this in the discussion of Fig. 4-43. 

Summary The receiver in Section 4.3.4 is used to decode data received over time- 

variant rays with different Doppler shifts arriving at the same time in Fig. 4-40. 

We compare the IFS and FFS Doppler line based receivers in Fig. 4-41-4-45 which 
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Figure 4-48: Decoding using the FFS Doppler lines and the block channel estimator. 
The channel response contains a continuous Doppler spread with nearly flat spectrum 
over its bandwidth. 

demonstrates the noise enhancement sometimes present in the IFS based receiver. 

A continuously Doppler spread signal is decoded in Fig. 4-47 where the IFS based 

receiver updated with TU-RLS is used. The characterization of this receiver in terms 

of probability of decoding error is shown in Fig. 4-49. The FFS based receiver is not 

useful for this type of Doppler spread and this is shown in Fig. 4-48 and explained 

in the discussion of Fig. 4-43. 
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Figure 4-49: Probability of decoding error vs Doppler spread when there is no delay 
spread and the SNR is 12 dB. 

261 



4.4.3    Real data 

Some of the data from the Gould Island experiment is decoded with the receiver 

based on the TU-RLS derived in this work. A map of the experiment site is shown 

in Fig. 4-50.      The water depth on the experiment site is not exceeding 20 m, so 

Narraganset Bay 

71-30W 71'a4'W 71"18'W 

41 "36^ 

41' 30'N 

7V30W 71'24'W 71'18"W 

41'36'N 

41" 30'N 

Figure 4-50: Map over the site of the Gould Island experiment. The island intersected 
by the lower border of the rectangle is Gould Island where the receiver is mounted. 

that we have a shallow water scenario with a medium range communication channel 

for all of the transmissions shown in this section. Refer to Section 3.2 for more 

information about the experiment. The DFE analyzed in Section 4.2 is also used 

to decode data from this experiment, and Fig. 4-51 shows estimated symbols for 
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both receivers on four data transmissions with bit rates varying in the range 1.2-5 

kbit/sec. The horizontal distance is 1-2 km, the number of training symbols for the 

TU-RLS receiver is 100, the total number of decoded symbols is 1024 and the SNR 

is 10-20 dB. The underwater communication channel for these transmissions is not 

severely spread in either Doppler or delay, so the result merely demonstrates the 

ability to decode data acquired from the ocean. 
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Figure 4-51: Eye pattern from the decoding of some data transmissions in the ocean. 
The left column shows results obtained with the DFE, and the right column shows 
results when using the new receiver. 

During the same experiment also some purely Doppler spread data were acquired, 
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and Fig. 4-52 shows the decoding of one typical transmission. The Doppler spread 

of approximately 2 Hz is significant considered the relatively low symbol rate of 

600 symb/sec. As described in Section 3.2.4 the transmitter was suspended from 

a drifting vessel, and the wave height was approximately 30 cm so the observed 

Doppler spread is believed to stem from transmitter motion. 

The DFE with a PLL as described in Section 4.2 has been used extensively in an 

effort to decode these data. The user chooses the configuration of this receiver, and 

the parameters that have been varied are the forgetting factor A in (4.22), the number 

of taps in the feedforward and feedback filter described in Section 4.2.4 and the PLL 

loop filter parameters exemplified in (4.82). Efforts to vary these parameters over 

reasonable spans have not resulted in successful decoding of real data with cross- 

ambiguity function as shown in Fig. 3-24. It is believed that part of the reason for 

this is that the tracking bandwidth as given by A and the PLL loop filter can not be 

made wide enough for the receiver to track. 

The IFS based receiver (4.120) with the recursive channel tracker (4.109) is used 

in Fig. 4-52. We use 5 taps with 0.5 Hz spacing in the receiver, and the SNR 

is approximately 12 dB in this transmission. We use 512 samples in the training 

sequence, and 64 of these are used to achieve initial convergence of the TU-RLS. We 

show two more transmissions in Fig. 4-53 and Fig. 4-54. The range and the Doppler 

spread is different, as is seen in the figures, and the reception of the transmission 

in Fig. 4-54 was interrupted so that it contains half of the data packet only. In 

Fig. 4-53 the transmitter vessel is anchored whereas in the other two transmissions 

it is drifting, and this is observed in the mean Doppler shift of the figures. During 

the the transmissions of which Fig. 4-54 is one, a high sensitivity of the received 

signal level to transmitter depth was observed. A change of the transmitter depth 

of only 1-2 m produced 10 dB difference in received signal energy. This indicates 

that a duct was present, and the available sound speed measurements supports this 

suggestion. 
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Figure 4-52: Decoding and channel tracking of purely Doppler spread data from the 
Gould Island experiment. The mean Doppler is from transmitter vessel drift. 

We further illustrate the Doppler spread present in these channels by showing a 

series of impulse response estimates in Fig. 4-55. The estimates h(n, m) are computed 

by 

(n+l)N 

h(n,m)   —       ^2    z*(m + k)y(k) 
k=nN + l 

(4.259) 

We see one dominant signal return in accordance with the cross-ambiguity function 

in Fig. 4-53, and the fading rate of about 1.5 Hz in this particular interval of the 
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Figure 4-53: The transmitting vessel is anchored, but it has a roll producing Doppler 
spread. 

data transmission. In Fig. 4-56 we show the time evolution of the largest tap value 

from Fig. 4-55. The marks on this graph are equidistant in time, and the interval 

between adjacent marks is 0.1 sec. By examining Fig. 4-56 we find parts of the 

trajectory where the phase change is 7r/4 between two marks corresponding to an 

instantaneous Doppler frequency of 2.5 Hz. This is in good correspondence with the 

cross-ambiguity function of Fig. 4-53 
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Figure 4-54: The transmitting vessel was drifting, and the received signal level is 
very sensitive to transmitter depth. 

Summary A brief comparison of a DFE and the TU-RLS receiver is shown in 

Fig. 4-51, and this verifies equal performance on data not severely spread in Doppler. 

The data in Fig. 4-52^1-54 have only been decoded with the TU-RLS receiver, and 

this verifies the capability of this receiver on purely Doppler spread data. The 

reason for being unable to decode these data with other receivers is believed to be 

the observed Doppler spread. We present impulse response estimates in Fig. 4-55, 

and by looking closer at the time evolution of these estimates in Fig. 4-56 we find 

instantaneous Doppler frequencies of the same size as shown by the cross-ambiguity 
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Figure 4-55: Snapshots of impulse responses from real data with one dominant signal 
return which is fading. 

function in Fig. 4-53. 
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Figure 4-56: Time evolution of a Doppler spread signal return from the Gould Island 
experiment. 
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Chapter 5 

Conclusion 

In this chapter we give an overview of the work in this thesis in the framework of 

previously reported results, and we also suggest some future directions. The overview 

is contained in Section 5.1, and it naturally leads to Section 5.2 where we point out 

some possible future tasks not covered in this thesis. 

5.1     Summary of thesis 

5.1.1     Background 

The amount of work reported on underwater acoustic communication is huge both 

when it comes to simulation studies and implemented systems. In Chapter 1 we 

give an overview of representative publications without attempting to be exhaustive 

in referencing the literature. The main purpose of this part is to illustrate that 

underwater communication channels are very diverse, and this is reflected in the 

fact that no predominant modulation scheme or receiver structure has emerged as a 

standard. On this background the thesis is very specific since we treat only QPSK 

modulation which constrains the scope of the work to be coherent communication. 

We comment further on this in Section 5.2.4. 
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5.1.2 Theory 

The most important assumption pertaining to the theoretical treatment of under- 

water communication channels is the WSSUS assumption. The channel scattering 

is modeled by random processes and the WSSUS assumption is that each scatter- 

ing process is wide sense stationary (2.4), and the scattering processes from two 

processes are uncorrelated (2.6). This enables us to define the channel scattering 

function (2.7) as a two dimensional power spectral density in delay and Doppler. 

The well known ambiguity function is developed into the cross-ambiguity func- 

tion (2.32), and it is used to estimate the channel scattering function from the 

input and output data to the channel. We emphasize on Doppler spread, and we 

point out that the shape of the cross-ambiguity function can not uniquely tell us 

what physical phenomenon that caused the Doppler spread. We use the narrow- 

band cross—ambiguity function, and we show that the narrowband assumption is 

not always satisfied in the underwater communication channel. 

There is no fundamentally new theory in this thesis, but the combination of some 

pieces from the literature serves to develop the Doppler line which is a concept that 

is not commonly known. A Doppler line is the frequency domain counterpart of a 

delay line which is better known as a filter. We show that these devices are useful 

for compensating Doppler spread channels. 

5.1.3 Channel modeling 

The delay and Doppler spreads observed in the channel characterization from real 

data presented in Chapter 3 is linked to ocean physical processes by means of a 

simulator. It is based on a ray representation of the acoustic field and a time-variant 

FIR filter (3.3). The input to the simulator are various parameters controlling the ray 

propagation, such as sound speed profile, surface roughness, etc, and the output is the 

signal at the receiver. Thus we achieve a controlled experiment where we know which 
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factors that contribute to the channel structure. This is used to motivate physical 

explanations for the delay and Doppler spread observed from real data in Fig. 3-14- 

3-24. We also illustrate the wide diversity of underwater communication channels in 

Fig. 3-7-3-11, and this motivates the self imposed restriction in this thesis to only 

consider the subclass of underwater communication channels that have significant 

Doppler spread. 

5.1.4    Receiver derivation and analysis 

We present the ML receiver for doubly spread channels in the case of known channel 

response (4.4). This is found to be very complex in a representative set of underwater 

communication channels, and we point out that the complexity increases further in 

the realistic case of unknown channel response. This motivates receivers derived 

from the suboptimum criterion of MMSE, and we first consider the DFE in Fig. 4-4 

which is a common receiver both in underwater communication channels and other 

communication channels. We carry out performance analysis in the special case of 

a purely Doppler spread signal in Section 4.2, and it is found that the adaptive 

DFE is not capable of compensating realistically Doppler spread channels (4.41). 

Moreover, we point out in Section 4.2.6 unexpected and unwanted system behavior 

in the composite receiver containing the DFE and a PLL in Fig. 4-13, and we show 

this system behavior on real data in Fig. 4-19. This motivates the new receiver that 

is based on the TU-RLS algorithm (4.92) and (4.93). The structure of this receiver 

is based on the findings that 1) different rays may have different Doppler shifts and 

2) the main limitation of a DFE operating in Doppler spread is the feedback of 

past symbols for the decoding. Thus the adaptive algorithm called TU-RLS is used 

in the channel tracking, allowing 1), and a FIR filter (4.138) is used for decoding, 

eliminating the limitation 2). 

The Doppler spread under which the basic receiver (4.92) and (4.93) can operate 

is given by the exponential weighting A, and this receiver is developed further to ac- 

273 



commodate larger Doppler spreads. The Doppler lines introduced in Section 2.4 are 

used to achieve communication over purely Doppler spread channels, and several ex- 

tended receivers (4.107), (4.109), (4.120) and (4.126) based on various combinations 

of FFS Doppler lines, IFS Doppler lines, block processing and recursive processing 

are suggested. 

We derive a procedure for initializing this receiver (4.189) with the right number 

of taps and proper delays and Doppler shifts by means of the cross-ambiguity func- 

tion. We suggest the update of these parameters to be carried out periodically by a 

constrained search over the updated cross-ambiguity function in the same manner 

as for the tap initialization. 

We characterize the receiver performance in presence of noise, delay spread and 

Doppler spread by computing the probability of decoding error (4.232), and we also 

show that the receiver stability is determined by the conditioning of the matrix that 

is inverted and recursively updated by the TU-RLS. The structure of this matrix is 

governed by the delay and Doppler spread of the channel. We show in the case of 

purely Doppler spread channels that the frequency tap spacing limits the receiver 

stability Fig. 4-33, and in the case of purely delay spread channels the receiver 

stability is given by (4.229) and (4.230). 

The various receivers are verified on simulated Doppler spread data, and we 

demonstrate the ability to track the channel and decode data both in the presence 

of Doppler spread containing discrete frequencies in Fig. 4-36 and continuous bands 

in Fig. 4-47. The decoding of real data is shown in Fig. 4-51 but these data are not 

severely Doppler spread, and thus the example merely shows successful decoding in 

a scenario where both the DFE and the TU-RLS receiver works. Another series of 

real data is shown in Fig. 4-52-4-54, and these data are severely Doppler spread. The 

cross-ambiguity function from these data show a single signal return with Doppler 

spread in the range 2-5 Hz, and this is a significant frequency dispersion. We show, 

by using the IFS Doppler line and the TU-RLS to update its coefficients, successful 
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decoding of these data. The Doppler spread in these data is believed to stem from 

transmitter motion since the transmitter is suspended from a surface vessel in sea 

state 1. This is a very common scenario in underwater acoustic communication, and 

we demonstrate a significant advance by being able to communicate in the presence 

of this Doppler spread. 

5.2     Future directions 

In the course of the work there were numerous issues encountered that have not been 

addressed or only briefly treated. We now comment on the most obvious ones, and 

the purpose is to show potentially useful ways for continuing this work. 

5.2.1     DFE adapted with TU-RLS 

The DFE is extensively analyzed in the literature, see [82] and references therein, 

and it has both shortcomings and advantages compared to the FIR decoder used in 

Fig. 4-20. One important advantage is the ability to work well over delay spread 

channels with returns of almost equal magnitudes. This is a shortcoming of the 

FIR decoder in Fig. 4-20 as demonstrated by Fig. 4-37. There is nothing principally 

preventing the TU-RLS algorithm from being used with a DFE. We note that a 

potential problem with this approach is the error propagation of the DFE which is 

much more dramatic than the error propagation of the TU-RLS receiver described 

in Section 4.3.8. Also the DFE is a non-linear device making analysis and quality 

assessments more difficult. Nevertheless, a DFE adapted with TU-RLS has the 

potential to outperform the receiver in this thesis under specific circumstances. 
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5.2.2 Error coding 

The Doppler spread of a channel is observed in the time domain as fading i.e., in a 

time interval with a channel fade the signal is severely attenuated. One common way 

of combating this signal loss is by means of coding. The price paid in terms if lower 

bit rate because of code redundancy is sometimes small compared to the increased 

reliability of the communication system. Coding in underwater communication chan- 

nels is reported in [19], and based on the findings here and in this thesis we suggest 

that coding is a way of making communication over Doppler spread channels more 

reliable that should be utilized better in underwater communication channels. 

5.2.3 Simulation 

The simulation of the channel response as discussed in Chapter 3 is essential in 

order to understand the physical ocean processes that contribute to Doppler spread 

and the relative importance among these processes. We find that relative platform 

motion and ocean-surface motion give significant contributions to Doppler spread in 

the frequency range 5-50 kHz. To this end several improvements is suggested both 

to predict Doppler spread from the above mentioned sources and also incorporate 

new sources of Doppler spread. 

The model for ocean-surface Doppler spread is based on the Pierson-Moskowitz 

surface wave spectrum and the formulation in [14]. This approach uses the method 

of tangent planes to calculate the reflected field, and this approximation may be 

inaccurate. Also the Eckart formulation for the reflection coefficient could be replaced 

with more accurate albeit complex computation. A potentially useful starting point 

for replacing the existing ocean-surface formulation is the work by Dowling and 

Jackson [27]. 

There are many other known sources of time variance in the ocean, and these 

also produce Doppler spread.    In particular the effect of turbulence and internal 
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waves on the Doppler spread is not addressed in this thesis. In order to incorporate 

such effects the current ray formulation must be replaced with a range dependent 

representation. 

5.2.4 Modulation 

The scope of this thesis is very limited when it comes to modulation, and part of the 

reason for this is that the available database of ocean acquired data mostly is QPSK. 

This is however not a reason to omit other modulation schemes, and a particularly 

interesting modulation to consider in Doppler spread channels is the multi tone 

modulation; see [9] and references therein. This gives flexibility in the tradeoff 

between the frequency duration (bandwidth) and time duration of a symbol that 

is advantageous in Doppler spread channels. Also many of the regular modulation 

schemes such as FSK could be revised in order to quantify their robustness compared 

to QPSK on Doppler spread channels. 

5.2.5 Combined spatial and temporal processing 

The approach to communication used herein assumes that only one sensor is available 

at the receiver, or that if a number of sensors are available the optimal way of 

combining them is not a function of sensor location. E.g., the DFE in Fig. 4-17 adds 

the signals from all the feedforward sections. The impulse response of underwater 

communication channels usually contains several rays arriving at the receiver from 

different directions, and it is the relative delay and Doppler between all the rays that 

give the total spread of the channel. Thus a very straightforward way of decreasing 

both delay and Doppler spread is to use a spatial filter in the receiver to attenuate 

rays from specified directions and thereby simplifying the impulse response. This 

shifts the processing from temporal to spatial, and there is nothing that suggests 

the optimal receiver to only use temporal and no spatial processing. Thus a receiver 
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that combines spatial processing, known as beamforming, and temporal tracking of 

the impulse response is a good candidate to improve our receiver. 

5.2.6     Channel representation 

The WSSUS assumption that we present in Chapter 2 is at the heart of our channel 

model, and it has wide implications for the design of the receivers in Chapter 4. 

The assumption is very common, and very little work on LTV systems has been 

encountered where this assumption is not adopted. There are situations in underwa- 

ter communication channels where the assumption is broken. In general, a process 

is very unlikely to be WSS if the time interval over which the process is observed 

gets large. It can be argued that the US assumption in the extreme of very closely 

spaced scatterers is not true. This is treated in a paper by Bello [7], and the concept 

of quasi WSSUS (QWSSUS), where the channel "behaves" like a WSSUS, is intro- 

duced. Useful knowledge could be obtained by investigating the borders of validity 

of the QWSSUS assumption in underwater communication channels, and propose a 

model for non-QWSSUS channels. 
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Appendix A 

Stability of the stationary region 

The derivative needed to find the system matrix A is not uniquely defined around 

the stationary region x*, and we have 

A = äx-(x*} (A.l) 

The system in equilibrium is shown in fig. A-l.    We want to find the evolution of a 

fixed point 

Figure A-l:  The filter tap and the PLL phase estimate is in equilibrium when the 

filter tao a is on the unit circle. 

after a small perturbation in arbitrary direction, and for this purpose we use 

8a = reJ    . 
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Taking the derivative with respect to r, leaving ^ as a parameter, gives us A as 

function of the perturbation direction. Since the derivative is not uniquely defined 

the system matrix is a function of ip. 

A.l    Angle PD 

In the case that the difference equation is given by (4.67) we have that 

8a   =   reJ* 

x   = 

f (x, <f>) 

A 

<f> 

Are'* + (1 - A)e-W"*) 

k - tan"1   y-ffif 
^n COs((t>-4> + tj>)-T 

Of,     , 
dx       3x 

and carrying out the differentiation yields 

(A.3) 

A   = 
\e>*       j(l - A)e-J'<*~*) 

1     dy 1     dy 
1+y2 dr 1+3/2 d<t> 

(A.4) 

where 

/i(x) 

/2(x) 

y 

Are'* + (1 - A)e_J'(*n-*n) 

I - tan-1 r/(r, <j)) 

cos((f> — 6 + t/>) — r 
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dy_ 

dr 

dy_ 

d4> 

sin{(f> — <j> + ip) 

(cos(<f> — <f> + VO — r)2 

cos((j) — <f> 4- ip) + sin(<?!> — <f> + iß) 

cos2(<f) — <f> + tp) 
(A.5) 

Inserting r — 0, corresponding to A in the stationary region, we write the system 

matrix as 

A   = 
\e>* _ \\r-H*-*) i(l " A)c- 

5&_ 
^  .  sin(K) 2 COS

2
(K) 

"" COS(K) 

cos(/c)-t-sin(w) 
.  ,  sin(K)2 COS2(/c) 

~*~ COS(K) 

(A.6) 

where /c = <f> — 4> — tp. We see that there are specific directions where [A]2\ and 

[AJ22 grow without bound. That corresponds to an unstable system, and thus the 

stationary region for the angle PD is unstable. 

A.2     Imaginary part PD 

Now the difference equation is given by (4.69), and defining the perturbation as in 

fig. A-l and (A.2) we have 

We get 

f(x,# = 
Are''* + (1 - A)e"W-*) 

<j) — r sin(<^> — <j) + ip) 

j\e>* j(l - A)e-J'(*-*) 

sin(</> — <f> -+- tp) 1 

(A.7) 

(A.8) 
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For the specific direction ijj = <f> — <f> we have that 

A = 
0 1 

(A.9) 

and in this case the largest eigenvalue is 1. There exists a direction for the per- 

turbation such that the system does not return to equilibrium, so in this case it 

is marginally stable. It is important to note that this analysis is local around the 

stationary region. We have a nonlinear system, so the conclusions here will not give 

exhaustive information about the system dynamics. 
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Appendix B 

Channel estimation error 

covanance 

In this appendix we motivate the choice of gain in (4.217) and detail the steps in 

going from (4.216) to (4.221). We first motivate the use of P(n) in (4.217). The 

TU-RLS minimizes 

j   =    J2\n-m\y(m)-cZ(m)Am-nh(n)\2 (B.l) 
m=0 

and to find the optimum h(n) we perform dJ/dh = 0 which yields 

h(n)   =   [f:\n-m(AHr-nc0(m)c^(m)Am-T1j:Xn-m(AHr-nc0(m)y(m) 
771=0 T7l=0 

=   Äc
_1(n)/)(n) . (B.2) 

We see from (B.2) that 

Rc(n)   =   XA-H{nj2 An-1-m(A//)m-(n-1)co(m)c0^(m)A"l-("-1)}A-1 +c0(n)c0
v(n) 

771=0 

=    A^-//i?c(n-l)J4-1+c0(n)c0
7(n) (B.3) 
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n-\ 

p{n)   =   A^-i/^A"-1-m(AH)m-(n-1)Co(m)j/(m) + Co(n)j/(n) 

=   \A-Hp{n-l) + c0(n)y{n). (B.4) 

The following equation is a slight generalization of the derivation in [64], p.306 and 

it follows from (B.2)-(B.4): 

h(n)   = I£1(n)[\A-Hp(n-l) + Co(n)y(n)] 

= i?c-1(n)[AA-ffi?c(n - l)h(n - 1) + c0(n)t/(n)] 

= R^WiiRcin) - c0(n)c£(n)}Ah(n - 1) + c0(n)y{n)} 

= AhCn-^ + Ä^HcoHtyH-c^nJAhCn-l)] (B.5) 

where we have used (B.4) to get the first expression, (B.2) to get the second expres- 

sion and (B.3) to get the third expression. We recognize the last expression as the 

update step of the TU-RLS as given in (4.92). Thus we identify the gain vector as 

k(n)   =   R^i^coin). (B.6) 

We write 

^W   =   T^TJ2^-^n'm{A"r-ncQ{m)^(m)Am-n 

771 =U 

=   IxPin)}-1 (B.7) 

where the convenience of the scaling in the second expression is shown below. We 

get (4.217) by combining (B.6) and (B.7). 

In the case of one Doppler coefficient for each delay (B.7) yields 

Rc(n)   =    ]T \n-m(AH)m-nc0{m)cZ(m)Am-n 

m=0 
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Zn
m=0W«2o)m-n\z(n - Zo)|s 

Zn
m=oW<xoaL-i)m-nz*(n-lo)x 

z(n - lL_^)e-iML-i)^(m-n) 

E^=o(A/«o«L-i)m-n^(n-/0)x 

Z*{tl - /L_1)ei2-(L-l)AKm-n) 

l-AM-i 

XP(n)   =   Äc(n)-X 

1 - A/a^ 

= e-1 

(1 - A)^-1/ 

1 " V"Li 

(B.8) 

where we have used that z(n) is a white sequence and approximated the expectation 

with the sample mean. For realistic Doppler spread and symbol rates a, is close to 

one, e.g., if B = 5 Hz and fs = 2500 symb/sec (4.110) yields a2 = 0.9875. 

We now turn to the derivation of (4.221). By inserting (4.217) in (4.216) we get 

he(n)    = h(n) — h(n) 

= [/ - XP(n)c0(n)c^(n)][Ahe(n - 1) + v(n)] - XP(n)c0(n)w(n) 

+ XP(n)co(n)cf (n)A[h(n - 1) - he(n - 1)] - XP(n)ce(n)c^(n)ylhe(n - 1) 

- XP(n)ce(n)<f (n)v(n) - xP(n)ce(n)w(n) . (B.9) 

Th e error covanance is 

n(n) = £[he(n)hf (n)] (B.10) 
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In the case of no decision errors he(n) is given by the two first terms of (B.9) and in 

this case it is proven [65] for A = I that U(n) given by 

fi(n)   =   [I-xP(n)Q0]Afl(n-l)AH[I-XP(n)Qo}H 

+   x2P(n)QoPH(n)<r2
w + R (B.ll) 

is close to n(n). Q0 is given by (4.222). U(n) can be found by squaring (B.9) and 

taking expectation, and in order to arrive at (B.ll) it is assumed [65] that 

E[P(n)c0(n)c»(n)he(n)h?(n)c0(n)c»(n)PH(n)]   = 

P(n)E[co(n)^(n))E[he(n)h^(n))E[c0(n)c^(n)}PH(n) (B.12) 

and this assumption will be used herein. We now for brevity omit the time index 

n, and we note that c0,ce,v,.P,w are taken at time n and h,he are taken at time 

n - 1. By squaring and taking expectation of (B.9) we get (B.14). The equation 

(B.15) follow from (B.ll), and it is the result of the squared expectation of the 

two first terms in (B.9). The remaining part of (B.14) amounts to carrying out 

the multiplication of the remaining terms. The equations (B.16)-(B.21) follow by 

assuming h,he,ce,c0, v,to mutually uncorrelated. By means of (4.211) the element 

(k, /) of the matrix inside the first expectation in (B.17) is 

L-1L-1 

£2 £ £ z(n ~ k)z*(n ~ i)[AhehfAH]jiZe(n - j)z*(n - I) . (B.13) 
,=o j=o 

E{([I- XPcoc£][Ahe + v] - xPcow + x^cocf A[h - he] - XPcec%Ahe 

XPceC^V - XP^eW)  X 

([v" + h?AH][I - XCoc»PH] - XC%PH
W* + X[h" - h?)AHcecgPH 

xh?AHc0c»PH - Xv"c0cf PH - Xcf PHW)} 
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= [/ - xPQo]AilAH[l - xPQo]H + x2PQoPH*l + R 

+ E[Ahe(X[hH - hf ] A*cec?P* - xh?A»c0c?PH - XvHc0c?P" - Xc?PHw*) 

- XPE[c0c»AK(x[hH - hf ]A*cecf P* - xhf A*c0cf P* - XvHc0c?P» 

- Xc»PHw*)} 

+ E[(I - XPc0c»)v(X[hH - h?]AHcec»PH - Xh?AHc0c?PH - XvHc0c»PH 

- Xc?PHw*)} 

- XPE[c0w(X[hH - h?]AHcec»PH - Xhf A"c0cf P* - XvHc0c?P» 

- Xc?PHw*)] 

+ XPE{cQc?A[h - he](X[h" - hf }AHcec%PH - Xh?AHc0c?PH - XvHc0c»PH 

- Xc?PHw*)] 

- XPE{cec»(Ahe + v)(X[h" - hf ]A*cecf PH - Xhf A*c0cf PH - XvHc0c?PH 

~ XC?PHw*)\ 

- XPE[cew(x[hH - hf )AHcec»P» - Xhf A*c0cf P* - xv^cocf P» 

- Xc»PHw*)] (B.14) 

= [I-XPQO)AUA
H

[I-XPQO]
H

 + X
2
PQOP

H
(TI + R (B.15) 

+ 0 (B.16) 

- x
2PE[c0c%Aheh?AHcec»]PH + x2PE[c0c»Ahehf AHc0c?]PH (B.17) 

+ x2PE{c0c^vHAHc0c^]PH (B.18) 

- 0 (B.19) 

+ x
2PE[c0c?A(hhH + hehf )A"cecf ]AHPH - X

2P x 

E[c0c?Aheh?AHc0c?]PH (B.20) 

+ X
2PE[cec% Ahehf AHcecf }AHPH + X

2PE[cec% Ahehf A*c0cf ]PH        (B.21) 

+ x2^£[cecfvv"c0cf]P" (B.22) 

+ x2PE[cec?ww*]PH (B.23) 
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By taking expectation of (B.13), and remembering that z(n) and ze(n) are white 

and mutually uncorrelated, all terms where k = I = iis not satisfied are zero. From 

(4.202) and the assumption that all values of z(n) are equally likely we have for the 

case k = I — i that 

E[z(n)z(n)z*{n))   =   \(j2(~j) + (-1)3 + I3 + (-j)2j) = 0 .        (B.24) 

Thus the first term of (B.17) is zero. The element (&,/) °f tne matrix inside the 

second expectation of (B.17) is the conjugate of (B.13) therefore this term is also 

zero. The only difference between (B.18) and the second term of (B.17) is the middle 

matrix vvH, but since this is uncorrelated with ce and c0 this expectation is also 

zero by means of (B.13). Likewise the element (k,l) of the matrix inside the first 

expectation of (B.20) is 

£2 E E z(n ~ kK(n - *)KhhH + hehf )AH]jize(n - j)z*(n - I) .      (B.25) 
t=o j=o 

Taking expectation of (B.25) we get 

£2 E E Elz(n - %> - m[[M^H + hehf )AH]3i)E[ze{n - j)z;(n - i)] 
,'=0 j=0 

=   ^ E E Kk ~ l)6(j - i)E[[A(hhH + hehf)AH]3i]E[\ze\>) 
i-0 j=0 

=   £2
7Pe6(k-l)J2E[[A(hhH + heh?)AH]ti} 

«=o 
=   P-yPcSik-tyriElAihh11 + heh?)AH]) (B.26) 

where we have used (4.207) and 7 = 8/3. The element (k, I) of the matrix inside the 

second expectation of (B.20) is 

£2 E E *(" - *)<(» - ^)lAheh?AH}J^z;(n - l)z(n - j) . (B.27) 
j'=0 j=o 
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Taking expectation yields zero for all terms where k = j and i = I is not satisfied. 

The rest of the terms in (B.27) are of the form 

£2E[z2(n - k)]E[z;2(n - l)]E[[Aheh?AH]j{] (B.28) 

and since 

E[z\n-k)}   =   !((-,-)'+ (-l)* + l*+J«) = 0 (B.29) 

they are also zero. The first term of (B.21) is the hermitian transpose of the second 

term of (B.20) and thus it is zero. The second term of (B.21) is of similar form as 

the first term of (B.20) and it is given by (B.26). The matrix inside the expectation 

of (B.22) is the same as the first term of (B.20) when we replace A(hhH + hehf)AH 

with w". Thus (B.26) yields 

£2jPJ(l - k)tr(vvH) (B.30) 

for element (/, k) of this term. Thus we have from (B.15)-(B.23),(B.26) that 

E[(„)    - [/ - xP(n)Q0]AU(n - l)AH[I - XP(n)Qo]H 

+ x2P(n)Q0P
H(n)a2

w + R 

+ x2P(n)£2fPe(tr(E[Ah(n - l)hH(n - l)AH]) + 2tr(AIi(n - l)AH))PH(n) 

+ x2P(n)£2lPetr(R)PH(n) + X
2P(n)Qea

2
wP

H(n) . (B.31) 

The channel is modeled as a normalized AR(1) process so that 

^[hh"]    =   diag([ul---u\_x]) (B.32) 
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and using (B.32) in (B.31) an rearranging we get 

Ö(„)   = [I-xP(n)Qo]Ail(n-l)AH[I-XP(n)Qo)H 

+ X2P(n)QoPH(n)a2
w + R 

+ x
2P{^2lPe{L + 2tr(AIl(n - l)AH))PH(n) 

+ x2P(n)Qe*lPH(n). (B.33) 
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Appendix C 

Approximations in computing the 

hypothesis probability 

The purpose of this appendix is to motivate the approximation of (4.167) by (4.168), 

and the omission of the real term in (4.174). 

Prerequisites    The Gaussian product-moment theorem: Assume X{ jointly Gaus- 

sian, zero-mean. Then 

E[xix2x3x4]   -   E[xlx2]E[x3x4] + E[x1x3]E[x2X4} + E[x1x4]E[x2x3]    (C.l) 

We use an AR(1) model for £//,fc(m) (4.86) driven with Gaussian white noise, therefore 

Uiyk{fn) is a Gaussian random process: 

U,,k(m)   ~   N(Q,ulk). (C.2) 

The WSSUS assumption yields 

*AN^N   =   ulMS(h - l2)S(h - k2) . (C.3) 
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For notational purposes define 

a{l,o,m)   =   z(m)z*(m-l)UttO(m)e-^0Al/m . (C.4) 

From (C.3) and (C.4) we have that 

a(l,o,m)   ~ JV(0,uJo) 

E[a(lu oi,mi)o*(/2, o2, m2)]    = jz(mi)z*(mi - /i)2(m2)z*(m2 - /i) 

x <,0ie~i2,r0lAl/(mi-m2^(/i - h) 

x «(01-02). (C.5) 

Approximation of 61    We want to justify the approximation of (4.167) by (4.168), 

here restated as (C.6) and (C.7). 

M-\ 

(;,o) m=0 

M-l 

= £2|£ £«(/,«,m)i2 (c-6) 
(/,o) m=0 

M-l 

(l,o)    m=0 

M-l 

= £2£l £«(',<>,™)l2 (CJ) 
(;,o)    m=0 

where we use 6[ in (C.7) to distinguish the approximation. 

Claim: The first and second order moment of Q\ and 6[ from (C.6) and (C.7) are 

equal. 

Intuitive argument:  The impulsive second order statistics of (C.5) enable us to 

move Y^,(i,o) outside the squaring operation in (C.6) when taking expectation. 
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Formal argument: Compute the moments. Using (C.5) in (C.6) yields 

M-l M-l 

E[öi]   =   £2 E    E   E   E E[a(h,ol,m1)a*(l2,o2,m2)] 
(<1,01) (h ,02 ) TO1 =° m2 -0 

M-l 

= ? E «U E *M*>» - 0e-i27roA"m|2 

(f,o) m=0 

«   (M£)2<o + ^    2    "Jo- (C8) 
(f,o)?i(0,0) 

Using (C.5) in (C.7) yields 

M-l M-l 

E[e[]   =   £2£E   E EK^.mOa^^.m^] 
(/,o) 7711 =0 77l2=0 

M-l 

=   ^2 E u2,ol E *(m)s*(™ - l)e-j2voAl/m\2 . (C.9) 
(f,o)      '     m=0 

Using (C.5) and (C.l) in the squared version of (C.6) yields 

M-l 

E\e\] = £4£[|EE«('^™)I4] 
(1,6) m=0 

M-l M-l M-l M-l 

=   ^(E    Y   E    E    Y   E   E    E «(/i,o1,m1)a*(/2,o2,m2) 
Oi.oi) mi=0 (/2,o2) m2=0 (;3,o3) m3=0 ('4,o4) m4=0 

x    a(l3,o3,m3)a*(U, o4,m4)] 
M-l M-l M-l M-l 

= £4EEEEEEE E(£K'i^™iK(^,m2)] 
(/l ,01) mi =0 (;2 ,o2) 

m2 =0 (i3,03) m3 =0 ('4 ,o4) "U =0 

x    E[a(l3,o3,m3)a*(l4,o4,m4)] 

+   E[a(lu ox, mi)a(/3, o3, m3)]£[a*(/2, o2, m2)a*(/4, o4, m4)] 

+    E[a(/i, 01, mi)a*(/4, o4, m4)]E[a*(l2, o2, m2)a(l3, o3, m3)}) 
M-l M-l 

=   2£4  53    E   E    E £[a(/i,oi,mi)a*(/2,02,m2)] 
Cl.oi) mi=0 (/2,o2) m2=0 

M-l M-l 
x     E    E    E    E E[a(l3,o3,m3)a*(l4,o4,m4)] 

('3,03) m3 =0 (/4 ,o4) m4 =0 
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M-l M-l .       A   / ,  „ 

(Z,o) mi=0 m2=0 

=   2£[01]2 » 2[(M£uoßy + 2M3S4 E «J. + M254(E u2
0)2] . (CIO) 

Using (C.5) and (C.l) in the squared version of (C.7) yields 

M-l M-l 
E[tf*\   =   £4

E[Y: I E «('i,°i»"»0l2 E I E «a2,o2,m2)|
2] 

(d,oi)    m,=0 (i2,o2)    "i2=0 
M-l  M-l 

=   £4  E    E £[E   E «Ci)oi.'niK('i1oi,'n2) 
(/l,oi)('2,02)        m1=0m2=0 

M-l  M-l 
x     E   E a(l2,02,m3)a*(l2,02,m4)] 

M-l M-l M-l M-l 
=   £4EEEEEE EMh^rmWluOnmt) 

(h ,01) {h ,02) ml =° m2 =° m3 =0 m4 =0 

x    a(/2,02,m3)a*(/2,02,m4)] 
M-l M-l M-l M-l 

= £4 E E E E E E^K^oi^iKft.0!^)] 
('1,01) ()2lo2)mi=0m2=0m3=0iru=0 

x    JE[a(/2,02,m3)a*(/2,o2,m4)] 

+    £[a(/i, 01, mi)a(l2) o2, m3)]-E[a*(/i, 01, m2)a*(/2,02, m4)] 

+    E[a(/i, 01, mi)a*(!2, o2, m4)]E[a*(h, ot, m2)a(/2, o2, m3)]) 
M-l M-l 

= 2f4 E E E ^K^,oi,^iK('i>oi."»2)] 
(il,oi)mi=0ra2=0 

M-l M-l 
x     E   E   E ^K^,o2,m3)a*(/2,02,m4)] 

(l2,o2)
m3=0m4=0 

M-l M-l 

= 2^4(E<oE E «KKK-O^W^-Oe"^"1^)2 

(i,o) "11 =0 7712=0 

M-l 
=    254(5: ujj E *(™K(™ - /)e-^A"m|2)2 

(/.a) 771=0 

=   2E[8'xf. (Cll) 
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By comparing the first and second order moments of 6^ and 0{ they are found to be 

identical. 

Approximation of 62    We now turn to the cross-term in (4.174) 

M-l 

02   =   2£3'2Re[y£ Ul0 £ z(m)z\m - l)e-*™*™ x 
(/,0)       '    m=0 

M-l 

£ z(rn)w*(m)] 
771=0 

M-l M-l 

=   2£3/lRe[£X>(/,o,m)£.<mK(m)]- (C.12) 
(;i0) 771=0 771=0 

The Re operator is expressed by 

2Re[x]   =   x + x* 

4(Re[x])2   =   x2 + 2\x\2 + (x*)2. (C.13) 

We have that 

E[a(luol,m-i)a(l2,o2,m2))   =   E[a*{luo1,rn{)a*(l2,o2,rn2)\ 

E[w(m1)w(m2)]   =   E[w*(mi)w'(m2)] = 0 . (C.14) 

By means of (C.12), (C.13) and (C.14) the first and second moment of 02 are 

E[62]   =   0 
M-l M-l 

E[6l)    =   2£3E[\J2^a(l,o,m)^2z(m)w*(m)\2} 
(l,0) 771=0 771=0 

M-l M-l 

=   2£3£[|£ £ a(l,o,m)\*\E[\ £ z(m)w*(m)\2} 
(l,o) 77i=0 m=0 

=   2M£alE[e1]^2al[(MS)3ul0 + M2£3     £     „Jj .      (C.15) 
C,o)#(0,0) 
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The rough shape of the probability densities of Qx and 02 are given by their first and 

second order moments. The ratio E[0i]/y/E[O$\ is 22 for M = 512. The scenario is 

outlined in Fig. C-l. This roughly means that the random variable 82 must exceed 

22 times its standard deviation to impact the sum 6X + 62 severely. This event has 

very low probability, and thus 62 is neglected. 

P(6) 

Density for 0. 

3fl 

e 
E[62]=0 E[e,]~Mz 

Figure C-l: Sketch of the probability densities of 6X and 62. 
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