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ABSTRACT 

Pulse Propagation in Nonlinear Optical Fibers using 

Phase-Sensitive Amplifiers 

Jose Nathan Kutz 

A mathematical model for pulse propagation in a nonlinear fiber-optic com- 

munications line is presented where linear loss in the fiber is balanced by a chain of 

periodically-spaced, phase-sensitive amplifiers (PSAs). A multiple scale analysis is 

employed to average over the strong, rapidly-varying and periodic perturbations to 

the governing nonlinear Schrödinger equation (NLS). The analysis indicates that the 

averaged evolution is governed by a fourth-order nonlinear diffusion equation which 

evolves on a length scale much greater than that of the typical soliton period. 

In a particular limit, stable steady-state hyperbolic secant solutions of the 

averaged equation are analytically found to exist provided a minimum amount of over- 

amplification is supplied. Further, arbitrary initial conditions within a wide stability 

region exponentially decay onto the steady-state. Outside of this analytic regime, 

extensive numerical simulations indicate that soliton-like steady-states exist and act 

as exponential attractors for a wide region of parameter space. These simulations 

also show that the averaged evolution is quite accurate in modeling the full NLS with 

loss and phase-sensitive gain. 

The bifurcation structure of the fourth-order equation is explored. A sub- 

critical bifurcation from the trivial solution is found to occur for a specific overampli- 

fication value. Further, a limit point, or fold, is also found which connects the stable 

branch of solutions with the unstable branch from the subcritical bifurcation. The bi- 

furcation structure can be further explored in parameter space with the use of AUTO 

which is capable of tracking steady-state solutions for a wide range of parameters. 

For larger amplifier spacings, a small dispersive radiation field is generated 

from the periodic forcing of the loss and gain. The NLS with variably-spaced PSAs is 

then considered in an effort to reduce the radiation field. Numerical results indicate 

that the dispersive field is effectively attenuated depending upon the variability and 

distribution of the amplifiers. 
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Chapter 1 

Introduction 

1.1    Historical Perspective 

The 1960's witnessed the development of a technological advancement which 

proceeded to infiltrate and change an enormous cross section of the engineering and 

physical sciences. This invention continues today to be a central focus of modern day 

research and development. This remarkable technological breakthrough is known as 

the laser. The laser provided for the first time an intense, coherent light source which 

could finally exploit the nonlinear nature of many optical materials. In particular, 

Franken et al. discovered in 1961 the first nonlinear effect in an optical crystal, namely 

second-harmonic generation [1]. This discovery came one year after the first successful 

demonstration of a working laser by Maiman [1]. The doors were now open for a wide 

range of physical phenomena to be investigated with the use of the laser, and many 

fundamental results were achieved and continue to be achieved to the present day. 

Of particular interest to this dissertation is the history and development of 

optical fiber technology [2-4] which was made possible through the use of the laser. 

In 1966, optical fibers were suggested to be a good candidate for supporting optical 

transmission. This fact was a consequence of the guiding characteristics which the 

fiber possessed due to the well known principle of total internal reflection. However, 

propagation distances at the time were severely limited due to the power loss rates 

which were of the order of 103 dB/km. This situation changed drastically in 1970 when 

power loss rates were brought down to 20 dB/km. Further progress in fabrication 

technology proceeded to lower the loss rates even further. Specifically, a power loss 



rate of 0.2 dB/km in 1979 was achieved. This remarkably low loss rate was demon- 

strated to be wavelength dependent and was limited primarily by the fundamental 

process of Rayleigh scattering. The availability of such low-loss fibers revolutionized 

the field of optical fiber communications and placed optical communications at the 

forefront of future thinking in transcontinental and transoceanic communication links. 

Paralleling these landmark developments in optical fiber technology was an 

interesting and fundamental new area in mathematics, namely soliton theory and the 

inverse scattering transform for nonlinear partial differential equations.   The term 

'soliton' was first introduced in 1964 by Kruskal and Zabusky [5].  Their work in- 

volved numerical simulations of the Korteweg-deVries (KdV) equation with periodic 

boundary conditions in order to model the one-dimensional nonlinear oscillations of 

a lattice. They discovered the formation of solitary waves which passed through each 

other without deformations due to the collisions and nonlinear interactions. Conse- 

quently, these solitary waves were called solitons in view of their particle like behavior. 

Two years following the discovery of solitons, Gardner, Greene, Kruskal and Miura [6] 

succeeded in giving a mathematical interpretation to these solitary wave solutions. 

Using inverse scattering techniques, which were originally developed for quantum me- 

chanics, it was found that the KdV equation could be solved exactly for a localized 

initial condition.   In particular, the inverse scattering technique was a method by 

which one used an appropriate localized initial condition as the form of the potential 

for which a wave was to be scattered. One could then determine the scattering data 

and eventually the form of the pulse evolution from the localized initial condition. 

From this analysis, it was found that the soliton solutions corresponded to the bound 

states of the Schrödinger operator. Further, the particle picture of the solitary waves 

was made complete. 

In 1973, Hasegawa and Tappert [7] were the first to suggest and show the- 

oretically that an optical pulse propagating in a dielectric fiber was governed by the 

so-called nonlinear Schrödinger equation (NLS). This equation, which will be dis- 

cussed further in the following chapters, incorporated the nonlinear, cubic response 

of the silica fiber upon the pulse intensity. At the time of its derivation, neither a fiber 

with low enough loss (recall that it was 1979 when the power loss rate dropped to 0.2 



dB/km) or a laser which emitted light at the appropriate wavelength. Therefore, the 

nonlinear Schrödinger equation as a proposed model governing the pulse propagation 

could not be experimentally verified at the time. However, in 1980, when both an 

appropriate laser and low-loss fiber were available, Mollenauer et al. [8] demonstrated 

the first successful propagation of an optical soliton in a fiber. 

Interestingly enough, in 1972, the year prior to Hasegawa's and Tappert's 

derivation of the NLS for optical solitons, Zakharov and Shabat [9] showed that the 

NLS could be solved using the inverse scattering method in a similar manner to 

that of the KdV. Here however, the inverse scattering was described by the complex 

eigenvalues of a 2x2 Dirac-type equation whose potential corresponded to the ini- 

tial localized envelope of the NLS. The inverse scattering transform was made more 

rigorous and general in 1974 by the AKNS scheme developed by Ablowitz, Kaup, 

Newell and Segur [10]. The AKNS scheme gave a general method for which to solve 

a wide variety of exactly integrable nonlinear partial differential equations which in- 

cluded the KdV, NLS and sine-Gordon equations. This provided the basic framework 

and understanding behind modern day soliton theory [11]. In particular, the single 

soliton, two-soliton and N-soliton solutions were well understood at that time. NLS 

perturbation theory was then developed in an attempt to ascertain the effects of dif- 

fering perturbations upon the leading-order soliton behavior [12-15]. It was found 

that the perturbations could have two distinct effects [16], namely perturbations could 

cause shifts in the characteristic soliton parameters such as the amplitude, width and 

frequency and perturbations could generate a background dispersive radiation field. 

Apart from this, the soliton solutions of the NLS were found to be remarkably robust 

to a wide range of perturbations. 

Armed with the analytical understanding of soliton theory and its associ- 

ated pulse dynamics, physically realizable communications systems based upon soliton 

transmission were being developed. In fact, by the end of the 1980's, the bit rate- 

distance product was increased by several orders of magnitude. These experimental 

results, which are largely due to Mollenauer, reaffirmed the importance and potential 

of optical communications systems. Currently, Mollenauer and Nakazawa lead the 

continued experimental effort to achieve higher bit-rate distance products with min- 



imal error over large, transoceanic distances. Moreover, it is apparent at this point 

that nonlinear optical fibers are the future in high-speed, long-distance communica- 

tions systems which is hoped will eventually link the world in some kind of global 

network. 

1.2    Recent Issues 

Although much progress has been made in the development of soliton-based 

communications systems, there are many issues which arise in physical systems which 

must be addressed from both an experimental and theoretical standpoint. Of particu- 

lar interest in this dissertation are some of the theoretical issues which are involved in 

understanding the pulse dynamics through fiber segments which contain periodically- 

spaced amplifiers. 

Specifically, when considering a physically realizable long-distance commu- 

nications system [17,18], it becomes necessary to compensate for the attenuation 

experienced by a propagating pulse due to the Rayleigh scattering mentioned in the 

last section. Typically, a long-distance fiber optic communications link consists of 

segments of fiber with amplifiers placed periodically along the link to balance the loss 

associated with each segment of the fiber [19]. Therefore, the amplitude of the prop- 

agating pulse experiences 0(1) changes in its amplitude as it propagates over long 

distances. It then becomes necessary to understand how these amplitude changes 

modify the effective pulse evolution over long-distances. 

Often in cases of physical interest, the amplifier spacing can be assumed to 

be much smaller than the typical dispersion length of the fiber. This assumption 

implies that the periodic effect of the gain and loss can be thought of as rapid fluctu- 

ations when considered from the viewpoint of the length scale of the soliton period. 

Therefore, the gain-loss forcings of the governing NLS can be averaged over in order 

to derive some effective evolution of the pulse propagation. Recently, Hasegawa and 

Kodama [18] have considered pulse propagation in optical fibers where the loss is bal- 

anced by a chain of periodically spaced erbium-doped amplifiers. Upon performing 

the averaging via a Lie transform method, the effective pulse evolution is shown to be 



governed to leading order by the NLS equation. Therefore, when considering these 

phase-insensitive amplifiers, i.e., the erbium-doped amplifiers, the leading order evo- 

lution remains Hamiltonian in nature. Further, this loss-gain NLS system is robust 

to a wide variety of perturbations. Hasegawa and Kodama refer to the solution of 

the averaged pulse propagation as the guiding-center soliton. These results provide 

further evidence for the existence and stability of soliton solutions in a physically 

realizable communications system. 

Experimentally, the use of periodically spaced phase-insensitive amplifiers 

has indeed been shown to be an effective method for compensating for the attenuation 

experienced in the fiber. However, the erbium-doped fiber amplifiers work based upon 

a population inversion. Therefore, there is a small amount of spontaneous emission 

noise which is incorporated into the propagating pulse through the amplifiers. This 

noise, along with acoustic noise [20], is responsible for the so-called Gordon-Haus 

timing jitter [21], i.e., the random walk of solitons caused by the spontaneous emission 

noise present in the erbium-doped amplifier or by the acoustic noise. This timing 

jitter imposes a fundamental limit upon the bit rate-distance product. And although 

several filtering schemes [22] have been developed to help reduce this effect, it still 

remains a significant restriction in a fiber line which incorporates periodically-spaced 

erbium-doped amplifiers. 

As an alternative, the use of periodically spaced phase-sensitive amplifiers 

(PSAs) has been proposed as a method for compensating for the loss experienced by a 

propagating pulse. Because PSAs are free of spontaneous emission noise [23,24] (they 

are ideal quantum-limited amplifiers with a 0 dB noise figure), they do not contribute 

to the Gordon-Haus jitter of the propagating solitons and therefore lead to a possible 

increase in the maximum allowable bit rate-distance product. In contrast with the 

phase-insensitive amplifiers, PSAs naturally filter in the phase of the propagating 

pulse. Therefore, the PSAs exhibit a prefered direction of amplification which will be 

discussed more fully in the body of this dissertation. 

Just as with its phase-insensitive counterpart, the rapid fluctuations due to 

the loss and phase-sensitive gain can again be averaged over in order to determine the 

effective pulse evolution [25]. This analysis is at the center of the following chapters 



and constitutes the body of this dissertation. The questions which must be addressed 

are those same questions which were addressed for the phase-insensitive amplifiers, 

namely, does the use of periodically spaced phase-sensitive amplifiers support stable 

soliton-like pulse propagation, and how robust are the localized solutions to pertur- 

bations? In the following chapters, the analysis will strongly suggest that a fiber-PSA 

line will be capable of supporting robust soliton-like pulse propagation over distances 

which are much longer than the typical soliton period. 



Chapter 2 

The Phase-Sensitive Amplifier 

2.1    Introduction 

The aim of this chapter is to systematically derive, using an asymptotic 

reduction, the governing set of equations which describe the dynamics of a physi- 

cally realizable phase-sensitive amplifier (PSA). In particular, the PSA considered 

will be that corresponding to a degenerate optical parametric amplifier. An optical 

parametric amplifier is essentially a description of the interaction of three electro- 

magnetic fields in a quadratic x(2) medium [1,26]. In this process, a weak signal field 

at frequency wi is amplified by a much stronger pump field at frequency u3. This 

interaction in the quadratic medium generates a third field, known as the idler, at 

frequency o>2 such that 

From a quantum mechanical viewpoint, this process of three wave interaction can be 

thought of as the annihilation of one photon at u3 creating simultaneously two photons 

at u>i and w2 and vice-versa. This behavior is depicted in Fig. 2.1. Since the pump 

field is considered to be much stronger than either the signal or idler fields, most of 

the interaction will serve to convert pump photons into signal and idler photons. And 

although the reverse is possible, very few idler and signal photons will be converted 

into pump photons due to their weak field strengths. 

Starting from Maxwell's equations, a set of three coupled amplitude equa- 

tions will be derived for the signal, idler and pump fields. In the asymptotic reduction 

carried out to derive the respective amplitude equations, several major assumptions 



f" 

CO, 

C03 
 ! !  

ffl2 

'     

CO, 

CO. 

CO, 

(a) (b) 

Figure 2.1: Photon description of the interaction of three fields at frequencies Wj, u;2 

and «3. In (a) the process of parametric amplification is depicted, i.e., two photons 

are created at ux and u2 with the annihilation of a single photon at u3. In (b) the 

reverse is shown, the two photons at Wi and u2 are simultaneously annihilated to 

create a photon at w3. This is known as sum-frequency generation. 

and simplifications will be made. These include the assumption of high-frequency 

(large-wavenumber) quasi-monochromatic pulses with slowly varying envelopes and 

the paraxial waveguide approximation [1,26]. The high-frequency asymptotics to 

be carried out is reminiscent of a WKB geometrical-optics approach for rapidly- 

oscillating carrier waves. Once the amplitude equations have been derived, they will 

be normalized on the characteristic scalings of a physically realizable system which 

will then determine the leading order behavior associated with this particular phase- 

sensitive amplifier. In general, differing types of PSAs can be considered. However, it 

can be shown that they have the same qualitative leading order behavior. Therefore, 

the degenerate, parametric amplifier will serve as a standard example of a phase- 

sensitive amplifier. 



2.2    Maxwell's Equations 

As with all electromagnetic phenomena, the propagation of an optical field 

in a given medium is governed by Maxwell's equations. These equations are given by 

the following 

VxE   =   ~, (2.2a) 
at 

VxH   =  J/ + ^jp (2.2b) 

VD   =   ph (2.2c) 

V-B   =   0. (2.2d) 

Here the electromagnetic field is denoted by E = E(z,xT,t) where xT = {x,y) is the 

vector transverse to the direction of propagation and the magnetic field is denoted 

by the vector H in a similar way. The D and B fields represent the corresponding 

electric and magnetic flux densities. In the absence of free charges, which is the case 

of interest, the current density and free charge density are both identically zero, i.e., 

3j = 0 and pj = 0. 

The flux densities D and B arise due to the electric and magnetics fields 

which propagate within a given medium. Therefore, they reflect the constitutive 

laws of any given material and are related to the electric and magnetics fields in the 

following way 

D   =   e0E + P = eE (2.3a) 

B   =   //oH + M, (2.3b) 

where e0 and /i0 are the free space permittivity and free space permeability respec- 

tively, and P and M are the induced electric and magnetic polarizations. At optical 

frequencies, which is the case of interest, M = 0. In Eq. (2.3a), the D field can also 

be expressed as eE where e captures any nonlocal, linear and nonlinear response of 

the medium to the applied electric field. 
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In what follows, interest will be given solely to the electric field and the 

induced polarization. The magnetic field, which is related to its electric field counter- 

part through the Maxwell's equations, can be effectively ignored. As a consequence, 

it becomes advantageous to express Maxwell's equations in terms of the E and P 

fields alone. Upon taking the curl of Eq. (2.2a) and making use of Eqs. (2.2b), (2.3a) 

and (2.3b), the full-vector Maxwell's equations for the electric field can be given by 

where c = 1/y/e^ is the speed of light in vacuo and use has been made of the vector 

identity V x V x E = V(V • E) - V2E. Here the polarization vector P(E) depends 

upon the electric field and the constitutive relations for the material in which the field 

is propagating. Therefore, P(E) must be modeled in such a way as to account for 

both the linear and nonlinear responses of the medium to the applied electromagnetic 

field. 

In order to give a realistic description of the constitutive laws associated 

with the material of interest, the polarization field P(E) is modeled as follows 

- = f  dtlX
{1\t - t!)-E(ti) + / f  dhdUx^Kt ~h,t- t2) : E(tOE(t2) 

CO        •'-oo J J-°° 

+ ///  AiÄ2Ä3X(3)(*-*i»*-*2»*-*3)':E(<1)E(*2)E(t3).    (2.5) 

In the above expression, note that x(n) denotes an (n + 1) rank tensor which is 

contracted with the given electric field vectors. The linear response is represented by 

the first term in the expression, whereas the quadratic and cubic responses are given 

by the following two terms respectively. Eq. (2.5) represents a general, nonlinear 

response of the medium to an applied electric field. It is interesting to note that the 

medium response is not instantaneous. Rather, the response is temporally retarded 

due in part to the collective inertia of the electrons as they adjust to the applied 

electric field. Mathematically, this relaxation process is what accounts for the integral 

convolutions, which represent the electric field history, over the appropriate time- 

decaying response kernels %(1),%(2) and x(3)- However, it should be understood that 

the dominant behavior of each kernel corresponds to an impulse response to the 
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applied electric field. Note that the integrals in Eq. (2.5) are evaluated only up to 

time t due to causality constraints imposed on the physical system, i.e the future 

electric field does not contribute to the present medium response. Also, note that the 

response kernels are dependent on the time differences alone. This is a consequence 

of the time invariance of the medium response. In other words, the medium response 

should be identical if the electric field is applied at either time T or time T + T0. 

In order to simplify the governing equations, i.e., Eq. (2.4) and Eq. (2.5), it 

is convenient to assume the electric field to be polarized along one direction in the 

medium of propagation, i.e., assume E = E(z,t)k. This is consistent with the paraxial 

waveguide approximation which is used to neglect the dependence of the electric field 

upon the transverse structure. This simplification modifies the spatial operators of 

Eq. (2.4) in the following manner; the Laplacian operator becomes a function of the 

z scale alone, i.e., V2 = £ + V2
T —► f?. Further, note that V • D = 0 implies 

Ve • E + eV • E = 0. Upon assuming e depends only on the space coordinate through 

its dependence on E, it is found that Ve • E = 0 which in turn implies V • E = 0. 

Therefore the gradient of the dot product (V • E) can be neglected. As a final 

simplification, the polarization given in Eq. (2.5) can be simply rewritten as the sum 

of a linear and nonlinear part. In particular, P = PL + PNL where P^ includes the 

convolution of the electric field over xW and PNL represents the convolutions over the 

nonlinear quadratic and cubic terms. With these simplifications and assumptions in 

mind, Eqs. (2.4) and (2.5) reduce to the following one dimensional wave formulation 

of Maxwell's equations 

d2E    id2.    _,      d2PNL ,9 R. 
-w-*W2^E)=liQ-w- (2'6) 

where 

e * E = E(t) + f  dtlX
{1)(t ~ h)E(h) (2.7) 

J—oo 

and 

pNL r  rt 
— = dhdhx^tt -tut- t2)E(h)E{t2) + 

CQ J J—OO 

JJJ* dtxdt2dhX
(z\t -tut- t2,t - t3)E{tl)E{t2)E{h).     (2.8) 
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Here, it is further assumed that all field frequencies are far from any resonances of 

the nonlinear material, and therefore, Kleinman symmetry holds. This allows the 

quadratic medium response to be expressed in terms of the ^-coefficient associated 

with the x(2) nonlinearity. It is within the framework of this formulation that the 

amplitude equations for the signal, idler and pump fields will be derived. 

Thus far, the only assumptions made on the electric field dynamics are 

that of the paraxial waveguide approximation and a single direction of polarization. 

In order to simplify Eq. (2.6) given the relations in Eqs. (2.7) and (2.8), further 

approximations involving the three wave interaction will be considered. In particular, 

two major assumptions will be made concerning the electric field. The first of these 

assumptions utilizes the fact that the signal, idler and pump fields correspond to the 

frequencies ui, u>2 and u>3 respectively. In particular, assume the electric field to be of 

the form 

E(z,t) = e^zjy^*-"^ + £2(2,ty(*2Z-ü'2<) + e3{z,t)e^z-^ + c.c,       (2.9) 

where the £i,£2 and £3 represent slowly varying envelopes in both time and space 

and c.c. represents the complex conjugate. This assumption, known as the quasi- 

monochromatic pulse approximation, allows the governing equations to be sepa- 

rated into appropriate frequency components. One further aspect of this approxima- 

tion, which was touched on earlier, lies within the high-frequency/large-wavenumber 

regime. In particular, for high-frequencies, Eq. (2.9) can be thought of as rapidly- 

oscillating WKB-type waves. Since it is well known that the WKB method is essen- 

tially the background theory for optical rays, the form of solution given in Eq. (2.9) 

is consistent with the idea of guided modes confined by the transverse inhomogene- 

ity of the index of refraction of the medium of propagation. A reductive perturba- 

tion scheme can now be carried out utilizing the assumptions concerning the high- 

frequency, quasi-monochromatic waves with slowly varying envelopes. 

Before proceeding further, a final assumption is made which concerns the 

nonlinear polarization terms PNL. In order to make tractable the convolutions over 

the nonlinear terms, the response to the electric field is assumed to be instantaneous. 

Although this approximation ignores the time-delayed response of the medium, the 
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approximation captures the dominant effects associated with the nonlinearities and 

allows for a relatively simple and analytically tractable analysis. This assumption 

on PNL is a good approximation provided the pulse widths of interest are much 

greater in duration than the relaxation times of the medium of interest. Formally, 

this assumption is modeled by assuming the convolution kernels to be of the following 

form 

(t-t!,*-*»)   =   X{2)6(t-ti)6(t-t2) (2.10a) (2) X 

X&>{t-tut-t2,t-h)   =   X(8)*(«-*iW*-W-*s), (2-lOb) 

where x(2) an(* X(3) are now scalars which measure the strength of the nonlinear re- 

sponse of the medium in question. It will later be assumed that in the materials of 

physical interest, the quadratic term dominates the cubic nonlinearity and therefore, 

the cubic nonlinearity can be neglected. For the present, however, the dominant 

effect associated with the cubic nonlinearity will be kept in the analysis. The evalu- 

ation of the nonlinear convolutions now becomes a trivial matter and the reductive 

perturbation scheme is continued. 

Upon inserting Eq. (2.9) into Eq. (2.6) and using Eq. (2.10) above, the 

following expression can be derived for the terms which are proportional to exp(i(fci2- 

Wlt)), 

ei(kiz-uiit) d2£i , n:,_ dSx     , - 
+ 2»fc1-^-fci £\\ 

dz* dz 

c2dt2 

= Moeo^ [e^-^Hx^eiese^ + X^l^l^i)] , (2.11) 

Here E\ represents the slowly-varying amplitude of the signal field, Afc = fc3 - k\ - k2 

represents the wavenumber mismatch and the pump field has been assumed to be 

much larger than either that of the signal or idler fields, i.e., ||£i||, ||£2|| < H^sll- Only 

those terms proportional to exp(t(fciz-wii)) are kept due to their resonance behavior, 

i.e., higher harmonics are neglected in the present analysis. Similar expressions can be 

obtained for those terms which are proportional to exp(i(k2z - u>2t)) and exp{i(k3z - 
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ust)). These then would correspond to the amplitude equations associated with the 

idler and pump fields respectively. 

The linear convolution of the electric field can be evaluated using the ap- 

propriate change of variables £ = t - t\. It then follows that 

J—oo •'O 

Since the function x(1) is primarily considered an impulse (instantaneous) response 

to the applied electric field, it can be argued that E\ is slowly-varying in time and 

space in comparison with this dominant impulse response, i.e., €i is slowly-varying 

in comparison to the response time of x(1). Therefore, the £1 can be expanded in a 

Taylor series as follows, 

eiOM-£) = £i(M)-£—QI— + 2? —QV—+    •        VA6> 

Introducing this expansion into the Eq. (2.12) and noting the following 

X   =    rxW(OeiW1^ 
Jo 

-ip- =   /°°x(1)(0^1$^ 
OU>i Jo 

it can be found that 

/ *ix(1)(< - *i)£i(Miy'wl(t-tl) = xd - iüj^ - W^,       (2-14) 

where the subscripts on.x now denote differentiation with respect to u>i, i.e., xWl = 

dx/du>i and xUlUl = ^"xl^l- In order to make use of E(l- (2-14)' ** must be multi_ 

plied by a factor of exp(i(&i2 - wi<)) and differentiated twice with respect to time. 

This will then give the appropriate linear response of the medium to the applied 

electric field. 

In considering the nonlinear response of the medium to an applied electric 

field, the primary interest is upon the dominant behavior described by the foregoing 

model of Eqs. (2.8) and (2.10).  Therefore, upon differentiating the right hand side 
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of Eq. (2.11), only the leading order terms are kept for both the cubic and quadratic 

nonlinearities. It is important to remember that the envelope amplitude is slowly- 

varying in time and space. Therefore, each spatial or time derivative lowers the term 

in question by an order of magnitude. These small effects may be investigated, but 

they are not of interest in what will follow. 

Upon combining the preceding results, noting that the envelope is slowly- 

varying in time and space, and simplifying, it it is found that the signal field envelope 

is governed by 

-2[(u;lxL1c1+
2]-^^ + ••• = -^ [x(2)^3eiAfe2 + X(8)Ma£i + •••], (2-15) 

where the dots represent the higher order terms, both linear and nonlinear, associated 

with the material response. The aim is to now make use of the reductive perturbation 

scheme in order to balance at subsequent orders those effects which are of the same 

order of magnitude. In considering Eq. (2.15), it must be kept in mind that derivatives 

with respect to time and space become smaller. Further, it must also be recalled 

that the high-frequency/large-wavenumber limit is being considered. Therefore, the 

leading order balance gives 

*? = ^(1 + XÄ), (2-16) 

where X.R represents the real part of x- This then determines the dispersion relation 

wi(fci) or fci(wi). Since the phase velocity is given by cp = ui/ki = c/^/l + XRM» 

the index of refraction can then be expressed as a function of the linear response, i.e., 

n(u>i) = Jl + XR(
üJ

I). This is the index of refraction attributed solely to the linear 

response. The nonlinear terms can act to modify this index of refraction depending 

upon the magnitude of the interacting fields. 

From Eq. (2.16), it is easy to show that the following relations now hold 

2*i *i'   =   ^ NXHU + 2wi] 

hW' + iktf = ^ [(^XK)^ + 2], 
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where the prime now denotes differentiation with respect to wi.  These expressions 

are used in conjunction with Eq. (2.15) in order to show the following 

n.f   (d£x  , .,d£i\  , d26i „    ,   ,v3lö
3ei 

= -^ [x^eseac^ + x(3)|£3|
2£i] •  (2.17) 

Thus, the reductive perturbation method along with the various assumptions and 

approximations have reduced the governing Maxwell's equations to the amplitude 

equation (2.17). 

A coordinate change can further simplify the form of Eq. (2.17). From an 

optics viewpoint, it is preferred that the pulse be viewed from a fixed position as a 

function of time. The transformation into this moving coordinate system is easily 

carried out by introducing the following change of variables 

1 
71     =     t Z 

Vlg 

C     =     *, 

where vig = l/k[ is the group velocity of the signal field. This change of variables 

will modify both the spatial and temporal derivatives in Eq. (2.17). Performing the 

change of variables into the 'center-of-mass' frame of the signal field and keeping only 

the leading order terms, it is found that 

^i + pL£l = -S^i + iJd1tf>)eiese'»> + xw\eafe{).      (2.18) 
d(      2hc2 2   or]2        2ki& 

Here, the second term on the left, which is proportional to the constant xi> accounts 

for any attenuation or absorption in the medium. The term denoted by xi represents 

the imaginary part of x- This can be more clearly understood upon assuming that 

X has a small imaginary part, i.e., x -+ XR + »Xi where \i < X- This can further 

be explored from the viewpoint of the Kramers-Kronig relations which describe the 

relationship between the real and imaginary parts of the index of refraction when the 

integral over the kernel x(1) is formulated correctly.  The Kramers-Kronig relations 
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also imply that a medium which has an instantaneous linear response to an applied 

electric field is dispersionless and lossless. This is not the case of interest here. As 

noted above, the real part will account for the index of refraction, while the imaginary 

part models the loss/absorption mechanism in the medium. Therefore, the leading 

order behavior of the amplitude equation accounts for linear dispersion, intrinsic 

loss/absorption, and nonlinear coupling to the pump and idler fields. 

It was noted earlier that the terms proportional to exp(i(k2z - u2t)) and 

exp(i(k3z - w3i)) could also be investigated. A procedure similar to the foregoing can 

be easily carried out for the amplitude equations of both the idler and pump fields. 

The change of variables of the idler and pump fields is made now into the signal's 

moving coordinate system. There will then be additional terms in both the idler and 

pump field equations due to the group velocity difference of the signal with that of the 

idler and pump. In total then, there will be three partial differential equations [27,28] 

which are coupled through the nonlinearities, namely, 

^ + ^1   =   -igi^ + iaiixMeiese^ + xMfafei) (2.19a) 
dz or\l 

^ + fe   =   -^^ + ^(x(2)^3e^ + X(3)l^|2£2)-^^    (2.19b) 

f^ + te = -igs^ + i^x^e^e-^ + x^e^es)-^, (2.19c) 

where the following constants have been defined for i = 1,2,3 

Si   =   ^ (2.20a) 
2kiC2 

UJJ 
en   = 

2ki< 

1 d2h 
9i   ~   2 du? 

Vix 

Vz\     = 

_1 1_ 
V2g Vlg 

_1 1_ 
V3g        Vlg 

(2.20b) 

(2.20c) 

(2.20d) 

(2.20e) 

Afc   =   k3-h-k2. (2.20f) 
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In general, solving for the signal, idler and pump fields is a difficult task left primar- 

ily to numerical simulations. In the next section, it will be shown that much of the 

dominant behavior can be largely understood from simplified versions of Eqs. (2.19). 

However, the present model represents qualitatively all the major physical phenomena 

of the three wave interaction in a nonlinear medium; these include dispersion, attenu- 

ation/absorption, group-velocity mismatch, phase-mismatch and nonlinear coupling. 

2.3    Degenerate Optical Parametric Amplifier 

As indicated in the previous section, the full equations governing the three 

wave field interactions in a nonlinear medium are rendered analytically intractable 

in Eqs. (2.19). In what follows, a physically realizable PSA will be considered whose 

characteristic scalings simplify considerably the governing equations. Specifically, a 

degenerate parametric amplifier is considered. It is degenerate in the sense that the 

frequency associated with the pump field is exactly twice that of the incoming signal 

field. Therefore, the idler field which is created as a consequence of the signal-pump 

interaction is at the same frequency as that of the signal field itself, i.e., Wi = u>2. 

The signal and idler fields can then be combined and thought of as a single 'signal' 

field. In the analysis that follows, the pump field has been assumed to be much larger 

in amplitude and much longer in duration than either the signal or idler fields. In 

particular, the pump can be assumed to be undepleted by the nonlinear interaction 

and can be then taken to be essentially constant. This will be made more clear from 

the characteristic scalings which will be introduced shortly. 

Attention is now given to simplifications and approximations which are con- 

sistent with retaining the leading order behavior of the three wave interaction. In 

most cases of interest, i.e., materials for which parametric amplification is carried 

out, the quadratic nonlinearity dominates the cubic nonlinearity which allows the 

cubic term to be neglected in the analysis, i.e., X
(2) < X(3)- Further, over the length 

scale of interest, the nonlinear medium can be considered essentially lossless. These 

assumptions, along with the assumption that the phase-mismatch Afc is identically 

zero, i.e., perfect phase-matching is achieved, simplifies significantly the equations 
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governing the three wave interaction. 

In order to clarify these statements made concerning the pump, signal and 

idler fields, it becomes necessary to nondimensionalize the Eqs. (2.19) on the charac- 

teristic scales of the problem. Therefore, define the following set of nondimensional 

variables 

Z = C/Co (2.21a) 

i = ij/ijb (2.21b) 

S = ExjEs (2.21c) 

/ = £2/es (2.21d) 

P = €3/Sp, (2.21e) 

where Co corresponds to the characteristic length of the nonlinear medium, 770 defines 

a characteristic pulse width of the signal field, and Sa and £p define the characteristic 

amplitudes of the signal and pump fields respectively. Recall it has been assumed 

that Afc = 0,8 = 0 and x(3) = 0- Further, since the PSA is degenerate, u>i = u>2 and 

the sum of the signal and idler fields becomes the effective 'signal' field. Eqs. (2.19) 

then reduce to the following 

I = -i^f)w+'{"'x'2)eM''p (2'22a) 

^ + W%C„)S-P-ff)f (2.22b) 

dp . (CosA d'P , . (*3xmel(a\ o2   /V3,GA dP .     , 
az - -Urjw+'\  ~) ~ \~nr)W'     (222c) 

where use has been made of Eqs. (2.21) and (2.20). 

It is convenient to establish the appropriate orders of magnitude of the 

various terms of Eq. (2.22). In what follows, the nonlinear medium will be assumed 

to be a KTP crystal (KTiOP04, Potassium Titanyl Phosphate) [29]. In particular, 

the following characteristic measures are considered 

Co   ~   5 mm (2.23a) 

dZ 
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(2.23b) 

(2.23c) 

(2.23d) 

(2.23e) 

The wavelength of interest, which corresponds to soliton based communications sys- 

tems, is A = 1.55 microns. Numerical simulations of the Eqs. (2.22) using Eqs. (2.23) 

are shown in Figs. 2.2. The initial signal and pump pulses are assumed to be hyper- 

bolic secants while the idler field is initially zero. Note the amplification and gain 

associated with the signal and idler fields through a small section of KTP crystal. 

Moreover, note that the pump field remains largely unaffected through the interac- 

tion. 

It is clear from these figures that the nonlinear interaction is the dominant 

effect. More precisely, it can be found that the coefficients associated with the disper- 

sion are of O(10~5). Note that if the dispersion can be ignored in Eqs. (2.23), then the 

coupled set of equations for the three wave interaction can be solved exactly via the 

inverse scattering transform [30]. The coefficients of nonlinear coupling for the signal 

and idler fields are 0(1) while that for the pump is of O(10-2). The remaining terms 

are associated with the group-velocity mismatch and can be found to be of 0(1O~3). 

Figures 2.3a and 2.3b represent contour plots of the pump field and the combined 

signal and idler fields respectively. Recall that the pump pulse was moved into the 

coordinate system traveling with the group velocity of the signal pulse. Therefore, 

the pump field drifts noticeably as seen in Fig 2.3a. However, because the pump 

pulse has been assumed to be wider in duration than the signal pulse, the combined 

signal-idler field is essentially unaffected as seen in Fig 2.3b. 

Through this physical example, it has been found that the effects of the 

dispersion, group-velocity mismatch and nonlinear coupling of the pump field to the 

signal and idler can all be considered higher order effects. Therefore by considering 
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(c) (d) 

Figure 2.2: Qualitative behavior of the signal, idler, and pump fields. In (a) and (b) 

the signal and idler fields are depicted. The initial signal field is a hyperbolic secant 

while the initial idler field was zero. In (c), the combined signal and idler fields are 

depicted. This represents the effective 'signal' field output of the PSAs. The pump 

field in (d) is shown to be essentially undepleted with a slight group-velocity drift. 
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Figure 2.3: Contour plots of the pump and signal-idler fields. The pump field in (a) 

is shown to exhibit a drift in the group velocity. In (b), the signal-idler fields have 

a much smaller drift since the pump field is assumed to be much wider in duration 

than the signal field. 

only the dominant terms of the three wave interaction, it is found that 

:     iBPF 
dS_ 
dZ 

cH_ 
dZ 

dP 
dZ 

^-   =   iBPS* 

^r    =   0. 

(2.24a) 

(2.24b) 

(2.24c) 

where B = (<7iX(2)£pCo)- Eq. (2.24c) explicitly demonstrates the fact that to leading 

order, the pump field can be considered constant and undepleted. Therefore, the 

three wave interaction is reduced to solving the coupled set of equations, Eq. (2.24a) 

and Eq. (2.24b), for the signal and idler fields. 

2.4    Jump Conditions 

In this section, the solutions of Eq. (2.24a) and (2.24b) are considered. This 

leading order behavior of the signal and idler fields corresponds to the qualitative 
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features of a general phase-sensitive amplifier, i.e., the quadratic coupling of the signal 

(idler) to the complex conjugate of the idler (signal). The solutions for the signal and 

idler fields can be easily obtained by differentiating Eq. (2.24a) with respect to Z and 

using Eq. (2.24b) to eliminate the dI*/dZ term. In particular, it is found that 

S{Z,{)   =   S(0,O cosh ßZ (2.25a) 

I(Z,0   =   t(P/|P|)S(0,O*Binh/?Z, (2.25b) 

where ß = B\P\ is the gain associated with the PSA and it has been assumed that 

the idler field is initially zero, i.e., 7(0, £) = 0. The assumption concerning the initial 

amplitude of the idler field clearly stems from the fact that the initial interaction is 

solely due to the signal and pump fields. The idler field is, in a sense, an artifact of 

this initial interaction. As mentioned in the previous section, the idler frequency is 

commensurate with that of the signal field. Therefore, the idler can be considered 

part of the outgoing signal field at frequency wi- Denoting the total outgoing field 

at frequency ux by Q(Z, £) = S(Z, £) + I{Z, £), it then becomes apparent upon using 

Eq. (2.25) that 

Q(Z, 0 = Q(0,0 cosh ßZ + eWQ*(0, £) sinh ßZ, (2.26) 

where e^W = iP/\P\ corresponds to the phase of the pump pulse P. The combined 

signal-idler field Q{Z, £) represents the total gain of the incoming signal field through a 

section of quadratic x(2) material. Eq. (2.26) then can be understood to represent the 

transfer function or 'jump' condition associated with a degenerate optical parametric 

amplifier. This behavior, which couples the output to the initial amplitude and 

its complex conjugate, represents the qualitative behavior associated with a phase- 

sensitive amplifier. 

It can be noted at this point that a convenient quadrature decomposition 

exists which decomposes the effective 'signal' pulse into gain and loss components. In 

particular, the quadrature decomposition 

Q = [A + iB]e^2 (2.27) 
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will separate the signal pulse into phase-locked A and anti-phase-locked B quadratures 

which experience exponential gain and exponential attenuation respectively. Note 

that B in this case is not that given in Eq. (2.24). More will be said about this in 

upcoming chapters. 

2.5    Phase-Mismatch and Bandwidth Considera- 

tions in a Fiber PSA 

This section is concerned with understanding the bandwidth limitations im- 

posed on the pulse propagation when the effect of phase-mismatch is considered. In 

essence, the frequency dependence of Afc = Afc(w) is investigated. This is important 

in understanding whether or not a more physically realizable model for the pulse 

propagation with PSAs is required in order to understand the qualitative structure 

given in the preceding section. As was shown in the last two sections, the assumption 

of perfect phase-matching, i.e., AA; = 0, considerably simplified the leading order 

behavior of the phase-sensitive amplifiers. The idea now is to phase-match the center 

frequency of the propagating pulse with the PSAs. The hope is that the spectral 

bandwidth of the pulse is much smaller in comparison with the bandwidth of the 

PSAs so that the phase-mismatch can be neglected. 

In particular, phase-matching in a fiber PSA is considered. Briefly, a fiber 

PSA exploits the fiber nonlinearity in order to provide phase-sensitive gain to a prop- 

agating pulse. The fiber amplifier configuration is based upon a Sagnac interferom- 

eter [31]. It can be shown that this method behaves to leading order in the same 

manner as a type I phase-matched x(2) PSA where, of course, the appropriate con- 

stant associated with the gain is now dependent upon the x(3) material. The basic 

model governing this process is simply [32,33] 

where q represents total field, D = 3x(3)w0/8cnAe//, Aefj is the effective core area 

of the fiber, and the dispersion and loss are negligible for the length of fiber being 
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considered. Equation (2.28) has the solution q(Z) = q(0)exp(iD\q{0)\2Z). Upon 

assuming that the field amplitude is a sum of the pump and signal fields, it can be 

found that the fiber amplifier acts to leading order in a similar manner to a x(2) 

amplifier. In particular, the effective gain coefficient of the fiber PSA is given by 

Deff = ln(2Dza\P\2)/za where za is the amplifier length. This holds provided the 

pump field is much larger than the signal field being amplified. Therefore, for the 

case of phase-matching, the fiber PSA equations once again give the jump condition 

of Eq. (2.26) where the effective gain coefficient ßZ is now given by Dejj. Details of 

this amplifier can be found in Reference [32,33]. 

The phase-mismatch for a fiber PSA is given by 

Ak = 2k3 -k2-h. (2.29) 

Consider then the case for which the center-frequency of the propagating pulse is u0. 

In particular, suppose that the propagating pulse contains spectral components which 

are not commensurate with u>0 but are off by w. Since the frequency of the pump 

pulse corresponds to the center frequency of the signal pulse, the following relations 

must hold for the coupled frequency components u>i and u2 of the propagating pulse 

and IJJZ of the pump 

u>i   =   u>o + u) (2.30a) 

(2.30b) 

(2.30c) 

U>2     =    Wo — W 

u;3   =   UQ. 

Upon inserting Eq. (2.30) into Eq. (2.29) it is found 

Ak = 2fc3(u>0) - M^o -<*>)- ki(u>0 + u>), (2.31) 

where Ak is the phase-mismatch in the fiber PSA. Applying a Taylor expansion to 

Eq. (2.31) reduces the phase-mismatch to the following 

Ak = -u2k"(u0)- (2-32) 

Here, use has been made of the fact that the type I phase-matching requires that 

fciM = hM = k(uo).   The value of fc"(wo) can be found in standard texts on 
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nonlinear optical fibers [2,3]. Note that the characteristic length of a fiber amplifier 

is approximately 100 m. 

It now becomes necessary to investigate the interaction of the frequency 

components at wi and u2. Previously, the assumption Afc = 0 was one of the signifi- 

cant simplifications made in deriving the jump condition of Eq. (2.36). This condition 

allows for a straightforward decomposition of the signal into phase-locked and anti- 

phase-locked quadrature components. In what is to be considered now, the phase- 

mismatch is assumed to be zero only for the center frequency of the propagating pulse. 

Therefore, the phase-mismatch Afc must be incorporated into the nondimensionalized 

equations (2.24). 

In the Fourier domain, the coupling of the frequency components are gov- 

erned by the following set of equations [1,26] 

dZ 
=   iaq*{-u)eiAk^z (2.33a) 

^P^-   =   -ia*q(u)e-iAkMz, (2.33b) 
u Z 

where q(±u>) represents the spectral component located at u0 ± w, a is the gain 

coefficient which depends on x(3\ and Afc(w) is given by Eq. (2.32). Equation (2.33) 

can be readily solved [1], and it is shown to yield the following 

Q(z)={l l-)m' (234) 

where Q{Z) = (q{u) q*(-u))T, a = (cosh(gZ) - i{Ak/2g)smh(gZ))exp(iAk/2) 

and b = i(a/g)smh(gZ) exp(iAA;/2) with g = ^/|a|2 - (Afc/2)2. The eigenvalues of 

the above matrix determine the gain of the pulse as a function of the frequency. In 

particular, it is found that 

A± = Re{a} ± yjRe{ay - 1, (2.35) 

where A+ corresponds to the gain quadrature of interest. 

The gain as a function of the frequency can be more simply understood by 

studying the real part of the effective gain g = ^|a|2 - (Afc/2)2. This gives a good 
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idea of the bandwidth associated with the fiber PSA. Here, a 100 m section of fiber 

is considered with values of k" = -17,-20 and -22 ps2/km for values of \a\za = 1.0 

and \a\za = 1-609. Note that each of these values for k" give rise to approximate PSA 

bandwidths (FWHM) of 2.0 THz, 1.9 THz and 1.8 THz for \a\za = 1.0 and 2.7 THz, 

2.5 THz and 2.4 THz for |a|z0 = 1.609. A 200 m fiber PSA can also be considered 

and is shown to give bandwidths of 1.4 THZ, 1.3 THz and 1.2 THz for \a\za = 1.0. 

It is interesting to further compare the bandwidth of the fiber PSA with 

the bandwidth of a propagating soliton-like pulse solution. In particular, it will be 

assumed that the initial characteristic width of a hyperbolic secant pulse is 50 ps. 

This corresponds to a frequency bandwidth of 11.4 GHz. Figures 2.5a-b depict the 

bandwidth associated with a 100 m fiber PSA {k" =-17 ps2/km and \a\za = 1.0) along 

with the frequency bandwidth of the 50 ps hyperbolic secant pulse. Note that the 

gain is nearly uniform across the entire profile of the pulse. This is seen in more detail 

from Fig. 2.5b. These figures suggest the possibility that the bandwidth constraints 

in the regime of 50 ps pulses are negligible. In fact, upon looking more closely at the 

frequency response, it is found that the edge of the localized pulse experiences a gain 

difference of O(10~8) from the center frequency of the propagating pulse. Therefore, 

treating the PSAs as frequency independent is an excellent approximation. 

2.6     Summary 

Through the assumptions and approximations made in the preceding sec- 

tions, it has been shown that the underlying behavior of the phase-sensitive amplifier 

in the simplest case is governed by Eq. (2.26). This leading order behavior is a con- 

sequence of the asymptotic reduction of the full vector Maxwell's equations in the 

quadratic medium and the appropriate asymptotic regime. In the following chapters, 

this leading order behavior of the PSAs will be incorporated into a physically realiz- 

able optical communications line (see Figure 2.6). In this case, all of the asymptotic 

reductions and scalings used to derive the coupled amplitude equations and the sim- 

plified behavior given by Eq. (2.26) remain valid. Moreover, since the length scale of 

the amplifier itself is negligible in comparison with that of the communications line, 



28 

Z 
w 

1.2 

1.0 

0.8 

1     0.6 

UJ 
O 
ü 
z 
< 
o 
LU 

^      0.4 
ü 
UJ 
U- 
"-     0.2 

0)      0.0 

-0.2 
-1200 

-17 ps /km 

-20 ps'/km 
-22ps*/km 

100 m fiber PSA 

-600 0 600 
FREQUENCY (GIGAHERTZ) 

1200 

(a) 

-0.2 
-1400 

-17ps/km 

-20 psz/km 
-22 ps*/km 

100 m fiber PSA 

-700 0 700 
FREQUENCY (GIGAHERTZ) 

1400 

(b) 

Figure 2.4: In (a) and (b), the effective gain, i.e., Re{g}, is plotted as a function of 

the frequency for \a\za = 1 (e^Za = 2.72) and |a|z0 = 1.609 (eW*- = 5.0) respectively 

given k" = -17,-20 and -22 ps2/km. 
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Figure 2.5: Qualitative comparison of the bandwidth of a fiber-PSA (k" = -17 

ps2/km) with a normalized 50 ps (11.4 GHz) pulse. In (a), the pulse spectrum is seen 

to be extremely narrow in comparison to the PSA bandwidth. In (b), a blown up 

version depicts the normalized pulse spectrum more clearly. 
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Figure 2.6: A physically realizable PSA employing a degenerate optical parametric 

amplifier for use in an optical communications line 

the amplifiers can be essentially treated as a strongly localized forcing, i.e., a delta 

function. With this in mind, Eq. (2.26) can be thought of as the appropriate jump 

condition associated with a phase-sensitive amplifier. In particular, it is found that 

Q+ = cosh ocQ. + ei4,W sinh a Q*_, (2.36) 

where Q± denotes the signal pulse just before (+) and just after (-) the amplifier. 

Further, the total gain associated with each amplifier is given by a = ßZa where Za 

is the length of the amplifier and ß = B\P\ as before. Eq. (2.36) therefore describes 

the qualitative features of a PSA and explicitly demonstrates the phase dependence 

through the coupling of the signal field to its complex conjugate. 

This chapter is concluded by the following general remarks. Although the 

PSA behavior has been tremendously simplified to give Eq. (2.36), Section 2.5 con- 

sidered the case for which the phase-mismatch was not zero across the entire signal 

field profile, i.e., the frequency response of the PSA was investigated. The bandwidth 

of the PSA was explored for a fiber amplifier, and it was found that the bandwidth 

limitations have a negligible effect on the amplifier dynamics. Therefore, Eq. (2.36) 

is in general quite accurate. Moreover, the assumptions considered thus far, which 

correspond to quasi-monochromatic fields, high-frequency/large-wavenumber and the 

paraxial waveguide approximation, all remain valid when the PSAs are considered in 

an optical communications system. Therefore, the PSAs present a realistic candidate 

for loss compensation in a fiber optic communications line. 



Chapter 3 

Averaged Pulse Propagation using 

Phase-Sensitive Amplifiers 

3.1     Introduction 

It has been well established that the evolution of an optical soliton in a length 

of fiber which is attenuated by linear loss behaves according to the cubic nonlinear 

Schrödinger equation (NLS) [3,4,7] 

Tt = -,TaH+,[-2kdr)M'>-{-2ks)q- (u) 

Here k" = d2k/duj2 < 0 (anomalous dispersion regime), u> and k denote the angu- 

lar frequency and wavenumber of a propagating pulse, xi represents the imaginary 

part of the linear response kernel to applied electric field, and x(3) is a measure of 

the nonlinear cubic susceptibility. Note that q(z,t) represents the pulse envelope in 

the reference frame moving with the group velocity of the propagating pulse. Equa- 

tion (3.1) can be derived via the same asymptotic reduction used to obtain the enve- 

lope equations of Chapter 2 for the phase-sensitive amplifiers. In fact, as was noted in 

the previous chapter, many of the underlying assumptions used to derive the coupled 

amplitude equations (2.19) are carried over to the derivation of Eq. (3.1). In partic- 

ular, a polarization preserving, single-mode fiber is considered for which Maxwell's 

equations are once again reduced to a simple formulation. Further, the assumptions 

of high-frequency (large-wavenumber) carrier waves and the paraxial waveguide ap- 

proximation remain valid within the context of pulse propagation in an optical fiber. 

31 
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These facts, which are used in conjunction with the disparate length scales of the 

large propagational distance and small transverse core structure of the fiber provide 

the natural setting for the asymptotic reduction of Maxwell's equations to a one 

dimensional wave equation. 

The major differences between the derivation of the envelope equations of 

the phase-sensitive amplifier and the nonlinear Schrödinger equation (3.1) arise due 

to the material properties and nonlinear response of the medium in question. Fused- 

silica fiber is a centrosymmetric medium, i.e., fibers display inversion symmetry, and 

therefore x(2) = 0. Moreover, the dominant behavior of the cubic nonlinearity neglects 

the higher harmonics, or nonresonant terms, and is dependent upon the magnitude 

of the electric field alone. This fact allows the index of refraction to be expressed as 

a sum of the linear and nonlinear response terms as follows 

n{u,E) = n0(u) + n2{u>)\E\2 (3.2) 

where n2 > 0. It is clear from Eq. (3.2) that those parts of a propagating pulse which 

are of larger magnitude experience a higher index of refraction. This fact allows the 

pulse to experience a self-phase modulation and to retain a highly localized structure 

upon propagation through a section of dispersion-shifted fiber. If in addition, the 

dispersion and self-phase modulation are exactly balanced, Eq. (3.1) with xi = 0 

gives rise to nondispersive soliton solutions which are of the hyperbolic secant form. 

The hyperbolic secant soliton solution of the NLS can be thought of as the result of 

a fundamental balance between the linear dispersion and the cubic Kerr nonlinearity. 

Prior to discussing the qualitative features associated with solitons, it is 

helpful to normalize Eq. (3.1) upon the relevant physical scalings of an optical com- 

munications line. It is then found that 

K-in+WQ-TQ. (3-3) 

where Q, Z and T have been normalized on the pulse width tQ (full-width at half 

maximum - FWHM) such that 

Zo   =    f—V— (3.4a) 0 \l.76J    -k" V 
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7   =   SZ0, (3.4c) 

where Z0 is the dispersion length, E0 is the peak-field amplitude and S = u2xi/2kc2 is 

a measure of the power loss rate. For a typical dispersion-shifted fiber at a wavelength 

of A = 1.55/im, for example, Z0 = 500 km for tQ = 50 ps and 8 = 0.02763km"1 which 

gives a total power loss rate of 0.24 dB/km. Recall that k" < 0 so that the optical 

fiber is operated in the anomalous dispersion regime necessary for soliton propagation. 

As a final note, the effective transverse structure of the fiber, i.e., its cross section, 

can be accounted for through the normalization of the peak-field amplitude. This can 

be more fully understood from considering the relation n2 = x3/2acno where ac is 

a geometric factor dependent upon the index of refraction profile. This relation can 

be used in Eq. (3.4) to express the peak-field amplitude in terms of the geometric 

transverse structure of the fiber. In typical applications, which will be pursued below, 

ac ~ 1/2. 

As noted earlier, Eq. (3.3) with 7 = 0 is known to exhibit a robust set of 

soliton solutions [11]. In particular, a general single-soliton solution, which can be 

derived using the inverse scattering transform, can be expressed in the following form 

Q(Z, T) = 2rj sech^T - A(Z)}e-2^T+ii^-^z. (3.5) 

The parameters rj and f characterize the soliton; 2rj being its amplitude and inverse 

width and 4£ its velocity relative to some reference frame. In what will follow, the 

parameter £ can be taken to be identically zero without loss of generality, i.e., the NLS 

can always be transformed so that £ = 0. Associated with the single-soliton solution 

of Eq. (3.5) is an infinity of conservation laws which arise due to the Hamiltonian 

structure of the NLS. This completely integrable structure allows the single-soliton 

solution to be robust to perturbations of the governing NLS equation. In particular, 

perturbations of the NLS have been shown to modify the hyperbolic secant solution 

in two ways. First, the soliton parameters, which are constants of the motion for the 

unperturbed case, can now vary with distance of propagation. In the perturbations 
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of interest, this variation in the soliton parameters occurs on a length scale which is 

much longer than the typical evolution, i.e., it can be thought of as adiabatic. The 

second way in which perturbations effect the soliton solution given by Eq. (3.5) is in 

the generation of a background radiation field which is superimposed upon the single- 

soliton solution. Rigorous study of the dispersive radiation field is a nontrivial matter 

as it can exhibit quite complicated behavior. Numerous studies have been conducted 

on various perturbations which are of physical interest. And although the dispersive 

radiation field which is generated exhibits much complicated behavior, the leading 

order soliton solution, with the appropriate slow evolution of its parameters, has 

been shown to be robust and stable. Along with its nondispersive behavior, it is this 

fact which makes solitons ideal candidates for use as bits in long-haul communications 

systems. 

3.2    Formulation 

In considering an optical communications system where loss and gain are 

present, which is the case of interest of this dissertation, the governing NLS must 

be modified in order to incorporate the effects of periodic amplification and linear 

loss which are incurred in the pulse propagation (see Fig. 3.1). These modifications 

involve the addition of appropriate perturbing terms, which are not necessarily small, 

that can correctly account for the linear attenuation and phase-sensitive gain. In 

particular, pulse propagation in a length of fiber where linear loss in the fiber is 

balanced by a chain of periodically spaced phase-sensitive amplifiers is considered. 

Moreover, the case for which the amplifier spacing Z\ is much less than the soliton 

period Z0, i.e., Zi/Z0 = d where e < 1 and / ~ 0(1), is investigated [18,19]. Given 

these considerations, the modified pulse evolution can be shown to be governed by, 

§ = i §g + i\Q?Q + i [-TQ + h (|) Q + ««*>/ (|) Q-], (3.6) 

where V = SZi/l is the linear loss coefficient in the fiber, <f> is the phase of the pump 

pulse associated with the PSA, and Q represents the pulse envelope which has been 

normalized on the soliton period through Eq. (3.4).  The h(Z/e) and f(Z/e) terms 



35 

Input 
Soliton 

A 
-**- PSA 

Nonlinear 
Optical Fiber 

-«*- PSA PSA 

Output 
Soliton 

A 
-**- 

Figure 3.1: Schematic of a nonlinear optical fiber transmission line in which loss is 

balanced by a chain of periodically-spaced, phase-sensitive amplifiers (PSAs). 

represent the periodic gain of the phase-sensitive amplifiers and are given by 
N 

h{()   =   (cosha-l)$XC-nZO 
n=l 

/(C)   =   sinha£<S(C-nZ(), 

(3.7a) 

(3.7b) 
n=l 

where a is the gain coefficient associated with the amplifiers as given in Chapter 2. 

Because the amplifiers act on a length scale which is essentially negligible in compar- 

ison with the remaining length scales of the problem, they can be simply modeled 

as periodic delta function forcings [18]. Note that the phase-sensitive nature of the 

amplifiers arises through the coupling to the complex conjugate through the term 

exp(icj))f(OQ*. In Eq. (3.6), the nonlinearity and dispersion have been explicitly 

made small in comparison with the loss and gain terms. This is expected from the 

characteristic scalings of the problem, i.e., the amplifier spacing is much less than 

the typical length scale of the soliton evolution. Therefore, the loss and gain can 

be effectively treated as strong, periodic, and rapidly-varying perturbations to the 

governing NLS equation. These perturbations can be averaged over, which is done 

in the next section, in order to determine an effective pulse evolution over distances 

much longer than that of the soliton period. 

If instead, phase-insensitive amplifiers are considered [18], Eq. (3.6) would 

no longer be coupled to its complex conjugate, i.e., the amplification would no longer 

be a parametric process and /(C) = 0. Further, h(C) would be modified in order 

to account for the total gain associated with the amplifiers. In this case, averaging 
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the rapid fluctuations due to the loss and gain gives back the NLS as the effective 

leading order behavior of the pulse propagation on the characteristic length scale of 

the soliton period. Through its coupling to the complex conjugate, phase-sensitive 

amplifiers will be shown to give a strikingly different averaged behavior than that 

which is normally associated with phase-insensitive amplifiers. 

3.3    Quadrature Decomposition 

Before averaging Eq. (3.6), it is important to understand the dynamics of 

the PSAs. In particular, consider the jump conditions across a single amplifier. It 

was shown in Chapter 2 that the following jump condition applies 

Q+ = cosh a Q. + e'+ sinh a Q*_ (3.8) 

where Q± indicates the pulse just after (+) and before (-) an amplifier. Again, <f> 

represents the phase associated with the pump pulse of the amplifier, and a is the 

gain coefficient of the amplifier. It can be shown that a natural, or convenient, set 

of variables exists in which to investigate the pulse dynamics. This idea is motivated 

from the phase-sensitive nature of the amplifiers being considered, i.e., PSAs exhibit 

a 'prefered' direction of amplification. By decomposing the propagating pulse into 

two orthogonal quadratures, 

Q = (A + iB)e^2, (3.9) 

the dynamics of the pulse propagation can be separated into those components which 

are phase-locked and those which are anti-phase-locked with respect to the amplifier. 

Inserting Eq. (3.9) into Eq. (3.8) gives the following jump conditions for the two 

quadratures A and J9, 

A+   =   eaA. (3.10a) 

B+   =   e~aB-. (3.10b) 

The phase-locked quadrature A experiences exponential gain across an amplifier while 

the anti-phase-locked quadrature B is exponentially attenuated.   Therefore, as the 
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pulse propagates through a chain of amplifiers, the B quadrature will be attenuated 

by both the amplifiers and the linear loss of the fiber. This quadrature component 

will then be quickly attenuated after several amplifiers and will not remain an 0(1) 

quantity as the pulse evolves. In contrast, the A quadrature experiences both loss 

(from the fiber) and gain (from the amplifiers). The idea in the next section will be 

to balance the loss and gain in the phase-locked quadrature and average over this in 

order to derive an effective long-distance evolution equation for the pulse propagation. 

It will now be made clear how the quadrature decomposition in Eq. (3.8) 

formulates the pulse propagation in terms of a natural and convenient set of coordi- 

nates. Using the quadrature decomposition in Eq. (3.6), i.e., inserting Eq. (3.9) into 

Eq. (3.6) and collecting real and imaginary parts, gives the following set of coupled 

equations 

|| + I(r-KZ/«)-/<Z/«))A   =   -**|_(A» + fl»)B + 2ß  (3.11a) 

™ + l(r-h(z/t) + f(ZM)B = 1?£ + W* + B*)A-1A.   p.iib) 

Here, the reference phase of each PSA has been assumed to change from one ampli- 

fier to next, i.e., (j> = 4>(Z), and specifically, the present analysis assumes the phase 

rotation of the reference phase to be constant so that d<f)/dZ = K. It is clear from 

Eq. (3.11) that the perturbing terms associated with Q, i.e., the loss and gain, are 

diagonalized by the quadrature decomposition. This decoupling allows for a rela- 

tively straightforward averaging of the phase-locked quadrature A which determines 

the effective evolution of the pulse propagation. Note that the quadrature decompo- 

sition further serves to eliminate the coupling of the propagating pulse to its complex 

conjugate. In fact, Eqs. (3.11) are now a set of real, coupled equations. 

3.4    Multiple-Scale Averaging 

It is now appropriate to investigate the pulse dynamics as dictated by 

Eq. (3.11). The aim of this section will be to average over the rapid fluctuations caused 

by the loss and gain using a multiple-scale approach. The method of multiple-scales 
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allows for the separation of relevant physical phenomena which occur on fundamen- 

tally different length scales [34]. A multiple-scale approach is a natural consequence 

of the disparate characteristic length scales involved in the formulation of the problem 

of interest. From the analysis thus far, it has been assumed that the gain and loss 

occur on a length scale which is much shorter in comparison to the length scale of the 

dispersion and nonlinearity, i.e., the soliton period. This fact can be utilized to show 

the averaged pulse evolution occurs on a length scale which is much longer than that 

of the soliton period. Therefore define the following characteristic length scales 

C   =   Z/e (3.12a) 

£   =   eZ, (3.12b) 

where C corresponds to the length scale of the amplifier spacing and £ will be shown 

to be the 'extended' length scale on which the averaged evolution of the pulse is 

captured. These length scales separate the rapid fluctuations of the loss and gain 

from the slow evolution of the envelope which occurs on the longer length scales Z 

and £. It is interesting to note that the multiple-scale expansion is similar in spirit 

to the Lie transform methods used by Kodama and Hasegawa for the guiding-center 

soliton [18]. Both methods effectively capture, via averaging, the effective evolution 

behavior on longer length scales. 

As discussed in the previous section, the analysis is formulated in terms of 

the quadrature variables A and B. Since a multiple-scale analysis is being performed, 

the quadrature decomposition is now dependent on the new variables £ and £. The 

quadrature decomposition is then 

Q = ( A(C, Z, f. T) + iB(C, Z, £, T) )e*<*>'a, (3.13) 

where the phase has been assumed to be dependent on the Z-scale only, i.e., d(f)/dZ = 

K. This multiple scale quadrature decomposition modifies the Z derivative of the 

coupled quadrature equations (3.11). The equations governing the pulse dynamics 

are then as follows, 

| + (r _ h{() _ /(0) A   =   « [JA _ tfl} + , {_!}        (3,4a) 
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dB_ + (T-h(0 + f(0)B   =   e{-|f + LA}, (3.14b) 

where the operator L is given by L = (±^y + (A2 + B2) - f). As previously noted, 

the rapid fluctuations which occur on the ( length scale have been decoupled and 

diagonalized via the quadrature separation. As will be seen, this allows for a relatively 

simple averaging of the phase-locked quadrature. 

The next step in the analysis, which is clear from the asymptotic orderings 

given in Eqs. (3.14), is to simply expand the quadratures in powers of e as follows, 

A   =   A° + eA1 + e2A2 + --- (3.15a) 

B   =   B° + eB1 + e2B2 + ---. (3.15b) 

Recall that this allows for the separation of fluctuations which are merely local on 

the C scale from those which contribute to the pulse dynamics on the longer length 

scales Z and £. The perturbation expansion successively captures at each order the 

dynamics of the pulse propagation on the three distinct length scales (, Z and f. Note 

that the appropriate jump conditions across the amplifiers at each order are given 

by, 

A\   =   eaA{. (3.16a) 

B\   =   e-aB{-, (3.16b) 

where % = 0,1,2,... and a again corresponds to the amplifier gain. 

At leading order, the pulse dynamics is found to be governed by the following 

uncoupled set of equations 

dA° 

dB0 

+ (r-Ä(C)-/(C))A°   =   0 (3.17a) 

+ (T-h(0 + f(C))B°   =   0. (3.17b) 

Note that in between amplifiers /»(£) = /(C) = 0.  Therefore, when the pulse is be- 

tween amplifiers, the leading order behavior of both quadratures reduces to trivial first 
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order differential equations whose solutions exhibit exponential decay. Each quadra- 

ture component is therefore attenuated by a factor of e_n between amplifiers. The 

jump conditions given by Eq. (3.16) are now imposed on the leading order solutions 

and it is found that 

A°(l+)   =   R(Z,£,T)ea-Tl (3.18a) 

B°(l+)   =   P(Z,S,T)e-a-Tl. (3.18b) 

These are the leading order solutions after one pass through an amplifier. After 

traversing a chain of N such amplifiers, the solutions are similar and are given by 

A°(Nl+) = R(Z,Z,T)eN(a-n) and B°(Nl+) = P{Z,t,T)e-N(a+ri\ It becomes clear 

that the leading order solution of the B quadrature decays quickly away to zero 

after only a few amplifiers due to the attenuation from both the fiber and amplifiers. 

The leading order solution to the phase-locked quadrature A experiences both loss 

and gain. These effects can be balanced by imposing periodicity on the leading 

order solution. The balancing of the loss and gain in the phase-locked quadrature is 

depicted in Fig. 3.2. This then gives the following relation between the loss and gain 

coefficients, 

a = I7 + e2ä. (3.19) 

Here, the loss and gain are balanced to 0(e2). This allows for slight over or under 

amplification from the PSAs through the parameter ä. To summarize the leading 

order results, the loss and gain have been balanced in the phase-locked quadrature to 

give a periodic solution in ( while the anti-phase-locked quadrature is shown to decay 

quickly to zero and be of higher order, i.e., it exhibits an initial transient behavior 

and is of 0(e) or higher thereafter. 

Proceeding to the next order, 0(e), gives the following coupled set of equa- 

tions 

^ + (r - MO -/(OK   =   -^ (3.20a) 

dB 
d{ 

+ (r - MO + /(C)) B1   =   LoA°, (3.20b) 
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Figure 3.2: Qualitative behavior of the rapid fluctuations which occur in the phase- 

locked quadrature A on the £ length scale. Note the balance between the loss and 

gain over each successive fiber/amplifier segment. 

where L0 = (|^ + (^°)2 - f) and the JumP conditions of Eq. (3.16) are imposed. 

It is convenient to study each quadrature equation separately. First, consider the 

equation for the correction term A1. Looking between amplifiers gives a first order 

differential equation with a periodic forcing -8A°/dZ. In order for a solution to exist 

for A1, the forcing -dA°/dZ must be in the range of the homogeneous operator for 

A1. This is equivalent to the forcing being orthogonal to the null space of the adjoint 

leading order operator for A0, i.e., Fredholm's alternative must be satisfied [35]. This 

solvability condition essentially restricts the solution A1 to the space of periodic func- 

tions and removes any secular growth terms which would lead to unbounded growth. 

The solvability condition requires that 

Jo 
Drc dAQS 

' dZ 
d( = 0. (3.21) 

Using the leading order solution A0 = R{Z, (, T)e~ri in Eq. (3.21) gives the following 
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condition for the evolution of the envelope of A0, 

||=0. (3.22) 

Recall that the Z scale corresponds to the typical evolution scale of a soliton, i.e., 

the length scale of the linear dispersion and nonlinear self-phase modulation. This 

fundamental result explicitly shows that the PSAs do not allow the pulse to evolve 

on the soliton period. Rather, the evolution is forced to occur on a fundamentally 

different length scale than what is normally expected [18]. This is in contrast to the 

behavior exhibited by phase-insensitive amplifiers for which the averaged evolution 

occurs on the length scale of the soliton period. The longer length scale £ will be shown 

to inherit the slow envelope evolution of the propagating pulse. The suppression of 

the pulse evolution on the soliton period can be understood from the fact that the 

PSAs compensate for phase variations experienced by the propagating pulse between 

amplifiers which are due to the linear dispersion and nonlinear self-phase modulation. 

In other words, the PSAs work to keep a flat phase profile across the propagating 

pulse. Since dR/dZ = 0, the equation for A1 reduces to a simple homogeneous 

differential equation for which we can take A1 = 0. 

The above conclusions can be further supported and understood from solv- 

ing for the correction term B1. Using A° = R((,T)e~rc and the appropriate jump 

condition given by Eq. (3.16b) in Eq. (3.20) gives the following 

B  -2U12 JC W 

+ le~a    (d2R        _\ ^ / -3 _a ' 
KR   + —Rre    cosh a .„„,   ,     ___        e"rc. (3.23) 

4sinha \oT2 )     a 

As previously mentioned, the quadrature correction B1 provides further evidence 

concerning the attenuation of phase variations of the pulse between amplifiers.  By 

considering B1 just after an amplifier, it is found that 

fii = iS^ p " *Ä) + 2>-!°- ^ 
Note that the effects of linear dispersion and nonlinear self-modulation, which corre- 

spond to the first and third terms in Eq. (3.24) respectively, are both in the attenu- 

ated, anti-phase-locked quadrature of the PSAs. The quadrature separation therefore 
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shows that the PSAs give rise to a mechanism whereby the attenuation of phase vari- 

ations of a propagating pulse lead to the suppression of the pulse evolution on the 

length scale of the soliton period. The averaged evolution is now captured at higher 

order and shown to evolve on the extended length scale £. 

Therefore, continuing the perturbation expansion to higher order in the 

phase-locked quadrature, 0(e2), gives the following 

9-~ + (r - MO - /(C))A2 = 4f + *A° ~ LoB\ (3.25) 

The second term on the right hand side of Eq. (3.25), (&/l)A°, comes about from 

the 0(e2) deviation from the exact balance of the loss and gain given in Eq. (3.19). 

Just as in the case of Eq. (3.20), the forcing terms in Eq. (3.25) must satisfy an 

orthogonality condition in order for a solution to exist, i.e., in order for the solution 

A2 to be periodic and contain no secular growth terms. The solvability condition is 

jfeIX (~lf + TA°" Loßl) dC = °' (3"26) 

Notice that the solvability condition gives the evolution of A0 on the the length scale 

£. Prior to evaluating the integral given by Eq. (3.26), it will be useful to introduce 

a convenient set of rescalings for the envelope R, the time T, the distance £ and the 

overamplification &. These rescalings are given as follows 

/I „«.-ami/a 
V   .   (L£-\     R (3.27a) 

r   = K
1/2

T (3.27b) 

£   =    f^cotha) f (3.27c) 

Aa   =   !tanha4. (3.27d) 

The rescaling of the envelope amplitude (with K = 1) is the same rescaling used when 

considering soliton propagation with erbium-doped amplifiers, i.e., the guiding-center 

soliton rescaling [18]. This amplitude rescaling corresponds to normalizing on the 

average energy of the pulse over one amplifier and fiber segment. The phase rotation 
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K is also scaled out by the proper scaling in the amplitude and time. These rescalings 

along with Eq. (3.26) give the following equation for the pulse evolution 

where ß - (2-tanh a/a). Eq. (3.28) is a fourth-order, nonlinear, dissipative equation 

which governs the pulse dynamics over the long length scale £. Equation (3.28) is 

the central result of this dissertation and will be the focus of study throughout the 

remaining chapters. 

Upon a careful investigation of Eqs. (3.14), (3.20), and (3.25), it can be un- 

derstood why the pulse evolution is governed by the fourth-order equation Eq. (3.28). 

First note that the quadrature correction B1, in Eq. (3.20b), is forced by the NLS-type 

operator L0A° at 0(e). In Eq. (3.25), B1 in turn forces the phase-locked quadrature 

at 0(e2) with the operator LQB
l. This gives the fourth-order, iterated-NLS type 

structure governing the pulse evolution as shown in Eq. (3.28). And although the 

evolution equation inherits much of the structure from the underlying NLS equa- 

tion, it is important to note that the evolution is of a non-Hamiltonian nature, and 

therefore, the dynamics will resemble that of dissipative systems. 

The central question and concern now is whether the new, averaged evolu- 

tion equation is capable of supporting stable pulse solutions. In the next two chapters, 

an investigation is made of the existence and stability of pulse solutions which are 

governed by Eq. (3.28) in appropriate asymptotic parameter regimes. This is followed 

by numerical simulations which present evidence of the existence of stable pulse solu- 

tions valid for a wide range of parameter values, including physically realizable values 

of the parameters as applied to soliton based communication systems. 

3.5    Summary 

It has been the aim of this chapter to investigate the use of phase-sensitive 

amplifiers as a method for compensating for linear loss in a fiber optic communi- 

cations line.  In particular, the object was to develop a method which would allow 
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the averaged pulse evolution to be investigated over long distances. The two essen- 

tial steps in this direction included the quadrature decomposition given by Eq. (3.9) 

and the averaging via the multiple scales of Eq. (3.12). The quadrature separation 

was shown to diagonalize the rapidly varying components associated with the loss 

and gain. Moreover, it allowed the governing equation to be, in a sense, decoupled 

from its complex conjugate dependence. When the quadrature separation was used 

in conjunction with the multiple scales, a clear asymptotic ordering resulted which 

allowed for a straightforward averaging procedure to be carried out. As a result, 

a fourth-order, nonlinear, dissipative amplitude equation (3.28) was derived which 

governed the pulse evolution on a length scale much longer than that of the soliton 

period. The evolution occurs on an extended length scale due to the PSAs attenua- 

tion of phase variations across the pulse profile. This averaged equation behaves in 

a markedly different manner than that of its phase-insensitive counterpart. Whereas 

the phase-insensitive evolution retains its Hamiltonian structure at leading order, the 

phase-sensitive amplifiers give rise to a dissipative evolution structure. 

As was mentioned in the preceding section, Eq. (3.28) represents a funda- 

mental result of this dissertation. It will be shown in the next chapter that nonlinear, 

soliton-like pulses can propagate with little or no distortion over long distances in the 

parameter regime which corresponds to a soliton based communications system, i.e., 

a regime for which the amplifier spacing is much less than the soliton period. This 

fact is somewhat surprising in view of the fact that the pulse is continually under- 

going 0(1) changes in its amplitude as depicted in Figure 3.2. However, this result 

is consistent with the guiding-center soliton dynamics of phase-insensitive amplifiers. 

And just as with phase-insensitive amplifiers, the initial power level of the soliton-like 

pulse is slightly higher than the ideal soliton power. This fact can be understood from 

the averaging used for both the phase-sensitive and phase-insensitive amplifiers , i.e., 

the averaged evolution gives rise to a corresponding averaged power which is less than 

the initial power of the pulse. Therefore, the initial pulse power must be enhanced by 

the factor ((1 - e_2n)/2r/)1    which is given in the rescaling of the pulse amplitude 

Eq. (3.27a). 

The analysis carried out in this chapter for phase-sensitive amplifiers in a 
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fiber optic line once again attests to the remarkable robustness of solitons under strong 

perturbations. And although the PSAs break the Hamiltonian structure associated 

with the NLS, the underlying dynamics of Eq. (3.28) inherits a strong affiliation 

with the NLS. The relationship between Eq. (3.28) and the NLS will be further 

explored in the remaining chapters. It will suffice to say at this point that much of 

the analysis concerning the stability of propagating pulses will rely on the structure 

of the linearized operator associated with the NLS. 



Chapter 4 

Existence and Stability of Pulse 

Solutions 

4.1    Introduction 

The question which must be addressed at this point concerns the existence of 

stable pulse solutions governed by Eq. (3.28). In general, the stability and dynamics 

of pulse solutions of Eq. (3.28) can only be investigated through numerical simula- 

tions. However, the aim of the next section is to investigate analytically a parameter 

regime for which the averaged evolution is simplified via asymptotic and perturbation 

methods. It is then hoped that the qualitative structure of the results might remain 

valid outside of the asymptotic regime explored. In particular, a parameter regime is 

explored, which although unphysical, provides preliminary evidence for the existence 

of stable pulse solutions. This regime corresponds physically to taking a very small 

amplifier spacing and overamplification, i.e., H<1 and Aa < 1, for U ~ 0(1). 

Within this regime, it is reasonable to expect that a stable pulse solution might ex- 

ist since the amplifiers and loss act as small perturbing terms to the governing NLS 

equation. Further, it would not be surprising to find the solution to be of the hyper- 

bolic secant type due to the underlying structure and dominance of the NLS. These 

conjectures follow from what is known of the robust nature of the soliton solutions of 

the NLS. 

In fact, if Tl  = 0 in Eq. (3.28), then U = A±sechA±r where A±  = 

y/l ± 2\fKa.   The two solution branches are plotted in Fig. 4.1.   It is remarkable 

47 
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Figure 4.1: Plot of the maximum amplitude for the two solution branches U = 

AfcsechAfcT where A± - (1 ± 2(Aa)1/2)1/2. Region 1 is the asymptotic regime 

explored in the next section while region 2 is an asymptotic regime explored in the 

next chapter. 

that an exact solution for Eq. (3.28) for 17 = 0 is known for all values of Aa. From 

this fact and Fig. 4.1, it can be seen that there are two regions which are of analytic 

interest. Region 1 corresponds to the small amplifier spacing and small overampli- 

fication regime mentioned in the preceding paragraph. This region will be explored 

in Section 4.2. In Section 5.2 of the next chapter, region 2 will be explored by once 

again making use of asymptotic and perturbation methods. It will be found that a 

subcritical bifurcation occurs at (£/,Aa) = (0,1/4). 

Although the results from the asymptotic analysis are valid only for a lim- 

ited range in parameter space, full numerical simulations will show that in fact the 

qualitative behavior is preserved for a wide range of parameter space. The results of 

these numerical simulations will be presented in Section 4.3. Further, the next chapter 

will explore the bifurcation structure of Eq. (3.28) for a wide range of parameters. In 

particular, the focus will be in exploring the range of physically realizable parameters 
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associated with a soliton based communications system. What will be of interest is 

the range for which the fiber-PSA line supports long-distance pulse propagation. 

Before presenting the results of the asymptotic analysis and numerical sim- 

ulations, some comments concerning the dimensionless parameters are required in 

order to aid in the understanding of the range of physical values investigated. In 

the runs that follow it is of interest to note that 17 = 8Z\ where 8 is the linear field 

amplitude loss rate (e.g., 8 = 0.02763 km for a power loss rate of 0.24 dB/km) and 

Zi is the amplifier spacing in km. With this definition of 17 in mind and with the aid 

of Eq. (3.27c), the relevant length scale of propagation can be shown to be given by, 

T 2 Z'Z 

tanh(8Zi) ZQ 

which gives £ in terms of Z. Recall that Z was the original length scale which was 

normalized upon the soliton period. Further, the overamplification can be expressed 

as 

a==5Zl+(~£)   2tanh^) 
which gives the total amplifier gain.  Therefore in the remaining numerical simula- 

tions, the parameters which will be varied include the amplifier spacing Z\ and the 

overamplification Aa which is given by Eq. (3.27d). These comments apply mainly 

to Section 4.3 for which physically realizable values of the parameters are considered. 

4.2    Pulse Stability for Small Amplifier Spacing 

Equation (3.28) is now considered when the amplifier spacing is small. In 

this case, the close PSA spacing causes very little attenuation of the pulse to occur 

between amplifiers which in turn requires a correspondingly small amount of phase- 

sensitive gain. Therefore, the perturbations which modify the governing NLS equation 

can be thought of as small perturbations to the leading order single-soliton solution. 

An investigation of this asymptotic regime provides analytic evidence for the existence 

and stability of a propagating pulse. Although this regime is somewhat unrealistic 

physically, it is mathematically convenient because a simple, closed form solution of 
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the hyperbolic secant type is found in this limit. Since the parameter ß in Eq. (3.28) 

is an even functions of 17, let 8 = (I7)2 < 1 and expand as follows 

U   =   U° + 8U1 + 82U2 + ... (4.1a) 

Aa   =   8a1 + 82a2 + .... (4.1b) 

In addition, define the length scale a = 8(, and make use of another multiple-scale 

expansion to capture any slow growth in U caused by the perturbation measured in 

8. It will turn out that the slow length scale a will capture at 0(82) a condition on 

the overamplification which insures the stability of the leading order solution. 

At leading order in 8, 0(1), Eq. (3.28) becomes 

H!+fi — + (U0)2--)   U° = 0. (4.2) 

It is easy to show that the hyperbolic secant solution U0 = sech T satisfies the above 

steady-state equation. Note that the shape of this pulse agrees with what is expected 

physically as 8 approaches zero — a limit where the fluctuations caused by the at- 

tenuation and phase-sensitive amplification are negligible — namely, the hyperbolic 

secant shape associated with a soliton solution of the nonlinear Schrödinger equation. 

The structure of Eq. (4.2) is clearly inherited from the underlying NLS equation. This 

strong connection with the NLS structure will be extensively used to prove the linear 

stability of the leading order hyperbolic secant solution in the parameter regime being 

considered. 

Before proceeding further in the expansion, it is interesting to note the 

following properties associated with the fourth-order operator of Eq. (3.28), i.e., Uf + 

N(U) = 0. When expanded in powers of 8 using Eqs. (4.1), it is found that 

N(U) = L-L-.U0 + 8 [L-L+U1 - H0{U\ a1)] 

+ 82[L-L+U2-H1(U°,U\a1,a2)} + -- (4.3) 

where L-L-U0 is a nonlinear operator given in Eq. (4.2) and HN represents the 

perturbing terms which force the higher order correction terms UN+1, and 

L+   =   -l-d2
T-Z{U°)2+l- (4.4a) 
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L.   =   -\d\-{Uy + \ (4.4b) 

are the real and imaginary parts of the linearized operators associated with the NLS 

equation. The structure and dependence of Eq. (3.28) upon the underlying NLS 

behavior is made explicitly clear through the leading order and linearized operators 

L-L- and L-L+ respectively. Fortunately, many properties of the L+ and L_ op- 

erators, both of which are self-adjoint, are well understood [36]. In particular, the 

spectrum of each operator is known. L+ contains two discrete modes, one which is 

at A = -3 and the other at A = 0, with a continuous spectrum starting at A = 1. 

L_ can be shown to have one discrete spectral component at A = 0 with a contin- 

uous spectrum also starting at A = 1. These characteristic features of the spectra 

of L+ and L_, namely the discrete spectrum and their associated eigenfunctions, are 

explicitly given in what follows. The discrete zero mode solution of L_ is given by 

the hyperbolic secant, i.e., 

L_(sechT) = 0. 

The two discrete modes associated with L+ are given by 

L+ (sech T tanh r)   =   0 

L+(sech2 r)   =   —3 sech2 r. 

Although much is understood concerning the spectra of L+ and L_, the spectrum 

of the linearized operator is what will determine the behavior of the perturbations 

measured in 8. Therefore, the spectrum of -L_L+ becomes the key to understanding 

the pulse stability. 

The focus for the remainder of this section will be to investigate the spectral 

composition of the linearized operator. In particular, it is convenient to separate 

the spectrum into two distinct categories. In the following Subsection 4.2.1, the 

zero modes and their corresponding stability are investigated. An analysis pertaining 

to the remainder of the spectrum follows in Subsection 4.2.2. The reason for this 

separation becomes clear upon considering the linearized operator -L-L+. Note 

that -L-.L+ is a non self-adjoint operator since L- and L+ do not commute and 
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therefore its spectrum is unknown aside from the two zero mode solutions which are 

investigated in Subsection 4.2.1. As a consequence, the most one can hope for is some 

kind of bounds upon the remaining spectral components of the linearized operator. In 

Subsection 4.2.2, it can be shown that the spectrum is bounded away from the origin 

in the left half plane and therefore, no instabilities can arise due to the remaining 

spectral components. This will suffice to insure the existence and stability of the 

leading order hyperbolic secant solution. 

4.2.1    Zero Modes of the Linearized Operator and Their 

Stability 

It can be shown that —L-L+ contains two zero eigenvalues with correspond- 

ing eigenmodes given by, 

L_L+(sechrtanhr)   =   0 

L_L+(sechr — rtanhrsechr)   =   0. 

The zero mode solutions of the adjoint linearized operator -L+L_, which will be 

important in determining the appropriate solvability conditions associated with the 

forcings HN, can be shown to satisfy, 

L+L_(sechr)   =   0 

L+L-(T sechr)   =   0. 

As will be made clear in what follows, the behavior of the zero modes of the linearized 

operator and its adjoint are fundamental in understanding the stability of the leading 

order solution. 

Returning now to the perturbation expansion at the next order, 0(8), it is 

found that 

^ + L.L+ t/1 = Fo(t/°, a1) = -C/°(^)2 " \(U°)2 ^ + ^U° . (4.5) 
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Since the homogeneous part of the linear equation for U1, 

-5r + L_L+tf1=0, 
Of 

has the symbolic solution 

I71(0 = e-?L-L+^1(0), 

it becomes necessary to determine the effects of the perturbation upon the two zero 

eigenvalues in order to ascertain the stability of Eq. (3.28). As noted earlier, the re- 

mainder of the spectrum will be dealt with shortly in Subsection 4.2.2. One of the two 

zero eigenmodes arises due to the translation invariance of Eq. (4.2), i.e., sech r tanh r, 

and therefore this eigenvalue remains zero under perturbation since Eq. (3.28) is also 

translationally invariant. The remaining zero mode, sechr - r tanh r sech r, is af- 

fected by the perturbation, however, and the stability of a pulse is determined by this 

single eigenvalue provided once again that the rest of the spectrum does not give rise 

to any instabilities. 

Since Eq. (4.5) has homogeneous solutions, solvability conditions are re- 

quired in order for a solution of the perturbed problem to exist [35]. It is necessary 

that the forcing, H0, be orthogonal to the null space of the adjoint linearized operator. 

A condition is therefore associated with each of the zero eigenmodes. These are as 

follows, 

{Ho, sechr)   =   0 (4.6a) 

(Fo,r sechr)   =   0, (4.6b) 

where (h,g) = /f^ hgdr denotes the inner product with respect to r. Note that in the 

case of interest, both h and g are real and complex conjugation is not necessary in the 

definition of the inner product. Upon forcing the right hand side of Eq. (4.5) to satisfy 

the above orthogonality relations, it is found that the first condition, Eq. (4.6a), is 

automatically satisfied, but the second condition, Eq. (4.6b), is only satisfied if a1 = 0. 

With a1 = 0, the following solution is obtained for U1 

U1 = -(1/6) sechr + /i(cr)(sechr-r tanhr sechr), (4.7) 
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where h(a) is arbitrary at this order. 

At the second order, 0(S2), the situation is similar, in that a forced (inhomo- 

geneous) equation is obtained which can only be solved if the orthogonality conditions 

of Eqs. (4.6) are satisfied. However, H0 is now replaced by the appropriate forcing 

Hi associated with the second order equation, i.e., (/fi,sechr) = (#i,Tsechr) = 0 

where Hi is given by the following 

Hl= - a^-^ + ac/^r-io^T^f-s^^'-e^^t/1 

ß2TT° FPU1 f)U° dll1      IdU°\2    , 
-   2(C^ _ «W™   - «^«L - {%)  U> (4.8) 

3(    '   dr>      3 dr*  + 5      \ dr )   + 15l    '   6T' 

Solvability determines h(a) by producing the equation 

| = (2a2_2„ + f„-i|). (4.9) 

It is straightforward to show that a steady-state solution of Eq. (4.9) exists and is 

stable provided a2 > (4/405), or equivalently, Aa > (4/405)(H)4 = Aac (when Tl is 

small). Therefore, when this condition is satisfied, the above analysis implies that a 

stable steady-state pulse solution of Eq. (3.28) should exist provided, of course, the 

remainder of the spectrum contains no components which give rise to instability. 

The critical value Aac determines the minimum amount of overamplification 

necessary for stable pulse solutions to occur. The need for a small amount of over- 

amplification is consistent with the use of PSAs. As was noted in Chapter 2, there is 

a small amount of decay due to 'losses' in the anti-phase-locked quadrature. These 

'losses' are actually due to the sum-frequency generation which occurs when a small 

portion of the signal field is converted into the pump field at twice the frequency. 

This process is depicted in Fig. 2.1b. For values of Aa below Aac, it is expected that 

a pulse decays to zero. Of course, these results are only valid when VI is small, but 

they are nonetheless indicative of the results obtained using numerical simulations 

for values of Tl ~ 0(1). 
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4.2.2    Spectral Estimates for the Linearized Operator when 

Excluding the Zero Modes 

Although the two zero modes of the spectrum of —L_L+ have been de- 

termined, the remainder of the spectrum of this non self-adjoint operator remains 

unknown. And since the linearized operator determines the stability of the leading 

order solution, the spectrum of -L_L+ must be further investigated. This subsec- 

tion will show that the spectrum of -L.L+ is bounded to the left of the origin with 

the exception of the two zero modes which were previously determined in Subsec- 

tion 4.2.1. This result will be shown to imply the exponential stability of the leading 

order hyperbolic secant solution provided a minimum amount of overamplification 

is supplied. Note that the spectrum being bounded to the left of the origin repre- 

sents modes which decay and are stable. This result, in conjunction with those of 

the previous subsection, demonstrate the existence of stable hyperbolic secant pulse 

solutions. 

It now remains to be shown that the remainder of the spectrum of the 

-L-L+ operator is bounded to the left of the origin. This is equivalent to showing 

that perturbations to the leading order hyperbolic secant solution of Eq. (4.5) are 

attenuated as £ gets large, i.e., there are no spectral components which give rise to 

an instability. The question of stability is then completely understood within the 

framework of the behavior of the linearized perturbation U1 which satisfies 

f)Tß 
%r = -L-L+UK (4.10) 

It has already been shown that two zero modes exist for the operator -L-L+. Further, 

the stability properties corresponding to these modes have been investigated. In order 

to determine the remaining spectral components, U1 is confined to the space which is 

orthogonal to the two adjoint zero modes of -L-L+. Therefore, the two zero modes 

of —L+L- are projected out as follows 

(U\sechr)   =   0 (4.11a) 

(C/Vsechr)   =   0. (4.11b) 
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This then imposes two constraints on the evolution of U1 and effectively removes the 

two zero modes associated with the previous stability analysis. 

The approach used to determine the stability of U1 = 0 is Liapunov's direct 

method [37]. The idea is to define a positive definite quantity which is somehow 

associated with the 'energy' of the problem and to show this 'energy' is monotonically 

decreasing in 'time' (here 'time' represents £). In particular, the following Liapunov 

function V is defined 

V = V{U1) = (U\L+U1). (4.12) 

Weinstein [36] shows that subject to the constraints given in Eqs. (4.11), the following 

inequalities hold for the Liapunov function defined in Eq. (4.12) 

(C/1,JL+C/1)>C1||C/1||, (4.13) 

where 11C^x11 = {Ul,Ul) and Cx is a positive constant. This result clearly indicates 

that the Liapunov function V or 'energy' is a positive definite quantity. 

Using the definition of V given by Eq. (4.12) in conjunction with Eq. (4.10), 

the following property can be shown to hold 

V'iU1®) = -2(C/1,L+L_L+C/1), (4.14) 

where / = d/dt, and use has been made of the fact L+, L_, and L+L-L+ are all self- 

adjoint operators. As with all Liapunov functions, the rate of increase or decrease of 

the 'energy' will be crucial in determining stability. Therefore, it becomes necessary 

to understand some properties of the inner product (t/^L+L-L+t/1). Since L+ is a 

self-adjoint operator, the following can be shown to hold 

(U^L+L.L+U1) = (W, L-W), (4.15) 

where W = L+U1. Upon using the constraint given by Eq. (4.11a) and the fact that 

U1 = L+lW, a constraint for W can be derived from (C/^sechr) = (L^W^sechr) = 

(W,^1 sechr) = 0. It is not difficult to show that the self-adjoint inverse operator 

for L+ acting on a hyperbolic secant solution gives L+1 sech r = 1/2(T sech r tanh r - 
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sech r) where the arbitrary sech r tanh r factor has been neglected. This then imposes 

the following constraint on W, 

(W, T sech r tanh r - sech r) = 0. (4-16) 

But Weinstein [36] also shows that 

(W,L.W)>C2{W,W) (4.17) 

subject to the constraint of Eq. (4.16). Written in terms of the original variable U1, 

the following inequalities then hold 

(U^L+L.L+U1) > C2{L+U\L+Ul) = C2{U\L\Ul) (4.18) 

where C2 is some positive constant. 

Investigation of an associated Lagrange multiplier problem for (C/1,!^*/1) 

provides one further inequality which can be shown to hold. These details will be 

presented towards the end of this subsection. For the present, the result will simply 

be stated as follows, 

(U\LlUl)>C3(U\L+Ul), (4.19) 

where C3 is some positive constant. Making use of the inequalities given by Eqs. (4.18) 

and (4.19) implies the following relation 

V < -2C2C3V, (4.20) 

upon using Eq. (4.12) and Eq. (4.14). Therefore, the 'energy' decreases monotonically 

since V is a negative definite quantity. From Eq. (4.20) it can be shown that the 

Liapunov function, and hence the linear perturbation U1, decays to zero exponentially 

in f with some bound on the exponential decay rate. In particular, by integrating 

Eq. (4.20) directly, it is found that 

V{U\()) < V(C/1(0))e-2C2C3«. (4.21) 

And upon using Eq. (4.13), the following is found to hold 

lit/1 II < y(t/1(0))
e-2C^< (4.22) 
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Therefore, U1 -»• 0 as £ ->• 0 at an exponential rate equal to or faster than 2C2C3 for 

any given initial condition ^(f/^O)). 

The preceding result hinges on the inequality given in Eq. (4.19) which was 

stated without proof. Therefore, it now remains to be shown that 

{U\LlUl)>Cz{U\L+U"). 

Specifically, it was this condition that gave rise to the inequality of Eq. (4.20) which 

by integration implied the exponential stability of the leading order hyperbolic secant 

solution. Therefore, the following problem is considered 

minimize ([71, L^C/1), 

subject to the constraints 

(U^L+U1) = 1 (4.23a) 

(t^sechr) = 0 (4.23b) 

(C/Vsechr) = 0. (4.23c) 

It is clear that (C/1,!^*/1) is non-negative. Now, for what follows define a = 

min {Ul,L\Ul). As in the work of Weinstein [36], the object is to assume that 

the minimum is zero, i.e., a = 0, and show that this gives rise to a contradiction. 

First however, it is necessary to prove that a zero minimum is indeed attained by 

a function in a proper admissible class. This will be done shortly. For the present, 

however, the aim will be to show that a = 0 gives rise to a contradiction. 

The contradiction regarding the minimum follows in a relatively straight- 

forward manner by considering the following Lagrange multiplier problem associated 

with the constrained minimization above, i.e., 

L\UX = XL+U1 + /? sech T + 7T sech r, (4.24) 

subject to the constraints given by Eq. (4.23). Taking the inner product of this 

equation with respect to the zero mode of L+, sech r tanh r, gives immediately 7 = 0. 

Inverting, i.e., multiplying through by L+1, gives 

L+U1 = XU1 -- (sech T-T sech r tanh r) + 8 sech r tanh r. (4.25) 
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Taking the inner product again with respect to sechrtanhr gives 8 = 0 since the 

minimum at zero implies A = 0. Upon inverting once more, it is found that 

U1 — --L+1 (sech T -T sech r tanh r) + u sech r tanh r. (4.26) 
Li 

The constraint (C/^r sechr) applied to the above equation forces u = 0 and further 

implies that U1 must be an even function in r. Taking the inner product now with 

respect to sechr gives 

(sechr,^1) = -M sechr,/,;1 (sechr - rsechrtanhr)). (4.27) 
Li 

The remaining constraint on U1, namely (t/1, sechr) = 0, must now be satisfied. 

Since L+1 is self-adjoint and L+1 sechr = sechT-Tsechrtanhr, the above equation 

can be written as 

(sechr,U1) = -^|| sechr-rsechrtanhr|| = 0. (4.28) 

This can only be satisfied for ß = 0. Therefore, since ß = ^ = S = u = 0, no 

solution exists for A = 0 and assuming that the minimum occurs at zero leads to a 

contradiction. As a consequence, the minimum must occur at some positive value, 

i.e., a > 0 and (ü/Sl+f/1) > C3(C/1,L+Ü71), where C3 is some positive constant. 

The preceding Lagrange multiplier problem assumed the zero solution to be 

attained. The focus now will be to show that this is indeed true. In particular, it 

is necessary to show that if A = 0, the minimum is attained in the admissible class. 

This fact is required in order validate the contradiction in the previous analysis of 

the associated Lagrange multiplier problem. 

Therefore, define {/„} to be a minimizing sequence, i.e., {fv,LJrfv) = 1, 

(/„,£+/„) I 0 and (/„,sechr) = (/„,Tsechr) = 0. The condition on the norm, 

(/,,£+/*) = !£ /,2+(^)2-6(£/°)2/,2 dr = 1 (4.29) 

implies that ||/„||HI and ||/„||2 are both bounded since Eq. (4.13) with /„ holds. Here 

Nlff» = S-oo(92 + (hg)2 + ••• + (dn
Tg)2)dT and the cases n = 0,1 correspond to 
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the standard L2 and H1 Sobolov norms respectively. With this mind, consider the 

following, 

(/,, L\fu) = r [(A/,)2 + 2(V/„)2 + ft + 9(U°rft 
J—oo 

-6(U°)2f2 - 6(U°)2(Vfu)
2}dr   (4.30) 

where A = d2 and V = dT. Then for any 77 > 0, we can choose f„ such that 

/OO 

[(A/,)2 + 2(V/,)2 + /2 + 9(C/°)4/,2]^ 
-00 

/OO 

W°ffl + 6([/°)2(v/„)> + r,     (4.3i) 
-OO 

which in turn gives 

0 < r [(A/,)2 + (V/„)2 + ft]dr < 6 r (U°Y[{ft + (V/„)2]rfr + 77.        (4.32) 
J-00 •'-oo 

Since (/„, L+fv) = 1 implies that ||/„||HI is bounded, this in turn implies, upon using 

Eq. (4.32), that ||/„||#2 is uniformly bounded. Thus a subsequence fv exists that 

converges weakly to some H2 function /„. And by weak convergence, /* satisfies the 

orthogonality relations given above. Further, it should follow as in Weinstein that 

J(U°)2{f2 + (V/„)
2
)<ZT -4 J(U°)2(f2 + (V/.)2)^r by Holder's inequality, interpolation 

and the uniform decay of R. This further implies J{U°)4f2dT -4 f{U°)4f2dr. It can 

then be concluded that /* ^ 0 by Eq. (4.32) since 77 is arbitrary. 

Thus far, statements concerning the last three terms of Eq. (4.30) have been 

made. Before we are able to show that the minimum is attained at /*, the first three 

terms in Eq. (4.30) must be considered. By Fatou's lemma, the following holds for 

the third term 

||/»||2<Jiminf||M|2. (4.33) 

It should be further possible to use arguments similar to Weinstein to say something 

concerning the remaining two terms in Eq. (4.30). First, let ( € L2 with ||C||2 = 1. 

By weak convergence of /„ to /*, it follows that 

(C,V/.) = lim inf(C,V/„) < Jim inf ||V/„||a. (4.34) 
v—foo 
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Maximizing over all such C, it is found that ||V/*||2 < lim„_>oo inf ||X7y^||2. In a similar 

manner, let £ € L2 with ||£||2 = 1. By weak convergence of /„ to /*, it again follows 

that 

(£, A/.) = urn inf(f, A/,) < Urn inf ||A/,,||a. (4.35) 

Maximizing over all such £, it is found that ||A/*||2 < lim^ooinf ||A/,,||2. 

Combining all of the above results and using them in Eq. (4.30) gives the 

following 

U*,L\U) < Jim inf(/„,Ll/„) = 0. (4.36) 

This implies (/*,£+/*) < 0. But from what is known of the spectrum of L2
+, i.e., it 

is non-negative, it follows that 

(A, 4/,) = 0. (4.37) 

Therefore, the minimum is attained in the admissible class provided it can be shown 

that the weighted norm, with respect to L+, of Eq. (4.23a) is equal to unity. By 

Fatou's lemma, the fact that ||V/„||2 < linwooinf ||V/„||2, and J(U°)2f2dT -»- 

f(U°)2f2dT, it is found that 

(/*,!+/,) < Jim inf(/„L+/0 = 1. (4.38) 

Now suppose (/„£+/») < 1, then define g* = /,/(/*, L+f*)1/2 which is admissible. 

Then (#», £+#*) = 1 with (5*, L\g*) - 0. Therefore, the minimum is indeed attained 

at zero with the condition on the norm being satisfied. 

To recapitulate, the stability of the linearized perturbation was considered 

in the context of Liapunov's direct method. In particular, a positive definite Liapunov 

function V was considered whose derivative with respect to the 'time' variable, V, was 

shown to be negative definite. This was shown by considering an associated Lagrange 

multiplier problem which was constrained to the space of functions for which the zero 

modes were projected out. Specifically, a contradiction was reached, provided the 

solution was in the admissible class, which forced V to be negative definite and the 

leading order solution to be asymptotically (exponentially) stable. 

The foregoing analysis implies that the spectrum of —L-L+ contains two 

zero modes with all other modes being bounded to the left of the origin. Therefore, 
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the stability of the leading order hyperbolic secant solution is entirely determined from 

the previous analysis on the two zero modes of Section 4.2.1. In particular, the leading 

order hyperbolic secant solution is exponentially stable for Aa > (4/405)(I7)4 = Aac. 

In contrast with erbium-doped communications systems [18,19], initial per- 

turbations of the propagating pulse solution using PSAs exponentially approach the 

stable, steady-state, leading order solution without the shedding of a background ra- 

diation field. This behavior is indicative of the fact that the phase-sensitive amplifiers 

break the Hamiltonian structure of the underlying nonlinear Schrödinger equation. 

In contrast, an erbium-doped fiber amplifier system preserves, to leading order, the 

Hamiltonian structure associated with the NLS which allows initial perturbations of 

the propagating pulse to generate both shifts in the soliton parameters and a back- 

ground radiation field. Both systems, however, generate a small background radiation 

field from the periodic forcing of the loss and gain. 

4.3    Pulse Stability for Amplifier Spacing of 0(1) 

In the previous section, the stability of a steady-state pulse solution is shown 

to exist for 17 < 1. For physically realizable values of the amplifier gain, fiber loss 

and dispersion length, the assumption that 17 is much less than unity no longer 

holds. This section considers the stability and evolution of propagating pulses when 

17 ~ 0(1). Numerical simulations provide the most direct and efficient method for 

studying this parameter regime in which asymptotic results of the previous sections 

fail to hold. In what follows, stable pulse solutions will be shown to exist and act as 

attractors for a wide range of initial conditions and parameter values. Further, the 

averaged evolution and the full NLS numerics will be compared in order to determine 

the the validity and accuracy of the effective evolution given by Eq. (3.28). 

The numerical method used in solving Eq. (3.28) utilizes a fourth-order 

Runge-Kutta method in time and filtered pseudo-spectral method in space [38]. The 

method combines the advantages of split-step [7,39,3] and explicit Runge-Kutta meth- 

ods [40] and gives a relatively simple fourth-order scheme with improved numerical 

stability properties.   The computational region in all of the runs was taken to be 
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larger than the region of interest and an absorbing boundary layer was implemented 

to eliminate any reflections from the edges of the computational domain. Numerical 

results were carefully checked by varying the number of Fourier modes, the time step 

and the size of the computational domain. The remainder of this section will focus 

on presenting the numerical results obtained from solving Eq (3.28). 

To begin, Fig. 4.2 shows two representative numerical solutions of Eq. (3.28). 

Figure 4.2a is for an initial pulse U{T, 0) = sech r and Fig. 4.2b for U(r, 0) = 1.8 sech r. 

In both cases the solution exponentially approaches a stable steady state as it evolves. 

Further evidence concerning the asymptotic, exponential stability of the steady-states 

for Eq. (3.28) is provided by Fig. 4.3 in which various initial amplitudes are shown to 

decay onto the final steady-state amplitude. The parameters used in these simulations 

are 17 = 1 (which corresponds to an amplifier spacing of roughly 36 km), K = 1, and 

Aa = 0.1. As was noted in the stability analysis of the previous section, positive 

values of Aa (i.e., overamplification) are necessary to obtain the stable pulse solutions. 

In these simulations, the pulses propagate 10 units in the long length scale £. 

Figure 4.4 reflects the fact that a wide range of initial pulse amplitudes 

and widths are capable of producing stable pulse solutions. This figure was made 

by simply solving Eq. (3.28) for many different initial pulses of the form U(T, 0) = 

Asech(r/r0) with different values of A and r0 and noting the cases for which the 

stable steady-state pulse solution was reached. Note that all initial pulses within 

the shaded region asymptote to the same stable steady-state which is approximately 

given by 2sech(r/1.5). The numerical simulations were carried out using the same 

parameter values as in Fig. 4.2, i.e., Tl = 1, K - 1, and Aa = 0.1. Similar numerical 

simulations indicate that stable pulse solutions are obtained for a wide range of 17, 

which correspond to a variety of physically realizable amplifier spacings. 

In Fig. 4.5, the steady-state pulse profiles that are obtained by solving 

Eq. (3.28) for different values of overamplification, Aa, are depicted. Note that 

for larger values of overamplification small wings develop in the pulse's characteristic 

profile. This behavior is similar to what is observed when phase-sensitive ampli- 

fiers are used in linear systems (a fiber/PSA line in which the nonlinearity plays no 

role). [41,32] 
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(a) 

G>) 
Figure 4.2: Evolution of initial hyperbolic-secant pulses U(T,0) = sechr, (a), and 

£/(r,0) = 1.8sechT, (b), showing exponential decay onto the stable pulse solution. 

The parameters are: 17 = 1 (corresponding to an amplifier spacing of 36 km), K = 1, 

and Aa = 0.1. The computations were run to £ = 10 which explicitly shows the 

stability of the pulses. 
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Figure 4.3: Asymptotic approach onto the final steady-state solution from initial 

conditions U(r,0) = Asechl.5r, where A = 1.9,1.6,1.3 and 1.2 respectively. Note 

that the transient response to the initial amplitude is attenuated after a very short 

distance of the nondimensional distance £. Further, the steady-state is an attractor 

for a wide range of initial amplitudes. The parameter values used are identical with 

those of the previous figure. 
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Figure 4.4: Initial pulse amplitudes A and widths T0 which give stable pulse solutions 

for VI = 1, K = 1, and Aa = 0.1. The initial conditions U{T,0) = Asech(T/T0), with 

different values of A and T0, were used. 
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Figure 4.5: Final steady-state pulse profiles for different values of the overamplifica- 

tion parameter, Aa = 0.05, 0.10, and 0.20. Note the small wings in the pulse's profile 

which develop for the larger values of Aa. 
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A crucial issue which is addressed at this juncture concerns the validity of the 

approximation Eq. (3.28) for the averaged evolution. A measure of the accuracy of the 

averaged envelope equation, Eq. (3.28), is obtained by comparing its solutions with 

numerical solutions of the full nonlinear Schrödinger equation with loss and periodic 

phase-sensitive amplification, Eq. (3.6). Figure 4.6a shows such a comparison for 

a total propagation distance of 10,000 km using the same initial pulse and physical 

parameters as those used in the simulation in Fig. 4.2a. Note that in this figure 

only the phase-locked quadrature of the full simulation of the NLS equation, i.e., 

A in Eq. (3.11), is plotted. Further, recall that due to the amplitude rescaling in 

Eq. (3.27a), the phase-locked quadrature of the full NLS simulations must be rescaled 

by the factor [(1 - exp(-2r/))/2I7]1/2 for comparison with Eq. (3.28). Because the 

two solutions are indistinguishable when plotted together, the difference between the 

two pulses is shown in Fig. 4.6b. Note that the difference is quite small, of order 

10~4, demonstrating that the averaged equation is an accurate approximation to the 

full NLS equation with loss and periodic phase-sensitive gain. 

The majority of the difference between the two solutions can be attributed 

to second-order terms in the perturbation expansion (i.e., A2) which have been ig- 

nored in this comparison. In addition, a small amount of linear dispersive radiation 

of O(10-5) can be seen in Fig. 4.6b. It is largest in the vicinity of the main pulse and 

decreases away from it. This linear dispersive radiation is not expected to appear 

in the multiple-scale expansion because it is exponentially small in the perturbation 

parameter [42]. Such exponentially small terms typically do not show up in pertur- 

bation expansions using powers of the small parameter [34] unless special techniques 

are employed. [43] 

It should be further noted that not all frequencies are present in the linear 

dispersive radiation. A detailed analysis of the linear response of an optical fiber 

line employing phase-sensitive amplifiers [32] shows that only certain frequencies are 

able to maintain phase-matching with the amplifiers as they propagate, and thus 

only these frequencies experience an overall gain close to unity as they pass through 

an optical fiber/PSA segment. The periodic forcing of the gain and loss can be 

shown to determine which frequencies become 'transparent' through a fiber-PSA line. 



68 

1.2 
 r— i  i                  i 

1 1 

o   0.8 j 1 
3 

iL 0.6 
E 
< 

0.4 

1 

0.2 

n 
-10 -5 0 5 

Dimensionless time 
10 

-10 -5 0 5 
Dimensionless time 

(b) 

Figure 4.6: Comparison of the solutions of the averaged envelope equation and the 

full nonlinear Schrödinger equation with loss and periodic phase-sensitive amplifica- 

tion, showing the in-phase quadrature, (a), and the difference, (b), between the two 

solutions. The parameters are 17 = 1.0, corresponding to an amplifier spacing of 

36 km, K = 1, and Aa = 0.1. The solutions are plotted after a total propagation 

distance of 10,000 km or 275 amplifiers. 
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Figure 4.7: Spectral evolution over 10,000 km for an amplifier spacing of 100 km and 

Aa = 0.1. Note that only certain frequencies, which are strongly dependent on the 

amplifier spacing, pass through the chain of amplifiers with unity gain. All other 

frequencies are attenuated. 

Therefore, these frequencies exhibit a strong dependence upon the spacing between 

the amplifiers. For the calculations presented here the amplifier spacing was taken to 

be exactly periodic and thus the dispersive radiation is able to survive. In particular, 

Fig. 4.7 depicts the evolution of the spectrum of the full NLS equation with loss and 

phase-sensitive gain. For this figure, the amplifier spacing was chosen to be 100 km in 

order to more clearly depict the qualitative features of the spectrum as it evolves. Note 

the clear generation of several sideband frequencies. These sidebands are responsible 

for producing a background radiation field which is superimposed upon the soliton- 

like pulse propagation. As the amplifier spacing is decreased (increased), the amount 

of sideband frequency generated likewise decreases (increases). This then determines 

the amplitude of the background radiation field generated through the periodic forcing 

of the loss and gain. In a more realistic situation, where the amplifier spacing varies 
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somewhat with distance along the fiber line, this linear dispersive radiation is expected 

to be significantly reduced. The effect of variable amplifier spacing upon the solitons 

is expected to be minimal, however, because the solitons and the PSAs will be phase- 

locked. A more careful and detailed analysis regarding this situation is carried out in 

Chapter 6. 

Upon comparing the anti-phase-locked quadrature B, which is an order of 

magnitude smaller than that of the phase-locked quadrature A, with that of the 

full NLS simulations, results similar to those found previously for the phase-locked 

quadrature are found to hold for B. In particular, Fig. 4.8 shows a comparison of 

the anti-phase-locked quadrature obtained from the averaged equation, a suitably 

rescaled Eq. (3.24), with the result for the anti-phase-locked quadrature obtained 

from the numerical solution of the NLS equation with loss and PSAs, i.e., B in 

Eq. (3.11). The two curves are plotted just after an amplifier in Fig. 4.8a, where the 

parameters and total propagation distance are the same as those for Fig. 4.6. Since 

the two curves are indistinguishable when plotted together, the difference between 

the two is plotted in Fig. 4.8b. Similar to the phase-locked quadrature, here a small 

amount of linear dispersive radiation is also seen. 

In Chapter 3, Fig. 3.2 depicted the qualitative behavior of the phase-locked 

quadrature A. It is also illustrative to directly examine the stabilizing effect of the 

amplifiers by plotting the magnitude of the anti-phase-locked quadrature between 

the amplifiers. This is shown in Fig. 4.9, which provides clear evidence that after an 

amplifier the anti-phase-locked quadrature grows due to forcing from the dispersion 

and nonlinear self-phase modulation, but that upon reaching the next amplifier it 

is sharply attenuated. (Note that in this figure the exponential decay due to loss 

between the amplifiers has been factored out.) 

In the preceding numerical simulations of Figs. 4.6-4.9, the solutions which 

are plotted are not yet close to a steady-state. Due to the suppression of the dispersion 

and self-phase modulation by the amplifiers, much longer distances are necessary 

for a true steady-state to be achieved. As an example, in Fig. 4.10 the value at 

the center of the pulse just after an amplifier is plotted as a function of distance 

(in dispersion lengths).   Results from both the averaged equation, Eq. (3.28), and 
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Figure 4.8: Comparison of the solutions of the averaged envelope equation and the full 

nonlinear Schrödinger equation with loss and periodic phase-sensitive amplification, 

showing the out-of-phase quadrature, (a), and the difference, (b), between the two 

solutions. The parameters are the same as in Fig. 4.6. 
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Figure 4.9: Midpoint value of the out-of-phase quadrature plotted as a function of 

distance, showing the evolution between the amplifiers (calculated using the full non- 

linear Schrödinger equation with loss and periodic phase-sensitive amplification). The 

exponential decay due to loss between the amplifiers has been factored out. The mag- 

nitude grows after an amplifier, but upon reaching the next one it is sharply attenu- 

ated. Here the amplifier spacing is 50 km, and the distance is in terms of dispersion 

lengths (z = 1 corresponds to 500 km). 

the full NLS simulations, Eq. (3.6), are plotted. The curves are once again almost 

indistinguishable. Note that the solution is not even close to the steady-state until the 

pulse has propagated approximately 50,000 km. This shows the degree to which the 

phase-sensitive amplifiers are able to eliminate the effects of dispersion and self-phase 

modulation. 

In considering a fiber-PSA line for use in a communications system, it is of 

interest to determine how far one can push the parameter regime and still achieve 

stable pulse propagation. Therefore, the case for 100 km amplifier spacing is in- 

vestigated. The results for the phase-locked and anti-phase-locked quadratures after 

10,000 km are shown in Figs. 4.11a and 4.11b, respectively. In both figures, 17 = 2.76, 

K = 1, and Aa = 0.05.   Here the dispersive radiation generated as a result of the 
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Figure 4.10: Midpoint value of the in-phase quadrature just after an amplifier plot- 

ted as a function of distance (dispersion lengths). Results from both the averaged 

equation (dashed curve), Eq. (3.28), and the full NLS equation with loss and periodic 

phase-sensitive amplification (solid curve) are plotted. The two are virtually indistin- 

guishable. The parameters are 17 = 1.0, K = 1, and Aa = 0.1. A total propagation 

distance of 100,000 km or 2750 is shown. Note that an approximate steady-state is 

not reached until after the pulse has propagated roughly 50,000 km. 

periodic forcing by the loss and PSAs is relatively more pronounced, although it is 

still limited to a narrow range of frequencies by the action of the PSAs. Recall that 

Fig. 4.7 depicts the spectral evolution for these parameter values. As mentioned ear- 

lier, this radiation is expected to be largely eliminated when the amplifier spacing is 

allowed to vary along the length of the fiber. Note that these simulations were of the 

phase-locked quadrature using the full NLS with PSAs as given by Eq. (3.11). This is 

due to the fact that the averaged evolution is not capable of capturing the dispersive 

radiation which is exponentially small. 

Finally, it is of interest to compare these numerical results with similar re- 

sults obtained from the equations that are used to describe a communication system 
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Figure 4.11: Comparison of the solutions of the averaged envelope equation (dot- 

ted lines) and the full nonlinear Schrödinger equation with loss and periodic phase- 

sensitive amplification (solid lines), for both the in-phase, (a), and out-of-phase, (b), 

quadratures. The parameters are VI = 2.76, corresponding to an amplifier spacing of 

100 km, K = 1, and Aa = 0.05. The solutions are plotted after a total propagation 

distance of 10,000 km or 100 amplifiers. 
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Figure 4.12: Qualitative comparison of pulse solutions showing the amount of disper- 

sive radiation shed by the soliton-based communication systems employing erbium 

amplifiers, (a), and PSAs, (b). In both cases the initial pulse amplitude was taken to 

be 10% higher than the optimum (for a fixed width). The system employing PSAs, 

(b), generates considerably less linear dispersive radiation with such an initial con- 

dition. For these simulations, the dispersion length was taken to be 411 km, the 

amplifier spacing was 50 km, and the gain of the amplifiers was set to exactly cancel 

the fiber loss between the amplifiers. [18] 

employing solitons and lumped erbium-doped fiber amplifiers [18]. The physical pa- 

rameters in the numerical simulation of the erbium amplifier system include a disper- 

sion length of 411 km and an amplifier spacing of 50 km. If the amplitude of the initial 

pulses in both cases are taken to be precisely those required for the corresponding 

steady-state solutions (a one-soliton in the erbium amplifier case), then the amount 

of dispersive radiation generated in each case is roughly of the same magnitude. If 

the amplitudes of the pulses are initially taken to be 10 percent larger than those 

required for the corresponding steady-state solutions, however, then the system em- 

ploying erbium amplifiers generates a significant amount of dispersive radiation. This 

is illustrated in Figs. 4.12a and 4.12b. In the system employing PSAs, Fig. 4.12b, the 
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amplifiers attenuate most of the linear dispersive radiation that is shed by the pulse 

as it adjusts its amplitude. This can be understood from the underlying stability 

results of each system in consideration. Within the context of an erbium-doped line, 

which is a phase-insensitive amplifier system, the perturbations due to the loss and 

gain do not break the leading order Hamiltonian structure. Therefore, the excess 

'energy' which is carried in the pulse through the initial amplitude and width fluctu- 

ations acts to generate a background radiation field as it cannot dissipate this excess 

'energy'. However, in the previous section, the averaged evolution with the PSAs is 

shown to exhibit a dissipative structure which simply attenuates exponentially any 

initial amplitude and width fluctuations. 

4.4    Summary 

At the onset of this chapter, the aim was to determine whether stable pulse 

solutions which were governed by the averaged evolution equation (3.28) could be 

supported in a fiber optic communications line. In general, one is forced to resort 

to numerical simulations to study the parameter regime of interest. However, in the 

limit of small amplifier spacing, perturbation and asymptotic methods allow for the 

extraction of valuable information concerning the pulse propagation and its stability. 

Remarkably enough, many of the underlying results found in the asymptotic limit 

hold qualitatively in the regime of physical interest. In what follows, the significant 

features of the stability analysis results are summarized. 

To begin, it is noted that in order for a soliton-like pulse to propagate 

over long distances, a slight amount of overamplification must be supplied. As was 

mentioned in both Chapter 2 and Section 4.2, this requirement for overamplification 

arises due to the three wave interaction in the PSAs which convert a small amount 

of signal field into the pump field. This mechanism is also responsible for breaking 

the underlying Hamiltonian structure normally associated with the NLS. 

Because the Hamiltonian structure is no longer applicable, the averaged 

evolution for the PSAs inherits the dynamics associated with dissipative, nonlinear 

systems.  This fact allows the pulse propagation and its corresponding stability to 
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exhibit some markedly different behavior than that of its phase-insensitive counter- 

part. In particular, the asymptotic regime investigated in Section 4.2 implies that 

the steady-state solutions are reached in an exponential manner, i.e., the steady-state 

solutions act as attractors for a wide range of parameter values and initial condi- 

tions. Further, the transients associated with the initial conditions are attenuated 

on the slow f length scale without the generation of a background radiation field. 

This also is in stark contrast to the stability behavior of phase-insensitive amplifiers 

where the stability is reached via the shedding of a background radiation field. In a 

sense, the PSAs are shown to exhibit improved stability results provided the proper 

overamplification is supplied. 

In this chapter, it has been shown, both analytically and numerically, that 

the averaged evolution is capable of supporting soliton-like pulse propagation over 

large distances for a wide range of input parameters. The goal of the next chapter will 

be to improve on this by further investigating the parameter space of the averaged 

evolution. In particular, the bifurcation structure of Eq. (3.28) can be quantified 

and the full range of parameter space can be explored. This allows one to further 

understand the limitations and validity of the approximations involved deriving the 

averaged evolution. 



Chapter 5 

Bifurcation Analysis 

5.1    Introduction 

In the last chapter, the aim was to develop an analytical and numerical 

framework from which to document the existence and stability of propagating soliton- 

like pulse solutions. This goal was achieved and the steady-state solutions were shown 

to act as exponential attractors for a wide range of parameters and initial conditions. 

However, each numerical simulation was limited to the exploration of a single steady- 

state for fixed values of 17 and Aa respectively. Further, it was required that each 

initial condition be investigated individually to insure that they indeed approached the 

appropriate final steady-state. In order to provide any extensive overview and detail 

concerning the full range of parameter space, many simulations would be required 

which would lead to considerable computational expense. 

The aim of this chapter is develop an alternative method which can explore 

parameter space in a relatively simple manner and which will not require large nu- 

merical simulations and computational expense. The idea then is to try and develop 

some scheme which can produce a more general understanding of the parameter space 

and its stable and unstable steady-states. Once the stable and unstable branch of 

solutions are known, the bifurcation structure associated with Eq. (3.28) can be easily 

understood. 

In Section 5.2, use is once again made of well known asymptotic and per- 

turbation methods in order to investigate a parameter regime which is crucial to the 

understanding of the bifurcation structure of the averaged evolution. Just as in Sec- 
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tion 4.2 of the previous chapter, the parameter regime for which this is applicable 

is not of physical interest. However, the results obtained are indicative of a bifurca- 

tion structure valid for a wide range of parameters. This section will be followed by 

an analysis of the steady-states of Eq. (3.28) using the bifurcation software package 

AUTO. Here, the stable and unstable branch of solutions can be found by simply 

tracking the steady-states for a wide range of parameter space which incurs little 

computational expense. 

As was mentioned in Chapter 3, the averaged evolution and its solution 

structure is at the heart of this dissertation. Therefore, upon combining the results 

found in Sections 5.2 and 5.3, the qualitative and quantitative features of the solution 

branches of Eq. (3.28) can be documented and well understood in terms of the bi- 

furcation structure. This then gives a clearer picture of the stability of long-distance 

pulse propagation and the potential advantages of a fiber-PSA communications line 

for a wide range of physically realizable parameter values. 

5.2    Bifurcation from the Trivial Solution 

The focus of the last chapter was to understand the stability of the steady- 

state hyperbolic secant solutions of Eq. (3.28) for U ~ 0(1). And in particular, 

asymptotics were used in Section 4.2 in order to understand the limit 17 < 1 and 

AQ < 1. In this section, the asymptotic regime of interest to be explored corresponds 

to U < 0(1) for arbitrary 17 and Aa. Therefore, the stability of the basic solution, 

which corresponds to U identically zero, is considered [44]. This can be simply done 

by linearizing Eq. (3.28) about the basic state, i.e., letting 

U = 0 + U, (5.1) 

where Ü < 0(1) and the higher order terms are ignored.  Inserting Eq. (5.1) into 

Eq. (3.28), the linearized evolution about the basic state is governed by 

dÜ     ld4Ü     ld2Ü  .  (\      A   >t 
d{      4dr4      2dr2 + Q_Aa)t/ = 0. (5.2) 
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Figure 5.1: Plot of the neutral stability curve (<r = 0) in the wavenumber k ver- 

sus overamplification Aa plane. Note that the most unstable wavenumber, k = 0, 

corresponds to a value of Aa = 1/4. 

In order to understand the linearized evolution given by Eq. (5.2), it is 

convenient to look for a Fourier-mode solution of the form U = exp(cr£ + ikr). This 

then gives the dispersion relation 

<7 + ifc4 + ^2+Q-Aa)=0. (5.3) 

Note that for a < (>) 0, the solution is stable (unstable). The value a = 0 corresponds 

to neutral stability and is given by the following relation between the wave number 

k and the critical overamplification parameter value Aac 

Aac = i(fc2 + l)2. (5.4) 

The neutral stability curve given by Eq. (5.4) is depicted in Fig. 5.1. As can be seen 

from this figure , the zero wavenumber is the most unstable wavenumber. Therefore, 

the remainder of the analysis in this section will be carried out in the vicinity of 

(U, Aa) = (0,1/4) for arbitrary VI. 

The preceding analysis identifies the appropriate regime to be explored. 

Therefore, in order to determine the dynamics and behavior of the solution near the 
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0(82) 

Figure 5.2: Qualitative depiction of the scalings associated with the neutral stability 

curve (a = 0) in the k2 versus Aa plane. Note the quadratic relation between the 

squared wavenumber and overamplification. 

minimum of the neutral stability curve, it is necessary to expand about U = 0 and 

Aa = 1/4. Higher order terms will now be important in determining the bifurcation 

structure, and therefore they cannot be neglected. Prior to expanding however, use 

is once again made of appropriately defined multiple-scales. As in previous chapters, 

the slow evolution associated with the linearized operator can be correctly and con- 

veniently captured using these new slow scales. Note that because of the quadratic 

relationship between the squared wavenumber and the overamplification (see Fig. 5.2), 

the following slow spatial and time variables can be introduced in order to determine 

the appropriate behavior near the unstable values of the wavenumber and overampli- 

fication [44], i.e., define 

T = ST, 

(5.5a) 

(5.5b) 

where again 8 <C 1.  These scales will capture any slow growth in the perturbation 

which will be measured in 8. 
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Now expand about the zero wavenumber to determine the behavior of the 

solution near the minimum of the neutral stability curve, i.e., let 

U   =   0 + SU1(C,r,r1,T) + 82U2(iiT,rl,f) + --- (5.6a) 

Aa   =   I-JV + .... (5.6b) 
4 

Collecting those terms which are of leading order, it is found that 

L[/1 = ™i + 1^-1^ = 0. (5.7) 
d£      4 dr4      2 dr2 K     ' 

The steady-state solution can be simply given by a 'constant' with respect to the fast 

variables, i.e., U1 — V(r,r)). This solution follows from the fact that the expansion 

is about the zero wavenumber, i.e., expikr = expi(0 + C)T = V(T). 

Solving at higher order and requiring the forcing terms to be in the range 

of the linearized operator (e.g. solvability must be satisfied) gives nothing new at 

0(e2). However, at 0(e3) the slow evolution of the envelope V(r,ri) can be found. 

The evolution is governed by 

W.W+V-M (5.8) 
dr}      2 or2 

with V -¥ 0 as f ->• ±oo [44]. Note the striking resemblance of the right hand side 

of Eq. (5.8) with the definition of the L_ operator of the last chapter. In particular, 

if // = 1/2 then Eq. (5.8) reduces to analyzing dV/drj + L-V = 0. With this in mind 

and recalling that L_(sechr) = 0, a steady-state solution to Eq. (5.8) can be easily 

found for values of /x > 0. This steady-state is given by 

Va = fiit sechst, (5.9) 

where Vs denotes the steady-state solution. It now remains to determine the stability 

of the above steady-state. Therefore, linearize about Vs in the following manner 

V = V,(f) + V(f,i/), (5.10) 

where V < Vs. The higher order terms can be neglected due to the fact the stability 

can be determined from the first correction term V. In particular, upon making the 



Max  U 

\ 

U 

83 

1/4 
-Ü- 

Aa 

Figure 5.3: Characteristic behavior of the subcritical bifurcation emanating from 

([/, Aa) = (0,1/4). Note that S (solid line) corresponds to the stable branch of 

solutions and U (dashed line) to the unstable branch. 

substitution V = We"71 and substituting Eq. (5.10) into Eq. (5.8), it is found that 

the stability of the leading order hyperbolic secant solution reduces to understanding 

the behavior of 

L+W = aW, (5.11) 

where L+ = |J-rj + 3(VS)2 — fi. From the previous chapter, it is known that the 

operator L+ as denned contains one positive eigenmode. This mode will give rise to 

exponential growth and instability. Therefore, it can be understood that the hyper- 

bolic secant, steady-state branch of solutions which emanates from the bifurcation 

point (U,a) = (0,|) is unstable and gives rise to a subcritical bifurcation from the 

basic solution U = 0. This is depicted in Fig. 5.3. 

The foregoing analysis has implied the existence of a subcritical bifurcation 

from U — 0 for Aa =1/4 and VI arbitrary. Note that the analysis is limited to 

an asymptotic regime which is 0(6) away from the bifurcation point. It is of inter- 

est however, to determine the global nature of the bifurcation structure associated 

with the averaged evolution. In the next section, through use of the bifurcation soft- 
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ware package AUTO, the full bifurcation diagram associated with Eq. (3.28) will be 

explored for a wide range of parameters which are outside the asymptotic regimes 

explored thus far. It will be shown that the solution branch associated with the sub- 

critical bifurcation from U = 0 will eventually reach a limit point and fold back onto 

the stable steady-state branch of solutions of Eq. (3.28) which were found in the last 

chapter. 

5.3    Bifurcation Structure via AUTO 

In this section, the bifurcation software package AUTO [45] is used to deter- 

mine the steady-state solutions and bifurcation diagram associated with Eq. (3.28). 

In particular, our aim is to explore the full range of parameters for which Eq. (3.28) 

gives rise to stable pulse solutions. AUTO allows for the investigation of the parame- 

ter regime which is beyond the range of the asymptotic and perturbation analysis of 

the previous section and Section 4.2 of the last chapter. 

AUTO is a software package which allows for the numerical continuation 

of steady-state solution branches in parameter space. In particular, AUTO is capa- 

ble of performing numerical analysis of systems of nonlinear differential or algebraic 

equations. The concern here will be with systems of differential equations. And of 

primary concern will be the detection of both bifurcation points and limit points. In 

what follows, Eq. (3.28) with dU/d£ = 0 is considered as a system of four coupled 

ordinary differential equations with some appropriate boundary conditions. 

Implementing AUTO does not follow directly from Eq. (3.28) because an 

exact solution from which to start the calculations does not exist. However, an 

associated problem may be considered which exhibits an exact solution. Namely, the 

iterated NLS equation is considered. The iterated NLS is obtained by simply taking 

the derivative of Eq. (3.3) (with 7 = 0) with respect to Z and making use of the fact 

that mixed partials can be interchanged. Looking strictly at steady-state solutions 

(d/dZ -> 0 ), the iterated-NLS structure can be expressed as follows 

f JL _ iV V - 8V3 + 12V5 + 12V (^\   + 12V2^ = 0. (5.12) 
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Therefore, a homotopy from the iterated NLS equation is used in view of the exact 

hyperbolic secant solution it exhibits, i.e V = sechr. Once this is implemented and 

the correct boundary conditions are imposed, AUTO can be used to explore the full 

parameter regimes of Tl and Aa. Note that the terms of Eq. (5.12) are identical to 

those which are found for the averaged evolution of Eq. (3.28) with the exception of 

the coefficients. 

Since the aim is to make use of a homotopy from the iterated-NLS, the 

steady-state fourth-order ODE of Eq. 5.12 can be combined with that of the averaged 

evolution of Eq. (3.28). This gives the following combined steady-state equation 

dr 
-1     U + (l-9) 

'dU\' d2U 
-8*73 + 12£/5 + 12£/(^J   +12U2

d^2 

+ 9 
'dU\' ,d2U 

-4AaU-4U3 + 4U5 + 12ßU[^~)   + 4(ß + l)U2 — = 0,    (5.13) 

where for 9 = 0 Eq. (5.13) reduces to the iterated NLS and for 9 = 1 Eq. (5.13) 

reduces to the averaged evolution of Eq. (3.28). Since the interest is in using a 

homotopy from the iterated NLS to get a solution for the averaged equation, 9 will 

be treated as parameter which is initially zero and is continued so that 9 becomes 

unity. This then will give an initial starting solution for exploring the parameter 

space of the averaged evolution. 

Before proceeding to find appropriate boundary conditions, it will be helpful 

to express Eq. (5.13) as a set of coupled first-order, nonlinear differential equations. 

Therefore, Eq. (5.13) can be expressed in the following form 

U[   =   TU2 

U'2 

% 

K 

(5.14a) 

(5.14b) 

(5.14c) 

= TU3 

= TU4 

= T[2Uz-Ux 

+ (1-9) {8(7? - 12t/f - \2UxUl - \2UlUz) 

+ 9 {4AaUi + 4C/f - 4U? + Ylß\Jx\J\ + 4{ß + 1)U2U3}],      (5.14d) 
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where [/,• = d^'^U/dr^'1^ and the prime denotes differentiation with respect to r. 

In the above, the averaged evolution and the iterated NLS have been considered on 

some finite interval r G [—T, T]. The appearance of T in Eqs. (5.14) reflects the fact 

that the interval [—T,T] has been scaled on to the interval r € [—1,1]- Therefore, 

r = 1 now represents the edge of the computational domain. 

At this point, the appropriate boundary conditions associated with the sys- 

tem of ODEs is considered. Two of the four boundary conditions imposed are due to 

the even symmetry of the solution about the origin, i.e., dU/dr = 0 and d3U/dr3 = 0 

at r = 0. The remaining two boundary conditions considered are derived from the 

decaying modes associated with the linear part of the fourth-order evolution. In par- 

ticular, when far from the localized pulse, the nonlinear terms can be neglected and 

the steady-state evolution reduces to the linear equation given by 

d4U       d2U 
^7-^ + (l-4AQ)C/ = 0. (5.15) 

Letting U — eV gives rise to a fourth-order characteristic equation whose eigenvalues 

are given by 

A = ±yr+^,±yr^, (s.ie) 
where 7 = viAa. Note that the eigenvalues imply the existence of two growth and 

two decay eigenmodes for Aa < 1/4. For Aa > 1/4, Eq. (5.16) implies the existence 

of one decay, one growth, and a pair of complex conjugate modes. In what follows, it 

will be assumed that Aa < 1/4 and appropriate boundary conditions will be derived 

for this case. 

Far from the pulse, the growth modes, — y/1 + 7 and —A/1 — 7, are unphys- 

ical. This then leaves the two decay modes, —\/l + 7 and —y/1 — 7, from which a 

second order ODE can be constructed from the characteristic equation 

A2 + (x/^+7 + xA^T)* + \/l-72 = 0. (5.17) 

The associated ODE, which governs the two decay modes of the fourth-order evolu- 

tion, is now easily shown to behave according to 

d2U     , n       n ,dU 
d £ + (v^T^ + \ß^i)^; + yfi^fU = 0. (5.18) 
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Eq. (5.18) along with its derivative 

0+(yn^+v7^)^+yf^fu*=°       (5-19) 
are the two appropriate boundary conditions to be imposed at the end point of the 

computational domain. Written in terms of the appropriate system of ODEs, all four 

boundary conditions can be expressed succinctly as follows 

c/3(i) + y/l + 7 + \A - 7 C/2(l) + y/l-l'Ui(l) =   0 (5.20a) 

U4(l) + y/l+T + y/l-1 %(1) + V1 " 72 W) =   0 (5.20b) 

U2(0) =   0 (5.20c) 

U4(0) =   0. (5.20d) 

Here C/;(l) represents the amplitude at the edge of the computational domain while 

Ui(0) is the value at the center of the computational domain. 

Equations (5.14) with its boundary conditions given by Eqs. (5.20) can now 

be implemented directly into AUTO. Starting with an initial hyperbolic secant profile 

and 0 = 0, the length of the computational domain, T in Eqs. (5.14), is increased. 

After reaching a large value for the size of the computational domain, the homotopy 

parameter 0 is increased from zero to unity. The overamplification Aa and parameter 

Tl can then be adjusted independently in search of bifurcation points and limit points. 

In what follows, the results of this search are given. 

In Fig. 5.4, the maximum pulse amplitude of the steady-state solutions ver- 

sus Tl is explored for two different values of the overamplification parameter Aa. In 

particular, the values of Aa = 0.1 and Aa = 0.2 are considered. Note that the steady- 

states persist as 17 approaches large numbers, i.e., infinity. Although the amplitude 

of U in Eq. (3.28) remains 0(1) as 17 approaches such large values, the physical pulse 

envelope R grows without bound as Tl approaches infinity. This can be understood 

from the amplitude rescaling 

„     (l-e-*"\-"\, 
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Figure 5.4: Depiction of the maximum amplitude U as a function of the parameter 

VI for the values of Aa = 0.1 and Aa = 0.2. 

where the phase rotation K has been taken to be unity in Eq. (3.27). Figure 5.4 

reflects a remarkable range in parameter space which is capable of supporting sta- 

ble, propagating pulse solutions. Note however that the averaged evolution equation 

ceases to be valid for such large values of 17. 

The steady-state solutions computed via AUTO can be compared to the 

numerical simulations of Eq. (3.28). Figs. 5.5a and 5.5b, show a comparison for the 

values of 17 = 1 and Aa = 0.2. Various propagation times indicate the exponential 

approach of solutions of Eq. (3.28) to the steady-state branch of solution computed 

via AUTO. In particular, Fig. 5.5a shows half the pulse profile computed using AUTO 

along with the averaged pulse envelope computed from Eq. (3.28) for the propagation 

distances of £ = 20 and £ = 50.  Figure 5.5b depicts the comparison for the values 
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Figure 5.5: Comparison of steady-states computed via AUTO versus full numerical 

simulations of the averaged evolution. Three pulse profiles are depicted corresponding 

to the AUTO solution and the averaged evolution for values of £ = 20 and £ = 50. In 

(a) r € [0,12]. (b) contains the interval r € [2,6] which further depicts the difference 

in the three solutions. Note that as £ gets large, the averaged solution approaches 

the steady-state solution generated via AUTO. 
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of r E [2,6]. Note that as £ gets large, the averaged evolution from Eq. (3.28) 

approaches the AUTO solution. AUTO provides a direct method for finding the final 

steady-state without having to propagate the solution of the averaged evolution for 

large times. Similar numerical results hold for various values of the parameters 17 

and overamplification Aa. 

Returning now to the aim of this section, which is the investigation of the 

bifurcation diagram associated with Eq. (3.28), the stable and unstable solution 

branches are computed for various values of 17 and Aa. It is convenient to begin 

by fixing the values of 17 and exploring the maximum amplitude as a function of the 

overamplification Aa. From this perspective, Figs. 5.6a-d depict the subcritical bifur- 

cation from Aa =1/4 for various values of 17. This is in agreement with the analysis 

of the previous section. Note that after the unstable branch reaches the limit point, 

the solution branch folds back and becomes the branch of solutions which correspond 

to the stable pulses of physical interest. As the value of Tl increases, the limit point 

moves away from values of Aa near zero. The bifurcation diagram associated with 

Tl as it approaches infinity is essentially given by Fig. 5.6d. 

Next, the value of Aa is fixed and an investigation of the maximum am- 

plitude as a function of the parameter Tl is carried out. Fig. 5.7 depicts both the 

stable and unstable branches as Tl is increased towards large values (i.e., infinity). 

For values of the overamplification above a critical value, the stable and unstable so- 

lution branches associated with a fixed value of Tl remain disconnected for all values 

of Tl. However, once the overamplification drops below a certain value, Aa < .088, 

the stable and unstable branches are joined and limit points exists in the amplitude 

versus Tl plane. This can be thought of as an isola in the parameter space where the 

size of the isola is dependent on the value of the overamplification Aa, i.e., as values 

of Aa get smaller (larger), so does the isola. This behavior is represented in Fig. 5.7 

for various values of the overamplification Aa. 

In conclusion, this section demonstrates that AUTO provides an efficient and 

effective way in which to explore the parameter regime of Eq. (3.28). Stable pulse 

solutions are shown to exist and be in good agreement with numerical simulations of 

the full averaged equation. Further, AUTO avoids long computational runs associated 
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Figure 5.6: Bifurcation diagrams associated with the averaged envelope equation. 

The solid lines correspond to stable solutions while the dashed line corresponds to 

the unstable. In each case, the U = 0 solution is stable (unstable) for Aa < (>)l/4. 

(a),(b),(c) and (d) depict the subcritical bifurcation from Aa = 1/4 and the location 

of the limit point for the values of Aa = .02,1,2,100 respectively. Note that as 

Tl is increased from near zero to infinity, the limit point moves from Aa ~ 0 to 

Aa ~ 0.088. 
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Figure 5.7: Solution curves in the amplitude versus 17 plane. The solution curves 

correspond to differing values of the overamplification parameter Aa. Note the isola 

which exists for values of Aa < 0.088. As the overamplification becomes larger 

however, the solution branches separate into an upper and lower branch corresponding 

to stable and unstable branch solutions of the pulse propagation. 

with finding steady-state solutions of the averaged evolution of Eq. (3.28). Instead, 

AUTO simply gives the steady-state solution for a wide range of parameter values 

and significantly reduces computational expense. 

5.4    Summary 

In this chapter, the bifurcation structure of the averaged evolution is ex- 

plored. In particular, emphasis is placed on obtaining information regarding the 

stable and unstable steady-state pulse solutions and their dependence on the param- 
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Figure 5.8: Qualitative structure of the bifurcation diagram associated with the av- 

eraged evolution. This is essentially a combination of the previous two figures which 

depict the amplitude versus. Aa and amplitude versus. Tl planes respectively. 

eters 17 and Aa. In contrast with the previous chapter, an alternative method for 

exploring the full range of parameter space is presented which does not depend on 

the initial conditions or full numerical simulations of Eq. (3.28). 

In Section 5.2, asymptotic methods can be applied the averaged evolution in 

the vicinity of the basic solution U = 0 in order to describe the subcritical bifurcation 

which occurs at Aa = 1/4. Although this analysis is only valid in a small regime, it 

holds for arbitrary values of 17. Therefore, it describes a 'global' behavior which aids 

in the understanding of the full bifurcation structure of Eq. (3.28). 

Section 5.3 contains the bulk of this chapter's results. It is this section which 

presents the results of the use of the software continuation package AUTO. AUTO 

provides a method for which to track steady-state branches of solutions regardless of 
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their stability. Moreover, AUTO is capable of detecting both bifurcation and limit 

points for a given set of couple, nonlinear ODEs. For the purposes of this chapter, 

steady-states of Eq. (3.28) were considered which allowed the averaged evolution to 

be described by the set of four, nonlinear, first-order ODEs of Eqs. (5.14). The use 

of AUTO provides a computationally inexpensive and rapid method for determining 

the dependence of the steady-states on the parameters Tl and Act 

The results of this entire chapter can be succinctly summarized in Fig. 5.8. 

Figure 5.8 combines the explorations of parameter space of Sections 5.2 and 5.3 to 

show the complete qualitative bifurcation diagram in the space of the maximum 

amplitude, 17 and Act. Note that although negative values of 17 are not permitted 

physically, they are convenient here in understanding the behavior of the steady-state 

solutions of Eq. (3.28). This gives the full bifurcation structure in the space of the 

relevant parameters of the problem. 



Chapter 6 

Variable Amplifier Spacing 

6.1    Introduction 

It is the purpose of this chapter to further investigate the assumption made 

concerning the periodic amplifier spacing which was essential in the averaging analy- 

sis of the previous chapters. The aim will be to understand a system which is more 

realistic in its dependence upon the amplifier spacing and to further understand the 

mechanism which gives rise to the sideband frequency generation and its accompa- 

nying background radiation field. In a sense, this chapter's primary concern is to 

investigate the spectral evolution and frequency dependence of a fiber-PSA commu- 

nications line as it relates to the amplifier spacing. 

Chapters 3-5 represent the analysis of a nonlinear optical communications 

system with periodically-spaced PSAs. In what has been considered, only the leading 

order, phase-matched behavior of the PSAs has been investigated. This led to the 

derivation of a fourth-order, nonlinear evolution equation which governs the soliton- 

like pulse propagation over a length scale much longer than that of the soliton period. 

The assumptions of perfect phase-matching and periodic amplifier spacing allowed for 

significant simplification of the governing model for the pulse propagation and allowed 

for a straight forward averaging of the phase-locked quadrature. These assumptions 

however, ignored both the bandwidth restrictions of the amplifier and the frequency 

components which arise due to the periodic forcing of the loss and gain. In particu- 

lar, the assumption of perfect phase-matching, Afc = 0, allowed the phase-sensitive 

amplification to be frequency independent. Therefore, the PSAs were of an infinite 

95 
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bandwidth and amplified all frequencies in an identical manner. In Section 2.5, this 

assumption was shown to be an excellent approximation to the physically realizable 

system and any bandwidth restrictions due to the amplifiers can be ignored. However, 

as was pointed out in Section 4.3, numerical simulations of the full NLS with PSAs 

indicate the generation of a background radiation field (see Figs. 4.11 and 4.7). This 

field arises due to the sideband frequencies generated via the periodic forcing of the 

loss and gain. 

In Sections 6.3 and 6.4, the effect of variable amplifier spacing upon the 

averaged soliton-like pulse propagation is considered. Recall, that the assumption of 

periodic amplifier spacing allowed for the multiple-scale averaging of Chapter 3 to 

yield the effective evolution of Eq. (3.28). When the amplifier spacing is no longer 

periodic, any averaging procedure can be quickly rendered intractable and of little 

use. In certain cases however, an averaged evolution can still be derived. Specifically, 

Section 6.3 considers the averaged pulse evolution when the PSAs are alternately 

separated by two distinct amplifier spacings. 

One advantage lies within the assumption of non-periodic amplifier spac- 

ings, namely the reduction of the dispersive radiation generated through the gain-loss 

forcings to the governing NLS. This fact is made clear upon recalling that the fre- 

quency of the dispersive radiation is strongly dependent upon the amplifier spacing. 

In other words, for a given periodic amplifier spacing, the pulse propagation will con- 

tain certain frequency 'windows' which experience unity gain from the PSAs. When 

the spacings are allowed to vary, these windows are no longer able to persist and the 

radiation which is generated from the periodic forcings are slowly attenuated. More 

on this will be given in Section 6.2. In particular, the dependence of the sideband 

frequencies upon the amplifier spacing can be analytically understood far from the 

localized pulse. 

The analysis presented in the following sections will be largely concerned 

with understanding how the varying amplifier spacings effects the stability of propa- 

gating soliton-like pulses, i.e, the robustness of the localized pulse evolution is investi- 

gated. As always, the aim is to more fully understand the qualitative and quantitative 

consequences of physical effects which are of higher order upon the leading order anal- 
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ysis of Chapters 3-5. In particular, the focus will be centered on the use of variably 

spaced amplifiers as a possible mechanism for attenuating the dispersive radiation. 

6.2    Sideband Frequency Generation 

It was found in Chapter 4 that full numerical simulations of the NLS with 

periodically spaced PSAs generated a small background radiation field. This behavior 

was depicted most clearly in Figs 4.11 and 4.7. Further, the amplitude of the disper- 

sive radiation was found to be dependent upon the amplifier spacing, i.e., the larger 

(smaller) the amplifier spacing, the larger (smaller) the corresponding radiation. For 

the case in which the amplifier spacing was 36 km, the background radiation was of 

0(1O-5) and could be essentially neglected (see Fig. 4.6). However, as the amplifier 

spacing was increased to 100 km, the radiation was visibly noticeable (see Fig. 4.11) 

and of O(10~3). It was briefly mentioned in Section 4.3 that this radiation field was 

strongly dependent upon the periodic nature of the amplifiers. The aim of this sec- 

tion is to further understand the radiation field generated by the PSAs and to more 

clearly understand its dependence on the amplifier spacing. 

To further understand this dependence of the radiation on the periodic am- 

plifier spacing, an analysis will be carried out which is far from the localized soliton- 

like pulse. Therefore, consider the pulse evolution given by Eq. (3.6) which governs 

the NLS with periodically spaced PSAs. Far from the localized soliton-like pulse, the 

radiation is small and the nonlinearity becomes negligible. Ignoring the nonlinear 

term in Eq. (3.6) then gives the following equation governing the evolution of the 

dispersive radiation 

£+Ig + *,_0. (6.1) 

where the definition of 7 = T/e has been used and the jump condition of Eq. (3.8) 

applies at each amplifier. Unlike the averaging which was carried out in Chapter 3, 

Eq. (6.1) is linear and can be examined directly using Fourier transform methods. In 

particular, transforming Eq. (6.1) gives 

Q = <}oCHr-^/'>* , (6.2) 
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where Q0 is the transform of the initial pulse profile. Moreover, the jump condition 

of Eq. (3.8), which is frequency independent, can also be transformed to give 

Q+ = cosh a Q- + e**n sinh aQ*_ , (6.3) 

where (j)n is the pump phase at the nth amplifier. By defining Qn = e~^"/2Q+ and 

making use of Eqs. (6.2) and (6.3), it can be easily found that the following relation 

now holds 

Qn = [cosh ae"'v Qn-i + sinh aeiv Q*n_^ e"n, (6.4) 

where v = (Zi/Z0)(l + w2)/2, it has been assumed that the phase rotation is constant, 

i.e, 8<f>n = 8(f>= Zi/Zo, and use has been made of the relationship 7Z//Z0 = T/. 

As was found in Chapter 3, the quadrature separation given by Eq. (3.9) 

greatly simplifies the analysis by decomposing the propagating pulse into phase-locked 

and anti-phase-locked components. This same quadrature decomposition can be used 

in Eq. (6.4) by introducing the quadrature variables as follows 

in   =   \(Qn + Q*n) (6.5a) 

Bn     =     \(Qn-Q*n), (6.5b) 

where once again An and Bn represent the phase-locked and anti-phase-locked quadra- 

tures respectively. Introducing Eqs. (6.5) into Eq. (6.4) reduces the linear propagation 

problem into a set of coupled difference equations given by 

Än ) = e"n (    eQ°OSU      -ieaslnu \ ( f*"1 \ . (6.6) 
Bn J \ — ie~asmv    e~acosi/ / \ Bn-i ) 

The eigenvalues of this matrix can be readily computed to determine the frequency 

dependence of the linear dispersion in the fiber-PSA line upon the amplifier spacing. 

In particular, it is found that 

e "r/  cos v cosh a ± y cos2 v cosh2 a (6.7) 

Upon recalling the fact that v = (Zi/Z0){l+u}2)/2, the eigenvalue of the phase-locked 

quadrature, which correspond to A+, can be plotted to determine the gain as a func- 

tion of the modified frequency v. Fig. 6.1 plots the real and imaginary parts of A+ 
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Figure 6.1: Depiction of the frequency windows which allow the propagating pulse 

to experience unity gain. Note that for these windows, the fiber-PSA line becomes 

effectively 'transparent'. 

versus the modified frequency. Specifically, note the frequency windows which expe- 

rience a unity gain, or rather, a slight gain above unity due to the overamplification, 

which is Aa = 0.1 in this case. These windows of transparency are responsible for the 

generation of the sideband frequencies which cause the linear dispersive radiation. 

Although the preceding analysis if valid only far from the soliton-like pulses, 

the qualitative behavior remains the same when considering the full nonlinear evo- 

lution. In fact, Fig. 6.1 should be somewhat reminiscent of the spectral evolution of 

the full NLS with PSAs given in Fig. 4.7. In Fig. 4.7, the first and second sideband 

frequencies can be clearly seen while the third is barely visible. These first, second 

and third sidebands of Fig. 4.7 correspond to the first, second and third frequency 

windows of Fig. 6.1 respectively. 
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One can imagine that if the amplifier spacing varied along the fiber-PSA 

communications link, the windows of transparency would be altered at each consec- 

utive amplifier. Therefore, the frequencies which experienced a unity gain at one 

amplifier, would now be shifted out of the range of transparency and would experi- 

ence a gain of less than unity. This would lead to the attenuation of the radiation 

field generated from the sideband frequencies. This suggests the possibility of using 

the variable amplifier spacing as a method of attenuating the background radiation 

field. More on this will be discussed in the upcoming sections. 

6.3    Two Distinct Amplifier Spacings 

The aim of this section and the next is to investigate the effects of a variable 

amplifier spacing upon the stability of long distance pulse propagation and its asso- 

ciated dispersive radiation field. Typically, this task is rendered intractable and one 

must resort to numerical simulations. However, as a special case, the long-distance 

pulse propagation of a soliton-like pulse is considered in which the amplifier spacing 

alternates between two distinct lengths. Therefore, the underlying pulse propaga- 

tion will remain periodic, but the period will now be measured over two amplifiers. 

This causes the windows of transparencies to alternate between two differing sets of 

frequencies which in turn should reduce the amount radiation generated. 

Once again, the use of multiple-scale techniques can be exploited in order 

to average over the two distinct amplifier spacings. The analysis follows in a similar 

manner to that carried out in Chapter 3. In particular, use can be made of the results 

obtained in Chapter 3 in order to simplify what follows. Therefore, the following 

rescalings of Eq. (3.6), which are motivated by Eq (3.27), can be made 

Q   ->   Kll2aZll2Q (6.8a) 

T   ->   K-V'T, (6.8b) 

where once again K = dcß/dZ and a0 represents the average energy of the pulse 

over the two amplifier period.  In the previous analysis of Chapter 3, the rescalings 
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Figure 6.2: Qualitative depiction of the periodic structure associated with the two 

amplifier spacing case 

of Eqs. (6.8) were carried out in Eqs. (3.27) at the end of the averaging analysis. 

Here, these rescalings will be performed beforehand in order to simplify the remaining 

analysis. Note that for this case, it will be assumed that the phase-rotation rate n and 

the overamplification will be the same for both amplifier spacings. The assumption 

concerning the overamplification can easily be relaxed to account for differing amounts 

of overamplification at each amplifier. Further, it will be assumed that the evolution 

over the two amplifier spacings occurs such that each exhibits a common average. 

More will be said on this shortly. 

The governing evolution equation (3.6) is then transformed through Eq. (6.8) 

to the following rescaled version 

dQ     .K d2Q      K .   .%n    1 
dZ=l2^T+l^QlQ + -e 

-TQ + *(§)<? + e*2*/ (§) Q*\ , (6.9) 

where h(C) and /(C) are defined by Eq. (3.7) and the definition of e is as before with 

the amplifier spacing now being the average of the two distinct lengths. Defining the 
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multiple scales as before to be C = Z/t and £ = eZ, the multiple-scale averaging can 

now be easily carried out by once again introducing the quadrature decomposition 

given by 

Q = KC, f, T) + ic B(C, (, T)] e*'^/2. (6.10) 

Note that the Z dependence appears solely in the phase <f> and the anti-phase-locked 

quadrature has been assumed to be of 0(e).   These assumptions make use of the 

results found in Chapter 3 in order to simplify the averaging procedure. 

Upon expanding the quadratures in powers of e2, i.e., 

A   =   A° + e2A2 + .-- (6.11a) 

B   =   B° + >-- , (6.11b) 

and collecting terms of equal order of magnitude, the following three recursively 

related equations are found which govern the behavior of the pulse evolution 

dA° 

dB0 

+ (r - A(C) -/(C)M°   =   0 (6.12a) 

+ (r-A(C) + /(0)*°   =   KL.A
0 (6.12b) 

^ + (r - MO -/(OM8 = -^ + frKL.B\        (6.12c) 

Here L- = {l/2d2/dT2 + (A°)2/a0 - 1/2) and the a/k of Eq. (6.12c) accounts for 

the overamplification which is of 0(e2) at the first (i=l) and second (i=2) amplifier. 

Apart the from the modification in the overamplification terms, the analysis thus far 

is identical to that of Chapter 3. Differences will arise, however, due to the averaging 

which occurs over a cycle of two amplifiers. 

As mentioned earlier, the aim is to average over the amplifiers in such a way 

as to preserve a common average a0. This can be readily done by considering the 

system depicted in Fig. 6.2. The condition of a common average implies the following 

relation 

sinh Hi = e2<ai-r'l)-F7- sinh I72 = a0, (6.13) 
Tk " Tl 
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where the factor exp(2(c*i — Tl\)) arises as a consequence of the analysis which is 

carried out over the commensurate averages. In this case, the loss and gain are now 

balanced after two amplifiers. Moreover, the overamplification experienced at each 

amplifier is identical, i.e., äi = 0*2 = ä. 

Equations (6.12a-c) can be solved in progressive order to determine the 

effective evolution. Therefore, consider first the leading order problem given by 

Eq. (6.12a). Between amplifiers, the solution simply is exponentially attenuated just 

as in the previous analysis of Chapter 3. However, the appropriate jump conditions 

must now be imposed. Recall that the quadrature decomposition gives convenient 

jump conditions for both the phase-locked and anti-phase-locked quadratures. There- 

fore, the following hold 

and 

amplifier 1: 4 = =   A°_eai (6.14a) 

amplifier 2: K - =   A°_ea*, (6.14b) 

amplifier 1: Bl   = =   B°_e~ai (6.15a) 

amplifier 2: Bl   = =   B°_e~a2. (6.15b) 

Upon using Eqs. (6.14a-b) with the leading order solution, it is found that A0 = 

#(£,T)exp(-rC) up to the first amplifier and A0 = Ä(^,r)exp([a1 - Th] - TQ 

between the first and second amplifiers. As was mentioned earlier in regards to 

the common average assumption, the factor of exp(2(ai — Tli)) in the leading order 

solution between the first and second amplifier is crucial in the multiple scale averaging 

which is to be carried out. In addition, it is found that 

a1 + a2 = r(/1 + /2) + 0(c2), (6.16) 

where again, it has been assumed that there exists an 0(e2) correction to the exact 

balance of loss and gain in order to account for over or under-amplification. Recall 

that a minimum amount of overamplification was necessary to support stable pulse 

propagation due to the 'loss' incurred from the anti-phase-locked quadrature. 
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Many of the details considered thus far are similar to those of Chapter 3. 

To avoid needless repetition, only the highlights and results of the averaging will 

be considered in the remainder of this section. Certainly, the analysis will be more 

complicated as the averaging must be carried out over the two amplifiers. However, 

the analysis is simply as follows: the leading order behavior is investigated followed 

by the correction term in the anti-phase-locked quadrature and finishing with the 

appropriate solvability condition for Eq. (6.12c). 

Proceeding then to the next order, Eq. (6.12b) gives the behavior of the anti- 

phase-locked quadrature. As in Chapter 3, upon applying the proper jump conditions 

for the anti-phase-locked quadrature, Eqs. (6.15), one can readily solve for B° over the 

two amplifier cycle. This is necessary in order to determine the appropriate solvability 

condition associated with the forcing in Eq. (6.12c). In particular, upon using the 

leading order behavior of the anti-phase-locked quadrature in Eq. (6.12c), it can be 

found after a bit of work and liberal use of Eq. (6.16) that the slow evolution of the 

envelope U(£, T) evolves according to 

5+i(^-1)V-Ä(,ff-0.+0.+,.ff(»),+(i+.,^-..(U7, 
where 

A      _    4äsinh(a1+a2)  ,fi ]R x 
«2 [(/? + 11) cosh(a! + a2) + 2/x/2 cosh^ - a2)] K        ) 

a   —   1 + smh(ai + 0:2)/,,     ,9N 7-, —N     n, , 7-,———c    (6.18b) v J(ll + ll) cosh(a! + a3) + 2/^2 cosh(ai + a2)    
v ' 

and the long length scale £ has been rescaled as follows 

-     K2 [(If + ll) cosh(a! + Q2) + 2/!/2 cosh(a1 - qa)] ,       . 
4" 2(/1 + /2)sinh(a1+a2) ^ K'    > 

Equation (6.17) once again describes the average evolution of the soliton-like pulse on 

the familiar long length scale £. This result is similar to the evolution of Eq. (3.28) 

derived for a single amplifier spacing with the exception of the coefficients of the 

nonlinear derivative terms, the overamplification parameter and the rescaling of £. In 

particular, the coefficients of the cubic and quintic terms again simultaneously scale 
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out. This fact can clearly be understood from the assumption of a common average 

for the two-amplifier spacing case which was carried out in the above analysis (see 

Fig. 6.2). Recall that the leading order solution is A0 = Rexp(—T() up to the first 

amplifier and A0 = i?exp(ai — I7i — T() between the first and second amplifier. 

These solutions force the leading order solution of the anti-phase-locked quadrature 

which in turn force the higher order correction to the phase-locked quadrature. In 

the previous averaging of Chapter 3, this gave rise to the fourth-order structure. This 

result also holds here. However, the factor of exp(ai — Hi) is now crucial in the 

solvability conditions between the first and second amplifiers. Specifically, solvability 

of the higher order terms with this factor permits the simultaneous scaling of the cubic 

and quintic coefficients. This analysis strongly suggests the possibility of averaging 

over N distinct amplifier spacings in order to derive the same type of equation as 

that given in Eq. (6.17). 

In the limit when Yh = T/2, Eq. (6.17) reduces to Eq. (3.28). Qualitatively, 

the behavior will be similar to that discussed in Chapter 4. In particular, note that 

when the parameters r/i,r/2 and Aa are much less than unity, the leading order 

behavior of Eq. (6.17) reduces to Eq. (4.2) for which stable hyperbolic secant pulse 

solutions were shown to exist in Section 4.2. Further, in performing a bifurcation 

analysis from the trivial solution, Eq. (6.17) gives rise to a subcritical bifurcation 

from (U, Aa) = (0,1/4). This is similar to the analysis carried out in Section 5.2 for 

the single, periodic amplifier spacing. 

Just as in the previous chapters, the dynamics and stability of propagating 

soliton-like pulse solutions for arbitrary parameter values are left to be investigated 

through numerical simulations. These numerical simulations include the full com- 

putations of the NLS with the two distinct PSA spacings, numerical simulations of 

the averaged equation, and computations of the bifurcation curves via AUTO. The 

results of these computations will be presented in what follows. 

The parameter regime considered first corresponds to amplifier spacings of 

80 km and 100 km respectively. These spacings are chosen primarily to depict the 

qualitative and quantitative effects upon the generated sideband frequencies respon- 

sible for the background radiation field. Certainly a wide range of amplifier spacings 
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Figure 6.3: Depiction of the phase-locked quadrature dynamics for the two amplifier 

case. Note the periodic structure associated with the two amplifier spacing case. 

may be considered, but for the present, the focus will be upon these characteris- 

tic lengths. In all the results that follow, the overamplification will remain fixed at 

A a = 0.1. With these parameters in mind, the midpoint values of the phase-locked 

quadrature A is plotted in Fig. 6.3. Note the periodic structure of this quadrature 

over the two distinct amplifier lengths. 

Figure 6.4 represents the pulse propagation over 9,000 km in the Fourier 

domain for the full NLS with PSAs. Note the pulse amplitude is plotted after a two 

amplifier cycle in order to show more clearly the stability properties of a propagating 

pulse. Further, this avoids depicting the large amplitude changes which occur from 

one amplifier to the next due to the variable spacing of the amplifiers and the preser- 

vation of commensurate averages.   Although Fig. 6.4 shows the stable evolution of 
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Figure 6.4: Pulse evolution in the Fourier domain over 9,000 km for the case when two 

distinct amplifier spacings are considered, namely 80 km and 100 km. The alternating 

amplifier spacings help reduce the sideband generation, i.e., compare this with the 

spectral evolution given by Fig. 4.6 in Chapter 4. 

a propagating pulse over a fairly short distance, longer distances may be considered 

and can be shown to behave in a similar fashion. In fact, the pulse evolution is quite 

robust to the changes in the amplifier spacing. In Fig. 6.5, the averaged evolution of 

the two amplifier spacing case is considered and shown to decay exponentially onto 

the stable steady-state. This is just as before for the single, periodic spacing case. 

Further, it agrees quite well with the numerical results of the full NLS with PSAs. 

Part of the aim of this section was to understand how the multiple amplifier 

spacing would change the dynamics of the pulse propagation and its associated dis- 

persive radiation field. With this in mind, the spectrum of the two amplifier spacing 

case is compared with that of the single amplifier spacing case of previous chapters. 

Figure 6.6a represents the spectral composition after 18,000 km of a single amplifier 

spacing of 90 km. This is compared with Fig. 6.6b in which the alternating amplifier 

spacings of 80 km and 100 km are considered over 18,000 km. Note that the side- 

band frequencies are less pronounced for the two amplifier case. This can be further 
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(b) 

Figure 6.5: Numerical simulations of the averaged equation for two distinct amplifier 

spacings. As with the previous results of Chapter 4, note that the pulse asymptoti- 

cally approaches the final steady-state as it propagates in £. In (a) and (b) the initial 

conditions used were C/(0, r) = 0.9sechr and U(0,T) = 1.4sechT respectively. Fur- 

ther, in both cases A a = 0.1, and the two amplifier lengths considered were 80 km 

and 100 km. 
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Figure 6.6: Spectral composition of a pulse after 18,000 km for a single amplifier 

spacing of 90 km (a) and the two amplifier spacing case with 80 km and 100 km (b). 

Note that the sharp sideband frequencies in (a) are reduced through the alternating 

spacings of (b). 
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Figure 6.7: Comparison of the dispersive radiation field generated over 18,000 km 

using a single amplifier spacing of 90 km (large oscillations) versus the two amplifier 

spacing case for 80 km and 100 km (smaller oscillations). Note that the two amplifier 

case attenuates the radiation by nearly an order of magnitude. 

demonstrated by comparing the dispersive radiation fields associated with each case. 

Fig 6.7 depicts the attenuation of the dispersive radiation field by nearly an order of 

magnitude when the two amplifiers are used in place of a single periodic amplifier. 

Once again, this phenomena can be understood in terms of the frequency windows 

which are transparent to the sideband frequencies. In particular, upon recalling the 

analysis carried out in Section 6.2, the effective eigenvalues can again be found for the 

two amplifier case. In this case however, the shift in the windows from one amplifier 

to the next will cause the sideband frequencies to experience a gain of less than unity. 

Therefore, the dispersive radiation is slowly attenuated. 

As was mentioned earlier, AUTO can once again be used on Eq. (6.17) to 

detect and track steady-state branch solutions of the averaged equation. In particular, 
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Figure 6.8: Bifurcation diagrams for the averaged evolution equation with two distinct 

amplifier spacings. In particular, (a) represents the bifurcation diagram when the 

amplifier spacings of 80 km and 100 km are used, i.e Vlx ~ 2.21 and I^ ~ 2.76 

respectively. In (b), the amplifier spacings of 36 km and 72 km (corresponding to 

r/i = 1 and r/2 = 2) are considered. Note that these bifurcation diagrams are similar 

to those found in Chapter 5 and suggest the existence of a wide range of parameters 

which support stable pulse propagation. 
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Figure 6.9: Comparison of the dispersive radiation field generated over 18,000 km 

using the two amplifier spacings of 70 - 110 km (smaller oscillations) and 80 - 100 km 

(larger oscillations) respectively. In this case the 70 - 110 km spacing is significantly 

smaller than the 80-100 km case which was nearly an order of magnitude smaller 

than its single amplifier counterpart. 

Figs 6.8a and 6.8b depict two characteristic bifurcation curves for fixed values of the 

parameters T/i and T^. Note the resemblance of these curves to those previously 

explored in Chapter 5. In fact, the qualitative structure of parameter space for the 

averaged two amplifier evolution is essentially identical to that of the single amplifier 

evolution as expected. Therefore, it can be understood that the averaged evolution 

will give rise to a wide range of parameters for which the two amplifier spacing case 

supports stable, soliton-like pulse propagation, i.e., the parameter space for which 

stable solutions exist can once again be represented qualitatively by Fig. 5.8. 

As a final note, the case for which the amplifier spacings correspond to 70 

km and 110 km is considered.   Many of the qualitative features discussed in the 
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preceding paragraphs hold for this case. However, since the amplifier spacings are 

not close, it is expected that the dispersive radiation would be attenuated even more 

due to the large separation of the windows of transparencies. Figure 6.9 depicts the 

background radiation field for the case of the two amplifier spacings of 80 km and 100 

km and the the two amplifier spacings, 70 km and 110 km. Note that the 70-110 km 

case produces a much smaller radiation field than that of the single amplifier case. 

Further, the radiation field is also smaller than that produced with amplifier spacings 

of 80 km and 100 km which has the same average amplifier spacing. The next section 

will consider the case for which there are no distinct amplifier spacings, but rather, 

some distribution of the amplifier spacings about some mean. 

6.4    Random Amplifier Spacing 

In the last section, the averaging over the two distinct amplifier lengths led to 

the derivation of the averaged Eq. (6.17) which was similar to that obtained in the case 

of a single amplifier spacing. This was then shown to support stable pulse propagation 

much as before. In this section, randomly spaced amplifiers are considered. This 

essentially corresponds to the case in which the period of the amplifier spacings is 

infinite. The results of the last section suggest that stable pulse solutions might exist. 

However, the work done in obtaining the averaged evolution of the last section also 

suggests that the standard averaging approach becomes analytically intractable and 

one must resort to numerical computations. 

Unlike the previous section, which assumed the averaging took place in such 

a way as to preserve a common average, this case assumes the average energy over a 

gain-loss segment to change from one amplifier to the next as it propagates. There- 

fore, the case for which the loss is balanced to 0(e2) at each consecutive amplifier 

is considered. It will be assumed in the following numerical computations that the 

overamplification is of a fixed value, i.e., Aa = 0.1. Future work will consider al- 

lowing the overamplification also to vary randomly from amplifier to amplifier. The 

aim will be to investigate the robustness of the pulse propagation when randomly 

spaced amplifiers are used and to further understand the generation of the sideband 
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Figure 6.10:  Behavior of the phase-locked quadrature amplitude which propagates 

through a chain of randomly spaced phase-sensitive amplifiers 

frequencies. In what follows, a few examples will be carried out which are indicative 

of the qualitative and quantitative features of the random spacings. 

To begin, Fig. 6.10 depicts the behavior of the maximum amplitude of the 

phase-locked quadrature. Note the random pattern of loss and gain. In this calcu- 

lation, it has been assumed that the amplifiers are uniformly distributed between 70 

km and 90 km. As was noted previously, one can further analyze the background 

radiation field generated from the random amplifier spacings. In particular, the spec- 

tral evolution of three distinct amplification methods are compared in Fig. 6.11; the 

single amplifier spacing of 80 km, a two amplifier spacing of 70 km and 90 km, and 

the uniformly distributed amplifier spacing between 70 km and 90 km. Each of these 

cases has a mean amplifier spacing of 80 km. The corresponding radiation fields are 
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depicted in Fig. 6.12. Note that both the two amplifier spacing case and the random 

amplifier spacing case reduce the radiation by a factor of ten from the single periodic 

spacing case. This suggest that randomly spaced amplifiers can be used to further 

attenuate linear dispersive radiation. 

One might imagine that if the uniform distribution of the amplifiers was 

over a larger interval, the background radiation field might be further attenuated. 

Figs. 6.13 depict the spectral components of the pulse evolution for the uniform dis- 

tribution of the amplifiers about 80 km. In particular the range of amplifier spacings 

are between 60-100 km, 70-90 km and 75-85 km. Note that as expected, the sideband 

spectral components of the 60-100 km case is much smaller than that of the 70-90 

km or 75-85 km cases. The corresponding dispersive radiation fields are depicted 

in Figs. 6.14. This further suggests that the wider the uniform distribution, the less 

background radiation field will be allowed to propagate through the fiber-PSA system. 

Although this section is solely numerical in nature, it may be possible to 

make use of stochastic and perturbation methods to derive some kind of averaged 

evolution. This approach will be considered in the near future and should provide 

further insight into the structure and stability of the pulse propagation. Regardless, 

the use of the PSAs in conjunction with the optical fibers seems to suggest remarkable 

stability properties of the averaged evolution. 

6.5     Summary 

The purpose of this chapter was to come to some kind of understanding of 

the effects of the periodic amplifier spacing upon the generated background radiation 

field. Further, the more physically realistic model of variable amplifier spacing needed 

to be considered along with its ability to support stable pulse propagation. These 

two phenomena were shown to be closely related. In fact, the generated background 

radiation field was a product of the gain-loss forcing and depended strongly upon 

the amplifier spacing. Section 6.2 explicitly found the relation between the sideband 

frequencies and the amplifier spacing and demonstrated that certain frequency win- 

dows existed for which the radiation experiences unity gain. Therefore, the periodic 
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Figure 6.11: Comparison of the spectral components after 200 amplifiers of three 

distinct amplification schemes which utilize PSAs. In (a), periodically-spaced PSAs 

are considered with an amplifier spacing of 80 km. An alternating spacing of 70 km 

and 90 km is considered in (b) while uniformly distributed amplifiers between 70 and 

90 km are considered in (c). 
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Figure 6.12: Dispersive radiation field generated from the sideband frequencies of 

the three amplification schemes considered in the previous figure. The two smaller 

dispersive fields correspond to the random and two amplifier spacings. The important 

thing to note is that the two amplifier spacing and the random spacing greatly reduce 

the amount of background radiation generated. 

75-85 km 

70-90 km 

60-100 km 

1.0 1.2 
NORMALIZED FREQUENCY 

1.4 

Figure 6.13: Comparison of the the primary sideband frequency for randomly spaced 

amplifiers for differing values of the distribution. In particular, the uniform distribu- 

tions for amplifiers between 60-100 km, 70-90 km and 75-85 km are considered. 
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Figure 6.14: Investigation of the background radiation fields generated from the side- 

band frequencies of the previous figure. In (a), a comparison is made between the 

75-85 km distribution (larger oscillations) and the 70-90 km distribution (smaller os- 

cillations). This is followed in (b) by a comparison of the dispersive fields for the 70-90 

km distribution (larger oscillations) and the 60-100 km distribution (smaller oscilla- 

tions). Note that the dispersive radiation fields are approximately of O(10-4), O(10-5) 

and O(10-6) for the uniform distributions between 75-85 km, 70-90 km and 60-100 

km respectively. 
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spacing of the amplifiers produced sideband frequencies which experienced unity gain 

along a fiber-PSA chain. Upon considering variably spaced amplifiers, it was found 

that the window of transparencies were shifted from amplifier to amplifier causing 

the attenuation of the background radiation field. 

In particular, Section 6.3 was concerned with the analytic theory of a fiber- 

PSA system which had two alternating and distinct amplifier spacings. Within this 

physical framework, it was still possible to average over the loss and gain across the 

two amplifier period to obtain an averaged evolution over an extended length scale. 

Numerical simulations of this system showed that the sideband frequency and its 

corresponding background radiation field was attenuated by an order of magnitude 

over its single, periodic amplifier spacing counterpart. This was the first evidence 

which suggested the possibility of using the variable amplifier spacing for reducing 

the dispersive field. Further, the analysis of Section 6.3 strongly suggests that one can 

average over N amplifiers in order to derive the same type of equation as Eq. (3.28) 

and Eq. (6.17) with the only differences arising in the coefficients of the nonlinear 

terms and the rescaling of the long length scale £ and overamplification Ace. 

In Section 6.4, the idea of variable amplifier spacing was carried one step 

further. Specifically, the amplifier spacing was allowed to vary uniformly over a range 

of lengths. This random spacing of the amplifiers significantly reduced the background 

radiation field generated from the gain-loss forcing. Moreover, the random spacing of 

the amplifiers correspond to a physically realizable system for which the spacing of the 

amplifiers will depend on factors which are associated with the physical environment 

of the fiber-PSA line. 
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