
AFRL-IF-RS-TR-1998-6
Final Technical Report
March 1998

COMPOSING MEGAMODULES AND
MEGAPROGRAMS

SRI International

Sponsored by
Advanced Research Projects Agency
ARPA Order No. A712

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-6 has been reviewed and is approved for publication.

APPROVED: tf****»^?! Uosvcrföcr**
JOSEPH A. CAROZZONI
Project Engineer

FOR THE DIRECTOR:
iLßy <*»

NORTHRUP FOWLER III
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

COMPOSING MEGAMODULES AND MEGAPROGRAMS

Robert Riemenschneider

Contractor: SRI International
Contract Number: F3 0602-93 -C-0245
Effective Date of Contract: 16 July 1993
Contract Expiration Date: 2 January 1997
Program Code Number: 5E30
Short Title of Work: Composing Megamodules and Megaprograms
Period of Work Covered: Jul 93 - Jan 97

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Robert Riemenschneider
(415) 326-6200
Joseph A. Carozzoni
(315)330-7796

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Joseph A. Carozzoni, AFRL/IFTB, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information Send comments regarding this burdBn estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20603.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1998

3. REPORT TYPE AND DATES COVERED

Final Jul 93 - Jan 97
4. TITLE AND SUBTITLE

COMPOSING MEGAMODULES AND MEGAPROGRAMS

6. AUTHOR(S)

Robert Riemenschneider

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

9. SPONSORING/MONITORING AGENCY NAMEfS) AND ADDRESS(ES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

Air Force Research Laboratory/IFTB
525 Brooks Road
Rome NY 13441-4505

5. FUNDING NUMBERS

C - F30602-93-C-0245
PE - 61101E
PR - A712
TA - 00
WU - 01

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-6

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Joseph A. Carozzoni/IFTB/(315) 330-7796

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words!

This report describes the research performed to design and develop a formal definition of software architectures in support of
system composition. Documented are new techniques and tools to automate the composition of large, parallel, and/or
distributed software systems from existing, traditionally constructed modules. Also supported is the execution of assembled
systems on a variety of hardware architectures. The techniques and automated tools were successfully used to construct
architecture descriptions consisting of over one million lines of source code.

14. SUBJECT TERMS

Software, Knowledge-Based Systems

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

102
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

1 Introduction 2

2 Formal Architecture Definition 3

3 Results of this Effort 5
3.1 SRI 5
3.2 Stanford University 6

4 Conclusions 7

A SRI's X/Open DTP Specification 8

B SRI Publication: Correct Architecture Refinement 62

C SRI Publication: Correctness and Composition of Software Ar-
chitectures 80

1 Introduction
This report describes the work performed by SRI International and its subcon-
tractor Stanford University on contract F30602-93-C-0245, dealing with formal
definition of software architectures to support system composition. Our basic
approach to architecture definition is presented in Section 2, while Section 3 out-
lines the work performed on this particular project. The details of our efforts
can be found in the appendices.

Figure 1: The SRI-Stanford Approach to Architecture Definition

2 Formal Architecture Definition

The Software Architectures team at the SRI Computer Science Laboratory
(CSL) and the Program Analysis and Verification Group (PAVG) at Stanford
University are engaged in a joint effort to develop concepts and tools for formally
defining software architecture hierarchies. Figure 1 illustrates our approach.

The box in the upper left corner of the figure illustrates the structure of
a typical SADL architecture hierarchy. The most abstract specification, S(),
is the root of a tree in which each node is a SADL architecture specification
and each arrow is a SADL mapping. An architecture hierarchy need not be a
tree. Any partial order is perfectly acceptable. But developing an architecture
hierarchy by top-down refinement will produce a tree. The three successors of
S() — i.e., S<o), S(i), and S(2) — represent three alternative ways of making
the abstract SQ architecture somewhat more concrete. Focusing on the leftmost
branch of the tree, architecture S(0o) is a further refinement of architecture S(0>,
architecture S(00o) is a further refinement of architecture S(00), and so on down
to S(ooo)-a) an implementation-level architecture that is a refinement of all its
ancestors. Generally, in this tree-shaped hierarchy, specifications are indexed so
that So- is an ancestor of ST if and only if er is an initial subsequence of r (i.e.,
if and only if, for some finite sequence p, r = cr ■ p).

The box in the upper right corner of the figure contains a pair of executable
Rapide architecture protocol simulations. Each Rapide architecture corresponds

to one of SADL architectures, as indicated by the heavy doubleheaded arrows
(and matching indices). This correspondence is not formally specified. Each
architectural specification contains information the other does not. The Rapide
specification contains behavioral information required for simulation that is typ-
ically irrelevant to the SADL structural specification, and which is therefore omit-
ted The SADL specification encodes details about the logical strength of the
architectural styles being employed, details that are crucial to the analysis of re-
finement correctness, and that are not expressible in Rapide. Someone familiar
with both languages can easily judge whether a SADL architecture and a Rapide
architecture "correspond", in other words, whether they consistently describe
a system, at the same level of abstraction, but from differing perspectives. For
these reasons, formalizing the correspondence — as opposed to relying on con-
vention, such as using the same name for corresponding components — would
be of little utility.

The two Rapide architectures in the figure are linked by a Rapide event
mapping. Any number of SADL architectures can have corresponding Rapide
architectures. This event mapping is partially determined by composing the
SADL mappings that link the corresponding SADL architectures. In the figure,
the architectural protocols are simulated at both an abstract level in X(2) and
at a quite concrete (implementation) level in X(2oi)«-

The lower box shows implementations of some of the most concrete SADL

architectures, linked to their specifications by a mapping expressed in a pro-
gramming language-specific extension of SADL'S mapping language. (An ex-
tension for Java is under development.) In this example, only two of the five
implementation-level SADL architectures have been instantiated as code. The
dashed arrow from X<20i>.£ to I<20i>.e indicates a nonformalized mapping of the
Rapide simulation of the architectural protocols to an implementation of those
protocols in the instantiation. The feasibility of replacing this dashed arrow by
automatic code generation — based on an implicit formal mapping — is under
investigation.

The approach to formal definition of architectures described above provided
the foundation for the research performed for this project. More detail, including
motivations for creating a hierarchy and the advantages of doing so, can be found
in the appendices (Appendix B, in particular).

3 Results of this Effort

3.1 SRI

Prior to this project, SRI CSL had developed a formal architecture definition
system, called PegaSys, for a commercial client. PegaSys addresses a very special
case of the general problem addressed by SADL. In PegaSys, only two styles of
architectural specification were supported. An architecture could be specified at
an abstract level using a dataflow style, or at a concrete level using reading and
writing of arrays of variables and control signals to implement dataflow. These
two styles were already being used for informal architectural specification by
the customer. PegaSys hierarchies thus had a very simple, restricted structure:
refinements either replace a component by a collection of connected components
("bubble decomposition") or implement dataflow. PegaSys tools checked

• the syntactic correctness of specifications,

• whether type constraints on connections were satisfied, and

• whether refinements could be verified by creating a combination of some
hardwired refinement patterns that matched the refinement step.

This system proved useful in practice. Several bugs were found in the archi-
tectural descriptions of large (100,000 to 1,000,000 lines of source code) control
systems by formalizing those descriptions in the PegaSys language and checking
them with the PegaSys tools.

The main emphasis in the present project was on generalizing PegaSys to
deal with other domains — additional architectural styles, more complicated
hierarchies, and so on — and replacing the ad hoc, informal notion of hierarchy
correctness employed in PegaSys by a more precise criterion. PegaSys specifica-
tions can be converted to SADL specifications with relatively little change, but
SADL is a far richer language. In addition to particular architectures, SADL can
be used to define constraints, generic architectures, styles, mappings between ar-
chitectures and between styles, and refinement patterns. See the SADL manual,
available on the web at

<http://www.csl.sri.com/sadl/sadl-intro.ps.gz>

for details.
The SADL extensions were driven by an analysis of examples. Both simple

particular architectures, such as the compiler architecture used in the paper in-
cluded as Appendix B of this report, and complex generic architectures, such as
X/Open's Distributed Transaction Processing (DTP) standard architecture de-
scribed in Figure 2, were formalized in SADL. The result of formalizing X/Open
DTP has been included as Appendix A.

Once the language design stabilized, tool development began. The SADL 1.0
software distribution, available at

<http://www.csl.sri.com/sadl/sadl-distribution.tar.gz>

Dataflow Architecture

X/Open DTP Reference Architecture
(procedure call)

rendezvous
(blocking RPC)
on AR interface

synchronous
(non-blocking RPCs)

on AR Interface

asynchronous
(buffered RPCs)
on AR interface

"two RM" instantiation

1 X/Open RA:
1 Rapide Executable RA:

17 SADL Structural Designs:

"generic" RPCs
on AR interface

A
Four refinements of

AP.TM.andRM
internals (for

process allocation) >400 pages
20 pages
42 pages (-30 design patterns)

Figure 2: The X/Open DTP Architecture Hierarchy

contains a parser, printer, and mapping checker for the language. See

<http://www.csl.sri.com/sadl/README.html>

to get an idea of the toolset's present capabilities.
The result of our attempt to define a formal correctness criterion for architec-

ture structure hierarchies can be found in Appendix B. (Appendix C shows how
an external semantics can be provided for connector types, which can be useful
both for explanation and for showing the consistency of the SADL constraints
that internally define a connector type.)

3.2 Stanford University

Prior to this effort, Stanford PAVG developed the Rapide language as a general
simulation tool. On this project, PAVG researchers showed how Rapide can
be used for architectural definition, by formalizing complex architectures, and
extended the capabilities of the toolset.
The Rapide toolset can be found at

<http://anna.Stanford.edu/rapide/tools-release.html>

4 Conclusions

Our principal objective in this contract was used to demonstrate the utility of
the basic approach to architecture definition described in Section 2. We believe
that this objective was satisfied by fully formalizing a complex architectural
hierarchy involving features — such as a variable number of components —
that other architecture definition languages cannot handle in any straightfor-
ward fashion, by formalizing the notion of hierarchy correctness so that the
precise benefits of correctness are clear, and by developing our toolsets to the
point where they can be used by others interested in experimenting with formal
architecture definition.

A SRI's X/Open DTP Specification

0>

^###

i

%%% Starting point is a very abstract view that treats the collection of
%%% resource managers as a single component

x_open_abstract_top: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_Relations_style

BEGIN

CONFIGURATION

%% Note that the following aren't really component declarations, since
%% there is no signature declared. We're at a more abstract level, where
%% all we're saying is that there are components called the_ap, et al.,
%% of some type such that

ap: TYPE <= Function
rms: TYPE <= Function
tm: TYPE <= Function

the_ap: ap
the_rms: rms
the_tm: tm

ar: CONSTRAINT = Dataflow(the_ap, the_rms)

tx: CONSTRAINT = Dataflow(the_ap, the_tm)

xa: CONSTRAINT = Dataflow(the_tm, the_rms)

END x_open_abstract_top

10

:"vW",;:r,..:'::^S^5*-.--.v../vi.-' -<•'•!:,:.';.-(- .•<.,*,»

%%% First step is to go to a style that makes the dataflow connections
%%% explicit

x_open_abstract_df: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style

BEGIN

ar_requests: TYPE
ar_resources: TYPE
tx_commands, tx_responses: TYPE
xa_commands, xa_responses: TYPE

COMPONENTS

ap: TYPE <= Function [ap_inl: ar_resources, ap_in2: tx_responses
-> ap_outl: ar_requests, ap_out2: tx_commands]

rms: TYPE <= Function [rm_inl: ar_requests, rm_in2: xa_commands
-> rm_outl: ar_resources, rm_out2: xa_responses]

tm: TYPE <= Function [tm_inl: tx_commands, tm_in2: xa_responses
-> tm_outl: tx_responses, tm_out2: xa_commands]

the_ap: ap
the_rms: rms
the_tm: tm

%%% No named connectors, due to parameterization, hence no CONNECTORS section

CONFIGURATION

ar_l: CONNECTION =
(EXISTS c: Channel<ar_requests>)

Connects(c, the_ap.ap_outl, the_rms.rm_inl)
ar_2: CONNECTION =

(EXISTS c: Channel<r_resources>)
Connects(c, the_rm.rm_outl, the_ap.ap_inl)

tx_l: CONNECTION =
(EXISTS c: Channel<tx_commands>)

Connects(c, the_ap.ap_out2, the_tm.tm_inl)
tx_2: CONNECTION =

(EXISTS c: Channel<tx_responses>)
Connects(c, the_tm.tm_outl, the_ap.ap_in2)

xa_l: CONNECTION =
(EXISTS c: Channel<xa_commands>)

Connects(c, the_tm.tm_out2, the_rms.rm_in2)
xa_2: CONNECTION =

(EXISTS c: Charmel<xa_responses>)
Connects(c, the_rms.rm_out2, the_tm.tm_in2)

END x_open_abstract_df

11

%%% Replace the aggregate resource managers component with a
%%% ARCHITECTURE that contains the individual resource managers. Although this
%%% is complicated, it seems to be just two xformations, one applied twice.
%%% First, the ports and channels are split. Second, the Function is
%%% replaced by a ARCHITECTURE. I suppose an "empty" ARCHITECTURE could be introduced
%%% and then refined by adding the processes — which has to be done all
%%% at once when there is no particular number of them --, which is what
%%% the rule in the paper suggests, but that just complicates analysis of
%%% ARCHITECTURE interface constraints.

%%% After the two channel splitting, we have
x_open_intermediate_l_df: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE
tx_commands, tx_responses: TYPE
xa_commands, xa_responses: TYPE

%% q_type(i) will be the subtype of ar_requests accepted by the i-th resource
%% manager, and similarly for r_type(i) and ar_resources.
q_type: {i: NAT | i < n} —> {t: TYPE | t < ar_requests}
r_type: {i: NAT j i < n} —> {t: TYPE j t < ar_resources}

COMPONENTS

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n »,
ap_in2: tx_responses

-> « ap_outl(i): q_type(i) |(i: NAT) i < n »,
ap_out2: tx_commands]

rms: TYPE <= Function [« rm_inl(i): q_type(i) |(i: NAT) i < n »,
« rm_in2(i): xa_commands | (i: NAT) i < n »

-> « rm_outl(i): r_type(i) |(i: NAT) i < n »,
« rm_out2(i): xa_responses | (i: NAT) i < n »]

tm: TYPE <= Function [tm_inl: tx_commands,
« tm_in2(i): xa_responses | (i: NAT) i < n »

-> tm_outl: tx_responses,
« tm_out2(i): xa_commands | (i: NAT) i < n »]

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

ar_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<q_type(i)>)
Connects(c, fche_ap.ap_outl(i), the_rms.rm_inl(i))

ar_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<r_type(i)>)
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i))

tx_l: CONNECTION =
(EXISTS c: Channel<tx_commands>)

Connects(c, the_ap.ap_out2, the_tm.tm_inl)
tx_2: CONNECTION =

12

(EXISTS c: Channel<tx_responses>)
Connects(c, the_tm.tm_outl, the_ap.ap_in2)

xa_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_coiranands>)
Connects(c, the_tm.tm_out2(i), the_rms.rm_in2(i))

xa_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_responses>)
Connects(c, the_rms.rm_out2(i), the_tm.tm_in2(i))

END x_open_intermediate_l_df

13

%%% Refining the Function the_rms into a ARCHITECTURE containing many rm's yields
x_open_intermediate_2_df: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE
tx_commands, tx_responses: TYPE
xa_commands, xa_responses: TYPE

%% That the q_type is a partition of ar_requests is guaranteed by the
%% general constraints on ARCHITECTURE interfaces and the "completeness
%% assumption". (We say nothing about the ports of the resource
%% managers — in particular, we mention no connections withing the
%% ARCHITECTURE — so all are externally visible.) Ditto for r_type and
%% ar_resources.
q_type: {i: NAT | i < n) —> {t: TYPE | t < ar_requests}
r_type: {i: NAT j i < n} —> {t: TYPE j t < ar_resources}

COMPONENTS

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n »,
ap_in2: tx_responses

-> « ap_outl(i): q_type(i) |(i: NAT) i < n »,
ap_out2: tx_commands]

rm: TYPE <= { p: Function[rm_inl: qt, rm_in2: xa_commands
-> rm_outl: rt, rm_out2: xa_responses]

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n »,
« rm_in2(i): xa_commands | (i: NAT) i < n »

-> « rm_outl(i): r_type(i) |(i: NAT) i < n »,
« rm_out2(i): xa_responses | (i: NAT) i < n »]

tm: TYPE <= Function [tm_inl: tx_commands,
« tm_in2(i): xa_responses | (i: NAT) i < n »

-> tm_outl: tx_responses,
« tm_out2(i): xa_commands | (i: NAT) i < n »]

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) [y CONTAINED_IN the_rms]

ar_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<q_type(i)>)
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i))

ar_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<r_type(i)>)
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i))

14

tx_l: CONNECTION =
(EXISTS c: Channel<tx_commands>)

Connects(c, the_ap.ap_out2, the_tm.tm_inl)
tx_2: CONNECTION =

(EXISTS c: Channel<tx_responses>)
Connects(c, the_tm.tm_outl, the_ap.ap_in2)

xa_l: CONNECTION =
(FORALL i: NAT | i < n)

{EXISTS c: Channel<xa_commands>)
Connects(c, the_tm.tm_out2(i), the_rms.rm_in2(i))

xa_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_responses>)
Connec t s(c, the_rms.rm_out2(i), the_tm.tm_in2(i))

END x_open_intermediate_2_df

15

%%% Refine the TX interface by splitting the tx_command,
%%% tx_response, xa_command, and xa_response channels to set up use
%%% of the "actual" commands .

x_open_concrete_df: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_reguests, ar_resources: TYPE

%% Arguably, the whole TX interface is control flow, but we'll treat
%% the integers that get returned as data to stay closer to the
%% actual signatures
tx_begin_response, % Note that there is no dataflow from the AP

tx_close_response, % to the TM on many commands, so there is no
tx_commit_response, % need for a command type decl'n
tx_information_command, tx_information_response,
tx_open_response,
tx_rollback_response: TYPE

ax_register_command, ax_register_response,
ax_unregister_command, ax_unregister_response,
xa_close_command, xa_close_response,
xa_commit_command, xa_commit_response,
xa_complete_command, xa_complete_response,
xa_end_command, xa_end_response,
xa_forget_command, xa_forget_response,
xa_open_command, xa_open_response,
xa_prepare_command, xa_prepare_response,
xa_recover_command, xa_recover_response,
xa_rollback_command, xa_rollback_response,
xa_start_command, xa_start_response: TYPE

q_type: {i: NAT | i < n) —> {t: TYPE | t < ar_requests}
r_type: {i: NAT j i < n} —> {t: TYPE | t < ar_resources}

COMPONENTS

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n »,
ap_begin_response_in: tx_begin_response,
ap_close_response_in: tx_close_response,
ap_commit_response_in: tx_commit_response,
ap_information_response_in: tx_information_response,
ap_open_response_in: tx_open_response,
ap_rollback_response_in: tx_rollback_response

-> « ap_outl(i): q_type(i) |(i: NAT) i < n »,
ap_information_command_out: tx_information_command]

rm: TYPE <= { p: Function[rm_inl: qt,
rm_register_in: ax_register_response,
rm_unregister_in: ax_unregister_response,
rm_close_in: xa_close_command,
rm_commit_in: xa_commit_command,
rm_complete_in: xa_complete_command,
rm_end_in: xa_end_command,
rm_forget_in: xa_forget_command,
rm_open_in: xa_open_command,
rm_prepare_in: xa_prepare_command,
rm_recover_in: xa_recover_command,

16

rm_rollback_in: xa_rollback_command,
rm_start_in: xa_start_command

-> rm_outl: rt,
rm_register_out: ax_register_command,
rm_unregister_out: ax_unregister_command,
rm_close_out: xa_close_response,
nti_commit_out: xa_commit_response,
rm_complete_out: xa_complete_response,
rm_end_out: xa_end_response,
rm_forget_out: xa_forget_response,
rm_open_out: xa_open_response,
rm_prepare_out: xa_prepare_response,
rm_recover_out: xa_recover_response,
rm_rollback_out: xa_rollback_response,
rm_start_out: xa_start_response]

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n »,
« rm_register_in(i): ax_register_response

| (i: NAT) i < n »,
« rm_unregister_in(i): ax_unregister_response

| (i: NAT) i < n »,
« rm_close_in(i): xa_close_command

| (i: NAT) i < n »,
« rm_commit_in(i): xa_commit_command

| (i: NAT) i < n »,
« rm_complete_in(i): xa_complete_command

| (i: NAT) i < n »,
« rm_end_in(i) : xa_end_coinmand

| (i: NAT) i < n »,
« rm_forget_in(i): xa_forget_command

| (i: NAT) i < n »,
« rm_open_in(i): xa_open_command

| (i: NAT) i < n »,
« rm_prepare_in(i): xa_prepare_command

| (i: NAT) i < n »,
« rm_recover_in(i): xa_recover_command

| (i: NAT) i < n »,
« rm_rollback_in(i): xa_rollback_command

| (i: NAT) i < n »,
« rm_start_in(i): xa_start_command

|(i: NAT) i < n »
-> « rm_outl(i): r_type(i) |(i: NAT) i < n »,

<< rm_register_out(i): ax_register_command
| (i: NAT) i < n »,

« rm_unregister_out(i): ax_unregister_command
| (i: NAT) i < n »,

« rm_close_out(i): xa_close_response
| (i: NAT) i < n »,

« rm_commit_out(i): xa_commit_response
| (i: NAT) i < n »,

« rm_complete_out(i): xa_complete_response
| (i: NAT) i < n »,

« rm_end_out(i): xa_end_response
| (i: NAT) i < n »,

« rm_forget_out(i): xa_forget_response
| (i: NAT) i < n »,

« rm_open_out(i): xa_open_response
| (i: NAT) i < n »,

« rm_prepare_out(i): xa_prepare_response
| (i: NAT) i < n »,

« rm_recover_out(i): xa_recover_response
| (i: NAT) i < n »,

« rm_rollback_out(i): xa_rollback_response

17

| (i: NAT) i < n »,
« rm_start_out(i): xa_start_response

| (i: NAT) i < n »]

tm: TYPE <= Function [tm_information_command_in: tx_information_command,
« tm_register_in(i): ax_register_command

1 (i: NAT) i < n »,
« tm_unregister_in(i): ax_unregister_command

| (i: NAT) i < n »,
« tm_close_in(i): xa_close_response

j (i: NAT) i < n »,
« tm_commit_in(i): xa_commit_response

I (i: NAT) i < n »,
« tm_complete_in(i): xa_complete_response

| (i: NAT) i < n »,
« tm_end_in(i): xa_end_response

1 (i: NAT) i < n »,
« tm_forget_in(i): xa_forget_response

| (i: NAT) i < n »,
« tm_open_in(i): xa_open_response

| (i: NAT) i < n »,
« tm_prepare_in(i): xa_prepare_response

| (i: NAT) i < n »,
« tm_recover_in(i): xa_recover_response

1 (i: NAT) i < n »,
« tm_rollback_in(i): xa_rollback_response

1 (i: NAT) i < n »,
« tm_start_in(i): xa_start_response

|(i: NAT) i < n »
-> tm_begin_response_out: tx_begin_response,

tm_ _close_response_out: tx_close_response,
tm_ _commit_response_out: tx_commit_response.
tm_ .information_response_out: tx_information_response,
tm_ _open_response_out: tx_open_response,
tm_ _rollback_response_out: tx_rollback_response,
« tm_register_out(i): ax_register_response

| (i: NAT) i < n »,
« tm_unregister_out(i): ax_unregister_response

| (i: NAT) i < n »,
<< tm_close_out(i): xa_close_command

| (i: NAT) i < n »,
« tm_commit_out(i): xa_commit_command

| (i: NAT) i < n »,
« tm_complete_out(i): xa_complete_command

| (i: NAT) i < n »,
« tm_end_out(i): xa_end_command

| (i: NAT) i < n »,
<< tm_forget_out(i): xa_forget_command

| (i: NAT) i < n»,
<< tm_open_out(i): xa_open_command

| (i: NAT) i < n »,
<< tm_prepare_out{i): xa_prepare_command

| (i: NAT) i < n »,
« tm_recover_out(i): xa_recover_command

| (i: NAT) i < n »,
<< tm_rollback_out(i): xa_rollback_command

| (i: NAT) i < n »,
« tm_start_out(i): xa_start_command

| (i: NAT) i < n »]

the_ap: ap
the_rms: rms
the_tm: tm

18

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED IN z]
rm_location: CONSTRAINT = ~ .

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<q_type(i)>)
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i))

ar_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<r_type(i)>)
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i))

tx_l: CONNECTION =
(EXISTS c: Channel<tx_information_command>)

Connects(c, the_ap.ap_information_command_out,
the_tm.tm_information_command_in)

tx_2a: CONNECTION =
(EXISTS c: Channel<tx_begln_response>)

Connects(c, the_tm.tm_begin_response_out,
the_ap.ap_begin_response_in)

tx_2b: CONNECTION =
(EXISTS c: Channel<tx_close_response>)

Connects(c, the_tm.tm_close_response_out,
the_ap.ap_close_response_in)

tx_2c: CONNECTION =
(EXISTS c: Channel<tx_commit_response>)

Connects(c, the_tm.tm_commit_response_out/
the_ap.ap_commit_response_in)

tx_2d: CONNECTION =
(EXISTS c: Channel<tx_information_response>)

Connects(c, the_tm.tm_information_response_out,
the_ap.ap_information_response_in)

tx_2e: CONNECTION =
(EXISTS c: Channel<tx_open_response>)

Connects(c, the_tm.tm_open_response_out,
the_ap.ap_open_response_in)

tx_2f: CONNECTION =
(EXISTS c: Channel<tx_rollback_response>)

Connects(c, the_tm.tm_rollback_response_out,
the_ap.ap_rollback_response_in)

xa_la: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<ax_register_response>)
Connects(c, the_tm.tm_register_response_out(i),

the_rms.rm_register_response_in(i))
xa_lb: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<ax_unregister_response>)

Connects(c, the_tm.tm_unregister_response_out(i),
the_rms.rm_unregister_response_in(i))

xa_lc: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_close_command>)
Connects(c, the_tm.tm_clpse_command_out(i),

the_rms.rm_close_command_in(i))
xa_ld: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_commit_comraand>)

19

Connects(c, the_tm.tm_commit_command_out(i),
the_rms. rm_commit_conimand_in (i))

xa_le: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_complete_command>)
Connects(c, the_tm.tm_complete_command_out(i),

the_rms.rm_complete_command_in(i))
xa_lf: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_end_command>)

Connects(c, the_tm.tm_end_command_out(i),
the_rms.rm_end_command_in(i))

xa_lg: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_forget_command>)
Connects(c, the_tm.tm_forget_command_out(i),

the_rms. rm_f orget_command_in (i))
xa_lh: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_open_command>)

Connects(c, the_tm.tm_open_command_out(i),
the_rms.rm_open_command_in{i))

xa_li: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_prepare_command>)
Connects(c, the_tm.tm_prepare_command_out(i),

the_rms.rm_prepare_coiranand_in(i))
xa_lj: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_recover_command>)

Connects(c, the_tm.tm_recover_command_out(i),
the_rms.rm_recover_command_in(i))

xa_lk: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_rollback_command>)
Connects(c, the_tm.tm_rollback_command_out(i) ,

the_rms.rm_rollback_command_in(i))
xa_ll: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_start_command>)

Connects(c, the_tm.tm_start_command_out(i),
the_rms.rm_start_command_in(i))

xa_2a: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<ax_register_command>)
Connects(c, the_rms.rm_register_command_out(i),

the_tm. tm_register_command_in (i))
xa_2b: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<ax_unregister_command>)

Connects(c, the_rms.rm_unregister_command_out(i),
the_tm.tm_unregister_command_in(i))

xa_2c: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_close_response>)
Connects(c, the_rms.rm_close_response_out(i),

the_tm.tm_close_response_in(i))
xa_2d: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_commit_response>)

Connects(c, the_rms.rm_commit_response_out(i),
the_tm.tm_commit_response_in(i))

xa_2e: CONNECTION =
(FORALL i: NAT | i < n)

20

(EXISTS c: Channel<xa_complete_response>)
Connects(c, the_rms.rm_complete_response_out(i),

the_tm.tm_complete_response_in(i))
xa_2f: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_end_response>)

Connects(c, the_rms.rm_end_response_out(i),
the_tm.tm_end_response_in(i))

xa_2g: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_forget_response>)
Connects(c, the_rms.rm_forget_response_out(i),

the_tm.tm_forget_response_in(i))
xa_2h: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_open_response>)

Connects(c, the_rms.rm_open_response_out(i),
the_tm.tm_open_response_in(i))

xa_2i: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_prepare_response>)
Connects(c, the_rms.rm_prepare_response_out(i),

the_tm.tm_prepare_response_in(i))
xa_2j: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_recover_response>)

Connects(c, the_rms.rm_recover_response_out(i),
the_tm.tm_recover_response_in(i))

xa_2k: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<xa_rollback_response>)
Connects(c, the_rms.rm_rollback_response_out(i),

the_tm.tm_rollback_response_in(i))
xa_21: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<xa_start_response>)

Connects(c, the_rms.rm_start_response_out(i),
the_tm.tm_start_response_in(i))

END x_open_concrete_df

21

%%% Introduce the actual types on the TX and XA interfaces.
%%% Note that this is the first use of X/Open_style: we need the type
%%% definitions.

x_open_truetypes_df: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style, X_Open_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

g_type: {i: NAT
r_type: {i: NAT

COMPONENTS

i < n} —> {t: TYPE | t < ar_reguests}
i < n} —> {t: TYPE j t < ar_resources}

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n »,
ap_begin_response_in: INT,
ap_close_response_in: INT,
ap_commit_response_in: INT,
ap_information_response_in: INT,
ap_open_response_in: INT,
ap_rollback_response_in: INT

-> « ap_outl(i): q_type(i) |(i: NAT) i < n »,
ap_information_command_out: TX_Info]

rm: TYPE <= { p: Function[rm_inl: qt,
rm_register_in: INT,
rm_unregi s ter_in: INT,
rm_close_in: XA_Info X INTA2,
rm_commit_in: X_Id X INTA2,
rm_complete_in: INTA4,
rm_end_in: X_id X INTA2,
rm_forget_in: X_Id X INTA2,
rm_open_in: XA_Info X INTA2,
rm_prepare_in: X_Id X INTA2,
rm_recover_in: X_Ids X INTA3,
rm_rollback_in: X_Id X INTA2,
rm_start_in: X_Id X INTA2

-> rm_outl: rt,
rm_register_out: X_Id X INTA2,
rm_unregister_out: INTA2,
rm_close_out: INT,
rm_commit_out: INT,
rm_complete_out: INT,
rm_end_out: INT,
rm_forget_out: INT,
rm_open_out: INT,
rm_prepare_out: INT,
rm_recover_out: INT,
rm_rollback_out: INT,
rm_start_out: INT]

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n »,
« rm_register_in(i): INT

| (i: NAT) i < n »,
« rm_unregister_in(i): INT

| (i: NAT) i < n »,
« rm_close_in(i): XA_Info X INTA2

22

I (i: NAT) i < n »,
« rm_commit_in(i): X_Id X INTA2

| (i: NAT) i < n »,
« rm_complete_in(i): INTA4

| (i: NAT) i < n »,
« rm_end_in(i): X_id X INTA2

| (i: NAT) i < n »,
« rm_forget_in(i): X_Id X INTA2

| (i: NAT) i < n »,
« rm_open_in(i): XA_Info X INTA2

| (i: NAT) i < n »,
« rm_jprepare_in(i): X_Id X INTA2

| (i: NAT) i < n »,
« rm_recover_in(i): X_Ids X INTA3

| (i: NAT) i < n »,
« rm_rollback_in(i): X_Id X INTA2

| (i: NAT) i < n »,
« rm_start_in(i): X_Id X INTA2

|(i: NAT) i < n »
-> « rm_outl(i): r_type(i) |(i: NAT) i < n »,

« rm_register_out(i): X_Id X INTA2
| (i: NAT) i < n »,

« rm_unregister_out(i): INTA2
| (i: NAT) i < n »,

« rm_close_out(i): INT
| (i: NAT) i < n »,

« rm_commit_out(i): INT
| (i: NAT) i < n »,

« rm_complete_out(i): INT
| (i: NAT) i < n »,

« rm_end_out(i): INT
| (i: NAT) i < n »,

« rm_forget_out(i): INT
| (i: NAT) i < n »,

« rm_open_out(i): INT
| (i: NAT) i < n »,

« rm_prepare_out(i): INT
|(i: NAT) i < n >>,

« rm_recover_out(i): INT
| (i: NAT) i < n »,

« rm_rollback_out(i): INT
| (i: NAT) i < n »,

« rm_start_out(i): INT
| (i: NAT) i < n »]

tm: TYPE <= Function [tm_information_command_in: TX_Info,
« tm_register_in(i): X_Id X INTA2

|(i: NAT) i
« tm_unregister_in(i)

|(i: NAT) i
« tm_close_in(i):

|(i: NAT) i
« tm_commit_in(i):

|(i: NAT) i
« tm_complete_in(i): INT

| (i: NAT) i < n »,
« tm_end_in(i): INT

| (i: NAT) i < n »,
« tm_forget_in(i): INT

| (i: NAT) i < n »,
« tm_open_in(i): INT

| (i: NAT) i < n »,
« tm_prepare_in(i): INT

| (i: NAT) i < n »,

23

< n »,
(i): INTA2

< n »,
INT
< n »,

INT
< n »,

xopen-5.sadl Wed Jun 26 14:07:19 1996

« tm_recover_in(i): INT
|(i: NAT) i < n >>,

« tm_rollback_in(i): INT
| (i: NAT) i < n »,

« tm_start_in(i): INT
|(i: NAT) i < n »

-> tm_begin_response_out: INT,
tm_close_response_out: INT,
tm_commit_response_out: INT,
tm_information_response_out: INT,
tm_open_response_out: INT,
tm_rollback_response_out: INT,
« tm_register_out(i): INT

| (i: NAT) i < n »,
« tm_unregister_out(i): INT

| (i: NAT) i < n »,
« tm_close_out(i): XA_Info X INTA2

| (i: NAT) i < n »,
« tm_commit_out(i): X_Id X INTA2

| (i: NAT) i < n »,
« tm_complete_out(i): INTA4

| (i: NAT) i < n »,
« tm_end_out(i): X_id X INTA2

| (i: NAT) i < n »,
« tm_forget_out(i): X_Id X INTA2

| (i: NAT) i < n »,
« tm_open_out(i): XA_Info X INTA2

| (i: NAT) i < n »,
« tm_prepare_out(i): X_Id X INTA2

| (i: NAT) i < n »,
« tm_recover_out(i): X_Ids X INTA3

j (i: NAT) i < n »,
« tm_rollback_out(i): X_Id X INTA2

| (i: NAT) i < n »,
« tm_start_out(i): X_Id X INTA2

| (i: NAT) i < n »]

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT) TIIT

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<q_type(i)>)
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(l))

ar_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<r_type(i)>)
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i))

tx_l: CONNECTION =
(EXISTS c: Channel<TX_Info>)

Connects(c, the_ap.ap_information_command_out,
the_tm.tm_information_command_in)

tx_2a: CONNECTION =
(EXISTS c: Channel<INT>)

24

Connects(c, the_tm.tm_begin_response_out,
the_ap.ap_begin_response_in)

tx_2b: CONNECTION =
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_close_response_out,
the_ap.ap_close_response_in)

tx_2c: CONNECTION =
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_commit_response_out,
the_ap.ap_commit_response_in)

tx_2d: CONNECTION =
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_information_response_out,
the_ap.ap_information_response_in)

tx_2e: CONNECTION =
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_open_response_out,
the_ap.ap_open_response_in)

tx_2f: CONNECTION =
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_rollback_response_out,
the_ap.ap_rollback_response_in)

xa_la: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_tm.tm_register_response_out(i),

the_rms.rm_register_response_in(i))
xa_lb: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<INT>)

Connects(c, the_tm.tm_unregister_response_out(i),
the_rms. rm_unregister_response_in (i))

xa_lc: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<XA_Info X INTA2>)
Connects(c, the_tm.tm_close_command_out(i),

the_rms.rm_close_command_in(i))
xa_ld: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<X_Id X INTA2>)

Connects(c, the_tm.tm_commit_command_out(i),
the_rms.rm_commit_command_in(i))

xa_le: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INTA4>)
Connects(c, the_tm.tm_complete_command_out(i),

the_rms.rm_complete_command_in(i))
xa_lf: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<X_id X INTA2>)

Connects(c, the_tm.tm_end_coiranand_out(i),
the_rms.rm_end_command_in(i))

xa_lg: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<X_Id X INTA2>)
Connects(c, the_tm.tm_forget_command_out(i),

the_rms.rm_forget_command_in(i))
xa_lh: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<XA_Info X INTA2>)

Connects(c, the_tm.tm_open_command_out(i),
the_rms.rm_open_command_in(i))

xa_li: CONNECTION =
25

(FORALL i: NAT | i < n)
(EXISTS c: Channel<X_Id X INTÄ2>)

Connects(c, the_tm.tm_prepare_command_out(i),
the_rms.rm_prepare_command_in(i))

xa_ .13 : CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<X_Ids X INTÄ3>)
Connects(c, the_tm.tm_recover_command_out(i),

the_rms. rm_recover_coitimand_in (i))

xa_ .Ik: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<X_Id X INTÄ2>)
Connects(c, the_tm.tm_rollback_command_out(i),

the_rms. rm_rollback_command_in (i))

xa_ .11: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<X_Id X INTA2>)
Connects(c, the_tm.tm_start_command_out(i),

the_rms.rm_start_command_in(i))

xa_ .2a: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<X_Id X INTÄ2>)
Connects(c, the_rms.rm_register_command_out(i),

the_tm.tm_register_command_in(i))

xa. _2b: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INTA2>)
Connects(c, the_rms.rm_unregister_command_out(i),

the_tm.tm_unregister_command_in(i))

xa. _2c: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_close_response_out(i),

the_tm.tm_close_response_in(i))

xa. _2d: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_commit_response_out(i),

the_tm.tm_commit_response_in(i))

xa. _2e: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Charme1<INT>)
Connects(c, the_rms.rm_complete_response_out(i),

the_tm.tm_complete_response_in(i))

xa. _2f: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_end_response_out(i),

the_tm.tm_end_response_in(i))

xa. _2g: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_forget_response_out(i),

the_tm.tm_forget_response_in(i))

xa. _2h: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_open_response_out(i),

the_tm.tm_open_response_in(i))

xa _2i: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_prepare_response_out(i),

the_tm.tm_prepare_response_in(i))

26

xa_2j: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_recover_response_out(i),

the_tm.tm_recover_response_in(i))
xa_2k: CONNECTION =

(FORALL i: NAT | i < n)
(EXISTS c: Channel<INT>)

Connects(c, the_rms.rm_rollback_response_out(i),
the_tm.tm_rollback_response_in(i))

xa_21: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<INT>)
Connects(c, the_rms.rm_start_response_out(i),

the_tm.tm_start_response_in(i))

END x_open_truetypes_df

27

%%% Replace TX and XA dataflow by procedure calls, using
%%% pre-defined procedure call varieties. This requires first replacing
%%% Functions by ARCHITECTURES, so that the procedure declarations can be stuck
%%% in the right places. (AP is changed to a ARCHITECTURE for uniformity, and
%%% to eliminate the dependence on dataflow style.)

x_open_semiproc: ARCHITECTURE [->]

IMPORTING ALL FROM Dataflow_style,
X_Open_style % defines XA_Close_Procedure, ..., TX_Begin_Procedure,

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

q_type: {i: NAT | i < n) --> {t: TYPE | t < ar_requests}
r_type: {i: NAT | i < n) --> {t: TYPE j t < ar_resources}

COMPONENTS

ap: TYPE <= ARCHITECTURE [« ap_inl(i): r_type(i) |(i: NAT) i < n »
-> « ap_outl(i): q_type(i) |(i: NAT) i < n »]

rm: TYPE <= { m: ARCHITECTURE [rm_inl: qt -> rm_outl: rt]
EXPORTING ALL
BEGIN

close: XA_Close_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
commit: XA_Commit_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: XA_Complete_Procedure
[hndl: INT, retval: INT,

rmid: INT, flags: INT
-> ret: INT]

end: XA_End_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: XA_Forget_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

open: XA_Open_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: XA_Prepare_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

recover: XA_Recover_Procedure
[ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: XA_Rollback_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
start: XA_Start_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

END m
| qt < ar_requests AND rt < ar_resources }

28

rms- TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n »
-> « rm_outl(i): r_type(i) |(i: NAT) i < n »]

tm: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT) ,.„ .

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel«3_type(i)>)
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i))

ar_2: CONNECTION =
(FORALL i: NAT | i < n)

(EXISTS c: Channel<r_type(i)>)
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i))

%% For now, let's make these a bit more readable by (implicitly)
%% existentially quantifying the call sites away. (Of course, we'll
%% eventually need them in the mapping, but mappings can be hidden
%% behind the scenes on the transformational approach.)

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm.register, y)
AND Called_From(the_tm.unregister, y)
AND Called_From(y.close, the_tm)
AND Called_From(y.commit, the_tm)
AND Called_From(y.complete, the_tm)
AND Called_From(y.end, the_tm)
AND Called_From(y.forget, the_tm)
AND Called_From(y.open, the_tm)

29

AND Called_From(y.prepare, the_tm)
AND Called_From(y.recover, the_tm)
AND Called_From(y.rollback, the_tm)
AND Called_From(y.start, the_tm)]

END x_open_semiproc

30

%%% Replace AR dataflow by a remote procedure call, Note that use of
%%% Dataflow_style has been completely eliminated.

x_open_proc_l: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style,
RPC_style % Introduces Remotely Callable Procedures,

% RPCs, an implementation of PROCEDURES

BEGIN

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: RPC [in: qt -> out: rt]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: XA_Recover_Procedure

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT

31

-> ret: INT]
begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar: CONSTRAINT =
(FORALL y: rm) Called_From(y.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm.register, y)
AND Called_From(the_tm.unregister, y)
AND Called_From(y.close, the_tm)
AND Called_From(y.commit, the_tm)
AND Called_From(y.complete, the_tm)
AND Called_From(y.end, the_tm)
AND Called_From(y.forget, the_tm)
AND Called_From(y.open, the_tm)
AND Called_From(y.prepare, the_tm)
AND Called_From(y.recover, the_tm)
AND Called_From(y.rollback, the_tm)
AND Called_From(y.start, the_tm)]

END x_open_proc_l

32

%%% Replace AR dataflow by a pair of remote procedure calls. Synchronize,
%%% but don't block waiting for slow resource managers.

x_open_proc_2: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style,
RPC_style % Introduces Remotely Callable Procedures,

% RPCs, an implementation of PROCEDURES

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

{ return_resource(i): RPC [in: r_type(i) ->] |(i: NAT) i < n }
END ap

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

request_resource: RPC [in: qt ->]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT] .

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: XA_Recover_Procedure

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

33

tm: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rmJLocation: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONSTRAINT =
(FORALL y: rm) Called_From(y.request_resource, the_ap)

ar_2: CONSTRAINT =
(FORALL i: NAT | i < n)

(EXISTS y: rm)
Called_From(return_resource(i), y)

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm.register, y)
AND Called_From(the_tm.unregister, y)
AND Called_From(y.close, the_tm)
AND Called_From(y.commit, the_tm)
AND Called_From(y.complete, the_tm)
AND Called_From(y.end, the_tm)
AND Called_From(y.forget, the_tm)
AND Called_From(y.open, the_tm)
AND Called_From(y.prepare, the_tm)
AND Called_From(y.recover, the_tm)
AND Called_From(y.rollback, the_tm)
AND Called_From(y.start, the_tm)]

END x_open_proc_2

34

%%% Replace AR dataflow by a monitor, to make the communication asynchronous

x_open_proc_3: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style,
RPC_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

q_type: {i: NAT | i < n} --> {t: TYPE | t < ar_requests}
r_type: {i: NAT j i < n} —> {t: TYPE | t < ar_resources}

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

mon: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

{ put_requests(i): RPC [in: q_type(i) ->] |(i: NAT) i < n }
{ get_requests(i): RPC [-> out: g_type(i)] |(i: NAT) i < n }
{ put_resources(i): RPC [in: r_type(i) ->] |(i: NAT) i < n }
{ get_resources(i): RPC [-> out: r_type(i)] |(i: NAT) i < n }

END mon

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

close: XA_Close_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
commit: XA_Commit_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: XA_Complete_Procedure
[hndl: INT, retval: INT,

rmid: INT, flags: INT
-> ret: INT]

end: XA_End_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: XA_Forget_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

open: XA_Open_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: XA_Prepare_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

recover: XA_Recover_Procedure
[ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: XA_Rollback_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
start: XA_Start_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT1

35

END m
| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONSTRAINT =
(FORALL i: NAT | i < n)

[Called_From(put_requests(i), the_ap)
AND Called_From(get_resources(i), the_ap)]

ar_2: CONSTRAINT =
(FORALL i: NAT | i < n)

(EXISTS y: rm)
[Called_From(put_resource(i), y)
AND Called_From(get_requests(i), y)]

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm.register, y)
AND Called_From(the_tm.unregister, y)
AND Called_From(y.close, the_tm)
AND Called_From(y.commit, the_tm)
AND Called_From(y.complete, the_tm)
AND Called_From(y.end, the_tm)
AND Called_From(y.forget, the_tm)
AND Called_From(y.open, the_tm)
AND Called_From(y.prepare, the_tm)

36

AND Called_From(y.recover, the_tm)
AND Called_From(y.rollback, the_tm)
AND Called_From(y.start, the_tm)]

END x_open_proc_3

37

%%% Pick a value for n, as a first step toward making things concrete

x_open_instance: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style,
RPC_style

BEGIN

ar_reguests, ar_resources: TYPE

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: RPC [in: qt -> out: rt]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: XA_Recover_Procedure

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_reguests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm: TYPE <= ARCHITECTURE [' ->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
38

-> ret: INT]
begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_rm_l : rm
the_rm_2 : rm
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms =>
[y CONTAINED_IN the_rm_l OR y CONTAINED_IN the_rm_2]]

rm_location: CONSTRAINT =
the_rm_l CONTAINED_IN the_rms AND the_rm_2 CONTAINED_IN the_rms

ar: CONSTRAINT =
Called_From(the_rm_l.access_function, the_ap)
AND Called_From(the_rm_2.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
Called_From(the_tm.register, the_rm_l)
AND Called_From(the_tm.unregister, the_rm_l)
AND Called_From(the_rm_l.close, the_tm)
AND Called_From(the_rm_l.commit, the_tm)
AND Called_From(the_rm_l.complete, the_tm)
AND Called_From(the_rm_l.end, the_tm)
AND Called_From(the_rm_l.forget, the_tm)
AND Called_From(the_rm_l.open, the_tm)
AND Called_From(the_rm_l.prepare, the_tm)
AND Called_From(the_rm_l.recover, the_tm)
AND Called_From(the_rm_l.rollback, the_tm)
AND Called_From(the_rm_l.start, the_tm)
AND Called_From(the_tm.register, the_rm_2)
AND Called_From(the_tm.unregister, the_rm_2)
AND Called_From(the_rm_2.close, the_tm)
AND Called_From(the_rm_2.commi t, the_tm)
AND Called_From(the_rm_2.complete, the_tm)
AND Called_From(the_rm_2.end, the_tm)
AND Called_From(the_rm_2.forget, the_tm)
AND Called_From(the_rm_2.open, the_tm)
AND Called_From(the_rm_2.prepare, the_tm)
AND Called_From(the_rm_2.recover, the_tm)
AND Called_From(the_rm_2.rollback, the_tm)
AND Called_From(the_rm_2.start, the_tm)

END x_open_instance

39

%%% Break up AP into main process and an auxiliary process that will be
%%% co-located with the TM and the RMs. Step one is to refine example-6
%%% into something that looks like example-7, but with generic procedure
%%% calls in place of the RPCs. (So this oculd actually be above
%%% example-7 in the tree, rather than a separate branch.)

x_open_proc_4: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: PROCEDURE [in: qt -> out: rt]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
■ -> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: XA_Recover_Procedure

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

40

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm

the_ap: ap
the_rms: rms
the_tm: tm

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar: CONSTRAINT =
(FORALL y: rm) Called_From(y.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm.begin, the_ap)
AND Called_From(the_tm.close, the_ap)
AND Called_From(the_tm.commit, the_ap)
AND Called_From(the_tm.information, the_ap)
AND Called_From(the_tm.open, the_ap)
AND Called_From(the_tm.rollback, the_ap)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm.register, y)
AND Called_From(the_tm.unregister, y)
AND Called_From(y.close, the_tm)
AND Called_From(y.commit, the_tm)
AND Called_From(y.complete, the_tm)
AND Called_From(y.end, the_tm)
AND Called_From(y.forget, the_tm)
AND Called_From(y.open, the_tm)
AND Called_From(y.prepare, the_tm)
AND Called_From(y.recover, the_tm)
AND Called_From(y.rollback, the_tm)
AND Called_From(y.start, the_tm)]

END x_open_proc_4

41

%%% Break up AP into main process and an auxiliary process that will be
%%% co-located with the TM and the RMs. This is an intermediate step in
%%% which the various boxes representing the auxiliary interface processes
%%% for the AP and the TM are each combined into a single box.

x_open_ap_decomposition: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style, RPC_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

resource_id: TYPE = { i: NAT | i < n }

COMPONENTS

%% The next two type definitions could simply be declared within the ap
%% declaration, since the number is fixed, but might as well do it like rm.

ap_main: TYPE <= ARCHITECTURE [->]

ap_aux: TYPE <= ARCHITECTURE [-> 3
EXPORTING ALL
BEGIN
parameterized_access_function:

RPC [r_id: resource_id, in: ar_requests -> out: ar_resources]
begin: RPC [-> ret: INT]
close: RPC [-> ret: INT]
commit: RPC [-> ret: INT]
information: RPC [info: TX_Info -> ret: INT]
open: RPC [-> ret: INT]
rollback: RPC [-> ret: INT]

END ap_aux

ap: TYPE <= ARCHITECTURE [->]

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: PROCEDURE [in: qt -> out: rt]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

42

-> ret: INT]
recover: XA_Recover_Procedure

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
' -> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm_main: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: RPC

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm_main

tm_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

close: RPC [info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: RPC . [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: RPC [hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: RPC [info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: RPC [ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: RPC [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: RPC [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

43

END tm_aux

tin: TYPE <= ARCHITECTURE [->]

the_ap: ap
the_ap_main: ap_main
the_ap_aux: ap_aux
the_rms: rms
the_tm: tm
the_tm_main: tm_main
the_tm_aux: tm_aux

CONFIGURATION

ap_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_ap
=> y CONTAINED_IN the_ap_main OR y CONTAINED_IN the_ap_aux]

ap_main_location: CONSTRAINT =
the_ap_main CONTAINED_IN the_ap

ap_aux_location: CONSTRAINT =
the_ap_aux CONTAINED_IN the_ap

tm_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_tm
=> y CONTAINED^IN the_tm_main OR y CONTAINED_IN the_tm_aux]

tm_main_location: CONSTRAINT =
the_tm_main CONTAINED_IN the_tm

tm_aux_location: CONSTRAINT =
the_tm_aux CONTAINED_IN the_tm

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar: CONSTRAINT =
(FORALL y: rm) Called_From(y.access_function, the_ap_aux)

tx: CONSTRAINT =
Called_From(the_tm_main.begin, the_ap_aux)
AND Called_From(the_tm_main.close, the_ap_aux)
AND Called_From(the_tm_main.commit, the_ap_aux)
AND Called_From(the_tm_main.information, the_ap_aux)
AND Called_From(the_tm_main.open, the_ap_aux)
AND Called_From(the_tm_main.rollback, the_ap_aux)

xa: CONSTRAINT =
(FORALL y: rm)

[Called_From(the_tm_aux.register, y)
AND Called_From(the_tm_aux.unregister, y)
AND Called_From(y.close, the_tm_aux)
AND Called_From(y.commit, the_tm_aux)
AND Called_From(y.complete, the_tm_aux)
AND Called_From(y.end, the_tm_aux)
AND Called_From(y.forget, the_tm_aux)
AND Called_From(y.open, the_tm_aux)
AND Called_From(y.prepare, the_tm_aux)
AND Called_From(y.recover, the_tm_aux)
AND Called_From(y.rollback, the_tm_aux)
AND Called_From(y.start, the_tm_aux)]

44

intra_ap: CONSTRAINT =
Called_From(parameterized_access_function.the_ap_aux, the_ap)
AND Called_From(the_ap_aux.begin, the_ap)
AND Called_From(the_ap_aux.close, the_ap)
AND Called_From(the_ap_aux.commit, the_ap)
AND Called_From(the_ap_aux.information, the_ap)
AND Called_From(the_ap_aux.open, the_ap)
AND Called_From(the_ap_aux.rollback, the_ap)

intra_tm: CONSTRAINT =
Called_From(the_tm_main.register, the_tm_aux)

AND Called_From(the_tm_main.unregister, the_tm_aux)
AND Called_From(the_tm_aux.close, the_tm_main)
AND Called_From(the_tm_aux.commit, the_tm_main)
AND Called_From(the_tm_aux.complete, the_tm_main)
AND Called_From(the_tm_aux.end, the_tm_main)
AND Called_From(the_tm_aux.forget, the_tm_main)
AND Called_From(the_tm_aux.open, the_tm_main)
AND Called_From(the_tm_aux.prepare, the_tm_main)
AND Called_From(the_tm_aux.recover, the_tm_main)
AND Called_From(the_tm_aux.rollback, the_tm_main)
AND Called_From(the_tm_aux.start, the_tm_main)

END x_open_ap_decomposition

45

%%% Break out interfaces of ap_ar_aux and tm_aux to handle distributed RMs.

x_open_ap_aux_decomposition: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style, RPC_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

COMPONENTS

ap_main: TYPE <= ARCHITECTURE [->]

ap_tx_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

begin: RPC [-> ret: INT]
close: RPC [-> ret: INT]
commit: RPC [-> ret: INT]
information: RPC [info: TX_Info -> ret: INT]
open: RPC [-> ret: INT]
rollback: RPC [-> ret: INT]

END ap_tx_aux

ap_ar_aux: TYPE <= {m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

ac ce s s_func t i on:
RPC [in: qt -> out: rt]

END m
| qt < ar_requests AND rt < ar_resources }

ap: TYPE <= ARCHITECTURE [->]

rm: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: PROCEDURE [in: qt -> out: rt]
close: XA_Close_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: XA_Commit_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: XA_Complete_Procedure

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: XA_End_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: XA_Forget_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: XA_Open_Procedure

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: XA_Prepare_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: XA_Recover_Procedure

46

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: XA_Rollback_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: XA_Start_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm_main: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: RPC

[rmid: INT, flags: INT
-> ret: INT]

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm_main

tm_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL-
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

close: RPC [info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: RPC [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: RPC [hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: RPC [info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: RPC [id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: RPC [ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: RPC [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: RPC [id: X_Id, rmid: INT, flags: INT
-> ret: INT]

END tm_aux

47

tm: TYPE <= ARCHITECTURE [->]

the_ap: ap
the_ap_main: ap_main
the_ap_tx_aux: ap_tx_aux
the_rms: rms
the_tm: tm
the_tm_main: tm_main

CONFIGURATION

ap_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_ap
=> y CONTAINED_IN the_ap_main

OR y CONTAINED_IN the_ap_tx_aux
OR (EXISTS w: ap_ar_aux) y CONTAINED_IN w]

ap_main_location: CONSTRAINT =
the_ap_main CONTAINED_IN the_ap

tx_aux_location: CONSTRAINT =
the_ap_aux CONTAINED_IN the_ap

ra_aux_location: CONSTRAINT =
(FORALL w: ap_ar_aux) w CONTAINED_IN the_ap

tm_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_tm
=> y CONTAINED_IN the_tm_main

OR (EXISTS w: tm_aux) y CONTAINED_IN w]
tm_main_location: CONSTRAINT =

the_tm_main CONTAINED_IN the_tm
tm_aux_location: CONSTRAINT =

(FORALL w: tm_aux) w CONTAINED_IN the_tm

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]
rm_location: CONSTRAINT =

(FORALL y: rm) y CONTAINED_IN the_rms

ar_l: CONSTRAINT =
(FORALL y: rm) (EXISTS w: ap_ar_aux) Called_From(y.access_function, w)

ar_2: CONSTRAINT =
(FORALL w: ap_ar_aux) (EXISTS y: rm) Called_From(y.access_function, w)

tx: CONSTRAINT =
Called_From(the_tm_main.begin, the_ap_tx_aux)
AND Called_From(the_tm_main.close, the_ap_tx_aux)
AND Called_From(the_tm_main.commit, the_ap_tx_aux)
AND Called_From(the_tm_main.information, the_ap_tx_aux)
AND Called_From(the_tm_main.open, the_ap_tx_aux)
AND Called_From(the_tm_main.rollback, the_ap_tx_aux)

xa_l: CONSTRAINT =
(FORALL y: rm)(EXISTS w: tm_aux)

[Called_From(w.register, y)
AND Called_From(w.unregister, y)
AND Called_From(y.close, w)
AND Called_From(y.commit, w)
AND Called_From(y.complete, w)
AND Called_From(y.end, w)
AND Called_From(y.forget, w)

48

AND Called_From(y.open, w)
AND Called_From(y.prepare, w)
AND Called_From(y.recover, w)
AND Called_From(y.rollback, w)
AND Called_From(y.start, w)]

xa_2: CONSTRAINT =
(FORALL w: tm_aux)(EXISTS y: rm)

[Called_From(w.register, y)
AND Called_From(w.unregister, y)
AND Called_From(y.close, w)
AND Called_From(y.commit, w)
AND Called_From(y.complete, w)
AND Called_From(y.end, w)
AND Called_From(y.forget, w)
AND Called_From(y.open, w)
AND Called_From(y.prepare, w)
AND Called_From(y.recover, w)
AND Called_From(y.rollback, w)
AND Called_From(y.start, w)]

intra_ap_l: CONSTRAINT =
(FORALL w: ap_ar_aux) Called_From(w.access_function, the_ap_main)

intra_ap_2: CONSTRAINT =
Called_From(the_ap_tx_aux.begin, the_ap)
AND Called_From(the_ap_tx_aux.close, the_ap)
AND Called_From(the_ap_tx_aux.commit, the_ap)
AND Called_From(the_ap_tx_aux.informat ion, the_ap)
AND Called_From(the_ap_tx_aux.open, the_ap)
AND Called_From(the_ap_tx_aux.rollback, the_ap)

intra_tm: CONSTRAINT =
(FORALL w: tm_aux)

[Called_From(the_tm_main.register, w)
AND Called_From(the_tm_main.unregister, w)
AND Called_From(w.close, the_tm_main)
AND Called_From(w.commit, the_tm_main)
AND Called_From(w.complete, the_tm_main)
AND Called_From(w.end, the_tm_main)
AND Called_From(w.forget, the_tm_main)
AND Called_From(w.open, the_tm_main)
AND Called_From(w.prepare, the_tm_main)
AND Called_From(w.recover, the_tm_main)
AND Called_From(w.rollback, the_tm_main)
AND Called_From(w.start, the_tm_main)]

END x_open_ap_aux_decomposition

49

%%% Now we shoot for the dual to example-13, breaking out the auxiliary
%%% processes on the RM side rather than the AP side.

x_open_manager_decomposition: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm_ar_aux: TYPE <= { m: ARCHITECTURE [->] '
EXPORTING ALL
BEGIN

access_function: PROCEDURE [in: qt -> out: rt]
END m

| qt < ar_requests AND rt < ar_resources }

rm_xa_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

close: XA_Close_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
commit: XA_Commit_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: XA_Complete_Procedure
[hndl: INT, retval: INT,

rmid: INT, flags: INT
-> ret: INT]

end: XA_End_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: XA_Forget_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

open: XA_Open_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: XA_Prepare_Procedure

.[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

recover: XA_Recover_Procedure
[ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: XA_Rollback_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
start: XA_Start_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

END rm_xa_aux

rm_main: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

50

access_function: RPC [in: qt -> out: rt]
close: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: RPC

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: RPC

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

begin: TX_Begin_Procedure .[' -> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm_aux

tm_main: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: RPC [-> ret: INT]
close: RPC [-> ret: INT]
commit: RPC [-> ret: INT]
information: RPC [info: TX_Info -> ret: INT]
open: RPC [-> ret: INT]
rollback: RPC [-> ret: INT]

51

END tm_main

the_ap: ap
the_rms: rms
the_tm: tm
the_tm_main: tm_main
the_tm_aux: tm_aux

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms
=> (EXISTS z: rm_main) y CONTAINED_IN z

OR (EXISTS z: rm_ar_aux) y CONTAINED_IN z
OR (EXISTS z: rm_xa_aux) y CONTAINED_IN z]

rm_main_location: CONSTRAINT =
(FORALL y: rm_main) y CONTAINED_IN the_rms

rm_ar_aux_location: CONSTRAINT =
(FORALL y: rm_ar_aux) y CONTAINED_IN the_rms

rm_xa_aux_location: CONSTRAINT =
(FORALL y: rm_xa_aux) y CONTAINED_IN the_rms

ar: CONSTRAINT =
(FORALL u: rm_ar_aux) Called_From(u.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm_aux.begin, the_ap)
AND Called_From(the_tm_aux.close, the_ap)
AND Called_From(the_tm_aux.commit, the_ap)
AND Called_From(the_tm_aux.information, the_ap)
AND Called_From(the_tm_aux.open, the_ap)
AND Called_From(the_tm_aux.rollback, the_ap)

xa: CONSTRAINT =
(FORALL v: rm_xa_aux)

[Called_From(the_tm.register, v)
AND Called_From(the_tm.unregister, v)
AND Called_From(v.close, the_tm)
AND Called_From(v.commit, the_tm)
AND Called_From(v.complete, the_tm)
AND Called_From(v.end, the_tm)
AND Called_From(v.forget, the_tm)
AND Called_From(v.open, the_tm)
AND Called_From(v.prepare, the_tm)
AND Called_From(v.recover, the_tm)
AND Called_From(v.rollback, the_tm)
AND Called_From(v.start, the_tm)]

intra_tm: CONSTRAINT =
Called_From(the_tm_main.begin, the_tm_aux)
AND Called_From(the_tm_main.close, the_tm_aux)
AND Called_From(the_tm_main.commit, the_tm_aux)
AND Called_From(the_tm_main.information, the_tm_aux)
AND Called_From(the_tm_main.open, the_tm_aux)
AND Called_From(the_tm_main.rollback, the_tm_aux)

intra_rm_l: CONSTRAINT =
(FORALL y: rm_main) (EXISTS u: rm_ar_aux)

Called_From(y.access_function, u)

intra_rm_2: CONSTRAINT =
(FORALL u: rm_ar_aux) (EXISTS y: rm_main)

52

Called_From(y.access_function, u)

intra_rm_3: CONSTRAINT =
(FORALL y: rm_main) (EXISTS v: rm_xa_aux)

[Called_From(v.register, y)
AND Called_From(v.unregister, y)
AND Called_From(y.close, v)
AND Called_From(y.commit, v)
AND Called_From(y.complete, v)
AND Called_From(y.end, v)
AND Called_From(y.forget, v)
AND Called_From(y.open, v)
AND Called_From(y.prepare, v)
AND Called_From(y.recover, v)
AND Called_From(y.rollback, v)
AND Called_From(y.start, v)]

intra_rm_4: CONSTRAINT =
(FORALL v: rm_xa_aux) (EXISTS y: rm_main)

[Called_From(v.register, y)
AND Called_From(v.unregister, y)
AND Called_From(y.close, v)
AND Called_From(y.commit, v)
AND Called_From(y.complete, v)
AND Called_From(y.end, v)
AND Called_From(y.forget, v)
AND Called_From(y.open, v)
AND Called_From(y.prepare, v)
AND Called_From(y.recover, v)
AND Called_From(y.rollback, v)
AND Called_From(y.start, v)]

END x_open_manager_decomposition

53

%%% Similar to example-14, but collapses auxiliary processes in RM. Dual
%%% to example-12 in much the way example-14 is dual to example-13.

x_open_manager_alt_decomposition: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

resource_id: TYPE = { i: NAT | i < n }

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm_ar_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN
parameterized_access_function:

PROCEDURE [r_id: resource_id, in: qt -> out: rt]
END rm_ar_aux

%% Note that the following already contain the necessary RM id args.
rm_xa_aux: TYPE <= ARCHITECTURE [->]

EXPORTING ALL
BEGIN

close: XA_Close_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
commit: XA_Commit_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: XA_Complete_Procedure
[hndl: INT, retval: INT,

rmid: INT, flags: INT
-> ret: INT]

end: XA_End_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: XA_Forget_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

open: XA_Open_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: XA_Prepare_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

recover: XA_Recover_Procedure
[ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: XA_Rollback_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
start: XA_Start_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

END rm_xa_aux

54

rm_main: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: RPC [in: qt -> out: rt]
close: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: RPC

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: RPC

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rms: TYPE <= ARCHITECTURE [->]

tm_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm_aux

tm_main: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: RPC [-> ret: INT]
close: RPC[-> ret: INT]
commit: RPC [-> ret: INT]

55

information: RPC [info: TX_Info -> ret: INT]
open: RPC [-> ret: INT]
rollback: RPC [-> ret: INT]

END tm_main

the_ap: ap
the_rms: rms
the_rm_ar_aux: rm_ar_aux
the_rm_xa_aux: rm_xa_aux
the_tm: tm
the_tm_main: tm_main
the_tm_aux: tm_aux

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms
=> (EXISTS z: rm_main) y CONTAINED_IN z

OR y CONTAINED_IN the_rm_ar_aux
OR y CONTAINED_IN the_rm_xa_aux]

rm_main_location: CONSTRAINT =
(FORALL y: rm_main) y CONTAINED_IN the_rms

rm_ar_aux_location: CONSTRAINT =
the_rm_ar_aux CONTAINED_IN the_rms

nn_xa_aux_location: CONSTRAINT =
the_rm_xa_aux CONTAINED_IN the_rms

ar: CONSTRAINT =
Called_From(the_rm_ar_aux.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm_aux.begin, the_ap)
AND Called_From(the_tm_aux.close, the_ap)
AND Called_From(the_tm_aux.commit, the_ap)
AND Called_From(the_tm_aux.information, the_ap)
AND Called_From(the_tm_aux.open, the_ap)
AND Called_From(the_tm_aux.rollback, the_ap)

xa: CONSTRAINT =
Called_From(the_tm.register, the_rm_xa_aux)
AND Called_From(the_tm.unregister, the_rm_xa_aux)
AND Called_From(the_rm_xa_aux.close, the_tm)
AND Called_From(the_rm_xa_aux.commit, the_tm)
AND Called_From(the_rm_xa_aux.complete, the_tm)
AND Called_From(the_rm_xa_aux.end, the_tm)
AND Called_From(the_rm_xa_aux.forget, the_tm)
AND Called_From(the_rm_xa_aux.open, the_tm)
AND Called_From(the_rm_xa_aux.prepare, the_tm)
AND Called_From(the_rm_xa_aux.recover, the_tm)
AND Called_From(the_rm_xa_aux.rollback, the_tm)
AND Called_From(the_rm_xa_aux.start, the_tm)

intra_tm: CONSTRAINT =
Called_From(the_tm_main.begin, the_tm_aux)
AND Called_From(the_tm_main.close, the_tm_aux)
AND Called_From(the_tm_main.commit, the_tm_aux)
AND Called_From(the_tm_main.information, the_tm_aux)
AND Called_From(the_tm_main.open, the_tm_aux)
AND Called_From(the_tm_main.rollback, the_tm_aux)

intra_rm_l: CONSTRAINT =
(FORALL y: rm_main)

56

Called_From(y.access_function, the_rm_ar_aux)

intra_rm_2: CONSTRAINT =
(FORALL y: rm_main)

[Called_From(the_rm_xa_aux.register, y)
AND Called_From(the_rm_xa_aux.unregister, y)
AND Called_From(y.close, the_rm_xa_aux)
AND Called_From(y.commit, the_rm_xa_aux)
AND Called_From(y.complete, the_rm_xa_aux)
AND Called_From(y.end, the_rm_xa_aux)
AND Called_From(y.forget, the_rm_xa_aux)
AND Called_From(y.open, the_rm_xa_aux)
AND Called_From(y.prepare, the_rm_xa_aux)
AND Called_From(y.recover, the_rm_xa_aux)
AND Called_From(y.rollback, the_rm_xa_aux)
AND Called_From(y.start, the_rm_xa_aux)]

END x_open_manager_alt_decomposition

57

%%% Just like 14, but an extra layer of abstraction in the RM to simplify
%%% the mapping.

x_open_manager_decomposition_2: ARCHITECTURE [->]

IMPORTING ALL FROM X_Open_style

BEGIN

n: NAT % Number of resource managers, a parameter in the specification

ar_requests, ar_resources: TYPE

COMPONENTS

ap: TYPE <= ARCHITECTURE [->]

rm_ar_aux: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN

access_function: PROCEDURE [in: qt -> out: rt]
END m

| qt < ar_requests AND rt < ar_resources }

rm_xa_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

close: XA_Close_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
commit: XA_Commit_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

complete: XA_Complete_Procedure
[hndl: INT, retval: INT,

rmid: INT, flags: INT
-> ret: INT]

end: XA_End_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
forget: XA_Forget_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

open: XA_Open_Procedure
[info: XA_Info, rmid: INT, flags: INT

-> ret: INT]
prepare: XA_Prepare_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

recover: XA_Recover_Procedure
[ids: X_Ids, count: INT,

rmid: INT, flags: INT
-> ret: INT]

rollback: XA_Rollback_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
start: XA_Start_Procedure

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

END rm_xa_aux

rm_main: TYPE <= { m: ARCHITECTURE [->]
EXPORTING ALL
BEGIN 58

access_function: RPC [in: qt -> out: rt]
close: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

commit: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
complete: RPC

[hndl: INT, retval: INT,
rmid: INT, flags: INT

-> ret: INT]
end: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

forget: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
open: RPC

[info: XA_Info, rmid: INT, flags: INT
-> ret: INT]

prepare: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
recover: RPC

[ids: X_Ids, count: INT,
rmid: INT, flags: INT

-> ret: INT]
rollback: RPC

[id: X_Id, rmid: INT, flags: INT
-> ret: INT]

start: RPC
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
END m

| qt < ar_requests AND rt < ar_resources }

rm: TYPE <= ARCHITECTURE [->]

rms: TYPE <= ARCHITECTURE [->]

tm_aux: TYPE <= ARCHITECTURE [->]
EXPORTING ALL'
BEGIN

begin: TX_Begin_Procedure [-> ret: INT]
close: TX_Close_Procedure [-> ret: INT]
commit: TX_Commit_Procedure [-> ret: INT]
information: TX_Info_Procedure [info: TX_Info -> ret: INT]
open: TX_Open_Procedure [-> ret: INT]
rollback: TX_Rollback_Procedure [-> ret: INT]

END tm_aux

tm_main: TYPE <= ARCHITECTURE [->]
EXPORTING ALL
BEGIN

register: AX_Register_Procedure
[id: X_Id, rmid: INT, flags: INT

-> ret: INT]
unregister: AX_Unregister_Procedure

[rmid: INT, flags: INT
-> ret: INT]

begin: RPC [-> ret: INT]
close: RPC [-> ret: INT]
commit: RPC [-> ret: INT]
information: RPC [info: TX_Info -> ret: INT]

59

open: RPC [-> ret: INT]
rollback: RPC [-> ret: INT]

END tm_main .

the_ap: ap
the_rms: rms
the_tm: tm
the_tm_main: tm_main
the_tm_aux: tm_aux

CONFIGURATION

rms_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z]

rm_contents: CONSTRAINT =
(FORALL y: COMPONENT)

[(EXISTS z: rm) y PROPERLY_CONTAINED_IN z
=> (EXISTS z: rm_main) y CONTAINED_IN z

OR (EXISTS z: rm_ar_aux) y CONTAINED_IN z
OR (EXISTS z: rm_xa_aux) y CONTAINED_IN z]

rm_location: CONSTRAINT =
(FORALL y: rm) y CONTAINED_IN the_rms

rm_main_location_l: CONSTRAINT =
(FORALL y: rm_main) (EXISTS z: rm) y CONTAINED_IN z

rm_main_location_2: CONSTRAINT =
(FORALL z: rm) (EXISTS y: rm_main) y CONTAINED_IN z

rm_ar_aux_location_l: CONSTRAINT =
(FORALL y: rm_ar_aux) (EXISTS z: rm) y CONTAINED_IN z

rm_ar_aux_location_2: CONSTRAINT =
(FORALL z: rm) (EXISTS y: rm_ar_aux) y CONTAINED_IN z

rm_xa_aux_location_l: CONSTRAINT =
(FORALL y: rm_xa_aux) (EXISTS z: rm) y CONTAINED_IN z

rm_xa_aux_location_2: CONSTRAINT =
(FORALL z: rm) (EXISTS y: rm_xa_aux) y CONTAINED_IN z

ar: CONSTRAINT =
(FORALL u: rm_ar_aux) Called_From(u.access_function, the_ap)

tx: CONSTRAINT =
Called_From(the_tm_aux.begin, the_ap)
AND Called_From(the_tm_aux.close, the_ap)
AND Called_From(the_tm_aux.commit, the_ap)
AND Called_From(the_tm_aux.information, the_ap)
AND Called_From(the_tm_aux.open, the_ap)
AND Called_From(the_tm_aux.rollback, the_ap)

xa: CONSTRAINT =
(FORALL v: rm_xa_aux)

[Called_From(the_tm.register, v)
AND Called_From(the_tm.unregister, v)
AND Called_From(v.close, the_tm)
AND Called_From(v.commit, the_tm)
AND Called_From(v.complete, the_tm)
AND Called_From(v.end, the_tm)
AND Called_From(v.forget, the_tm)
AND Called_From(v.open, the_tm)
AND Called_From(v.prepare, the_tm)

60

AND Called_From(v.recover, the_tm)
AND Called_From(v.rollback, the_tm)
AND Called_From(v.start, the_tm)]

intra_tm: CONSTRAINT =
Called_From(the_tm_main.begin, the_tm_aux)
AND Called_From(the_tm_main.close, the_tm_aux)
AND Called_From(the_tm,_main. commit, the_tm_aux)
AND Called_From(the_tm_main.information, the_tm_aux)
AND Called_From(the_tm_main.open, the_tm_aux)
AND Called_From(the_tm_main.rollback, the_tm_aux)

intra_rm_l: CONSTRAINT =
(FORALL y: rm_main) (EXISTS u: rm_ar_aux)

Called_From(y.access_function, u)

intra_rm_2: CONSTRAINT =
(FORALL u: rm_ar_aux) (EXISTS y: rm_main)

Called_From(y.access_function, u)

intra_rm_3: CONSTRAINT =
(FORALL y: rm_main) (EXISTS v: rm_xa_aux)

[Called_From(v.register, y)
AND Called_From(v.unregister, y)
AND Called_From(y.close, v)
AND Called_From(y.commit, v)
AND Called_From(y.complete, v)
AND Called_From(y.end, v)
AND Called_From(y.forget, v)
AND Called_From(y.open, v)
AND Called_From(y.prepare, v)
AND Called_From(y.recover, v)
AND Called_From(y.rollback, v)
AND Called_From(y.start, v)]

intra_rm_4: CONSTRAINT =
(FORALL v: rm_xa_aux) (EXISTS y: rm_main)

[Called_From(v.register, y)
AND Called_From(v.unregister, y)
AND Called_From(y.close, v)
AND Called_From(y.commit, v)
AND Called_From(y.complete, v)
AND Called_From(yiend, v)
AND Called_From(y.forget, v)
AND Called_From(y.open, v)
AND Called_From(y.prepare, v)
AND Called_From(y.recover, v)
AND Called_From(y.rollback, v)
AND Called_From(y.start, v)]

END x_open_manager_decomposition_2

61

B SRI Publications: Correct Architecture Refinement

62

Appeared in IEEE Transactions on Software Engineering,
April, 1995, Volume 21, Number 4, pp. 356-372.

Correct Architecture Refinement
Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider

Abstract— A method is presented for the stepwise refine-
ment of an abstract architecture into a relatively correct
lower-level architecture that is intended to implement it. A
refinement step involves the application of a predefined re-
finement pattern that provides a routine solution to a stan-
dard architectural design problem. A pattern contains an
abstract architecture schema and a more detailed schema
intended to implement it. The two Schemas usually contain
very different architectural concepts (from different archi-
tectural styles). Once a refinement pattern is proven cor-
rect, instances of it can be used without proof in developing
specific architectures. Individual refinements are composi-
tional, permitting incremental development and local rea-
soning. A special correctness criterion is defined for the do-
main of software architecture, as well as an accompanying
proof technique. A useful syntactic form of correct compo-
sition is defined. The main points are illustrated by means
of familiar architectures for a compiler. A prototype imple-
mentation of the method has been used successfully in a real
application.

Keywords— Software architecture, hierarchy, stepwise re-
finement, refinement patterns, formal methods, relative cor-
rectness, composition

I. INTRODUCTION

DECISIONS about the architecture of a software sys-
tem can have a major impact on system efficiency,

maintainability, and evolvability. Architectural decisions
typically are documented in terms of the ubiquitous box-
and-arrow diagrams. Practicing engineers interpret the di-
agrams with respect to common architectural styles, such
as dataflow, pipe-and-filter, batch-sequential, blackboard,
implicit invocation (event-based), and client-server.

For a large system, its architecture often is described by
a hierarchy of related architectures. An architecture hierar-
chy is a linear sequence of two or more individual architec-
tures that may differ with respect to the number and kind
of components and connections among them. For example,
an abstract architecture containing functional components
related by dataflow connections may be implemented in a
concrete architecture in terms of procedures, control con-
nections, and shared variables. In general, an abstract ar-
chitecture is smaller and easier to understand; a concrete
architecture reflects more implementation concerns.

The utility of an architecture hierarchy is severely lim-
ited by the current level of informality. Individual architec-
tures may be ambiguous, allowing multiple and perhaps un-
intended interpretations. The mapping between architec-
tures in the hierarchy is partially specified, if at all, making
it impossible to accurately trace the lineage of implemen-
tation decisions. The analysis of architecture is limited to

This research was supported in part by the Advanced Research
Projects Agency under Rome Laboratory contract F30602-93-C-
0245.

The authors are with the Computer Science Laboratory, SRI In-
ternational, Menlo Park, California 94025. Email: {moriconi, qian,
rar}®csl.sri.com.

63

syntactic checks. It is not possible to check semantic prop-
erties of an architecture, such as the safety and fairness of
its connections, or to check the relative correctness of two
architectures in the hierarchy. Consequently, a concrete ar-
chitecture may erroneously be seen as an implementation
of a more abstract architecture.

The main contribution in this paper is a methodology
for the correct stepwise refinement of software architec-
tures. It is expected to lead to fewer architectural design
errors, to extensive and systematic reuse of design knowl-
edge and proofs, and ultimately to an architecture synthesis
tool similar to those now used for integrated circuit design.
The methodology involves the use of instances of archi-
tecture refinement patterns that are correctness preserving
and compositional.

A refinement pattern provides a routine solution to a
standard architectural design problem. For example, a pat-
tern may show how to implement a single dataflow connec-
tion in shared memory, or several patterns may combine
to implement dataflow diagrams in terms of some form of
client/server architecture. A pattern contains a pair of ar-
chitecture schemas that are proved to be relatively correct
with respect to a given mapping schema between them.
The proof is performed only once; every instance of a re-
finement pattern is guaranteed to be correct. A schema
can be homogeneous (consisting of one style) or heteroge-
neous (consisting of multiple styles). The two schemas in a
refinement pattern may, and usually do, contain concepts
from different architectural styles.

A useful form of correctness-preserving composition is
defined that applies to both individual refinements and ex-
isting architectures. The latter is important because we
want to be able to assemble existing subsystem architec-
tures into a single system. Two architectures can be com-
posed even if their vocabularies are not disjoint. In gen-
eral, "horizontal" composition requires a case-by-case proof
of correctness. However, we define a simple syntactic cri-
terion that, if satisfied, guarantees compositionality. Be-
cause our correctness relation is transitive, the "vertical"
composition of levels in an architecture hierarchy preserves
correctness, and we are guaranteed that the most concrete
architecture in the hierarchy meets the requirements of the
most abstract architecture in the hierarchy.

The correctness of architecture refinement and compo-
sition involves a special correctness criterion, which is
stronger than the usual one for functional refinement, and
a special mapping between architectures, that is more com-
plex than the usual mapping between data structures. A
mapping between architectures involves an extensive trans-
lation in which the representation of components, inter-
faces, and connections may change and, moreover, these
abstract objects may be aggregated, decomposed, or elim-

inated in the concrete architecture.
A stronger correctness criterion is needed because of the

potential uses of architectures. Consider the role an archi-
tecture can play in reducing the time to provide fixes, opti-
mizations, and upgrades to systems in deployment. If the
architecture accurately models the implementation, it can
be used to focus and explore the consequences of changes
to the implementation. But if the implementation con-
tains connections that do not appear in the architecture,
a developer could easily be misled into making changes
that appear to be minor and localized but that, in fact,
have widespread consequences. For example, we may spec-
ify a pipeline architecture, restricting the system topol-
ogy to a linear sequence of filters, to facilitate component
reusability. If the concrete architecture implements the
pipeline, but additionally introduces feedback loops, the
raison d'etre behind the original pipeline architecture is no
longer valid. In general, the preservation of "communica-
tion integrity" is integral to the utility of an architecture.

Therefore, an architecture should describe explicitly the
components, interfaces, and connections that are required
of the target system, and perhaps more importantly, those
that are not intended to appear in the target system. This
observation leads to a completeness assumption about a
given architecture, namely that an architecture contains
all components, interfaces, and connections intended to be
true of the architecture at its level of detail. If a fact is
not explicit in the architecture, or deducible from it, we
assume that it is not intended to be true of the architecture.
In the pipeline example, we couple the linearity property
with the completeness assumption to infer that no feedback
loop is allowed in an implementation of the architecture.
In general, an architecture (whether static or dynamic) can
contain an unbounded number of facts.

The completeness assumption requires that we prove not
only that a concrete architecture does not lose properties
of the abstract architecture, but also that no new proper-
ties about the abstract architecture can be inferred from
the concrete architecture. The standard method for rea-
soning about the relative correctness of two specifications
is to show that the concrete specification logically implies
the abstract specification under a given mapping between
them. This allows an implementation to exhibit additional,
unspecified behaviors, as long as the specified behavior is
implemented. If the standard proof method is applied to
architectures, there would be no guarantee that negative
properties are preserved under refinement.

Fortunately, there is a well-understood mathematical
property, called faithful interpretation, that can be adapted
for our purposes. If a certain mapping between the two ar-
chitectures is faithful, both the positive and the implicit
negative facts in the abstract architecture are preserved
in the concrete architecture. However, a proof of faith-
fulness is inherently hard, and we are not aware of any
general proof technique in the literature. We introduce a
systematic technique for proving faithfulness. The inherent
complexity of such proofs is one reason why we advocate a
methodology that makes use of preproved refinement pat-

terns.
It is worth mentioning that an important consequence

of the completeness assumption is that the standard step-
wise refinement paradigm is unsound with respect to the
correctness relation. Certain refinements of an architec-
ture must be composed horizontally. Completed levels in
an architecture hierarchy can be composed vertically.

This paper is organized as follows. The next section il-
lustrates the refinement problem and our approach to a
solution. Section III makes useful distinctions among ar-
chitectural styles, architecture Schemas, and instance archi-
tectures, and shows how they can be represented as logical
theories. We use first-order theories, but our basic frame-
work does not depend on a particular logic. By formalizing
architectures and their properties in logic, our results can
be applied to a large class of architecture definition lan-
guages. Sections IV, V, and VI discuss mappings, correct-
ness, and composition, respectively.

Section VII presents several different refinement pat-
terns that are used in Section VIII in the development of
standard architectures for a compiler. The development
includes both refinement and composition. Sections IX
reports on a larger experiment involving an operational
power-control system. Section X describes related work,
and the last section summarizes our results, their implica-
tions, and makes suggestions for future work.

II. ILLUSTRATION OF APPROACH TO REFINEMENT

A software architecture is represented using the following
concepts.

1. Component: An object with independent existence,
e.g., a module, process, procedure, or variable.

2. Interface: A typed object that denotes a logical
point of interaction between a component and its en-
vironment.

3. Connector: A typed object relating interface points,
components, or both.

4. Configuration: A collection of constraints that wire
objects into a specific architecture.

5. Mapping: A relation that defines a syntactical trans-
lation from the language of an abstract architecture to
the language of a concrete architecture.

6. Architectural style: For the purposes of this pa-
per, a style consists of a vocabulary of design elements,
well-formedness constraints that determine how they
can be used, and a semantic definition of the connec-
tors associated with the style.

Components, interfaces, and connectors are treated as first-
class objects — i.e., they have a name and they are refine-
able. Abstract architectural objects can be decomposed,
aggregated, or eliminated in a concrete architecture. The
semantics of components is not considered part of an ar-
chitecture, but the semantics of connectors is.

Consider the standard dataflow architecture for a com-
piler that is depicted at the top of Figure 1. The diagram
is intended to convey an intuitive feel for the architecture;
it is not a formal description of the architecture. Boxes
denote functional components and arrows denote direc-

64

Analyztr

~r
Analyzer/
Optimizer

Code
Generator

-N n»d(ait)

\™«Kblndino)x.

wHefbinding) **«.. .-^-i s
7 Symbol

I Title

'*'read(bindrng)

I | funclloiialoornponent o Inputpoit ► dataflowconnector

dj tttimtmamaxaiiam« • OU,I»,,I,0,, ==*" P*»eomwrtor
 •■ ordering conatreinl
—«> raadnvrite connection

Fig. 1. Two architectures for a compiler

tional dataflow between ports. The labels on arrows denote
types or value domains. A value cannot be transmitted be-
tween ports unless its type is compatible with the types of
the ports. By the completeness assumption, this dataflow
model of the compiler fixes its functional units, their inter-
faces, and the direction, source, and destination of all of its
flows.

A textual specification of the dataflow architecture is
contained in Figure 2. A dataflow component is a function
with a signature describing its interface. Four dataflow
connectors are declared to carry values of various types.
The configuration assertions wire the connectors and inter-
faces together into a specific type-consistent architecture.
The module imports various types and the functional and
dataflow styles for use in the specification of the architec-
ture.

A concrete architecture intended to implement the
dataflow model of the compiler is depicted at the bottom
of Figure 1. The concrete architecture is a hybrid that im-
plements the dataflow style in terms of pipe-filter, batch-
sequential, and shared-memory styles. Abstract signatures
have been changed, dataflow connectors have been imple-
mented in several ways, new components (data objects)
are introduced, and precedence relations are added to pre-
serve the original flows in the presence of shared-memory
communication.1 A textual specification of the level-2 ar-
chitecture of the compiler can be found in the appendix.

We do not want to construct the level-1 and the level-2
architectures and then perform an after-the-fact correct-
ness proof. Instead, we want to systematically and incre-
mentally transform the level-1 architecture into the level-2
architecture. The level-2 architecture should be correct by
construction, requiring no explicit proofs in its derivation.
This can be accomplished through a series of small, lo-
cal refinements, each of which involves the application of
a correct refinement pattern. Then, the local refinements
are combined to form the larger composite level-2 architec-
ture, which is guaranteed to correctly implement the level-1

'A dataflow connection is treated as an intransitive relation.

compiler .M: MODULE
[ehar.iport: SEQ(character) -> eode.oport: code]
IMPORT character, code, token, binding, ast

FROM compiler.types
IMPORT Function FROM Functional.Style
IMPORT Dataflou.Channel, Connects

FROM Dataflow.Style
COMPONENTS

lexical.analyzer: Function
[char.iport: SEQ(character)

-> token.oport: SEQ(token),
bind.oport: SEQ(binding)]

parser: Function
[token.iport: SEQ(token)

-> base.ast.oport: ast]
analyzer.optimizer: Function

[base.ast.iport: ast, bind.iport: SEQ(binding)
-> full.ast.oport: ast]

code.generator: Function
[full.ast.iport: ast -> eode.oport: code]

CONNECTORS
token.channel: Dataflow_Channel[SEQ(token)]
bind.channel: Dataflo».Channel[SEQ(binding)]
base.ast.channel: Dataflow.Channel[ast]
1ull.ast.channel: Dataflov.ChannelCast]

CONFIGURATION
token.flov:

Connects(token.channel, token.oport, token.iport)
bind.flow:

Connects(bind.channel, bind.oport, bind.iport)
base.ast.flos:

Connects(base.ast.channel,
base.ast.oport, base.ast.iport)

lull.ast.ilov:
Connects(full.ast.channel,

full.ast.oport, inll.ast.iport)
END compiler.!.!

Fig. 2. Specification of dataflow architecture for the compiler

architecture.
As an illustration of our approach, consider the imple-

mentation of the dataflow channel between the parser and
analyzer in terms of the reading and writing of a shared ab-
stract syntax tree. More specifically, we propose to refine
abstract subarchitecture

parser: Function [-> base.ast.oport: ast]
analyzer.optimizer: Function [base.ast.iport: ast ->]
base.ast.channel: Datailow.Channel[ast]
base.ast.flos:

Connects(base.ast.channel,
base.ast.oport, base.ast.iport)

into concrete subarchitecture

parser: Function[->]
analyzer.optiaizer: Function[->]
abstraet.syntaz.tree: Variable[ast]
vrite.base.ast: Writes(parser, abstract.syntax.tree)

read.base.ast:
Reads(analyzer.optiaizer, abstract.syntax.tree)

For simplicity, the component signatures contain only
the ports that are relevant to this refinement. The dataflow
connection is implemented by a component (a shared vari-
able containing the tree) and two connections (the read

65

PATTERN OF ABSTRACT ARCHITECTURE:

M: MODULE [->]
COMPONENTS

fix Functional-Style!Function[-> op:(]
fa: Funetional.Style!Funetion[ip: t ->]

CONNECTORS
c: Dataflow-Style! Dataflow-Channel [t]

CONFIGURATION
o: Dataflow-StyleiConnectsCc, op, ip)

PATTERN OF CONCRETE ARCHITECTURE?

M: MODULE [->]
COMPONENTS

fa: Functional-Style!Function[->]
fa: Functional_Style!Function[->]
m: Shared-Memory-Style! Variable [t]

CONFIGURATION
0/: Shared-Memory-Style!Writea(/i,m)
02: Shared-Memory-Style! Reads (/2, m)

Fig. 3. Simple refinement pattern

and write relations).2 The new concrete signature for the
parser and the analyzer reflects the difference between port-
to-port communication and direct shared-memory commu-
nication through a variable. As an analogous example,
consider an architecture consisting of two procedures that
communicate solely by means of procedure calls. If we op-
timize this architecture so that large objects are no longer
transmitted by value, but instead are accessed directly as
shared objects, the signatures of the two procedures would
change.

The refinement pattern in Figure 3 specifies a way to
implement dataflow in terms of the reading and writing of a
single variable. The read and write relations in the concrete
schema are primitives that cannot be refined. The italic
letters denote schema variables that can be instantiated
with object names, and the symbol "!" is used to qualify
names. The pattern can be proven correct with respect to
the four associations shown at the bottom of the pattern.3

The abstract schema in the pattern matches the level-
1 subarchitecture. However, if the same substitutions are
made in the concrete schema, three schema variables are
left uninstantiated — namely, m, ai, and 02- Of course,
any unused names could be substituted. Let us assume
that the architect selects mnemonic names that give the
following associations.

base.ast.oport —>
base.ast.iport —>
base.ast.channel —> abstract.syntax.tree
base.ast.flow —> («rite.baae.ast, read.base.ast)

2The shared abstract syntax tree could have been represented as
an encapsulated data type. If we had chosen that representation,
the architecture would involve calls to access functions that read and
write the internal variable used to represent the tree.

3In a correctness proof, the associations in the pattern are incorpo-
rated into a more complex mapping between the first-order theories
that represent the abstract and concrete architectures.

Since this instance of the pattern matches the abstract sub-
architecture of the compiler and since all instances of the
pattern are guaranteed to preserve correctness, we can con-
clude that the proposed refinement is correct.

In a later section, we define enough patterns to transform
the full level-1 compiler architecture into the full level-
2 architecture. Additional patterns are defined that can
be used to transform the level-2 architecture into a more
efficient batch-sequential architecture. The final batch-
sequential architecture can be found in the appendix. The
completed compiler architecture can be connected to other
subsystem architectures, such as the file system architec-
ture, to form a correct composite system.

III. ARCHITECTURES AS THEORIES

We want to leave open the choice of language for spec-
ifying an architecture. Therefore, we will represent archi-
tectures as logical theories. We find it convenient to use
first-order theories; however, our results do not depend on
this choice.

It is useful to distinguish among three related architec-
tural theories:

• An architectural style is a theory consisting of a vocab-
ulary of the relevant architectural concepts and well-
formedness axioms that determine how they can be
used. Also associated with a style axe rules for trans-
lating textual specifications in the style into their un-
derlying logical representation.

• An architecture is a theory consisting of one or more
style subtheories and possibly an infinite number of
constants that are names of the objects in the particu-
lar architecture. The axioms of the theory are the style
axioms and possibly additional axioms that relate the
constants.

• An architecture schema is an architecture containing
one or more schema variables. An instance of an ar-
chitecture schema is obtained by substitution of con-
stants for all of its schema variables. An instance of
an architecture schema is sometimes called an instance
architecture or an instance theory.

A. Architectural Styles

Consider the dataflow style. Its vocabulary contains
predicates for describing functional components, ports, val-
ues associated with ports, dataflow channels, values associ-
ated with dataflow channels, and connections of channels to
ports. More precisely, the following sorts denote the first-
class objects in a dataflow theory: channel, function, iport,
and oport. We also make use of sorts 600/ and val, where
val denotes the set of all possible values. The dataflow style
has the following operations.

OutPort: oport x function —► bool
Supplies: oport x val —► bool
InPort: iport x function —> bool
Accepts: iport x val —► bool
Carries: channel x val —» bool
Connects: channel x oport x iport —» bool

66

These predicates are used to represent a dataflow architec-
ture in ordinary first-order logic. Sorts can be represented
as unary predicates but, for simplicity, we omit them in
formulas.

An example of a well-formedness axiom is that every
function must have at least one port:

Vx3y[InPort(y,x) V OutPort(y, x)]

Another requirement is that a channel attached to an out-
put port must be able to carry any value supplied by the
port:

VxVy[3z Connects(x, y, z)
D Vv[Supplies(y, v) D Carries(x, v)]]

B. Translation to Logic

Architectures and refinement patterns are expressed in a
readable textual language. To reason about them, they are
translated into logic by means of simple "theory generation
rules" which are associated with architectural styles. For
the dataflow style, if the specification of an architecture
contains an instance of function declaration schema

/: Functional-Style!Function[-> op: t~\

the underlying theory contains the same instance of first-
order sentences

OutPort(op,/)
Vv[Supplies(op,v) D t(v)]

Similarly, a function declaration of the form

/: Functional-Style!Function[tp: t ->]

is translated to axioms

InPort(y>,/)
Vv[t(v) D Accepts(tp.v)]

Dataflow connector

c: Dataflow-Style!Dataflow-Channel [t]

translates to

Vv[t(v) D Carries(c,v)]

and configuration constraint

a: Dataf low-Style!Connects(c, op, ip)

to

Connects(c, op,ip)

which is not an object and, therefore, is not named in the
logic.

C. Architecture Schemas

The two Schemas appearing in the pattern of Figure 3
will be referred to throughout the paper. Theory 0D corre-
sponds to the abstract schema and theory 0M corresponds
to the concrete schema.

Theory 6D is formed by applying the theory generation
rules of the dataflow style to the abstract schema, which
gives

OutPort(op,/i)
Vv[Supplies(op,v) D t(\)]
In-Port(y>,/2)
Vv[t(v) D Accepts(*p,v)]
Vv[t(v) D Carries(c,v)]
Connects(c, op,ip)

This theory satisfies the two well-formedness axioms stated
earlier.

The concrete architecture schema in Figure 3 is written
in a shared-memory style, which permits the reading and
writing of a shared variable. Shared-variable communica-
tion is modeled using a call site as the interface between
a function and the shared variable.4 A call site serves the
same purpose as a port in the dataflow style. The name
of every different call site must be unique. 0M has the
following style-specific sorts: variable denotes the set of all
possible variables and site denotes the set of all possible call
sites of which there are two kinds. The sort rsite denotes
the sites that read, or input, values; the sort wsite denotes
the ones the write, or output, values. The signature for &M

is

Holds: variable x val -♦ bool
CallSiteOf: site x function —» bool
Writes: wsite x variable —> bool
Puts: wsite x val —> bool
Reads: rsite x variable —* bool
Gets: rsite x val —* bool

The axioms of 0M are

Vv[t(v) DHolds(m,v)]
CallSiteOfKA)
Writes(u>, m)
Vv[Puts(u>,v) D t(v)]
CallSiteOf(r,/2)
Reads(r, m)
Vv[*(v) D Gets(r.v)]

which must satisfy the well-formedness axioms for the
shared-memory style. Schema variables r and w denote
names of call sites and do not appear in Figure 3.

IV. MAPPINGS

To prove the relative correctness of two architectures, we
must specify a mapping between them. An interpretation
mapping is an association between formulas of the language
of the abstract theory and formulas of the language of the
concrete theory. An interpretation mapping is determined
using two different mappings.

• A name mapping associates the objects declared in an
abstract architecture with objects declared in a con-
crete architecture.

• A style mapping says how the constructs of an
abstract-level style can be implemented in terms of the
constructs of a concrete-level style. More specifically,

4We could have chosen not to model call sites or some equivalent
interface object, but this would require a more liberal definition of
interpretation than the one given in this paper. The present model
simplifies the mapping from ©D to 0M-

67

it maps uninstantiated predicates of the abstract-level
language to uninstantiated formulas of the concrete-
level language.

Style mappings can be complicated, but need to be defined
and proved only once. Name mappings are much simpler
and are specific to a given pair of architectures.

A name mapping is determined by the identifier associa-
tions in a given refinement pattern. For example, associa-
tion c—>m in Figure 3 says that channel c of the abstract
schema is mapped to variable m of the concrete schema.
Association op —> says that the concrete object that cor-
responds to abstract port op is not explicitly named in the
concrete schema. Since we have chosen a shared-memory
model that has call sites corresponding to ports, we are free
to introduce any unused name for the sites.

Let N° be name mapping

predicate P, all terms t1,t2,...,t„, every variable x, and
all formulas F and G of the abstract language,

I(P(h,t2,

c ^-^ m
op h-* w
IP h-► r

which relates objects in 0D to their refinements in 0M. Ob-
serve that not every association in the refinement pattern
appears in the name mapping. Identifiers a, ai, and 02 refer
to part of the specification but do not name objects. Hence,
they do not appear in the logical representation. The do-
main of a name mapping can be extended to include all
abstract-level terms by mapping variables to themselves.5

Let S° denote the general mapping from the dataflow
style to the shared-memory style:

Functional) 1-» Function(—1)
OutPort(_i, —2)

I-» CallSiteOf(_1, _2) A 3v Puts(_i, v)
Supplies(_i, —2) •-► Puts(_i, —2)
InPort(_i, —2)

1-* CallSiteOf(_i, _2) A 3v Gets(_i, v)
Accepts(1, —2) !-► Gets(—1, —2)
Channel(1) 1-* Variable(—1)
Carries (1, —2) ■-» Holds (—1, —2)
Connects (1, —2, —3)

1-» Writes(_2, —1) A Reads(—3, —1)

The Puts and Gets predicates ensure that the right kind of
site is associated with each port.

The last association specifies the implementation strat-
egy. In &D we have Connects(c, op, ip), which can be imple-
mented by having the call that corresponds to op perform a
write operation on the variable that corresponds to channel
c, and the one that corresponds to ip read the variable that
corresponds to c. The other associations say that channels
are mapped to variables, that output ports are mapped to
calls that supply values, and that input ports are mapped
to calls that receive values.

An interpretation mapping I is determined from a name
mapping N and a style mapping S, as follows: for every

5Note that our languages contain no function symbols. A formal
treatment of interpretations for languages that include them can be
found in [6].

2,...,t„)) = SiPUNihlNfo),. -,N(tn))

!(-*■) = -(/(F))

/(FAG) = /(F) A/(G)
I{FvG) = /(F) V/(G)
I(FDG) = /(F) D /(G)

/(VxF) = Vx/(F)6

I(3xF) = 3xI(F)

Let /£ denote the interpretation mapping from theory
&o to theory 0M. Both the basic facts and the general well-
formedness axioms in 0D must be mapped. For example,

Z£(Connects(c, op, ip))

= SZ(Connects)(NZ(c),NZ(op),NZ(ip))

= iSJJ (Connects) (m, w, r)

= Writes(«;, m) A Reads(r, m)

which is the intended implementation. Similarly, the gen-
eral dataflow-style requirement that each function have at
least one input or output port maps to the shared-memory
requirement that each function' have a call site that can
input or output values. That is,

/£(Vx3y[InPort(y, x) V OutPort(y, x)])
= Vx3y[/S(InPort(y,x)) V ZS(OutPort(y,x))]

= Vx3y[S£(InPort)(J\T£(y), JV£(x))
VSS(OutPort)(JVi5(y),JV5(x))]

= Vx3y[(CallSiteOf(y,x) A 3v Gets(y, v))
V (CallSiteOf(y, x) A 3v Puts(y, v))]

V. CORRECTNESS

Two instance architectures, represented as theories, are
proven correct with respect to an interpretation mapping
between them and the completeness assumption. An inter-
pretation mapping contains a style mapping whose seman-
tic correctness should be established as a proof obligation.
Proof of style mappings is discussed in a companion paper
[18], which gives a proof of mapping S£ from the dataflow
to the shared-memory style. The connectors in the styles
are defined in a temporal logic, and both safety and fairness
conditions are shown to be satisfied by the shared-memory
implementation. The safety condition is that the shared-
memory implementation preserves order and does not lose
values; the fairness condition is that all values written into
shared memory will eventually be read. The proof of a style
mapping is performed only once; it need not be repeated
when the two styles are used.

A. Criterion

Let 0 and & be instance theories (containing no schema
variables) associated with an abstract and a concrete archi-
tecture, respectively. Let / be an interpretation mapping

8In general, the range of quantifiers must be restricted to a subset
of the concrete domain, see [6]. But no restriction is required for our
example, because every concrete-level object implements an abstract-
level object.

68

from the language of 0 to the language of &'. For every
sentence F, mapping 7 is a theory interpretation provided

if F € 0 then 1(F) 6 &

This is the usual definition of correctness.
Since a given architecture is assumed to be complete with

respect to its level of detail, we additionally require that the
concrete architecture add no new facts about the abstract
architecture. To prove this, we must additionally show that

if F i 0 then 1(F) $ &

in which case I is a faithful interpretation. This says that,
if a sentence is not in the abstract theory, its image cannot
be in the concrete theory. Observe that & is a conser-
vative extension of 0 provided the identity map faithfully
interprets 0 in 0'.

B. Proof Technique

Again, let 0 and 0' be instance theories and I be the in-
terpretation mapping between them. We present a general
model-theoretic proof technique for showing that interpre-
tation mapping I is a faithful interpretation of abstract
theory 0 in concrete theory &. First, we prove that I is
a theory interpretation of 0 in &'. This can be done by
means of a standard proof technique: For every axiom in
0, establish that the image of the axiom under I is a logical
consequence of the axioms of 0'.

Second, we must prove that interpretation mapping I is
a faithful. The proof method has to take into account that
there is no direct method for determining that a formula is
not in 0'. Our proof technique for faithfulness is based on
two model-theoretic concepts:

■ The interpretation mapping I from 0 to & induces a
mapping I' from structures of the concrete language to
structures of the abstract language.7 Given a structure
A' of the concrete language, I' maps A' to a structure
A of the abstract language as follows. The universe of
A is the same as the universe of A'. If J maps atomic
formula P(xi,X2, ■■-, xn) to concrete formula F, then
I' assigns to predicate P in the abstract language the
set of tuples in A' that satisfy F.

• The theory that describes structure A is obtained as
follows. First, expand the language of A to include a
name for every member of the universe of A. Next,
expand A by assigning every new name to the appro-
priate member of A. The theory that describes A is
the set of sentences in the expanded language that are
true in the expanded structure.

Our technique for proving the faithfulness of I can now
be stated as follows: For every model A of 0, find a model
A' of & such that the image of A' under the induced map-
ping I' can be expanded to a model of the theory that de-
scribes A. This model-theoretic characterization of faith-
fulness is equivalent to our theory-based definition of cor-
rectness.

'Recall from logic that a structure of a first-order language consists
of a universe and the assignment of elements of the universe to the
constants and relations over the universe to the function and predicate
symbols.

Roughly speaking, this characterization requires that, for
every model -4 of 0, there is a model A' of 0' such that A
and I'(A1) cannot be distinguished using the resources of
first-order logic. If we were to use an architectural specifi-
cation language based on some other logic, a similar char-
acterization based on the expressive power of that logic
would be substituted. For example, if the content of our
architectural specifications were expressed in type theory,
we would require that I'(A') can be expanded to model
every type-theoretic sentence expressible in the language
that contains a name for every object in the domain of A,
every relation among those objects, every relation among
those relations, and so on, that is true in A. (It is easy
to see that this amounts to requiring that I'(A') and A
be isomorphic.) So our general method for demonstrating
faithfulness can be used with any logic-based architectural
specification language, as long as the question of whether
a structure that represents an architecture satisfies a spec-
ification has a well-defined answer.

C. Application to Refinement Patterns

A refinement pattern consists of a triple (0,0', N) where
0 and & are theories containing schema variables and N
is a name mapping from 0 to 0'. A pattern is correct
provided every instance of 0 and 0' is relatively correct
with respect to the same instance of interpretation mapping
1 : 0 —► 0' determined by mapping N and the relevant
style mapping(s).

Consider theories 0D and 0M related by interpretation
mapping /£• We must show that, for every instantiation of
the schema variables, I£ is a theory interpretation of 0D

in @M and 1^ IS faithful. The former is straightforward.
To prove faithfulness, consider the induced mapping of

i£. If M is a structure for 0', then the induced mapping
applied to M. is a structure V for the dataflow language.
The only interesting assignment is to the predicate Con-
nects, which is the set of tuples

{(x,y,z) 6 \M\3:M f= Writes(j/,x) AReads(z,z)}

because /JjJ maps Connects(c, op,ip) to the formula

Writes(u>, m) A Reads(r, m)

where c, op, ip, w, m, and r are schema variables.
To show that 7JJ is faithful, we use 7JJ to transform a

model V of an instance of 0D to a model M of an instance
of 0M. The universe of M is the same as V in this example.
The predicate Function is assigned to the set of all objects
that are functions in V, namely,

{x S \V\:V \= Function(s)}

so that V and M agree on functions. The predicate Vari-
able is assigned to

{x € \V\:V (= Channel(a;)},

the predicate Reads is assigned to

{(x,y) £ |D|2:for some z in \V\, V \= Connects(j/,z,a:)}

69

and similarly for the remaining predicates. The image of
M under the induced mapping is V. Obviously, V can
be expanded to a model of the theory that describes V.
Therefore, i£ is faithful. Note that, since the image of M
under the induced mapping is identical to V, the interpre-
tation J£ would remain faithful if we were to switch from
first-order logic to some stronger logic, such as type theory.

VI. COMPOSITION

We define two forms of composition for instance architec-
tures. Horizontal composition is used to compose instances
of refinement patterns to form one large composite refine-
ment architecture. It is also used to compose existing archi-
tectures into larger architectures. Vertical composition is
used to chain together a sequence of correct architectures,
allowing us to conclude that the most concrete architecture
in a hierarchy is correct with respect to the most abstract
architecture in the hierarchy. Vertical composition is justi-
fied since faithful interpretation is transitive.

Let &i and 02 be instance theories that represent two
abstract architectures. Let 0[and 02 be concrete theories
intended to implement &i and 02, respectively. Two pairs
of architecture theories can be composed only in ways that
preserve faithfulness. More precisely, if

h: 6>x -* 0[and J2: 02 -» 02

are faithful interpretations, then we want

h U 72: 6»i U 02 -+ 0'i U 0'2

to be a faithful interpretation. (The union of two theories
is the deductive closure of the set-theoretic union of the
theories.)

This property holds provided two general conditions are
satisfied.

1. The composite interpretation mapping must be a
function. For a sentence F, we require that

if F€0in02 then h(F) = I2(F)

which guarantees that interpretation mappings I\ and
J2 agree on shared objects and shared style constructs.

2. It must not be possible to infer new facts about the
composite abstract architecture from the composite
concrete architecture. That is, for language L\ of 0i
and L2 of 02, if

F is a sentence of L\ U L2

and
0iU02 h IiU/2(F)

then we must prove that

/i[0!]U/2[02] h IiUh(F).

The intuition behind the second condition can be illus-
trated by means of a simple example. Consider an ar-
chitecture in which there is a dataflow connection from

A to B and another architecture that has dataflow con-
nection from B to C. Suppose that both flows are im-
plemented correctly in concrete architectures, but that in
one A writes some variable x and in the other C reads a
variable x. Each implementation is correct, since neither
introduces a new dataflow. However, the composite con-
crete architecture reads and writes x, from which we can
infer an entirely new abstract dataflow connection from A
to C. Consequently, the composite abstract architecture
is not faithfully interpreted (by the composite mapping)
in the composite concrete architecture (under the original
assumption that dataflow is intransitive).

Of course, we do not want to have to prove that ev-
ery refinement pattern can be composed with every other
refinement pattern. Instead, we would like simple syntac-
tic criterionthat, if satisfied, guarantees compositionality.
One such criterion is that the two abstract architectures
can share only components and lower-level architectures
can share only images of those components under the in-
terpretation mapping. This means that an architecture
cannot contain certain global assertions, such as a require-
ment that there are exactly three connections in any archi-
tecture.

An example of the horizontal composition of pattern
instances involves the compiler architecture in Figure 1.
We have proved that the dataflow connection between the
parser and the analyzer is implemented correctly by means
of the reading and writing of the tree, using instances of
0D, 0M, and I£ from Figure 3. Similarly, we can show
that the dataflow connection from the lexical analyzer to
the parser is correctly implemented by the pipeline connec-
tion. The two architectures share only one component, the
parser. Therefore, our second condition is satisfied and we
can compose them without further proof.

A different kind of example is contained in Figure 4. We
want to compose two architectures, called "subsystem A"
and "subsystem B", into a single system architecture. We
construct a new architecture with components "A" and
"B" connected through new interfaces. According to our
syntactic constraint, the three architectures can be com-
bined to form a composite system that is correct if the
three subsystems are.

VII. SOME REFINEMENT PATTERNS

We present six broadly useful patterns for refining com-
ponents, connectors, and interfaces.8 The patterns involve
several common architecture styles and each pattern has
been proven correct.

A refinement pattern is presented in a table containing
two architecture Schemas, an association of abstract and
concrete objects, and possibly constraints on one or both
of the Schemas. By convention, a schema variable that oc-
curs in both an abstract and a concrete schema must match
the same object, modulo renaming. We prime a concrete
schema variable to indicate that it is the name of a new ob-
ject not associated with any abstract-level object, or that it

•Type refinement is not covered because it requires a somewhat
different correctness criterion.

70

Subsystem A

(A> AB;

Linking Architecture

£
i r \ /\

Subsystem B

X)
Composite System

X), p'"T

«Vr
Fig. 4. Illustration of Subsystem Composition

Symbol Style Name
BS Batch-Sequential-Style
CT Control-Transfer .Style
D Dataflov-Style
F Functional-Style
pp Process-Pipeline -Style
SM Shared-Memory-Style

TABLE I

ABBREVIATIONS FOR STYLE NAMES IN REFINEMENT PATTERNS

denotes a required change to the associated abstract-level
object. The intended meaning is obvious from context. A
reference to a style in a refinement pattern is abbreviated
according to the naming conventions summarized in Ta-
ble I.

We assume that connections in an architecture do not
share interface points. Multiple uses of a given interface
point are modeled with multiple copies of the same point.
This model has the advantage that interfaces and connec-
tions can be refined more flexibly. However, this choice of
representation can result in an increase in the number of
interface points.

A. Component Refinement

Figure 5 contains a refinement pattern for decompos-
ing a functional component into a collection of components
wrapped by a module. Component / is refined into mod-
ule /', hence the association /—>/'. A module signature
contains all externally visible interfaces within the mod-
ule. Since each interface point is an object with a unique
name, there is no confusion as to the correspondences be-
tween the interface points of / and those of components in
/'. By requiring that / and /' have the same signature,
we are guaranteed that the original connections involving
/ are maintained through its subcomponents. The refine-
ment is faithful because the interface requirement on / and
/' prevents the addition or deletion of connections.

The next two patterns are for aggregating variables in
situations that are common in intermediate stages of a de-
velopment. This is done for time and space efficiency, es-

PATTERN OF ABSTRACT ARCHITECTURET

M: MODULE [pi -> p2]
COMPONENTS

/: F!Function[pn -> pu]
PATTERN OF CONCRETE ARCHITECTURET

M: MODULE [pi -> p2]
COMPONENTS

/': MODULE [pu -> p12]
ABSTRACT TO CONCRETE ASSOCIATIONS:"

/ -> /'

Fig. 5. Decomposing a component into subcomponents (Pattern 1)

pecially if the variables hold large objects. Application of
the patterns also results in a simpler design.

Figure 6 contains a pattern for merging shared variables
when one of them is a private variable. This pattern merges
a shared variable mi, which is written by component /i and
read by component /2, with a private variable m.2, which
is read and written by component f\. This is expressed
by the association (mi,7712)—>m'. There are three basic
requirements on this form of refinement:

• The variables denoted by schema variables mi and m2

must have the same type, denoted by schema variable
t-

• Only the component denoted by f\ can write the vari-
able denoted by m-i. This prevents a new flow to fi,
which would violate the faithfulness requirement.

• Only /1 accesses private variable rri2, otherwise a new
flow would be created by the refinement. This require-
ment is enforced by the constraint on the abstract ar-
chitecture.

A variant of this pattern combines the shared variable
and the private variable into two fields of a record struc-
ture. With this variant, the constraint on the abstract
architecture is not needed, provided that the components
involved access only the proper fields of the record. This
kind of refinement would not increase efficiency, but could
help simplify the design.

Figure 7 contains a pattern for merging shared variables
when neither of them are private. The two shared vari-
ables are connected by a common functional component.
A shared variable denoted by schema variable mi is writ-
ten by functional component /1 and read by f2. Shared
variable m2 is written by f2 and read by f3. The merge is
expressed by the association (mi,«12) —>m'.

Our correctness criterion places the following restrictions
on the architectures:

• The variables to be merged must be of the same type
t.

• Since we treat dataflow as an intransitive relation, we
also treat other relations dealing with the flow of data
as intransitive relations. Therefore, functional compo-
nents /1, /2, and jz have to be executed sequentially
in batch mode so that we cannot infer the existence of
a new abstract flow from /1 to fo. This is prevented
by configuration assertions a's and a'6.

• No other functional components can read mi or write

71

PATTERN OF ABSTRACT ARCHITECTURE:

M: MODULE [pi -> P2]
COMPONENTS

fl : F!Function[pn -> P12I
f2 : F!Function[p2i -> P22]
mi: SM! Variable [fl
m2: SM! Variable [fl

CONFIGURATION
ai: SM!Writes(/i,mi)
02: SM!Reads(/2,mi)
03: SM!Write«(/i,m2)
04: SM!Read«(/i,m2)

PATTERN OF CONCRETE ARCHITECTURE:

M: MODULE [pi -> P2]
COMPONENTS

fl : F!Function[pn -> P123
f2 : F!Function[p2i -> P22]
m': SM!Variable[fl

CONFIGURATION
ai: SM!Writes(/i,m')
a'-: SM!Reads(/2,m')

SM!Reads(/i,m')

ABSTRACT TO CONCRETE ASSOCIATIONS:

(mi,m2) —> m' (01,03) ~>
a2 ~> a'2 04 —>

CONSTRAINTS ON ABSTRACT ARCHITECTURE:

-I(3/: FIFunction)
[/ * h

A [SM!Writes(/,mi)
V SM!Writes(/,m2)
V SM!Reads(/,m2)]]

Fig. 6. Merging a shared variable with a private variable (Pattern 2)

m2, which is enforced by a constraint on the abstract
architecture.

A variant of this pattern combines the shared variables
into two fields of a record structure. With this variant,
the sequential ordering assertions in the concrete architec-
ture and the constraint on the abstract architecture are not
needed.

B. Connector Refinement

Figure 8 contains a pattern for implementing a dataflow
connector by a pipe. Dataflow channel c from /i to f2 is
refined into a pipe c' connecting /i to f2. The connec-
tor refinement is expressed by the associations c-->d and
a—>a'. This refinement is obviously faithful. Semanti-
cally, it can be justified on the basis of the meaning of the
dataflow and pipe connectors.

Figure 9 contains a pattern for refining two functional
components A and f2 that are executed in batch-sequential
mode into a module with a main functional component /'
transferring control first to /i and then to /2. The correct-
ness of refinements of this form depends on the following
properties.

. Component /i has to complete before f2 can start,
which is enforced by configuration assertion a'.

. Concrete component /' cannot transfer control to f2

until /i completes, and /i cannot transfer control to
/' after f2 starts. These ordering relationships are

PATTERN OF ABSTRACT ARCHITECTURE:

M: MODULE [pi -> P2~i
COMPONENTS

/l F!Function[pn -> P12J

h F!Function[p2i -> P22]

h F!Funetion[p3i -> P32]
mi SM!Variable[fl

T712 SM!Variable[fl
CONFIGURATION

ai: SM!Writes(/i,mi)
02: SM!Reads(/2,mi)
03: SM!Writes(/2,m2)
04: SM!Reads(/3,m2)

PATTERN OF CONCRETE ARCHITECTURE:

M: MODULE[pi -> P2]
COMPONENTS

/l : F!Function[pii -> P12]
jl : F!Function[P21 -> P22]
f3 : F!Function[p3i -> P32]
m': SM!Variable[fl

CONFIGURATION

y.
SM!Writes(/i,m')
SM!Reads(/2,m')
SM!Writes(/2,m')
SM!Reads(/3,m')
BS! Starts JWter Jinish.Of (/a, /1)
BS!Starts-After-Finish-Of(/3,/2)

ABSTRACT TO CONCRETE ASSOCIATIONS"

(mi, ni2) —> "*' °i "_>

„2 —> o'2 03 -->

04 --> °4

CONSTRAINTS ON ABSTRACT ARCHITECTURET

n(3/: FIFunction)
[/ * h

A [SM!Reads(/,mi)
V SM!Writes(/,m2)]]

Fig. 7. Merging shared variables (Pattern 3)

PATTERN OF ABSTRACT ARCHITECTURE:'

M: MODULE[pi -> P2]
COMPONENTS

/i: F!Function[pn -> op:t,
f2: F!Function[:p:l, P21 ->

CONNECTORS
c: D! Dataf loB.Channel [fl

CONFIGURATION
a: D!Connects(c, op, tp)

PATTERN OF CONCRETE ARCHITECTURE:

M

P12]
P22]

MODULE[pi -> P23
COMPONENTS

/1: F!Function[pn -> op:t, P12]
/2: F!Function[tp:t, P21 -> P22]

CONNECTORS
c': PP!Pipe[fl

CONFIGURATION
a': PP! Connects (c' ,op,ip)

ABSTRACT TO CONCRETE ASSOCIATIONS:

—>

Fig. 8. Implementing a dataflow connector by a pipe (Pattern 4)

72

PATTERN OF ABSTRACT ARCHITECTURE?

M: H0DDLE[pi -> p2]
COHPONENTS

}\: F!Function[pn -> pn]
ft: F!Function[p2i -> p22]

CONFIGURATION
a: BS! Starts Jfter-Finish.0f(/i,/2)

PATTERN OF CONCRETE ARCHITECTURE?
M: MODULE [pi -> p2]

COHPONENTS

CONNECTORS

F!Function[->]
F!Function[pn -> pl2]
F!Function[p2i -> p22]

»i: CT!Enabling.Signal
s'2: CT!Enabling.Signal

CONFIGURATION
a'„: CT! Sender (»i,/i)
o{2: CHReceiver-SignalCs'j,/')
aL: CT!Sender(»2,/')
a'i2: CT!Receiver.Signal(«2,/2)
 a' : CT!Before(s[,a'2)
ABSTRACT TO CONCRETE ASSOCIATIONS?

CONSTRAINTS ON CONCRETE ARCHITECTURE:

n(3»': CT!Enabling-Signal)
[CT!Sender(«',/')

A CT!Receiver.Signal(5',/2)
A CT!Before(»',«i)]

-i(3*': CT!Enabling_Signal)
[CTISenderC»',/!)

A CT!Receiver.Signal(»',/')
A CT!Before(i'2,*')] J

Fig. 9. Implementing ordering constraint using explicit control trans-
fer (Pattern 5)

enforced by the two constraints on the concrete archi-
tecture.

• All functional components have to be enabled by /'
and every control transfer must be between /' and
a functional component. This is enforced by a well-
formedness constraint in the control-transfer style, not
by a constraint in the pattern.

C. Interface Refinement

Figure 10 contains the full specification of the pattern in-
troduced earlier in Figure 3. The refinement of the dataflow
connection into a shared-memory implementation has the
side effect of changing the signature of the two functions,
since connections do not share interface points.

VIII. EXAMPLE REVISITED

We now apply the refinement patterns to the compiler
architectures illustrated earlier in Figure 1. In particu-
lar, we show how the level-1 compiler architecture can be
refined into the level-2 compiler architecture using five of
the patterns. The textual specification of the architectures
are simplified through the use of ellipses for parts of the
specification that are not relevant to the refinement under
consideration. The full textual specifications for levels 1
and 2 are in Figure 2 and the appendix, respectively.

PATTERN OF ABSTRACT ARCHITECTURE:

M: M0DULE[tp:t, pi -> op:t, p2]
COHPONENTS

J\\ F!Function[pii -> op:t, pi2]
/2: F!Funetion[tp:t, p2i -> p22]

CONNECTORS
c: D!Dataflow.Channel[t]

CONFIGURATION
a: D!Connects(c, op, ip)

PATTERN OF CONCRETE ARCHITECTURE?

M: MODULE[pi -> p2]
COHPONENTS

/l : F!Function[pii -> pl2]
/2 •■ F!Function[p2i -> p22]
m': SM! Variable [t]

CONFIGURATION
o'j! SM! Writes (/i,m')

SM!Reads(/2)m')
ABSTRACT TO CONCRETE ASSOCIATIONS?"

c —> m! a —>
{op, ip) —>

K>°2)

Fig. 10. Implementing dataflow with a shared variable (Pattern 6)

The development of the level-2 architecture involves
three main steps — the introduction of the pipe between
the lexical analyzer and the parser, the development of the
shared tree accessed by the parser, analyzer/optimizer, and
code generator, and the development of the shared symbol
table between the lexical analyzer and the optimizer. All
patterns, with the exception of Pattern 5, are used. (Pat-
tern 5 is applied repeatedly to the level-2 compiler archi-
tecture to get the level-3 architecture in the appendix.)

A. Introduction of the Pipe

This refinement is a straightforward application of Pat-
tern 4. Consider the following abbreviated subarchitecture
of the level-1 compiler.

compiler_L1: MODULE
[char.iport: SEQ(character) -> code.oport: code]

COMPONENTS
lexical.analyzer: Function

[... -> token.oport: SEQ(token), ...]
parser: FunctionCtoken.iport: SEQ(token) -> ...]

CONNECTORS
token.channel: Dataflow.Channel[SEQ(token)]

CONFIGURATION
token.flov:

Connects(token.channel, token.oport, token.iport)

Pattern 4 can be used to refine dataflow channel
token-channel into pipe token_pipe, resulting in the fol-
lowing level-2 architecture.9

compiler_L2: MODULE
[char.iport: SEQ(character) -> code oport: code]

COHPONENTS
lexical.analyzer.module: MODULE

[... -> token.oport: Finite.Stream(token)]
parser: Function

[token.iport: Finite_Stream(token) ->]

9An output and an input port of type SEQ(token) were implemented
as type Finite_Stream(token). A stream is a function from clock
times to values. The correctness of this type refinement is not treated
in this paper.

73

CONNECTORS
token.pipe: Pipe[Finite_Stream(token)]

CONFIGURATION
token.flow:

Connect«(token.pipe, token.oport, token.iport)

B. Development of the Shared Abstract Syntax Tree

Consider the following dataflow architecture.

compiler_L1: MODULE
Cchar.iport: SEQ(character) -> code.oport: code]

COMPONENTS
parser: Function [... -> base_ast_oport: ast]
analyzer.optimizer: Function

Cbase.ast.iport: ast, ... -> full.ast.oport: ast]
code.generator: Function

[full.ast.iport: ast -> ...]
CONNECTORS
base.ast.channel: Dataflow.Channel[ast]
full.ast.channel: Dataflow.Channel[ast]

CONFIGURATION
base.ast.flow:

Connects (base.ast.channel,
base.ast.oport, base.ast.iport)

full.ast.flow:
Connects(full.ast.channel,

full.ast.oport, full.ast.iport)

It can be split into two dataflow architectures and Pat-
tern 6 is applied to each to construct two shared memory
architectures, which are composed horizontally to form a
single architecture. Then, Pattern 3 can be applied to
merge the two shared data structures into a single shared
tree, called abstract_syntax-tree. The three architec-
tures compose vertically, so we know that the final archi-
tecture, given below, is correct with respect to the original
dataflow architecture.

compiler_L2: MODULE
[char.iport: SEQ(character) -> code.oport: code]

COMPONENTS
parser: FunctionC... ->]
analyzer.optimizer: FunctionC ->]
code.generator: FunctionC -> ...]
abstract.syntax.tree: Variable[ast]

CONFIGURATION
nrite.base.ast:

Writes(parser, abstract.syntax.tree)
read.base.ast:

Reads(analyzer.optimizer, abstract.syntax.tree)
«rite.full.ast:

Writes(analyzer.optimizer, abstract.syntax.tree)
read.full.ast:

Reads(code.generator, abstract.syntax.tree)
precedence.l:

Starts.After.Finish.Of(analyzer.optimizer, parser)
precedence_2:

Starts.After.Finish.Of(code.generator,
analyzer.optimizer)

C. Development of the Shared Symbol Table

This refinment involves three individual refinements, but
only vertical composition. Consider the following architec-
ture, which specifies the dataflow from the lexical analyzer
to the analyzer/optimizer that is used to transmit binding
information.

compiler_L1: MODULE
[char.iport: SEQ(character) -> code.oport: code]

COMPONENTS

lexical.analyzer: Function
[char.iport: SEQ(character)

-> bind.oport: SEQ(binding), ...]
analyzer.optimizer: Function

[..., bind.iport: SEQ(binding) -> ...]
CONNECTORS
bind.channel: Dataflow.Channel[SEQ(binding)]

CONFIGURATION
bind.flow:

Connects(bind.channel, bind.oport, bind.iport)

The three refinement steps are:
1. Pattern 1 is used to refine the lexical analyzer into

a new module containing itself and a private symbol
table used to store bindings locally before proceeding
to the next phases of compilation, which could modify
the table.

2. Pattern 6 is used to introduce a shared variable be-
tween the lexical analyzer and the optimizer, corre-
sponding to bind.channel, that can be used to trans-
mit the completed symbol table. 10

3. Pattern 2 is used to merge the private symbol table
and the shared variable into a single shared repository.
This reflects a conscious decision to allow no compo-
nent other than the lexical analyzer to write the table.
As a consequence, any additional information, such as
storage requirements, and code restructuring must be
represented in the abstract syntax tree.

The resulting architecture is given below.

compiler_L2: MODULE
[char.iport: SEQ(character) -> code.oport: code]

COMPONENTS
lexical.analyzer.module: MODULE[... -> ...]

COMPONENTS
lexical.analyzer: FunctionC... -> ...]
symbol.table: Variable[SEQ(binding)]

CONFIGURATION
vrite.bind:

Writes(lexical.analyzer, symbol.table)
read.bind:

Reads(lexical.analyzer, symbol.table)
END lexical.analyzer.module

analyzer.optimizer: FunctionC ->]
CONFIGURATION

read.bind:
Reads(analyzer.optimizer,

lexical.analyzer.module!symbol.table)

D. Putting The Pieces Together

The three individual architecture hierarchies can be flat-
tened to two levels because faithful interpretations are tran-
sitive. Then, they can be composed horizontally to form
the composite compiler architectures at levels 1 and 2. The
level-3 compiler architecture can be formed in a similar
fashion.

It is worth noting that a series of refinements can result
in a deep hierarchy that need not be saved explicitly. The
sequence of steps in deriving a concrete architecture are
important, but the intermediate architectures themselves
may not be. We saw this in the development of the symbol
table.

10The nested lexical-analyzer .module can be flattened by a re-
structuring pattern so that patterns can be applied directly.

74

We also observe that it is possible to adopt a hybrid ap-
proach to architecture development in which parts of the
architecture are developed by means of refinements and
other parts are specified completely by hand. In the lat-
ter situation, refinement patterns can be used to validate
the correctness of the putative implementation architec-
tures through a straightforward matching procedure. Cor-
rect hierarchies can be composed no matter how they were
developed, provided the composition is faithful.

IX. APPLICATION TO A POWER-CONTROL SYSTEM

The approach presented in this paper has been used to
design an architecture for an operational power control sys-
tem implemented in 200,000 lines of FORTRAN 77 code .
The system is used by Tokyo Electric Power Company,
Inc. to achieve efficient administration of power-supply sys-
tems in Tokyo, Japan. The power-control system was de-
veloped by Meidensha Corporation and its architecture is
considered a company asset. Originally, the details of the
architecture were represented informally in several loosely
connected documents. This created a difficult situation
for Meidensha Corp. because they wanted to expand their
business in control systems to other areas with similar re-
quirements, which would require minor modifications to
the reference architecture. With no formalized architec-
ture, such an expansion would certainly lead to duplication
of effort and unnecessary errors in implementation.

Our objective was to formalize the reference architecture
in terms of company styles and at two levels of detail, and
to guarantee that the concrete architecture is correct with
respect to the abstract architecture. This task was com-
pleted successfully. The abstract architecture was stated in
terms of a dataflow style, and the concrete architecture was
a combination of a call-return style, a (structured) shared-
memory style, and a special process synchronization style
for DEC VMS operating systems. Twelve patterns were
used in the development; each was used many times.

Pattern 1 was used for decomposing functional com-
ponents into modules; Pattern 6 was used to implement
dataflow as a shared variable. Domain-specific refinement
patterns were needed to handle two distinctive features
of the concrete power-control architecture—heavy use of
shared memory and process synchronization by an enabling
signal. The shared memory did not have a uniform struc-
ture. Dozens of dataflows were implemented by a single
record containing one field for each flow. Some dataflows
were implemented as a record structure containing the data
and a one-bit enabling signal, and others as a message chan-
nel plus a signaling channel. A collection of variables con-
taining one bit are packaged into a bitstring for efficient
communication. Variants of Patterns 2 and 3 were used to
aggregate individual variables into records.

This successful experience strongly suggests that, in the
domain of power control, only a small number of patterns
is required. This allows the cost of pattern verification to
be amortized across many applications in the power-control
domain. We know that many of the patterns are relevant
in other domains as well, and believe that only a modest

number of new patterns will be needed in many application
areas.

X. RELATED WORK

The field of architecture-driven software development
will not reach its full potential until it is possible to re-
fine and compose architectures incrementally, flexibly, and
in ways that preserve the desired properties. Ideally, deep
properties of an architecture, such as relative correctness,
should be preserved. This requires that an architecture hi-
erarchy be represented formally and the mapping between
the levels be precise and explicit. We review related work
in the areas of refinement, correctness, and composition.

Previous approaches to specification refinement have
concentrated on the preservation of functional properties,
which occurs when the mapping between specifications is
a theory interpretation. The mapping often is complicated
by a change in data representation. This can be taken into
account by adapting the technique of Hoare [12] to relate
the types in the abstract and concrete specifications. An
analogous problem arises in architecture refinement when
there is a change in style. We have introduced the notion
of a style mapping to related the styles in the abstract and
concrete architectures.

We are not the first to recognize the importance of
schematic transformations in stepwise refinement. In
[10], Gerhart gives several examples of schema transfor-
mations that preserve functional correctness. We define
schema transformations that preserve architecture correct-
ness. The two forms of refinement are complementary. An
architecture refinement hierarchy describes system orga-
nization — its components, interfaces, and connections.
Functional refinement is used to develop the behavior of
the system components in the architecture. In both in-
stances, Schemas can be used to increase the reusability of
designs and proofs.

Of course, the utility of architecture hierarchies has been
recognized for some time. For example, in the 1970s Jack-
son [13], Yourdan and Constantine [20], DeMarco [7], and
others describe system architectures and, more recently, ar-
chitectural description has been the basis for commercial
offerings. However, previous work has given little attention
to the mapping between levels of abstraction. We formally
defined the interpretation mapping required in architecture
correctness proofs in terms of a specific name mapping and
a general, reusable style mapping. The mapping also pro-
vides the basis for traceability of architectural design deci-
sions, which is useful in practice.

Recently, another form of a mapping between architec-
tures has been developed for the Rapide architecture defini-
tion language [14], [15]. Rapide is used to define executable
architectures based on distributed event processing. Two
architectures are related by mapping concrete events to ab-
stract events. Event mappings provide the basis for com-
parative simulation, a technique that complements static
modeling.

The standard criterion for functional correctness is not
applicable to architectures because of the completeness as-

75

sumption. A similar completeness assumption is made
widely in the database community for analogous reasons,
see Reiter [19]. However, Reiter allows only finitely many
objects, so a "domain closure axiom" can be used to enu-
merate the domain of discourse. No similar technique can
be applied here because, in general, an architecture can be
infinite. For example, we allow quantification over infinite
types (such as integers) and dynamic architectures with an
unbounded number of processes and connections. Because
of the completeness assumption, an abstract architecture
must be faithfully interpreted in the concrete architecture.

In [17], Moriconi and Hare study the relative correctness
of two architectures under the completeness assumption.
They make the simplifying assumption that an architecture
can contain only a fixed, finite number of objects. Broy
[5], Brinksma [4], and others have applied the standard ap-
proach to correctness to architectures. Broy's component
refinements turn out to be conservative (and, hence, faith-
ful) because interface signatures are preserved, but his con-
nection refinements may not be because additional flows
could be added to a channel. Brinksma justifies channel
splitting on the basis of behavioral reasoning; application
of his rule can violate the completeness assumption.

We appear to be the first to observe that, in an archi-
tectural correctness proof, it is important to establish the
semantic correctness of the relevant style mappings. The
importance of reasoning about connectors was recognized
by Allen and Garlan [3], who formalize them in a subset of
CSP [11] and then proved absence of deadlock. In [18] we
define the meaning of connectors axiomatically in a tem-
poral logic and prove both fairness and safety properties
of an implementation of the dataflow connector in shared
memory. Garlan et al [8], [9] also have done important
work on identifying and exploiting architectural styles. We
build on their work, developing schematic style mappings
and schematic refinements involving style-to-style transfor-
mations.

Composition has been studied recently by Abadi and
Lamport [1], [2]. Their results are semantic and applicable
to any domain, whereas ours are syntactic and specialized
to the domain of software architecture. It is easy to state
general criteria for the correctness of horizontal composi-
tion of architectures. However, it requires a difficult proof
that it is not possible to infer new facts about the com-
posite abstract architecture from the composite concrete
architecture. Therefore, we defined a new specialized form
of horizontal composition that requires only very simple
syntactic checks. Broy [5] gives three operators for com-
posing functional-style architectures, but does not consider
the composition of architectures involving multiple styles.
Vertical composition in a hierarchy of architectures is im-
mediate provided each level in the hierarchy is correct with
respect to the immediately preceding level.

XI. CONCLUSION

We have described a stepwise refinement methodology
for the development of a heterogeneous hierarchy of ar-
chitectures that are relatively correct under a particular

completeness assumption. We introduced the notion of
an architecture refinement pattern as the principal vehi-
cle for codifying reusable solutions to routine architectural
design problems. Once an architecture refinement pattern
is proved correct, instances of it can be used in a particular
development with no further proof. Patterns are compo-
sitional and can be proved in isolation. Subsystem archi-
tectures are compositional provided they overlap only in
certain ways. The methodology was used successfully to
explicate the architectural design of an operational power-
control system.

To develop a theory of correctness for architecture refine-
ment, we adapted the technique of faithful interpretation
that was introduced in an earlier paper for after-the-fact
verification of complete architectures [18]. A new proof
technique for checking faithfulness was presented. The in-
terpretation mapping between architectures was simplified
by decomposing it into an architecture-specific name map-
ping and a general style-to-style mapping. We are not
aware of this distinction being made elsewhere in the lit-
erature. It is important because a style mapping and its
proof, both of which can be complex, can be reused in val-
idating any pattern involving the two styles. In contrast, a
name mapping is simple, specific to a pattern, and cannot
be validated independent of the pattern.

An important premise behind our work is that at least
the dominant styles of architectural design can be general-
ized to partially interpreted schema and most architecture
refinements for these styles can be generalized to trans-
formations on schema. We believe that a small number
of architectural styles are sufficient for a large number of
application domains, and that only a modest number of
refinement patterns are needed between each pair of styles.
This assertion is supported to some degree by the expe-
riences reported in this paper regarding the compiler and
power-control architectures.

Some methodological implications of our faithfulness re-
quirement are worth mentioning. First, architectural styles
should clearly differentiate among different architectural
concepts. Consider a transaction on a distributed database
system, which is an atomic operation logically but rarely
is a physically atomic operation. If the abstract "transac-
tion" connector is refined into a two-phase commit protocol
involving a series of data transmissions, the refinement will
not be faithful unless the purpose of the two-phase commit
is taken into account in the design of the style. For exam-
ple, the commit protocol can be modeled in terms of special
"control" connectors that are distinct from the connector
that models the transfer of data from the database to the
designated site. Then, the abstract flow of data will be
the same as the concrete flow, even though there is extra
preparatory activity in the concrete architecture. Second,
architects can, but should not, circumvent the complete-
ness assumption by adding concepts to a concrete architec-
ture that are unrelated to those in the associated abstract
architecture. A correctness criterion could be defined that
disallows this, but it would be too restrictive for both de-
sign and composition. It is the sort ofthing that is unlikely

76

to happen by accident. However, the only real safeguard is
the careful scrutiny of each refinement pattern.

We have completed an initial implementation of our
methodology sufficient to demonstrate its feasibility. The
tool accepts as input a collection of refinement patterns,
an abstract architecture, and a concrete architecture. The
tool matches instances of the patterns on the abstract and
concrete architectures with no user intervention. It makes
no attempt to generate instances at this time. One correct
composition of refinements is found, if it exists, although in
general there may be many possible correct compositions.
Specific failures are reported if there is not complete cov-
erage. Any constraints on the application of a refinement
pattern are checked automatically. This tool was used in
the compiler and the power-control application.

Future work involves the development and evaluation of
a handbook of architectural refinement patterns. Good de-
signers tend to use well-established architectural styles, in-
cluding both basic idioms (such as pipe-filter, client-server,
and layering) and reference models (such as the ISO OSI
7-layer model [16]). We are now expanding our library
to relate more styles as well as to elaborate more config-
urations involving the styles in the paper. Eventually, we
would like to have a large enough library to support "in-
dustrial strength" architecture design. For example, we
would like to be able to start with an abstract architec-
ture for a large system, in say a dataflow style, refine it
into architectures in a dominant commercial style, such
as client/server, and then refine that architecture into an
implementation-level architecture that specifies the exact
forms of communication. In developing a pattern library,
we will be concerned with more than correctness. In par-
ticular, we want to use architectural refinement patterns
to achieve a greater degree of system predictability. For
example, it would be useful to have refinement patterns
that optimize performance for specific processors or, more
generally, for a given computing and network environment.

Our longer-term objective is to develop a practical ar-
chitecture synthesis tool that is driven by a broadly useful
pattern library. The tool will enforce a design discipline
similar to the one enforced by commercial hardware syn-
thesis tools. These tools gain much of their power from
the use of clearly defined and reusable styles: typically,
register-transfer, logic, and gate-level styles. A pattern li-
brary of the sort proposed in this paper is expected to
enable effective synthesis of software architectures.

APPENDIX

I. LOWER LEVEL COMPILER ARCHITECTURES

The textual specifications for the two implementations of
the compiler architecture make extensive use of imported
types and styles, which are not defined in this paper. The
specifications have a straightforward translation into logic.
The following is the full level-2 specification.

compiler_L2: MODULE
[char.iport: SEQ(character) -> code.oport: code]

IMPORT character, code, token, binding, ast
FROM compiler.types

IMPORT Function FROM Functional.Style
IMPORT Pipe, Finite.Stream, Connects

FROM Process.Pipeline.Style
IMPORT Variable, Reads, Writes

FROM Shared.Memory.Style
IMPORT Start.After.Finish.Of

FROM Batch.Sequential.Style
COMPONENTS

lexical.analyzer.module: MODULE
[char.iport: SEQ(character)

-> token.oport: Finite.Stream(token)]
EXPORTING lexical.analyzer, symbol.table

IMPORT character, token, binding
FROM compiler.types

IMPORT Function FROM Functional.Style
IMPORT Variable, Reads, Writes

FROM Shared.Memory.Style
COMPONENTS

lexical.analyzer: Function
[char.iport: SEQ(character)

-> token.oport: Finite.Stream(token)]
symbol.table: Variable[SEQ(binding)]

CONFIGURATION
vrite.bind:

Writes(lezical.analyzer, symbol.table)
read.bind:

Reads(lexical.analyzer, symbol.table)
END lexical.analyzer.module
parser:
Function[token_iport: Finite.Stream(token) ->]

analyzer.optimizer: Function[->]
code.generator: Function! -> code.oport: code]
abstract.syntax.tree: Variable[ast]

CONNECTORS
token.pipe: Pipe[Finite.Stream(token)]

CONFIGURATION
token.flou:

Connects(token.pipe, token.oport, token.iport)
read.bind:
Reads(analyzer.optimizer,

lexical.analyzer.module!symbol.table)
nrite.base.ast: Writes(parser, abstract.syntax.tree)
read.base.ast:

Reads(analyzer.optimizer, abstract.syntax.tree)
write.full.ast:

Writes(analyzer.optimizer, abstract.syntax.tree)
read.full.ast:

Reads(code.generator, abstract.syntax.tree)
precedence.l:

Starts.After.Finish.Of(analyzer.optimizer, parser)
precedence.2:

Starts.After.Finish.Of(code.generator,
analyzer.optimizer)

END compiler_L2

The level-3 compiler architecture employs a common im-
plementation of the batch-sequential style. In particular,
the batch processing in the level-2 compiler is implemented
in terms of a main program and subroutines, as illustrated
in Figure 11. This implementation is justified by Pattern
5, which was presented in the body of the paper.

The wiring at level 3 is constrained by the temporal-
precedence assertions at level 2.

precedence.l:
Starts.After.Finish.Of(analyzer.optimizer, parser)

precedence_2:
Starts.After.Finish.Of(code.generator,

analyzer.optimizer)

We have to make sure that the transfer of control sat-
isfies this temporal ordering of the computation. Two ap-

77

!LEVEL 3 —f •*_ main N V
A , _ _r-

i f<e(»tK^»d(«tf^ J te(aa) V"""-1

•£.-..-«

..,«.-, A Laical ; toks
chars °l Analyze!

T Analyzer/ !
| Optimizer !
7

' read(binding)

_; functional component o input port

j data ttructure component • output port

=»- pipe connector

—- ordenng constraint or readVwrite connection

-*• oontrol transfer connection

Fig. 11. Third level in architecture hierarchy for compiler

plications of Pattern 5 can be used to guarantee that the
ordering relations are satisfied independently. The hori-
zontal composition of the two applications of Pattern 5
guarantees that the composite architecture satisfies both
orderings.

The composite level-3 architecture is given below.

'> code.oport: code]
binding, ast

Receiver, Before

compiler_L3: MODULE
[char.iport: SEQ(character)

IMPORT character, code, token
FROM compiler.types

IMPORT Function FROM Functional.Style
IMPORT Pipe, Finite.Stream, Connects
FROM Process.Pipeline.Style

IMPORT Variable, Reads, Writes
FROM Shared.Memory.Style

IMPORT Enabling.Signal, Sender
FROM Control.Transfer.Style

COMPONENTS
main: Function[->]
lexical.analyzer.module: MODULE

[char.iport: SEQ(character)
-> token.oport: Finite_Stream(token)]

EXPORTING lexical.analyzer, symbol.table
IMPORT character, token, binding
FROM compiler.types

IMPORT Function FROM Functional.Style
IMPORT Variable, Reads, Writes
FROM Shared.Memory.Style

COMPONENTS
lexical.analyzer: Function

[char.iport: SEQ(character)
-> token.oport: Finite.Stream(token)]

symbol.table: Variable[SEQ(binding)]
CONFIGURATION

vrite.bind:
Writes(lexical.analyzer, symbol.table)

read.bind:
Reads(lexical.analyzer, symbol.table)

END lexical.analyzer.module
parser:
Function[token.iport: Finite.Stream(token)

analyzer.optimizer: FunctionC ->]
code.generator:
Function[-> code.oport: code]

abstract.syntax.tree: Variable[ast]
CONNECTORS

token.pipe: Pipe[Finite_Stream(token)]
start.main, start.lex, start.parse, parse.finish

start.opt, opt.finish, start.gen, gen.finish,
main.finish: Enabling.Signal

CONFIGURATION
token.flov:

Connects(token.pipe, token.oport, token.iport)
read.bind:

->]

Reads(analyzer.optimizer,
lexical.analyzer.module!symbol.table)

write.base.ast:
Writes(parser, abstract.syntax.tree)

read.base.ast:
Reads(analyzer.optimizer, abstract.syntax.tree)

write.full.ast:
Writes(analyzer.optimizer, abstract.syntax.tree)

read.full.ast:
Reads(code.generator, abstract.syntax.tree)

rcvr.start.main: Receiver(start_main, main)
sndr.start.lex: Sender(start_lex, main)
rcvr.start.lex:

Receiver(start.lex,
lexical.analyzer.module!lexical.analyzer)

sndr.start.parse: Sender(start.parse, main)
rcvr.start.parse: Receiver(start.parse, parser)
sndr.parse.finish: Sender(parse_finish, parser)
rcvr.parse.finish: Receiver(parse_finish, main)
sndr.start.opt: Sender(start.opt, main)
rcvr.start.opt:

Receiver(start.opt, analyzer.optimizer)
sndr.opt .finish:
Sender(opt.finish, analyzer.optimizer)

rcvr.opt.finish: Receiver(opt_finish, main)
sndr.start.gen: Sender(start.gen, main)
rcvr.start.gen:
Receiver(start.gen, code.generator)

sndr.gen.finish: Sender(gen.finish, code.generator)
rcvr.gen.finish: Receiver(gen_finish, main)
snrd.main.finish: Sender(main.finish, main)

start_main.before.lex:
Before(start.main, start.lex)

start.main.before.parse:
Before(start.main, start.parse)

start.parse.before.finish:
Before(start.parse, parse.finish)

finish.parse.before.start.opt:
Before(parse.finish, start.opt)

start.opt.before.finish:
Before(start.opt, opt.finish)

finish.opt_before_start.gen:
Before(opt.finish, start.gen)

start_gen_before.finish:
Before(start_gen, gen.finish)

finish.gen_before.main:
Before(gen.finish, main.finish)

END compiler.L3

The associations between these two levels are

precedence.1 —> finish.parse_before_start.opt
precedence_2 —> finish_opt_before_start_gen

REFERENCES

[1] M. Abadi and L. Lamport, "Composing Specifications", ACM
Transactions on Programming Languages and Systems, Vol. 15,
No. 1, January 1993, pp. 73-132.

[2] M. Abadi and L. Lamport, "Conjoining Specifications", Tech-
nical Report 118, Digital Systems Research Center, Palo Alto,
California, December 1993.

[3] R. Allen and D. Garlan, "Formalizing Architectural Connec-
tion" , Proceedings of the Sixteenth International Conference on
Software Engineering, May 1994, pp. 71-80.

[4] E. Brinksma, B. Jonsson, and F. Orava, "Refining Interfaces
of Communicating Systems", TAPSOFT'91: Lecture Notes in
Computer Science 494, S. Abramsky and T.S.E. Maibaum, Eds.,
Springer-Verlag, 1991, pp. 297-312.

[5] M. Broy, "Compositional Refinement of Interactive Systems",
No. 89, Digital Systems Research Center, Palo Alto, California,
July 1992.

[6] H. B. Enderton, A Mathematical Introduction to Logic, Aca-
demic Press, 1972.

[7] T. DeMarco, Structured Analysis and System Specification,
Yourdan Press, 1979.

[8] D. Garlan, R. Allen, and J. Ockerbloom, "Exploiting Style in
Architectural Design Environments", Proceedings of ACM SIG-
SOFT'94: Symposium on Foundations of Software Engineering,
New Orleans, Louisiana, December 1994.

[9] D. Garlan and M. Shaw, "An Introduction to Software Archi-
tecture", In Advances in Software Engineering and Knowledge
Engineering, Volume 1, V. Ambriola and G. Tortora, Eds., World
Scientific Publishing Company, 1993.

[10] S.L. Gerhart, "Knowledge about programs", Proceedings of the
International Conference on Software Reliability, Los Angeles,
California, April 1975, pp. 88-95.

[11] C.A.R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985.

[12] C.A.R. Hoare, "Proof of correctness of data representations",
Acta Informatica, Vol. 1, No. 4, 1972, pp. 271-281.

[13] M.A. Jackson, Principles of Program Design, Academic Press,
1975.

[14] D. Katiyar, D.C. Luckham, and J. Mitchell, "A type system for
prototyping languages", Proceedings of the 21st ACM Sympo-
sium on Principles of Programming Languages, Portland, Ore-
gon, 1994.

[15] D.C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz",
"Partial Orderings of Event Sets and Their Application to Pro-
totyping Concurrent, Timed Systems", Journal of Systems and
Software, Vol. 21, No. 3, June 1993, pp. 253-265.

[16] G.R. McClain, editor, Open Systems Interconnection Handbook,
McGraw-Hill, New York, N.Y., 1991.

[17] M. Moriconi and D.F. Hare, "The PegaSys System: Pictures as
Formal Documentation of Large Programs", ACM Transactions
on Programming Languages and Systems, Vol. 8, No. 4, October
1986, pp. 524-546.

[18] M. Moriconi and X. Qian, "Correctness and Composition of Soft-
ware Architectures", Proceedings of ACM SIGSOFT'94: Sym-
posium on Foundations of Software Engineering, New Orleans,
Louisiana, December 1994.

[19] R. Reiter, "Deductive Question-Answering on Relational
Databases", in Logic and Data Bases, H. Gallaire and J Minker,
Eds., Plenum Press, 1978, pp. 149-177.

[20] E. Yourdan and L.L. Constantine, Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems De-
sign, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1979.

Xiaolei Qian received the B.Sc. degree from
Xian Jiao Tong University, Xian, China, in
1982, and the M.Sc. and Ph.D. degrees from
Stanford University, Stanford, CA, in 1984 and
1989, respectively, all in computer science.

She has been a Computer Scientist in the
Computer Science Laboratory at SRI Inter-
national since 1991. Before joining SRI, she
was a Member of the Technical Staff at AT&T
Bell Laboratories, and a Computer Scientist
at Kestrel Institute. Her research interests in-

clude software architectures, semantic interoperation and integration
of heterogeneous databases, and database security. She is also inter-
ested in database programming languages and formal methods.

R. A. Riemenschneider received the B.S.
(summa cum laude) degree in physics and
mathematics from Miami University in 1973
and the M.A. degree in mathematics from the
University of California at Berkeley in 1975.

He joined the Computer Science Laboratory
of SRI International in 1991 as a Senior Soft-
ware Engineer, where he performs research and
development on applications of logic to soft-
ware engineering. Prior to joining SRI, he was
a Senior Research Scientist at Advanced Deci-

sion Systems, a founder of Reasoning Systems, a Computer Scientist
at Systems Control Technology, and an Instructor at the University
of California at Berkeley and the California State University at Hay-
ward.

Mr. Riemenschneider is a member of the Association for Symbolic
Logic, the Association for Computing Machinery, and the IEEE Com-
puter Society.

Mark Moriconi received a Ph.D. degree in
computer science from the University of Texas
at Austin in 1978.

He joined the Computer Science Laboratory
of SRI International in 1978 and has been its
Director since 1989. Prior to joining SRI, he
was a research scientist at the University of
Texas at Austin and a research assistant at
USC Information Science Institute. His main
research interests are in the use of formal meth-
ods in software development. He is currently

working on formal methods for architecture-based software composi-
tion.

Dr. Moriconi is a member of the Association for Computing Ma-
chinery, and the IEEE Computer Society. He is on the editorial board
of IEEE Transactions on Software Engineering and has served on
numerous technical program committees in the areas of software en-
gineering and formal methods. He is General Chair for the upcoming
ACM SIGSOFT '96 Symposium on Foundations of Software Engi-
neering, which will have a special focus on software architecture.

79

C SRI Publications: Correctness and Composition of Software
Architectures

80

Appeared in Proceedings of ACM SIGSOFT'94:
Symposium on Foundations of Soßware Engineering,

New Orleans, Louisiana, December, 1994, pp. 164-174.

Correctness and Composition of Software Architectures"

Mark Moriconi and Xiaolei Qian

Computer Science Laboratory
SRI International

Menlo Park, California 94025

ABSTRACT

The design of a large system typically involves the de-
velopment of a hierarchy of different but related ar-
chitectures. A criterion for the relative correctness of
an architecture is presented, and conditions for archi-
tecture composition are defined which ensure that the
correctness of a composite architecture follows from the
correctness of its parts. Both the criterion and the com-
position requirements reflect special considerations from
the domain of software architecture.

The main points are illustrated by means of familiar
architectures for a compiler. A proof of the relative
correctness of two different compiler architectures shows
how to decompose a proof into generic properties, which
are proved once for every pair of architectural styles,
and instance-level properties, which must be proved for
every architecture.

1 Introduction

The development of an architecture for a large system is
a complicated task that can be made simpler by means
of a stepwise development methodology. Ideally, an ar-
chitect would use a hierarchical approach in which the
composition of lower-level architectures is guaranteed
to implement a higher-level architecture. The founda-
tions for such an approach must include a method for
proving that one architecture implements another ar-
chitecture and a means of composing architectures so
that the composite architecture is correct if all of its
components are correct. We examine both problems in

This research was supported by the Advanced Research
Projects Agency under Rome Laboratory contract F30602-93-
C-0245.

this paper. We work at the logic level, independent of
a particular architecture definition language. Thus, our
results can be applied to a large class of such languages.

An architecture hierarchy is a sequence of two or more
individual architectures that may differ with respect to
the number and kind of objects and connections. For
example, an abstract architecture containing functional
components related by dataflow connections may be im-
plemented in a concrete architecture in terms of pro-
cedures, control connections, and shared variables. An
abstract architecture usually is smaller and easier to un-
derstand; a concrete architecture usually reflects more
implementation concerns. A given architecture can be
homogeneous (consisting of one style) or heterogeneous
(consisting of multiple styles). Garlan and Shaw [7]
provide a taxonomy of some common styles, including
dataflow, pipe-and-filter, client-server, and event-based
systems.

Before we can consider the relative correctness of two
architectures, we first must decide on the meaning of
the architectures. Suppose that, to facilitate system
upgrades and maintenance on a particular system, we
design a pipeline architecture that restricts the system
topology to a linear sequence of filters. If a concrete
architecture implements the pipeline, but additionally
introduces feedback loops, the raison d'etre behind the
original pipeline architecture is no longer valid. In ef-
fect, there is no reason to specify a pipeline in the first
place if all possible feedback loops are allowed in its
implementation.

Therefore, we make a completeness assumption about
a given architecture. Informally, the assumption is that,
if an architectural fact is not explicit in the architecture,
or deducible from the architecture, then the fact is not
intended to be true of the architecture. In the pipeline
example, it is not possible to infer the existence of a
feedback loop from the linearity constraint, so we as-
sume that no feedback loop is allowed in an implemen-
tation of the architecture. In general, an architecture
(whether static or dynamic) can contain an unbounded
number of facts.

81

The completeness assumption requires a correctness
criterion that differs from the standard one (that is
based on theory extension). In our application of the
correctness criterion, we make a clear distinction be-
tween type-level properties that must be proved only
once for every pair of architectural styles and instance-
level properties that must be proved for every pair of
architectures. This decomposition greatly simplifies cor-
rectness proofs and the statement of the mapping be-
tween two architectures. Composition is possible under
the completeness assumption provided that certain syn-
tactic constraints are satisfied.

This paper is organized as follows. The next two sec-
tions introduce basic architectural concepts and illus-
trate the correctness problem for architectures. Sec-
tion 4 defines the correctness criterion in terms of logi-
cal theories, independent of any particular architectural
definition language. Sections 5-7 explain how to use
the criterion. Of particular interest is the construction
and validation of the mapping between architectures.
Section 8 defines necessary and sufficient conditions for
architecture composition and defines two specific com-
position operators. Section 9 discusses related work,
and the conclusion summarizes our results and discusses
their possible implications for future research in soft-
ware architecture.

2 Basic Architectural Concepts and Notation

A software architecture is represented using the follow-
ing concepts.

1. Component: An object with independent exis-
tence, e.g., a module, process, procedure, or vari-
able.

2. Interface: A typed object that is a logical point of
interaction between a component and its environ-
ment.

3. Connector: A typed object relating interface
points, components, or both.

4. Configuration: A collection of constraints that
wire objects into a specific architecture.

5. Mapping: An relation between the vocabularies
and the formulas of an abstract and a concrete ar-
chitecture. The formula mapping is required be-
cause the two architectures can be written in dif-
ferent styles.

6. Architectural style: A style consists of a vocab-
ulary of design elements, a set of well-formedness
constraints that must be satisfied by any architec-
ture written in the style, and a semantic interpre-
tation of the connectors.

Components, interfaces, and connectors are treated as
first-class objects — i.e., they have a name and they are
refineable. Abstract architectural objects can be decom-
posed, aggregated, or eliminated in a concrete architec-
ture. The semantics of components is not considered
part of an architecture, but the semantics of connectors
is.

We will use a simple notation for describing an ar-
chitecture. Suppose that we want to describe the inter-
action between the parser and the semantic analyzer in
a standard compiler. A dataflow architecture for this
interaction is contained in Figure l.1

parse_analyze: MODULE
IMPORT ...
EXPORT ...
COMPONENTS

parser Function

analyzer Function

INTERFACES
oast OPORT [ast] OF parser

iast IPORT [ast] OF analyzer

CONNECTORS
ast.channel Dataflow_Channel[ast]

CONFIGURATION
Connects(ast .channel, oast, iast)

END parse_analyze

Figure 1: Example Dataflow Architecture

The parser and analyzer are modeled as functional
components. The parser (which accepts a sequence of
tokens) has an output port oast that supplies an ab-
stract syntax tree. The analyzer accepts a values of type
ast (producing values of the same type). The dataflow
connection is wired to the right ports by the assertion

Connects(ast_channel, oast, iast)

where Connects(c,o,i) means that connection c links
output port o to input port i. All of the objects that
make up the architecture are wrapped by a module,
which can selectively import and export objects. In this
example, we import some useful compiler types and the
predefined functional and dataflow styles.

The dataflow architecture separates and names all
components, ports, and connections. Observe that the
signature of a component is not hard-wired to the com-
ponent. A signature consists of individual ports that
can be referenced and refined independently of the as-
sociated component. Interface separation will be useful
later for architecture composition.

lThe precise syntax is not important for the purposes of this
paper. Later, we formalize this architecture in logic, and that is
the representation that is intended to express the intentions of
the designer.

82

3 Illustration of the Problem

Suppose that we want to design the architecture for a
compiler. A standard dataflow model of a compiler is
depicted at the top of Figure 2. The diagram is used
only as an informal pedagogical aid; it is not intended to
be a formal specification. Boxes denote functional com-
ponents and arrows denote directional dataflow between
ports. The labels on arrows denote types or value do-
mains. An object cannot be transmitted between ports
unless its type is compatible with the types of the ports.
The diagram is assumed to be complete in that there
can be no other functional components, ports, or data
flows.2

LEVEL 1

chars c
Lexical

Analyzar
i***-+a Parser » "t .<■ Analyzer/

Optimizer
i™' «a (Jode

Generator
1 code

T bindings ¥

LEVEL2

write(ast) *
read(ai wnte(ast)

N read(ul)
Tree

«TV
chare c

Lexical
Analyzer

L •*■ „ Parser
Analyzer/
Optimizer

Code
Qeneralor

1 code

*--. 1— \

«•(binding)

eadtbindrr a)
readfbtndim !)

'Symbol^

[I functional component o inputport

() data structure component • outputport

 »- dataflow connector

». pipe connector

 » ordering constraint

---•»■ read/write connection

Figure 2: Two architectures for a compiler

Figure 2 also contains a concrete, hybrid architec-
ture for the compiler that implements the dataflow style
in terms of pipe-filter, batch-sequential, and shared-
memory styles. Abstract signatures are changed in the
concrete architecture, dataflow connections are imple-
mented in several ways, through a pipe and shared data
objects, and precedence relations are used to prevent di-
rect flow of data from the parser to the code generator.

To illustrate the correctness problem, we focus on
the implementation of the dataflow channel between the
parser and analyzer in terms of the reading and writ-
ing of a shared abstract syntax tree. The implementa-
tion architecture is described textually in Figure 3. The
shared abstract syntax tree is represented as a variable.3

The read and write relations are not named; they they
are primitives that cannot be refined.

2 A dataflow connection is treated here as an intransitive
relation.

3 The shared abstract syntax tree might be represented as an
encapsulated data type in a real compiler. If we had chosen that
representation, the architecture would involve calls to access func-
tions that read and write the internal variable used to represent
the tree.

concrete_parse_analyze: MODULE

IMPORT ...
EXPORT ...
COMPONENTS

parser
analyzer
tree

CONFIGURATION
Writes(parser, tree)
Reads(analyzer, tree)

END concrete_parse_analyze

Function
Function
Variable[ast]

Figure 3: Concrete Shared-Memory Architecture

The intended associations between the two architec-
tures are

oast —>
iast —>
ast-channel —> tree

The first two associations indicate that the abstract
ports do not appear in the concrete architecture, result-
ing in a new concrete signature for the parser and the
analyzer. This change in signature reflects the differ-
ence between port-to-port communication and shared-
memory communication by direct reading and writing of
a shared tree. As an analagous example, consider two
procedures that communicate through direct calls. If
we reimplement this architecture so that the procedures
communicate only indirectly through a shared variable,
the signature of both procedures would change. The
third association says that dataflow connection is im-
plemented by the abstract syntax tree.4

We are interested in three specific questions:

e Does the concrete shared-memory architecture im-
plement the abstract dataflow architecture under
the completeness assumption and with respect to a
given mapping between architectures?

e Is the mapping between the two architectures
meaningful? A relative correctness proof is only as
meaningful as the mapping between architectures.

• Assuming that the shared-memory implementation
of dataflow is correct, under what conditions can it
be composed with correct implementations of other
parts of the compiler to form a correct and complete
compiler architecture?

The running examples in the paper provide a detailed
answer to each of these questions.

4The tree is a component. A component can be used to im-
plement other components, or it can be used in conjunction with
connectors to implement a connection.

83

4 Formal Criterion of Correctness

Because of the completeness assumption, we must prove
not only that a concrete architecture does not lose prop-
erties of the abstract architecture, but also that no new
properties about the abstract architecture can be in-
ferred from the concrete architecture. There are stan-
dard mathematical concepts that can be used for this
purpose.

An interpretation mapping is an association between
the constants, functions, and predicates of an abstract
and a concrete theory. An interpretation mapping is
called a theory interpretation if the mapped axioms of
the abstract theory become theorems of the concrete
theory. Note that theory interpretation is just Hoare's
approach to reasoning about the correctness of imple-
mentations [9]. We additionally require that, if a sen-
tence is not in the abstract theory, its image is not in
the concrete theory.

Let 0 and 0' be theories associated with an abstract
and a concrete architecture, respectively. Let I be an
interpretation mapping from 0 to 0'. Then, we must
have, for every sentence F,

if F£0 then 1(F) € &

for I to be a theory interpretation.
Since we require that an architecture be complete

with respect to a given level of detail, we additionally
must know that the concrete architecture adds no new
facts about the abstract architecture. Therefore, we re-
quire that

if F<£0 then 1(F) $0'

This says that, if a sentence is not in the abstract the-
ory, its image cannot be in the concrete theory. A the-
ory interpretation I having this property is said to be
a faithful interpretation. Observe that & is a conserva-
tive extension of 0 provided the identity map faithfully
interprets 0 in 0'.

Note that a concrete architecture can contain facts
not related to the abstract architecture. Therefore, a
concrete architecture can introduce new styles and new
objects. For example, a concrete architecture may in-
troduce a specification for part of the runtime environ-
ment, such as a wrapper for remote procedure calls that
will replace the standard one provided by the operating
system.

5 First-Order Architectures

We want to leave open the choice of language for spec-
ifying an architecture. Therefore, we represent archi-
tectures as first-order theories, but our correctness and
composition results in no way depend on this choice.

The representation of the dataflow and the shared-
memory architectures in Figures 1 and 3, respectively,
depend on the styles used in their construction. The
dataflow-style vocabulary contains predicates for de-
scribing functional components, ports, values associated
with ports, dataflow channels, values associated with
dataflow channels, and connections of channels to ports.
More precisely, the following sorts denote the first-class
objects in a dataflow theory: channel, function, iport,
and oport. We also make use of sorts bool and val, where
val denotes the set of all possible values. The dataflow
style has the following operations.

OutPort: oport x function —► bool
Supplies: oport x val —» bool
InPort: iport x function —► bool
Accepts: iport x val —» bool
Carries: channel x val —► bool
Connects: channel x oport x iport -* bool

The number of functions, ports, and channels that can
appear in a particular architecture is unbounded. We do
not bother to state the general well-formedness axioms
associated with this style, or with others. An example
of a general dataflow axiom is that every function must
have at least one port.

The shared-memory style uses the reading and writ-
ing of a variable for intercommunication. Shared-
variable communication is modeled using a call site
as an interface between a function and the shared
variable.5 A call site serves the same purpose as a port
in the dataflow style. The name of every different call
site must be unique. The shared-memory style has the
following style-specific sorts: variable denotes the set of
all possible variables and site denotes the set of all pos-
sible call sites of which there are two kinds. The sort
rsite denotes the sites that read, or input, values; the
sort wsite denotes the ones the write, or output, values.
The signature for the shared-memory style is

Holds: variable x val —* bool
CallSite: site x function —> bool
Writes: wsite x variable —► bool
Puts: wsite x val —► bool
Reads: rsite x variable —► bool
Gets: rsite x val —► bool

Table 1 contains (partial) theories associated with
the two architectures in Figures 1 and 3. ©D denotes
the dataflow theory and 0M the shared-memory the-
ory. Dataflow theory 0D says that the parser and an-
alyzer are functional components, the parser's output
port can supply values of type ast, the analyzer's input

BWe could have chosen not to model call sites or some equiv-
alent interface object. We made the decision in order to simplify
the style mapping from dataflow to shared-memory.

84

port can accept values of type ast, the dataflow chan-
nel can transmit values of type ast, and the channel is
wired to the ports. The shared-memory theory 0M re-
places ports with call sites, introduces a variable that
can hold values of type ast, and employs read and write
operations on the variable.

6 Mappings

It is useful to distinguish between two kinds of map-
pings.

• An name mapping associates the objects declared
in an abstract architecture with objects declared in
a concrete architecture.

• A style mapping says how the constructs of the
abstract-level style can be implemented in terms
of the constructs of the concrete-level style. More
specifically, it maps all atomic formulas of the
abstract-level theory to formulas of the concrete-
level theory.

The two are combined to form an interpretation map-
ping.

6.1 Name Mapping

We saw a specification of the intended associations be-
tween the objects in the two architectures earlier. The
only difference in the formal mapping is that we intro-
duce the implicit call sites. Let IN be name mapping

oast i—► sitei
iast i-+ site2

ast-channel h-* tree

which relates the two architectures. The domain of a
name mapping can be extended to include all abstract-
level terms by mapping variables to themselves.

6.2 Style Mapping

Let Is denote the style mapping in Figure 4 from the
dataflow style to the shared-memory style. The U de-
note terms, which in our examples are restricted to
logical constants and variables.6 The last association
specifies the implementation strategy. It says that any
instance of Connects(ti,t2,t3) can be implemented by
having call site t2, corresponding to output port t2, be
the interface point that provides the values used in the
writing of variable ii, corresponding to channel *i. On
the receiving end of a transmission, input port and call
site t3 serve the same function. The other associations
say that channels are mapped to variables, that output
ports are mapped to calls that supply values, and that

input ports are mapped to calls that receive values. The
Puts and Gets predicates ensure that the right kind of
site is associated with the each kind of port.

6.3 Interpretation Mapping

An interpretation mapping I is determined from a name
mapping IN and a style mapping Is, as follows: for
every predicate P, all terms h,t2,..., tn, every variable
x, and all formulas F and G of the abstract language,

I(P(h,t2, ...,*«))
I(^F)

I(F A G)
I(F V G)

I{F D G)
I(VxF)

I(3xF)

Is(P{lN(ti),IN(t2),.

1(F) M(G)

1(F) V 1(G)
1(F) D 1(G)

WxI(F)7

3xI(F)

,lN(tn))

Let I£ denote the interpretation mapping from theory
0D to theory 0M- Both the ground facts and general
axioms in 0D must be mapped. For example,

I£(Connects(astjchannel, oast, iast)
= Is(Connects(Iff(astjchannel),

IN(oast),lN(iast)))
— Is(Connects(tree, sitei, site2))
- Writes (sitei, tree) A Reads (site2, tree)

which is the intended implementation.

7 Proof Obligations

A relative correctness proof involves two steps. First,
we must prove the correctness of the relevant style map-
ping. The proof is performed only once; it need not be
repeated when the two styles are used. Second, we must
demonstrate the relative correctness of the two archi-
tectures with respect to the interpretatation mapping
formed using the two styles.

7.1 Proof of a Style Mapping

The crucial part of the proof is concerned with the va-
lidity of the connector mapping. We would like to know
that a dataflow connection can be implemented by the
reading and writing of a shared memory location, which
is modeled as a variable. This requires a definition of
the semantics of both forms of connection. We choose
an axiomatic style of semantic definition suitable for de-
scribing both safety and fairness properties.

6Note that our languages contain no function symbols. A
treatment of them can be found in [6].

7In general, the range of quantifiers must be restricted to a sub-
set of the concrete domain, see [6]. But no restriction is required
for our example, because every concrete-level object implements
an abstract-level object.

85

6>D 0M

Function (parser). Function(parser)
Function(analyzer) Function(analyzer)
OutPort(oast, parser) V ariable(tree)
Vv[Supplies(oast,v) D ast(v)] Vv[ast(v) D Holds(tree, v)]
InPort(iast, analyzer) CallSite(sitei, parser)
Vv[ast(v) D Accepts(iast, v)] Vv[Puts(sitei,v) D ast(v)]
Channel (astjchannel) Writes(parser, tree)
Vv[ast(v) D Carries(ast.channel, v)] CallSite(site2, analyzer)
Connects (astjchannel, oast, last) Vv[ast(v) D Gets(site2,v)]

Reads(analyzer, tree)

Table 1: Partial Dataflow and Shared-Memory Theories

Function (ti)
OutPort(h,t2)
Supplies(ti,t2)
InPort(t1,t2)
Accepts(ti,t2)

Channel(t\)
Carries (t i,^)

Connects (ti, t2, f 3)

Functional)
CallSite(h,t2) A 3vPuts(ti,v)
Puts(ti,t2)
CallSite(ti,t2) A 3vGets(h,v)
Gets(tut2)
Variable(ti)
Holds(t\,t2)
Writes(t2,h) A Reads(t3, ti)

Figure 4: A Style Mapping

In particular, we use a temporal logic, called the Tem-
poral Logic of Actions (TLA) [11], to define dataflow
and shared-memory communication:

• The semantics of dataflow places minimal restric-
tions on communication. It says that a multiset of
values is transmitted between components. Values
can be "lost" and out of order. The fairness con-
dition is that eventually a send or receive occurs
unless both are impossible. One reason for impos-
sibility could be failure of the communications line.

• The semantics of shared memory requires that
tranmission preserve ordering and that values can-
not be lost. The fairness condition is that all values
written into shared memory will eventually be read
from the memory if it is possible to read them.

For comparison purposes, the appendix contains an op-
erational definition of the two forms of communication
in standard CSP [8], following Allen and Garlan [2].
CSP can be used to model the safety properties, but
not the fairness properties.

We formalize the semantics of dataflow and shared-
memory connections as TLA theories. We define an
interpretation mapping y° from the dataflow seman-
tics to the shared-memory semantics and show that it
is a theory interpretation. This is sufficient to establish

that dataflow can be implemented with a single shared
memory location and that, if the shared-memory com-
munication is fair, the dataflow communication is fair.

We make use of the following TLA notation.
Notation Meaning

list of variables in the old state
list of variables in the new state
action—relation between old and new states
possible to perform action
Av(f = f)
AA(f?f)
always F
-1D-1F (sometimes F)
00(A) f V nO-iEnabled (A)f

The last line says that eventually action A must either
be taken or become impossible to take. For example, a
precondition for execution may not be satisfiable.

In the proof, we make use of two TLA inference rules.

/
/'
A
Enabled

[At
(At
OF
OF
WFf(A)

STL4.
FDG

OF DOG

where F and G are temporal formulas, says that, if F
implies G, the always F implies always G.

TLA2. [At 3 [B\,
°[Af ^ °[B\a

86

is a simplification of Lamport's TLA2 axiom that suf-
fices for our purposes. It says that, if action A implies
B, then always A implies always B.

Figures 5 and 6 contain the TLA theories of dataflow
and shared-memory, respectively. The quoted boldface
symbols are logical constants. In Figure 5, the dataflow
connector is denoted by the flow state function, which
is a multiset, with three operators: with is the insertion
operator, less is the deletion operator, and choose is
used to select an element from a nonempty multiset.
Values carried by the connector must be in set Type,
the set of all possible values. The dataflow semantic
theory is defined to be $, which says three things: the
dataflow has to start in the initial state, it must always
be possible to perform a send or a receive operation, and
the communication line eventually responds to send and
receive requests if it is possible to do so (fairness). The
shared-memory semantic theory, called *, is defined in
a similar manner.

Init$
A

ev = "ready"
flow = "emptybag"

^sender
det

A
A
A

ev = "ready"
ev' = "send"
flow' = flow
val' £ Type

^receiver
def

ev = "ready"
A ev' = "receive"
A flow' = flow
A val' = val

Oflow
def

A
A
A

ev = "send"
ev' = "ready"
flow' = flow with val'
val' = val

Inflow
def

A
A
A
A

ev = "receive"
ev' = "ready"
flow y£ "emptybag"
val' = choose(flow)
flow' = flow less val'

Nflow
def

Sflow V "K-flow

AT det
tffl ow V £>sender V rCreceiver

w
def

(ev, val flow)

* def m ow) 7mt*ADrA/l„AWP„(

Figure 5: Semantics of Dataflow

Interpretation mapping J^ maps constants, state
functions, and operators of the dataflow semantics to
those of the shared-memory semantics
by

Initij/

Vvwriter

TZri eader

w„

TZn

def

def

def

def

def

A
A

A

A

A

A

A

A

A

A
A

A

A

op = "ready .write"
mem = "undefined"

op = "ready .write"
op' = "write"
mem' = mem
val' € Type

op = "ready .read"
op' = "read"
mem' = mem
val' = val

op = "write"
op' = "ready .read"
mem' = val'
val' = val

op = "read"
op' = "ready .write"
mem ^ "undefined"
mem i val'
val' = mem

Mr,
M
u
*

def

def
''mem V "vn

— A'lmem V 'Muriter V K-reader

* (op, val, mem)

=f Inü* A U[M]U A WFu(Mmem)

Figure 6: Semantics of Shared Memory

ev h-► op
flow 1—► mem
"emptybag" I—► "undefined"
"ready" 1—» either ("ready .write",

"ready .read")
"send" 1—► "write"
"receive" 1—► "read"
t\ with t% I—y *2
t\ less *2 t—► «a
choose(t\) i—> *i

J^ is defined

where t\ and ti are terms. The last three associations
interpret multiset operations in the context of our spe-
cific weak fairness condition on shared memory.

To show that J™ is a theory interpretation, we need
to prove that * D J^($). The first step is to prove
that

Init* D jr°(Init*). (1)

Applying ^ to Init$ we get:

op = either("ready.write", "ready.read")
A mem = "undefined".

Hence (1) holds. The second step is to show that

a[M]uD42(n[Sf\a). (2)

87

We can easily show that

W'writer 3 *^i ("sender)

Threader ^ -^i \R-receiver)

Wmem D J%{Sflow)

from which we infer that

(3)

(4)

(5)

(6)

[M]u 3 4?(M«).

Applying rule TLA2, we conclude that (2) holds. The
third step is to show that

WFu(A*mem) D ^(WF«(^/io«)). (7)

Prom (3)-(6), we get

(Mmem)u 3 S£((Afflow)w)-

Applying rule STL4 twice and the definition of O, we

get
00(Mmem)u D noj%({Mfiow)w).

From the definition of Enabled, we have

Enabled S°((Affiow)v>) 3 Enabled {Mmem)u-

Since

^{Enabled (A/)/««.)«;) 3 Enabled y°((Affiow)w),

we apply rule STL4 to get

DO-nEnabled {Mmem)u D OO^J^(Enabled (A/)to»)„),

from which we conclude that fairness condition (7)
holds.

7.2 Relative Correctness Proof

We must show that J£ is a theory interpretation and
that it is faithful. A proof of the former is straightfor-
ward. For example, under i£ the axiom

Connects(ast.channel, oast, iast)

is interpreted as

Writes(parser, tree)
A Reads(analyzer, tree)

which is a theorem that follows directly from 0M-
To show faithfulness, notice that i£ induces a map-

ping V from shared-memory structures to dataflow
structures as follows. If J£ maps atomic dataflow for-
mula P{x) to shared-memory formula F, then V assigns
to dataflow predicate P the set of shared-memory tuples
that satisfy F.

Given a model D of 0D, we can construct a model M
of 0M as follows. The universe of M is the same as D.
The assignment to predicates by M is defined as:

Function = {a £ \D\ : D (= Function{a)}
Variable = {a G \D\ : D |= Channel(a)}

Writes = {(a,6)e|I>|2:3c,d€|I?|
[D \= OutPort(c, a) A

Connects (b, c, d)]}

By a theorem stated in [15] and proved in [16], the
fact that induced mapping V maps M back to D is
enough to conclude that i£ is faithful.

8 Composing Architectures

A useful form of architecture composition is illustrated
in Figure 7. We want to compose two architectures,
called "subsystem A" and "subsystem B", into a single
system architecture. We construct a new architecture
with components "A" and "B" connected through new
interfaces. If two conditions are satisfied, the three ar-
chitectures can be combined to form a composite system
that is correct if the three subsystems are.

^O
Subsystem A

(A> <B)

Linking Architecture Subsystem B

Composite System

Figure 7: Illustration of Subsystem Composition

Let 0i and 02 be theories that represent two abstract
architectures. Let 0[and 02 be concrete theories in-
tended to implement 0X and 02, respectively. Two pairs
of architecture theories can be composed only in ways
that preserve faithfulness. More precisely, if

h: 0i -* 0[and J2: 02 -» ©a

are faithful interpretations, then we want

höh: 0iU02^0iU02

to be a faithful interpretation. (The union of two the-
ories is the deductive closure of the set-theoretic union
of the theories.)

This property holds provided two general conditions
are satisfied.

88

1. The composite interpretation mapping must be a
function. For a sentence F, we require that

VFe0in02 [h(F) = h(F)]

which guarantees that interpretation mappings h
and I-i agree on shared objects and shared style
constructs.

2. It must not be possible to infer new facts about the
composite abstract architecture from the composite
concrete architecture. That is, for language L\ of
0i and Z/2 of 02, if

F is a sentence of L\ U L2

and
©i U 02 h 1(F)

then we must prove that

J(0i) U J(02) r- 1(F).

The intuition behind the second condition can be il-
lustrated by means of a simple example. Consider an ar-
chitecture in which there is a dataflow connection from
A to B and another architecture that has dataflow con-
nection from B to C. Suppose that both flows are im-
plemented correctly in concrete architectures, but that
in one A writes some variable x and in the other C reads
a variable x. Each implementation is correct, since nei-
ther introduces a new dataflow. However, the composite
concrete architecture reads and writes a;, from which we
can infer an entirely new abstract dataflow connection
from A to C. Consequently, the composite abstract ar-
chitecture is not faithfully interpreted (by the composite
mapping) in the composite concrete architecture (under
the original assumption that dataflow is intransitive).

Although the second condition is a rather strong log-
ically, it appears to be flexible enough for architecture
composition. The form of composition illustrated in
Figure 7 can be handled easily by allowing two abstract
architectures to share only one component and possibly
its interface points. Styles can be shared but no other
objects. These constraints guarantee that the two con-
ditions above are satisfied, and the desired composition
can be performed in two steps.

Another useful form of composition is the chaining
together of a sequence of correct architectures. Since
faithful interpretation is transitive, intermediate archi-
tectures can be omitted in the development of a concrete
architecture. Intermediate architectures arise because
we make explicit all important intermediate steps in a
development, even if they correspond to small architec-
tural changes. The intermediate architectures need not
be explicit as long as there is a sequence of instances

of refinement patterns that connect the first (most ab-
stract) and last (most concrete) architectures in the se-
quence.

We return to the compiler architecture in Figure 2
to give a specific example of composition. We proved
that the dataflow connection between the parser and
the analyzer is implemented correctly by means of the
reading and writing of the tree. That is, we showed that
dataflow theory 0D is implemented correctly by theory
0M with respect to mapping I£- Similarly, we can show
that the dataflow connection from the lexical analyzer to
the parser is correctly implemented by the pipeline con-
nection in the concrete architecture. The two abstract-
concrete pairs of architectures share a common com-
ponent, the parser, but no interface points. Therefore,
our second condition is satisfied and we can compose the
two pairs directly. (The two mappings are constructed
to meet the first condition.) No linking architecture is
needed.

9 Related Work

The utility of architecture hierarchies was recognized
in the 1970s, but architecture hierarchy was studied
only informally at that time. Several notations were
developed for describing architectures, including those
of Jackson [10], Yourdan and Constantine [17], and De-
Marco [5], but little attention was given to understand-
ing the relationship between levels of abstraction.

Moriconi and Hare [14] formalized a relationship be-
tween levels in a hierarchy and used the technique of
Hoare [9] to prove the relative correctness of two stylisti-
cally different architectures. Hoare's technique involves
a proof of only theory interpretation, and not of faithful-
ness. They were the first to introduce a completeness as-
sumption for architectures. An architecture was allowed
to contain only finitely many objects (constants), which
enabled them to fully mechanize correctness proofs. The
completeness assumption, as formalized in this paper,
applies equally well to infinite architectures. For exam-
ple, it is possible to quantify over infinite types (such
as integers) and to reason about dynamic architectures
with an unbounded number of processes.

The technique of Hoare has been applied more re-
cently to architecture by Broy [4], Brinksma [3], and
others. Broy's component refinements turn out to be
conservative because interface signatures are preserved,
but his connection refinements may not be because ad-
ditional flows could be added to a channel. Brinksma
justifies channel splitting on the basis of behavioral rea-
soning; application of his rule can violate the complete-
ness assumption.

A Hoare-style representation mapping has been ap-
plied to dynamic architectures by Luckham et al [12,13].
A language called Rapide is used to define executable ar-

89

chitectures based on distributed event processing. Map-
pings relate concrete events to abstract events and are
used as the basis for comparative simulation, a tech-
nique that complements ours.

The problem of composition of specifications has been
studied in a general semantic framework by Abadi and
Lamport [1]. Their results are applicable to any do-
main, whereas our results are syntactic and specialized
to the domain of software architecture. The advantage
of a syntactic constraint is that it can be checked eas-
ily. The disadvantage is that it is more restrictive than
semantic composition. Broy [4] gives three operators
for composing functional-style architectures, but does
not consider the composition of architectures involving
multiple styles.

10 Conclusion

An architecture for a large, complex system, and even
some simple systems, will involve multiple levels of de-
tail expressed in multiple architectural styles. The novel
contributions of the work reported here are:

• A formal criterion for proving that one architecture
implements another architecture, even if they are
described in different architectural styles. A change
in the representation of a component, an interface,
or a connector is handled, but a change in the rep-
resentation of a type requires a slightly different
criterion.

• A decomposition of the mapping between architec-
tures into type-level properties that are proved once
for every pair of styles and instance-level properties
that are proved for every pair of architectures. The
importance of this decomposition was underscored
by a proof that the connectors of a common con-
crete style implement the connectors of a common
abstract style. The proof was somewhat compli-
cated, establishing both safety and fairness proper-
ties, but it does not need to be repeated each time
the styles are used.

• Syntactic criteria for composing architectures such
that the composition of two correct architectures is
correct. One specific composition operator, which
is useful for putting together subsystems, allows
two architectures to be composed provided they
share only components and their interface points.
Another composition operator is used to eliminate
intermediate levels in an architecture hierarchy.

Our approach applies to any logic used to represent an
architecture; it does not depend on a particular archi-
tecture definition language or a particular kind of con-
nector semantics. A more comprehensive treatment of

the formal techniques in this paper can be found in a
companion paper [15].

The work reported here may have implications in sev-
eral subareas of software-architecture research.

• Language design. An architecture definition lan-
guage (ADL) should treat all refineable objects,
including components, interface points, and con-
nectors, as first-class in the sense that they should
be named objects with independent meaning. An-
other implication is that an ADL should make it
impossible to subvert the completeness assumption.
For example, an ADL type system should not al-
low components to be values, which would allow
interactions to be created indirectly. The last im-
plication is that an ADL should support the spec-
ification of two kinds of mappings: style mappings
and name mappings between architectures.

• Refinement methodology. It seems clear that
after-the-fact proof of an architecture hierarchy will
be very difficult. This is true primarily because
of the need to establish conservativeness (mod-
ulo renaming). An incremental development strat-
egy that minimizes the number and difficulty of
architecture-specific proofs is needed. One candi-
date approach involving correctness-preserving ar-
chitectural transformations is described in [15].

• Style design. Styles are an important vehicle
for organizing reusable architectural design infor-
mation. We showed that the specification of style
mappings is a key element of style design, and that
the semantics of a style can be affected by how the
style is intended to be used in relation to other
styles.

REFERENCES

[1] M. Abadi and L. Lamport, "Composing Specifica-
tions", ACM Transactions on Programming Lan-
guages and Systems, Vol. 15, No. 1, January 1993,
pp. 73-132.

[2] R. Allen and D. Garlan, "Formalizing Architectural
Connection", Proceedings of the Sixteenth Inter-
national Conference on Software Engineering, May
1994, pp. 71-80.

[3] E. Brinksma, B. Jonsson, and F. Orava, "Refin-
ing Interfaces of Communicating Systems", TAP-
SOFT'91: Lecture Notes in Computer Science 494,
S. Abramsky and T.S.E. Maibaum, Eds., Springer-
Verlag, 1991, pp. 297-312.

[4] M. Broy, "Compositional Refinement of Interactive
Systems", No. 89, Digital Systems Research Cen-
ter, Palo Alto, California, July 1992.

90

[5] T. DeMarco, Structured Analysis and System Spec-
ification, Yourdan Press, 1979.

[6] H. B. Enderton, A Mathematical Introduction to
Logic, Academic Press, 1972.

[7] D. Garlan and M. Shaw, "An Introduction to Soft-
ware Architecture", In Advances in Software En-
gineering and Knowledge Engineering, Volume 1,
V. Ambriola and G. Tortora, Eds., World Scien-
tific Publishing Company, 1993.

[8] C.A.R. Hoare, Communicating Sequential Pro-
cesses, Prentice-Hall, 1985.

[9] C.A.R. Hoare, "Proof of correctness of data repre-
sentations", Acta Informatica, Vol. 1, No. 4, 1972,
pp. 271-281.

[10] M.A. Jackson, Principles of Program Design, Aca-
demic Press, 1975.

[11] L. Lamport, "The Temporal Logic of Actions",
Technical Report 79, Digital Systems Research
Center, Palo Alto, California, December 1991.
(to appear in ACM Transactions on Programming
Languages and Systems)

[12] D.C. Luckham, L.M. Augustin, J.J. Kenney,
J.S. Vera, D. Bryan, and W. Mann, "Specifica-
tion and Analysis of System Architecture Using
Rapide", to appear in IEEE Transactions on Soft-
ware Engineering.

[13] D.C. Luckham, J. Vera, D. Bryan, L. Augustin,
and F. Belz", "Partial Orderings of Event Sets
and Their Application to Prototyping Concurrent,
Timed Systems", Journal of Systems and Software,
Vol. 21, No. 3, June 1993, pp. 253-265.

[14] M. Moriconi and D.F. Hare, "The PegaSys System:
Pictures as Formal Documentation of Large Pro-
grams" , ACM Transactions on Programming Lan-
guages and Systems, Vol. 8, No. 4, October 1986,
pp. 524-546.

[15] M. Moriconi, X. Qian, and R. Riemenschneider,
"Correct Architecture Refinement", to appear in
IEEE Transactions on Software Engineering.

[16] M. Moriconi, X. Qian, and R. Riemenschneider, "A
Formal Approach to Correct Refinement of Soft-
ware Architectures", Technical Report SRI-CSL-
94-13, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, California, August 1994.

[17] E. Yourdan and L.L. Constantine, Structured De-
sign: Fundamentals of a Discipline of Computer
Program and Systems Design, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1979.
»U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61177

A Proof of Connector Mapping in CSP

We can define the semantics of the dataflow and shared
memory styles in CSP [8], following Allen and Garlan
[2]. We make use of the following CSP notation.

Notation Meaning
ctP the alphabet of process P
P\\Q P in parallel with Q
a-> P a then P
a-> P\b^>Q a then P choice b then Q (a^b)
P\C P without C (hiding)
f : A—y B f is a function mapping A to B

We also make use of the count process CT, defined
as follows.

CT0 = (up ■
CTn+i = (up ■

CT\\around -

CTn+2\down

CTo)

>CTn)

The CSP semantics is essentially the same as the TLA
semantics. However, a connector is modeled directly
in TLA by a state function. It is modeled indirectly
in CSP as a process, which essentially computes the
state function. Standard CSP cannot be used to express
fairness of the kind in our example. Therefore, we prove
only safety.

The CSP semantics for the dataflow style is
DFS = Sender || Receiver || Flow

aSender = {oport}
Sender = oport —» Sender

aReceiver = {iport}
Receiver = iport —► Receiver

aFlow = {oport, iport}
Flow = (CToll Flow')\{around, down, up}

aFlow' = {around, down, up, oport, iport}
Flow' = oport —► up —► Flow'

| around -* Flow'
| down —► iport —» Flow'

and the CSP semantics for the shared-memory style is
SMS = Writer || Reader || Var

aWriter = {write}
Writer = write —► Writer

aReader = {read}
Reader = read —> Reader

aVar = {write, read}
Var = write—» read —> Var

We must show that the shared-memory style is a cor-
rect implementation of the dataflow style. Intuitively,
every behavior of the shared-memory style should cor-
respond to an allowable behavior of the dataflow style.
Since the alphabets of the two styles are different, this
can be done using the CSP change-of-symbol operator
/: f (write) = oport and /(read) = iport. Hence, the
correctness proof amounts to showing that f(SMS) C
DFS, which is straightforward.

91

DISTRIBUTION LIST

addresses nuaber
of copies

JOSEPH A. CAROZZONI 1
RL/C3CA
525 3R30KS ROAD
ROME NY 13441-45C5

SRI INTERNATIONAL 1
333 RAVtNSWQOO AVENUE
MENLO PARK, CA 94025

ROME LA5DRAT0RY/SUL 1
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 134*1-4514

ATTENTION: DTIC-OCC 2
OcFENSE TECHNICAL INFO CENTER
3725 JOHN J. KINGMAN RQAO, STE 0944
<=T. 3ELVOIR, Vfl 22060-6213

ADVANCED RESEARCH PROJECTS AGENCY 1
3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

AFIT ACADEMIC LI5RARY/LDEE 1
2950 P STREET
AREA S, SLOG 642
WRIGHT-PATTERSON AF8 OH 45433-7765

PHILLIPS LABORATORY 1
PL/TL CLIBRARY)
5 WRIGHT STREET
HANSCOM AF3 MA 01731-3004

OL AL HSC/HRG, BLOS 190 1
2698 G STREET
WPAFB OH 4-5433-7604

OL-1

