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1    Introduction 
This report describes the work performed by SRI International and its subcon- 
tractor Stanford University on contract F30602-93-C-0245, dealing with formal 
definition of software architectures to support system composition. Our basic 
approach to architecture definition is presented in Section 2, while Section 3 out- 
lines the work performed on this particular project. The details of our efforts 
can be found in the appendices. 



Figure 1: The SRI-Stanford Approach to Architecture Definition 

2    Formal Architecture Definition 

The Software Architectures team at the SRI Computer Science Laboratory 
(CSL) and the Program Analysis and Verification Group (PAVG) at Stanford 
University are engaged in a joint effort to develop concepts and tools for formally 
defining software architecture hierarchies. Figure 1 illustrates our approach. 

The box in the upper left corner of the figure illustrates the structure of 
a typical SADL architecture hierarchy. The most abstract specification, S(), 
is the root of a tree in which each node is a SADL architecture specification 
and each arrow is a SADL mapping. An architecture hierarchy need not be a 
tree. Any partial order is perfectly acceptable. But developing an architecture 
hierarchy by top-down refinement will produce a tree. The three successors of 
S() — i.e., S<o), S(i), and S(2) — represent three alternative ways of making 
the abstract SQ architecture somewhat more concrete. Focusing on the leftmost 
branch of the tree, architecture S(0o) is a further refinement of architecture S(0>, 
architecture S(00o) is a further refinement of architecture S(00), and so on down 
to S(ooo)-a) an implementation-level architecture that is a refinement of all its 
ancestors. Generally, in this tree-shaped hierarchy, specifications are indexed so 
that So- is an ancestor of ST if and only if er is an initial subsequence of r (i.e., 
if and only if, for some finite sequence p, r = cr ■ p). 

The box in the upper right corner of the figure contains a pair of executable 
Rapide architecture protocol simulations. Each Rapide architecture corresponds 



to one of SADL architectures, as indicated by the heavy doubleheaded arrows 
(and matching indices). This correspondence is not formally specified. Each 
architectural specification contains information the other does not. The Rapide 
specification contains behavioral information required for simulation that is typ- 
ically irrelevant to the SADL structural specification, and which is therefore omit- 
ted The SADL specification encodes details about the logical strength of the 
architectural styles being employed, details that are crucial to the analysis of re- 
finement correctness, and that are not expressible in Rapide. Someone familiar 
with both languages can easily judge whether a SADL architecture and a Rapide 
architecture "correspond", in other words, whether they consistently describe 
a system, at the same level of abstraction, but from differing perspectives. For 
these reasons, formalizing the correspondence — as opposed to relying on con- 
vention, such as using the same name for corresponding components — would 
be of little utility. 

The two Rapide architectures in the figure are linked by a Rapide event 
mapping. Any number of SADL architectures can have corresponding Rapide 
architectures. This event mapping is partially determined by composing the 
SADL mappings that link the corresponding SADL architectures. In the figure, 
the architectural protocols are simulated at both an abstract level in X(2) and 
at a quite concrete (implementation) level in X(2oi)«- 

The lower box shows implementations of some of the most concrete SADL 

architectures, linked to their specifications by a mapping expressed in a pro- 
gramming language-specific extension of SADL'S mapping language. (An ex- 
tension for Java is under development.) In this example, only two of the five 
implementation-level SADL architectures have been instantiated as code. The 
dashed arrow from X<20i>.£ to I<20i>.e indicates a nonformalized mapping of the 
Rapide simulation of the architectural protocols to an implementation of those 
protocols in the instantiation. The feasibility of replacing this dashed arrow by 
automatic code generation — based on an implicit formal mapping — is under 
investigation. 

The approach to formal definition of architectures described above provided 
the foundation for the research performed for this project. More detail, including 
motivations for creating a hierarchy and the advantages of doing so, can be found 
in the appendices (Appendix B, in particular). 



3    Results of this Effort 

3.1   SRI 

Prior to this project, SRI CSL had developed a formal architecture definition 
system, called PegaSys, for a commercial client. PegaSys addresses a very special 
case of the general problem addressed by SADL. In PegaSys, only two styles of 
architectural specification were supported. An architecture could be specified at 
an abstract level using a dataflow style, or at a concrete level using reading and 
writing of arrays of variables and control signals to implement dataflow. These 
two styles were already being used for informal architectural specification by 
the customer. PegaSys hierarchies thus had a very simple, restricted structure: 
refinements either replace a component by a collection of connected components 
("bubble decomposition") or implement dataflow. PegaSys tools checked 

• the syntactic correctness of specifications, 

• whether type constraints on connections were satisfied, and 

• whether refinements could be verified by creating a combination of some 
hardwired refinement patterns that matched the refinement step. 

This system proved useful in practice. Several bugs were found in the archi- 
tectural descriptions of large (100,000 to 1,000,000 lines of source code) control 
systems by formalizing those descriptions in the PegaSys language and checking 
them with the PegaSys tools. 

The main emphasis in the present project was on generalizing PegaSys to 
deal with other domains — additional architectural styles, more complicated 
hierarchies, and so on — and replacing the ad hoc, informal notion of hierarchy 
correctness employed in PegaSys by a more precise criterion. PegaSys specifica- 
tions can be converted to SADL specifications with relatively little change, but 
SADL is a far richer language. In addition to particular architectures, SADL can 
be used to define constraints, generic architectures, styles, mappings between ar- 
chitectures and between styles, and refinement patterns. See the SADL manual, 
available on the web at 

<http://www.csl.sri.com/sadl/sadl-intro.ps.gz> 

for details. 
The SADL extensions were driven by an analysis of examples. Both simple 

particular architectures, such as the compiler architecture used in the paper in- 
cluded as Appendix B of this report, and complex generic architectures, such as 
X/Open's Distributed Transaction Processing (DTP) standard architecture de- 
scribed in Figure 2, were formalized in SADL. The result of formalizing X/Open 
DTP has been included as Appendix A. 

Once the language design stabilized, tool development began. The SADL 1.0 
software distribution, available at 

<http://www.csl.sri.com/sadl/sadl-distribution.tar.gz> 
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Figure 2: The X/Open DTP Architecture Hierarchy 

contains a parser, printer, and mapping checker for the language. See 

<http://www.csl.sri.com/sadl/README.html> 

to get an idea of the toolset's present capabilities. 
The result of our attempt to define a formal correctness criterion for architec- 

ture structure hierarchies can be found in Appendix B. (Appendix C shows how 
an external semantics can be provided for connector types, which can be useful 
both for explanation and for showing the consistency of the SADL constraints 
that internally define a connector type.) 

3.2    Stanford University 

Prior to this effort, Stanford PAVG developed the Rapide language as a general 
simulation tool.   On this project, PAVG researchers showed how Rapide can 
be used for architectural definition, by formalizing complex architectures, and 
extended the capabilities of the toolset. 
The Rapide toolset can be found at 

<http://anna.Stanford.edu/rapide/tools-release.html> 



4    Conclusions 

Our principal objective in this contract was used to demonstrate the utility of 
the basic approach to architecture definition described in Section 2. We believe 
that this objective was satisfied by fully formalizing a complex architectural 
hierarchy involving features — such as a variable number of components — 
that other architecture definition languages cannot handle in any straightfor- 
ward fashion, by formalizing the notion of hierarchy correctness so that the 
precise benefits of correctness are clear, and by developing our toolsets to the 
point where they can be used by others interested in experimenting with formal 
architecture definition. 



A    SRI's X/Open DTP Specification 
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%%% Starting point is a very abstract view that treats the collection of 
%%% resource managers as a single component 

x_open_abstract_top: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_Relations_style 

BEGIN 

CONFIGURATION 

%% Note that the following aren't really component declarations, since 
%% there is no signature declared.  We're at a more abstract level, where 
%% all we're saying is that there are components called the_ap, et al., 
%% of some type such that ... . 

ap: TYPE <= Function 
rms: TYPE <= Function 
tm:  TYPE <= Function 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

ar: CONSTRAINT = Dataflow(the_ap, the_rms) 

tx: CONSTRAINT = Dataflow(the_ap, the_tm) 

xa: CONSTRAINT = Dataflow(the_tm, the_rms) 

END x_open_abstract_top 
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%%% First step is to go to a style that makes the dataflow connections 
%%% explicit 

x_open_abstract_df: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style 

BEGIN 

ar_requests: TYPE 
ar_resources: TYPE 
tx_commands, tx_responses: TYPE 
xa_commands, xa_responses: TYPE 

COMPONENTS 

ap:  TYPE <= Function [ap_inl: ar_resources, ap_in2: tx_responses 
-> ap_outl: ar_requests, ap_out2: tx_commands] 

rms: TYPE <= Function [rm_inl: ar_requests, rm_in2: xa_commands 
-> rm_outl: ar_resources, rm_out2: xa_responses] 

tm:  TYPE <= Function [tm_inl: tx_commands, tm_in2: xa_responses 
-> tm_outl: tx_responses, tm_out2: xa_commands] 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

%%% No named connectors, due to parameterization, hence no CONNECTORS section 

CONFIGURATION 

ar_l: CONNECTION = 
(EXISTS c: Channel<ar_requests>) 

Connects(c, the_ap.ap_outl, the_rms.rm_inl) 
ar_2: CONNECTION = 

(EXISTS c: Channel<r_resources>) 
Connects(c, the_rm.rm_outl, the_ap.ap_inl) 

tx_l: CONNECTION = 
(EXISTS c: Channel<tx_commands>) 

Connects(c, the_ap.ap_out2, the_tm.tm_inl) 
tx_2: CONNECTION = 

(EXISTS c: Channel<tx_responses>) 
Connects(c, the_tm.tm_outl, the_ap.ap_in2) 

xa_l: CONNECTION = 
(EXISTS c: Channel<xa_commands>) 

Connects(c, the_tm.tm_out2, the_rms.rm_in2) 
xa_2: CONNECTION = 

(EXISTS c: Charmel<xa_responses>) 
Connects(c, the_rms.rm_out2, the_tm.tm_in2) 

END x_open_abstract_df 

11 



%%% Replace the aggregate resource managers component with a 
%%% ARCHITECTURE that contains the individual resource managers.  Although this 
%%% is complicated, it seems to be just two xformations, one applied twice. 
%%% First, the ports and channels are split.  Second, the Function is 
%%% replaced by a ARCHITECTURE.  I suppose an "empty" ARCHITECTURE could be introduced 
%%% and then refined by adding the processes — which has to be done all 
%%% at once when there is no particular number of them --, which is what 
%%% the rule in the paper suggests, but that just complicates analysis of 
%%% ARCHITECTURE interface constraints. 

%%% After the two channel splitting, we have 
x_open_intermediate_l_df: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 
tx_commands, tx_responses: TYPE 
xa_commands, xa_responses: TYPE 

%% q_type(i) will be the subtype of ar_requests accepted by the i-th resource 
%% manager, and similarly for r_type(i) and ar_resources. 
q_type: {i: NAT | i < n} —> {t: TYPE | t < ar_requests} 
r_type: {i: NAT j i < n} —> {t: TYPE j t < ar_resources} 

COMPONENTS 

ap:  TYPE <= Function [ « ap_inl(i): r_type(i) |(i: NAT) i < n », 
ap_in2: tx_responses 

-> « ap_outl(i): q_type(i) |(i: NAT) i < n », 
ap_out2: tx_commands] 

rms: TYPE <= Function [« rm_inl(i): q_type(i) |(i: NAT) i < n », 
« rm_in2(i): xa_commands | (i: NAT) i < n » 

-> « rm_outl(i): r_type(i) |(i: NAT) i < n », 
« rm_out2(i): xa_responses | (i: NAT) i < n »] 

tm:  TYPE <= Function [tm_inl: tx_commands, 
« tm_in2(i): xa_responses | (i: NAT) i < n » 

-> tm_outl: tx_responses, 
« tm_out2(i): xa_commands | (i: NAT) i < n »] 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

ar_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<q_type(i)>) 
Connects(c, fche_ap.ap_outl(i), the_rms.rm_inl(i)) 

ar_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<r_type(i)>) 
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i)) 

tx_l: CONNECTION = 
(EXISTS c: Channel<tx_commands>) 

Connects(c, the_ap.ap_out2, the_tm.tm_inl) 
tx_2: CONNECTION = 

12 



(EXISTS c: Channel<tx_responses>) 
Connects(c, the_tm.tm_outl, the_ap.ap_in2) 

xa_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS  c:   Channel<xa_coiranands>) 
Connects(c, the_tm.tm_out2(i), the_rms.rm_in2(i)) 

xa_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_responses>) 
Connects(c, the_rms.rm_out2(i), the_tm.tm_in2(i)) 

END x_open_intermediate_l_df 
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%%% Refining the Function the_rms into a ARCHITECTURE containing many rm's yields 
x_open_intermediate_2_df: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 
tx_commands, tx_responses: TYPE 
xa_commands, xa_responses: TYPE 

%% That the q_type is a partition of ar_requests is guaranteed by the 
%% general constraints on ARCHITECTURE interfaces and the "completeness 
%% assumption".  (We say nothing about the ports of the resource 
%% managers — in particular, we mention no connections withing the 
%% ARCHITECTURE — so all are externally visible.)  Ditto for r_type and 
%% ar_resources. 
q_type: {i: NAT | i < n) —> {t: TYPE | t < ar_requests} 
r_type: {i: NAT j i < n} —> {t: TYPE j t < ar_resources} 

COMPONENTS 

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n », 
ap_in2: tx_responses 

-> « ap_outl(i): q_type(i) |(i: NAT) i < n », 
ap_out2: tx_commands] 

rm: TYPE <= { p: Function[rm_inl: qt, rm_in2: xa_commands 
-> rm_outl: rt, rm_out2: xa_responses] 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n », 
« rm_in2(i): xa_commands | (i: NAT) i < n » 

-> « rm_outl(i): r_type(i) |(i: NAT) i < n », 
« rm_out2(i): xa_responses | (i: NAT) i < n »] 

tm: TYPE <= Function [tm_inl: tx_commands, 
« tm_in2(i): xa_responses | (i: NAT) i < n » 

-> tm_outl: tx_responses, 
« tm_out2(i): xa_commands | (i: NAT) i < n »] 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) [y CONTAINED_IN the_rms] 

ar_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<q_type(i)>) 
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i)) 

ar_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<r_type(i)>) 
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i)) 
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tx_l: CONNECTION = 
(EXISTS c: Channel<tx_commands>) 

Connects(c, the_ap.ap_out2, the_tm.tm_inl) 
tx_2: CONNECTION = 

(EXISTS c: Channel<tx_responses>) 
Connects(c, the_tm.tm_outl, the_ap.ap_in2) 

xa_l: CONNECTION = 
(FORALL i: NAT | i < n) 

{EXISTS c: Channel<xa_commands>) 
Connects(c, the_tm.tm_out2(i), the_rms.rm_in2(i)) 

xa_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_responses>) 
Connec t s(c, the_rms.rm_out2(i), the_tm.tm_in2(i)) 

END x_open_intermediate_2_df 
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%%% Refine the TX interface by splitting the tx_command, 
%%% tx_response, xa_command, and xa_response channels to set up use 
%%% of the "actual" commands . 

x_open_concrete_df: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_reguests, ar_resources: TYPE 

%% Arguably, the whole TX interface is control flow, but we'll treat 
%%  the integers that get returned as data to stay closer to the 
%%  actual signatures 
tx_begin_response,     % Note that there is no dataflow from the AP 

tx_close_response,   %  to the TM on many commands, so there is no 
tx_commit_response,   %  need for a command type decl'n 
tx_information_command, tx_information_response, 
tx_open_response, 
tx_rollback_response: TYPE 

ax_register_command, ax_register_response, 
ax_unregister_command, ax_unregister_response, 
xa_close_command, xa_close_response, 
xa_commit_command, xa_commit_response, 
xa_complete_command, xa_complete_response, 
xa_end_command, xa_end_response, 
xa_forget_command, xa_forget_response, 
xa_open_command, xa_open_response, 
xa_prepare_command, xa_prepare_response, 
xa_recover_command, xa_recover_response, 
xa_rollback_command, xa_rollback_response, 
xa_start_command, xa_start_response: TYPE 

q_type: {i: NAT | i < n) —> {t: TYPE | t < ar_requests} 
r_type: {i: NAT j i < n} —> {t: TYPE | t < ar_resources} 

COMPONENTS 

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n », 
ap_begin_response_in: tx_begin_response, 
ap_close_response_in: tx_close_response, 
ap_commit_response_in: tx_commit_response, 
ap_information_response_in: tx_information_response, 
ap_open_response_in: tx_open_response, 
ap_rollback_response_in: tx_rollback_response 

-> « ap_outl(i): q_type(i) |(i: NAT) i < n », 
ap_information_command_out: tx_information_command] 

rm: TYPE <= { p: Function[rm_inl: qt, 
rm_register_in: ax_register_response, 
rm_unregister_in: ax_unregister_response, 
rm_close_in: xa_close_command, 
rm_commit_in: xa_commit_command, 
rm_complete_in: xa_complete_command, 
rm_end_in: xa_end_command, 
rm_forget_in: xa_forget_command, 
rm_open_in: xa_open_command, 
rm_prepare_in: xa_prepare_command, 
rm_recover_in: xa_recover_command, 

16 



rm_rollback_in: xa_rollback_command, 
rm_start_in: xa_start_command 

-> rm_outl: rt, 
rm_register_out: ax_register_command, 
rm_unregister_out: ax_unregister_command, 
rm_close_out: xa_close_response, 
nti_commit_out: xa_commit_response, 
rm_complete_out: xa_complete_response, 
rm_end_out: xa_end_response, 
rm_forget_out: xa_forget_response, 
rm_open_out: xa_open_response, 
rm_prepare_out: xa_prepare_response, 
rm_recover_out: xa_recover_response, 
rm_rollback_out: xa_rollback_response, 
rm_start_out: xa_start_response] 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n », 
« rm_register_in(i): ax_register_response 

| (i: NAT) i < n », 
« rm_unregister_in(i): ax_unregister_response 

| (i: NAT) i < n », 
« rm_close_in(i): xa_close_command 

| (i: NAT) i < n », 
« rm_commit_in(i): xa_commit_command 

| (i: NAT) i < n », 
« rm_complete_in(i): xa_complete_command 

| (i:   NAT)   i  <  n », 
«  rm_end_in(i) :   xa_end_coinmand 

| (i: NAT) i < n », 
« rm_forget_in(i): xa_forget_command 

| (i: NAT) i < n », 
« rm_open_in(i): xa_open_command 

| (i: NAT) i < n », 
« rm_prepare_in(i): xa_prepare_command 

| (i: NAT) i < n », 
« rm_recover_in(i): xa_recover_command 

| (i: NAT) i < n », 
« rm_rollback_in(i): xa_rollback_command 

| (i: NAT) i < n », 
« rm_start_in(i): xa_start_command 

|(i: NAT) i < n » 
-> « rm_outl(i): r_type(i) |(i: NAT) i < n », 

<< rm_register_out(i): ax_register_command 
| (i: NAT) i < n », 

« rm_unregister_out(i): ax_unregister_command 
| (i: NAT) i < n », 

« rm_close_out(i): xa_close_response 
| (i: NAT) i < n », 

« rm_commit_out(i): xa_commit_response 
| (i: NAT) i < n », 

« rm_complete_out(i): xa_complete_response 
| (i: NAT) i < n », 

« rm_end_out(i): xa_end_response 
| (i: NAT) i < n », 

« rm_forget_out(i): xa_forget_response 
| (i: NAT) i < n », 

« rm_open_out(i): xa_open_response 
| (i: NAT) i < n », 

« rm_prepare_out(i): xa_prepare_response 
| (i: NAT) i < n », 

« rm_recover_out(i): xa_recover_response 
| (i: NAT) i < n », 

« rm_rollback_out(i): xa_rollback_response 
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| (i: NAT) i < n », 
« rm_start_out(i): xa_start_response 

| (i: NAT) i < n »] 

tm: TYPE <= Function [tm_information_command_in: tx_information_command, 
« tm_register_in(i): ax_register_command 

1 (i: NAT) i < n », 
« tm_unregister_in(i): ax_unregister_command 

| (i: NAT) i < n », 
« tm_close_in(i): xa_close_response 

j (i: NAT) i < n », 
« tm_commit_in(i): xa_commit_response 

I (i: NAT) i < n », 
« tm_complete_in(i): xa_complete_response 

| (i: NAT) i < n », 
« tm_end_in(i): xa_end_response 

1 (i: NAT) i < n », 
« tm_forget_in(i): xa_forget_response 

| (i: NAT) i < n », 
« tm_open_in(i): xa_open_response 

| (i: NAT) i < n », 
« tm_prepare_in(i): xa_prepare_response 

| (i: NAT) i < n », 
« tm_recover_in(i): xa_recover_response 

1 (i: NAT) i < n », 
« tm_rollback_in(i): xa_rollback_response 

1 (i: NAT) i < n », 
« tm_start_in(i): xa_start_response 

|(i: NAT) i < n » 
-> tm_begin_response_out: tx_begin_response, 

tm_ _close_response_out: tx_close_response, 
tm_ _commit_response_out: tx_commit_response. 
tm_ .information_response_out: tx_information_response, 
tm_ _open_response_out: tx_open_response, 
tm_ _rollback_response_out: tx_rollback_response, 
« tm_register_out(i): ax_register_response 

| (i: NAT) i < n », 
« tm_unregister_out(i): ax_unregister_response 

| (i: NAT) i < n », 
<< tm_close_out(i): xa_close_command 

| (i: NAT) i < n », 
« tm_commit_out(i): xa_commit_command 

| (i: NAT) i < n », 
« tm_complete_out(i): xa_complete_command 

| (i: NAT) i < n », 
« tm_end_out(i): xa_end_command 

| (i: NAT) i < n », 
<< tm_forget_out(i): xa_forget_command 

| (i: NAT) i < n», 
<< tm_open_out(i): xa_open_command 

| (i: NAT) i < n », 
<< tm_prepare_out{i): xa_prepare_command 

| (i: NAT) i < n », 
« tm_recover_out(i): xa_recover_command 

| (i: NAT) i < n », 
<< tm_rollback_out(i): xa_rollback_command 

| (i: NAT) i < n », 
« tm_start_out(i): xa_start_command 

| (i: NAT) i < n »] 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 
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CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED IN z] 
rm_location: CONSTRAINT = ~ . 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<q_type(i)>) 
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i)) 

ar_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<r_type(i)>) 
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i)) 

tx_l: CONNECTION = 
(EXISTS c: Channel<tx_information_command>) 

Connects(c, the_ap.ap_information_command_out, 
the_tm.tm_information_command_in) 

tx_2a: CONNECTION = 
(EXISTS c: Channel<tx_begln_response>) 

Connects(c, the_tm.tm_begin_response_out, 
the_ap.ap_begin_response_in) 

tx_2b: CONNECTION = 
(EXISTS c: Channel<tx_close_response>) 

Connects(c, the_tm.tm_close_response_out, 
the_ap.ap_close_response_in) 

tx_2c: CONNECTION = 
(EXISTS c: Channel<tx_commit_response>) 

Connects(c, the_tm.tm_commit_response_out/ 
the_ap.ap_commit_response_in) 

tx_2d: CONNECTION = 
(EXISTS c: Channel<tx_information_response>) 

Connects(c, the_tm.tm_information_response_out, 
the_ap.ap_information_response_in) 

tx_2e: CONNECTION = 
(EXISTS c: Channel<tx_open_response>) 

Connects(c, the_tm.tm_open_response_out, 
the_ap.ap_open_response_in) 

tx_2f: CONNECTION = 
(EXISTS c: Channel<tx_rollback_response>) 

Connects(c, the_tm.tm_rollback_response_out, 
the_ap.ap_rollback_response_in) 

xa_la: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<ax_register_response>) 
Connects(c, the_tm.tm_register_response_out(i), 

the_rms.rm_register_response_in(i)) 
xa_lb: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<ax_unregister_response>) 

Connects(c, the_tm.tm_unregister_response_out(i), 
the_rms.rm_unregister_response_in(i)) 

xa_lc: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_close_command>) 
Connects(c, the_tm.tm_clpse_command_out(i), 

the_rms.rm_close_command_in(i)) 
xa_ld: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_commit_comraand>) 
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Connects(c, the_tm.tm_commit_command_out(i), 
the_rms. rm_commit_conimand_in (i)) 

xa_le: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_complete_command>) 
Connects(c, the_tm.tm_complete_command_out(i), 

the_rms.rm_complete_command_in(i)) 
xa_lf: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_end_command>) 

Connects(c, the_tm.tm_end_command_out(i), 
the_rms.rm_end_command_in(i)) 

xa_lg: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_forget_command>) 
Connects(c, the_tm.tm_forget_command_out(i), 

the_rms. rm_f orget_command_in (i) ) 
xa_lh: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_open_command>) 

Connects(c, the_tm.tm_open_command_out(i), 
the_rms.rm_open_command_in{i)) 

xa_li: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_prepare_command>) 
Connects(c,   the_tm.tm_prepare_command_out(i), 

the_rms.rm_prepare_coiranand_in(i)) 
xa_lj: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_recover_command>) 

Connects(c, the_tm.tm_recover_command_out(i), 
the_rms.rm_recover_command_in(i)) 

xa_lk: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_rollback_command>) 
Connects(c, the_tm.tm_rollback_command_out(i) , 

the_rms.rm_rollback_command_in(i)) 
xa_ll: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_start_command>) 

Connects(c, the_tm.tm_start_command_out(i), 
the_rms.rm_start_command_in(i)) 

xa_2a: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<ax_register_command>) 
Connects(c, the_rms.rm_register_command_out(i), 

the_tm. tm_register_command_in (i)) 
xa_2b: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<ax_unregister_command>) 

Connects(c, the_rms.rm_unregister_command_out(i), 
the_tm.tm_unregister_command_in(i)) 

xa_2c: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_close_response>) 
Connects(c, the_rms.rm_close_response_out(i), 

the_tm.tm_close_response_in(i)) 
xa_2d: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_commit_response>) 

Connects(c, the_rms.rm_commit_response_out(i), 
the_tm.tm_commit_response_in(i)) 

xa_2e: CONNECTION = 
(FORALL i: NAT | i < n) 
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(EXISTS c: Channel<xa_complete_response>) 
Connects(c, the_rms.rm_complete_response_out(i), 

the_tm.tm_complete_response_in(i)) 
xa_2f: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_end_response>) 

Connects(c, the_rms.rm_end_response_out(i), 
the_tm.tm_end_response_in(i)) 

xa_2g: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_forget_response>) 
Connects(c, the_rms.rm_forget_response_out(i), 

the_tm.tm_forget_response_in(i)) 
xa_2h: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_open_response>) 

Connects(c, the_rms.rm_open_response_out(i), 
the_tm.tm_open_response_in(i)) 

xa_2i: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_prepare_response>) 
Connects(c, the_rms.rm_prepare_response_out(i), 

the_tm.tm_prepare_response_in(i)) 
xa_2j: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_recover_response>) 

Connects(c, the_rms.rm_recover_response_out(i), 
the_tm.tm_recover_response_in(i)) 

xa_2k: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<xa_rollback_response>) 
Connects(c, the_rms.rm_rollback_response_out(i), 

the_tm.tm_rollback_response_in(i)) 
xa_21: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<xa_start_response>) 

Connects(c, the_rms.rm_start_response_out(i), 
the_tm.tm_start_response_in(i)) 

END x_open_concrete_df 
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%%% Introduce the actual types on the TX and XA interfaces. 
%%% Note that this is the first use of X/Open_style: we need the type 
%%% definitions. 

x_open_truetypes_df: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style, X_Open_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

g_type: {i: NAT 
r_type: {i: NAT 

COMPONENTS 

i < n} —> {t: TYPE | t < ar_reguests} 
i < n} —> {t: TYPE j t < ar_resources} 

ap: TYPE <= Function [« ap_inl(i): r_type(i) |(i: NAT) i < n », 
ap_begin_response_in: INT, 
ap_close_response_in: INT, 
ap_commit_response_in: INT, 
ap_information_response_in: INT, 
ap_open_response_in: INT, 
ap_rollback_response_in: INT 

-> « ap_outl(i): q_type(i) |(i: NAT) i < n », 
ap_information_command_out: TX_Info] 

rm: TYPE <= { p: Function[rm_inl: qt, 
rm_register_in: INT, 
rm_unregi s ter_in: INT, 
rm_close_in: XA_Info X INTA2, 
rm_commit_in: X_Id X INTA2, 
rm_complete_in: INTA4, 
rm_end_in: X_id X INTA2, 
rm_forget_in: X_Id X INTA2, 
rm_open_in: XA_Info X INTA2, 
rm_prepare_in: X_Id X INTA2, 
rm_recover_in: X_Ids X INTA3, 
rm_rollback_in: X_Id X INTA2, 
rm_start_in: X_Id X INTA2 

-> rm_outl: rt, 
rm_register_out: X_Id X INTA2, 
rm_unregister_out: INTA2, 
rm_close_out: INT, 
rm_commit_out: INT, 
rm_complete_out: INT, 
rm_end_out: INT, 
rm_forget_out: INT, 
rm_open_out: INT, 
rm_prepare_out: INT, 
rm_recover_out: INT, 
rm_rollback_out: INT, 
rm_start_out: INT] 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n », 
« rm_register_in(i): INT 

| (i: NAT) i < n », 
« rm_unregister_in(i): INT 

| (i: NAT) i < n », 
« rm_close_in(i): XA_Info X INTA2 
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I (i: NAT) i < n », 
« rm_commit_in(i): X_Id X INTA2 

| (i: NAT) i < n », 
« rm_complete_in(i): INTA4 

| (i: NAT) i < n », 
« rm_end_in(i): X_id X INTA2 

| (i: NAT) i < n », 
« rm_forget_in(i): X_Id X INTA2 

| (i: NAT) i < n », 
« rm_open_in(i): XA_Info X INTA2 

| (i:   NAT)   i  <  n », 
« rm_jprepare_in(i):   X_Id X INTA2 

| (i: NAT) i < n », 
« rm_recover_in(i): X_Ids X INTA3 

| (i: NAT) i < n », 
« rm_rollback_in(i): X_Id X INTA2 

| (i: NAT) i < n », 
« rm_start_in(i): X_Id X INTA2 

|(i: NAT) i < n » 
-> « rm_outl(i): r_type(i) |(i: NAT) i < n », 

« rm_register_out(i): X_Id X INTA2 
| (i: NAT) i < n », 

« rm_unregister_out(i): INTA2 
| (i: NAT) i < n », 

« rm_close_out(i): INT 
| (i: NAT) i < n », 

« rm_commit_out(i): INT 
| (i: NAT) i < n », 

« rm_complete_out(i): INT 
| (i: NAT) i < n », 

« rm_end_out(i): INT 
| (i: NAT) i < n », 

« rm_forget_out(i): INT 
| (i: NAT) i < n », 

« rm_open_out(i): INT 
| (i: NAT) i < n », 

« rm_prepare_out(i): INT 
|(i: NAT) i < n >>, 

« rm_recover_out(i): INT 
| (i: NAT) i < n », 

« rm_rollback_out(i): INT 
| (i: NAT) i < n », 

« rm_start_out(i): INT 
| (i: NAT) i < n »] 

tm: TYPE <= Function [tm_information_command_in: TX_Info, 
« tm_register_in(i): X_Id X INTA2 

|(i: NAT) i 
« tm_unregister_in(i) 

|(i: NAT) i 
« tm_close_in(i): 

|(i: NAT) i 
« tm_commit_in(i): 

|(i: NAT) i 
« tm_complete_in(i): INT 

| (i: NAT) i < n », 
« tm_end_in(i): INT 

| (i: NAT) i < n », 
« tm_forget_in(i): INT 

| (i: NAT) i < n », 
« tm_open_in(i): INT 

| (i: NAT) i < n », 
« tm_prepare_in(i): INT 

| (i: NAT) i < n », 
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« tm_recover_in(i): INT 
|(i: NAT) i < n >>, 

« tm_rollback_in(i): INT 
| (i: NAT) i < n », 

« tm_start_in(i): INT 
|(i: NAT) i < n » 

-> tm_begin_response_out: INT, 
tm_close_response_out: INT, 
tm_commit_response_out: INT, 
tm_information_response_out: INT, 
tm_open_response_out: INT, 
tm_rollback_response_out: INT, 
« tm_register_out(i): INT 

| (i: NAT) i < n », 
« tm_unregister_out(i): INT 

| (i: NAT) i < n », 
« tm_close_out(i): XA_Info X INTA2 

| (i: NAT) i < n », 
« tm_commit_out(i): X_Id X INTA2 

| (i: NAT) i < n », 
« tm_complete_out(i): INTA4 

| (i: NAT) i < n », 
« tm_end_out(i): X_id X INTA2 

| (i: NAT) i < n », 
« tm_forget_out(i): X_Id X INTA2 

| (i: NAT) i < n », 
« tm_open_out(i): XA_Info X INTA2 

| (i: NAT) i < n », 
« tm_prepare_out(i): X_Id X INTA2 

| (i: NAT) i < n », 
« tm_recover_out(i): X_Ids X INTA3 

j (i: NAT) i < n », 
« tm_rollback_out(i): X_Id X INTA2 

| (i: NAT) i < n », 
« tm_start_out(i): X_Id X INTA2 

| (i: NAT) i < n »] 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) TIIT 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<q_type(i)>) 
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(l)) 

ar_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<r_type(i)>) 
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i)) 

tx_l: CONNECTION = 
(EXISTS c: Channel<TX_Info>) 

Connects(c, the_ap.ap_information_command_out, 
the_tm.tm_information_command_in) 

tx_2a: CONNECTION = 
(EXISTS c: Channel<INT>) 
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Connects(c, the_tm.tm_begin_response_out, 
the_ap.ap_begin_response_in) 

tx_2b: CONNECTION = 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_close_response_out, 
the_ap.ap_close_response_in) 

tx_2c: CONNECTION = 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_commit_response_out, 
the_ap.ap_commit_response_in) 

tx_2d: CONNECTION = 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_information_response_out, 
the_ap.ap_information_response_in) 

tx_2e: CONNECTION = 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_open_response_out, 
the_ap.ap_open_response_in) 

tx_2f: CONNECTION = 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_rollback_response_out, 
the_ap.ap_rollback_response_in) 

xa_la: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_tm.tm_register_response_out(i), 

the_rms.rm_register_response_in(i)) 
xa_lb: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<INT>) 

Connects(c, the_tm.tm_unregister_response_out(i), 
the_rms. rm_unregister_response_in (i) ) 

xa_lc: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<XA_Info X INTA2>) 
Connects(c, the_tm.tm_close_command_out(i), 

the_rms.rm_close_command_in(i)) 
xa_ld: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<X_Id X INTA2>) 

Connects(c, the_tm.tm_commit_command_out(i), 
the_rms.rm_commit_command_in(i)) 

xa_le: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INTA4>) 
Connects(c, the_tm.tm_complete_command_out(i), 

the_rms.rm_complete_command_in(i)) 
xa_lf: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<X_id X INTA2>) 

Connects(c,   the_tm.tm_end_coiranand_out(i), 
the_rms.rm_end_command_in(i)) 

xa_lg:   CONNECTION = 
(FORALL  i:   NAT   |   i  <  n) 

(EXISTS c: Channel<X_Id X INTA2>) 
Connects(c, the_tm.tm_forget_command_out(i), 

the_rms.rm_forget_command_in(i)) 
xa_lh: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<XA_Info X INTA2>) 

Connects(c, the_tm.tm_open_command_out(i), 
the_rms.rm_open_command_in(i)) 

xa_li: CONNECTION = 
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(FORALL i: NAT | i < n) 
(EXISTS c: Channel<X_Id X INTÄ2>) 

Connects(c, the_tm.tm_prepare_command_out(i), 
the_rms.rm_prepare_command_in(i)) 

xa_ .13 : CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<X_Ids X INTÄ3>) 
Connects(c, the_tm.tm_recover_command_out(i), 

the_rms. rm_recover_coitimand_in (i) ) 

xa_ .Ik: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<X_Id X INTÄ2>) 
Connects(c, the_tm.tm_rollback_command_out(i), 

the_rms. rm_rollback_command_in (i)) 

xa_ .11: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<X_Id X INTA2>) 
Connects(c, the_tm.tm_start_command_out(i), 

the_rms.rm_start_command_in(i)) 

xa_ .2a: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<X_Id X INTÄ2>) 
Connects(c, the_rms.rm_register_command_out(i), 

the_tm.tm_register_command_in(i)) 

xa. _2b: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INTA2>) 
Connects(c, the_rms.rm_unregister_command_out(i), 

the_tm.tm_unregister_command_in(i)) 

xa. _2c: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_close_response_out(i), 

the_tm.tm_close_response_in(i)) 

xa. _2d: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_commit_response_out(i), 

the_tm.tm_commit_response_in(i)) 

xa. _2e: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Charme1<INT>) 
Connects(c, the_rms.rm_complete_response_out(i), 

the_tm.tm_complete_response_in(i)) 

xa. _2f: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_end_response_out(i), 

the_tm.tm_end_response_in(i)) 

xa. _2g: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_forget_response_out(i), 

the_tm.tm_forget_response_in(i)) 

xa. _2h: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_open_response_out(i), 

the_tm.tm_open_response_in(i)) 

xa _2i: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_prepare_response_out(i), 

the_tm.tm_prepare_response_in(i)) 
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xa_2j: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_recover_response_out(i), 

the_tm.tm_recover_response_in(i)) 
xa_2k: CONNECTION = 

(FORALL i: NAT | i < n) 
(EXISTS c: Channel<INT>) 

Connects(c, the_rms.rm_rollback_response_out(i), 
the_tm.tm_rollback_response_in(i)) 

xa_21: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<INT>) 
Connects(c, the_rms.rm_start_response_out(i), 

the_tm.tm_start_response_in(i)) 

END x_open_truetypes_df 
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%%% Replace TX and XA dataflow by procedure calls, using 
%%% pre-defined procedure call varieties.  This requires first replacing 
%%% Functions by ARCHITECTURES, so that the procedure declarations can be stuck 
%%% in the right places.  (AP is changed to a ARCHITECTURE for uniformity, and 
%%% to eliminate the dependence on dataflow style.) 

x_open_semiproc: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM Dataflow_style, 
X_Open_style  % defines XA_Close_Procedure, ..., TX_Begin_Procedure, 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

q_type: {i: NAT | i < n) --> {t: TYPE | t < ar_requests} 
r_type: {i: NAT | i < n) --> {t: TYPE j t < ar_resources} 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [« ap_inl(i): r_type(i) |(i: NAT) i < n » 
-> « ap_outl(i): q_type(i) |(i: NAT) i < n »] 

rm: TYPE <= { m: ARCHITECTURE [rm_inl: qt -> rm_outl: rt] 
EXPORTING ALL 
BEGIN 

close: XA_Close_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
commit: XA_Commit_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: XA_Complete_Procedure 
[hndl: INT, retval: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

end: XA_End_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: XA_Forget_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

open: XA_Open_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: XA_Prepare_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

recover: XA_Recover_Procedure 
[ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: XA_Rollback_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
start: XA_Start_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

END m 
| qt < ar_requests AND rt < ar_resources } 
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rms- TYPE <= ARCHITECTURE [« rm_inl(i): q_type(i) |(i: NAT) i < n » 
-> « rm_outl(i): r_type(i) |(i: NAT) i < n »] 

tm: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) ,.„  . 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel«3_type(i)>) 
Connects(c, the_ap.ap_outl(i), the_rms.rm_inl(i)) 

ar_2: CONNECTION = 
(FORALL i: NAT | i < n) 

(EXISTS c: Channel<r_type(i)>) 
Connects(c, the_rms.rm_outl(i), the_ap.ap_inl(i)) 

%% For now, let's make these a bit more readable by (implicitly) 
%% existentially quantifying the call sites away.  (Of course, we'll 
%% eventually need them in the mapping, but mappings can be hidden 
%% behind the scenes on the transformational approach.) 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm.register, y) 
AND Called_From(the_tm.unregister, y) 
AND Called_From(y.close, the_tm) 
AND Called_From(y.commit, the_tm) 
AND Called_From(y.complete, the_tm) 
AND Called_From(y.end, the_tm) 
AND Called_From(y.forget, the_tm) 
AND Called_From(y.open, the_tm) 
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AND Called_From(y.prepare, the_tm) 
AND Called_From(y.recover, the_tm) 
AND Called_From(y.rollback, the_tm) 
AND Called_From(y.start, the_tm)] 

END x_open_semiproc 
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%%% Replace AR dataflow by a remote procedure call, Note that use of 
%%% Dataflow_style has been completely eliminated. 

x_open_proc_l: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, 
RPC_style     % Introduces Remotely Callable Procedures, 

%  RPCs, an implementation of PROCEDURES 

BEGIN 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: RPC [in: qt -> out: rt] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: XA_Recover_Procedure 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
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-> ret: INT] 
begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar: CONSTRAINT = 
(FORALL y: rm) Called_From(y.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm.register, y) 
AND Called_From(the_tm.unregister, y) 
AND Called_From(y.close, the_tm) 
AND Called_From(y.commit, the_tm) 
AND Called_From(y.complete, the_tm) 
AND Called_From(y.end, the_tm) 
AND Called_From(y.forget, the_tm) 
AND Called_From(y.open, the_tm) 
AND Called_From(y.prepare, the_tm) 
AND Called_From(y.recover, the_tm) 
AND Called_From(y.rollback, the_tm) 
AND Called_From(y.start, the_tm)] 

END x_open_proc_l 
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%%% Replace AR dataflow by a pair of remote procedure calls.  Synchronize, 
%%% but don't block waiting for slow resource managers. 

x_open_proc_2: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, 
RPC_style        % Introduces Remotely Callable Procedures, 

%  RPCs, an implementation of PROCEDURES 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

{ return_resource(i): RPC [in: r_type(i) -> ] |(i: NAT) i < n } 
END ap 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

request_resource: RPC [in: qt -> ] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] . 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: XA_Recover_Procedure 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 
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tm: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms  =>   (EXISTS   z:   rm)   y CONTAINED_IN  z] 
rmJLocation:   CONSTRAINT  = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONSTRAINT = 
(FORALL y: rm) Called_From(y.request_resource, the_ap) 

ar_2: CONSTRAINT = 
(FORALL i: NAT | i < n) 

(EXISTS y: rm) 
Called_From(return_resource(i), y) 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm.register, y) 
AND Called_From(the_tm.unregister, y) 
AND Called_From(y.close, the_tm) 
AND Called_From(y.commit, the_tm) 
AND Called_From(y.complete, the_tm) 
AND Called_From(y.end, the_tm) 
AND Called_From(y.forget, the_tm) 
AND Called_From(y.open, the_tm) 
AND Called_From(y.prepare, the_tm) 
AND Called_From(y.recover, the_tm) 
AND Called_From(y.rollback, the_tm) 
AND Called_From(y.start, the_tm)] 

END x_open_proc_2 
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%%% Replace AR dataflow by a monitor, to make the communication asynchronous 

x_open_proc_3: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, 
RPC_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

q_type: {i: NAT | i < n} --> {t: TYPE | t < ar_requests} 
r_type: {i: NAT j i < n} —> {t: TYPE | t < ar_resources} 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

mon: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

{ put_requests(i): RPC [in: q_type(i) -> ] |(i: NAT) i < n } 
{ get_requests(i): RPC [ -> out: g_type(i)] |(i: NAT) i < n } 
{ put_resources(i): RPC [in: r_type(i) -> ] |(i: NAT) i < n } 
{ get_resources(i): RPC [ -> out: r_type(i)] |(i: NAT) i < n } 

END mon 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

close: XA_Close_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
commit: XA_Commit_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: XA_Complete_Procedure 
[hndl: INT, retval: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

end: XA_End_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: XA_Forget_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

open: XA_Open_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: XA_Prepare_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

recover: XA_Recover_Procedure 
[ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: XA_Rollback_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
start: XA_Start_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT1 
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END m 
| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONSTRAINT = 
(FORALL i: NAT | i < n) 

[Called_From(put_requests(i), the_ap) 
AND Called_From(get_resources(i), the_ap)] 

ar_2: CONSTRAINT = 
(FORALL i: NAT | i < n) 

(EXISTS y: rm) 
[Called_From(put_resource(i), y) 
AND Called_From(get_requests(i), y)] 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm.register, y) 
AND Called_From(the_tm.unregister, y) 
AND Called_From(y.close, the_tm) 
AND Called_From(y.commit, the_tm) 
AND Called_From(y.complete, the_tm) 
AND Called_From(y.end, the_tm) 
AND Called_From(y.forget, the_tm) 
AND Called_From(y.open, the_tm) 
AND Called_From(y.prepare, the_tm) 
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AND Called_From(y.recover, the_tm) 
AND Called_From(y.rollback, the_tm) 
AND Called_From(y.start, the_tm)] 

END x_open_proc_3 
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%%% Pick a value for n, as a first step toward making things concrete 

x_open_instance: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, 
RPC_style 

BEGIN 

ar_reguests, ar_resources: TYPE 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: RPC [in: qt -> out: rt] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: XA_Recover_Procedure 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_reguests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm: TYPE <= ARCHITECTURE [' -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
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-> ret: INT] 
begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap: ap 
the_rms: rms 
the_rm_l : rm 
the_rm_2 : rm 
the_tm: tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => 
[y CONTAINED_IN the_rm_l OR y CONTAINED_IN the_rm_2]] 

rm_location: CONSTRAINT = 
the_rm_l CONTAINED_IN the_rms AND the_rm_2 CONTAINED_IN the_rms 

ar: CONSTRAINT = 
Called_From(the_rm_l.access_function, the_ap) 
AND Called_From(the_rm_2.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
Called_From(the_tm.register, the_rm_l) 
AND Called_From(the_tm.unregister, the_rm_l) 
AND Called_From(the_rm_l.close, the_tm) 
AND Called_From(the_rm_l.commit, the_tm) 
AND Called_From(the_rm_l.complete, the_tm) 
AND Called_From(the_rm_l.end, the_tm) 
AND Called_From(the_rm_l.forget, the_tm) 
AND Called_From(the_rm_l.open, the_tm) 
AND Called_From(the_rm_l.prepare, the_tm) 
AND Called_From(the_rm_l.recover, the_tm) 
AND Called_From(the_rm_l.rollback, the_tm) 
AND Called_From(the_rm_l.start, the_tm) 
AND Called_From(the_tm.register, the_rm_2) 
AND Called_From(the_tm.unregister, the_rm_2) 
AND Called_From(the_rm_2.close, the_tm) 
AND Called_From(the_rm_2.commi t, the_tm) 
AND Called_From(the_rm_2.complete, the_tm) 
AND Called_From(the_rm_2.end, the_tm) 
AND Called_From(the_rm_2.forget, the_tm) 
AND Called_From(the_rm_2.open, the_tm) 
AND Called_From(the_rm_2.prepare, the_tm) 
AND Called_From(the_rm_2.recover, the_tm) 
AND Called_From(the_rm_2.rollback, the_tm) 
AND Called_From(the_rm_2.start, the_tm) 

END x_open_instance 
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%%% Break up AP into main process and an auxiliary process that will be 
%%% co-located with the TM and the RMs.  Step one is to refine example-6 
%%% into something that looks like example-7, but with generic procedure 
%%% calls in place of the RPCs.  (So this oculd actually be above 
%%% example-7 in the tree, rather than a separate branch.) 

x_open_proc_4: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: PROCEDURE [in: qt -> out: rt] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
■ -> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: XA_Recover_Procedure 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 
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register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar: CONSTRAINT = 
(FORALL y: rm) Called_From(y.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm.begin, the_ap) 
AND Called_From(the_tm.close, the_ap) 
AND Called_From(the_tm.commit, the_ap) 
AND Called_From(the_tm.information, the_ap) 
AND Called_From(the_tm.open, the_ap) 
AND Called_From(the_tm.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm.register, y) 
AND Called_From(the_tm.unregister, y) 
AND Called_From(y.close, the_tm) 
AND Called_From(y.commit, the_tm) 
AND Called_From(y.complete, the_tm) 
AND Called_From(y.end, the_tm) 
AND Called_From(y.forget, the_tm) 
AND Called_From(y.open, the_tm) 
AND Called_From(y.prepare, the_tm) 
AND Called_From(y.recover, the_tm) 
AND Called_From(y.rollback, the_tm) 
AND Called_From(y.start, the_tm)] 

END x_open_proc_4 
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%%% Break up AP into main process and an auxiliary process that will be 
%%% co-located with the TM and the RMs.  This is an intermediate step in 
%%% which the various boxes representing the auxiliary interface processes 
%%% for the AP and the TM are each combined into a single box. 

x_open_ap_decomposition: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, RPC_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

resource_id: TYPE = { i: NAT | i < n } 

COMPONENTS 

%% The next two type definitions could simply be declared within the ap 
%% declaration, since the number is fixed, but might as well do it like rm. 

ap_main: TYPE <= ARCHITECTURE [ -> ] 

ap_aux:  TYPE <= ARCHITECTURE [ -> 3 
EXPORTING ALL 
BEGIN 
parameterized_access_function: 

RPC [r_id: resource_id, in: ar_requests -> out: ar_resources] 
begin: RPC [ -> ret: INT] 
close: RPC [ -> ret: INT] 
commit: RPC [ -> ret: INT] 
information: RPC [info: TX_Info -> ret: INT] 
open: RPC [ -> ret: INT] 
rollback: RPC [ -> ret: INT] 

END ap_aux 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: PROCEDURE [in: qt -> out: rt] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 
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-> ret: INT] 
recover: XA_Recover_Procedure 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
' -> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm_main: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: RPC 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm_main 

tm_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

close: RPC [info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: RPC . [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: RPC [hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: RPC [info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: RPC [ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: RPC [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: RPC [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 
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END tm_aux 

tin: TYPE <= ARCHITECTURE [ -> ] 

the_ap:  ap 
the_ap_main: ap_main 
the_ap_aux: ap_aux 
the_rms: rms 
the_tm: tm 
the_tm_main:  tm_main 
the_tm_aux: tm_aux 

CONFIGURATION 

ap_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_ap 
=> y CONTAINED_IN the_ap_main OR y CONTAINED_IN the_ap_aux] 

ap_main_location: CONSTRAINT = 
the_ap_main CONTAINED_IN the_ap 

ap_aux_location: CONSTRAINT = 
the_ap_aux CONTAINED_IN the_ap 

tm_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_tm 
=> y CONTAINED^IN the_tm_main OR y CONTAINED_IN the_tm_aux] 

tm_main_location: CONSTRAINT = 
the_tm_main CONTAINED_IN the_tm 

tm_aux_location: CONSTRAINT = 
the_tm_aux CONTAINED_IN the_tm 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar: CONSTRAINT = 
(FORALL y: rm) Called_From(y.access_function, the_ap_aux) 

tx: CONSTRAINT = 
Called_From(the_tm_main.begin, the_ap_aux) 
AND Called_From(the_tm_main.close, the_ap_aux) 
AND Called_From(the_tm_main.commit, the_ap_aux) 
AND Called_From(the_tm_main.information, the_ap_aux) 
AND Called_From(the_tm_main.open, the_ap_aux) 
AND Called_From(the_tm_main.rollback, the_ap_aux) 

xa: CONSTRAINT = 
(FORALL y: rm) 

[Called_From(the_tm_aux.register, y) 
AND Called_From(the_tm_aux.unregister, y) 
AND Called_From(y.close, the_tm_aux) 
AND Called_From(y.commit, the_tm_aux) 
AND Called_From(y.complete, the_tm_aux) 
AND Called_From(y.end, the_tm_aux) 
AND Called_From(y.forget, the_tm_aux) 
AND Called_From(y.open, the_tm_aux) 
AND Called_From(y.prepare, the_tm_aux) 
AND Called_From(y.recover, the_tm_aux) 
AND Called_From(y.rollback, the_tm_aux) 
AND Called_From(y.start, the_tm_aux)] 
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intra_ap: CONSTRAINT = 
Called_From(parameterized_access_function.the_ap_aux, the_ap) 
AND Called_From(the_ap_aux.begin, the_ap) 
AND Called_From(the_ap_aux.close, the_ap) 
AND Called_From(the_ap_aux.commit, the_ap) 
AND Called_From(the_ap_aux.information, the_ap) 
AND Called_From(the_ap_aux.open, the_ap) 
AND Called_From(the_ap_aux.rollback, the_ap) 

intra_tm: CONSTRAINT = 
Called_From(the_tm_main.register, the_tm_aux) 

AND Called_From(the_tm_main.unregister, the_tm_aux) 
AND Called_From(the_tm_aux.close, the_tm_main) 
AND Called_From(the_tm_aux.commit, the_tm_main) 
AND Called_From(the_tm_aux.complete, the_tm_main) 
AND Called_From(the_tm_aux.end, the_tm_main) 
AND Called_From(the_tm_aux.forget, the_tm_main) 
AND Called_From(the_tm_aux.open, the_tm_main) 
AND Called_From(the_tm_aux.prepare, the_tm_main) 
AND Called_From(the_tm_aux.recover, the_tm_main) 
AND Called_From(the_tm_aux.rollback, the_tm_main) 
AND Called_From(the_tm_aux.start, the_tm_main) 

END x_open_ap_decomposition 
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%%% Break out interfaces of ap_ar_aux and tm_aux to handle distributed RMs. 

x_open_ap_aux_decomposition: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style, RPC_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

COMPONENTS 

ap_main: TYPE <= ARCHITECTURE [ -> ] 

ap_tx_aux:  TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

begin: RPC [ -> ret: INT] 
close: RPC [ -> ret: INT] 
commit: RPC [ -> ret: INT] 
information: RPC [info: TX_Info -> ret: INT] 
open: RPC [ -> ret: INT] 
rollback: RPC [ -> ret: INT] 

END ap_tx_aux 

ap_ar_aux: TYPE <= {m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

ac ce s s_func t i on: 
RPC [in: qt -> out: rt] 

END m 
| qt < ar_requests AND rt < ar_resources } 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: PROCEDURE [in: qt -> out: rt] 
close: XA_Close_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: XA_Commit_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: XA_Complete_Procedure 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: XA_End_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: XA_Forget_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: XA_Open_Procedure 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: XA_Prepare_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: XA_Recover_Procedure 
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[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: XA_Rollback_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: XA_Start_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm_main: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: RPC 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm_main 

tm_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL- 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

close: RPC [info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: RPC [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: RPC [hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: RPC [info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: RPC [id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: RPC [ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: RPC [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: RPC [id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

END tm_aux 
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tm: TYPE <= ARCHITECTURE [ -> ] 

the_ap:  ap 
the_ap_main: ap_main 
the_ap_tx_aux: ap_tx_aux 
the_rms: rms 
the_tm:  tm 
the_tm_main: tm_main 

CONFIGURATION 

ap_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_ap 
=> y CONTAINED_IN the_ap_main 

OR y CONTAINED_IN the_ap_tx_aux 
OR (EXISTS w: ap_ar_aux) y CONTAINED_IN w] 

ap_main_location: CONSTRAINT = 
the_ap_main CONTAINED_IN the_ap 

tx_aux_location: CONSTRAINT = 
the_ap_aux CONTAINED_IN the_ap 

ra_aux_location: CONSTRAINT = 
(FORALL w: ap_ar_aux) w CONTAINED_IN the_ap 

tm_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_tm 
=> y CONTAINED_IN the_tm_main 

OR (EXISTS w: tm_aux) y CONTAINED_IN w] 
tm_main_location: CONSTRAINT = 

the_tm_main CONTAINED_IN the_tm 
tm_aux_location: CONSTRAINT = 

(FORALL w: tm_aux) w CONTAINED_IN the_tm 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 
rm_location: CONSTRAINT = 

(FORALL y: rm) y CONTAINED_IN the_rms 

ar_l: CONSTRAINT = 
(FORALL y: rm) (EXISTS w: ap_ar_aux) Called_From(y.access_function, w) 

ar_2: CONSTRAINT = 
(FORALL w: ap_ar_aux) (EXISTS y: rm) Called_From(y.access_function, w) 

tx: CONSTRAINT = 
Called_From(the_tm_main.begin, the_ap_tx_aux) 
AND Called_From(the_tm_main.close, the_ap_tx_aux) 
AND Called_From(the_tm_main.commit, the_ap_tx_aux) 
AND Called_From(the_tm_main.information, the_ap_tx_aux) 
AND Called_From(the_tm_main.open, the_ap_tx_aux) 
AND Called_From(the_tm_main.rollback, the_ap_tx_aux) 

xa_l: CONSTRAINT = 
(FORALL y: rm)(EXISTS w: tm_aux) 

[Called_From(w.register, y) 
AND Called_From(w.unregister, y) 
AND Called_From(y.close, w) 
AND Called_From(y.commit, w) 
AND Called_From(y.complete, w) 
AND Called_From(y.end, w) 
AND Called_From(y.forget, w) 
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AND Called_From(y.open, w) 
AND Called_From(y.prepare, w) 
AND Called_From(y.recover, w) 
AND Called_From(y.rollback, w) 
AND Called_From(y.start, w)] 

xa_2: CONSTRAINT = 
(FORALL w: tm_aux)(EXISTS y: rm) 

[Called_From(w.register, y) 
AND Called_From(w.unregister, y) 
AND Called_From(y.close, w) 
AND Called_From(y.commit, w) 
AND Called_From(y.complete, w) 
AND Called_From(y.end, w) 
AND Called_From(y.forget, w) 
AND Called_From(y.open, w) 
AND Called_From(y.prepare, w) 
AND Called_From(y.recover, w) 
AND Called_From(y.rollback, w) 
AND Called_From(y.start, w)] 

intra_ap_l: CONSTRAINT = 
(FORALL w: ap_ar_aux) Called_From(w.access_function, the_ap_main) 

intra_ap_2: CONSTRAINT = 
Called_From(the_ap_tx_aux.begin, the_ap) 
AND Called_From(the_ap_tx_aux.close, the_ap) 
AND Called_From(the_ap_tx_aux.commit, the_ap) 
AND Called_From(the_ap_tx_aux.informat ion, the_ap) 
AND Called_From(the_ap_tx_aux.open, the_ap) 
AND Called_From(the_ap_tx_aux.rollback, the_ap) 

intra_tm: CONSTRAINT = 
(FORALL w: tm_aux) 

[Called_From(the_tm_main.register, w) 
AND Called_From(the_tm_main.unregister, w) 
AND Called_From(w.close, the_tm_main) 
AND Called_From(w.commit, the_tm_main) 
AND Called_From(w.complete, the_tm_main) 
AND Called_From(w.end, the_tm_main) 
AND Called_From(w.forget, the_tm_main) 
AND Called_From(w.open, the_tm_main) 
AND Called_From(w.prepare, the_tm_main) 
AND Called_From(w.recover, the_tm_main) 
AND Called_From(w.rollback, the_tm_main) 
AND Called_From(w.start, the_tm_main)] 

END x_open_ap_aux_decomposition 
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%%% Now we shoot for the dual to example-13, breaking out the auxiliary 
%%% processes on the RM side rather than the AP side. 

x_open_manager_decomposition: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm_ar_aux: TYPE <= { m: ARCHITECTURE [ -> ] ' 
EXPORTING ALL 
BEGIN 

access_function: PROCEDURE [in: qt -> out: rt] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rm_xa_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

close: XA_Close_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
commit: XA_Commit_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: XA_Complete_Procedure 
[hndl: INT, retval: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

end: XA_End_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: XA_Forget_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

open: XA_Open_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: XA_Prepare_Procedure 

.[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

recover: XA_Recover_Procedure 
[ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: XA_Rollback_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
start: XA_Start_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

END rm_xa_aux 

rm_main: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 
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access_function: RPC [in: qt -> out: rt] 
close: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: RPC 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: RPC 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

begin: TX_Begin_Procedure .[' -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm_aux 

tm_main: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: RPC [ -> ret: INT] 
close: RPC [ -> ret: INT] 
commit: RPC [ -> ret: INT] 
information: RPC [info: TX_Info -> ret: INT] 
open: RPC [ -> ret: INT] 
rollback: RPC [ -> ret: INT] 
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END tm_main 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 
the_tm_main: tm_main 
the_tm_aux: tm_aux 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms 
=> (EXISTS z: rm_main) y CONTAINED_IN z 

OR (EXISTS z: rm_ar_aux) y CONTAINED_IN z 
OR (EXISTS z: rm_xa_aux) y CONTAINED_IN z] 

rm_main_location: CONSTRAINT = 
(FORALL y: rm_main) y CONTAINED_IN the_rms 

rm_ar_aux_location: CONSTRAINT = 
(FORALL y: rm_ar_aux) y CONTAINED_IN the_rms 

rm_xa_aux_location: CONSTRAINT = 
(FORALL y: rm_xa_aux) y CONTAINED_IN the_rms 

ar: CONSTRAINT = 
(FORALL u: rm_ar_aux) Called_From(u.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm_aux.begin, the_ap) 
AND Called_From(the_tm_aux.close, the_ap) 
AND Called_From(the_tm_aux.commit, the_ap) 
AND Called_From(the_tm_aux.information, the_ap) 
AND Called_From(the_tm_aux.open, the_ap) 
AND Called_From(the_tm_aux.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL v: rm_xa_aux) 

[Called_From(the_tm.register, v) 
AND Called_From(the_tm.unregister, v) 
AND Called_From(v.close, the_tm) 
AND Called_From(v.commit, the_tm) 
AND Called_From(v.complete, the_tm) 
AND Called_From(v.end, the_tm) 
AND Called_From(v.forget, the_tm) 
AND Called_From(v.open, the_tm) 
AND Called_From(v.prepare, the_tm) 
AND Called_From(v.recover, the_tm) 
AND Called_From(v.rollback, the_tm) 
AND Called_From(v.start, the_tm)] 

intra_tm: CONSTRAINT = 
Called_From(the_tm_main.begin, the_tm_aux) 
AND Called_From(the_tm_main.close, the_tm_aux) 
AND Called_From(the_tm_main.commit, the_tm_aux) 
AND Called_From(the_tm_main.information, the_tm_aux) 
AND Called_From(the_tm_main.open, the_tm_aux) 
AND Called_From(the_tm_main.rollback, the_tm_aux) 

intra_rm_l: CONSTRAINT = 
(FORALL y: rm_main) (EXISTS u: rm_ar_aux) 

Called_From(y.access_function, u) 

intra_rm_2: CONSTRAINT = 
(FORALL u: rm_ar_aux) (EXISTS y: rm_main) 
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Called_From(y.access_function, u) 

intra_rm_3: CONSTRAINT = 
(FORALL y: rm_main) (EXISTS v: rm_xa_aux) 

[Called_From(v.register, y) 
AND Called_From(v.unregister, y) 
AND Called_From(y.close, v) 
AND Called_From(y.commit, v) 
AND Called_From(y.complete, v) 
AND Called_From(y.end, v) 
AND Called_From(y.forget, v) 
AND Called_From(y.open, v) 
AND Called_From(y.prepare, v) 
AND Called_From(y.recover, v) 
AND Called_From(y.rollback, v) 
AND Called_From(y.start, v)] 

intra_rm_4: CONSTRAINT = 
(FORALL v: rm_xa_aux) (EXISTS y: rm_main) 

[Called_From(v.register, y) 
AND Called_From(v.unregister, y) 
AND Called_From(y.close, v) 
AND Called_From(y.commit, v) 
AND Called_From(y.complete, v) 
AND Called_From(y.end, v) 
AND Called_From(y.forget, v) 
AND Called_From(y.open, v) 
AND Called_From(y.prepare, v) 
AND Called_From(y.recover, v) 
AND Called_From(y.rollback, v) 
AND Called_From(y.start, v)] 

END x_open_manager_decomposition 
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%%% Similar to example-14, but collapses auxiliary processes in RM.  Dual 
%%% to example-12 in much the way example-14 is dual to example-13. 

x_open_manager_alt_decomposition: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

resource_id: TYPE = { i: NAT | i < n } 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm_ar_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 
parameterized_access_function: 

PROCEDURE [r_id: resource_id, in: qt -> out: rt] 
END rm_ar_aux 

%% Note that the following already contain the necessary RM id args. 
rm_xa_aux: TYPE <= ARCHITECTURE [ -> ] 

EXPORTING ALL 
BEGIN 

close: XA_Close_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
commit: XA_Commit_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: XA_Complete_Procedure 
[hndl: INT, retval: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

end: XA_End_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: XA_Forget_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

open: XA_Open_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: XA_Prepare_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

recover: XA_Recover_Procedure 
[ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: XA_Rollback_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
start: XA_Start_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

END rm_xa_aux 
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rm_main: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: RPC [in: qt -> out: rt] 
close: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: RPC 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: RPC 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm_aux 

tm_main: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: RPC [ -> ret: INT] 
close: RPC[ -> ret: INT] 
commit: RPC [ -> ret: INT] 
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information: RPC [info: TX_Info -> ret: INT] 
open: RPC [ -> ret: INT] 
rollback: RPC [ -> ret: INT] 

END tm_main 

the_ap:  ap 
the_rms: rms 
the_rm_ar_aux: rm_ar_aux 
the_rm_xa_aux: rm_xa_aux 
the_tm:  tm 
the_tm_main: tm_main 
the_tm_aux: tm_aux 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms 
=> (EXISTS z: rm_main) y CONTAINED_IN z 

OR y CONTAINED_IN the_rm_ar_aux 
OR y CONTAINED_IN the_rm_xa_aux] 

rm_main_location: CONSTRAINT = 
(FORALL y: rm_main) y CONTAINED_IN the_rms 

rm_ar_aux_location: CONSTRAINT = 
the_rm_ar_aux CONTAINED_IN the_rms 

nn_xa_aux_location: CONSTRAINT = 
the_rm_xa_aux CONTAINED_IN the_rms 

ar: CONSTRAINT = 
Called_From(the_rm_ar_aux.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm_aux.begin, the_ap) 
AND Called_From(the_tm_aux.close, the_ap) 
AND Called_From(the_tm_aux.commit, the_ap) 
AND Called_From(the_tm_aux.information, the_ap) 
AND Called_From(the_tm_aux.open, the_ap) 
AND Called_From(the_tm_aux.rollback, the_ap) 

xa: CONSTRAINT = 
Called_From(the_tm.register, the_rm_xa_aux) 
AND Called_From(the_tm.unregister, the_rm_xa_aux) 
AND Called_From(the_rm_xa_aux.close, the_tm) 
AND Called_From(the_rm_xa_aux.commit, the_tm) 
AND Called_From(the_rm_xa_aux.complete, the_tm) 
AND Called_From(the_rm_xa_aux.end, the_tm) 
AND Called_From(the_rm_xa_aux.forget, the_tm) 
AND Called_From(the_rm_xa_aux.open, the_tm) 
AND Called_From(the_rm_xa_aux.prepare, the_tm) 
AND Called_From(the_rm_xa_aux.recover, the_tm) 
AND Called_From(the_rm_xa_aux.rollback, the_tm) 
AND Called_From(the_rm_xa_aux.start, the_tm) 

intra_tm: CONSTRAINT = 
Called_From(the_tm_main.begin, the_tm_aux) 
AND Called_From(the_tm_main.close, the_tm_aux) 
AND Called_From(the_tm_main.commit, the_tm_aux) 
AND Called_From(the_tm_main.information, the_tm_aux) 
AND Called_From(the_tm_main.open, the_tm_aux) 
AND Called_From(the_tm_main.rollback, the_tm_aux) 

intra_rm_l: CONSTRAINT = 
(FORALL y: rm_main) 
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Called_From(y.access_function, the_rm_ar_aux) 

intra_rm_2: CONSTRAINT = 
(FORALL y: rm_main) 

[Called_From(the_rm_xa_aux.register, y) 
AND Called_From(the_rm_xa_aux.unregister, y) 
AND Called_From(y.close, the_rm_xa_aux) 
AND Called_From(y.commit, the_rm_xa_aux) 
AND Called_From(y.complete, the_rm_xa_aux) 
AND Called_From(y.end, the_rm_xa_aux) 
AND Called_From(y.forget, the_rm_xa_aux) 
AND Called_From(y.open, the_rm_xa_aux) 
AND Called_From(y.prepare, the_rm_xa_aux) 
AND Called_From(y.recover, the_rm_xa_aux) 
AND Called_From(y.rollback, the_rm_xa_aux) 
AND Called_From(y.start, the_rm_xa_aux)] 

END x_open_manager_alt_decomposition 
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%%% Just like 14, but an extra layer of abstraction in the RM to simplify 
%%% the mapping. 

x_open_manager_decomposition_2: ARCHITECTURE [ -> ] 

IMPORTING ALL FROM X_Open_style 

BEGIN 

n: NAT  % Number of resource managers, a parameter in the specification 

ar_requests, ar_resources: TYPE 

COMPONENTS 

ap: TYPE <= ARCHITECTURE [ -> ] 

rm_ar_aux: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

access_function: PROCEDURE [in: qt -> out: rt] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rm_xa_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

close: XA_Close_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
commit: XA_Commit_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

complete: XA_Complete_Procedure 
[hndl: INT, retval: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

end: XA_End_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
forget: XA_Forget_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

open: XA_Open_Procedure 
[info: XA_Info, rmid: INT, flags: INT 

-> ret: INT] 
prepare: XA_Prepare_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

recover: XA_Recover_Procedure 
[ids: X_Ids, count: INT, 

rmid: INT, flags: INT 
-> ret: INT] 

rollback: XA_Rollback_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
start: XA_Start_Procedure 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

END rm_xa_aux 

rm_main: TYPE <= { m: ARCHITECTURE [ -> ] 
EXPORTING ALL 
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access_function: RPC [in: qt -> out: rt] 
close: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

commit: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
complete: RPC 

[hndl: INT, retval: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
end: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

forget: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
open: RPC 

[info: XA_Info, rmid: INT, flags: INT 
-> ret: INT] 

prepare: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
recover: RPC 

[ids: X_Ids, count: INT, 
rmid: INT, flags: INT 

-> ret: INT] 
rollback: RPC 

[id: X_Id, rmid: INT, flags: INT 
-> ret: INT] 

start: RPC 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
END m 

| qt < ar_requests AND rt < ar_resources } 

rm: TYPE <= ARCHITECTURE [ -> ] 

rms: TYPE <= ARCHITECTURE [ -> ] 

tm_aux: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL' 
BEGIN 

begin: TX_Begin_Procedure [ -> ret: INT] 
close: TX_Close_Procedure [ -> ret: INT] 
commit: TX_Commit_Procedure [ -> ret: INT] 
information: TX_Info_Procedure [info: TX_Info -> ret: INT] 
open: TX_Open_Procedure [ -> ret: INT] 
rollback: TX_Rollback_Procedure [ -> ret: INT] 

END tm_aux 

tm_main: TYPE <= ARCHITECTURE [ -> ] 
EXPORTING ALL 
BEGIN 

register: AX_Register_Procedure 
[id: X_Id, rmid: INT, flags: INT 

-> ret: INT] 
unregister: AX_Unregister_Procedure 

[rmid: INT, flags: INT 
-> ret: INT] 

begin: RPC [ -> ret: INT] 
close: RPC [ -> ret: INT] 
commit: RPC [ -> ret: INT] 
information: RPC [info: TX_Info -> ret: INT] 
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open: RPC [ -> ret: INT] 
rollback: RPC [ -> ret: INT] 

END tm_main . 

the_ap:  ap 
the_rms: rms 
the_tm:  tm 
the_tm_main: tm_main 
the_tm_aux: tm_aux 

CONFIGURATION 

rms_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[y PROPERLY_CONTAINED_IN the_rms => (EXISTS z: rm) y CONTAINED_IN z] 

rm_contents: CONSTRAINT = 
(FORALL y: COMPONENT) 

[(EXISTS z: rm) y PROPERLY_CONTAINED_IN z 
=> (EXISTS z: rm_main) y CONTAINED_IN z 

OR (EXISTS z: rm_ar_aux) y CONTAINED_IN z 
OR (EXISTS z: rm_xa_aux) y CONTAINED_IN z] 

rm_location: CONSTRAINT = 
(FORALL y: rm) y CONTAINED_IN the_rms 

rm_main_location_l: CONSTRAINT = 
(FORALL y: rm_main) (EXISTS z: rm) y CONTAINED_IN z 

rm_main_location_2: CONSTRAINT = 
(FORALL z: rm) (EXISTS y: rm_main) y CONTAINED_IN z 

rm_ar_aux_location_l: CONSTRAINT = 
(FORALL y: rm_ar_aux) (EXISTS z: rm) y CONTAINED_IN z 

rm_ar_aux_location_2: CONSTRAINT = 
(FORALL z: rm) (EXISTS y: rm_ar_aux) y CONTAINED_IN z 

rm_xa_aux_location_l: CONSTRAINT = 
(FORALL y: rm_xa_aux) (EXISTS z: rm) y CONTAINED_IN z 

rm_xa_aux_location_2: CONSTRAINT = 
(FORALL z: rm) (EXISTS y: rm_xa_aux) y CONTAINED_IN z 

ar: CONSTRAINT = 
(FORALL u: rm_ar_aux) Called_From(u.access_function, the_ap) 

tx: CONSTRAINT = 
Called_From(the_tm_aux.begin, the_ap) 
AND Called_From(the_tm_aux.close, the_ap) 
AND Called_From(the_tm_aux.commit, the_ap) 
AND Called_From(the_tm_aux.information, the_ap) 
AND Called_From(the_tm_aux.open, the_ap) 
AND Called_From(the_tm_aux.rollback, the_ap) 

xa: CONSTRAINT = 
(FORALL v: rm_xa_aux) 

[Called_From(the_tm.register, v) 
AND Called_From(the_tm.unregister, v) 
AND Called_From(v.close, the_tm) 
AND Called_From(v.commit, the_tm) 
AND Called_From(v.complete, the_tm) 
AND Called_From(v.end, the_tm) 
AND Called_From(v.forget, the_tm) 
AND Called_From(v.open, the_tm) 
AND Called_From(v.prepare, the_tm) 
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AND Called_From(v.recover, the_tm) 
AND Called_From(v.rollback, the_tm) 
AND Called_From(v.start, the_tm)] 

intra_tm: CONSTRAINT = 
Called_From(the_tm_main.begin, the_tm_aux) 
AND Called_From(the_tm_main.close, the_tm_aux) 
AND Called_From(the_tm,_main. commit, the_tm_aux) 
AND Called_From(the_tm_main.information, the_tm_aux) 
AND Called_From(the_tm_main.open, the_tm_aux) 
AND Called_From(the_tm_main.rollback, the_tm_aux) 

intra_rm_l: CONSTRAINT = 
(FORALL y: rm_main) (EXISTS u: rm_ar_aux) 

Called_From(y.access_function, u) 

intra_rm_2: CONSTRAINT = 
(FORALL u: rm_ar_aux) (EXISTS y: rm_main) 

Called_From(y.access_function, u) 

intra_rm_3: CONSTRAINT = 
(FORALL y: rm_main) (EXISTS v: rm_xa_aux) 

[Called_From(v.register, y) 
AND Called_From(v.unregister, y) 
AND Called_From(y.close, v) 
AND Called_From(y.commit, v) 
AND Called_From(y.complete, v) 
AND Called_From(y.end, v) 
AND Called_From(y.forget, v) 
AND Called_From(y.open, v) 
AND Called_From(y.prepare, v) 
AND Called_From(y.recover, v) 
AND Called_From(y.rollback, v) 
AND Called_From(y.start, v)] 

intra_rm_4: CONSTRAINT = 
(FORALL v: rm_xa_aux) (EXISTS y: rm_main) 

[Called_From(v.register, y) 
AND Called_From(v.unregister, y) 
AND Called_From(y.close, v) 
AND Called_From(y.commit, v) 
AND Called_From(y.complete, v) 
AND Called_From(yiend, v) 
AND Called_From(y.forget, v) 
AND Called_From(y.open, v) 
AND Called_From(y.prepare, v) 
AND Called_From(y.recover, v) 
AND Called_From(y.rollback, v) 
AND Called_From(y.start, v)] 

END x_open_manager_decomposition_2 
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Appeared in IEEE Transactions on Software Engineering, 
April, 1995, Volume 21, Number 4, pp. 356-372. 

Correct Architecture Refinement 
Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider 

Abstract— A method is presented for the stepwise refine- 
ment of an abstract architecture into a relatively correct 
lower-level architecture that is intended to implement it. A 
refinement step involves the application of a predefined re- 
finement pattern that provides a routine solution to a stan- 
dard architectural design problem. A pattern contains an 
abstract architecture schema and a more detailed schema 
intended to implement it. The two Schemas usually contain 
very different architectural concepts (from different archi- 
tectural styles). Once a refinement pattern is proven cor- 
rect, instances of it can be used without proof in developing 
specific architectures. Individual refinements are composi- 
tional, permitting incremental development and local rea- 
soning. A special correctness criterion is defined for the do- 
main of software architecture, as well as an accompanying 
proof technique. A useful syntactic form of correct compo- 
sition is defined. The main points are illustrated by means 
of familiar architectures for a compiler. A prototype imple- 
mentation of the method has been used successfully in a real 
application. 

Keywords— Software architecture, hierarchy, stepwise re- 
finement, refinement patterns, formal methods, relative cor- 
rectness, composition 

I. INTRODUCTION 

DECISIONS about the architecture of a software sys- 
tem can have a major impact on system efficiency, 

maintainability, and evolvability. Architectural decisions 
typically are documented in terms of the ubiquitous box- 
and-arrow diagrams. Practicing engineers interpret the di- 
agrams with respect to common architectural styles, such 
as dataflow, pipe-and-filter, batch-sequential, blackboard, 
implicit invocation (event-based), and client-server. 

For a large system, its architecture often is described by 
a hierarchy of related architectures. An architecture hierar- 
chy is a linear sequence of two or more individual architec- 
tures that may differ with respect to the number and kind 
of components and connections among them. For example, 
an abstract architecture containing functional components 
related by dataflow connections may be implemented in a 
concrete architecture in terms of procedures, control con- 
nections, and shared variables. In general, an abstract ar- 
chitecture is smaller and easier to understand; a concrete 
architecture reflects more implementation concerns. 

The utility of an architecture hierarchy is severely lim- 
ited by the current level of informality. Individual architec- 
tures may be ambiguous, allowing multiple and perhaps un- 
intended interpretations. The mapping between architec- 
tures in the hierarchy is partially specified, if at all, making 
it impossible to accurately trace the lineage of implemen- 
tation decisions. The analysis of architecture is limited to 

This research was supported in part by the Advanced Research 
Projects Agency under Rome Laboratory contract F30602-93-C- 
0245. 

The authors are with the Computer Science Laboratory, SRI In- 
ternational, Menlo Park, California 94025. Email: {moriconi, qian, 
rar}®csl.sri.com. 

63 

syntactic checks. It is not possible to check semantic prop- 
erties of an architecture, such as the safety and fairness of 
its connections, or to check the relative correctness of two 
architectures in the hierarchy. Consequently, a concrete ar- 
chitecture may erroneously be seen as an implementation 
of a more abstract architecture. 

The main contribution in this paper is a methodology 
for the correct stepwise refinement of software architec- 
tures. It is expected to lead to fewer architectural design 
errors, to extensive and systematic reuse of design knowl- 
edge and proofs, and ultimately to an architecture synthesis 
tool similar to those now used for integrated circuit design. 
The methodology involves the use of instances of archi- 
tecture refinement patterns that are correctness preserving 
and compositional. 

A refinement pattern provides a routine solution to a 
standard architectural design problem. For example, a pat- 
tern may show how to implement a single dataflow connec- 
tion in shared memory, or several patterns may combine 
to implement dataflow diagrams in terms of some form of 
client/server architecture. A pattern contains a pair of ar- 
chitecture schemas that are proved to be relatively correct 
with respect to a given mapping schema between them. 
The proof is performed only once; every instance of a re- 
finement pattern is guaranteed to be correct. A schema 
can be homogeneous (consisting of one style) or heteroge- 
neous (consisting of multiple styles). The two schemas in a 
refinement pattern may, and usually do, contain concepts 
from different architectural styles. 

A useful form of correctness-preserving composition is 
defined that applies to both individual refinements and ex- 
isting architectures. The latter is important because we 
want to be able to assemble existing subsystem architec- 
tures into a single system. Two architectures can be com- 
posed even if their vocabularies are not disjoint. In gen- 
eral, "horizontal" composition requires a case-by-case proof 
of correctness. However, we define a simple syntactic cri- 
terion that, if satisfied, guarantees compositionality. Be- 
cause our correctness relation is transitive, the "vertical" 
composition of levels in an architecture hierarchy preserves 
correctness, and we are guaranteed that the most concrete 
architecture in the hierarchy meets the requirements of the 
most abstract architecture in the hierarchy. 

The correctness of architecture refinement and compo- 
sition involves a special correctness criterion, which is 
stronger than the usual one for functional refinement, and 
a special mapping between architectures, that is more com- 
plex than the usual mapping between data structures. A 
mapping between architectures involves an extensive trans- 
lation in which the representation of components, inter- 
faces, and connections may change and, moreover, these 
abstract objects may be aggregated, decomposed, or elim- 



inated in the concrete architecture. 
A stronger correctness criterion is needed because of the 

potential uses of architectures. Consider the role an archi- 
tecture can play in reducing the time to provide fixes, opti- 
mizations, and upgrades to systems in deployment. If the 
architecture accurately models the implementation, it can 
be used to focus and explore the consequences of changes 
to the implementation. But if the implementation con- 
tains connections that do not appear in the architecture, 
a developer could easily be misled into making changes 
that appear to be minor and localized but that, in fact, 
have widespread consequences. For example, we may spec- 
ify a pipeline architecture, restricting the system topol- 
ogy to a linear sequence of filters, to facilitate component 
reusability. If the concrete architecture implements the 
pipeline, but additionally introduces feedback loops, the 
raison d'etre behind the original pipeline architecture is no 
longer valid. In general, the preservation of "communica- 
tion integrity" is integral to the utility of an architecture. 

Therefore, an architecture should describe explicitly the 
components, interfaces, and connections that are required 
of the target system, and perhaps more importantly, those 
that are not intended to appear in the target system. This 
observation leads to a completeness assumption about a 
given architecture, namely that an architecture contains 
all components, interfaces, and connections intended to be 
true of the architecture at its level of detail. If a fact is 
not explicit in the architecture, or deducible from it, we 
assume that it is not intended to be true of the architecture. 
In the pipeline example, we couple the linearity property 
with the completeness assumption to infer that no feedback 
loop is allowed in an implementation of the architecture. 
In general, an architecture (whether static or dynamic) can 
contain an unbounded number of facts. 

The completeness assumption requires that we prove not 
only that a concrete architecture does not lose properties 
of the abstract architecture, but also that no new proper- 
ties about the abstract architecture can be inferred from 
the concrete architecture. The standard method for rea- 
soning about the relative correctness of two specifications 
is to show that the concrete specification logically implies 
the abstract specification under a given mapping between 
them. This allows an implementation to exhibit additional, 
unspecified behaviors, as long as the specified behavior is 
implemented. If the standard proof method is applied to 
architectures, there would be no guarantee that negative 
properties are preserved under refinement. 

Fortunately, there is a well-understood mathematical 
property, called faithful interpretation, that can be adapted 
for our purposes. If a certain mapping between the two ar- 
chitectures is faithful, both the positive and the implicit 
negative facts in the abstract architecture are preserved 
in the concrete architecture. However, a proof of faith- 
fulness is inherently hard, and we are not aware of any 
general proof technique in the literature. We introduce a 
systematic technique for proving faithfulness. The inherent 
complexity of such proofs is one reason why we advocate a 
methodology that makes use of preproved refinement pat- 

terns. 
It is worth mentioning that an important consequence 

of the completeness assumption is that the standard step- 
wise refinement paradigm is unsound with respect to the 
correctness relation. Certain refinements of an architec- 
ture must be composed horizontally. Completed levels in 
an architecture hierarchy can be composed vertically. 

This paper is organized as follows. The next section il- 
lustrates the refinement problem and our approach to a 
solution. Section III makes useful distinctions among ar- 
chitectural styles, architecture Schemas, and instance archi- 
tectures, and shows how they can be represented as logical 
theories. We use first-order theories, but our basic frame- 
work does not depend on a particular logic. By formalizing 
architectures and their properties in logic, our results can 
be applied to a large class of architecture definition lan- 
guages. Sections IV, V, and VI discuss mappings, correct- 
ness, and composition, respectively. 

Section VII presents several different refinement pat- 
terns that are used in Section VIII in the development of 
standard architectures for a compiler. The development 
includes both refinement and composition. Sections IX 
reports on a larger experiment involving an operational 
power-control system. Section X describes related work, 
and the last section summarizes our results, their implica- 
tions, and makes suggestions for future work. 

II. ILLUSTRATION OF APPROACH TO REFINEMENT 

A software architecture is represented using the following 
concepts. 

1. Component: An object with independent existence, 
e.g., a module, process, procedure, or variable. 

2. Interface: A typed object that denotes a logical 
point of interaction between a component and its en- 
vironment. 

3. Connector: A typed object relating interface points, 
components, or both. 

4. Configuration: A collection of constraints that wire 
objects into a specific architecture. 

5. Mapping: A relation that defines a syntactical trans- 
lation from the language of an abstract architecture to 
the language of a concrete architecture. 

6. Architectural style: For the purposes of this pa- 
per, a style consists of a vocabulary of design elements, 
well-formedness constraints that determine how they 
can be used, and a semantic definition of the connec- 
tors associated with the style. 

Components, interfaces, and connectors are treated as first- 
class objects — i.e., they have a name and they are refine- 
able. Abstract architectural objects can be decomposed, 
aggregated, or eliminated in a concrete architecture. The 
semantics of components is not considered part of an ar- 
chitecture, but the semantics of connectors is. 

Consider the standard dataflow architecture for a com- 
piler that is depicted at the top of Figure 1. The diagram 
is intended to convey an intuitive feel for the architecture; 
it is not a formal description of the architecture. Boxes 
denote functional components and arrows denote direc- 
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Fig. 1.   Two architectures for a compiler 

tional dataflow between ports. The labels on arrows denote 
types or value domains. A value cannot be transmitted be- 
tween ports unless its type is compatible with the types of 
the ports. By the completeness assumption, this dataflow 
model of the compiler fixes its functional units, their inter- 
faces, and the direction, source, and destination of all of its 
flows. 

A textual specification of the dataflow architecture is 
contained in Figure 2. A dataflow component is a function 
with a signature describing its interface. Four dataflow 
connectors are declared to carry values of various types. 
The configuration assertions wire the connectors and inter- 
faces together into a specific type-consistent architecture. 
The module imports various types and the functional and 
dataflow styles for use in the specification of the architec- 
ture. 

A concrete architecture intended to implement the 
dataflow model of the compiler is depicted at the bottom 
of Figure 1. The concrete architecture is a hybrid that im- 
plements the dataflow style in terms of pipe-filter, batch- 
sequential, and shared-memory styles. Abstract signatures 
have been changed, dataflow connectors have been imple- 
mented in several ways, new components (data objects) 
are introduced, and precedence relations are added to pre- 
serve the original flows in the presence of shared-memory 
communication.1 A textual specification of the level-2 ar- 
chitecture of the compiler can be found in the appendix. 

We do not want to construct the level-1 and the level-2 
architectures and then perform an after-the-fact correct- 
ness proof. Instead, we want to systematically and incre- 
mentally transform the level-1 architecture into the level-2 
architecture. The level-2 architecture should be correct by 
construction, requiring no explicit proofs in its derivation. 
This can be accomplished through a series of small, lo- 
cal refinements, each of which involves the application of 
a correct refinement pattern. Then, the local refinements 
are combined to form the larger composite level-2 architec- 
ture, which is guaranteed to correctly implement the level-1 

'A dataflow connection is treated as an intransitive relation. 

compiler .M:   MODULE 
[ehar.iport:  SEQ(character)   -> eode.oport:  code] 
IMPORT character,  code,  token,  binding,  ast 

FROM compiler.types 
IMPORT Function FROM Functional.Style 
IMPORT Dataflou.Channel,  Connects 

FROM Dataflow.Style 
COMPONENTS 

lexical.analyzer:  Function 
[char.iport:  SEQ(character) 

-> token.oport:  SEQ(token), 
bind.oport:  SEQ(binding)] 

parser:  Function 
[token.iport:   SEQ(token) 

-> base.ast.oport:  ast] 
analyzer.optimizer:  Function 

[base.ast.iport:   ast, bind.iport:  SEQ(binding) 
-> full.ast.oport:  ast] 

code.generator:  Function 
[full.ast.iport:  ast -> eode.oport:  code] 

CONNECTORS 
token.channel:        Dataflow_Channel[SEQ(token)] 
bind.channel: Dataflo».Channel[SEQ(binding)] 
base.ast.channel:  Dataflow.Channel[ast] 
1ull.ast.channel:  Dataflov.ChannelCast] 

CONFIGURATION 
token.flov: 

Connects(token.channel,   token.oport,  token.iport) 
bind.flow: 

Connects(bind.channel,  bind.oport,  bind.iport) 
base.ast.flos: 

Connects(base.ast.channel, 
base.ast.oport,  base.ast.iport) 

lull.ast.ilov: 
Connects(full.ast.channel, 

full.ast.oport,  inll.ast.iport) 
END compiler.!.! 

Fig. 2.   Specification of dataflow architecture for the compiler 

architecture. 
As an illustration of our approach, consider the imple- 

mentation of the dataflow channel between the parser and 
analyzer in terms of the reading and writing of a shared ab- 
stract syntax tree. More specifically, we propose to refine 
abstract subarchitecture 

parser: Function [ -> base.ast.oport: ast] 
analyzer.optimizer: Function [base.ast.iport: ast -> ] 
base.ast.channel:  Datailow.Channel[ast] 
base.ast.flos: 

Connects(base.ast.channel, 
base.ast.oport, base.ast.iport) 

into concrete subarchitecture 

parser: Function[ -> ] 
analyzer.optiaizer:  Function[ -> ] 
abstraet.syntaz.tree: Variable[ast] 
vrite.base.ast: Writes(parser, abstract.syntax.tree) 

read.base.ast: 
Reads(analyzer.optiaizer, abstract.syntax.tree) 

For simplicity, the component signatures contain only 
the ports that are relevant to this refinement. The dataflow 
connection is implemented by a component (a shared vari- 
able containing the tree) and two connections (the read 
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PATTERN OF ABSTRACT ARCHITECTURE: 

M:   MODULE [ -> ] 
COMPONENTS 

fix    Functional-Style!Function[ -> op:(] 
fa:    Funetional.Style!Funetion[ip: t -> ] 

CONNECTORS 
c:    Dataflow-Style! Dataflow-Channel [t] 

CONFIGURATION 
o:    Dataflow-StyleiConnectsCc, op, ip) 

PATTERN OF CONCRETE ARCHITECTURE? 

M:   MODULE [ -> ] 
COMPONENTS 

fa:    Functional-Style!Function[ -> ] 
fa:    Functional_Style!Function[ -> ] 
m:    Shared-Memory-Style! Variable [t] 

CONFIGURATION 
0/:    Shared-Memory-Style!Writea(/i,m) 
02:    Shared-Memory-Style! Reads (/2, m) 

Fig. 3.   Simple refinement pattern 

and write relations).2 The new concrete signature for the 
parser and the analyzer reflects the difference between port- 
to-port communication and direct shared-memory commu- 
nication through a variable. As an analogous example, 
consider an architecture consisting of two procedures that 
communicate solely by means of procedure calls. If we op- 
timize this architecture so that large objects are no longer 
transmitted by value, but instead are accessed directly as 
shared objects, the signatures of the two procedures would 
change. 

The refinement pattern in Figure 3 specifies a way to 
implement dataflow in terms of the reading and writing of a 
single variable. The read and write relations in the concrete 
schema are primitives that cannot be refined. The italic 
letters denote schema variables that can be instantiated 
with object names, and the symbol "!" is used to qualify 
names. The pattern can be proven correct with respect to 
the four associations shown at the bottom of the pattern.3 

The abstract schema in the pattern matches the level- 
1 subarchitecture. However, if the same substitutions are 
made in the concrete schema, three schema variables are 
left uninstantiated — namely, m, ai, and 02- Of course, 
any unused names could be substituted. Let us assume 
that the architect selects mnemonic names that give the 
following associations. 

base.ast.oport      —> 
base.ast.iport      —> 
base.ast.channel —> abstract.syntax.tree 
base.ast.flow        —>  («rite.baae.ast,  read.base.ast) 

2The shared abstract syntax tree could have been represented as 
an encapsulated data type. If we had chosen that representation, 
the architecture would involve calls to access functions that read and 
write the internal variable used to represent the tree. 

3In a correctness proof, the associations in the pattern are incorpo- 
rated into a more complex mapping between the first-order theories 
that represent the abstract and concrete architectures. 

Since this instance of the pattern matches the abstract sub- 
architecture of the compiler and since all instances of the 
pattern are guaranteed to preserve correctness, we can con- 
clude that the proposed refinement is correct. 

In a later section, we define enough patterns to transform 
the full level-1 compiler architecture into the full level- 
2 architecture. Additional patterns are defined that can 
be used to transform the level-2 architecture into a more 
efficient batch-sequential architecture. The final batch- 
sequential architecture can be found in the appendix. The 
completed compiler architecture can be connected to other 
subsystem architectures, such as the file system architec- 
ture, to form a correct composite system. 

III. ARCHITECTURES AS THEORIES 

We want to leave open the choice of language for spec- 
ifying an architecture. Therefore, we will represent archi- 
tectures as logical theories. We find it convenient to use 
first-order theories; however, our results do not depend on 
this choice. 

It is useful to distinguish among three related architec- 
tural theories: 

• An architectural style is a theory consisting of a vocab- 
ulary of the relevant architectural concepts and well- 
formedness axioms that determine how they can be 
used. Also associated with a style axe rules for trans- 
lating textual specifications in the style into their un- 
derlying logical representation. 

• An architecture is a theory consisting of one or more 
style subtheories and possibly an infinite number of 
constants that are names of the objects in the particu- 
lar architecture. The axioms of the theory are the style 
axioms and possibly additional axioms that relate the 
constants. 

• An architecture schema is an architecture containing 
one or more schema variables. An instance of an ar- 
chitecture schema is obtained by substitution of con- 
stants for all of its schema variables. An instance of 
an architecture schema is sometimes called an instance 
architecture or an instance theory. 

A. Architectural Styles 

Consider the dataflow style. Its vocabulary contains 
predicates for describing functional components, ports, val- 
ues associated with ports, dataflow channels, values associ- 
ated with dataflow channels, and connections of channels to 
ports. More precisely, the following sorts denote the first- 
class objects in a dataflow theory: channel, function, iport, 
and oport. We also make use of sorts 600/ and val, where 
val denotes the set of all possible values. The dataflow style 
has the following operations. 

OutPort: oport x function —► bool 
Supplies: oport x val —► bool 
InPort: iport x function —> bool 
Accepts: iport x val —► bool 
Carries: channel x val —» bool 
Connects: channel x oport x iport —» bool 
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These predicates are used to represent a dataflow architec- 
ture in ordinary first-order logic. Sorts can be represented 
as unary predicates but, for simplicity, we omit them in 
formulas. 

An example of a well-formedness axiom is that every 
function must have at least one port: 

Vx3y[InPort(y,x) V OutPort(y, x)] 

Another requirement is that a channel attached to an out- 
put port must be able to carry any value supplied by the 
port: 

VxVy[3z Connects(x, y, z) 
D Vv[Supplies(y, v) D Carries(x, v)]] 

B. Translation to Logic 

Architectures and refinement patterns are expressed in a 
readable textual language. To reason about them, they are 
translated into logic by means of simple "theory generation 
rules" which are associated with architectural styles. For 
the dataflow style, if the specification of an architecture 
contains an instance of function declaration schema 

/:  Functional-Style!Function[ -> op: t~\ 

the underlying theory contains the same instance of first- 
order sentences 

OutPort(op,/) 
Vv[Supplies(op,v) D t(v)] 

Similarly, a function declaration of the form 

/:  Functional-Style!Function[tp: t -> ] 

is translated to axioms 

InPort(y>,/) 
Vv[t(v) D Accepts(tp.v)] 

Dataflow connector 

c:  Dataflow-Style!Dataflow-Channel [t] 

translates to 

Vv[t(v) D Carries(c,v)] 

and configuration constraint 

a:  Dataf low-Style!Connects(c, op, ip) 

to 

Connects(c, op,ip) 

which is not an object and, therefore, is not named in the 
logic. 

C. Architecture Schemas 

The two Schemas appearing in the pattern of Figure 3 
will be referred to throughout the paper. Theory 0D corre- 
sponds to the abstract schema and theory 0M corresponds 
to the concrete schema. 

Theory 6D is formed by applying the theory generation 
rules of the dataflow style to the abstract schema, which 
gives 

OutPort(op,/i) 
Vv[Supplies(op,v) D t(\)] 
In-Port(y>,/2) 
Vv[t(v) D Accepts(*p,v)] 
Vv[t(v) D Carries(c,v)] 
Connects(c, op,ip) 

This theory satisfies the two well-formedness axioms stated 
earlier. 

The concrete architecture schema in Figure 3 is written 
in a shared-memory style, which permits the reading and 
writing of a shared variable. Shared-variable communica- 
tion is modeled using a call site as the interface between 
a function and the shared variable.4 A call site serves the 
same purpose as a port in the dataflow style. The name 
of every different call site must be unique. 0M has the 
following style-specific sorts: variable denotes the set of all 
possible variables and site denotes the set of all possible call 
sites of which there are two kinds. The sort rsite denotes 
the sites that read, or input, values; the sort wsite denotes 
the ones the write, or output, values. The signature for &M 

is 

Holds: variable x val -♦ bool 
CallSiteOf: site x function —» bool 
Writes: wsite x variable —> bool 
Puts: wsite x val —> bool 
Reads: rsite x variable —* bool 
Gets: rsite x val —* bool 

The axioms of 0M are 

Vv[t(v) DHolds(m,v)] 
CallSiteOfKA) 
Writes(u>, m) 
Vv[Puts(u>,v) D t(v)] 
CallSiteOf(r,/2) 
Reads(r, m) 
Vv[*(v) D Gets(r.v)] 

which must satisfy the well-formedness axioms for the 
shared-memory style. Schema variables r and w denote 
names of call sites and do not appear in Figure 3. 

IV. MAPPINGS 

To prove the relative correctness of two architectures, we 
must specify a mapping between them. An interpretation 
mapping is an association between formulas of the language 
of the abstract theory and formulas of the language of the 
concrete theory. An interpretation mapping is determined 
using two different mappings. 

• A name mapping associates the objects declared in an 
abstract architecture with objects declared in a con- 
crete architecture. 

• A style mapping says how the constructs of an 
abstract-level style can be implemented in terms of the 
constructs of a concrete-level style. More specifically, 

4We could have chosen not to model call sites or some equivalent 
interface object, but this would require a more liberal definition of 
interpretation than the one given in this paper. The present model 
simplifies the mapping from ©D to 0M- 
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it maps uninstantiated predicates of the abstract-level 
language to uninstantiated formulas of the concrete- 
level language. 

Style mappings can be complicated, but need to be defined 
and proved only once. Name mappings are much simpler 
and are specific to a given pair of architectures. 

A name mapping is determined by the identifier associa- 
tions in a given refinement pattern. For example, associa- 
tion c—>m in Figure 3 says that channel c of the abstract 
schema is mapped to variable m of the concrete schema. 
Association op —> says that the concrete object that cor- 
responds to abstract port op is not explicitly named in the 
concrete schema. Since we have chosen a shared-memory 
model that has call sites corresponding to ports, we are free 
to introduce any unused name for the sites. 

Let N° be name mapping 

predicate P, all terms t1,t2,...,t„, every variable x, and 
all formulas F and G of the abstract language, 

I(P(h,t2, 

c ^-^ m 
op h-* w 
IP h-► r 

which relates objects in 0D to their refinements in 0M. Ob- 
serve that not every association in the refinement pattern 
appears in the name mapping. Identifiers a, ai, and 02 refer 
to part of the specification but do not name objects. Hence, 
they do not appear in the logical representation. The do- 
main of a name mapping can be extended to include all 
abstract-level terms by mapping variables to themselves.5 

Let S° denote the general mapping from the dataflow 
style to the shared-memory style: 

Functional) 1-» Function(—1) 
OutPort(_i, —2) 

I-» CallSiteOf(_1, _2) A 3v Puts(_i, v) 
Supplies(_i, —2) •-► Puts(_i, —2) 
InPort(_i, —2) 

1-* CallSiteOf(_i, _2) A 3v Gets(_i, v) 
Accepts( 1, —2) !-► Gets(—1, —2) 
Channel( 1) 1-* Variable(—1) 
Carries ( 1, —2) ■-» Holds (—1, —2) 
Connects ( 1, —2, —3) 

1-» Writes(_2, —1) A Reads(—3, —1) 

The Puts and Gets predicates ensure that the right kind of 
site is associated with each port. 

The last association specifies the implementation strat- 
egy. In &D we have Connects(c, op, ip), which can be imple- 
mented by having the call that corresponds to op perform a 
write operation on the variable that corresponds to channel 
c, and the one that corresponds to ip read the variable that 
corresponds to c. The other associations say that channels 
are mapped to variables, that output ports are mapped to 
calls that supply values, and that input ports are mapped 
to calls that receive values. 

An interpretation mapping I is determined from a name 
mapping N and a style mapping S, as follows: for every 

5Note that our languages contain no function symbols. A formal 
treatment of interpretations for languages that include them can be 
found in [6]. 

2,...,t„))    =   SiPUNihlNfo),. -,N(tn)) 

!(-*■)    =    -(/(F)) 

/(FAG)   =   /(F) A/(G) 
I{FvG)   =   /(F) V/(G) 
I(FDG)   =   /(F) D /(G) 

/(VxF)   =   Vx/(F)6 

I(3xF)    =    3xI(F) 

Let /£ denote the interpretation mapping from theory 
&o to theory 0M. Both the basic facts and the general well- 
formedness axioms in 0D must be mapped. For example, 

Z£(Connects(c, op, ip)) 

= SZ(Connects)(NZ(c),NZ(op),NZ(ip)) 

= iSJJ (Connects) (m, w, r) 

= Writes(«;, m) A Reads(r, m) 

which is the intended implementation. Similarly, the gen- 
eral dataflow-style requirement that each function have at 
least one input or output port maps to the shared-memory 
requirement that each function' have a call site that can 
input or output values. That is, 

/£(Vx3y[InPort(y, x) V OutPort(y, x)]) 
= Vx3y[/S(InPort(y,x)) V ZS(OutPort(y,x))] 

= Vx3y[S£(InPort)(J\T£(y), JV£(x)) 
VSS(OutPort)(JVi5(y),JV5(x))] 

= Vx3y[(CallSiteOf(y,x) A 3v Gets(y, v)) 
V (CallSiteOf(y, x) A 3v Puts(y, v))] 

V. CORRECTNESS 

Two instance architectures, represented as theories, are 
proven correct with respect to an interpretation mapping 
between them and the completeness assumption. An inter- 
pretation mapping contains a style mapping whose seman- 
tic correctness should be established as a proof obligation. 
Proof of style mappings is discussed in a companion paper 
[18], which gives a proof of mapping S£ from the dataflow 
to the shared-memory style. The connectors in the styles 
are defined in a temporal logic, and both safety and fairness 
conditions are shown to be satisfied by the shared-memory 
implementation. The safety condition is that the shared- 
memory implementation preserves order and does not lose 
values; the fairness condition is that all values written into 
shared memory will eventually be read. The proof of a style 
mapping is performed only once; it need not be repeated 
when the two styles are used. 

A. Criterion 

Let 0 and & be instance theories (containing no schema 
variables) associated with an abstract and a concrete archi- 
tecture, respectively. Let / be an interpretation mapping 

8In general, the range of quantifiers must be restricted to a subset 
of the concrete domain, see [6]. But no restriction is required for our 
example, because every concrete-level object implements an abstract- 
level object. 
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from the language of 0 to the language of &'. For every 
sentence F, mapping 7 is a theory interpretation provided 

if F € 0 then 1(F) 6 & 

This is the usual definition of correctness. 
Since a given architecture is assumed to be complete with 

respect to its level of detail, we additionally require that the 
concrete architecture add no new facts about the abstract 
architecture. To prove this, we must additionally show that 

if F i 0 then 1(F) $ & 

in which case I is a faithful interpretation. This says that, 
if a sentence is not in the abstract theory, its image cannot 
be in the concrete theory. Observe that & is a conser- 
vative extension of 0 provided the identity map faithfully 
interprets 0 in 0'. 

B. Proof Technique 

Again, let 0 and 0' be instance theories and I be the in- 
terpretation mapping between them. We present a general 
model-theoretic proof technique for showing that interpre- 
tation mapping I is a faithful interpretation of abstract 
theory 0 in concrete theory &. First, we prove that I is 
a theory interpretation of 0 in &'. This can be done by 
means of a standard proof technique: For every axiom in 
0, establish that the image of the axiom under I is a logical 
consequence of the axioms of 0'. 

Second, we must prove that interpretation mapping I is 
a faithful. The proof method has to take into account that 
there is no direct method for determining that a formula is 
not in 0'. Our proof technique for faithfulness is based on 
two model-theoretic concepts: 

■ The interpretation mapping I from 0 to & induces a 
mapping I' from structures of the concrete language to 
structures of the abstract language.7 Given a structure 
A' of the concrete language, I' maps A' to a structure 
A of the abstract language as follows. The universe of 
A is the same as the universe of A'. If J maps atomic 
formula P(xi,X2, ■■-, xn) to concrete formula F, then 
I' assigns to predicate P in the abstract language the 
set of tuples in A' that satisfy F. 

• The theory that describes structure A is obtained as 
follows. First, expand the language of A to include a 
name for every member of the universe of A.  Next, 
expand A by assigning every new name to the appro- 
priate member of A. The theory that describes A is 
the set of sentences in the expanded language that are 
true in the expanded structure. 

Our technique for proving the faithfulness of I can now 
be stated as follows: For every model A of 0, find a model 
A' of & such that the image of A' under the induced map- 
ping I' can be expanded to a model of the theory that de- 
scribes A. This model-theoretic characterization of faith- 
fulness is equivalent to our theory-based definition of cor- 
rectness. 

'Recall from logic that a structure of a first-order language consists 
of a universe and the assignment of elements of the universe to the 
constants and relations over the universe to the function and predicate 
symbols. 

Roughly speaking, this characterization requires that, for 
every model -4 of 0, there is a model A' of 0' such that A 
and I'(A1) cannot be distinguished using the resources of 
first-order logic. If we were to use an architectural specifi- 
cation language based on some other logic, a similar char- 
acterization based on the expressive power of that logic 
would be substituted. For example, if the content of our 
architectural specifications were expressed in type theory, 
we would require that I'(A') can be expanded to model 
every type-theoretic sentence expressible in the language 
that contains a name for every object in the domain of A, 
every relation among those objects, every relation among 
those relations, and so on, that is true in A. (It is easy 
to see that this amounts to requiring that I'(A') and A 
be isomorphic.) So our general method for demonstrating 
faithfulness can be used with any logic-based architectural 
specification language, as long as the question of whether 
a structure that represents an architecture satisfies a spec- 
ification has a well-defined answer. 

C. Application to Refinement Patterns 

A refinement pattern consists of a triple (0,0', N) where 
0 and & are theories containing schema variables and N 
is a name mapping from 0 to 0'. A pattern is correct 
provided every instance of 0 and 0' is relatively correct 
with respect to the same instance of interpretation mapping 
1 : 0 —► 0' determined by mapping N and the relevant 
style mapping(s). 

Consider theories 0D and 0M related by interpretation 
mapping /£• We must show that, for every instantiation of 
the schema variables, I£ is a theory interpretation of 0D 

in @M and 1^ IS faithful. The former is straightforward. 
To prove faithfulness, consider the induced mapping of 

i£. If M is a structure for 0', then the induced mapping 
applied to M. is a structure V for the dataflow language. 
The only interesting assignment is to the predicate Con- 
nects, which is the set of tuples 

{(x,y,z) 6 \M\3:M f= Writes(j/,x) AReads(z,z)} 

because /JjJ maps Connects(c, op,ip) to the formula 

Writes(u>, m) A Reads(r, m) 

where c, op, ip, w, m, and r are schema variables. 
To show that 7JJ is faithful, we use 7JJ to transform a 

model V of an instance of 0D to a model M of an instance 
of 0M. The universe of M is the same as V in this example. 
The predicate Function is assigned to the set of all objects 
that are functions in V, namely, 

{x S \V\:V \= Function(s)} 

so that V and M agree on functions. The predicate Vari- 
able is assigned to 

{x € \V\:V (= Channel(a;)}, 

the predicate Reads is assigned to 

{(x,y) £ |D|2:for some z in \V\, V \= Connects(j/,z,a:)} 
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and similarly for the remaining predicates. The image of 
M under the induced mapping is V. Obviously, V can 
be expanded to a model of the theory that describes V. 
Therefore, i£ is faithful. Note that, since the image of M 
under the induced mapping is identical to V, the interpre- 
tation J£ would remain faithful if we were to switch from 
first-order logic to some stronger logic, such as type theory. 

VI. COMPOSITION 

We define two forms of composition for instance architec- 
tures. Horizontal composition is used to compose instances 
of refinement patterns to form one large composite refine- 
ment architecture. It is also used to compose existing archi- 
tectures into larger architectures. Vertical composition is 
used to chain together a sequence of correct architectures, 
allowing us to conclude that the most concrete architecture 
in a hierarchy is correct with respect to the most abstract 
architecture in the hierarchy. Vertical composition is justi- 
fied since faithful interpretation is transitive. 

Let &i and 02 be instance theories that represent two 
abstract architectures. Let 0[ and 02 be concrete theories 
intended to implement &i and 02, respectively. Two pairs 
of architecture theories can be composed only in ways that 
preserve faithfulness. More precisely, if 

h: 6>x -* 0[  and J2: 02 -» 02 

are faithful interpretations, then we want 

h U 72: 6»i U 02 -+ 0'i U 0'2 

to be a faithful interpretation. (The union of two theories 
is the deductive closure of the set-theoretic union of the 
theories.) 

This property holds provided two general conditions are 
satisfied. 

1. The composite interpretation mapping must be a 
function. For a sentence F, we require that 

if F€0in02  then  h(F) = I2(F) 

which guarantees that interpretation mappings I\ and 
J2 agree on shared objects and shared style constructs. 

2. It must not be possible to infer new facts about the 
composite abstract architecture from the composite 
concrete architecture. That is, for language L\ of 0i 
and L2 of 02, if 

F is a sentence of L\ U L2 

and 
0iU02 h IiU/2(F) 

then we must prove that 

/i[0!]U/2[02] h IiUh(F). 

The intuition behind the second condition can be illus- 
trated by means of a simple example. Consider an ar- 
chitecture in which there is a dataflow connection from 

A to B and another architecture that has dataflow con- 
nection from B to C. Suppose that both flows are im- 
plemented correctly in concrete architectures, but that in 
one A writes some variable x and in the other C reads a 
variable x. Each implementation is correct, since neither 
introduces a new dataflow. However, the composite con- 
crete architecture reads and writes x, from which we can 
infer an entirely new abstract dataflow connection from A 
to C. Consequently, the composite abstract architecture 
is not faithfully interpreted (by the composite mapping) 
in the composite concrete architecture (under the original 
assumption that dataflow is intransitive). 

Of course, we do not want to have to prove that ev- 
ery refinement pattern can be composed with every other 
refinement pattern. Instead, we would like simple syntac- 
tic criterionthat, if satisfied, guarantees compositionality. 
One such criterion is that the two abstract architectures 
can share only components and lower-level architectures 
can share only images of those components under the in- 
terpretation mapping. This means that an architecture 
cannot contain certain global assertions, such as a require- 
ment that there are exactly three connections in any archi- 
tecture. 

An example of the horizontal composition of pattern 
instances involves the compiler architecture in Figure 1. 
We have proved that the dataflow connection between the 
parser and the analyzer is implemented correctly by means 
of the reading and writing of the tree, using instances of 
0D, 0M, and I£ from Figure 3. Similarly, we can show 
that the dataflow connection from the lexical analyzer to 
the parser is correctly implemented by the pipeline connec- 
tion. The two architectures share only one component, the 
parser. Therefore, our second condition is satisfied and we 
can compose them without further proof. 

A different kind of example is contained in Figure 4. We 
want to compose two architectures, called "subsystem A" 
and "subsystem B", into a single system architecture. We 
construct a new architecture with components "A" and 
"B" connected through new interfaces. According to our 
syntactic constraint, the three architectures can be com- 
bined to form a composite system that is correct if the 
three subsystems are. 

VII. SOME REFINEMENT PATTERNS 

We present six broadly useful patterns for refining com- 
ponents, connectors, and interfaces.8 The patterns involve 
several common architecture styles and each pattern has 
been proven correct. 

A refinement pattern is presented in a table containing 
two architecture Schemas, an association of abstract and 
concrete objects, and possibly constraints on one or both 
of the Schemas. By convention, a schema variable that oc- 
curs in both an abstract and a concrete schema must match 
the same object, modulo renaming. We prime a concrete 
schema variable to indicate that it is the name of a new ob- 
ject not associated with any abstract-level object, or that it 

•Type refinement is not covered because it requires a somewhat 
different correctness criterion. 
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Subsystem A 
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Linking Architecture 
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Subsystem B 
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Composite System 

X), p'"T 

«Vr 
Fig. 4.   Illustration of Subsystem Composition 

Symbol Style Name 
BS Batch-Sequential-Style 
CT Control-Transfer .Style 
D Dataflov-Style 
F Functional-Style 
pp Process-Pipeline -Style 
SM Shared-Memory-Style 

TABLE I 

ABBREVIATIONS FOR STYLE NAMES IN REFINEMENT PATTERNS 

denotes a required change to the associated abstract-level 
object. The intended meaning is obvious from context. A 
reference to a style in a refinement pattern is abbreviated 
according to the naming conventions summarized in Ta- 
ble I. 

We assume that connections in an architecture do not 
share interface points. Multiple uses of a given interface 
point are modeled with multiple copies of the same point. 
This model has the advantage that interfaces and connec- 
tions can be refined more flexibly. However, this choice of 
representation can result in an increase in the number of 
interface points. 

A. Component Refinement 

Figure 5 contains a refinement pattern for decompos- 
ing a functional component into a collection of components 
wrapped by a module. Component / is refined into mod- 
ule /', hence the association /—>/'. A module signature 
contains all externally visible interfaces within the mod- 
ule. Since each interface point is an object with a unique 
name, there is no confusion as to the correspondences be- 
tween the interface points of / and those of components in 
/'. By requiring that / and /' have the same signature, 
we are guaranteed that the original connections involving 
/ are maintained through its subcomponents. The refine- 
ment is faithful because the interface requirement on / and 
/' prevents the addition or deletion of connections. 

The next two patterns are for aggregating variables in 
situations that are common in intermediate stages of a de- 
velopment. This is done for time and space efficiency, es- 

PATTERN OF ABSTRACT ARCHITECTURET 

M: MODULE [pi  -> p2] 
COMPONENTS 

/:    F!Function[pn  -> pu] 
PATTERN OF CONCRETE ARCHITECTURET 

M: MODULE [pi  -> p2] 
COMPONENTS 

/':    MODULE [pu  -> p12] 
ABSTRACT TO CONCRETE ASSOCIATIONS:" 

/   ->    /' 

Fig. 5.   Decomposing a component into subcomponents (Pattern 1) 

pecially if the variables hold large objects. Application of 
the patterns also results in a simpler design. 

Figure 6 contains a pattern for merging shared variables 
when one of them is a private variable. This pattern merges 
a shared variable mi, which is written by component /i and 
read by component /2, with a private variable m.2, which 
is read and written by component f\. This is expressed 
by the association (mi,7712)—>m'. There are three basic 
requirements on this form of refinement: 

• The variables denoted by schema variables mi and m2 

must have the same type, denoted by schema variable 
t- 

• Only the component denoted by f\ can write the vari- 
able denoted by m-i. This prevents a new flow to fi, 
which would violate the faithfulness requirement. 

• Only /1 accesses private variable rri2, otherwise a new 
flow would be created by the refinement. This require- 
ment is enforced by the constraint on the abstract ar- 
chitecture. 

A variant of this pattern combines the shared variable 
and the private variable into two fields of a record struc- 
ture. With this variant, the constraint on the abstract 
architecture is not needed, provided that the components 
involved access only the proper fields of the record. This 
kind of refinement would not increase efficiency, but could 
help simplify the design. 

Figure 7 contains a pattern for merging shared variables 
when neither of them are private. The two shared vari- 
ables are connected by a common functional component. 
A shared variable denoted by schema variable mi is writ- 
ten by functional component /1 and read by f2. Shared 
variable m2 is written by f2 and read by f3. The merge is 
expressed by the association (mi,«12) —>m'. 

Our correctness criterion places the following restrictions 
on the architectures: 

• The variables to be merged must be of the same type 
t. 

• Since we treat dataflow as an intransitive relation, we 
also treat other relations dealing with the flow of data 
as intransitive relations. Therefore, functional compo- 
nents /1, /2, and jz have to be executed sequentially 
in batch mode so that we cannot infer the existence of 
a new abstract flow from /1 to fo. This is prevented 
by configuration assertions a's and a'6. 

• No other functional components can read mi or write 
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PATTERN OF ABSTRACT ARCHITECTURE: 

M: MODULE [pi  -> P2] 
COMPONENTS 

fl  :    F!Function[pn   -> P12I 
f2 :    F!Function[p2i  -> P22] 
mi:    SM! Variable [fl 
m2:    SM! Variable [fl 

CONFIGURATION 
ai: SM!Writes(/i,mi) 
02: SM!Reads(/2,mi) 
03: SM!Write«(/i,m2) 
04: SM!Read«(/i,m2) 

PATTERN OF CONCRETE ARCHITECTURE: 

M: MODULE [pi  -> P2] 
COMPONENTS 

fl :    F!Function[pn  -> P123 
f2 :    F!Function[p2i  -> P22] 
m':    SM!Variable[fl 

CONFIGURATION 
ai:    SM!Writes(/i,m') 
a'-:    SM!Reads(/2,m') 

SM!Reads(/i,m') 

ABSTRACT TO CONCRETE ASSOCIATIONS: 

(mi,m2)    —>     m' (01,03)    ~> 
a2 ~>     a'2 04 —> 

CONSTRAINTS ON ABSTRACT ARCHITECTURE: 

-I(3/:     FIFunction) 
[/ * h 

A   [SM!Writes(/,mi) 
V SM!Writes(/,m2) 
V SM!Reads(/,m2)]] 

Fig. 6.   Merging a shared variable with a private variable (Pattern 2) 

m2, which is enforced by a constraint on the abstract 
architecture. 

A variant of this pattern combines the shared variables 
into two fields of a record structure. With this variant, 
the sequential ordering assertions in the concrete architec- 
ture and the constraint on the abstract architecture are not 
needed. 

B. Connector Refinement 

Figure 8 contains a pattern for implementing a dataflow 
connector by a pipe. Dataflow channel c from /i to f2 is 
refined into a pipe c' connecting /i to f2. The connec- 
tor refinement is expressed by the associations c-->d and 
a—>a'. This refinement is obviously faithful. Semanti- 
cally, it can be justified on the basis of the meaning of the 
dataflow and pipe connectors. 

Figure 9 contains a pattern for refining two functional 
components A and f2 that are executed in batch-sequential 
mode into a module with a main functional component /' 
transferring control first to /i and then to /2. The correct- 
ness of refinements of this form depends on the following 
properties. 

. Component /i has to complete before f2 can start, 
which is enforced by configuration assertion a'. 

. Concrete component /' cannot transfer control to f2 

until /i completes, and /i cannot transfer control to 
/' after f2 starts.   These ordering relationships are 

PATTERN OF ABSTRACT ARCHITECTURE: 

M: MODULE [pi  -> P2~i 
COMPONENTS 

/l F!Function[pn  -> P12J 

h F!Function[p2i  -> P22] 

h F!Funetion[p3i  -> P32] 
mi SM!Variable[fl 

T712 SM!Variable[fl 
CONFIGURATION 

ai: SM!Writes(/i,mi) 
02: SM!Reads(/2,mi) 
03: SM!Writes(/2,m2) 
04: SM!Reads(/3,m2) 

PATTERN OF CONCRETE ARCHITECTURE: 

M: MODULE[pi  -> P2] 
COMPONENTS 

/l :    F!Function[pii  -> P12] 
jl :    F!Function[P21  -> P22] 
f3 :    F!Function[p3i  -> P32] 
m':    SM!Variable[fl 

CONFIGURATION 

y. 
SM!Writes(/i,m') 
SM!Reads(/2,m') 
SM!Writes(/2,m') 
SM!Reads(/3,m') 
BS! Starts JWter Jinish.Of (/a, /1) 
BS!Starts-After-Finish-Of(/3,/2) 

ABSTRACT TO CONCRETE ASSOCIATIONS" 

(mi, ni2)    —>     "*' °i    "_> 

„2 —>     o'2 03    --> 

04 -->     °4 

CONSTRAINTS ON ABSTRACT ARCHITECTURET 

n(3/:    FIFunction) 
[/ * h 

A  [SM!Reads(/,mi) 
V SM!Writes(/,m2)]] 

Fig. 7.   Merging shared variables (Pattern 3) 

PATTERN OF ABSTRACT ARCHITECTURE:' 

M: MODULE[pi  -> P2] 
COMPONENTS 

/i:    F!Function[pn   ->  op:t, 
f2:    F!Function[:p:l, P21 -> 

CONNECTORS 
c:    D! Dataf loB.Channel [fl 

CONFIGURATION 
a:    D!Connects(c, op, tp) 

PATTERN OF CONCRETE ARCHITECTURE: 

M 

P12] 
P22] 

MODULE[pi  -> P23 
COMPONENTS 

/1:    F!Function[pn  -> op:t, P12] 
/2:    F!Function[tp:t, P21  -> P22] 

CONNECTORS 
c':    PP!Pipe[fl 

CONFIGURATION 
a':    PP! Connects (c' ,op,ip) 

ABSTRACT TO CONCRETE ASSOCIATIONS: 

—> 

Fig. 8.   Implementing a dataflow connector by a pipe (Pattern 4) 
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PATTERN OF ABSTRACT ARCHITECTURE? 

M: H0DDLE[pi -> p2] 
COHPONENTS 

}\:    F!Function[pn   -> pn] 
ft:    F!Function[p2i  -> p22] 

CONFIGURATION 
a:    BS! Starts Jfter-Finish.0f(/i,/2) 

PATTERN OF CONCRETE ARCHITECTURE? 
M: MODULE [pi  -> p2] 

COHPONENTS 

CONNECTORS 

F!Function[ -> ] 
F!Function[pn  -> pl2] 
F!Function[p2i  -> p22] 

»i:    CT!Enabling.Signal 
s'2:    CT!Enabling.Signal 

CONFIGURATION 
a'„:    CT! Sender (»i,/i) 
o{2:    CHReceiver-SignalCs'j,/') 
aL:    CT!Sender(»2,/') 
a'i2:    CT!Receiver.Signal(«2,/2) 
 a'   :    CT!Before(s[,a'2)  
ABSTRACT TO CONCRETE ASSOCIATIONS? 

CONSTRAINTS ON CONCRETE ARCHITECTURE: 

n(3»':    CT!Enabling-Signal) 
[CT!Sender(«',/') 

A CT!Receiver.Signal(5',/2) 
A CT!Before(»',«i)] 

-i(3*':    CT!Enabling_Signal) 
[CTISenderC»',/!) 

A CT!Receiver.Signal(»',/') 
A CT!Before(i'2,*')] J 

Fig. 9.  Implementing ordering constraint using explicit control trans- 
fer (Pattern 5) 

enforced by the two constraints on the concrete archi- 
tecture. 

• All functional components have to be enabled by /' 
and every control transfer must be between /' and 
a functional component. This is enforced by a well- 
formedness constraint in the control-transfer style, not 
by a constraint in the pattern. 

C. Interface Refinement 

Figure 10 contains the full specification of the pattern in- 
troduced earlier in Figure 3. The refinement of the dataflow 
connection into a shared-memory implementation has the 
side effect of changing the signature of the two functions, 
since connections do not share interface points. 

VIII. EXAMPLE REVISITED 

We now apply the refinement patterns to the compiler 
architectures illustrated earlier in Figure 1. In particu- 
lar, we show how the level-1 compiler architecture can be 
refined into the level-2 compiler architecture using five of 
the patterns. The textual specification of the architectures 
are simplified through the use of ellipses for parts of the 
specification that are not relevant to the refinement under 
consideration. The full textual specifications for levels 1 
and 2 are in Figure 2 and the appendix, respectively. 

PATTERN OF ABSTRACT ARCHITECTURE: 

M: M0DULE[tp:t, pi -> op:t, p2] 
COHPONENTS 

J\\    F!Function[pii  -> op:t, pi2] 
/2:    F!Funetion[tp:t, p2i -> p22] 

CONNECTORS 
c:    D!Dataflow.Channel[t] 

CONFIGURATION 
a:    D!Connects(c, op, ip) 

PATTERN OF CONCRETE ARCHITECTURE? 

M: MODULE[pi  -> p2] 
COHPONENTS 

/l :    F!Function[pii  -> pl2] 
/2 •■    F!Function[p2i  -> p22] 
m':    SM! Variable [t] 

CONFIGURATION 
o'j!    SM! Writes (/i,m') 

SM!Reads(/2)m') 
ABSTRACT TO CONCRETE ASSOCIATIONS?" 

c —>     m! a    —> 
{op, ip)    —> 

K>°2) 

Fig. 10.   Implementing dataflow with a shared variable (Pattern 6) 

The development of the level-2 architecture involves 
three main steps — the introduction of the pipe between 
the lexical analyzer and the parser, the development of the 
shared tree accessed by the parser, analyzer/optimizer, and 
code generator, and the development of the shared symbol 
table between the lexical analyzer and the optimizer. All 
patterns, with the exception of Pattern 5, are used. (Pat- 
tern 5 is applied repeatedly to the level-2 compiler archi- 
tecture to get the level-3 architecture in the appendix.) 

A. Introduction of the Pipe 

This refinement is a straightforward application of Pat- 
tern 4. Consider the following abbreviated subarchitecture 
of the level-1 compiler. 

compiler_L1: MODULE 
[char.iport: SEQ(character) -> code.oport: code] 

COMPONENTS 
lexical.analyzer: Function 

[... -> token.oport: SEQ(token), ...] 
parser: FunctionCtoken.iport: SEQ(token) -> ...] 

CONNECTORS 
token.channel: Dataflow.Channel[SEQ(token)] 

CONFIGURATION 
token.flov: 

Connects(token.channel, token.oport, token.iport) 

Pattern 4 can be used to refine dataflow channel 
token-channel into pipe token_pipe, resulting in the fol- 
lowing level-2 architecture.9 

compiler_L2:  MODULE 
[char.iport:  SEQ(character)   -> code oport:  code] 

COHPONENTS 
lexical.analyzer.module:   MODULE 

[...  -> token.oport:  Finite.Stream(token)] 
parser:  Function 

[token.iport:  Finite_Stream(token)   -> ] 

9An output and an input port of type SEQ(token) were implemented 
as type Finite_Stream(token). A stream is a function from clock 
times to values. The correctness of this type refinement is not treated 
in this paper. 
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CONNECTORS 
token.pipe: Pipe[Finite_Stream(token)] 

CONFIGURATION 
token.flow: 

Connect«(token.pipe,   token.oport,  token.iport) 

B. Development of the Shared Abstract Syntax Tree 

Consider the following dataflow architecture. 

compiler_L1: MODULE 
Cchar.iport: SEQ(character) -> code.oport: code] 

COMPONENTS 
parser: Function [... -> base_ast_oport: ast] 
analyzer.optimizer: Function 

Cbase.ast.iport: ast, ... -> full.ast.oport: ast] 
code.generator: Function 

[full.ast.iport: ast -> ...] 
CONNECTORS 
base.ast.channel: Dataflow.Channel[ast] 
full.ast.channel: Dataflow.Channel[ast] 

CONFIGURATION 
base.ast.flow: 

Connects (base.ast.channel, 
base.ast.oport, base.ast.iport) 

full.ast.flow: 
Connects(full.ast.channel, 

full.ast.oport, full.ast.iport) 

It can be split into two dataflow architectures and Pat- 
tern 6 is applied to each to construct two shared memory 
architectures, which are composed horizontally to form a 
single architecture. Then, Pattern 3 can be applied to 
merge the two shared data structures into a single shared 
tree, called abstract_syntax-tree. The three architec- 
tures compose vertically, so we know that the final archi- 
tecture, given below, is correct with respect to the original 
dataflow architecture. 

compiler_L2: MODULE 
[char.iport: SEQ(character) -> code.oport: code] 

COMPONENTS 
parser: FunctionC... -> ] 
analyzer.optimizer:  FunctionC -> ] 
code.generator:      FunctionC -> ...] 
abstract.syntax.tree: Variable[ast] 

CONFIGURATION 
nrite.base.ast: 

Writes(parser, abstract.syntax.tree) 
read.base.ast: 

Reads(analyzer.optimizer, abstract.syntax.tree) 
«rite.full.ast: 

Writes(analyzer.optimizer, abstract.syntax.tree) 
read.full.ast: 

Reads(code.generator, abstract.syntax.tree) 
precedence.l: 

Starts.After.Finish.Of(analyzer.optimizer, parser) 
precedence_2: 

Starts.After.Finish.Of(code.generator, 
analyzer.optimizer) 

C. Development of the Shared Symbol Table 

This refinment involves three individual refinements, but 
only vertical composition. Consider the following architec- 
ture, which specifies the dataflow from the lexical analyzer 
to the analyzer/optimizer that is used to transmit binding 
information. 

compiler_L1: MODULE 
[char.iport: SEQ(character) -> code.oport: code] 

COMPONENTS 

lexical.analyzer: Function 
[char.iport: SEQ(character) 

-> bind.oport: SEQ(binding), ...] 
analyzer.optimizer: Function 

[..., bind.iport: SEQ(binding) -> ...] 
CONNECTORS 
bind.channel: Dataflow.Channel[SEQ(binding)] 

CONFIGURATION 
bind.flow: 

Connects(bind.channel, bind.oport, bind.iport) 

The three refinement steps are: 
1. Pattern 1 is used to refine the lexical analyzer into 

a new module containing itself and a private symbol 
table used to store bindings locally before proceeding 
to the next phases of compilation, which could modify 
the table. 

2. Pattern 6 is used to introduce a shared variable be- 
tween the lexical analyzer and the optimizer, corre- 
sponding to bind.channel, that can be used to trans- 
mit the completed symbol table. 10 

3. Pattern 2 is used to merge the private symbol table 
and the shared variable into a single shared repository. 
This reflects a conscious decision to allow no compo- 
nent other than the lexical analyzer to write the table. 
As a consequence, any additional information, such as 
storage requirements, and code restructuring must be 
represented in the abstract syntax tree. 

The resulting architecture is given below. 

compiler_L2: MODULE 
[char.iport: SEQ(character) -> code.oport: code] 

COMPONENTS 
lexical.analyzer.module: MODULE[... -> ...] 

COMPONENTS 
lexical.analyzer: FunctionC... -> ...] 
symbol.table: Variable[SEQ(binding)] 

CONFIGURATION 
vrite.bind: 

Writes(lexical.analyzer, symbol.table) 
read.bind: 

Reads(lexical.analyzer, symbol.table) 
END lexical.analyzer.module 

analyzer.optimizer: FunctionC -> ] 
CONFIGURATION 

read.bind: 
Reads(analyzer.optimizer, 

lexical.analyzer.module!symbol.table) 

D. Putting The Pieces Together 

The three individual architecture hierarchies can be flat- 
tened to two levels because faithful interpretations are tran- 
sitive. Then, they can be composed horizontally to form 
the composite compiler architectures at levels 1 and 2. The 
level-3 compiler architecture can be formed in a similar 
fashion. 

It is worth noting that a series of refinements can result 
in a deep hierarchy that need not be saved explicitly. The 
sequence of steps in deriving a concrete architecture are 
important, but the intermediate architectures themselves 
may not be. We saw this in the development of the symbol 
table. 

10The nested lexical-analyzer .module can be flattened by a re- 
structuring pattern so that patterns can be applied directly. 
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We also observe that it is possible to adopt a hybrid ap- 
proach to architecture development in which parts of the 
architecture are developed by means of refinements and 
other parts are specified completely by hand. In the lat- 
ter situation, refinement patterns can be used to validate 
the correctness of the putative implementation architec- 
tures through a straightforward matching procedure. Cor- 
rect hierarchies can be composed no matter how they were 
developed, provided the composition is faithful. 

IX. APPLICATION TO A POWER-CONTROL SYSTEM 

The approach presented in this paper has been used to 
design an architecture for an operational power control sys- 
tem implemented in 200,000 lines of FORTRAN 77 code . 
The system is used by Tokyo Electric Power Company, 
Inc. to achieve efficient administration of power-supply sys- 
tems in Tokyo, Japan. The power-control system was de- 
veloped by Meidensha Corporation and its architecture is 
considered a company asset. Originally, the details of the 
architecture were represented informally in several loosely 
connected documents. This created a difficult situation 
for Meidensha Corp. because they wanted to expand their 
business in control systems to other areas with similar re- 
quirements, which would require minor modifications to 
the reference architecture. With no formalized architec- 
ture, such an expansion would certainly lead to duplication 
of effort and unnecessary errors in implementation. 

Our objective was to formalize the reference architecture 
in terms of company styles and at two levels of detail, and 
to guarantee that the concrete architecture is correct with 
respect to the abstract architecture. This task was com- 
pleted successfully. The abstract architecture was stated in 
terms of a dataflow style, and the concrete architecture was 
a combination of a call-return style, a (structured) shared- 
memory style, and a special process synchronization style 
for DEC VMS operating systems. Twelve patterns were 
used in the development; each was used many times. 

Pattern 1 was used for decomposing functional com- 
ponents into modules; Pattern 6 was used to implement 
dataflow as a shared variable. Domain-specific refinement 
patterns were needed to handle two distinctive features 
of the concrete power-control architecture—heavy use of 
shared memory and process synchronization by an enabling 
signal. The shared memory did not have a uniform struc- 
ture. Dozens of dataflows were implemented by a single 
record containing one field for each flow. Some dataflows 
were implemented as a record structure containing the data 
and a one-bit enabling signal, and others as a message chan- 
nel plus a signaling channel. A collection of variables con- 
taining one bit are packaged into a bitstring for efficient 
communication. Variants of Patterns 2 and 3 were used to 
aggregate individual variables into records. 

This successful experience strongly suggests that, in the 
domain of power control, only a small number of patterns 
is required. This allows the cost of pattern verification to 
be amortized across many applications in the power-control 
domain. We know that many of the patterns are relevant 
in other domains as well, and believe that only a modest 

number of new patterns will be needed in many application 
areas. 

X. RELATED WORK 

The field of architecture-driven software development 
will not reach its full potential until it is possible to re- 
fine and compose architectures incrementally, flexibly, and 
in ways that preserve the desired properties. Ideally, deep 
properties of an architecture, such as relative correctness, 
should be preserved. This requires that an architecture hi- 
erarchy be represented formally and the mapping between 
the levels be precise and explicit. We review related work 
in the areas of refinement, correctness, and composition. 

Previous approaches to specification refinement have 
concentrated on the preservation of functional properties, 
which occurs when the mapping between specifications is 
a theory interpretation. The mapping often is complicated 
by a change in data representation. This can be taken into 
account by adapting the technique of Hoare [12] to relate 
the types in the abstract and concrete specifications. An 
analogous problem arises in architecture refinement when 
there is a change in style. We have introduced the notion 
of a style mapping to related the styles in the abstract and 
concrete architectures. 

We are not the first to recognize the importance of 
schematic transformations in stepwise refinement. In 
[10], Gerhart gives several examples of schema transfor- 
mations that preserve functional correctness. We define 
schema transformations that preserve architecture correct- 
ness. The two forms of refinement are complementary. An 
architecture refinement hierarchy describes system orga- 
nization — its components, interfaces, and connections. 
Functional refinement is used to develop the behavior of 
the system components in the architecture. In both in- 
stances, Schemas can be used to increase the reusability of 
designs and proofs. 

Of course, the utility of architecture hierarchies has been 
recognized for some time. For example, in the 1970s Jack- 
son [13], Yourdan and Constantine [20], DeMarco [7], and 
others describe system architectures and, more recently, ar- 
chitectural description has been the basis for commercial 
offerings. However, previous work has given little attention 
to the mapping between levels of abstraction. We formally 
defined the interpretation mapping required in architecture 
correctness proofs in terms of a specific name mapping and 
a general, reusable style mapping. The mapping also pro- 
vides the basis for traceability of architectural design deci- 
sions, which is useful in practice. 

Recently, another form of a mapping between architec- 
tures has been developed for the Rapide architecture defini- 
tion language [14], [15]. Rapide is used to define executable 
architectures based on distributed event processing. Two 
architectures are related by mapping concrete events to ab- 
stract events. Event mappings provide the basis for com- 
parative simulation, a technique that complements static 
modeling. 

The standard criterion for functional correctness is not 
applicable to architectures because of the completeness as- 
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sumption. A similar completeness assumption is made 
widely in the database community for analogous reasons, 
see Reiter [19]. However, Reiter allows only finitely many 
objects, so a "domain closure axiom" can be used to enu- 
merate the domain of discourse. No similar technique can 
be applied here because, in general, an architecture can be 
infinite. For example, we allow quantification over infinite 
types (such as integers) and dynamic architectures with an 
unbounded number of processes and connections. Because 
of the completeness assumption, an abstract architecture 
must be faithfully interpreted in the concrete architecture. 

In [17], Moriconi and Hare study the relative correctness 
of two architectures under the completeness assumption. 
They make the simplifying assumption that an architecture 
can contain only a fixed, finite number of objects. Broy 
[5], Brinksma [4], and others have applied the standard ap- 
proach to correctness to architectures. Broy's component 
refinements turn out to be conservative (and, hence, faith- 
ful) because interface signatures are preserved, but his con- 
nection refinements may not be because additional flows 
could be added to a channel. Brinksma justifies channel 
splitting on the basis of behavioral reasoning; application 
of his rule can violate the completeness assumption. 

We appear to be the first to observe that, in an archi- 
tectural correctness proof, it is important to establish the 
semantic correctness of the relevant style mappings. The 
importance of reasoning about connectors was recognized 
by Allen and Garlan [3], who formalize them in a subset of 
CSP [11] and then proved absence of deadlock. In [18] we 
define the meaning of connectors axiomatically in a tem- 
poral logic and prove both fairness and safety properties 
of an implementation of the dataflow connector in shared 
memory. Garlan et al [8], [9] also have done important 
work on identifying and exploiting architectural styles. We 
build on their work, developing schematic style mappings 
and schematic refinements involving style-to-style transfor- 
mations. 

Composition has been studied recently by Abadi and 
Lamport [1], [2]. Their results are semantic and applicable 
to any domain, whereas ours are syntactic and specialized 
to the domain of software architecture. It is easy to state 
general criteria for the correctness of horizontal composi- 
tion of architectures. However, it requires a difficult proof 
that it is not possible to infer new facts about the com- 
posite abstract architecture from the composite concrete 
architecture. Therefore, we defined a new specialized form 
of horizontal composition that requires only very simple 
syntactic checks. Broy [5] gives three operators for com- 
posing functional-style architectures, but does not consider 
the composition of architectures involving multiple styles. 
Vertical composition in a hierarchy of architectures is im- 
mediate provided each level in the hierarchy is correct with 
respect to the immediately preceding level. 

XI. CONCLUSION 

We have described a stepwise refinement methodology 
for the development of a heterogeneous hierarchy of ar- 
chitectures that are relatively correct under a particular 

completeness assumption. We introduced the notion of 
an architecture refinement pattern as the principal vehi- 
cle for codifying reusable solutions to routine architectural 
design problems. Once an architecture refinement pattern 
is proved correct, instances of it can be used in a particular 
development with no further proof. Patterns are compo- 
sitional and can be proved in isolation. Subsystem archi- 
tectures are compositional provided they overlap only in 
certain ways. The methodology was used successfully to 
explicate the architectural design of an operational power- 
control system. 

To develop a theory of correctness for architecture refine- 
ment, we adapted the technique of faithful interpretation 
that was introduced in an earlier paper for after-the-fact 
verification of complete architectures [18]. A new proof 
technique for checking faithfulness was presented. The in- 
terpretation mapping between architectures was simplified 
by decomposing it into an architecture-specific name map- 
ping and a general style-to-style mapping. We are not 
aware of this distinction being made elsewhere in the lit- 
erature. It is important because a style mapping and its 
proof, both of which can be complex, can be reused in val- 
idating any pattern involving the two styles. In contrast, a 
name mapping is simple, specific to a pattern, and cannot 
be validated independent of the pattern. 

An important premise behind our work is that at least 
the dominant styles of architectural design can be general- 
ized to partially interpreted schema and most architecture 
refinements for these styles can be generalized to trans- 
formations on schema. We believe that a small number 
of architectural styles are sufficient for a large number of 
application domains, and that only a modest number of 
refinement patterns are needed between each pair of styles. 
This assertion is supported to some degree by the expe- 
riences reported in this paper regarding the compiler and 
power-control architectures. 

Some methodological implications of our faithfulness re- 
quirement are worth mentioning. First, architectural styles 
should clearly differentiate among different architectural 
concepts. Consider a transaction on a distributed database 
system, which is an atomic operation logically but rarely 
is a physically atomic operation. If the abstract "transac- 
tion" connector is refined into a two-phase commit protocol 
involving a series of data transmissions, the refinement will 
not be faithful unless the purpose of the two-phase commit 
is taken into account in the design of the style. For exam- 
ple, the commit protocol can be modeled in terms of special 
"control" connectors that are distinct from the connector 
that models the transfer of data from the database to the 
designated site. Then, the abstract flow of data will be 
the same as the concrete flow, even though there is extra 
preparatory activity in the concrete architecture. Second, 
architects can, but should not, circumvent the complete- 
ness assumption by adding concepts to a concrete architec- 
ture that are unrelated to those in the associated abstract 
architecture. A correctness criterion could be defined that 
disallows this, but it would be too restrictive for both de- 
sign and composition. It is the sort ofthing that is unlikely 
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to happen by accident. However, the only real safeguard is 
the careful scrutiny of each refinement pattern. 

We have completed an initial implementation of our 
methodology sufficient to demonstrate its feasibility. The 
tool accepts as input a collection of refinement patterns, 
an abstract architecture, and a concrete architecture. The 
tool matches instances of the patterns on the abstract and 
concrete architectures with no user intervention. It makes 
no attempt to generate instances at this time. One correct 
composition of refinements is found, if it exists, although in 
general there may be many possible correct compositions. 
Specific failures are reported if there is not complete cov- 
erage. Any constraints on the application of a refinement 
pattern are checked automatically. This tool was used in 
the compiler and the power-control application. 

Future work involves the development and evaluation of 
a handbook of architectural refinement patterns. Good de- 
signers tend to use well-established architectural styles, in- 
cluding both basic idioms (such as pipe-filter, client-server, 
and layering) and reference models (such as the ISO OSI 
7-layer model [16]). We are now expanding our library 
to relate more styles as well as to elaborate more config- 
urations involving the styles in the paper. Eventually, we 
would like to have a large enough library to support "in- 
dustrial strength" architecture design. For example, we 
would like to be able to start with an abstract architec- 
ture for a large system, in say a dataflow style, refine it 
into architectures in a dominant commercial style, such 
as client/server, and then refine that architecture into an 
implementation-level architecture that specifies the exact 
forms of communication. In developing a pattern library, 
we will be concerned with more than correctness. In par- 
ticular, we want to use architectural refinement patterns 
to achieve a greater degree of system predictability. For 
example, it would be useful to have refinement patterns 
that optimize performance for specific processors or, more 
generally, for a given computing and network environment. 

Our longer-term objective is to develop a practical ar- 
chitecture synthesis tool that is driven by a broadly useful 
pattern library. The tool will enforce a design discipline 
similar to the one enforced by commercial hardware syn- 
thesis tools. These tools gain much of their power from 
the use of clearly defined and reusable styles: typically, 
register-transfer, logic, and gate-level styles. A pattern li- 
brary of the sort proposed in this paper is expected to 
enable effective synthesis of software architectures. 

APPENDIX 

I. LOWER LEVEL COMPILER ARCHITECTURES 

The textual specifications for the two implementations of 
the compiler architecture make extensive use of imported 
types and styles, which are not defined in this paper. The 
specifications have a straightforward translation into logic. 
The following is the full level-2 specification. 

compiler_L2: MODULE 
[char.iport: SEQ(character) -> code.oport: code] 

IMPORT character, code, token, binding, ast 
FROM compiler.types 

IMPORT Function FROM Functional.Style 
IMPORT Pipe, Finite.Stream, Connects 

FROM Process.Pipeline.Style 
IMPORT Variable, Reads, Writes 

FROM Shared.Memory.Style 
IMPORT Start.After.Finish.Of 

FROM Batch.Sequential.Style 
COMPONENTS 

lexical.analyzer.module: MODULE 
[char.iport: SEQ(character) 

-> token.oport: Finite.Stream(token)] 
EXPORTING lexical.analyzer, symbol.table 

IMPORT character, token, binding 
FROM compiler.types 

IMPORT Function FROM Functional.Style 
IMPORT Variable, Reads, Writes 

FROM Shared.Memory.Style 
COMPONENTS 

lexical.analyzer: Function 
[char.iport: SEQ(character) 

-> token.oport: Finite.Stream(token)] 
symbol.table: Variable[SEQ(binding)] 

CONFIGURATION 
vrite.bind: 

Writes(lezical.analyzer, symbol.table) 
read.bind: 

Reads(lexical.analyzer, symbol.table) 
END lexical.analyzer.module 
parser: 
Function[token_iport: Finite.Stream(token) -> ] 

analyzer.optimizer:  Function[ -> ] 
code.generator:      Function! -> code.oport: code] 
abstract.syntax.tree: Variable[ast] 

CONNECTORS 
token.pipe: Pipe[Finite.Stream(token)] 

CONFIGURATION 
token.flou: 

Connects(token.pipe, token.oport, token.iport) 
read.bind: 
Reads(analyzer.optimizer, 

lexical.analyzer.module!symbol.table) 
nrite.base.ast: Writes(parser, abstract.syntax.tree) 
read.base.ast: 

Reads(analyzer.optimizer, abstract.syntax.tree) 
write.full.ast: 

Writes(analyzer.optimizer, abstract.syntax.tree) 
read.full.ast: 

Reads(code.generator, abstract.syntax.tree) 
precedence.l: 

Starts.After.Finish.Of(analyzer.optimizer, parser) 
precedence.2: 

Starts.After.Finish.Of(code.generator, 
analyzer.optimizer) 

END compiler_L2 

The level-3 compiler architecture employs a common im- 
plementation of the batch-sequential style. In particular, 
the batch processing in the level-2 compiler is implemented 
in terms of a main program and subroutines, as illustrated 
in Figure 11. This implementation is justified by Pattern 
5, which was presented in the body of the paper. 

The wiring at level 3 is constrained by the temporal- 
precedence assertions at level 2. 

precedence.l: 
Starts.After.Finish.Of(analyzer.optimizer, parser) 

precedence_2: 
Starts.After.Finish.Of(code.generator, 

analyzer.optimizer) 

We have to make sure that the transfer of control sat- 
isfies this temporal ordering of the computation. Two ap- 
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Fig. 11.   Third level in architecture hierarchy for compiler 

plications of Pattern 5 can be used to guarantee that the 
ordering relations are satisfied independently. The hori- 
zontal composition of the two applications of Pattern 5 
guarantees that the composite architecture satisfies both 
orderings. 

The composite level-3 architecture is given below. 

'> code.oport: code] 
binding, ast 

Receiver, Before 

compiler_L3: MODULE 
[char.iport: SEQ(character) 

IMPORT character, code, token 
FROM compiler.types 

IMPORT Function FROM Functional.Style 
IMPORT Pipe, Finite.Stream, Connects 
FROM Process.Pipeline.Style 

IMPORT Variable, Reads, Writes 
FROM Shared.Memory.Style 

IMPORT Enabling.Signal, Sender 
FROM Control.Transfer.Style 

COMPONENTS 
main: Function[ -> ] 
lexical.analyzer.module: MODULE 

[char.iport: SEQ(character) 
-> token.oport: Finite_Stream(token)] 

EXPORTING lexical.analyzer, symbol.table 
IMPORT character, token, binding 
FROM compiler.types 

IMPORT Function FROM Functional.Style 
IMPORT Variable, Reads, Writes 
FROM Shared.Memory.Style 

COMPONENTS 
lexical.analyzer: Function 

[char.iport: SEQ(character) 
-> token.oport: Finite.Stream(token)] 

symbol.table: Variable[SEQ(binding)] 
CONFIGURATION 

vrite.bind: 
Writes(lexical.analyzer, symbol.table) 

read.bind: 
Reads(lexical.analyzer, symbol.table) 

END lexical.analyzer.module 
parser: 
Function[token.iport: Finite.Stream(token) 

analyzer.optimizer:  FunctionC -> ] 
code.generator: 
Function[ -> code.oport: code] 

abstract.syntax.tree: Variable[ast] 
CONNECTORS 

token.pipe:    Pipe[Finite_Stream(token)] 
start.main, start.lex, start.parse, parse.finish 

start.opt, opt.finish, start.gen, gen.finish, 
main.finish: Enabling.Signal 

CONFIGURATION 
token.flov: 

Connects(token.pipe, token.oport, token.iport) 
read.bind: 

-> ] 

Reads(analyzer.optimizer, 
lexical.analyzer.module!symbol.table) 

write.base.ast: 
Writes(parser, abstract.syntax.tree) 

read.base.ast: 
Reads(analyzer.optimizer, abstract.syntax.tree) 

write.full.ast: 
Writes(analyzer.optimizer, abstract.syntax.tree) 

read.full.ast: 
Reads(code.generator, abstract.syntax.tree) 

rcvr.start.main:   Receiver(start_main, main) 
sndr.start.lex:   Sender(start_lex, main) 
rcvr.start.lex: 

Receiver(start.lex, 
lexical.analyzer.module!lexical.analyzer) 

sndr.start.parse:  Sender(start.parse, main) 
rcvr.start.parse:  Receiver(start.parse, parser) 
sndr.parse.finish: Sender(parse_finish, parser) 
rcvr.parse.finish: Receiver(parse_finish, main) 
sndr.start.opt:   Sender(start.opt, main) 
rcvr.start.opt: 

Receiver(start.opt, analyzer.optimizer) 
sndr.opt .finish: 
Sender(opt.finish, analyzer.optimizer) 

rcvr.opt.finish:  Receiver(opt_finish, main) 
sndr.start.gen:   Sender(start.gen, main) 
rcvr.start.gen: 
Receiver(start.gen, code.generator) 

sndr.gen.finish:   Sender(gen.finish, code.generator) 
rcvr.gen.finish:  Receiver(gen_finish, main) 
snrd.main.finish:  Sender(main.finish, main) 

start_main.before.lex: 
Before(start.main, start.lex) 

start.main.before.parse: 
Before(start.main, start.parse) 

start.parse.before.finish: 
Before(start.parse, parse.finish) 

finish.parse.before.start.opt: 
Before(parse.finish, start.opt) 

start.opt.before.finish: 
Before(start.opt, opt.finish) 

finish.opt_before_start.gen: 
Before(opt.finish, start.gen) 

start_gen_before.finish: 
Before(start_gen, gen.finish) 

finish.gen_before.main: 
Before(gen.finish, main.finish) 

END compiler.L3 

The associations between these two levels are 

precedence.1 —> finish.parse_before_start.opt 
precedence_2 —> finish_opt_before_start_gen 
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ABSTRACT 

The design of a large system typically involves the de- 
velopment of a hierarchy of different but related ar- 
chitectures. A criterion for the relative correctness of 
an architecture is presented, and conditions for archi- 
tecture composition are defined which ensure that the 
correctness of a composite architecture follows from the 
correctness of its parts. Both the criterion and the com- 
position requirements reflect special considerations from 
the domain of software architecture. 

The main points are illustrated by means of familiar 
architectures for a compiler. A proof of the relative 
correctness of two different compiler architectures shows 
how to decompose a proof into generic properties, which 
are proved once for every pair of architectural styles, 
and instance-level properties, which must be proved for 
every architecture. 

1    Introduction 

The development of an architecture for a large system is 
a complicated task that can be made simpler by means 
of a stepwise development methodology. Ideally, an ar- 
chitect would use a hierarchical approach in which the 
composition of lower-level architectures is guaranteed 
to implement a higher-level architecture. The founda- 
tions for such an approach must include a method for 
proving that one architecture implements another ar- 
chitecture and a means of composing architectures so 
that the composite architecture is correct if all of its 
components are correct. We examine both problems in 

This research was supported by the Advanced Research 
Projects Agency under Rome Laboratory contract F30602-93- 
C-0245. 

this paper. We work at the logic level, independent of 
a particular architecture definition language. Thus, our 
results can be applied to a large class of such languages. 

An architecture hierarchy is a sequence of two or more 
individual architectures that may differ with respect to 
the number and kind of objects and connections. For 
example, an abstract architecture containing functional 
components related by dataflow connections may be im- 
plemented in a concrete architecture in terms of pro- 
cedures, control connections, and shared variables. An 
abstract architecture usually is smaller and easier to un- 
derstand; a concrete architecture usually reflects more 
implementation concerns. A given architecture can be 
homogeneous (consisting of one style) or heterogeneous 
(consisting of multiple styles). Garlan and Shaw [7] 
provide a taxonomy of some common styles, including 
dataflow, pipe-and-filter, client-server, and event-based 
systems. 

Before we can consider the relative correctness of two 
architectures, we first must decide on the meaning of 
the architectures. Suppose that, to facilitate system 
upgrades and maintenance on a particular system, we 
design a pipeline architecture that restricts the system 
topology to a linear sequence of filters. If a concrete 
architecture implements the pipeline, but additionally 
introduces feedback loops, the raison d'etre behind the 
original pipeline architecture is no longer valid. In ef- 
fect, there is no reason to specify a pipeline in the first 
place if all possible feedback loops are allowed in its 
implementation. 

Therefore, we make a completeness assumption about 
a given architecture. Informally, the assumption is that, 
if an architectural fact is not explicit in the architecture, 
or deducible from the architecture, then the fact is not 
intended to be true of the architecture. In the pipeline 
example, it is not possible to infer the existence of a 
feedback loop from the linearity constraint, so we as- 
sume that no feedback loop is allowed in an implemen- 
tation of the architecture. In general, an architecture 
(whether static or dynamic) can contain an unbounded 
number of facts. 
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The completeness assumption requires a correctness 
criterion that differs from the standard one (that is 
based on theory extension). In our application of the 
correctness criterion, we make a clear distinction be- 
tween type-level properties that must be proved only 
once for every pair of architectural styles and instance- 
level properties that must be proved for every pair of 
architectures. This decomposition greatly simplifies cor- 
rectness proofs and the statement of the mapping be- 
tween two architectures. Composition is possible under 
the completeness assumption provided that certain syn- 
tactic constraints are satisfied. 

This paper is organized as follows. The next two sec- 
tions introduce basic architectural concepts and illus- 
trate the correctness problem for architectures. Sec- 
tion 4 defines the correctness criterion in terms of logi- 
cal theories, independent of any particular architectural 
definition language. Sections 5-7 explain how to use 
the criterion. Of particular interest is the construction 
and validation of the mapping between architectures. 
Section 8 defines necessary and sufficient conditions for 
architecture composition and defines two specific com- 
position operators. Section 9 discusses related work, 
and the conclusion summarizes our results and discusses 
their possible implications for future research in soft- 
ware architecture. 

2    Basic Architectural Concepts and Notation 

A software architecture is represented using the follow- 
ing concepts. 

1. Component: An object with independent exis- 
tence, e.g., a module, process, procedure, or vari- 
able. 

2. Interface: A typed object that is a logical point of 
interaction between a component and its environ- 
ment. 

3. Connector: A typed object relating interface 
points, components, or both. 

4. Configuration: A collection of constraints that 
wire objects into a specific architecture. 

5. Mapping: An relation between the vocabularies 
and the formulas of an abstract and a concrete ar- 
chitecture. The formula mapping is required be- 
cause the two architectures can be written in dif- 
ferent styles. 

6. Architectural style: A style consists of a vocab- 
ulary of design elements, a set of well-formedness 
constraints that must be satisfied by any architec- 
ture written in the style, and a semantic interpre- 
tation of the connectors. 

Components, interfaces, and connectors are treated as 
first-class objects — i.e., they have a name and they are 
refineable. Abstract architectural objects can be decom- 
posed, aggregated, or eliminated in a concrete architec- 
ture. The semantics of components is not considered 
part of an architecture, but the semantics of connectors 
is. 

We will use a simple notation for describing an ar- 
chitecture. Suppose that we want to describe the inter- 
action between the parser and the semantic analyzer in 
a standard compiler. A dataflow architecture for this 
interaction is contained in Figure l.1 

parse_analyze: MODULE 
IMPORT ... 
EXPORT ... 
COMPONENTS 

parser Function 

analyzer Function 

INTERFACES 
oast OPORT [ast] OF parser 

iast IPORT [ast] OF analyzer 

CONNECTORS 
ast.channel Dataflow_Channel[ast] 

CONFIGURATION 
Connects(ast .channel, oast, iast) 

END parse_analyze 

Figure 1: Example Dataflow Architecture 

The parser and analyzer are modeled as functional 
components. The parser (which accepts a sequence of 
tokens) has an output port oast that supplies an ab- 
stract syntax tree. The analyzer accepts a values of type 
ast (producing values of the same type). The dataflow 
connection is wired to the right ports by the assertion 

Connects(ast_channel, oast,  iast) 

where Connects(c,o,i) means that connection c links 
output port o to input port i. All of the objects that 
make up the architecture are wrapped by a module, 
which can selectively import and export objects. In this 
example, we import some useful compiler types and the 
predefined functional and dataflow styles. 

The dataflow architecture separates and names all 
components, ports, and connections. Observe that the 
signature of a component is not hard-wired to the com- 
ponent. A signature consists of individual ports that 
can be referenced and refined independently of the as- 
sociated component. Interface separation will be useful 
later for architecture composition. 

lThe precise syntax is not important for the purposes of this 
paper. Later, we formalize this architecture in logic, and that is 
the representation that is intended to express the intentions of 
the designer. 
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3    Illustration of the Problem 

Suppose that we want to design the architecture for a 
compiler. A standard dataflow model of a compiler is 
depicted at the top of Figure 2. The diagram is used 
only as an informal pedagogical aid; it is not intended to 
be a formal specification. Boxes denote functional com- 
ponents and arrows denote directional dataflow between 
ports. The labels on arrows denote types or value do- 
mains. An object cannot be transmitted between ports 
unless its type is compatible with the types of the ports. 
The diagram is assumed to be complete in that there 
can be no other functional components, ports, or data 
flows.2 

LEVEL 1 

chars c 
Lexical 

Analyzar 
i***-+a Parser » "t    .<■ Analyzer/ 

Optimizer 
i™' «a (Jode 

Generator 
1 code 

T bindings ¥ 

LEVEL2 

write(ast) * 
read(ai wnte(ast) 

N read(ul) 
Tree 

«TV 
chare c 

Lexical 
Analyzer 

L •*■ „ Parser 
Analyzer/ 
Optimizer 

Code 
Qeneralor 

1 code 

*--. 1—  \ 

«•(binding) 

eadtbindrr a) 
readfbtndim !) 

'Symbol^ 

[    I functional component        o inputport 

(    ) data structure component  • outputport 

 »- dataflow connector 

». pipe connector 

 » ordering constraint 

---•»■ read/write connection 

Figure 2: Two architectures for a compiler 

Figure 2 also contains a concrete, hybrid architec- 
ture for the compiler that implements the dataflow style 
in terms of pipe-filter, batch-sequential, and shared- 
memory styles. Abstract signatures are changed in the 
concrete architecture, dataflow connections are imple- 
mented in several ways, through a pipe and shared data 
objects, and precedence relations are used to prevent di- 
rect flow of data from the parser to the code generator. 

To illustrate the correctness problem, we focus on 
the implementation of the dataflow channel between the 
parser and analyzer in terms of the reading and writ- 
ing of a shared abstract syntax tree. The implementa- 
tion architecture is described textually in Figure 3. The 
shared abstract syntax tree is represented as a variable.3 

The read and write relations are not named; they they 
are primitives that cannot be refined. 

2 A dataflow connection is treated here as an intransitive 
relation. 

3 The shared abstract syntax tree might be represented as an 
encapsulated data type in a real compiler. If we had chosen that 
representation, the architecture would involve calls to access func- 
tions that read and write the internal variable used to represent 
the tree. 

concrete_parse_analyze:  MODULE 

IMPORT  ... 
EXPORT  ... 
COMPONENTS 

parser 
analyzer 
tree 

CONFIGURATION 
Writes(parser,  tree) 
Reads(analyzer,  tree) 

END concrete_parse_analyze 

Function 
Function 
Variable[ast] 

Figure 3: Concrete Shared-Memory Architecture 

The intended associations between the two architec- 
tures are 

oast —> 
iast —> 
ast-channel —> tree 

The first two associations indicate that the abstract 
ports do not appear in the concrete architecture, result- 
ing in a new concrete signature for the parser and the 
analyzer. This change in signature reflects the differ- 
ence between port-to-port communication and shared- 
memory communication by direct reading and writing of 
a shared tree. As an analagous example, consider two 
procedures that communicate through direct calls. If 
we reimplement this architecture so that the procedures 
communicate only indirectly through a shared variable, 
the signature of both procedures would change. The 
third association says that dataflow connection is im- 
plemented by the abstract syntax tree.4 

We are interested in three specific questions: 

e Does the concrete shared-memory architecture im- 
plement the abstract dataflow architecture under 
the completeness assumption and with respect to a 
given mapping between architectures? 

e Is the mapping between the two architectures 
meaningful? A relative correctness proof is only as 
meaningful as the mapping between architectures. 

• Assuming that the shared-memory implementation 
of dataflow is correct, under what conditions can it 
be composed with correct implementations of other 
parts of the compiler to form a correct and complete 
compiler architecture? 

The running examples in the paper provide a detailed 
answer to each of these questions. 

4The tree is a component. A component can be used to im- 
plement other components, or it can be used in conjunction with 
connectors to implement a connection. 
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4 Formal Criterion of Correctness 

Because of the completeness assumption, we must prove 
not only that a concrete architecture does not lose prop- 
erties of the abstract architecture, but also that no new 
properties about the abstract architecture can be in- 
ferred from the concrete architecture. There are stan- 
dard mathematical concepts that can be used for this 
purpose. 

An interpretation mapping is an association between 
the constants, functions, and predicates of an abstract 
and a concrete theory. An interpretation mapping is 
called a theory interpretation if the mapped axioms of 
the abstract theory become theorems of the concrete 
theory. Note that theory interpretation is just Hoare's 
approach to reasoning about the correctness of imple- 
mentations [9]. We additionally require that, if a sen- 
tence is not in the abstract theory, its image is not in 
the concrete theory. 

Let 0 and 0' be theories associated with an abstract 
and a concrete architecture, respectively. Let I be an 
interpretation mapping from 0 to 0'. Then, we must 
have, for every sentence F, 

if  F£0 then  1(F) € & 

for I to be a theory interpretation. 
Since we require that an architecture be complete 

with respect to a given level of detail, we additionally 
must know that the concrete architecture adds no new 
facts about the abstract architecture. Therefore, we re- 
quire that 

if F<£0 then 1(F) $0' 

This says that, if a sentence is not in the abstract the- 
ory, its image cannot be in the concrete theory. A the- 
ory interpretation I having this property is said to be 
a faithful interpretation. Observe that & is a conserva- 
tive extension of 0 provided the identity map faithfully 
interprets 0 in 0'. 

Note that a concrete architecture can contain facts 
not related to the abstract architecture. Therefore, a 
concrete architecture can introduce new styles and new 
objects. For example, a concrete architecture may in- 
troduce a specification for part of the runtime environ- 
ment, such as a wrapper for remote procedure calls that 
will replace the standard one provided by the operating 
system. 

5 First-Order Architectures 

We want to leave open the choice of language for spec- 
ifying an architecture. Therefore, we represent archi- 
tectures as first-order theories, but our correctness and 
composition results in no way depend on this choice. 

The representation of the dataflow and the shared- 
memory architectures in Figures 1 and 3, respectively, 
depend on the styles used in their construction. The 
dataflow-style vocabulary contains predicates for de- 
scribing functional components, ports, values associated 
with ports, dataflow channels, values associated with 
dataflow channels, and connections of channels to ports. 
More precisely, the following sorts denote the first-class 
objects in a dataflow theory: channel, function, iport, 
and oport. We also make use of sorts bool and val, where 
val denotes the set of all possible values. The dataflow 
style has the following operations. 

OutPort: oport x function —► bool 
Supplies: oport x val —» bool 
InPort: iport x function —► bool 
Accepts: iport x val —» bool 
Carries: channel x val —► bool 
Connects: channel x oport x iport -* bool 

The number of functions, ports, and channels that can 
appear in a particular architecture is unbounded. We do 
not bother to state the general well-formedness axioms 
associated with this style, or with others. An example 
of a general dataflow axiom is that every function must 
have at least one port. 

The shared-memory style uses the reading and writ- 
ing of a variable for intercommunication. Shared- 
variable communication is modeled using a call site 
as an interface between a function and the shared 
variable.5 A call site serves the same purpose as a port 
in the dataflow style. The name of every different call 
site must be unique. The shared-memory style has the 
following style-specific sorts: variable denotes the set of 
all possible variables and site denotes the set of all pos- 
sible call sites of which there are two kinds. The sort 
rsite denotes the sites that read, or input, values; the 
sort wsite denotes the ones the write, or output, values. 
The signature for the shared-memory style is 

Holds: variable x val —* bool 
CallSite: site x function —> bool 
Writes: wsite x variable —► bool 
Puts: wsite x val —► bool 
Reads: rsite x variable —► bool 
Gets: rsite x val —► bool 

Table 1 contains (partial) theories associated with 
the two architectures in Figures 1 and 3. ©D denotes 
the dataflow theory and 0M the shared-memory the- 
ory. Dataflow theory 0D says that the parser and an- 
alyzer are functional components, the parser's output 
port can supply values of type ast, the analyzer's input 

BWe could have chosen not to model call sites or some equiv- 
alent interface object. We made the decision in order to simplify 
the style mapping from dataflow to shared-memory. 
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port can accept values of type ast, the dataflow chan- 
nel can transmit values of type ast, and the channel is 
wired to the ports. The shared-memory theory 0M re- 
places ports with call sites, introduces a variable that 
can hold values of type ast, and employs read and write 
operations on the variable. 

6    Mappings 

It is useful to distinguish between two kinds of map- 
pings. 

• An name mapping associates the objects declared 
in an abstract architecture with objects declared in 
a concrete architecture. 

• A style mapping says how the constructs of the 
abstract-level style can be implemented in terms 
of the constructs of the concrete-level style. More 
specifically, it maps all atomic formulas of the 
abstract-level theory to formulas of the concrete- 
level theory. 

The two are combined to form an interpretation map- 
ping. 

6.1    Name Mapping 

We saw a specification of the intended associations be- 
tween the objects in the two architectures earlier. The 
only difference in the formal mapping is that we intro- 
duce the implicit call sites. Let IN be name mapping 

oast i—► sitei 
iast i-+ site2 

ast-channel h-* tree 

which relates the two architectures. The domain of a 
name mapping can be extended to include all abstract- 
level terms by mapping variables to themselves. 

6.2    Style Mapping 

Let Is denote the style mapping in Figure 4 from the 
dataflow style to the shared-memory style. The U de- 
note terms, which in our examples are restricted to 
logical constants and variables.6 The last association 
specifies the implementation strategy. It says that any 
instance of Connects(ti,t2,t3) can be implemented by 
having call site t2, corresponding to output port t2, be 
the interface point that provides the values used in the 
writing of variable ii, corresponding to channel *i. On 
the receiving end of a transmission, input port and call 
site t3 serve the same function. The other associations 
say that channels are mapped to variables, that output 
ports are mapped to calls that supply values, and that 

input ports are mapped to calls that receive values. The 
Puts and Gets predicates ensure that the right kind of 
site is associated with the each kind of port. 

6.3    Interpretation Mapping 

An interpretation mapping I is determined from a name 
mapping IN and a style mapping Is, as follows: for 
every predicate P, all terms h,t2,..., tn, every variable 
x, and all formulas F and G of the abstract language, 

I(P(h,t2, ...,*«)) 
I(^F) 

I(F A G) 
I(F V G) 

I{F D G) 
I(VxF) 

I(3xF) 

Is(P{lN(ti),IN(t2),. 

1(F) M(G) 

1(F) V 1(G) 
1(F) D 1(G) 

WxI(F)7 

3xI(F) 

,lN(tn)) 

Let I£ denote the interpretation mapping from theory 
0D to theory 0M- Both the ground facts and general 
axioms in 0D must be mapped. For example, 

I£(Connects(astjchannel, oast, iast) 
=    Is(Connects(Iff(astjchannel), 

IN(oast),lN(iast))) 
— Is(Connects(tree, sitei, site2)) 
- Writes (sitei, tree) A Reads (site2, tree) 

which is the intended implementation. 

7    Proof Obligations 

A relative correctness proof involves two steps. First, 
we must prove the correctness of the relevant style map- 
ping. The proof is performed only once; it need not be 
repeated when the two styles are used. Second, we must 
demonstrate the relative correctness of the two archi- 
tectures with respect to the interpretatation mapping 
formed using the two styles. 

7.1    Proof of a Style Mapping 

The crucial part of the proof is concerned with the va- 
lidity of the connector mapping. We would like to know 
that a dataflow connection can be implemented by the 
reading and writing of a shared memory location, which 
is modeled as a variable. This requires a definition of 
the semantics of both forms of connection. We choose 
an axiomatic style of semantic definition suitable for de- 
scribing both safety and fairness properties. 

6Note that our languages contain no function symbols.   A 
treatment of them can be found in [6]. 

7In general, the range of quantifiers must be restricted to a sub- 
set of the concrete domain, see [6]. But no restriction is required 
for our example, because every concrete-level object implements 
an abstract-level object. 

85 



6>D 0M 

Function (parser). Function(parser) 
Function(analyzer) Function(analyzer) 
OutPort(oast, parser) V ariable(tree) 
Vv[Supplies(oast,v) D ast(v)] Vv[ast(v) D Holds(tree, v)] 
InPort(iast, analyzer) CallSite(sitei, parser) 
Vv[ast(v) D Accepts(iast, v)] Vv[Puts(sitei,v) D ast(v)] 
Channel (astjchannel) Writes(parser, tree) 
Vv[ast(v) D Carries(ast.channel, v)] CallSite(site2, analyzer) 
Connects (astjchannel, oast, last) Vv[ast(v) D Gets(site2,v)] 

Reads(analyzer, tree) 

Table 1: Partial Dataflow and Shared-Memory Theories 

Function (ti) 
OutPort(h,t2) 
Supplies(ti,t2) 
InPort(t1,t2) 
Accepts(ti,t2) 

Channel(t\) 
Carries (t i,^) 

Connects (ti, t2, f 3) 

Functional) 
CallSite(h,t2) A 3vPuts(ti,v) 
Puts(ti,t2) 
CallSite(ti,t2) A 3vGets(h,v) 
Gets(tut2) 
Variable(ti) 
Holds(t\,t2) 
Writes(t2,h) A Reads(t3, ti) 

Figure 4: A Style Mapping 

In particular, we use a temporal logic, called the Tem- 
poral Logic of Actions (TLA) [11], to define dataflow 
and shared-memory communication: 

• The semantics of dataflow places minimal restric- 
tions on communication. It says that a multiset of 
values is transmitted between components. Values 
can be "lost" and out of order. The fairness con- 
dition is that eventually a send or receive occurs 
unless both are impossible. One reason for impos- 
sibility could be failure of the communications line. 

• The semantics of shared memory requires that 
tranmission preserve ordering and that values can- 
not be lost. The fairness condition is that all values 
written into shared memory will eventually be read 
from the memory if it is possible to read them. 

For comparison purposes, the appendix contains an op- 
erational definition of the two forms of communication 
in standard CSP [8], following Allen and Garlan [2]. 
CSP can be used to model the safety properties, but 
not the fairness properties. 

We formalize the semantics of dataflow and shared- 
memory connections as TLA theories. We define an 
interpretation mapping y° from the dataflow seman- 
tics to the shared-memory semantics and show that it 
is a theory interpretation. This is sufficient to establish 

that dataflow can be implemented with a single shared 
memory location and that, if the shared-memory com- 
munication is fair, the dataflow communication is fair. 

We make use of the following TLA notation. 
Notation    Meaning 

list of variables in the old state 
list of variables in the new state 
action—relation between old and new states 
possible to perform action 
Av(f = f) 
AA(f?f) 
always F 
-1D-1F (sometimes F) 
00(A) f V nO-iEnabled (A)f 

The last line says that eventually action A must either 
be taken or become impossible to take. For example, a 
precondition for execution may not be satisfiable. 

In the proof, we make use of two TLA inference rules. 

/ 
/' 
A 
Enabled 

[At 
(At 
OF 
OF 
WFf(A) 

STL4. 
FDG 

OF DOG 

where F and G are temporal formulas, says that, if F 
implies G, the always F implies always G. 

TLA2. [At 3 [B\, 
°[Af ^ °[B\a 
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is a simplification of Lamport's TLA2 axiom that suf- 
fices for our purposes. It says that, if action A implies 
B, then always A implies always B. 

Figures 5 and 6 contain the TLA theories of dataflow 
and shared-memory, respectively. The quoted boldface 
symbols are logical constants. In Figure 5, the dataflow 
connector is denoted by the flow state function, which 
is a multiset, with three operators: with is the insertion 
operator, less is the deletion operator, and choose is 
used to select an element from a nonempty multiset. 
Values carried by the connector must be in set Type, 
the set of all possible values. The dataflow semantic 
theory is defined to be $, which says three things: the 
dataflow has to start in the initial state, it must always 
be possible to perform a send or a receive operation, and 
the communication line eventually responds to send and 
receive requests if it is possible to do so (fairness). The 
shared-memory semantic theory, called *, is defined in 
a similar manner. 

Init$ 
A 

ev = "ready" 
flow = "emptybag" 

^sender 
det 

A 
A 
A 

ev = "ready" 
ev' = "send" 
flow' = flow 
val' £ Type 

^receiver 
def 

ev = "ready" 
A ev' = "receive" 
A flow' = flow 
A val' = val 

Oflow 
def 

A 
A 
A 

ev = "send" 
ev' = "ready" 
flow' = flow with val' 
val' = val 

Inflow 
def 

A 
A 
A 
A 

ev = "receive" 
ev' = "ready" 
flow y£ "emptybag" 
val' = choose(flow) 
flow' = flow less val' 

Nflow 
def 

Sflow V "K-flow 

AT det 
tffl ow V £>sender V rCreceiver 

w 
def 

(ev, val flow) 

* def m ow) 7mt*ADrA/l„AWP„( 

Figure 5: Semantics of Dataflow 

Interpretation mapping J^ maps constants, state 
functions, and operators of the dataflow semantics to 
those of the shared-memory semantics 
by 

Initij/ 

Vvwriter 

TZri eader 

w„ 

TZn 

def 

def 

def 

def 

def 

A 
A 

A 

A 

A 

A 

A 

A 

A 

A 
A 

A 

A 

op = "ready .write" 
mem = "undefined" 

op = "ready .write" 
op' = "write" 
mem' = mem 
val' € Type 

op = "ready .read" 
op' = "read" 
mem' = mem 
val' = val 

op = "write" 
op' = "ready .read" 
mem' = val' 
val' = val 

op = "read" 
op' = "ready .write" 
mem ^ "undefined" 
mem i  val' 
val' = mem 

Mr, 
M 
u 
* 

def 

def 
''mem V "vn 

— A'lmem V 'Muriter V K-reader 

* (op, val, mem) 

=f Inü* A U[M]U A WFu(Mmem) 

Figure 6: Semantics of Shared Memory 

ev h-► op 
flow 1—► mem 
"emptybag" I—► "undefined" 
"ready" 1—» either ("ready .write", 

"ready .read") 
"send" 1—► "write" 
"receive" 1—► "read" 
t\ with t% I—y *2 
t\ less *2 t—► «a 
choose(t\) i—> *i 

J^ is defined 

where t\ and ti are terms. The last three associations 
interpret multiset operations in the context of our spe- 
cific weak fairness condition on shared memory. 

To show that J™ is a theory interpretation, we need 
to prove that * D J^($). The first step is to prove 
that 

Init* D jr°(Init*). (1) 

Applying ^ to Init$ we get: 

op = either("ready.write", "ready.read") 
A mem = "undefined". 

Hence (1) holds. The second step is to show that 

a[M]uD42(n[Sf\a). (2) 
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We can easily show that 

W'writer     3     *^i ("sender) 

Threader     ^     -^i \R-receiver) 

Wmem    D    J%{Sflow) 

from which we infer that 

(3) 

(4) 

(5) 

(6) 

[M]u 3 4?(M«). 

Applying rule TLA2, we conclude that (2) holds. The 
third step is to show that 

WFu(A*mem) D ^(WF«(^/io«)). (7) 

Prom (3)-(6), we get 

(Mmem)u 3 S£((Afflow)w)- 

Applying rule STL4 twice and the definition of O, we 

get 
00(Mmem)u D noj%({Mfiow)w). 

From the definition of Enabled, we have 

Enabled S°((Affiow)v>) 3 Enabled {Mmem)u- 

Since 

^{Enabled (A/)/««.)«;) 3 Enabled y°((Affiow)w), 

we apply rule STL4 to get 

DO-nEnabled {Mmem)u D OO^J^(Enabled (A/)to»)„), 

from which we conclude that fairness condition (7) 
holds. 

7.2    Relative Correctness Proof 

We must show that J£ is a theory interpretation and 
that it is faithful. A proof of the former is straightfor- 
ward. For example, under i£ the axiom 

Connects(ast.channel, oast, iast) 

is interpreted as 

Writes(parser, tree) 
A Reads(analyzer, tree) 

which is a theorem that follows directly from 0M- 
To show faithfulness, notice that i£ induces a map- 

ping V from shared-memory structures to dataflow 
structures as follows. If J£ maps atomic dataflow for- 
mula P{x) to shared-memory formula F, then V assigns 
to dataflow predicate P the set of shared-memory tuples 
that satisfy F. 

Given a model D of 0D, we can construct a model M 
of 0M as follows. The universe of M is the same as D. 
The assignment to predicates by M is defined as: 

Function    =    {a £ \D\ : D (= Function{a)} 
Variable    =    {a G \D\ : D |= Channel(a)} 

Writes    =    {(a,6)e|I>|2:3c,d€|I?| 
[D \= OutPort(c, a) A 

Connects (b, c, d)]} 

By a theorem stated in [15] and proved in [16], the 
fact that induced mapping V maps M back to D is 
enough to conclude that i£ is faithful. 

8    Composing Architectures 

A useful form of architecture composition is illustrated 
in Figure 7. We want to compose two architectures, 
called "subsystem A" and "subsystem B", into a single 
system architecture. We construct a new architecture 
with components "A" and "B" connected through new 
interfaces. If two conditions are satisfied, the three ar- 
chitectures can be combined to form a composite system 
that is correct if the three subsystems are. 

^O 
Subsystem A 

(A> <B) 

Linking Architecture Subsystem B 

Composite System 

Figure 7: Illustration of Subsystem Composition 

Let 0i and 02 be theories that represent two abstract 
architectures. Let 0[ and 02 be concrete theories in- 
tended to implement 0X and 02, respectively. Two pairs 
of architecture theories can be composed only in ways 
that preserve faithfulness. More precisely, if 

h: 0i -* 0[  and J2: 02 -» ©a 

are faithful interpretations, then we want 

höh: 0iU02^0iU02 

to be a faithful interpretation. (The union of two the- 
ories is the deductive closure of the set-theoretic union 
of the theories.) 

This property holds provided two general conditions 
are satisfied. 
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1. The composite interpretation mapping must be a 
function. For a sentence F, we require that 

VFe0in02 [h(F) = h(F)] 

which guarantees that interpretation mappings h 
and I-i agree on shared objects and shared style 
constructs. 

2. It must not be possible to infer new facts about the 
composite abstract architecture from the composite 
concrete architecture. That is, for language L\ of 
0i and Z/2 of 02, if 

F is a sentence of L\ U L2 

and 
©i U 02 h 1(F) 

then we must prove that 

J(0i) U J(02) r- 1(F). 

The intuition behind the second condition can be il- 
lustrated by means of a simple example. Consider an ar- 
chitecture in which there is a dataflow connection from 
A to B and another architecture that has dataflow con- 
nection from B to C. Suppose that both flows are im- 
plemented correctly in concrete architectures, but that 
in one A writes some variable x and in the other C reads 
a variable x. Each implementation is correct, since nei- 
ther introduces a new dataflow. However, the composite 
concrete architecture reads and writes a;, from which we 
can infer an entirely new abstract dataflow connection 
from A to C. Consequently, the composite abstract ar- 
chitecture is not faithfully interpreted (by the composite 
mapping) in the composite concrete architecture (under 
the original assumption that dataflow is intransitive). 

Although the second condition is a rather strong log- 
ically, it appears to be flexible enough for architecture 
composition. The form of composition illustrated in 
Figure 7 can be handled easily by allowing two abstract 
architectures to share only one component and possibly 
its interface points. Styles can be shared but no other 
objects. These constraints guarantee that the two con- 
ditions above are satisfied, and the desired composition 
can be performed in two steps. 

Another useful form of composition is the chaining 
together of a sequence of correct architectures. Since 
faithful interpretation is transitive, intermediate archi- 
tectures can be omitted in the development of a concrete 
architecture. Intermediate architectures arise because 
we make explicit all important intermediate steps in a 
development, even if they correspond to small architec- 
tural changes. The intermediate architectures need not 
be explicit as long as there is a sequence of instances 

of refinement patterns that connect the first (most ab- 
stract) and last (most concrete) architectures in the se- 
quence. 

We return to the compiler architecture in Figure 2 
to give a specific example of composition. We proved 
that the dataflow connection between the parser and 
the analyzer is implemented correctly by means of the 
reading and writing of the tree. That is, we showed that 
dataflow theory 0D is implemented correctly by theory 
0M with respect to mapping I£- Similarly, we can show 
that the dataflow connection from the lexical analyzer to 
the parser is correctly implemented by the pipeline con- 
nection in the concrete architecture. The two abstract- 
concrete pairs of architectures share a common com- 
ponent, the parser, but no interface points. Therefore, 
our second condition is satisfied and we can compose the 
two pairs directly. (The two mappings are constructed 
to meet the first condition.) No linking architecture is 
needed. 

9    Related Work 

The utility of architecture hierarchies was recognized 
in the 1970s, but architecture hierarchy was studied 
only informally at that time. Several notations were 
developed for describing architectures, including those 
of Jackson [10], Yourdan and Constantine [17], and De- 
Marco [5], but little attention was given to understand- 
ing the relationship between levels of abstraction. 

Moriconi and Hare [14] formalized a relationship be- 
tween levels in a hierarchy and used the technique of 
Hoare [9] to prove the relative correctness of two stylisti- 
cally different architectures. Hoare's technique involves 
a proof of only theory interpretation, and not of faithful- 
ness. They were the first to introduce a completeness as- 
sumption for architectures. An architecture was allowed 
to contain only finitely many objects (constants), which 
enabled them to fully mechanize correctness proofs. The 
completeness assumption, as formalized in this paper, 
applies equally well to infinite architectures. For exam- 
ple, it is possible to quantify over infinite types (such 
as integers) and to reason about dynamic architectures 
with an unbounded number of processes. 

The technique of Hoare has been applied more re- 
cently to architecture by Broy [4], Brinksma [3], and 
others. Broy's component refinements turn out to be 
conservative because interface signatures are preserved, 
but his connection refinements may not be because ad- 
ditional flows could be added to a channel. Brinksma 
justifies channel splitting on the basis of behavioral rea- 
soning; application of his rule can violate the complete- 
ness assumption. 

A Hoare-style representation mapping has been ap- 
plied to dynamic architectures by Luckham et al [12,13]. 
A language called Rapide is used to define executable ar- 
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chitectures based on distributed event processing. Map- 
pings relate concrete events to abstract events and are 
used as the basis for comparative simulation, a tech- 
nique that complements ours. 

The problem of composition of specifications has been 
studied in a general semantic framework by Abadi and 
Lamport [1]. Their results are applicable to any do- 
main, whereas our results are syntactic and specialized 
to the domain of software architecture. The advantage 
of a syntactic constraint is that it can be checked eas- 
ily. The disadvantage is that it is more restrictive than 
semantic composition. Broy [4] gives three operators 
for composing functional-style architectures, but does 
not consider the composition of architectures involving 
multiple styles. 

10    Conclusion 

An architecture for a large, complex system, and even 
some simple systems, will involve multiple levels of de- 
tail expressed in multiple architectural styles. The novel 
contributions of the work reported here are: 

• A formal criterion for proving that one architecture 
implements another architecture, even if they are 
described in different architectural styles. A change 
in the representation of a component, an interface, 
or a connector is handled, but a change in the rep- 
resentation of a type requires a slightly different 
criterion. 

• A decomposition of the mapping between architec- 
tures into type-level properties that are proved once 
for every pair of styles and instance-level properties 
that are proved for every pair of architectures. The 
importance of this decomposition was underscored 
by a proof that the connectors of a common con- 
crete style implement the connectors of a common 
abstract style. The proof was somewhat compli- 
cated, establishing both safety and fairness proper- 
ties, but it does not need to be repeated each time 
the styles are used. 

• Syntactic criteria for composing architectures such 
that the composition of two correct architectures is 
correct. One specific composition operator, which 
is useful for putting together subsystems, allows 
two architectures to be composed provided they 
share only components and their interface points. 
Another composition operator is used to eliminate 
intermediate levels in an architecture hierarchy. 

Our approach applies to any logic used to represent an 
architecture; it does not depend on a particular archi- 
tecture definition language or a particular kind of con- 
nector semantics. A more comprehensive treatment of 

the formal techniques in this paper can be found in a 
companion paper [15]. 

The work reported here may have implications in sev- 
eral subareas of software-architecture research. 

• Language design. An architecture definition lan- 
guage (ADL) should treat all refineable objects, 
including components, interface points, and con- 
nectors, as first-class in the sense that they should 
be named objects with independent meaning. An- 
other implication is that an ADL should make it 
impossible to subvert the completeness assumption. 
For example, an ADL type system should not al- 
low components to be values, which would allow 
interactions to be created indirectly. The last im- 
plication is that an ADL should support the spec- 
ification of two kinds of mappings: style mappings 
and name mappings between architectures. 

• Refinement methodology. It seems clear that 
after-the-fact proof of an architecture hierarchy will 
be very difficult. This is true primarily because 
of the need to establish conservativeness (mod- 
ulo renaming). An incremental development strat- 
egy that minimizes the number and difficulty of 
architecture-specific proofs is needed. One candi- 
date approach involving correctness-preserving ar- 
chitectural transformations is described in [15]. 

• Style design. Styles are an important vehicle 
for organizing reusable architectural design infor- 
mation. We showed that the specification of style 
mappings is a key element of style design, and that 
the semantics of a style can be affected by how the 
style is intended to be used in relation to other 
styles. 
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A    Proof of Connector Mapping in CSP 

We can define the semantics of the dataflow and shared 
memory styles in CSP [8], following Allen and Garlan 
[2]. We make use of the following CSP notation. 

Notation Meaning 
ctP the alphabet of process P 
P\\Q P in parallel with Q 
a-> P a then P 
a-> P\b^>Q    a then P choice b then Q (a^b) 
P\C P without C (hiding) 
f : A—y B f is a function mapping A to B 

We also make use of the count process CT, defined 
as follows. 

CT0   =    (up ■ 
CTn+i    =   (up ■ 

CT\\around - 

CTn+2\down 

CTo) 

>CTn) 

The CSP semantics is essentially the same as the TLA 
semantics. However, a connector is modeled directly 
in TLA by a state function. It is modeled indirectly 
in CSP as a process, which essentially computes the 
state function. Standard CSP cannot be used to express 
fairness of the kind in our example. Therefore, we prove 
only safety. 

The   CSP   semantics   for   the   dataflow   style   is 
DFS    =    Sender || Receiver || Flow 

aSender    =    {oport} 
Sender    =    oport —» Sender 

aReceiver    =    {iport} 
Receiver    =    iport —► Receiver 

aFlow    =    {oport, iport} 
Flow    =    (CToll Flow')\{around, down, up} 

aFlow'    =    {around, down, up, oport, iport} 
Flow'    =    oport —► up —► Flow' 

| around -* Flow' 
| down —► iport —» Flow' 

and the CSP semantics for the shared-memory style is 
SMS    =    Writer || Reader || Var 

aWriter    =    {write} 
Writer    =    write —► Writer 

aReader    =    {read} 
Reader    =    read —> Reader 

aVar    =    {write, read} 
Var    =    write—» read —> Var 

We must show that the shared-memory style is a cor- 
rect implementation of the dataflow style.  Intuitively, 
every behavior of the shared-memory style should cor- 
respond to an allowable behavior of the dataflow style. 
Since the alphabets of the two styles are different, this 
can be done using the CSP change-of-symbol operator 
/: f (write) = oport and /(read) = iport. Hence, the 
correctness proof amounts to showing that f(SMS) C 
DFS, which is straightforward. 
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