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ABSTRACT 

A new instrument, a Fourier transform infrared (FTIR) spectropolarimeter, 

has been developed to characterize the elements of polarization critical optical sys- 

tems. The rotating sample spectropolarimeter measures linear diattenuation (polar- 

ization) and linear retardance spectra of samples over a spectral range from 2.5 to 

20 |-im. The dual rotating retarder spectropolarimeter measures Mueller matrix 

spectra from 3 to 14 p.m. This information provides essential data on the wave- 

length response of polarization elements and the modulation characteristics of spa- 

tial light modulators as a function of wavelength. 

This dissertation describes data reduction algorithms for the rotating sample 

and dual rotating retarder polarimeters. The discussion includes description of 

common sources of systematic errors in polarimetric systems and how many of these 

errors are reduced or removed through the choice of appropriate measurement 

parameters and Fourier analysis of the polarimetric signal. The data reduction algo- 

rithms for spectropolarimetric measurements incorporate the wavelength depen- 

dence of the polarization elements. Self-calibration data reduction methods are 

also described. 

Linear diattenuation, linear retardance, and linear birefringence spectra of 

cadmium sulfide and cadmium selenide multiple order waveplates and three liquid 

crystal materials are presented. Linear diattenuation and linear retardance calibra- 

tion spectra of the polarization elements used in the spectropolarimeter, an infrared 

wire grid polarizer on a zinc selenide substrate and an infrared achromatic quarter 

v 



wave retarder, are also given. Mueller matrix spectra of a cadmium telluride modu- 

lator are given as a function of voltage. The electro-optic coefficient spectrum of 

cadmium telluride calculated from the Mueller matrix spectra is presented. 
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Chapter I 

Introduction 

This dissertation describes the development of the infrared spectropolarime- 

ter, an instrument for the spectral characterization of the polarization properties of 

infrared materials and devices. The instrument is an FTIR spectrometer with a 

polarimeter placed in the sample compartment. The data reduction and instrumen- 

tal configurations for the measurement of infrared polarization spectra, including 

Mueller matrix spectra, are described in this dissertation. The development of this 

metrology technique has included the calibration of the spectrometer, the polarime- 

ter, and the polarization elements of the polarimeter. Calibration spectra have been 

made for each of these components and incorporated into the data reduction 

schemes for each of the various types of instrumental configurations. 

The development of many infrared systems for optical computing, optical sig- 

nal processing, optical interconnects, scene simulation, and neural networks is 

dependent on the spectral polarization characterization of two crucial components, 

polarization elements and spatial light modulators. Lack of spectral data on these 



components has impeded and limited efforts to improve infrared instrumentation; 

this deficiency and the importance of these devices have been widely documented 

[1],[2],[3],[4]. 

Polarization data for polarization elements, polarizers and retardation devices, 

although partially characterized, remains incomplete. For example, the transmis- 

sion spectrum for stock polarizers is available from most manufacturers; in some 

cases, spectra of extinction ratios are available [5]. However, complete polarization 

data - such as retardance data for polarizers, and diattenuation data for retarders - 

is not yet available. 

Spatial light modulators (SLM's) have been characterized to even a lesser 

extent than polarization elements. SLM's are generally conceded to have less than 

desirable response in speed and contrast ratio [6],[7],[8]. Many of the materials tra- 

ditionally used in these devices, such as cadmium telluride, cadmium sulfide, cad- 

mium selenide, zinc selenide, and many others, have not been characterized as a 

function of wavelength. Continued spatial light modulator development requires 

systematic approaches to acquire further polarization data on existing SLM's and on 

potential SLM materials. A whole new class of potential modulator materials, liq- 

uid crystals, are still being characterized in the visible. Very little data has been col- 

lected in the technically more difficult infrared. 

A new instrument, a Fourier transform infrared (FTIR) spectropolarimeter, 

has been developed to characterize the elements of these polarization critical opti- 

cal systems. The spectral capability of the spectropolarimeter permits the investiga- 

tion of the sample's polarization properties in all wavelength regions in the 

mid-infrared simultaneously. The spectropolarimeter produces calibration spectra 



of the wavelength response of polarizing elements and provides essential data on 

the modulation characteristics of spatial light modulators as a function of wave- 

length. 

In addition, extensions of the measurement techniques that were developed as 

part of this research are applicable to other parts of the spectrum and increase the 

flexibility of laser polarimeters. The spectropolarimeter's wide range of capability 

has resulted in a number of spectral polarization measurements ~ Faraday rotation 

spectra of CdTe, used to demonstrate a quality control method for infrared detector 

fabrication; linear birefringence of CdS and CdSe waveplates, used to develop dis- 

persion relations beyond the wavelength range of previously published relations; 

and linear diattenuation and linear birefringence data on liquid crystals, the first 

experimental data of its kind in the infrared. 

The objectives of the research described in this dissertation are to develop a 

new class of instrumentation and measurement techniques to characterize the polar- 

ization properties of infrared samples. This development must include the calibra- 

tion of the spectrometer, the polarimeter, and the polarization elements of the 

polarimeter. Calibration spectra must be made for each of these components and 

incorporated into the data reduction schemes for each of the various types of mea- 

surements. An estimate of the accuracy for each of the measurements must be 

made. Finally, measurements on samples of interest will be made to demonstrate 

the technique. The research should enable researchers to obtain new optical con- 

stants, a deeper understanding of polarization elements, and open the door for 

development of infrared polarizing optical systems. 

This dissertation covers three topics of polarization spectroscopy or spectropo- 

larimetry: the techniques, algorithms, and issues of spectropolarimetry that are 



transportable to any wavelength band, the FTIR spectropolarimeter and the issues 

of infrared spectropolarimetry, and the results and interpretations obtained with the 

FTIR spectropolarimeter. 

The first part of this dissertation is review and overview of spectropolarimetry. 

The first part of Chapter II gives definitions used in this dissertation and a brief 

review of the Mueller calculus and Jones calculus. The second part gives a brief 

review of some of the work in spectropolarimetry in all wavelength bands from the 

ultraviolet to the far infrared. Chapter III discusses basic concepts of polarimetry 

and introduces the important concept of Fourier analysis of polarimetric signals. 

The extension of polarimetry to many wavelengths with discussion of some of the 

issues and problems are also included in this Chapter. Chapter III also describes 

the instrument used to measure infrared spectra, the Fourier transform infrared 

spectrometer, and the polarization elements used in the spectropolarimeter. 

The next several chapters describe the development of the Fourier transform 

infrared spectropolarimeter that is the subject of this dissertation. The rotating 

sample polarimeter and its application to the calibration of the retarders used in the 

Mueller matrix polarimeter are discussed in Chapter IV. Chapter V presents exam- 

ples of data taken with the rotating sample spectropolarimeter including the bire- 

fringence for cadmium sulfide and cadmium selenide and birefringence and 

diattenuation of liquid crystals. Chapter VI describes the Mueller matrix 

spectropolarimeter and develops the data reduction equations that produce the 

measured Mueller matrix. The equations describing the ideal case assuming perfect 

polarization elements are developed first, followed by a discussion of how various 

systematic errors affect the results. The equations that eliminate the largest of these 

errors are then developed. The sources of the residual systematic errors in Mueller 



matrix measurements are discussed in this Chapter. Measurements on a cadmium 

telluride electro-optic modulator using the data reduction equations developed in 

Chapter VI are described in Chapter VII. The electro-optic coefficient spectrum 

and the Mueller matrix spectra from which it is derived are shown. 

Chapter VIII introduces a new formalism for describing polarimetric data 

reduction. A natural extension of this formalism allows for self-calibration of the 

polarimetric data reduction process. This formalism should allow a polarimeter to 

be calibrated for many polarimetric systematic errors without requiring a priori 

knowledge of the type of error and is proposed as the next step for improving the 

accuracy of polarimetric measurements. 

The results and accomplishments of this doctoral research is summarized in 

Chapter IX. This Chapter also discusses future directions for research with the 

infrared spectropolarimeter. 



Chapter II 

Background 

It is appropriate to define several terms that are used throughout this disserta- 

tion. Terminology describing polarization characteristics and elements, methods of 

measurement, and the mathematical systems that describe polarization are reviewed 

in the first half of this Chapter. A brief review of previous work is presented in the 

second half. 

A. Definitions 

1. Polarization Terminology 

Polarimetry is the measurement of the state of polarization of optical radi- 

ation, or the measurement of the change of state of polarization by propagation 

through an optical material [1]. Polarimetry measures the complete state of 

polarization including any unpolarized component. Alternatively, polarimetry mea- 

sures the polarizing characteristics of a sample as well as any change in the degree 

of polarization resulting from propagation through the sample. 

Spectropolarimetry is an extension of polarimetry from a monochromatic or 

quasi-monochromatic wavelength to a spectrally resolved wavelength band or to 

several discrete wavelengths. Laser polarimetry at several discrete wavelengths 

could be termed spectropolarimetry, but for the present purpose spectropolarimetry 

6 



is defined as making polarimetric measurements as a continuous function of wave- 

length over a given spectral band. The techniques developed in this dissertation are 

applicable and useful in laser polarimeters [10]. 

The eigenpolarization states of a polarization element are useful when discuss- 

ing polarization devices. Eigenpolarization states are defined to be the polarization 

states that are transmitted unchanged through a device or material except for 

overall amplitude and absolute phase changes. For every polarization element, 

there are two eigenpolarizations that define the fundamental polarization properties 

of the element. The eigenpolarizations of a polarization element are eigenvectors 

of its corresponding Mueller matrix. Further discussion of eigenpolarizations may 

be found in the references [11],[12],[13]. 

Multiple definitions of the words polarizer and polarization suggest the need 

for exact definitions of polarization elements. The following definitions will be used 

in this work [14].   A polarization element is defined as an optical element that 

alters the polarization state of light such as a dichroic polarizer, a retarder, a diffrac- 

tion grating, or a thin film. A polarizer is an optical element that transmits a fixed 

polarization state independent of the incident polarization state. Although the 

polarization state of the transmitted light is independent of the incident polarization 

state, the intensity of the transmitted light does depend on the incident state. This 

merely describes formally, for example, the effect of changing the orientation of 

linearly polarized light incident on a linear polarizer. The uses of polarizer and ana- 

lyzer in this dissertation follow common usage. 

Diattenuation refers to different amounts of attenuation of the two eigenpola- 

rization states. The transmitted intensity depends on the polarization state of the 

incident beam; the transmitted intensity is a maximum for one eigenpolarization 
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and a minimum for the other. Diattenuation is the more exact terminology for one 

common usage of the word polarization, that of the effect of a polarizer. The diatte- 

nuation T> of an optical element ranges between 0 and 1 or between 0 and 100% 

and is defined 

1,-12 (2-1) 

where /1 and / 2 are the intensity transmittances of the eigenpolarizations (principal 

transmittances) of the element. A diattenuator is an optical element that exhibits 

diattenuation. A perfect polarizer has a diattenuation of 1; for a partial polarizer 

0<£>< 1 . 

Retardance is the polarization dependent phase change associated with a 

polarization element or system. The transmitted phase is a maximum for one eigen- 

polarization state and a minimum for the other eigenpolarization. The difference in 

the phases for the two eigenpolarizations is the retardance. For an anisotropic 

material where the refractive indices for the two eigenpolarization states are n l and 

n 2 the retardance ö is given by 

6 = —(n,-n2)d, 
A. 

where the thickness is d, and X is the wavelength. 

The refractive indices of the two eigenpolarization are determined from the 

index ellipsoid of the medium and the direction of propagation through the medium 

[11],[15]. The birefringence A «of the anisotropic medium is given by the difference 

of the indices 

A n = | n i - n 2 |. (2-3) 



For uniaxial media, the indices are the extraordinary n„ and ordinary n0 refractive 

indices. 

A retarder is a polarization element with a phase difference between the out- 

put beams for incident eigenpolarization states. Many retarder designs utilize the 

phase difference accumulated in transmission through a birefringent medium and 

are called waveplates in common usage. Waveplates represent a subset of retarders. 

Modulation devices such as photo-elastic modulators (PEMs) [16],[17],[18], electro- 

optic modulators [18],[19], or magneto-optic modulators are adjustable or time vary- 

ing retarders. These devices depend on a driving electric, magnetic, or acoustic 

signal to vary the retardance. 

The most common configuration of retarder is the waveplate, a plane parallel 

plate of birefringent material, with the crystal axis oriented perpendicular to the 

propagation direction of light. An appropriate thickness plate d such that 

And = mX/4 (m odd) comprises a so called "quarter wave retarder." If m is one, 

the element truly is a quarter wave retarder and commercially is referred to as a 

"zero order" waveplate or retarder. The zero order waveplate may be inappropri- 

ately thin however. As the wavelength varies, the retardance of the zero order 

waveplate must also vary, unless by coincidence the birefringence were linearly 

proportional to wavelength. Since this doesn't occur in practice, the waveplate is 

only approximately quarter wave for a small wavelength range. For higher order 

waveplates, m = 3,5,..., the effective wavelength range for quarter wave retar- 

dance is even smaller. 

2. The Mueller Calculus 

Quantitative analysis of polarizing systems requires a mathematical formalism 

for describing the polarization state of a light beam and the polarization altering 
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properties of polarization elements. The two principal computational methods for 

treating polarization problems are the Jones calculus and the Mueller calculus. The 

Mueller calculus is used primarily in this dissertation and a summary of the Mueller 

calculus is given here. Further discussion of the Mueller calculus may be found in 

references [11],[15],[20],[21]. 

The polarization state of a light beam is described by the Stokes vector, a four 

element real vector S 

A    f 
S = = 50 

J     \ 
(2-4) 

where the lower case letters represent elements normalized by the first element of 

the vector S0. The units of the Stokes vector are intensity. The first element of the 

Stokes vector S 0 gives the intensity of the beam and is the only element that is 

directly measurable by experiment. The other three elements of the Stokes vector 

describe the polarization state of the light and give the "preference" for horizontal, 

+ 45°, and right circular polarized light. Formally, the s x element represents the 

difference in intensities for horizontally and vertically polarized light, the s 2 ele- 

ment is the difference in intensities for light polarized along the ±45° axes, and s 3 

is the difference of right and left circularly polarized light. For the normalized 

Stokes vector, the elements range from 1 to -1. The s x element takes on a value of 1 

for completely horizontally polarized light and is -1 for completely vertically polar- 

ized light. Similarly, the s 2 element is 1 and -1 for + 45 ° and - 45 ° polarized light, 

and for s3 = 1 represents right circular light and s3 = - 1 is left circular. The degree 

of polarization is found from 
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DOP = 
js^ + sl + sl 

^F71 (2-5) 
DOLP = —  

\s3 DOCP = —— 

where DOP is the degree of polarization including linear and circular polarization, 

DOLP is the degree of linear polarization, and DOCP is the degree of circular 

polarization. DOP = 1 represents totally polarized light, DOLP = 1 represents totally 

linear polarized light, and DOCP = 1 is totally circularly polarized light. 

The transformation of the polarization state of a light beam incident on a 

polarization element to the output polarization state is described by the Mueller 

matrix M , a four by four real matrix 

f 
M = 

V 

mu m12 "ll3 m,4 \ 
m21 m22 ™23 /7124 

"i3i m32 ™33 m34 

m41 m42 m43 m44/ 

(2-6) 

The effect of an element or system on an incident polarization state Sincis found by 

multiplying the Mueller matrix of the element or system M by the incident Stokes 

vector S inc 

S   , = M     S     . (2"7) ^^ out       '     sys ^ inc 

The output intensity is given by the first element of the output Stokes vector Souti0. 

The Mueller matrix itself is dimensionless but may be associated with an intensity 

transmittance [15]. 
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The polarization properties of an optical train are found in the system matrix. 

The system matrix is formed by multiplying the Mueller matrices from the left in the 

order that the light encounters the elements 

TT <2"8) 

i-0,-1 

The Mueller matrix for a polarization element rotated by an angle Ö perpen- 

dicular to the incident beam is given by the matrix coordinate transformation 

M(9) = R(-6)MR(9) 

where 

R(6) 

f\          0 0 0\                                    (2-9) 
0 cos29 sin2G 0 
0 -sin29 cos2B 0     ' 

\0           0 0 1/ 

where M is the Mueller matrix for the element in its original coordinate basis. The 

identity matrix I represents a non polarizing element 

f\    0    0    0\ (2-10) 
_[   0     1     0    0 

'"I   0    0    1    o    • 
Vo   o   o   i/ 

The Mueller matrices for some common polarization elements are given in the 

references [11],[15],[17]. 

3. The Jones Calculus 

Although the Jones calculus is not used in this dissertation and will not be 

described further, it is worth justifying the choice of the Mueller calculus over the 

Jones calculus for this work. There are two chief reasons for using the Mueller cal- 

culus in experimental work. First, the Mueller calculus is an intensity calculus ~ the 

first element of the Stokes vector is measured directly. In the Jones calculus 
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intensity is calculated from the sums of squares of the electric field. Second, the 

Mueller matrix treats partial polarization and depolarization ~ the Jones calculus 

does not. Where Mueller matrices are being measured and are used to characterize 

a polarization element, depolarization should be included as part of the character- 

ization. The Mueller calculus is thus more suitable for experimental work in which 

broad band, partially polarized radiation is incident on polarization elements. A 

depolarizer can be represented and measured in the Mueller calculus. 

Further discussion of the Jones and Mueller calculi can be found in the refer- 

ences [11],[15],[22]. Conversion from Jones to Mueller calculus and back can also 

be found in the references [16],[20],[22]. 

4. Polarimeters 

This section briefly describes and defines types of polarimeters and their classi- 

fications. Further information may be found in references [9],[11],[23]. 

A Stokes polarimeter consists of an appropriate combination of polarization 

elements that determines the polarization state of the light beam incident on the 

polarimeter. The Stokes polarimeter is called complete if it measures all four ele- 

ments of the Stokes vector and is incomplete or partial otherwise. The total inten- 

sity S 0may or may not be measured depending on whether the system has been 

calibrated for absolute radiometric measurements. There are a number of possible 

configurations for Stokes polarimeters - some of these are reviewed in the second 

half of this Chapter and two others will be examined in Chapter III. 

A Mueller matrix polarimeter consists of an appropriate combination of polar- 

ization elements that determines the polarization altering properties of a sample by 

measuring the Mueller matrix of the sample. A Mueller matrix polarimeter is 

complete only if it measures all sixteen elements of the Mueller matrix. If less than 
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the complete Mueller matrix of the sample is determined, the polarimeter is incom- 

plete. An example of an incomplete Mueller matrix polarimeter is one that mea- 

sures only linear diattenuation and linear retardance while circular diattenuation 

and circular retardance remain unknown. A complete Mueller matrix polarimeter 

measures both linear and circular diattenuation and retardance. In this dissertation, 

a polarimeter is called a Mueller matrix polarimeter if it measures some or all of the 

polarization properties of a sample, even if the output is not a Mueller matrix. For 

example, a particular polarimeter may measure linear diattenuation and retardation 

and thus be capable of measuring nine elements of the Mueller matrix although the 

output may not be in the form of a Mueller matrix. 

The term "sample" as used in this dissertation refers to any material or optical 

element whose properties are under examination. This can include any polarization 

element, optical element, optical system or subsystem, or any bulk material. 

B. Review of Spectropolarimetry 

Significant development of spectropolarimetric instrumentation did not begin 

until the middle of the twentieth century. This section gives a brief review of some 

of the work in spectropolarimetry in the last forty years or so. This review does not 

include broadband measurements labeled as spectropolarimetry that do not resolve 

wavelength. 

An examination of previous spectropolarimetric techniques reveals that the 

research falls into two major categories: applications of Stokes polarimeters, and 

applications of Mueller matrix polarimeters. Although other divisions are possible, 

such as the various techniques that resolve wavelength, the division by polarimeter 

type is used here. Stokes polarimeters measure the Stokes vectors and thus the 
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polarization state of the light incident on it. Stokes polarimeters measure properties 

of the source or the medium between the source and the polarimeter, as in astron- 

omy. Mueller matrix polarimeters measure the polarization properties of samples. 

Some good surveys of various classifications of polarimeters are given by 

Hauge [23], Azzam and Bashara [11] (with emphasis on ellipsometric applications), 

and by Nafie [24], Kliger [17], and Michl [25] (with emphasis on chemical analysis 

applications). Astronomical application surveys are given by Fymat [26], Stenflo 

[27] and Kemp [28]. 

1. Astronomy and Emission Spectropolarimetry 

Stokes polarimetry has been used in astronomical applications to determine a 

variety of properties of the astronomical source. Discussions of instrument configu- 

rations for measuring complete Stokes polarimeters are given by Fymat [29] and 

Hodgon [30]. Wavelength resolution is accomplished by a two beam Fourier 

interferometer in Fymat's instrument, and a grating monochromator in Hodgon's 

instrument. They each note the difficulties associated with the wavelength depen- 

dence of the retardation devices that measure circular polarization. Hodgon solves 

the problem by using an achromatic quartz retarder available for the ultraviolet 

wavelength range in his study, while Fymat suggests using quasi-monochromatic 

light. Fymat later used his instrument [26] to study the linear polarization of Venus 

in the near infrared (0.8 to 2.7 |-im). 

A number of researchers, Baur [31], Kemp [28],[32], Stenflo [33],[34], and 

Lindgren and Tarbell [35], have used various configurations of polarimeters to 

determine the flux and strength of magnetic fields on the sun. Baur describes a 

spectrum scanning Stokes polarimeter using two KDP modulators and an achro- 

matic quarter wave plate. This instrument measures all four Stokes parameters 
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from 390 to 700 nm using a high resolution (.001 nm) grating. Kemp describes a 

synchronous detection technique that encodes linear and circular diattenuation sig- 

nals onto frequencies produced by photo-elastic modulators. Solar data was gath- 

ered from 400-700 run. Stenflo used a Fourier transform spectrometer to measure 

complete Stokes vectors from 500-600 nm with a resolution of tens of 

milliangstroms. Full Stokes vectors were measured over small wavelength ranges 

using Pockels cells with a retarder. Lindgren and Tarbell resolve wavelength using a 

scan filter. Complete Stokes vectors are determined from 510-660 nm using a linear 

polarizer and a tunable birefringent filter. 

Other extended astrophysical objects have been characterized through their 

polarization properties by researchers such as Fymat [26], Gonatas [36], and 

Goguen [37]. Fymat's study of Venus was mentioned previously. Gonatas describes 

instrumentation for far infrared measurements of the Orion nebula and other galac- 

tic clouds. Linear diattenuation was measured from 50-300 nm using a wire grid 

polarizer. Goguen used a narrow band pass filter and a linear polarizer in the near 

infrared to determine the amount and materials involved in Io's volcanic activity. 

Stokes polarimetry can also provide information about sources in the labora- 

tory. Elhanine [38] describes emission spectroscopy used to calculate the Zeeman 

splitting of paramagnetic NO and N2O in plasma in an externally applied magnetic 

field. Complete Stokes vectors were measured from .88-6.5 um using an achromatic 

CaF2 modified Fresnel rhomb and linear polarizer. Hilbst [39] studied atomic and 

ionic structure with a uv grating spectrometer from 50-120 nm. Incomplete Stokes 

vectors were measured with a linear polarizer. 
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2. Mueller Matrix Spectropolarimetry 

There is very little in the literature describing spectral measurements of a 

Mueller matrix of any kind. In general, researchers have in general measured the 

specific polarization property or properties they are trying to quantize rather than 

measuring the entire Mueller matrix. Although the data is not in the form of a 

Mueller matrix, the review of the research described in this section presents work in 

spectral polarization measurements or spectropolarimetry. 

The magnetooptic Faraday and Kerr rotations were measured by Krumme [40] 

in liquid phase iron garnet films. A grating monochromator selects a single wave- 

length. Two polarizers and a photo-elastic modulators are used to measure the 

amount of rotation and ellipticity caused by the sample. The rotation and ellipticity 

are encoded on the fundamental frequency and the first harmonic of the PEM driv- 

ing signal and are measured one after the other. The wavelength range was 

0.26-1.8 \an. 

Polarization labeling described by Teets [41] is a method for studying excited 

states of molecules. A polarized pump laser excites a gas mixture which is then 

probed by a broadband laser source. A probe laser analyzes the optical anisotropies 

induced by the polarized pump beam. Various pump polarization produce different 

anisotropies; a circularly polarized pump beam produces circular birefringence and 

dichroism. The beam is analyzed by a high resolution spectrograph. Results from 

the 474 - 498 nm wavelength band produced new spectroscopic constants for excited 

states of sodium. 

One application of infrared spectropolarimetry is in chemistry, where molecu- 

lar order can be investigated in a variety of ways. The order can be due to long 

range alignment of the molecules as in an oriented polymer film or a molecular 
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crystal, or due to a chirality or handedness in the sample. Nafie [24] and others 

[17],[25] describe several techniques that measure small amounts of linear and cir- 

cular dichroism for investigating molecular structure of molecules having infrared 

transitions. A Michelson interferometer is used to resolve wavelength. An IR beam 

modulated in intensity at the Fourier frequency of the wavelengths present emerges 

from the interferometer and passes through a linear polarizer. The beam then 

passes through a PEM modulating at a frequency an order of magnitude higher than 

the highest Fourier frequency. The light, now oscillating between left and right 

elliptically polarized light, passes through the sample onto the detector. The spec- 

trum taken with the sample present is ratioed to the spectrum without the sample 

present. This ratio, coupled with a calibration measurement that takes care of 

instrumental transmission, gives the circular dichroic ratios with a resolution of 

10"4. Nafie presented circular dichroism spectra from 6.3 to 10.6 \im. 

Another method is the interferometric modulation or polarizing Michelson 

interferometer (PMI) technique [24],[42],[43]. In this case, the conventional beam- 

splitter in the interferometer is replaced by a polarizing beamsplitter. This produces 

a modulation in polarization rather than in intensity as in conventional 

interferometers. A polarizer is placed before the interferometer and measurements 

are made with and without an analyzer placed between the sample and PMI. These 

spectra are ratioed to give vibrational circular dichroism spectra. Linear dichroism 

can be detected by rotating the polarizer placed before the PMI and making a simi- 

lar series of measurements. 

Infrared spectral measurements on the birefringence of liquid crystals has been 

reported by Wu [44]. The intensities passed by parallel and perpendicular polariz- 

ers on either side of the sample were measured. The retardance of the sample is 
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calculated from the ratioed intensities to within an additive constant of n, One 

measurement at a laser wavelength is required to determine this constant. The bire- 

fringence can then be calculated from the retardance and Eq. 2-2. Wu presents 

results on several liquid crystals from 2 to 16 urn taken in an FTIR spectrometer. 



Chapter III 

Polarimetry and 

Spectropolarimetry 

Spectropolarimetry is the measurement of polarization properties and charac- 

teristics of materials as a function of wavelength. Consideration of the spectral 

nature of spectropolarimetric measurements is vital to making accurate polarimetric 

measurements of materials and devices. A discussion of polarimetry at a single 

wavelength and algorithms for data reduction can provide insight into many of the 

experimental issues of spectropolarimetry. 

In this Chapter, a black box discussion of polarimetry and algorithms for data 

reduction is given. This discussion is intended to present the basics of polarimetry 

and to show the motivation for the particular polarimeter configurations and mea- 

surement sequences presented in later chapters. The Fourier analysis of polarimet- 

ric signals and the advantages of this method of data reduction for polarimetric 

measurements are presented. Procedures for developing the data reduction 

equations for specific polarimetric configurations and measurement sequences that 

exploit the advantages of the Fourier method of data reduction are given. A simple 

example is used to demonstrate and clarify these procedures. 

20 
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The measurement of the wavelength dependent polarization properties of sam- 

ples requires an instrument to measure intensity as a function of wavelength and 

appropriate polarization elements. This Chapter describes the Fourier transform 

infrared spectrometer and the infrared polarization elements used in the spectrome- 

ter for spectropolarimetric measurements. 

A. Polarimetry 

Polarimeters measure the polarization properties and characteristics of light 

and optical elements. Polarimeters can take many forms and measure some or all 

of the polarization properties of a sample. This section describes polarimeters and 

polarimetric data reduction for polarimetric measurements at a single wavelength. 

1. Polarimeter Configurations 

Polarimeters can be divided into five subsystems. Figure 3-1 shows the layout 

of the polarimetric configuration under consideration. It consists of a source, a 

polarization state generator (PSG), a sample, a polarization state analyzer (PSA), 

and a detector. 

PI 
Source 

f*.-> 

PSG 
a».-.. 
f~— ■:■ Alii 

PSA l> 
Detector 

Sample 

Figure 3-1 Block diagram of general polarimeter. 

The polarization state generator contains a polarizing element or combination 

of polarizing elements that delivers a known polarization state to the sample. The 

polarization state analyzer consists of a combination of polarizing elements that 

determines the polarization state of the light incident on it. In the polarimeter of 
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Fig. 3-1, the polarization state analyzer measures the polarization state transmitted 

by the sample. With this configuration, the polarization properties of the sample 

are determined. 

The operation of this polarimeter can be described as follows: the optical radi- 

ation from the source is polarized into a known polarization state by the polariza- 

tion state generator. The polarization state is altered in some manner by the sample 

and is then analyzed by the polarization state analyzer. By changing the 

configuration of the polarization state analyzer, the response of the sample to the 

state delivered to the sample by the polarization state generator is completely char- 

acterized. By analyzing the interaction of the sample to various states generated by 

the polarization state generator, the sample's polarization properties are completely 

characterized. 

Mueller matrix polarimetry may be understood in a fundamental way through 

the following quantitative argument. The polarization state analyzer analyzes the 

effect of the sample on a particular polarization state set up by the polarization state 

generator. If the polarization state analyzer is complete, one column of the sample 

Mueller matrix is determined. To determine the other columns, the sample's 

response to other incident polarization states must be measured, i.e measurements 

must be made for different states set up by the polarization state generator. The 

Mueller matrix is determined by choosing a combination of incident and analyzing 

polarization states such that the sample's response to a minimum set of basis states 

are spanned by the measurements. If a polarization state analyzer is incomplete, a 

row of the sample Mueller matrix is undetermined. Similarly a partial polarization 

state generator leaves a column of the sample Mueller matrix undetermined. A 

complete Mueller matrix can only be determined if both polarization state genera- 
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tor and polarization state analyzer are complete. 

The Mueller matrix equation describing the polarimeter shown in Figure 3-1 is 

S' = xAMsampleGSinc, C3-1) 

where Sinc is the Stokes vector of the light incident on the polarization state 

generator and x is a factor including instrumental transmission and detector sensi- 

tivity. G is the Mueller matrix for the polarization state generator, M sampie is the 

Mueller matrix for the sample, and A is the Mueller matrix for the polarization 

state analyzer. The intensity i incident on the detector is given by the first element 

s o' of the output Stokes vector -S' 

— (3-2) 

A Mueller matrix is determined by making a series of Q measurements with 

various configurations of the polarization state analyzer and generator. For the q 'th 

measurement, q = 0,1,..., Q - 1, the intensity i q is 

i, = T(AQM,ampleG,SjBC)0. (3"3) 

Each intensity is a function of some of the Mueller matrix elements ig(mLj). The 

set of i g (m L,,■) represents a system of equations that must be solved for the 

elements mt,, in terms of the intensities. The specific polarimetric data reduction 

equations for calculating the sample Mueller matrix depend on the exact configura- 

tion of the elements of the polarization state generator and analyzer and how these 

elements are varied over the measurement sequence. Typically the response of the 

polarization state generator and analyzer and consequently the matrices G and A 

for each measurement are known. The analyzed states and generated states do not 

have to be the same and in general they are not. 
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2. Fourier Data Reduction of Polarimetric Signals 

A common method of polarimetric data reduction is the Fourier analysis of 

polarimetric signals [23],[45],[46],[47]. The elements of the polarization state ana- 

lyzer and generator are varied in a harmonic fashion. The polarization properties of 

the sample are encoded onto the harmonics of the detected signal. The polarization 

properties of the sample are then recovered from a Fourier transform of the mea- 

sured data set. 

Polarimeters with single and dual rotating polarizers have been used for mea- 

suring ellipsometric and scattering parameters [48],[49]. Ellipsometers and Mueller 

matrix polarimeters have used various combinations of rotating elements, including 

rotating polarizers [48], rotating the sample [50],[51], rotating polarizers and retard- 

ers [47],[52], and rotating two retarders [45],[46]. The rotating sample and dual 

rotating retarder methods used in this research will be described in greater detail in 

Chapters IV and VI. 

This section introduces Fourier analysis of polarimetric signals. An example 

based on the Law of Malus is given. This example will be used throughout the rest 

of this Chapter to illustrate the extension of polarimetric signals to many wave- 

lengths and to describe the noise and error analysis of polarimetric signals. 

a. Fourier analysis of polarimetric signals 

Consider a general polarimeter with a polarization state generator, a sample, 

and a polarization state analyzer as shown in Figure 3-1. A series of Q intensity 

measurements are made iq for q = 0, 1,.. .Q - 1. The intensity incident on the 

detector for the q 'th measurement i q is 

i-q = l(^qMsampteG qS lnc)Q. V ) 
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The analyzed and generated polarization states are now modulated by varying 

the polarization elements of the analyzer and generator. A typical method of 

varying the polarization elements is by rotating some or all of the elements in 

discrete steps. If the angular increments of the polarization elements are constant, 

only discrete frequencies are generated in the detected intensity i. The detected 

signal can be written 

bo    f (3'5> 

where K is the highest frequency component in the signal and Qk = /c6 is propor- 

tional to the angular frequency of the polarization element. The elements of the 

sample Mueller matrix are encoded onto the various frequencies of the detected 

signal, i.e. the coefficients in the Fourier series expansion are functions of the 

sample Mueller matrix bk(miti) and c k (m,■, ,), where the subscripts i and j are 

the row and column indices of the Mueller matrix elements. These relations are 

inverted to give the Mueller matrix elements in terms of the Fourier coefficients 

mifj{bk,ck). The contribution of the Fourier components to each Mueller matrix 

element is determined by the choice of polarization elements and measurement 

sequences. To determine all sixteen elements of the sample Mueller matrix, at least 

sixteen independent Fourier components should be produced by the modulation of 

the polarization elements. One configuration for measuring the complete Mueller 

matrix is given in Chapter VI. 

The procedure for the Fourier analysis of polarimetric signals is as follows: 

1) The configuration of the polarization state generator and analyzer are 

determined. 
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2) The Mueller matrix equation and intensity transmitted by the polari- 

meter are derived. 

3) The intensity is written in the form of a Fourier series (Eq. 3-5) and 

the expressions for the coefficients in terms of the sample Mueller 

matrix elements are derived. 

4) These expressions are inverted to give the Mueller matrix elements in 

terms of the Fourier coefficients. 

The calculation of the Fourier coefficients from the measured data and the means 

to determine the best choice for rotation increments and total number of measure- 

ments are described in Section 3. 

The Fourier analysis of polarimetric signals provides several significant advan- 

tages for data reduction. The calculation of the discrete Fourier transform automat- 

ically gives a least squares fit to the data [53]. A least squares fit is the best method 

to take advantage of all the data when the measurement is overdetermined. The 

discrete Fourier transform is also a useful analytical tool for investigating many 

types of systematic error such as beam wander and linear drift. The susceptibility to 

harmful noise sources can be reduced through adjusting the parameters of measure- 

ments and the corresponding Fourier transform. More details of the effect of noise 

and errors on the measurements and ways to compensate or negate these effects are 

given in Section B. 

The magnitudes of the series coefficients in Eq. 3-5 are a function of the instru- 

mental transmission x. In polarimetry, however, the polarization properties of the 

sample should be independent of the absolute value of the intensity incident on it. 

Whenever possible, it is useful to express the data reduction equations in the form 

of ratios of the series coefficients so that the polarization properties are indepen- 
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dent of instrumental transmission. When it is not possible to construct ratios, it is 

necessary to normalize the coefficients by dividing all coefficients by the dc term b 0. 

Instrumental transmission is calibrated out in this manner. The factor x will be 

omitted hereafter. 

It should be noted that the sample Mueller matrix need not be completely 

arbitrary. If the polarization properties of the sample are known qualitatively and 

these polarization properties only need to be quantified, a physically reasonable 

model for the sample is chosen and the appropriate sample Mueller matrix is writ- 

ten in terms of this model. The arbitrary Mueller matrix is replaced by this Mueller 

matrix. The complexity of the data reduction is reduced since in many cases some of 

the sample Mueller matrix elements become zero. In this case the data reduction is 

developed in terms of the polarization properties modelled. The rotating sample 

polarimeter, in which the arbitrary sample Mueller matrix is replaced by the matrix 

for a sample with linear diattenuation and retardance, provides a good example and 

is presented in Chapter IV. 

b. Example of Fourier analysis of polarimetric signals 

A simple example will be examined to illustrate the Fourier analysis of polari- 

metric signals. In this example the Law of Malus is generalized. The diattenuation 

and initial orientation of a diattenuator rotated in front of an ideal polarizer are 

determined through the Fourier analysis of the detected polarimetric signal. 

The Law of Malus is described in most basic optics texts. It describes the 

intensity of the light transmitted through a pair of polarizers whose principal axes 

are an angle 9 apart (Figure 3-2). It was first described by Malus in the early 1800's 

[54],[55] and derived from observation. The (normalized) intensity i transmitted by 

the two polarizers with unpolarized incident light is given by 
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where i is the incident intensity. 

^ 

Figure 3-2 Fixed polarizer, rotating diattenuator polarimeter. 
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(3-6) 

The Law of Malus is derived using the Mueller calculus. The Stokes vector 

transmitted through a polarizer M p whose principal transmission axis is fixed along 

the x -axis, followed by a polarizer at angle 0 to the x -axis M p (9) is transformed 

according to 

S' = R(-0)Mp(O)R(e)Mp(O)5inc = Mp(0)Mp(O)S£ 

or 

fs'°\ f l 

cos29 

cos 26 

cosz29 

sin29 
cos2esin29    0 

0\ /l     1     0    0\ 

sin26    cos20sin29 sin  29 0 

110    0 
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The normalized intensity for unpolarized incident light is 

i(6) = -[l + cos29] 

(3-7) 

(3-8) 

which is Malus' Law (Eq. 3-6). 
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The Law of Malus is now generalized. Consider the rotating diattenuator 

polarimeter of Fig. 3-2 where the second polarizer is replaced by a diattenuator 

whose diattenuation £> and orientation Qd with respect to the x -axis are unknown. 

The Mueller matrix of a diattenuator M d is 

Md(£>) = ^Vli 

/l     D 0 0      \ 
<D     1 0 0 (3-9) 
0   0   V1-©2      0 

\o   0       0       J\-v2J 
where p 1 and p 2 are the principal intensity transmittances for the device and T> is 

the diattenuation (Eq. 2-1). If the light incident on the polarizer is unpolarized, the 

normalized intensity of the light transmitted by the polarizer and diattenuator is 

1 (3-10) 
i(e) = -(p1 

+ P2)(l 
+ ^cos2G). 

4 

This can be considered a Fourier series of the form 

bo    r- <3-n> i9 = — + ^(bfcCos/ce^ + CjfcSin/ceg), 

with one harmonic term. The coefficients are 

Pl + P2 
b 

2 

ö2 = 7(Pi + P2)^cosed (3-12) 

c2 = -(Pi + P2)^sin9d 

where Qd is the initial orientation of the principal transmission axis p 1. All other 

coefficients are zero. The diattenuation T> and orientation of the principal axis 6d 

of the diattenuator are then easily determined in terms of the Fourier coefficients, 



30 

^      P,-P2      ^F7| I _JC2\ (3'13) 
© = = - 9d = -tan       —    . 

Pi + p2        bo 2 Vfa2y 

Figure 3-3 demonstrates these relationships. Figure 3-3(a) shows the intensity 

modulation when the second element is non-polarizing (i.e. T> = 0) there is no 

modulation. Figure 3-3(b) is the intensity modulation versus angle when V = 50% 

and the initial orientation of the principal axis is Qd . The third figure shows the 

intensity modulation for a perfect polarizer, V = 100%, where the depth of modu- 

lation is a maximum. It can thus be seen that the diattenuation of the partial 

polarizer is related to the depth of modulation of the polarimetric signal and the 

orientation is given by the phase of the modulated signal. 

The rotating diattenuator polarimeter demonstrates the Fourier analysis of 

polarimetric signals that will be used in more complicated polarimetric systems 

where many Fourier frequencies and polarization properties may be present. 
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Figure 3-3 Intensity modulation of rotating diattenuator. 
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3. Fourier Analysis of Measured Data 

The analytical expression for the polarization properties of the sample is deter- 

mined in terms of the Fourier coefficients by the procedure described in the pre- 

vious section. The values of the Fourier coefficients must now be calculated from 

the experimentally determined data set. This section describes the discrete Fourier 

transform and how the measurement parameters, such as angular increment and 

number of measurements, are determined for the measurement. 

Consider a series of polarimetric measurements where an intensity measure- 

ment is made between discrete rotations of one or more of the polarization ele- 

ments. The rotational increments are constant and generate a finite number of 

discrete frequencies in the detected signal. The set of Q intensities i q , 

q = 0,1,2.,...,Q- I, may be expressed as a Fourier series 

f (3-14) 
iq = bo+ L (bkcoskQq + cksinkQq), 

where K is the largest frequency present in the signal. The coefficients are 

determined from the set of intensities iq by a discrete Fourier transform 

V q-0 

K      2<&.        (2qkn\    2Q^ . 
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where k is the harmonic, 6 q = q A 6, and A 6 is the angular increment of the 

polarization elements. For Q intensities, the coefficients for the K = Q/2 harmon- 

ics are found. The step size of the rotation A 9 of the polarization element is 

determined by the number of measurements A e = 2 it / Q. 

The highest harmonic K in the polarimetric signal is known from the analytical 

expression for the intensity written as a Fourier series (Eq. 3-5). The minimum 

number of measurements Q min required to calculate the dc term and all cosine and 

sine (real and imaginary) terms in the Fourier transform isQmin = 2K + 1 [56]. It is 

often desirable to make more measurements than the minimum, or oversample, to 

help reduce the effects of noise. For oversampled data, the harmonics higher than 

the frequencies of the polarimetric signal are often used as a diagnostic tool to indi- 

cate sources of systematic error. 

The procedure for making polarimetric measurements using Fourier analysis 

for data reduction is summarized as follows: 

1) The highest frequency expected from the polarimetric signal K is 

determined from the analytical expression for the intensity. 

2) The total number of measurements Q and angular increments for the 

rotation of the polarization elements AO are determined from the 

highest frequency and the measurement period T. 

3) An intensity measurement t0 is made with the polarization elements 

at the orientation G 0. 

4) The polarization elements are rotated by A 0 toOi and another inten- 

sity measurement i i is made. 

5) Step 4 is repeated until Q measurements are made. 
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6) The Fourier coefficients are calculated by a discrete Fourier transform 

of the set of intensities iq. 

7) The sample Mueller matrix elements are calculated by substituting the 

coefficients into the data reduction equations. 

In the rotating diattenuator example of Section 2.b, the intensity is 

1 (3-16) 
i(9) = -(Pl + p2)(l + ©cos2e). 

and the highest harmonic is the second, K = 2. The minimum number of measure- 

ments Q min = 2 K: + 1 = 5. If the diattenuator is rotated through a total of 360 °, the 

angular increment for rotation of the diattenuator is A 9 = 2 n /Q min = 72 °. 

Polarimetric systems produce modulations periodic in n since the polarization 

state transmitted by an ideal polarization element oriented at 0° is equivalent to the 

state transmitted by the polarization element oriented at 180°. If the rotating ele- 

ments rotate through a measurement period T = 2n then the frequencies of the 

polarimetric signal fall only on the even harmonics and all odd harmonics are zero 

in a system without noise. If the elements are rotated through T' = JX the polarimet- 

ric signal falls on the odd and even harmonics. The angular increment A 6 remains 

the same, but the total number of measurements becomes Q' = Q / 2 for 7" = n. 

Care should be taken when the noise is not negligible since the noise that would fall 

on the odd coefficients will be distributed over the harmonics containing the polari- 

metric signal. Further discussion of the effects of various noise sources on measure- 

ment results and ways to compensate or remove these effects are given in Section B. 

B. Systematic Error and Noise Considerations in Spectropolarimetry 

Understanding systematic error and noise considerations is essential to 

improving the accuracy of spectropolarimetric measurements. In polarimetry appli- 
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cations there are a number of issues to consider beyond the normal radiometric 

issues found in other light measuring systems. This Section describes some of these 

issues and proposed solutions as they apply to polarimeters. 

1. Random Errors 

A polarimeter takes a series of intensity measurements from which specific 

polarization properties are calculated. Each measurement is a radiometric mea- 

surement and all standard precautions to reduce noise and error in radiometry are 

required for polarimetry. Random errors in radiometry that affect polarimetric 

measurements include spatial and temporal variations in the intensity of the source, 

detector noise, non-linearity in the detector, electronic noise, noise introduced in 

analog-to-digital conversion of electronic signals, and other less quantifiable sources 

such as vibration, changes in temperature and humidity, power fluctuation, and stray 

gases in the sample compartment. Random errors may be reduced by increasing the 

number of measurements, signal averaging, and intelligent data reduction. Radio- 

metric noise issues have been well documented and further discussion of these 

issues is found in references [19],[57],[58]. 

2. Systematic Errors 

Systematic errors are prominent in polarimetry and often swamp random 

noise. These errors include non-ideal polarization elements, drift in the radiometric 

signal, beam wander from rotating elements, alignment errors, and instrumental 

polarization. Many of these errors can be reduced or compensated through 

improvement in the instrument or in data reduction. 

Non-ideal polarization elements can be one of the biggest sources of system- 

atic error in polarimetry. Polarizers can have diattenuation less than one and 

retarders can have retardances that are unknown or unexpected values. 
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Polarization devices made up of more than one element such as multiple plate or 

Fresnel rhomb retarders or Wollaston prism polarizers can produce unexpected lin- 

ear or elliptical polarization states if the components of the device are misaligned. 

Proper calibration of these devices is critical for making accurate polarimetric 

measurements. 

Additional problems that involve the polarization elements include polarizers 

that contain retardance or retarders that contain diattenuation. Unexpected polar- 

ization effects can occur in devices that rely on birefringent devices if the birefring- 

ent crystal was improperly cut and the crystal axis is misaligned. These problems 

are much more difficult to correct, but in practice these effects are small compared 

to other systematic errors. 

Some typical infrared polarization devices and their wavelength dependence 

are described in Section E. The effect of systematic errors due to the wavelength 

dependence of the polarizers and retarders used in this research and the removal of 

these systematic errors in data reduction are described at the appropriate point in 

later chapters. 

The Fourier analysis of polarimetric signals offers a method to check the oper- 

ation of the instrument and to determine the susceptibility of polarimetric data 

reduction to certain systematic errors in the measurements. For a given polarimeter 

configuration (rotating polarizer, dual rotating retarder, etc.) the frequency content 

of the polarimetric signal is fixed and known. Polarimetric measurements are sus- 

ceptible to error when frequency components of the systematic error falls on the fre- 

quencies in the polarimetric signal. The frequencies of the polarimetric signal can 

be adjusted by judicious choices of the fundamental rotation period and number of 

measurements so that the effect of the systematic error on the polarimetric signal is 
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minimized. 

To investigate the effect of various common systematic errors, consider the 

polarimetric signal of the rotating diattenuator polarimeter example of Section 

A.2.D. Let the diattenuation of the diattenuator be V = 0.5 and assume intensity 

measurements are made at eight positions of the diattenuator. If eight measure- 

ments are made over a measurement period of T = 180 °, the angular increment of 

the diattenuator is 22.5° and the polarimetric signal falls on the dc and first 

harmonic components. Figure 3-4 shows a typical polarimetric signal and the dis- 

crete Fourier transform (DFT) of the signal for T = 180°. If sixteen measurements 

are made over a complete rotation T = 360°, the polarimetric signal lies on the dc 

and 2nd harmonic. Similarly, 32 measurements over 720° constrain the polarimetric 

signal to the dc and fourth harmonic. Figures 3-5 and 3-6 show the polarimetric sig- 

nals and DFT's for the 360° and 720° cases for this example. 

Drift is the change in the response of the instrument that is not related to the 

polarimetric signal such as caused by a change in the output of the source or in the 

sensitivity of the detector. In many cases the drift is nearly linear over a measure- 

ment sequence. Linear drift over a measurement sequence will couple strongly into 

the lower harmonics and decreasingly into the higher harmonics. Presence of strong 

first, second, and third harmonics indicates the possible presence of drift. Figure 3-7 

shows a 5% linear increase in sensitivity of the detector over the measurement inter- 

val and its Fourier transform. By comparing Figures 3-7 and 3-4, it becomes clear 

that a fundamental rotation period of 180° is more susceptible to linear drift since a 

substantial portion of the linear drift signal appears on the first harmonic. 
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Figure 3-4 Polarimetric signal and Fourier transform of rotating diattenuator for 

T= 180°. 

In polarimetric applications that utilize rotating polarization elements, beam 

wander becomes a problem if the rotating element has surfaces that are not plane 

parallel (Figure 3-8). The wedge causes a beam deviation that rotates with the ele- 

ment. The beam moves on the detector as the element rotates causing an intensity 

variation which depends on the shape of the detector, the distribution of light in the 

beam, and the beam path on the detector. Picture, for example, a beam moving 

onto and off of a detector. This intensity modulation can be mistaken as a polari- 
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Figure 3-5 Polarimetric signal and Fourier transform of rotating diattenuator for 

7 = 360°. 

metric signal. However, the effect of beam wander can be minimized by choosing a 

measurement sequence such that the beam wander signal does not affect the 

polarimetric signal. 

When an wedged element is rotated, the resulting beam wander signal couples 

most strongly into the first harmonic for a rotation of the element through 360°. 

Now consider a polarimeter which rotates elements through 360°. Since the polari- 

metric signal falls on the even frequencies for rotations through 360°, the first har- 

monic term in the beam wander does not overlap any polarimetric frequencies and 

isn't used in the polarimetric data reduction. Figure 3-9 shows the intensity 
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Figure 3-6 Polarimetric signal and Fourier transform of rotating diattenuator for 

7 = 720°. 

modulation as a function of orientation of the diattenuator (V = 0.5) in the rotating 

diattenuator polarimeter with beam wander present. Figure 3-9(a) shows the polari- 

metric signal and Figure 3-9(b) shows the beam wander. Figure 3-9(c) shows the 

DFT for the sum of the two signals. The largest contribution of the beam wander 

falls on the first harmonic and the polarimetric signal is unaffected. This is also true 

if two polarization elements are rotated in a ratio of 2a + 1:1 as in the dual rotating 

retarder polarimeter [10]. The rotation ratio is odd and the largest contribution of 

the beam wander signal is to odd frequencies. Since the frequency content of the 

polarimetric signal is even, the effect on the polarimetric signal by the beam wander 

generated by either rotating element is reduced. If, however, the polarization ele- 
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ment is rotated only through 180°, the "half harmonic" signal from the beam wander 

couples into the frequencies of the polarization signal. Figure 3-10(a) shows the 

beam wander signal and Figure 3-10(b) shows its Fourier transform for this situa- 

tion. The proper measurement sequence and measurement period will reduce 

adverse effects of beam wander on the polarimetric signal. 

0.6 

-?    0.5 

0.4 

0.02 

0.01 

0.00 

Figure 3-7 Linear drift and its Fourier transform. 

A traditional difficulty in polarimetry is the accurate alignment of the polariza- 

tion elements. Even small errors in the orientation of polarization elements can 

cause large errors in the measured results [46],[59]. An accurate means to 

determine the orientation is required. The polarization element can then be rotated 

to reduce the misalignment or the misalignment can be corrected in data reduction 
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or a combination of the two can be used. In broad band measurements the orienta- 

tion of the diattenuation or retardance of the polarization elements can vary with 

wavelength. In this case the misalignment should be corrected in data reduction. 

Accurate measurement of the error is required to remove the systematic error. 

Chapter VI describes correction of these errors in the case of the spectropolarime- 

ter. 

Figure 3-8 Beam wander caused by wedged rotating element. 

Instrumental polarization is the additional polarization that may arise from 

components other than the polarization elements [12],[30],[60],[61],[62]. Some 

instrumental configurations require only a source and detector while others may 

include lenses, mirrors, beam splitters, and other components. Each of these com- 

ponents may change the desired polarization state or may affect the polarization sig- 

nal in undesired ways. The intensity transmitted by a rotating polarizer will vary 

with rotation if the source is partially polarized, for example. Gratings produce 

large amounts of polarization. The Fresnel equations produce sources of instru- 

mental polarization from large angles of incidence on mirrors or beamsplitters, or 

even in lenses. A detector may be more sensitive to one orientation of linear 

polarization than another and act as a partial polarizer. 

One robust solution to instrumental polarization is to confine variation of 

polarization states between ideal polarizers that do not rotate as shown in Figure 

3-11. The instrumental polarization does not usually change in time and the polar- 
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Figure 3-9 Intensity modulation of (a) the rotating diattenuator, and (b) beam wan- 

der, and (c) the combined Fourier transform. 
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ization state incident on the polarimeter remains the same. Since the first polarizer 

does not rotate, the polarization state and intensity transmitted by the first polarizer 

to the rest of the polarimeter remains constant. If the last polarization element in 

the polarimeter is a fixed ideal polarizer, the polarization state transmitted to the 

rest of the instrument remains constant. In this way, the effect of the instrumental 

polarization is constant and the intensity does not vary due to any instrumental 

polarization as polarization elements rotate. The chief disadvantage is that the 

outer polarization elements must remain fixed. 
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Figure 3-10 Intensity modulation of beam wander for T = 180° and its Fourier 

transform. 
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Figure 3-11 Polarimeter configuration for reducing instrumental polarization 

effects. 

C. Spectral Extension of Polarimetric Data Reduction 

The goal of this research is to make polarimetric measurements in a spectral 

instrument. Most polarizing samples display interesting wavelength dependence 

and polarization spectra can provide additional information and insight into the fun- 

damental physical properties of samples. This section describes how polarimetry 

measurement techniques at single wavelengths are generalized for spectral 

instruments to produce polarization spectra. 

Consider a spectrometer with a polarization state generator and polarization 

state analyzer in its sample compartment as shown in Figure 3-12. The Mueller 

matrix equation describing the system is 
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Figure 3-12 Nicolet FÜR spectrometer with polarimeter in sample compartment. 

S'(X) = A(X)Msample(X)G(X)Sinc(X). (3_17) 

The source is wavelength dependent and is characterized by the Stokes vector 

SiBC(\). The polarization state generator, sample, and polarization state analyzer 

have wavelength dependent polarization properties and are denoted by G (X.), 

M samp;e (A,), and A (X) respectively. The intensity incident on the detector i (X), 

the first element of the Stokes vector S' (X), is now an intensity spectrum. In a 

Mueller matrix measurement, Q spectra are measured and the intensity spectrum 

for the q 'th measurement is written 

iq(X) = [A(X)Msample(X)G(X)Sinc(X)]0. (3"18) 

The system of equations must be solved at each wavelength to determine the sample 

Mueller matrix spectrum. If the Fourier techniques described in Section A are used, 

the intensity can be written 
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iQ(^) = 5«>o(^)+ X[öt(A.)cos/ceQ + cfc(X)sine(I], 
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(3-19) 

fc-i 

where the coefficients bt(X.) = öjt(mi,;(^)) and cfc(A.) = ck(mLj(X.)) are func- 

tions of the sample Mueller matrix elements. The subscripts i and j are the row 

and column indices of the Mueller matrix elements. The coefficients are calculated 

from the set of Q measured intensity spectra 

MM —I^CO 
V q-0 

Vg-0 V        V        J       Vg-0 

(3-20) 

These relations are inverted to give the sample Mueller matrix in terms of the 

wavelength dependent Fourier coefficients n7i,;(A,) = m(,;(öfc(A),cfc(A)). 

To summarize, the procedure for measuring polarimetric spectra using the 

Fourier analysis of polarimetric signals is as follows: 

1) An intensity measurement i 0 (A-) is made with the polarization ele- 

ments at the orientation 9 0. 

2) The polarization elements are rotated by A 0 to 6! and another inten- 

sity measurement i i (X) is made. 

3) Step 2 is repeated until Q intensity spectra are acquired. 
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4) The Fourier coefficients b k (X) and c k (Ä,) are calculated at each 

wavelength by a discrete Fourier transform of the set of intensities at 

each wavelength i g (X). 

5) Spectra of the sample Mueller matrix elements m,;,;, (X) are calcu- 

lated by substituting the wavelength dependent coefficients into the 

data reduction equations for each wavelength. 

As an example, the rotating diattenuator configuration presented in Section 

A.2.b will be generalized to incorporate the wavelength dependence of the diatte- 

nuation. The intensity for the rotating diattenuator configuration (Eq. 3-10) 

becomes 

1 (3-21) 
i(e,^) = -[p,(^) + P2(^)][l+©(^)cos2e]. 

The Fourier coefficients are 

.   -. .   Pi(M + P2(>0 
b0(X.) =  

b2(X) = ^[Pi(X) + p2<iX)]V(X)cosed(X) (3-22) 

c2(X^ = ^[Pl<iX) + p2(X)]D(X)sinQd(X) 

and the diattenuation T) (X) and orientation 6 d (X) are 

Pi(7g-P2(M_Vfr|(M + c|(?o_a2(M 
Pi(M + P2(M fco(M ao(A-) (3.23) 

ed(X.) = -tan    ' 
2 \52(\) 



50 

This development has described the extension of the data reduction equations 

to many wavelengths. It has not addressed the wavelength dependence of the 

polarization elements. This is an issue that is addressed when the specific polarime- 

ters and measurement sequences are introduced in later chapters. 

D. Fourier Transform Infrared Spectroscopy 

Spectroscopic measurements require some means to resolve wavelength, i.e. to 

obtain a plot of intensity versus frequency or wavelength. There are two chief 

approaches to this problem: dispersive spectrometers and Fourier transform spec- 

trometers. 

In the dispersive spectrometer, gratings or prisms spatially separate the various 

frequencies in the beam. In general, the beam is chopped, is transmitted through 

the sample, is dispersed by a dispersing element, and a spectrum is imaged onto a 

slit. The frequency of the light is scanned by mechanically rotating the dispersion 

element so that the appropriate frequency falls onto the slit. The wavelength reso- 

lution is determined by the width of the slit. 

In Fourier transform (FT) spectroscopy, a Michelson interferometer generates 

an interferogram that contains intensity information at all frequencies simulta- 

neously. The velocity of the moving mirror in the Michelson is set so the modulated 

frequencies fall within the appropriate frequency range for a particular detector. 

The interferogram is Fourier transformed to give the familiar intensity versus fre- 

quency spectrum. 

There are several advantages of FT spectroscopy over dispersive spectroscopy 

for polarimetric applications. A comparison of dispersive and FT spectrometers is 

given in Table 3-1. 
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Table 3-1 

Comparison of Dispersive and FT Infrared Spectrometers 

Dispersive Fourier Transform 

Instrumental polarization 
effects from gratings can be 
significant and vary rapidly 
with wavelength. 

Instrumental polarization is 
present but is generally 
smaller than the dispersive 
instrument. 

A number of moving parts is 
required for moving gratings. 

Moving mirror in Michelson 
is only moving part. 

No internal reference for fre- 
quency. Calibration against 
reference spectra is required 
periodically. 

A reference laser is used to 
provide frequency accuracy 
(Connes' advantage). 

Smaller intensities are 
detected as the wavelength 
resolution increases (slit 
width decreases). 

A much larger beam may be 
used. Intensity at the detec- 
tor is greater since all fre- 
quencies are present 
(Jacquinot's and Felgett's 
advantages). 

Stray light is not rejected and 
leads to spurious intensity 
readings. 

Unmodulated stray light is 
rejected since only light mod- 
ulated by the interferometer 
is detected. 

The sample is at the focus of 
the beam and is subject to 
thermal effects. 

Thermal effects of the sample 
are rejected since thermal 
changes are slow compared to 
detected frequencies. 

Emission by the sample is 
detected. 

Emission by the sample is 
rejected since only light mod- 
ulated by the interferometer 
is detected. 
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The instrument used in the research described in this dissertation is a Nicolet 

7199 FT infrared spectrometer. The various polarimeters described in the following 

Chapters are placed in the sample compartment shown in Figure 3-13. A brief 

description of the instrument is given here. A discussion of FTIR spectroscopy and 

further details of the hardware and software of the instrument are given in Appen- 

dix A and in the references [63],[64]. 

Source 

Figure 3-13 Nicolet FTIR spectrometer. 

The Nicolet FTIR spectrometer is configured to acquire intensity spectra in 

transmission over the spectral range 2.5 to 25 p.m. In this configuration, the source 

is a water cooled Globar filament, the beamsplitter substrate is potassium bromide, 

and the detector is a long wavelength liquid nitrogen cooled mercury cadmium tellu- 

ride detector element. The two infrared beams from the beamsplitter are modu- 

lated by a high resolution Michelson interferometer consisting of a fixed mirror, 

moving mirror assembly, and the beamsplitter. The fixed mirror is mounted to 



53 

facilitate optimization of the IR signal. The moving mirror assembly is mounted on 

dual air bearings to reduce friction and the corresponding friction-induced fluctua- 

tions of velocity. The dual air bearings also prevent any appreciable mirror tilt 

allowing resolutions up to 0.06 cm-1. In normal operation, the resolution used is 4 

cm-1. This corresponds to a resolution of 0.0001 urn at 2.5 pm, 0.02 p.m at 10 pm, 

and 0.08 pm at 20 p.m. A He-Ne reference laser runs the same path through the 

interferometer as the IR signal. The He-Ne interference pattern allows extremely 

accurate measurement of the distance traveled by the moving mirror. A closed 

servo loop uses the zero crossings of the laser interferogram to calculate and correct 

for variations in the velocity of the moving mirror assembly. These zero crossings 

are also used as a signal for the computer to take a data point. There is also a white 

light source whose interference pattern gives a spike at the point of zero optical path 

difference. This spike is used as a trigger to begin the sampling. 

Data acquisition and manipulation parameters may be changed in the software 

that controls the spectrometer. Data acquisition parameters deal with such vari- 

ables as resolution, bandwidth, spectral range, and gain levels. These may be varied 

to optimize signal-to-noise, increase resolution, or maximize file storage space. 

Data manipulation parameters deal with basic bookkeeping for the various data 

manipulation routines, such as plotting and displaying the data. 

The Nicolet FTIR spectrometer has a 9.5 inch long sample compartment with 

a usable cross sectional area of 16 inches wide by 11 inches high. The baseplate is 

35 by 45 inches. Rotation stages for the rotating polarization elements are Newport 

495 stages with a resolution of 0.001°. The stages are computer controlled and are 

coordinated with data acquisition. 
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Software has been developed to operate the FT-IR spectrometer as a spectro- 

polarimeter and process the resulting data. The configuration of the Nicolet control 

program, FTIR, allows macro control of hardware and operation of data processing 

and collection routines. FORTRAN programs are called from the macro as subrou- 

tines to advance the rotation stages in conjunction with data acquisition. Data files 

may also be managed from the macro, allowing the data to be stored on the Nicolet 

hard disk and later transferred to another computer (IBM-compatible) through an 

RS-232 port. The data collection software is maintained as a unit since, for a single 

polarization element setting, the spectropolarimeter operation is identical to that of 

the spectrometer. 

The software operates as follows. Parameters and polarization element set- 

tings are initialized and the first spectrum is acquired. The appropriate polarization 

elements are then rotated. Another data set is taken, followed by another rotation 

of the elements and so on, until the required number of data sets is taken. The raw 

data is stored after each run for future use. After all data is taken, the set of spectra 

is transferred to the IBM-PC for data reduction. 

E. Infrared Polarization Elements 

Infrared spectral polarization measurements are made by placing a polarime- 

ter in the sample compartment of the Fourier transform spectrometer described in 

the previous section. The elements of the polarimeter should be relatively 

achromatic over as much of the wavelength range of the spectrometer as possible. 

This section describes infrared polarization elements that are suitable for use in the 

spectropolarimeter in the 3 to 14 p. m wavelength range of the mid-infrared. 
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Wavelength dependence of the polarization elements is perhaps the largest 

concern when extending the spectral range of polarization measurements from a 

single wavelength. Of the two classes of polarization elements, polarizers and 

retarders, polarizers present little difficulty. Linear polarizers of various types are 

available commercially that have fairly constant diattenuation over broad wave- 

length bands in the infrared. Wire grid polarizers are compact, have high transmis- 

sion, and there is no beam offset or angular displacement at normal incidence. 

There is little polarization dependence of ray angle through the polarizer. Large 

clear aperture wire grid polarizers are readily available. Glan-Thompson polarizers 

have higher extinction ratios than wire grid polarizers but have constant diattenua- 

tion over a smaller wavelength range than wire grid polarizers. Figure 3-14 shows 

the principal transmittances of several wire grid polarizers in the infrared. 

10 100 
WAVELENGTH [um) 

1000 

Figure 3-14 Principal transmittance spectra of IR wire grid polarizers. (Molectron 

Detector, Inc.) 

Wire grid polarizers are composed of an infrared-transparent substrate onto 

which parallel lines of conducting material have been deposited. The polarization 
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parallel to the lines is absorbed, while the polarization perpendicular to the lines is 

transmitted with little attenuation. For the 3 to 14 micrometer spectral region, the 

grid spacing is on the order of 0.25 to 0.5 micrometers. 

The wire grid polarizers used in this research were obtained from Molectron 

Detector Inc. They consist of gold wire grids with 0.25 [im spacing laid on a zinc 

selenide substrate. The diattenuation specified by the manufacturer is 85% at 

2.5 urn and 95% at 10 um. 

Retarders are required to measure a complete Mueller matrix but present the 

most difficulty in terms of their wavelength dependence because they must have 

achromatic response. If the retarder is not achromatic the intensity is not modu- 

lated at points where the retardance is a multiple of 2 n. and polarization informa- 

tion is lost. 

The most common configuration of retarder is the waveplate, a plane-parallel 

plate of birefringent material with the crystal axis oriented perpendicular to the 

propagation direction of light. As the wavelength varies, the retardance of the 

waveplate also varies and in practice the retardance of the waveplate is approxi- 

mately achromatic for only a short wavelength range. One birefringent material 

commonly used for infrared waveplates is cadmium sulfide. Figure 3-15 shows the 

retardance measured as part of this dissertation for a cadmium sulfide (CdS) multi- 

ple order retarder that was designed to have 7 XV 4 waves of retardance at 10.6 |J.m. 

At the points where the retardance is a multiple of a wave of retardance, 

polarimetric information is lost. This occurs 8 times for CdS over the 2.5-11 [im 

range shown in the Figure. Zero order retarders have achromatic response over a 

limited wavelength band but are little better than multiple order retarders over a 

broad band such as shown in the Figure. Some achromatic retarder designs 
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[65],[66],[67],[68] that utilize multiple plates of birefringent materials have better 

achromatic characteristics, but the range of achromaticity is still limited to within 

10% of the design wavelength [68]. 

o 
S 

4 6 8 10 12 

Wavelength (microns) 

Figure 3-15 Retardance spectrum of cadmium sulfide retarder. 

One exception to the class of retarder that uses multiple birefringent plates is 

an achromatic retarder composed of two birefringent plates of cadmium sulfide 

(CdS) and cadmium selenide (CdSe) [69]. For this design, the fast axes of the two 

plates lie in the plane of the plate and are perpendicular to each other. Since the 

fast axes are perpendicular, the effective retardance of the combination of plates is 

the difference of the retardances in the two plates. The birefringence dispersion for 

CdS and CdSe are similar enough that effective retardance remains fairly constant 

over a wavelength range from 3 to 14 p.m. This achromatic retarder is used in the 

spectropolarimeter and is discussed in greater detail in Chapter IV. 
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The Fresnel rhomb gives the best achromatic response of achromatic retarder 

designs. Figure 3-16 shows a typical Fresnel rhomb designed for the visible. In the 

Fresnel rhomb, retardation occurs on total internal reflection. The amount of retar- 

dation depends solely on the refractive index which varies slowly with wavelength 

but is independent of optical path, unlike the waveplates based on birefringence. 

This design has the disadvantage of a beam offset which is unacceptable when the 

retarder must be rotated. A modified Fresnel rhomb corrects this problem and 

retains the achromatic response. Modified Fresnel rhombs have been designed for 

the visible [38],[70],[71] and the infrared [10]. The infrared design by Goldstein is 

shown in Figure 3-17. The theoretical retardance spectrum is shown in Figure 3-18. 

Figure 3-16 Fresnel rhomb achromatic retarder. 



Figure 3-17 Modified Fresnel rhomb achromatic retarder. 
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Figure 3-18 Retardance spectrum of modified Fresnel rhomb retarder. 



Chapter IV 

Rotating Sample Spectropolarimeter 

The previous Chapters have provided an overview of polarimetric techniques 

and have discussed the application of these techniques to spectropolarimetry in a 

wavelength independent manner. The advantages of Fourier transform spectrome- 

ters as a method of wavelength resolution were described in the previous Chapter. 

The remainder of this dissertation describes application of these ideas to a Nicolet 

Fourier transform spectrometer configured for mid-infrared polarization measure- 

ments (hereafter "the spectropolarimeter") culminating in the measurement of the 

complete Mueller matrix as a function of wavelength. 

This Chapter applies the Fourier analysis technique in describing the rotating 

sample polarimeter. A description of the retarders and their calibration required 

for the complete Mueller matrix polarimeter is also described in this Chapter. 

Chapter V gives additional examples of measurements using the rotating sample 

spectropolarimeter. Chapter VI describes the complete Mueller matrix polarimeter. 

Chapter VII gives examples of measurements using the Mueller matrix spectropola- 

rimeter. Sources of systematic error in each of these techniques are described and 

resolved at the appropriate point in each of these Chapters. 

60 
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A. Introduction 

The precision calibration of polarizing elements is becoming more important 

as optical systems require greater accuracy and increased control over polarization 

[3], [4]. The rotating sample polarimeter presented here is used to measure the lin- 

ear diattenuation and linear retardance spectra of a sample. These spectra are used 

for the calibration of polarization elements and the characterization of linear 

polarization properties of infrared materials. In our implementation, the polarime- 

ter is placed in the sample compartment of a Fourier transform spectrometer 

[72],[73]. The rotating sample spectropolarimeter measures linear diattenuation 

and retardance spectra of transmissive samples from 2.5 -16.5 um. 

Previous techniques have measured polarimetric and ellipsometric parameters 

of samples by rotating polarizers or retarders [23],[45],[47],[48],[50],[52]. The 

detected signal is modulated by the rotating polarization elements. The polarization 

properties of the sample are then determined from the detected signal's Fourier fre- 

quency components. In the rotating sample polarimeter presented here, modulation 

is produced by rotating the sample between fixed polarizers whose transmission axes 

are parallel, as shown in Figure 4-1. Any linear diattenuation or linear retardance 

present in the sample modulates the transmitted intensity as the sample rotates. 

The sample's linear diattenuation and linear retardance are determined by Fourier 

analysis of the detected signal. 

The following three points summarize the conclusions of our analysis: the 

rotating sample polarimeter (1) is immune to instrumental polarization, (2) is 

immune to circular diattenuation and circular retardance, and (3) has increased 

accuracy relative to other more complete polarimeters. First, substantial instrumen- 

tal polarization in spectrometers is caused by large angles of incidence on fold mir- 
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Fixed        Rotating    Fixed 
Polarizer   Sample   Polarizer 

Figure 4-1: The rotating sample polarimeter configuration. The sample is rotated 

between two fixed linear polarizers. 

rors and polarization of the beamsplitter or grating [12],[30]. It is necessary to 

either neutralize this instrumental polarization or perform complex data reduction 

to remove systematic errors introduced by the instrumental polarization. Fixing the 

orientation of the polarizers ensures that only one polarization state is transmitted 

to the sample and to the optics following the polarimeter [45]. The detected signal 

thus depends only on the linear diattenuation and retardance in the sample and not 

on the orientation of the polarizers in the instrument. 

Second, the rotating sample polarimeter is immune to circular diattenuation 

(including circular dichroism) and circular retardance (including optical activity), i.e. 

any circular diattenuation or circular retardance in the sample changes the transmit- 

tance measured but does not influence the measured values of linear diattenuation 

or linear retardance. A circular diattenuator or circular retarder rotated between 

two fixed polarizers does not produce any intensity modulation. 

Third, the rotating sample polarimeter is intrinsically more accurate than other 

more complex polarimeters which incorporate retarders. This configuration is best 

suited for the precision calibration of linear polarization elements. 
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The polarization spectra from the rotating sample polarimeter have been used 

for calibration of polarizing optical elements and for the bootstrap calibration of the 

dual rotating retarder polarimeter described in Chapter VI. The linear diattenua- 

tion and linear retardance spectra from the rotating sample spectropolarimeter have 

also been used to investigate potential modulator materials [74], and to confirm and 

extend the wavelength range of materials' optical constants. The calibration spectra 

of an achromatic retarder is included in this Chapter as an example of the data 

obtained by the rotating sample spectropolarimeter. 

Section B describes the data reduction algorithms for the rotating sample pola- 

rimeter. The polarization elements and spectropolarimeter configuration and oper- 

ation are described in Section C. Section D presents the linear diattenuation and 

linear retardance calibration spectra of an infrared achromatic retarder as an 

example of the data obtained by the rotating sample spectropolarimeter. Section E 

compares the rotating sample polarimeter to other polarimeter configurations. The 

terms diattenuation and retardance as used in the remainder of this Chapter refer to 

linear diattenuation and linear retardance unless specifically stated otherwise. 

B. Theory 

This section describes the data reduction method to find the diattenuation and 

retardance of a sample. The Mueller formalism [11] is used to model the rotating 

sample polarimeter and to relate the linear diattenuation and retardance of the 

sample to the output intensity. The diattenuation and retardance are derived in 

terms of the coefficients of the Fourier series which describe the intensity modu- 

lation of the polarimeter. Diattenuation and retardance spectra of the sample are 

obtained by calculating the Fourier series coefficients at a number of wavelengths 

and repeating the calculation for diattenuation and retardance with each of these 
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wavelength dependent coefficients. Since the diattenuation and retardance equa- 

tions for each wavelength are the same, the wavelength dependence has been sup- 

pressed in the following derivation. 

Many materials and optical devices simultaneously exhibit both retardance and 

diattenuation. For example, a birefringent material contains linear diattenuation 

due to the difference in its Fresnel coefficients for the ordinary and extraordinary 

refractive indices. A wire grid linear polarizer will exhibit some retardance. In such 

instances a sample acts simultaneously as a partial polarizer and a retarder [11]. In 

many cases, it may be assumed that the principal axes of linear diattenuation are 

coincident with the fast and slow axes of retardance. This occurs, for example, in a 

waveplate where the crystalline anisotropy that gives rise to the birefringence may 

cause differing amounts of attenuation of a beam linearly polarized parallel or per- 

pendicular to the axis of the anisotropy [75]. The assumption that the axes are coin- 

cident is made in this development. 

A sample with principal intensity transmittances k , and k2 and retardance 

6 = 16 j - 6 21 and whose axes of diattenuation and retardance are coincident and 

aligned with the x and y axes is represented by the Mueller matrix M s 

kx-k2 0 0 

kl + k2 0 0 
\ 

0 2^//c1/c2cosö 2A//c1/c2sin 6 

0 -2<J klk2sinb 2^j k { k2cosb/ 

0 0           \ 
0 0 

(4-1) 

Vl -C2cosö      Vl -C2sinö 

0     0     ->/l -£>2sinö    Jl-V2cosbJ 

where 



£> =    and   t<; =-(/c,+/c2) 
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(4-2) 

are the linear diattenuation and the average transmission, and the axis of the 

principal transmittance k, is aligned with the x-axis [17]. 

This sample is placed between two linear polarizers whose transmission axes 

are parallel, as shown in Figure 4-1. For precision measurements, the polarizers 

cannot necessarily be assumed ideal. The linear polarizers are assumed to have 

diattenuation £>p and the systematic error introduced by the non-ideal diattenuation 

is corrected in the data reduction procedure. The system Mueller matrix M sys for 

the polarimeter with the sample at an angle 9 between parallel polarizers is 

Msys = Mp2(2)
2)R(-e)MS

R(e)Mpy(2)i) 

f 
= x. 

D2 

0 

Vo 

XT, 
<D 

Vo 

D2 
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0 
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0 A n 0 0 0 
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0 
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0 
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0 0 0\ 
cos29 sin29 0 

-sin29 cos29 0 
0 0 1/ 
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(4-3) 

where R (6) is the matrix for a rotational change of basis in the Mueller calculus 

[11]. Mpi(Dj) represents the i th horizontal linear polarizer with diattenuation T> t 

and average transmission xi = -(/ciil + /cii2). 
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The Stokes vector S' of the light transmitted by the polarimeter and incident 

on the detector is given by 

S' = MsysSinc. (4-4) 

The transmitted intensity is given by the first element of the transmitted Stokes 

vector. At each wavelength the intensity transmittance / as a function of sample 

orientation 6 has the form 

/(e)=T[l + -©1£>2(l + M,l-I>2cosö) 

+ ©(2?! + C2)cos20 ,4_c, 

+ -£>1£>2(1 -\l 1 -£>2cosö)cos49] 

= x(a0 + a2cos29 + a4cos40) . 

where x is a normalization factor including the radiance of the source, the reponsiv- 

ity of the detector, and the average transmission of the polarimeter. Equation 4-5 is 

a Fourier series in 6 with coefficients a0,az, and a 4. The diattenuation £> and 

retardance Oof the sample expressed in terms of the Fourier coefficients are 

a2    fl + DlD2\ (4-6) 
V = 

5 = cos"1 

f a0-a4(l+^ 

r 1-      I' (4-7) 
\v[(a0 + a4)

2-a|^-^7^ 

For nearly ideal linear polarizers, £> i, T>2 > 99%, the correction for nonideal pola- 

rizers is negligible and ideal diattenuations D1 = DZ= 1 can be assumed. 
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The quantities a0,a2, and a 4 are determined experimentally by rotating the 

sample in increments of A 0 to a set of N angles 6„ = RA6, where 

n = 0,l,2,...,N-l. The number of measurements N and the increment A 6 must 

satisfy N A 9 = 360 °, where N > 8. An intensity measurement is made at each 6 n . 

At a particular wavelength, each set of N intensity measurements / (9 n) may be 

expressed as a Fourier series 

b       K 

2    t\ (4-8) 

a       K 

= -^+ J^akcos(kQn-k^k) 

where a\ = b\ + c\, K > 4, and N > 2.K. The Fourier coefficients bk and cfcare 

calculated from the set of measured intensities / (6 „ ) by a discrete Fourier trans- 

form. 

The phase of the Fourier frequencies 4> k is 

* i t rc0 (4"9) 

The phase of the second harmonic <|> 2 gives the orientation of the sample's principal 

transmittance k, with respect to the x-axis. The phase of the fourth harmonic <t> 4 

gives the orientation of the phase delay 6 y with respect to the x-axis within an 

integer multiple of it/2. The fast and slow axes of a device are not determined by 

this technique. 

Only the Fourier coefficients a 0, a 2, and a 4 are used to determine the diatte- 

nuation and retardance spectra. The other Fourier coefficients, 

ai,a3,as,a6,a7..., which should be zero in the absence of noise and systematic 
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errors, provide valuable information on the operation of the polarimeter. For 

example, beam wander arising from the rotation of a sample with non-plane parallel 

surfaces couples strongly into the first harmonic a, and decreasingly into the higher 

harmonics. A nonzero value for a x suggests the presence of beam wander. Since 

significant beam wander also couples into a 2 and a 4, measurements on samples 

with non plane-parallel surfaces have reduced accuracy. 

In our experience, there is a definite advantage to rotating the sample through 

360°, rather than just 180°. The additional information acquired from 180° to 360° is 

not necessarily redundant. Doubling the rotation range from 180° to 360° moves the 

polarization information from the first and second to the second and fourth harmon- 

ics reducing the effects of systematic errors such as beam wander. Further discus- 

sion of the effects of choosing a particular rotation range is in reference [76]. 

Mathematical analysis of samples containing circular diattenuation and circu- 

lar retardance shows that the rotating sample polarimeter is immune to these 

effects. Many other polarimetric configurations which measure only linear 

diattenuation and/or retardance have coupling between the linear and circular 

effects, i.e. the presence of circular diattenuation or circular retardance can affect 

the measured value of the linear diattenuation and linear retardance. This occurs, 

for example, if measurements are made with a fixed sample between polarizers that 

are rotated. With the rotating sample polarimeter there is complete immunity to 

the circular effects. 

This immunity can be understood qualitatively by the following argument. If 

the sample contains circular diattenuation or circular retardance, the linearly polar- 

ized light from the first polarizer is elliptical or rotated linearly polarized light, 

which does not change with sample orientation. In the first case, the second 
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polarizer transmits the elliptically polarized light with a fixed attenuation. In the 

second case, the rotated light transmitted by the sample is partially attenuated by 

the polarizer according to the degree of linear polarization rotation, but the rotation 

and associated attenuation are independent of sample orientation. These effects 

occur for any orientation of the sample and produce no orientation-dependent mod- 

ulation. The attenuation in both cases appears in the reduced data as simple 

absorption by the sample. Since the linear diattenuation and retardance are 

calculated from ratios which remove absorption effects, circular diattenuation and 

retardance do not affect measurement of the linear properties. 

As a final note, we have described a polarimeter where the polarizers are par- 

allel. Other relative orientations of the polarizers are viable, but parallel polarizers 

maximize the average throughput for a set of intensity measurements. Therefore 

the signal-to-noise ratio is optimized by parallel orientations of the transmission 

axes of the polarizers. 

C. Experimental 

Diattenuation and retardance spectra are obtained by making the intensity 

measurements as prescribed above but at a number of wavelengths. The data is 

reduced in like fashion, one wavelength at a time. The spectropolarimeter, an 

instrument capable of making polarimetric measurements at many wavelengths 

simultaneously, is described in this section. 

Figure 4-2 shows the optical configuration of the spectropolarimeter. It is a 

Fourier transform infrared (FTIR) spectrometer modified by the addition of the 

rotating sample polarimeter of Figure 4-1 in the sample compartment. 
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Source 

Figure 4-2: The Fourier transform infrared spectropolarimeter. 

The polarimeter consists of two wire-grid polarizers whose orientations are 

fixed. The polarizers are aligned by rotating the second polarizer with no sample 

present. The second polarizer is aligned at the angle where the phase <t>2 of the sec- 

ond harmonic of the intensity modulation is zero. This aligns the transmission axes 

of the polarizers to within a tenth of a degree. Misalignment of the two polarizers 

by 0.1° introduces error in the retardance measurements of less than 0.4% and negli- 

gible error in the diattenuation measurements. 

The operation of the spectropolarimeter proceeds as follows: The sample is 

placed in a computer-controlled rotary stage and a transmission spectrum / 0 O ) is 

taken. The sample is then rotated by A 6 and a second spectrum /1 (X) is acquired. 

This process is repeated until the required set of N spectra is obtained. In the stu- 

dies described here, A 0 = 22.5 ° and N = 16. The oversampling provides increased 
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signal-to-noise and allows for checks on instrument operation. The Fourier 

coefficients a „ are calculated at each wavelength from the N transmission spectra. 

Diattenuation and retardance spectra are then computed from the coefficients using 

Eqs. 4-6 and 4-7. 

D. Example 

In this section we demonstrate the utility of the rotating sample polarimeter by 

showing diattenuation and retardance spectra of a multiple plate achromatic 

retarder whose fast axis orientation oscillates. This example highlights the type of 

information which can be obtained, and demonstrates a defect in this particular 

polarization element which otherwise might escape notice. Figure 4-3 shows the 

achromatic retarder which consists of two plates of different birefringent materials 

whose crystal axes are orthogonal to each other [69]. The similarity in the disper- 

sion curves of the two materials results in a net retardance of approximately one- 

quarter wave over the wavelength range 2.5 to 14 um. Different materials have 

been used in similar designs in the visible and ultraviolet wavelength bands 

[65],[66],[67]. 

Figure 4-4 shows the measured retardance over the retarder's transmission 

band. The retardance remains largely achromatic out to 14.3 pm. Because of the 

small variation of retardance with wavelength, the retarder is superior to conven- 

tional single plate infrared retarder designs and is useful for many applications, par- 

ticularly multi-wavelength [10] or broadband polarimetry. Figure 4-5 shows the 

diattenuation spectrum. The diattenuation is less than one half of one percent over 

most of the useful spectrum of the retarder. 
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Figure 4-3: The configuration of the achromatic retarder. The angle between the 

fast axes of the two plates is ideally 90°. 
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Figure 4-4: Retardance spectrum of the multiple plate achromatic retarder. 
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Figure 4-6 shows the variation of orientation of the fast axis as a function of 

wavelength. It oscillates by 5° seven times over the 2.5 to 16.5 um wavelength band. 

The period of modulation increases as the wavelength increases. Investigation 

revealed that misalignment of the two plates comprising the retarder caused this 

oscillation of orientation with wavelength which was eventually corrected by realign- 

ing the plates. Ideally, the fast axes of the two plates are precisely 90 "apart, but in 

this particular device the angle between the fast axes differed from 90° by the 

magnitude of the modulation, about 5°. 
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Figure 4-5: Diattenuation spectrum of the multiple plate achromatic retarder. 

To understand this oscillation of the retarder's fast axis, consider a particular 

wavelength A. j where one plate has 2nn retardance and contributes no net retar- 

dance. At this same wavelength the second plate acts as a net one quarter wave 

retarder whose orientation is that of the second plate. At some A 3 different from A x 

the second plate has zero net retardance and the first plate contributes the net quar- 

ter wave of retardance at the orientation of the first plate. At A 2 between A, and A 3 
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both plates contribute to the quarter wave of retardance at the average orientation 

of the two plates. (Actually the two plates produce retardation that is slightly ellipti- 

cal at this point, a more subtle reason to measure and correct the misalignment.) By 

rotating one plate with respect to the other by the misalignment indicated in the 

figure, the two plates are made perpendicular and the orientation becomes constant 

with wavelength. If this misalignment is less than 8°, it affects only the orientation of 

the achromatic retarder and has negligible effect on the magnitude of the retar- 

dance (the retardance in Figure 4-4 remains the same). 
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Figure 4-6: The orientation of the fast axis as a function of wavelength of the achro- 

matic retarder. 

This example has demonstrated the usefulness of the rotating sample spectro- 

polarimeter not only through the calibration of the diattenuation and retardance but 

also through the additional information contained in the spectra of the orientation 

of polarization properties. 
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E. Conclusion and Comparison to Other Polarimetric Configurations 

It is helpful to compare the rotating sample polarimeter to other types of pola- 

rimeters in order to understand the usefulness of the rotating sample polarimeter. 

One of the most common and popular polarimeters for the characterization of 

samples is the dual rotating retarder polarimeter first described by Azzam [45], and 

analyzed by others [46],[59]. Table 4-1 lists advantages and disadvantages of both 

types of polarimeters. The dual rotating retarder polarimeter is complete, i.e. it 

measures all sixteen elements of the Mueller matrix including linear polarization, 

circular polarization, and depolarization. For circular polarization, Mueller matrix, 

or depolarization measurements a rotating retarder is required. 

However, calibration and operation of a dual rotating retarder is far more 

complex than for the rotating sample polarimeter and there are many more poten- 

tial sources of error. Based on our experience, we feel the dual rotating retarder is 

less accurate because of greater complexity of data reduction, calibration, and 

systematic error removal. For spectral measurements, calibration and data reduc- 

tion of the rotating sample polarimeter is much easier since wavelength dependence 

of retarders is generally much stronger than the wavelength dependence of 

polarizers. 

Both types of polarimeters are operated on the same mechanical platform. 

The rotating sample polarimeter is used for greater accuracy and for the calibration 

of linear elements. The dual rotating retarder polarimeter is used on samples that 

are difficult to rotate, and to measure Mueller matrices, circular polarization ele- 

ments, and depolarization. 
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Table 4-1: Comparison of the Rotating Sample Polarimeter 

to Rotating Retarder Polarimeters. 

Rotating Sample Polarimeter Rotating Retarder Polarime- 
ters 

1 Requires only polarizers Requires polarizers and retard- 
ers 

2 
Only polarizers need to be calibrated 
(bootstrap calibration quickly con- 
verges) 

Calibration must include 
retarders (which requires cali- 
brated elements) 

3 Easily extendable to many wavelengths Wavelength dependence of 
retarders is critical 

4 Requires only one rotating stage Requires two rotating stages 
for dual rotating retarders 

5 
Immune to instrumental polarization Immune to instrumental polar- 

ization (if polarizers don't 
rotate) 

6 Immune to circular polarization effects Measures circular polarization 
effects 

7 
Results are in terms of diattenuation 
and retardance 

Diattenuation and retardance 
must be extracted from Muel- 
ler matrix (for Mueller matrix 
polarimeters) 



Chapter V 

Rotating Sample 

Spectropolarimeter Results 

This Chapter describes several examples of measurements using the rotating 

sample spectropolarimeter described in the previous Chapter. The first three mate- 

rials examined in the rotating sample spectropolarimeter were ferroelectric liquid 

crystal materials. The linear diattenuation and linear birefringence for the liquid 

crystals are presented. The samples described in Section B are the cadmium sulfide 

and cadmium selenide waveplates that comprise the infrared achromatic retarder 

used in the dual rotating retarder spectropolarimeter. Linear retardance, linear 

birefringence, and linear diattenuation are given. In addition, dispersion relations 

for the linear birefringence and refractive indices for these two materials are given. 

A. Liquid Crystals 

The interest in ferroelectric liquid crystals as spatial light modulators for the 

visible and near infrared has grown recently due to their high switching speed, sub- 

stantial birefringence, and low power requirements [6],[7],[8],[77]. In this Section 

linear birefringence and linear diattenuation spectra from 2.5 to 12 \xm for the BDH 

764E smectic A* electroclinic and BDH SCE4 and SCE9 smectic C* ferroelectric 

77 
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liquid crystals [78] are presented. The results presented here indicate that the large 

birefringence (An > 0.1) and the small linear diattenuation (£> < 2%in non- 

absorbing regions) warrant investigation of these liquid crystalline materials for use 

as spatial light modulators in the mid-infrared. 

Wu [79] gives an overview of previous measurements of the birefringence of 

liquid crystals. Many of these techniques are suitable only for discrete wavelengths, 

or require theoretical interpolation [80],[81]. The birefringence spectra of nematic 

liquid crystals from 2 to 16 \xm have been estimated using theoretical models and 

through measurements in an FTIR spectrometer [44],[82]. The previous techniques 

do not measure the linear diattenuation of the liquid crystal, however. The spectro- 

polarimetric technique applied here combines polarimetric techniques [10],[45],[47] 

with Fourier transform spectroscopy [72] to produce linear diattenuation and linear 

birefringence spectra. 

The linear retardance öof the liquid crystal sample is defined as the difference 

between the phase change for the extraordinary wave 6e and the phase change for 

the ordinary wave 6 0 of the two linear eigenpolarizations of a sample 6 = | 6 e - 6 01 

upon transmission through the sample. The linear birefringence A n = \ne-n0\,the 

linear retardance 6 , and the sample thickness d are related by 

X (5-1) 
An(M-—-T6(\). 2nd 

Larger birefringence is desirable for liquid crystal devices, since the resulting device 

can be fabricated thinner and will switch faster. 

Linear diattenuation is a measure of the tendency of a sample to linearly polar- 

ize incident light which is unpolarized. The linear diattenuation T>[ 12] is defined as 
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IT.-TJ (5-2) 
7+7 0 

where 7 e and 70 are the principal intensity transmittances associated with the 

extraordinary and ordinary rays of a material with linear eigenpolarizations. For an 

ideal polarizer T> = 1, while for a purely retarding sample V = 0 . Diattenuation is 

undesirable in an electrooptical modulator. The presence of linear diattenuation 

prevents a half wave retardance modulator from switching exactly between the two 

circular polarization states, or two orthogonal linearly polarized states. The larger 

the linear diattenuation, the further from orthogonal the initial and final polariza- 

tion states are. 

The liquid crystal samples were prepared at the University of Colorado in 

Boulder and measured in a spectropolarimeter developed at the University of Ala- 

bama in Huntsville [72]. The spectropolarimeter utilizes a rotating sample polari- 

meter [50],[51] located in the sample compartment of a Fourier transform infrared 

spectrometer (Figure 5-1).   In this configuration the measurements of linear 

diattenuation and linear retardance are immune to crosstalk from circular diatte- 

nuation (circular dichroism) and circular retardance (optical activity); i. e. circular 

diattenuation or circular retardance do not influence the measured values of the 

linear diattenuation or the linear retardance. 

The three liquid crystals investigated in this study were the British Drug House 

mixtures 764E, SCE4, and SCE9. The 764E mixture is an electroclinic mixture at 

elevated temperatures [83] while the latter two are broad temperature smectic C 

ferroelectric liquid crystals. All three samples were in the SMC* phase at the mea- 

surement temperature 25°C. The samples were mounted between two uncoated 

CaF£ windows with 50 [im spacing. 
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Fixed 
Mirror 

Source 

Figure 5-1: The Fourier transform infrared spectropolarimeter. The rotating sam- 

ple polarimeter is placed in the sample compartment. 

Figure 5-2 shows the transmission, linear diattenuation, and linear birefrin- 

gence spectra of the 764E liquid crystal material. Figure 5-3 shows the spectra for 

the SCE4 material and Figure 5-4 for the SCE9 material. Table 5-1 gives the 

numerical values for the transmission, linear diattenuation, and linear birefringence 

for the 5.5 pirn laser line and the 9.6 [im and 10.6 \im CO2 laser lines. The transmis- 

sion spectra include absorption by the CaF2 windows. CaF2 is completely absorbing 

beyond 12 urn. 
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Gaps have been introduced in the diattenuation and birefringence spectra 

where the transmission is less than 2%. In these regions, the spectropolarimeter 

cannot determine accurate values of the diattenuation and retardance because there 

is not enough light. In the absorption bands, the magnitudes of the Fourier compo- 

nenents of the polarimetric signal become small and noisy and the resulting quanti- 

ties are consequently less accurate. 
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Table 5-1: Transmission, linear diattenuation, and linear birefringence of the liquid 

crystals LCE4, LCE9, and 764E at the 5.5 um CO and the 9.6 urn and 10.6 um CO2 

laser lines. 

Wavelength 
(um) 

Transmission 

(%) 

Linear 
Diattenuation 

(%) 

Linear Bire- 
fringence 

An 

LCE4 

5.5 73.7 1.1 0.138 

9.6 4.7 5.2 0.56 

10.6 5.5 0.8 0.21 

LCE9 

5.5 72.3 13.4 0.095 

9.6 13.3 1.8 0.37 

10.6 4.4 30.8 0.30 

764E 

5.5 57.0 1.6 0.178 

9.6 7.4 0.6 0.39 

10.6 3.7 3.8 0.589 
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Figure 5-2: The transmission, linear diattenuation, and linear birefringence of the 

BDH 764E liquid crystal. 
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Remarkably large values of linear birefringence are seen near the absorption 

bands; values of An > 0.2 occur at points of small but non-zero transmission. The 

diattenuation is also large at these points relative to the diattenuation in the non- 

absorbing regions. Although the large birefringence is potentially useful for a mod- 

ulation device at these wavelengths, a high throughput, purely retarding device 

could not be constructed due to the low transmission and substantial diattenuation. 

Diattenuation and birefringence fundamentally result from a difference 

between the complex refractive indices for the two eigenpolarization states of the 

sample [84],[85]. Further, when the corresponding absorption bands of the two 

eigenpolarizations are shifted in wavelength, then the diattenuation spectra and the 

retardance spectra show anomalous dispersion, as these spectra do. 



85 

Wavelength (microns) 

Figure 5-3: The transmission, linear diattenuation, and linear birefringence of the 

BDH SCE4 liquid crystal. 
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For all three samples, the 3.5 urn to 5.5 [im band is suitable for broad band 

modulation. In this region, the birefringence is nearly proportional to wavelength 

(the best fit line to the birefringence crosses the axis near X = 0 \i m.) Thus, the lin- 

ear retardance across this waveband is nearly constant. The resulting modulator 

would be achromatic, working with high efficiency with monochromatic or 

broadband illumination. The small linear diattenuation in this band (less than 2%) 

is of little concern. The relatively high birefringence An > 0.1 enables a relatively 

thin infrared modulation devices, with a correspondingly fast response time. 
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Figure 5-4: The transmission, linear diattenuation, and linear birefringence of the 

BDH SCE9 liquid crystal. 
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Further work remains to be performed in measuring the infrared polarizing 

properties of liquid crystals as a function of applied electric field. Also, knowledge 

of the depolarization spectra (i. e. the tendency to couple polarized light into unpo- 

larized light) will be useful. Liquid crystals are expected to display measurable 

depolarization due to the size of the molecules, and the imperfect arrangement of 

these molecules in devices. 

B. Cadmium Sulfide and Cadmium Selenide 

This section presents measurements of the birefringence for cadmium sulfide 

(CdS) and cadmium selenide (CdSe) from 2.5 to 16.5 urn. This wavelength range 

includes the region from 10.6 to 16.5 pm for which no birefringence measurements 

have been previously reported. Previous researchers have measured the birefrin- 

gence and dispersion of CdS and CdSe throughout the visible and mid-infrared 

using interferometric techniques [86] and by the method of minimum deviation from 

a prism [87],[88]. Our birefringence measurements utilize a rotating sample polari- 

meter [50],[51],[74] operating in the sample compartment of a Fourier transform 

spectrometer. 

Section 1 contains the birefringence spectra of CdS and CdSe from 2.5 to 

16.5 um. Section 2 describes the theory of our rotating sample spectropolarimeter 

measurement technique and data reduction procedures. Section 3 presents esti- 

mates to the ordinary and extraordinary refractive indices obtained from an extrapo- 

lation of previously published dispersion relations combined with our 

experimentally determined birefringence. The application of these materials to an 

achromatic infrared retarder is discussed in the conclusion. 
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1. Dispersion of Birefringence of Cadmium Sulfide and Cadmium Sele- 

nide 

Cadmium sulfide and cadmium selenide are positive uniaxial crystals which 

display linear birefringence. The linear birefringence (henceforth just "birefrin- 

gence") A/zis defined as the difference between the extraordinary refractive index ne 

and the ordinary refractive index nD. We measured single crystal samples of CdS 

and CdSe whose faces were polished and plane parallel. The samples were grown 

by vapor deposition and cut so that the crystal axes lie in the plane of the plate, the 

common configuration of plates for use in linear retarders. Both faces of both 

plates had broad-band anti-reflection coatings. The plates were illuminated at nor- 

mal incidence. The CdS sample was 1.295± 0.010 mm thick and the CdSe plate was 

1.100± 0.010 mm thick. 

Figure 5-5 shows the birefringence for CdS and CdSe from 2.5 to 16.5 urn as 

measured in the rotating sample spectropolarimeter. The data from 10.6 pm to 

16.5 [im extends the range of previously published birefringence data. Table 5-2 

contains tabulated values for the birefringence in columns two and five. We esti- 

mate the uncertainty in this data as ±0.0002 based upon studies of our systematic 

errors [89]. 

The linear diattenuation [12] of both samples was also measured and found to 

be less than 0.2% over most of the 2.5 to 16.5 \\m wavelength range, rising to less 

than 0.5% at either end of this range. The linear diattenuation describes the degree 

of linear polarization of the transmitted light when unpolarized light is incident. 

This birefringence data is now compared to previously reported birefringence 

data. Previously published refractive index data for CdS and CdSe [90],[91],[92],[93] 

over the spectral region 1.0 \xm to 10.6 \xm are given in the form of Sellmeier disper- 
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Figure 5-5: The birefringence of (a) CdS and (b) CdSe. The solid line shows the 

experimental data and the dashed line shows the birefringence predicted by pre- 

vious dispersion relations. 
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sion equations. Fig. 5-5a (CdS) and 5-5b (CdSe) compares our measurements (solid 

lines) with the birefringence computed from previous dispersion relations (dotted 

lines) [89]. These dispersion relations were not intended for use beyond 10.6 urn but 

are shown here to demonstrate the need for data at longer wavelengths. Over the 

2.5 to 10.6 [im range of the previously published data, the agreement between the 

previously published data and our experimental results is better than 1.3% for the 

CdS sample and better than 0.7% for CdSe. 
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Table 5-2: Birefringence and refractive indices from 2.5 to 16.5 urn for 

CdS and CdSe. 

CdS CdSe 

X An n0 ne An n0 ne 

2.5 0.0162 2.2809 2.2969 0.0197 2.4601 2.4798 

3.0 0.0161 2.2772 2.2932 0.0196 2.4553 2.4749 

3.39 0.0160 2.2749 2.2909 0.0196 2.4527 2.4723 

3.5 0.0160 2.2744 2.2903 0.0195 2.4521 2.4716 

4.0 0.0159 2.2719 2.2878 0.0195 2.4497 2.4692 

4.5 0.0157 2.2695 2.2853 0.0194 2.4478 2.4672 

5.0 0.0156 2.2671 2.2827 0.0193 2.4460 2.4654 

5.5 0.0154 2.2645 2.2800 0.0192 2.4444 2.4637 

6.0 0.0152 2.2619 2.2772 0.0191 2.4429 2.4620 

6.5 0.0150 2.2590 2.2742 0.0190 2.4413 2.4603 

7.0 0.0148 2.2559 2.2709 0.0189 2.4397 2.4586 

7.5 0.0146 2.2525 2.2673 0.0188 2.4380 2.4568 

8.0 0.0144 2.2489 2.2634 0.0186 2.4363 2.4549 

.8.5 0.0142 2.2450 2.2593 0.0185 2.4345 2.4530 

9.0 0.0139 2.2407 2.2547 0.0183 2.4326 2.4509 

9.5 0.0137 2.2361 2.2498 0.0182 2.4306 2.4488 

9.6 0.0137 2.2351 2.2488 0.0181 2.4302 2.4483 

10.0 0.0135 2.2311 2.2445 0.0180 2.4285 2.4465 

10.5 0.0132 2.2256 2.2388 0.0178 2.4263 2.4442 

10.6 0.0132 2.2245 2.2376 0.0178 2.4258 2.4437 

11.0 0.0130 2.2197 2.2326 0.0177 2.4240 2.4417 

11.5 0.0127 2.2133 2.2259 0.0175 2.4216 2.4391 

12.0 0.0125 2.2063 2.2186 0.0173 2.4190 2.4363 

12.5 0.0122 2.1987 2.2107 0.0171 2.4163 2.4335 

13.0 0.0120 2.1905 2.2021 0.0169 2.4135 2.4305 

13.5 0.0117 2.1814 2.1928 0.0168 2.4106 2.4274 

14.0 0.0114 2.1715 2,1827 0.0166 2.4075 2.4241 

14.5 0.0112 2.1607 2.1716 0.0164 2.4043 2.4207 

15.0 0.0109 2.1488 2.1595 0.0162 2.4010 2.4171 

15.5 0.0106 0.0160 2.3974 2.4134 

16.0 0.0104 0.0158 2.3938 2.4095 

16.5 0.0101 0.0156 2.3899 2.4055 
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2. Measurement and Data Reduction 

This section describes the measurement technique and the data reduction pro- 

cedures used to measure birefringence spectra. We briefly describe the rotating 

sample spectropolarimeter, the wavelength dependent signal from the polarimeter, 

and the relation of the sample's birefringence to the polarimetric signal. Finally the 

curve fit procedure used to calculate the birefringence spectrum is discussed. 

The rotating sample spectropolarimeter shown in Figure 5-1 is used to mea- 

sure linear diattenuation and retardance spectra of infrared samples. The linear 

retardance Sand linear diattenuation ©present in the sample induce a wavelength 

dependent modulation in the detected signal as the sample rotates. The spectral 

transmittance / (0, X) of the rotating sample spectropolarimeter [51] as a function 

of the sample's retardance 6 (X.), the sample's diattenuation D (X), the sample's 

orientation 0, and the wavelength X is 

(5-3) 

/(6,>,) = l+i[l+Vl-^2(^)cosö(X)] 

+ £>(A.)cos29 

+ -[l-Vl-£>2(>OcosöO)]cos4e 

= a0(X) + a2(X)cos2Q+a4(X)cos4Q. 

This is a Fourier series in 0 with coefficients a0,a2, and a 4. If the linear 

diattenuation ©of the sample is nearly zero as is the case for CdS and CdSe, the 

fourth harmonic coefficient becomes 

1    1 (5-4) 
a4(X) = ---cosb(X). 
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The retardance of the sample is directly related to the phase of the oscillations of 

the fourth harmonic. Figure 5-6 shows, for example, the spectrum of the fourth 

harmonic coefficient a 4 ( X.) for CdS. This spectrum includes the wavelength 

dependent transmission of the sample and instrument. The a 4 ( A.) spectrum 

undergoes a series of maxima and minima as the retardance varies with wavelength. 

At wavelengths where a4( A,) is a maximum, the retardance is an odd multiple of n. 

The retardance is an even multiple of n, when a 4 ( A,) is a minimum. As the 

wavelength decreases, each minimum represents an additional wave (2 n radians) of 

retardance. The absolute retardance for the spectrum is determined from prior 

knowledge of the proper order of retardance at a single wavelength. 

2.0 

W 
-t-> 
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.d 
< 

CO 
c 

2 4 6 8 10 12 14 
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Figure 5-6: The fourth harmonic coefficient spectrum of the output intensity from 

the rotating sample spectropolarimeter for the CdS sample. The phase of the signal 

is related to the retardance of the sample at each wavelength. 
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The Fourier amplitudes ak(X) are determined experimentally by a discrete 

Fourier transform of a set of sixteen intensity spectra taken every 22.5° of sample 

orientation. The magnitude of the retardance | 6 (\) | is determined by an appropri- 

ate curve fit to the signal of Fig. 5-6. The sign of the retardance, which determines 

whether the fast axis of the retarder is horizontal or vertical, is not determined by 

this method, but was previously known. 

We choose to fit the fourth harmonic spectrum of Fig. 5-6 to an equation of the 

form 

a4(X)=a0 + aiX + a2X2 (5~5) 

which contains enough terms to give a good fit to both the amplitude and the phase 

of the experimental data. The terms in a and ß are needed to fit the transmission 

spectrum. The argument of the cosine gives the retardance as a function of 

wavelength to within ± 2 n n. The last term in the argument of the cosine is of the 

general form of a Sellmeier dispersion equation [89],[90], a relation typically used to 

represent the dispersion for CdS and CdSe and other infrared materials. Yo needs 

to be adjusted by 2nit using the birefringence at a specific wavelength and the 

known thickness of the sample in order to determine the absolute retardance and 

remove the 2 Jt ambiguity mentioned above. Then, the birefringence spectrum 

Arc(X.) is calculated from the retardance spectrum, 

X X   (       Yi        Y2    ^ (5"6) 

where d is the thickness of the sample. 
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Curve fitting was done by a commercial software package [94] which employed 

the Marquardt-Levenberg algorithm. Initial values for the free parameters were 

determined by obtaining close graphical matches to the data. The curve fit then 

converged rapidly. The result was independent of the starting values for the param- 

eters, indicating that unique solutions were obtained. 

3. Extrapolation of Dispersion Relations 

This section describes the estimation of the ordinary and extraordinary refrac- 

tive indices from 10.6 to 15 [im for CdS and to 16.5 urn for CdSe by a method which 

combines the birefringence measurements with previously published dispersion 

relations. The birefringence data is used to extrapolate the previous dispersion rela- 

tions for the ordinary n0 and extraordinary ne refractive indices to longer wave- 

lengths. 

Interpolation of refractive index data from experimental data has been per- 

formed by previous workers to obtain dispersion relations for CdS and CdSe from 

the visible to 10.6 [im [89],[90],[95],[96]. Dispersion relations for infrared materials 

are typically given in terms of the Sellmeier equation [89],[90] 

BK2       DK2 (5-7) 
rc2(?0 = A + — + — . 

K2-C    K2-E 

Two sets of Sellmeier constants A - E are required to describe uniaxial materials: 

one set for n 0 and one for n e. The dispersion relations for n 0 and n e were fitted to 

the birefringence values An = ne - n0 of Fig. 5-5 using the previously published 

values for the Sellmeier coefficients as starting points. Figure 5-7 shows the refrac- 

tive indices resulting from the curve fit and from the previous dispersion relations 

[89]. The data for CdS extends only to 15 \\m due to the proximity of its absorption 
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band. The agreement between the fitted refractive index data and the previous data 

is 0.04% or better over the 2.5 to 10.6 um range. Table 5-3 contains the new 

coefficients. Table 5-2 contains tabulated values for the refractive indices. 

Table 5-3: Coefficients for the Sellmeier equation extrapolated from previous dis- 

persion relations and experimental birefringence. 

CdS CdSe 

Coefficients n0 ne n0 n. 

A 3.7255 3.6522 4.1318 4.0832 

B 1.4491 1.5975 1.8584 2.0041 

C 0.16339 0.14526 0.21999 0.20646 

D 1.2612 1.4869 2.7673 3.9928 

E 733.21 794.56 2962.98 3866.93 

It should be emphasized that the refractive indicies reported here were not 

measured directly but are extrapolations from previous dispersion relations and the 

experimentally determined birefringence. The curve fit to the difference 

An = ne - n0 does not give a unique solution, since both ordinary and extraordinary 

indices could be higher or lower by the same amount and still give reasonable 

results for the difference An(\) in the curve fit. Thus, care should be taken in 

using the refractive index results presented here. In spite of these cautions, we 

believe these results to be useful in light of their excellent agreement with previous 
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results at shorter wavelengths and the current lack of data at longer wavelengths. 

The birefringence data is experimentally determined and does not suffer from this 

problem. 
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Figure 5-7: The refractive indices of (a) CdS and (b) CdSe. The solid lines show 

the extrapolation from previous relations using our birefringence data. The dashed 

lines show the indices calculated from previous dispersion relations to 10.6 urn, the 

long-wavelength limit of these relations. The extraordinary indices are on top. 
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4. Conclusion 

The birefringence values reported here have been useful in analyzing the 

design of an achromatic retarder for infrared polarimetry applications [69]. An ach- 

romatic retarder can be constructed by placing the fast axes of a CdS and a CdSe 

plate perpendicular to each other and the transmission axis. By adjusting the 

thickness of the plates 11 and 12, the retardance of the system 

5(X,) = ^(Aa1i1-AR2^2) can be made relatively achromatic. Fig. 5-8 shows the 

retardance of such a device designed for a quarter-wave of retardance from 3 to 

14 urn as measured on our spectropolarimeter [51]. 

The birefringence for CdS and CdSe has been reported in the wavelength 

range from 2.5 to 16.5 um. This range represents a substantial increase in the valid 

wavelength range for these optical constants. This birefringence data was used to 

extrapolate previous dispersion relations for the ordinary and extraordinary indices 

of refraction. 
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Figure 5-8: The retardance spectrum of the infrared achromatic retarder. 



Chapter VI 

Mueller Matrix Spectropolarimeter 

The dual rotating retarder Mueller matrix polarimeter and its implementation 

in the infrared spectropolarimeter are presented in this Chapter. Derivation of the 

data reduction for the polarimeter is given assuming ideal polarization elements and 

proper alignment of the polarization elements. A discussion of some of the most 

important systematic errors possible in the dual rotating retarder polarimeter is 

given with examples of the effects of the systematic errors on some of the Mueller 

matrix elements. A derivation of an improved data reduction that removes or cor- 

rects some of the systematic errors is given. Using these data reduction algorithms 

and a calibration step, the systematic errors are calculated and removed from the 

experimental Mueller matrix. The calibration procedure, the calibration equations, 

and an example of how the data reduction improves spectropolarimetric Mueller 

matrix data are given in this Chapter. 

Section B presents the data reduction equations for the dual rotating retarder 

polarimeter when all elements are assumed to be ideal. Section C shows the effect 

of the orientation and retardance errors on this data reduction. Section D gives the 

derivation of the data reduction equations that correct for these systematic errors 

101 
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and describes how the errors are determined. Section E demonstrates the data 

reduction in an Fourier transform infrared spectropolarimeter. Section F discusses 

other systematic errors and how their effect is minimized in the spectropolarimeter. 

A. Introduction 

The dual rotating retarder polarimeter proposed by Azzam [10],[45],[72] yields 

a complete Mueller matrix through the Fourier analysis of a single detected signal. 

The data reduction algorithm for this polarimeter as originally presented assumes 

ideal polarization elements and no orientational errors. The data reduction algo- 

rithms may be generalized to remove systematic errors which result when these 

requirements on the polarization elements and their orientation are relaxed. We 

present here a technique to determine and remove systematic errors generated by 

large orientation errors of the polarization elements and large retardance errors in 

the quarter-wave retarders. We demonstrate how the accuracy of the Mueller 

matrix suffers from these errors and show how to remove the errors from the data 

set. Finally, we demonstrate the error correction technique on a system that is 

inherently subject to large retardance errors, a Fourier transform infrared spectro- 

polarimeter, where the wavelength dependence of the retarders would otherwise 

produce unacceptable results. 

Figure 6-1 shows the configuration of a dual rotating retarder polarimeter. It 

consists of a sample between a polarization state generator and polarization state 

analyzer each comprised of a stationary linear polarizer and rotating quarter-wave 

linear retarder. When the retarders are rotated in a five to one ratio, all sixteen ele- 

ments of the sample Mueller matrix are encoded onto twelve harmonics of the 

detected intensity signal, which can then be Fourier analyzed to recover the Mueller 

matrix elements. If the polarization elements are misaligned, or the retarders do 
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not have exactly one-quarter wave of retardance, the Fourier amplitudes and phases 

change resulting in errors in the sample Mueller matrix. Even small orientational 

and retardance errors (< 1°) can lead to large errors in the measured Mueller matrix 

(> 10% in some matrix elements). These errors become especially important when 

the retardance and alignment vary significantly from their nominal values such as in 

multi-wavelength or spectral instruments. Here we expand on previous work incor- 

porating correction terms for large orientation and retardance errors into the dual 

rotating retarder data reduction algorithm. This procedure is useful for spectral and 

multi-wavelength systems where changing the retardances of the retardation ele- 

ments or exchanging the retardation elements is impractical or impossible. 

Goldstein and Chipman [59] developed data reduction equations to remove 

systematic errors in the measured Mueller matrix due to small errors in the initial 

orientations of the polarization elements (< 0.3°) and small retardance errors 

(< 2°). Hauge presented a similar analysis with imperfect retarders [46]. Hauge 

includes the diattenuation of the retarders but does not include orientational error 

of the second polarizer. In our application the former is less important than the lat- 

ter [59]. We have extended the research by Goldstein to include large orientation 

errors of the retarders and the second polarizer and large retardance errors in the 

retarders. The data reduction equations we have developed correct for orienta- 

tional errors up to 22.5° and retardance errors up to A./8. The motivation was to 

establish data reduction equations for Mueller matrix measurements over a large 

spectral band (3 \xmto 14 pirn) in which the achromatic retarders in our infrared 

spectropolarimeter display relatively large deviations (±15°) from one quarter 

wave of retardance. 
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Figure 6-1: The dual rotating retarder polarimeter configuration. 

B. Dual Rotating Retarder Mueller Matrix Polarimeter 

Figure 6-1 shows the dual rotating retarder polarimeter proposed by Azzam. 

The polarizers remain stationary such that the transmission axes parallel to one 

another. The two retarders each have one quarter wave of retardance. The quarter 

wave retarders are rotated in a 5 to 1 ratio between radiometric measurements, 

which are made sequentially. The 5 to 1 rotation ratio of the two retarders is chosen 

so that all sixteen elements of the sample Mueller matrix are encoded onto twelve 

frequencies in the detected signal. The measurement cycle begins with the fast axes 

of the retarders parallel to the transmission axes of the polarizers. The detected sig- 

nal is Fourier analyzed and the Mueller matrix elements are calculated from the 

Fourier amplitudes. 

A set of TV intensity measurements is required to determine the sample Muel- 

ler matrix. The n th measurement is described by the following Mueller matrix 

equation for the polarimeter, 

S0Ut(n)=MsysSin (6-1) 

= MLP2MLR2(n)MsampteMLR](n)MLPJSin 

where M LP1 and M LP2 are the Mueller matrices of ideal polarizers with their 

transmission axes oriented along the horizontal x direction, 
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/l     1     0 °A 1 1     1     0 0 
Mipv = MiP2 = - 0    0    0 0 

\0    0    0 J 
(6-2) 

M LR1 (n ) and M LR2 ( n) are the Mueller matrices of the quarter wave linear retard- 

ers in the polarization state generator and the polarization state analyzer, 

Mifi;=l 

and 

M, 

1 0 

0 cos22rcA0 

0 cos2nA0sin2rcA0 
0 sin2rcA0 

0 

cos210nA9 

.   0    coslOnAGsin lOrcAG 

\0 sinlOnAG 

0 

sin2/zA0cos2rcA0 

sin22/zA0 
-cos2rcA0 

0 

-sin2nA0 

cos2ftA0 
0 

(6-3) 

0 

0 o \ 
sin lOnABcoslOnAG     -sinlOnAG 

sin   lOnAG 

-cos lOnAG 

coslOnAB 

0 J 
(6-4) 

where 0„ = nAQ. A9 is given by A0 = T / N where T is the total rotation of the first 

retarder in the measurement cycle (typically it or 2it) and N is the total number of 

measurements within one measurement cycle. For example if T = n and N = 30, 

the first measurement is made with the first retarder oriented at 0° and the second 

retarder at 0 °, the second measurement is made with the first retarder oriented at 

A0 = 6° and the second retarder at5A0 = 3O°, and the nth measurement is made 

with the first retarder oriented at n A 0 and the second retarder at 5 n A 0. Finally, 

M sample in Eq. 6-1 is the Mueller matrix of the sample under test, 

M sample 

mn ^12 ^13 mM\ 

m2l m22 m23 m24 

m3i m32 "^33 17134 

m44/ A7l41 m42 m43 

(6-5) 
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The output intensity is given by the first element of the output Stokes vector, 

s o out ( n) • The expression for the measured intensity / „ is expanded and rewritten 

to produce terms that correspond to the Fourier series expansion 

a0    ^ (6-6) 

The Fourier coefficients a k and b k are functions of the sixteen elements of the 

sample Mueller matrix. These expressions are inverted to give the Mueller matrix 

elements in terms of the Fourier series coefficients. These relations for the Mueller 

matrix elements are given in Table 6-1. 

The dual rotating retarder configuration has a number of advantages. First, 

the effect of any instrumental polarization preceding the polarizing optics or follow- 

ing the polarimeter is negated by the fixed position of the polarizers. Second, the 

Fourier transform on the data automatically performs a least squares fit to the 

overdetermined data set. Third, this configuration is largely immune to beam wan- 

der if measurements are made over a 2E cycle. In this case, modulation from beam 

wander produced by wedges in the rotating retarders is encoded principally on the 

first and fifth Fourier amplitudes. Since the polarimeter does not modulate these 

frequencies, the beam wander signal does not affect the accuracy of the measured 

Mueller matrix. 

C. Computer Modelling 

In this section, we present several plots that demonstrate how systematic errors 

seriously affect the accuracy of the dual rotating retarder polarimeter. 

The errors that are included in the present development are shown in Figure 

6-2. The two retarders have retardances ö l and 6 2. The transmission axis of the 

first polarizer defines the x -axis from which the orientations of the following ele- 
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ments are measured and thus has no error. The first and second retarders and sec- 

ond polarizer have orientation errors e3 , e4, and e5 respectively. The orientation 

errors of the retarders e3 and e4 correspond to the initial orientations of the fast 

axes with respect to the coordinate system defined by the first polarizer. These mis- 

alignments remain constant throughout the measurement cycle. For example, for a 

misalignment of e 3 of the first retarder, the orientation of the retarder for the n th 

measurement is2/iA9-2e3. The present development does not include the pres- 

ence of retardance in the polarizers, diattenuation in the retarders, or diattenuation 

less than 1 in the polarizers. 

l> 
Source 

Polarizer 
Retarders 

Detector 

Polarizer 

Figure 6-2: The dual rotating retarder polarimeter with retardance and orientation 

systematic errors. 

All five systematic errors in the polarimeter may be present simultaneously, 

and the effect of the systematic errors may be different depending on the polariza- 

tion properties of the sample. All possibilities cannot be presented here and we 

show only the effect of a few systematic errors on the identity matrix, i.e. the sample 

is completely non-polarizing. This does not give complete information on the effect 

of the systematic error on the calculated sample matrix when the sample is polariz- 

ing and care should be taken that wrong inferences are not drawn from what we 
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present here. However, an example matrix must be chosen in order to show the 

effect of the systematic errors. For purposes of the demonstration here, the effect of 

the systematic errors are seen as the deviations from the unit matrix. 

Although all matrix elements show inaccuracies as a result of the systematic 

errors, the four elements in the middle sub-matrix show the largest. Of these four 

elements, the m22 and m33 elements are approximately of the same magnitude, and 

the m 23 and m 32 elements have the same magnitude. Thus only the m 22 and m 23 

elements are shown here. 

Three dimensional plots showing the effect of variations of two of the errors 

while the other three are held constant were generated from the simulation. Figure 

6-3 shows the effects of varying the retardances of the two retarders 6 j and 6 2 from 

80° to 100° with e3 = e4 = e5 = 0°. In this range, the value of the m 22 element is 

linearly proportional to the value of the retardances. This situation could occur in a 

tunable laser polarimeter where any mis-orientations can be easily corrected, but 

the retardance in the retardance changes as the laser is detuned from the nominal 

A./4 wavelength of the retarders. For ö1 = 62 = 80°,the error in the m22 element 

is approximately 35%. The m 23 element is unaffected by changes in the retardance 

and is not shown. Figure 6-4 shows the effect of a non-ideal second retarder on the 

sample Mueller matrix elements m22 and m23. The orientation of the second 

retarder e 4 varies from -10° to 10° and the retardance of the second retarder ö2 from 

80° to 100° with e3 = e5 = 0° and 61 = 90°. The situation could occur for systems in 

which the second retarder is imperfect and is difficult to align. 
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Figure 6-3: The uncorrected m22 element of a non-polarizing Mueller matrix as a 

function of the retardance of the two retarders. 



110 

0.8 T . 
0.6 -l  . 
0.4 K_ 
0.2 K _ 

M23   0.0 <. 
-0.2 K 

-•iiL 

-0.4 1 
-0.6 V 
-0.8 T 
-1.0 

95 

*W 

Figure 6-4: The uncorrected m 22 andm23 elements of a non-polarizing Mueller 

matrix with a non-ideal second retarder in the polarimeter. 

D. Removal of Systematic Errors 

In this section, we present the data reduction equations which remove the five 

systematic errors of the previous section. 

The system Mueller matrix equation for the dual rotating retarder polarimeter 

including the five systematic errors shown in Figure 6-2 is given by 

S0Ut(n)=MsysSin (6'7) 

= MiP2(e5)MiÄ2(n)ö2>£4)MsampieMiR7(/2,ö1)e3)MIPiSin> 
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where M LP2 is now misaligned by e5 from the x direction. The polarizer is rotated 

by an amount e 5 

MiM(es)«R(-es)Mtl,2R(es), (6-8) 

where R (e) is the Mueller matrix used for a rotational change of basis perpendicu- 

lar to the optical axis of the polarimeter [11]. MLRJ (ft, öt, e3) and MLR2(n, 52, e4) 

are the Mueller matrices of the quarter wave linear retarders with retardances ö i 

and 62 and misalignments e3 and£4, 

MiJtJ(n,ö1,e3) = R(-e3)M^,(n,ö1)R(e3) 

io o °       A      (6-9) 
0    C4sin2(6,/2)+cos2(61/2) S4sin2(6,/2) -S2sin6, 

0 S4sin2(6,/2) - C4sin2(6,/2) +cos2(6,/2)    C2sin(6,) 

0 S2sinö, -C2sin(6!) cosCS,) 

whereC2 = cos(26n-2e3),S2 = sin(2e„-2G3),C4 = cos(49n-4G3), and 

S4 = sin(46n-4e3). Similarly for M LR2, 

MiJt2(n,62,e4) = R(-e4)Mw/(n.62)R(e4) 

/i o o o      \    (6.10) 

0    C20sin2(62/2)+cos2(ö2/2) 320sin2(62/2) -5,0sin62 

0 S20sin2(ö2/2) -C20sin2(ö2/2) + cos2(62/2)    C10sin(62) 
\0 S10sin62 -CI0sin(62) cos(62) 

where Clo = cos(lO0n-2e4),Slo = sin(loen-2G4),C2o = cos(2Oen-4e4), 

and S20 = sin(20en-4e4). The intensity, given by the first element of the output 

Stokes vector in Eq. 6-7, is now a function of the five error terms, ö1,62,e3,e4, 

and e 5 . This is written in the form of the Fourier series of Eq. 6-6. The new 

coefficients in terms of the error terms and sample Mueller matrix elements are 
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ao=2mii + 4(33mi2 + 4,34COS2e5An21 + 8f33l34COS2G5m22 

+ -ß4sin2E5m31 + -ß3ß4sin2e5m32 
4 o 

ax = -sinö1sin2e3m14 + -sinö1ß4sin2e3cos2e5n'i24 
2 4 

1 ß4sin61sin2e3sin2e5/7i34 

a2=-ß1cos4e3m12 + -ß1sin4e3m13 + gß1ß4cos4e3cos2e5m22 

+ -ß1ß4sin4G3cos2e5m23 + -ß1ß4cos4e3sin265m32 
8 8 

+ -ß1ß4sin4G3sin2e5m33 
o 

a3 = --ß1sinö2sina3m42--ß1sinö2cosa3m43 
8 8 

a4 = —sinöj sinö2cosa!m44 

a5 = -sin62sina5m41 + -ß3sinö2sina5/n42 

(6-11) 

a6 = -sin ö, sinö2cosa2m44 

a7 = --ß1sinö2sina4m42 + -ß1 sinö2cosa4m43 
8 8 

a8 = 7Tßlß2
C0Sa9(/n22 + m33) + T7ßlß2Sina9(m32-™23) 

16 lo 

a9 = -ß2sinöi sina6A7i24 + -ß2sinö1cosa6m34 
8 8 
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ai0 = Tß2COSail'n21 + gß2ß3COSaiim22 + 4'32Sinaiim31+gß2ß3Sinaiim32 

an = —ß2 sin ö j sin a7m24 --ß2 sin öjcosa7m34 8 8 

a12 = —ß1ß2cosa10(m22-m33) + —ßiß2sinaio(m23 + m32) 

b0 = 0 

b j =-sin6! cos2e3A7i14 + -ß4sinö1 cos2e3cos2e5m24 
2 4 

+ -ß4sinöjC0s2e3sin2e5m34 

ö2 = —ß,sin4e3m12 + -ßj cos4e3m.13 + -ß1ß4cos4e3cos2£5m23 4 4 8 

— ß1ß4sin4e3cos2e5m22 + -ß1ß4cos4e3sin2e5m33 
4 8 

--ß1ß4sin4G3sin2e5m32 
o 

t>3 = —ßi sinö2cosa3m42-'- -ß1sinö2sina3m43 8 8 

ö4 = -sin61sin62sina1An44 

b5 = —sinö2cosa5m41 - -ß3sinö2cosa5m42 

(6-12) 

ö6 = --sinöiSinÖ2sina2ni44 

b7 = —ß, sinö2cosa4m42- -ß1sinö2sina4/n43 8 8 
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b8 = - — ßiß2sina9(m22 + ^33)-T7ßiß2C0sa9(m23-^32) 16 lo 

b9 = --ß2sinö1cosa6m24 + -ß2sinö1sina6m,34 
8 ö 

b10=-Tß2Sinaiim21_öß2ß3Sinaiim22+4ß2COSail'7Z31+gß2ß3COSaiim32 

bn = -ß2sinö1cosa7m24--ß2sinÖ1sina7m34 
8 8 

Ö12 = -TTßlß2Sinaio(^22-m33) + TTßlß2COSaio(^32 + m23) 
16 io 

There are a number of repeated terms in the errors and the substitutions in a and ß 

have been made to simplify these equations. These substitutions are given in 

Table 6-2. For a measurement period T = n, the subscripts k on the Fourier 

coefficients a k and b k correspond to the k th harmonic. For 7 = 2 it, the k th 

subscript corresponds to the 2/c th harmonic. 

These expressions are inverted to give the corrected sample Mueller matrix 

elements which are given by 

4 f      aA a6   \ 
m44 = 

sinöiSinö2V   coso^    cosa2y 

a 3 cos a 3 + 63sina3 + a7cosa4- b7sina4 
m 43 = 8 o •       c 43 ß1sinö2 

a3sina3 + fc>3cosa3 + a7sina4 + b7 cosa4 
m 42 = - 8 —:—  4 ß!Sin52 

-ß3m42 4b5 
m 4i = ö :—^~ 2 cosa5sino2 
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m24 = 8 
a9sina6-b9cosa6-an sina7 + b n cosa7 

ßsSinÖ! 

m34 = 8 
a9cosa6 + b9sina6-au cosa7-ö n sina7 

ß2sin6j 

-ß4cos2e5m24 twi 
m1A = + 

4i>! ß4sin2E5m34 

14 cos2G3sinÖ! 

m22
= 16 

a8cosa9 + a12cosa10- ö8sina9-b 12sina10 

m33 = 16 
a8cosa9-a12cosa10- £>8sina9 + b 12sina10 

ßTß^ 
(6-13) 

m23 = 16 
-a8sina9 + a12sina10-b8cosa9 + b12cosa10 

m32 = 16 
a8sina9 + a12sinaio+ b8cosa9 + 5 12cosa10 

m 12 

16a2cos4e3- 16b2sin 4E3 -ß1ß4cos2£5m22- ßt ß4sin2e5m32 

2ßi 

16a2sin4e3 + 16b2cos4e3-ßiß4cos2£sm23 - ß1ß4sin2e5m33 

2ß; 

16a10cosan - 16b 10sinau -ß2ß3m22 

2ß^ 

m 31 

-(ß2ß3na32- 16b 10cosan - 16a10sinau) 

2ß^ 

^ii=4a0--ß3m12--ß4cos2G5m21--ß3ß4cos2e5m22 

--ß4sin2e5/n31 --ß3ß4sin2e5m32 
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Note that some of the Mueller matrix elements are written in terms of others so that 

the elementsm44 , m43 , m42, m41 ,m34,m24 ,m 14 , m22 ,m23, m32, andm33 are 

calculated first, then rnl2,mi3,m21, and m 3,, and finally mn. 

These relations reduce to the equations given in Table 6-1 when the orienta- 

tional errors go to zero (e3 = E4 = e5->0) and the retardance values go to 90° 

(6 j = 6 2 -» 90°). There are no singularities as the orientational errors go to zero or 

the retardance values go to 90°. 

In practice it may be difficult to determine the systematic errors ö1,62,£3,64, 

and G5 . If the sample is known, however, the errors can be determined experimen- 

tally. Air is non-polarizing and its Mueller matrix, the identity matrix, is known to 

high accuracy. Accordingly, to determine the systematic errors in the dual rotating 

retarder polarimeter, the sample is removed and data is collected as described 

above. With m x x = m 22 = m 33 = m 44 = 1 and all other elements of the sample 

matrix zero, the Fourier coefficients become functions of the five systematic errors 

only. The coefficients are given in Table 6-3. These relations are inverted to give 

the errors in terms of the experimentally determined Fourier coefficients. The 

orientational errors and retardance values are given by 

1       -ifM    1.     '-i(*>\o\ G3 = -tan      —   _T"tan       — 

1       -Jb2\    1       -Jb6\    1       -Jb8\    1       -Jb.o] 
G4 = -tan      —   -^tan      —   +Ttan      —   "7tan        4    2 \a2)   2 \aj   4 \aH)   4 \axJ 

e^ = -tan       —   +rtan       —   --tan    '   ' 5    2"  "    \a2)    2'  "    \aB)    2   '"    Vaio. 

1( a10cosa9 - a8cosau 
6,= cos         

V ai0cosa9 + a8cosan 
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1f a2cosa9-a8cos(_4e3 - 2e5)\ 
62 = cos    , 1 a2cosa9 + a8cos(4e3-2e5) 

These values are calculated from the set of intensity measurements made with 

nothing in the sample compartment. Note that these expressions are in the form of 

ratios and are therefore independent of the incident intensity as they should be. 

These calculated errors are then substituted into Eqs. 6-13 to give the corrected 

Mueller matrix for an arbitrary sample. 

The procedure for calibrating and making accurate measurements is as follows. 

1. A set of measurements is made with no sample present in the sample com- 

partment. Standard Fourier techniques are used to recover the Fourier coef- 

ficients. These coefficients are used to calculate the errors using Eqs. 6-14. 

2. The orientations are minimized and another calibration sequence deter- 

mines the errors again. 

3. A set of measurements is made with the sample present. The Fourier coef- 

ficients are found. The Mueller matrix elements of the sample are calculated 

using the errors and the new Fourier coefficients using Eqs. 6-13. 

These data reductions equations correct the errors exactly when no other error 

sources are present. However, if noise sources are present, the system is more effi- 

cient with a corresponding increase in signal-to-noise when the errors are mini- 

mized, hence the minimization process in step 2 above. In addition, the equations 

become singular if the retardance go to n or a multiple of 2 n or for certain 

combinations of orientation errors (such asa1 = 2e4-2G3-2e5 = Ji/2). There- 

fore as a general rule, we recommend that this data reduction be used only when the 

orientation errors are less than 22.5° and the retardances are within XV 8 of the 

nominal XV 4. 
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E. Removal of Systematic Error from an IR Spectropolarimeter 

These data reduction equations are essential in broad band instruments where 

achromatic retarders are not precisely one quarter wave across the spectrum of 

interest. Our work in infrared spectropolarimetry [51],[72],[74] prompted the devel- 

opment of these equations. The spectropolarimeter is a Fourier transform spec- 

trometer with the dual rotating retarder polarimeter inserted in the sample 

compartment. The retardance of the achromatic retarders [69] used in the 

spectropolarimeter varies by ± 15 ° over the 3 to 14 \xm range of their design (cf. Fig. 

6-5). Although this achromatic response is exceptional over such a large wavelength 

range, the deviation from one quarter wave would introduce unacceptable inaccura- 

cies without proper compensation (Fig. 6-3). In addition, the calibration of the 

orientation of the polarization elements is difficult in the infrared spectrometer. 

This section describes our calibration efforts on the FTIR spectropolarimeter utiliz- 

ing the data reduction for the error correction of the five systematic errors. 

The calibration proceeded as described in Section D. A set of measurements 

were made with no sample in the sample compartment. The orientation errors and 

retardance values were calculated at each wavelength from the wavelength depen- 

dent Fourier series coefficients. The orientation errors were minimized, another set 

of calibration measurements were made, and the residual errors were calculated. 

Figures 6-5 and 6-6 show the retardance of the two retarders and the orientations of 

the polarization elements calculated from the Fourier coefficients in the calibration 

using Eqs. 6-14. The variation of the orientation for the second retarder is due to a 

slight misalignment between the two plates of the retarder [51]. The error spectra 

were then substituted into the equations to produce the corrected identity Mueller 

matrix. 
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Figure 6-5: The calibrated retardance of the two retarders. 

Figure 6-7 shows the calculated Mueller matrix before any correction was 

done, i.e. using the equations of Table 6-1. Each of the plots shows a spectrum of 

the Mueller matrix element at its proper position in the Mueller matrix. The wave- 

length range is 3 to 14 microns, and the matrix has been normalized to the (1,1) ele- 

ment. The expected Mueller matrix spectrum for a non-polarizing sample is the 

identity matrix. The effect of the wavelength dependence of the retardance is 

readily apparent in those elements whose behavior is similar to the retardance spec- 

tra in Figure 6-6. In elements m 3,, m 32, and m 23, the effect of the variation of the 

fast axis of the one retarder is evident. The amount of error in these Mueller matrix 

elements due to the misalignment of the fast axis at 5, 7, and 10 [xm is as high as 

25%. In Figure 6-8 the misalignment of the two plates of the achromatic retarder 

has been corrected and the oscillation due to this misalignment has been eliminated. 
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Figure 6-6: The calibrated orientation errors of the polarization elements. 
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Other residual orientational errors of the elements of the polarimeter have also 

been corrected. The variation in the retardance of the two retarders has not been 

corrected. Errors as high as 50% are present in some Mueller matrix elements at 

certain wavelengths due solely to the wavelength dependence of the retardance. In 

Figure 6-9 all retardance and orientational errors have been corrected and the mea- 

sured Mueller matrix agrees with the expected Mueller matrix for a non-polarizing 

sample. The residual error is less than 4% and is the result of other noise sources in 

the system. These other noise sources are discussed in the next section. 
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Figure 6-7: The uncorrected Mueller matrix spectrum. 
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Figure 6-8: The Mueller matrix spectrum corrected for orientation errors but not 

for the wavelength dependence of the retardance. 
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As a final note, we describe another application where these data reduction 

equations are applicable and useful. A laser polarimeter system can be designed to 

be highly accurate at a particular design wavelength [10]. However without some 

means of error correction, new retarders would have to be obtained if a different 

wavelength is to be examined. The data reduction equations provide a means to 

measure and correct these errors without replacing the retarders. Of course, the 

wavelength could not be changed so that the retarders have zero or a half-wave of 

net retardance, but the corrections presented here would allow the same retarders 

to be used in a much broader wavelength band. 
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Figure 6-9: The corrected Mueller matrix spectrum. 
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F. Other Systematic Errors 

The residual systematic error in the Mueller matrix of Figure 6-9 is as high as 

4% in some parts of the spectrum. This section discusses the likely sources of this 

error. 

The residual error in the Mueller matrix spectrum is seen as a deviation of the 

diagonal elements from the ideal value of one. This deviation is wavelength depen- 

dent and is largest around 4 [i m. The off diagonal elements, chiefly them 23 and 

m32 elements, display deviations from zero in this same part of the spectrum. 

It is likely that there are two main contributors to this residual systematic 

error. One of the sources of additional error is the non-ideal diattenuation of the 

polarizers. Figure 6-10 shows the diattenuation and retardance spectra of the wire 

grid polarizers measured with the rotating sample spectropolarimeter. The diatte- 

nuation falls off at shorter wavelengths as would be expected for a wavelength close 

to the size of the wire grid spacings. This non-ideal diattenuation results in light 

leaking through the first polarizer in the wrong polarization state. This appears as a 

partially polarized component of the light in the polarimeter and decreases the 

modulation of the light as the retarders rotate. This in turn appears as depolariza- 

tion in the Mueller matrix and all elements of the Mueller matrix take on slightly 

smaller values at the shorter wavelengths. Since the polarizer allows light to leak 

through in the orthogonal polarization state, there can be some phase difference 

between the light in the proper polarization state and the leaked light. This phase 

difference is simply the retardance shown in Figure 6-10. At longer wavelengths, the 

retardance becomes a meaningless quantity since the amount of leaked light goes to 

zero. The data at longer wavelengths has been omitted for this reason. 
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Figure 6-10: Linear diattenuation and retardance spectra of the wire grid polarizer. 

The second largest contributor to the systematic error results from the anti- 

reflection coating of the achromatic retarder. There are significant interference 

effects from the coatings between 2.5 and 3 urn that prevent Mueller matrix 

measurements in this part of the spectrum. There are residual effects that can be 

seen in the retardance spectra (Fig. 6-5) around 4 p.m. These effects cause the devi- 

ation in the elements of the Mueller matrix that is apparent in Figure 6-9. This 

exacerbates the problem from the polarizers at these shorter wavelengths and the 

overall accuracy of the Mueller matrix spectrum is reduced for these wavelengths. 
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Other possible sources of systematic error that are not removed in the data 

reduction equations derived above are beam wander produced by the rotating 

retarders, angle of incidence effects on the retarders, and instrument drift. The 

error due to beam wander is believed to be minimal since the measurements are 

made over a rotation of 360° for the first polarizer. This measurement sequence 

minimizes the effect of the beam wander as discussed in Chapter III. Retardance 

can vary with angle of incidence for retarders that utilize birefringent materials [97]. 

This is not believed to be a problem for the achromatic retarders used in the spec- 

tropolarimeter. Since the fast axes of the two birefringent plates in the retarder are 

perpendicular, the change in retardance for a given angle of incidence in the first 

plate is offset by an opposite change in the second. Further study of the angle of 

incidence dependence is probably warranted, however. 

The reduction or removal of these additional sources of error through a new 

data reduction algorithm is proposed in Chapter VIII. 

G. Conclusion 

The dual rotating retarder Mueller matrix polarimeter has been reviewed, and 

the effect of five systematic errors on its accuracy has been demonstrated. All sys- 

tematic errors discussed here are associated with the polarization elements used in 

the polarimeter. These errors are: orientational error in three of the four 

polarization elements, and retardance error in the quarter wave retarders. The 

equations presented allow large orientational and retardance errors. There are no 

singularities as the orientation errors go to zero or the retardances of the retarders 

go to X/4. These equations were developed to facilitate data reduction in a 3 - 

14 M.m infrared spectropolarimeter which suffers from large retardance error in the 
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quarter wave retarders. The data reduction equations and error removal proce- 

dures presented here have been successful in substantially reducing the systematic 

errors in an infrared spectropolarimeter. 
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Table 6-1: Sample Mueller matrix ele- 

ments in terms of Fourier coefficients when 

no errors are assumed in the polarimeter. 

mn = 4a0- 4a2 + 4a8-4a10 + 4a12 

™12 = 8a2- 8a8-8a12 

™13 = 8b2 + 8b8-8b12 

m14 = 40! + 4b9-4bn 

m21 = -8a8 + 8a10-8a12 

m22 
= 16a8 + 16a12 

mZ3 = 16b8 + 16b12 

m24 = -8b9 
+ 8bu 

™31 = -8b8 + 8b10-8b12 

m32 = 16b8 + 16b12 

™33 = 16a8 - 16a12 

m34 = 8a9- 8au 

m41 = 4Ö3- 4b5 + 4b7 

m42 = -8a3 -8b7 

mi3 = -8a3 + 8a7 

m44 = 4a6- 4a4 
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Table 6-2: Substitutions to simplify the error correction equations. 

a1 = 2e4-2e3-2es 

a2 = 2e4 + 2e3-2e5 

a3 = 2e4-4e3-2es 

a4 = 2e4 + 4e3-2e5 

a5 = 2e5-2e4 

a6 = 2e5-4e4 + 2e3 

a7 = 2e5-4e4-2e3 

a8 = -2e5 + 4e4-2e3 = -a6 

a9 = 4e4-4e3-2e5 

a10 = 4e4 + 4e3-2e5 

an = 4e.4-2e5 

ßj = 1 -cosöi 

ß2 = 1 -cos62 

ß3 = 1 + COSÖj 

ß4= 1 + cosö2 
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Table 6-3: Fourier coefficients when sample matrix is the identity 

matrix (all other coefficients are zero )• 

a0 = 2 + §l^4cos2G5 

b2 = --ßiß4sin(4e3-2es) 
o 

a2 = -ß1ß4cos(4G3-2G5) 
o 

b4 = -sinö1sin62sina1 

1       •       *         •       A a4 = —sinöj sino2cosaj 

a6 = — sinoj sin o 2 cos a2 

b6 = —sinö1sinö2sina2 

Ö8 = -ößlß2Sina9 
O 

a8 = -ßjß2cosa9 8 
1«    „ 

b10 = -gß2ß3Sln0tll 

1~  ~ aio = gß2ß3Cosau 

ö12 = 0 

a12 = 0 



Chapter VII 

Electro-optic Coefficient Spectrum 

of Cadmium Telluride 

This Chapter describes a measurement of the electro-optic coefficient spec- 

trum of a cadmium telluride electro-optic modulator taken with the infrared Muel- 

ler matrix spectropolarimeter. The electro-optic effect produces a voltage 

dependent retardance in electro-optic crystals and is used in electro-optic devices 

for modulation of light. Mueller matrix spectra were measured as a function of 

applied voltage for the device. From the Mueller matrix spectra, the retardance as a 

function of voltage and wavelength was calculated. This data was used in turn to 

calculate the electro-optic coefficient spectrum of cadmium telluride. 

The first section describes the material parameters of cadmium telluride and 

the configuration of cadmium telluride as a transverse electro-optic modulator. The 

second section describes the Mueller matrix for an ideal retarder and how the retar- 

dance is calculated from the matrix. This section also discusses the calculation of 

the electro-optic coefficient from the retardance. Section C describes the initial test 

results. Section D describes the measurements of the Mueller matrices as a function 
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of voltage. Mueller matrix spectra are given at several voltages and the derived 

retardance and electro-optic coefficient spectra are given. Section E describes some 

of the experimental errors relevant to these measurements. 

A. Properties of Cadmium Telluride 

This section gives the refractive index at several wavelengths and describes the 

electro-optic properties of cadmium telluride. A brief description of the electro- 

optic effect relevant to cadmium telluride and its application as a transverse electro- 

optic modulator is given in this section. 

Cadmium telluride (CdTe) is a cubic crystal with 43m symmetry. Refractive 

index data from various sources is given Table 7-1. Note that there is substantial 

disparity in the data for some wavelengths. 

Table 7-1: Refractive index data for CdTe. 

Wavelength Index of Refraction n 
A.(nm) 

3.39 2.696« 
6 2.682^ 
7 2.680 
8 2.677 
9 2.675 
10 2.672 

10.6 2.670 2.674« 2.60^ 
11 2.667 
12 2.664 2.57c 

13 2.662 2.57 
14 2.660 

Notes: a. Reference [98] 
b. Reference [99] 
c. Reference [100] 
d. Reference [19] 
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Cadmium telluride is an electro-optic crystal. The linear electro-optic effect is 

the change in the ordinary and extraordinary refractive indices that is caused by and 

is proportional to an electric field applied across the crystal. The relationship 

between the refractive indices and the applied field is given by the electro-optic ten- 

sor. For crystals with 43 m symmetry, the fundamental characterization of the 

electro-optic properties of the crystal may be reduced to a single element of the 

electro-optic tensor, the r 41 element. For a transverse modulator, the electric field 

is applied perpendicular to the direction of light propagation through the crystal. 

Figure 7-1 shows the configuration for a transverse mode modulator. The retar- 

dance as a function of wavelength Ö (A) for a 43m crystal in terms of the applied 

voltage V is 

2.nn3{\)r^(\)VL (7-1) 
*w> u • 

where nO) is the refractive index, r41 (A,) is the electro-optic coefficient, L is the 

length of the crystal along the direction of propagation, and d is the electrode 

separation. The voltage necessary to achieve a half wave of retardance 5 = n for a 

given wavelength is 

V 
dX (7"2) 

x/2    2n3(\)r4l(\)L' 

and for a quarter wave of retardance 

V = dK (7"3) 

x/4    4n3(k)r410)Z' 

Values for n3 r 41 and r 41 have been measured previously and are tabulated in 

Table 7-2. The data in the table is at a wavelength of 10.6 p. m unless otherwise 

noted. The quantity n3r 41 is sufficient to characterize the electro-optic characteris- 
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tics of the modulator and is often reported when the refractive index is not accu- 

rately known. Due to the large disparity in the reported refractive index data, the 

electro-optic coefficient will reported here in the form n3 r 41. Differences in 

impurities in the crystal, growth processes, and measurement accuracy could be 

responsible for the large discrepancies in the reported data. 

Light 

Figure 7-1 Transverse electro-optic modulator. 

Table 7-2: Electro-optic coefficient data for CdTe. 

Source r41    (xlO"12m/V) n3r4i    (xlO"'°m/V) 

(X   [im) 

Yariv [19] 6.8 (X = 3.39) 

6.8 1.20 

Goldstein [10] 5.9 1.03 

II-VF 5.7 1.00 

Herrit and Reedy 5.5 1.05 

[101] 

Note: a. II-VI, Inc. specifications for this device. 
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B. Calculating the Electro-optic Coefficient from Mueller Matrix Data 

This section describes the measurement procedure and the calculation of the 

electro-optic coefficient from the Mueller matrix data. The Mueller matrix model 

that is assumed for the electro-optic modulator and how the retardance is calculated 

using this model are also described. 

Over most parts of the mid-infrared it can be assumed that the cadmium tellu- 

ride modulator acts as a nearly ideal linear retarder. The modulator is represented 

by the Mueller matrix for an ideal linear retarder from which the retardance is 

calculated. The Mueller matrix for an ideal linear retarder of retardance ö is 

/l                            0                                                    0 0        \ 
f   0 C4sin2(6/2) + cosz(6/2)                 S4sin2(6/2) -S2sin6   j 

Mr(6,9) = tl    o               s4sin2(6/2) - C4sin2(6/2) + cos2(6/2) C2sin(6)    I'     (7_4) 

\0                   Szsin6                                  -C2sin(6) cos(6)   J 

where 

C2 = cos2G S2 = sin20 

C4 = cos49 S4 = sin40, 

and x is the transmission. The orientation 0 is the angle between the fast axis of the 

modulator and the coordinate system of the polarimeter defined by the first pola- 

rizer. Note that the three by three sub-matrix in the lower right corner of the 

Mueller matrix forms an orthogonal matrix. If the Mueller matrix is properly 

normalized and there is no depolarization, the square root of the sum of the squares 

of the elements of the rows of this sub-matrix should equal one. This will be 

exploited shortly to examine possible depolarization by the modulator. 
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The retardance ö can be calculated from one, some, or all of the non-zero 

Mueller matrix elements. For example, the retardance can be calculated from the 

m.44 element 

ö = arccosm44, (7-5) 

or from the m 24, m. 34, /n 42, and m 43 elements 

n ~ (7"6) 
6 = arcsin-/ -(ni|4 + ml4 + ml2 

+ ^-43) • 

Other combinations of elements may also be used. The measured Mueller matrix 

should be properly normalized for accurate results when calculating ö from these 

elements. If the Mueller matrix is not normalized, i.e. the determinant of the nine 

element sub-matrix is not one, the retardance should be calculated from ratios of 

the elements 

, sinöA /(/n34-m43)
2 + (m42-m24)

2 (7'7) 
5 = arctan    =arctan. 

cosöy Y 2m44 

The following steps are carried out for measurement of the electro-optic 

coefficient of the CdTe modulator: 1) the Mueller matrix is measured with a 

voltage applied to the modulator, 2) the retardance is calculated from the Mueller 

matrix, and 3) the electro-optic coefficient is calculated from Ö, K, n, V, L, and d. 

The linear relationship between the retardance and the applied voltage can be 

exploited by making measurements at several voltages and performing a linear 

regression. The electro-optic coefficient is found from the slope m of the linear 

regression 

Xd (7-8) 
-m 

2nL 
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The linear regression is performed on the data as a function of voltage at each 

wavelength. The correlation coefficient of the linear regression provides a measure 

of the goodness of fit of the regression to the data. A correlation coefficient of 1 

indicates complete correlation. 

C. Initial Test Results 

The crystal used in these experiments is 5mm by 5mm by 50mm long. The 

crystal is oriented so that the light is incident on the square face of the crystal 

defined by the (110) plane. The electrodes are applied to the (111) planes, and the 

(001) planes define the third direction of the crystal. The slow axis is parallel to the 

applied electric field. The II-VI, Inc. operation and service manual for the modu- 

lator gives a half wave voltage at 10.6 \xm of 5300V. This corresponds to a value for 

ra3r41 ofl.OOx 10"10 m/V assuming an index of refraction of 2.6. 

The CdTe modulator was placed into the spectropolarimeter and 2650V 

applied to the crystal. This voltage was specified by the manufacturer to be the 

quarter-wave voltage of the modulator at 10.6 [im. The fast axis of the crystal was 

oriented at approximately - 45° to the x -axis defined by the first polarizer. The 

maximum angle for rays incident on the modulator was about 9°. Figure 7-2 shows 

the measured Mueller matrix spectrum of the modulator. Each of the Mueller 

matrix elements has been normalized to the (1,1) element and the (1,1) element is 

replaced by the transmission spectrum. 

Several interesting observations can be made about these initial results. First, 

the values of the Mueller matrix elements in the first row and first column except for 

m,, are very nearly zero. This indicates that the diattenuation of the modulator is 

very small. The spectrum is noisier in the low transmission band between 3 and 

6 M-m. A small amount of diattenuation near the limits of measurement accuracy 
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may be present. Second, the remaining elements behave as a linear retarder ori- 

.> ented at approximately -45°. At approximately 11.6 |-im the mZ2 and m44 ele- 

ments change sign. This implies that the modulator acts as a quarter wave retarder 

for this wavelength and voltage since these Mueller matrix elements for an ideal 

retarder go to zero for a quarter-wave of retardance. The retardance should be a 

half wave at half of this wavelength. At approximately 5.8 \x m, the magnitudes of 

the m 22 m44 elements reach a maximum and the m 42, m 43, m 24, and m 34 ele- 

ments go through zero as is expected for a half-wave of retardance. This data indi- 

cates that the quarter-wave voltage for this modulator is 2650V for 11.6 \xm, not 

10.6 [xm as specified by the manufacturer. 

A calculation of the electro-optic coefficient at 10.6 [x m from this Mueller 

matrix using Eq. 7-1 yields a value of n3r 41 of 1.125 x 10" 10m/V. 
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Figure 7-2 Mueller matrix of initial test of the CdTe modulator. 
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D. Measurements and Calculation of n3r41 

The initial results described in the previous section demonstrate the validity of 

the measurement technique. A set of ten measurements was made on the crystal 

and the n 3 r 41 values were found as a function of wavelength. 

Mueller matrix spectra were acquired for applied voltages every 300V ranging 

from zero to 2700V. The voltage was applied to the crystal with a Fluke high volt- 

age power supply. The power supply was calibrated and found to be accurate within 

1% of the expected voltage. Figure 7-3 shows the Mueller matrix spectrum for the 

modulator with no applied voltage. Figures 7-4 through 7-9 show the Mueller 

matrix spectra for applied voltages of 300, 900,1200, 1800, 2100, and 2700 volts. 

The Mueller matrix has been normalized by the m i, and this element replaced by 

the transmission spectrum. 

The Mueller matrix elements exhibit more noise at the shorter wavelengths. 

This noise results from two factors: first, the calibration Mueller matrix is noisier 

and less accurate at shorter wavelength due to non-ideal diattenuation in the pola- 

rizers and non-ideal behavior of the retarder anti-reflection coatings as described in 

Chapter VI. Second, the transmission of the modulator is reduced at shorter 

wavelengths resulting in less light and a lower signal-to noise ratio. Since the fourth 

row and fourth column of the Mueller matrix are less noisy than the rest of the 

Mueller matrix, these elements were used to calculate the retardance by Eq. 7-7. 

Retardance spectra were calculated from the Mueller matrix spectra for each 

of the applied voltages. Figure 7-10 shows the resulting retardance spectra. The 

plots range from applied voltages of 300 volts on the bottom to 2700 volts on top. A 

linear regression was performed on the retardance as a function of voltage at each 

wavelength over the spectrum shown. The retardance values calculated with zero 
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Table 7-3: Values of n3r 41, correlation coefficient, and intercept from linear 

regression. 

Wavelength rc3r41 Correlation Intercept t» 
(M-m) (xlO"I0m/V) Coefficient (degrees) 

3 1.10 1.000 1.1 
3.39 1.09 1.000 2.2 

4 1.10 0.997 2.5 
5 1.07 0.996 3.9 
6 1.04 0.999 5.1 
7 1.06 0.999 2.8 
8 1.08 1.000 0.7 
9 1.09 1.000 0.0 
10 1.09 1.000 0.0 

10.6 1.09 1.000 0.0 
11 1.09 1.000 0.0 
12 1.09 1.000 0.1 
13 1.09 1.000 0.2 
14 1.09 1.000 0.4 

applied voltage were not included in the linear regression. The n3 r 41 spectrum is 

shown in Figure 7-11. An example of the linear regression for a wavelength of 

10.6 [im is shown in Figure 7-12. The correlation coefficient of the regression as a 

function of wavelength is shown in Figure 7-13. The intercept b calculated from the 

regression and the retardance with no applied voltage are shown together in Figure 

7-14. Values for n3r 41, the correlation coefficient, and the intercept are tabulated 

for several wavelengths in Table 7-3. 

The value of rc3r41 atl0.6n.mis 1.09x 10"10 m/V. This is within 6% of the 

value measured by Goldstein on this same crystal [10] and in the middle of the 

range of values previously published. The value of r 41 at 3.39 p. m is 5.5 x io-12 

m/V if an index of 2.696 from reference [97] is assumed. This value differs from the 
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value given by Yariv [19] by almost 20%. However, due to the large discrepancy in 

previously reported refractive indices, the quantity n3r 41 is believed to be more 

accurate than r 41 and is emphasized here. 
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Figure 7-3 Mueller matrix of CdTe modulator with no applied voltage. 
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Figure 7-4 Mueller matrix of CdTe modulator with an applied voltage of 300 volts. 
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Figure 7-5 Mueller matrix of CdTe modulator with an applied voltage of 900 volts. 
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Figure 7-6 Mueller matrix of CdTe modulator with an applied voltage of 1200 volts. 
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Figure 7-7 Mueller matrix of CdTe modulator with an applied voltage of 1800 volts. 
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Figure 7-8 Mueller matrix of CdTe modulator with an applied voltage of 2100 volts. 



151 

X Transmittance 
100 

-1.0 

1.0 

m24 
I'M I^U 

/ - 
/ • 

1 ■ 

■1.1 1  i 1  i  1  i 1 i 
4 6 8 10 12 14 4 6 8 10 12 14  4 6 8 10 12 14  4 B 8 10 12 14 

0.5 - 

0.0 

-0.5 - 

-1.0 

m31 
I ' I ' I ' I ' I 

«33 

I ■ I i I ■ I 

"84 
' I ' I ' I ' I ' 

» • ' ■ ' 

4 8 8 10 12 14 4 6 8 10 12 14  4 6 8 10 12 14  4 6 8 10 12 14 

M44 "41 

0.5 

0.0 

-0.5 

1 ' 1 ' 1 ■ 1 ■ 

: 

_i n ", l.l.l. t. 

-43 
1 ' 1 ' 1 ' 1 ' 

■ 

\ . 
\ - 

1   I   1   1  1   itT 
• 

-48 
1 ' 1 ' 1 ' 1 ■ 

- - 

y—*' . 
- - 

i i I  J_i_ 
4 6 8 10 12 14 4 6 8 10 12 14  4 6 8 10 12 14  4 6 8 10 12 14 

Wavelength     (microns) 
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Figure 7-11 Spectrum of n3 r 4^ calculated from retardance. 
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Figure 7-13 Correlation coefficient spectrum of linear regression. 



154 

6 8 10 

Wavelength (microns) 

14 

Figure 7-14 Retardance for zero applied voltage and intercept of regression. 

E. Discussion of Results 

This section discusses the calculation of the quantity n3 r 41 and describes pos- 

sible sources for error. Several additional measurements and other features of the 

data are presented. 

The correlation coefficients of the linear regression given in Table 7-3 and 

plotted in Figure 7-13 are not an absolute value of the uncertainty in these measure- 

ments but provide an indication of the quality of the data and the reliability of the 

Mueller matrices. The remarkably high correlation indicates that the linear 

relationship of the retardance and the voltage holds very well. The calculation of 

the quantity n3r 41 from the slope (Eq. 7-8) exploits the linear relationship between 

the retardance and voltage. The linear regression returns the proper value for the 

slope, and hence n 3 r 41, even if the absolute value of retardance has a slight bias. 

Ideally the CdTe electro-optic modulator should exhibit no retardance with no 

applied voltage. However, the /n24, m34, m42, and m43 elements are not zero 
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which indicates that there is some residual retardance present. This is thought to be 

due to stresses induced in the crystal during the fabrication process [102]. The resid- 

ual retardance is plotted in Figure 7-14. Linear regressions were performed both 

including the no applied voltage retardance spectrum and excluding it. Since the 

correlation for the linear regression was reduced when this retardance was included, 

the data shown in Figures 7-11 through 7-13 do not include the residual retardance. 

The y -intercept spectrum shown in Figure 7-14 shows that the linear regression pro- 

duces an intercept very near zero as it should according to Eq. 7-1 except in and 

near the absorption band. 

The matrix calculated in Chapter VI from the calibration spectra gives an indi- 

cation of the accuracy of the Mueller matrix elements for different parts of the spec- 

trum. The discussion of sources for error in Section F of Chapter VI applies here as 

well. The systematic errors are more prominent at shorter wavelengths, and the 

accuracy of the Mueller matrices for the modulator are less accurate at these 

shorter wavelengths. 

Comparison of the m, 2 and m 2, elements in Figures 7-3 through 7-10 show 

that the values of these elements in the absorption band changes as a function of 

voltage. A non-zero value of the m 12 element implies horizontal and vertical diat- 

tenuation for horizontally or vertically incident polarized light. A non-zero value of 

the m2\ element increases the degree of polarization for incident unpolarized light. 

At zero voltage, the m, 2 element is slightly negative and the m 2, element is 

approximately zero. As the voltage increases, the magnitude of the m 12 element 

decreases while the m2\ element becomes slightly positive. There is no change for 

the linear diattenuation along the ±45° axis or circular diattenuation. Since the 



156 

magnitudes of these elements are very near the limits of accuracy of the spectropo- 

larimeter, nothing conclusive can be stated here except that this effect should be stu- 

died further, perhaps at higher voltages. 

The orientation of the fast axis of the retarder as a function of voltage at a 

wavelength of 10.6 jam is shown in Figure 7-15. The orientation of the residual 

retardance with no applied voltage is approximately 10°. The m24 and m42 ele- 

ments change sign when voltage is applied (cf. Figs. 7-3 and 7-4) and the orientation 

of the fast axis of retardance changes sign when voltage is applied. The orientation 

approaches about -40° as the residual birefringence is overcome by the electro- 

optically induced retardance. The behavior shown in this Figure is typical of the 

orientation of the fast axis at other wavelengths. 
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Figure 7-15 Orientation of fast axis as a function of voltage at 10.6 [x m. 

Figures 7-16 and 7-17 show the measured Mueller matrices for voltages of 

1200 and 1800 volts applied with opposite polarity. Comparison of these figures 

with Figures 7-6 and 7-7 and Eq. 7-4 show that the effect of reversing the polarity is 
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to change the sign of the retardance. In addition, the magnitudes of the m23, m32 > 

m34, and m 43 elements are slightly less in the reversed polarity measurements. 

This is most likely due to a change in orientation of the fast axis of about 4° for the 

two cases. The possible diattenuation apparent in the m, 2 and m 2, elements is not 

affected. 
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Figure 7-16 Mueller matrix of CdTe modulator with an applied voltage of negative 

1200 volts. 
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Figure 7-17 Mueller matrix of CdTe modulator with an applied voltage of negative 

1800 volts. 
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The transmission spectra shown in the m,, position in the Mueller matrix 

spectra appear to vary with applied voltage. This change in transmission is not, 

however, due to the applied voltage but rather due to instrumental drift. The mea- 

surements were acquired over many hours and the instrumental response drifted 

over this time period due to liquid nitrogen boiling off in the detector and changes 

in temperature in the instrument. This drift affected only the transmission measure- 

ments and not the measurement of the Mueller matrix. The drift was negligible 

over the period required to acquire a single Mueller matrix spectrum. Since each 

Mueller matrix spectrum was normalized by the m,, element, the calculation of the 

retardance was not affected by the long term drift. 

Recall the relationship for the rows of the 3 x 3 sub-matrix in the lower right 

corner of the Mueller matrix. The magnitude of a row in this sub-matrix is the 

square root of the sum of the squares of the elements of the row. The first row of 

this sub-matrix transforms the incident Stokes vector into horizontally and vertically 

polarized states, the second row transforms the incident Stokes vector into states 

polarized along the ±45° axis, and the third row into circularly polarized states. 

The magnitude of each row in this sub-matrix should equal one if the Mueller 

matrix is properly normalized and there is no depolarization. The magnitude of the 

row is related to the degree of polarization of the transmitted polarization state. 

Figure 7-18 shows these quantities as a function of wavelength and voltage. 

The top three plots show these values for three voltages overlaid for each of the 

rows. The bottom nine plots show the magnitudes of the rows for the three voltages 

separately for clarity. The interesting behavior occurs in the absorption band 

around 4 \xm. The magnitude of the second row shows only minor change in the 

absorption band indicating relatively small amounts of depolarization along the 
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± 45 °. The slow axis of the modulator and the applied field are aligned approxi- 

mately along this axis. However, there is significant change in the magnitude of 

rows 1 and 3. This indicates that the degree of polarization is less than one for 

circular states and for linear states transmitted along the x -y axes. One possible 

explanation for this is areas of anisotropy on a microscopic scale where the local 

electric field is reduced or whose orientation changes [103]. The resulting depolar- 

ization would be a minimum for polarization states aligned with the electric field. 
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Chapter VIII 

Directions for Data Reduction Improvement 

The first part of this Chapter describes a data reduction formalism that expres- 

ses the measurement process as a polarimetric measurement matrix. Through the 

polarimetric measurement matrix, the data reduction is reduced to a sequence of 

matrix manipulations. The second part of this Chapter describes the calibration 

procedure in which the polarimetric measurement matrix is determined experimen- 

tally. With this calibration step, polarimetric systematic errors are compensated in 

data reduction. 

The data reduction equations described in Chapter VI corrected and elimi- 

nated five of the systematic errors in the dual rotating retarder Mueller matrix pola- 

rimeter. These data reduction equations reduced the error in the Mueller matrices 

measured in the infrared spectropolarimeter due to these errors from over 50% to 

less than 5%. The residual error, as discussed in Chapter VI, is due to other system- 

atic errors such as non-ideal diattenuation in the polarizers, anti-reflection coating 

effects in the retarders, instrumental polarization, angle of incidence effects in the 

retarders, and other sources. 
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Reducing the remaining error requires correction or elimination of these other 

systematic errors. The data reduction equations with orientation and retardance 

errors are already complex and including additional systematic error sources is 

impractical at best. It is likely that some of the systematic errors present are diffi- 

cult or impossible to identify. This Chapter describes an algorithm and calibration 

procedure for a data reduction which takes many systematic errors into account. 

The notation for the elements of the Mueller matrix is changed slightly from 

previous Chapters. In this Chapter, the row and column indices for the Mueller 

matrix elements range from 0 to 3 rather than from 1 to 4 as previously. 

A. Polarimetric Data Reduction Matrix 

A generalized polarimetric data reduction formalism developed by Chipman 

[76] is used in describing the polarization state analyzer in Section 1. Two examples 

presented in Section 2 are used to illustrate the data reduction for the polarization 

state analyzer. The data reduction formalism is generalized for Mueller matrix 

polarimeters in the Section 3 followed by an example in Section 4 of the data reduc- 

tion for a polarimeter that measures nine elements of the Mueller matrix. 

1. Polarimetric Data Reduction Matrix for Polarization State Analyzers 

This section introduces the generalized polarimeter data reduction formalism 

and describes the polarimetric data reduction matrix for polarization state analyz- 

ers. 

Figure 8-1 shows the block diagram of the polarization state analyzer. The 

Stokes vector incident on the detector is 



165 

Incident 

Stokes Vector 
Detector 

Figure 8-1 Polarization state analyzer and Stokes polarimeter. 

S' = AS,„ (8-1) 

where S inc = (s 0, s x, s 2, s 3 ) T is the Stokes vector incident on the polarization state 

analyzer and A is the Mueller matrix that describes both the elements of the 

polarization state analyzer and instrumental polarization between the polarization 

state analyzer and the detector. An analyzer vector A = {a0,al,a2,a3~)T analo- 

gous to the Stokes vector can be constructed by the vector product 

a oo a 01 

= A = DA = (d0    dj ri3) 
a io     an 

a2o     ^21 

a 

a 

a 

02 

12 

22 

a 30 a31        ^32 

a 

a 

a 

a 

03 

13 

23 

33. 

' doao0 + d0a10 + d0a20 + d0a30' 

d1a01 + d1au + d1a21 + d1a3l 

d2a02 + d2a12 + d2a22 + d2a32 

d3a03 + d3a13 + d3a23 + d3a33^ 

(8-2) 

where D = (d0,d1,d2,d3) is a vector that represents the polarization sensitivity of 

the detector. The effects of instrumental polarization and polarization sensitivity of 

the detector are included in the polarization state analyzer vector A. The output at 

the detector i is proportional to the incident intensity and is found by the dot 

product 



i = A-Sinc = a0s0 + alsl + a2s2 + a3s, 
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(8-3) 

The incident Stokes vector Sinc is determined by making a series of measure- 

ments iq, changing the elements of the polarization state analyzer for each measure- 

ment. The intensity for the q 'th measurement is 

lq      Aq' O i„c 
(8-4) 

where Aq is the analyzer vector for the q 'th measurement. The expression for Q 

measurements is conveniently expressed 

/  *o  \       /  ao,o 

Vo-i/ 

1,0 

0, 1 

1.1 

0,2 

1,2 

\a<?-l,< a. a0-i 

(8-5) 

where a q, t is the ; th (y = 0, 1,2,3) element ofAq for the q 'th measurement. 

This is rewritten 

/ = WS, (8-6) 

where W is the polarimetric measurement matrix 

/ 

a0, 0 a0, 1 Q0,2 a0,3 \ 

W = 

al,0 ai,l ai,2 al,3 

(8-7) 

\a0-l,0       aQ-l,l       aQ-l,2       a0-l,3/ 
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If the polarimetric measurement matrix is known, the calculated Stokes vector R 

can be found from the inverse of the polarimetric measurement matrix and the 

measured intensities by the polarimetric data reduction equation 

J? = W"17 = u7, (8_8) 

where U is the polarimetric data reduction matrix. 

The polarimetric measurement matrix W must be non-singular in order to cal- 

culate the polarimetric data reduction matrix U. If four of the Q measurements are 

linearly independent, the four columns of W are linearly independent and W is of 

rank four. Physically, this means the polarimeter measures all four elements of the 

incident Stokes vector. 

If Q = 4 linearly independent measurements are made to determine the com- 

plete Stokes vector, the calculated Stokes vector R is uniquely determined. With 

more than four measurements, R is overdetermined and the polarimetric 

measurement matrix W is not square. The solution of Eq. 8-8 takes the form 

J? = (WrW)"1W7"7 = u7. (8~9) 

In general, the calculated Stokes vector R is not equal to the actual Stokes vector S 

because of noise in the measurements. Eq. 8-9 represents the least squares solution 

for R and minimizes the effects of noise in the measurement [104]. 

2. Examples for Polarization State Analyzers 

To illustrate the data reduction technique for the polarization state analyzer 

data reduction, two typical configurations will be examined; the rotating polarizer 

polarimeter, and the rotating retarder polarimeter. The polarimetric data reduction 

equation and polarimetric data reduction matrix used to calculate the unknown inci- 

dent Stokes vector is derived. 
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Figure 8-2 Rotating polarizer polarization analyzer. 
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The rotating polarizer polarimeter configuration is shown in Figure 8-2. The 

Mueller calculus equation describing the q 'th measurement is 

Sg = Mp(Qq)Sinc, 

or 

cos20g 

cos20g 

cos220Q 

sin20q 

cos2e?sin20q 0 

sin20Q 

V    o 
cos20(7sin20g 

0 

sin220q 

0 l) 

(8-10) 

where S inc is the incident Stokes vector to be determined and S' is the Stokes 

vector incident on the detector. M p ( G q) describes the transformation of the 

incident Stokes vector by a polarizer at angle 9 q. 

If the detector is polarization insensitive, the detection vector is 

D=-(1,0,0,0) and the analyzer vector Aq is given by the top row of the matrix 

Mp(eQ) 

^Q = |(l,cos2e,,sin2e,,0). 
(8-11) 
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Consider the polarizer rotated to four orientations, e(7 = 0°,45o,90o,andl35o, 

for example. The polarimetric data reduction matrix W is 

(8-12) 

1      0      -1     Q>J 

and the measurements at the four orientations of 6 q are written 

/ '1 1 0 °^ 1 1 0 1 0 
w = = - 

2 1 - 1 Ü Ü 

/ 

V 

1 1 0 0 
1 0 1 0 
1 -1 0 0 
1 0 -1 0 

o\ Ao\ 

0 2 
= ws. (8-13) 

where / is the vector of the intensities at the four orientations. 

This rotating polarizer polarimeter cannot measure the circular component s 3 

of S inc. This insensitivity to circularly polarized light is represented by the zeros in 

the fourth column of W. W is of rank 3 and is singular. In order to calculate a 

reduced (3-element) Stokes vector, the fourth column is dropped from W to form a 

new polarimetric measurement matrix W' that is non-singular and invertible. W' is 

used in Eq. 8-9 and the calculated reduced Stokes vector R is 

Ä = (W'Tw')"1w'r7 = u7 
1/2     1/2     1/2     1/2^ 
10-10 
0 1 0 iy 

or 

'[i0 + i, + i2 + t3]/2' 

R 
1      L2. 

ln~ I- 

h~h 

(8-14) 

(8-15) 
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With this particular choice of orientations for the polarizer, the action of the 

polarimetric measurement matrix U is easily related to the Stokes vector. The first 

element of R is the average of the four intensity measurements. The second 

element is the difference of the intensities of the horizontally and vertically polar- 

ized light and the third element is the difference of the light polarized at 45 ° and 

135°. 

Incident 
Stokes Vector 

Retarder 

{> 
Detector 

Polarizer 

Figure 8-3 Rotating retarder Stokes polarimeter. 

The configuration for the second example of a polarization state analyzer is the 

rotating X/A retarder, fixed polarizer configuration as shown in Figure 8-3. It is a 

complete polarization state analyzer, i.e. all four elements of the incident Stokes 

vector are determined. The Mueller calculus equation for the linear retarder at 

angle 6 q is 

S' = MpMr(eQ)Stac 

1 1   0 o^j 

111 10 0 
2|   0 0    0 0 

0 0    0 Q>J 

or 

0 
cos229, 

0    cos28,sin2e„ 
0 sin267 -COS26,. 

cos2e?sin2617    -sin29(7 

sin^G, COS28,. 

0 

1    cos^26,    cos29,sin2eQ    -sin20. 
1     cos^e,    cos20(?sin2e(7 

0 
0 

0 
0 

•sin26< 
0 
0 

(8-16) 
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If Q = 8 and a measurement is made every 22.5° from 0° to 157.5°, the 

polarimetric measurement equation is 

/: 

v 

io\ /i i 0 0   \ 
*i   \     /   1 0.5 0.5 - l/>/2   \ 
i2 i 0 0 - 1 fS 
i3 i 0.5 -0.5 - 1/^2 s 

U i 1 0 0 s 

ls i 0.5 0.5 1//2 \s 

l! ll 0 

0.5 

0 

-0.5 1/^2 / 

WS 
(8-17) 

and the calculated Stokes vector R is 

R = = (w7w)"1w77 = u7) 
(8-18) 

The polarimetric data reduction matrix U is 

U = (WrW)"'w7 

/-0.25       0.25       0.75       0.25 
1 0 -1 0 
0 1 0 -1 

V     0 -{2/4    -0.5     -^2/4 

0.25 0.25     0.75     0.25 
1 0-10 
0 1 0-1 

0 ^2/4     0.5      ^2/4. 

(8-19) 

All four Stokes vector elements are detected with this polarimeter, i.e. the polarime- 

ter is complete. 
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Note that the four Stokes vector elements can be found from many other linear 

combinations of the measured intensities. For example, the Stokes vector can be 

found from the following set of equations: 

r l = 2.{il 
+ i7- r 0) (8-20) 

r2 = 2(i1-i3) 

These equations do not use all eight measurements, however. The data reduction 

equation using the polarimetric measurement matrix (Eq. 8-19) uses all of the data 

and automatically gives the least squares fit to the data when the measurement is 

overdetermined [101]. 

The Stokes vector can also be found using the Fourier techniques introduced 

in Chapter III for this particular measurement sequence. The rotation of the 

retarder through equal increments encodes the incident Stokes vector onto the har- 

monics of the detected signal. This can be seen by examining the modulation of the 

values in the rows of the polarimetric data reduction matrix U. The first row, which 

determines the first element r 0 of the calculated Stokes vector, contains a dc term 

and a second harmonic. The second and third rows determine r x and r 2 and 

exhibit even and odd second harmonics respectively. The fourth row shows the first 

harmonic behavior of r 3 for this measurement sequence. 

3. Polarimetric Data Reduction Matrix for Mueller Matrix Polarimeters 

The formalism developed for the polarization state analyzer is now generalized 

for a Mueller matrix polarimeter that contains both polarization state analyzer and 

generator. 



ft 
Source 

D- 
Detector 

Sample 

Figure 8-4 Block diagram of general polarimeter. 
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Consider the Mueller matrix polarimeter shown in Figure 8-4. It consists of a 

source, a polarization state generator, a sample, a polarization state analyzer, and a 

detector. The Mueller matrix equation describing the polarimeter is 

S ' - A M sampie G S inc 
(8-21) 

where Sinc is the Stokes vector of the light incident on the polarization state 

generator, G is the Mueller matrix for the polarization state generator, Msample is 

the Mueller matrix for the sample, and A is the Mueller matrix for the polarization 

state analyzer. The Stokes vector 5 incident on the sample is 

5-G3„. (8-22) 

The polarization of the source and the instrumental polarization before the sample 

are included in 3>.  The analyzer vector A is formed from the vector product of the 

detector vector D, representing the polarization sensitivity of the detector, and the 

Mueller matrix for the analyzing optics 

A = DA. (8"23) 

The effects of instrumental polarization and polarization sensitivity of the detector 

are included in the polarization state analyzer vector A. The output at the detector 

i is proportional to the incident intensity and is found by the dot product 

t       /l ' IVl sample^ jnc • (8-24) 

Eq. 8-24 can be rewritten 



i =   £  a,mhksk 
j.k-0 
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(8-25) 

or 

3 (8-26) 
t= 2. wj.k"rij,k 

j,k-0 

where wjik = a.jSk are the elements of a sixteen element polarimetric measurement 

matrix. A polarimetric measurement vector 

W' = (w00,woi, w 02, w03,w10,wu ,w12,wl3,w2o,...,w33,) is formed from the 

polarimetric measurement matrix by taking the first four elements of the vector 

from the top row of the matrix, the second four elements from the second row of the 

matrix, and so on. The indices of W are chosen to clearly show the dependence of 

each element w jik on the elements of the analyzer and generator vectors a -, and 

sk. In a similar fashion, the Mueller matrix is written as a sixteen element column 

vectorM = (m00,    m0i,    m02,    m03,    m10,    mu     m33)   , where 

again the indices are written to clearly show the origin of the vector element from 

the matrix element. The intensity is the dot product 

i = W-M. (8"27) 

A Mueller matrix is determined by making a series of Q measurements iq with 

various configurations of the polarization state analyzer and generator. For the q 'th 

measurement, q = 0,l Q ~ 1, the polarization state analyzer 

^<7 = (ag,o.a<7,i.a<7.2.a<7,3) and generator Sq = (s?t0 ,sQ,, ,sq>2,sqt3)
T form 

the polarimetric measurement vector W q. The intensity is 

iq = Wq-M, (8"28) 
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where the element w q, jk = a q, y s „, * of W is given by the j 'th element of A Q and 

the /c 'th element of Sq for the q 'th measurement. The relationship between the set 

of measured intensities, the sample Mueller matrix, and the polarizing and analyzing 

optics for Q measurements is then 

7= WM 

or 

/ to  \       /  wo, 
ii    \    /    u>i. 

\iQ.J     \WQ-I. 

00 

00 

««0.01 

Wl.01 

w 
w 

).33    \ 

1,33 m01 

00       ^5-1,01 w, 1,33/      \^33/ 

(8-29) 

where W q forms the q 'th row of the Q x 16 polarimetric measurement matrix W. 

The index following the comma for the elements in W and the index of the Mueller 

vector take on values as described above, i.e. the second index ranges from 0 to 3 for 

each value of the first index. If W contains sixteen linearly independent columns, all 

sixteen elements of the sample Mueller vector are determined and the polarimeter 

is complete. In general, Q > 16 and the Mueller vector is calculated from the 

intensity vector / andU 

M = [W
T

W]
_1

W
7
7 = IJ7 (8-30) 

The sample Mueller matrix is found by rewriting the Mueller vector in matrix form. 

The polarimetric measurement matrix W and consequently U depend on the 

exact configuration of the polarization state generator and analyzer and how these 
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elements are varied over the measurement sequence. One convenient sequence of 

measurements is made with N positions each of the polarization state generator 

and analyzer. The generated and analyzed states are not necessarily the same. The 

sequence of measurements proceeds as follows: the polarization state generator 

and analyzer are moved to the initial setting. The analyzer is kept fixed while inten- 

sity measurements are made at all N settings of the polarization state generator. 

The analyzer is set to the next state and the generated polarization states are 

repeated. This is repeated until both polarization state generator and analyzer are 

each stepped through N positions for a total oiQ = N2 measurements. Appendix B 

describes this iterative measurement sequence for a complete Mueller matrix pola- 

rimeter for N = 8. The specific configurations and orientations of the elements of 

the polarization state analyzer and generator and an algorithm to calculate the 

polarimetric measurement matrix are given. 

The analyzed states and generated states do not have to be the same and in 

general they are not. The generated and detected polarization states S = GSinc and 

A should be well known. If Mueller matrices for the polarization elements are 

accurately known and the polarization of the source S inc and the polarization sensi- 

tivity of the detector D are either well known or negligible, the quantities 5 and A 

can be calculated directly. 

4. Partial Mueller Matrix Polarimeter Example 

To illustrate how a Mueller matrix is found, a polarimeter that measures nine 

of the sixteen elements of the Mueller matrix will be examined. In this example, the 

Mueller matrix elements that provide information on the circular polarization prop- 

erties of the sample, i.e. the fourth row and fourth column of the Mueller matrix, are 

not determined. Since only linear polarizers are used in this polarimeter, the fourth 
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row and fourth column of the matrices for the polarization state analyzer and gener- 

ator are zero. If zeros of the analyzer and generator were included in the polarimet- 

ric measurement matrix W, it would be singular and an inverse could not be 

calculated. To make W non-singular, these elements have been omitted. The terms 

reduced Stokes vector and reduced Mueller matrix refer to a three element Stokes 

vector and a nine element Mueller matrix that contain no information on the circu- 

lar polarization. 

Source 

0 
Detector 

Polarizer    Sample    Polarizer 

Figure 8-5 Dual rotating polarizer polarimeter. 

The system, shown in Figure 8-5, consists of two polarizers, one on either side 

of the sample. The two polarizers are oriented at angles 0 x and 02 • The Mueller 

matrix equation (using reduced Stokes vectors and Mueller matrices) describing a 

sample between two linear polarizers is 

s' = Mp(e2)M,Mp(eI)si 

or 
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It is assumed that the source is unpolarized and there is no polarization sensitivity of 

the detector. 

The iterative measurement sequence described at the end of the last section is 

used with N = 4. A total of Q = N 2 = 16 measurements are made with the first 

polarizer at angles 6 x = 0°, 45°, 90°, 135° for each orientation of the second pola- 

rizer at angles 02 = 0°, 45°, 90°, 135°. The polarimetric measurement matrix W 

is calculated given the known polarization state generator and analyzer 

«-* 

1 1 0 1 1 0 0 0 0 

1 0 1 1 0 1 0 0 0 

1 -1 0 1 -1 0 0 0 0 

1 0 -1 1 0 -1 0 0 0 

1 1 0 0 0 0 1 1 0 

1 0 1 0 0 0 1 0 1 

1 -1 0 0 0 0 1 -1 0 

1 0 -1 0 0 0 1 0 

1 1 0 -1 -1 0 0 0 0 

1 0 1 -1 0 -1 0 0 0 

1 -1 0 -1 1 0 0 0 0 

1 0 -1 -1 0 1 0 0 0 

1 1 0 0 0 0 -1 -1 0 

1 0 1 0 0 0 -1 0 

1 -1 0 0 0 0 -1 1 0 

1 0 -1 0 0 0 -1 0 1 

(8-32) 

and the polarimetric data reduction matrix U is 

n 
u = 

1 
0 
2 
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\0    0 
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2 
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The polarimetric data reduction matrix operates on a set of sixteen measurements 

producing the estimate of the sample Mueller matrix. 

B. Calibration of the Polarimetric Measurement Matrix 

The polarimetric data reduction formalism described in the previous section 

requires the polarimetric measurement matrix W to be known before it is used to 

calculate the sample Mueller matrix from the measured intensities. This requires 

accurate knowledge of the polarization properties of the polarization elements in 

the polarimeter and of any instrumental polarization present. If the polarization 

elements are not ideal or if there is non-negligible instrumental polarization, the 

Stokes vector incident on the sample S and the analyzing vector A must be deter- 

mined in order to calculate the polarimetric measurement matrix. This section 

describes the calibration procedure through which these quantities and consequently 

the polarimetric measurement matrix are found. 

Consider the general Mueller matrix polarimeter shown in Figure 8-4. The 

Mueller matrices of the polarization elements in the polarization state analyzer and 

generator are known approximately but exhibit unknown behavior associated with 

some systematic error. For example, polarizers may have diattenuation less than 

one and have some retardance or linear retarders may have a retardance that is dif- 

ferent from the expected value or have some diattenuation. In addition, there may 

be unknown instrumental polarization resulting from a polarized source, polarizing 

elements such as mirrors or beamsplitters, or polarization sensitivity of the detector. 

These effects are reflected in the values of the elements of the polarimetric mea- 

surement matrix. 
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An outline of the calibration procedure to remove the effects of these system- 

atic errors is as follows: first, a set of Q intensity calibration measurements is made 

with nothing in the sample compartment. The polarization state generator and 

analyzer are varied exactly as when measuring an arbitrary Mueller matrix. Next, 

the elements of the polarization generator vector S„ and polarization analyzer vec- 

tor Ag are found by a minimization algorithm. Finally, the polarimetric measure- 

ment matrix W is reconstructed using the elements of 5 q and^. The polarimetric 

measurement matrix is now calibrated and accurately represents the measurement 

process. This procedure is now examined in detail. 

Eq. 8-29 describes the Q intensity measurements made with the polarization 

state generator and analyzer 

7= WM 

or 

m ( 
w V 

uu 0,00 w 0,01 

w 1,00 w 1,01 

^0,33 

Wl.33 
\ 

/moo\ 
/   m 01 (8-34) 

^0-1,00       WQ-l, 01 W, -1,33/      \^33/ 

where the elements of the polarimetric measurement matrix wjik = a.jSk are 

approximately known. A series of Q measurements is now made with a non- 

polarizing sample (air) in the sample compartment. The Mueller vector in Eq. 8-34 

is replaced by the Mueller vector corresponding to the identity Mueller matrix 

M, = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)T. Since twelve elements of the identity matrix 
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are zero, twelve columns of the polarimetric measurement matrix w cannot be 

determined with the identity matrix as a calibration matrix. All elements of W can 

be recovered if the elements of the analyzer and generator vectors can be found. 

The calibration is carried out by varying the elements of the polarization state 

generator and analyzer for the measurement sequence. For each setting of the gen- 

erator and analyzer, an intensity iq is measured. The intensity for the q 'th measure- 

ment is 

= a9]0s9i0 + a„ils(J>1+agi2s,,2 + ag,3Sg,3. (8'35) 

A total of Q measurements are made. 

Eq. 8-35 is non-linear in the elements of A and S and the values of the ele- 

ments of the polarization state generator and analyzer must be found through mini- 

mization of the function 

«7-0 (8-36) 

0-1 

I 
<7-0 

£ [i'q- (a,,0sgi0 + aQi!sq>, + aqt2sq_2 + a?i3s,i3)]2 , 

where i' q represents the measured value of the intensity for the q 'th position of the 

generator and analyzer and ig represents the estimate of the intensity using the 

values of the elements Sq and Aq. The approximately known Mueller matrices for 

the polarization state generator and polarization state analyzer are used as an initial 

guess for the elements of Sq and Aq. A suitable minimization algorithm [101],[105] 

is used to successively improve the estimate of S q and A q. 
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The equation for the q 'th intensity measurement (Eq. 8-35) contains four 

unknowns for the polarization state generator and four for the polarization state 

analyzer. For an arbitrary set of Q measurements there will be Q equations in 8Q 

unknowns.   For the iterative measurement sequence proposed in Section A.3, the 

number of measurements is Q = N2 for N iterations each for the polarization state 

generator and analyzer. Since there must be at least as many equations as 

unknowns, N2>8N or /V > 8 and N 2 = Q = 64 is the minimum number of mea- 

surements required for calibration for the iterative measurement sequence. 

The vectors Aq and Sq are determined except to within a rotation of the 

whole polarimeter. Each generating and analyzing vector can be rotated by an 

equal amount and still produce a minimum for x2 in Eq. 8-36. By setting the sec- 

ond element of the first generated Stokes vector s 0,2 equal to zero during minimi- 

zation, the major axis of the polarization ellipse of this Stokes vector defines the 

x -axis of the coordinate system. In order to prevent the magnitudes of the analyzed 

and generated vectors from becoming too different in the minimization process, an 

additional constraint can be introduced by setting the first elements of the generated 

and analyzed vectors equal to each other, s0,o = ao,o- 

With x2 minimized, the elements of SQ and Aq are used to calculate the pola- 

rimetric measurement matrix W . W is now calibrated and includes the effects of 

non-ideal polarization elements and instrumental polarization. The data reduction 

matrix U = (W7W)_1WT also includes these effects and can now be used to find the 

Mueller matrix for an arbitrary sample through the polarimetric data reduction 

equation Eq. 8-30. 
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This calibration procedure will correct for many but not all systematic errors. 

The measurement sequence must produce a polarimetric measurement matrix W 

that is of rank 16, i.e. the sixteen columns of W must be linearly independent. If the 

non-ideal properties of the polarization elements vary too greatly, this requirement 

may be violated and W could become singular. This could occur, for example, in 

the spectropolarimeter at wavelengths where the retardance of a linear retarder 

becomes a multiple of 2n. Details on one possible configuration and measurement 

sequence are given in Appendix B. 

The systematic errors corrected in the polarimetric measurement matrix must 

be repeatable from one measurement sequence to the next. For example, a repeat- 

able orientation error can be corrected, but a random error in positioning a rotation 

stage cannot. 

It should be noted that a similar calibration procedure has been used success- 

fully [106] in an instrument for measuring the Mueller matrices of scattered light. 

The calibration was carried out by a procedure very similar to the one described 

here with two exceptions - the light source was assumed to be completely polarized 

and the polarization elements were assumed to be non-depolarizing. With these 

assumptions, the relationship between the elements of the Stokes vector for com- 

pletely polarized light provides additional constraints that allow the reduction of the 

minimum number of measurements for the calibration to 36. By using 64 

measurements in the calibration procedure as described here, these assumptions can 

be relaxed and any partial polarization of the source and depolarization of the 

polarization elements are included in the polarimetric data reduction matrix W. 



Chapter IX 

Summary and Directions for Future Research 

A. Summary 

The purpose of this work was to develop the infrared spectropolarimeter and 

use it to measure spectra of polarization properties of several infrared samples. 

This development has encompassed several different aspects including development 

of the instrument and its components, development of the appropriate algorithms 

suitable for application to a spectral instrument, and implementation of the algo- 

rithms in software. 

A review of the nomenclature and mathematics of polarization was given along 

with a brief history of previous research in spectral measurements of polarization 

properties. This was followed by an in-depth discussion of polarization metrology 

techniques with special attention to the Fourier analysis of periodic polarization sig- 

nals. The advantages of this technique in general and for spectral instruments in 

particular were discussed. Systematic error and noise considerations for 

spectropolarimetry and their solutions were described. 

184 
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The rotating sample and dual rotating retarder polarimeters and their imple- 

mentation in the FTIR spectropolarimeter were presented. Data reduction algo- 

rithms were derived with consideration for pertinent systematic errors. Example 

measurements were given for both polarimeter configurations. 

The novel and new parts of this work include the following: 1) the develop- 

ment of the rotating sample polarimeter and its implementation in the FTIR spec- 

trometer, 2) the infrared achromatic retarder used in the dual rotating retarder 

spectropolarimeter, 3) the use of the dual rotating retarder polarimeter in a FTIR 

spectrometer, and 4) the data reduction algorithm for five systematic errors in the 

dual rotating retarder polarimeter. 

The following measurements were made: 1) linear diattenuation and linear 

retardance spectra of two infrared retarders, 2) linear diattenuation and linear 

retardance spectra of two infrared wire grid polarizers, 3) linear diattenuation and 

linear retardance measurements of bulk cadmium sulfide and cadmium selenide 

resulting in birefringence spectra and dispersion relations for these materials at 

longer wavelengths than previously given, 4) transmission, linear diattenuation, and 

linear retardance measurements of three bulk liquid crystal materials, and 5) Muel- 

ler matrix spectra as a function of voltage and the resulting electro-optic coefficient 

spectrum of a cadmium telluride electro-optic modulator. 

B. Directions for Future Research 

The infrared spectropolarimeter has the potential to provide a tremendous 

amount of information for infrared devices and materials. The spectropolarimeter's 

capability for calibration of infrared polarization elements has been demonstrated 

in this dissertation. As these calibration spectra are used to improve polarization 

elements, the accuracy of the spectropolarimeter and other infrared polarimeters 
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should increase. The wealth of information available from materials measurements 

such as electro-optic crystals has also been demonstrated. This section describes 

research directions that should be pursued in the near term to take advantage of the 

spectropolarimeter's capabilities and to maximize the information obtained from 

spectropolarimetric measurements. 

1. Experimental Considerations 

Chapter VI discussed some of the sources of residual error in the Mueller 

matrix measurements for the infrared spectropolarimeter. Chapter VIII outlined a 

new data reduction algorithm that should improve the accuracy of Mueller matrix 

measurements by removing the effects of many systematic errors. With the 

improved data reduction and the self-calibration described in Chapter VIII, the 

residual errors should be reduced to well below the one percent level. The major 

task that needs to be completed before this data reduction can be implemented in 

the spectropolarimeter is to find a suitable minimization algorithm for the self- 

calibration. It should be noted that this data reduction algorithm is not specific to 

the spectropolarimeter, but can be applied to single wavelength polarimeters, 

spectropolarimeters in other parts of the optical spectrum, and imaging polarime- 

ters. 

As the accuracy of the Mueller matrix measurements in the spectropolarimeter 

increases, other systematic errors of smaller magnitude will become important. One 

important additional source of systematic error that cannot be removed in the self- 

calibration is the drift in the response of the instrument over the measurement 

sequence. The best solution to removing the effects of drift on the results is to 

reduce it and this is best done by decreasing the amount of time required to acquire 

the intensity spectra. Currently the spectrometer acquires each interferogram and 
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Fourier transforms it while the rotation stages are moving. If faster rotation stages 

were used and the interferograms were Fourier transformed after all spectra were 

acquired, the time between the acquisition of each spectrum and consequently the 

time to acquire all spectra would be reduced. The amount of instrumental drift and 

its effect on the reduced data would therefore be reduced. 

In Chapter IV, the rotating sample and dual rotating retarder polarimeters 

were compared. The rotating sample polarimeter is simpler, i.e. it uses fewer polar- 

ization elements, fewer rotation stages, and the data reduction is less complex. It's 

major disadvantage is that it measures only linear diattenuation and linear 

retardance. The dual rotating retarder polarimeter is complete, i.e. it measures all 

sixteen elements of the Mueller matrix including linear polarization, circular polar- 

ization, and depolarization. However, calibration and operation of a dual rotating 

retarder is far more complex than for the rotating sample polarimeter and there are 

many more potential sources of error. Based on the experience gained in perform- 

ing experiments and analyzing calibration data, the dual rotating retarder is less 

accurate. An interesting area for research would be to examine in detail the two 

polarimeters and compare their accuracy for common systematic errors. A natural 

extension of this work would be to determine the most accurate polarimeter to mea- 

sure, for example, linear diattenuation or particular elements of the Mueller matrix. 

2. Theoretical Development of the Mueller Calculus 

The Mueller matrix provides the most complete characterization of the polar- 

ization properties of optical elements, including linear diattenuation, linear retar- 

dance, circular diattenuation, circular retardance, and depolarization. The 

polarization properties are not easily extracted from the Mueller matrix, however, 

except in a few special cases when one or two polarization properties are present. 
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Algorithms are required to extract useful information on polarization properties 

from the Mueller matrix. A detailed analysis of the Mueller calculus is currently 

underway to derive explicit expressions for calculating the diattenuation and retar- 

dance of an arbitrary Mueller matrix [107]. This work should establish important 

relationships between physically meaningful quantities such as depolarization, 

diattenuation, and retardance and experimentally determined Mueller matrix data 

and the physical realizability of Mueller matrix data. 

The Mueller matrix includes information on the depolarization of the optical 

element. The amount of depolarization in polarization devices will become an 

increasingly important quantity to measure and control as optical instruments 

require continuing improvements in the accuracy and control of polarized light. 

Depolarization will be an important consideration in the development of polariza- 

tion devices such as liquid crystal modulators for the infrared. 

Currently there are figures of merit to characterize the amount of depolariza- 

tion in optical elements. The sources of depolarization and how different types of 

depolarization appear in the Mueller matrix are not well understood, however. 

There may be nine types of depolarization corresponding to the additional degrees 

of freedom in the Mueller matrix beyond what is required to characterize the polar- 

ization properties. The physical origins of depolarization and how they appear in 

the Mueller matrix should be determined in order to more completely understand 

these effects on optical systems. 

3. Future Measurements 

There is great potential for the infrared spectropolarimeter to provide calibra- 

tion spectra for a large number of infrared devices and to give insight into the fun- 
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damental physical properties of infrared materials. This section describes a few of 

the measurements that should be made in the short term on infrared polarization 

devices and materials. 

The need for calibration of infrared polarization devices has been established 

in this research. A spectrum of the retardance in a wire grid polarizer and misalign- 

ment of multiple plate retarders were demonstrated. A data base of polarization 

properties and calibration spectra of commercially available infrared polarization 

elements would contribute to the development of other infrared polarimeters and 

would encourage the improvement of polarization devices. Materials currently used 

in the visible for polarization devices, such as sheet polaroid and mica, may have use 

in the infrared as well. 

Photo-elastic modulators hold promise for application in military tracking sys- 

tems. These polarimetric tracking systems target the hardbody rather than the 

plume by using the polarized light emitted from aerodynamically heated missiles. 

These systems are inherently broad spectral band and require proper calibration of 

the photo-elastic modulator and other polarization elements. The calibration of the 

photo-elastic modulator should include measurements of residual birefringence in 

the photo-elastic modulator and measurements of retardance as a function of wave- 

length and driving voltage. 

The liquid crystal samples described in Chapter V hold promise for modu- 

lation devices in the infrared. Liquid crystals' chief advantage is the low voltage 

required for producing modulation in the visible. The significant birefringence 

presented in Chapter V suggests that this advantage may apply in the infrared as 

well. Liquid crystals are known to be relatively slow and have low contrast in the 

visible, however, and these characteristics must be examined in the infrared. There 
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may be some portions of the infrared that are more suitable than others for modu- 

lator applications, and the spectropolarimeter is ideally suited to find these spectral 

bands. An additional concern is the depolarization that may be present due to 

scattering from the large molecules. Large amounts of depolarization would affect 

the modulator applications of liquid crystals. Liquid crystal materials must there- 

fore be examined with applied voltages in the spectropolarimeter to determine their 

polarization characteristics. These measurements should produce recommendations 

for optimum voltages and spectral bands for modulator applications. The depolar- 

ization as a function of voltage and wavelength must also be examined. These and 

other materials measurements hold the key to development of polarization devices 

for the polarization critical optical systems of the future. 
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Appendix A 

Fourier Transform Spectroscopy 

Infrared spectroscopy is a broad subject. We will discuss here only the basics 

of Fourier Transform Infrared Spectroscopy, or FTIR, which are applicable to the 

spectropolarimetry of crystalline materials. The goal common to all spectroscopic 

applications is to obtain a plot of radiation intensity versus frequency. One method 

of spectral measurement is the conventional dispersive spectrometer. A dispersive 

spectrophotometer would be difficult to convert to a precision spectropolarimeter 

because of the large polarization effects which arise from the diffraction grating and 

which change rapidly with wavelength. The Fourier transform spectrometer is a 

more suitable spectroscopic instrument to adapt for polarization measurements. 

FTIR uses a Michelson interferometer to encode frequency information. A 

collimated beam is partially reflected and partially transmitted by the beamsplitter. 

The reflected beam is reflected from the fixed mirror while the transmitted beam is 

reflected from the moving mirror. The beams are recombined at the beamsplitter 

and are passed on to the sample compartment and detector. 

If the incoming beam were monochromatic, the output of the interferometer 

would be a sinusoidal intensity variation resulting from the alternate constructive 

and destructive interference of the two beams as the optical path difference 

191 



192 

changes. The sine wave is the interference pattern or interferogram of this fre- 

quency of incoming light. A Fourier transform relates the interferogram to the opti- 

cal frequency when more than one modulation frequency is present in the 

interferogram. The Fourier transform of the resulting interferogram is the familiar 

frequency spectrum. 

All the spectroscopic information is present in the interferogram. The Fourier 

transform process simply converts the information into the familiar form. Also, the 

frequency of the interferogram is a function of both the frequency of the source 

radiation and the velocity of the moving mirror. By changing these parameters the 

optimal signal for a given detector may be found. 

Accuracy in FITR is highly dependent upon the accuracy in the distance scale 

of the interferogram. This accuracy is maintained in the Nicolet 6000 by monitoring 

the output of a reference laser through the interferometer. The distance between 

each zero crossing of the reference laser interferogram is just one-half the wave- 

length of the laser. This signal is used to improve the distance scale of the interfero- 

gram. 

These reference zero crossings are used as a signal to take data points. The 

bandwidth sampled depends on the number of the zero crossings that are skipped. 

According to the sampling theorem, a data must be taken at least twice every wave- 

length in order to measure a given frequency. If a data point is taken every zero 

crossing of the laser, a bandwidth equal to the laser frequency of 15798 cm"l is 

achieved. 

The closer two frequencies are to each other, the further from the zero path 

difference it takes for them to destructively interfere with each other and produce a 

fringe node. To achieve greater spectral resolution in the interferogram, a greater 
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optical path difference is necessary. This is accomplished by increasing the length of 

mirror travel which increases the number of data points taken. It can be shown that 

under certain conditions the resolution is just the inverse of the maximum optical 

path difference or distance of mirror travel. Thus for 16 cm of mirror travel, the 

resolution is 0.06 wavenumbers. The normal mode of operation for the Nicolet 

spectrometer and the spectropolarimetric measurements taken here is 4 cm"l 

The signal-to-noise ratio (S/N) is a function of several parameters. The S/N 

improves as the square root of the number of scans of the Michelson interferometer 

that are averaged to produce one transmission spectrum. Thus to improve the S/N 

by a factor of two, four times as many scans must be taken. S/N is approximately 

proportional to the square root of resolution as well since smaller (higher) reso- 

lution implies less photons per resolution element. Thus, a spectrum with a reso- 

lution of 1 cm"l would be approximately twice as noisy as a 4 cm"l spectrum. In 

addition, the higher resolution spectrum takes longer to collect, as discussed above. 

Signal-to-noise is also a function of mirror velocity due to the time constant of the 

detector. 

A. Hardware 

The Nicolet 6000 Fourier Transform Infrared Spectrometer may be separated 

into four main units: the interferometer and optics bench, the interferometer control 

electronics, the data system, and the controlling program, FTIR. The instrument is 

versatile and may be adapted for many applications with minimal hardware alter- 

ations. 

The optics bench and interferometer are detailed here. Choices for source, 

beamsplitter, and detector for the spectral range 400-4000 wavenumbers are the fol- 

lowing: water cooled Globar source, KBr beamsplitter, and a long wavelength Mer- 
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cury Cadmium Telluride liquid nitrogen cooled detector. Other components for 

different spectral ranges are commercially available. The two infrared beams from 

the beamsplitter are modulated by a high resolution interferometer consisting of a 

fixed mirror, moving mirror assembly, and the beamsplitter. The fixed mirror is 

mounted on wedges, providing the fine tuning required to optimize the IR signal. 

The moving mirror assembly is mounted on dual air bearings to reduce friction and 

the corresponding friction-induced fluctuations of velocity. The dual air bearings 

also prevent any appreciable mirror tilt allowing resolutions up to 0.06 cm'l. The 

assembly is driven by a linear induction motor. The large field strength of this 

motor allows only ±0.3 % velocity error. This error is decreased further by use of 

the He-Ne reference laser. This laser runs the same path through the interferome- 

ter as the IR signal. The He-Ne interference pattern allows extremely accurate 

measurement of the distance traveled by the moving mirror. A control servo loop 

uses the zero crossings of the laser to calculate and correct for variations in the 

velocity. These zero crossings are also used as a signal for the computer to take a 

data point. There is also a white light source whose interference pattern gives a 

spike at the point of zero optical path difference. This spike is used as a trigger to 

begin the sampling. The aperture and the variable position mirrors are computer 

controlled. 

The interferometer control electronics take the signal from the interferome- 

ter's preamplifiers, amplifiers, and filters, digitizes the signal, and transmits the sig- 

nal to the data system. The control electronics consist of an interferometer control, 

digital interface, and beam path control. The interferometer control and digital 

interface make the analog to digital conversion for the various signals. The ampli- 

fied analog and digital signals from the laser, white light, and infrared beams as well 
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as other signals may be directly read from the digital interface. This facilitates 

alignment and allows the operator to monitor the instrument in real time. The digi- 

tal interface also has hardwired switches for the various parameters involved in data 

collection. These allow testing of the interferometer independently of the data 

system and are rarely used. The beam path control also has various hardwired 

switches that change the positions of the variable mirrors and the aperture. These 

are useful in aligning the optics and making adjustments independent of the com- 

puter. Separate power supplies for the signal electronics (e.g. preamps, detector) 

and optical isolators are employed to eliminate noise and cross-talk on the various 

signals. 

B. Software 

The data system consists of the main processor, a computer interface, front 

control panel, and various peripheral devices, such as teletype, raster display and 

hard disk. 

The controlling program for the spectrometer, named FTIR, allows software 

control of all aspects of data collection and manipulation. The large number of 

commands gives the operator a wide variety of ways in which to custom design each 

experiment. For example, data may be collected and processed in one command, 

or, commands for each step of processing, such as Fourier transformation or apodi- 

zation, may be executed one at a time so that the effects of various parameter 

changes may be seen. 

After the data is initially processed, it may be manipulated in any number of 

ways. Arithmetic functions as well as differentiation and integration of spectra are 

one-command routines. Conversions from absorbance to transmittance, wavenum- 

bers to wavelength, and vice-versa are easily made. A number of routines are avail- 
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able for data comparison. These routines allow the operator to search any of a 

number of commercially available libraries and find close matches of known spectra 

and the sample spectrum. A variety of display and plot commands are also implem- 

ented. 

Several software routines may be used to perform what is known as spectral 

stripping or difference spectroscopy. These routines allow the operator to optimize 

a subtraction between two spectra interactively. This technique is a powerful tool 

for determining small changes in samples with different treatments, e.g. a varying 

electric field. 

Some fifty parameters may be changed as needed. These include data collec- 

tion parameters and data manipulation parameters. The former deal with such vari- 

ables as resolution, bandwidth, spectral range, and gain levels. These may be varied 

to optimize signal-to-noise, increase resolution, or maximize file storage space. 

Data manipulation parameters deal with basic bookkeeping for the various data 

manipulation routines, such as plotting and displaying the data. 



Appendix B 

Polarization Calibration and 

Measurement Sequence 

In this Appendix, a specific measurement sequence and polarimeter configura- 

tion is described for the polarimetric data reduction algorithm given in Chapter 

VIII. The measurement sequence and data reduction proposed here is suitable for 

calibration of the polarimetric measurement matrix in the infrared spectropolarime- 

ter. 

Recall the iterative measurement sequence described in Section A.3 of Chap- 

ter VIII in which the polarization state generator and analyzer are stepped through 

eight settings each. The polarization state analyzer is held fixed while intensity 

measurements are made for each of the eight polarization state generator settings. 

The analyzer is incremented to its next position and the process is repeated. This is 

continued until a total of 64 measurements have been made with both generator and 

analyzer in all eight settings. Table B-l explicitly lists the settings of the polarization 

state generator and analyzer for the sequence of 64 measurements. 

The iterative measurement sequence described in Chapter VIII and the calcu- 

lation of the polarimetric measurement matrix are now described in detail. Con- 

sider the polarization state generator to consist of a linear polarizer at an angle Q 
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and a quarter wave linear retarder at an angle 4>, both of which are allowed to 

rotate. The eight settings of the polarization state generator are indexed by the 

quantity ß = 0,l,...,7. The polarization state generator vector Sß for the ß set- 

ting of the linear polarizer at orientation 6 ß with respect to the x -axis and a linear 

quarter wave retarder at § ß is 

/ 1 \ (B-l) 

3.-S 
cos29pcos 2<t>ß +sin29psin2(|>pcos2^ 

cos2Gßsin2({)ßCos2<t)ß + sin2eßsin22(|)ß 
\^        cos26ßsin2<|)ß-sin26ßcos2())p 

The source is assumed to be unpolarized. The polarization state analyzer consists of 

a quarter wave linear retarder and a linear polarizer. Its eight settings are indexed 

by the quantity a = 0,l 7. The polarization state analyzer vector A 0 for the 

quarter wave linear retarder at angle $ 0 followed by the linear retarder at 6 a and a 

polarization insensitive detector is 

/ 1 \ (B-2) 
_      if    cos26acos22<l>a + sin2easin2<j>acos2<t>a 

a    ll    cos2easin2(|)acos2<|)a+sin2easin22(|)a 

y        cos20osin2<|)a-sin20acos2(j)a 

Table B-l lists the sequence of measurements and the settings for 5 ß and A a. 

A Mueller matrix is determined by making a series of Q measurements iq with 

the polarization state analyzer and generator in the prescribed sequence. The rela- 

tionship between the set of measured intensities, the sample Mueller matrix, and the 

polarizing and analyzing optics for Q measurements is then 
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Table B-l: Sequence of measurements for S p and A a, 

Measurement 
Q 

Analyzer vector 
index a 

Generator vec- 
tor index ß 

0 
1 
2 

0 
0 
0 

0 
1 
2 

7 
8 
9 

0 
1 
1 

7 
0 
1 

g=8a+ß a ß 

63 7 7 

/ = WM, (B-3) 

where the element w <, y of W is given by 

^ j, y       aa,fcSß,; (B-4) 

for i = 8 a + ß and jI = 4/c + I. The polarimetric measurement matrix W takes the 

form 
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/ 

ao,oso,o     ao,oso,i      ao,oso,z     ao,oso,3     ao,iso,o     a0,lSO,l     a0,lS0,2 

aO,0Sl,0       aO,0Sl,l       a0.OSl,2       aO,0Sl,3       aO,lSl,0       aO,lSl,l       a0,lSl,2 

aa,0Sß,0       aa,0Sß,l        aa,0Sp,2       aa,lS0,3       aa,0Sp,0       aa,lSB,l       aa,lSP,2 

\ 

a7,0S6,0       a7,0S6,l       a7,0S6,2       a7,0S6,3       a7,lS6,0       a7,lS6,l       a7,lS6,2 

a7,0S7,0       a7,0S7,l       a7,0S7,2       a7,0S7,3       a7,lS7,0       a7,lS7,l       a7,lS7,2 

a0,3S0,2       a0,3S0,3 

a0,3S1.2       a0,3Sl,3 

aa,3Sß,2       aa,3Sß,3 

a7,3S6,2       a7,3S6,3    / 

a7,3S7.2       a7.3S7,3/ 

(B-5) 

The eight analyzing and generating polarization states must be chosen such 

that the columns of the polarimetric measurement matrix are linearly independent. 

Given this requirement, it seems appropriate to select eight states that are spaced 

evenly over all possible elliptical states. With this choice, the measurement 

sequence is equally sensitive to an arbitrary polarization state. The Poincare sphere 

is useful in selecting these states. The Poincare sphere is described in many 

references on polarization [11],[15],[16],[17]. 
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The Poincare sphere is shown in Figure B-l. Each point on the sphere repre- 

sents a polarization state of azimuth a and ellipticity b /a = tan | <x> \. The point P 

is given by the angles 2a and 2uo which correspond to the longitude and latitude. 

Points representing linearly polarized light lie along the equator, and left and right 

circularly polarized light are at the top and bottom respectively. Points in between 

represent elliptically polarized light. 

The suggested eight generated and analyzed polarization states are the states 

that are equally spaced about the Poincare sphere. Eight equally spaced points on a 

sphere are the points where the corners of an inscribed cube lie on the surface of 

the sphere. If the cube is placed such that corners on the ends of a body diagonal 

are placed at the vertically and horizontally polarized states and two other states are 

chosen to be linear as shown in Figure B-2, the other corners are easily determined 

in terms of the angles a and oo. These angles are in turn related to the orientations 

of a linear polarizer and a linear quarter wave retarder for the polarization state 

generator. The orientations for the linear polarizer and the fast axis of the quarter 

wave retarder from horizontal for the appropriate point on the Poincare sphere are 

given in Table B-2. The orientation of the linear retarder and polarizer for the 

polarization state analyzer are chosen to be the same as for the generator. 

This measurement sequence and generator and analyzer configuration can be 

used in a polarimeter whose polarization elements are ideal and has no instrumen- 

tal polarization. This sequence is also suitable for calibration of the polarization 

state generator vector S and analyzer vector A as described in Section B of Chapter 

VIIL If this measurement sequence is used in a polarimeter where there is system- 

atic error, these settings for the polarization state generator and analyzer can be 

used as the initial guess in a calibration procedure described in Chapter VIII 
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Section B. 

Table B-2: Orientations of a linear polarizer and quarter wave retarder for eight 

points on the Poincare sphere. 

Point on Linear polarizer Quarter wave lin- 
Poincare orientation G „ ear retarder 4> „ 

sphere a, ß (degrees) (degrees) 

0 0 0 
1 35.264 35.264 
2 62.632 35.264 
3 62.632 90 
4 90 90 
5 125.264 125.264 
6 152.632 125.264 
7 152.632 180 

Figure B-l Poincare sphere. 
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Figure B-2 Proposed measurements on Poincare sphere. 
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[57] ABSTRACT 

An infrared achromatic wavepiate structure having a 
r*rimi„TT, sulfide (CdS) plate and a cadmium seienide 
(CdSe) plate aligned with each other so that the fast axis 
of the plates are perpendicular to each other, this struc- 
ture provides a desired retardance of a first orthogonal 
polarization component with respect to a second or- 
thogonal polarization component of an incident light 
beam. The thickness of the plates are in a ratio between 
0.8:1 and 0.9:1 (CdSexCdS), an achromatic response 
with a substantially constant retardance is provided in a 
wavelength range from 3 to 11 microns. A desired 
amount of retardance is available by adjusting the thick- 
ness of the two plates as long as the ratio of the thick- 
nesses is maintained within the recited value. In particu- 
lar a quarter wave net retardance of an incident light 
beam operating between 3 and 11 microns is provided 
when the cadmium sulfide plate is 1.25 millimeters and 
the «-«humm seienide plate is 1.0666 millimeters. 

4 Claims, 1 Drawing Sheet 

CdS PLATE 10 :dSe PLATE 20 
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1 2 . 207 
__ linearly polarized light is incident on this quarter wave- 

INFRARED ACHROMATIC RETARDER pfcte with its plane of polarization oriented at ±45* to 
the fast axis, the emerging light is said to be circularly 
polarized. BACKGROUND OF THE INVENTION 

1. Field of the Invention 5      Traditionally then, the proper thickness of the mate- 
The present invention relates to an infrared achro-      rial was chosen in order to obtain the desired retard- 

matic waveplate capable of improved response a* a      „^ However, these prior art designs are very sensi- 
^TJ^^f1 m *.TP,C* "^ "^ meXpen"      *ve to small change, in wavelength of the incident sive configuration of waveplates. . .... '      ....     ° ... 

2. Discussion of Background 10 beMn *ad thus "" not saaable for maay °PQcal svsten« 
Many optical systems including those for spec-       where broadband light is used. 

tropolarimetry, laser polarimetry, laser spectroscopy, whfle other design» have better response as a func- 
and elhpsometry have a need for converting light be- ti°° of wavelength, they involve complicated, large and 
tween polarization states and a need to analyze polar- expensive devices as for example in a design utilizing a 
ized light The design of polarimeters requires poLariza- 15 modified Fresnel rhomb which is 4 inches long which of 
tion elements whose properties satisfy a number of cri- course rrrmfa the requirements for size. 
teria including the very important criteria that the po- Still nth*r H—ig«« ctm* th» i»rit NfT" »" h» «hift«< 
larization properties need to be substantially constant gom the path of the incrtmt beam which also makes 
2E£W °f ^^«8* of««™ Additional con- ^ ^      „„ «„„priMe for such polarimeter us- 
stramtsm this area include a reasonable element size and *° 
proper positioning of the light beam exiting from the **Sl t . .. ,. . . . , 
dementVnd of course the cost of the element Thus, there is a si^cific need for an achromatic infra- 

Liquids and amorphous solids such as glass and crys- red retMder " which the polarization properties of the 
talline solids have a cubic symmetry which normally element is wihtftmially constant over a particular range 
show a behavior whereby the speed of light and the 25 of wavelength and wherein the elements are small in 
index of refraction is independent of the direction of size and produce a light beam which is properly posi- 
propagation in the medium and is independent of the tioned upon emergence from the element 
state of the polarization of the light These types of 
elements are said to be optically isotropic. Othercrys- SUMMARY OF THE INVENTION 
talline solids, which induce birefringent behavior, are 30     it is the object of the present invention to provide a 
optically anisotropic. Of course, solids may be aniso- configuration of two plates made of cadmium sulfide 
tropicui many of their properties, but it is the optical ^ „^^ ^„^ respectively with the fast axis of 

3L„hleS W^°r "JT^ E^t0 Pr°" ** ****** " right angte to each other in order to vide the  double refraction" of a beam. The two emerg- . .   .   ^  ,.    ..   ... .      .. . .     .  
ing beams from an optically anisotropic material are 35 produce polarization of incident light which is substan- 
plane-polarized beams with their planes of vibration at timUv constant over a range of wavelengths, 
right angles to each other. ** ** another object of the present invention to pro- 

The conversion of light between polarization states vide a retard« which can shift the phase or retard the 
and the analysis of polarized light has traditionally in- phase of one of two orthogonal polarization compo- 
volved the use of birefringent materials wherein a light 40 nents in such a way that the resultant device is inexpen- 
beam incident on a birefringent material is divided into sive, insensitive to changes in wavelength and easy to 
two orthogonal polarization components. A retard«- manufacture. 
can then shift the phase or in other words retard the The structure which accomplishes these objects in- 
phase of one of these two orthogonal polarization com- volves m cadmium Sulfide (CdS) plate and a Cadmium 
ponents with respect to the other component In a hire- 45 s^enide (CdSe) plate oriented so that the fast axis of the 
tnngent material, the index of refraction depends on the .                        ,.   ,                                  , 
polarization^ of the UghtbamT      epenaSOnUle pl*es «re perpendicular to each other m order to pro- 

The most appropriate way that these anisotropic or "** a posmve «■"■«» ««»<»e P1*" *** a "»»«»ve 
birefringent materials are used involves the exploiting «tardance from the other plate with the net effect pro- 
of the dependency of the index of refraction on the 50 viding a desired retardance. 
polarization state of the incoming light beam. A phase The device according to the present invention pro- 
shift is introduced between the polarization state vides achromatic response in the wavelength range of 
aligned with the fast axis of the birefringent material, from 3-11 microns when the thickness of the plates 
where the index of refraction is the smallest and the have a ratio of between 0.8:1 and 0.9:1 (CdSe:CdS). 
polarization state aligned along the slow axis of the 55   
material, where the index of refraction is at its highest BWEF DESCRIPTION OF THE DRAWINGS 
value- A more complete appreciation of the invention and 

When plane-polarized light falls at normal incidence       g^y 0f the attendant advantages thereof will be 
on a slab or piece of anisotropic material so that the       „^  obtained „ ^ same ^„^ ^ „„d«««* 

wÜ^JlE!1*1 to *? . ^ S, *K?e T " by reference to the foUowing detailed description when waves which emerge are plane-polanzed at nght angles ..     .. .        ".   . .      , 
to each other. Because the waves travel through die «»»dared m connection with the accompanying draw- 
material at different speeds, there will be a phase differ-       mgs. wherein: 
ence between the two waves when they emerge from mG-1 «Bustrates the structure of the two plates hav- 
the material. If the material thickness is chosen so that 65 "»8 their fast **» at "ght angles to each other: 
for a particular frequency of light the phase angle or FIG- 2 graphically illustrates the retardance as a 
"phase change between the two waves" is 90*. the slab function of wavelength of the achromatic retarder of 
or piece of material is called a quaner-waveplate. If      the present invention. 
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DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Referring now to the drawings, and more particu- 
larly to FIG. 1 thereof, there is shown an orientation of 5 
two plates 10 and 20. The plate 10 is made of Cadmium 
Sulfide (CdS) and plate 20 is made of Cadmium Sele- 
nide (CdSe). These plates have similar birefringent 
properties as a function of wavelength and the orienta- 
tion of the two plates is such that the fast ans 11 of plate 10 
10 is at a right angle with respect to the fast axis 21 of 
plane 20. One of the plates produces a retardance of one 
polarization state (state 1) with respect to the other state 
(state 2) while the second plate retards state 2 with 
respect to state L The first plate 10 produces a positive IS 
retardance and the second plate 20 produces a negative 
retardance with the net result being a substantially con- 
stant retardance over a broad wavelength range. 

By choosing the proper thickness for each plate, a 
quarter wave retardance occurs over a broad wave- 20 
length range as illustrated in FIG. Z Given the achro- 
matic response for one quarter wavelength retardance, 
the ratio between the thicknesses of the two plates is 
computed. Waveplates of other retardances may be 
constructed by varying the thickness of the plates with 25 
the ratio being kept constant. 

In order to obtain retardances for various thickness, 
numerous experiments may be conducted or a program 
may be utilized to calculate the retardances of birefrin- 
gent plates with the material properties of CdS and 30 
CdSe being entered into the program. For a net retard- 
ance of one quarter wave, the thickness of the CdS plate 
is 1.25 millimeters and the thickness of the CdSe plate is 
1.0666 millimeters. This provides a ratio of the CdSe to 
CdS of 0.853. 35 

, The thickness of each of these plates is ideal for fabri- 
cation because the single crystals of this size can be 
grown. Furthermore, the plates are thick enough to 
retain structural strength. 

This design utilizes the materials CdS and CdSe and 40 
is specifically used in the mid-infrared region. As a 
result the device, which is used as a retarder, is an opti- 
cal component which converts light between the polar- 
ization states and by varying the thickness of the plates, 
while holding the ratio constant, the retardance of a 45 
quarter-or half-wave or of any arbitrary value may be 
fabricated. 

The response of these two materials, cadmium sulfide  
and cadmium selenide, when used together in this man- 
ner provided a remarkable improvement in the forma- 50 
tion of an achromatic waveplate over a very broad 
wavelength range. The particular embodiment wherein 
the ratio of the thickness of the plates is between 0.8:1 
and 0.9:1 (CdSe:CdS) provided achromatic response in 
the wavelength range from 3 to 11 microns. 55 

Although the discussed embodiment utilizes 100% 
cadmium sulfide and cdmi^im selenide respectively, 
composite materials having doped cadmium sulfide or 
doped cadmium selenide could be used. Materials such 
as zinc selenide, galium arsenide, mercury, indium, 60 
galium, arsenic and zinc could be utilized as additive 

materials to either or both of the «•»Hmmm sulfide and 
"«t^m M»>TIH* waveplates. The criteria for selection 
and addition of additive materials is controlled by the 
birefringent characteristics of the resultant composite 
tn«««»ri»l in other words, any material may be added in 
small amounts as a doping in order to form a composite 
material for the first and second waveplate as long as 
the birefringent characteristics of the resultihg compos- 
ite materials is substantially the same as cadmium sulfide 
alone or fjrftninm selenide alone for the first or second 
waveplates. 

In order to avoid any reflection losses which occur 
due to the pimgr of the light through the four surfaces 
of the two plates, an anti-reflection coating ma be ap- 
plied to each of the surfaces of the plates 10 and 20. 

Furthermore, a computer program may be substi- 
tuted for experimentation in order to calculate the re- 
tardances of the birefringent plates. The material prop- 
erties of CdS and CdSe are entered into the program 
and the various retardances calculated for each material 
as a function of wavelength. 

Obviously, numerous modifications and variations of 
the present invention are possible in light of the above 
*—*i«"g« It is therefore to be understood that within 
the scope of the appended claims, the invention may be 
practiced otherwise then as specifically described 
herein. 

What is claimed as new and desired to be secured by 
Letters Patent of the United States is: 

L An achromatic retarder for shifting two orthogo- 
nal polarization components, with respect to each 
other, of an incident light beam; 

a first waveplate made of substantially cadmium sul- 
fide having a fast axis; 

a second waveplate made of substantially cadmium 
selenide having a fast axis wherein said first and 
second plates are oriented so that said fast axis of 
said first plate is at a right angle with respect to said 
fast axis of said second plate and wherein said first 
plate produces a retardance of a first polarization 
state with respect to a second polarization state 
while said second plate produces a retardance of 
said second polarization state with respect to said 
first polarization state to produce a net retardance 
which has a substantially constant value over a 
range of wavelength values of interest for said light 
beam. 

2.The retarder according to claim 1 wherein the ratio. 
of die thickness of said second plate with respect to said 
first plate is in a range of between 0.8:1 and 0.9:1 in 
order to provide achromatic response in the wave- 
length range from 3 to 11 microns. 

3. The retarder according to claim 1 wherein the 
thickness of said first plate is 1.25 millimeters and the 
thickness of said second plate is 1.0666 millimeters and 
wherein said net retardance of said retarder is one quar- 
ter of the wavelength of said incident light beam. 

4. The retarder according to claim 1 further compris- 
ing anti-reflection coatings provided on both a first and 
a second surface of each of said first and second plates. 
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