A California Non-Profit

Consortium Developing
Advanced Transportation
Technologies

Board of Directors
Mr. David Abel
SuperShuttle International, Inc. Chairman of the Board

Dr. Stephen D. Ban Gas Research Institute

Dr. Lon E. Bell Amerigon incorporated

Dr. Malcolm R. Currie Project California

Mr. R. Thomas Decker Bank of America

Mr. Michael J. Gage CALSTART, Inc.

Mr. Syed Hussain IMPCO

Dr. Chung Liu South Coast AQMD

Mr. Warren I. Mitchell Southern California Gas Company

Mr. James Quillin California Conference of Machinists

Ms. Gail Ruderman Feuer Natural Resources Defense Council

Mr. Erwin Tomash Dataproducts

April 29, 1998

Mr. John Gully
Assistant Director, Land Systems
Defense Advanced Research Projects Agency/TTO 3701 North Fairfax Drive
Arlington, Virginia 22203-1714
Dr. Robert Rosenfeld
Program Manager
Defense Advanced Research Projects Agency/TTO
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

Re: Cooperative Agreement MDA972-95-2-0011
and modifications through P00012

Dear John and Bob:

Please find enclosed the quarterly report for the period January 1 through March 31, 1998.

If you have any questions, please call me at (818) 565-5608.

Sincerely,

Linda C. Wasley Contracts Administrator
enc.
cc: E. Ely
R. Gallagher

A California Non-Profit

Consortium Developing
Advanced Transportation
Technologies

Board of Directors
Mr. David Abel SuperShuttle International, Inc. Chairman of the Board

Dr. Stephen D. Ban Gas Research institute

Dr. Lon E. Bell Amerigon Incorporated

Dr. Malcolm R. Currie Project California

Mr. R. Thomas Decker Bank of America

Mr. Michael J. Gage CALSTART, Inc.

Mr. Syed Hussain IMPCO

Dr. Chung Liu South Coast AQMD

Mr. Warren I. Mitchell Southern California Gas Company

Mr. James Quillin California Conference of Machinists

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

ELECTRIC AND HYBRID ELECTRIC VEHICLE
TECHNOLOGIES

COOPERATIVE AGREEMENT MDA972-95-2-0011 and Modifications through P00012

QUARTERLY REPORT

January 1 to March 31, 1998

DISTABUTHON STATETENT A Approved bo philic miser Distribution Unimited

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

TABLE OF CONTENTS

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

TABLE OF CONTENTS

Page
ADVANCED HYBRID RECONNAISSANCE VEHICLES Cs-AR95-06A/B 29
PROPULSION SYSTEM FOR ADVANCEDHYBRID RECONNAISSANCE VEHICLES Cs-AR96-09A/B31
JOINT TACTICAL ELECTIRC VEHICLE

- FUEL EFFICIENCY TESTING PROCEDURE Cs-AR97-01 33
- HYBRID ALGORITHM REFINEMENT TESTING cs-AR97-02 34
- PERIPHERALS DEVELOPMENT CS-AR97-03 35
Rod Millen Special Vehicles \& AeroVironment
ROTARY ENGINE AUXILIARY POWER UNIT DEMONSTRATIONS CS-AR95-07 36
TURBO-GENERATOR FOR THE MOLLER ROTAPOWER ENGINE CS-AR97-08 37
Moller International
QUICK CHARGING SYSTEM
WITH FLYWHEEL ENERGY STORAGE 38
MOBILE FLYWHEEL POWER MODULE 39
Trinity Flywheel Battery
ENVIRONMENTAL CONTROL SYSTEM FOR ELECTRIC AND HYBRID VEHICLES Cs-AR96-02 40
COOPERATIVE TESTING WITH EVERMONT 42Glacier Bay
HYBRID ELECTRIC PROTOTYPE TRUCK (HEPT) CS-AR96-05 44
ISE Research
ELECTRIC VEHICLE RANGE EXTENDING GENERATOR cs-AR96-06 46
AC Propulsion
ENGINEERING IMPROVEMENTS FOR PURPOSE-BUILT EVCS-AR96-07 49
Clean Intelligent Transportation Incorporated (PIVCO)
DISTRIBUTED ENERGY MANAGEMENT SYSTEM (DEMS)
CS-AR94-04 \& CS-AR96-08 50
Raytheon fka Hughes Technical Service Company

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

TABLE OF CONTENTS

Page
HIGH POWER CHARGING SYSTEM
FOR ELECTRIC VEHICLES Cs-AR97-07 52
General Motors Advanced Technology Vehicles
NOVEL, COMPACT AND EFFICIENT
TESLA GAS TURBINE ENGINE CS-AR97-09 55
FAS Engineering
DEVELOPMENT AND DEMONSTRATION
OF A HYBRID-ELECTRIC TRANSIT BUS Cs-AR97-10 61
Foothill Transit/Gillig
ASSESSMENT OF ADVANCED ENGINE TECHNOLOGIES FOR UAV AND HEV APPLICATIONS cs-daro-02 62
FEV Engine Technology
HEAVY FUEL ENGINE TEST PROGRAM cs-DARo-01 63
General Atomics Aeronautical Systems, Inc.
PROGRAM MANAGEMENT AND ADMINISTRATION 66
CALSTART
APPENDIX 69
COST REPORTING SUMMARY AND DETAIL 70
FINAL REPORTS
A C PROPULSION 98
avCon test results 120
glacier bay 210
SLIDES FROM APRIL 1, 1998 MEETING AT CALSTART 231
COMPLETED PROJECTS 321
CANCELED PROJECTS 327

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HYBRID ELECTRIC BUS DEMONSTRATION Project Manager: Capstone Turbine Corporation CS-AR94-06

Howard Longee attended a DARPA review session on April 1, 1998 at CALSTART. DARPA representatives at the review included Dr. Robert Rosenfeld, Ryan Gallagher, and Dan Jordan.

Capstone continues to demonstrate the turbo-generator on-board the AVS shuttle bus in the Chattanooga area. The bus was in regular service in Chattanooga carrying passengers during the quarter. Capstone continues to focus on improving the reliability and manufacturability of the Capstone Turbine. The existing unit continues to perform well in daily service.

	MLESTONES	DARPA	MATCH		DATE DUE		$\begin{aligned} & \text { WMATCHE } \\ & \text { EXPENDES } \end{aligned}$	$\begin{aligned} & \text { DARPA } \\ & \text { FUNDS } \\ & \text { EXPENDED } \end{aligned}$
1	Initiate Work	40,000	40,000		8/30/95	12/15/95	112,811	36,000
2	Vandenburg Combustor/Monolith Test rig	102,500	102,500		12/31/96	1/11/96	102,932	92,250
1	Hardware/Electrical Design	50,000	50,000	1	12/31/96	1/11/97	50,000	50,000
2	Vehicle Integration	82,000	82,000	2	3/30/97	3/30/97		
3	System Integration	20,000	20,000	3	6/30/97	3/30/97	107,310	90,000
4	Final report	7,500	5,000	4	9/30/97			
	TOTAL	300,000	300,000				373,053	268,250

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HYBRID VEHICLE TURBOGENERATOR WITH LIQUID FUELED CATALYTIC COMBUSTOR
 Project Manager: Capstone
 CS-AR97-06

This project was canceled on April 1, 1998 when Howard Longee attended a review at CALSTART. Capstone has undergone a reorganization and chosen to focus their resources on the design and operation of their stationary turbine. Capstone retains a longterm interest in this technology. However, at this time Capstone believed it was better to terminate the project than to delay it for an indefinite period of time. No agreement had yet been executed between CALSTART and Capstone. DARPA representatives at the review included Dr. Robert Rosenfeld, Ryan Gallagher and Dan Jordan.

CALSTART will work with DARPA to identify other potential related projects.

	MLESTONES	DARPA	MATCH	OTR	DATE DUE	COMPLETE	WATCH FUNES EXPENDED	DARPA: FUNDS ExPENDED
1	Complete design/fabrication	161,000	539,750					0
2	Procure DAS. Manufacture bus and drive train	60,000	$210,00$			-		0
3	Ship bus to transit system	6,000	35,000		-			0
4	Final report	75,000						0
		302,000	784,750					\$0

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HEAVY-DUTY HYBRID ELECTRIC VEHICLE EMISSIONS STUDY Project Manager: Natural Resources Defense Council CS-AR94-07

Arcadis, a subcontractor to the National Resources Defense Council (NRDC) for this study, continued to work on the economic analysis during this quarter. The basic parameters for the analysis, such as range of vehicles, range of fuels, the size of the vehicles, etc., have been defined. Arcadis is now comparing capital and operating costs for the various vehicle types. This comparison is not yet complete. NRDC indicates that the study should be complete by June 1998.

	MILESTOMES	DARPA	MATCH	am	DATE DUE	COMPLETE	Match Funds EXPENDED	DARPA FUNBS EXPENDED
1	Refine study design.	20,000	20,000	1	8/1/95	12/30/95	13,500	
2	Data collection	16,000	16,000	2	11/1/95	9/30/96	16,000	
3	Data Evaluation	16,000	16,000	3	2/1/96	12/30/96	23,500	63,000
4	Scientific review	16,000	16,000	4	5/1/96			
5	Draft study	16,000	16,000	5	8/1/96			
6	Final report/study	16,000	16,000	6	11/1/96			
	TOTAL	100,000	100,000				63,000	63,000

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

INTERNET

Project Manager: CALSTART
CS-DARO-04

Dave Sotero from CALSTART received valuable counsel on its clean car catalog from Dr. Robert Rosenfeld at the April 1, 1998 review on-site at CALSTART. Please see Appendix for view graphs presented.

Dr. Rosenfeld helped identify new categories that would make the vehicle and component catalog more usable. CALSTART is investigating ways to integrate these additional categories into the web site database.

Since the last reporting period, CALSTART has completed design work for both the public and user interfaces for the Advanced Transportation Industry Yellow Pages Database on the CALTART web site. CALSTART plans to publicly unveil the revised Yellow Pages by May 1, 1998.

Other sections of the site, including News Notes and Clean Car Catalogs will be unveiled after the Yellow Pages become public.

	MILESTONES	DARPA	Match		DATE DUE	COMPLETE	MATCH: FUNDS: EXPENDED	DAAPA: FUNDS EXPENDED
	Upgrade CALSTART web server	30,000						30,000
2	Expand Vehicle Catalog	20,000						15,000
3	Develop component catalog	20,000						
	Develop AT Industry FAQ	20,000						
		90,000	0					45,000

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HEAVY-DUTY VEHICLE INDUSTRY ANALYSIS
 Project Manager: CALSTART

CS-AR97-12

Dr. Kevin Nesbitt discussed the study with Dr. Robert Rosenfeld of DARPA in a meeting April 1, 1998 at CALSTART.

CALSTART continues work on Task 1 and Task 3. We continue to collect data on heavyduty hybrid electric vehicles and other advanced heavy-duty vehicle technologies likely to compete in the same markets. The data collected to date has been catalogued and entered into our electric and hybrid vehicle database. We continue to meet with key players in the heavy-duty vehicle industry, especially those directly involved with the development of heavy-duty hybrid electric vehicles. We are also actively attending workshops, seminars and conferences pertaining to ongoing developments in electric and heavy-duty vehicle technologies.

Our progress to date has given us a much better understanding of the critical trends within the industry and the factors likely to play a pivotal role in the heavy-duty hybrid electric vehicle market. CALSTART will continue on our current course of data collection and visit companies to view, in person, the most advanced hybrid electric vehicle technologies. DARPA was briefed on our progress on April 1 at the DARPA Electric and Hybrid Electric Program Review in Burbank, California. At that time the project completion date was extended to mid December 1998.

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HEAVY-DUTY VEHICLE INDUSTRY ANALYSIS
 Project Manager: CALSTART

CS-AR97-12

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

DARPA INTERNET-BASED E/HEV PROJECT LISTINGS
 Project Manager: CALSTART
 CS-AR97-14

CALSTART was able to meet directly with Ryan Gallagher of the Systems Planning Corporation (SPC) during the DARPA on-site review April 1, 1998. Systems Planning Corp. committed some of its resources to ensuring the success of the database implementation.

CALSTART has also begun working with its technical contractor to identify a data dictionary necessary to populate both the CALSTART and SPC database with concurrent fields via internet protocols. Once both organizations agree on the data dictionary, SPC will modify its existing databases to accommodate the concurrent fields and scripts created to transfer the data between the two databases. Work will then begin to update coalition projects via the new database interface.

	MLESTONES	DARPA	MATCH	atr	DATEDUE	COMPLETE	$\begin{aligned} & \text { DATCH: } \\ & \text { FUNBS } \\ & \text { EXPENDED } \end{aligned}$	DARPA FUNDS ExpENDED
1	Database/Interface Design	5,779		1	3/31/98	3/31/98		5,779
2	Database/Interface creation	8,529		1	3/31/98			
3	Data collection/coordination	7,282		1	3/31/98	On-going		7,282
4	Data collection/edit	13,214		2	6/30/98	On-going		4,439
5	Design graphic user interface	5,963		1	3/31/98			
6	Integrate graphics	7,445		2	6/30/98			
7	Check-off/post	7,966		2	6/30/98			
8	Maintain/train/promote 1	8,161		3	9/30/98			
9	Maintain/train/promote 2	5,661		4	12/31/98			
		70,000	0					17,500

PROGRAM TO MINIMIZE LOSSES IN MECHANICAL BATTERIES FOR ELECTRIC VEHICLES

Project Manager: Avcon

CS-AR95-01

Avcon has completed testing on the standard and optimized bearing during this quarter. This constitutes the conclusion of Task 9 and 10 respectively. Avcon has summarized the results of the tests they conducted in their final test report, which is included with this quarterly report.

The test results determine the effects of Eddy Current on the system. Avcon assembled the test rig and installed it in the spin pit. Avcon then spun it to a peak speed of 11,100 rpm and disengaged the motor. Avcon recorded the coast down time as well as the AC and DC currents.

Avcon ran the test fixture in two separate configurations. The first configuration was with open slots in the magnetic bearing stator, while in the second wedges were installed in an attempt to reduce eddy current losses. Avcon's tests did not show any appreciable performance difference between the two configurations. Based on data they gathered, Avcon concluded that the losses due to wind are insignificant compared to the electrical losses from the bearings, which are also small, on the order of 5 watts per bearing. Avcon believes the most probable explanation is the control coil offsets to maintain shaft position and the AC unbalance generated by control fields are far more significant than the eddy currents. Additional testing at various offset positions would be required to quantify the effect of control coil currents on system performance.

Avcon has not yet completed a final report for the entire program but will do so next quarter.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

PROGRAM TO MINIMIZE LOSSES IN MECHANICAL BATTERIES FOR ELECTRIC VEHICLES

Project Manager: Avcon
CS-AR95-01

	MLIESTONE	DARPA	$\overline{\mathrm{MATCH}}$	DUEDATE	compiete	Match FUNDS EXPENDED	DARPA FUNDS EXPENDED
1	1 Develop Computer Model 2 Begin Rotordynamic Analysis 3 Develop Test Plan 4 Design Test Rig	37,706	37,706	9/30/96	9/30/96	37,706	37,706
2	Complete Rotordynamic Analysis	16,220	16,220	12/31/96	12/31/96	16,220	16,220
3	Complete Test Plan 5 Begin Fabrication of Test Rig	10,160	8,470	3/30/97	3/30/97		36,276
4	Complete Fabrication of Test Rig	15,160	8,600	6/30/97	9/30/97	31,226	
5	6 Fabricate Standard Bearings 7 Design Optimized Bearings 8 Fabricate Optimized Bearings	12,182	23,618	9/30/97			
6	9 Test Standard Bearing	10,124	8,600	12/31/97			
7	10 Test Optimized Bearing 11 Iterate Computer Model	3,797	12,800	3/31/98			
8	Final Report	21,000	10,335	6/30/98	3/31/98	36,147	
		\$126,349	\$126,349			126,349	85,152

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

MAGNETIC BEARING COMMERCIALIZATION PLAN
 Project Manager: AVCON
 CS-AR97-11

CALSTART and Avcon have not yet executed a contract. Avcon's program manager for this new project left the organization. CALSTART will be conducting a site visit with Avcon early next quarter to resolve the situation. If Avcon is still committed to the project and has the personnel to satisfactorily complete the program, CALSTART will execute a new contract. If there is a determination to the contrary, CALSTART will contact DARPA and jointly review the situation.

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012

Quarterly Report

January 1 to March 31, 1998

FLYWHEEL LIFECYCLE TESTING

Project Manager: U.S. Flywheel Systems
CS-AR95-02

Jack Bitterly of U.S. Flywheel Systems (USFS) provided a report on the status of this program to Dr. Robert Rosenfeld, Ryan Gallagher and Danny Jordan of DARPA during the program review held at CALSTART. Please see Appendix for slides presented on April 1, 1998.

USFS has continued work on the development of independent bearings to replace the ones which were to have been supplied by Avcon. USFS tested the data acquisition and control, vacuum, and cooling systems with the first flywheel module. Also, USFS completed modifications to module two to accept several different control systems. The data acquisition still needs to be calibrated after the flywheel module is installed. USFS hopes to start life cycle testing on the flywheel modules by July, 1998. The first test is projected for completion in October, 1998. USFS hopes to test modules 3 and 4 from November to December 1998. Next quarter, USFS will continue to work on providing functional magnetic bearings.

	MiLESTONE	DARPA	Match	OTR	DATE DIE	COMPLETE	\square	DARPA FUNDS EXPENDED
1	Detail plan		900,000	1	7/7/96	7/16/96		
2	Fabricate flywheels	230,000	300,000	2	9/7/96	7/16/96	1,129,267	195,200
3	Design, prog. \& fabricate DAS	90,000	140,000	3	9/7/96	12/2/96	318,126	171,057
4	$\begin{aligned} & \text { Design/Install } \\ & \text { containment chambers } \end{aligned}$	50,000	80,000	4	9/7/96	12/30/96		
5	Install modules/check system		60,000	5	10/7/96			
6	Cycle tests/statistical analysis	20,000	80,000	6	3/7/97			
7	Final report	10,000	40,000	7	6/7/97			
		400,000	1,600,000				1,447,393	366,257

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

FLYWHEEL SHOCK TESTING

Project Manager: US Flywheel Systems, Inc.
CS-AR97-05
Jack Bitterly of U.S. Flywheel Systems (USFS) provided a report on the status of this program to Dr. Robert Rosenfeld, Ryan Gallagher and Danny Jordan of DARPA during the program review held at CALSTART, April 1, 1998.

USFS has finished a second-generation advanced unit in which the vertical spin axis has been completely redesigned. The new system was fabricated and has been tested in excess of its $42,000 \mathrm{rpm}$ design speed. USFS made this improvement without delaying the project or increasing the cost to DARPA. USFS has begun testing on a new magnetic bearing satellite energy storage system in its test pit. There were no significant deviations to the planned schedule. Next quarter, USFS will finalize the target shock and vibration testing envelope for both systems and visit a number of major users. USFS also plans to visit Aberdeen Proving Grounds to prepare for future tests.

	MLESTONES	DARPA	MATCH			COMPLETE	MATCH Funds EXPENDED	DARPA部 FUNDS: EXPENDEB
1	Test Data Collection	45,000	45,000			12/31/97	45,000	45,000
2	Establish test parameters and profile	33,000	52,000			12/31/97	33,000	52,000
3	Report on designs/fabrication	5,000	10,000					
4	Shock testing. Design/fab mounting system	235,000	255,000			12/31/97	157,530	17,243
5	Prepare for testing	5,000	10,000					
6	Testing at Aberdeen. Final Report	82,000	78,000					
		450,000	450,000				235,530	114,243

US FIYWHEEL SYSTEMS
PROPRIETARY INFORMATION
UNAUTHORIZED DISCLOSURE PROHIBITED

Figure 1

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

COMPACT, RUGGED, LOW COST CIRCUIT BREAKERS FOR ELECTRIC AND HYBRID ELECTRIC VEHICLES

Project Manager: Potomac Electric Power Company w/Coriolis Corporation CS-AR95-03

During the quarter, the Potomac Electric Power Company (PEPCO) undertook an evaluation of its technology development programs, and, as a result, did not launch any new programs. The review delayed the start of this project. However, PEPCO's Brad Johnson indicates that PEPCO still plans to move forward with this project and provide the required cost share. PEPCO had intended to work with EPRI on this project but found that it was too difficult to do so. PEPCO has the scope of work and contract from CALSTART and indicates it should sign the agreement during the next quarter. Coriolis is still ready to commence work on the project as soon as funding commitments are in place.

	MILESTONES	DARPA	MATCH		DATE DUE	COMPLETE	MATCH: FUNDS EXPENDED	DARPA: EURNS EXPENDED
	Final draft of electrical test station design	5,307	5,400	1	TBD			
	Select mechanical design team. Complete design.	33,708	34,292	2	TBD			
	Design modifications to circuit breaker. Construct/debug test station. Fabricate circuit breaker components.	30,238	30,762	3	TBD			
	Test guillotine circuit breakers.	19,217	20,171	4	TBD			
	Final guillotine circuit breaker design.	11,530	9,375	5	TBD			
		100,000	100,000					

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012 Quarterly Report January 1 to March 31, 1998

ALTURDYNE ROTARY ENGINE APU TRANSIT BUS DEMONSTRATION Project Manager: APS Systems CS-AR95-04

CALSTART coordinated with Alameda/Contra Costa (AC) Transit and APS Systems for a roll-out of the bus in early February at AC Transit's Emeryville facility. The press release that CALSTART issued announcing the rollout of the bus is included with this report. A copy of CALSTART Connection with a story on the bus is also attached as is the information sheet distributed by CALSTART at the rollout.

After extensive shakedown testing with AC Transit, the bus was placed into revenue service in mid-March, 1998. The bus has been in constant service on a number of different routes throughout AC Transit's service area.

APS continued to support the APU following delivery of the bus to AC Transit in the last quarter. AC Transit encountered problems with faulty sensors shutting the APU down but these were corrected quickly. AC Transit has reported to CALSTART that the bus is performing well and is being well received by its customers who are impressed with the low emissions, performance and low noise.

APS Systems is beginning to look at the potential of partnering with a bus manufacturer to commercialize the bus. CALSTART continues to monitor this project closely and will provide more data on APU performance when it becomes available. Initial numbers from AC Transit are indicating a fuel consumption of 2.67 gallons of propane per hour. If the bus were run in regular transit service at an average speed of 20 mph that would translate to 7.5 mile per gallon of propane (11 miles per diesel equivalent gallon). This compares favorably with the fuel economy of a conventional diesel bus of around 5 mpg . The bus will continue testing with AC Transit all through the next quarter.

	MRESTONES	DAPPA	MATEX		DATHEDELE	COMPLETE	MATGH: FGUNES: ExPERDED	
	Alturdyne bus demonstration	65,000		1				58,500
		65,000	0					58,500

The 40' Hybrid Electric Transit Bus CALSTART, with its hybrid electric bus project team members, has developed an advanced 40^{\prime} hybrid electric transit bus, a cleaner and more energy-efficient alternative to tra-
 ditional buses.
The bus is designed to have numerous advantages over conventional 40 ' buses, including lower emissions, greater operating efficiency, a low-floor for easier entrance and exit and a quieter ride.

The bus was designed and built by Oxnard, CA-based APS Systems which has been designing and building advanced battery-powered transit vehicles and components since 1991. The bus will be placed into service for six months with AC Transit followed by an additional six months in Orange County with the Orange County Transportation Authority (OCTA).

A Unique Collaborative Development

In 1994, CALSTART, a non-profit organization promoting the advanced transportation industry, initiated a project to design, build and demonstrate a full-size hybrid electric transit bus. The end result was a coordinated team effort, managed by CALSTART, involving funds from the Federal Transit Administration (FTA), the California Energy Commission (CEC), the Defense Advanced Research Projects Agency (DARPA), and Alameda/Contra Costa (AC) Transit. The project also received in-kind support from the Orange County Transportation Authority (OCTA), Southern California Edison (SCE), Pacific Gas and Electric (PG\&E) and APS Systems.

- Stainless steel provides the chassis strength.
- Aerospace composites are used in the body because of their rigidity and light weight. Nickel cadmium batteres providing greater range and longer cycle-tfe than convens: tional lead acid batteries:
- Twin 68 kilowatt (kW) Rexroth electric motors, which draw energy directly from the battery pack, provide the motive power for the wheels.
- 60 kW charger and a propane-fueled auxiliary power unit (APU) built by Alturdyne, Inc. of San Diego, CA.
- APU provides a constant power output of 40 kW that constantly recharges the battery pack.
- Regenerative braking which recovers energy, resulting in improved range and reduced wear on the conventional brake pads.

The bus will be able to operate in three modes:

- zero emission, when operating on the battery pack alone
- electric plus low-power auxiliary power unit, when the battery pack is capable of handling the traction demands but added energy is needed for accessories such as air conditioning, heating, lights, or windshield wipers
- electric plus high-power auxiliary power unit, when the battery pack requires augmentation to provide adequate energy for completion of the duty cycle. This will ensure that the bus will be able to perform under all conditions without sacrifice of speed, range, safety, or passenger comfort.

40 kw Alturdyne APU provides the electrical power to the battery pack for extended range.

CALSTART 40' Transit Bus with Range Extender Program History

In 1994, CALSTART, a non-profit organization promoting the advanced transportation industry, initiated a project to design and build a full-size hybrid electric transit bus. The end result was a coordinated effort, led by CALSTART, involving the Federal Transit Administration (FTA), the California Energy Commission (CEC), the Defense Advance Research Projects Agency (DARPA) and AC Transit. The project also received in-kind support from the Orange County Transit Authority (OCTA), Southern California Edison (SCE), Pacific Gas and Electric (PG\&E) and APS Systems.

The bus will be placed into service for six months with AC Transit followed by an additional six months in Orange County. The bus was built by Oxnard, CA based APS Systems which has been designing and building advanced battery powered transit vehicles and components since 1991. The bus is designed to have numerous advantages over conventional 40-buses, including lower emissions, greater operating efficiency, a low-floor for easier entrance and exit and a quieter ride.

BAY AREA SERVICE BEGINS FOR NATION'S MOST ADVANCED ELECTRIC TRANSIT BUS

NEW GENERATION OF CLEANER, QUIETER, MORE-EFFICIENT HYBRID BUS BEING TESTED BY CALSTART-LED PARTNERSHIP OF PRIVATE COMPANIES AND PUBLIC AGENCIES

Emeryville, Calif. - A revolutionary and environmentally-friendly transit bus - one of the most advanced in the nation - begins testing today as a part of Northern California's Alameda/Contra Costa (AC) Transit fleet. Utilizing a combination of battery and propane power, the hybrid-electric bus demonstrates the newest heavy-duty technologies for greatly improving fuel-economy, lowering emissions, and reducing noise.

A project of CALSTART, the advanced transportation organization, the new bus is an important step in the push for cleaner air, higher efficiency, and high-tech jobs. In addition to fewer emissions, the new bus incorporates a series of other features that transit users will appreciate, including a flat floor for easy ingress, and quieter, smoother operation.
"The recently signed global warming accords at Kyoto really bring home the need and potential for this type of technology," said Michael J. Gage, president \& CEO of CALSTART. "Increasingly efficient, clean transportation solutions such as this bus - ready for deployment today - clearly show the technical realities this growing industry can deliver."

Produced by CALSTART participating company APS Systems of Oxnard, California, the bus utilizes a new generation hybrid-electric driveline that greatly reduces pollution, vibration, and noise. Two electric motors, producing the equivalent of approximately 180 horsepower, drive the buses' wheels under all conditions. An advanced, nickel-cadmium battery pack provides power for the electric motors, and can be charged on demand by a propane-fueled, rotary-engine generator.

The hybrid combination allows the bus to operate in three separate modes, each guaranteeing maximum energy efficiency and minimal environmental impact. When

CALSTART Hybrid Bus Rollout Page 2

operating on batteries alone, the bus produces zero emissions and can travel up to 45 miles. If traction requirements can be met by the battery but accessories are needed (air conditioning, lights, wipers, etc.), the generator operates in a low-power mode. A highpower mode is also available, which further charges the batteries and is capable of extending the vehicle's duty cycle to a total of 230 miles, depending on terrain. Running full-time, the generator consumes only 2.8 gallons of propane per hour. A proof-of-concept prototype, the vehicle could become the first of a new generation of city buses.

The new bus will be in service for 6 months over many of AC Transit's routes to allow passengers, drivers, mechanics and others to evaluate its performance and advantages. Afterwards, it will pass to the Orange County Transportation Authority (OCTA) for an additional 6-month trial.

With several private and public partners, CALSTART initiated this novel project to design, build, and demonstrate a full-sized hybrid-electric transit bus. Alturdyne produced the vehicle's auxiliary power unit, and worked closely with APS Systems. Funding for the project came from AC Transit, the Federal Transit Administration (FTA), the Defense Advanced Research Projects Agency (DARPA), the Bay Area Air Quality Management District (BAAQMD), the California Energy Commission, the Orange County Transportation Authority (OCTA), Southern California Edison (SCE) and Pacific Gas and Electric (PG\&E).

CALSTART is a non-profit advanced transportation technologies organization working with more than 200 industry and public partners worldwide. It develops technology demonstration programs, provides industry analysis and information and helps fleets more quickly introduce electric vehicles, hybrid-electric vehicles, natural gas vehicles, as well as Intelligent Transportation Systems (ITS). For more information on CALSTART and advanced transportation, please visit the consortium's web site at www.calstart.org.
 Volume 6, Issue 1

Toyota Receives 1997 Blue Sky Award

Toyota Motor Corporation, led by its Prius hybrid-electric car, has won the 1997 Blue Sky Award. The award is given to recognize outstanding marketplace contributions to advanced, sustainable transportation that cleans the air, improves energy efficiency and helps reduce greenhouse emissions.

Toyota was recognized in particular for the market launch of its innovative, clean and fuel-efficient Prius hybrid-electric car, which it is now selling in Japan. This, combined with its commitments to

CALSTART president and CEO Michael Gage presents Blue Sky Award to Dave Illingworth, senior vice president and general manager of the Toyota Division of Toyota Motor Sales U.S.A.

See BLUE SKY AWARD, page 7

CALSTART Launches The Nation's Most Advanced Hybrid Electric Transit Bus
 Bus Enters 12-Month Test with AC Transit and OCTA

Hybrid-electric bus consumes only 4.2 gallons of propane per hour for a range of 230 miles.

A revolutionary and environmentallyfriendly transit bus-one of the most advanced in the nation-is now in service as a part of Northern California's Alameda/Contra Costa (AC) Transit fleet. Utilizing a combination of battery and propane power, the hybrid bus demonstrates the newest heavy-duty
technologies for greatly improving fuel-economy, lowering emissions, and reducing noise.

Produced by CALSTART participating company APS Systems of Oxnard, California, the bus utilizes a new generation hybrid-electric driveline that greatly reduces pollution, vibration, and noise. Two electric

CALSTART forms new funding opporfunities, see page 3

motors, producing the equivalent of approximately 180 horsepower, drive the buses' wheels under all conditions. An advanced, nickel-cadmium battery pack provides power for the electric

See HYBRID ELECTRIC BUS, page 7

SPECIAL REPORT

Agreement in Kyoto: The Impact on Transportation

The Kyoto blueprint may eventually be seen as a landmark first-step in the fight against global
 warming. It is also another key factor in the increasing pressures changing transportation, fuels, and technologies.

Signed by many nations hoping to reduce alterations of the earth's natural "greenhouse effect" (GHE), it could provide a path toward halting documented global change. The earth's average temperature has already risen by approximately l degree Fahrenheit over the last century-and 33% of greenhouse gas emissions causing global warming are linked to transportation.

```
See GLOBAL WARMING, page 4
```


In This Issue:

- Advanced Transportation Business Troining 2
- CalSTART Forms New Partnership with Departments of Transportation and Energy3
- Industry's "New Plateou" Seen at EVS-14 6
- Commentary-The Business Case for Embracing Kyoto

C O N S O R T I U M U P D A T E

New CALSTART Participants

CALSTART welcomes 13 new members of the advanced transportation industry:

- Ang'elil Graham Architecture Designs photovoltaic public infrastructure and recharging stations for electric vehicles.
(C) Contact: Sarah Graham, (213) 871-1450
- Bowles Langley Technology Plans to produce a device to test drivers for states of alertness.
(1) Contact: Henry Bowles (510) 864-3111
- The City of Alameda Supports the development of an EV Model City Program, and is an applicant for a Clean Cities Designation.
(6) Contact: Bruce Knopf (510) 747-4700
- Extengine, LLC Develops electric vehicle propulsion systems and manufactures lead-acid battery additives.
(c) Contact: Phillip K. Roberts (562) 983-8180
- FEV Engine Technology

Develops and tests internal combustion engines, and provides engine engineering consulting.
(c) Contact: Gary W. Rogers (248) 373-6000

- General Atomics Develops unmanned aircraft, ground control stations, ground data terminals, and heavy fuel engines.
(1) Contact: Jennifer Petersen (619) 455-2667
- Ginter VAST Corporation Develops low pollution combustors for turbine-powered vehicle applications.
(1) Contact: Suzi McCraw (310) 557-1511
- It's Electric!, Inc. Specializes in electric vehicles, and will open a retail outlet early in 1998.
(1) Contact: Michael S. Wyman (510) 525-0503
- Pinnacle Mining N.L. Plans to utilize its exclusive rights to Vanadium Redox battery technology in electric vehicle applications.
(0) Contact: Dr. Malcolm T. Jacques +61398248166
- Proe Power Systems

Develops alternatives to gas turbines and diesel engines based on the Ericsson cycle.
(1) Contact: Richard Proeschel (800) 308-2651

- Rexxar Corporation

Develops centrifugal automatic transmissions.
(1) Contact: Joel Nevels (510) 757-2198

- VOLTEK, Inc.

Develops the "Fuel Pak" metal/air fuel cell and its A-2 electric vehicle.
(0) Contact: Gordon R. Stone
(618) 277-5130

- Waste Energy Integrated Systems, L.L.C. Researches the production of ethanol from biomass waste and develops a reactor for ethanol production.
(1) Contact: Charles K. Lombard (650) 858-2114

Want to join the team that's changing transportation? CALSTART participant services include regular information, partnering and access to funding opportunities. To become a CALSTART participant, call (818) 565-5600.

Advanced Transportation Business Training!

CALSTART, in partnership with California's Employment Training Panel (ETP), is offering a variety of training programs and workshops this quarter. Participation is free of charge to most employees and business owners.

Business owners and managers can earn an Entrepreneurial Management Certificate (EMC) by attending classes one night a
week for six weeks. One topic will be covered each evening, including: marketing management; engineering management; project management; cash flow management; manufacturing quality; and the high-performance workplace.

In addition to the certificate program, CALSTART will offer a variety of training workshops. These workshops typically involve

15 to 20 hours of classroom training, and will cover 28 individual topics including business, communications, manufacturing, design, development, project management, and finance.

For a full list of the exciting workshops available, or for more information on dates and locations, please contact Steve Duscha at (916) 442-4854.

CALSTART Forms New Partnership With Departments of Transportation and Energy

Secretaries Make Joint Presentation in Washington D.C.

On February 5, 1998, CALSTART received major support and funding from a new nationwide program announced by the U.S. Departments of Transportation and Energy: Six other advanced transportation technologies, consortia (ATTC) were also involved.

The new ATTC program will take $\$ 20$ million- $\$ 10$ million cach from the Departments of Transportation and Energy-and match that with an equal amount from private companies working with the consortia on selected programs. This cooperative model, supporting cost-effective, "hottom-up"
innovation, was actually based on CALSTART, the oldest and largest of the advanced transportation technologies consortia.

Secretary of Energy Federico Pena and Secretary of Transportation Rodney Slater made the announcement at al rainy-day event which showeased a number of CAL.START participants. Also present were EPA administrator Carol Browner, Under Secretary ol Defense 1)r. Jacques (iensler, and Director of the White House Office of Science and Technology, Dr. John Gibbons.
"This new partnership will help commercialize more efficient vehicle systems that reduce pollution," said Secretary Pena. "American consumers and businesses can look forward to a cleaner environment because of the transfer of these energy-efficient military technologies."

Nationwide, more than $40(0$ technology companies are part of the $\triangle T T C$ network. Vehicle and component projects receiving emphasis under the new ATTC program will include electric, hybrid-electric, natural gas, hydrogen and other technologies, including electronic control and communication systems.

www.cleancarmaps.com
of a recharge site in California and would like it included in our mapping system, please contact Gina Lupo or Dave Sotero at (818) 565-5600.

CALSTART Board Elects New Chairman and Secretary

David Abel has been elected Chairman of the Board at CALSTART: An investor and board member at SuperShuttle, Abel recently took the reigns from long-time CALSTART Chairman Michael Peevery. Vincent Fiore of the Gas Research Institute (GRI) has also been elected Board Secretary. F

Global Warming-The Impact on Transportation

continued from page 1

The Need for Action

Given these facts, it is easy to see the importance of Kyoto to the transportation industry. If the treaty is to be observed, large cuts in GHG emissions will be required, particularly from the United States. Already 7.4\% above 1990 levels at the end of 1996 , U.S. emissions are increasing at an annual rate of over 3%. The Clinton administration's plan to begin decreasing U.S. emissions calls for a broad range of tax incentives and government-funded R\&D to spur investment in energy efficiency. Regardless of the path chosen, the
reductions required will likely involve the following: fossil fuel consumption (the primary source of carbon dioxide $\left[\mathrm{CO}_{2}\right]$ emissions), will need to decrease substantially and in absolute terms; U.S. energy prices, which have declined 50% in real terms since 1980, will very likely rise; increased private and public sector funding will be channeled into the development and com-

Historical View of Atmospheric CO2 Levels

	GAS	TYPICAL SOURCES	ANNUAL RATE OF CHANGE
\sum_{0}	$\mathrm{H}_{2} \mathrm{O}$	hydrological cycle, fuel combustion	variable
+	CO_{2}	combustion of fossil fuels and biomass, animal respiration	+.5\%
$\begin{aligned} & \frac{2}{0} \\ & 0 \\ & 0 \end{aligned}$	CH_{4}	organic decay, waste treatment, rice paddy agriculture, biomass burning, livestock production, natural gas transport, venting during coal and gas production	+1\%
	O_{3}	formed through interaction of $\mathrm{H}_{2} \mathbf{O}, \mathrm{NO}_{\mathbf{x}}$, hydrocarbons and sunlight	N/A
Σ	$\mathrm{N}_{2} \mathrm{O}$	tropics, fossil fuel combustion, manufacture and use of chemical fertilizers	+.2-.3\%
1 0 0 0	CFC 11/12	production and use of air cooling devices	+.5\%

Surface temperature is regulated by atmospheric gases in a series of sensitive relationships; they absorb, scatter, and trap heat emanating from the surface. Changes in temperature can potentially cause rising sea levels, shifting climactic zones, increased weather and rainfall disparities, and drive increasingly extreme weather phenomena. Only a few of the gases in the atmosphere have heat-trapping, global-warming potential: they include water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, ozone $\left(\mathrm{O}_{3}\right)$, nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$, and fluorocarbons (CFC11/12). Although atmospheric increases in many of these gases are popularly attributed to industrial sources like power plants and factories, it is important to note that transportation currently accounts for about 33% of all greenhouse gas emissions from the developed world. Approximately 50% of the world's oil consumption can be attributed to transportation as well, and if trends continue, it is projected to quickly become the most prolific sector for emissions.
mercialization of energy sources with smaller GHG emissions; and market opportunities will increase dramatically for high-efficiency, low GHG emitting technologies.

Batting the Trends

In any case there can be little doubt that Kyoto has mohilized public opinion in favor of reducing GHf; emissions, and that people will continue to press for cleaner transportation options. Additionally, many trends within the industry reinforce an immediate need for action, and the urgency of new solutions. For example, people are not only driving more cars, they are driving more. Vehicle miles traveled are increasing worldwide, and have
...trenc
are cri
openin
other. 1
the t
cap
necessa
chan grown 69\% in the U.S. alone since 1969. Total vehicles in operation worldwide will total 1 billion in 2010 if current growth trends continus. The average car sold is also growing markedly less efficient. Light trucks, pickups, and sport utility vehicles account for nearly half of all new car

ation of energy sources with
HG emissions; and market ties will increase dramatically fficiency; low GHG emitting ies.

e Trends

y case there can be little doubt ohas mobilized public opinion f reducing GHG emissions, and le will continue to press for ansportation options. Addilany trends

- industry an immedior action, rgency of ions. For people are lriving more are driving hicle miles re increasing e, and have $\%$ in the U.S. c 1969. Total vehicles in operIdwide will total 1 billion in irrent growth trends continue. ge car sold is also growing less efficient. Light trucks, nd sport utility vehicles is nearly half of all new car
> ...trends in thi industry are creat...g \llcorner market opening, much like any other. Tho $\geq v$ are in the best position to capital : n the necessary und nevitable changes will profit.

Greenhouse Gas Emissions of Alternative Fuels Relative to Gasoline

Source: Amrrican Instuute of Chrmical Enginect
purchases in the U.S., and demand for similar cars is also increasing in Europe. With all of that, total goods traffic within the United States is expected to grow by 30% over the next 20 years. Increased use of alternative fuel vehicles (AFVs) promises some relief in this area.

Opportunities Ahead

Opposition to the Kyoto accord frequently states that the price to pay for reducing GHGs is too great. It is claimed that only the complying country's economy will be penalized, while those with increasing trade and few pollution controls will be unfairly advantaged. These arguments choose not to acknowledge the increased efficiency and profitability historically linked to clean-air technologies. Public awareness from conferences like Kyoto and trends in the industry itself are creating a market opening, much like any other. Those who are in the best position to capitalize on the necessary and inevitable changes will profit. Tremendous opportunities lie between what transportation is now; and what it must become.
\square

Commentary on Kyoto

continued from page 8
Clearly, Toyota is striving for market share and believes this subsidized price will help them gain volume and knowledge; which will lead to lower costs and higher profit. These actions place Toyota squarely in front as the technology leaders and "environmental auto makers."

CALSTART, and its network of roughly 200 advanced transportation companies, helieve there is competitive advantage in this leadership. Because if Porter is right, then both Toyota and Honda are poised to develop strategies that diminish global greenhouse gases faster than other automakers. Then when the rest of the world, including U.S. consumers, demand vehicles that meet the needs of the planet in addition to their personal needs, Toyota and Honda will have an early competitive advantage over the Big Three. Based on current posturing and positioning, consumers may already assume that Toyota and Honda are more technologically capable than the Big Three, and that they care more about the environment. That suggests a strong competitive advantage to Toyota and Honda in terms of brand identity:

If both Japan and the European Union comply with the accords (which apparently they are embracing), their automakers will gain clear competitive advantage over the Big Three-and become the automakers of choice in the developing world, as well.

Can we afford that?

Based on Porter's research and just a smidgen of common sense, every business operation today should assume that global warming is real, and that the current accords don't go far enough. They should assume that energy efficiency and environmental friendliness are increasingly important factors in the global marketplace. Only then will they ensure that they aggressively pursue a path that helps them remain competitive in the global marketplace of the 21 st century.

$\begin{array}{lllll}0 & 80 & 100 & 120 & 140\end{array}$

PERCENT

The Kyoto agreement now faces ratification on each of the signatory countries' home soil. Pledges for greenhouse gas (GHG) reduction are based on levels of the specified gases in 1990. The United States is committed to reducing emissions of GHG_{5} to 7\% below 1990 target levels by 2008-2012, while European and other developed nations must reduce emissions below the target by 8% and 6% respectively. China and India, the two most populous countries, are siding with a number of developing nations in choosing not to sign the agreement. They argue that, as developed nations have caused most of the damage, developing nations should not be expected to pay for damage they did not do. The assertion is in part correct, but adopts a particularly short-term view. Assuming current patterns of growth are sustained, emissions from developing nations (particularly China and India) are expected to overtake those of the developed world early in the next century.

International Commitment Shines at EVS-14

A flurry of strategic partnerships and impressive new-product introductions set the tone for an exciting week at EVS-14. Activity during the show was highlighted by an incredible level of international interest and investment, as

Nissan's Itvpermini was widely admired for its styling and execution. Futhere production is a possibilit?:
well as a growing sense of competition amongst the exhibitors. Pushed ahead by the speed, momentum, and importance of its key players, the gathering significantly raised the bar on expectations for the future.

Toyota Stirs Competition for Green Status Among Manufacturers

Aggressively moving to "brand" themselves as the most environmentally friendly auto manufacturer, Toyota put increasing image and product pressure on their competition by introducing both its Prius Hybrid and e-com commuter to the United States at EVS-14, as well as exhibiting the RAV-4 EV.

The 66 MPG Prius was driven by: many at the Ride and Drive, and never failed to impress with its smooth performance and technical wizardry. Marketed only in Japan, it may be sold in the U.S. by the year 2000 . Orders for the domestic market have risen to 3500 units, surpassed all expectations, and caused Toyota to double its production capabilities from 1000 to 2000 units per month.

The diminutive e-com also drew crowds, many complimenting its novel and futuristic lines. Intended for short-
er trips and powered by 24 nickel-metal hydride batteries, it was said to have a range of about 60 miles. Tiny cars like the e-com should make EV production more profitable for manufacturers, as the proportionately smaller battery packs required would serve to hold down costs.

Future Nissans Debut As Well

Just behind Tovota, Nissin chose the show to dehut its lithium-ion powcred Altral $1: V$ station wagon. Utilizing. the same inductive charging system as GM's EVVI, the Altra EV was said to have a 120 -mile range. Plans were revealed to deliver 30 demonstration units to fleet operators in 1998. followed by 90 more units in 1999. Delivery to retail companies was said to begin in the year 2000 . The company also showed its Hypermini, a com-muter-sized prototype. Although no plans for production were discussed, the car was designed with production considerations and all safety standards in mind.

BALLARD

 Important Agreements Signed were announced and expanded during the show: Most notably, Ford Motor Company announced a partnership with Ballard Power Systems and Daimler-Benz. valued at $\$ 420$ million. The agreement to develop, sell, and use fuel-cell power systems in electric vehicles marked yet another major commitment to the future of hydrogen technology: When finalized, the resulting alliance was to show Daimler-Benz and Ford owning 20% and 15% of Ballard respectively. A second entity, DBB Fuel Cell Engines GmbH , would be majority-owned by Daimler-Benz with Ballard holding $26^{\circ \prime \prime}$ and Ford 23% of the company. Fords major interest was to be in an unnamed drivetrain group, with Ballard and Dam-ler-Benz each holding 19".A number of energy companies also partnered in important agreements.

Rich in technologv and innoration, sales of the remarkable Prius have been virtually double Tovou's expectations.

Bombardier unveiled a partnership with Edison EV for the test-marketing of its Neighborhood Electric Vehicle (NEV), and AeroVironment announced an agreement with the Southern Co . to distribute its PosiCharge EV fastcharging station.

Increasing Promise from Detroit

The Detroit Auto Show followed quickly on the heels of EVS-14, and reiterated the competition developing between automakers. Ford announced that a road-going hybrid version of its P 2000 show car would be ready in

Edison EV will help market Bombardier's $N \mathrm{~J}$ to over five million people living in planned communities, a number that could double in a decade.

1998, and GM declared that stretched versions of its EVI in hybrid and fuel cell form would be in production hy 2001 and 2004 respectively.

These planned product launches by the largest manufacturers show that industry-wide marketing and development strategies are rapidly maturing. The next 12 months should see competition increasing!

6
 CALSTARTCOnnection

Blue Sky Award

continued from page 1
three other clean fuel vehicles and markets-the Coaster hybrid electric bus, the RAV4-EV electric vehicle and the announcement of the e-com electric commuter car-led to its selection as the top award winner for 1997.
"Toyota's actions are currently setting the trend globally in clean, efficient vehicles," said Michael J. Gage, CALSTART president \& CEO. "Their efforts, highlighted by their innovative hybrid systems, are redefining passenger transportation and efficiency, which are crucial for both air pollution and global warming. We're proud to honor these solid market commitments with our second annual award."
"We are honored to accept this prestigious award from CALSTART and its participants," said Dave Illingworth, senior vice president and general manager of the Toyota Division of Toyota Motor Sales U.S.A., Inc. "We have received much recognition lately for the innovation in our vehicles, but this award recognizes their value to the environment as well." Illingworth also mentioned that the company would sell a hybrid-powered vehicle in the U.S. before the end of the century.

Blue Sky Merit Award Winners

Toyota received the top Blue Sky Award for 1997, but there were also four Merit Awards, honoring significant companies, people and organizations:

Ballard Power Systems, of Vancouver, Canada, won for its continuing technology innovation and push to the marketplace with fuel cell power systems. Ballard in 1997 formed a partnership with Daimler-Benz of Germany to develop, build and market fuel cells for the automotive and other markets by the turn of the century, accelerating the fuel cell's market use.

James Worden, founder and chief executive officer of Massachusettsbased Solectria Corporation, a leadingedge electric vehicle technology developer and vehicle maker who continues to push the limits of the marketplace uses of clean vehicles. This year Worden again changed the perception of electric vehicle uses by driving nonstop at freeway speeds from Boston to New York in his prototype "Sunrise" electric car.

SunLine Transit of Thousand Palms, California, a transit industry leader for its commitment to a 100
percent natural gas-powered bus fleet, and its continuing leadership in helping install natural gas refueling infrastructure, training mechanics in natural gas systems and testing and using new, clean technologies.

Sacramento Regional Transit, Sacramento, California, is also honored as a transit leader for its operation of more than 65% of its fleet of buses on natural gas, and its development of some of the best fuel cost and maintenance data on natural gas-powered vehicles. In 1997 Sacramento RT figures showed it was saving more than $\$ 1$ million each year in reduced fuel and maintenance costs.

The Blue Sky Award is specifically designed to recognize not just leadership and innovation in technology for clean transportation, but a significant commitment to its use. Last year, CALSTART presented its first award to General Motors for the automaker's EV1 electric vehicle launch in the marketplace.

Nominations for next year's award are open to all via fax, mail and CALSTART's Internet Web site at www.calstart.org/bluesky.

Hybrid Electric Bus

motors, and can be charged on demand by a propane-fueled, rotary-engine generator. Alturdyne produced the vehicle's auxiliary power unit, and worked closely with APS Systems.

The hybrid combination allows the bus to operate in three separate modes, each guaranteeing maximum energy efficiency and minimal environmental impact. When operating on batteries alone, the bus produces zero emissions and can travel up to 45 miles. If traction requirements can be met by the
battery but accessories are needed (air conditioning, lights, wipers, etc.), the generator operates in a low-power mode. A high-power mode is also available, which further charges the batteries and is capable of extending the vehicle's duty cycle to a total of 230 miles, depending on terrain.

The new bus will be in service for 6 months over many of AC Transit's routes to allow passengers, drivers, mechanics and others to evaluate its performance and advantages.

Afterwards, it will pass to the Orange County Transportation Authority (OCTA) for an additional 6 -month trial.

Funding for the project came from AC Transit, the Federal Transit Administration (FTA), the Defense Advanced Research Projects Agency (DARPA), the Bay Area Air Quality Management District (BAAQMD), the California Energy Commission, the Orange County Transportation Authority (OCTA), Southern California Edison (SCE) and Pacific Gas \& Electric (PG\&E).

A Business Case for Embracing the Kyoto Accords
 by Michael J. Gage, President \& CEO, CALSTART

While some segments of the business community vigorously attacked adoption of the Kyoto accords, there exists a very strong business case for U.S. businesses to behave as if the accords were ratified and will only get stronger in the future.

Clearly the changes required may be viewed as disruptive to some. Yet one key to competitiveness requires interpreting approaching trends and effectively acting on that knowledge before one's competitors. The Kyoto accords offer competitive advantages to U.S. businesses which embrace them and will soundly punish those businesses that ignore them.

Michael Porter, Harvard scholar, economist, and highly regarded business strategist, writes frequently of competitive advantage for businesses and even nations. Porter has said that when demanding consumers or "tough government regulations anticipate standards that will spread internationally they give a nation's companies a head start in developing products and services that will be valuable elsewhere". In California the regulatory focus on cleaning the air with
electric and clean fuel vehicles has clearly helped give some U.S. companies a head start-we've seen this in advanced transportation. But what will happen now if our businesses continue to resist these changes?

Does anyone really doubt that the global warming debate will soon dissipate? And given the dramatic, continuing increase in CO_{2} in our atmosphere,

"Energy efficiency and environmental friendliness are increasingly important factors in the global marketplace."

do we really believe we won't need to address this build-up some time soon? Will America's companies cede the leadership in critically needed technologies to other countries that are more responsive to this global issue?

A case in point is the automobile industry. While the "Big Three" promptly and predictably attacked the accords, Toyota promptly acknowledged that global warming was a problem, that they were part of the problem, and therefore they need to be a part of the solution. Honda also announced that
they could live with the binding Kyoto Accords and they believed that developed countries should lead the way.

Toyota's actions match its words. While not the first to bring electric vehicles to market, their RAV-4 electric gets a driving range of 125 miles by using advanced (nickel metal hydride) batteries. They are also the first auto maker to target four different clean vehicle market segments, including the Coaster hybrid electric bus, their two-passenger electric e-com commuter car and their Prius hybrid electric four-passenger car, in addition to their electric RAV-4.

Toyota is now producing the Prius: 1000 per month for a purchase price of approximately $\$ 17,000$ in Japan. The Prius and the Coaster bus, both in production, cut CO_{2} gasses by 50%, in addition to reducing other pollutants by 90%, or more. The RAV 4 electric and the e-com commuter car cut global greenhouse gasses and other pollutants by more than 90%.

The true costs of the Prius are believed to be about double the current sales price.

[^0]
Managing Editor: Bill Van Amburg
 Graphic Design, Layout, and Production: Gina Lupo
 Editorial: Michael Lewis, Guy Mangiamele, Dave Sotero

The CALSTART Connection is always looking for more information. Readers are encouraged to send industry-related information for possible publication.

		Non-Profit Org. U.S. Postage PAID Burbank, CA Permit No. 56
	CALSTART Connection Newsletter	
	Address Service Requested	

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ADVANCED HYBRID RECONNAISSANCE VEHICLES

Project Managers: AeroVironment and Rod Millen Special Vehicles (RMSV)
CS-AR95-06A and B

Doug Stuedler and Eric Anderfaas of RMSV along with John McGuiness of AeroVironment represented their JTEV oriented military projects at the April 1, 1998 meeting arranged by CALSTART for Dr. Robert Rosenfeld of DARPA. Slides from the presentation are included in the Appendix.

The Naval Surface Warfare Center at Caderock issued a stop work order on this project in January 1998. As reported last quarter, Caderock is revising the scope of work for this project. CALSTART will continue to work with AeroVironment, Rod Millen Special Vehicles (RMSV) and Caderock to document the proposed changes in the scope of work. CALSTART will provide the proposed changes to DARPA for approval and expects to do so during the next quarter.

Prior to the stop work order, Rod Millen Special Vehicles nearly completed the detail design and fabrication of the suspension control system. RMSV indicates that this task is 97 percent complete. Under the contemplated changes to the scope of work, the suspension control system would be installed on a HMMWV rather than the Joint Tactical Electric Vehicle.

Defense Advanced Research Projects Agency

 Cooperative Agreement MDA972-95-2-0011 and modifications through P00012Quarterly Report
January 1 to March 31, 1998

ADVANCED HYBRID RECONNAISSANCE VEHICLES

Project Managers: AeroVironment and Rod Millen Special Vehicles
CS-AR95-06A and B

	MILESTONES	DARPA	MATCH	om	DATE DUE	COMPLETE	MATCH FUNDS EXPENBEB	DARPA FUNDS EXPENDED
	$\begin{array}{\|l\|} \hline \text { RMSV } \\ \text { CS-AR95-06A } \end{array}$							
1	Initiate work	75,000		1	4/1/96	4/3/96		75,000
2	Suspension/ Differential Dev	60,287		2	4/30/96	6/30/96		13,881
3	Design review	60,287		3	6/30/96	6/30/96		59,688
4	Suspension design	60,287		4	9/30/96	9/30/96		75,894
5	Project Report			5	12/31/96	1/2/97		60,071
6	Algorithm dev. Final report	60,288		6	2/28/97			31,615
	TOTAL	316,149	0					316,149
	AeroVironment							
	CS-AR95-06B							
1	Battery Mgmt Final rpt Inverter repkg final Low Acoustic Trans rpt. Peripherals rpt	309,974	53,972	1	9/31/96	9/31/96	53,972	309,974
2	DC-DC converter Design	215,495	37,520	2	12/31/96	12/31/96	37,520	215,490
3	Final Report	58,385	0	3	3/30/97			
	TOTAL	583,854	91,492				91,492	525,464

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

PROPULSION SYSTEM FOR ADVANCED HYBRID RECONNAISSANCE VEHICLES
 Project Manager: Rod Millen Special Vehicles and AeroVironment CS-AR96-09A and B

Work on battery pack development, investigation of different battery chemistries and two-speed transmission design continued to be on hold during the quarter. The unavailability of the Joint Tactical Electric Vehicle is the primary reason for the lack of progress. As a result, significant changes to the scope of work for this project are being contemplated. CALSTART will continue to work with AeroVironment, Rod Millen Special Vehicles and the Naval Surface Warfare Center at Caderock to detail any proposed changes to the scope of work. CALSTART will submit any proposed changes to DARPA for approval.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012

Quarterly Report

January 1 to March 31, 1998

PROPULSION SYSTEM FOR ADVANCED HYBRID RECONNAISSANCE VEHICLES

Project Manager: Rod Millen Special Vehicles and AeroVironment CS-AR96-09A and B

-		DARPA	MATCH	GTA	DATEDEE	COMPLETE	MATCH FUNBS EXPENDED	DARPA FUNDS EXPENDED
	AeroVironment CS-AR96-09A							
1	Initiate Work	69,282		0	12/31/96	12/31/96		68,424
2	Pack Mechanical Design Report	72,727		1	3/30/97			13,113
3	Battery Progress Report	92,727		2	6/30/97			2,698
4	2 Speed Trans report	74,066		3	9/30/97			
7	Final Report	50,910		4	12/31/97			
		359,712	0					84,235
	$\begin{aligned} & \text { ROD MILLEN } \\ & \text { CS-AR96-09B } \end{aligned}$							
1	Initiate work	38,614		1	9/30/96	9/30/96		38,614
2	Test platform support	38,615		2	12/31/96	12/31/96		8,361
3	ADC fabrication	38,615		3	3/30/97		6,000	42,962
4	ADC testing	38,615	10,000	4	6/30/97			18,505
5	ADC integrated JTEV	38,615	10,000	5	9/30/97			24,154
6	Algorithms refined	38,615	10,000	6	12/31/97			
7	Test complete/Final report	38,615	6,000	7	3/30/98			
		270,304	36,000				6,000	132,596

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

JOINT TACTICAL ELECTRIC VEHICLE - FUEL EFFICIENCY TESTING PROCEDURE
 Project Manager: AeroVironment
 CS-AR97-01

CALSTART and AeroVironment have not yet executed an agreement to commence this work. A number of changes to projects associated with the Joint Tactical Electric Vehicle are being discussed. Based on discussions with Jeff Bradel of the Naval Surface Warfare Center at Caderock, it appears that the proposed changes will not affect this project. If this is the case, CALSTART expects to execute an agreement with AeroVironment during the next quarter.

	MIEESTONES	DARPA	MATCH	QTR	DATE DUE	COMPLETE	$\begin{aligned} & \text { MATCH } \\ & \text { FUNDS } \\ & \text { EXPENDED } \end{aligned}$	DARPA FunBS EXPENBED
1	Modify JTEV to collect data for analysis	54,500			TBD			
2	Perform test plan/analyze data	36,500			TBD			
3	Final report	9,920			TBD			
		100,920	0					

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

JOINT TACTICAL ELECTRIC VEHICLE - HYBRID ALGORITHM REFINEMENT TESTING

Project Manager: AeroVironment
CS-AR97-02

CALSTART and AeroVironment have not yet executed an agreement to commence this work. A number of changes to projects associated with the Joint Tactical Electric Vehicle (JTEV) are being discussed. It is likely that this project will not proceed, based on discussions with Jeff Bradel of the Naval Surface Warfare Center at Caderock. Caderock intends to request that funds from this project be redirected to other, new JTEV-related projects. CALSTART expects to submit the new proposed projects to DARPA for approval during the next quarter.

	MLEESTONES	DARPA	MATCH	OIR	DATE DUE	COMPLETE	MATCH: FUNDS: EXPENDED	DARPA Funds EXPENDED
1	Modify JTEV to collect data for analysis	54,500			TBD			
2	Perform test plan/analyze data	36,500			TBD			
3	Final report	9,920			TBD			
		76,300						

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

JOINT TACTICAL ELECTRIC VEHICLE ((JTEV) - PERIPHERALS DEVELOPMENT

Project Manager: Rod Millen Special Vehicles
CS-AR97-03
CALSTART and Rod Millen Special Vehicles have not yet executed an agreement to commence this work. A number of changes to projects associated with the Joint Tactical Electric Vehicle (JTEV) are being discussed. It is likely that this project will not proceed, based on discussions with Jeff Bradel of the Naval Surface Warfare Center at Caderock. Caderock intends to request that funds from this project be redirected to other, new JTEV-related projects. CALSTART expects to submit the new proposed projects to DARPA for approval during the next quarter.

	MILESTONES	DARPA	MATCH		DATEDUE	COMPLETE	MATCH: FUNDS EXPENDED	DARPA: FXUNDS EXPENDED
1	Characterize JTEV steering	5,000	5,000		TBD			
2	Redesign system	10,000	22,000		TBD			
4	fabricate new system	15,000			TBD			
5	test new system	8,000	5,000		TBD			
6	Final report	3,000			TBD			
		41,000	32,000					

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012

Quarterly Report

January 1 to March 31, 1998

ROTARY ENGINE AUXILIARY POWER UNIT DEMONSTRATION Project Manager: Aerobotics, Inc. a division of Moller International CS-AR95-07

Moller did little additional testing of the vehicle during the quarter. Testing under the current configuration, with batteries towed in a trailer behind the vehicle, is not expected to produce useful performance results. Moller continues to work with Bolder Technologies in an effort to obtain Bolder's batteries for use in the vehicle. The Bolder batteries would be installed in the trunk of the vehicle. Bolder had previously supplied batteries for this project. However, those batteries experienced a range of problems, the cause of which is still in question.

Moller expects to make a decision during this quarter as to the final disposition of this project. If Bolder batteries can be obtained, Moller indicates it will perform additional testing and perhaps additional optimization of its auxiliary power unit. If Bolder batteries are not available, then Moller may seek an alternative supplier, such as Hawker. However, Moller has not decided if it can commit the additional resources to accomplish necessary redesigns to accommodate a battery pack other than Bolder's.

	MILESTONES	DARPA	MATCH:	QTR	DATE DUE	COMPLETE	$\begin{aligned} & \text { MATCH } \\ & \text { FUNBS } \\ & \text { EXPENDED } \end{aligned}$	$\begin{aligned} & \text { DARPA } \\ & \text { FUNDS } \\ & \text { EXPENDED } \end{aligned}$
1	Complete design	40,000	108,320	1	3/6/96	5/31/96	112,793	40,000
2	Order batteries/tooling	57,855		2	3/30/96	5/31/96	15,125	53,162
3	Finish block fabrication	25,000	46,500	3	5/15/96	12/30/96	6,188	38,490
4	Receive/Evaluate Geo Metro	16,495		4	8/16/96	8/25/96	23,531	46,201
5	Drivetrain/Engine Installation	37,500	37,500	5	10/4/96	12/96	30,000	22,489
6	Vehicle testing	23,492	15,000	6	12/15/96	3/30/97		
7	Final report	32,013	10,000	7	2/4/97			
		232,355	217,320				187,6387	200,342

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

TURBO-GENERATOR FOR THE MOLLER ROTAPOWER ENGINE

Project Manager: Moller
CS-AR97-08

CALSTART and Moller have not yet executed an agreement to commence this work. Because of recent changes in staffing at Moller, CALSTART intends to revisit the scope of work with Moller personnel during the next quarter. Ren Tubergen, the Moller Project Manager for this effort, is no longer with Moller. Based on next quarter's review, CALSTART will either execute a contract with Moller to begin the work, recommend proposed changes to the scope of work to DARPA, or decide not to proceed with the project.

	MLEESTONES	DARPA	MATCH		DATE DUE	COMPLETE	MATCH FUNBS EXPENDED	DARPA FUNDS EXPENDED
1	Prepare for testing/heat study	17,500	17,500		TBD			
2	Turbine/Motor results	12,500	12,500		TBD			
3	Design/Final report	20,000	20,000		TBD			
		50,000	50,000		TBD			

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

QUICK CHARGING SYSTEM WITH FLYWHEEL ENERGY STORAGE
Project Manager: Trinity Flywheel Battery
CS-AR96-01

Don Bender and John Eastwood discusses the Trinity projects with Dr. Robert Rosenfeld of DARPA at a meeting April 1, 1998 at CALSTART. Slides from the discussion are available in the Appendix.

During the quarter, Trinity conducted approximately 30 test runs on the system that was integrated and activated the previous quarter. Trinity also made progress in control and communication. Trinity identified instabilities in startup control and revised the control algorithms. Trinity also selected a new enclosure style for the final system based on recent containment results and subsystems integration. Trinity built a prototype of the new enclosure and outfitted it with equipment.

Trinity is still actively pursuing a test site to replace the PG\&E Modular Generation and Test Facility. Trinity expects to continue the test runs next quarter. Trinity will be attending the DARPA program review next quarter. CALSTART has been in constant communication with Trinity during the quarter and will be visiting their facility during the next quarterly reporting period.

	MILESTONES	DARPA		aif		COMPLETE	MATCH FUNDS FXPENDED	DARPA funds EXPENDED
0	Initiate work	64,085	7,200		1/30/97	1/30/97	7,200	64,085
1	Flywheel/Interface/FESS/ LIU Specifications	119,298	45,600	1	3/30/97	3/30/97	45,600	45,600
2	Design review/initial testing	116,791	88,400	2	6/30/97	6/30/97	48,211	88,400
3	Manufacture/Phase 1 tésting	37,895	320,146	3	9/30/97		263,247	67,634
4	Installation drawings/program review	137,618	28,800	4	12/31/97			31,455
5	Integration and initial check-out		33,900	5	3/30/98			
6	Final report	77,401	32,550	6	6/30/98			
	TOTALS	553,088	556,596				364,258	297,174

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

MOBILE FLYWHEEL POWER MODULE

Project Manager: Trinity Flywheel Systems, Inc.
CS-AR97-04

Don Bender and John Eastwood of Trinity discussed the project with Dr. Robert Rosenfeld of DARPA at a meeting April 1, 1998 at CALSTART.

Trinity and CALSTART worked out the milestones for the project during the quarter. The contract was successfully executed on $3 / 31 / 98$ and work has progressed on the project. Due to the fact that the contract was pending for most of the quarter, Trinity has requested that more time to complete a first report (which would ideally have been provided at this time) in order to focus on the May DARPA review. Trinity also felt that they had provided information to Dr. Rosenfeld in the April 1, 1998 meeting which was attended by John Tripp, CALSTART project manager and John Boesel, CALSTART Executive Vice President in charge of programs.

	MILESTONES	DARPA	MATCH	CTH	DATE DUE	COMPIETE	MATCH: FUNDS EXPENDED	DARPA FUNBS EXPENDED
1	Conceptual Design	100,000	65,000	1	3/13/98			
2	Detailed design	115,000	100,000	2	6/30/98			
3	Manufacturing	130,000	125,000	3	9/30/98			
4	Assembly and Checkout	100,000	180,000	4	12/31/98			
5	Testing and final report	50,000	100,000	5	3/31/99			
		495,000	570,000					

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ENVIRONMENTAL CONTROL SYSTEM FOR ELECTRIC AND HYBRID VEHICLES

Project Manager: Glacier Bay
CS-AR96-02

Glacier Bay completed the project during the quarter and submitted a final report. The final report is included herein. A summary of the key results of this project, detailed in the final report, is provided below:

1. The air conditioning unit achieved an Energy Efficiency Ratio of 11.36 under severe driving conditions and 15.80 under average driving conditions, exceeding the project's goals by 5 percent.
2. The total weight of the Environmental Control System (ECS) is 60.82 pounds, which represents a 51.3 percent reduction in weight compared to a typical heating and air conditioning system.
3. The Glacier Bay ECS achieved a 100 percent hermetically sealed design, which will result in reduced maintenance and improved reliability compared to other heating and air conditioning systems.
4. The Glacier Bay ECS achieved an output of 5.97 kilowatts with its liquid circulating, fossil-fueled fired heater design, exceeding the design goal by 19 percent. Research performed by EVermont and others indicates that a minimum heater output of 5 kilowatts is necessary in extremely cold climates. The Glacier Bay ECS can operate on natural gas or propane.
5. The Glacier Bay ECS system can be adapted to operate at voltage inputs ranging from 98 to 425 volts of direct current. This is accomplished simply through the use of a wide input voltage motor controller. The ability to accommodate a wide range of voltages makes the Glacier Bay ECS more competitive by allowing it to capture low volume markets.
6. Glacier Bay met and exceed its cost share goals by $\$ 15,000$.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ENVIRONMENTAL CONTROL SYSTEM FOR ELECTRIC AND HYBRID VEHICLES

Project Manager: Glacier Bay
CS-AR96-02
CALSTART will be working with Glacier Bay to further develop and commercialize this promising technology.

	MILESTONES	DARPA	MATCH	atr	DATE DUE	COMPLETE	Match Funds EXPENBED	BARPA Funds EXPENBEB
1	Initiate work	20,000			10/25/96			20,000
2	Design of Major Components	34,573	44,113	1	12/31/96	12/31/96	44,113	34,573
3	Prototype drawings complete	55,000	60,000	2	3/31/97	3/31/97	60,000	53,076
4	Production of major components	50,000	45,000	3	6/30/97	6/30/97	45,000	50,000
5	Prototype bench testing	17,000	21,000	4	9/30/97	9/30/97	21,000	17,000
6	Production/Testing prototypes	35,000	8,000	5	12/31/97	12/31/97		29,242
8	Final report	23,427	11,887	7	3/31/98	3/31/98	35,586	31,109
		235,000	190,000				205,699	235,000

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report January 1 to March 31, 1998

COOPERATIVE TESTING

Project Manager: Glacier Bay with EVermont
Performance testing of the Glacier Bay Environmental Control System (ECS) was completed during the quarter. The detailed results of the testing are included in the final report submitted by Glacier Bay. The Solar Power Research Institute in Florida performed testing of the air conditioning unit. The University of California, Davis, performed testing of the fossil-fuel fired heater. Below are highlights of the testing.

The air conditioning capabilities of the ECS were tested by installing the ECS unit on a Geo Metro supplied by EVermont. A gasoline-powered Geo Metro was also tested to provide comparative data. The two cars were driven at the same time on two separate, pre-defined driving routes that included stop signs and traffic lights. Test results indicate the Glacier Bay ECS cooled the Geo Metro cabin more rapidly during the first seven minutes of the test. The gasoline-powered Geo Metro achieved slightly lower (two-tothree degrees Fahrenheit) overall cooling, but both vehicle maintained a comfortable cabin temperature despite high ambient temperature (91 degrees Fahrenheit) and solar radiation (760 watts per square meter).

The testing of the heating capabilities was designed to determine the heat output and emissions of the ECS. UC Davis ran two separate bench tests for the ECS heating system. In the first test, a positive displacement water pump was used to circulate a constant, known mass flow of water through the heating unit. Thermocouples recorded the change in temperature between the incoming and outgoing water to determine the temperature rise. In the second test, for emissions, the heater was connected to a finned coil air heat exchanger so that a stable, steady-state condition could be achieved at normal operating temperatures. The heater was activated and the discharged exhaust gas analyzed by a 5 -gas emissions analyzer.

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

COOPERATIVE TESTING

Project Manager: Glacier Bay with EVermont

The test results indicated a heating capacity of 5.97 kilowatts. Research by EVermont and others indicate that a minimum output of 5 kilowatts is necessary to maintain comfortable cabin temperatures in cold climates. The ECS also demonstrated substantially reduced emissions compared to a diesel/kerosene heater manufactured by Webasto, as shown in the table below. The Webasto heater was used as a comparative base because it was one of only two fossil-fuel fired heaters that were capable of properly heating a vehicle in a test conducted under the Northeast Advanced Thermal Management Technology Project.

Pollutant	Diesel/Kerosene	Natural Gas/Propane
Nitrous Oxides	200 parts per million	24 parts per million
Hydrocarbons	100 parts per million	3 parts per million
Carbon Dioxide	10.5 percent	6.1 percent
Carbon Monoxide	0.2 percent	0.12 percent

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT) PROJECT
 Project Manager: ISE Research
 CS-AR96-05

Mike Simon of ISE discussed the project with Dr. Robert Rosenfeld of DARPA at a meeting April 1, 1998 at CALSTART. Slides from the presentation are included in the Appendix.

ISER completed fabrication of the main drive motor components and delivered them to its subcontractor United Defense. An identical motor for a different vehicle was completed and delivered to ISER in late March. Subcontractor Siemens Corp. completed the initial testing of the AC motor control system. ISER held a progress review with Siemens to determine the status of that system.

ISER finalized the network architecture for the HEPT and initiated construction of the advanced distributed network modules. ISER completed the design of the battery racks and sent it to PACCAR (Kenworth parent company) for review prior to fabrication.

ISER also concluded negotiations and relocated the vehicle production to a new 5,610 square foot building. ISER currently hopes to complete assembly of the motor and integrate it into the HEPT in the middle of next quarter. ISER is now projecting vehicle completion in May 1998, two months later than previously scheduled. ISER also expects to complete the second hybrid electric prototype truck (HEPT) on 30 September, 1998.

ISER has continued to progress on a number of other projects that support development of the HEPT. These include upgrades to the United Airlines electric tow tractor; an all electric Sparkletts class 7 water delivery truck; three prototype hybrid-electric tow tractors for the U.S. Air Force and negotiating with the Los Angeles Department of Transportation to provide five hybrid-electric transit buses.

The additional projects and the second HEPT have been supported by additional money that has significantly increased the match funding on the project.

Defense Advanced Research Projects Agency

 Cooperative Agreement MDA972-95-2-0011 and modifications through P00012Quarterly Report
January 1 to March 31, 1998

HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT) PROJECT

Project Manager: ISE Research
CS-AR96-05

	MLESTONES	DAFPA	Match	OTR	date due	COMPLETE	MATCH: FUNDS EXPENDED	DARPA FUNDS EXPENDED
	Drive system design approved. System controller design compete	30,000	96,700	1	1/10/97	1/10/97	95,443	30,000
	System controller modules design. APU/genset integrated/tested	35,000	100,000	2	4/10/97	3/30/97	162,333	35,000
	Vehicle integration plan complete	35,000	75,000	3	7/10/97	3/30/97		20,000
	Major components integrated	30,000	50,000	4	10/10/97			15,000
5	Vehicle fully integrated/testing initiated	30,000	75,000	5	1/10/98			71,276
6	Phase 1 Operational testing complete	30,000	50,000	6	4/10/98		391,680	30,000
	Commercialization plan initiated	30,000	25,000	7	7/10/98			
	Phase 2 testing complete/Business plan approved	5,000	25,000	8	10/10/98			
9	Final report	25,000		9	1/10/99			
		250,000	496,700				649,456	201,276

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ELECTRIC VEHICLE LONG RANGE EXTENDING GENERATOR Project Manager: AC Propulsion
 CS-AR96-06

Under the Electric Vehicle Range Extending Generator program, AC Propulsion sought to develop an off-board Auxiliary Power Unit (APU) that could be towed behind an electric vehicle. Prior to the launch of this program, AC Propulsion had not been able to identify a generator that provided the satisfactory combination of size, weight, output, and cost to meet the demands of vehicular application. In this program, AC Propulsion sought to test the Moller rotary engine as a generator and to complete work on various sub-systems critical to the operation of an off-board APU.

CALSTART has reviewed the final report and determined that AC Propulsion completed all of the tasks and has satisfactorily managed the program. In specific, AC Propulsion did the following:

1. Designed an alternator and charging control system to meet the project objectives;
2. Constructed a prototype charging system;
3. Tested prototype charging system;
4. Integrated the charging system and the Moller rotary engine;
5. Test and developed the integrated power train.

From these tasks, AC Propulsion generated the following results and findings:

- AC Propulsion was able to design a charging system that provides high specific output and high power density - critical elements for a hybrid-vehicle design. The charging system met or exceeded all project objectives. Continuous output of 20 kW at $300-390$ volts was achieved at 7000 rpm . The alternator efficiency was measured at 91%.
- AC Propulsion now has a simple, robust, and low cost design for their alternator controller that achieves direct control of output with engine speed.
- After thorough testing, it was determined that the Moller rotary engine would not be suitable for hybrid or range extending applications. Power and efficiency are too low, and its current configuration is not well suited to direct-drive systems. Other thermal engines can be adapted more readily.

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ELECTRIC VEHICLE LONG RANGE EXTENDING GENERATOR Project Manager: AC Propulsion
 CS-AR96-06

In terms of future efforts, AC Propulsion is now ready to commercialize the charging system both as a stand-alone production with application to hybrid-electric drive systems, and as part of a range extending trailer to be towed behind EVs for long distance travel. AC Propulsion believes that its system is best suited for series-hybrid vehicle designs. However, most big auto manufacturers are pursuing parallel systems which represent fewer engineering challenges than the series-hybrid configuration. AC Propulsion advocates the series-hybrid configuration because it will allow the user to drive in a pure electric mode for short trips and will not require the use of an engine for these trips. AC Propulsion is hoping that operators of industrial equipment, buses, passenger vehicles, and some military vehicles may find benefits from series-hybrid operations.

With its range extending trailer, AC Propulsion has found a product that will provide for a vehicle with good fuel economy and low emissions. Using the range extending trailer, a vehicle could have a virtually unlimited range. Two major auto manufacturers have expressed interest in the trailer concept, and AC Propulsion plans demonstrations and additional development of the range extending trailer technology.

A copy of the AC Propulsion Final Report is in the Appendix.

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ELECTRIC VEHICLE LONG RANGE EXTENDING GENERATOR
 Project Manager: AC Propulsion
 CS-AR96-06

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ENGINEERING IMPROVEMENTS FOR PURPOSE-BUILT EV
 Project Manager: PIVCO
 CS-AR96-07

There is no change from last quarter. A contract has been sent to PIVCO. An updated statement of work and milestone chart will be provided in the next quarterly report.

DISTRIBUTED ENERGY MANAGEMENT SYSTEM (DEMS) DEVELOPMENT AND DEMONSTRATION
 Project Manager: Raytheon (FKA: Hughes Technical Services Center) CS-AR96-08 and CS-AR94-04

Jeff Taylor and Steve Ables met with DARPA representatives including Dr. Robert Rosenfeld at CALSTART on April 1, 1998. Slides from this discussion are included in the Appendix.

Raytheon is currently working on final report preparation of the project. This report should be completed prior to the end of the next quarter. During the quarter, Raytheon reinstalled the controllers on two of the Greater Richmond Transit buses. The controllers had been removed for modifications, which were completed by Raytheon.

Access to these buses for testing continues to be extremely limited because of continuing brake problems. BlueBird and Northrop continue to negotiate on a solution for this problem. Raytheon was able to charge the battery packs on the bus using the multicontroller system. Preliminary results indicate that the multi-controller system, which controls at the battery pack level, allows problems with individual batteries to be isolated more quickly.

Raytheon will continue to provide support for the Greater Richmond Transit buses after the conclusion of this project. Raytheon hopes to gather additional operating data from the buses once the brake problem is resolved and the buses are placed back in service.

Work on the Distributed Energy Management System (DEMS) is complete. DEMS was tested in a laboratory setting and results indicate that the DEMS is performing as designed, including compensating for different battery voltage levels during charging. Testing has identified additional improvements that could improve performance of the DEMS. However, such improvements are not part of the scope of work for this project.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

DISTRIBUTED ENERGY MANAGEMENT SYSTEM (DEMS) DEVELOPMENT AND DEMONSTRATION

Project Manager: Raytheon (FKA: Hughes Technical Services Center) CS-AR96-08 and CS-AR94-04

	MLESTONES CS-AR94-04	DARPA			DATE DUE	COMPLETE	MATCH: FUNBS EXPENDED	DARPA FUNDS Expended
1	Requirements defined. Concept for controller hardware defined	30,000	50,000	1	6/30/96	6/30/96	281,022	50,000
2	Software defined and programmed.	30,000	50,000	2	9/30/96	9/30/96	150,979	50,000
3	Design/Implementation of multiple pack system controller	70,000	370,000	3	12/31/96	12/31/96	15,474	150,000
4	Software installed on 25 kW Inductive Opportunity Charge system.	50,000	15,000	4	3/30/97	3/30/97	146,051	
5	Bluebird buses equipped Field data acquired	70,000		5	6/30/97			
		250,000	485,000				593,526	250,000

	MILESTONES cS-AR96-08	DARPA	MATCH	OTR	DATEDUE	COMPLETE	Match FGNBS Expenbed	DARPA Funds EXPENDED
5	Task continued: DEMS upgrade concept complete/controller built	200,000	108,000	5	6/30/97			
6	Final report.	50,000	15,000	6	9/30/97			
		250,000	123,000					

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HIGH POWER CHARGING SYSTEM FOR ELECTRIC VEHICLES Project Manager: General Motors Advanced Technology Vehicle CS-AR97-07

General Motors Advanced Technology Vehicles (GM ATV) and CALSTART signed the contract officially beginning the program during the quarter.

Prior to the official signing of the contract, GM ATV commenced work on the project statement of work. As such, the project remains on schedule despite the delays in executing the contract. CALSTART has attended numerous program reviews at GM ATV to discuss the program status. GM ATV also prepared a prototype of the high power charging system for EVS 14 in December, 1997.

GM ATV has completed the design of the system enclosure. GM ATV has also modified the Gen 2 SCM packaging so that nine 6.6 kW units will fit into an enclosure the same size as the one prepared for EVS 14.

GM ATV has nearly completed the design and drawings of the SCM chassis. GM ATV is also 75% finished with the design and drawings for the master controller module (MCM). Work has also begun on the power bus raceway and bus bar design.

GM ATV has taken delivery of all the cooling system parts as well. GM ATV has completed the schematic designs for the master controller board, LCD module adapter board, DOOC adapter board for design test, and DOOC bench test tool. GM ATV has completed the layout and net routing of the PCB for the master controller board. GM ATV has also completed the PCB and PCB manufacturing for the LDC module adapter board and DOOC adapter board.

DOOC tool fabrication was completed and the tool was checked out. GM ATV has nearly completed the modular design of the DOOC LCD design functions and designed the main CPU interface. GM ATV has also completed construction of one of the 6.6 kW SCM units and is 90% complete with 12 others.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HIGH POWER CHARGING SYSTEM FOR ELECTRIC VEHICLES Project Manager: General Motors Advanced Technology Vehicle CS-AR97-07

GM ATV has also made significant progress on and settled on a number of design features for the charger. A NiMH truck will be available for the program as of November 1, 1998. One charge port and conversion box set was shipped to GM ATV in Troy, MI in late March. Four more sets are due to be shipped in the first few weeks of next quarter. CALSTART will continue to attend regular program reviews during the next quarter, approximately monthly.

\#	MILESTONES	DARPA	MATCH	arn	DATEDUE	COMPLETE	Match FUNDS EXPENDED	DARPA FUNDS EXPENDED
1	System Requirements	31,790	178,388	1	9/30/97			
2	Charger Fabrication	58,582	328,730	2	12/31/97			
3	Charger Test/CP/CV Fabrication	94,681	531,300	3	3/31/98			
4	Installation of operational hardware/software	119,815	672,388	4	6/30/98			
5	Charger Installed	28,540	160,149	5	9/30/98			
6	Charger System Test	26,549	149,243	6	12/31/98			
7	Analysis and Test results	40,043	72,352	7	2/1/99			
		400,000	2,092,550					

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

NOVEL, COMPACT AND EFFICIENT TESLA GAS TURBINE HEAT ENGINE Project Manager: FAS

CS-AR97-09
CALSTART met with FAS and executed a contract for this project during this quarter.
FAS presented test material to the CALSTART program manager showing the work completed prior to final execution of the contract. FAS previously completed adaptation of the computer code for analysis of the turbine, compressor rotors and other key components.

During current quarter, FAS discovered that by utilizing anisotropic porosity, it is possible to eliminate the need for tapering the rotors, resulting in reduced manufacturing and lower costs. FAS has also improved the computer code including allowing for simultaneous heat transfer in the compressor rotor. FAS has chosen to use hand calculations of thermodynamic cycles rather than an existing computer code after determining that no existing code is suitable for the cycles being used.

Next quarter, FAS hopes to adapt the thermodynamic calculation code to handle staged combustion and staged turbine expansion. Additionally, they will investigate the performance of compressor and turbine impellers. FAS will also evaluate the performance of stationary and rotating bladings.

	MILESTONES	DARPA	MATCH	CTR	DATEDUE	COMPLETE	MATCH: FunBs: ExPENBED	BARPA FHNRS ExpNbeb
1	Acquire/adapt computer codes	30,000	30,000	1	12/31/97	12/31/97	21,466	17,665
2	evaluation/derive improved heat exchanger	40,000	44,000	2	3/31/98			
3	Detailed design	40,000	42,000	3	6/30/98			
4	Final report	15,000	9,000	4	9/30/98			
		125,000	125,000				21,466	17,665

T-S DIAGRAMS FOR GAS TURBINE HEAT ENGINE

A) Conventional with Regenerative Heat Exchanger, $\operatorname{Pr}=3$

Temperature (K)

B) ATTHE with Compressor Cooling and Staged Combustion, $\mathrm{Pr}=30$

Temperature (K)
Fluid Parameters

State - Temp(K)/Press(Bar)

$$
\begin{aligned}
& 1-293 / 1 \\
& 3-343 / 30 \\
& 4-745 / 30 \\
& 5-1273 / 30 \\
& 7-899 / 9.16 \\
& 8-1273 / 9.16 \\
& 10-900 / 2.83 \\
& 11-1273 / 2.83 \\
& 13-945 / 1 \\
& 14-543 / 1
\end{aligned}
$$

FLUID STATE PARAMETERS

Mass Flow Rate $=\mathbf{0 . 0 3 8 1 1 ~ k g / s}$

State	Temperature(K)	Pressure(Bar)	Comment
1	293	1	Compressor Inlet
2	343	13.25	Compressor Rotor Exit
3	343	30	Compressor Exit
4	745	30	Regenerator Exit \# 1
5	1273	$\mathbf{3 0}$	$\mathbf{1}^{\text {st }}$ Stage Inlet
6	1071	16.36	$\mathbf{1}^{\text {st }}$ Stator Exit
7	899	9.16	$\mathbf{1}^{\text {st }}$ Stage Exit
8	1273	9.16	$\mathbf{2}^{\text {nd }}$ Stator Inlet
9	1071	4.99	$\mathbf{2}^{\text {nd }}$ Stator Exit
10	900	2.83	$\mathbf{2}^{\text {nd }}$ Stage Exit
11	1273	2.83	$\mathbf{3}^{\text {rd }}$ Stator Inlet
12	1071	1.55	$\mathbf{3}^{\text {rd }}$ Stator Exit
13	945	1	$\mathbf{3}^{\text {rd }}$ Stage Exit
14	543	1	Regenerator Exit \# 2

Viewgraph 2

PROJECTED EFFICIENCIES OF 20kW GAS TURBINE HEAT ENGINE ($T_{\text {top }}=1000$ DEGREE CELSIUS)

Conventional $\mathrm{Pr}=3$ Regenerative

	Turbine	Compressor	Overall
Efficiencies	75%	65%	20%

ATTHE $\mathrm{Pr}_{\mathrm{F}}=3$, No Compressor Cooling

	Turbine	Compressor	Overall
Efficiencies	85%	75%	27%

ATTHE $\mathrm{Pr}=3$, Compressor Cooling

	Turbine	Compressor	Overall
Efficiencies	85%	75%	33.7%

ATTHE $\mathrm{Pr}=10$, Compressor Cooling, Staged Combustion

	Turbine	Compressor	Overall
Efficiencies	85%	75%	42.5%

ATTHE $\mathrm{Pr}=30$, Compressor Cooling, Staged Combustion

	Turbine	Compressor	Overall
Efficiencies	85%	75%	46.1%

ATTHE $\mathrm{Pr}=60$, Compressor Cooling, Staged Combustion

	Turbine	Compressor	Overall
Efficiencies	85%	75%	47.5%

TOP FLUID TEMPERATURE IS 1000 DEGREE CELSIUS

Viewgraph 4

Reasons For Higher Impeller Efficiencies of Porous than of Conventional Bladed Rotors

- Pores much smaller than usual inter-blade passages; therefore fluid flows better accommodates to detailed shape of the rotor, i.e. lower losses due to turbulence and secondary flows in passages
- Much lower boundary layer and wakes fluid dynamic losses.
- Much lower blade leading edge heating
- Lower fluid leak about the rotor losses. This is due much to higher number of "blades" in porous rotor cases or due to solid side hubs.
- Fluid dynamic unsteadiness in the rotor reduced.
- More uniform flow at the rotor exit.

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

DEVELOP AND DEMONSTRATE A HYBRID-ELECTRIC TRANSIT BUS Project Manager: Foothill Transit CS-AR97-10

Fred Haley from Foothill attended the DARPA program review at CALSTART and presented to Dr. Robert Rosenfeld, Ryan Gallagher and Danny Jordan of DARPA. Slides from the April 1, 1998 meeting are included in the Appendix.

Fred Haley is the new Program Manager for this effort. Foothill indicated its desire to change the fuel type for the auxiliary power unit. Due to the reasons of accessibility, familiarity, and cost, Foothill would prefer to use diesel rather than natural gas as a fuel. DARPA Program Manager Bob Rosenfeld indicated this change would be acceptable and would make the technology more applicable to DARPA's military interests. Foothill staff is awaiting final approval from their Board of Directors before making the final decision to go with diesel.

CALSTART is working with Foothill Transit to set the statement of work and scope for the Gillig Phase Two hybrid-electric bus. CALSTART expects to put this program under contract sometime next quarter.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ASSESSMENT OF ADVANCED ENGINE TECHNOLOGIES FOR UAV AND HEV APPLICATIONS
 Project Manager: FEV Engine Technology
 CS-DARO-02

FEV continued its assessment of the Engine Corporation of America (ECA) TurboElectric Compound Engine (TECE) and also continued testing of its 2-stroke, singlecylinder engine. Both of these tasks were nearly complete at the conclusion of this quarter. However, the compilation of the results is not yet complete. The next quarterly report will include FEV's final report and a summary of the key findings.

\geqslant	MILESTONES	DARPA	Match	omis	BATE DUE	DATE ceMPLETE	MATCH: FUNDS EXPENDED	DARPA FUNDS EXPENDED
1	TECE Thermo/Mech Assessment	50,000	50,000	1	9/30/97	9/30/97	50,000	50,000
	2/4 Stroke Concept Assessment	250,000	470,000	2	12/30/97	12/30/97	470,000	200,000
3	2.4 Stroke Demo. Final Report	700,000	480,000	3	3/30/98		638,902	
	TOTAL	1,000,000	1,000,000				1,158,902	250,000

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012 Quarterly Report January 1 to March 31, 1998

HEAVY FUEL ENGINE (HFE) TEST PROGRAM Project Manager: General Atomics Aeronautical Systems, Inc. CA-DARO-01

During the quarter, General Atomics made progress on engine subsystem testing, basic test series on the engine, and limited durability testing on the engine. General Atomics has completed design of the low altitude simulation system. However, significant changes to the new test facility are being contemplated. These changes, and progress toward completion of the project are discussed below.

Engine Subsystem Testing

The engine mounted fuel injection system has been satisfactorily completed and is now integrated on the engine. The supercharger system is being redesigned due to unsatisfactory performance. General Atomics is participating in the redesign with its subcontractor and expects to test the redesigned supercharger in April. No testing of the wastegate control system has been completed. The wastegate control system is not necessary until testing under simulated or real altitude conditions is performed. However, General Atomics indicates that continued modeling of the engine indicates that the wastegate control system might not be needed.

Basic Test Series

The three cylinder engine has accumulated approximately 6 hours of run time. The engine has been run over the entire speed range and at up to 75 horsepower, one-half of the rated power. Continued problems with the supercharger prevent General Atomics from running the engine at full power. The third iteration of the supercharger will be operational in April. Oil scavenge problems were encountered where too much oil was remaining in the engine during running and was not adequately being returned to oil tank. General Atomics has made some progress in resolving, and expects that further refinements will fix, this problem. The turbocharger is operating better than expected, and the fuel injection system is performing successfully.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HEAVY FUEL ENGINE (HFE) TEST PROGRAM
 Project Manager: General Atomics Aeronautical Systems, Inc.
 CA-DARO-01

Limited Durability Test

Single cylinder testing has been completed and provided beneficial information. The single cylinder engine completed a 53-hour test series that included nearly 37 hours of operation at 57 to 58 horsepower. While excessive piston ring wear was encountered during the testing, General Atomics does not consider this a major problem because of the length of time the rings are able to run without performance degradation. The piston rings will be the subject of future durability improvement tests using the single cylinder engine.

Low Altitude Simulation System

The layout design and associated subcomponent testing for the low altitude simulation system has been completed. Procurement activities are beginning in combination with detailed design.

New Test Facility
General Atomics had originally proposed renovating its existing test facility as part of this project. However, General Atomics now plans to buy a 50,000 square foot building located next door to its existing facility. General Atomics indicates that it will build a new test facility in that building. Therefore, the test facility will not be completed until June. This will not cause a delay in the overall program, as the test cell is only needed for propeller testing which is scheduled for late summer.

During the next quarter, General Atomics expects to complete the basic test series on the engine, complete limited durability testing, fabricate the low altitude simulation system and optimize systems in order to establish a baseline.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

HEAVY FUEL ENGINE (HFE) TEST PROGRAM
Project Manager: General Atomics Aeronautical Systems, Inc.
CA-DARO-01

	MILESTONES	DARPA	MATCH	atr	DATE DUE		MATCH: FUNDS EXPENDED	$\begin{aligned} & \text { DARPA: } \\ & \text { FUNDS } \\ & \text { EXPENDED } \end{aligned}$
	Progress of subsystem testing, review of engine test facilities and plan for testing of advanced powerplant subsystem.	,	50,000				50,000	
	Powerplant integrated to existing dynamometer. Subsystem test complete.	${ }^{0}$	75,000				75,000	
	Completion of low altitude simulation system. Completion of renovations. Commissioning of new propeller stand facility. Systems function - basic series. Systems optimization completed for baseline. Sea level mapping complete.	300,000	300,000					109,741
	Powerplant integrated to propeller test stand. Low altitude simulation mapping complete. Propstand limited durability demonstrated.	50,000	75,000					
5	Continued Progress	50,000	0					
6	Continued Progress	50,000	-					
7	7 Demonstrated fuel injection durability maturation.	50,000	0					
	TOTAL	\$500,000	\$500,000				\$125,000	\$109,741

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

PROGRAM MANAGEMENT AND ADMINISTRATION
 Program Manager: CALSTART

During this past quarter CALSTART focused its efforts on three major activities related to this Cooperative Agreement.

First, CALSTART worked with DARPA Program Manager Dr. Rosenfeld to prepare for the DARPA Program Review held at CALSTART on April 1, 1998. At that review eight companies presented eight different technologies. CALSTART worked with Dr. Rosenfeld to identify which projects should be presented then worked with each company to prepare their presentation. CALSTART staff appreciates such opportunities for these on-site reviews to learn more about how their programs fit into the larger DARPA EHEV Technology Development agenda.

One of the issues that CALSTART staff took the opportunity to present to Dr. Rosenfeld was the closeout of the Rockwell/Rocketdyne Safe Electro-Mechanical Batteries project funded in 1995 by modification P00004 to Agreement \#MDA972-95-2-0011. Wayne Asp of Rocketdyne had notified CALSTART that approximately 500 pounds of stainless steel remained from the project and asked for clarification regarding disposal of the material. Dr. Rosenfeld stated that the stainless steel should be liquidated (either scrapped, sold, or incorporated for use by Rocketdyne). He stated that the documented value of the stainless steel should then be deducted from the overall project costs and the closeout should proceed. The CALSTART Contract Administrator has since relayed that information to Rocketdyne and Wayne Asp is preparing appropriate close-out documents. The opportunity to discuss this situation informally expedited the program closeout.

Slides from the various presentations at the April 1 meeting are included in the Appendix for further reference.

Second, CALSTART has committed significant resources to organizing the next DARPA Program Review which will be held in Pasadena from May 3-6, 1998. CALSTART will host this program review. In addition to arranging the $150+$ Poster Sessions, CALSTART has also arranged to have outside speakers such as John Dunlap, Chairman of the California Air Resources Board, DOT and DOE Representatives, and Mark Amstock of the Toyota Corporation of America.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

PROGRAM MANAGEMENT AND ADMINISTRATION

Program Manager: CALSTART

The third program management activity has been working with DARPA to determine the best way to use FY98 funds to develop related technologies under this program. CALSTART identified a number of recommended program extensions to Dr. Rosenfeld and is working with him and his staff to select the best ones. CALSTART staff traveled to Arlington, Virginia on February 24, 1998 to review the options with Dr. Rosenfeld and consultants Danny Jordan and Ryan Gallagher.

CALSTART also played a major role in the roll-out of the APS Systems 40^{\prime} Hybrid Electric Bus. The bus utilizes the DARPA funded Alturdyne rotary engine as the auxiliary power unit. Alameda Contra/Costa (AC) Transit is demonstrating the bus throughout its service territory. AC Transit has informed CALSTART that its customers are extremely pleased with the performance, low emissions, and low noise level of the bus. CALSTART helped stage the roll-out of the prototype bus at the AC Transit Oakland service depot.

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012

Quarterly Report

January 1 to March 31, 1998

PROGRAM MANAGEMENT AND ADMINISTRATION

Program Manager: CALSTART

	Milestones	DAFPA	MATCH	OTR	DATE DUE	COMPLETE	BARPA FUNDS EXPENBED
94	Program Management	369,000					369,000
	CS-AR94-08	369,000	0				369,000

95	Program Management CALSTART	203,394				
					203,394	
	CS-AR95-99	203,394	0			

96	Program Management CALSTART	188,502				140,983	
	CS-AR96-10	188,502	0				

Mod 8 8Program Management CALSTART	53,000				15,000	
	CS-AR97A-99	53,000	0			

Mod 9 9Program Management CALSTART	124,000					74,500
	CS-AR97-99	124,000	0			

Mod 11	Program Management CALSTART	50,000					15,000
	CS-AR97A-99	50,000	0				

Mod 12	Program Management CALSTART	256,700				
	CS-AR97A-99	256,700	0			

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

APPENDIX

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
94	CS-AR94-01	Running Chassis II Amerigon		700,000	4,098,410	X	06/30/97	07/31/97	700,000
94	CS-AR94-02	M300DC Motor Speed Controller Jefferson Programmed Power		217,000	217,000	X	07/10/96	09/20/96	217,000
94	CS-AR94-03	HD Hybrid Electric Drive Train SBAPCD		29,568	9,856	X		05/22/97	29,568
94	CS-AR94-04	Distributed Energy Management System Hughes Technical Services Company nka RAYTHEON		250,000	485,000	X			
94	CS-AR94-05	HEV Battery System Bolder Tech							0
94	CS-AR94-06	Catalytic Combuster/Hybrid Electric Bus Capstone		300,000	300,000	X	12/30/96		268,250
94	CS-AR94-07	Hybrid Electric Air Emission Study NRDC/ACUREX		100,000	100,000	X	11/01/96		63,000
94	CS-AR94-08	Program Management CALSTART		369,000					369,000
94	CS-AR94-12	Data Acquisition CALSTART		150,000				3/31/97	150,000
94	CS-AR94-13	Energy Management Controller DELCO/Hughes Aircraft		18,000		X		08/01/95	18,000
94	CS-AR94-91	Re-allocated in Mod 12 to Mod 4 Moller		30,505					
94	CS-AR94-92	Re-allocated in Mod 12 to Mod 8 Trinity PM		53,000					
94	CS-AR94-93	Re-allocated in Mod 11		90,000					
94	CS-AR94-94	Re-allocated in Mod 12 to Mod 12		1,196,927					
94 Tot				3,504,000	5,210,266				1,814,818

FY	Proj.No	PROJECT TITLE		Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	$\begin{array}{\|c\|} \hline \text { DARPA } \\ \text { FUNDS } \\ \text { EXPENDED } \end{array}$
94.3	CS-AR94-09	Project Hatchery North	CALSTART	0003	150,000	135,000				150,000
94.3	CS-AR94-10	NAS Planning Grant	CALSTART	0003	250,000					250,000
94.3 Tota					400,000	135,000				400,000

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
95	CS-AR95-01	Flywheel Mag Loss Min Bearing AVCON	0004	126,349	126,349	X	06/15/94		126,349
95	CS-AR95-02	Flywheel Life-Cycle Testing Battery US Flywheel	0004	400,000	1,600,000	X	05/07/96		366,257
95	CS-AR95-03	Compact Low Cost Relays Coriolis	0004	100,000	100,000				
95	CS-AR95-04	Alturdyne Rotary Engine/Bus Demo Advanced Propulsion Systems	0004	65,000		X			58,500
95	CS-AR95-05	Safe Electro-Mechanical Batteries Rockwell	0004	259,500	783,000	X	09/30/96		177,325
95	CS-AR95-06A	Adv. Hybrid Recon Propulsion System Rod Millen Motorsport	0004	316,149		X	02/28/97		316,149
95	CS-AR95-06B	Adv. Hybrid Recon Propulsion System AeroVironment	0004	583,854	91,492	X	08/15/97		525,464
95	CS-AR95-07	Rotapower Engine Moller International with $\$ 30,505$ allcated in Mod P00012	0004	232,355	217,320	X	02/04/97		200,342
95	CS-AR95-07	Re-allocation from mod 4	P00012	-30,505					
95	CS-AR95-99	Program Management	0004	203,394					203,394
95 Tot				2,256,096	2,918,161				1,973,780

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
		High Efficiency Air-Conditioning							
96	CS-AR96-02	Glacier Bay	P00007	235,000	190,000	X	04/10/98		203,891
96	CS-AR96-04	E/HEV Manufacturability CALSTART	P00007						
96	CS-AR96-05	Prototype Hybrid Electric Truck ISE	P00007	250,000	496,700	X	07/10/98		201,276
96	CS-AR96-06	EV Range Extender AC Propulsion	P00007	170,000	170,000	X	04/10/98		170,000
96	CS-AR96-07	Purpose Built EV Engineering Pivco	P00007	150,000	350,000				
96	CS-AR96-08	Distributed Energy Mgmt System Hughes Technical Services Company nka RAYTHEON	P00007	250,000	123,000	X	03/30/97		250,000
96	CS-AR96-09A	Adv HE Recon Veh AeroVironment	P00007	359,712		X			84,235
96	CS-AR96-09B	Adv HE Recon Veh Rod Millen	P00007	270,304	36,000	X	03/30/98		132,596
96	CS-AR96-10	Program Management CALSTART	P00007	188,502		X			140,983
96	CS-AR96-96	Re-allocated in Mod 12	P00007	200,000					
96 Tota				2,073,518	1,365,700				1,182,981

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
96.8	CS-AR96-01	Quick Charging Systems	P00008	553,088	556,596	X	06/30/98		297,174
96.8	CS-AR96-99	Reallocation from RA-94 in mod 12	P00012	-53,000					
96.8	CS-AR96-99	Program Management - CALSTART	P00012	53,000					15,000
96.8 To	otal			553,088	556,596				312,174

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
		JOINT TACTICAL EV-FUEL EFFICIENCY							
97	CS-AR97-01	TESTING AeroVironment	P00012	100,920	0				
97	CS-AR97-02	JOINT TACTICAL EV-HYBRID ALGORITHM AeroVironment	P00012	76,276	0				
97	CS-AR97-03	JOINT TACTICAL EV-PERIPHERALS DEV Rod Millen Special Vehicles	P00012	41,000	32,000				
97	CS-AR97-04	MOBILE FLYWHEEL POWER MODULE Trinity Flywheel	P00012	495,000	570,000	X			
97	CS-AR97-05	FLYWHEEL SHOCK TESTING US Flywheel	P00012	450,000	450,000	X			114,243
97	CS-AR97-06	HYBRID VEHICLE TURBOGENERATOR w/LIQUID FUELED CATALYTIC COMBUSTOR Capstone	P00012	302,000	784,750				
97	CS-AR97-07	HIGH POWER EV CHARGING SYSTEM GMATV	P00012	400,000	2,092,500	X			
97	CS-AR97-08	TURBOGENERATOR FOR MOLLER ROTAPOWER ENGINE Moller	P00012	50,000	50,000				
97	CS-AR97-09	TESLA GAS TURBINE HEAT ENGINE FAS Engineering	P00012	125,000	125,000	X			17,665
97	CS-AR97-10	DEVIDEMO HYBRID TRANSIT BUS Gillig/Foothill Transit	P00012	200,000	455,000				
97	CS-AR97-11	MAGNETIC BEARING COMMERCIALIZATION Avcon	P00012	75,000	75,000				
97	CS-AR97-12	HEAVY DUTY VEH IND ANALYSIS CALSTART	P00012	181,829	0				40,000
97	CS-AR97-14	DARPA INTERNET LISTINGS CALSTART	P00012	70,000	0				17,500
97	CS-AR97-97	Re-allocation from Mod 7	P00012	$(200,000)$					
97	CS-AR97-98	Re-allocation from RA94	P00012	$(1,196,927)$					
97	CS-AR97-99	PROGRAM MANAGEMENT CALSTART	P00012	256,700	0				35,000
97 Tot				1,426,798	4,634,250				224,408

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
		Assessment of Advanced Engine							
97.09	CS-DARO-02	Technologies for UAV and HEV Applications FEV ENGINE TECH.	P00009	1,000,000	1,000,000	X			250,000
97.09	CS-DARO-03	Fuel Injector for UAV and HEV Engine Corporation of America	P00009	245,000	245,000	X			245,000
97.09	CS-DARO-98	Program Management CALSTART	P00009	124,500					74,500
97.09 Total				1,369,500	1,245,000				569,500

FY	Proj.No	PROJECT TITLE	Mod. No.	DARPA	MATCH	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
97.11	CA-DARO-01	Heavy Fuel Engine Test - General Atomics	P00011	500,000	500,000	X			109,741
97.11	CA-DARO-04	Internet Program - CALSTART	P00011	90,000					45,000
97.11	CA_DARO-04	Re-allocation	P00012	-90,000					
97.11	CS-DARO-99	Program Management - CALSTART	P00011	50,000		X			15,000
97.11 Total				550,000	500,000				169,741
Grand Total				12,133,000	16,564,973				6,647,402

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR94-01	1	Initiate work	200,000		1	11/14/95	11/21/95	75,000
CS-AR94-01	2	Complete breadboard designs of drive train, running chassis, steel space frame	175,000		2	12/31/95	12/15/95	103,222
CS-AR94-01	3	Fabricate EV4 \& BEV prototype parts Revise design pakgs	125,000		3	3/31/96		
CS-AR94-01	4	Complete all BEV vehicle tests. Revise tools.	40,000		4	6/30/96	7/8/96	270,000
CS-AR94-01	5	Complete build of EV4. Complete EV4 tests.	0		5	9/30/96	9/30/96	36,000
CS-AR94-01	6	Complete (begin tests) first productionized drive train.	0			12/31/96	12/31/96	
CS-AR94-01	7	Complete Finite Element Analysis and design of running chassis BEV.	0			3/30/97	4/30/97	71,778
CS-AR94-01	8	Complete build of 4 alum BEV's w/o body panels - 2 welded frames. Complete build/test 5 productionized drive trains. Complete comparative analysis. Complete final report.	160,000	4,098,410	6	6/30/97	7/31/97	144,000
CS-AR94-01	tal		700,000	4,098,410				700,000
CS-AR94-02	1	Design complete	72,000		1	10/10/95	10/25/95	72,000
CS-AR94-02	2	CPU Logic Board operational	65,000	80,000	2	1/10/96	1/11/96	65,000
CS-AR94-02	3	1st prototype controller test	50,000	60,000	3	4/10/96	4/17/96	58,300
CS-AR94-02	4	Final report	30,000	77,000	4		9/20/96	21,700
CS-AR94-02 Total			217,000	217,000				217,000
CS-AR94-03		No milestone - program canceled	29,568	9,856	X	6/15/95		29,568
CS-AR94-03 Total			29,568	9,856				29,568

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	date due	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR94-04	1	Delco - See CS-AR96-08 Requirements defined; concept for controller hardware defined	30,000	50,000	1	6/30/96	6/30/96	50,000
CS-AR94-04	2	Software defined/programmed	30,000	50,000	2	9/30/96	9/30/96	50,000
CS-AR94-04	3	Design/Implementation of multiple pack system controller	70,000	370,000	3	12/31/96	12/31/96	150,000
CS-AR94-04	4	Software installed on charge system	50,000	15,000	4	3/30/97	3/30/97	
CS-AR94-04		Bluebird Buses equipped; Field data acquired; DEMS upgrade concept complete/controller built	70,000		5			
CS-AR94-04 Total			250,000	485,000				250,000
CS-AR94-05		No milestone - program canceled						
CS-AR94-05 Total			0	0				0

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR94-06	0	Initiate work	40,000	40,000		8/30/95	12/15/95	36,000
CS-AR94-06	1	Vandenburg Combuster/Monolith Test Rig	102,500	102,500		12/31/95	1/11/96	92,250
CS-AR94-06	1	Hardware/Electrical Designs	50,000	50,000	1	12/31/96	1/11/97	50,000
CS-AR94-06	2	Vehicle Integration	80,000	80,000	2	3/30/97	3/30/97	90,000
CS-AR94-06	3	System Integration	20,000	20,000	3	6/20/97		
CS-AR94-06	4	Final report	7,500	7,500	4	9/30/97		
CS-AR94-06 Total			300,000	300,000				268,250
CS-AR94-07	1	Refine study design.	20,000	20,000	1	8/1/95	12/30/95	
CS-AR94-07	2	Data collection	16,000	16,000	2	11/1/95	9/30/96	
CS-AR94-07	3	Data evaluation	16,000	16,000	3	2/1/96	12/30/96	63,000
CS-AR94-07	4	Scientific review	16,000	16,000	4	5/1/96		
CS-AR94-07	5	Draft study	16,000	16,000	5	8/1/96		
CS-AR94-07	6	Final report/study	16,000	16,000	6	11/1/96		
CS-AR94-07 Total			100,000	100,000				63,000
CS-AR94-08		Program Management CALSTART	369,000					369,000
CS-AR94-08 Total			369,000	0				369,000
CS-AR94-12	1	Feasibility Study	16,271		1	09/30/95	09/30/95	16,271
CS-AR94-12	2	Schematic/Housing for keyboard/display	10,000		2	12/31/95	12/31/95	9,957
CS-AR94-12	3	Establish internet connection	20,608		3	03/30/96	03/30/96	20,608
CS-AR94-12	4	Hardware Test Box for Analog/digital boards	54,077		4	06/30/96	06/30/96	54,077
CS-AR94-12	5	DC Converter Schematics. Build Prototype	16,666		5	09/30/96	09/30/96	21,700
CS-AR94-12	6	Second PCB. Testing CDAS \& Installation	32,378		6	12/31/96	12/31/96	27,387
CS-AR94-12	7	Testing complete			7	03/30/97	03/30/97	
CS-AR94-12	8	Final report			8	06/30/97	06/30/97	
CS-AR94-12 Total			150,000	0				150,000

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR94-13		DELCO/Hughes Energy Mgmt Cont	18,000					18,000
CS-AR94-13 Total			18,000	0				18,000
CS-AR94-91		Re-allocated in Mod 12 to Mod 4 Moller	30,505					
CS-AR94-91 Total			30,505	0				0
CS-AR94-92		Re-allocated in Mod 12 to Mod 8 Trinity PM	53,000					
CS-AR94-92 Total			53,000	0				0
CS-AR94-93		Re-allocated in Mod 11	90,000					
CS-AR94-93 Total			90,000	0				0
CS-AR94-94		Re-allocated in Mod 12 to Mod 12	1,196,927					
CS-AR94-94 Total			1,196,927	0				0
ital			3,504,000	5,210,266				2,064,818

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR94-09		Hatchery North	150,000	135,000				150,000
CS-AR94-09 Total			150,000	135,000				150,000
CS-AR94-10		NAS Planning	250,000					250,000
CS-AR94-10 Total			250,000	0				250,000
otal			400,000	135,000				400,000

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR95-01	1	Computer model, Rotordynamic Analysis,	37,706	37,706	1	9/30/96	10/15/96	37,706
CS-AR95-01	2	Complete rotordynamic analysis	16,220	16,220	2	12/31/96	12/31/96	16,220
CS-AR95-01	3	Complete Test Plan, begin fabrication of test	10,160	8,470	3	3/30/97		36,276
CS-AR95-01	4	Complete fabrication of test rig	15,160	8,600	4	6/30/97		
CS-AR95-01	5	Fabricate standard bearing	12,182	23,618	5	9/30/97		
CS-AR95-01	6	Test Standard Bearing	10,124	8,600	6	12/31/97		
CS-AR95-01	7	Test Optimized bearing, Iterate computer	3,797	12,800	7	3/31/98		
CS-AR95-01	8	Final report	21,000	10,335	8	6/30/98		36,147
CS-AR95-01 Total			126,349	126,349				126,349
CS-AR95-02	1	Detail plan		900,000	1	7/7/96		
CS-AR95-02	2	Fabricate flywheels	230,000	300,000	2	9/7/96	7/16/96	195,200
CS-AR95-02	3	Design, prog. \& fabricate DAS	90,000	140,000	3	9/7/96	12/2/96	171,057
CS-AR95-02	4	Design/Install containment chambers	50,000	80,000	4	9/7/96	12/30/96	
CS-AR95-02	5	Install modules/check system		60,000	5	10/7/96		
CS-AR95-02	6	Cycle tests/statistical analysis	20,000	80,000	6	3/7/97		
CS-AR95-02	7	Final report	10,000	40,000	7	6/7/97		
CS-AR95-02 Total			400,000	1,600,000				366,257
CS-AR95-03	1	Final draft of electrical test station design	5,307	5,400	1	TBD		
CS-AR95-03	2	Select mechanical design team. Complete design.	33,708	34,292	2	TBD		
CS-AR95-03	3	Design modifications to circuit breaker. Construct/debug test station. Fabricate circuit brekaer components.	30,238	30,762	3	TBD		
CS-AR95-03	4	Test guillotine circuit breakers.	19,217	20,171	4	TBD		
CS-AR95-03	5	Final guillotine circuit breaker design.	11,530	9,375	5	TBD		
CS-AR95-03 Total			100,000	100,000				0
CS-AR95-04	1	Alturdyne bus demonstration	65,000		1			58,500
CS-AR95-04 Total			65,000	0				58,500

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR95-05	1	Containment ring design	50,000	552,000	1	12/31/96	12/31/96	63,472
CS-AR95-05	2	Containment ring fabrication	75,000	77,000	2	3/30/97		97,463
CS-AR95-05	3	Assembly checkout/test	100,000	77,000	3	6/30/97		12,221
CS-AR95-05	4	Final report	34,500	77,000	4	9/30/96		4,169
CS-AR95-05 Total			259,500	783,000				177,325
CS-AR95-06A	1	Initiate work	75,000		1	4/1/96		75,000
CS-AR95-06A	2	Suspension/Differential Dev	60,287		2	4/30/96		13,881
CS-AR95-06A	3	Design review	60,287		3	6/30/96		59,688
CS-AR95-06A	4	4 Suspension design	60,287		4	9/30/96		75,894
CS-AR95-06A	5	5 Final report	60,288		6	2/28/97		91,686
CS-AR95-06A Total			316,149	0				316,149
CS-AR95-06B	1	Battery Mgmt Final report; Inverter repkg	309,974	53,972	1	9/31/96	9/31/96	309,974
CS-AR95-06B	2	DC-DC Converter Design; cell specs rpt; 2	215,495	37,520	2	12/31/96	12/31/96	215,490
CS-AR95-06B	3	Fianl report	58,385		3			0
CS-AR95-06B Total			583,854	91,492				525,464

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR95-07	1	Complete design	40,000	108,320	1	3/6/96		40,000
CS-AR95-07	2	Order batteries/tooling	57,855		2	3/30/96	5/31/96	53,162
CS-AR95-07	3	Finish block fabrication	25,000	46,500	3	5/15/96		38,490
CS-AR95-07	4	Receive/Evaluate Geo Metro	16,495		4	8/16/96		46,201
CS-AR95-07	5	Drivetrain/Engine Installation	37,500	37,500	5	10/4/96	12/30/96	22,489
CS-AR95-07	6	Vehicle testing	15,000	15,000	6	12/15/96		
CS-AR95-07	7	Final report and additional funds	10,000	10,000	7	2/4/97		
CS-AR95-07	8	Re-allocation	30,505					
CS-AR95-07 Total			232,355	217,320				200,342
CS-AR95-98		Re-allocation	-30,505					
CS-AR95-08 Total			-30,505					
CS-AR95-99		Program Management CALSTART	203,394					203,394
CS-AR95-99 Total			203,394	0				203,394
tal			2,256,096	2,918,161				1,973,780

Proj. No	$\begin{aligned} & \text { Mile. } \\ & \text { No. } \end{aligned}$	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR96-02	1	Initiate work	20,000			10/25/96		20,000
CS-AR96-02	2	Design of Major Components	34,573	44,113	1	12/31/96	12/31/96	34,573
CS-AR96-02	3	Prototype drawings complete	55,000	60,000	2	3/31/97	3/31/97	53,076
CS-AR96-02	4	Production of major components	50,000	45,000	3	6/30/97		50,000
CS-AR96-02	5	Prototype bench testing	17,000	21,000	4	9/30/97		17,000
CS-AR96-02	6	Production/Testing prototypes	35,000	8,000	5	12/31/97		29,242
CS-AR96-02	8	Final report	23,427	11,887	7	3/31/98		
CS-AR96-02 Total			235,000	190,000				203,891
CS-AR96-04		EV Manufacturability Canceled						
CS-AR96-04 Total			0	0				0

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR96-05	1	Drive system design approved. System	30,000	96,700	1	1/10/97	1/10/97	30,000
CS-AR96-05	2	System controller modules design.	35,000	100,000	2	4/10/97	3/30/97	35,000
CS-AR96-05	3	Vehicle integration plan complete	35,000	75,000	3	7/10/97	3/30/97	35,000
CS-AR96-05	4	Major components integrated	30,000	50,000	4	10/10/97		30,000
CS-AR96-05	5	Vehicle fully integrated/testing initiated	30,000	75,000	5	1/10/98		30,000
CS-AR96-05	6	Phase 1 Operational testing complete	30,000	50,000	6	4/10/98		11,276
CS-AR96-05	7	Commercialization plan initiated	30,000	25,000	7	7/10/98		30,000
CS-AR96-05	8	Phase 2 testing complete/Business plan	5,000	25,000	8	10/10/98		
CS-AR96-05	9	Final report	25,000		9	1/10/99		
CS-AR96-05 Total			250,000	496,700				201,276
CS-AR96-06	1	Design study complete	51,000	57,000	1	1/10/97	2/21/97	51,000
CS-AR96-06	2	Prototype charging system constructed	72,000	53,000	2	4/10/97		72,000
CS-AR96-06	3	Moller engine delivered	22,000	25,000	3	7/10/97		30,000
CS-AR96-06	4	Integration complete	8,000	11,000	4	10/10/97		
CS-AR96-06	5	Testing complete	8,000	15,000	5	1/10/98		
CS-AR96-06	6	Final report	9,000	9,000	6	4/10/98		17,000
CS-AR96-06 Total			170,000	170,000				170,000

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR96-07	1	Design analysis against FMVSS \& SAE	80,000	180,000	1			
CS-AR96-07	2	Complete door-re-engineering/prototypes	40,000	95,000	2			
CS-AR96-07	3	FMSS door side impact test. Release door for manufacturing	15,000	40,000	3			
CS-AR96-07	4	4 US Suppliers components list. FMVSS	15,000	35,000	4			
CS-AR96-07 Total			150,000	350,000				0
CS-AR96-08	5	Bluebird Buses equipped; Field data	200,000	108,000	5	6/30/97		
CS-AR96-08	6	Final report	50,000	15,000	6	9/30/97		
CS-AR96-08 Total			250,000	123,000				0

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR97-01	1	AV	100,920	0				
CS-AR97-01 Total			100,920	0				0
CS-AR97-02	1	AV	76,276	0				
CS-AR97-02 Total			76,276	0				0
CS-AR97-03	1	RMSV	41,000	32,000				
CS-AR97-03 Total			41,000	32,000				0
CS-AR97-04	1	Conceptual Design	100,000	65,000				
CS-AR97-04	2	Detailed design	115,000	100,000				
CS-AR97-04	3	Manufacturing	130,000	125,000				
CS-AR97-04	4	Assembly and checkout	100,000	180,000				
CS-AR97-04	5	Testing/Final Report	50,000	100,000				
CS-AR97-04 Total			495,000	570,000				0
CS-AR97-05	1	Test data collection	45,000	45,000				45,000
CS-AR97-05	2	Establish test parameters and profile	33,000	52,000				52,000
CS-AR97-05	3	Report on designs/fabrication	5,000	10,000				
CS-AR97-05	4	Shock testing. Design/fab mounting system	280,000	255,000				17,243
CS-AR97-05	5	Prepare for testing	5,000	10,000				
CS-AR97-05	6	Testing at Aberdeen	82,000	78,000				
CS-AR97-05 Total			450,000	450,000				114,243

		O								0	0								$\left\lvert\, \begin{aligned} & 108 \\ & 0 \\ & \\ & \end{aligned}\right.$		O		0	$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$					8 8							
			$\left\|\begin{array}{l} \hat{n} \\ \stackrel{\rightharpoonup}{c} \\ \stackrel{\rightharpoonup}{\circ} \end{array}\right\|$		$\begin{aligned} & \infty \\ & \frac{0}{\infty} \\ & \frac{\rho}{m} \\ & \hline \end{aligned}$	∞ 0 				$\begin{aligned} & \frac{g}{9} \\ & \stackrel{1}{N} \end{aligned}$																										
$\stackrel{\pi}{\stackrel{\pi}{0}}$			-	N	ल	\checkmark	+ 10	0	ω	N																										
			$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \\ & \end{aligned}$	解										$\begin{array}{l\|l} 8 & 8 \\ 8 & 8 \\ 0 \\ \hline \end{array}$						$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 5 \\ & 10 \\ & 8 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ 10 \\ n \\ 5 \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 8 \\ 0 \\ n \\ n \end{array} \right\rvert\,$						-							
	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \text { Ǹ } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\{\begin{array}{l} 8 \\ \mathbf{N} \\ - \\ \bar{m} \end{array}\right.$	N	$\left\{\begin{array}{l} \dot{\infty} \\ 0 \\ 0 \\ -\dot{\sigma} \end{array}\right.$	5				$\begin{array}{l\|l} \hline 9 & 8 \\ 0 \\ 0 \\ 0 & 8 \\ \hline \end{array}$							8 8 8	(180	$\begin{gathered} 8 \\ 8 \\ 0 \\ 12 \\ N \\ \hline \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 0 \end{aligned}$	O-8	38	8-8	8 8 8	$\begin{aligned} & \mathrm{B} \\ & \hline 0 \\ & \text { Ni } \end{aligned}$		$\left.\begin{gathered} 8 \\ \hline 0 \\ 0 \\ 10 \end{gathered} \right\rvert\,$			N	N	-		3		
			System Requirements	Charger Fabrication																																
$\stackrel{\varrho}{\dot{E} \dot{Z}}$	-	部	\square	N	\cdots	+	\bigcirc	\bigcirc	ω		$\stackrel{5}{0}$		N	ল	$\stackrel{\bar{\pi}}{0}$	N		-	$\stackrel{\overline{0}}{0}$		\%		$\stackrel{\text { ¢ }}{0}$	-	N	\cdots	-	\bigcirc	-	\sim		+	\bigcirc	\cdots	-	∞
응																-					C-			$\begin{gathered} N \\ \stackrel{N}{1} \\ \mathbf{o} \\ \frac{\sim}{4} \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{c} \\ & \underset{\sim}{2} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$					-	-				

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-AR97-14	9	Maintain/train. Final Report	5,661					17,500
CS-AR97-14 Total			70,000	0				17,500
CS-AR97-97		Re-allocation from Mod 7	$(200,000)$					
CS-AR97-97 Total			$(200,000)$	0				0
CS-AR97-98		Re-allocation from RA94	$(1,196,927)$					
CS-AR97-98 Total			$(1,196,927)$	0				0
CS-AR97-99		PROGRAM MANAGEMENT	256,700					35,000
CS-AR97-99 Total			256,700	0				35,000
tal			1,426,798	4,634,300				224,408

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-DARO-02	1	TECE Thermo/Mech Assessment	300,000	100,000				50,000
CS-DARO-02	2	2/4 Stroke Concept Assessment	220,000	200,000				200,000
CS-DARO-02	3	2/4 Stroke Demo	480,000	700,000				
CS-DARO-02 Total			1,000,000	1,000,000				250,000
CS-DARO-03	1	1.0 Completion and submission of program plan	122,500	0				122,500
CS-DARO-03	2	1.1 Overall Engine Design, 1.2 Engine Thermal Cycle Analysis,1.1 Coordination of Analytical Effort with FEV, 2.1 ECA Fuel Injector Design,2.2 Fuel Injuector Options Assessment, 2.3 Coordinated Fuel Injection Review	122,500	245,000				122,500
CS-DARO-03 Total			245,000	245,000				245,000
CS-DARO-98		Re-allocation	-90,000					
CS-DARO-98		Program Management CALSTART	124,500					74,500
CS-DARO-98 Total			34,500	0				74,500
Total			1,279,500	1,245,000				569,500

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-DARO-01	1	Progress of sub-system testing, review of engine test facilities and plan for testing of advanced powerplant subsystem.	0	50,000				
CS-DARO-01	2	Powerplant integrated to existing dynamometer. Subsystem test complete.	0	75,000				
CS-DARO-01	3	Completion of low altitude simulation system. Completion of renovations. Commissioning of new propeller stand facility. Systems function - basic series. Systems optimization completed for baseline. Sea level mapping complete.	300,000	300,000				109,742
CS-DARO-01	4	Powerplant integrated to propeller test stand. Low altitude simulation mapping complete. Propstand limited durability demonstrated.	50,000	75,000				
CS-DARO-01	5	Continued Progress	50,000	0				
CS-DARO-01	6	Continued Progress	50,000	0				
CS-DARO-01	7	Demonstrated fuel injection durability maturation.	50,000	0				
CS-DARO-01	Total		500,000	500,000				109,742

Proj. No	Mile. No.	PROJECT TITLE AND NUMBER	DARPA	MATCHING	QTR	DATE DUE	DATE COMPLETE	DARPA FUNDS EXPENDED
CS-DARO-04	1	Upgrade CALSTART web server	30,000					45,000
CS-DARO-04	2	Expand Vehicle Catalog	20,000					
CS-DARO-04	3	Develop component catalog	20,000					
CS-DARO-04	4	Develop AT Industry FAQ	20,000					
CS-DARO-04	Total		90,000	0				45,000
CS-DARO-99		Program Management CALSTART	50,000					15,000

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

APPENDIX

A C PROPULSION FINAL REPORT

Distribution Statement B: Distribution authorized to U.S.
Government agencies only to protect information not owned by the U.S. Government by a contractor's "limited rights" statement, or received with the understanding that it not be routinely transmitted outside the U.S. Government. Other requests for this document shall be referred to DARPA/Technical Information Officer.

CALSTART/DARPA

Electric Vehicle Research and Development Program
Grant \# MDA972-95-2-0011

ELECTRIC VEHICLE RANGE EXTENDING GENERATOR
Development and Demonstration Project
Nov. 1996 - Dec. 1997

FINAL REPORT
March 5, 1998

> Submitted by
> AC Propulsion, Inc.
> San Dimas, CA

CONTENTS

Executive Summary 3
Final Report
Background 5
Objectives 6
Work Performed 8
Results 15
Outlook 16
Appendix - Hardware Photographs
Photo 1-20 kW Alternator 18
Photo 2-20 kW Controller 18
Photo 3 - Moller Rotary Engine 19
Photo 4 - Belt-drive System 19
Photo 5 - Dynamometer Test 20
Photo 6 - Demonstration Test 20

EXECUTIVE SUMMARY

Objectives One of the major shortcomings of electric vehicles (EVs) is the limited range available on a single battery charge. A solution that allows EVs to sometimes drive extended distances, or operate away from charging infrastructure, is the use of an engine-powered generator-set that enables an electric vehicle to operate in hybrid mode. A properly designed generator-set can be integrated into the EV itself, or be towed behind the EV, in order to sustain battery charge over long distances and provide recharging power at remote locations. To date, available generators have not provided a satisfactory combination of size, weight, output, and cost to meet the demands of vehicular applications.

To meet the potential need for a vehicular traction charging system, CALSTART and AC Propulsion established objectives to develop an electric vehicle range extending generator to the specifications below.

- 20 kW output continuous @ 300-390 volts with 5000 rpm input speed
- total charging system weight of 35 kg .
- charging priority control for compatibility with regenerative braking
- design adaptability to other battery voltages, power levels, and input speeds

An additional objective was to demonstrate the charging system in operation coupled to a high specific output thermal engine. A Moller rotary engine was selected for the demonstration based on its potential for high output and small size.
Work Performed AC Propulsion has completed the five tasks specified in the CALSTART program participation agreement related to the design, development, and demonstration of the charging system.
Task 1 - Design of Alternator and Charging Control System
Using the design techniques pioneered in its electric vehicle drive systems, AC Propulsion designed an alternator and charging control system to meet project objectives.
Task 2 - Construction of Prototype Alternator and Control System
AC Propulsion constructed a prototype charging system based on the design developed in Task 1 using proprietary manufacturing techniques proven in its high output electric vehicle drive systems.

Task 3 - Test and Development of Prototype Charging System
The prototype charging system was developed and tested using AC Propulsion's in-house electric dynamometer and test facilities.
Task 4 - Integration of Charging System and Moller Engine
The charging system was mated to a Moller rotary engine using a toothed-belt drive. The integrated power system was mounted on a test stand with representative cooling, air, fuel, and exhaust systems
Task 5 - Test and Development of Integrated Power System
AC Propulsion tested the integrated power system for output, and thermal, electrical and overall efficiency using resistive loads to dissipate the electrical power.

Results In dyno testing, the charging system met or exceeded all project objectives. Continuous output of 20 kW at $300-390$ volts is achieved at 7000 rpm . Alternator efficiency is 91%. Alternator weight is $25 \mathrm{~kg}(55 \mathrm{lb})$.
The alternator controller employs self-excitation with capacitors for phase shifting, resulting in a simple, robust, and low cost design that achieves direct control of output with engine speed. Controller weight is 3 kg (6.5 lb). Total package size of the charging system is 15 liter (0.53 cu $\mathrm{ft})$. These characteristics yield specific output of $0.71 \mathrm{~kW} / \mathrm{kg}(0.33 \mathrm{~kW} / \mathrm{lb})$ and power density of $1.3 \mathrm{~kW} /$ liter ($38 \mathrm{~kW} / \mathrm{cu} \mathrm{ft}$).

The charging system was adapted to the Moller rotary engine for demonstration as a complete power unit. A toothed-belt drive allowed a compact mounting arrangement that matched the Moller engine's recommended 5000 rpm operating point to the alternator's 7000 rpm design speed. In operational testing, the belt-drive worked well, and drive-related losses were acceptable. Characteristics of the Moller engine determine overall performance of the generatorset. At wide-open-throttle, maximum system output is 14.5 kW DC at engine speed of 4800 rpm . At that operating point, specific fuel consumption is $0.72 \mathrm{~kg} / \mathrm{kWh}(0.26 \mathrm{gal} / \mathrm{kWh})$.

Outlook The charging system developed for this project provides high specific output and high power density, both of which are essential for resolving the component packaging challenges inherent in hybrid-vehicle design. At 20 kW , the output of this development unit is sized for the road-load requirements of compact-size passenger cars. The alternator design and control methodology, however, are adaptable to units of 10 to 50 kW or higher.

The level of performance delivered by the Moller engine does not meet the requirements of the hybrid or range extender applications. Power and efficiency are too low, and its current configuration is not well suited to direct-drive systems. Other thermal engines can be adapted more readily to provide the levels of performance required for specific applications.

No follow-on work is planned as a continuation of this project. The charging system technology developed during the course of this project is ready for commercialization. AC Propulsion plans to market the charging system both as a stand-alone product with application to hybrid-electric drive systems, and as part of a range extending trailer to be towed behind EVs for long distance travel.

FINAL REPORT

BACKGROUND

One of the major shortcomings of electric vehicles (EVs) is the limited range available on a single battery charge. For EVs that must sometimes drive extended distances, or operate away from charging infrastructure, one solution is the use of an engine-powered generator-set that allows an electric vehicle to operate in hybrid mode. A properly designed generator-set can be integrated into the EV itself, or be towed behind the EV, in order to sustain battery charge over long distances and provide recharging power at remote locations. To date, available generators have not provided a satisfactory combination of size, weight, output, and cost to meet the demands of vehicular applications. Necessary characteristics include the following:

- Charging output matched to the EV road load and battery voltage requirements
- High specific output to reduce package size and weight.
- Robust simplicity for durability and reliability
- Convenience and low cost that will provide a marketable alternative to using a conventional vehicle for long trips.

With DARPA funding, CALSTART, contracted AC Propulsion Inc.(AC Propulsion) to develop a charging system specifically for electric vehicle range extending generators (RXGs) for hybridvehicle application. Since 1994, AC Propulsion has developed high output RXGs and used them in its EV powertrain testing programs. Mounted on a trailer and towed behind an EV, these units allow rapid accumulation of test mileage by eliminating the need to stop for battery recharging. AC Propulsion and some of its customers have accumulated tens of thousands of EV test miles using these prototype range extending trailers.
For expedience, alternators used by AC Propulsion in RXG trailers had been built from aircraft units modified to operate at the speeds and voltages required for EV charging. These units are extremely well built, but are prohibitively expensive, reflecting the special reliability requirements of aircraft applications. Commercialization of RXGs requires an alternator and control system that is better suited to the specific requirements of RXG use. Although automakers are actively pursuing development of hybrid vehicles, and these all require some kind of high output generator for charging, no charging systems that are well-suited for the RXG application are available off-the-shelf.

The primary purpose of the work performed for this project was to design, develop, and test an efficient, high specific output charging system dedicated to onboard or trailer-mounted RXG applications. The benefits of such a design will include optimized operational characteristics, potential for lower cost in volume production, and adaptability of output to match voltage and power requirements of different EV designs.

Additionally, the work performed matched the newly developed charging system to the Moller advanced rotary engine. The Moller engine has promised the potential of high specific output, an important attribute for any RXG powerplant. The resulting generator-set demonstrated the charging system developed for this project as part of an integrated power system.

OBJECTIVES

AC Propulsion designs, develops, and manufactures high performance electric vehicle propulsion systems and produces EV conversions based on its electric drivetrains. AC Propulsion currently manufactures the AC-150 electric drivetrain, a 150 kW drive system including motor, final drive, and integrated control electronics including inverter, regeneration control, 20 kW charger, and 12 v DC power supply. The 200 horsepower traction motor is 305 mm in diameter, 380 mm long and weighs 55 kg with cooling shroud and blower. The concept for this project was to apply the design and manufacturing techniques AC Propulsion has used to achieve the traction motor's exceptional level of power density to the similar but unique challenges of designing a charging system for an electric vehicle range extending generator.
AC Propulsion's experience with trailer-mounted RXGs has confirmed that such units can provide hybrid capability for pure EVs, but only if two conditions are met: 1) charger output is sufficient and 2) the output characteristic is matched to the battery requirements. If these conditions are not met, the promise of unconstrained driving range cannot be realized.
The power output must exceed the EV road load at the desired cruising speed in order to provide for charge recovery. Under various conditions such as hill climbing, the EV battery may be drawn below the optimum state of charge (SOC). The only way to recover the charge is to slow the vehicle to a speed where RXG output exceeds road load and use the excess output to charge the battery. If the RXG output is not high enough, the charge recovery speed will be too slow, and the EV will be unable to keep up with traffic. For efficient, small-to-medium size EVs, RXG output of 15 to 20 kW is necessary to provide comfortable freeway cruising.
The second critical condition is that the trailer must provide rated output over a wide range of charging voltages. To recover and maintain high state-of-charge at freeway speeds, the RXG power output cannot drop off as battery SOC and voltage increase. This necessary characteristic is shown as the solid line in Figure 1. The battery voltage varies widely depending on battery SOC, so the charger must be able to achieve its rated output at higher and higher voltages as the battery charges. AC Propulsion achieves this critical requirement in its range extenders by using active control of the alternator output. The result is a constant output charging characteristic that provides rated output almost up to 100% SOC. This characteristic is compared to the typical charger characteristic achieved with passive control, the dashed line, in Figure 1.

Figure 1 Desired output characteristic for range extending generator

Note that both chargers are rated at 20 kW output, but without active control, rated charging output is achieved only when the battery is in a highly discharged condition. During normal highway operation with battery voltage in the 360 V range, output without active control drops to about half of rated output, too low to sustain high SOC at highway speeds.

With active control of alternator output, the charger provides a broad region of constant power charging, the flat region of the output curve, and a very sharp high voltage cutoff to protect system electronics. Since it is desirable to maintain batteries near full charge to provide reserve power for hill climbing and passing, chargers without active control must be oversized to maintain full battery charge under normal cruise conditions. This conflicts with the requirements for small size and light weight.

The recognized requirements for high specific output, adequate power, and an appropriate charging characteristic, and the desire to demonstrate the charging system with a Moller rotary engine were integrated in the project design proposal described below.

Design Proposal

The motivation for producing an RXG is to provide hardware that can be used to develop hybrid drive systems that expand the utility of pure EVs. This objective requires that the RXG itself be designed with good potential for near term commercialization. Accordingly, AC Propulsion developed a design proposal to satisfy the needs of consumers, including output matched to driving needs, compact package size, and potential for low cost production.
Furthermore, the design proposal included AC propulsion's accumulated design priorities and experience, specifications provided for the Moller rotary engine, and DARPA's requirements for this development effort. The design proposal for RXG power system included the following specifications.

Charging System

- up to 20 kW output continuous @ 300-390 volts with 5000 rpm input speed
- constant current charging at low battery voltages
- charging priority control for compatibility with regenerative braking
- adaptability of the basic design to other battery voltages, power levels, and input speeds
- total charging system weight of 35 kg .

IC Engine

- 30 hp continuous @ 5000
- single rotor rotary
- water-cooled
- fuel injected
- onboard 12 V starter

Engine Control

- drive of alternator via coupling to engine crankshaft
- remote starting with warmup idle and power modes
- automatic load control via throttle servo

WORK PERFORMED

The proposed course of work was structured in three phases comprising six tasks. In Phase 1, AC Propulsion performed Tasks $1-3$, design, development, and test of the RXG charging system to the stated performance objectives.
Phase II, development of the integrated power system, was conducted by AC Propulsion and Moller International. In Task 4, Moller International delivered a rotary engine to AC Propulsion and the two units were integrated into a complete power system. In Task 5, the resulting power system was bench tested at AC Propulsion to determine operating characteristics.

In Phase III, AC Propulsion analyzed the test performance of the charging system and the generator set and prepared this final report of the development program.
Activity under the five development tasks is described below.

Task 1 - Design of Alternator and Charging Control System

Surveys of commercially available alternators did not identify any models well-suited for the range extender application. The requirements for high specific output and constant output over varying battery voltage rule-out typical generator-set hardware. Less conventional approaches such as the permanent magnet hybrid homopolar magnet alternator that offer high efficiency and compact design do not operate over a broad enough voltage range. Permanent magnet systems also incur higher inherent costs due to the cost penalty of rare-earth-based magnets.

A design concept for the range extending alternator was developed based on proprietary AC Propulsion construction and control techniques. Concept testing using a standard AC Propulsion traction motor operating as a generator demonstrated feasibility for the design concept which would result in a compact design with high efficiency and reduced control complexity.
Dynamometer testing confirmed the feasibility of using the architecture of the AC Propulsion traction motor. This motor, well-proven as a power unit for electric vehicles offers the advantages of simple and robust construction, high specific output, high efficiency, and air cooling, all desirable characteristics for the RXG application. In EV applications, the motor serves as a generator during regenerative braking, so its capability to generate power is established.

Although the traction motor itself is not optimized for the specific range extender application, use of the motor architecture allows generators of varying speeds and outputs to be developed by changing the length and field windings for different applications. The generators can share basic dimensions and components such as end plates, housing, rotor shaft (except for length), and laminations. By sharing these components, economies of scale and reduced costs can be approached more rapidly. Using the motor as a generator in the range extender application, required innovation in the control system in order to avoid the size and complexity of the inverter used to control motor/generator function in a traction motor application.
Based on prior knowledge and examples in the literature of the use of self-excitation of AC induction motors, and the use of switched capacitors for phase shifting, a laboratory control system was developed for feasibility testing on the dyno. The prototype control system used lowfrequency zero-current switching of the capacitors at the synchronous frequency (typically a few
hundred Hz), so component costs are limited and undesirable EMI is not generated. A starter circuit initiates field excitation at startup, but the field is self-exciting during operation.
An off-the-shelf AC Propulsion traction motor was used for the initial tests which demonstrated satisfactory levels of output, efficiency, and control authority to justify moving ahead with a design based on the self-excitation, switched-capacitor concept. Based on successful testing of the control concept, a prototype alternator and control system design effort was initiated.
Sizing studies established that if the target operating speed is 5000 rpm , the standard length AC 150 motor could be used for the alternator. It was thought that by using un-modified motor components where possible, the design and validation requirements would be reduced and manufacturing processes already proven. The prototype alternator would differ from the production motor primarily in its stator windings. The stator would be configured for operation under the self-excitation control concept, and to optimize efficiency at the design operating point.

Consistent with the program objectives of low design cost, small size, and light weight, the control system was designed to use off-the-shelf components in a compact and easy to manufacture package. This necessitated careful layout of the componentry considering both overall size and heat rejection requirements. A custom designed circuit board was developed to minimize wiring and improve reliability.
Midway through the charging system development program, two design changes were indicated based on the results of testing activities (see under Tasks 3 below). The design changes were 1) conversion from a four-pole to an eight-pole design, and 2) modification of the stator design to implement a more efficient and robust control scheme. The simpler control strategy continued to use capacitors for phase shifting, but eliminated the capacitor switching function entirely. Alternator output control is achieved directly from closed loop control of engine speed. The steep slope of the alternator output/speed curve allows full control of output over a very narrow speed range as shown in Figure 2.

Figure 2 Charge system output vs speed characteristic
Upon receipt of the Moller engine, midway through the project, packaging studies led to the decision to change the alternator drive concept from direct, crankshaft drive to toothed-belt drive (see under Task 4 below). The necessity of using a belt drive created the opportunity to increase
the alternator operating speed by varying pulley diameters. At higher operating speed, the alternator can be smaller for the same output. The conversion to belt-drive required two significant changes to the alternator design. First, it was made smaller in both length and diameter to achieve optimal efficiency at the new operating point. Second, the belt-drive required a re-design of the end-plate at the pulley-end to accommodate a bearing capable of withstanding the loads imposed by the belt.
These changes represented a major departure from the original plan to use a direct-driven, slightly modified traction motor as the alternator. With the conversion to belt drive, the ability to achieve high parts commonality with motors, and the desired economies of scale were lost. The redesigned alternator, however did preserve the proven architecture of the traction motor design, and by operating it at a higher speed, size and weight were reduced.
To improve packaging and reduce cost, a shaft-driven cooling fan design was adopted after testing for air flow and efficiency determined that a satisfactory design could be produced at reasonable cost. The shaft-mount fan replaced the variable-speed, side-mounted centrifugal blower used for traction motor applications. The fan mounts to the end of the motor shaft and runs at shaft speed, providing air to ductwork running the length of the motor. Since the alternator runs primarily at high load, the loss of control of cooling fan output, compared to the pulse-width-modulation controlled blower used with the traction motor, does not cause a significant loss in efficiency. End-mounting the fan also improved packaging by freeing the space occupied by the side-mounted blower.

Task 2 - Construction of Prototype Alternator and Control System

Concurrently with the design effort, sourcing of components for the prototype alternator construction began. Most of these components were sourced to the same suppliers who produce components for standard AC Propulsion drive systems.
The first prototype used identical construction techniques and components, including the main housing, end plates, mainshaft, rotor, stator, and cooling shroud, as the traction motor from the AC-150 drive system. As a proven design, this approach eliminated component design as a variable in the initial evaluation of alternator control systems.
A total of three traction-motor-based prototype alternators, with additional variations on each, were constructed during the course of development. For initial tests, the first prototype belt-drive alternator was then made from cut down traction motor rotor and shaft. The smaller diameter winding was fitted to a shortened traction motor housing using a spacer sleeve.
Once the higher speed operation was validated the first prototype 7000 rpm alternator was constructed. The smaller size resulted in a weight savings of 40-50 pounds over the original traction motor. Even with the added weight of the belt drive system, meaningful weight and size reductions were achieved with the higher-speed unit.
Compared with the original traction unit, the final alternator differs in length, diameter, drive configuration, and 8-pole vs 4 -pole design. Despite these numerous changes, the final design maintains essentially similar architecture to the traction motor and can be produced with the same processes.

Task 3 - Test and development of charging system

Prior to completion of the first prototype alternator, a test alternator derived from an existing AC150 motor and modified according to the requirements of the self-excitation control scheme, was dynamometer tested to confirm the potential performance of the design approach. At the test operating point, the alternator performed according to design. On the dyno, output of 20 kW was achieved between 300 V and 390 V . Operating efficiency of 90% was achieved in these early tests.

The high efficiency observed promises to help realize low fuel consumption of the range extending generator and reduces the cooling requirements of the generator itself, thus providing packaging and cost benefits.

The prototype control system was debugged and dyno tested with the first prototype alternator. The prototype charging system successfully completed a series of tests of output, efficiency, operating temperature, and over-voltage and over-current protections. Again, the target output of 20 kW was achieved with efficiency at $90-91 \%$. All system protection circuits worked properly.
The system did not exhibit a temperature-related output loss that has been observed in modified aircraft alternators used in EV range extender service. Dyno testing did reveal a maximum winding temperature of $134^{\circ} \mathrm{C}$ after two hours of continuous operation. Although this temperature did not create any operational problems, a lower temperature was thought to be desirable. As a way to reduce winding temperature, the use of an eight-pole alternator design which trades iron losses for copper losses was investigated. A prototype eight-pole-wound alternator and control system was developed and tested. It operated at a winding temperature of $120^{\circ} \mathrm{C}$ with the same output and efficiency. An additional benefit of the eight-pole design is a weight reduction of at least 10 pounds. Although the eight-pole design diverges from the concept of building directly from the traction motor platform, the loss in commonality is justified by the temperature control and weight savings benefits.

A second eight-pole alternator with a simplified winding design was constructed for testing to determine the final alternator configuration. It successfully completed dyno testing at target power and efficiency levels. The eight-pole design was selected because of the advantages it offers in terms of cooler running as well as reduced weight.

Development testing revealed possible reliability problems with the alternator control system due to variability in capacitor switching relay specifications as delivered from suppliers. Efforts to eliminate the mechanism for the switching relay failures resulted instead in a modification to the control strategy that eliminates the need for capacitor switching at all. The revised system relies on closed-loop control of operating speed to regulate operating output. Full implementation of this control strategy required redesigned alternator components, but no other significant changes. The new control methodology results in a significant component cost reduction, and more robust control authority.

With the speed-based output control strategy, the prototype charging system again successfully completed dynamometer tests of output, efficiency, operating temperature, and over-voltage and over-current protections. The target output of 20 kW was achieved with efficiency at $90-91 \%$. All system protection circuits worked properly.

A series of tests over a range of typical operating speeds and voltages yielded the results shown in Table 1. During all testing, including extended operation at full output, winding temperature remained below $120^{\circ} \mathrm{C}$, an acceptable level for achieving good durability.

Table 1 Tested output and efficiency for range extending generator

Output Voltage (V)	Output Power $(\mathrm{kW} \mathrm{DC})$	Alternator Speed (rpm)	Electrical Efficiency
300	18.9	7100	90.5%
330	20.3	6900	91.0%
360	21.2	6800	91.0%
390	21.4	6900	91.0%

The charging control system was designed to cut alternator output as voltage approaches a specified threshold. In order to accommodate the rapid voltage rises associated with high regenerative braking power and to protect he batteries from voltage spikes, rapid response was built into the control system. The output characteristic of this charging system facilitates the necessary response because the steep power vs speed profiles shown in Figure 3 enable the full range of output control for both constant voltage and constant power operation to be achieved over a narrow range of operating speeds.

Figure 3 Output curves show complete output control can be achieved over a narrow rpm range

Task 4 - Integration of Charging System and Moller Engine

Moller International, Davis, California, was commissioned to deliver a rotary engine to serve as the power plant for an integrated power system using the charging system developed under Phase 1. The engine was ordered to the following specifications:

- Single chamber air-cooled rotary engine
- Electronic fuel injection system adaptable to AC Propulsion automatic load control
- Onboard 12 V starter
- Capable of sustained operation at $30 \mathrm{hp} @ 5000 \mathrm{rpm}$
- Engine to be in running condition as delivered

Although we had originally proposed the use of a water-cooled engine, Moller, recommended the use of an air-cooled version which required less lead time and simplified design of the test stand yet could still demonstrate the functionality of the range extending generator. Moller will be able to provide water-cooled engines in the future if required for specific applications.

The Moller engine was received June 27, 1997. Prior to delivery, the engine was fitted with electronic fuel injection and calibrated on a dynamometer for operation at the specified load and speed by Moller. Dyno tests at Moller revealed that engine cooling on the test stand may require auxiliary fans to control temperature during demonstrations.

Upon delivery of the Moller engine, an obstacle to the planned close-coupled mounting of the alternator became apparent. The Moller engine has no bell-housing or provision for mounting any kind of output device to the engine structure. The flywheel diameter is larger than the engine itself, so attachment of a bell-housing adapter to the engine would be difficult without extensive modification to the basic engine castings. Any such an adapter would possibly obstruct the flow path for the cooling air.
The engine and alternator could both be mounted to a single external frame, but without the ability to mate the alternator directly to the engine block, the mounting would not be rigid enough to hold the alignment tolerances required for close-coupled mounting of the alternator to the engine. This meant that close-coupled mounting was not possible. For any in-line mounting, an intermediate shaft with some compliance for misalignment would be required.

An alternative was to mount the alternator adjacent to the engine with shafts parallel, and drive it with a belt. This approach would result in a package as compact as the close-coupled configuration originally planned. The drive losses through the belt would reduce efficiency somewhat, but the opportunity to drive the alternator at a higher speed by varying pulley diameters would allow the use of a smaller and lighter alternator. The belt-drive approach was selected because it offered superior package characteristics compared to in-line mounting.
AC Propulsion designed a belt-drive using a 30 mm -wide, 8 mm -pitch drive-belt and commercially available drive-belt pulleys. Pulley sizes of 64 -tooth for the drive pulley and 44tooth for the driven pulley achieved the proper speed ratio between the engine and alternator and kept belt surface speed at an acceptable level. The drive pulley was mounted directly to the face of the existing flywheel to reduce the overhang of the drive belt tension load.

In order to feed the alternator mounting loads into the engine structure without distorting or over stressing the engine, a mounting plate designed to pick up six of the engine clamping bolts was fabricated from $0.40^{\prime \prime}$ thick aluminum. To this plate were attached the alternator mounting bosses that determined the correct alignment between the alternator and engine, and allowed the alternator to pivot to tension the drive belt. A second structural plate of $0.25^{\prime \prime}$ aluminum mounted to the fan and air duct housing provided added rigidity by taking the moments developed by the drive-belt tension.

The original alternator design assumed direct drive via coupling from the engine. In order to accommodate the side loads generated by the change to a belt drive system, the drive-end end plate was re-sized to accept a larger bearing. Both alternator endplates included mounting ears to attach to the engine bracket. The alternator shaft was redesigned to provide space for mounting the toothed belt pulley.

As completed, the belt-drive provided a way to use the Moller engine in a power system application without requiring extensive modifications to the engine itself, and achieved compact mounting of the alternator. A rotary engine designed for the RXG application could include engine structure for direct drive or belt drive with little if any cost penalty. A water-cooled version of the of the Moller engine is said to be under development and this would facilitate design of a more substantial engine structure by eliminating the need for high volume air flow for cooling.

Task 5 - Test and Development of Integrated Power System

For testing and demonstration purposes, the AC Propulsion alternator/Moller engine power system was mounted to a test stand. The stand accommodated laboratory fuel and exhaust systems. A resistive load with adjustable voltage and current control was used to simulate the traction battery and to dissipate the electric power generated.
The alternator, engine, fuel system and exhaust system were instrumented for monitoring and collecting power system operational data. Instrumentation included the following:

- Exhaust gas oxygen sensor
- Output voltage and current
- Gravimetric fuel flow
- Exhaust back pressure
- Engine speed
- Engie block, and cooling air temperature

In its first bench test, the power system started and ran. The belt drive required some adjustment to achieve proper alignment and tension, but was trouble-free thereafter.

The Moller fuel control system proved to be incompatible with the alternator control system due to the rapid transients required for automatic alternator output control. The fuel system could not track rapid throttle excursions without backfires or die-outs. This was a particular problem for startups when the alternator loads the engine quite suddenly. In order to obtain steady-state test data, manual control was used for all bench tests of the integrated power system. Operating results from the bench test demonstration are shown in Table 2.

Table 2 Results of range extending generator demonstration test

Measured Values	
Engine speed	4800 rpm
Output voltage	382 V
Output current	39.1 A
EGO sensor output	0.7 V
Exhaust backpressure	1.5 psi
Fuel consumption	$2.9 \mathrm{gm} / \mathrm{sec}$
Calculated Values	14.9 kW
Output power (kW)	$0.72 \mathrm{~kg} / \mathrm{kWh}$
Specific fuel consumption	

As shown, at the tested engine speed of 4800 rpm , wide-open-throttle operation produced electrical output of only 14.9 kW DC, compared to the 20 kW capability of the alternator. The engine did not have sufficient power to drive the alternator to its maximum output. Considering total losses in the charging system, engine output of no more than 23 hp was available. Discussions with Moller International indicated that higher output could be achieved at higher rpm, although rotor tip seal life deteriorates as speed increases. The fuel system calibration did not provide for higher speed operation so no test runs were made at higher rpm. At the observed maximum output level, engine temperature control required a large auxiliary air blower to augment the flow of the integral engine cooling fan.

Fuel consumption was higher than anticipated. Although the fuel injection calibration provided by Moller was fixed, adjustment to the throttle control linkage provided some control over airfuel ratio. In efforts to optimize fuel efficiency the linkage was varied over its range of adjustment. Over that operating range, output from the O 2 sensor indicated that the engine was operating near stoichiometry. The range of air-fuel ratio adjustment provided little variation in power or fuel consumption, suggesting that the fuel calibration was not the cause of high fuel consumption. Exhaust back-pressure was 1.5 psi , a reasonable value that would not cause excessive fuel consumption.

RESULTS

As the participant with CALSTART in the Electric Vehicle Range Extending Generator project, AC Propulsion designed, built, tested, and demonstrated a vehicular traction charging system well-suited for adaptation to hybrid electric vehicle applications. The purpose-designed charging system meets or exceeds the operating objectives established at project initiation for weight, power, output characteristics, and commercial potential as shown below.

- Power output of 20 kW DC continuous @ 300-390 volts
- Electrical efficiency of 91%.
- Total charging system weight of $28 \mathrm{~kg}(62 \mathrm{lb})$.
- Total charging system size of 15 liter (0.53 cu ft).
- Rapid response output control to protect system electronics and provide compatibility with regenerative braking
- Design adaptability to other battery voltages, power levels, and input speeds

Charging system specific output of $0.71 \mathrm{~kW} / \mathrm{kg}(0.33 \mathrm{~kW} / \mathrm{lb})$ and power density of $1.3 \mathrm{~kW} /$ liter ($38 \mathrm{~kW} / \mathrm{cu} \mathrm{ft}$) make it ideal for either range extending trailers for electric vehicles, or integrated hybrid electric vehicles where packaging and weight constraints limit the applicability of less compact designs. The design simplicity, low-cost AC-induction design, and robust control algorithm will offer advantages in terms of cost, reliability, durability, and maintainability.

An additional project objective, to demonstrate the charging system in operation coupled to a Moller rotary engine, was completed, but the output and fuel efficiency of the generator-set combination fell below expectations. At wide-open-throttle, maximum output was 14.9 kW DC at engine speed of 4800 rpm . The air-cooled Moller design could not sustain even this output without an auxiliary blower. Including the power to operate the blower would decrease net output and efficiency somewhat. The necessity for additional cooling power, precludes a meaningful calculation of power density for the generator-set combination.

The specific fuel consumption for the generator set combination, $0.72 \mathrm{~kg} / \mathrm{kWh}$, is high for this type of application. Commercial generator sets offer specific fuel consumption values in the range of $0.25-0.45 \mathrm{~kg} / \mathrm{kWh}$. Rotary engines are not noted for good fuel efficiency, but improvements over observed values should be possible. Optimization of fuel efficiency was not included in the scope of this project, and considerable development effort would be required to improve fuel consumption of the Moller engine to an acceptable value.

OUTLOOK

During the execution of work for this project, the commercial prospects for both pure electric vehicles, and for hybrid-electric vehicles expanded significantly. Although still lagging behind EVs in terms of commercial realization, HEVs have enjoyed great exposure in the form of concept vehicles, and automakers seem committed to introducing HEVs to the market.

Most HEVs from automakers use the parallel-hybrid design that relies on the thermal engine for some or most of the motive power and uses the electrical drive primarily for the recapture and use of braking energy. This is a logical approach because it represents an evolutionary departure from the type of drive system currently produced by automakers and accepted by the market.

The series-hybrid vehicle is the more radical departure from conventional vehicle design because it requires a fully capable electric drive system. As a result, it offers the advantage of being able to operate entirely on stored electrical energy for a significant distance, eliminating exhaust, noise, and thermal emissions while doing so. The series-hybrid represents the greater challenge from a packaging standpoint because it requires a much larger battery than the parallel hybrid. The necessity to package a high-output generator-set in what is essentially a pure EV requires that every component be designed with consideration for packaging constraints.

The charging system developed for this project provides high specific output and high power density, both of which are essential for resolving the component packaging challenges inherent in
series-hybrid vehicle design. At 20 kW , the output of this development unit is sized for the roadload requirements of compact-size passenger cars. The alternator design and control methodology, however, are adaptable to units of 10 to 50 kW or higher.

The generator-set using the Moller engine demonstrated a compact and lightweight power unit. As noted, however, its performance fell short of requirements in both power and efficiency. Development of a thermal engine to power the alternator requires attention to specific output, specific fuel consumption, and application packaging requirements. The charging system developed here is intended to provide the design engineer with maximum adaptability and packaging flexibility to meet the difficult packaging requirements of series-hybrid vehicle design.

AC Propulsion plans to market the charging system developed during the course of this project. Two applications are evident, charging systems for series hybrid electric vehicles, and range extending trailers for pure electric vehicles. Series hybrid vehicles differ from parallel hybrids by offering useful range and performance on battery power only. This capability is critical for vehicles whose mission requires at least some operation without exhaust, thermal, or noise emissions. Industrial equipment, buses, and military vehicles, as well as passenger vehicles may find benefits from series-hybrid operation.

The other application for the charging system is the range extending trailer. AC Propulsion has constructed and tested a trailer using a 500 cc motorcycle engine for power. The generator set combination produces 22 kW DC output with good fuel economy and low emissions. That power level can supply average road-load requirements for an efficient EV operating at 70 to 75 mph , and thus sustain battery charge indefinitely. Such performance makes all-day driving, by EV, practical, efficient, and convenient.

The range extending trailer concept represents a real stretch for traditional automakers, and for consumers too. Drivers who have accumulated considerable EV mileage, however, readily acknowledge the benefits of a detachable power system for long trips. Two major automakers have expressed interest in testing the trailer concept, and AC Propulsion plans demonstrations and additional development of range extending trailer technology.

APPENDIX - HARDWARE PHOTOGRAPHS

Photo 1 - The 20 kW , 7000 rpm alternator is an 8-pole, AC induction design. It is air-cooled with an integral, shaft-mounted cooling fan. The alternator may be beltdriven, as shown here, or coupled directly to the output shaft of the drive engine. The design can be readily re-sized for operation at other speed or output ratings. This unit weighs 25 kg . Dimensions are 280 mm length, and 230 mm diameter.

Photo 2 - The 20 kW control unit operates with self-excitation and uses capacitors (shown at right)for phase shifting. The simple control strategy using low-cost componentry keeps the controller small (255 x $185 \times 107 \mathrm{~mm}$) and light (3 kg).

Photo 3 - The Moller rotary engine is an air-cooled single rotor Wankel type. For this application it was fitted with timed electronic fuel injection and a 12 V electric starter motor. An automotive style exhaust system was used. Fuel was 50:1 gasoline/oil premix.

Photo 4 - The beltdrive uses a 30 mm x 8 mm -pitch drive belt and operates at a 1.4:1 speed multiplication ratio. The alternator support structure mounts directly to the Moller engine. A revised shaft and drive-end bearing carrier were the only modifications required to convert the alternator from direct drive to belt-drive.

Photo 5 - Dynamometer testing was used to determine critical design features of the range extending alternator and control system. Eight different configurations were tested during the design and development phase. The final design, shown here, produces 20 kW DC over a voltage range of 300 V to 390 V with efficiency of 90% to 91%.

Photo 6 - Demonstration of the power system was fully instrumented to measure operating performance. From left to right: oscilloscope used to measure engine speed, fuel injection timing and pulse-width, and ignition timing; engine stand instrumented for output voltage and current, engine block temperature, exhaust oxygen sensor voltage, and exhaust backpressure; gravimetric fuel mass flow measurement apparatus; and air-cooled resistive load for dissipation of alternator output. In the demonstration, the maximum electrical output observed was 14.9 kW DC due to power limits of the engine. Fuel consumption was $0.72 \mathrm{~kg} / \mathrm{kWh}$.

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

APPENDIX

AVCON

FINAL TEST REPORT U.S. Government by a contractor's "limited rights" statement, or received with the understanding that it not be routinely transmitted outside the U.S. Government. Other requests for this document shall be referred to DARPA/Technical Information Officer.

AVCON

Final Test Report

for

CALSTART

TABLE OF CONTENTS

1.0 PURPOSE and SCOPE: 1
2.0 APPLICABLE DOCUMENTS: 1
3.0 ATP TESTS: 1
3.1 PWM Power Amplifier Optimization (Sec. 6.2.4 Ref 2.1): 2
3.2 Flux Coil AC Calibration: 2
3.3 Sensor Noise Measurement (Sec. 6.3.4 Ref 2.1) 2
3.4 Transfer Function Measurements (Sec. 7.2 Ref 2.1) 2
4.0 EDDY CURRENT MEASUREMENTS: 3
4.1 Coast Down Testing 3
4.2 Bearing Rotating Loss Calculation 3
4.3 Windage Loss Calculation 5

1.0 PURPOSE and SCOPE:

The purpose of this test report is to present test set up, test data, and conclusions of the tests conducted on the Eddy Current Tester. This report constitutes Task 12 of the "Program to Minimize Losses in Mechanical Batteries for Electric Vehicles".

2.0 APPLICABLE DOCUMENTS:

Acceptance Test and Controller Optimization Procedure (ATP) for Avcon Magnetic Bearing Systems: AVCON DWG NO. 90-10308, Rev. Prel. B.

3.0 ATP TESTS:

This section defines the test setups \& tests conducted on the Magnetic Bearing System that was used for the Eddy Current tests. These tests were conducted in accordance with Test Procedure referenced in section 2.1. Figure 1 presents a layout of the test rig.

Figure 1. Test Rig System Assembly

3.1 PWM Power Amplifier Optimization (Sec. 6.2.4 Ref 2.1):

The PWM Power Amps (PA) were optimized for Band Width (BW) in accordance with Section 6.2.4 of the ATP (Ref 2.1). With R28 $=330 \mathrm{k} \mathrm{OHM}$, on the PA maximum BW of the PA can be realized without gain peaking. Test data for this section is given in APPENDIX 1A. Test set up is given in Figure 2.

Figure 2. Power Amplifier Transfer Function

3.2 Flux Coil AC Calibration:

Test data is given in APPENDIX 1B.
3.3 Sensor Noise Measurement (Sec. 6.3.4 Ref 2.1)

The purpose of this test is to measure sensor signal to noise ratio in presence of PWM power amplifiers. The test is conducted in accordance with the ATP (Ref 2.1). Test data is given in APPENDIX 1C.

3.4 Transfer Function Measurements (Sec. 7.2 Ref 2.1)

The compensator (DSP Card), System Open Loop, Closed Loop, etc., transfer functions, identified in Section 7.2 (\& its sub sections) of the ATP (Ref. 2.1) were measured. Test data is given in APPENDIX 1D.

4.0 EDDY CURRENT MEASUREMENTS:

4.1 Coast Down Testing

With the test rig assembled and installed in the spin pit, the system was spun up to a peak speed of $11,100 \mathrm{rpm}$ and the motor disengaged. The coast down time to zero speed was then recorded. This data is presented in Appendix 2. Also recorded are the ac and dc currents in the system during testing. The ac currents would be due to unbalance response of the bearings. DC currents would be due to the static load of the shaft on the bearings and any catcher bearing-magnetic bearing misalignment in the system. The system for this testing was centered in the catcher bearings to minimize any contact during spin testing. Position power spectrums are also included to indicate that no instability is present in the system.

The final set of test data utilizes the optimized bearing configuration. Once this bearing was installed, the testing was conducted in the same manner as all previous testing.

4.2 Bearing Rotating Loss Calculation

Coast down testing includes the effects of bearing eddy current and hysteresis losses, as well as windage losses. In order to determine the net contribution of windage and electrical losses in the overall resistance of a shaft rotating while suspended by magnetic bearings, the windage loss must be subtracted from the test data

The test fixture was run in two separate configurations. The first configuration was with open slots in the magnetic bearing stator. In the second configuration, slot wedges were installed into the slot openings with the attempt to reduce eddy current losses. There was no appreciable difference between the performance of the two configurations.

The graph in Figure 3 shows the total power loss from the test data (data), the calculated windage loss from analysis (windage), and the resulting loss which is the difference of the two (e-power). What this shows is for this test rig windage is a small contributor to total rotating power loss. While the electrical losses are dominate, they are still very low for the magnetic bearings, on the order of 10.25 watts at $10,000 \mathrm{rpm}$ for both bearings, or 5.125 watts per radial bearing. Table 1 presents the windage loss calculation. Table 2 presents this calculation for the bearing losses.

CALSTART: Power Loss vs. Rotor Speed

Figure 3. Bearing Rotating Power Loss
Table 1. Windage Power Calculation Data

PREDICTED RESULTS - WINDAGE								
n (rpm)	Cd1	Cd2	Cd3	Cd4	Cd5	wdot	dt	power
10000	0.00885	0.01396	0.00444	0.00531	0.00703	0.654	0	2.405
9500	0.00898	0.01421	0.00450	0.00537	0.00713	0.618	82	2.090
9000	0.00912	0.01449	0.00454	0.00544	0.00723	0.563	89	1.802
8500	0.00927	0.01478	0.00460	0.00551	0.00734	0.509	98	1.541
8000	0.00943	0.01512	0.00466	0.00559	0.00745	0.459	108	1.306
7500	0.00962	0.01546	0.00472	0.00567	0.00758	0.410	121	1.094
7000	0.00982	0.01585	0.00480	0.00577	0.00772	0.364	135	0.907
6500	0.01004	0.01628	0.00487	0.00587	0.00788	0.320	153	0.741
6000	0.01029	0.01677	0.00496	0.00598	0.00805	0.279	175	0.595
5500	0.01056	0.01733	0.00506	0.00611	0.00825	0.240	202	0.470
5000	0.01088	0.01797	0.00517	0.00625	0.00847	0.204	236	0.362
4500	0.01124	0.01872	0.00529	0.00642	0.00873	0.170	280	0.272
4000	0.01167	0.01961	0.00544	0.00661	0.00903	0.139	339	0.198
3500	0.01219	0.02068	0.00561	0.00684	0.00938	0.111	419	0.138
3000	0.01283	0.02203	0.00582	0.00711	0.00982	0.085	535	0.091
2500	0.01364	0.02379	0.00608	0.00746	0.01037	0.063	709	0.056
2000	0.01474	0.02623	0.00642	0.00792	0.01112	0.043	992	0.031
1500	0.01636	0.02991	0.00690	0.00858	0.01219	0.027	1504	0.014
1000	0.01908	0.03643	0.00767	0.00964	0.01397	0.014	2602	0.005
500	0.02545	0.05297	0.00931	0.01195	0.01797	0.004	5789	0.001

The fact that the slot wedges for the improved design made no difference in performance points to one of three possible reasons; (1) The wedges are not effective, though the analysis shows they significantly reduce the changes in field at the air gap; (2) The losses in the conventional bearing are low enough that the improvement made by the wedges is so minimal that it is not apparent in the test data; (3) the control coil offsets to maintain the shaft position and the ac unbalance control fields in this system generate the dominate eddy currents. The most probable is item 3. This can only be verified by running additional testing at various offset positions to quantify the effect of control coil currents on system performance.

Table 2. Bearing Power Calculation Data

time	rpm	w	t-ave	alpha	w-ave	power- watts	rpm-ave	windage- watts	e-power
0	11100	1162.4	26.5	3.557	1068.1	13.334	10200	2.531	10.803
53	9300	973.9	69.5	2.856	926.8	9.290	8850	1.724	7.566
86	8400	879.6	110.5	2.565	816.8	7.353	7800	1.221	6.132
135	7200	754.0	158.5	2.005	706.9	4.975	6750	0.824	4.151
182	6300	659.7	209	1.745	612.6	3.753	5850	0.558	3.195
236	5400	565.5	258.5	1.396	534.1	2.617	5100	0.384	2.233
281	4800	502.7	304.5	1.337	471.2	2.211	4500	0.272	1.939
328	4200	439.8	354	1.208	408.4	1.732	3900	0.186	1.546
380	3600	377.0	409	1.083	345.6	1.314	3300	0.119	1.195
438	3000	314.2	469.5	0.997	282.7	0.990	2700	0.07	0.920
501	2400	251.3	535	0.924	219.9	0.713	2100	0.036	0.677
569	1800	188.5	606	0.849	157.1	0.468	1500	0.014	0.454
643	1200	125.7	734	0.690	62.8	0.152	600	0.002	0.150
825	0	0.0	412.5	0	0	0	0	0	0.000

4.3 Windage Loss Calculation

Windage Power loss $=\mathrm{P}=(1.356$ watt-sec $/ \mathrm{ft}-\mathrm{lb}) \pi \mathrm{C}_{\mathrm{d}} \mathrm{pr}^{4} \omega^{3} / \mathrm{g}$ (in watts)
Ref. "Prediction of Windage Power Loss in Alternators" by James E. Vrancik; NASA TN D-4849

Modified for Calstart:

$$
\left.\mathrm{P}=(1.356 \text { watt-sec } / \mathrm{ft}-\mathrm{lb}) \pi \rho \omega^{3} / \mathrm{g}\left(r_{1}^{4} l_{1} C_{d 1}+r_{2}^{4} l_{2} C_{d 2}+r_{3}^{4} l_{3} C_{d 3}+r_{4}^{4} l_{4} C_{d 4}+r_{5}^{4} l_{5} C_{d 5}\right) \text { (watts }\right)
$$

Where $\mathrm{C}_{\mathrm{d}}, \mathrm{r}$ and l are for the following locations:

1. Magnetic bearing rotor/stator gaps
2. Back-up bearing gaps
3. Large rotor dia not in gap
4. Center section dia
5. Motor rotor
$\rho=$ air density $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
$\mathrm{r}=$ radius of shaft (ft)
$\omega=$ angular velocity ($\mathrm{rad} / \mathrm{sec}$)
$\ell=$ length of air gap (ft)
$\mathrm{g}=$ gravitational acceleration $\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)$
$\mathrm{C}_{\mathrm{d} 1}, \mathrm{C}_{\mathrm{d} 2}=$ Drag coefficient defined by equation $\mathrm{A}: 1=\sqrt{C_{d}}\left[2.04+1.768 \ln \left(N_{R} \sqrt{C_{d}}\right)\right]$
$\mathrm{C}_{\mathrm{d} 3}, \mathrm{C}_{\mathrm{d} 4}, \mathrm{C}_{\mathrm{d} 5}=$ Drag coefficient defined by equation $\mathrm{B}: 1=\sqrt{C_{d}}\left[-0.6+4.07 \log _{0}\left(N_{R} \sqrt{C_{d}}\right)\right]$
Hint: use excel and range C_{d} from .0001 to .0600 incrementally.
$\mathrm{N}_{\mathrm{R}}=$ Reynolds Number $=\mathrm{VD} \rho / \mu$
$\mathrm{V}=$ velocity of air $\approx(\omega \mathrm{r} / 2)(\mathrm{ft} / \mathrm{hr})$
$\mathrm{D}=$ hydraulic diameter $=2 \mathrm{X}$ gap in (ft)
$\mu=$ air viscocity (lb/ft-hr)
$\rho=\operatorname{air}$ density $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
$\mathrm{n}=$ rotor speed in rpm

Reynolds number calculation: (assume ambient air is at 1 atm and $70^{\circ} \mathrm{F}$)
$\omega=\mathrm{n}(\mathrm{rpm})(2 \pi \mathrm{rad} / \mathrm{rot})(60 \mathrm{~min} / \mathrm{hr})=2.977 \mathrm{E} 6 \mathrm{rad} / \mathrm{hr}$
$\mathrm{V}=\omega \mathrm{r} / 2(\mathrm{ft} / \mathrm{hr})$
$\mathrm{D}=2 \delta(\mathrm{ft})$
$\rho=.075 \mathrm{lb} / \mathrm{ft}^{3}$ at $70^{\circ} \mathrm{F}$ and 1 atm
$\mu=.043 \mathrm{lb} / \mathrm{ft}-\mathrm{hr}$ at $70^{\circ} \mathrm{F}$ and 1 atm
N_{R} (for gaps) $=\mathrm{VD} \rho / \mu$ (dimensionless)
N_{R} (for open dia's) $=\omega \mathrm{r}^{2} \rho / \mu$ (dimensionless)

Energy $=1 / 2 \mathrm{~J} \omega^{2}$
Power $=\frac{d E}{d t}=J \omega \dot{\omega}$; for a shaft spinning down due to resistance.
Equating the two equations for power we obtain a relationship for ω :

$$
\dot{\omega}=\frac{\pi \rho \omega^{2}}{J g}\left(r_{1}^{4} l_{1} C_{d 1}+r_{2}^{4} l_{2} C_{d 2}+r_{3}^{4} l_{3} C_{d 3}+r_{4}^{4} l_{4} C_{d 4}+r_{5}^{4} l_{5} C_{d 5}\right)
$$

ω was calculated from the test data by using the following relationship for small increments:
$\dot{\omega}=\frac{\omega_{i}-\omega_{i+1}}{t_{i+1}-t_{i}}$; The numerator operators were reversed to result in a positive deceleration.

APPENDIX 1A

OM OO		0	
1 Ш-			
N\\| 世N		∇	
110 L	m	\cdots	
$\times>$	0	1	

$r A \neq 2$

$\mathrm{v}_{0}^{\text {O }}$
I, 0
mo

0
0
0
0
$\mathbf{1}$

DI
0
0
$F \times d$

 $\frac{y}{\nabla}$

Swapt Sine 100 mV PR
$R 28=100 K$
dB
10
1
\vdots
\vdots
LONOO

-MOO

$R 28=5$

$\frac{\mathrm{y}}{m}$

PA XPR FAR
$R 28=\frac{\operatorname{sen}}{470<}$

	$\begin{array}{l\|l} \hline i & 1 \end{array}$
	$\frac{1}{1+1}$
\cdots	1-wil
'	1 1 11
	- M
cossent ${ }^{-}$	

$\begin{array}{r}v \\ 0 \\ \hline\end{array}$

APPENDIX 1B

$1 K$

Deg

$\stackrel{\rightharpoonup}{*}$

0
0
0
0
1
0
$\begin{array}{cc}0 & > \\ 0 & \\ +1 & 0 \\ 1 & X \\ & 1\end{array}$
01
0
0

$S 1 p=18.3485$ dB/Dec

-yl Flux Car

Flux/comisnd

0
0
0
-1
1
dB

2l

$\stackrel{Y}{N}$

$5 \prod^{T}$
$X) C$ BOARD (YEL/BCK)
$-X I$ FuxCOL (WHT/BLK)
SIp $=18.7282 \mathrm{~dB} / \mathrm{Dec}$

$\square \square \frac{\mathrm{v}}{\mathrm{N}}$

$3 / 11$,
$11: 25 \mathrm{am}$.

 $100 \mathrm{~m} V_{\text {PK }} S_{\text {WEPT }} S_{\text {IN }}$
 SIp=18.761 dB/Dec

\%
BK-16.
FLUX/COMmANDT

0000	0	
- 山 -		
N\\| 氏10	0	

dB
0
0
0
0

0 0 0

0
0
+
1

$$
\begin{aligned}
& 3.148 \\
& 8.47 \mathrm{an}
\end{aligned}
$$

$$
\frac{L_{2}^{2}}{L_{2}^{N}}
$$

$$
100 m v_{p k}
$$

dB ${ }^{56.0}$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$1 \quad 1111111$	1	1111111	
	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	1	1111	
	111111		$1-1111$	
		1	1111111	
	1111		$1 \quad 1 \quad 1 \quad 1 \quad 1$	
-8.0	$1+9+1$	1 1	$1+1+1$	
	$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 11$	$1 \quad 1$	$1 \quad 1 \quad 1 \quad 1 \quad 11$	
	20	Log Hz		2k
Yロ=-114.31 Deg Slp=-29.159 Deg/Dec				
Phase				
	$\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$i \quad 1$	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
	$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 11$	1	$1 \begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	
	1111	1	11111	
	11111	1	1.11111	
	111111	1.1	$1 \quad 11111$	
Deg	1111	1	111	
	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	1 1	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}$	
	$\underline{+1+1++}$			
	11111	P-1	1111111	
-180	1111111	1	11171	
Fxd Y 20		Log Hz		
		2 K		

$100 \mathrm{~m} V_{\text {PK }}$ Surdt Sine
dB
N
I 0
0
0
00
00
Flix / Command

encsi

m
0

APPENDIX 1C

PsD: Ch-3 (TPKBX)

010 Шо	O	$>$			\bigcirc	
013 .		$\cdot \mathrm{H}$				
- $\\|$ ON	∇	-		0	∇	
\|	0 - 10		人	@	EN	∞
$\times>$			0	L >		

APPENDIX 1D

01
0
0
ㅇ/1798

0	
0	
0	0
0	0
\square	0

-180
$F \times d \quad Y$

RESP

$d B$

2K

			$\frac{Y}{\mathrm{~V}}$

1D-17

ம00 0		\bigcirc		
O1 山		\bigcirc		
- $\\|$ ¢O		\checkmark		
$\\|$ \\| L	@			
×>	0			

 －\times
$\stackrel{\omega \wedge}{\wedge} \stackrel{山}{\pi}$

$\frac{\infty}{n} \underset{i}{\infty}$

1

$23 d b$ A / N $x_{2}=-$ $y_{2}=-1.2$

-

APPENDIX 2

CALSTART: TEST DATA SHEET

MOTOR STATUS: \square ENGAGED / DISENGAGED
Rhan datatatanemy_-Asif
-

CALSTART: TEST DATA SHEET

Rure $4-8-98-1$

CALSTART: TEST DATA SHEET

CURRENT MONITOR MEASUREMENTS

ITEM\#	SPEED Hz	TIME	CURRENT MONITOR MEASUREMENTS							
			X1		Y1		X2		Y2	
			Vdc	Vac	Vde	Vac	Vdc	Vac	Vdc	Vac
	18	9.15 an	28	16	18	. 18	. 04	098	39	08
	160	$9: 15: 48$. 28	. 88	-. 07	.211	. 035	.113	356	. 087
	135	5:16:44	.282	. 197	-. 070	. 219	040	123	. 345	. 089
	120	9:17:20	. 282	.193	-. 070	. 210	.040	. 134	. 389	. 090
	110	$9: 17: 55$. 280	. 185	-. 069	- 190	040	. 125	. 395	087
	95	$9: 18: 43$. 280	145	-.070	. 135	035	105	349	082
	85	$9: 19: 23$. 280	125	-. 069	. 115	039	093	. 359	080
	75	$9: 20.01$. 278	. 082	-.069	. 07 +	. 03.9	059	. 398	075
	65	$9: 20: 56$	228	. 064	-. 065	058	. 039	.035	. 399	064
	55	9:21:48	. 279	. 041	-. 06.9	. 040	035	. 032	. 399	045
	50	9:22:01	.278	. 038	$-.065$.037	035	. 031	1.400	. 043
	40	9:23:20	278	. 023	-.068	. 024	. 041	. 024	.402	031
	30	9:24:26	. 278	. 017	-. 069	. 025	. $0+0$. 030	.401	. 027
	25	9:25:05	279	. D14	-.069	. 014	041	. 019	1402	. 024
	20	7:25:44	. 280	013	-.069	.013	044	.019	.404	. 022

$$
\text { Run } \cdot 4-8-98-2 \quad 2-13
$$

CALSTART: TEST DATA SHEET
ITEM\# SPEED TIME CURRENT MONITOR MEASUREMENTS

ITEM\#	SPEED Hz	TIME	CURRENT MONITOR MEASUREMENTS							
			X1		Y1		X2		Y2	
			Vde	Vac	Vdc	Vac	Vdc	Vac	Vdc	Vac
	123	$8: 54 \mathrm{am}$.28	. 195	-. 07	208	. $0+$. 127	399	. 088
	100	9:00	. 281	.154	$-.07$	144	. 039	.109	. 359	. 085
	85	9.01	279	114	-07	. 10	. 035	. 08	359	. 08
	75	$9: 02$	28	. 086	-.06 5	. 076	. 038	. 061	- 399	. 075
	60	$9: 03$. 277	. 051	-.069	. 047	. 039	. 036	- 38	. 051
	45	9:04	. 278	. 029	-. 069	. 03	044	4 4.025	. 359	. 035
	30	9.04	277	. 014	-064	018	. 039	. 021	4	. 024
	de 15	9108	. 282	. 01	-.071	- 01	- $0+5$. 015	.402	- 018
	5	4:09	. 288	.058.005	- 0	- ${ }^{. \infty 6}$. at	$6^{-\infty}$. 4	007
		$9: 10$	STOR							

MOTOR STATUS: \square ENGAGED $/ \square$ DISENGAGED data taken by: Mrhimiued

PREDICTERD RESULTS - WINDAGE								
$\mathrm{n}(\mathrm{rpm})$	Cd 1	Cd2	Cd3	Cd4	Cd5	wdot	dt	power
10000	0.00885	0.01396	0.00444	0.00531	0.00703	0.654	0	2.405
9500	0.00898	0.01421	0.00450	0.00537	0.00713	0.618	82	2.090
9000	0.00912	0.01449	0.00454	0.00544	0.00723	0.563	89	1.802
8500	0.00927	0.01478	0.00460	0.00551	0.00734	0.509	98	1.541
8000	0.00943	0.01512	0.00466	0.00559	0.00745	0.459	108	1.306
7500	0.00962	0.01546	0.00472	0.00567	0.00758	0.410	121	1.094
7000	0.00982	0.01585	0.00480	0.00577	0.00772	0.364	135	0.907
6500	0.01004	0.01628	0.00487	0.00587	0.00788	0.320	153	0.741
6000	0.01029	0.01677	0.00496	0.00598	0.00805	0.279	175	0.595
5500	0.01056	0.01733	0.00506	0.00611	0.00825	0.240	202	0.470
5000	0.01088	0.01797	0.00517	0.00625	0.00847	0.204	236	0.362
4500	0.01124	0.01872	0.00529	0.00642	0.00873	0.170	280	0.272
4000	0.01167	0.01961	0.00544	0.00661	0.00903	0.139	339	0.198
3500	0.01219	0.02068	0.00561	0.00684	0.00938	0.111	419	0.138
3000	0.01283	0.02203	0.00582	0.00711	0.00982	0.085	535	0.091
2500	0.01364	0.02379	0.00608	0.00746	0.01037	0.063	709	0.056
2000	0.01474	0.02623	0.00642	0.00792	0.01112	0.043	992	0.031
1500	0.01636	0.02991	0.00690	0.00858	0.01219	0.027	1504	0.014
1000	0.01908	0.03643	0.00767	0.00964	0.01397	0.014	2602	0.005
500	0.02545	0.05297	0.00931	0.01195	0.01797	0.004	5789	0.001

RUN \#1										
time-sec	rpm	w	time-ave	alpha	w-ave	power-watts	rpm-ave	windage-watts	e-power	
0	7800	816.8	30	2.618	738.274	6.784	7050	0.926	5.858	
60	6300	659.7	96.5	1.721	596.903	3.607	5700	0.495	3.112	
133	5100	534.1	167	1.386	486.947	2.369	4650	0.299	2.070	
201	4200	439.8	226	1.257	408.407	1.801	3900	0.186	1.615	
251	3600	377.0	280.5	1.065	345.575	1.292	3300	0.119	1.173	
310	3000	314.2	340	1.047	282.743	1.039	2700	0.07	0.969	
370	2400	251.3	405.5	0.885	219.911	0.683	2100	0.036	0.647	
441	1800	188.5	480.5	0.795	157.080	0.439	1500	0.014	0.425	
520	1200	125.7	563.5	0.722	94.248	0.239	900	0.004	0.235	
607	600	62.8	630	0.683	47.124	0.113	450	0.001	0.112	
653	300	31.4	681.5	0.551	15.708	0.030	150	0	0.030	
710	0	0	355	0.000	0.000	0.000	0	0	0.000	

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

APPENDIX
GLACIER BAY
FINAL REPORT

Distribution Statement B: Distribution authorized to U.S. Government agencies only to protect information not owned by the U.S. Government by a contractor's "limited rights" statement, or received with the understanding that it not be routinely transmitted outside the U.S. Government. Other requests for this document shall be referred to DARPA/Technical Information Officer.

Glacier Bay Environmental Control System for Electric and Hybrid Vehicles (ECS) Calstart/DARPA FY'96

Final Report
April 10, 1998

Introduction

The mobile heating and air conditioning systems in use today on internal combustion vehicles do not lend themselves to efficient application in the EV market. To date, numerous attempts have been made to try to adapt these systems by making rudimentary changes in one or two of the primary components. In a through analysis of these adapted systems, EPRI (Air Conditioning For Electric Vehicles, TR-102657) found them to be both underpowered and remarkably inefficient. The most efficient unit tested averaged an EER (Energy Efficiency Ratio, BTU/hr output divided by watts input) of only 6.17 . This means that it required 30% more energy than would be expected of a common home window air conditioner.

While the air conditioning systems were proving problematic, the heating systems were not much better. This was particularly true for purely electric vehicles which were relying on either electric "heat pump" systems or, fossil-fueled forced-air systems designed as supplemental heaters for trucks and boats. A report issued by M.J. Bradley and Associates, following extensive heater testing by the Northeast Advanced Thermal Management Project found all but one heater to wholly inadequate to the task of properly heating Geo Metro in a Northeast winter climate. None of the systems tested could be integrated into the air conditioning system and all systems tested were found to be overly complex and too large to easily install.

With an emerging EV market, the need for a powerful, efficient, purpose-built EV environmental control system is apparent. Under a co-operative funding grant from DARPA (administered through Calstart), Glacier Bay began the work of applying the high-efficiency cooling technologies, which Glacier Bay had previously applied to the marine industry, to the development of a system that would fulfill this need. The result was the Glacier Bay Environmental Control System for Electric and Hybrid Vehicles (ECS).

Project Goals

The original goals of the project were;
Dramatically reduced energy consumption - Preliminary computer modeling and proof-ofconcept testing indicated that the Glacier Bay Environmental Control System would operate at an EER of 11.22 under severe driving conditions and 15 under average conditions. At these levels of efficiency the Glacier Bay Environmental Control System for EVs would require 55\%
less energy than best EV air conditioning systems available. Under the same operating conditions, the most efficient vehicle air conditioning system identified in EPRI's investigation (Air Conditioning Systems for Electric Vehicles, EPRI-TR102657) averaged an EER of only 6.17.

Reduced space requirement and lighter weight - Through the use of a small displacement, high-speed integrated compressor and high efficiency condenser/ evaporator designs, a reduction of 50% in the total size and weight of the system was projected.

Reduced maintenance and improved reliability - Leaking fittings as well as moisture and gas permeation of rubber hoses are the leading contributors to poor reliability of automobile air conditioning systems. By designing the Glacier Bay ECS as the first 100% hermetically sealed vehicle environmental control system, the refrigerant leaks, moisture contamination, brush wear and belt adjustments which plague existing systems would be eliminated entirely.

Increased heat output in cold climates - Based on research done by EVermont and others, it was determined that a minimum heater output of $5 \mathrm{kw}(17,000 \mathrm{Btu} / \mathrm{hr})$ would be required. The fossil-fuel fired heater would be compatible with both propane and natural gas providing much lower emissions than that of diesel-fired heaters.

Easily and inexpensively adapted to a wide range of voltage inputs - The system would be easily produced for operation from a wide range of input voltages thus effectively eliminating this restricting factor in capturing the low-volume production markets.

Accomplishments

Following is a point-by-point tally of the project's success in meeting the originally established goals;

Dramatically reduced energy consumption - Glacier Bay Environmental Control System achieved an EER of 11.36 under severe driving conditions and 15.80 under average conditions thus exceeding the original program goals by 5%.

Reduced space requirement and lighter weight - The Glacier Bay ECS components total 60.82 lbs . When compared with a typical combined heating and air conditioning system weight of $122.3 \mathrm{lbs}^{1}$, the ECS represents a weight reduction of 51.3% thus meeting the project goal.

Reduced maintenance and improved reliability - The Glacier Bay ECS successfully achieved a 100% hermetically sealed design, thus meeting this goal.

[^1]Increased heat output in cold climates - The Glacier Bay ECS achieved an output of 5.97 kw ($20,361 \mathrm{Btu} / \mathrm{hr}$) in a liquid circulating, fossil-fuel fired heater design thereby exceeding the original goals with a 19% over-capacity. Additionally, the heater was demonstrated to be compatible with both propane and natural gas fuels.

Easily and inexpensively adapted to a wide range of voltage inputs - In its final design, the Glacier Bay ECS is a system which can be easily produced for operation at any input voltage from 98 to 425 vdc . Adaptation to various voltages is accomplished through with a wide input voltage motor controller. To match any input voltage in the operating range requires only that the correct motor windings be used. This ease of production customization meets the original goal.

Review of work performed

The broad purpose of the work in this project was to successfully adapt Glacier Bay high-efficiency DC technology to an environmental control system suitable for the electric vehicle market. To apply this adapted technology in a complete fully-operational system, and to demonstrate that system in two sets of independently documented tests. To this end, the work was divided into three task areas;

> Task 1 - Design and production of the major system components
> Task 2 - Design and production of installation-specific system components Task 3 - Performance testing

Specifically, the work performed in the individual task areas was;
Task 1 - Design and production of the major system components
The major system components referred to cover four specific items.

- Compressor and Motor
- Condenser and Evaporator/Heat Exchanger
- Heating Unit
- System Controller

Compressor and Motor -
The compressor and motor used in the Glacier Bay ECS were built specifically built components. The compressor was 100% hermetically sealed and of a rolling piston design built by Glacier Bay, Inc. The motor was a 12 -pole brushless DC design built for Glacier Bay by MFM Motors.

Condenser and Evaporator/Heat Exchanger -
The Condenser and the Evaporator/Heat Exchanger were designed and built by Glacier Bay for
otherwise identical, Geo Metro equipped with factory-installed engine-driven air conditioning system were left in full sun-soak in the parking lot all morning. In early afternoon, at maximum ambient air temperature, the two cars (each with one driver only) were driven out of the parking lot and followed each other through the surrounding streets. Driving speeds averaged approximately 45 mph and included several stop signs, stop lights and intersections.

Ambient Conditions -
At the time of the test, the ambient conditions were;
Temperature $-91^{\circ} \mathrm{F}$
Solar Radiation - $760 \mathrm{~W} / \mathrm{sq}$ m
RH - 51\%
Wind Speed - $4 \mathrm{~m} / \mathrm{s}$
Sensor Locations -
In each vehicle, a total of ten Sensors were installed at the following locations:
(a) One at the outlet of the 2 main dashboard blower vents - total 2
(b) One at 31" above the seat (i.e. head position) in both the front and rear - total 4
(c) One at 14 " above the seat (i.e. stomach position) in both the front and rear - total 4

Data Readings (exhibit 2a, 2b) -
Data was logged every two minutes. The charts below give an average reading of the four sensors in each seat to provide a "Front seat" and "Rear Seat" temperature. The two dash board readings were averaged to give the "Vent" temperature.

Data Analysis (Exhibit 3a, 3b) -
An analysis of the results shows the Glacier Bay ECS and Geo Metro factory engine-drive air conditioning to be very similar in cooling capacity. Both units cooled the passenger compartments from $120^{\circ} \mathrm{F}$ to $75^{\circ} \mathrm{F}$ in twelve minutes. Similarly, both units were able to maintain comfortable cabin temperatures under full solar load and at all vehicle speeds.

Negating the effect of voltage drop (Exhibit 4) -
One problem well-know in previous tests of electric air conditioning systems which were being powered directly from the vehicle battery pack was a dramatic reduction in system capacity as the battery voltage falls. This was a potential problem of special concern to Glacier Bay when developing the ECS control system. For this reason particular attention was paid to ensuring that system output remained as steady as possible through the discharge and regenerative braking cycle of the battery pack. A close look at the battery voltage reveals that the input voltage fluctuated by almost 20% (30 volts) without substantial impact on the ECS system capacity.

Battery Pack Voltage

Conclusion -
The ECS air conditioning system performance matched, and in some ways exceeded, that of the factory-installed engine driven air conditioning system. The ECS was able to control the temperature of the cabin to full passenger comfort at freeway speeds and very high heat loads. While further tests are necessary, the test performed indicates that the ECS would have offered superior performance in heavy traffic conditions, where lower engine speed would limit the air conditioning system capacity of the factory unit.

While no direct measurements were taken during this test run, it is know from tests of similar engine-driven systems ${ }^{2}$ and the bench-top efficiency tests of the ECS, that this level of performance was achieved with only about 25% as much energy input.

[^2]
Phase 2 - Heating

The ECS heating system test was performed on March 20, 1998 by Professor Andrew Frank of the Department of Mechanical Engineering at the University of California at Davis. Extensive previous testing had been already been conducted to determine the heating requirement of the Solectria Force test vehicle ${ }^{3}$. With the heating requirement of the car so well established, the intent of the
 U.C. Davis testing was to quantify the heat output and emissions of the Glacier Bay ECS system. The system was tested using natural gas fuel.

Test Protocol (Exhibit 5) -
U.C. Davis ran two separate tests for the ECS heating system. In the first test, a positive displacement water pump was used to circulate a constant, known mass flow of water through the heating unit. Thermocouples recorded the Delta T between the incoming and outgoing water to determine the rise. From this the heat output could be determined.

The purpose of the second test was to determine the emissions during steady state operation. For this test the heater was connected to a finned coil air heat exchanger so that a stable steady-state condition could be achieved at normal operating temperatures. The heater was activated and the discharged exhaust gas analyzed by a 5 -gas emissions analyzer.

Test Result - Capacity (Exhibit 6)
Mass flow rate: $1,454.4 \mathrm{lbm} / \mathrm{hr}$
Delta T: $14^{0} \mathrm{~F}$
Heating Capacity: $5.97 \mathrm{kw}(20,361 \mathrm{Btu} / \mathrm{hr})$
Test Result - Emissions (Exhibit 6)
The following emissions were recorded for the Glacier Bay ECS heating system in steady-state operation:

Nitrous Oxides, NOx: 24 ppm
Carbon Monoxide, CO: 0.12\%
Hydrocarbons, HC: 3 ppm
Carbon Dioxide, CO_{2} : 6.1\%
${ }^{3}$ Northeast Advanced Thermal Management Project, M.J. Bradley and Associates

For comparative purposes, the tested emissions of a common competitive heating system are shown below ${ }^{4}$:

Brand:	Webasto Fuel:
Diesel/Kerosene	

Conclusion -
The Glacier Bay ECS heating system exceeds the performance goals set forth at the time of the project proposal. With a capacity of over $20,000 \mathrm{Btu} / \mathrm{hr}$ it has higher capacity than any auxiliary heating system tested by the Northeast Advanced Thermal Management Technology Project. In fact, it matches that of water-circulating heaters in modern combustion engine cars. As such, the heater would provide complete passenger comfort at temperatures of $-25^{\circ} \mathrm{F}$ in any automobile or cargo van while retaining sufficient capacity for de-fogging all windows. With its full heat output "instantly available", the Glacier Bay ECS heater provides a distinct advantage over the engine-coolant heaters of today's gasoline cars.

Technology Commercialization

The target markets for the Glacier Bay ECS and its related technology has been identified as:

- Electric and hybrid car OEMS. - US \& Foreign
- Electric and hybrid bus OEMS - US \& Foreign
- Electric and hybrid vehicle fleet operators
- High-End electric vehicle conversions
- US Government - military climate control in vehicles and portable equipment

Since the third quarter of 1997 Glacier Bay has undertaken a program of "low-key" promotion prior to formal introduction of the system. Additionally, individual technologies and system components were shown at the 1997 EVS-14 trade show in Orlando, Florida.

The result of these modest promotions have indicated the existence of a robust and growing market for the technology. As of this writing Glacier Bay has received purchase orders for highcapacity versions of the system from a prominent transit bus manufacturer. Additionally, Glacier Bay has received numerous inquires from European and Asian automobile manufacturers for developmental prototypes.

[^3]Within three months time Glacier Bay, will begin shipping its first 70,000 Btu/hr ECS transit bus systems. These will be followed quickly by a $120,000 \mathrm{Btu} / \mathrm{hr}$ system scheduled for late summer delivery.

In fall of this year, Glacier Bay will formally introduce the complete ECS system at EVS-15 in Brussels, Belgium.

Future Enhancements

During the course of the past 1.5 years of development work on the Glacier Bay ECS, three major enhancements have been identified for the system. These are;

Development of a Back-EMF Brushless DC Motor Controller -
This controller will replace the hall-sensor control now used on the ECS. The new controller will reduce system cost and complexity, simplify installation, improve reliability and reduce size. Development co-funding of this controller is currently before DARPA and pending final review for FY '98. The development project will be conducted jointly with IBM Corporation and utilize the company's patented technology.

Incorporation of a Variable Capacity-Controlled Burner -
This development project calls for the current ON/OFF type burner to be replaced with one of variable steady-state capacity. This improved burner technology will further reduce emissions by allowing the system to always operate at a steady thermal condition. Additionally, the burner will provide lean-burn capability further improving the heater's efficiency and reducing fuel consumption. Development co-funding of this controller is currently before DARPA and pending final review for FY ' 98.

Development of a High-Efficiency Flooded Evaporator -
The successful development and inclusion of a high-efficiency flooded evaporator would enable Glacier Bay to break the 400 fpm air velocity limit which effectively prevents substantial further reductions in evaporator size. Work on the evaporator is currently underway in Glacier Bay's R\&D department.

EXHIBITS

EV10 A/C Test Run September 17, 1997
FSEC Julian Day 1997-260
Start of first loop 14:52
Time Miles Location
14:52 $0 \quad$ Exit FSEC onto Michigan Ave to Clearlake Road heading south
Behind school bus and school zone traffic slow, stop-go
15:01 2.5 Right onto 520 West open highway
15:04 4.6 Right onto Cox Road North open road
15:07 6.4 Right onto 524 East open road
15:10 8.7 Right onto Clearlake South
15:11 9.3 At Michigan light FSEC
End 1st Loop
15:11 9.3 Clearlake South no school traffic
15:17 11.6 Left 520 East
15:20 13.0 Left US-1 North
15:29 19.5 U-Turn US-1 South (batteries getting low)
15:36 23.4 Right onto Michigan West
15:38 23.8 FSEC
End 2nd Loop

EV10 A/C Test Run FSEC

Glacier Bay ECS

Factory AC

Front Seat - m Rear Seat
Vent

Factory vs ECS

Front Seat Temperatures

Factory vs ECS
Vent Temperatures

Battery Pack Voltage

COLLEGE OF ENGINEERING
DEPARTMENT OF MECHANICAL AND
aERONAUTICAL ENGINEERING
(916) 752-0580

FAX (916) 752-4158
hup://www-mae.engr.ucdavis.edu

DAVIS, CALIFORNIA 95616-5294
Professor Andrew Frank
Department of Mechanical Engineering University of California
One Shields Avenue Davis, CA 95616

March 231998
Kevin Alston
Glacier Bay, Inc.
1011 Claremont St.
San Mateo, CA 94402
Dear Mr. Alston:
Listed below are the test results of the compressed natural gas combustion water heater. This verification testing was performed at UC Davis on March 20, under Agreement No. 98-00344V.

The 5-gas emissions analyzer recorded the following data at steady-state operation:

Nitrous Oxides, NOX:	24	$[\mathrm{ppm}]$
Carbon Monoxide, CO:	0.12	$[\%]$
Hydro Carbons, HC:	3	$[\mathrm{ppm}]$
Carbon Dioxide, CO2:	6.1	$[\%]$
Oxygen, O2:	9.7	$[\%]$

The measured water mass flow rate is:
$1454.4 \quad[\mathrm{lbm} / \mathrm{hr}]$
Average water temperature difference at steady-state is: $\quad 14$
$\left[{ }^{\circ} \mathrm{F}\right]$
The resulting heat capacity of the system is calculated at: $\quad 20,361$
[BTU/hr]
Please contact me at (530) 752-8120 for any questions regarding this testing project. Thank You.
Sincerely,

Principle Investigator
 Bay ECS is set to full power and the unit is turned on.

Glacier Bay, Inc.

 on 8/5/97, the day before the car was shipped to the Florida Solar Power Research Institute where it underwent further testing.

The vent air temperature has fallen to 60.0 degrees F.

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

PRESENTATION MATERIALS
FROM
DARPA REVIEW AT CALSTART
APRIL 1, 1998

Cycle

DARPA Flywheel Life
Test Program
Jack G. Bitterly

$$
\begin{gathered}
\text { Review Status } \\
\text { April 1, } 1998
\end{gathered}
$$

Flywheel Module Advancements

- Module Hardware Improvements

- New 5 Axes Optical Sensors for Magnetic Bearing Control
- 50 Times Less Noise than Original Sensors
New PWM Power Amplifers for Magnetic Bearing Control
- Illiminated Saturation Problems
- Improved Dynamic Bandwidth
- New DSP Closed Loop Control

$$
\begin{gathered}
\text { Magnetic Bearing Software Control Developments } \\
\bullet \text { Developed Robust in-House State Space Control Algorithm } \\
\bullet \text { Concurrently Working with Dr. Palazollo at TAMU Using } \\
\\
\text { Gyroscopic Gain Control } \\
3 / 31 / 98
\end{gathered} \quad \text { U.S. Flywheel Systems Proprietary }
$$

US Flywheel Systems
 Magnetic Bearing Flywheel Module and Composite Rotor DARPA Sponsored Life Cycle Test Program

A magnetically-levitated energy-storage flywheel module (background) and a flywheel rotor (foreground)
made by US Flywheel Systems
SUMMARY OF U.S. FLYWHEEL SYSTEMS
ACTIVITY SINCE NOVEMBER 1993

Risk/Reward For Premium Power Flywheel Systems

Optical Sensor Characteristics
Detecting motion of rotor target

Precision computer-controlled fiber-composite winding machine at USFS.

(a) Chamber for spin-testing flywheel rotors at US Flywheel Systems.
(b) Close-up view of an instrumented module within the test chamber.

Projects

- Rapid Charge System with
Flywheel Energy Storage
- Mobile Flywheel Power Module

FLYWHEEL, POWER

Topology is chosen for performance and greatest

tent
(FMG) hardware
RCS Approach
Trinity
FLYWHEEL POWER

- Single module with two speed-matched, counter-rotating flywheels to cancel net gyroscopic torque
Total module weight <600 lb
\checkmark - Overall dimensions: 24 "x24"x36", including flywheels,
Power output: 750 kW for 2-3 seconds, 500 kW for 5-10
seconds, 250 kW for 10-20 seconds.
Recharge/regen at 100-200 kW.
as testing to MIL STD 810E

$\underset{\text { flywheel power }}{\text { TRINITY }}$

MFPM Schedule

TRINITY

Distributed Energy Management System
 • RAYTHEON TECHNICAL SERVICES COMPANY
- Part of Raytheon Systems Company
- Extensive working relationship with GMATV
• Remanufacturing/repair contract services
• Magnecharge system
• Energy management
- Current projects - DEMS I
- Facilities
• Torrance, CA; Indianapolis, IN; Richmond, VA
- Available products
• Charge controllers, charge ports, conversion boxes, test
equipment

The CC200 is a microprocessor based electric vehicle battery charger controller and energy management system that can be used on Conductive and Inductive charging systems. It uses an enbedded system architecture to house battery charging and energy management algorithms in user configurable memory. During the charging process the CC200 continuously monitors the state of the batteries and controls the inductive charger output level via the SAE Class 2 Communication Interface (protocol J1850). The CC200 has many safety features which will protect the user, vehicle and battery pack. CC200 has the capability of reading traction battery pack voltage with 12 bit resolution, reading charge / discharge current using fine $(0-+100 \mathrm{~A})$ or course $(0-+2500 \mathrm{~A})$ measurement channels, and monitoring, with a resolution of 8 bits, the auxiliary battery voltage. Developer's software package allows the controller to be program to be customized to your application. Additional features:

Telemetry (DEMs) Interface (RS232) 1 Frequency Measurement inputs
2 Pulse Width Modulated outputs
7 Isolated Discrete inputs
9 Temperture inputs
1 Pre-charge input
8 bit Aux. Battery sense
Isolated 12 bit Pack current

12 bit DAC output(- 5 to +5 vdc)
Isolated 12 bit Pack voltage sense
2 High side switches
1 SPDT Relay and Isolation detect circuit

Magnecharge 6.6 kW AC Inductive Charge

Designed as part of the MagneCharge system, the CP 7100 and CP7150 Inductive AC Charge ports were created to provide Vehicle Manufactures, Vehicle Integrator's and Fleet Users with a means to utilize the new Inductive battery chargers that General Motors designed to charge the EV1 and EV S-10 electric vehicles.

Inductive coupling used to transfer power (50 V to $430 \mathrm{~V} @ 22 \mathrm{~A}$ max and 6.6 kW max). FCC certified and UL listed
No Metal contacts between the charger and the vehicle

Magnecharge CV7200 Conversion Box

The CV7200 Conversion box connects to the CP7100 and CP7150 Inductive Charge Ports to convert the AC magnetic flux to filtered DC voltage for the vehicle's traction battery pack.

Distributed Energy Management System

The DEMS system consists a central controller (CC200) and DEMs battery modules. Each battery module is capable of monitoring two 12 volt battery modules or cells. The DEMs battery module monitors voltage ($0-16 \mathrm{VDC}$) and temperature ($-40 \mathrm{C}-85 \mathrm{C}$) and has a built-in bypass circuit ($0-1$ A) for battery EQUALIZATION. Each DEMs module communicates with the central controller through an opically isolated data link.

[^4]

- Battery modules at different states of charge (SOC),
and temperature can shorten driving range and
battery life.
- Inherent imbalances in the battery leads to
- Lower capacity batteries being OVERCHARGED which
causes excessive gassing and dries out the battery
- Higher capacity batteries being UNDERCHARGED, which
leads to sulfation build-up.
- Temperature disparity, between battery modules, leads to
improper compensation (overcharging and undercharging
modules)
- Compounded by multiple strings (buses)
- High Cost (solution cost vs cost of batteries)

PACK 1 CHARGING
CONSTANT VOLTAGE 2.47 AND 2.5 V PER CELL

REDESIGN EFFORT FOR THE BATTERY MODULES

 VEHICLE PROBLEMS UNRELATED TO ENERGY
MANAGEMENT(such as braking systems)

LOOK FOR COST SHARE FUNDING * AQMD

* RAYTHEON WORK WITH OTHER SUPPLIERS \& DARPA CONTRACTS
- SEMICONDUCTOR(MOTOROLA, ETC)
- BATTERY SUPPLIERS(OVONICS, HAWKER,GNB, SAFT, DELPHI)
PRODUCTIZE THE BATTERY MODULES
- MECHANICAL/ENVIRONMENTAL PACKAGING
• THROUGH HOLE VS SURFACE MOUNT
- SELL COMPONENTS TO BUS MANUFACTURERS, CONVERSION
HOUSES, BATTERY MANUFACTURERS, AND OEMS DEMONSTRATE THE VALUE OF THE TECHNOLOGY
- ON VEHICLE TESTS

Batteries of 10 w
will reach ful
capacity batt
be at a higher temperature

Large variations in capacity exist between battery
packs connected in parallel . 27 batteries $\mathbf{x} 4$

Monitoring and controlling the packs at the module
level; the packs will all receive the optimum charge.

- Pre-project-cilig to develop one prototype hybrid-
electic eNe bus for Colden eate Transit
- Phase One - Conversion of a standard diesel bus
to an electric-hybrid CNe bus
- Phase Two-Monitoring of the performance of the
hybrid-bus
- Phase Three-Development of a low-floor hybrid.
bus Phase Four-Replacement of Foothill Transit's
entire fleet at a rate of 33 buses per year

- Develop and demonstrate low-cost hybrid-
electric bus (on standard high-floor chassis)
- Equip with a CNc fueled internal combustion
auxiliary power unit (APU)
- Determine commercialization potential
- Field test bus for one year in regular transit
service
(See hand-out for bus specifications)

$$
\begin{aligned}
& \text { - Diesel APU will speed delivery by } 3 \text { to } 6 \text { months } \\
& \text { - No other manufacturer has started on hybrid-CNe } \\
& \text { - Cillig will not build CNG in commercial production } \\
& \text { - Manufacturers say there may be littie commercial } \\
& \text { - Clemand for hybrid-CNG } \\
& \text { - Hybrid-diesel emissions will meet } 2004 \text { standards, } \\
& \text { current CNG levels }
\end{aligned}
$$

FOOTHILL/GMLIG HYBRID ELECTRIC BLS

Vehicle: \quad Gillig Phantom Transit Bus

Size:
Seating:
GVWR:
General:
Drive System:

APU:
Fuel:
Generator:
Drive Motor:
Batteries:

Brakes:
HVAC:
Lift:
Suspension:
Safety:
$40^{\prime} \times 102^{\prime \prime}$ (Extra width required to accommodate APU)
41 with 2 wheelchair positions 39,500 lbs.
Built as closely to Foothill specifications as possible with this drive configuration.
Hybrid electric propulsion system, using a rear mounted CNG fueled internal combustion Auxiliary Power Unit (APU) as a range extender. The APU drives a DC generator which, through inverters, feeds dual $A C$ drive motors. These motors are connected to the drive axle through a combining/reducing gearbox. An underfloor mounted battery pack is used as a load leveler and energy storage device, while a resistor bank dissipates any excess energy. Cummins 4B based, converted to CNG. Approx. 175 HP . CNG, 5 tanks $1,415 \mathrm{cu} . \mathrm{ft}$. Each at 3,000 psi. $125 \mathrm{KW}, 320 \mathrm{~V}$ DC
Siemens Dual water cooled AC induction motors, with IGBT controllers. Total output 210 KW and 600 NM torque.
Electrosource Horizon bi-polar lead-acid battery, quantity 30.500 amps. max. current at 30 seconds, 85 amp. hr. at C3 rate, 360 nominal volts, 240 watts $/ \mathrm{kg}$.
Regenerative braking of drive motors supplements the standard service brakes. Excess energy dissipated through a resistor bank. ThermoKing low-energy system with R-134A refrigerant. Litt-U wheelchair lift in front door.
Standard air spring, axles, wheels and tires.

- Integrated ground fallt detection.
- 48 Volt battery groups with standard electrolyte.
- Integrated fire suppression system with dual optical spectrum sensors covering the engine comparment, fuel tanks and battery areas.

FOOTHILUGILLIG HYBRID ELECTRIC BUS

ID	Task Name	Duration	Start	Finish	* Complat	Resourep 1	Prodece		$\frac{\text { anuarptem }}{11 / 45 \sqrt{3} / 32 \pi}$
801	sysiem checkemise.	10	Tue 1/26/99	Wed 1/27/99	0\%				$1 / 26$
102	Alignment	$1 d$	Wed 1/27/99	Thu 1/28/99	0\%		101		7
103	FINISHASSEMBLY Of VEHICLE	2 d	Thu 1/28/99	Mon 2/1/99	0\%		102		1/28
104	SYSTEM CHECKS	23d	Man 211998	Thu 3/4m9	0\%		103		-
105	SAFETY SYSTEMS CHECK	5 d	Mon 21/99	Mon 2/8199	0\%		103		211
106	PLC systems chech	$5 d$	Mon 21199	Mon 2/8/99	0\%				\%11
107	TEST FIRE SUPRESSION SYSTEM	1d	Mon 21199	Tue 2/2/99	0\%		103		${ }_{21}{ }^{1}$
108	FUEL VEHICLE AND LEAK TEST	20	Tue 2/2199	Thu 2/4/99	0\%		107		212
109	THROTILE ADJUSTMENT	3 d	Thu 24/99	Tue 2/9/99	0\%		108		24 H
110	COOLING TEST-ENGINE	2 d	Tue 2/9199	Thu 2/11/99	0\%		109		2011
111	WEIGHT OF VEHICLE	10	Thu 2/4/99	Fil 2/5/99	0\%		108		214
112	SEIMENSNOTTH COMMISION AND TESTING	10 d	Thu 2/4/99	Thu 2/18/99	0\%		108		3/4 ${ }^{\text {H }}$
113	VEHICLE TESTING	10 d	Thus 2/19/99	Thu 3/4/99	0\%		112		d/1818181

HYBRID ELECTRIC BUS PROJECT Foothill Transit and Gillig Corporation
budget/SCHEDULE/MILESTONES (Preliminary)

			PRELIMINARY BUDGET					
DUE DATE	TASK	DESCRIPTION OF MILESTONES	MATCH FUNDS		DARPA FUNDS		TOTAL	
3/31/98	Quarterly Report Begin System Designs	Finalize Design Parameters Select Major Components	\$	-	\$	-	\$	-
6/30/98	Quarterly Report Procurement System Designs	Order Major Components	\$	18,061		7,939	\$	26,000
9/30/98	Quarterly Report Procurement System Designs	Electrical System Design	\$	22,229		9,771	\$	32,000
12/31/98	Quarterly Report Procurement System Designs	Design Engine Installation-Mechanical	\$	153,519		67,481	\$	221,000
3/31/99	Quarterly Report	Build Vehicle System Checks Emissions Tests	\$	208,397		91,603	\$	300,000
6/31/99	Quarterly Report Field Test	Field Test	\$	18,061		7,939	\$	26,000
9/30/99	Final Report		\$	34,733		15,267	\$	50,000
		TOTALS	\$	455,000	\$	200,000	\$	655,000

Quarterly reports are required with eaach invoice. Invoices should be submitted earlier if Task is achievedd in advance of the milestone date. CALSTART's general policy is to withhold 10% of the total funding, pending approval of the final report, government audit and/or contract closure.
HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT)

HEPT POWERTRAIN AT A GLANCE

HEPT THUNDERVOLT™ DRIVE SYSTEM

STANDARD VEHICLE DRIVE SYSTEM

March 1998 Status

raise $\# 6 \mathrm{M}$ in
benk to
$9+$
ヨากaヨHวs
SCHEDUL HEPT DEVELOPMENT
HYBRID－ELECTRIC PROTOTYPE TRUCK（HEPT）
（f＋y甘a）
I

*APU = auxiliary power unit.
First vehicle APU assembly shown. LochneeQ-Mantin Wat Count passence. Nariten rel. 250 hap-cian 7 truig 250h
Development status:

- Engine installed into vehicle - June 1997
- Generator mated to engine - July 1997 - APU tested to full power (75 kW) October 1997
Performance goals:

HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT)
 ENGINE/GENERATOR (APU*)

 ROLLER (EVCOntrol'TM)
Development status:

- HEPT control ar
- HEPT control architecture defined
- "Phase 1" prototype control system installed in electric airport tow tractor - Sept 1997 - "Phase 2" prototype control system installed in electric Class 7 truck - March 1998 - First module for advanced EVControl ${ }^{\text {TM }}$ network partially constructed - Electric Vehicle Operating System ${ }^{\text {TM }}$ (EVOS ${ }^{\text {TM }}$) software being written - EVControl ${ }^{\text {TM }}$ network to be installed in HEPT Vehicle 1 in April-May 1998
Performance goals:
- Display operating and diagnostics data to
- Optimize energy consumption, including use of global positioning data to predict use Store vehicle performance data for
analytical use

HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT)

 SYSTEM CONT
vehicle operator

Development status:

Battery rack design for installation of 112 batteries
onto HEPT Kenworth T-800 trucks

Development status:

- Modular control architecture defined - Testing of multiple 100 kW modules at partial power accomplished
- Prototype VolTorque ${ }^{\text {TM }}$ high-power switching
device built and bench-tested - Interface with Vehicle Dynamics Controller ${ }^{\text {TM }}$ partially complete
- MC270 controller to be installed in electric

$$
\begin{aligned}
& \text { Performance goals: } \\
& \bullet \text { Convert } 672 \text { VDC to } 543 \text { VAC }
\end{aligned}
$$ 420 kW peak) to main drive motor (MC400) - Channel regenerative braking energy to energy storage subsystem

Power module for ThunderVolt ${ }^{\mathrm{TM}}$ motor control subsystem

$$
\text { controller into first HEPT vehicle in May } 1998
$$

$$
\text { - Handle current loads of up to } 500 \text { amps }
$$

$$
\text { - Supply high power }(300 \mathrm{~kW} / 400 \mathrm{Hp} \text { continuous, }
$$

Power Braking

$$
\begin{aligned}
& \text { - Uses electric motor to drive an air compressor, } \\
& \text { providing air for actuation of braking systems } \\
& \text { - More efficient than conventional braking units } \\
& \text { (direct-driven, supplies power on demand) }
\end{aligned}
$$

HYBRID-ELECTRIC PROTOTYPE TRUCK (HEPT)
PROJECTED OPERATIONAL BENEFITS

Benefit Category	Major Benefits	Key Reasons for Benefits
Emissions	- 64-96\% reduction in NOX - 49-92\% reduction in CO - 58-94\% reduction in NMHC - 80-90\% reduction in PM	- Smaller, more efficient engine - Clean-burning fuel - Periodic all-electric operation
Energy Efficiency	- 30-60\% lower fuel consumption -15-30\% lower overall energy use	- Engine output more closely linked with vehicle power use - Regenerative braking - Aerodynamic improvements
Performance	- 28% faster acceleration (0-60 mph) - $7-8 \%$ increase in cargo volume	- Constant motor torque vs. RPM - Ability to lower vehicle frame
Maintenance	- 30\% increase in major maintenance intervals -15-25\% reduction in average maintenance time - 50-75\% reduction in brake wear	- Simpler engine operating within a more narrow range - Regenerative braking
Life-Cycle Cost	-10-20\% reduction in life-cycle cost	- Lower fuel consumption - Lower maintenance costs

Auxiliary Power Unit (APU)

- Custom 75 kW alternato
- SAE-standard engine-ge
- Custom 75 kW alternator/generator
- SAE-standard engine-generator interface kit
Motive Drive System
- ThunderVolt ${ }^{\mathrm{TM}}$ AC500 high power AC drive
Motive Drive System
- ThunderVolt ${ }^{\mathrm{TM}}$ AC500 high power AC drive motor
- ThunderVolt ${ }^{\mathrm{TM}}$ MC series of modular motor control
- VolTorque ${ }^{\mathrm{TM}}$ torque-voltage optimization system
Energy Storage System
- Integrated 576VDC and 672 VDC battery packs
- Automatic Continuous Equalization System
- ThunderVolt ${ }^{\mathrm{TM}}$ AC500 high power AC drive motor
- ThunderVolt ${ }^{\mathrm{TM}}$ MC series of modular motor controllers
- VolTorque ${ }^{\mathrm{TM}}$ torque-voltage optimization system
Energy Storage System
- Integrated 576VDC and 672 VDC battery packs
- Automatic Continuous Equalization System
- ThunderVolt ${ }^{\mathrm{TM}}$ AC500 high power AC drive motor
- ThunderVoit ${ }^{\mathrm{TM}}$ MC series of modular motor controllers
- VolTorque ${ }^{\mathrm{TM}}$ torque-voltage optimization system
Energy Storage System
- Integrated 576VDC and 672 VDC battery packs
- Automatic Continuous Equalization System ${ }^{\mathrm{TM}}$ (ACES ${ }^{\mathrm{TM}}$)

Energy Storage System

- ThunderVolt ${ }^{\mathrm{TM}}$ AC500 high power AC drive motor
- ThunderVolt ${ }^{\mathrm{TM}}$ MC series of modular motor control
- VolTorque ${ }^{\mathrm{TM}}$ torque-voltage optimization system
Energy Storage System
- Integrated 576VDC and 672 VDC battery packs
- Automatic Continuous Equalization System

$$
\begin{aligned}
& \text { Millen Special Vehicles } \\
& \text { with } \\
& \text { AeroVironment }
\end{aligned}
$$

PURPOSE:

$$
\begin{aligned}
& \text { Active Damping and } \\
& \text { Ride Height Control }
\end{aligned}
$$

$$
\begin{gathered}
\text { - Completed Detail Design of Control } \\
\text { System Hardware for JTEV }
\end{gathered}
$$

$$
\begin{gathered}
\text { - Completed Detail Design of Active } \\
\text { Damper Hardware for JTEV }
\end{gathered}
$$

$$
\begin{gathered}
\text { - Completed Detail Design of Active } \\
\text { Height Hardware for JTEV }
\end{gathered}
$$

Work Overview

FY'95 (COMPLETED)	FY'96 (WORK STARTED 1/97, REDIRECTION CONSIDERED 12/97)	$\frac{\text { FY'98 }}{\text { (CURRENT PROPOSAL) }}$
- Computer Model Development - System Configuration Analysis - Determination of Critical System Variables - Baseline Damper Testing	- Active Damper Prototype Development and testing - Control Code writing and debugging for basic control algorithm - Integrate System into vehicle, which was JTEV but due to lack of availability redirected to HMMW - Sensed Variables: Suspension Deflection Suspension Velocity Body Vertical Acceleration	- Develop advanced suspension control algorithms - Testing and optimization of suspension system over realworld terrain - Sensed Variables: Suspension Deflection Suspension Velocity Vehicle Speed Steering Angle Brake/Throttle Position Body Vertical Acceleration Body Roll Rate Body Pitch Rate Body Yaw Rate

$$
\begin{aligned}
& \text { Active Damping and } \\
& \text { Ride Height Control }
\end{aligned}
$$

HMMWV Semi-active Suspension - Uses of Funds									
	HMMWW Redesign	Fabrication	Vehicle Integration	Shock Dyno Testing	System Testing	Vehicle Evaluation	System Optimization	Reporting	Total
Labor	11,698	6,785	6,468	13,675	6,667	18,034	36,974	4,308	104,609
Materials	10,288	26,765		3,846			12,962	769	54,630
Subcontracts	11,538								11,538
Travel								5,769	5,769
Facilities				68,244		2,250			70,494
Overhead	29,066	21,061	12,450	118,849	12,833	34,716	75,064	10,255	314,295
Total	62,591	54,611	18,918	204,615	19,500	55,000	125,000	21,101	561,336

MILITARY/CIVILIAN APPLICATIONS:
Improved performance over passive suspension:

- improved isolation
- reduction in body resonance motions
- improved tire trattion
- improved adaptability
- improved vehicle load rejecion
PROJECT UNIT COST IN MARKETPLACE:
Unknown (dependent on total qty/rate)

5,180,000 units/year

- AeroVironment Inc.

Road Vehicle Fuel Efficiency
Status
- Project Not Started
- Was Scheduled to Begin in February 1998
- Funding Being Redirected
AeroVironment Inc.
Objective
- Provide Support to JTEV at Various
Demonstrations and Presentations.
- Maintain Operational Capability
Status
- All Activities Were Supported as Req

	AeroVironment Inc.
	Fuel Consumption and Efficiency Test - Objective
	- Operate JTEV on Prescribed Course at AP Determine Fuel Consumption - Determine Drive Component Efficiencies - Status
	- Scope of Work and Schedule Being Developed - Requires Repair of Vehicle, Refinement of Algorithms and Instrumentation
	- Will Be Funded from Redirected Project Sources

41998 permeate to DARPA Prof ron Review

"All Electric Combat Vehicle!"

- Reviewing technical literature
- Reviewing demonstration programs
- Briefings with HEV manufacturers
- Attending conferences, seminars, workshops
- Arranging site visits and interviews
- Compiling inventory database

- HEV technology is developing at an accelerated pace world wide.
- 60 heavy-duty electric and hybrid vehicle models
- $\mathbf{2 5}$ different propulsion systems
- 10 fuel cells
- 10 ultra-capacitors
- dozens of battery manufacturers
- Large number of new entries in HEV field -Universities, government agencies, research facilities, car manufacturers, electronic companies, consortiums, natl tabs

Is thene on engere potinisi? as a hyband AEll?

- Large technology overlaps and fragmented owledge of related technologies Little inter-technology communication - Europe and Japan are in the forefront of HEV
technology research and development - Under-reported in U.S. literature

Who is the repoert fori?
A) Conponent suppiters - betten suppry militany market

RR: C/S shauld becime the sarce ane hitbrids. Not what DARPA wontrrbut that' DRE.

Adreme: A) Posectial repeat coftomers for $C / 5 ?$
A. Comparent develepers; veh. ryperb.
B) Gout. Azenciss - polichmakers (rotblatanky - but inould tell (direct the gor. What to do). Senve an a resurce (opr them. Help gat w/findeng programs? Maqne came up

Repert Should hove a disclaver on fot page that the repurt doen't reprent DARPA's position.
7-9 montien for todiy's tate formor ir

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

Completed Projects

PROGRAMMABLE DC CONTROLLER

Project Manager: Jefferson Programmed Power
CS-AR94-02

| MILESTONES | DARPA | MATCH | QTR | DATE DUE | DATE COMPLETE | DARPA
 FUNDS
 EXPENDED |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 Design complete | 72,000 | | 1 | $10 / 10 / 95$ | $10 / 25 / 95$ | 72,000 |
| 2 CPU Logic Board operational | 65,000 | 80,000 | 2 | $1 / 10 / 96$ | $1 / 11 / 96$ | 65,000 |
| 3 1st prototype controller test | 50,000 | 60,000 | 3 | $4 / 10 / 96$ | $4 / 17 / 96$ | 58,300 |
| 4 Final report | 30,000 | 77,000 | 4 | $6 / 30 / 96$ | $9 / 20 / 96$ | 21,700 |
| CS-AR94-02 TOTALS | 217,000 | 217,000 | | | | 217,000 |

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

RUNNING CHASSIS II

Project Manager: Amerigon Incorporated
CS-AR94-01

	MILESTONES	DARPA	MATCH	atR	DATE DUE	coMPLETE	MATCH FUNDS EXPENDED	DARPA Funds EXPENDED
1	Initiate work	200,000	460,000	1	11/14/95	11/21/95		75,000
2	Complete breadboard designs of drive train, running chassis, steel space frame	175,000	200,000	2	12/31/95	12/15/95		103,222
3	Fabricate EV4 \& BEV prototype parts. Complete build of EV4	125,000	0	3	3/31/96			270,000
4	Complete all BEV tests. Revise tools for EV4 and BEV	40,000	15,000	4	6/30/96	7/8/96		
5	Complete build EV4. Complete EV4 vehicle tests.	0	0	5	9/30/96	9/30/96		
6	Complete and begin tests $1^{\text {st }}$ productionized drive train.	0	0		12/31/96	12/31/96		36,000
7	Complete finite element Analysis. Complete design BEV running chassis.	0	0		3/30/97	4/30/97		71,778
8	Complete build/test 4 alumn BEV's w/o body panels - 2 w/welded \& bonded frames. Build/test 5 productionized drive trains. Complete comparative chassis analysis and final report.	160,000	45,000	6	6/30/97	7/30/97		144,000
		700,000	720,000				4,098,410	700,000

Match funds were not fully reported during the project. Byron Kwan, Controller, closed the project accounting records with Amerigon's costs at $\$ 4,098,410$.

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

NAVAL AIR STATION ALAMEDA: PROJECT HATCHERY NORTH
Project Manager: CALSTART
CS-AR94-09A
NAVAL AIR STATION ALAMEDA: CLUSTER PLANNING
Project Manager: CALSTART
CS-AR94-09B

MILESTONES	DARPA	MATCH	QTR	DATE DUE	COMPLETE	DARPA FUNDS EXPENDED
Contract Award. Initiate Site Analysis Purchase Equipment	125,000	40,000	0	$7 / 24 / 95$	$7 / 24 / 95$	125,000
Final lease negotiations. Open Incubator.	75,000	15,000	1	$12 / 30 / 95$	$7 / 23 / 96$	75,000
Complete Required facility Up- fits.	75,000	10,000	2	$3 / 30 / 96$	$3 / 30 / 97$	75,000
Develop strategic marketing materials.	50,000	20,000	3	$6 / 30 / 96$	$1 / 30 / 97$	50,000
Complete NAS facilifies Assessment.	50,000	15,000	4	$9 / 30 / 96$	On-going from 95	50,000
Facilitate lease arrangements with Cluster firms	50,000	25,000	5	$12 / 30 / 96$	$12 / 30 / 96$	50.000
Final Report	0	25,000	6	$3 / 30 / 97$	$9 / 30 / 97$	
	400,000	150,000				400,000

Defense Advanced Research Projects Agency Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

SAFE ELECTROMECHANICAL BATTERIES FOR EVS
Project Manager: Rocketdyne
CS-AR95-05

	MLLESTONES	DARPA	Match	QTR	DATE DUE	COMPLETE	MATCH FUNDS EXPENBED	DARPA: FUNDS EXPENDED
1	Containment ring design	50,000	552,000	1	12/31/96	12/31/96	552,000	63,472
2	Containment ring fabrication	75,000	77,000	2	3/30/97	3/30/97	77,000	97,463
3	Assembly checkout/test	100,000	77,000	3	6/30/97			12,221
4	Final report	34,500	77,000	4	9/30/96			
		259,500	783,000				629,000	173,156

Defense Advanced Research Projects Agency

 Cooperative Agreement MDA972-95-2-0011 and modifications through P00012Quarterly Report
January 1 to March 31, 1998

HEAVY FUEL INJECTOR

Project Manager: Engine Corporation of America CA-DARO-03

MILESTONES	DARPA		oin	DATE DUE	complete	MATCH: FURDS EXPENDED	DARPA: FUNBS EXPENDED
1 1.0 Completion and submission of program plan	122,500	,	1	3/30/97	7/1/97		122,500
2 1.1 Overall Engine Design, 1.2 Engine Thermal Cycle Analysis, 1.1 Coordination of Analytical Effort with FEV, 2.1 ECA Fuel Injector Design,2.2 Fuel Injector Options Assessment, 2.3 Coordinated Fuel Injection Review	122,500	245,000	2	6/30/97	9/30/97	245,000	122,500
TOTAL	245,000	245,000				245,000	245,000

Defense Advanced Research Projects Agency

Cooperative Agreement MDA972-95-2-0011 and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ELECTRIC AND HYBRID ELECTRIC VEHICLE DATA ACQUISITION SYSTEM
 Project Manager: CALSTART
 CS-AR94-12

	milestone	DARPA	MATCH	DATE DUE	COMPLETE	DARPA FUNDS EXPENDED
1	Feasibility Study	50,001		9/30/95	9/30/95	16,271
2	Schematic/housing for keypad/display	16,271		12/31/95	12/31/95	9,957
3	Establish Internet Connection	20,608		3/30/96	2/96	20,608
4	Hardware Test Box for Analog/digital boards	54,077		6/30/96	5/96	54,077
5	DC Converter Schematics Build Prototype.	16,666		9/30/96	12/96	21,700
6	Second PCB Testing CDAS and Installation	51,750		12/31/96	$\begin{array}{\|r\|} \hline \text { PCB-10/96 } \\ \text { Test Begun } \\ 11 / 96 \\ \hline \end{array}$	27,387
7	Testing			3/30/97	Not completed	
8	Final Report			6/30/97	3/31/97	
	TOTAL	150,000	0			150,000

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

Canceled Projects

OPTIMIZED 30kW TURBINE/FLYWHEEL HYBRID ELECTRIC VEHICLE

Project Manager: Rosen Motors

ALUMINUM RUNNING CHASSIS FOR CIVILIAN USE (RCP-4C)
Project Manager: Amerigon Incorporated

ALUMINUM RUNNING CHASSIS FOR MILITARY USE

 (ARC4-M)Project Manager: Amerigon Incorporated

HYBRID ELECTRIC BATTERY

Project Manager: Bolder Technologies
CS-AR94-05

HEAVY-DUTY HYBRID ELECTRIC DRIVE TRAINS
Project Manager: Santa Barbara Air Pollution Control District
CS-AR94-03

	MILESTONE	DARPA	MATCH		DARPA FUNDS EXPENDED
CS-AR94-03	No milestone - program canceled	29,568	9,856		29,568
		29,568	9,856		29,568

Defense Advanced Research Projects Agency
Cooperative Agreement MDA972-95-2-0011
and modifications through P00012
Quarterly Report
January 1 to March 31, 1998

ELECTRIC AIRPORT SHUTTLE BUSES
Project Manager: Santa Barbara Air Pollution Control District

ENERGY MANAGEMENT CONTROLLER
Project Manager: Delco Electronics
CS-AR94-13

	DARPA	MATCH				DARPA FUNDS EXPENDED
CS-AR94-13	18,000					18,000
	18,000	0				18,000

[^0]: See COMMENTARY ON KYOTO, page 5

[^1]: ${ }^{1}$ Typical system weights were obtained from the average of all air conditioning systems tested by Arthur D . Little [EPRI-TR-102657s] and heating systems tested by the Northeast Advanced Thermal Management Project.

[^2]: ${ }^{2}$ Air Conditioning System for Electric Vehicles, Arthur D. Little, Inc. \# EPRI TR-102657s

[^3]: ${ }^{4}$ Northeast Advanced Thermal Management Technology Project, M.J. Bradley and Associates. Of five heaters tested only the Webasto (shown) and one Espar were capable of properly heating the vehicle. The Webasto had the lowest emissions of the two.

[^4]: Ray y heon

