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AFIT/GOA/ENS/98M-06 

Abstract 

The overall objective of this research effort was to formulate a preventive 

maintenance strategy for AMRAAM missiles subject to extended captive carry flight 

time. A preventive maintenance policy is only applicable if the item in question is aging, 

or deteriorating with time. Therefore, a supporting objective of this research is to 

characterize the aging process of the missile system through a non-parametric analysis of 

its Mean Residual Life (MRL) function. Three non-parametric, censored-data MRL 

function estimation techniques discussed in the literature are examined via a numerical 

example. All three estimation techniques provide MRL functions that exhibit greatly 

exaggerated decreasing trends compared to the MRL function of the underlying 

distribution in the example. A semi-parametric technique for estimating the MRL 

function is developed that shows dramatic improvement over the non-parametric results. 

Although the MRL analysis of the current AMRAAM failure data failed to provide 

evidence that the missile system is aging, three preventive maintenance policies discussed 

in the literature are investigated. The traditional approach of preventive maintenance 

policy optimization via cost function minimization requires the cost of a system failure be 

explicitly known. However, the penalty for a system failure is often subjective and 

difficult to express in monetary terms. A "reliability cost model" is developed whereby 

system reliability for each policy is expressed as a function of cost. This technique 

allows a direct assessment of the trade-off between cost and projected system reliability. 

Theoretical results are presented and the performance of the model applied to empirical 

data is assessed via a Monte Carlo simulation. 

IX 



OPTIMUM PREVENTIVE MAINTENANCE POLICIES 
FOR THE AMRAAM MISSILE 

I. Introduction 

Overview 

The Advanced Medium Range Air-to-Air Missile (AMRAAM) is a highly capable 

active radar guided missile carried by USAF F-15 and F-16 fighters. The AMRAAM 

missile system is composed of four major components: 1) the seeker section, 2) the 

warhead / fuse section, 3) the flight control section, and 4) the rocket motor section. The 

missile has a built-in-test (BIT) capability whereby the major missile components are 

electronically monitored and failures are reported to the pilot. When a failure is indicated 

the missile is no longer launch capable. 

Operational requirements over the last several years have caused the missiles to 

accumulate extensive "captive carry" hours whereby the missiles are carried on the 

fighters without being launched. The AMRAAM was initially designed for a captive 

carry mean time between failure (MTBF) of 1000 hours. However, a low frequency 

vibration problem discovered when the AMRAAM is captive carried on fuselage stations 

of the F-15 prompted the government to reduce the MTBF acceptance requirement to 450 

hours. Due to current mission requirements most AMRAAMs being flown overseas have 

in excess of 450 hours and many have in excess of 1000 hours captive carry time and a 

large number of BET indicated failures during captive carry operations have been 

recorded. 



Williams and Pohl (1997) analyzed AMR A AM failure data and determined the life 

time distribution of the missile does not always exhibit a constant failure rate. In fact, 

several periods of increasing failure rate were found indicating the missiles age, or wear, 

with respect to cumulative captive carry time. However, the exact number of captive 

carry hours at which the missile's performance is degraded remains an open issue and no 

preventive maintenance policy is currently being used to improve performance. 

Background 

The objective of a preventive maintenance policy is to minimize system failures via 

replacement of components that reach a life at which the system's reliability gets to be 

lower than the reliability goal set for the next mission. (Kececioglu, 1995: xxviii) 

Reliability is defined as "the probability an item will adequately perform its specified 

purpose for a specified period of time under specified environmental conditions." 

(Leemis, 1995: 2) Two criteria must be met before a preventive maintenance policy is 

considered. First, the item in consideration must be aging, or deteriorating with time. If 

the item remains "as good as new" regardless of age (exponential lifetime), or is "used 

better than new" (improving with time), then preventive maintenance will not improve 

reliability. Second the cost of a system failure must be greater than the cost of 

performing preventive maintenance. If the penalty of an in operation failure is no greater 

than the penalty for performing scheduled maintenance then no cost benefit is realized 

even if reliability is improved. Given these criteria are met, the best preventive 

maintenance policy is one that optimizes some objective such as minimizing cost, 

maximizing availability, or maximizing reliability. 



The reliability function, S(t) (sometimes called the "survivor function") of an item is 

given by S(t) = 1 - F{t) where F(t) is the lifetime cumulative distribution function. When 

the item of interest is a system composed of several independent components such that 

the failure of any one component causes a system failure (a series system), the system 

reliability, So(t) can be expressed in terms of the component reliabilities: 

nc 

1=1 

where 5,(0 = reliability of component i 

nc = number of components. 

Typical maintenance models require specific knowledge of the survivor functions at both 

the system and component level. Estimates of the survivor functions must be made from 

available failure data that is often censored. Data censoring occurs when specific failure 

times are not known for all items on test. Right censoring occurs when an item is 

removed from test before failure for some reason. In this case only a lower bound is 

known for the item's lifetime. There are three types of right censoring. Type I censoring 

occurs when the test is terminated at some specified time, to- The failure times for all 

items that have not failed by this time are censored with a lower bound of to.   Type II 

censoring occurs when the test is terminated at a specified number of failures. Type III, 

or random censoring, occurs when items are removed from test at any time. The current 

AMRAAM failure data set consists of a large number of observations (n = 815) subject to 

approximately 74% random right censoring. Future data is projected to have over 2500 

observations subject to approximately 80% censoring. 



Research Objectives 

The overall objective of this research effort is to formulate a preventive maintenance 

strategy for using, retiring, or refurbishing AMRAAM missiles subject to extended 

captive-carry flight time. This objective requires assessment of the two aforementioned 

criteria for implementing a preventive maintenance policy. Namely, is the system aging 

and, if so, is the cost of an in-operation failure greater than the cost of performing 

preventive maintenance? We assume the answer to the second question is yes, even if the 

penalty for an in operation failure is not measured directly in dollar terms. The aging 

criterion is yet to be resolved. Williams and Pohl (1997) found evidence of aging 

through periods of increased hazard rate. However, the exponential distribution, which 

has a constant failure rate and is indicative of an item that does not age, was a good fit to 

the failure data. Therefore, a supporting objective of this research is to characterize the 

aging process of the missile system through a non-parametric analysis of its Mean 

Residual Life (MRL) function. 

Scope 

We make a simplifying assumption that there are infinite spares available. In other 

words, if a missile is taken out of service for maintenance, planned or otherwise, a spare 

missile is always available to fill mission requirements.   Under this assumption 

preventive maintenance does not affect missile availability and the time required to 

perform preventive maintenance need not be considered in the cost models. 

Overview of Subsequent Chapters 

Chapter 2 contains a review of the existing literature covering the topics pertinent to 

this research. Non-parametric estimation of the MRL function and tests for aging are 



explored. Several preventive maintenance policies with their associated cost models and 

optimization techniques are also examined. The methodology for the final analysis is 

developed in Chapter 3. Existing techniques for MRL analysis are validated and a 

technique for improving the non-parametric estimate of the MRL function with censored 

data over those described in the literature is developed. A nontraditional approach to 

maintenance policy optimization is developed whereby the objective is to maximize 

system reliability subject to an unspecified cost constraint. The methodologies developed 

in Chapter 3 are applied to the AMRAAM failure data set and results are reported in 

Chapter 4. Chapter 5 contains a summary of the thesis effort, including an overview and 

discussion of the impact of the results and ideas for future research. 



II. Literature Review 

Overview 

This chapter provides an overview of the current literature in areas pertaining to this 

thesis. The chapter begins with a review of the MRL function and its applications. This 

review includes aging analysis, non-parametric estimation of the MRL function, and 

statistical tests for the decreasing mean residual life (DMRL) and new-better-than-used in 

expectation (NBUE) life distribution classes. The next section demonstrates the various 

MRL concepts via a numerical example that includes both complete and censored data 

cases. In the final section, three common preventive maintenance policies and their 

associated cost models are examined. This section concludes with a discussion of 

maintenance policy optimization. 

Mean Residual Life 

The MRL Function.   The mean residual life (MRL) function, m(t), is defined as the 

expected remaining lifetime of an item given the item has survived to time t. Let T be a 

random variable denoting the lifetime of an item with associated cumulative distribution 

function (cdf) F(t), survivor function 5(0 = 1-F(t), density function f(t), and hazard 

function h(t) = f(t)/S(t). By definition, the MRL function can then be expressed as: 

m(t) = E[T-t\T>t]. (2) 

Like F(t),f(t), and h(t), the MRL function is unique to, and completely determines, the 

distribution of T. The MRL function can be expressed in terms of the other lifetime 

distribution representations and vice versa. A common representation of the MRL 

function is in terms of the survivor function as shown by equation (3). 
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Relationships between the MRL function and other lifetime distribution representations 

are shown in Table 1. 

Table 1. Lifetime Distribution Representations (Leemis, 1995:55) 
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Note that m(0) =[«/(«)du is the expected value of T. 
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The Weibull distribution is commonly used in lifetime modeling due to the flexibility 

afforded by its two parameters. The shape parameter ß controls the shape of the 

distribution and allows for aging, memoryless (exponential), or improving properties. 

The scale parameter a controls the spread of the distribution across the time axis. 

Weibull distribution representations (Leemis, 1995:88) are shown in Table 2, and 

Weibull survival, density, hazard, and MRL functions with various shape parameters and 

scale parameter a- 1 are plotted in Figure 1. 



Table 2. Weibull Distribution Representations 
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Figure 1. Weibull Lifetime Distribution Representations 



A Weibull distribution with shape parameter ß = 1 reduces to the exponential 

distribution. Note that in this case both the hazard function and the MRL function are 

constant. Shape parameter ß > 1 indicates a deteriorating item. Note the hazard function 

is increasing and the MRL function is decreasing for the case ß = 2.5. Finally, shape 

parameter ß < 1 indicates an item that is improving with time. Note for the case ß = 0.5 

the hazard function is decreasing while the MRL function is increasing. 

MRL and the Aging Process.   Bryson and Siddiqui (1969: 1472) define aging as 

"the phenomenon whereby an older system has a shorter remaining lifetime, in some 

statistical sense, than a newer or younger one." The authors develop several criteria that 

provide statistical evidence of aging based on lifetime distribution classes. Among them 

are the increasing hazard rate (IHR) and DMRL functions. They define IHR as 

h(t2) > h{tx)  for all t2 > tx > 0  and DMRL as m(t2) < m(t1) for all t2 > tx > 0. Recall 

plots of these functions for the Weibull distribution with shape parameter ß = 2.5 are 

shown in Figure 1. "Net decreasing mean residual lifetime," more commonly called "new 

better than used in expectation" (NBUE), is another aging criterion specified by the 

authors. NBUE is related to the MRL function and defined as m(0) > m(t) for all t > 0. 

Implications between these distribution classes are shown below. 

IHR => DMRL => NBUE 

Note the implications between the classes are unidirectional. The DMRL criterion is less 

restrictive than the IHR criterion in that the hazard rate may not be strictly increasing, 

while the MRL function associated with the same distribution is decreasing. For this 

reason Chen, Hollander, and Langberg (1993:120) conclude "the DMRL class may be 

more appropriate than the IHR class when the underlying physical process suggests wear- 



out but, the failure rate is expected to fluctuate and not satisfy the IHR criterion." 

Similarly, the NBUE criterion is less restrictive than the DMRL criterion in that the MRL 

function may fluctuate and not be strictly decreasing, while the same distribution exhibits 

the NBUE characteristic. 

One might further suppose that knowledge of the hazard rate at time t implies 

knowledge of the MRL at time t. Specifically, does h(t) = 0 imply m{t) = 0 and h'(t) < 0 

imply m'(t) > 0? Muth (1975: 15) illustrates the somewhat surprising answer is no. He 

considers the distribution defined by the density, hazard, and MRL functions shown in 

Table 3. Plots of the hazard and MRL functions for this distribution are shown in 

Figure 2. 

Table 3. Example Distribution Representations 

fit) [l + 2.3t2)2 -4.6t\xp(-t-—y 
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Figure 2. Hazard and MRL Functions for the Distribution Defined in Table 3 
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Note that hazard function for this distribution is not strictly increasing, yet it does have a 

decreasing MRL function. Furthermore, note that h\t) < 0 in the interval [0, 0.35) while 

m\t) < 0 in the same interval. Finally, note that ä'(0.35) = A(0.35) = 0 while m(0.35) > 0 

and m'(0.35) < 0. This example highlights an important difference between the hazard 

and MRL functions.   Knowledge of the hazard function at time t provides information 

only about the immediate future, while knowledge of the MRL function at time t provides 

information about the complete future. Muth highlights this as another important 

advantage of the MRL function over the hazard function for characterizing the aging 

process of an item. 

It is well known that the exponential distribution possesses the "memoryless" 

property. An item with an exponential lifetime distribution is always as good as new 

since, at any time t, its MRL is the same as at time zero. The item has no "memory" of 

the passage of time. Muth defines the concept of "virtual age" as a measure of memory. 

The virtual age of an item is "the amount by which the expected life has been reduced 

due to elapsed time." The virtual age, tv, of an item can be expressed in terms of the 

MRL function: 

tv(t) = m(0)-m(t). (4) 

If the virtual age is zero, the item is defined has having "no memory." Note that for the 

exponential distribution tv is zero for all t. As another example, consider an item with a 

Weibull lifetime distribution with shape parameter ß = 2.5 and scale parameter a = 1.0. 

The virtual age of the item at time t = 1.0 is 

fv(l) = m(0)-m(l) 

= 0.887-0.289 = 0.598. 

11 



This item does have memory, but it is not "perfect" in that tv(f) < t. Muth denotes the 

special case of tv(t) = tas "perfect memory." Note that 0 < tv{t) < fi for all t for an item 

with a NBUE distribution and tv{ti) ^ tv(t\) for all ^ ^ h if an item is characterized with a 

DMRL function. 

Non-Parametric Estimation of the MRL Function.   Suppose we desire to 

characterize the aging process of an item given a random sample from the item's 

unknown lifetime distribution F(t). One approach to this problem is to fit a parametric 

distribution to the data and use the associated hazard and MRL functions to describe the 

aging process. The dangers inherent in this approach are well known, especially if the 

sample size is small (Leemis, 1995:252). Another approach is to directly characterize the 

aging process through non-parametric analysis of the MRL function. Bryson and 

Siddiqui (1969: 1485) demonstrate the value of plotting the empirical MRL function for 

this purpose. The sample MRL function has advantages over the sample density or 

hazard functions in that the sample MRL function smoothes fluctuations inherent in 

observed data (Muth, 1975:22). 

The sample MRL function, mn(t), is formed by substituting the sample survivor 

function, Sn(t), for S(t) in (2) to obtain 

1    °° 
mn{t) = ——\Sn{u)du. (5) 

Guess and Proschan (1985:8-9) provide details for computing the sample MRL function. 

Their results for the case of no ties in the data are shown below. 

12 



X (*,-*) 
m„(0= —    for   fe[Xt,Xt+1)  and  * = 0, 1, ..., n-\    (6) 

n — k 

where n = number of sample observations; 

X{ = ith ordered observation where Xt.i < Xt < XM- 

X0 = 0. 

They also provide details for computing the empirical MRL when ties exist in the data 

not included here. 

Chen, Hollander, and Langberg (1983) propose a sample MRL function for censored 

data by using the Kaplan-Meier estimate for the survival function, SKME^). Let (Z;, öj) be 

the ordered set of observations where ö}■ = 0 if observation j is censored and öj = 1 if 

observation j is not censored. The Kaplan Meier estimate of the survival function is then 

1 ,   0<t<Zx 

.7=1 

*-i f  ..    .-   V' 
n-J ,   ZkA<t<Zk (7) 

) n-j + l 

0 ,   t>2» 

Substituting equation (7) for Sn(t) in equation (5) the MRL function becomes 

mKMAt) = V^\l4SKME(Zi+l)(ZM-Zi) + SmAZk)(Zk-t)\, Zk.l<t<Zk    (8) 

It is obvious from equations (6) and (8) that mn(t) and mKME (t) respectively are not 

smooth and have nodes at the sample observations.   Kulasekera (1991) obtained a 

smooth MRL function from a smooth estimate of the distribution function, which in turn 

is derived from the kernel estimator of the density function. The kernel density estimator 

is constructed similar to a histogram whereby a "bump" called the kernel function, K(x), 

13 



is centered over each observation. The kernel function is itself a density function that is 

typically chosen to be symmetric and mound shaped. The kernel estimate of the density 

function is formed by summing the kernel function "bumps." 

In the case of complete data, Kulasekera expressed the sample distribution function in 

terms of the kernel density estimator to obtain 

F,(t) = -t,W 
(t-X,\ 

n -}=1 h 
(9) 

; 

where W(t)= JK(u)du. 

The parameter h used in equation ( 9 ) is called the "smoothing parameter" or 

"bandwidth" and determines the width of the kernel function bumps. As the value of h is 

increased the width of the kernel function bumps are increased thereby reducing the 

granularity of the density and corresponding distribution function estimates. 

Furthermore, Kulasekera observed equation (5) could be expressed: 

X-\{\-Fn{u))du 

™n(t) =    ,      t>0. (10) 
l-Fn(t) 

Finally, he derived the kernel estimate of the MRL function, ms(t), by substituting 

equation (9) in (10) to obtain 

X-j(l-F,(u))du 

ms{t) = ~ • (ID 

n + l 
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When the data are censored, Kulasekera uses the Kaplan Meier estimator (7) and the 

kernel density estimator to derive the estimated MRL function mKMEs (t). The derivation 

is analogous to the complete data case. The resulting estimate of survival function is 

SKME, (!) = 1 - E VKME (ZJ ) - SKME (Zy+1 ))W 
ft-Z,^ 

7=1 

(12) 
h 

Note that SKME (Z;.) - SKME (Z/+1) is merely the size of the jump in the Kaplan Meier 

survival function at observation j. Using the result of equation (12) in equation (10), the 

smooth estimator of the censored data MRL is 

M t 

\SKME(
U)du-\ SKMEs (U)du 

mKMEs{t) = ~ " °— • (13) 
^ KMEs V) 

Kulasekera finds that the kernel estimators of the MRL are a much better approximation 

over the empirical MRL function for certain choices of the bandwidth, h. 

Yet another technique for computing the MRL function with censored data is derived 

from the Piecewise Exponential Estimator (PEXE) of the survivor function introduced by 

Kim and Proschan (1991). The premise of the PEXE is to estimate the average failure 

rate in each interval between successive failures, fit an exponential survivor function to 

each interval, then piece the interval survivor function estimates together to obtain the 

system survivor function. The PEXE estimate of the hazard function is 

K«) = —i " •      Zj<t<Zk (14) 
2>-i)(Zl+I-Zf) 
'=7 

where Zj = is the first observed failure (<$•= 1) < t, 

Zt = is the first observed failure (4= 1) > t. 
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Note equation (14) is (observed number of failures) / (observed total time on test) for 

each interval between observed failures. It is well known that this is the form of the 

maximum likelihood estimate (MLE) of the failure rate for the exponential distribution. 

Let Zj,j= 1 • • -m be the ordered set of observed failure times where m < n is the total 

number of observed failures.   The resulting PEXE survivor function is 

(     i-l 
Spßffi(0 = exp - E hn (z* Xz* - z*-i) - K (z, )(t - zw) ,  Zi-i<t<Zi.        (15) 

An important observation from equation (15) is that there is no attempt to extrapolate the 

estimate of the survivor function beyond the last observed failure time. The authors point 

out three key advantages of the PEXE over the KME of S(t). First, SPEXEÜ) is a 

continuous function, although it does have nodes at the observed failure times, whereas 

SxME{t) is a step function. Second, SpEXE{t) is responsive to the location of the censored 

observations between observed failures while SKME^) is not. Third, the step function 

nature of SKME^) tends to overestimate the underlying survivor function while SPExE(t) 

does not.   The PEXE estimate of the MRL function was proposed by Joe and Proschan 

(1981) and is formed by substituting SPEXEU) of equation (15) in equation (3) to obtain 

jSPEXE(u)du 
mPEXE (0 = ^ 7— (16) 

" PEXE (?) 

Complete Data Tests for MRL Distribution Classes.   Suppose non-parametric 

analysis of observed data suggests the underlying distribution is DMRL or NBUE. 

There are several statistical tests described in the literature to formally test this 

observation. The boundary between DMRL or NBUE (deteriorating item) and an JJVIRL 
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or new worse than used in expectation (NWUE) (improving item) is the exponential life 

distribution which has a constant MRL function. Therefore we wish to test: 

H0: the life distribution is exponential 
vs. 

Hi: the life distribution has a DMRL and is not exponential 
or 

H2: the life distribution is NBUE and is not exponential. 

The dual classes of IMRL and NWUE are tested under the alternatives 

Hi': the life distribution has an IMRL and is not exponential 
and 

H2': the life distribution is NWUE and is not exponential 

respectively. 

Hollander and Proschan (1975) introduced the V* test statistic to test the DMRL 

(IMRL) alternatives. They developed their test statistic by observing that the quantity 

D(s,t) = S(s)S(t)[m(s)-m(t)] (17) 

is a weighted measure of the deviation of Hi from Ho for s < t. Note that D(s,i) = 0 if 

and only if Ho is true. An average measure of the deviation of Hi from Ho is found by 

A(F) = jJD(s,t)dF(s)dF(t). (18) 

Using the empirical estimates for the parameters in equation (18), they derived 

v*=ri_j=L  (19) 

X 

where c,„ = -i3 -Ani2 + 3n2i — n3 + -n2 — i2 +—i. 
'3 2        2        2       6 

nmV* is asymptotically N(0, 1/210), thus the DMRL statistic is (210n)mV*. Large values 

of the test statistic indicate a DMRL while small values indicate an IMRL. Although not 
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presented here, the authors also develop a K* statistic to test for distributions that are 

NBUE. 

Aly (1990) proposed a test for NBUE based on the quantity 

y(S) = jS(t)(l + lnS(t)}tt (20) 

Note that y(S) = 0 if H0 is true and y(S) > 0 under H2. Equation (20) expressed in terms 

of F becomes 

Y(F) = jtj(F(t))iF(t) (21) 

where J(u) = 2 + ln(l-u). 

The quantity tn = yiF^) is formed by substituting the empirical distribution Fn for F in 

equation (21). This quantity expressed in computational form is 

^ f_nir  /_i 
1-—rxf-xH). (22) 

.1/2 The statistic n    f„ IX converges to a N(0,1) random variable as the sample size n 

becomes large.   Because the convergence is slow, a the author developed a modified 

form of the test statistic with a faster rate of convergence and shows it to be 

a.X 
(23) 

where .    \^,(.    7-1 
n 

1 ^ 

;=i 

<r.2=-Xi+in r, /-I 
n 
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H0 is rejected in favor of H2 for large values of Tn and is rejected in favor of H2' for small 

values of Tn. The author concludes the Tn statistic outperforms Hollander and Proschan's 

V statistic in terms of the Pitman asymptotic relative efficiency (ARE) for the Weibull 

distribution. 

Ahmad (1992) proposes a new test for DMRL that he claims is easier to compute and 

performs better than Hollander and Proschan's V* statistic. However, Kumazawa (1993) 

asserts this test is equivalent to Hollander and Proschan's K* statistic for NBUE. The 

development of Ahmad's test is presented here since, as discussed later in this chapter, 

his work was extended to the censored data case. 

Ahmad based his test on the intuitive notion that if m(t) is decreasing and 

differentiable, then m'{f) < 0 for t > 0. The first derivative of the MRL function is given 

by 

m\t) = -~- (f(t)[s(u)du-S\t)) (24) 

Note that m'if) < 0 if the quantity   S2 - f(t)\ S{u)du ] > 0. Therefore an average 

measure of the deviation of H2 from Ho is 

ÖF =](s\t)-f(t)^S{u)du\it. (25) 

Substituting the sample survivor function Sn for S, the symmetrized U-statistic form of 

equation (25) becomes 

Un=-
L-77^Xi-Xj). (26) 
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The quantity n   Un is asymptotically N(0, 1/3), thus the test statistic is (3n)mUn. H0 is 

rejected in favor of H2 for large values of (3n)mUn and is rejected in favor of H2' for 

small values of (3ri)mUn. 

Censored Data Tests for MRL Distribution Classes.   The three tests discussed 

thus far are limited in that they only apply when the failure data is complete. Fortunately, 

there are several tests for DMRL and NBUE that accommodate randomly censored data 

described in the literature. Chen, Hollander, and Langberg (1983) introduce such a test 

for DMRL. They extend the work of Hollander and Proschan by substituting the Kaplan- 

Meier estimator of the survival function (7) in equation (18) to obtain 

**>=iBfK +iÜe'* 4JK]
(Z

' "
ZW)

     
(27) 

i n~ j where -  - 
'     n-j+l 

Analogous to the derivation of the V statistic, the V statistic for censored data is then 

V<=^- (28) 
ß 

where £ = XJIK4(Z
(- ~Z

M)- 

The quantity n1'2^ is asymptotically iV(0, T0
2), thus the DMRL statistic is «

1/2
V7T0. A 

consistent estimator of To2 is shown to be 

f2 = 1 ,y     n fg,(2) fi,(3) | fl,(4) | Bt{5)    fl.(6) | g,(8)| 
0  720 tf(n-i + l)(n-i)\  72   18   16   45   18   72 J 

| JB.(2)  g.(3) | Bn(4)  | B.(5) B.(6) | B,(8)| 
1 72   18   16   45   18   72 J 
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where Bi (a) = exp 
A 

A* 
,   i'=l,...,n. 

When ties exist in the data between censored and uncensored observations, treat the 

uncensored values as preceding the censored values when forming the ordered list of Z, 

values. The authors caution that no more than 50% of the observations should be 

censored when applying the V° test. However, they exercise the test in an example where 

the data is 57% censored with good results. 

Lim and Koh (1996) extend the work of Aly to accommodate randomly censored data 

by using the Kaplan-Meier estimate FKME = 1 - SKME of F in equation (21) to obtain the 

test statistic 

LI = 
ß 

(30) 

where 
„ fi-i    Y (i-x 

70W) = XIKJ    lnlKJ+1 

<"=i V i=x 
A 7=1 

fo-ZH); 

Cj and fi defined as in equations (27) and (28) respectively. 

The quantity nU2Lc
n is asymptotically yV(0, cr2), thus the DMRL test statistic is nU2Lc

n/(7. 

The authors show a consistent estimator of cr2 is 

n 

4    \tt(n-i + l)(n-i) 
Z: Z,2 

- + - 
4    2ß    2ß2 Ä,(4) 

— n 
1     Z       Z2 

4    2fl    2fi2 Ä„(4) (31) 

where ß,(a) is defined as in equation (29). The authors find the Ln
c statistic compares 

favorably with Chen Hollander and Lang's V statistic only when the data is "slightly" 

censored. 
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Lim and Park (1993) offer a test for DMRL with randomly censored data based on the 

work of Ahmad. They extend Ahmad's work by substituting the Kaplan-Meier estimate 

FRME = 1 - SKME of F in equation (25). The computational form of the resulting test 

statistic is 

5'-J% U(c,fs' -n 2n(<^ -n^ fe-Zw)[ (32) 

where Cj is as defined in equation (27). The quantity nmSc
n is asymptotically N(0, T0

2), 

thus the DMRL test statistic is nm5c
n/T0- A consistent estimator of T0

2
 is shown to be 

f° 4+^r      SlY      ,{g,W-^,(3) + k(2)} 6    ^i (n-j + l)(n-?) [ 3 2 J 

-"{ßB(4)-^5„(3) + iß„(2)} (33) 

where ß,(a) defined as in equation (29). 

H0 is rejected for significantly large (small) values of nmöc
n/r0 in favor of Hi (H/). At 

issue is whether this test is more appropriate for DMRL or NBUE. Although the authors 

claim this is a test for DMRL, Ahmad's test from which it was derived was later proven 

to be a test for NBUE. Fortunately, the matter is inconsequential for this research effort 

as both DMRL and the less restrictive NBUE class satisfy the aging requirement. 

MRL Numerical Example 

The purpose of this section is to demonstrate the MRL concepts described above via a 

numerical example. I used the Weibull distribution with shape parameter ß = 1.5 and 

scale parameter a= 1.0 to generate n = 100 random variates used as the "observed" data 

set for the example. This technique allows easy comparison of the non-parametric 
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analysis to the true underlying distribution. MathSoft's Mathcad 6.0 software 

(Appendix A) was used to generate the random variates, perform all calculations, and 

generate the plots illustrated in this section. The ordered complete data set is shown in 

Table 4. The example is considered in two parts. The complete data case is examined 

first followed by results for randomly right-censored data. 

Table 4. Weibull (1, 1.5) Ordered Data Set 

Obs.# Xi Obs.# Xt Obs.# Xt Obs.# Xi 
1 0.0218 26 0.4442 51 0.7368 76 1.3439 
2 0.0511 27 0.4503 52 0.7536 77 1.3848 
3 0.0666 28 0.456 53 0.7576 78 1.3926 
4 0.1049 29 0.46 54 0.7578 79 1.3984 
5 0.1267 30 0.4735 55 0.7818 80 1.4511 
6 0.1393 31 0.4888 56 0.7955 81 1.4676 
7 0.2598 32 0.5033 57 0.8061 82 1.4766 
8 0.2801 33 0.508 58 0.8265 83 1.5128 
9 0.3022 34 0.5125 59 0.8416 84 1.5209 
10 0.3078 35 0.5268 60 0.848 85 1.5269 
11 0.3091 36 0.5336 61 0.851 86 1.5414 
12 0.3119 37 0.5601 62 0.8594 87 1.5422 
13 0.3129 38 0.6231 63 0.8821 88 1.5634 
14 0.3155 39 0.6366 64 0.8987 89 1.5684 
15 0.3197 40 0.6387 65 0.8993 90 1.6375 
16 0.3197 41 0.6404 66 0.901 91 1.6544 
17 0.3363 42 0.6559 67 0.9856 92 1.6779 
18 0.3379 43 0.66 68 1.0324 93 1.6955 
19 0.3441 44 0.6775 69 1.1028 94 1.7888 
20 0.3593 45 0.6777 70 1.1234 95 2.0166 
21 0.3907 46 0.7051 , 71 1.1613 96 2.3462 
22 0.3957 47 0.7103 72 1.1755 97 2.8135 
23 0.4328 48 0.7191 73 1.1837 98 2.8182 
24 0.4337 49 0.7251 74 1.2054 99 3.4563 
25 0.4433 50 0.7363 75 1.2368 100 3.5434 

Complete Data. 

Empirical MRL Functions. Equation (6) was used to generate the empirical 

MRL function and a smooth approximation of the MRL function was obtained using 

Kulasekera's result (11). The Epanechnikov kernel function (Silverman, 1986: 43) 
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K{t): 3   (.    1,2) 
l--t' 

5 
\t\ < A/5 (34) 

4V5 

0, otherwise 

was used for the smooth approximation. Figure 3 shows a plot of the normal and 

smoothed empirical MRL functions contrasted with the true MRL function of the 

underlying distribution.   A smoothing parameter h = 0.1 was used in this case. Figure 4 

shows the same plots, but with smoothing parameter h = 0.2 to demonstrate its effect on 

the resulting MRL function approximation. 

— Smooth MRL 
— Sample MRL 
"-   True MRL 

Figure 3. Normal and Smoothed (h = 0.1) MRL Functions 
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— Smooth MRL 
— Sample MRL 
"-   True MRL 

Figure 4. Normal and Smoothed (h = 0.2) MRL Functions 

The overall impression of the empirical MRL functions is that the underlying 

distribution does not have a strictly decreasing MRL function, but may posses the NBUE 

characteristic. Note the empirical MRL functions are a fair approximation of the true 

MRL function for t < 1.5. When t > 1.5, the estimated MRL functions over estimate the 

true MRL function in all cases. Examination of the sample survivor curve shown in 

Figure 5 offers some insight into this phenomenon. Note that the sample survivor 

function underestimates the true survivor function in the vicinity 1.5 < t < 2 while the tail 

of the survivor function is exaggerated for t > 2. Therefore, the numerator of equation (5) 

is over estimated while the denominator is under estimated causing the poor performance 

of the empirical MRL functions in this area. Also note that progressive smoothing of the 

empirical MRL function results in increased loss of detail, but can lead to a better 

approximation if the fluctuations are suspect not to be inherent in the true MRL function. 
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Sample Estimate 
""   True 

Figure 5. Complete Data Survivor Function 

Statistical Tests.   Hollander and Proschan's V* test (16) was applied to the data 

set to test for DMRL. We would expect the test to favor of Hi over Ho since we know the 

underlying parametric distribution is DMRL. The resulting test statistic value 

(210rc)1/2V* = 1.289 yields a p-value = 0.099. This test does not strongly confirm the 

DMRL of the true underlying distribution, but does agree with the impression of the 

empirical MRL estimate. 

Aly's Tn test (23) and Ahmad's U„ test (26) were also applied to test for NBUE. The 

resulting test statistics were 2.926 and 4.008, with corresponding p-values of 0.0017 and 

3.07xl0"6 respectively. These tests strongly confirm the NBUE characteristic of the 

underlying distribution and the impression of the empirical MRL functions. 

Censored Data.   The data in Table 2 was randomly censored using the method 

described by Kulasekera (1990:100). Let Y\,...,Yn be a random sample from the 

censoring distribution G. Then the randomly right censored data is given by the pairs 

(Z/, Si) where 

Zi = min (XiJd 

Si=l if Xi < Yi and 0 if Xt >Yt. 
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I used an exponential censoring distribution with rate parameter A, = 0.8 to obtain 43% 

censoring of the data set. Table 5 shows the resulting ordered (Z,, <5,) random censored 

data pairs. 

Table 5. Censored Data Ordered Pairs 

Obs.# Zt Si Obs.# Zi * Obs.# Zi S Obs.# Zi Si 
1 0.0218 1 26 0.3119 1 51 0.5268 1 76 0.7578 1 
2 0.0511 1 27 0.3129 1 52 0.5601 1 77 0.7818 1 
3 0.0566 0 28 0.3155 1 53 0.5802 0 78 0.7955 1 
4 0.0619 0 29 0.3197 1 54 0.5814 0 79 0.8018 0 
5 0.0666 1 30 0.3197 1 55 0.5968 0 80 0.8265 1 
6 0.1043 0 31 0.3363 1 56 0.6186 0 81 0.8435 0 
7 0.1049 1 32 0.3379 1 57 0.6255 0 82 0.848 1 
8 0.1158 0 33 0.3441 1 58 0.6287 0 83 0.851 1 
9 0.1267 1 34 0.3593 1 59 0.6387 1 84 0.8561 0 
10 0.1383 0 35 0.37 0 60 0.6404 1 85 0.8821 1 
11 0.1392 0 36 0.3798 0 61 0.6431 0 86 0.8852 0 
12 0.1693 0 37 0.3907 1 62 0.6559 1 87 0.8987 1 
13 0.1823 0 38 0.3957 1 63 0.6775 1 88 0.9776 0 
14 0.1838 0 39 0.3974 0 64 0.6777 1 89 0.9937 0 
15 0.1961 0 40 0.4318 0 65 0.6855 0 90 1.0357 0 
16 0.2014 0 41 0.4433 1 66 0.6953 0 91 1.1378 0 
17 0.2379 0 42 0.4442 1 67 0.7051 1 92 1.1613 
18 0.2598 1 43 0.4503 1 68 0.7103 1 93 1.1837 
19 0.2665 0 44 0.456 1 69 0.712 0 94 1.4511 
20 0.2719 0 45 0.46 1 70 0.7191 1 95 1.4676 
21 0.2752 0 46 0.4735 1 71 0.7251 1 96 1.5269 
22 0.2801 1 47 0.4888 1 72 0.7363 1 97 1.5422 
23 0.2818 0 48 0.5047 0 73 0.7368 1 98 1.5634 
24 0.3027 0 49 0.508 1 74 0.7409 0 99 1.7888 
25 0.3078 1 50 0.5125 1 75 0.7518 0 100 1.8518 0 

Empirical MRL Functions.   The KME (8), smoothed KME (13), and the PEXE 

(15) of the MRL function were applied to the censored data set. Plots of these MRL 

function approximations contrasted with the complete data MRL function and the true 

MRL function are shown in Figure 6. The complete data MRL function is included so an 

assessment can be made regarding the affect of the censoring. The censored data 

approximations can not be reasonably expected to perform better than the complete data 
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approximation. A smoothing parameter h = 0.1 was chosen arbitrarily for the smoothed 

KME function and the same kernel (24) was used as in the complete data case. Note that 

of each of the censored data empirical MRL functions depart significantly from the 

known parametric result in that the DMRL is greatly exaggerated. The departure from 

the complete data MRL function is even more dramatic when t > 1.5. 

PEXE MRL Function 
T 

1.5 

t 

KME MRL Function 
 1  T 

Smoothed KME MRL Function 

Censored Data Estimate 
Complete Data Estimate 
True MRL 

Figure 6. Censored Data MRL Estimates 

Recall the empirical estimates of the MRL function are an application of equation (3) 

with empirical estimates for S(t). Therefore, examination of the empirical survival 

functions should offer some insight to the decreased performance of the censored data 

empirical MRL estimates. Figure 7 shows the PEXE, KME, and smoothed KME 
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survivor functions. Note that each of these functions fail to preserve the "tail" of the true 

survivor function. In contrast to the complete data set where at least sparse information 

existed in the tail of the distribution, the censored data set contains no information for 

t > 1.9. This highlights a major limitation of each of the empirical survivor function and 

corresponding MRL function estimates described in the literature. None of the estimates 

attempt to extrapolate or estimate the survivor function past the last observation. Since 

m(t) = 0 when S(t) = 0, the truncated survivor functions cause the empirical MRL 

functions to drop off faster resulting in a more pronounced DMRL. This effect is 

exaggerated as either the amount of censoring increases or the sample size decreases. A 

"semi-parametric" technique to solve this problem is developed in Chapter 3. 
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Figure 7. Censored Data Survivor Function Estimates 
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Statistical Tests.   Chen Hollander and Langberg's test was applied to the 

censored data to check for DMRL. The resulting test statistic value n1/2V°/To = 1.086 with 

a corresponding p-value = 0.139. This test did not confirm the DMRL of the underlying 

distribution even though the empirical MRL functions suggest a strongly decreasing 

MRL. Lim and Koh's test for NBUE resulted in a test statistic nll2LcJa = 8.407 with a 

corresponding p-value « 0.001. Lim and Park's test for NBUE resulted in a test statistic 

nm öc
n/To = 4.745 with a corresponding p-value < 0.001.   These tests strongly confirm 

the NBUE characteristic of the underlying distribution and the impression of the 

empirical MRL functions. 

Preventive Maintenance 

Policy Descriptions.   Three preventive maintenance policies that have been 

extensively covered in the literature are the Age Replacement Policy (ARP), the Block 

Replacement Policy (ARP), and the Opportunistic Replacement Policy (ORP). The ARP 

is common when considering simple systems whereas the BRP and the ORP are 

appropriate for complex systems. The term "replaced" is synonymous with the 

expression "repaired to as good as new" for the following discussion. Barlow and Hunter 

(1960) define the ARP (Policy I) whereby the system is replaced upon failure or after a 

time T since the last failure, whichever occurs first. In the limit as T approaches infinity, 

the ARP reduces to replacing the system upon failure and no preventive maintenance is 

performed. Figure 8 illustrates representative ARP time sequences. 

Barlow and Hunter also define a BRP (Policy II) whereby the system is replaced when 

the time t is a multiple of the replacement period T, that is when t = kT where k = 

1,2,3,..., regardless of the number of intervening failures. Upon failure a "minimal 
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repair" is made whereby only the failed component is replaced. After such a minimal 

repair the authors assume the system failure rate is not significantly disturbed due to the 

aging of the other components. In the limit as the replacement period T approaches 

infinity, the BRP reduces to a policy of replacing individual components as they fail. No 

preventive maintenance is performed and the system is never returned to "as good as 

new" condition. Figure 9 illustrates representative BRP time sequences. 

ARP(7) 

-X X- -x- O    X    X -&>t 

-X- 

ARP(°o) 

—X X- -x- ->f 

O  Scheduled System Preventive Maintenance 

X Failure with complete Repair 

Figure 8. Age Replacement Policy 

-A—A-9- 

BRP(7) 

-©- A 0- o    A -9M 

< T—► <—T 

-A- 

<— T <—T <—T 

BRP(oo) 

-A A A- -&-> 

O  Scheduled System Preventive Maintenance 

A Failure with minimal Repair 

Figure 9. Block Replacement Policy 
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The ORP was introduced by Radner and Jorgenson (1963) and modified by Gertsbakh 

(1977). The ORP is a combination of the ARP and BRP policies and may be beneficial 

when the cost of replacing the system is less than sum cost of replacing individual 

components. Under the ORP individual failed components are replaced if a failure 

occurs within time T, the system is replaced if a failure occurs within the interval T to T, 

and the system is replaced at time T since the last system replacement if no failures have 

occurred. Note that the ORP reduces to the ARP if T= 0, and equates to the BRP if T= T. 

Figure 10 illustrates representative ORP time sequences. 

ORP(x,7) 
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O  Scheduled System Preventive Maintenance 

X Failure with complete Repair 

A Failure with minimal Repair 

Figure 10. Opportunistic Replacement Policy 
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Of the three policies, the BRP is generally considered the easiest to implement since 

the preventive maintenance does not depend on the system failure history and can be 

scheduled in advance. Another advantage of this policy is that no documentation of 

failures or time in service of the system or any of the components is required for its 

implementation. The ARP is slightly more difficult to implement than the BRP in that 

system time in service must be tracked to determine when preventive maintenance must 

be performed in the event of no failures. The ORP is the most difficult of all to 

implement since system time in service and the parameters T and T must be tracked to 

determine the appropriate maintenance action to take. These considerations are not 

directly considered in the cost models, but may be a criteria for deciding on a policy 

when two or more have otherwise equivalent costs. 

Policy Costs.   The cost of implementing each policy must be determined in order for 

the best policy to be chosen for a given situation. Let Cfbe the cost of a system failure 

and cp be the cost of a planned system replacement where c/ > cp. The long run average 

cost per unit time of the ARP in terms of the replacement period T, CA(T) is well 

documented in the literature and is given by 

cfSJT) + cS0(T) 
CJT)=   f °T    p-^— (35) 

jS0(t)dt 

where So(t) is the system survivor function. 

The denominator of equation (35) is the expected time of each replacement period. This 

equation is easily solved given So(t). When the system lifetime distribution is not 

explicitly known, a non-parametric cost model for the ARP can be obtained with an 
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estimate of So(t) from failure data. In the limit as T approaches infinity the average cost 

per unit time of the ARP becomes 

CA(~) = — - (36) 

To determine the cost of the BRP and ORP policies, the cost of replacing individual 

components must be considered. Spearman (1986) defines the costs Cf and cp as follows 

nc 

cf=cb+c
s
+yZci (3?) 

J=l 

nc 

c,=cf+£c, (38) 
i=i 

where Q, = cost (penalty) of a system breakdown 

cs — setup repair cost 

c, = cost to replace component i 

nc = number of components in the system. 

Note that under this formulation the assumption c/> cp holds for cb > 0. Also, the cost of 

system failure followed by a minimal repair of the failed component only is given by 

cfl = cb + cs + ct. (39) 

It should also be noted that the total cost of replacing individual components is greater 

than the cost of simultaneously replacing all components only if cs > 0. 

Spearman shows the long run average cost per unit time of the BRP in terms of the 

replacement period T, CB(T) is 

cp+2(^)^(7) 
CB (T) = l^-j  (40) 

where W,(0 = E[Ni(t)] is the expected number of renewals of 
component i by time t. 
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The renewal function Wt(t) must be determined for each component of the system to 

solve equation (40). Wit) is found via the fundamental renewal equation (Barlow and 

Proschan, 1965: 50) shown in equation (41). 

Wi{t) = [{\ + Wi{t-x))dFi{x). (41) 

Equation (41) is difficult to solve for many distributions, including the Weibull. 

Spearman develops an easy to implement approximation of the renewal equation for 

lifetime distributions with unbounded increasing failure rates (including the Weibull 

distribution) given by 

W(t)~max{Wi(t),F(t)} (42) 

where W, (t) = 1 + -+ ^    " 
V 

F(t)—jsf(s)ds. 
A* o H '     2\i2    j 

When the component lifetime distributions Fit) and/,-«) are not explicitly known, they 

must be estimated from failure data to apply equation (42). Either parametric or non- 

parametric estimates may be used. In the limit as T approaches infinity the average cost 

per unit time of the BRP becomes 

CB(~) = XV-- (43) 

The long run average cost per unit time of the ORP, C0(.T,T) is similar to the BRP, but 

the denominator of equation (40) must be modified since the average duration of each 

replacement period is no longer fixed at T. Spearman develops the expected cost of the 

ORP and shows it to be 
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cp+f,(CfMCc) 
C0(T,r) = —-=-^  (44) 

T+ J[1-FV(T,M)}*" 

where Fy(to,t) is the distribution function for the random variable 
V, the time until the next system renewal given the system 
is at time to. 

The numerator of equation (44) is similar to that for the BRP (40). The approach to 

finding a solution to the fundamental renewal equation via the approximation (42) is 

unchanged. To solve the denominator, Spearman assumes Weibull component lifetime 

distributions and develops an estimate for the quantity 1- Fvit,u): 

(A.    /       \A    /    \ßA 
l~Fv (T, U) > exp S- 

(=i 

+U\        [   T   1 

v a,-   ) 
+ 

v«,y 
(45) 

where a, = Weibull scale parameter for component i; 

ßi = Weibull shape parameter for component i. 

This expression must be numerically integrated to calculate the denominator of the ORP 

cost equation. 

Maintenance Policy Optimization.   The problem of optimizing the aforementioned 

maintenance policies has received extensive attention in the literature. Almost without 

exception, the literature defines "optimal" in terms of minimizing cost. The cost 

equations for the respective policies are minimized with respect to the replacement period 

T (T and T for the ORP) to find the value T* providing the lowest cost for each policy. 

Once each policy is optimized, they can be directly compared to determine the overall 

best policy for a given situation. This approach to finding an optimal preventive 

maintenance policy requires the cost parameters described in equations (37) and (38) to 
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be well defined. This is not always the case. Consider a system such as the AMRAAM 

where the penalty of system failure, Q,, is degraded mission accomplishment or, in the 

extreme case, loss of life. In this case the cost Q,, while obviously high warranting 

consideration of a preventive maintenance policy, is subjective and its relative weight 

compared to the other cost parameters (expressed in dollars) is difficult to assess. The 

traditional approach of optimization through minimizing the cost function therefore can 

not be directly applied. Instead, we will attempt to express system reliability for each 

policy as a function of cost. A direct comparison can then be made between the policies 

to determine which policy provides the greatest reliability for a given cost (or conversely, 

given a specified reliability the "optimal" policy is the one with the lowest associated 

cost). The methodology for this approach will be developed in chapter 3. 
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III. Methodology 

Overview 

In this chapter the methodology to analyze the AMRAAM data set is defined. The 

chapter begins with a look at the MRL function. A technique to improve the empirical 

MRL functions discussed in chapter 2 is developed and demonstrated. The behaviors of 

the various DMRL / NBUE statistical tests are also examined with respect to various 

Weibull shape parameters, sample sizes, and censoring levels. In the next section, the 

preventive maintenance reliability cost model is developed and demonstrated. A cost 

parameter sensitivity analysis is performed with the model to determine the best policy 

with respect to parameter ratios. Finally the performance of the empirical reliability cost 

model is assessed with a numerical example. 

Mean Residual Life 

Semi-parametric MRL Function.   The empirical MRL function estimates 

discussed in Chapter 2 are an application of equation (3) with empirical estimates for S(t). 

However, the empirical survivor functions generally fail to preserve the "tail" of the 

distribution as the amount of censoring increases. The truncated survivor functions result 

in empirical MRL function estimates with an exaggerated DMRL. This effect is 

unacceptable for two reasons. First, we are attempting to characterize the aging process 

to determine if a preventive maintenance policy is applicable. An exaggerated MRL 

function may falsely indicate that a preventive maintenance policy is warranted when, in 

fact, the MRL of the underlying distribution may not support this conclusion. Second, an 
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accurate MRL function is an integral piece of the reliability cost model developed later in 

this chapter. 

A method is required to extrapolate the empirical survivor functions, Sn(t), past the 

last observation in order to improve the empirical MRL estimates. We propose a "semi- 

parametric" technique whereby a distribution is fitted to the data and the corresponding 

parametric survivor function, S(t), is used to estimate the survivor function beyond the 

last observation. The general form of semi-parametric survivor function, Sn (t) is 

Sn(t)   = Sn(t) , t<Zn (46) 

= 5(0  ,        t>Zn. 

The general form of the semi-parametric MRL function mn (t) is then 

1 
mn(t) = 

(z„ 
jSn(u)du + C t<Zn (47) S"(tK 

where C = \S(u)du. 
z„ 

The constant C in the semi-parametric MRL function accounts for the area in the tail of 

the empirical survivor function that may be lost due to censoring. Note that no attempt is 

made to estimate the MRL function beyond the last observation. If an estimate is 

required in this region, the parametric MRL function corresponding to the fitted 

distribution is used. This technique is extremely flexible in that the constant C is a 

function of the last observation, Z„.   If Z„ is sufficiently large such that the tail of the 

empirical survivor function is preserved (or perhaps exaggerated), C will be negligible 

and the empirical MRL function is not significantly altered. If Z„ is such that significant 
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area in the tail of the survivor function has been lost, C increases accordingly and the 

empirical MRL function is improved. 

We demonstrate the semi-parametric MRL function technique with an extension of the 

numerical example presented in Chapter 2. Weibull distributions were fitted to the 

complete data (Table 4) and censored data (Table 5) to compute the constant C of 

equation (47) for each case. Leemis (1995) provides details for computing Weibull MLE 

shape (ß) and scale (a) parameters applied here. The shape parameter is found via a 

Newton-Raphson iterative procedure: 

ß.+i=ß..^M. (48) 

where 
XzflnZ,. 
i=i 

P       ieU \ Zi 

i=l 

g\ß) = ~ ß2   (»     V 
i=i 

f  « Y  « \     (  n V 
1Z? |l(lnZ;)

2Zf   -E^lnZ, 
i=l A i=l i=l 

r = number of observed failures; 

U = set of observed failures. 

An initial guess ßo = 1.5 was used to start the procedure and a tolerance 

£ = 0.01 > \ßi+i-ßi\ was used for the final result. Once ß is found, the scale parameter is 

found via 

a = 

f Y 

r 
(49) 

1=1 
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The complete and censored data cases of this example are considered separately. 

Complete Data.   Recall that the tail of the non-parametric survivor function was 

exaggerated (Figure 5) causing a significant departure of the non-parametric MRL 

functions from the true distribution (Figure 3). The semi-parametric MRL technique 

discussed above should show little difference with the non-parametric results since the 

tail of the survivor function was preserved in the non-parametric result. Application of 

equation (48) resulted in Weibull parameter estimates of ßn = 1.428 and an = 0.993. The 

parametric estimates are reasonable compared to the true parameters ß = 1.5 and cc= 1.0. 

The complete data non-parametric and parametric survivor functions are shown in 

Figure 11. 

Non-parametric 
Parametric 

Figure 11. Complete Data Survivor Function Estimates 

Note the tail of the parametric estimate is very small past the last observation. In fact, the 

resulting constant C = 0.000477. As desired, the semi-parametric normal and smoothed 

MRL functions shown in Figure 12 are indistinguishable from the non-parametric 

functions shown in Figure 3. 
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— Smooth MRL 
- Sample MRL 
" "   True MRL 

Figure 12. Complete Data Semi-parametric MRL Functions 

Censored Data.   The three censored data MRL estimation techniques greatly 

exaggerated the DMRL characteristic of the underlying distribution (Figure 6) due to the 

truncated nature of the associated non-parametric survivor functions. The semi- 

parametric MRL technique should alleviate this problem. Application of equation (48) to 

the censored data set resulted in Weibull parameter estimates of ßn = 1.724 and On = 

1.082 and the constant from equation (47) C = 0.011. The censored data KME survivor 

function, parametric survivor function, and the true survivor function are shown in Figure 

13. The parametric survivor function increases area in the tail of the distribution over 

that of the non-parametric result, but underestimates the area in the tail of the true 

survivor function. Still, the semi-parametric MRL functions shown in Figure 14 are a 

marked improvement over the non-parametric functions (Figure 6). Note the semi- 

parametric results underestimate the true MRL, but the slope of the DMRL is generally 

preserved. 
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Figure 13. Non-parametric and Parametric Survivor Functions 
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Figure 14. Semi-parametric MRL Functions 
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MRL Test Performance.    The behaviors of the power and level of the tests 

described in Chapter 2 with respect to sample size, amount of censoring, and MRL 

characteristic of the underlying distribution must be understood before accepting the 

implied conclusions of the tests. The tests described in Chapter 2 are examined with 

respect to these parameters in this section. The complete data and censored data tests are 

considered separately. 

Complete Data.   The behaviors of the V*, Tn, and Un test statistics with changes 

in the Weibull shape parameter of the underlying true distribution were assessed via a 

Monte Carlo simulation. (See Appendix B for simulation Mathcad code.) Weibull 

distribution "data sets" were generated for ß = 0.9 to 1.5 in 0.1 increments with thirty 

replications performed at each value of ß. P-values for each of the three tests were then 

computed at each replication and ß value. The resulting p-value verses ß scatter plots are 

shown in Figure 15. The p-value mean at each ß is indicated in the plots to give a sense 

of the overall trend of the tests as the shape parameter is varied. Plots for n = 100 and n = 

200 are shown side by side to capture the effect of sample size on test performance. 

Figure 15 suggests the variability of the p-value responses is less for Aly's Tn and 

Ahmad's Un tests than for Hollander and Proschan's V* test. This confirms the claims by 

Aly and Ahmad that their tests are more efficient than the V* test. All three tests have a 

large amount of variability when the underlying distribution is exponential (jß = 1). 

However, H0 is incorrectly rejected at the 0.1 level for no more than 10% of the 

replications in this case. The figure also suggests the intuitive conclusion that the 

performances of the three tests improve as the sample size increases.   Note the variability 
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of each test is reduced when the sample size is increased to 200 for all values of ß except 

j8=1.0. 

n=100 n = 200 

0. 
a 

0.8 

**•* data 
mean 

1.2 1.4 

Shape Parameter 

1.2 

Shape Parameter 

Figure 15. Complete Data Test Performance 
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Censored Data.   The same Monte Carlo simulation procedure used to analyze the 

complete data tests was applied to the censored data V, Ln
c, and ön

c tests described in 

Chapter 2. The resulting p-value versus ß scatter plots for 45% data censoring are shown 

in Figure 16. The p-value mean is included in the plots to give a sense of the overall 

trend of the tests as the shape parameter is varied. Plots for n = 100 and n = 200 are 

shown side by side to capture the effect of sample size on test performance. The scatter 

plots for Lim and Koh's Ln
c test are not included since p-values were « 0.001 for all ß 

values and sample sizes. 

n=100 

i     0.5 ~ 

Figure 16. Censored Data Test Performance with Sample Size (45% Censoring) 
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The overall impression from the scatter plots in Figure 16 is that, as with the complete 

data tests, the performances of the censored data tests improve with increasing sample 

size. Furthermore, the figure confirms Lim and Park's assertion that their 5n
c test is more 

efficient than Chen Hollander and Langberg's V test. Also note the V test is unreliable 

when the data is subject to 45% censoring with a sample size of n = 100. 

Figure 17 shows p-value versus ß scatter plots for n = 100 with plots for 9% and 45% 

censoring shown side by side to capture the effect of censoring percentage on test 

performance. Again the scatter plots for Lim and Koh's Ln
c test are not included since p- 

values were « 0.001 for all cases. The tests improve dramatically with decreased 

censoring. Note the variability in the responses decreases, the probability of rejecting H0 

when H0 is false increases, and the probability of rejecting H0 when H0 is true decreases 

with the lower censoring percentage. 

The extremely low p-values obtained in all cases with Lim and Koh's Ln
c are notable. 

This phenomenon is consistent with the results the authors obtained when they applied 

their test to failure data consisting of 211 observations subjected to 57% random right 

censoring. In this example they obtained a test statistic value nll2Ün/a = 8.75 with a 

corresponding p-value « 0.001. Conversely, Chen Hollander and Langberg obtained a 

test statistic value nmV°/To = 1-52 with a corresponding p-value = 0.064 and Lim and 

Park obtained test statistic value nm8c
n/x0 = 3.870 with a corresponding p-value < 0.001 

when their tests were applied to the same data set. In any case, Lim and Koh's Ln
c test 

was deemed unreliable for this research effort since it never correctly failed to reject Ho 

under the conditions of the simulation efforts just presented. 
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In general, the performance of Chen Hollander and Langberg's and Lim and Park's 

tests improve as either the sample size increases and/or the amount of censoring 

decreases. Since it is impractical to attempt quantify the goodness of each test for every 

sample size and censoring percentage combination, the tests should be subject to 

simulations similar to the ones presented here before accepting the conclusions of the 

tests. Recall the current AMRAAM data set consists of 815 observations subject to 74% 

censoring with future data expected to consist of over 2500 observations subject to 80% 

censoring. The Y and 5n
c were subjected to the same Monte Carlo simulation procedure 

described above to assess their suitability under these conditions with the results shown 

in Figure 18 and Figure 19 respectively. The figures suggest Chen, Hollander, and 

Langberg's V° test is unreliable with these combinations of sample size and censoring 

percentage. Note the p-value = 0.1 for all ß values with no decreasing p-value trend as ß 

increases. Lim and Park's Sn
c test performs better in that there is a decreasing p-value 

trend with increasing ß. However, the figure suggests a high probability of rejecting H0 

when H0 is true (ß < 1.0). 

48 



9% Censoring 45% Censoring 

0.8        0.9 1 

*** data 
mean 

1.1        1.2        1.3        1.4        1.5        1 

Shape Parameter 

Figure 17. Censored Data Test Performance with Censoring Percentage (n = 100) 
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Figure 18. V0 and Sn
c Test Performance with n = 815 and 75.5% Censoring 
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Figure 19. V° and 5n
c Test Performance with n = 2500 and 80.7% Censoring 
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Preventive Maintenance 

Reliability Cost Model Development.   As stated in Chapter 2, the traditional 

approach of maintenance policy optimization through minimizing the cost function can 

not be directly applied when the penalty of system failure is subjective. In this case, a 

cost model to express system reliability as a function of cost for each preventive 

maintenance policy is more appropriate. The cornerstone of this "reliability cost model" 

is the ability to compute the costs of the respective preventive maintenance policies given 

a reliability goal. Recall that the age, block, and opportunistic preventive maintenance 

policies described in Chapter 2 have planned system renewals at the replacement period 

T. Thus, T is directly related to system reliability. A small value of T results in greater 

reliability since the system is preventively returned to new condition more often, thereby 

lowering the probability of failure. Since the respective policy costs are a function of T, 

a link between system reliability and policy costs is established. 

Reliability Determination.   The survivor function of an item, S(t) =1- Fit), is 

the probability the lifetime of an item is greater than t and therefore is a measure of the 

item's reliability at time t. One might suppose that selecting T such that 5(7) equals the 

desired reliability goal is an appropriate method for specifying system reliability with a 

preventive maintenance policy. However, this intuition is erroneous. Consider the 

example of an item with an exponential lifetime distribution with associated survivor 

function as shown in Figure 20. It appears a preventive maintenance policy can be 

applied with a value of T selected to meet a reliability goal. We know, however, a 

preventive maintenance policy can not improve reliability since the item is always "as 

good as new" due to the memoryless property of the exponential distribution. 
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Reliability 
Goal 

Figure 20. Exponential Distribution Survivor Function 

The conflict arises since the survivor function is a measure of projected reliability starting 

from t = 0, and does not consider the probability of survival at time t given the item has 

survived to some time between 0 and t. The "virtual age" of an item described in Chapter 

2 is a measure of this conditional passage of time. Let Tv denote the "virtual replacement 

period" determined from the survivor function as in Figure 20. From equation (4), Tv can 

be expressed 

Tv = m(0)-m(T). (50) 

Rearranging we obtain 

m(T) = m(0) - Tv. (51) 

Given a value of Tv determined from the survivor function, the actual replacement period 

T can then be determined from the MRL function. This process applied to the 

exponential item in the example is shown graphically in Figure 21. Note there is no 

solution to equation (51) given a value of Tv > 0 since m(t) = m(0) is constant for all t. 

This confirms the notion that a preventive maintenance policy is not suitable for an item 

with an exponential lifetime distribution. 
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Exponential Survivor Function Exponential MRL Function 

Figure 21. Replacement Period determination with the Exponential Distribution 

To illustrate the process with an aging item, consider a Weibull lifetime distribution 

with survivor and MRL functions as shown in Figure 22.   A reliability goal of 0.8 yields 

a virtual replacement period Tv = 0.5. Applying equation (51) we obtain m(7) = m(0) - Tv 

= 0.9 - 0.5 = 0.4. From the MRL function the true replacement period T is determined to 

be 0.7. 

Weibull(l, 2.5) Survivor Function 

Rel- 0.8 
Goal 
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1 i                1 
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,       t           , 
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1 1.5 
t 

0.5 

T=0.1 
1 1.5 

t 

m(T) = m(0) -Tv = 0.9 - 0.5 = 0.4 

Figure 22. Replacement Period determination with the Weibull (1, 2.5) Distribution 
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Since it is somewhat awkward to enter the survivor function and MRL function graphs 

with the respective dependant variables, a slightly modified procedure to apply the 

reliability cost model is summarized as follows: 

1) Specify a replacement period T 
2) Compute preventive maintenance policy costs given T 
3) Determine the "virtual replacement period", Tv = m(0) - m(T) 
4) Determine the system reliability = S(TV). 

This procedure reverses the direction of the arrows shown in Figure 22. 

Policy Costs.   The policy costs discussed in Chapter 2 must be modified for the 

reliability cost model. Recall the policy costs for the age, block, and opportunistic 

preventive maintenance policies (equations (35), (40), and (44) respectively) included the 

cost of a system failure Cf as defined in equation (37).   However, the penalty of a system 

breakdown (Q,) is not explicitly included in the reliability cost model. Therefore the cost 

of a system failure becomes 

nc 

i=l 

Note that Cf is now equivalent to the cost of a planned system replacement (cp) as defined 

in equation (38). The reliability model policy costs for the ARP, BRP, and ORP 

normalized with respect to cp are then given by 

CAr(T) = —^ , (53) 

js0(t)dt 

1 + 

CBr(T) = — 

'l^ 

CP 

£(cf+c>f (D 
i=i 

(54) 

55 



1+ 
(I V 

C0r(T,T) 

£(c,+C>,(T) 
1=1 

T-T (55) 

T+   f[l-Fv(T,M)]dw 

Reliability Cost Model Example.   In this section the complete reliability cost model 

is demonstrated with a numerical example. A system composed of four components is 

considered. The components are assumed to have Weibull lifetime distributions with 

parameters as specified in Table 6. A setup repair cost cs = 0.1 was chosen arbitrarily and 

component replacement costs were specified as shown in Table 7. From equation (38) 

the cost of a complete system replacement is then cp = 1.0. 

Table 6. Component Weibull Distribution Parameters 

Component a ß 
1 
2 
3 
4 

0.0003034 
0.0002716 
0.0002848 
0.0002736 

1.2 
1.3 
1.4 
1.5 

Table 7. Component Replacement Costs 

Component Ci Cfi = cs + ct 

1 .3 .4 
2 .25 .35 
3 .2 .3 
4 .15 .25 

The system survivor function So(t) from equation (1) is 

(     4 
5,

0(0 = exp -IM* 
;=i 

and the resulting system MRL function m0(t) is given by 

(56) 

1    °° 
m0(t) = ——js0(u)du. (57) 
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Plots of the system survivor and MRL functions are shown in Figure 23. 

System Survivor Function 
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System MRL Function 
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Figure 23. System Survivor and MRL Functions 

The reliability cost model summarized above was implemented with the replacement 

period T varied from 300 to 4500 hours in 100 hour increments. Equation (42) was used 

to solve the expression in the numerator of the BRP (54) and ORP (55) cost equations. 

Equation (45) was used to solve the expression in the denominator of the ORP cost 

equation (55). An iterative procedure whereby the parameter rwas varied from 0 to Tin 

100 hour increments was used to optimize the ORP (55) with respect to T at each value of 

T. All computations and plots were computed via Mathsoft's Mathcad 6.0 software on a 

PC (Appendix C). Figure 24 shows the resulting policy costs as a function of the 

computed reliability at each value of T. Figure 25 shows the parameters T and T plotted 

against the computed reliability. 

Some important observations can be made from this example. First, the policy costs 

are increasing functions with respect to the reliability goal, and the increases are dramatic 

when the specified reliability goal exceeds 0.85. Second, the most cost efficient policy 

(in this case the ORP) remains the same regardless of the specified reliability goal. 

Third, the distinction between the costs of the different policies diminishes as the 
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specified reliability goal increases. These observations are consistent with Spearman's 

results for the traditional cost optimization model employed with several different cost 

coefficients and Weibull distribution parameters. 
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Figure 24. Policy Costs vs. Reliability Goal 

5000 

4000 ~ 

3000 

s 

2000 - 

1000 - 

0.8 0.85 

Reliability Goal 

0.9 0.95 

_   T 

■-   Tau 

Figure 25. T and T vs. Reliability Goal 

Cost Parameter Sensitivity Analysis. 
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Spearman's results differed from those presented in the example above in that he found 

the ARP to be most cost efficient policy. He also found the ORP to be degenerate (T = 0) 

with the ARP. The disparities are accounted for by the choice of the various cost 

coefficients, notably the value of the setup repair cost (cs) relative to the sum cost of the 

individual components (Zci). If cs is very large, as in Spearman's examples, the ARP is 

attractive since the cost cs is incurred less often than with the BRP. If cs is relatively 

small, as in the example presented above, the BRP is attractive since good components 

are replaced less often than with the ARP. 

At issue is the value of cs that represents the boundary between the ARP and the BRP 

costs. Figure 26 shows a plot of the three policy costs verses the cost ratio c/jLci. The 

parameter cs was varied from 0 to 4.5 while the other costs were held constant as 

described in Table 7 to obtain a range of the cost ratio c/JjCi from 0 to 5.0.   Note the 

boundary between the ARP and the BRP is cjYci = 0.75. Furthermore, note that the 

ORP is always at least as cost efficient as either the ARP or the BRP. As the ratio cJYfii 

becomes very large the optimal value of T decreases and the ORP becomes degenerate 

with the ARP as shown in Figure 27. As the ratio cjYßt decreases to zero the optimal 

value of T approaches T and the ORP becomes degenerate with the BRP. The ORP offers 

the greatest advantage in cost efficiency when the cost ratio cJYßi = 0.75. 
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Empirical Reliability Cost Model.   The performance of the reliability cost model 

applied to empirical data was assessed via a Monte Carlo simulation (Appendix C). 

Weibull distribution "data sets" were generated for a four component series system in 

accordance with the parameters in Table 6. The data set was censored in accordance with 
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the following procedure. Let Xy represent the ith failure time for the/ft component, then 

the censored system level failure data is 

Z, = min {XnX^X^X^Yi} (58) 

where Y, is an observation from the censoring distribution G. 

I used an exponential censoring distribution with rate X = 0.0018 to obtain an average of 

74% random right censoring of the system level data set. Note that if a system level 

observation is censored (Z, = Yj), then the observations for each of the components are 

also censored. If a system level observation is an observed failure (Z, > Y,)> then all but 

the minimum component failure time are censored. Therefore, component level data is 

always subject to greater censoring than system level data with this censoring scheme. 

Reliability Determination.   The system reliability S(TV) is a random variable in 

the empirical model since it is a function of values calculated empirical estimates of the 

survivor and MRL functions. To assess the performance of this random variable, 30 

replications of n = 815 data points were generated as stated above. The system reliability 

was computed for values of T from 500 to 2000 hours in 300 hour increments for each 

replication. This procedure was repeated for each survivor and MRL function estimation 

technique: KME, PEXE, and smoothed KME respectively. 

Figure 28 shows the resulting reliability verses T scatter plot using the semi- 

parametric KME estimate for the MRL function. The mean and its associated 95% 

confidence interval using the student's t statistic are also shown to provide a sense of the 

overall trend and variability of the responses. The true reliability curve is shown for 

comparison. The 95% confidence interval covers the true result for all values of T 

considered (except T= 1700) suggesting no statistical difference between the empirical 
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mean and the true result. The same simulation was performed using the non-parametric 

KME MRL function with the results shown in Figure 29. The random number seeds used 

for the previous simulation were repeated, therefore the differences between the two 

results are attributed solely to the different MRL estimation techniques. Note that the 

reliability for a given value of T is generally underestimated when the non-parametric 

MRL function is used. The 95% confidence interval does not cover the true result 

indicating statistical significance between the empirical and true result. This 

characteristic is attributed to the generally exaggerated DMRL functions of this 

technique. 

XXX Data 
"B~  Mean 
-o-   Lower 95% CI 
-o-   Upper 95% CI 
"~    True 

Figure 28. Semi-parametric KME Reliability vs. T 
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*** Data 
~B~ Mean 
-°"   Lower 95% CI 
-°-   Upper 95% CI 
~~    True 

Figure 29. Non-parametric KME Reliability vs. T 

Although the semi-parametric KME result performed well on average, the variability 

in the responses is of concern, especially for large values of T. Figure 30 and Figure 31 

show similar reliability verses T scatter plots with using the semi-parametric PEXE and 

smoothed KME (h = 100) MRL functions respectfully. The random number seeds used 

for the KME simulations were repeated allowing direct comparison of the results. The 

PEXE MRL function results are similar to those for the semi-parametric KME. Although 

a slight improvement in the mean response for the larger values of T is detectable, there is 

no significant reduction in the variability of the responses. 
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xxx Data 
"B~  Mean 
-O-   Lower 95% CI 
"°-   Upper 95% CI 
—    True 

Figure 30. Semi-parametric PEXE Reliability vs. T 

The smoothed KME MRL function (h = 100) provided a slight reduction in the 

variability of the responses over those of the semi-parametric KME and PEXE MRL 

functions. A smoothing parameter h = 200 was attempted with the results shown in 

Figure 32. Although the variability of the responses is reduced over the previous cases, 

the reliability is underestimated for small values of T. 

In summary, the semi-parametric smoothed KME MRL function provides the best 

results for reliability determination of the three MRL estimation techniques. However, 

the smoothing parameter h must be chosen judiciously. The smoothing parameter should 

be chosen as large as possible without so distorting the empirical survivor and MRL 
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functions that an accurate reliability determination is not possible. Also, regardless of the 

empirical survivor / MRL function estimation technique, the Monte Carlo simulations 

show an accurate estimation of reliability can not be assumed when Tis large and 

approaches the value of the last observation. This is not considered to be a significant 

limitation, however, since in most cases where a preventive maintenance policy is 

considered small values of T are desired. 

at 

400 600 800 1000 1200 1400 1600 1800 

*** Data 
~B~ Mean 
-O-   Lower 95% CI 
-°-   Upper 95% CI 
~~    True 

2000 

Figure 31. Semi-parametric Smoothed KME (h = 100) Reliability vs. T 
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400 600 800 1000 1200 1400 1600 1800 2000 

*** Data 
~B~  Mean 
-°"   Lower 95% CI 
-°"   Upper 95% CI 
~~    True 

Figure 32. Semi-parametric Smoothed KME (h = 200) Reliability vs. T 

Policy Costs.   The costs of the three preventive maintenance policies are also 

random variables in the empirical model since their calculation requires estimates of 

either the system (ARP) or component (BRP and ORP) lifetime distribution functions. 

The performances of the empirical policy costs were assessed with the same Monte Carlo 

simulation procedure described above for the reliability determination. The empirical 

ARP cost was determined via equation (53) with KME of the system survivor function 

used in place of So(t). The empirical BRP cost was determined via equation (54). The 

component renewal functions, Wj(t), were solved via equation (42). Weibull MLE 
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parameters were determined via equation (48) and used to compute parametric estimates 

for jj,, c^,f{t), and F{t) using the equations presented in Table 2. The empirical ORP cost 

was determined via equation (55). The component renewal functions were computed as 

described above and the expression in the denominator was solved using equation (45) 

with MLE estimates used for the component Weibull parameters. 

Figure 33, Figure 34, and Figure 35 show the resulting cost verses T scatter plots for 

the ARP, BRP, and ORP respectively. The respective true cost functions are shown for 

comparison. The figures suggest the empirical cost models very accurately reflect the 

theoretical results with very little variability. Figure 36 shows the ORP optimal value of 

T versus T scatter plot. Again the empirical model performed very well compared to the 

theoretical result. 

0.0025 

5M0 
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x** Data 
"a~  Mean 
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Figure 33. ARP Cost vs. T 
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Figure 34. BRPCostvs. T 
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Figure 35. ORP Cost vs. T 
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Figure 36. ORPTVS. T 
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IV. AMRAAM Data Analysis 

Overview 

In this chapter the AMRAAM failure data is analyzed with the methods developed in 

Chapter 3. As of this writing, the AMRAAM failure data consists of n = 815 total 

observations, 606 of which are censored resulting in 74.4% random right censoring. The 

data set consists of system failure data only. Lacking component level data, the ARP was 

the only preventive maintenance policy that could be considered for analysis. 

The chapter begins with an analysis of the empirical MRL function. The empirical 

survivor functions are developed and the non-parametric, parametric, semi-parametric 

MRL functions are examined. The chapter concludes with an application of the 

reliability cost model developed in Chapter 3. 

MRL Analysis 

Survivor Function Estimates.   Figure 37 shows the PEXE, Smoothed KME (h = 

100) and KME survivor function estimates. All three non-parametric estimation 

techniques match each other very closely. Of note is the relative "smoothness" of the 

KME survivor function. The very small "steps" in the KME survivor function are due to 

the compactness of the data for t < 1600. Most startling, however, is the obvious 

truncated nature of all three of the non-parametric survivor function estimates. The 

survivor function estimates abruptly end at t = Zn = 2070 with 5(Z„) = 0.3. A Weibull 

distribution was fitted to the data with MLE parameters a„ = 0.000616 and ßn = 0.853 

determined via equation (48). The Weibull parametric survivor function estimate is 

compared to the KME estimate in Figure 38.   The non-parametric estimate is a close 
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match to the parametric result for t < Z„, but the lack of information in the tail of the non- 

parametric distribution is evident. 

KME 
1 1 1 

0.75 - 

0.5 - - 

0.25 

1 1 

PEXE 
1 1 1 

0.75 - 

0.5 - 

0.25 

1 1 
1000 2000 1000 2000 

Smoothed KME 
0.96 

0.72 

0.48 

0.24 - 

Figure 37. Non-Parametric Survivor Function Estimates 
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Figure 38. KME and Parametric Survivor Function Estimates 

MRL Function Estimates.   Figure 39 shows the KME, semi-parametric KME, and 

Weibull parametric estimates of the MRL function.   The smoothed KME and PEXE 

MRL estimates are time intensive to compute and were not pursued due to the already 

relatively smooth nature of the KME MRL function. The figure illustrates the dramatic 

departure of the non-parametric KME MRL function from the parametric and semi- 

parametric results. The decreasing MRL nature of the non-parametric KME result is 

most certainly exaggerated since the non-parametric KME survivor function contains no 

information in the tail of the underlying distribution. The semi-parametric and 

parametric results are in close agreement and indicate a slightly increasing MRL 

function. However, these results may also differ significantly from the true underlying 

distribution since such a large portion of the survivor function is estimated beyond the 

data as shown in Figure 38. 
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Figure 39. KME, Semi-Parametric KME, and Parametric MRL Functions 

MRL Statistical Tests.   Chen Hollander and Langberg's V test and Lim and Park's 

5n
c test were applied to the data to test for DMRL and NBUE respectively. The V° test 

resulted in a test statistic value of 1.967 and a corresponding p-value = 0.025. The 8n
c 

resulted in a test statistic value of 5.855 with a corresponding p-value « 0.001. Both 

tests confirm the DMRL / NBUE impression of the KME MRL function. However, these 

tests are unreliable under the sample size and censoring percentage conditions of the 

AMRAAM data set as demonstrated in Figure 18. Based on the impression of the 

parametric and semi-parametric MRL functions, I would not reject H0 in favor of DMRL 

or NBUE under these conditions. 

Preventive Maintenance Policies 

The aging criterion must be satisfied before a preventive maintenance policy is 

pursued. The MRL analysis presented above does not support, nor necessarily reject, this 
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criterion. Without conclusive evidence of aging, the pursuit of a preventive maintenance 

policy for the AMRAAM based on the current data is not warranted. However, for 

illustration purposes the reliability cost model developed in Chapter 3 is applied here 

using the non-parametric MRL function. 

Reliability Determination.   The system reliability S(TV) was computed for values of 

T from 500 to 2000 hours in 200 hour increments using the KME survivor and MRL 

functions. Figure 40 shows the resulting reliability versus Tplot. 

1 "a              '                           1 1                        1 - 

0.9 - 

0.8 ^""""-a. - 
£> 

13 
0.7 

0.6 — >v                                — 

0.5 

1                       1 1                1 
500 1000 1500 2000 

Figure 40. Reliability vs. T 

ARP Cost.   The normalized ARP cost given by equation (53) was computed for 

values of T from 500 to 2000 hours in 200 hour increments. Figure 41 shows the 

resulting ARP cost versus T plot. Note the dramatic increase in cost for T < 500 which 

represents a desired reliability > 0.9 as shown in Figure 40. Figure 42 shows the direct 

relationship of the ARP cost with the desired reliability goal. 
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Figure 42. ARP Cost vs. Reliability 
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V. Summary and Conclusions 

Research Objectives and Primary Results 

The overall objective of this research effort was to formulate a preventive 

maintenance strategy for using, retiring, or refurbishing AMRAAM missiles subject to 

extended captive carry flight time. A preventive maintenance policy is only applicable if 

the item in question is aging, or deteriorating with time. Therefore, a supporting objective 

of this research is to characterize the aging process of the missile system through a non- 

parametric analysis of its Mean Residual Life (MRL) function. 

The MRL analysis of the current AMRAAM failure data did not support the aging 

criterion. Without conclusive evidence of aging, the pursuit of a preventive maintenance 

policy for the AMRAAM based on the current data is not warranted. Instead a failure 

replacement maintenance policy whereby individual components are repaired / replaced 

upon failure is recommended. 

Summary of Other Significant Results 

Non-parametric MRL Functions.   Three non-parametric MRL function estimation 

techniques discussed in the literature were examined via a numerical example. All three 

estimation techniques differed significantly from the true MRL function in that they 

exhibited a greatly exaggerated decreasing MRL. The departure from the true result was 

attributed to the lack of information in the tail of the respective non-parametric survivor 

functions. A semi-parametric technique for estimating the MRL function was developed 

whereby the tails of the respective non-parametric survivor functions were estimated with 

a parametric result. 
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The semi-parametric MRL functions showed dramatic improvement over the non- 

parametric estimates. 

MRL Statistical Tests.   The performances of several statistical tests for the 

distribution classes of DMRL and NBUE were assessed via Monte Carlo simulation. 

Complete data and censored data tests were considered. The simulations revealed the 

behavior of the tests with changes in sample size, amount of censoring, and the MRL 

characteristic of the underlying distribution. The simulations also showed that none of 

the three censored data tests considered were reliable under the conditions of 1) sample 

size of 815 with 75% random right censoring, or 2) sample size of 2500 with 80% 

random right censoring. 

Maintenance Policy Optimization.   Three preventive maintenance policies 

discussed in the literature were considered. The traditional approach of optimization 

through minimizing the cost functions requires the cost for a system failure (Q,) be 

explicitly known. However, Q, is often subjective and difficult to express in monetary 

terms. A "reliability cost model" was developed whereby system reliability for each 

policy was expressed as a function of cost. This technique allows an informed decision 

on the "optimal" policy based on a subjective assessment of Q,. Theoretical results were 

presented and the performance of the model applied to empirical data was assessed via a 

Monte Carlo simulation. Finally, the sensitivities of the respective policy costs with 

changes in the cost parameters were examined. This analysis revealed the nature of the 

relative policy costs as summarized below: 

(1) The most cost efficient policy is irrespective of the desired reliability goal. 

77 



(2) The cost ratio cv/Sc, = 0.75 represents the boundary between the ARP and 
BRP costs. The ratio c/£c, > 0.75 favors the ARP, while c/Zci < 0.75 favors 
the BRP. 

(3) The ORP is always at least as cost efficient as either the ARP or the BRP. The 
ORP is degenerate with the ARP for large values of c/£c,' and is degenerate 
with the BRP when c/Zc, decreases to zero. The ORP offers the greatest 
advantage in cost efficiency over the other policies when c/Xc, = 0.75. 

Suggestions for Future Research 

MRL Statistical Tests.   The MRL statistical tests considered in this research 

effort were determined to be unreliable when the data is subject to heavy random right 

censoring (> 75%), even when the sample size is extremely large (n = 2500). A statistical 

test that it is more robust under these conditions is required. New tests motivated by the 

notion of virtual age could be pursued. Recall that 0 < tv(t) < \i for all t for an item with 

a NBUE distribution and tv(t2) > tv(t\) for all t2 > h if an item is 

characterized with a DMRL function. 

AMRAAM Preventive Maintenance.   The MRL analysis of the AMRAAM failure 

data did not support the aging criterion. However, there was great disparity between the 

non-parametric and parametric results due to the lack of data in the tail of the non- 

parametric survivor function. This subject should be revisited as more data becomes 

available allowing better approximations of the system MRL function . 

The AMRAAM failure data available for this research did not contain component 

level information. It is well known that complex systems often exhibit exponential 

lifetime distributions even though one or more components may be aging. Component 

MRL functions should be developed as data becomes available. Preventive maintenance 

policies at the component level could then be pursued if warranted. 
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Appendix A: MRL Example Code 

I. Preliminaries 

1. Set parameters and constants 

Sample size: n=30 
Weibull parameters: ß=i.5   0^1 
Plot time parameters:        tmax=3.o tstart =0.001      tstep^.os 
Smoothing parameter:       h^o.i 
Non-parametric or "semi-parametric" results: switch=o 

switch = 0,     non-parametric 
switch = 1,     semi-parametric 

2. Weibull MRL and survivor functions (Leemis 1995:88): 

The incomplete Gamma Function (Leemis 1995:286): 

1 
I(a,x) 

T(a) 
y01    -exp(-y)dy 

0 

Survivor function: 
S(t,shape,scale) :=exp[-(scale-t)shape] 

MRL function: 

mCt.shape.scalQ^^^^-^H.pf    1 
scale-shape \ shape 

1-1 —, (scale -t)shape 

shape 

t: = 0.001,0.OZ.tmax 

m(t,ß,a) 

m(t,l,a)     11~ 

m(t,0.8,a) 

0 

1         1 

^^  *—"   "~*~ 
,*" 

s 

1         1 

Weibull mean calculation: \i true 1-T11 

ß-a    \ß 
true 

3. Weibull random variate generation: 

X: = rweibull(n,ß)-a U: = sort(X)        meanX : = mean(X) 
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i<— 1 

while i^n 

Z.«-U.   , i      i-1 

i<— in-1 

4. Weibull Parameter Estimation (Leemis, 1995:216): 

a) Create set of ordered observed failure times: 

oft(G) i<— 1 

j-l 
out<-G if cols(G)=l 

while i<n                    if cols(G)=2 

if G   =1 
1.1 

outj,o^Gi,o 

out. ,«— i 
J.l 

j«-j+l 

i^- i+1 

out 
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b) shape parameter calculation: 

estimation tolerance: e -o.oi 

ß „(Q): x<-ofl(G) 

r<-rows(x) — 1 

ßn-ß 

E wx i,0 

V"   i=i 

' E (Gi,o)ßn-KGi,c 
i=i  

E MPn 

i=l 
E (Gi,o)Pn-KG.,c 
i=i 

E wN°i. 
i=l 

■ pnme - 

ßn 

ß new^ß n" 

E (%t 
i=i 

° prime 

while   |ßnew-ßn|>E 

ßn^ßnew 

E (Gi,o)ßn-KGi,o) 
i=i 

E MPn 

i=i 

E (°Jn 

i=i 
E (Gi,o)ßn-KGi,c 
i=i 

E MN0i.J 
> pnme 7 

ßn 
E (G„o)Pn 

i=l 

ß new^ß iT 
> pnme 
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c) scale parameter calculation: 
ßn(Z)= 1.222   b:=ßn(Z) 

<xn(G,ß) num<-n  if cols(G)=l 

num<-XG<i:>   if cols(G)=2 

out* 
num 

G 
i.O, 

i= 1 

ß 

S(t,b,a) 

S(t,ß,a) 

anZ,ßn(Z)   =0.953        a :=ccJZ,ßn(Z) 

II. Complete Data Example 

1. Sample Survivor Function (Leemis, 1995:253): 

sn(t) i<— 1 

while i<n 

if t<Z. 
i 

n-(i- 1) 
n 

i<— n -H 1 

i<— i-t-1 

s<- -0 if t>Z 

if t<Z 

Sample Estimate 
True 

2. Compute the semi-parametric MRL numerator constant: 

C:=   C^O  if switch=0 

10-Z 
n 

S(u,ß,a)du  if switch=l 
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3. Sample MRL Function (Guess and Proschan, 1985:8-9): 

mn(t,G) 

while j^n 

if t<G 
J 

kH-l 

mrk- 
i=k+l 

n-k 

j<-m-l 

JH+1 
mrl 

4. Smooth Empirical MRL Function (Kalasekera, 1991): 

Integrated Epanechnikov kernal function: 

Wk(u) 

if u>^/5 

0  if uK-^5 

smoothed MRL function: 

0.3354102u - 0.0223607uJ ■+- .5 if   u <A 5 

mnk(T,G,h) out^O if %>G 

meanX - 

out<- 

n 

-i-E-J^U E -hC 

if T<G 

T-G.1 
W 

m-i 
i=l 

out 
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5. Compute MRL Plot array :: = 0..rows(MRLcmplt)-l 

MRL cmplt' t<- tstart 

i^O 

while t^tmax 

outi>0<-t 

out j^m^Ct.Z, 

outj 2<-mn(t,Z) 

out. 3^-m(t,ß,a) 

t*-1 +• tstep 

i«—i-H 1 

1.5 

MRL 

MRL 

MRL 

<1> 
cmplt      / j 

<2>\ 
cmplt      / j 

<3>\   0-5 - 
cmplt      /; 

X 

out 

1 

MRL 

2 

<0>\ 
cmplt      / j 

6. Hollander and Proschan (1975) V* Test: 

c(k) 
Al*                        \ 3 

 4-n-k   +3-n -k  
\ 3                / 2 

n 

2     .2 n      k 

2      2 

k 
-t-- 

6 

T £ c(i)-zi 
i= 1 

star meanX 

test : = (210n)°-5-V star pvalue :- 1 - pnorm(test ,0,1) 

test = 0.807 pvalue =0.21 

7. Aly (1990) Tn Test: 

0sqr 

j=i 

1 + In 1 j-l 
n   m-J      \        n 

In 1 

j=l 

j-l 

1 

meanX 
i=l 

1 + lnll-— ll-fl- — \-(ZrZi_1 
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T    : = x n 
n ■ (t n — A,n-meanX 

Tn =0.839  pvalue := 1 - pnoiWTn,0, l)     pvalue = 0.201 

0sqr n -meanX 

8. Ahmad (1992) Un Test 

Upval(G) 

for je 2..n 

j 

U, 

3-G - G. 
i      j 

i=l 

n! 

(n-2)! 

U, 

test^(3-n)  -Un 

pval<— 1 - pnorm( | test | ,0,1) 

pval 

Upval(Z) =0.037 

Censored data Example 

1. Generation of Random Censored Data: 

exponential censoring distribution: Yi:=rexp(n,o.8) 

censored data pairs function:     mdcensor(Gi,G2) := i<-0 

while i<n- 1 

if G1.<G2 
i      i 

if Gl>G2 
i       i 

U. n^G2 
1,0 i 

uu-° 
i<-i-t-i 

U 
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function to add a leading zero to the data set:   addO(G) i<-l 

while i<n 

Zi,cTGi-i,o 

1,1      i-1,1 

i«-i+l 

the ordered random censored data set:   zc =addO(csort(mdcensor(x,Yi),o)) 

- 7z <l> 

Compute Censor percentage:   percentcensor : =        percentcensor =0.467 

last observation is considered "observed:" Zc   , :=1 
n, 1 

2. KME Survivor Function 

S
KME(

G
'
1
)
:
~ S<-1  if t<Gj 0 

if Gl,0<t£Gn,0 

i^2 

while i^n 

if t<G i,0 

k^i 

s<-l 

for je 1,2..k- 1 

s<— s- "-J 

n-j-hl 
if G   «I 

i<— n -H 1 

s<-0 if t>G n,0 

i<-i-H 

3. Smoothed KME Survivor Function (Kulasekera, 1990): 

step size at each observation of SKME: 

step (G, i) SKME(G'Gi,o)_SKME 

S
KME(

G
'
G

O)   
if i=n 

°'G,4-i.o    if i<n 

the smoothed survivor function: 
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SsKME(G't) : = sum<—0 

for je l..n 

/t-G. 
sum«-sum-i-W ^ ^- -step(G,j)   if G.   =1 

1       h       / J' 

S<— 1 - sum 

S 

4. PEXE Survivor Function (Kim and Proschan, 1991): 

oft(G) := i<— 1 

j<-l 
while i<n 

if G   =1 
i> i 

outj,o^Gi,o 

out. ,<—i 

JH+i 
i<— i+l 

out 

compute sample hazard function: 

rn(G,k) := l 

oft(G)kl-l 

i=oft(G)k_M 

compute PEXE of S(t): 
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SPEX^G'1) i^2 

s<-exp((-rn(G,l)-t})   if t<oft(G)10 

Zoft^oft(G) 

if Z_ft    <t<G n otti,o        n-° 

while i<n 

if t<Z oft i,o 

i- 1 

lamdafc- ^   r n( G, k) • (Z oft     - Z 

k=l 

i^n+1 

i<-i-l-l 

s<—exp((-lamdat)) 

s^O if t>G 
n,0 

oft +(t-zoft        W0»1) k,0 k-1,0/        \ 1-1,0/ 

5. Compute Survivor Curve data array 

Srvr:=   t<—tstart 

i^O 

while t^tmax 

out.0«-t 

i :-0..rows(Srvr)- 1 

outu^SpEX^Zc,t) 

OUtj     j^SjQ^^ZCt) 

outii4<-S(t,ß,a) 

t<-1 + tstep 

i<— i ■+■ 1 

out 

0 0.75 1.5 2.25 

t 

~  PEXE 
"   Smoothed KME 
'    KME 

Parametric 

6. Compute Semi-parametric MRL Function Numerator constant 

compute Weibuil parameter estimates:   a :=« n(zc,ß n(Zc)j      a = 1.075 
b:=ßn(Zc) b = 1.315 



C:= C^O if switch=0 

iazc 
n,0 

S(u,b,a)du  if switch=l 
Zc 

n,0 
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7. KME MRL Function (Chen et. all, 1983): 

mKME(G't'C) i<-l 

while i<n- 1 

if t<G. 
i,0 

St-SKME(G'Gi,o, 

denom<— S 

int«-S-[G 0-t 

for JG i-i- l,i-h2..n 

S
^

S
KME(

GG
J,O)   

if ^-l.i"1 

mrt- 

inh-int4-S-(G0-G_lf0_ 

int+C 

mrt- 

mrl 

denom 

i<— n-t- 1 

W0'G»,oH°M-tl+c 

S
KME^Gt) 

if G    , n<t<G   . 
n- 1,0 n,0 

8. Smooth KME MRL Function (Kulasekera, 1990): 

^SKME(°) 

n,0 
SsKME(Gu)du ^: = ^sKME(Zc) 

0 

msKME(Gt'^'C) :' S^SsKME(Gt) 

if switch=0 

ouK-0  if S<0 

/ 
SsKME(G'u)du 

out^ 

if switch=l 

Jo 
otherwise 

out^O  if t>G n,0 

\ 
SsKME(Gu)du fC 

out<- otherwise 

out 
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9. PEXE MRL estimate (Joe and Proschan, 1981): 

""PEX^01'1'0) :; 

rG 
n,0 

sPEx^G'y)dy+c 

mrls- 
t 

SPEXE^G't) 

mrt—0 otherwise 

mrl 

if t<G 
n,0 

10. Compute MRL Plot Data Array 

MRL cnsrd t<- tstart 

i^O 

while t^tmax 

out. _<—t 1,0 

out ^«-mpgx^Zc.t.C) 

outi,2^msKME(Zc't^'C) 

outi3^mKME(Zc,t,C) 

outii4<-m(t,P,a) 

t<-1 +- tstep 

i<-i+l 

out 

MRL 

MRL 

MRL 

MRL 

<1> 
cnsrd 

<2>) 
cnsrd      / j 

<3> 
cnsrd 

<4>^| 
cnsrd      / ■ 

cnsrd     / j 
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11. Chen et. all (1983) DMRL test with censored data     C(u) n- u 

n- U+-1 

AF n^E 
i= 1 

i- 1 /     i- 1 i- 1 

-;• n «oA14 n «^ 
j=i \ j=i " j=i 

1      p-r 4ZC.   , 

r n «J>  "' Zc    - Zc 
i,0 i— 1,0. 

^KME(G) :~ S<-1 

int^Gi,o 

for ie 2..n 

S
-

S
KME(

GG
O)   tf^-i,,-1 

int^-intH-S-fG   -G 

int 

Hhatn :
"^KME(

ZC
) 

AFn                               /      a 

Vc: =  B(i,a) :=exp| -Zc 
Hhatn ^hat i,0 

half : = n- 
B(n,2)     B(n,3)     B(n,4)     B(n,5)     B(n,6)     B(n,8) 

72 18 16 45 18 72 

xsqr 

n-1 n.(B(i,2)     B(i,3) | B(i,4) [ B(i,5)     B(i,6) | B(i,8) 

72 18 16 45 18 72 

on      m-j 720 
i= 1 

(n-i+lHn-i) 
half 

test 
njVc 

J. 
2 

xsqr 

pvalue := 1 - pnorm(test ,0,1)       pvalue = 0.24   test = 0.708 

12. Lim and Koh (1996) NBUE Test 

»"»   £   \\m\ 
i- 1 

In 

i- 1 

n <*» v +i Zci,<rZVi,o, 

half =!!■ 
'i       Zc   „ Zc   . 1 n,0 V     n,0, 

^4    2-Hhatn/    2.^hat 

•B(n,4) 

n- 1 

osqr 1+    V-    n  

4       u-i   (n-iH-l)-(n-i) 
i= 1 

'l      Zci,o 
Zc uof 

\4    2^hatn/    2.nhatn
2 

B(i,4) -half 
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test 
2   T n -Lc 

2 csqr 

pvalue := 1 - pnorm(test ,0,1)       test = 3.981   pvalue =3.43310 

13. Lim and Park (1993) NBUE Test: 

n     /    i- 1 i- 1 
5n:= E 2-n c(j)ZCji1'2- nc(j)ZCj,] 

i=l  1   j=l j=l 

Zc. n-Zc.   , „ 
i,0 i-l,0, 

8pval(G,8n,n 

n- 1 

halfU M: 6       -^   (n-i+l)-(n-i) 
i= 1 

B(i,4,G,|i)-4'B(i'3'G''l>   +
B(i'2'G,'i) 

3 / 2 

half2<- n B(n,4,G,ji)---B(n,3,G,|i)U--B(n,2,G,n) 

Tsqr<-,halfl-half2 

l 

n 
2Sn 

test<- 

Tsqr 

pval<— 1 - pnorm(test ,0,1) 

pval 

Spval(Zc, 8 n, jihat n) = 0.074 
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Appendix B: Statistaical Test Comparison Code 

Complete Data Tests 

Tn (Aly), Un (Ahmad), and V* (Hollandar and Proschan) Tests for 
D(I)MRL/NBUE with Complete Data 

1. Set Constants: 

n^ioo sample size 
ßmin=o.9 weibull shape param min 
ßmax=i.5 weibull shape param max 
deitaß=o.i weibull shape param step size 
cc^i.o weibull scale param 
nreps =30 num of repititions at each ß 

2. Hollander and Proschan (1975) V* Test subroutine: 

c(k) 
A i3                 \                        3 4-k      .    .2     „   2.     n 
 4-n-k M-3-n -k  

2 
+ - 

Vpval(G.mean) 

1. £  c(i).G 

Vstar^ 
i= 1 

mean 

.0.5 test^(21(>nr-Vstar 

pval<— 1 - pnorm(test ,0,1) 

pval 
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3. Aly (1990) Tn Test subroutine: 

Tpval(G,mean) 
mean n 

i= 1 

UlnU-i^lWl-inll.fG-G^ 

n 
j-l OSqrn^7 £   [^ln[l      n 

l 

n -|tn- A.n-mean 

asqr n -mean 

pval<— 1 - pnorm(T n, 0,1 

pval 

n 

4. Ahmad Un Test Subroutine (1992) 

Upval(G) un<-o 

for je 2..n 

j 

£ (^-^ 
TT     , 

i=i 

n-(n- 1) 

test<-(3-n)2-Un 

pval^- 1 - pnorm(test ,0,1) 

pval 

+ u, 

5. Add an initial zero to the ordered data set: 

addzero(G) i<-l 

while i<n 

Z.<-G.    , 
i       i— 1 

i<-i+l 
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6. Compute p-value comparison matrix 

testcompare ß^ßmin 

i*-0 

ßcount^-0 

while ß<ßmax-i- 
deltaß 

while i<ßcount +■ nreps - 1 

data *- rweibull( n, ß) • a 

meanX*- mean( data) 

Z<— addzero( sort(data)) 

out 
i,0 -ß 

out. <—Vpval(Z,meanX) 

out. <^Tpval(Z,meanX) 

out. 3^Upval(Z) 

i<— i -i— 1 

ß count«— i 

ß^ß -j-deltaß 

out 

7. Plot the results: 

avg 

i : = 0.. rows (testcompare) - 1 

ßmax- ßmin 
imax<- 

deltaß 

for ie 0,1.. imax 

jmirF-nreps-i 

jmax<— jmin-h nreps - 1 

out. 0<— mean(submatrix(testcompare,jmin,jmax, 0,0)) 

out. 1<-mean(submatrix( testcompare, jmin, jmax, 1,1)) 

out 2<-mean(submatrix( testcompare ,jmin,jmax,2,2)) 

out. ,<— mean(submatrix(testcompare,jmin,jmax, 3,3)) 

out 

j :-0..rows(avg) - 1 
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1 1.2 1.4 l.i 

Shape Parameter 

*** data 
mean 

■a 

a. 

1 1.2 1.4 

Shape Parameter 

1.6 

*** data 
mean 

1 1.2 1.4 

Shape Parameter 

*** data 
mean 

Censored Data Tests 

Tn (Lim and Park), Vc (Chen, Hollandar and Langberg), and Lc (Lim and Koh) 
tests for NBUE / DMRL with Censored Data 

1. Set Constants: 

n=30    sample size 
x^o.5   exp censor rate 
cc^i.o   weibull scale param 
x,=o.5   exp censor rate 
nreps =5 num of repititions at each ß 

ßmin=o.9    weibull shape param min 
ßmax=i.5    weibull shape param max 
deitaß=o.2  weibull shape param step size 

2. Chen et. all (1983) DMRL test with censored data : 

c(u) := 
n- in-1 

B(i,a,G,mean) :-exp 
mean i,0 

97 



^KME(G) :~ S<-1 

int^Gi,o 

for ie 2..n 

KME^G'Gi,o)   if Gi-l,l=1 

int-int+S-(qi0-G 

mt 

Vpval(G,Vc,H) :- 
,B(n,2,G,n)     B(n,3,G,|J.)     B(n,4,G,H)     B(n,5,G,u.)     B(n,6,G,u)     B(n,8,G,Li) 

halfl<-n-| 1 1 1  
72 18 16 45 18 72 

B(i,2,G,|l)     B(i,3,G,H)     B(i,4,G,H)     B(i,5,G,(l)     B(i,6,G,(l)     B(i,8,G,H) 

72 
n- 1 n- 

half2e-   J   - 

i=l 

TSqr< -t-halfH-half2 
720 

n2-Vc 

18 16 45 18 72 

(n-i-hlHn-i) 

tsqr 

pval«- 1 — pnorm(test,0,1) 

pval 

3. Lim and Park (1993) NBUE Test with randomly censored data 

n- 1 

8pval(G,8n,n halfl<---H 
6 £—-— m-i   (n-i+-l)-(n-i) 

i= 1 

B(i,4,G,|x) 
4-B(i,3,G,n)      B(i,2,G,|i) 

half2^n- B(n,4,G,ji)---B(n,3,G,|i)j+--B(n,2,G,ji) 

Tsqr<— half 1 - half2 

2 s n -5, 
test^- 

xsqr 

pval<— 1 - pnorm(test, 0,1) 

pval 
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4. Lim and Koh (1996) NBUE Test with randomly censored data: 

Lpval(G,|i) Lo 

half«— n- 

i= 1 

i- 1 

n *>j' 
1      un,0 G n,0, 

osqr< h 
4 

4     2-M- /       2-|i: 

n- 1 

£ 

/  /i-i 

Inl f]   c(j) j' 

■B(n,4,G,H) 

Gi,0"Gi-l,0 

i= 1 
(n-i+l).(n-i) \4     2-H, 

test«- 
2 T n   Lc 

2 
2 

Osqr 

pval<— 1 - pnorm(test ,0,1) 

pval 

1     °i,0 Gi,0 

2-]i 

B(i,4,G,|l) half 

5. Create Censored Data Pairs 

rndcensor (Gl, G2) 

while i^n- 1 

if Gl<G2 
i      i 

if G1>G2 

U.   «-G2 
i,0 i 

U.   <-0 
i>l 

i<— i-h 1 

U 

addzero(G) : = i<-l 

while i^n 

Zi,o^Gi-i,o 

1,1      i—i,i 

i«—i-l-1 

data (shape) :- X<— rweibull( n, shape) • a 

Y<—rexp(n,^) 

temp<— rndcensor (X, Y) 

Zctemp^- csort (temp, 0) 

Zc<— addzero(Zctemp) 

Zc   ,<-l 
n, 1 

Zc 
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6. Compute Censor Proportion:     cnsrproportion(G) num< -Icf1* 
n- num 

n 

out 

7. Compute Products for Test Stat Computation 

prod(G,stop) :- out^l 

out <— 1 

out2<- 1 

if stop ^1 

for je L.stop 

if G.   =1 
J>1 

Cj-C(j) 

out0^Cj-out0 

OUt  <— C: -OUt 

OUt^Cj -out2 

dummy«—j 

out 
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8. Compute P-value Comparison Matrix 

testcompare :=   ßcount«—0 

ß^ßmin 

j<-o 

while ß<ßmax-|- 
deltaß 

while j<ßcount + nreps - 1 

Z^data(ß) 

AF^O 

8Fn-0 

for ie l..n 

prd<—prod(Z,i- 1) 

AF^AF-h ^V^V^ Zi,0"Zi-l,0, 

Vo 

5Fn^5Fn-h(2-prd1-prd() 

AF 

Zi,o-Zi-i,o, 

5F, 

out.^ß 

out. j^VpvalCZ.Vcn) 

out.   <-6pvalfZ,8n,jx 

out.   <—cnsrproportion(Z) 

ß<-ß-t-deltaß 

ßcount<—j 

out 

censorlvl : = mean\testcompare <3> censorlvl =0.34 
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9. Plot the Results: 

avg 

i:- 0.. rows(testcompare) - 1 

ßmax- ßmin 

deltaß 

for ie 0,1.. imax 

jmire— nreps-i 

jma??—jmin-l- nreps - 1 

out 0<- mean(submatrix(testcompareJmin, jmax, 0,0)) 

out j<—mean(submatrix( testcompare Jmin,jmax, 1,1)) 

out 2<- mean( submatrix(testcompare,jmin,jmax, 2,2)) 

out 

■a > 

1 1.2 1.4 

Shape Parameter 

1.6 

■a > 
0u 

1 1.2 1.4 

Shape Parameter 

1.6 

*** data 
mean 
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Appendix C: Reliability Cost Model Code 

Theoretical Reliability Cost Model 

1. Component Distribution Input Parameters 

Weibull scale params 

Weibull shape params 

2. Cost Coefficients 

a :=(0 0.0003034 0.0002716 0.0002848 0.0002736) 

ß : = (0 1.2 1.3 1.4 1.5)T 

component costs: 
setup repair cost: 

system replacement cost:  c   :=c s ■+- Ic 

c :=(0  .3  .25 .2 .15)' 

cg:=.l 

cp = l 

component replacement costs: Cf- 

0 
0 

CS^C1 0.4 

CS + C2 cf = 0.35 

CS + C3 
0.3 

_CS^C4. 
. 0.25 _ 

3. Weibull Survivor and MRL Functions   (from MRL example worksheet) 

4. System Survivor and MRL Functions       tmax=450C        t:=0.000,100.. tmax 

S0(t) : = exp 

i=l 

ßi 
rinf 

inf:=1500( mQ(t) 
SQWJ 

S0(u)du 

SQC» 0.5 - 

1000 - 

>0(t) 
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5. Function to determine the Reliability Goal given T 

"Virtual" replacement period: 

System reliability: 

Tv(T): = m0(0)-m0(T) 

R(T): = S0(TV(T)) 

6. Normalized Age Replacement Policy Cost Model 

l 
CA(T) 

rT 

Jo 
S0(u)du 

7. Component renewal function: 

Weibull mean calculation: 

Weibull variance calculation: 

Weibull density function: 

Ji(ß.a) 

var(ß,a) : = 

U11 

ß-oc    \ß 

1 

(or 

2-T2- - V1 

ß   \ß/   \ß   \ß 

f(t,ß,a):=ß-(a)ß-tß   '-ex^-Ca-t)13 

Large t renewal function approximation: 
W^t.ß.o) H^M-Cß.a) 

.     t     var(ß,a)- ul         _,   0    SN     1 
,! + -+•—^

LL
-

1—— kl-S(t,ß,(x))  s-f(s,ß,<x) ds 
V- 2-)i j ^0 

Component renewal function:    w(t,ß,a) :=maxffi-S(t,ß,a) W[(t,p,o) 

8. Normalized Block Replacement Policy Cost Model 

i+ £ ^(T.ß,,«,; 

CB(T): = i=l     P 
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9. Normalized Opportunistic Replacement Policy Cost Model 

C0(T):: T<-0 

Step-100 

out0^CA(T) 

OUt  <-T 

while T<T 

denom^-1 -t- 

1 

rT-i 

new<— 
denom 

if new<out 

out <— new 

out «-T 

T«-TH-T step 

exp ^   -^(t-hu)-a.J '+- (t-a. 

i= 1 

4     cf 

i=l 

ßi du 

out 

COST: 

s \ -feliabihty Tmax: = 450C Tstep = 100 

i^O 

T<— Tmax 

while T>0.001 

out.i0<-T 

out^-T^T) 

out.i2«-R(T) 

outi,3^CA(T) 

out.i4-CB(T) 

outi5-C0(T)o 

outi6^C0(T)i 

T<- T - Tstep 

i<— i -f- 1 

out 
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i:=0..rows(COST)-3 

0.004 

0.003  - 

u 
& 0.002 ~ 

0.001 

0.75 

ARP 
BRP 
ORP 

0.8 0.85 

Reliability Goal 

0.9 0.95 

5000 

4000 

3000 - 

2000 

1000 ~ 

T 
Tau 

0.8 0.85 

Reliability Goal 

0.95 
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Cost Analysis 

Tmax: = 450C Tstep :=100 

COST:=   i^O 

T<— Tmax 

while T>0.001 

outi,0^T 

outu*-CA(T) 

out. 2^CB(T) 

out    <-CQ(T) 
0 

out.>4«-C0(T) 

T<— T - Tstep 

i«-i + 1 

out 

0.004 
ARP, BRP, ORP vs T 

T 
Tau vs T 

4000 

-        f2   2000 - 

6000 6000 

ARP 
BRP 
ORP 

Empirical Reliability Goal 

1. Model Inputs. 

sample size: n^so 
Weibull param. estimation: 

shape param initial guess: ß 0=i.3 

shape param tolerance:     e=.02 
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exponential censor rate: x=.oou 
smoothed KME bandwidth: h^ioo 
number of replications: nreps =4 
replacement period: Tmax:=iooc     Tstep =250 Tmin: = 5O0 

2. DATA Set Generation. 

DATA(a,ß) Xj^-rweibullfn.ßjW— 

X2<-rweibull(n,ß, 

X 3<— rweibullf n, ß, J • 

X4<— rweibull(n,ßz 

X c<— augment (X j, X 2 

X c<— augment [X c, X 3 

X c^ augment (X c, X 4 

Y<—rexp(n,A,) 

for ie l..n 

X   ^min   Xc Xc 1.0 U      1-1,0 1-1,1 

X. ,*-l   if X. n<Y.    . 
1.1 1,0     1— 1 

X ,«- 0 otherwise 

X _ X _ Y.   . 
1-1,2      ci—1,3     '   1 

for je 1..4 

if X ci-l,j-l>Xi-° 

A.. „ . ^~~~ A.. n 1,2-j i,0 

otherwise 

Xi,2-j^XC;_ 
■l.j-1 

X<-csort(X,0) 

for je 1..4 

n,2-jH-l 

X    ,<-l 
n,l 

X 
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3. Empirical System Survivor Functions, (from MRL example worksheet) 

4. Weibull Parameter Estimation Functions, (from MRL example worksheet) 

5. "Semi-Parametric" System MRL Functions 

a) Numerator Constant     C(a,ß,<x) := 
inf 

S(t,ß,a)dt 

b) KME MRL Function: (from MRL example worksheet) 

c) Smoothed KME MRL Function: (from MRL example worksheet) 

d) PEXE MRL Function: (from MRL example worksheet) 

6. Function to determine the Empirical Reliability Goal given T 

determine the MRL function estimation technique:     switch = l 
swithch = 1 
swithch = 2 
swithch = 3 

KME 
PEXE 
sKME 

Rn(G,T,n,C) 0Ut<~SKMElG'lI-mKME(G'T'C)j   if switch=l 

out«- S PEXE(
G

>V- ~ mPEXE^G'T'C))   if switch=2 

out^SsKME(G'^"msKME(G'T'^'C))   if switch=3 

out 
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7. Reliability vs T 

Rel, for ke 0..nreps - 1 

Z^DATA(cx,ß) 

b^ßn(Z) 

C<-C(Zn0,b(an(Z,b)) 

p,<-rrij^ß(Z,0,C)  if switch=l 

fi<-mpg^Z,0,C)   if switch=2 

^ V- sKME^2) + C if switch=3 

i^O 

T<— Tmax 

while T>Tmin 

period   .<-T 

re^.^-R^Z.T.^.C) 

T<— T - Tstep 

i<-i+l 

npts <— i - 1 

for je 0..npts 

for ie CLnreps - 1 

out. ^period. . 
j-(nreps)-hi,0     r i,j 

out.        ,,.,«-rel . 
j-(nreps)H-i,l i,j 

out 

avg 
Tmax- Tmin 

imax  
Tstep 

for ie 0, L.imax 

jmint—nrepsi 

jmax—jmirn- nreps - 1 

out.   <— mean^submatrix(Rel   , jmin, jmax,0,0 

out.   <— mean (submatrix^Rel n,jmin,jmax, 1,1 

qt( 0.975, nreps - 1)     nreps 
hälfe 

nreps 

nreps - 1 

out.   <—out.   - half-stdev [submatrix^Reln, jmin, jmax, 1,1 

out.   ^-out.    +- half-stdev fsubmatrix/Rel   ,jmin,jmax 1,1 

out 
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Theoretical reliability at each value of T in the empirical model 

Rel: = for ie O..rows(avg)- 1 

outrS0(Tv(avg.0 

out 

a 
Oi 

i:=0..rows(Relnj- 1 

1.02 

j :-0..rows(avg)- 1 

400 600 800 1000 

X** Data 
~B~  Mean 
-°-   Lower 95% CI 
"°-   Upper 95% CI 
~~    True 

Empirical Policy Costs 

1. Model Inputs. 

sample size: n=30c 
exponential censor rate: \=.0Qii 
number of replications: nreps =4 
Weibull param. estimation: 

shape param initial guess: ß0
=1-3 

shape param tolerance: e=m 
replacement period: Tmax: = 200C      Tstep : = 5O0      Tmin: = 500 
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2. Normalized Non-parametric ARP Cost Model 

CAn(G,T):, int^T  if 0<T<Gj 

TVG  .   if T>G n n,0 n,0 

if T>G, 1,0 

int^Gi,o 

i<-2 

S<-1 

a*-int 

while a<T 

KME G,G if G 
i — 1,1 

in^int+S-(G.0-G_10 

i<— i-|- 1 

a^G 
i,0 

S-SKME(G>Gi>0)   if Gi_M=l 

int^inH-S-fG.   -T 

out« 

out 

mt 

3. Normalized Parametric BRP Cost Model 

CB„T,ßn,an 

4     c< 
1+   j]   _i.w(T,ßn,an 

i=lCP     l '       ' 

112 



4. Normalized Parametric ORP Cost Model 

C0n(T,ageT,ß,<x) 

x step ^100 

0Ut(T CA(T) 

out <- 1 

while x<T 

denom<— i + 

1 

T-T 

exp Er ißi    /      \P 
- (T + U)-CC.    -+- (t-«j 

i= 1 

du 

new«— 
denom 

if new<out 

out <— new 

out <— t 

cp+  £   cfi-w(x,ß.,a. 
i=l 

Tf-I + T step 

out 
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5. Empirical Policy Costs vs Reliability 

COST, for ke 0..nreps - 1 

Z*-DATA(a,ß) 

U-0 

TVTmax 

for JE 1..4 

Zc«-submatrix(Z,0,n,2-j,2-j-i-1) 

ßcn-ßn(Z 

J x 

acn.<_an(Zc'ßcn. 

while T>Tmin 

periodk,i^T 

agek,rCAn(Z-T) 

blockk,rCBn(T-ßcn-«cn 

temp^C^T.age     ßcn,acn 

oppk)rtemp0 

tau. 
k.f   temPi 

TV-T-Tstep 

npts^i- 1 

for je C.npts 

for ie 0..nreps - 1 
out■ i       ^- „^period. . j-(nreps)-|-i,0 i,j 

out., ,^age. . 
j-(nreps)-1-1,1       ° i,j 

out <- block. . 
j-(nreps)-fi,2 i,j 

0UtW ^'    7^0PP-    • j-(nreps)+-i,3 i.J 

out. /-tau- ■ 
j-(nreps)-H,4 i,j 

out 
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avg imax- 
Tmax- Tmin 

Tstep 

for ie 0, L.imax 

jmin^nreps-i 

jmax— jmin-|- nreps - 1 

out.   <— meanf submatrix(COST   Jmin, jmax, 0,0 

out.   <— mean(submatrix(COSTn,jmin,jmax. 1,1 

out.   <— mean(submatrixfCOSTn,jmin,jmax,2,2 

out.   <— mean[submattix(COSTn,jmin,jmax,3,3 

out .   <— mean(submatrix/COST   ,jmin,jmax,4,4 

out 

Theoretical ARP cost at each value of T in the empirical model 

Age for ie O..rows(avg)- 1 

outrCA(avg.0 

out 

Theoretical BRP cost at each value of T in the empirical model 

Block- for ie O..rows(avg)- 1 

out.<-CB(avgii0) 

out 

Theoretical ORP cost at each value of T in the empirical model 

Opp for ie O..rows(avg) - 1 

outrC0(avg.>0)o 

out 

Theoretical ORP value of x at each value of T in the empirical model 

Tau :=    for ie O..rows(avg) - 1 

out.^Cofavg.^ 

out 
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Appendix D: AMRAAMData 

z, Si Zt Si zt Si Zi Si Zi Si Zi Si Zi Si Zi Si Zi Si 
1 1 14.1 1 42.8 1 84.5 0 178.3 0 334.7 0 555.1 1 840.2 0 1611.6 0 
1.2 0 14.2 0 43.1 0 85.5 0 178.7 1 334.7 0 555.8 0 844.4 0 1621.4 1 
1.4 0 14.6 1 43.2 0 86.1 0 179.9 0 336.1 0 563.9 0 844.5 0 1750.5 0 
1.4 0 15.2 0 43.2 0 86.4 0 180 0 346.7 1 564 0 845.8 0 1836 0 
1.5 0 15.2 0 43.3 0 87.5 0 180.7 1 346.7 1 568.3 0 846.7 1 1854.3 0 
1.6 1 15.4 0 43.3 0 87.9 1 181.5 1 348.8 1 571.2 0 849.8 0 1858.2 0 
1.8 0 16.5 0 43.5 0 88 1 183.1 0 353.2 0 571.6 0 854 1 1861.8 0 
1.9 0 16.9 0 43.5 0 88.3 0 190.9 1 355.7 0 574 1 861.9 0 1882.6 0 
2.1 0 17 0 44 0 88.7 0 191.1 1 355.9 0 575.5 0 869 0 1907.8 0 
2.1 0 17.1 0 44.4 1 90 0 193.8 0 357.8 1 575.6 1 872 0 1950 0 
2.4 1 17.6 0 44.4 0 90.1 0 194.2 0 358.9 0 578.2 1 876.1 1 2011.3 0 
2.4 1 17.9 0 44.5 0 92 1 194.3 0 360.5 1 578.2 0 877.5 0 2012.4 0 
2.4 1 18 0 44.6 0 92.6 0 194.4 0 361.4 1 578.3 1 878.8 0 2024.8 0 
2.4 0 18.6 1 45.1 0 93.4 0 194.4 0 364.4 0 578.9 1 883.9 0 2054.2 1 
2.4 0 18.7 0 45.1 0 94.1 1 195.4 0 366 1 582.1 0 883.9 0 2070.1 0 
2.7 0 19.4 0 45.6 1 95 0 195.6 0 367.1 1 582.2 1 884.3 0 
2.8 1 19.5 1 45.8 0 95.4 1 196.2 1 368.8 1 582.7 1 886.3 0 
2.8 0 19.5 0 46.3 0 96.2 1 199.3 0 372.6 0 585 0 888.9 0 
2.9 0 19.5 0 46.4 0 96.4 0 199.6 0 374.7 1 585.9 0 893 0 
3 1 19.6 0 46.9 0 96.5 1 201.5 0 375.9 0 591.9 0 893.8 0 
3 0 19.7 0 47.3 0 97.8 1 203.4 0 377.1 0 591.9 0 894.4 0 
3.1 0 19.8 1 47.3 0 99.2 1 204.5 1 377.3 1 592.7 0 899.9 1 
3.4 1 20 0 47.4 1 99.7 0 204.6 1 377.6 0 598.2 0 905.6 1 
3.5 0 20.1 0 47.8 0 100.1 0 207 1 377.9 0 598.7 0 923.6 0 
3.6 0 20.9 1 48.2 0 101 1 207 0 379.8 0 600.9 0 928.3 0 
3.7 0 21 1 48.4 0 101.5 0 208.7 0 380.2 0 603.6 0 931.1 1 
4 0 21 0 48.6 0 102 0 210.8 0 381.9 0 603.7 0 934 0 
4.1 0 22.1 0 48.7 0 102.2 0 211.8 0 382.1 1 612.1 0 939.7 0 
4.3 0 22.4 0 48.9 0 102.4 1 212.5 0 384 1 614.8 1 952.8 0 
4.5 0 22.5 1 49 0 103.5 1 212.6 0 384.3 1 614.8 0 982.2 0 
4.5 0 22.5 0 49.4 0 104.4 1 215.5 1 386.4 0 615.5 0 986.5 1 
4.5 0 22.6 0 49.6 1 104.4 1 216.5 1 386.9 0 616.9 0 995.2 1 
4.5 0 22.7 0 50.1 0 104.6 0 217.7 0 387.3 0 621.2 1 999 0 
4.7 0 22.8 0 50.5 0 104.8 0 218.9 0 387.5 0 624.1 0 1002.8 0 
4.7 0 23.2 0 50.9 0 106.4 0 219.1 0 390.2 0 624.5 0 1005.4 0 
4.8 0 23.4 0 50.9 0 107.4 0 219.6 1 392.9 0 628 0 1007.6 0 
5 0 23.5 1 52 0 107.7 0 220.1 0 402.1 1 630 0 1008.6 0 
5 0 23.9 0 52.3 1 108.8 0 221.2 1 404.9 1 640 0 1017.3 0 
5.1 0 24 0 52.4 1 109.2 0 221.4 0 405.5 1 650.7 1 1018.5 0 
5.2 1 24.1 0 53 0 109.6 0 221.7 1 407.4 0 654.5 0 1022.4 1 
5.3 1 24.1 0 53.1 0 109.8 0 224.6 0 408.7 1 656.7 0 1025.9 0 
5.5 0 24.2 0 53.8 0 111 0 224.9 0 409.8 1 659.3 0 1030.5 0 
6 1 24.2 0 54.4 0 111.2 0 225.1 0 416.6 1 660 1 1032.1 0 
6 0 24.2 0 54.6 0 111.5 1 225.4 0 419.5 1 664.8 1 1034.9 1 
6 0 24.2 0 55 0 111.8 1 227.9 0 426.4 0 665.4 0 1039.4 0 
6.2 0 25.3 1 55.2 1 111.8 0 232.2 0 426.6 1 666.6 1 1042.6 0 
6.4 0 25.6 1 56 1 112.3 1 232.5 0 426.9 1 667.9 1 1044.3 1 
6.4 0 25.6 0 56.9 1 113.3 0 235.6 0 428.9 1 671.1 0 1053.9 0 
6.4 0 25.9 0 57.1 0 114.2 0 236.9 0 430.3 1 676.9 1 1054.7 0 
6.5 0 27.1 0 57.7 0 114.3 0 238.1 0 436.3 0 684.4 1 1057 1 
6.5 0 27.6 0 57.9 1 115 0 238.2 0 444 1 685.5 0 1066.7 0 
6.5 0 28 0 58.1 0 115.8 0 238.5 1 444.2 1 690.9 1 1071.3 0 
7 1 28 0 58.8 0 116.1 0 243.6 0 445.7 0 694 0 1082.7 0 
7 0 28.6 0 59.4 0 116.7 0 244.9 0 446 0 698 1 1089.5 0 
7.3 0 29 0 60.4 0 119.6 0 246.5 1 452.8 0 702.7 0 1091.6 0 
7.5 0 29.2 0 61 1 120.7 1 247.5 0 453.3 0 708.1 0 1092.9 0 
7.6 1 30 0 61.9 0 121.8 0 248.8 0 455.1 1 714.4 1 1096.6 0 
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7.6 0 30.5 0 62.4 0 123 1 249.7 0 456 1 715.3 0 1098.1 0 
7.6 0 30.5 0 63.4 0 123.2 0 250.1 0 456.6 1 716.8 0 1114.9 0 
7.6 0 30.5 0 63.8 0 124.9 0 250.7 0 457.7 1 717.6 1 1115.6 1 
7.6 0 30.6 0 63.8 0 128.2 0 253.8 0 463.4 0 718 0 1119.6 0 
7.8 0 31.1 0 64.3 0 129.2 0 254.8 0 463.5 1 720.9 0 1124.8 1 
8 0 31.2 0 64.4 1 129.3 1 256.4 0 464.7 1 721 0 1130.6 0 
8 0 31.2 0 65.7 0 129.3 0 258.2 0 466 1 721.7 0 1134.1 0 
8 0 31.2 0 66.5 1 131 1 260.4 1 467 0 734.2 0 1141.3 0 
8.4 0 31.7 0 66.9 0 133.6 1 260.6 0 467.3 0 739.6 1 1142.8 1 
8.6 1 32.3 0 67.3 0 135.9 0 262.3 1 468.1 0 742.7 0 1142.9 0 
8.6 0 33.2 0 67.4 0 137.3 0 267.5 0 476.7 0 746.6 0 1153.3 0 
8.6 0 33.3 0 67.6 0 138.3 0 270.4 1 477.2 0 748.3 0 1155.6 0 
9 0 33.5 0 67.9 0 139 0 272.8 0 479.9 0 749.5 0 1161.6 0 
9 0 33.7 0 68.4 0 139.7 0 272.8 0 481.2 0 751.9 0 1164.1 1 
9.2 1 33.8 0 68.4 0 140.8 0 274.1 1 484.6 1 753.1 0 1170.2 0 
9.3 0 33.9 0 68.5 1 143.7 1 275.6 1 490.2 0 755.3 0 1183.8 0 
9.5 0 34 0 69.4 0 143.7 0 278.4 0 496.5 1 756.9 0 1191.5 0 
9.5 0 34.3 0 69.9 0 144.6 0 279.7 0 497.2 1 760 0 1199.4 0 
10.2 0 34.5 1 69.9 0 146.8 1 286 1 499.5 0 761.1 0 1219.6 0 
10.5 0 34.5 0 70.1 0 147 1 288 0 500.1 0 765.9 0 1228.7 0 
10.9 0 34.7 0 71 0 147.5 0 288.6 1 506.6 0 769.4 0 1248.4 1 
11 0 34.9 0 71.5 0 147.6 0 289.9 1 511.8 1 772.3 1 1249 1 
11.2 0 34.9 0 72.4 0 148.1 0 291 0 525.6 0 779.1 0 1252.4 0 
11.2 0 35 0 73.4 0 149.7 0 293.2 0 525.7 0 779.6 0 1253.8 0 
11.4 0 35.4 0 74 0 152.9 1 293.9 1 526.7 1 786 0 1257.8 0 
11.4 0 35.5 0 74.2 0 153.4 0 294.1 0 529.5 0 792.6 0 1259.2 0 
11.4 0 35.6 1 75.4 0 156.1 0 294.9 0 531 0 802.6 0 1259.3 0 
11.9 1 35.6 0 75.6 0 157.8 1 300.4 0 531.6 0 802.8 1 1277.8 0 
11.9 0 36 1 75.7 0 158.5 0 303.2 1 531.9 0 807.7 0 1305.2 0 
11.9 0 36.6 0 75.9 0 158.9 0 304.3 0 532.2 0 808.5 0 1308 0 
11.9 0 36.8 0 76.6 0 162.3 0 305.6 1 532.4 1 810.6 0 1327.7 1 
12.8 0 37 0 77.1 0 162.7 1 306.2 1 534.9 0 813.6 0 1336.5 1 
13 0 37.2 1 77.9 0 163.4 0 306.8 1 537.6 0 818.3 1 1340.4 1 
13 0 38.7 0 80 0 164 0 309.6 1 537.8 1 821.5 0 1350.7 0 
13.2 0 38.8 0 80 0 164.7 1 309.7 0 538.5 0 821.7 0 1358.2 1 
13.4 0 39.7 1 80.2 0 165.4 0 315.4 0 538.8 0 823 0 1381.7 0 
13.5 0 40 1 82.1 1 166.1 0 321.3 0 539.2 0 823.9 1 1393.9 0 
13.5 0 40 0 82.9 1 169.6 0 321.5 0 541.2 0 829.1 0 1412.6 0 
13.5 0 40.5 0 82.9 0 173.1 1 325 0 542.8 1 831.7 0 1461.1 0 
13.5 0 40.6 0 83.3 0 173.7 0 328.3 0 544.3 0 834.8 1 1529.1 0 
13.5 0 40.9 0 83.7 0 174.4 1 330.5 0 544.4 0 836.7 1 1556 0 
13.9 0 42 0 83.8 0 175.6 0 332 0 551.5 1 837.2 1 1566.5 1 
14 0 42.6 0 83.8 0 177.7 1 333.6 0 554.7 1 838.7 0 1581.1 0 
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